
Introduction to Shimura Varieties
J.S. Milne

October 23, 2004; revised September 16, 2017

Abstract

This is an introduction to the theory of Shimura varieties, or, in other words, to the
arithmetic theory of automorphic functions and holomorphic automorphic forms. In
this revised version, the numbering is unchanged from the original published version
except for displays.
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Introduction
The arithmetic properties of elliptic modular functions and forms were extensively studied
in the 1800s, culminating in the beautiful Kronecker Jugendtraum. Hilbert emphasized
the importance of extending this theory to functions of several variables in the twelfth of
his famous problems at the International Congress in 1900. The first tentative steps in this
direction were taken by Hilbert himself and his students Blumenthal and Hecke in their study
of what are now called Hilbert (or Hilbert–Blumenthal) modular varieties. As the theory
of complex functions of several variables matured, other quotients of bounded symmetric
domains by arithmetic groups were studied (Siegel, Braun, and others). However, the modern
theory of Shimura varieties1 only really began with the development of the theory of abelian
varieties with complex multiplication by Shimura, Taniyama, and Weil in the mid-1950s,
and with the subsequent proof by Shimura and his students of the existence of canonical
models for certain families of Shimura varieties. In two fundamental articles, Deligne recast
the theory in the language of abstract reductive groups and extended Shimura’s results on
canonical models. Langlands made Shimura varieties a central part of his program, both as
a source of representations of Galois groups and as tests for his conjecture that all motivic
L-functions are automorphic. These notes are an introduction to the theory of Shimura
varieties from the point of view of Deligne and Langlands. Because of their brevity, many
proofs have been omitted or only sketched.

The first nine sections study Shimura varieties over the complex numbers, the next five
study them over number fields of characteristic zero (the theory of canonical models), and
the final three study them in mixed characteristic and over finite fields.

INTRODUCTION TO THE REVISED VERSION (2017)

On looking at these notes thirteen years after they were written, I found that they read too
closely as being my personal notes for the lectures. In particular, they lacked the motivation
and historical background that (I hope) the lectures provided. In revising them, I have
added this background, and I have fixed all the errors and instances of careless writing that
have been pointed out to me. Unnumbered asides are new, and this version includes three
appendices not in the published version.

One point I should emphasize is that this is an introduction to the theory of general
Shimura varieties. Although Shimura varieties of PEL-type form a very important class —
they are the moduli varieties of abelian varieties with polarization, endomorphism, and level
structure — they make up only a small class in the totality of Shimura varieties.2

The simplest Shimura varieties are the elliptic modular curves. My notes Modular
Functions and Modular Forms emphasize the arithmetic and the geometry of these curves,
and so provide an elementary preview of some of the theory discussed in these notes.

The entire foundations of the theory of Shimura varieties need to be reworked. Once that
has been accomplished, perhaps I will write a definitive version of the notes.

1Ihara (1968) introduced the term “Shimura curve” for the “algebraic curves uniformized by automorphic
functions attached to quaternion algebras over totally real fields, whose beautiful arithmetic properties have been
discovered by Shimura (Annals 1967).” Langlands (1976) introduced the term “Shimura variety” for “certain
varieties” studied “very deeply” by Shimura. His definition is that of Deligne 1971b.

2“Dans un petit nombre de cas, X=� peut s’interpréter comme l’ensemble des classes d’isomorphie des
variétés abéliennes complexes, muni de quelques structures algébriques additionelles (polarisations, endomor-
phismes, structures sur les points d’ordre n).” Deligne 1971b
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NOTATION AND CONVENTIONS

Throughout, k is a field. Unless indicated otherwise, vector spaces are assumed to be
finite-dimensional, and free Z-modules are assumed to be of finite rank. The linear dual
Hom.V;k/ of a k-vector space (or module) V is denoted by V _. For a k-vector space V
and a commutative k-algebra R, V.R/ denotes V ˝kR (and similarly for Z-modules). By
a lattice, we always mean a full lattice. For example, a lattice in an R-vector space V is a
Z-submodule � such that �˝ZR' V — throughout' denotes a canonical isomorphism.
The symbol ka denotes an algebraic closure of the field k and ks the separable closure of k
in ka. The transpose of a matrix C is denoted by C t .

An algebraic group over a field k is a group scheme of finite type over k. As k is always
of characteristic zero, such groups are smooth, and hence are not essentially different from
the algebraic groups in Borel 1991 or Springer 1998. Let G be an algebraic group over
a field k of characteristic zero. If G is connected or, more generally, if every connected
component of G has a k-point, then G.k/ is dense in G for the Zariski topology (Milne
2017, 17.93). This implies that a connected algebraic subgroup of an algebraic group over k
is determined by its k-points, and that a homomorphism from a connected algebraic group is
determined by its action on the k-points.

Semisimple and reductive groups, whether algebraic or Lie, are required to be connected.
A simple algebraic or Lie group is a semisimple group whose only proper normal subgroups
are finite (sometimes such a group is said to be almost-simple). For example, SLn is simple.
For a torus T over k, X�.T / denotes the character group of Tka . The derived group of
a reductive group G is denoted by Gder (it is a semisimple group), and the adjoint group
(quotient of G by its centre) is denoted by Gad. Let g 2G.k/; then g acts on G by the inner
automorphism ad.g/ def

D .x 7! gxg�1/ and hence on Lie.G/ by an automorphism Ad.g/. For
more notation concerning reductive groups, see �5. For a finite extension of fields L� F ,
the algebraic group over F obtained by restriction of scalars from an algebraic group G over
L is denoted by .G/L=F .

A superscript C (resp. ı) denotes a connected component relative to a real topology (resp.
a Zariski topology). For an algebraic group, it means the identity connected component. For
example, .On/ı D SOn, .GLn/ı D GLn, and GLn.R/C consists of the n�n matrices with
det> 0. For an algebraic group G over Q, G.Q/C DG.Q/\G.R/C. Following Bourbaki,
I require compact topological spaces to be Hausdorff.

Throughout, I use the notation standard in algebraic geometry, which sometimes conflicts
with that used in other areas. For example, if G and G0 are algebraic groups over a field
k, then a homomorphism G!G0 means a homomorphism defined over k; if K is a field
containing k, then GK is the algebraic group over K obtained by extension of the base
field and G.K/ is the group of points of G with coordinates in K. If � Wk ,! K is a
homomorphism of fields and V is an algebraic variety (or other algebro-geometric object)
over k, then �V has its only possible meaning: apply � to the coefficients of the equations
defining V .

Let A and B be sets and let� be an equivalence relation on A. If there exists a canonical
surjection A! B whose fibres are the equivalence classes, then I say that B classifies the
elements of A modulo � or that it classifies the �-classes of elements of A. The cardinality
of a set S is denoted by jS j. Throughout, I write AnB �C=D for the double coset space
An.B �C/=D (apply � before n and =).

A functor F WA! B is fully faithful if the maps HomA.a;a
0/! HomB.Fa;Fa

0/ are
bijective. The essential image of such a functor is the full subcategory of B whose objects are
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isomorphic to an object of the form Fa. An equivalence is a fully faithful functor F WA! B
whose essential image is B.
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1 Hermitian symmetric domains
In this section, we describe the complex manifolds that play the role in higher dimensions of
the complex upper half plane, or, equivalently, the open unit disk:

This is a large topic, and we can do little more than list the definitions and results that we
shall need.

Brief review of real manifolds
A topological space M is locally euclidean at p 2M if there exists an n such that p has
an open neighbourhood homeomorphic to an open subset of Rn. It is a manifold if it is
locally euclidean at every point, Hausdorff, and admits a countable base for its open sets. A
homeomorphism � D .x1; : : : ;xn/WU ! Rn from an open subset of M onto an open subset
of Rn is called a chart of M , and x1; : : : ;xn are said to be local coordinates on U .

SMOOTH MANIFOLDS

We use smooth to mean C1. A smooth manifold is a manifold M endowed with a smooth
structure, i.e., a sheaf OM of R-valued functions such that .M;OM / is locally isomorphic
to Rn endowed with its sheaf of smooth functions. For an open U �M , the f 2OM .U /
are called the smooth functions on U . A smooth structure on a manifold M can be defined
by a family u˛WU˛! Rn of charts such that M D

S
U˛ and the maps

u˛ ıu
�1
ˇ Wuˇ .U˛\Uˇ /! u˛.U˛\Uˇ /

are smooth for all ˛;ˇ. A continuous map ˛WM !N of smooth manifolds is smooth if it is
a morphism of ringed spaces, i.e., f smooth on an open U �N implies f ı˛ smooth on
˛�1.U /.

Let .M;OM / be a smooth manifold, and let OM;p be the ring of germs of smooth
functions at p. The tangent space Tgtp.M/ toM at p is the R-vector space of R-derivations

XpWOM;p! R. If x1; : : : ;xn are local coordinates at p, then
n
@
@x1
; : : : ; @

@xn

o
is a basis for

Tgtp.M/ and
˚
dx1; : : : ;dxn

	
is the dual basis. A smooth map ˛WM !M 0 defines a linear

map d˛pWTgtp.M/! Tgt˛.p/.M
0/ for every p 2M .

Let U be an open subset of a smooth manifold M . A smooth vector field X on U is a
family of tangent vectors Xp 2 Tgtp.M/ indexed by p 2 U , such that, for every smooth
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function f on an open subset of U , p 7! Xpf is smooth. A smooth r-tensor field on
U is a family t D .tp/p2M of multilinear mappings tpWTgtp.M/� � � ��Tgtp.M/! R (r
copies of Tgtp.M/) such that, for all smooth vector fields X1; : : : ;Xr on an open subset
of U , p 7! tp.X1; : : : ;Xr/ is a smooth function. A smooth .r; s/-tensor field is a family
tpW.TgtpM/r � .TgtpM/_s! R satisfying a similar condition. Note that to give a smooth
.1;1/-field amounts to giving a family of endomorphisms tpWTgtp.M/! Tgtp.M/ with
the property that p 7! tp.Xp/ is a smooth vector field for every smooth vector field X .

A riemannian manifold is a smooth manifold M endowed with a riemannian metric,
i.e., a smooth 2-tensor field g such that, for all p 2M ,

gpWTgtp.M/�Tgtp.M/! R

is symmetric and positive-definite. In terms of local coordinates3 x1; : : : ;xn at p,

gp D
P
gi;j .p/dx

i ˝dxj where gij .p/D gp
�
@
@xi
; @
@xj

�
:

An isomorphism of riemannian manifolds is called an isometry.
A real Lie group G is a smooth manifold endowed with a group structure defined by

smooth maps g1;g2 7! g1g2, g 7! g�1. According to a theorem of Lie, this is equivalent to
the usual definition in which “smooth” is replaced by “real-analytic”. A Lie group is adjoint
if it is semisimple with trivial centre.

Brief review of hermitian forms

To give a complex vector space amounts to giving a real vector space V together with an
endomorphism J WV ! V such that J 2 D�1. A hermitian form on .V;J / is an R-bilinear
mapping . j/ WV �V ! C such that .Jujv/D i.ujv/ and .vju/D .ujv/. When we write

.ujv/D '.u;v/� i .u;v/; '.u;v/,  .u;v/ 2 R, (1)

then ' and  are R-bilinear, and

' is symmetric '.Ju;J v/D '.u;v/; (2)

 is alternating  .Ju;J v/D  .u;v/; (3)

 .u;v/D�'.u;J v/; '.u;v/D  .u;J v/: (4)

Conversely, if ' satisfies (2), then the formulas (4) and (1) define a hermitian form,

.ujv/D '.u;v/C i'.u;J v/: (5)

As .uju/D '.u;u/, the hermitian form . j/ is positive-definite if and only if ' is positive-
definite. Note that ' is the bilinear form associated with the quadratic form u 7! .uju/WV !

R.

3In this situation, we usually write dxidxj for dxi ˝dxj — see Lee 1997, p. 24 for an explanation.
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Complex manifolds
A C-valued function on an open subset U of Cn is analytic if it admits a power series
expansion in a neighbourhod of each point of U . A complex manifold is a manifold
M endowed with a complex structure, i.e., a sheaf OM of C-valued functions such that
.M;OM / is locally isomorphic to Cn with its sheaf of analytic functions. A complex
structure on a manifold M can be defined by a family u˛WU˛ ! Cn of charts such that
M D

S
U˛ and the maps u˛ ıu�1ˇ are analytic for all ˛;ˇ. Such a family also makes M

into a smooth manifold denoted M1. A continuous map ˛WM !N of complex manifolds
is analytic if it is a morphism of ringed spaces. A Riemann surface is a one-dimensional
complex manifold.

A tangent vector at a point p of a complex manifold is a C-derivation OM;p! C. The
tangent spaces Tgtp.M/ (M regarded as a complex manifold) and Tgtp.M

1/ .M regarded
as a smooth manifold) can be identified (as real vector spaces). Explicitly, complex local
coordinates z1; : : : ; zn at a point p of M define real local coordinates x1; : : : ;xn;y1; : : : ;yn

when we write zr D xr C iyr . The real tangent space has basis @
@x1
; : : : ; @

@xn
; @
@y1
; : : : ; @

@yn

and the complex tangent space has basis @
@z1
; : : : ; @

@zn
. Under the natural identification of the

two spaces we have @
@zr
D

1
2

�
@
@xr
� i @

@yr

�
.

A C-valued function f on an open subset U of Cn is holomorphic if it is holomorphic
(i.e., differentiable) separately in each variable. As in the one-variable case, f is holomorphic
if and only if it is analytic (Hartog’s theorem, Taylor 2002, 2.2.3), and so we can use the
terms interchangeably.

Recall that a C-valued function f on U �C is holomorphic if and only if it is smooth as
a function of two real variables and satisfies the Cauchy-Riemann condition. This condition
has a geometric interpretation: it requires that dfpWTgtp.U /! Tgtf .p/.C/ be C-linear for
all p 2 U . It follows that a smooth C-valued function f on U � Cn is holomorphic if and
only if the maps dfpWTgtp.U /! Tgtf .p/.C/D C are C-linear for all p 2 U .

An almost-complex structure on a smooth manifold M is a smooth tensor field J D
.Jp/p2M ,

JpWTgtp.M/! Tgtp.M/;

such that J 2p D�1 for all p, i.e., it is a smoothly varying family of complex structures on the
tangent spaces. A complex structure on a smooth manifold endows it with an almost-complex
structure. In terms of complex local coordinates z1; : : : ; zn in a neighbourhood of a point p
on a complex manifold and the corresponding real local coordinates x1; : : : ;yn, Jp acts by

@

@xr
7!

@

@yr
;

@

@yr
7! �

@

@xr
: (6)

It follows from the last paragraph that the functor from complex manifolds to almost-complex
manifolds is fully faithful: a smooth map ˛WM !N of complex manifolds is holomorphic
(analytic) if and only if the maps d˛pWTgtp.M/! Tgt˛.p/.N / are C-linear for all p 2M .
Not every almost-complex structure on a smooth manifold arises from a complex structure —
those that do are said to be integrable. An almost-complex structure J on a smooth manifold
is integrable if M can be covered by charts on which J takes the form (6) because this
condition forces the transition maps to be holomorphic.

A hermitian metric on a complex (or almost-complex) manifold M is a riemannian
metric g such that

g.JX;J Y /D g.X;Y / for all vector fields X;Y . (7)
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According to (5), for each p 2M , gp is the real part of a unique hermitian form hp on
TgtpM , which explains the name. A hermitian manifold .M;g/ is a complex manifold M
with a hermitian metric g, or, in other words, it is a riemannian manifold .M1;g/ with a
complex structure such that J acts by isometries.

Hermitian symmetric spaces
A manifold (riemannian, hermitian, . . . ) is said to be homogeneous if its automorphism
group acts transitively, i.e., for every pair of points p;q, there is an automorphism sending p
to q. In particular, every point on the manifold then looks exactly like every other point.

SYMMETRIC SPACES

A manifold (riemannian, hermitian, . . . ) is symmetric if it is homogeneous and at some point
p there is an involution sp (the symmetry at p) having p as an isolated fixed point. This
means that sp is an automorphism such that s2p D 1 and that p is the only fixed point of sp
in some neighbourhood of p. By homogeneity, there is then a symmetry at every point.

The automorphism group of a riemannian manifold .M;g/ is the group Is.M;g/ of
isometries. A connected symmetric riemannian manifold is called a symmetric space.
For example, Rn with the standard metric gp D

P
dxidxi is a symmetric space — the

translations are isometries, and x 7! �x is a symmetry at 0.

ASIDE. Let .M;g/ be a connected riemannian manifold. For each p 2M and v 2 Tgtp.M/ there is
a unique maximal geodesic 
 WI !M with 
.0/D p and P
.0/D v. Here I is an interval in R. For
each p 2M; there is a diffeomorphism defined on a neighbourhood of p (the geodesic symmetry at
p) that sends 
.t/ to 
.�t / for every geodesic 
 with 
.0/D p. Geometrically, it is reflection along
geodesics through p. If the geodesic symmetry at p is an isometry, then .M;g/ is said to be locally
symmetric at p. A connected riemannian manifold .M;g/ is symmetric if and only if the geodesic
symmetry at every point of M is an isometry and extends to an isometry of order 2 on the whole of
M .

We let Hol.M/ denote the group of automorphisms of a complex manifold M . The
automorphism group of a hermitian manifold .M;g/ is the group Is.M;g/ of holomorphic
isometries:

Is.M;g/D Is.M1;g/\Hol.M/ (8)

(intersection inside Aut.M1/. A connected symmetric hermitian manifold is called a
hermitian symmetric space.

EXAMPLE 1.1. (a) The complex upper half plane H1 becomes a hermitian symmetric space
when endowed with the metric dxdy

y2
. The action�

a b

c d

�
z D

azCb

czCd
;

�
a b

c d

�
2 SL2.R/; z 2H1;

identifies SL2.R/=f˙I g with the group of holomorphic automorphisms of H1. For any
xC iy 2H1, xC iy D

�p
y x=
p
y

0 1=
p
y

�
i , and so H1 is homogeneous. The isomorphism z 7!

�1=z is a symmetry at i 2H1, and the riemannian metric dxdy

y2
is invariant under the action

of SL2.R/ and has the hermitian property (7).
(b) The projective line P1.C/ (= Riemann sphere) becomes a hermitian symmetric space

when endowed with the restriction (to the sphere) of the standard metric on R3. The group
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of rotations is transitive, and reflection along the geodesics (great circles) through a point
p is a symmetry (this is equal to rotation through � about an axis through p and its polar
opposite). These transformations leave the metric invariant.

(c) Every quotient C=� of C by a discrete additive subgroup � becomes a hermitian
symmetric space when endowed with the standard metric. The group of translations is
transitive, and z 7! �z is a symmetry at 0.

CURVATURE

Recall that, for a plane curve, the curvature at a point p is 1=r , where r is the radius of
the circle that best approximates the curve at p. For a surface in 3-space, the principal
curvatures at a point p are the maximum and minimum of the signed curvatures of the curves
obtained by cutting the surface with planes through a normal at p (the sign is positive or
negative according as the curve bends towards a chosen normal or away from it). Although
the principal curvatures depend on the embedding of the surface into R3, their product, the
sectional curvature at p, does not (Gauss’s Theorema Egregium) and so it is well defined
for any two-dimensional riemannian manifold.

Intuitively, positive curvature means that the geodesics through a point converge, and
negative curvature means that they diverge. The geodesics in the upper half plane are the
half-lines and semicircles orthogonal to the real axis. Clearly, they diverge — in fact, this
is Poincaré’s famous model of noneuclidean geometry in which there are infinitely many
“lines” through a point parallel to any fixed “line” not containing it. More prosaically, one
can compute that the sectional curvature is �1. The Gauss curvature of P1.C/ is obviously
positive, and that of C=� is zero.

More generally, for a point p on a riemannian manifold M of any dimension, one can
define the sectional curvature K.p;E/ of the submanifold cut out by the geodesics tangent
to a two-dimensional subspace E of TgtpM . If the sectional curvature K.p;E/ is positive
(resp. negative, resp. zero) for all p and E, then M is said to have positive (resp. negative,
resp. zero) curvature.
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THE THREE TYPES OF HERMITIAN SYMMETRIC SPACES

The group of isometries of a symmetric space .M;g/ has a natural structure of a Lie group4

(Helgason 1978, IV 3.2). For a hermitian symmetric space .M;g/, the group Is.M;g/ of
holomorphic isometries is closed in the group of isometries of .M1;g/ and so is also a Lie
group.

There are three families of hermitian symmetric spaces (Helgason 1978, VIII; Wolf 1984,
8.7):

name example curvature Is.M;g/C

noncompact type H1 simply connected negative adjoint, noncompact

compact type P1.C/ simply connected positive adjoint, compact

euclidean C=� not necessarily s.c. zero

Every hermitian symmetric space, when viewed as hermitian manifold, decomposes
into a product M 0�M��MC with M 0 euclidean, M� of noncompact type, and MC

of compact type. The euclidean spaces are quotients of a complex space Cg by a discrete
subgroup of translations. A hermitian symmetric space is irreducible if it is not the product
of two hermitian symmetric spaces of lower dimension. Both M� and MC are products of
irreducible hermitian symmetric spaces, each having a simple isometry group.

We shall be especially interested in the hermitian symmetric spaces of noncompact type
— they are called hermitian symmetric domains.

EXAMPLE 1.2 (SIEGEL UPPER HALF SPACE). The Siegel upper half space Hg of degree
g consists of the symmetric complex g�g matrices Z D X C iY with positive-definite
imaginary part Y . The map Z D .zij / 7! .zij /j�i identifies Hg with an open subset
of Cg.gC1/=2. The symplectic group Sp2g.R/ is the group fixing the alternating formPg
iD1xiy�i �

Pg
iD1x�iyi :

Sp2g.R/D
��

A B

C D

�ˇ̌̌̌
AtC D C tA AtD�C tB D Ig
DtA�B tC D Ig B tD DDtB

�
:

The group Sp2g.R/ acts transitively on Hg by�
A B

C D

�
Z D .AZCB/.CZCD/�1:

The matrix
�
0 �Ig
Ig 0

�
acts as an involution on Hg , and has iIg as its only fixed point. Thus,

Hg is homogeneous and symmetric as a complex manifold, and we shall see in 1.4 below
that Hg is in fact a hermitian symmetric domain.

Example: Bounded symmetric domains.
A domain D in Cn is a nonempty open connected subset. It is symmetric if the group
Hol.D/ of holomorphic automorphisms of D (as a complex manifold) acts transitively and
for some point there exists a holomorphic symmetry. For example, H1 is a symmetric
domain and D1 is a bounded symmetric domain.

4Henri Cartan proved that the group of isometries of a bounded domain has a natural structure of a Lie group.
Then his father Emil Cartan proved that the group of isometries of a symmetric bounded domain is semisimple
(Borel 2001, IV 6). Myers and Steenrod proved that the group of isometries of every riemannian manifold is a
Lie group.
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THEOREM 1.3. Every bounded domain has a canonical hermitian metric (called the Berg-
man metric).5 Moreover, this metric has negative curvature.

SKETCH OF PROOF. We ignore convergence questions. Initially, letD be any domain in Cn.
The holomorphic square-integrable functions f WD! C form a Hilbert space H.D/ with
inner product .f jg/D

R
D f Ngdv. The first step is to prove that there is a unique (Bergman

kernel) function KWD�D! C such that

(a) the function z 7!K.z;�/ lies in H.D/ for each �,

(b) K.z;�/DK.�;z/, and

(c) f .z/D
R
DK.z;�/f .�/dv.�/ for all f 2H.D/.

Let .em/m2N be a complete orthonormal set in H.D/, and let

K.z;�/D
X

m
em.z/ � em.�/.

Obviously K.z;�/DK.�;z/, and

f D
X

m
.f jem/em D

Z
K.�; �/f .�/dv.�/

(actual equality, not almost-everywhere equality, because the functions are holomorphic).
Therefore K satisfies (b) and (c), and we are ignoring (a). Let k be a second function
satisfying (a), (b), and (c). Then

k.z;�/D

Z
D

K.z; t/k.t;�/dv.t/D

Z
D

k.�; t/K.z; t/dv.t/DK.z;�/;

which proves the uniqueness.
Now assume that D is bounded. Then all polynomial functions on D are square-

integrable, and so certainly K.z;z/ > 0 for all z. Moreover, log.K.z;z// is smooth, and

h
def
D

X
hijdz

id Nzj , where hij .z/D
@2

@zi@ Nzj
logK.z;z/;

is a hermitian metric on D, which can be shown to have negative curvature (Helgason 1978,
VIII 3.3, 7.1; Krantz 1982, 1.4). 2

The Bergman metric, being truly canonical, is invariant under the action of Hol.D/.
Hence, a bounded symmetric domain becomes a hermitian symmetric domain for the Berg-
man metric. Conversely, it is known that every hermitian symmetric domain can be embedded
into some Cn as a bounded symmetric domain. Therefore, a hermitian symmetric domain D
has a unique hermitian metric that maps to the Bergman metric under every isomorphism
of D with a bounded symmetric domain. On each irreducible factor, it is a multiple of the
original metric.

EXAMPLE 1.4. Let Dg be the set of symmetric complex matrices such that Ig � NZtZ
is positive-definite. Note that .zij / 7! .zij /j�i identifies Dg as a bounded domain in
Cg.gC1/=2. The map Z 7! .Z � iIg/.ZC iIg/

�1 is an isomorphism of Hg onto Dg .
Therefore, Dg is symmetric and Hg has an invariant hermitian metric: they are both
hermitian symmetric domains.

5After Stefan Bergmann. When he moved to the United States in 1939, he dropped the second n from his
name.
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Automorphisms of a hermitian symmetric domain
LEMMA 1.5. Let .M;g/ be a symmetric space, and let p 2M . Then the subgroup Kp of
Is.M;g/C fixing p is compact, and

a �Kp 7! a �pW Is.M;g/C=Kp!M

is an isomorphism of smooth manifolds. In particular, Is.M;g/C acts transitively on M .

PROOF. For any riemannian manifold .M;g/, the compact-open topology makes Is.M;g/
into a locally compact group for which the stabilizer K 0p of a point p is compact (Helga-
son 1978, IV 2.5). The Lie group structure on Is.M;g/ noted above is the unique such
structure compatible with the compact-open topology (ibid. II 2.6). An elementary ar-
gument (e.g., MF 1.2) now shows that Is.M;g/=K 0p !M is a homeomorphism, and it
follows that the map a 7! apW Is.M;g/!M is open. Write Is.M;g/ as a finite disjoint
union Is.M;g/D

F
i Is.M;g/Cai of cosets of Is.M;g/C. For any two cosets the open sets

Is.M;g/Caip and Is.M;g/Cajp are either disjoint or equal, but, as M is connected, they
must all be equal, which shows that Is.M;g/C acts transitively. Now Is.M;g/C=Kp!M

is a homeomorphism, and it follows that it is a diffeomorphism (Helgason 1978, II 4.3a). 2

PROPOSITION 1.6. Let .M;g/ be a hermitian symmetric domain. The inclusions

Is.M1;g/� Is.M;g/� Hol.M/

give equalities
Is.M1;g/C D Is.M;g/C D Hol.M/C:

Therefore, Hol.M/C acts transitively on M , the stablizer Kp of p in Hol.M/C is compact,
and Hol.M/C=Kp 'M

1.

PROOF. The first equality is proved in Helgason 1978, VIII 4.3, and the second can be
proved similarly. The rest of the statement follows from Lemma 1.5. 2

Let H be a connected real Lie group with Lie algebra h. There need not be an algebraic
group G over R such that G.R/C DH . For example, the topological fundamental group of
SL2.R/ is Z, and so SL2.R/ has many proper covering groups, even of finite degree, none
of which is algebraic because SL2 is simply connected6 as an algebraic group. However,
if H admits a faithful finite-dimensional representation H ,! GL.V /, then there exists
an algebraic group G � GL.V / such that Lie.G/D Œh;h� (inside gl.V /) (Borel 1991, 7.9).
When H is semisimple, Œh;h� D h, and so Lie.G/ D h. This implies that G.R/C D H
(inside GL.V /).

PROPOSITION 1.7. Let .M;g/ be a hermitian symmetric domain, and let h denote the Lie
algebra of Hol.M/C. There is a unique connected algebraic subgroup G of GL.h/ such that

G.R/C D Hol.M/C (inside GL.h//:

For such a G,
G.R/C DG.R/\Hol.M/ (inside GL.h/);

therefore G.R/C is the stabilizer in G.R/ of M .
6A connected algebraic group G in characteristic zero is simply connected if every isogeny (surjective

homomorphism with finite kernel) G0!G is an isomorphism. Every semisimple algebraic group admits an
essentially unique isogeny QG!G with QG connected and simply connected.
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PROOF. The Lie group Hol.M/C is adjoint (because Is.M;g/C is adjoint), and so the
adjoint representation realizes it as a subgroup of GL.h/. The first statement now follows
from the above discussion, and the second follows from Satake 1980, 8.5. 2

The algebraic group G in the proposition is adjoint (in particular, semisimple) and G.R/
is not compact.

EXAMPLE 1.8. The map z 7! Nz�1 is an antiholomorphic isometry of H1, and every isometry
of H1 is either holomorphic or differs from z 7! Nz�1 by a holomorphic isometry. In this case,
G D PGL2, and PGL2.R/ acts holomorphically on CXR with PGL2.R/C as the stabilizer
of H1.

The homomorphism upWU1! Hol.D/
Let U1 D fz 2 C j jzj D 1g (the circle group).

THEOREM 1.9. Let D be a hermitian symmetric domain. For each p 2D, there exists a
unique homomorphism upWU1! Hol.D/ such that up.z/ fixes p and acts on Tgtp.D/ as
multiplication by z.

EXAMPLE 1.10. Let p D i 2H1, and let hWC�! SL2.R/ be the homomorphism sending
z D aC ib to

�
a b
�b a

�
. Then h.z/ acts on the tangent space Tgti .H1/ as multiplication

by z= Nz, because d
dz

�
azCb
�bzCa

�ˇ̌̌
i
D

a2Cb2

.a�bi/2
. For z 2 U1, choose a square root

p
z 2 U1,

and set u.z/D h.
p
z/ mod ˙ I . Then u.z/ is independent of the choice of

p
z because

h.�1/D�I . Therefore, u is a well-defined homomorphism U1! PSL2.R/ such that u.z/
acts on the tangent space TgtiH1 as multiplication by z.

Because of the importance of the theorem, I explain the proof. A riemannian manifold is
geodesically complete (or just complete) if every maximal geodesic is defined on the whole
of R.

PROPOSITION 1.11. Let .M;g/ be a symmetric space.

(a) Let p 2M . The symmetry sp at p acts as �1 on Tgtp.M/, and it sends 
.t/ to 
.�t /
for every geodesic 
 with 
.0/D p.

(b) The pair .M;g/ is geodesically complete.

PROOF. (a) Because s2p D 1, .dsp/2 D 1, and so dsp acts semisimply on TgtpM with
eigenvalues ˙1. Let X be a tangent vector at p and 
 WI ! M the (unique) maximal
geodesic with 
.0/D p and P
.0/DX . If .dsp/.X/DX , then sp ı
 is a geodesic also with
these properties, and so p is not an isolated fixed point of sp. Therefore only �1 occurs as
an eigenvalue of dsp . If .dsp/.X/D�X , then sp ı
 and t 7! 
.�t / are geodesics through
p with initial tangent vector �X , and so they are equal.

(b) Let 
 WI !M be a maximal geodesic. If I ¤ R, then a symmetry s
.t0/ with t0 an
end point of I maps the geodesic 
 to another geodesic through 
.t0/ extending 
 . This
contradicts the maximality of 
 . (See Boothby 1975, VII 8.4.) 2

By a canonical tensor on a symmetric space .M;g/, we mean a tensor fixed by every
isometry of .M;g/. Every tensor “canonically derived” from g will be canonical. On a
riemannian manifold, there is a well-defined (riemannian) connection, and hence the notion
of “parallel translation” of tangent vectors along geodesics.
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PROPOSITION 1.12. On a symmetric space .M;g/ every canonical r-tensor with r odd is
zero. In particular, parallel translation of two-dimensional subspaces does not change the
sectional curvature.

PROOF. Let t be a canonical r-tensor. Then

tp D tp ı .dsp/
r 1:11
D .�1/r tp;

and so t D 0 if r is odd. For the second statement, let r be the riemannian connection, and
let R be the corresponding curvature tensor (Boothby 1975, VII 3.2, 4.4). Then rR is an
odd tensor, and so it is zero. This implies that parallel translation of 2-dimensional subspaces
of tangent spaces does not change the sectional curvature. 2

We shall need the notion of the exponential map at a point p of a riemannian manifold
.M;g/. For v 2 Tgtp.M/, let 
vWIv !M denote the maximal geodesic with 
v.p/D p
and P
.0/D v. Let Dp be the set of v 2 Tgtp.M/ such that Iv contains 1. Then there is a
unique map exppWDp!M such that

expp.tv/D 
v.t/

whenever tv 2Dp. Moreover, expp is smooth on an open neighbourhood U of 0 in Dp.
The map on tangent spaces

�
d expp

�
0
WTgt0.U /! Tgtp.M/ is the canonical isomorphism.

If M is geodesically complete, then exp0 is defined on the whole of Tgtp.M/. See Lee
1997, Chapter 5.

PROPOSITION 1.13. Let .M;g/ and .M 0;g0/ be riemannian manifolds in which parallel
translation of 2-dimensional subspaces of tangent spaces does not change the sectional curva-
ture. Let aWTgtp.M/! Tgtp0.M

0/ be a linear isometry such thatK.p;E/DK.p0;aE/ for
every 2-dimensional subspace E � Tgtp.M/. Then expp.X/ 7! expp0.aX/ is an isometry
of a neighbourhood of p onto a neighbourhood of p0.

PROOF. This follows from comparing the expansions of the riemannian metrics in terms of
normal geodesic coordinates. See Wolf 1984, 2.3.7. 2

PROPOSITION 1.14. Let .M;g/, .M 0;g0/, and aWTgtp.M/! Tgtp0.M
0/ be as in 1.13. If

M and M 0 are complete, connected, and simply connected, then there is a unique isometry
˛WM !M 0 such that ˛.p/D p0 and .d˛/p D a.

PROOF. The conditions imply that the locally-defined isometry in 1.13 extends globally —
see Wolf 1984, 2.3.12. 2

We now prove Theorem 1.9. Let p 2D. Each complex number z with jzj D 1 defines
an automorphism of the vector space Tgtp.D/ preserving gp, and one checks that it also
preserves sectional curvatures. According to Propositions 1.11, 1.12, and 1.14, there exists a
unique isometry up.z/WD!D fixing p and acting as multiplication by z on Tgtp.D/. It is
holomorphic because it is C-linear on the tangent spaces. The isometry up.z/ıup.z0/ fixes
p and acts as multiplication by zz0 on Tgtp.D/, and so it equals up.zz0/.
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Cartan involutions
Let G be a connected algebraic group over R, and let g 7! Ng denote complex conjugation on
G.C/. An involution � of G (as an algebraic group over R) is said to be Cartan if the group

G.�/.R/ def
D fg 2G.C/ j g D �. Ng/g (9)

is compact.

EXAMPLE 1.15. Let G D SL2, and let � D ad
�
0 1
�1 0

�
. Then

�
��
a b
c d

��
D
�
0 1
�1 0

�
�
�
a b
c d

�
�
�
0 1
�1 0

��1
D

�
Nd �Nc

� Nb Na

�
for

�
a b
c d

�
2 SL2.C/, and so

SL.�/2 .R/D
˚�
a b
c d

�
2 SL2.C/

ˇ̌
d D Na, c D�Nb

	
D

n�
a b

� Nb Na

�
2 GL2.C/

ˇ̌̌
jaj2Cjbj2 D 1

o
D SU2.R/:

The map
�

a b

� Nb Na

�
7! .a;b/ identifies SU2.R/ with a closed bounded set in C2, and so it is

compact. Therefore � is a Cartan involution of SL2.

THEOREM 1.16. Let G be a connected algebraic group over k. There exists a Cartan
involution of G if and only if G is reductive, in which case any two are conjugate by an
element of G.R/ (i.e., they differ by adg for some g 2G.R/).

PROOF. See Satake 1980, I 4.3. 2

EXAMPLE 1.17. Let G be a connected algebraic group over R. We say that G is compact
if G.R/ is compact.

(a) If the identity map on G is a Cartan involution, then G.R/ is compact. Conversely,
if G.R/ is compact, then the identity map is a Cartan involution, and it is the only Cartan
involution because of the second part of the theorem.

(b) Let G D GL.V / with V a real vector space. The choice of a basis for V determines
a transpose operator M 7!M t , and M 7! .M t /�1 is obviously a Cartan involution. The
theorem implies that all Cartan involutions of G arise in this way.

(c) Let G ,!GL.V / be a faithful representation of G. Then G is reductive if and only if
G is stable under g 7! gt for a suitable choice of a basis for V , in which case the restriction
of g 7! .gt /�1 to G is a Cartan involution; all Cartan involutions of G arise in this way from
the choice of a basis for V (Satake 1980, I 4.4).

(d) Let � be an involution of G. There is a unique real form G.�/ of GC such that
complex conjugation on G.�/.C/ is g 7! �. Ng/. Therefore � is Cartan if and only if G.�/ is
compact. All compact real forms of GC arise in this way from a Cartan involution of G.

PROPOSITION 1.18. Let G be a connected algebraic group over R. If G is compact,
then every finite-dimensional real representation of G ! GL.V / carries a G-invariant
positive-definite symmetric bilinear form; conversely, if one faithful finite-dimensional real
representation of G carries such a form, then G.R/ is compact.
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PROOF. Let �WG!GL.V / be a real representation ofG. IfG.R/ is compact, then its image
H in GL.V / is compact. Let dh be the Haar measure on H , and choose a positive-definite
symmetric bilinear form h j i on V . Then the form

hujvi0 D

Z
H

hhujhvidh

is G-invariant, and it is still symmetric, positive-definite, and bilinear. For the converse,
choose an orthonormal basis for the form. Then G.R/ becomes identified with a closed set
of real matrices A such that At �AD I , which is bounded. 2

REMARK 1.19. The proposition can be restated for complex representations: if G.R/ is
compact then every finite-dimensional complex representation of G carries a G-invariant
positive-definite hermitian form; conversely, if some faithful finite-dimensional complex
representation ofG carries aG-invariant positive-definite hermitian form, thenG is compact.
(In this case, G.R/ is a subgroup of a unitary group instead of an orthogonal group. For a
sesquilinear form ' to be G-invariant means that '.gu; Ngv/D '.u;v/, g 2G.C/, u;v 2 V .)

Let G be a real algebraic group, and let C be an element of G.R/ whose square is
central (so that ad.C / is an involution and ad.C /D ad.C�1/). A C -polarization on a real
representation V of G is a G-invariant bilinear form ' such that the form 'C ,

.u;v/ 7! '.u;Cv/,

is symmetric and positive-definite.

PROPOSITION 1.20. If ad.C / is a Cartan involution ofG, then every finite-dimensional real
representation of G carries a C -polarization; conversely, if one faithful finite-dimensional
real representation of G carries a C -polarization, then ad.C / is a Cartan involution.

PROOF. We first remark that an R-bilinear form ' on a real vector space V extends to a
sesquilinear form '0 on V.C/,

'0WV.C/�V.C/! C; '0.u;v/D 'C.u; Nv/:

Moreover, '0 is hermitian (and positive-definite) if and only if ' is symmetric (and positive-
definite).

Let �WG! GL.V / be a real representation of G. For any G-invariant bilinear form '

on V , 'C is G.C/-invariant, and so

'0.gu; Ngv/D '0.u;v/; all g 2G.C/; u;v 2 V.C/: (10)

On replacing v with Cv in this equality, we find that

'0.gu;C.C�1 NgC/v/D '0.u;Cv/; all g 2G.C/; u;v 2 V.C/: (11)

This can be rewritten as
'0C .gu;..adC/ Ng/v/D '0C .u;v/;

where '0C D .'C /
0. This last equation says that '0C is invariant under G.adC/.

If � is faithful and ' is a C -polarization, then '0C is a positive-definite hermitian form,
and so G.adC/.R/ is compact (1.19). Thus adC is a Cartan involution.

Conversely, if G.adC/.R/ is compact, then every real representation G!GL.V / carries
a G.adC/.R/-invariant positive-definite symmetric bilinear form ' (1.18). Similar calcula-
tions to the above show that 'C�1 is a C -polarization on V . 2
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Representations of U1
Let T be a torus over a field k. If T is split, then every representation �WT ! GLV is
diagonalizable. This means that V D

L
�2X�.T /V�, where V� is the subspace on which T

acts through the character �,

�.t/v D �.t/ �v; for v 2 V�; t 2 T .k/:

When V� ¤ 0, we say that � occurs in V .
Now suppose that T splits only over a Galois extension K of k. Let V be a k-vector

space, and let � be a representation of TK on K˝V . Then K˝V D
L
�2X�.T /V�, and

a direct calculation shows that � is fixed by an element � of Gal.K=k/ if and only if
�V� D V�� for all �. Therefore � is defined over k if and only if

�.V�/D V��; all � 2 Gal.K=k/; � 2X�.T /: (12)

It follows that to give a representation of T on a k-vector space V amounts to giving a
gradation K˝V D

L
�2X�.T /V� of K˝V for which (12) holds (Milne 2017, 12.30).

When we regard U1 as a real algebraic torus, its characters are z 7! zn, n 2 Z. Thus
X�.U1/ ' Z, and complex conjugation acts on it as multiplication by �1. Therefore a
representation of U1 on a real vector space V is a gradation V.C/D

L
n2ZV

n such that
V.C/�n D V.C/n (complex conjugate) for all n. Here V n is the subspace of V.C/ on which
z acts as zn. Note that V.C/0 D V.C/0 and so it is defined over R, i.e., V.C/0 D V 0.C/ for
V 0 the subspace V \V.C/0 of V .7 The natural map

V=V 0! V.C/=
L
n�0V.C/n '

L
n>0V.C/n (13)

is an isomorphism. From this discussion, we see that every real representation of U1 is a
direct sum of representations of the following types:

(a) V D R with U1 acting trivially (so V.C/D V 0);

(b) V D R2 with xC iy 2 U1.R/ acting as
� x y
�y x

�n, n > 0 (so V.C/D V n˚V �n).

These representations are irreducible, and no two are isomorphic.

Classification of hermitian symmetric domains in terms of real groups
The representations of U1 have the same description whether we regard it as a Lie group
or an algebraic group, and so every homomorphism U1! GL.V / of real Lie groups is
algebraic. It follows that the homomorphisms

upWU1! Hol.D/C
1.7
' G.R/C

in Theorem 1.9 are algebraic.

THEOREM 1.21. Let D be a hermitian symmetric domain, and let G be the associated real
adjoint algebraic group (1.7). The homomorphism upWU1!G attached to a point p of D
has the following properties:

7We are using the following statement. Let K be a Galois extension of k with Galois group � , and let V0
be a vector space over k. The rule �.a˝ v/D �a˝ v defines a semilinear action of � on V D K˝V0. A
subspace W of V is of the form KW0 with W0 a subspace of V0 if and only if it is stable under the action of � ,
in which case the map a˝w 7! awWK\ .V0\W /!W is an isomorphism.
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(a) only the characters z;1, z�1 occur in the representation of U1 on Lie.G/C defined
by Adıup;

(b) ad.up.�1// is a Cartan involution;

(c) up.�1/ does not project to 1 in any simple factor of G.

Conversely, let G be a real adjoint algebraic group, and let uWU1!G satisfy (a), (b), and
(c). Then the set D of conjugates of u by elements of G.R/C has a natural structure of a
hermitian symmetric domain for which G.R/C D Hol.D/C and u.�1/ is the symmetry at
u (regarded as a point of D).

PROOF. According to Proposition 1.6,

G.R/C=Kp 'D (isomorphism of smooth manifolds),

whereKp is the subgroup fixing p. For z 2U1, the action of up.z/ onG.R/C by conjugation
preservesKp and corresponds to the obvious action of up.z/ onD. On passing to the tangent
spaces, we obtain an isomorphism of real vector spaces

Lie.G/=Lie.Kp/' TgtpD.

By definition, up.z/ acts on Tgtp.D/ as multiplication by z. Statement (a) follows from
this because up.z/ acts trivially on Lie.Kp/.8

The symmetry sp at p and up.�1/ both fix p and act as �1 on TgtpD (see 1.11); they
are therefore equal (1.14). It is known that the symmetry at a point of a symmetric space
gives a Cartan involution of G if and only if the space has negative curvature (see Helgason
1978, V 2; the real form of G defined by adsp is that attached to the compact dual of the
symmetric space). Thus (b) holds.

Finally, if the projection of u.�1/ into a simple factor of G were trivial, then that factor
would be compact (by (b); see 1.17a), and D would have an irreducible factor of compact
type.

For the converse, let D be the set of G.R/C-conjugates of u. The centralizer Ku of u
in G.R/C is contained in fg 2G.C/ j g D u.�1/ � Ng �u.�1/�1g, which, according to (b), is
compact. As Ku is closed, it also is compact. The equality D D

�
G.R/C=Ku

�
�u endows

D with the structure of smooth (even real-analytic) manifold. For this structure, the tangent
space to D at u;

Tgtu.D/' Lie.G/=Lie.Ku/' Lie.G/=Lie.G/0;

which, because of (a), can be identified with the subspace of Lie.G/C on which u.z/ acts as
z (see (13)). This endows TgtuD with a C-vector space structure for which u.z/, z 2 U1,
acts as multiplication by z. Because D is homogeneous, this gives it the structure of an
almost-complex manifold, which can be shown to be integrable (Wolf 1984, 8.7.9). The
action of Ku on D defines an action of it on TgtuD. Because Ku is compact, there is a
Ku-invariant positive-definite form on TgtuD (see 1.18), and because J D u.i/ 2Ku, any
such form will have the hermitian property (7). Choose one, and use the homogeneity of D
to move it to each tangent space. This will make D into a hermitian symmetric space, which
will be a hermitian symmetric domain because each simple factor of its automorphism group
is a noncompact semisimple group (because of (b,c)). 2

8In fact, up.z/ acts trivially on Kp : if k 2Kp , then Proposition 1.14 shows that up.z/ �k �up.z/�1 equals
k because they both fix p and act as .dk/p on Tgtp.D/.
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COROLLARY 1.22. There is a natural one-to-one correspondence between the isomorphism
classes of pointed hermitian symmetric domains and of pairs .G;u/ consisting of a real
adjoint Lie group and a homomorphism uWU1!G.R/ satisfying (a), (b), (c).

Replacing a point of the domain with a second point replaces the homomorphism u with
a conjugate. Therefore we get a natural one-to-one correspondence between the isomorphism
classes of hermitian symmetric domains and of pairs .G; Œu�/ consisting of a real adjoint Lie
group and a conjugacy class of homomorphisms uWU1! G.R/ satisfying (a), (b), (c) of
1.21.

EXAMPLE 1.23. Let uWU1! PSL2.R/ be as in (1.10). Then u.�1/D
�
0 1
�1 0

�
and we saw

in 1.15 that adu.�1/ is a Cartan involution of SL2, hence also of PSL2. The corresponding
hermitian symmetric domain is H1.

Classification of hermitian symmetric domains in terms of Dynkin di-
agrams
Let G be a simple adjoint group over R, and let u be a homomorphism U1!G satisfying
(a) and (b) of Theorem 1.21. By base extension, we get an adjoint group GC, which is simple
because G is an inner form of its compact form,9 and a cocharacter �D uC of GC satisfying
the following condition:

(*) in the action of Gm on Lie.GC/ defined by Adı�, only the characters
z;1;z�1 occur.

PROPOSITION 1.24. The map .G;u/ 7! .GC;uC/ defines a bijection between the sets of
isomorphism classes of pairs consisting of

(a) a simple adjoint groupH over R and a conjugacy class of homomorphisms uWU1!H

satisfying (1.21a,b), and

(b) a simple adjoint group over C and a conjugacy class of cocharacters satisfying (*).

PROOF. Let .G;�/ be as in (b), and let g 7! Ng denote complex conjugation onG.C/ relative
to a maximal compact subgroup of G containing �.U1/.10 There is a real form H of G
such that complex conjugation onH.C/DG.C/ is g 7!�.�1/ � Ng ��.�1/�1, and u def

D�jU1
takes values in H.R/. The pair .H;u/ is as in (a), and the map .G;�/! .H;u/ is inverse
to .H;u/ 7! .HC;uC/ on isomorphism classes. 2

Let G be a simple algebraic group over C. Choose a maximal torus T in G and a base
.˛i /i2I for the roots of G relative to T . Recall that the nodes of the Dynkin diagram of
.G;T / are indexed by I . Recall also (Bourbaki 1981, VI 1.8) that there is a unique (highest)
root Q̨ D

P
ni˛i with the property that, for every other root

P
mi˛i , the coefficient ni �mi

for all i . An ˛i (or the associated node) is said to be special if ni D 1.
Let M be a conjugacy class of nontrivial cocharacters of G satisfying (*). Because all

maximal tori of G are conjugate, M has a representative in X�.T /�X�.G/, and, because

9If GC is not simple, say, GC D G1 �G2, then G D ResC=R.G1/ and any inner form of G is also the
restriction of scalars of a C-group; but such a group cannot be compact (look at a subtorus).

10Take the complex multiplication defined by any real form G0 of G, and modify it by a suitable Cartan
involution G0, which exists because G0 is reductive (1.16).
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the Weyl group acts simply transitively on the Weyl chambers, there is a unique representative
� for M such that h˛i ;�i � 0 for all i 2 I . The condition (*) is that h˛;�i 2 f1;0;�1g for
all roots ˛.11 Since � is nontrivial, not all the values h˛;�i can be zero, and so this condition
implies that h˛i ;�i D 1 for exactly one i 2 I , which must in fact be special (otherwise
h Q̨ ;�i> 1). Thus, the M satisfying (*) are in one-to-one correspondence with the special
nodes of the Dynkin diagram. We have proved the following statement.

THEOREM 1.25. The isomorphism classes of irreducible hermitian symmetric domains are
classified by the special nodes on connected Dynkin diagrams.

The special nodes can be read off from the tables in Bourbaki 1981 or Helgason 1978,
p. 477. One obtains the following table:

type Q̨ special roots #
An ˛1C˛2C�� �C˛n ˛1; : : : ;˛n n

Bn ˛1C2˛2C�� �C2˛n ˛1 1

Cn 2˛1C�� �C2˛n�1C˛n ˛n 1

Dn ˛1C2˛2C�� �C2˛n�2C˛n�1C˛n ˛1;˛n�1;˛n 3

E6 ˛1C2˛2C2˛3C3˛4C2˛5C˛6 ˛1;˛6 2

E7 2˛1C2˛2C3˛3C4˛4C3˛5C2˛6C˛7 ˛7 1
E8;F4;G2 none 0

Mnemonic: the number of special simple roots is one less than the connection index of the
root system.

In particular, there are no irreducible hermitian symmetric domains of type E8, F4, or
G2 and, up to isomorphism, there are exactly 2 of type E6 and 1 of type E7. It should
be noted that not every simple real algebraic group arises as the automorphism group of a
hermitian symmetric domain. For example, nontrivial compact groups do not arise in this
way, and PGLn does so only for nD 2.12 Starting from the above table, it is possible to list
them. For the classical groups, we do this in Addendum B. There is a complete list in Lan
2017, �3,

ASIDE. Why do we consider hermitian symmetric spaces rather than homogeneous spaces? The
short answer is that the connection between symmetric spaces and semisimple groups was recognized
early (by Elie Cartan), and the subject matured quickly. Until 1957, no examples of nonsymmetric
bounded homogeneous domains in Cn were known. As Borel writes (1998)

The famous Math. Zeitschrift papers by Hermann Weyl (1925–26) mark the beginning
of the global theory of semisimple Lie groups. They had right away a considerable
impact on Elie Cartan. At the time Cartan was determining locally symmetric spaces,
via their holonomy groups, and had discovered with surprise that this was equivalent to
one he had solved about twelve years earlier: the classification of real forms of complex
semisimple Lie algebras. Under the influence of Weyl’s papers, he soon cast this work
in a global framework and built up a beautiful theory.

I do not know how much of the theory in this article extends to quotients of bounded homogeneous
domains.

11The � with this property are sometimes said to be minuscule (cf. Bourbaki 1981, pp. 226–227).
12Suppose that G D PGLn, n � 2; arises from a hermitian symmetric domain, and let u D up be as in

Theorem 1.21. The theorem and its proof show that u.U1/ is contained in the centre of the maximal compact
subgroup Ku of G.R/C defined by the Cartan involution ad.u.�1//. Therefore the centre of Ku is nondiscrete,
but the centres of the maximal compact subgroups of PGLn.R/C(they are all conjugate) are discrete if n > 2.
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NOTES. For introductions to smooth manifolds and riemannian manifolds, see Boothby 1975 and
Lee 1997. The ultimate source for hermitian symmetric domains is Helgason 1978, but Wolf 1984
is also very useful. The present account follows Deligne 1973a and Deligne 1979. For a history of
symmetric spaces, see Chapter IV of Borel 2001.
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2 Hodge structures and their classifying spaces
In this section, following Deligne, we interpret hermitian symmetric domains as parameter
spaces for Hodge structures. Later, this will allow us to realize certain quotients of bounded
symmetric domains as moduli varieties of abelian varieties or, more generally, abelian
motives.

Reductive groups and tensors
Let G be a reductive group over a field k of characteristic zero, and let �WG! GL.V / be a
representation of G. The contragredient or dual �_ of � is the representation of G on the
dual vector space V _ defined by

.�_.g/ �f /.v/D f .�.g�1/ �v/; g 2G, f 2 V _, v 2 V:

A representation is said to be self-dual if it is isomorphic to its contragredient.
An r-tensor of V is a multilinear map

t WV � � � ��V ! k (r-copies of V /

— this is essentially the same as an element of .V ˝r/_. For an r-tensor t , the condition

t .gv1; : : : ;gvr/D t .v1; : : : ;vr/; all .v1; : : : ;vr/ 2 V r ;

on g defines an algebraic subgroup of GL.V /t of GL.V /. For example, if t is a nondegener-
ate symmetric bilinear form V �V ! k, then GL.V /t is the orthogonal group. For a set T
of tensors of V ,

T
t2T GL.V /t is called the subgroup of GL.V / fixing the t 2 T .

PROPOSITION 2.1. For any faithful self-dual representation G!GL.V / of G, there exists
a finite set T of tensors of V such that G is the subgroup of GL.V / fixing the t in T .

PROOF. According to a theorem of Chevalley (Milne 2017, 4.27), G is the stabilizer in
GL.V / of a one-dimensional subspace L of some representation W of GL.V /. Because
representations of reductive groups in characteristic zero are semisimple (ibid. 22.42),
W DW 0˚L for some subspace W 0 of W stable under GL.V /. Now G is the subgroup of
GL.V / fixing any nonzero element t of L˝L_ in W ˝W _. The representation W ˝W _

of GL.V / can be realized as a subrepresentation of a sum of representations V ˝r˝V _˝s

(ibid. 4.14), and hence of a sum of representations .V ˝r/_. The image of t in
L
r.V
˝r/_

is a sum t D
P
r tr with tr 2

�
V ˝r

�_, and we can take T to be the set of nonzero tr . 2

PROPOSITION 2.2. Let G be the subgroup of GL.V / fixing the tensors t in some set T .
Then

Lie.G/'
n
g 2 End.V /

ˇ̌̌P
j t .v1; : : : ;gvj ; : : : ;vr/D 0; all t 2 T , vi 2 V

o
:

PROOF. The Lie algebra of an algebraic group G can be defined to be the kernel of
G.kŒ"�/! G.k/. Here kŒ"� is the k-algebra with "2 D 0. Thus Lie.G/ consists of the
endomorphisms 1Cg" of V.kŒ"�/ such that

t ..1Cg"/v1; .1Cg"/v2; : : :/D t .v1;v2; : : :/; all t 2 T , vi 2 V:

On expanding this and cancelling, we obtain the assertion. 2
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Flag varieties
Fix a vector space V of dimension n over a field k.

THE PROJECTIVE SPACE P.V /

The set P.V / of one-dimensional subspaces L of V has a natural structure of an algebraic
variety: the choice of a basis for V determines a bijection P.V /! Pn�1, and the structure
of an algebraic variety inherited by P.V / from the bijection is independent of the choice of
the basis.

GRASSMANN VARIETIES

Let Gd .V / be the set of d -dimensional subspaces of V , some 0 < d < n. Fix a basis
for V . The choice of a basis for W then determines a d � n matrix A.W / whose rows
are the coordinates of the basis elements. Changing the basis for W multiplies A.W / on
the left by an invertible d �d matrix. Thus, the family of minors of degree d of A.W /
is well-determined up to multiplication by a nonzero constant, and so determines a point

P.W / in P
�
n
d

�
�1. The mapW 7!P.W /WGd .V /! P

�
n
d

�
�1 identifiesGd .V /with a closed

subvariety of P
�
n
d

�
�1 (AG, 6.29). A coordinate-free description of this map is given by

W 7!
Vd

W WGd .V /! P.
Vd

V /: (14)

Let S be a subspace of V of complementary dimension n�d , and let Gd .V /S be the
set of W 2Gd .V / such that W \S D f0g. Fix a W0 2Gd .V /S , so that V DW0˚S . For
any W 2Gd .V /S , the projection W !W0 given by this decomposition is an isomorphism,
and so W is the graph of a homomorphism W0! S :

w 7! s ” .w;s/ 2W:

Conversely, the graph of any homomorphism W0! S lies in Gd .V /S . Thus,

Gd .V /S ' Hom.W0;S/: (15)

When we regard Gd .V /S as an open subvariety of Gd .V /, this isomorphism identifies
it with the affine space A.Hom.W0;S// defined by the vector space Hom.W0;S/. Thus,
Gd .V / is smooth, and the tangent space to Gd .V / at W0 is

TgtW0.Gd .V //' Hom.W0;S/' Hom.W0;V=W0/: (16)

FLAG VARIETIES

The above discussion extends easily to chains of subspaces. Let d D .d1; : : : ;dr/ be a
sequence of integers with n > d1 > � � �> dr > 0, and let Gd.V / be the set of flags

F W V � V 1 � �� � � V r � 0 (17)

with V i a subspace of V of dimension di . The map

Gd.V /
F 7!.V i /
������!

Y
i

Gdi .V /�
Y
i

P.
Vdi V /
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realizes Gd.V / as a closed subset of
Q
i Gdi .V / (Humphreys 1978, 1.8), and so it is a

projective variety. The tangent space to Gd.V / at the flag F consists of the families of
homomorphisms

'i WV i ! V=V i ; 1� i � r; (18)

satisfying the compatibility condition

'i jV iC1 � 'iC1 mod V iC1:

ASIDE 2.3. A basis e1; : : : ; en for V is adapted to the flag F if it contains a basis e1; : : : ; edi
for each V i . Clearly, every flag admits such a basis, and the basis then determines the flag.
Because GL.V / acts transitively on the set of bases for V , it acts transitively on Gd.V /. For
a flag F , the subgroup P.F / stabilizing F is an algebraic subgroup of GL.V /, and the map

g 7! gF WGL.V /=P.F /!Gd.V /

is an isomorphism of algebraic varieties. Because Gd.V / is projective, this means that P.F /
is a parabolic subgroup of GL.V /.

Hodge structures
Hodge showed that the rational cohomology groups of a nonsingular projective algebraic
over C carry an additional structure, now called a Hodge structure.

DEFINITION

For a real vector space V , complex conjugation on V.C/ def
D C˝R V is defined by

z˝v D Nz˝v:

An R-basis e1; : : : ; em for V is also a C-basis for V.C/, and
P
aiei D

P
aiei .

A Hodge decomposition of a real vector space V is a decomposition

V.C/D
M

p;q2Z�Z

V p;q

such that V q;p is the complex conjugate of V p;q . A Hodge structure is a real vector space
together with a Hodge decomposition. The set of pairs .p;q/ for which V p;q ¤ 0 is called
the type of the Hodge structure. For each integer n, the subspace

L
pCqDnV

p;q of V.C/ is
stable under complex conjugation, and so it is defined over R (footnote 7, p. 17/, i.e., there
is a subspace Vn of V such that

Vn.C/D
M

pCqDn

V p;q:

Then V D
L
nVn is called the weight decomposition of V . If V D Vn, then V is said to

have weight n.
An integral (resp. rational) Hodge structure is a free Z-module of finite rank V (resp.

Q-vector space) together with a Hodge decomposition of V.R/ such that the weight decom-
position is defined over Q.
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EXAMPLE 2.4. Let J be a complex structure on a real vector space V , and define V �1;0 and
V 0;�1 to be theCi and �i eigenspaces of J acting on V.C/. Then V.C/D V �1;0˚V 0;�1
is a Hodge structure of type .�1;0/; .0;�1/, and every real Hodge structure of this type
arises from a (unique) complex structure. Thus, to give a rational Hodge structure of type
.�1;0/; .0;�1/ amounts to giving a Q-vector space V and a complex structure on V.R/,
and to give an integral Hodge structure of type .�1;0/; .0;�1/ amounts to giving a C-vector
space V and a lattice �� V (i.e., a Z-submodule generated by an R-basis for V ).

EXAMPLE 2.5. Let X be a nonsingular projective algebraic variety over C, and write
Hn.X;�/ for Hn.X.C/;�/. Then Hn.X;Q/˝C'Hn.X;C/, which can be computed
using de Rham cohomology. This means that Hn.X;C/ is the nth cohomology group of the
complex

˝0.M/! �� � !˝m.M/!˝mC1.M/! �� � ;

where˝m.M/ is the space of C-valued differentialm-forms on the real manifoldM DX.C/.
Such a form is said to be of type .p;q/ if it is everywhere locally a sum of terms of the
following type:

f �dz1^� � �^dzp ^d Nz1^� � �^d Nzq .

This gives a decomposition of each space ˝m.M/, which Hodge showed persists when we
pass to the cohomology. In this way, we get a Hodge decomposition

Hn.X;C/D
M

pCqDn
Hp;q

with Hp;q 'H q.X;˝p/. See Voisin 2002, 6.1.3.

EXAMPLE 2.6. We let Q.m/ denote the (unique) Hodge structure of weight �2m with
underlying vector space .2�i/mQ. Thus, .Q.m//.C/DQ.m/�m;�m. We define Z.m/ and
R.m/ similarly.13

THE HODGE FILTRATION

The Hodge filtration associated with a Hodge structure of weight n is

F �W � � � � F p � F pC1 � �� � ; F p D
M

r�p
V r;s � V.C/:

Note that for pCq D n,

F q D
M

s�q
V s;r D

M
s�q

V r;s D
M

r�p
V r;s

and so
V p;q D F p\F q: (19)

EXAMPLE 2.7. For a Hodge structure of type .�1;0/; .0;�1/, the Hodge filtration is

.F�1 � F 0 � F 2/D .V .C/� V 0;�1 � 0/.

The obvious R-linear isomorphism V ! V.C/=F 0 defines the complex structure on V noted
in (2.4).

13In the original version, I took the underlying vector space of Q.m/ to be Q. Adding the factor .2�i/m

makes the entire theory invariant under a change of the choice of i D
p
�1 in C. In the rest of the article, we

sometimes include the 2�i and sometimes not.
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HODGE STRUCTURES AS REPRESENTATIONS OF S

Let S be the algebraic torus over R obtained from Gm over C by restriction of the scalars —
it is sometimes called the Deligne torus. Thus

S.R/D C� and SC 'Gm�Gm:

We fix the second isomorphism so that the map S.R/! S.C/ induced by the inclusion
R ,! C is z 7! .z; Nz/. Then S.C/' C��C� with complex conjugation acting by the rule
.z1;z2/D .z2;z1/. The weight homomorphism

wWGm! S

is the map such that w.R/WGm.R/! S.R/ is r 7! r�1WR�! C�:
The characters of SC are the homomorphisms .z1;z2/ 7! zr1z

s
2 with .r; s/ 2 Z�Z. Thus,

X�.S/' Z�Z with complex conjugation acting as .p;q/ 7! .q;p/, and to give a represen-
tation of S on a real vector space V amounts to giving a Z�Z-gradation of V.C/ such that
V p;q D V q;p for all p;q (see p. 17). Thus, to give a representation of S on a real vector
space V is the same as giving a Hodge structure on V . Following Deligne 1979, 1.1.1.1,
we normalize the relation as follows: the homomorphism hWS! GL.V / corresponds to the
Hodge structure on V such that

hC.z1;z2/v D z
�p
1 z

�q
2 v for v 2 V p;q . (20)

In other words,
h.z/v D z�p Nz�qv for v 2 V p;q: (21)

Note the minus signs! The associated weight decomposition has

Vn D fv 2 V j wh.r/v D r
nvg; wh D hıw: (22)

Let �h be the cocharacter of GL.V / defined by

�h.z/D hC.z;1/: (23)

Then the elements of F p
h
V are sums of v 2 V.C/ satisfying �h .z/vD z�rv for some r � p.

To give a Hodge structure on a Q-vector space V amounts to giving a homomorphism
hWS! GL.V .R// such that wh is defined over Q.

EXAMPLE 2.8. By definition, a complex structure on a real vector space V is a homo-
morphism hWC! EndR.V / of R-algebras. The restriction of this to a homomorphism
C�! GL.V / is a Hodge structure of type .�1;0/; .0;�1/ whose associated complex struc-
ture (see 2.4) is that defined by h.14

EXAMPLE 2.9. The Hodge structure Q.m/ corresponds to the homomorphism

hWS!GmR; h.z/D .z Nz/m:

14This partly explains the signs in (20); see also Deligne 1979, 1.1.6. Following Deligne 1973b, 8.12, and
Deligne 1979, 1.1.1.1, the convention hC.z1;z2/vp;q D z

�p
1 z

�q
2 vp;q is standard in the theory of Shimura

varieties. Following Deligne 1971a, 2.1.5.1, the convention hC.z1;z2/vp;q D z
p
1 z
q
2v
p;q is common in Hodge

theory (e.g., Voisin 2002, Chap. 6, Exer. 1).
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THE WEIL OPERATOR

For a Hodge structure .V;h/, the R-linear map C D h.i/ is called the Weil operator. Note
that C acts as iq�p on V p;q and that C 2 D h.�1/ acts as .�1/n on Vn.

EXAMPLE 2.10. If V is of type .�1;0/, .0;�1/, then C coincides with the J of (2.4). The
functor .V;.V �1;0;V 0;�1// .V;C / is an equivalence from the category of real Hodge
structures of type .�1;0/; .0;�1/ to the category of complex vector spaces.

HODGE STRUCTURES OF WEIGHT 0:

Let V be a Hodge structure of weight 0. Then V 0;0 is invariant under complex conjugation,
and so V 0;0 D V 00.C/, where V 00 D V 0;0\V (see footnote 7, p. 17). Note that

V 00 D Ker.V ! V.C/=F 0/: (24)

TENSOR PRODUCTS OF HODGE STRUCTURES

The tensor product of Hodge structures V and W of weight m and n is a Hodge structure
of weight mCn:

V ˝W; .V ˝W /p;q D
M

rCr 0Dp
sCs0Dq

V r;s˝W r 0;s0 :

In terms of representations of S,

.V;hV /˝ .W;hW /D .V ˝W;hV ˝hW /:

MORPHISMS OF HODGE STRUCTURES

A morphism of Hodge structures is a linear map V !W sending V p;q into W p;q for all
p;q. For example, a morphism of rational Hodge structures is a linear map V ! W of
Q-vector spaces such that V.R/!W.R/ is a morphism of representations of S.

HODGE TENSORS

Let RD Z, Q, or R, and let .V;h/ be an R-Hodge structure of weight n. A multilinear form
t WV r !R is a Hodge tensor if the map

V ˝V ˝�� �˝V !R.�nr=2/

it defines is a morphism of Hodge structures. In other words, t is a Hodge tensor if

t .h.z/v1;h.z/v2; : : :/D .z Nz/
�nr=2

� tR.v1;v2; : : :/; all z 2 C, vi 2 V.R/;

or if X
pi ¤

X
qi ) tC.v

p1;q1
1 ;v

p2;q2
2 ; : : :/D 0; v

pi ;qi
i 2 V pi ;qi : (25)

Note that, for a Hodge tensor t ,

t .Cv1;Cv2; : : :/D t .v1;v2; : : :/:

EXAMPLE 2.11. Let .V;h/ be a Hodge structure of type .�1;0/; .0;�1/. A bilinear form
t WV �V ! R is a Hodge tensor if and only if t .J u;J v/D t .u;v/ for all u;v 2 V .
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POLARIZATIONS

Let .V;h/ be a Hodge structure of weight n. A polarization of .V;h/ is a Hodge ten-
sor  WV �V ! R.�n/ such that  C .u;v/

def
D .2�i/n .u;Cv/ is symmetric and positive-

definite. Then  is symmetric or alternating according as n is even or odd, because

 .v;u/D  .Cv;Cu/D .2�i/�n C .Cv;u/

D .2�i/�n C .u;Cv/D  .u;C
2v/D  .u;.�1/nv D .�1/n .u;v/:

More generally, let .V;h/ be an R-Hodge structure of weight n, where R is Z or Q. A
polarization of .V;h/ is a bilinear form  WV �V ! R such that  R is a polarization of
.V .R/;h/. A rational or real Hodge structure is polarizable if it admits a polarization on
each component of the weight decomposition.

EXAMPLE 2.12. Let .V;h/ be anR-Hodge structure of type .�1;0/; .0;�1/withRDZ, Q,
or R, and let J D h.i/. A polarization of .V;h/ is an alternating bilinear form  WV �V !

2�iRDR.1/ such that, for u;v 2 V.R/,

 R.Ju;J v/D  R.u;v/; and
1

2�i
 R.u;Ju/ > 0 if u¤ 0:

Then the form u;v 7!  R.u;J v/ is symmetric.

EXAMPLE 2.13. Let X be a nonsingular projective variety over C. The choice of an
embedding X ,! PN determines a polarization on the primitive part of the Hodge structure
Hn.X;Q/ for each n (Hodge index theorem; Voisin 2002, 6.3.2).

Variations of Hodge structures
Consider a morphism � WV ! S of nonsingular algebraic varieties over C whose fibres
Vs , s 2 S , are nonsingular projective varieties. The vector spaces Hn.Vs;Q/ form a lo-
cal system of Q-vector spaces on the topological space S.C/, and each spaceHn.Vs;Q/
carries a Hodge structure. The Hodge decompositions on the spaces Hn.Vs;Q/ vary
continuously in s 2 S.C/, the Hodge filtrations vary holomorphically in s 2 S.C/, and
Griffiths showed that the system satisfies a certain (Griffiths) transversality condition.
A system satisfying these conditions on a complex manifold is called a variation of
Hodge structures.

In this section, we explain Deligne’s realization of hermitian symmetric domains as
parameter spaces for variations of Hodge structures. Because hermitian symmetric domains
are simply connected, we need only consider variations in which the underlying local system
is constant.

Let S be a connected complex manifold and V a real vector space. Suppose that, for each
s 2 S , we have a Hodge structure hs on V of weight n (independent of s). Let V p;qs D V

p;q

hs

and F ps D F
p
s V D F

p

hs
V .

The family of Hodge structures .hs/s2S on V is said to be continuous if, for fixed p
and q, the subspace V p;qs varies continuously with s. This means that the dimension d.p;q/
of V p;qs is constant and the map

s 7! V p;qs WS !Gd.p;q/.V .C//
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into the Grassmannian is continuous.15

A continuous family of Hodge structures .V p;qs /s is said to be holomorphic if the Hodge
filtration F �s varies holomorphically with s. This means that the map '

s 7! F �s WS !Gd.V .C//

is holomorphic. Here dD .: : : ;d.p/; : : :/, where d.p/D dimF ps V D
P
r�p d.r;q/.

For a holomorphic family of Hodge structures, the differential of ' at s is a C-linear map

d'sWTgtsS ! TgtF �s .Gd.V .C///
.18/
�

M
p

Hom.F ps ;V .C/=F
p
s /:

We say that the family satisfies Griffiths transversality if the image of d's is contained inM
p

Hom.F ps ;F
p�1
s =F ps /;

for all s. When the family satisfies Griffiths transversality, we call it a variation of Hodge
structures.

A variation of Hodge structures on a nonconnected complex manifold is a variation of
Hodge structures on each conneced component of the manifold.

Now let V be a real vector space, let T be a family of tensors on V including a nonde-
generate bilinear form t0, and let d WZ�Z! N be a function such that8<:

d.p;q/D 0 for almost all p;q;
d.q;p/D d.p;q/;
d.p;q/D 0 unless pCq D n:

Define S.d;T / to be the set of all Hodge structures h on V such that

˘ dimV p;q
h
D d.p;q/ for all p;q;

˘ each t 2 T is a Hodge tensor for h;

˘ t0 is a polarization for h.

Then S.d;T / acquires a topology as a subset of
Y

d.p;q/¤0

Gd.p;q/.V .C//.

THEOREM 2.14. Let SC be a connected component of S.d;T /.

(a) The space SC has a unique complex structure for which .hs/ is a holomorphic family
of Hodge structures.

(b) With this complex structure, SC is a hermitian symmetric domain if .hs/ is a variation
of Hodge structures.16

(c) Every irreducible hermitian symmetric domain is of the form SC for a suitable choice
of V , d , and T .

15Earlier we defined Grassmannians of a complex vector space to be algebraic varieties over C. In this section,
it is more convenient to regard them as complex manifolds.

16The converse is false: SC may be a hermitian symmetric domain without .hs/s being a variation of Hodge
structures. For example, let V DR2 with the standard alternating form. Then the functions d.1;0/D d.0;1/D 1
and d.5;0/D d.0;5/D 1 give the same sets S.d;T / but only the first is a variation of Hodge structures. The
u given naturally by the second d is the fifth power of that given by the first d; and so u.z/ does not act as
multiplication by z on the tangent space.
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SKETCH OF PROOF. (a) Let SC D S.d;T /C. Because the Hodge filtration determines the
Hodge decomposition (see (19)), the map

s 7! F �s WS
C

'
!Gd.V .C//

is injective. Let G be the smallest algebraic subgroup of GLV such that h.S/ � G for all
h 2 SC (take G to be the intersection of the algebraic subgroups of GLV with this property),
and let ho 2 SC. For all g 2 G.R/C, ghog�1 2 SC, and it follows from Deligne 1979,
1.1.12, that the map g 7! ghog

�1WG.R/C! SC is surjective:

SC DG.R/C �ho:

The subgroup Ko of G.R/C fixing ho is closed, and so G.R/C=Ko is a smooth manifold
(in fact, it is a real analytic manifold). Therefore, SC acquires the structure of a smooth
manifold from

SC D .G.R/C=Ko/ �ho 'G.R/C=Ko.

Let gD Lie.G/. From the inclusion G ,! GL.V / we obtain an inclusion of Lie algebras
g ,! End.V /. This inclusion is equivariant for the adjoint action of G on g and the natural
action of G on End.V /, and so ho makes it into an inclusion of Hodge structures. Clearly,
g00 D Lie.Ko/ and so Tgtho.S

C/' g=g00. Consider the diagram

Tgtho.S
C/'g=g00 End.V /=End.V /00

gC=F
0 End.V .C//=F 0' Tgtho.Gd.V .C///:

'.24/ '.24/ (26)

The map from top-left to bottom-right is .d'/ho , which therefore maps Tgtho.S
C/ onto

a complex subspace of Tgtho.Gd.V .C///. Since this is true for all ho 2 SC, we see that
' identifies SC with an almost-complex submanifold Gd.V .C//. It can be shown that
the almost-complex structure on SC is integrable, and so it provides SC with a complex
structure for which ' is holomorphic. Clearly, this is the only (almost-)complex structure for
which this is true.

(b) Let h;ho 2 SC, so that hD ghog�1 for some g 2G.R/C. Because Vh has weight n
for all h 2 SC, h.r/ acts as r�n on V for r 2 R. Therefore gho.r/g�1 D ho.r/ for all g 2
G.R/C, and so ho.r/ 2Z.G/. It follows that z 7! ho.

p
z/ is a well-defined homomorphism

uoWU1!Gad . Let C D ho.i/D uo.�1/. The faithful representation G! GL.V / carries
a C -polarization, namely, t0, and so adC is a Cartan involution on G (hence on Gad) (1.20).
Thus .G;uo/ satisfies condition (b) of Theorem 1.21. From the diagram (26), we see that

gC=g
00
' Tgto.S

C/� Tgto.Grd.V //' End.V /=F 0End.V /:

If the family .hs/ satisfies Griffiths transversality, then gC=g
00 � F�1End.V /=F 0End.V /,

and it follows that .G;uo/ satisfies condition (b) of Theorem 1.21. As .G;uo/ obviously
satisfies (c), we can conclude that SC is the hermitian symmetric domain attached to .G;uo/.

(c) Let D be an irreducible hermitian symmetric domain, and let G be the connected
adjoint group such that G.R/C DHol.D/C (see 1.7). Choose a faithful self-dual representa-
tion G! GL.V / of G. Because V is self-dual, there is a nondegenerate bilinear form t0 on
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V fixed by G. Apply Proposition 2.1 to find a set of tensors T containing t0 such that G is
the subgroup of GL.V / fixing the t 2 T . Let ho be the composite of the homomorphisms

S
z 7!z= Nz
�! U1

uo
!G! GL.V /,

where uo as in (1.9). Then ho defines a Hodge structure on V for which the t 2 T are
Hodge tensors and to is a polarization. One can check that D is naturally identified with the
component of S.d;T /Ccontaining this Hodge structure.17

2

REMARK 2.15. The map SC!Gd.V .C// in the proof is an embedding of smooth mani-
folds (injective smooth map that is injective on tangent spaces and maps SC homeomorphi-
cally onto its image). Therefore, if a smooth map T !Gd.V .C// factors into

T
˛
�! SC �!Gd.V .C//;

then ˛ will be smooth. Moreover, if the map T !Gd.V .C// is defined by a holomorphic
family of Hodge structures on T , and it factors through SC, then ˛ will be holomorphic.

ASIDE 2.16. Griffiths studied the variations of Hodge structures arising from smooth fami-
lies of algebraic varieties in a series of papers in the 1960s. See Deligne 1970 and Voisin
2002, Chapters 9 and 10.

ASIDE. Let .V;h/ be a polarizable rational Hodge structure, and let G be the smallest algebraic
subgroup G of GL.V / such that h.S/� GR. The pair .G;h/ is called the Mumford-Tate group of
.V;h/.

(a) Let G be a connected algebraic group over Q and h a homomorphism S! GR. The pair
.G;h/ is the Mumford-Tate group of a rational Hodge structure if and only if G is generated
by h and the weight homomorphism wh is defined over Q and maps into the centre of G.

(b) A rational Hodge structure is polarizable if and only if its Mumford-Tate group .G;h/ is such
that ad.h.i// is a Cartan involution on G=wh.Gm/.

(c) It is also possible to characterize the abelian Hodge structures by their Mumford-Tate groups,
but this is more complicated to state.

For these statements, see Milne 1994b, 1.6, 1.27; also Milne 2013, 6.2, 6.3.

ASIDE. Hodge structures can be used to give a geometric interpretation of the Borel and Harish-
Chandra embeddings (Deligne), and also the Satake compactification of D.

ASIDE. We have realized the hermitian symmetric domains as parameter spaces for Hodge structures.
Better, they can be realized as moduli varieties for Hodge structures (in the category of complex
manifolds, for example). See Milne 2013. Realizing a hermitian symmetric domain as a parameter
space for Hodge structures requires choosing a representation of the group, but this can be avoided
by using the Tannakian point of view (in a sense, one choose all representations).

NOTES. Theorem 2.14 has been extracted from Deligne 1979, 1.1. There is a more complete
exposition of the material in this section in Milne 2013, �5–�7.

17Given a pair .V;.V p;q/p;q ;T /, define L to be the sub-Lie-algebra of End.V / fixing the t 2 T , i.e., such
that P

i t .v1; : : : ;gvi ; : : : ;vr /D 0:

Then L has a Hodge structure of weight 0. We say that .V;.V p;q/p;q ;T / is special if L is of type
.�1;1/; .0;0/; .1;�1/. The family S.d;T /C containing .V;.V p;q/p;q ;T / is a variation of Hodge structures if
and only if .H;T / is special.
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3 Locally symmetric varieties
In this section, we study quotients of hermitian symmetric domains by discrete groups.
In particular, we see that the quotient by a torsion-free arithmetic subgroup has a unique
structure of an algebraic variety compatible with its complex structure. In this way, we
obtain a very large class of interesting algebraic varieties over C.

Quotients of hermitian symmetric domains by discrete groups
PROPOSITION 3.1. Let D be a hermitian symmetric domain, and let � be a discrete sub-
group of Hol.D/C. If � is torsion-free, then � acts freely on D, and there is a unique
complex structure on � nD for which the quotient map � WD! � nD is a local isomorphism.
Relative to this structure, a map ' from � nD to a second complex manifold is holomorphic
if and only if ' ı� is holomorphic.

PROOF. Let � be a discrete subgroup of Hol.D/C. According to (1.5, 1.6), the stabilizer
Kp of any point p 2D is compact and g 7! gpWHol.D/C=Kp!D is a homeomorphism,
and so (MF, 2.5):

(a) for all p 2D, fg 2 � j gp D pg is finite;

(b) for all p 2D, there exists a neighbourhood U of p such that, for g 2 � , gU is disjoint
from U unless gp D p;

(c) for any points p;q 2D not in the same � -orbit, there exist neighbourhoods U of p
and V of q such that gU \V D ; for all g 2 � .

Assume that � is torsion-free. Then the group in (a) is trivial, and so � acts freely on D.
Endow � nD with the quotient topology. If U and V are as in (c) , then �U and �V are
disjoint neighbourhoods of �p and �q, and so � nD is Hausdorff. Let q 2 � nD, and let
p 2 ��1.q/. If U is as in (b), then the restriction of � to U is a homeomorphism U ! �U ,
and it follows that � nD a manifold.

Define a C-valued function f on an open subset U of � nD to be holomorphic if f ı�
is holomorphic on ��1U . The holomorphic functions form a sheaf on � nD for which � is
a local isomorphism of ringed spaces. Therefore, the sheaf defines a complex structure on
� nD for which � is a local isomorphism of complex manifolds.

Finally, let 'W� nD !M be a map such that ' ı� is holomorphic, and let f be a
holomorphic function on an open subset U of M . Then f ı ' is holomorphic because
f ı' ı� is holomorphic, and so ' is holomorphic. 2

When � is torsion-free, we often write D.� / for � nD regarded as a complex manifold.
In this case, D is the universal covering space of D.� / and � is the group of covering
transformations; moreover, for any point p of D, the map

g 7! Œimage under � of any path from p to gp�W� ! �1.D.� /;�.p//

is an isomorphism (Hatcher 2002, 1.40).

Subgroups of finite covolume

We shall only be interested in quotients of D by “big” discrete subgroups � of Aut.D/C.
This condition is conveniently expressed by saying that � nD has finite volume. By definition,
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D has a riemannian metric g and hence a volume element ˝: in local coordinates

˝ D

q
det.gij .x//dx1^ : : :^dxn:

Since g is invariant under � , so also is ˝, and so it passes to the quotient � nD. The
condition is that

R
� nD˝ <1:

For example, let D DH1 and let � D PSL2.Z/. Then

F D
˚
z 2H1

ˇ̌
�
1
2
<<.z/ < 1

2
; jzj> 1

	
is a fundamental domain for � andZ

� nD

˝ D

“
F

dxdy

y2
�

Z 1
p
3=2

Z 1=2

�1=2

dxdy

y2
D

Z 1
p
3=2

dy

y2
<1:

On the other hand, the quotient of H1 by the group of translations z 7! zCn, n 2 Z, has
infinite volume, as does the quotient of H1 by the trivial group.

A real Lie group G has a left invariant volume element, which is unique up to a positive
constant (cf. Boothby 1975, VI 3.5). A discrete subgroup � of G is said to have finite
covolume if � nG has finite volume. For a torsion-free discrete subgroup � of Hol.D/C,
an application of Fubini’s theorem shows that � nHol.D/C has finite volume if and only if
� nD has finite volume (Witte Morris 2015, 1.3, Exercise 6).

Arithmetic subgroups
Two subgroups S1 and S2 of a group H are commensurable if S1\S2 has finite index in
both S1 and S2. For example, two infinite cyclic subgroups Za and Zb of R are commensu-
rable if and only if a=b 2Q�. Commensurability is an equivalence relation.18

LetG be an algebraic group over Q. A subgroup � ofG.Q/ is arithmetic if it is commen-
surable with G.Q/\GLn.Z/ for some embedding19 G ,! GLn. It is then commensurable
with G.Q/\GLn0.Z/ for every embedding G ,! GLn0 (Borel 1969, 7.13).

PROPOSITION 3.2. Let �WG!G0 be a surjective homomorphism of algebraic groups over
Q. If � �G.Q/ is arithmetic, then so also is �.� /�G0.Q/.

PROOF. See Borel 1969, 8.9, 8.11, or Platonov and Rapinchuk 1994, Theorem 4.1, p. 204.2

An arithmetic subgroup � of G.Q/ is obviously discrete in G.R/, but it need not have
finite covolume; for example, � D f˙1g is an arithmetic subgroup of Gm.Q/ of infinite
covolume in R�. It follows that if � is to have finite covolume, there can be no nonzero
homomorphism G!Gm. For reductive groups, this condition is also sufficient.

THEOREM 3.3. Let G be a reductive group over Q, and let � be an arithmetic subgroup of
G.Q/.

(a) The space � nG.R/ has finite volume if and only if Hom.G;Gm/D 0 (in particular,
� nG.R/ has finite volume if G is semisimple).

18If H and H 0 are subgroups of finite index in a group G, then H \H 0 has finite index in H (because
H=H \H 0 ! G=H 0 is injective). It follows that if H1 and H3 are each commensurable with H2, then
H1 \H2 \H3 has finite index in each of H1 \H2 and H2 \H3 (and therefore in H1 and H3). Hence,
H1\H3 has finite index in each of H1 and H3.

19Here, embedding means injective homomorphism.
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(b) The space � nG.R/ is compact if and only if Hom.G;Gm/D 0 and G.Q/ contains
no unipotent element (other than 1).20

PROOF. See Borel 1969, 13.2, 8.4, or Platonov and Rapinchuk 1994, Theorem 4.13, p. 213,
Theorem 4.12, p. 210. [The intuitive reason for the condition in (b) is that the rational
unipotent elements correspond to cusps (at least in the case of SL2 acting on H1), and so to
have no rational unipotent elements means that there are no cusps.] 2

EXAMPLE 3.4. LetB be a quaternion algebra over Q such thatB˝QR�M2.R/, and letG
be the algebraic group over Q such that G.Q/D fb 2 B j Nm.b/D 1g (reduced norm). The
choice of an isomorphism B˝QR!M2.R/ determines an isomorphism G.R/! SL2.R/,
and hence an action of G.R/ on H1. Let � be an arithmetic subgroup of G.Q/.

If B is isomorphic to M2.Q/, then G is isomorphic to SL2, which is semisimple, and so
� nSL2.R/ (hence also � nH1) has finite volume. However, SL2.Q/ contains a unipotent
element

�
1 1
0 1

�
, and so � nSL2.R/ is not compact.

If B is not isomorphic to M2.Q/, then it is a division algebra, and so G.Q/ contains no
unipotent element ¤ 1 (for otherwise B� would contain a nilpotent element). Therefore,
� nG.R/ is compact. In this way we get compact quotients � nH1 of H1.

Let k be a subfield of C. An automorphism of a k-vector space V is said to be neat
if its eigenvalues in C generate a torsion-free subgroup of C�. For example, no nontrivial
automorphism of finite order is neat. Let G be an algebraic group over Q. An element
g 2 G.Q/ is neat if �.g/ is neat for one faithful representation G ,! GL.V /, in which
case �.g/ is neat for every representation � of G defined over a subfield of C (because all
representations G can be constructed from one faithful representation). A subgroup of G.Q/
is neat if all its elements are.

PROPOSITION 3.5. LetG be an algebraic group over Q, and let � be an arithmetic subgroup
of G.Q/. Then, � contains a neat subgroup � 0 of finite index. Moreover, � 0 can be chosen
to be defined by congruence conditions (i.e., for some embedding G ,! GLn and integer N ,
� 0 D fg 2 � j g � 1modN g).

PROOF. See Borel 1969, 17.4, or Witte Morris 2015, 4.8. 2

LetH be a connected real Lie group. A subgroup � ofH is arithmetic if there exists an
algebraic group G over Q, a surjective homomorphism G.R/C! Hol.D/C with compact
kernel, and an arithmetic subgroup �0 of G.Q/ such that �0\G.R/C maps onto � . We
are only interested in the case that H is semisimple, in which case we can take G to be
semisimple.

PROPOSITION 3.6. Let H be a semisimple real Lie group that admits a faithful finite-
dimensional representation. Every arithmetic subgroup � ofH is discrete of finite covolume,
and it contains a torsion-free subgroup of finite index.

PROOF. Let ˛WG.R/C�H and �0 �G.Q/ be as in the definition of arithmetic subgroup.
Because Ker.˛/ is compact, ˛ is proper (Bourbaki 1989, I 10.3) and, in particular, closed.

20Recall that Hom.G;Gm/D 0 means that there is no nonzero homomorphism G!Gm defined over Q. An
element g of G.k/ is unipotent if �.g/ is unipotent in GL.V / for one faithful representation �WG ,! GL.V /, in
which case �.g/ is unipotent for every representation � of G.
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Because �0 is discrete in G.R/, there exists an open U � G.R/C whose intersection with
�0 �Ker.˛/ is exactly Ker.˛/. Now ˛.G.R/C XU/ is closed in H , and its complement
intersects � in f1� g. Therefore, � is discrete in H . It has finite covolume because
�0nG.R/C maps onto � nH and we can apply (3.3a) to G and �0. Let �1 be a neat
subgroup of �0 of finite index (3.5). The image of �1 in H has finite index in � , and its
image under any faithful representation of H is torsion-free. 2

REMARK 3.7. There are many nonarithmetic discrete subgroups in SL2.R/ of finite covol-
ume. According to the Riemann mapping theorem, every compact Riemann surface of genus
g � 2 is the quotient of H1 by a discrete subgroup of PGL2.R/C acting freely on H1: Since
there are continuous families of such Riemann surfaces, this shows that there are uncountably
many discrete cocompact subgroups in PGL2.R/C (therefore also in SL2.R/). However,
in any connected real Lie group there are only countably many arithmetic subgroups up to
conjugacy (Witte Morris 2015, 5.1.20).

The following major theorem of Margulis shows that SL2 is exceptional in this regard:
every discrete subgroup of finite covolume in a noncompact simple real Lie group H is
arithmetic unless H is isogenous to SO.1;n/ or SU.1;n/ (see Witte Morris 2015, 5.2, for a
discussion of the theorem). Note that, because SL2.R/ is isogenous to SO.1;2/, the theorem
doesn’t apply to it.

Brief review of algebraic varieties

Let k be a field. An affine k-algebra is a finitely generated k-algebra A such that A˝k ka

is reduced (i.e., has no nilpotents). Such an algebra is itself reduced, and when k is perfect
every reduced finitely generated k-algebra is affine.

Let A be an affine k-algebra. Define spm.A/ to be the set of maximal ideals in A
endowed with the topology having as base the collection of sets

D.f /
def
D fm j f …mg; f 2 A:

There is a unique sheaf of k-algebras O on spm.A/ such that O.D.f // D Af for all f .
Here Af is the algebra obtained from A by inverting f . An affine algebraic variety over k
is a ringed space isomorphic to one of the form

Spm.A/D .spm.A/;O/:

The stalk at m is the local ring Am, and so Spm.A/ is a locally ringed space.
This all becomes much more familiar when k is algebraically closed. When we write

A D kŒX1; : : : ;Xn�=a, the space spm.A/ becomes identified with the zero set of a in kn

endowed with the Zariski topology, and O becomes identified with the sheaf of k-valued
functions on spm.A/ locally defined by polynomials.

A topological space V with a sheaf of k-algebras O is a prevariety over k if there exists
a finite covering .Ui / of V by open subsets such that .Ui ;OjUi / is an affine variety over
k for all i . A morphism of prevarieties over k is simply a morphism of ringed spaces of
k-algebras. A prevariety V over k is separated if, for all pairs of morphisms of k-prevarieties
˛;ˇWZ� V , the subset of Z on which ˛ and ˇ agree is closed. An algebraic variety over
k is a separated prevariety over k.
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Alternatively, the algebraic varieties over k are precisely the ringed spaces obtained from
geometrically-reduced separated schemes of finite type over k by deleting the nonclosed
points.21

A morphism of algebraic varieties is also called a regular map, and the elements of
O.U / are called the regular functions on U .

Let V be an algebraic variety over k, and let R be a k-algebra. We let V.R/ denote the
set of points of V with coordinates in R. When A is affine, V.R/D Homk-algebra.A;R/. In
general, V.R/D Homk.Spm.R/;V /.

Let V be an algebraic variety over k. The tangent space Tgtp.V / to V at a point
p 2 V.k/ is the k-vector space of k-derivations OV;p ! k. A point p 2 V.k/ is said to
be nonsingular if the dimension of Tgtp.V / is equal to the dimension of the connected
component of V containing p. The variety V is nonsingular if every p 2V.k/ is nonsingular
and this remains true when we extend scalars to ka. A map of nonsingular varieties is étale if
it induces isomorphisms on the tangent spaces and this remains true when we extend scalars
to ka.

For the variety approach to algebraic geometry, see my notes Algebraic Geometry, and
for the scheme approach, see Hartshorne 1977.

Algebraic varieties versus complex manifolds
For a nonsingular algebraic variety V over C, the set V.C/ has a natural structure as a
complex manifold. More precisely, there is the following statement.

PROPOSITION 3.8. There is a unique functor .V;OV / .V an;OV an/ from nonsingular
varieties over C to complex manifolds with the following properties:

(a) V D V an as sets, every Zariski-open subset is open for the complex topology, and
every regular function is holomorphic;22

(b) if V D An, then V an D Cn with its natural structure as a complex manifold;

(c) if 'WV !W is étale, then 'anWV an!W an is a local isomorphism.

PROOF. A regular map 'WV !W is étale if the map d'pWTgtpV ! TgtpW is an isomor-
phism for all p 2 V . Note that conditions (a,b,c) determine the complex-manifold structure
on any open subvariety of An and also on any variety V that admits an étale map to an open
subvariety of An. Since every nonsingular variety admits a Zariski-open covering by such V
(AG, 5.53), this shows that there exists at most one functor satisfying (a,b,c), and suggests
how to define it. 2

Obviously, a regular map 'WV !W is determined by 'anWV an!W an, but not every
holomorphic map V an ! W an is regular. For example, z 7! ez WC! C is not regular.
Moreover, a complex manifold need not arise from a nonsingular algebraic variety, and
two nonsingular varieties V and W can be isomorphic as complex manifolds without being
isomorphic as algebraic varieties (Shafarevich 1994, VIII 3.2). In other words, the functor
V  V an is faithful, but it is neither full nor essentially surjective on objects.

21Nonclosed points are not needed when working with algebraic varieties over a field, and so algebraic
geometers often ignore them. For example, it makes the statement of Proposition 3.8 simpler when we do.

22These conditions require that the identity map V ! V be a morphism of C-ringed spaces .V an;OV an/!

.V;OV /. This morphism is universal.
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REMARK 3.9. The functor V  V an can be extended to all algebraic varieties once one
has the notion of a “complex manifold with singularities”. This is called a complex analytic
space. For holomorphic functions f1; : : : ;fr on a connected open subset U of Cn, let
V.f1; : : : ;fr/ denote the set of common zeros of the fi in U ; one endows V.f1; : : : ;fr/
with a natural structure of ringed space, and then defines a complex space to be a ringed
space .S;OS / that is locally isomorphic to one of this form (Shafarevich 1994, VIII 1.5).

3.10. Here are two necessary conditions for a complex manifold M to arise from an
algebraic variety.

(a) It must be possible to embed M as an open submanifold of a compact complex
manfold M � in such a way that the boundary M �XM is a finite union of manifolds
of dimension dimM �1.

(b) If M is compact, then the field of meromorphic functions on M must have transcen-
dence degree dimM over C:

The necessity of (a) follows from Hironaka’s theorem on the resolution of singularities,
which shows that every nonsingular variety V can be embedded as an open subvariety of a
complete nonsingular variety V � in such a way that the boundary V �XV is a divisor with
normal crossings (Hironaka 1964).23 The necessity of (b) follows from the fact that, when
V is complete and nonsingular, the field of meromorphic functions on V an coincides with
the field of rational functions on V (Shafarevich 1994, VIII 3.1).

Here is one positive result: the functor

fprojective nonsingular curves over Cg fcompact Riemann surfacesg

is an equivalence of categories (see MF, pp. 94–95, for a discussion of this theorem). Since
the proper Zariski-closed subsets of algebraic curves are the finite subsets, we see that for
Riemann surfaces the condition 3.10(a) is also sufficient: a Riemann surface M is algebraic
if and only if it is possible to embed M in a compact Riemann surface M � in such a way
that the boundary M �XM is finite. The maximum modulus principle (Cartan 1963, VI 4.4)
shows that every holomorphic function on a connected compact Riemann surface is constant.
Therefore, if a connected Riemann surface M is algebraic, then every bounded holomorphic
function on M is constant. We conclude that H1 does not arise from an algebraic curve,
because the function z 7! z�i

zCi
is bounded, holomorphic, and nonconstant.

For all lattices � in C, the Weierstrass } function and its derivative embed C=� into
P2.C/ (as an elliptic curve). However, for a lattice � in C2, the field of meromorphic
functions on C2=� will usually have transcendence degree < 2, and so C2=� is not an
algebraic variety.24 For quotients of Cg by a lattice �, condition 3.10(b) is sufficient for
algebraicity (Mumford 1970, p. 35).

PROJECTIVE MANIFOLDS AND VARIETIES

A complex manifold (resp. algebraic variety) is projective if it is isomorphic to a closed
submanifold (resp. closed subvariety) of a projective space. The first truly satisfying theorem
in the subject is the following:

23For a reasonably elementary exposition of resolution in characteristic zero, see Kollár 2007.
24A complex torus Cg=� is algebraic if and only if it admits a Riemann form (see 6.7 below). When g > 1,

those that admit a Riemann form are a proper closed subset of the moduli space. If � is the lattice in C2
generated by .1;0/; .i;0/; .0;1/; .

p
2; i/, then C2=� does not admit a Riemann form (Shafarevich 1994, VIII

1.4).
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THEOREM 3.11 (CHOW 1949). Every projective complex analyic space has a unique
structure of a projective algebraic variety, and every holomorphic map of projective complex
analytic spaces is regular for these structures. The algebraic variety attached to a complex
manifold is nonsingular.

PROOF. See Shafarevich 1994, VIII 3.1, for a proof in the nonsingular case. 2

In other words, the functor V  V an is an equivalence from the category of projec-
tive algebraic varieties to the category of projective complex analytic spaces under which
nonsingular algebraic varieties correspond to complex manifolds.

The theorem of Baily and Borel
THEOREM 3.12 (BAILY AND BOREL 1966). Let D.� /D � nD be the quotient of a her-
mitian symmetric domain D by a torsion-free arithmetic subgroup � of Hol.D/C. Then
D.� / has a canonical realization as a Zariski-open subset of a projective algebraic variety
D.� /�. In particular, it has a canonical structure of an algebraic variety.

Recall the proof forDDH1. Set H�1 DH1[P1.Q/ (rational points on the real axis plus
the point i1). Then � acts on H�1 , and the quotient � nH�1 is a compact Riemann surface.
One can then show that the modular forms of a sufficiently high weight embed � nH�1 as
a closed submanifold of a projective space. Thus � nH�1 is algebraic, and as � nH1 omits
only finitely many points of � nH�1 , it is automatically a Zariski-open subset of � nH�1 . The
proof in the general case is similar, but is much more difficult. Briefly, D.� /� D � nD�,
where D� is the union of D with certain “rational boundary components” endowed with
the Satake topology; again, the automorphic forms of a sufficiently high weight map � nD�

isomorphically onto a closed subvariety of a projective space, and � nD is a Zariski-open
subvariety of � nD�.

Here is some of the history. For the Siegel upper half space Hg , the compactification H�g
was introduced by Satake (1956) in order to give a geometric foundation to certain results
of Siegel (1939), for example, that the space of holomorphic modular forms on Hg of a
fixed weight is finite-dimensional, and that the meromorphic functions on Hg obtained as
the quotient of two modular forms of the same weight form an algebraic function field of
transcendence degree g.gC1/=2D dimHg over C.

That the quotient � nH�g of H�g by an arithmetic group � has a projective embedding by
modular forms, and hence is a projective variety, was proved in Baily 1958, Cartan 1958,
and Satake and Cartan 1958.

The construction of H�g depends on the existence of fundamental domains for the arith-
metic group � acting on Hg . Weil (1958) used reduction theory to construct fundamental
sets (a notion weaker than fundamental domain) for the domains associated with certain
classical groups (groups of automorphisms of semsimple Q-algebras with, or without, involu-
tion), and Satake (1960) applied this to construct compactifications of these domains. Borel
and Harish-Chandra developed a reduction theory for general semisimple groups (Borel and
Harish-Chandra 1962; Borel 1962), which then enabled Baily and Borel (1966) to obtain the
above theorem in complete generality.

The only source for the proof is the original paper, although some simplifications to the
proof are known.25

25For a discussion of later work, see Casselman 1997.
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REMARK 3.13. (a) The theorem also holds when � has torsion. Then � nD is a normal
complex analytic space (rather than a manifold) and it has the structure of a normal algebraic
variety (rather than a nonsingular algebraic variety).

(b) The variety D.� /� is usually very singular. The boundary D.� /� XD.� / has
codimension � 2, provided PGL2 is not a quotient of the Q-group G giving rise to � .

(c) The variety D.� /� is equal to Proj.
L
n�0An/, where An is the vector space of

automorphic forms for the nth power of the canonical automorphy factor (Baily and Borel
1966, 10.11). It follows that, if PGL2 is not a quotient of G, then

D.� /� D Proj.
L
n�0H

0.D.� /;!n//;

where ! is the sheaf of algebraic differentials of maximum degree on D.� /. Without
the condition on G, there is a similar description of D.� /� in terms of differentials with
logarithmic poles (Brylinski 1983, 4.1.4; Mumford 1977).

(c) WhenD.� / is compact, Theorem 3.12 follows from the Kodaira embedding theorem
(Wells 1980, VI 4.1, 1.5). Nadel and Tsuji (1988, 3.1) extended this to those D.� / having
boundary of dimension 0, and Mok and Zhong (1989) give an alternative proof of Theorem
3.12, but without the information on the boundary given by the original proof.

An algebraic varietyD.� / arising as in the theorem is called a locally symmetric variety
(or an arithmetic locally symmetric variety, or an arithmetic variety, but not yet a Shimura
variety).

The theorem of Borel
THEOREM 3.14 (BOREL 1972). Let D.� / be the quotient of a hermitian symmetric do-
main D by a torsion-free arithmetic subgroup � of Hol.D/C, and let V be a nonsingular
quasi-projective variety over C. Then every holomorphic map f WV an!D.� /an is regular.

Let D.� /� be as in 3.12. The key step in Borel’s proof is the following result:

LEMMA 3.15. Let D�1 denote the punctured disk fz j 0 < jzj< 1g. Then every holomorphic
map26 D�r1 �Ds1! D.� / extends to a holomorphic map DrCs1 ! D.� /� (of complex
spaces).

The original result of this kind is the big Picard theorem, which, interestingly, was first
proved using elliptic modular functions. Recall that the theorem says that if a holomorphic
function f has an essential singularity at a point p 2 C, then on any open disk containing
p, f takes every complex value except possibly one. Therefore, if a holomorphic function
f on D�1 omits two values in C, then it has at worst a pole at 0, and so extends to a
holomorphic function D1! P1.C/. This can be restated as follows: every holomorphic
function from D�1 to P1.C/Xf3 pointsg extends to a holomorphic function from D1 to the
natural compactification P1.C/ of P1.C/Xf3 pointsg. Over the decades, there were various
improvements made to this theorem. For example, Kwack (1969) replaced P1.C/X f3
pointsg with a more general class of spaces. Borel (1972) verified that Kwack’s theorem
applies to D.� /�D.� /�, and extended the result to maps from a product D�r1 �Ds1.

26Recall that D1 is the open unit disk. The product D�r1 �D
s
1 is obtained from DrCs1 by removing the first r

coordinate hyperplanes.
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Using the lemma, we can prove the theorem. According to Hironaka’s theorem on
the resolution of singularities (see p. 37), we can realize V as an open subvariety of a
projective nonsingular variety V � in such a way that V � X V is a divisor with normal
crossings. This means that, locally for the complex topology, the inclusion V ,! V � is of
the form D�r1 �Ds1 ,!DrCs1 . Therefore, the lemma shows that f WV an!D.� /an extends
to a holomorphic map V �an!D.� /�, which is regular by Chow’s theorem (3.11).

COROLLARY 3.16. The structure of an algebraic variety on D.� / is unique.

PROOF. LetD.� / denote � nD with the canonical algebraic structure provided by Theorem
3.12, and suppose � nD D V an for a second variety V . Then the identity map f WV an!

D.� / is a regular bijective map of nonsingular varieties, and is therefore an isomorphism
(AG 8.60). 2

The proof of the theorem shows that the compactification D.� / ,! D.� /� has the
following property: for any compactificationD.� /!D.� /� withD.� /�XD.� / a divisor
with normal crossings, there is a unique regular map D.� /�!D.� /� making

D.� / D.� /�

D.� /�

commute. For this reason, D.� / ,!D.� /� is often called the minimal compactification.
Other names: standard, Satake–Baily–Borel, Baily–Borel.

ASIDE 3.17. (a) The statement of Theorem 3.14 also holds for singular V . Let f WV an!

D.� /an be holomorphic. Then Theorem 3.14 shows that f becomes regular when restricted
to the complement of the singular locus in V , which is open and dense, and this implies that
f is regular on V .

(b) Theorem 3.14 definitely fails without the condition that � be torsion-free. For
example, it is false for � .1/nH1 D A1 — consider z 7! ez WC! C.

Finiteness of the group of automorphisms of D.� /
DEFINITION 3.18. A semisimple group G over Q is said to be of compact type if G.R/ is
compact, and it is of noncompact type if it does not contain a nontrivial normal subgroup of
compact type.

Let G be a semisimple group G over Q. There is an isogeny G1� � � ��Gr ! G with
each Gi simple (Milne 2017, 21.51). The group G is of compact type if every Gi .R/ is
compact and of noncompact type if no Gi .R/ is compact. In particular, a simply connected
or adjoint group is of noncompact type if and only if it has no simple factor of compact type.

We shall need one last result about arithmetic subgroups.

THEOREM 3.19 (BOREL DENSITY THEOREM). Let G be a semisimple group over Q of
noncompact type. Then every arithmetic subgroup � of G.Q/ is Zariski-dense in G.

PROOF. See Borel 1969, 15.12, or Witte Morris 2015, 4.5, 4.6 — the hypothesis is obviously
necessary. 2
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COROLLARY 3.20. Let G be as in the theorem, and let Z be its centre (as an algebraic
group over Q). The centralizer in G.R/ of any arithmetic subgroup � of G.Q/ is Z.R/.

PROOF. The theorem implies that the centralizer of � in G.C/ is Z.C/, and Z.R/ D
Z.C/\G.R/. 2

THEOREM 3.21. LetD.� / be the quotient of a hermitian symmetric domainD by a torsion-
free arithmetic group � of Hol.D/C. Then D.� / has only finitely many automorphisms
(as a complex manifold).

PROOF. As � is torsion-free, D is the universal covering space of � nD and � is the group
of covering transformations (see p. 32). An automorphism ˛W� nD ! � nD lifts to an
automorphism Q̨ WD!D. For all 
 2 � , the map Q̨
 Q̨�1 is a covering transformation, and
so lies in � . Conversely, an automorphism of D normalizing � defines an automorphism of
� nD. Thus,

Aut.� nD/DN.� /=C.� /;

where N.� / (resp. C.� /) is the normalizer (resp. centralizer) of � in Aut.D/.
By assumption, there exists a semisimple algebraic group G over Q, a surjective ho-

momorphism G.R/C! Hol.D/C with compact kernel, and an arithmetic subgroup �0 of
G.Q/ such that �0\G.R/C maps onto � with finite kernel. We may discard any compact
isogeny factors of G, and so suppose that G is of noncompact type (apply (a),(c) of 4.7
below if this isn’t obvious). Let NC be the identity component of N.� /. Because � is
discrete, NC acts trivially on it, and so NC is contained in the (finite) centre of G.R/:
Therefore N.� / is discrete. Because � nAut.D/ has finite volume (3.3a), this implies that
� has finite index in N.� / (cf. Witte Morris 2015, 4.5.5).

Alternatively, there is a geometric proof, at least when � is neat. According to Mumford
1977, Proposition 4.2, D.� / is then an algebraic variety of logarithmic general type, which
implies that its automorphism group is finite (Iitaka 1982, 11.12). 2

ASIDE 3.22. Mostly in this section, we have required � to be torsion-free. In particular,
we disallowed � .1/nH1. For an arithmetic subgroup � with torsion, the algebraic variety
� nD may be singular and Borel’s theorem 3.14 fails. But see the asides p. 75 and p. 94.

NOTES. Witte Morris 2015 is a friendly introduction to the theory of discrete subgroups of Lie groups.
See also Borel 1969, Raghunathan 1972, and Platonov and Rapinchuk 1994. There is a large literature
on the various compactifications of locally symmetric varieties. For overviews, see Satake 2001 and
Goresky 2005, and for a detailed description of the construction of toroidal compactifications, which,
in contrast to the Baily-Borel compactification, may be smooth and projective, see Ash et al. 1975.
See also Borel and Ji 2006.
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4 Connected Shimura varieties
In the last chapter, we saw (3.12) that the quotient � nD of a hermitian symmetric domainD
by a torsion-free arithmetic subgroup � of Hol.D/C is an algebraic variety D.� /. In this
chapter, we study those varieties D.� / for which � is defined by congruence conditions.

Congruence subgroups
Let G be a reductive algebraic group over Q. Choose an embedding G ,! GLn, and define

� .N/DG.Q/\fg 2 GLn.Z/ j g � InmodN g.

For example, if G D SL2, then

� .N/D
˚�
a b
c d

�
2 SL2.Z/

ˇ̌
a;d � 1; b;c � 0 modN

	
:

A congruence subgroup of G.Q/ is any subgroup containing some � .N/ as a subgroup of
finite index. Although � .N/ depends on the choice of the embedding, this definition does
not (see 4.1 below).

With this terminology, a subgroup of G.Q/ is arithmetic if it is commensurable with
� .1/. The classical congruence subgroup problem for G asks whether every arithmetic
subgroup of G.Q/ is congruence, i.e., contains some � .N/. For split simply connected
groups other than SL2, the answer is yes (Matsumoto 1969), but27 SL2 and all nonsimply
connected groups have many noncongruence arithmetic subgroups (see A.3). In contrast to
arithmetic subgroups, the image of a congruence subgroup under an isogeny of algebraic
groups need not be a congruence subgroup. For more on congruence subgroups, see A.3.

The ring of finite adèles is the restricted topological product

Af D
Y

`
.Q`;Z`/

where ` runs over the finite primes of Q (that is, we omit the factor R). Thus, Af is
the subring of

Q
Q` consisting of the .a`/ such that a` 2 Z` for almost all `, and it is

endowed with the topology for which
Q
`Z` is open and has the product topology. Note that

OZ def
D lim
 �n

Z=nZ equals
Q
`Z`, and that Af D OZ˝ZQ:

Let V D Spm.A/ be an affine variety over Q. The set of points of V with coordinates in
a Q-algebra R is V.R/D HomQ.A;R/. When we write

ADQŒX1; : : : ;Xm�=aDQŒx1; : : : ;xm�;

the map P 7! .P .x1/ ; : : : ;P.xm// identifies V.R/ with

f.a1; : : : ;am/ 2R
m
j f .a1; : : : ;am/D 0; 8f 2 ag:

27That SL2.Z/ has noncongruence arithmetic subgroups was first noted in Klein 1880. For a proof that
SL2.Z/ has infinitely many subgroups of finite index that are not congruence subgroups see Sury 2003, 3-4.1.
The proof proceeds by showing that the groups occurring as quotients of SL2.Z/ by congruence subgroups
(especially by principal congruence subgroups) are of a rather special type, and then exploits the known structure
of SL2.Z/ as an abstract group to construct many finite quotients not of this type. In fact, the proportion
of subgroups of index dividing m in SL2.Z/ that are congruence subgroups tends to zero with increasing m
(Stothers 1984).
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Let ZŒx1; : : : ;xm� be the Z-subalgebra of A generated by the xi , and let

V.Z`/D HomZ.ZŒx1; : : : ;xm�;Z`/D V.Q`/\Zm` (inside Qm` ).

This set depends on the choice of the generators xi for A, but if ADQŒy1; : : : ;yn�, then the
yi ’s can be expressed as polynomials in the xi with coefficients in Q, and vice versa. For
some d 2 Z, the coefficients of all these polynomials lie in ZŒ 1

d
�, and so

ZŒ 1
d
�Œx1; : : : ;xm�D ZŒ 1

d
�Œy1; : : : ;yn� (inside A).

It follows that for ` − d , the yi ’s give the same set V.Z`/ as the xi ’s. Therefore, the restricted
topological product

V.Af /
def
D

Y
`
.V .Q`/;V .Z`//

is independent of the choice of generators for A.28

For an algebraic group G over Q, we define

G.Af /D
Y

`
.G.Q`/;G.Z`//

similarly. This is a topological group. For example,

Gm.Af /D
Y

`
.Q�` ;Z

�
` /D A�f .

PROPOSITION 4.1. Let K be a compact open subgroup of G.Af /. Then K \G.Q/ is a
congruence subgroup of G.Q/, and every congruence subgroup is of this form.

PROOF. Fix an embedding G ,! GLn. From this we get a surjection QŒGLn�!QŒG� (of
Q-algebras of regular functions), i.e., a surjection

QŒX11; : : : ;Xnn;T �=.det.Xij /T �1/!QŒG�;

and hence QŒG�DQŒx11; : : : ;xnn; t �. For this presentation of QŒG�,

G.Z`/DG.Q`/\GLn.Z`/ (inside GLn.Q`/).

For an integer N > 0, let

K.N/D
Q
`K`; where K` D

�
G.Z`/ if ` −N
fg 2G.Z`/ j g � Inmod`r`g if r` D ord`.N /:

Then K.N/ is a compact open subgroup of G.Af /, and

K.N/\G.Q/D � .N/.

It follows that the compact open subgroups of G.Af / containing K.N/ intersect G.Q/
exactly in the congruence subgroups of G.Q/ containing � .N/. Since every compact open
subgroup of G.Af / contains K.N/ for some N , this completes the proof. 2

28In a more geometric language, let ˛WV ,! AmQ be a closed immersion. The Zariski closure V˛ of V in AmZ
is a model of V flat over SpecZ. A different closed immersion ˇ gives a different flat model Vˇ , but for some d ,
the isomorphism .V˛/Q ' V ' .Vˇ /Q on generic fibres extends to an isomorphism V˛! Vˇ over SpecZŒ 1

d
�.

For the primes ` not dividing d , the subgroups V˛.Z`/ and Vˇ .Z`/ of V.Q`/ will coincide.
More generally, an arbitrary variety V over Q has flat models over SpecZ, any two of which become

isomorphic over a nonempty open subset of SpecZ. This allows one to define V.Af /.
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ASIDE. A basic compact open subgroupK ofG.Af / is defined by imposing a congruence condition
at each of a finite set of primes. Then � DG.Q/\K is obtained from G.Z/ by imposing the same
congruence conditions. You should think of � as being the congruence subgroup defined by the
“congruence condition” K.

REMARK 4.2. There is a topology on G.Q/ for which the congruence subgroups form
a fundamental system of neighbourhoods of 1. The proposition shows that this topology
coincides with that defined by the diagonal embedding G.Q/�G.Af /.

EXERCISE 4.3. Show that the image in PGL2.Q/ of a congruence subgroup in SL2.Q/
need not be congruence.

Connected Shimura data
DEFINITION 4.4. A connected Shimura datum is a pair .G;D/ consisting of a semisimple
algebraic group G over Q and a Gad.R/C-conjugacy class D of homomorphisms uWU1!
Gad

R satisfying the following conditions:

SU1: for all u 2 D, only the characters z;1;z�1 occur in the representation of U1 on
Lie.Gad/C defined by Adıu;

SU2: for all u 2D, ad.u.�1// is a Cartan involution on Gad
R ;

SU3: Gad has no Q-factor H such that H.R/ is compact.

EXAMPLE 4.5. Let uWU1! PGL2.R/ be the homomorphism sending z D .aC bi/2 to�
a b
�b a

�
mod˙I2 (cf. 1.10), and let D be the set of conjugates of this homomorphism, i.e.,

D is the set of homomorphisms U1! PGL2.R/ of the form

z D .aCbi/2 7! A
�
a b
�b a

�
A�1mod˙I2; A 2 SL2.R/:

Then .SL2;D/ is a connected Shimura datum (here SL2 is regarded as a group over Q).

REMARK 4.6. (a) If uWU1 ! Gad.R/ satisfies the conditions SU1,2, then so does any
conjugate of it by an element of Gad.R/C. Thus a pair .G;u/ satisfying SU1,2,3 determines
a connected Shimura datum. Our definition of connected Shimura datum was phrased so as
to avoid D having a distinguished point.

(b) Condition SU3 says that G is of noncompact type (3.18). It is fairly harmless to
assume this, because replacing G with its quotient by a connected normal subgroup N
such that N.R/ is compact changes little. Assuming it allows us to apply the Borel density
theorem (3.19) and also strong approximation theorem when G is simply connected (see
4.16 below).

[The next statement should be moved earlier, but this would upset the numbering.]

LEMMA 4.7. Let H be an adjoint real Lie group, and let uWU1!H be a homomorphism
satisfying SU1,2. Then the following conditions on u are equivalent:

(a) u.�1/D 1I

(b) u is trivial, i.e., u.z/D 1 for all z;

(c) H is compact.
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PROOF. (a),(b). If u.�1/D 1, then u factors through U1
2
�!U1, and so z˙1 cannot occur

in the representation of U1 on Lie.H/C. Therefore U1 acts trivially on Lie.H/C, which
implies (b). The converse is trivial.

(a),(c). We have

H is compact
1.17a
” adu.�1/D idG

Z.H/D1
” u.�1/D 1. 2

PROPOSITION 4.8. To give a connected Shimura datum is the same as to give

˘ a semisimple algebraic group G over Q of noncompact type,

˘ a hermitian symmetric domain D, and

˘ an action of G.R/C on D defined by a surjective homomorphism Gad.R/C !
Hol.D/C with compact kernel.

PROOF. Let .G;D/ be a connected Shimura datum, and let u 2D. Decompose Gad
R into a

product of its simple factors: Gad
R DH1�� � ��Hs . Correspondingly, uD .u1; : : : ;us/, where

ui is the projection of u into Hi .R/. Then ui D 1 if Hi is compact (4.7), and otherwise
there is an irreducible hermitian symmetric domain D0i such that Hi .R/C D Hol.D0i /

C and
D0i is in natural one-to-one correspondence with the setDi ofHi .R/C-conjugates of ui (see
1.21). The product D0 of the D0i is a hermitian symmetric domain on which G.R/C acts via
a surjective homomorphism Gad.R/C! Hol.D/C with compact kernel. Moreover, there is
a natural identification of D0 D

Q
D0i with D D

Q
Di .

Conversely, let .G;D;G.R/C! Hol.D/C/ satisfy the conditions in the proposition.
Decompose Gad

R as before, and let Hc (resp. Hnc) be the product of the compact (resp.
noncompact) factors. The action of G.R/C on D defines an isomorphism Hnc.R/C '
Hol.D/C, and fup j p 2 Dg is an Hnc.R/C-conjugacy class of homomorphisms U1 !
Hnc.R/C satisfying SU1,2 (see 1.21). Now˚

.1;up/WU1!Hc.R/�Hnc.R/ j p 2D
	
;

is a Gad.R/C-conjugacy class of homomorphisms U1!Gad.R/ satisfying SU1,2. 2

PROPOSITION 4.9. Let .G;D/ be a connected Shimura datum, and let X be the Gad.R/-
conjugacy class of homomorphisms S!GR containing D. Then D is a connected compo-
nent of X , and the stabilizer of D in Gad.R/ is Gad.R/C.

PROOF. The argument in the proof of (1.5) shows that X is a disjoint union of orbits
Gad.R/Ch, each of which is both open and closed in X . In particular, D is a connected
component of X .

Let Hc (resp. Hnc) be the product of the compact (resp. noncompact) simple factors of
Gad

R . Then Hnc is a connected algebraic group over R such that Hnc.R/C D Hol.D/, and
G.R/C acts onD through its quotientHnc.R/C. AsHc is connected andHc.R/ is compact,
the latter is connected,29 and so the last part of the proposition follows from (1.7). 2

29Every compact subgroup of GLn.R/ is algebraic (Milne 2017, 9.30). Let G be a connected algebraic
group over R such that G.R/ is compact. By the first remark, there is an algebraic subgroup H of G such that
H.R/DG.R/C. As G.R/C is Zariski dense in G, we have H DG and so G.R/ is connected.
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Definition of a connected Shimura variety
Let .G;D/ be a connected Shimura datum, and regard D as a hermitian symmetric domain
with G.R/C acting on it as in 4.8. Because the map Gad.R/C! Hol.D/C has compact
kernel, the image N� of any arithmetic subgroup � ofGad.Q/C in Hol.D/C is arithmetic (by
definition p. 34), and the kernel of � ! N� is finite. If N� is torsion-free, then the Baily-Borel
and Borel theorems (3.12, 3.14) apply to D.� / def

D � nD D N� nD. In particular, D.� / has a
unique structure of an algebraic variety and, for every � 0 � � , the natural map

D.� / D.� 0/

is regular.

DEFINITION 4.10. Let .G;D/ be a connected Shimura datum. A connected Shimura
variety relative to .G;D/ is an algebraic variety of the form D.� / with � an arithmetic
subgroup of Gad.Q/C containing the image of congruence subgroup of G.Q/C and such
that N� is torsion-free.30 The inverse system of such algebraic varieties, denoted Shı.G;D/,
is called the connected Shimura variety attached to .G;D/.

REMARK 4.11. (a) Let .G;D/ be a connected Shimura datum, and let � denote the topology
on Gad.Q/ for which the images of the congruence subgroups of G.Q/ form a fundamental
system of neighbourhoods of 1. The connected Shimura varieties relative to .G;D/ are
the quotients � nD where � is an arithmetic subgroup of G.Q/C open for the topology
� and such that N� is torsion-free. An element g of Gad.Q/C defines a holomorphic map
gWD!D, and hence a map

� nD! g�g�1nD.

This is again holomorphic (3.1) and hence regular (3.14). Conjugation by g on Gad.Q/C is
a homeomorphism for the � topology, and so the group Gad.Q/C acts on the inverse system
Shı.G;D/. This action extends by continuity to an action of the completion Gad.Q/Cˆ of
Gad.Q/C for the � topology (Deligne 1979, 2.1.8).

(b) The varieties � nD with � a congruence subgroup of G.Q/C are cofinal in the
inverse system Shı.G;D/.

PROPOSITION 4.12. Write � for the homomorphism G.Q/C!Gad.Q/C. The following
conditions on an arithmetic subgroup � of Gad.Q/C are equivalent:

(a) ��1.� / is a congruence subgroup of G.Q/C;

(b) ��1.� / contains a congruence subgroup of G.Q/C;

(c) � contains the image of a congruence subgroup of G.Q/C.

PROOF. (a))(b). Obvious.
(b))(c). Let � 0 be a congruence subgroup of G.Q/C contained in ��1.� /. Then

� � �.��1.� //� �.� 0/:

(c))(a). Let � 0 be a congruence subgroup ofG.Q/C such that � ��.� 0/, and consider

��1.� /� ��1�.� 0/� � 0.

30We can allow N� to have torsion, but then we have to remember that the variety may be singular and Borel’s
theorem (3.14) may fail.
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Because �.� 0/ is arithmetic (3.2), it is of finite index in � , and it follows that ��1�.� 0/
is of finite index in ��1.� /. Because Z.Q/ �� 0 � ��1�.� 0/ and Z.Q/ is finite (Z is the
centre of G), � 0 is of finite index in ��1�.� 0/. Therefore, � 0 is of finite index in ��1.� /,
which proves that ��1.� / is congruence. 2

REMARK 4.13. The homomorphism � WG.Q/C!Gad.Q/C is usually far from surjective.
For example, the image of SL2.Q/ D SL2.Q/C ! PGL2.Q/C consists of the elements
represented by a matrix with determinant in Q�2. Therefore, ���1.� / is usually not equal
to � , and the family D.� / with � a congruence subgroup of G.Q/C is usually much
smaller than Shı.G;D/.

EXAMPLE 4.14. (a) Let G D SL2 and D DH1. Then Shı.G;D/ is the family of elliptic
modular curves � nH1 with � a torsion-free arithmetic subgroup of PGL2.R/C containing
the image of � .N/ for some N .

(b) Let G D PGL2 and D DH1. This is the same as (a), except that now the � are
required to be congruence subgroups of PGL2.Q/ — there are many fewer of these (see 4.3).
For a discussion of the congruence subgroups of PGL2.Q/; see Hsu 1996.

(c) Let B be a quaternion algebra over a totally real field F . Then

B˝QR'
Y

vWF ,!R

B˝F;vR

and each B˝F;vR is isomorphic either to the usual quaternions H or to M2.R/. Let G be
the semisimple algebraic group over Q such that

G.Q/D Ker.NmWB�! F �/.

Then
G.R/�H�1� � � ��H�1�SL2.R/� � � ��SL2.R/ (27)

where H�1 D Ker.NmWH�! R�/. Assume that at least one SL2.R/ occurs (so that G is
of noncompact type), and let D be a product of copies of H1, one for each copy of SL2.R/.
The choice of an isomorphism (27) determines an action of G.R/ on D which satisfies the
conditions of 4.8, and hence defines a connected Shimura datum. In this case, D.� / has
dimension equal to the number of copies of M2.R/ in the decomposition of B˝QR. If
B �M2.F /, then G.Q/ has unipotent elements, e.g.,

�
1 1
0 1

�
, and so D.� / is not compact

(3.3). In this case the varieties D.� / are called Hilbert modular varieties. On the other
hand, if B is a division algebra, G.Q/ has no unipotent elements, and so the D.� / are
compact (as manifolds, hence they are projective as algebraic varieties).

ASIDE 4.15. In the definition of Shı.G;D/, why do we require the inverse images of the
� ’s in G.Q/C to be congruence? The arithmetic properties of the quotients of hermitian
symmetric domains by noncongruence arithmetic subgroups are not well understood even
for D DH1 and G D SL2 . Also, it is the congruence subgroups that arise naturally when
we work adèlically.

The strong approximation theorem

Recall that a semisimple group G is said to be simply connected if every isogeny G0!G

with G0 connected is an isomorphism. For example, SL2 is simply connected, but PGL2 is
not.
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THEOREM 4.16 (STRONG APPROXIMATION). Let G be an algebraic group over Q. If G
is semisimple, simply connected, and of noncompact type, then G.Q/ is dense in G.Af /.

PROOF. See Platonov and Rapinchuk 1994, Theorem 7.12, p. 427. 2

REMARK 4.17. Without the conditions on G, the theorem fails, as the following examples
illustrate:

(a) Gm (not semisimple): the group Q� is not dense in A�
f

.31

(b) PGL2 (not simply connected): the determinant defines surjections

PGL2.Q/!Q�=Q�2

PGL2.Af /! A�f =A
�2
f

and Q�=Q�2 is not dense in A�
f
=A�2

f
.

(c) G of compact type: if G.Q/ were dense in G.Af /, then G.Z/DG.Q/\G. OZ/ would
be dense in G. OZ/, but G.Z/ is discrete in G.R/ (see 3.3) and hence is finite.

An adèlic description of D.� /
LetG be a simply connected semisimple group over Q. ThenG.R/ is connected (5.2 below),
and so G.Q/�G.R/CDG.R/. In the next proposition, G.Q/ acts onD through the action
of G.R/C.

PROPOSITION 4.18. Let .G;D/ be a connected Shimura datum with G simply connected.
Let K be a compact open subgroup of G.Af /, and let � DK\G.Q/ be the corresponding
congruence subgroup of G.Q/. The map x 7! Œx;1� defines a bijection

� nD 'G.Q/nD�G.Af /=K. (28)

Here G.Q/ acts on both D and G.Af / on the left, and K acts on G.Af / on the right:

q � .x;a/ �k D .qx;qak/; q 2G.Q/; x 2D; a 2G.Af /; k 2K.

When we endow D with its usual topology and G.Af / with the adèlic topology (or the
discrete topology), this becomes a homeomorphism.

PROOF. BecauseK is open,G.Af /DG.Q/ �K (strong approximation theorem). Therefore,
every element of G.Q/nD�G.Af /=K is represented by an element of the form Œx;1�. By
definition, Œx;1�D Œx0;1� if and only if there exist q 2G.Q/ and k 2K such that x0 D qx,
1D qk. The second equation implies that q D k�1 2 � , and so Œx;1�D Œx0;1� if and only if
x and x0 represent the same element in � nD.

Consider

D D� .G.Af /=K/

� nD G.Q/nD�G.Af /=K.

x 7!.x;Œ1�/

Œx� 7!Œx;1�

31Let .a`/` be an arbitrary element of
Q

Z�
`
� A�

f
and let S be a finite set of prime numbers. If Q� is dense,

then there exists an a 2Q� that is close to a` for ` 2 S and an `-adic unit for ` … S . But such an a is an `-adic
unit for all `, and so equals ˙1. This yields a contradiction. A similar argument shows that Q�=Q�2 is not
dense in A�

f
=A�2
f

.
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As K is open, G.Af /=K is discrete, and so the upper map is a homeomorphism of D onto
its image, which is open. It follows easily that the lower map is a homeomorphism. 2

What happens when we pass to the inverse limit over � ? The obvious map

D! lim
 �

� nD,

is injective because each � acts freely on D and
T
� D f1g. Is the map surjective? The

example
Z! lim

 �
Z=mZD OZ

is not encouraging — it suggests that lim
 �

� nD might be some sort of completion of D
relative to the � ’s. This is correct: lim

 �
� nD is much larger than D. In fact, when we pass

to the limit on the right in (28), we get the obvious answer, as follows.

PROPOSITION 4.19. In the limit,

lim
 �

KG.Q/nD�G.Af /=K DG.Q/nD�G.Af / (29)

(adèlic topology on G.Af /).

Before proving this, we need a lemma.

LEMMA 4.20. Let G be a topological group acting continuously on a topological space X ,
and let .Gi /i2I be a directed family of subgroups of G.

(a) The canonical map hWX=
T
Gi ! lim

 �
X=Gi is continuous.

(b) The map h is injective if the stabilizer in Gi of x is compact for every x 2 X and
i 2 I .32

(c) The map h is surjective if the orbit xGi is compact for every x 2X and i 2 I .

PROOF. We shall use that a directed intersection of nonempty compact sets is nonempty,
which has the consequence that a directed inverse limit of nonempty compact sets is non-
empty.

(a) Let I D
T
Gi . Then I acts continuously on X , and the mapping X=I !X=Gi is

continuous for every i . The inverse limit of these continuous mappings is continuous.
(b) Let x;x0 2X . For each i , let

Gi .x;x
0/D fg 2Gi j xg D x

0
g:

The hypothesis implies that Gi .x;x0/ is compact. If x and x0 have the same image in
lim
 �

X=Gi , then the Gi .x;x0/ are all nonempty, and so their intersection is nonempty. For
any g in the intersection, xg D x0, which shows that x and x0 have the same image in
X=

T
Gi .

(c) Let .xiGi /i2I 2 lim
 �

X=Gi . Then lim
 �

xiGi is nonempty because each orbit is compact.
If x 2 lim

 �
xiGi , then x �

T
Gi maps to .xiGi /i2I . 2

32This following example shows that it is not enough to assume that every Gi is compact. Let G D Zp act on
X D Zp=Z by translation, and let Gi D piZp . Then X=

T
Gi D Zp=Z but X=Gi D f0g for all i .
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Note that the conclusions of the lemma hold if every subgroup Gi is compact and every
orbit xGi is Hausdorff (because the hypotheses do).

We now prove Proposition 4.19. Let .x;a/ 2D�G.Af /, and let K be a compact open
subgroup of G.Af /. In order to be able to apply the lemma, we have to show that the
image of the orbit .x;a/K in G.Q/nD�G.Af / is Hausdorff for K sufficiently small. Let
� DG.Q/\aKa�1 — we may assume that � is torsion-free (3.5). There exists an open
neighbourhood V of x such that gV \V D ; for all g 2 � Xf1g (see the proof of 3.1).
For any .x;b/ 2 .x;a/K, g.V �aK/\ .V �bK/D ; for all33 g 2G.Q/Xf1g, and so the
images of V �Ka and V �Kb in G.Q/nD�G.Af / separate .x;a/ and .x;b/.

ASIDE 4.21. (a) Let G be simply connected. Why replace the single coset space on the
left of (28) with the more complicated double coset space on the right? One reason is the
description of the limit

lim
 �

� nD 'G.Q/nD�G.Af /

in 4.19. Another is that it makes transparent that (in this case) there is an action of G.Af /
on the inverse system .� nD/� , and hence, for example, on

lim
�!

H i .� nD;Q/:

Another reason will be seen presently when we use double cosets to define Shimura varieties.
Double coset spaces are pervasive in work on the Langlands program.

(b) The inverse limit of the inverse system Shı.G;D/D .� nD/� exists as a scheme34.
It is even locally noetherian and regular, but not, of course, of finite type over C, and it is
possible to recover the inverse system from the inverse limit. Thus, it is legitimate to replace
the inverse system with its limit (as Deligne does, 1979, 2.1.8). Compare 5.30 below. The
map Shı! � nD can be regarded as an algebraic approximation to the universal covering
map D! �=D. Indeed, just as G.R/C acts on D (but not on � nD/, the �-completion of
G.Q/C acts on Shı (but not on � nD/. Moreover, Shı does behave as though it is simply
connected. For example, every finite étale map of connected Shimura varieties compatible
with an isomorphism of the finite-adèlic groups is an isomorphism (Milne 1983, 2.1).

Alternative definition of connected Shimura data
Recall that S is the real torus such that S.R/D C�. The exact sequence

0! R�
r 7!r�1

�����! C�
z 7!z= Nz
�����! U1! 0

33Let g 2G.Q/, and suppose that g.V �aK/\ .V �bK/¤ ;. Then

gaK D bK D aK

and so g 2G.Q/\aKa�1 D � . As gV \V ¤ ;, this implies that g D 1.
34Let .Ai /i2I be a direct system of commutative rings indexed by a directed set I , and let AD lim

�!
Ai . Then,

for any scheme X ,

Hom.X;SpecA/' Hom.A;� .X;OX //' lim
 �

Hom.Ai ;� .X;OX //' lim
 �

Hom.X;SpecAi /.

Here the middle isomorphism comes from the definition of a direct limit and the end isomorphisms from the
adjointness of Spec and � (see Hartshorne 1977, II, Exercise 2.4). This shows that SpecA is the inverse limit of
the inverse system .SpecAi /i2I in the category of schemes. More generally, inverse limits of schemes in which
the transition morphisms are affine exist, and can be constructed in the obvious way.
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arises from an exact sequence of tori

0!Gm
w
�! S �! U1! 0:

LetH be a semisimple real algebraic group with trivial centre. A homomorphism uWU1!H

defines a homomorphism hWS!H by the rule h.z/D u.z= Nz/, and U1 will act on Lie.H/C
through the characters z;1;z�1 if and only if S acts on Lie.H/C through the characters
z= Nz;1; Nz=z. Conversely, let h be a homomorphism S!H for which S acts on Lie.H/C
through the characters z= Nz;1; Nz=z. Then w.Gm/ acts trivially on Lie.H/C, which implies
that h is trivial on w.Gm/ because the adjoint representation H ! Lie.H/ is faithful. Thus,
h arises from a u.

Now let G be a semisimple algebraic group over Q. From the above remark, we see that
to give a Gad.R/C-conjugacy class D of homomorphisms uWU1! Gad

R satisfying SU1,2
is the same as to give a Gad.R/C-conjugacy class XC of homomorphisms hWS! Gad

R
satisfying the following conditions:

SV1: for all h 2 XC, only the characters z= Nz;1; Nz=z occur in the representation of S on
Lie.Gad/C defined by Adıh;

SV2: for all h 2XC, ad.h.i// is a Cartan involution on Gad
R .

DEFINITION 4.22. A connected Shimura datum is a pair .G;XC/ consisting of a semi-
simple algebraic group over Q and a Gad.R/C-conjugacy class of homomorphisms hWS!
Gad

R satisfying SV1, SV2, and

SV3: Gad has no Q-factor on which the projection of h is trivial.

In the presence of the other conditions, SV3 is equivalent to SU3 (see 4.7). Thus, because
of the correspondence u$ h, this is essentially the same as Definition 4.4.

Definition 4.4 is more convenient when working with only connected Shimura vari-
eties, while Definition 4.22 is more convenient when working with both connected and
nonconnected Shimura varieties.

NOTES. Connected Shimura varieties were defined en passant in Deligne 1979, 2.1.8. There Deligne
often writes (2.1.1), (2.1.2), (2.1.3) when he means (2.1.1.1), (2.1.1.2), (2.1.1.3). He denotes a
connected Shimura datum by a triple .Gad;G;XC/, but the first term is superfluous, and so we omit
it.
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5 Shimura varieties

Connected Shimura varieties are very natural objects, so why do we need anything more
complicated? There are two main reasons. From the perspective of the Langlands program,
we should be working with reductive groups, not semisimple groups. More fundamentally,
the varieties D.� / making up a connected Shimura variety Shı.G;D/ have models over
number fields, but the models depend on a realization of G as the derived group of a
reductive group.35 Moreover, the number field depends on � — as � shrinks the field grows.
For example, the modular curve � .N/nH1 is naturally defined over QŒ�N �, �N D e2�i=N .
Clearly, for a canonical model we would like all the varieties in the family to be defined over
the same field.36

How can we do this? Consider the complex line Y C i D 0 in C2. This is naturally
defined over QŒi �, not Q. On the other hand, the variety Y 2C1D 0 is naturally defined over
Q, and over C it decomposes into a disjoint pair of conjugate lines .Y � i/.Y C i/D 0.37 So
we have managed to get our variety defined over Q at the cost of adding other connected
components. It is always possible to lower the field of definition of a variety by taking the
disjoint union of it with its conjugates.38 Shimura varieties give a systematic way of doing
this for connected Shimura varieties.

Notation for reductive groups

Let G be a reductive group over Q, and let G
ad
�! Gad be the quotient of G by its centre

Z DZ.G/. We let G.R/C denote the group of elements of G.R/ whose image in Gad.R/
lies in its identity component Gad.R/C, and we let G.Q/C DG.Q/\G.R/C. For example,
GL2.Q/C consists of the 2�2matrices with rational coefficients having positive determinant.

35Because realizing the variety as a moduli variety requires having a reductive group. Consider for example
the simplest Shimura variety, with G D GL2 and X DH˙1 . From a representation �WGL2! V of GL2 we
obtain a map h 7! �R ıh from X to the set of rational polarizable Hodge structures. When we take � to be the
standard representation of GL2, this becomes a map from X to elliptic curves. For the connected Shimura datum
.G0;XC/ with G0 D SL2, the homomorphisms h have target G0ad

R , and so only representations of G0ad, not G0,
give rational polarizable Hodge structures. This is not what we want.

36In fact, Shimura has an elegant way of describing a canonical model in which the varieties in the family
are defined over different fields, but this doesn’t invalidate my statement. Incidentally, Shimura also requires a
reductive (not a semisimple) group in order to have a canonical model over a number field. For an explanation of
Shimura’s point of view in the language of these notes, see Milne and Shih 1981b. See also Appendix C.

37This should not be confused with Weil restriction of scalars. For example, the variety over R obtained from
the line Y C i D 0 by restriction of scalars is two-dimensional and isomorphic to A2.

38Let V be a connected nonsingular variety over a field k of characteristic zero. Then V is geometrically
connected (i.e., V ˝k ka is connected) if and only if k is algebraically closed in � .V;OV /. Suppose that V is
geometrically connected, and let k0 be a subfield of k such that ŒkWk0� <1. Then V can also be regarded as a
k0-variety (same V , same OV but regarded as a sheaf of k0-algebras), and

V ˝k0 k
a
'

a
�
V ˝k;� k

a

where � runs through the k0-embeddings of k into ka.
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For a reductive group G, there is a diagram

Gder

Z G Gad

T

�

ad

in which the column and row are short exact sequences, the diagonal maps are isogenies
with kernel the centre Z\Gder of Gder, and T (a torus) is the largest commutative quotient
of G. This gives rise to a short exact sequence

1!Z\Gder
!Z�Gder

!G! 1: (30)

For example, when G D GLn, the diagrams become

SLn

Gm GLn PGLn

Gm
x 7!xn

det

ad

and
1! �n!Gm�SLn! GLn! 1:

There is an action of Gad on G for which ad.g/, g 2G.Q/, acts as x 7! gxg�1.
The cohomology set H 1.Q;G/ is defined to be the set of continuous crossed homo-

morphisms Gal.Qa=Q/!G.Qa/ modulo the relation that identifies two crossed homomor-
phisms differing by a principal crossed homomorphism (more precisely, f 0 � f if there
exists an a 2G.Qa/ such that f 0.�/D a�1 �f .�/ ��.a/ for all � 2 Gal.Qa=Q/). It is a set
with a distinguished element e, represented by any principal crossed homomorphism. An
element of T .Q/ lifts to an element of G.Q/ if and only if it maps to the distinguished class
in H 1.Q;Gder/.

The real points of algebraic groups
PROPOSITION 5.1. For a surjective homomorphism 'WG!H of algebraic groups over R,
the map '.R/WG.R/C!H.R/C is surjective.

PROOF. The map '.R/WG.R/C! H.R/C can be regarded as a smooth map of smooth
manifolds. As ' is surjective on the tangent spaces at 1, the image of '.R/ contains an
open neighbourhood of 1 (Boothby 1975, II 7.1). This implies that the image itself is open
because it is a group. It is therefore also closed, and this implies that it equals H.R/C. 2

Note thatG.R/!H.R/ need not be surjective. For example, Gm
x 7!xn

�! Gm is surjective
as a map of algebraic groups, but the image of Gm.R/

n
! Gm.R/ is Gm.R/C or Gm.R/
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according as n is even or odd. Also SL2! PGL2 is surjective, but the image of SL2.R/!
PGL2.R/ is PGL2.R/C.

For a simply connected algebraic group G, G.C/ is simply connected as a topological
space, but G.R/ need not be. For example, SL2.R/ is not simply connected.

THEOREM 5.2 (CARTAN 1927). Let G be a semisimple algebraic group over R. If G is
simply connected group G, then G.R/ is connected.

PROOF. See Platonov and Rapinchuk 1994, Theorem 7.6, p. 407. 2

COROLLARY 5.3. For a reductive group G over R, G.R/ has only finitely many connected
components (for the real topology).39

PROOF. It follows from Proposition 5.1 that an exact sequence of real algebraic groups

1!N !G0!G! 1 (31)

with N �Z.G0/ gives rise to an exact sequence

�0.G
0.R//! �0.G.R//!H 1.R;N /:

Let QG be the simply connected covering group of Gder. As G is an almost direct product
of Z DZ.G/ and Gder (30), there is an exact sequence (31) with G0 DZ� QG and N finite.
Now

˘ �0. QG.R//D 0 because QG is simply connected,

˘ �0.Z.R// is finite because Zı has finite index in Z and Zı is a quotient (by a finite
group) of a product of copies of U1 and Gm, and

˘ H 1.R;N / is finite because Gal.C=R/ is finite and N is finite. 2

For example, Gdm.R/D .R�/d has 2d connected components, and each of PGL2.R/
and GL2.R/ has 2 connected components.

THEOREM 5.4 (REAL APPROXIMATION). Let G be a connected algebraic group over Q.
Then G.Q/ is dense in G.R/.

PROOF. As Deligne (1971b, 0.4) writes “on se ramène aisément au cas des tores”. This is
explained in Addendum A. 2

More generally, G.Q/ is dense in G.R/ if every connected component of G contains
Q-point.

Shimura data
DEFINITION 5.5. A Shimura datum is a pair .G;X/ consisting of a reductive groupG over
Q and a G.R/-conjugacy class X of homomorphisms hWS!GR satisfying the following
conditions:

39This also follows from the theorem of Whitney 1957: for an algebraic variety V over R, V.R/ has only
finitely many connected components (for the real topology) — see Platonov and Rapinchuk 1994, Theorem 3.6,
p. 119.
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SV1: for all h 2X , the Hodge structure on Lie.GR/ defined by Adıh is of type

f.�1;1/; .0;0/; .1;�1/gI

SV2: for all h 2X , ad.h.i// is a Cartan involution of Gad
R I

SV3: Gad has no Q-factor on which the projection of h is trivial.

Note that, in contrast to a connected Shimura datum, G is reductive (not semisimple),
the homomorphisms h have target GR (not Gad

R ), and X is the full G.R/-conjugacy class
(not a connected component). Note also that SV1 says that, for h 2X , only the characters
z= Nz, 1, Nz=z occur in the representation of S on Lie.GC/ defined by Adıh. As Lie.GC/D

Lie.ZC/˚Lie.Gad
C / and Ad..h.z// automatically acts trivially on Lie.ZC/, this is the same

as the earlier condition SV1.

EXAMPLE 5.6. Let G D GL2 (over Q) and let X be the set of GL2.R/-conjugates of the
homomorphism hoWS! GL2R, ho.aC ib/ D

�
a b
�b a

�
. Then .G;X/ is a Shimura datum.

Note that there is a natural bijection X ! CXR, namely, ho 7! i and ghog�1 7! gi . More
intrinsically, h$ z if and only if h.C�/ is the stabilizer of z in GL2.R/ and h.z/ acts on
the tangent space at z as multiplication by z= Nz (rather than Nz=z).

PROPOSITION 5.7. Let G be a reductive group over R. For a homomorphism hWS!G, let
Nh be the composite of hwithG!Gad. LetX be aG.R/-conjugacy class of homomorphisms
S!G, and let NX be the Gad.R/-conjugacy class of homomorphisms S!Gad containing
the Nh for h 2X .

(a) The map h 7! NhWX! NX is injective and its image is a union of connected components
of NX .

(b) Let XC be a connected component of X , and let NXC be its image in NX . If .G;X/
satisfies the axioms SV1–3 then .Gder; NXC/ satisfies the axioms SV1–3; moreover,
the stabilizer of XC in G.R/ is G.R/C (i.e., gXC DXC ” g 2G.R/C).

PROOF. (a) A homomorphism hWS! G is determined by its projections to T and Gad,
because any other homomorphism with the same projections will be of the form he for
some regular map eWS! Z0 and e is trivial because S is connected and Z0 is finite. The
elements of X all have the same projection to T , because T is commutative, which proves
that h 7! NhWX ! NX is injective. For the second part of the statement, use that Gad.R/C
acts transitively on each connected component of NX (see 1.5) and G.R/C! Gad.R/C is
surjective.

(b) The first assertion is obvious. In (a) we showed that �0.X/� �0. NX/. The stabilizer
in Gad.R/ of Œ NXC� is Gad.R/C (see 4.9), and so its stabilizer in G.R/ is the inverse image
of Gad.R/C in G.R/. 2

COROLLARY 5.8. Let .G;X/ be a Shimura datum, and let XC be a connected component
of X regarded as a G.R/C-conjugacy class of homomorphisms S! Gad

R (5.7). Then
.Gder;XC/ is a connected Shimura datum. In particular, X is a finite disjoint union of
hermitian symmetric domains.

PROOF. Apply Proposition 5.7 and Proposition 4.8. 2



56 5 SHIMURA VARIETIES

Let .G;X/ be a Shimura datum. For every hWS!GR in X , S acts on Lie.G/C through
the characters z= Nz, 1, Nz=z. Thus, for r 2 R� � C�, h.r/ acts trivially on Lie.G/C. As the
adjoint action of G on Lie.G/ factors through Gad and AdWGad! GL.Lie.G// is injective,
this implies that h.r/ 2Z.R/, where Z is the centre of G. Thus, hjGm is independent of h
— we denote its reciprocal by wX (or simply w) and we call wX the weight homomorphism.
Let �WGR! GL.V / be a representation; then � ıwX defines a decomposition V D

L
Vn

of V which is the weight decomposition of the Hodge structure .V;� ıh/ for every h 2X .

PROPOSITION 5.9. Let .G;X/ be a Shimura datum. Then X has a unique structure of
a complex manifold such that, for every representation �WGR ! GL.V /, .V;� ı h/h2X
is a holomorphic family of Hodge structures. For this complex structure, each family
.V;� ıh/h2X is a variation of Hodge structures, and X is a finite disjoint union of hermitian
symmetric domains.

PROOF. Let �WGR! GL.V / be a faithful representation of GR. The family of Hodge struc-
tures .V;� ıh/h2X is continuous, and a slight generalization of (a) of Theorem 2.14 shows
thatX has a unique structure of a complex manifold for which this family is holomorphic. As
every representation of G can be constructed out of one faithful representation (Milne 2017,
4.14), the family of Hodge structures defined by any representation is then holomorphic for
this complex structure. The condition SV1 implies that .V;� ıh/h is a variation of Hodge
structures (see the proof of the converse in Theorem 1.21). Now (b) of Theorem 2.14 implies
that the connected components of X are hermitian symmetric domains. 2

Of course, the complex structures defined on X by 5.8 and 5.9 coincide.

ASIDE 5.10. Let .G;X/ be a Shimura datum and let NX be as in 5.7. The maps

�0.X/! �0. NX/

G.R/=G.R/C!Gad.R/=Gad.R/C

are injective, and the second can be identified with the first once an h 2X has been chosen.
In general, the maps will not be surjective unless H 1.R;Z/D 0.

Shimura varieties
Let .G;X/ be a Shimura datum.

LEMMA 5.11. For every connected component XC of X , the natural map

G.Q/CnXC�G.Af /!G.Q/nX �G.Af /

is a bijection.

PROOF. Because G.Q/ is dense in G.R/ (see 5.4) and G.R/ acts transitively on X , every
x 2 X is of the form qxC with q 2 G.Q/ and xC 2 XC. This shows that the map is
surjective.

Let .x;a/ and .x0;a0/ be elements of XC�G.Af /. If Œx;a� D Œx0;a0� in G.Q/nX �
G.Af /, then

x0 D qx; a0 D qa; some q 2G.Q/:

Because x and x0 are both in XC, q stabilizes XC and so lies inG.R/C (see 5.7). Therefore,
Œx;a�D Œx0;a0� in G.Q/CnX �G.Af /. 2
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LEMMA 5.12. For every open subgroup K of G.Af /, the set G.Q/CnG.Af /=K is finite.

PROOF. Since G.Q/CnG.Q/! Gad.R/CnGad.R/ is injective and the second group is
finite (5.3), it suffices to show that G.Q/nG.Af /=K is finite. Later (5.17) we shall show
that this follows from the strong approximation theorem if Gder is simply connected, and the
general case is not much more difficult. 2

For a compact open subgroup K of G.Af /, consider the double coset space40

ShK.G;X/
def
DG.Q/nX �G.Af /=K

in which G.Q/ acts on X and G.Af / on the left, and K acts on G.Af / on the right:

q.x;a/k D .qx;qak/; q 2G.Q/; x 2X; a 2G.Af /; k 2K:

LEMMA 5.13. Let C be a set of representatives for the double coset space

G.Q/CnG.Af /=K;

and let XC be a connected component of X . Then

G.Q/nX �G.Af /=K '
G

g2C
�gnX

C;

where �g is the subgroup gKg�1\G.Q/C of G.Q/C. When we endow X with its usual
topology and G.Af / with its adèlic topology (equivalently, the discrete topology), this
becomes a homeomorphism.

PROOF. For g 2 C, consider the map

Œx� 7! Œx;g�W�gnX
C
!G.Q/CnXC�G.Af /=K: (32)

I claim that, for each g; the map (32) is injective, and that G.Q/CnXC�G.Af /=K is the
disjoint union of the images of these maps for differing g. Therefore, the first statement of
the lemma follows from (5.11), and the second statement can be proved in the same way as
the similar statement in (4.18).

To see that the map (32) is injective, note that if Œx;g� D Œx0;g�, then x0 D qx and
g D qgk for some q 2G.Q/C and k 2K. From the second equation, we find that q 2 �g ,
and so Œx�D Œx0�.

For the second part of the claim, let .x;a/2G.Af /. Then aD qgk for some q 2G.Q/C,
g 2 C, k 2 K. Now Œx;a�D Œq�1x;g�, which lies in the image of �gnXC. Suppose that
Œx;g�D Œx0;g0� with g;g0 2 C. Then x0D qx and g0D qgk for some q 2G.Q/C and k 2K.
The second equation implies that g0 D g. 2

Because �g is a congruence subgroup of G.Q/, its image in Gad.Q/ is arithmetic (3.2),
and so (by definition) its image in Aut.XC/ is arithmetic. Moreover, when K is sufficiently
small, �g will be neat for all g 2 C (apply 3.5) and so its image in Aut.XC/C will also

40Let AD R�Af be the full ring of adèles, and let K1 denote the centralizer of h in G.R/. Then

ShK.G;X/DG.Q/nG.A/=.K1�K/:
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be neat and hence torsion-free. Then �gnXC is an arithmetic locally symmetric variety,
and ShK.G;X/ is finite disjoint of such varieties. Moreover, for an inclusion K 0 � K
of sufficiently small compact open subgroups of G.Af /, the natural map ShK0.G;X/!
ShK.G;X/ is regular. Thus, when we vary K (sufficiently small), we get an inverse system
of algebraic varieties .ShK.G;X//K . There is a natural action of G.Af / on the system: for
g 2G.Af /, K 7! g�1Kg maps compact open subgroups to compact open subgroups, and

T .g/WShK.G;X/! Shg�1Kg.G;X/

acts on points as

Œx;a� 7! Œx;ag�WG.Q/nX˝G.Af /=K!G.Q/nX �G.Af /=g�1Kg:

Note that this is a right action: T .gh/D T .h/ıT .g/.

DEFINITION 5.14. Let .G;X/ be a Shimura datum. A Shimura variety relative to .G;X/
is a variety of the form ShK.G;X/ for some (small) compact open subgroup K of G.Af /.
The Shimura variety Sh.G;X/ attached to41 a Shimura datum .G;X/ is the inverse system
of varieties .ShK.G;X//K endowed with the action of G.Af / described above. Here K
runs through the sufficiently small compact open subgroups of G.Af /.

Thus, a Shimura variety relative to .G;X/ is a finite disjoint union of arithmetic locally
symmetric varieties, and the Shimura variety attached to .G;X/ is an inverse system of such
varieties equipped with an action of G.Af /.

Morphisms of Shimura varieties

DEFINITION 5.15. Let .G;X/ and .G0;X 0/ be Shimura data.

(a) A morphism of Shimura data .G;X/! .G0;X 0/ is a homomorphism G ! G0 of
algebraic groups sending X into X 0.

(b) A morphism of Shimura varieties Sh.G;X/! Sh.G0;X 0/ is an inverse system of
regular maps of algebraic varieties compatible with the action of G.Af /.

THEOREM 5.16. A morphism of Shimura data .G;X/! .G0;X 0/ defines a morphism
Sh.G;X/! Sh.G0;X 0/ of Shimura varieties, which is a closed immersion if G! G0 is
injective.

PROOF. The first part of the statement is obvious from Theorem 3.14, and the second is
proved in Theorem 1.15 of Deligne 1971b. 2

ASIDE. The second part of the theorem requires explanation. It says that Sh.G;X/! Sh.G0;X 0/ is
a closed immersion as a morphism of inverse systems of algebraic varieties (or in the inverse limit;
see 5.30). Specifically, for every sufficiently small compact open subgroup K 0 of G0.Af /, there is a
compact open subgroup K of G.Af / such that the map

ShK.G;X/! ShK0.G0;X 0/ (33)

is a closed immersion. Consider the Hilbert Shimura datum .G;X/ attached to a totally real field
F and the corresponding Siegel datum .G0;X 0/ obtained by forgetting the action of F . Then

41Or “defined by” or “associated with”, but not “associated to”, which, strictly speaking, is not English.
Careful writers distinguish “attach to” from “associate with”, and look with horror on “associate to”.
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ShK.G;X/.C/ classifies triples .A; i;�/ with A a complex polarized abelian, i an action of OF ,
and � a level structure. The map (33) sends .A; i;�/ to .A;�/. Now, certainly, A1 and A2 can
be isomorphic without .A1; i1/ and .A2; i2/ being isomorphic, but every isomorphism A1! A2
compatible with sufficiently high level structures will be compatible with the OX -structures. In the
general situation, for a given K 0, there need not be a K for which (33) is a closed immersion, but
there will be if K 0 is small enough.

The structure of a Shimura variety
By the structure of Sh.G;X/, we mean the structure of the set of connected components and
the structure of each connected component. This is worked out in general in Deligne 1979,
2.1.16, but the result there is complicated. When Gder is simply connected,42 it is possible
to prove a more pleasant result: the set of connected components is a “zero-dimensional
Shimura variety”, and each connected component is a connected Shimura variety.

Let .G;X/ be a Shimura datum. As before, we let Z denote the centre of G and T
the largest commutative quotient of G. There are homomorphisms Z ,!G

�
�! T , and we

define �
T .R/� D Im.Z.R/! T .R//;
T .Q/� D T .Q/\T .R/�: (34)

Because Z! T is surjective, T .R/� � T .R/C (see 5.1), and so T .R/� and T .Q/� are of
finite index in T .R/ and T .Q/ (see 5.3). For example, for G D GL2, T .Q/� D T .Q/C D
Q>0.

THEOREM 5.17. Assume that Gder is simply connected. For K sufficiently small, the
natural map

G.Q/nX �G.Af /=K! T .Q/�nT .Af /=�.K/

defines an isomorphism

�0.ShK.G;X//' T .Q/�nT .Af /=�.K/:

Moreover, T .Q/�nT .Af /=�.K/ is finite, and the connected component over Œ1� is canon-
ically isomorphic to � nXC for some congruence subgroup � of Gder.Q/ containing
K\Gder.Q/.

In Lemma 5.20 below, we show that �.G.Q/C/ � T .Q/�. The “natural map” in the
theorem is

G.Q/nX �G.Af /=K
5:11
' G.Q/CnXC�G.Af /=K

Œx;g�7!Œ�.g/�
���������! T .Q/�nT .Af /=�.K/.

The theorem gives a diagram

G.Q/nX �G.Af /=K � nXC

T .Q/�nT .Af /=�.K/ Œ1�

(35)

42The Shimura varieties with simply connected derived group are the most important — if one knows
everything about them, then one knows everything about all Shimura varieties because the remainder are
quotients of them. However, there are naturally occurring Shimura varieties for which Gder is not simply
connected, and so we should not ignore them.
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in which T .Q/�nT .Af /=�.K/ is finite and discrete, the left hand map is continuous and
onto with connected fibres, and � nXC is the fibre over Œ1�.

LEMMA 5.18. Assume that Gder is simply connected. Then G.R/C DGder.R/ �Z.R/.

PROOF. Because Gder is simply connected, Gder.R/ is connected (5.2) and so Gder.R/�
G.R/C. Hence G.R/C �Gder.R/ �Z.R/. For the converse, we use the exact commutative
diagram:

1 Z0.R/ Z.R/�Gder.R/ G.R/ H 1.R;Z0/

1 Z0.R/ Gder.R/ Gad.R/ H 1.R;Z0/:

z 7!.z�1;z/ .z;g/7!zg

.z;g/ 7!g

AsGder!Gad is surjective, so also isGder.R/!Gad.R/C (see 5.1). Therefore, an element
g of G.R/ lies in G.R/C if and only if its image in Gad.R/ lifts to Gder.R/. Thus,

g 2G.R/C ” g 7! 0 in H 1.R;Z0/
” g lifts to Z.R/�Gder.R/
” g 2Z.R/ �Gder.R/ 2

LEMMA 5.19. Let H be a simply connected semisimple algebraic group over Q.

(a) For every finite prime `, the group H 1.Q`;H/ is trivial.

(b) The map H 1.Q;H/!
Q
l�1H

1.Ql ;H/ is injective (Hasse principle).

PROOF. (a) Platonov and Rapinchuk 1994, Theorem 6.4, p. 284.
(b) Platonov and Rapinchuk 1994, Theorem 6.6, p. 286. 2

Both statements fail for groups that are not simply connected.

LEMMA 5.20. Assume that Gder is simply connected, and let t 2 T .Q/. Then t 2 T .Q/� if
and only if t lifts to an element of G.Q/C.

PROOF. Lemma 5.19 implies that the vertical arrow at right in the following diagram is
injective:

1 Gder.Q/ G.Q/ T .Q/ H 1.Q;Gder/

1 Gder.R/ G.R/ T .R/ H 1.R;Gder/

�

�

Let t 2 T .Q/�. By definition, the image tR of t in T .R/ lifts to an element z 2Z.R/�
G.R/. From the diagram, we see that this implies that t maps to the trivial element in
H 1.Q;Gder/ and so it lifts to an element g 2G.Q/. Now gR � z

�1 7! tR � t
�1
R D 1 in T .R/,

and so
gR 2G

der.R/ � z �Gder.R/ �Z.R/
5.2
� G.R/C:

Therefore, g 2G.Q/C.
Let t be an element of T .Q/ lifting to an element a of G.Q/C. According to 5.18,

aR D gz for some g 2Gder.R/ and z 2Z.R/. Now aR and z map to the same element in
T .R/, namely, to tR, and so t 2 T .Q/�. 2
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When Gder is simply connected, the lemma allows us to write

T .Q/�nT .Af /=�.K/D �.G.Q/C/nT .Af /=�.K/:

We now study the fibre over Œ1� of the map

G.Q/CnXC�G.Af /=K
Œx;g�7!Œ�.g/�
���������! �.G.Q/C/nT .Af /=�.K/:

Let g 2G.Af /. If Œ�.g/�D Œ1�, then �.g/D �.q/�.k/ for some q 2G.Q/C and k 2K. It
follows that �.q�1gk�1/D 1, that q�1gk�1 2Gder.Af /, and that g 2G.Q/C �Gder.Af / �
K. Hence every element of the fibre over Œ1� is represented by an element .x;a/ with
a 2 Gder.Af /. But, according to the strong approximation theorem (4.16), Gder.Af / D
Gder.Q/ � .K \Gder.Af //, and so the fibre over Œ1� is a quotient of XC; in particular, it
is connected. More precisely, it equals � nXC, where � is the image of K \G.Q/C
in Gad.Q/C. This � is an arithmetic subgroup of Gad.Q/C containing the image of the
congruence subgroup K\Gder.Q/ of Gder.Q/. Moreover, arbitrarily small such � ’s arise
in this way. Hence, the inverse system of fibres over Œ1� (indexed by the compact open
subgroups K of G.Af /) is equivalent to the inverse system Shı.Gder;XC/D .� nXC/.

The study of the fibre over Œt �will be similar once we show that there exists an a 2G.Af /
mapping to t (so that the fibre is nonempty). This follows from the next lemma.

LEMMA 5.21. Assume that Gder is simply connected. Then the map �WG.Af /! T .Af /
is surjective and sends compact open subgroups to compact open subgroups.

PROOF. It suffices to prove the following statements:

(a) the homomorphism �WG.Q`/! T .Q`/ is surjective for all finite `;

(b) the homomorphism �WG.Z`/! T .Z`/ is surjective for almost all `.

(a) For each prime `, there is an exact sequence

1!Gder.Q`/!G.Q`/
�
! T .Q`/!H 1.Q`;Gder/

and so (5.19a) shows that �WG.Q`/! T .Q`/ is surjective.
(b) Extend the homomorphism G! T to a homomorphism of group schemes G! T

over ZŒ 1
N
� for some integer N . After N has been enlarged, this map will be a smooth

morphism of group schemes and its kernel G0 will have nonsingular connected fibres. On
extending the base ring to Z`, ` −N , we obtain an exact sequence

0! G0`! G`
�
�! T `! 0

of group schemes over Z` such that � is smooth and .G0
`
/F` is nonsingular and connected.

Let P 2 T `.Z`/, and let Y D ��1.P /� G`. We have to show that Y.Z`/ is nonempty. By
Lang’s lemma (Milne 2017, 17.98), H 1.F`; .G0`/F`/D 0, and so

�WG`.F`/! T `.F`/

is surjective. Therefore Y.F`/ is nonempty. Because Y is smooth over Z`, an argument as in
the proof of Newton’s lemma (e.g., ANT 7.31) now shows that a point Q0 2 Y.F`/ lifts to a
point Q 2 Y.Z`/. 2
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It remains to show that T .Q/�nT .Af /=�.K/ is finite. Because T .Q/� has finite index
in T .Q/, it suffices to show that T .Q/nT .Af /=�.K/ is finite. For a torus T over Q, set

T .Z`/D fa 2 T .Q`/ j �.a/ is integral for all � 2X�.T /g and

T . OZ/D
Y

`
T .Z`/:

The class group of T is defined to be

H.T /D T .Q/nT .R/�T .Af /=(T .R/�T . OZ//:

PROPOSITION 5.22. The class group of every torus T over Q is finite.

PROOF. If T D .Gm/F=Q with F a number field, then the class group of T is equal to the
class group of F , and so the proposition follows from algebraic number theory. For the
general case, see Ono 1959. 2

It suffices to prove that T .Q/nT .Af /=�.K/ is finite for K sufficiently small. Thus, we
may suppose that �.K/ � T . OZ/. As T . OZ/ is compact and �.K/ is open, .T . OZ/W�.K// is
finite. Therefore

T .Q/n.T .R/�T .Af /=(T .R/��.K//

is finite. As T .Q/nT .Af /=�.K/ is a quotient of this group, it also is finite.

REMARK 5.23. Let .G;X/ be a Shimura datum with Gder simply connected. We saw in the
discussion preceding Lemma 5.20 that the fibre of ShK.G;X/ over Œ1� 2 �0.ShK.G;X// is
canonically isomorphic to � nXC, where � is the image ofK\G.Q/C in Gad.Q/C. When
is this fibre equal � nXC with � DK\Gder.Q/? Equivalently, when does

ShK.G;X/ı D Shı
K\Gder.Af /.G

der;XC/‹

This is true whenever Z0 def
D Z.Gder/ satisfies the Hasse principle for H 1 (for then every

element in G.Q/C\K with K sufficiently small will lie in Gder.Q/ �Z.Q/; see the Adden-
dum A). It is known that Z0 satisfies the Hasse principle for H 1 when Gder has no isogeny
factors of type A, but not in general otherwise (Milne 1987). This is one reason why, in
the definition of Shı.Gder;XC/, we include quotients � nXC in which � is an arithmetic
subgroup of Gad.Q/C containing, but not necessarily equal to, the image of congruence
subgroup of Gder.Q/.

Zero-dimensional Shimura varieties
Let T be a torus over Q. According to Deligne’s definition, every homomorphism hWC�!
T .R/ defines a Shimura variety Sh.T;fhg/— in this case the conditions SV1,2,3 are vacuous.
For a compact open subgroup K � T .Af /,

ShK.T;fhg/D T .Q/nfhg�T .Af /=K ' T .Q/nT .Af /=K

(finite discrete set). We should extend this definition a little. Let Y be a finite set on which
T .R/=T .R/C acts transitively. Define Sh.T;Y / to be the inverse system of finite sets

ShK.T;Y /D T .Q/nY �T .Af /=K;
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with K running over the compact open subgroups of T .Af /. Call such a system a zero-
dimensional Shimura variety.

Now let .G;X/ be a Shimura datum with Gder simply connected, and let T DG=Gder.
Let Y D T .R/=T .R/�. Because T .Q/ is dense in T .R/ (see 5.4), Y ' T .Q/=T .Q/� and

T .Q/�nT .Af /=K ' T .Q/nY �T .Af /=K

Thus, we see that if Gder is simply connected, then

�0.ShK.G;X//' Sh�.K/.T;Y /:

In other words, the set of connected components of the Shimura variety is a zero-dimensional
Shimura variety (as promised).

For example, let .G;X/ D .GL2;H˙1 / and K D K.N/. Then T D Gm and Y D
R=RC ' f˙1g (see (34)). Thus

�0.ShK.G;X//D T .Q/nf˙1g�A�f =.1CNA�f /' .Z=NZ/� ' Gal.QŒ�N �=Q/:

Additional axioms
Let .G;X/ be a Shimura datum. The weight homomorphism wX is a homomorphism
GmR!Z.G/ıR �GR over R of tori defined over Q. It is therefore defined over Qa. Some
simplifications to the theory occur when some of the following conditions hold:

SV2*: for all h 2X , ad.h.i// is a Cartan involution on GR=wX .Gm/ (rather than Gad
R );

SV4: the weight homomorphism wX WGm! GR is defined over Q (we then say that the
weight is rational).

SV5 the group Z.Q/ is discrete in Z.Af /:
SV6 the torus Zı splits over a CM-field (see p. 98 for the notion of a CM-field).

Let G ! GL.V / be a representation of G (meaning, of course, a Q-representation).
Each h 2X defines a Hodge structure on V.R/. When SV4 holds, these are rational Hodge
structures (p. 26). It is hoped that these Hodge structures all occur in the cohomology of
algebraic varieties and, moreover, that the Shimura variety is a moduli variety for motives
when SV4 holds and a fine moduli variety when additionally SV5 holds. This will be
discussed in more detail later. In Theorem 5.26 below, we give a criterion for SV5 to hold.

Axiom SV6 makes some statements more natural. For example, when SV6 holds, w is
defined over a totally real field, and the natural field of definition of the Shimura variety is
either a totally real or a CM-field (12.4 below).43

EXAMPLE 5.24. Let B be a quaternion algebra over a totally real field F , and let G be the
algebraic group over Q with G.Q/D B�. Then B˝Q F D

Q
vB˝F;v R, where v runs

over the embeddings of F into R. We have

B˝QR� H � � � � � H � M2.R/ � � � � � M2.R/
G.R/�H� � � � � �H� � GL2.R/ � � � � � GL2.R/

h.aC ib/D 1 � � � 1
�
a b
�b a

�
� � �

�
a b
�b a

�
w.r/D 1 � � � 1 r�1I2 � � � r�1I2

43In my view, the extra generality obtained by omitting SV6 is spurious, but Deligne disagrees with me.
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Let X denote the G.R/-conjugacy class of h. Then .G;X/ satisfies SV1 and SV2, and so it
is a Shimura datum provided B splits (i.e., becomes isomorphic to M2.R/) at at least one
real prime of F . It then satisfies SV3 because Gad is simple (as an algebraic group over Q).
Let I D Hom.F;Qa/D Hom.F;R/, and let Inc be the set of v such that B˝F;vR is split.
Then w is defined over the subfield of Qa fixed by the automorphisms of Qa stabilizing Inc.
This field is always totally real, and it equals Q if and only if I D Inc.

Arithmetic subgroups of tori

Let T be a torus over Q, and let T .Z/ be an arithmetic subgroup of T .Q/, for example,

T .Z/D Hom.X�.T /;O�L/
Gal.L=Q/,

where L is some Galois splitting field of T . The congruence subgroup problem is known to
have a positive answer for tori (Serre 1964, 3.5), i.e., every subgroup of T .Z/ of finite index
contains a congruence subgroup. Thus the topology induced on T .Q/ by that on T .Af / has
the following description: T .Z/ is open, and the induced topology on T .Z/ is the profinite
topology. In particular,

T .Q/ is discrete ” T .Z/ is discrete ” T .Z/ is finite.

EXAMPLE 5.25. (a) Let T DGm. Then T .Z/D f˙1g, and so T .Q/ is discrete in T .Af /.
The can be shown directly: the open subgroup .1C4Z2/�

Q
p oddZ�p of A�

f
intersects Q�

in f1g.
(b) Let T .Q/ D fa 2 QŒ

p
�1�� j Nm.a/ D 1g. Then T .Z/ D f˙1;˙

p
�1g, and so

T .Q/ is discrete.
(c) Let T .Q/D fa 2QŒ

p
2�� j Nm.a/D 1g. Then T .Z/D f˙.1C

p
2/n j n 2 Zg, and

so neither T .Z/ nor T .Q/ is discrete.

THEOREM 5.26. Let T be a torus over Q, and let T a D
T
�Ker.�WT !Gm/ (characters

� of T rational over Q). Then T .Q/ is discrete in T .Af / if and only if T a.R/ is compact.

PROOF. According to a theorem of Ono (Serre 1968, pII-39), T .Z/\T a.Q/ is of finite
index in T .Z/, and the quotient T a.R/=T .Z/\T a.Q/ is compact. Now T .Z/\T a.Q/ is an
arithmetic subgroup of T a.Q/, and hence is discrete in T a.R/. It follows that T .Z/\T a.Q/
is finite if and only if T a.R/ is compact. 2

For example, in 5.25(a), T a D 1 and so certainly T a.R/ is compact; in (b), T a.R/DU1,
which is compact; in (c), T a D T and T .R/ D f.a;b/ 2 R�R j ab D 1g, which is not
compact.

REMARK 5.27. A torus T over a field k is said to be anisotropic if there are no characters
�WT !Gm defined over k. A real torus T is anisotropic if and only if T .R/ is compact. The
subtorus T a of T in 5.26 is the largest anisotropic subtorus of T (over Q). Thus 5.26 says
that T .Q/ is discrete in T .Af / if and only if the largest anisotropic subtorus of T remains
anisotropic over R.

In particular, a Shimura datum .G;X/ satisfies SV5 if and only if the largest anisotropic
subtorus of Z.G/ remains anisotropic over R.
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A CM field L admits a nontrivial involution � that becomes complex conjugation under
every embedding of L into C. Let T be a torus over Q that splits over a CM-field L. The
subtorus

TCL
def
D

\
��D��

Ker.�WTL!Gm/

of TL is defined over Q — it is the largest subtorus of T splitting over R. Then TC splits
over the maximal totally real subfield of L, and T .Q/ is discrete in T .Af / if and only if TC

splits over Q.

Passage to the limit.
Let K be a compact open subgroup of G.Af /, and let Z.Q/� be the closure of Z.Q/ in
Z.Af /. Then Z.Q/ �K DZ.Q/� �K (in G.Af /) and

ShK.G;X/
def
DG.Q/nX � .G.Af /=K/

'
G.Q/
Z.Q/

�
X � .G.Af /=Z.Q/ �K/

'
G.Q/
Z.Q/

�
X � .G.Af /=Z.Q/� �K/:

THEOREM 5.28. Let .G;X/ be a Shimura datum. Then

lim
 �
K

ShK.G;X/D
G.Q/
Z.Q/

�
X � .G.Af /=Z.Q/�/:

When SV5 holds,
lim
 �
K

ShK.G;X/D G.Q/nX �G.Af /:

PROOF. The first equality can be proved by the same argument as 4.19,44 and the second
follows from the first. 2

REMARK 5.29. Put SK D ShK.G;X/. For varying K, the SK form a variety (scheme)
with a right action of G.Af / in the sense of Deligne 1979, 2.7.1. This means the following:

(a) the SK form an inverse system of algebraic varieties indexed by the compact open
subgroups K of G.Af / (if K �K 0, there is an obvious quotient map SK0 ! SK);

(b) there is an action � of G.Af / on the system .SK/K defined by isomorphisms (of
algebraic varieties) �K.a/WSK ! Sg�1Kg (on points, �K.a/ is Œx;a0� 7! Œx;a0a�);

(c) for k 2K, �K.k/ is the identity map; therefore, for K 0 normal in K, there is an action
of the finite group K=K 0 on SK0 ; the variety SK is the quotient of SK0 by the action
of K=K 0.

44The proof of Theorem 5.28 in Deligne 1979, 2.1.10, reads in its entirety:

L’action deG.Q/=Z.Q/ surX �
�
G.Af /=Z.Q/�

�
est propre. Ceci permet le passage à la limite

sur K.

Properness implies that the quotient of X �
�
G.Af /=Z.Q/�

�
by G.Q/=Z.Q/ is Hausdorff (Bourbaki 1989, III

4.2), and hence Lemma 4.20 applies. Presumably, the action is proper, but I don’t know a proof that the quotient
is Hausdorff even in the easier case 4.19. The obvious argument doesn’t seem to work.
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REMARK 5.30. When we regard the ShK.G;X/ as schemes, the inverse limit of the system
ShK.G;X/ exists:

S D lim
 �

ShK.G;X/.

This is a scheme over C, not(!) of finite type, but it is locally noetherian and regular (cf.
Milne 1992, 2.4). There is a right action of G.Af / on S , and, for K a compact open
subgroup of G.Af /,

ShK.G;X/D S=K (quotient of S by the action of K/

(Deligne 1979, 2.7.1). Thus, the system .ShK.G;X//K together with its right action of
G.Af / can be recovered from S with its right action of G.Af /. Moreover,

S.C/' lim
 �

ShK.G;X/.C/D lim
 �

G.Q/nX �G.Af /=K:

ASIDE. Does every arithmetic locally symmetric algebraic variety arise as a connected component of
a Shimura variety? The answer is yes. More precisely, there is the following result (Milne 2013, 8.6):
For every semisimple algebraic group H over Q and homomorphism NhWS=Gm!H ad

R satisfying
(SV1,2,3), there exists a reductive group G over Q with Gder DH and a homomorphism hWS!GR
lifting Nh and satisfying (SV1,2,2*,3,4,5,6).

ASIDE. Roughly speaking, there are two ways of describing reductive groups: concretely in terms
algebras with involution and sesquilinear forms or more abstractly in terms of root data. Shimura
always uses the first.45 When Deligne was asked to report on Shimura’s work in 1971, he did so
in terms of abstract reductive groups, and he used root systems. For Shimura, the central object of
study is the quotient � nX of a hermitian domain by a congruence subgroup of a semisimple group
G over Q. In order to define a canonical model of � nX over a number field, he needed to choose a
reductive group with derived group G, but for him the reductive group was auxiliary. For Deligne,
the reductive group is the starting point. His insight, that to define a Shimura variety, one needs
only a reductive group G over Q and a homomorphism hWS!GR satisfying certain axioms came
as revelation to others trying to understand Shimura’s work. For example, it helped Langlands in
his effort to understand the zeta functions of Shimura varieties. In Shimura’s description, the variety
comes with much baggage, and it was not easy to discern what is essential.

NOTES. Here is a dictionary.46

This work: SV1 SV2 SV3 SV4 SV2*
Deligne 1979: 2.1.1.1 2.1.1.2 2.1.1.3 2.1.1.4 2.1.1.5.

My axiom SV5 is weaker than (2.1.1.5) = SV2� but is exactly what is needed for most applications.
Axiom SV6 is the weakest that keeps us in the realm of CM fields and their subfields.

45As far as I know, neither Shimura nor Weil ever use root systems. Langlands’s familiarity with root systems
and root data may have been one reason he was able to see so much further than everyone else in the 1960s and
1970s.

46As noted earlier, Deligne often writes 2.1.x when he means 2.1.1.x.
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6 The Siegel modular variety
In this section, we study the most basic Shimura variety, namely, the Siegel modular variety.

Dictionary
Let V be an R-vector space. Recall (2.4) that to give a C-structure J on V is the same as
giving a Hodge structure hJ on V of type .�1;0/; .0;�1/. Here hJ is the restriction to C�
of the homomorphism

aCbi 7! aCbJ WC! EndR.V /.

For the Hodge decomposition V.C/D V �1;0˚V 0;�1,

V �1;0 V 0;�1

J acts as Ci �i

hJ .z/ acts as z Nz

Let  be a nondegenerate R-bilinear alternating form on V . A direct calculation shows
that

 .Ju;J v/D  .u;v/ ”  .zu;zv/D jzj2 .u;v/ for all z 2 C. (36)

Let  J .u;v/D  .u;J v/. Then

 .Ju;J v/D  .u;v/ ”  J is symmetric

and
 .Ju;J v/D  .u;v/ and
 J is positive-definite

2.12
”

 is a polarization of the
Hodge structure .V;hJ /.

Symplectic spaces
Let k be a field of characteristic¤ 2, and let .V; / be a symplectic space of dimension 2n
over k, i.e., V is a k-vector space of dimension 2n and  is a nondegenerate alternating
form  . A subspace W of V is totally isotropic if  .W;W /D 0. A symplectic basis of V
is a basis .e˙i /1�i�n such that

 .ei ; e�i /D 1 for 1� i � n,

 .ei ; ej /D 0 for j ¤˙i .

This means that the matrix of  with respect to .e˙i / has ˙1 down the second diagonal,
and zeros elsewhere:

�
 .e˙i ; e˙j /

�
1�i;j�g

D

�
0 �I 0g
I 0g 0

�
; I 0g D

0@0 1
. . .

1 0

1A :
LEMMA 6.1. Let W be a totally isotropic subspace of V . Then every basis of W can
be extended to a symplectic basis for V . In particular, V has symplectic bases (and two
symplectic spaces of the same dimension are isomorphic).
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PROOF. Certainly, the second statement is true when nD 1. We assume it inductively for
spaces of dimension � 2n� 2. Let W be totally isotropic, and let W 0 be a subspace of
V such that V D W ?˚W 0. Then W _ ' V=W ? ' W 0 identifies W 0 with the dual of
W . Let e1; : : : ; em be a basis for W , and let e�1; : : : ; e�m be the dual basis in W 0. Then
.e˙i /1�i�m is a symplectic basis for W ˚W 0. By induction .W ˚W 0/? has a symplectic
basis .e˙i /mC1�i�n, and then .e˙i /1�i�n is a symplectic basis for V . 2

Thus, every maximal totally isotropic subspace of V has dimension n: Such subspaces
are called lagrangians.

Let .V; / be a nonzero symplectic space, and let GSp. / be the group of symplectic
similitudes of .V; /, i.e., the group of automorphisms of V preserving  up to a scalar.
Thus

GSp. /.k/D fg 2 GL.V / j  .gu;gv/D �.g/ � .u;v/ some �.g/ 2 k�g:

There is a homomorphism �WGSp. /! Gm sending g to �.g/. The kernel of � is the
symplectic group Sp. /, which is the derived group of GSp. /. We have a diagram

Sp. /

Gm GSp. / GSp. /ad

Gm

ad

�

in which the column and row are short exact sequences, and the diagonal maps are isogenies
with kernel the centre Gm\Sp. /D �2 of Sp. /.

For example, when V has dimension 2, there is only one nondegenerate alternating form
on V up to scalars, which must therefore be preserved up to scalars by every automorphism
of V , and so GSp. /D GL2 and Sp. /D SL2.

The group Sp. / acts simply transitively on the set of symplectic bases: if .e˙i / and
.f˙i / are bases of V , then there is a unique g 2 GL2n.k/ such that ge˙i D f˙i , and if
.e˙i / and .f˙i / are both symplectic, then g 2 Sp. /.

The Shimura datum attached to a symplectic space
Fix a symplectic space .V; / over Q, and let G D G. / D GSp. / and S D S. / D
Sp. /DGder.

Let J be a complex structure on V.R/ such that  .Ju;J v/D  .u;v/. Then J 2 S.R/.
For all z 2 C�, hJ .z/ lies G.R/ by (36); and it lies in S.R/ if jzj D 1. We say that J is
positive (resp. negative) if  J .u;v/

def
D  .u;J v/ is positive-definite (resp. negative-definite).

Let XC (resp. X�) denote the set of positive (resp. negative) complex structures on
V.R/ such that  .Ju;J v/D  .u;v/ for all u;v 2 V , and let X DXCtX�. Then G.R/
acts on X according to the rule

.g;J / 7! gJg�1;

and the stabilizer in G.R/ of XC is

G.R/C D fg 2G.R/ j �.g/ > 0g.
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For a symplectic basis .e˙i / of V , define J by Je˙i D˙e�i , i.e.,

ei
J
7�! e�i

J
7�! �ei ; 1� i � n.

Then J 2 D �1 and J 2 XC — in fact, .ei /i is an orthonormal basis for  J . Conversely,
if J 2 XC, then J has this description relative to any orthonormal basis for the positive-
definite form  J . The map from symplectic bases to XC is equivariant for the actions of
S.R/. Therefore, S.R/ acts transitively on XC, and G.R/ acts transitively on X because
the element gWe˙i 7! e�i of G.R/ has �.g/D�1 and it interchanges XC and X�.

For J 2X , let hJ be the corresponding homomorphism C�!G.R/. Then

hgJg�1.z/D ghJ .z/g
�1:

Thus the map J 7! hJ identifies X with a G.R/-conjugacy class of homomorphisms
hWC�!G.R/. We often denote X by X. / and XC by X. /C.

EXERCISE 6.2. (a) Show that for any h2X. /, �.h.z//D z Nz. [Hint: for nonzero vC 2V C

and v� 2 V �, compute  C.h.z/v
C;h.z/v�/ in two different ways.]

(b) Let dimV D 2g. Show that the choice of a symplectic basis for V identifies XC

with Hg as an Sp. /-set (see 1.2).

THE PAIR .G. /;X. // SATISFIES THE AXIOMS SV1–SV6.

We let GL.V / act on Hom.V;V / according to the rule

. f̨ /.v/D ˛.f .˛�1v//; ˛ 2 GL.V /; f 2 Hom.V;V /; v 2 V:

SV1: For h 2 X , let V C D V �1;0 and V � D V 0;�1, so that V.C/D V C˚V � with
h.z/ acting on V C and V � as multiplication by z and Nz respectively. Then

End.V .C// D Hom.V C;V C/˚ Hom.V C;V �/˚ Hom.V �;V C/˚ Hom.V �;V �/
h.z/ acts as 1 Nz=z z=Nz 1

The Lie algebra of G is the subspace

ff 2 Hom.V;V / j  .f .u/;v/C .u;f .v//D 0g;

of End.V /, and so SV1 holds.

SV2: We have to show that adJ is a Cartan involution on Gad. But, J 2 D�1 lies in the
centre of S.R/ and  is a J -polarization for SR in the sense of (1.20), which shows that
adJ is a Cartan involution for S .

SV3: The symplectic group is simple over every algebraically closed field, because its
root system is indecomposable. Therefore, Gad is Q-simple. As Gad.R/ is not compact, we
see that SV3 holds.

SV4: For r 2R�, wh.r/ acts on both V �1;0 and V 0;�1 as v 7! rv. Therefore, wX is the
homomorphism GmR! GL.V .R// sending r 2 R� to multplication by r . This is defined
over Q.

SV5: The centre of G is Gm, and Q� is discrete in A�
f

(see 5.25).

SV6: The centre of G is split already over Q.
This is the Siegel Shimura datum.



70 6 THE SIEGEL MODULAR VARIETY

The Siegel modular variety
Let .G;X/D .G. /;X. // be the Shimura datum defined by a symplectic space .V; /
over Q. The Siegel modular variety attached to .V; / is the Shimura variety Sh.G;X/.

Let V.Af / D V ˝QAf . Then G.Af / is the group of Af -linear automorphisms of
V.Af / preserving  up to multiplication by an element of A�

f
.

Let K be a compact open subgroup of G.Af /, and let HK denote the set of triples
..W;h/;s;�K/, where

˘ .W;h/ is a rational Hodge structure of type .�1;0/; .0;�1/;

˘ s or �s is a polarization for .W;h/;

˘ �K is a K-orbit of Af -linear isomorphisms V.Af /!W.Af / under which  corre-
sponds to an A�

f
-multiple of s.47

An isomorphism
..W;h/;s;�K/! ..W 0;h0/; s0;�0K/

of triples is an isomorphism bW.W;h/! .W 0;h0/ of rational Hodge structures sending48 s

to cs0 for some c 2Q� and such that b ı�D �0 modK.
Note that to give an element of HK amounts to giving a symplectic space .W;s/ over

Q, a complex structure on W that is positive or negative for s, and �K. The existence
of � implies that dimW D dimV , and so .W;s/ and .V; / are isomorphic. Choose an
isomorphism aWW ! V under which  corresponds to a Q�-multiple of s. Then

ah
def
D .z 7! a ıh.z/ıa�1/

lies in X , and
V.Af /

�
!W.Af /

a
! V.Af /

lies in G.Af /. Any other isomorphism a0WW ! V sending  to a multiple of s differs
from a by an element of G.Q/, say, a0 D q ıa with q 2 G.Q/. Replacing a with a0 only
replaces .ah;a ı�/ with .qah;qa ı�/. Similarly, replacing � with �k replaces .ah;a ı�/
with .ah;a ı�k/. Therefore, the map

.W : : :/ 7! Œah;a ı��K WHK !G.Q/nX �G.Af /=K

is well-defined.

PROPOSITION 6.3. The set ShK.C/ classifies the elements of HK modulo isomorphism.
More precisely, the map .W; : : :/ 7! Œah;a ı��K defines a bijection

HK=�!G.Q/nX �G.Af /=K:

PROOF. We first check that the the map sends isomorphic triples to the same class. Suppose
that bW.W;h/! .W 0;h0/ is an isomorphism sending s to a Q�-multiple of t 0 and that
b ı � D �0 ık for some k 2 K. Choose an isomorphism a0WW 0! V sending s0 to a Q�-
multiple of  , and let aD a0 ıb. Then .ah;a ı�/D .a0h;a0 ı�0 ık/.

47The notation �K is unfortunate since it suggests a K-orbit with a distinguished element. We mean only a
K-orbit of isomorphisms.

48An isomorphism bWW ! W 0 of vector spaces over Q defines an isomorphism b0WHom.W ˝W;Q/!
Hom.W 0˝W 0;Q/. When b0.s/D s0 we say that b sends s to s0.



Complex abelian varieties 71

We next check that two triples are isomorphic if they map to the same class. Let .W : : :/

and .W 0 : : :/ map to the same class. Choose isomorphisms aWV ! W and a0WV ! W 0

sending  to multiples of s and s0. We are given that .ah;a ı �/ D .qa0h;q ı a0 ı � ı k/
for some q and k. After replacing a0 with q ı a0, we may suppose that .ah;a ı �/ D
.a0h;a0 ı�ık/. Then b D a0 ıa�1 is an isomorphism ..W;h/; : : :/! ..W 0;h0/; : : :/.

Finally, the map is onto because Œh;g� is the image of ..V;h/; ;gK/. 2

Complex abelian varieties
An abelian varietyA over a field k is a connected projective algebraic variety over k together
with a group structure given by regular maps. A one-dimensional abelian variety is an elliptic
curve. Happily, a theorem, whose origins go back to Riemann, reduces the study of abelian
varieties over C to multilinear algebra.

Recall that a lattice in a real or complex vector space V is the Z-module generated by an
R-basis for V . For a lattice � in Cn, make Cn=� into a complex manifold by endowing it
with the quotient structure.49 A complex torus is a complex manifold isomorphic to Cn=�
for some lattice � in Cn.

Note that Cn is the universal covering space of M D Cn=� with � as its group of
covering transformations, and so �1.M;0/ D � (Hatcher 2002, 1.40). Therefore, (ibid.
2A.1)

H1.M;Z/'� (37)

and (Greenberg 1967, 23.14)

H 1.M;Z/' Hom.�;Z/: (38)

PROPOSITION 6.4. Let M D Cn=�. There is a canonical isomorphism

Hn.M;Z/' Hom.
Vn

�;Z/;

i.e., Hn.M;Z/ is canonically isomorphic to the set of n-alternating forms �� � � ���! Z.

PROOF. For a free Z-module � of finite rank, the pairing

.f1^� � �^fn;v1˝�� �˝vn/ 7! det.fi .vj // W
Vn

�_�
Vn

�! Z

is nondegenerate (since it is modulo p for every p — see Bourbaki 1958, �8), and so

Hom.
Vn

�;Z/'
VnHom.�;Z/.

From (38) we see that it suffices to show that cup-product defines an isomorphismVn
H 1.M;Z/!Hn.M;Z/. (39)

Let T be the class of topological manifolds M such that H 1.M;Z/ is a free Z-module of
finite rank and the maps (39) are isomorphisms for all n. Certainly, the circle S1 is in T (its
cohomology groups are Z, Z, 0; : : :/, and the Künneth formula (Hatcher 2002, 3.16 et seq.)
shows that if M1 and M2 are in T , then so also is M1�M2. As a topological manifold,
Cn=�� .S1/2n, and so M is in T . 2

49Let � WCn! Cn=� be the quotient map. A subset U of Cn=� is open if and only if ��1.U / is open and a
function f on an open subset U of Cn=� is holomorphic if and only if f ı� is holomorphic on ��1.U /.
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PROPOSITION 6.5. A linear map ˛WCn! Cn0 such that ˛.�/��0 defines a holomorphic
map Cn=�!Cn0=�0 sending 0 to 0, and every holomorphic map Cn=�!Cn0=�0 sending
0 to 0 is of this form (for a unique ˛).

PROOF. The map Cn
˛
! Cn0 ! Cn0=�0 is holomorphic, and it factors through Cn=�.

Because C=� has the quotient structure, the resulting map Cn=�!Cn0=�0 is holomorphic.
Conversely, let 'WC=�! C=�0 be a holomorphic map such that '.0/D 0. Then Cn and
Cn0 are universal covering spaces of Cn=� and Cn0=�0, and a standard result in topology
(Hatcher 2002, 1.33, 1.34) shows that ' lifts uniquely to a continuous map Q'WCn! Cn0

such that Q'.0/D 0:

Cn Cn0

Cn=� Cn0=�0:

Q'

'

Because the vertical arrows are local isomorphisms, Q' is automatically holomorphic. For any
! 2�, the map z 7! Q'.zC!/� Q'.z/ is continuous and takes values in �0 � C. Because
Cn is connected and �0 is discrete, it must be constant. Therefore, for each j , @ Q'

@zj
is a

periodic function with respect to �, and so defines a holomorphic function Cn=�! Cn0 ,
which must be constant (because Cn=� is compact). Write Q' as an n0-tuple . Q'1; : : : ; Q'n0/ of
holomorphic functions Q'i in n variables. Because Q'i .0/D 0 and @ Q'i

@zj
is constant for each

j , the power series expansion of Q'i at 0 is of the form
P
aij zj . Now Q'i and

P
aij zj are

holomorphic functions on Cn that coincide on a neighbourhood of 0, and so are equal on the
whole of Cn. We have shown that

Q'.z1; : : : ; zn/D
�P

a1j zj ; : : : ;
P
an0j zj

�
: 2

ASIDE 6.6. The proposition shows that every holomorphic map 'WCn=�! Cn0=�0 such
that '.0/D 0 is a homomorphism. A similar statement is true for abelian varieties over a field
k: a regular map 'WA!B of abelian varieties such that '.0/D 0 is a homomorphism (Milne
1986, 3.6). For example, the map sending an element to its inverse is a homomorphism,
which implies that the group law on A is commutative. Also, the group law on an abelian
variety is uniquely determined by the zero element.

Let M D Cn=� be a complex torus. The isomorphism R˝�' Cn defines a complex
structure J on R˝�. A Riemann form for M is an alternating form  W���! Z such
that the following “period relations” hold:�

 R.Ju;J v/D  R.u;v/ for all u;v 2 V , and
 R.u;Ju/ > 0 for all u¤ 0:

(40)

A complex torus Cn=� is said to be polarizable if there exists a Riemann form.

THEOREM 6.7. The complex torus Cn=� is projective if and only if it is polarizable.

PROOF. See Mumford 1970, Chapter I. Alternatively, one can apply the Kodaira embedding
theorem (Voisin 2002, Théorème 7.11 and Section 7.2.2). 2
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Thus, by Chow’s theorem (3.11), a polarizable complex torus is a projective algebraic
variety, and holomorphic maps of polarizable complex tori are regular. Conversely, it is
easy to see that the complex manifold associated with an abelian variety is a complex torus:
let Tgt0.A/ be the tangent space to A at 0; then the exponential map Tgt0.A/! A.C/
is a surjective homomorphism of Lie groups with kernel a lattice �, which induces an
isomorphism Tgt0.A/=�' A.C/ of complex manifolds (Mumford 1970, p. 2).

Let M D Cn=� be a complex torus. The complex structure on �˝ZR defined by the
isomorphism �˝ZR ' Cn endows � ' H1.M;Z/ with an integral Hodge structure of
weight �1 (see p. 67). Note that a Riemann form for M is nothing but a polarization of the
integral Hodge structure �.

THEOREM 6.8 (RIEMANN’S THEOREM). 50The functor A H1.A;Z/ is an equivalence
from the category AV of abelian varieties over C to the category of polarizable integral
Hodge structures of type .�1;0/; .0;�1/.

PROOF. We have functors

AV
A Aan

�����! fcategory of polarizable complex torig
M H1.M;Z/
����������! fcategory of polarizable integral Hodge structures of type .�1;0/; .0;�1/g:

The first is fully faithful by Chow’s theorem (3.11), and it is essentially surjective by Theorem
6.7; the second is fully faithful by Proposition 6.5, and it is obviously essentially surjective.2

Let AV0 be the category whose objects are abelian varieties over C and whose morphisms
are

HomAV0.A;B/D HomAV.A;B/˝Q:

COROLLARY 6.9. The functor A H1.A;Q/ is an equivalence from the category AV0 to
the category of polarizable rational Hodge structures of type .�1;0/; .0;�1/.

PROOF. Immediate consequence of the theorem. 2

REMARK 6.10. Recall that in the dictionary between complex structures J on a real vector
space V and Hodge structures of type .�1;0/; .0;�1/,

.V;J /' V.C/=V 0;�1 D V.C/=F 0:

Since the Hodge structure onH1.A;R/ is defined by the isomorphism Tgt0.A/'H1.A;R/,
we see that

Tgt0.A/'H1.A;C/=F 0 (41)

(isomorphism of complex vector spaces).

50In fact, it should be called the “theorem of Riemann, Frobenius, Weierstrass, Poincaré, Lefschetz, et al.”
(see Shafarevich 1994, Historical Sketch, 5), but “Riemann’s theorem” is shorter.
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A modular description of the points of the Siegel variety
Let A be an abelian variety over C. We make the following definitions:

Tf .A/
def
DH1.A;Z/˝Z OZ' lim

 �
n

H1.A;Z/=nH1.A;Z/

Vf .A/
def
DH1.A;Q/˝QAf ' Tf .A/˝ZQ:

Thus Tf .A/ is a free OZ-module of rank 2dimA. Let A.C/n D Ker.nWA.C/! A.C//. If
A.C/D Cg=�, then H1.A;Z/'� and

A.C/n ' n�1�=�'�=n�:

Therefore,
Tf .A/' lim

 �
n

A.C/n.

More generally, for an abelian variety A over a field k of characteristic zero, we define

Tf .A/D lim
 �
n

A.ka/n

Vf .A/D Tf .A/˝ZQ:

Let .V; / be a symplectic space over Q. Let MK denote the set of triples .A;s;�K/,
where

˘ A is an abelian variety over C,

˘ s is an alternating form on H1.A;Q/ such that s or �s is a polarization on H1.A;Q/,
and

˘ � is an isomorphism V.Af /! Vf .A/ under which  corresponds to a multiple of s
by an element of A�

f
.

An isomorphism from one triple .A;s;�K/ to a second .A0; s0;�0K/ is an isomorphism
A! A0 (as objects in AV0) sending s to a multiple of s0 by an element of Q� and �K to
�0K.

THEOREM 6.11. The set ShK.C/ classifies the elements .A;s;�K/ of MK modulo iso-
morphism, i.e., there is a canonical bijection MK=�!G.Q/nX �G.Af /=K:

PROOF. Combine Corollary 6.9 with Proposition 6.3. 2

ASIDE. As befits a Summer School on the Langlands program, my lectures were relentlessly adèlic.
In the this aside, we restate Theorem 6.11 in more down-to-earth terms.

Let .G;X/ be a Shimura datum, and let K be a compact open subgroup of G.Af /. When Gder

is simply connected, we have the fundamental diagram (35),

ShK.G;X/.C/DG.Q/nX �G.Af /=K � nXC

Sh�.K/.T;Y /.C/DT .Q/�nT .Af /=�.K/ Œ1�:

(42)

If the centre of Gder satisfies the Hasse principle for H 1, then � DK\Gder.Q/ (5.23).
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Let .G;X/ be the Shimura datum attached to a symplectic space .V; / over Q, and let S D
Gder D Sp. /. We suppose that there exists a Z-lattice V.Z/ in V such that  restricts to a pairing
V.Z/�V.Z/! Z with discriminant˙1. For N � 3, let

K.N/D fg 2G.Af / j g preserves V. OZ/ and acts as 1 on V. OZ/=NV. OZ/g:

Let S.Z/ be the set of g in S.Q/ such that gV.Z/D V.Z/. Then K.N/\S.Q/ is

� .N/D fg 2 S.Z/ j g acts 1 on V.Z/=NV.Z/g:

Let us write V.Z=NZ/ for
V.Z/=NV.Z/D V. OZ/=NV. OZ/.

It is a free Z=NZ-module of rank dim.V / with a perfect pairing  N . As in the case dimV D 2 (see
p. 63), �0.ShK.N/.G;X//' .Z=NZ/�, and so the diagram (42) becomes

ShK.N/.C/ � .N /nXC

.Z=NZ/� Œ1�:

(43)

Let .A;�/ be an abelian variety of dimension 1
2

dim.V / over C with a principal polarization �.
From � we get a perfect alternating pairing

e�N WA.C/N �A.C/N ! �N

(see, e.g., Milne 1986, �16). We fix a choice of i D
p
�1 in C. This gives us an isomorphism

Œn� 7! e2�in=N WZ=NZ! �N ;

and so e�N becomes a pairing to Z=NZ. By a level-N structure on A, we mean an isomorphism

�WV.Z=NZ/! A.C/N

under which  N corresponds to a .Z=NZ/� multiple of e�N . The set ShK.C/ classifies the isomor-
phism classes of pairs ..A;�/;�N / consisting of a principally polarized abelian variety and a level
N -structure. The map to .Z=NZ/� is the obvious one, and the fibre over Œ1� consists of the pairs
..A;�/;�N / such that, under �N , the pairings  N and e�N correspond exactly.

ASIDE. Traditionally, in studying Shimura varieties, we take K to be “sufficiently small”. But then
the varieties we get are of logarithmic general type (see the proof of 3.21), and hence less interesting
to algebraic geometers. As in the above aside, take V.Z/ be a lattice on which  gives a perfect
pairing, and let � .1/D fg 2Gder.Q/ j gV.Z/D V.Z/g. Let nD dim.V /=2. Then An

def
D � .1/nXC

is the Siegel modular variety of degree n. It is the coarse moduli variety of principally polarized
abelian varieties of dimension n. The algebraic geometers have shown that An is unirational for
n� 5 and of general type for n� 7 (the case nD 6 remains open).
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7 Shimura varieties of Hodge type
In this section, we study an important generalization of Siegel modular varieties.

DEFINITION 7.1. A Shimura datum .G;X/ is of Hodge type51 if there exists a symplectic
space .V; / over Q and an injective homomorphism �WG ,!G. / carrying X into X. /.
The Shimura variety Sh.G;X/ is then said to be of Hodge type. Here .G. /;X. // denotes
the Shimura datum defined by .V; /.

The composite of � with the character � of G. / is a character of G, which we again
denote by �. Let Q.r/ denote the vector space Q with G acting by r�, i.e., g �x D �.g/r �x
for g 2G.Q/ and x 2Q.r/. For each h 2X , .Q.r/;� ıh/ is a rational Hodge structure of
type .�r;�r/ (apply 6.2a), and so this notation is consistent with that in (2.6).

LEMMA 7.2. There exist multilinear maps ti WV � � � ��V !Q.ri /, 1� i � n, such that G
is the subgroup of G. / fixing the ti .

PROOF. Apply Chevalley’s theorem, as in the proof of Proposition 2.1, to find tensors ti
in V ˝ri ˝V _˝si such that G is the subgroup of G. / fixing the ti . But  defines an
isomorphism V ' V _˝Q.1/, and so

V ˝ri ˝V _˝si ' V _˝.riCsi /˝Q.ri /' Hom.V ˝.riCsi /;Q.ri //: 2

Let .G;X/ be of Hodge type. Choose an embedding of .G;X/ into .G. /;X. // for
some symplectic space .V; / and multilinear maps t1; : : : ; tn as in the lemma. Let HK

denote the set of triples ..W;h/; .si /0�i�n;�K/, where

˘ .W;h/ is a rational Hodge structure of type .�1;0/; .0;�1/,

˘ s0 or �s0 is a polarization for .W;h/,

˘ s1; : : : ; sn are multilinear maps si WW � � � ��W !Q.ri /, and

˘ �K is a K-orbit of isomorphisms V.Af /!W.Af / under which  corresponds to
an A�

f
-multiple of s0 and ti corresponds to si for i D 1; : : : ;n,

satisfying the following condition:

(*) there exists an isomorphism aWW ! V under which s0 corresponds to a
Q�-multiple of  , si corresponds to ti for i D 1; : : : ;n, and h corresponds to an
element of X:

An isomorphism from one triple .W; : : :/ to a second .W 0; : : :/ is an isomorphism .W;h/!

.W 0;h0/ of rational Hodge structures sending s0 to a Q�-multiple of s00, the tensor si to s0i
for every i , and �K to �0K.

PROPOSITION 7.3. The set ShK.C/ classifies the elements of HK modulo isomorphism.

PROOF. Let ..W;h/; .si /;�K/ 2 HK . Choose an isomorphism aWW ! V as in (*), and
consider the pair .ah;a ı�/, where .ah/.z/D a ıh.z/ıa�1. By assumption ah 2 X and
a ı� is a symplectic similitude of .V .Af /; / fixing the ti , and so .ah;a ı�/ 2X �G.Af /.
The isomorphism a is determined by its action on s0; : : : ; sn up to composition with an

51As far as I know, the term was introduced in Milne 1990, II, �3.
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element of G.Q/ and � is determined up to composition with an element of K. It follows
that the class of .ah;a ı�/ in G.Q/nX �G.Af /=K is well-defined. The proof that the map
.W; : : :/ 7! Œah;a ı��K gives a bijection from the set of isomorphism classes of elements of
HK onto ShK.G;X/.C/ is straightforward (as for 6.3). 2

Let t WV � � � ��V !Q.r/ (m-copies of V ) be a multilinear map fixed by G, i.e., such
that

t .gv1; : : : ;gvm/D �.g/
r
� t .v 1; : : : ;vm/, for all v1; : : : ;vm 2 V , g 2G.Q/:

For h 2X , this equation shows that t defines a morphism of Hodge structures .V;h/˝m!
Q.r/. On comparing weights, we see that if t is nonzero, then mD 2r .

Now let A be an abelian variety over C, and let W DH1.A;Q/. Then (see 6.4)

Hm.A;Q/' Hom.
Vm

W;Q/:

We say that t 2H 2r.A;Q/ is a Hodge tensor for A if the corresponding map

W ˝2r !
V2r

W !Q.r/

is a morphism of Hodge structures.
Let .G;X/ ,! .G. /;X. // and t1; : : : ; tn be as above. Let MK be the set of triples

.A;.si /0�i�n;�K/ in which

˘ A is a complex abelian variety,

˘ s0 or �s0 is a polarization for the rational Hodge structure H1.A;Q/,
˘ s1; : : : ; sn are Hodge tensors for A or its powers, and

˘ �K is a K-orbit of Af -linear isomorphisms V.Af /! Vf .A/ sending  onto an
A�
f

-multiple of s0 and each ti to si ,

satisfying the following condition:

(**) there exists an isomorphism aWH1.A;Q/! V sending s0 to a Q�-multiple
of  , si to ti each i � 1, and h to an element of X .

An isomorphism from one triple .A;.si /i ;�K/ to a second .A0; .s0i /i ;�
0K/ is an isomor-

phism A! A0 (as objects of AV0) sending s0 to a multiple of s00 by an element of Q�, each
si to s0i , and � to �0 modulo K.

THEOREM 7.4. The set ShK.C/ classifies the elements of MK modulo isomorphism.

PROOF. Combine Propositions 7.3 and 6.9. 2

The problem with Theorem 7.4 is that it is difficult to check whether a triple satisfies the
condition (**). In the next section, we show that when the Hodge tensors are endomorphisms
of the abelian variety, it is sometimes possible to replace (**) by a simpler trace condition.

REMARK 7.5. If we let A.C/D Cg=�, then (see 6.4),

Hm.A;Q/' Hom.
Vm

�;Q/

Now �˝C' T ˚ NT , where T D Tgt0.A/. Therefore,

Hm.A;C/' Hom.
Vm

.�˝C/;C/' Hom.
L

pCqDm

Vp
T ˝

Vq NT ;C/'
L

pCqDm

Hp;q;
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where
Hp;q

D Hom.
Vp

T ˝
Vq NT ;C/:

This rather ad hoc construction of the Hodge structure on Hm does agree with the usual
construction (2.5) — see Mumford 1970, Chapter I. A Hodge tensor on A is an element of

H 2r.A;Q/\H r;r (intersection inside H 2r.A;C/).

The cohomology class of every algebraic cycle on A is a Hodge class, and the Hodge
conjecture predicts space of Hodge tensors is the Q-span of the set of algebraic classes. For
r D 1, this is easy to prove. The exponential sequence

0 �! Z �!OA
z 7!exp.2�iz/
���������!O�A �! 0

gives a cohomology sequence

H 1.A;O�A/!H 2.A;Z/!H 2.A;OA/: (44)

The cohomology group H 1.A;O�A/ classifies the divisors on A modulo linear equivalence,
i.e., H 1.A;O�A/' Pic.A/, and the first arrow maps a divisor to its cohomology class. A
class in H 2.A;Z/ maps to zero in H 2.A;OA/DH 0;2 if and only if it maps to zero in its
complex conjugate H 2;0. Therefore, we see that

Im.Pic.A//DH 2.A;Z/\H 1;1:

Thus, the Hodge conjecture holds for r D 1 even for integral cohomology groups. This
case of the conjecture was orginally proved by Lefschetz, and the result is often called the
Lefschetz .1;1/-theorem.

From (44) we get an injective homomorphism

NS.A/!H 2.A;Z/' Hom.
V2

H1.A;Z/;Z/;

where NS.A/ is the Nèron-Severi group of A. By a polarization of A we mean an element
of NS.A/ mapping to a polarization of H1.A;Z/.
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8 PEL Shimura varieties
In this section, we construct the Shimura varieties classifying polarized abelian varieties with
an action of the ring of integers in a fixed semisimple Q-algebra B and a level structure. The
construction is complicated by the fact that the algebraic group defining the Shimura variety
is attached, not to B , but to the centralizer of B in some endomorphism algebra. Throughout
this section, k is a field of characteristic zero, and bilinear forms are always nondegenerate.

Algebras with involution
By a k-algebra in this section, we mean a ring containing k in its centre and of finite
dimension as a k-vector space.

A k-algebra A is simple if 0 and A are its only two-sided ideals. Every matrix algebra
Mn.D/, n� 1, over a division k-algebra D is simple, and a theorem of Wedderburn says
that all simple k-algebras are of this form (CFT, IV 1.15). When k is algebraically closed,
the only division k-algebra is k itself, and so the only simple k-algebras are the matrix
algebras. A simple k-algebra B has only one simple module M up to isomorphism, and
every B-module is isomorphic to a direct sum of copies of M (CFT, IV 1.18). For example,
Dn is the only simple Mn.D/-module up to isomorphism.

A k-algebra B is semisimple if every B-module is semisimple, i.e., a direct sum of
simple modules. For example, a simple k-algebra is semisimple. A semisimple k-algebra B
has only finitely many minimal two-sided ideals, B1; : : : ;Br , each Bi is a simple k-algebra,
and B ' B1� � � ��Bm. A simple Bi -module Mi becomes a simple B-module when we let
B act through the quotient map B! Bi . These are the only simple B-modules. The trace
map of a B-module M is the k-linear map

b 7! Trk.bjM/WB! k.

PROPOSITION 8.1. Let B be a semisimple k-algebra. Two B-modules are isomorphic if
and only if they have the same trace map.

PROOF. Let B1; : : : ;Bm be the simple factors of B , and let Mi be a simple Bi -module.
Then every B-module is isomorphic to a direct sum

L
j rjMj with rjMj the direct sum of

rj copies of Mj . We have to show that the trace map determines the multiplicities rj . But
for ei D .0

1
; : : : ;0;1

i
;0; : : :/,

Trk
�
ei

ˇ̌̌P
j rjMj

�
D ri dimkMi :

2

REMARK 8.2. When k has characteristic p ¤ 0, the proposition fails because the trace map
of pM is zero.

An involution of a k-algebra B is a k-linear bijection b 7! b�WB!B such that .ab/�D
b�a� and b�� D b for all a;b 2 B . Note that 1� is then an identity element and so 1� D 1;
it follows that c� D c for all c 2 k. An involution of B maps the centre of B into itself.
When it fixes the elements of the centre, it is said to be of the first kind; otherwise it is of the
second kind.
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PROPOSITION 8.3. Let .B;�/ be a semisimple k-algebra with involution. If the field k is
algebraically closed, then .B;�/ is isomorphic to a product of pairs of the following types:

(A) Mn.k/�Mn.k/; .a;b/� D .bt ;at /;

(C) Mn.k/; b� D bt (orthogonal type);

(BD) Mn.k/; b� D J �bt �J�1; J D
�
0 �I
I 0

�
(symplectic type).

PROOF. In every decomposition B DB1�� � ��Br of B into a product of simple k-algebras,
the Bi are the minimal two-sided ideals of B , and so the set fB1; : : : ;Brg is uniquely deter-
mined by B . On applying �, we get a decomposition B D B�1 �� � ��B

�
r with .B�1 ; : : : ;B

�
r /

a permutation of .B1; : : : ;Br/. It follows that B is a product of semisimple k-algebras with
involution, each of which is either (a) simple or (b) the product of two simple algebras
interchanged by �.

Let .B;�/ be as in (a). As k is algebraically closed, B is isomorphic to Mn.k/ for
some n, and the theorem of Skolem and Noether 52 says that b� D u � bt �u�1 for some
u 2 Mn.k/. Then b D b�� D .utu�1/�1b.utu�1/ for all b 2 B , and so utu�1 lies in
the centre k of Mn.k/. Denote it by c, so that ut D cu. Then u D ut t D c2u, and so
c2 D 1. Therefore, ut D ˙u, and u is either symmetric or skew-symmetric. Replacing
the isomorphism B !Mn.k/ with its composite with x 7! gxg�1 for some g 2 GLn.k/
changes u to gugt , and so we may suppose that u is the identity matrix I or the matrix J .
Hence .B;�/ is of type (C) or (BD).

Let .B;�/ be as in (b), say B DB1�B2. Then � is an isomorphism of the opposite Bopp
1

of B1 onto B2. Because k is algebraically closed, it follows that .B;�/ is isomorphic to
Mn.k/�Mn.k/

opp with the involution .a;b/ 7! .b;a/. Now use that a$ at WMn.k/
opp '

Mn.k/ to see that .B;�/ is of type (A). 2

Note that the involution � is of the second kind in case (A) and of the first kind in cases
(C) and (BD).

Let W be a (finite-dimensional) vector space over k, and let �WW �W ! k be a
(nondegenerate) bilinear form on W . For ˛ 2 Endk.W /, define ˛� to be the endomorphism
such that

�.˛�.v/;w/D �.v;˛.w//; all v;w 2W:

The map ˛ 7! ˛� is an involution of the k-algebra Endk.W / if (and only if) � is symmetric
or skew-symmetric. We call it the adjoint involution of �.

We can now restate Proposition 8.3 as follows.

PROPOSITION 8.4. Let .B;�/ be a semisimple k-algebra with involution. If the field k is
algebraically closed and the only elements of the centre of B fixed by � are those in k, then
.B;�/ is isomorphic to one of the following:

(A) .Endk.W /�Endk.W _/;�/ with .a;b/� D .b_;a_/;

(C) .Endk.W /;�/ with � the adjoint involution of a symmetric bilinear form on W ;

(BD) .Endk.W /;�/ with � the adjoint involution of an alternating bilinear form on W .

The labelling is explained in the next section, where we attach an algebraic group
matching the label to a symplectic module over .B;�/.

52Let f;gWA� B be homomorphisms from a k-algebra A to a k-algebra B . If A is simple and B is central
simple over k, then there exists an invertible element b 2 B such that f .a/D b �g.a/ �b�1 for all a 2 A (CFT,
IV 2.10).
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Symplectic modules and the associated algebraic groups
Let B be a k-algebra with involution �. A symplectic .B;�/-module is a B-module V
equipped with a skew-symmetric k-bilinear form  WV �V ! k such that

 .b�u;v/D  .u;bv/ for all b 2 B , and u;v 2 V: (45)

In general, a k-bilinear form  WV �V ! k satisfying (45) is said to be balanced.
Let B be a semisimple k-algebra with centre F . Then F is a product of fields F DQ
Fi and correspondingly B D

Q
Bi with Bi D B˝F Fi a central simple algebra over

Fi . Assume that B is free as an F -module. This means that the degree ŒBi WFi � D n2 is
independent of i . For a B-module (finite-dimensional as a k-module), there is a reduced
determinant map

detWEndB.V /! F:

If there exists an isomorphism uWMn.F /! B , then

det.g/D det.gju.E1;1/ �V /:

For example, if B D F acting on V D Fm, then this is the usual determinant detWMm.F /!

F , and if B DMm.F / acting on V DFm, then it is the identity map F �!F � (which is an
mth root of the usual determinant of F acting on Fm). In the general case we may suppose
that F is a field; then for some finite Galois extension E of F , there exists an isomorphism
uWMn.E/! B˝F E, and hence a reduced determinant map detWEndB˝E .V ˝E/!E;
if g 2 EndB.V / � EndB˝E .V ˝E/, then det.g/ is fixed by Gal.E=F /, and so lies in F .
The map det we obtain is independent of all the choices. When B is a central simple algebra
over k acting on a simple B-module, the determinant map is the reduced norm.

ASIDE. It will be useful to review the relation between (skew-)hermitian forms and involutions (Knus
et al. 1998, I, �4). Let .A;�/ be a central simple algebra with involution over a field F . A hermitian
(resp. skew-hermitian) form on a (left) A-module is V is a bi-additive map �WV �V ! A such that
�.au;bv/ D a�.u;v/b� and �.v;u/ D �.u;v/� (resp. �.v;u/ D ��.u;v/�/ for all a;b 2 A and
u;v 2 V . As in the bilinear case, a (nondegenerate) hermitian or skew-hermitian form � on V defines
an adjoint involution �� on B def

D EndA.V / by �.˛��u;v/D �.u;˛v/.

(a) When � is of the first kind, this gives a one-to-one correspondence between the involutions of
the first kind on B and the forms � on V , hermitian or skew-hermitian, up to a factor in F �.
If � is hermitian, then � and �� have the same type, and if � is skew-hermitian then they have
the opposite type (e.g., if � on A is of type (C) then �� on B is of type (BD)).

(b) When � is of the second kind, this gives a one-to-one correspondence between the extensions
of �jF to B and the hermitian forms on V up to a factor in F � fixed by �.

Suppose that � is of the second kind. Then F is of degree 2 over the fixed field F0 of �. Choose
an element f of F XF0 whose square is in F0. Then f � D�f , and a pairing � is hermitian (resp.
skew-hermitian) if and only if f � is skew-hermitian (resp. hermitian). Thus (b) also holds with
“skew-hermitian” for “hermitian”.

Let .B;�/ be a semisimple k-algebra with involution �. Let F denote the centre of B
and F0 the subalgebra of invariants of � in F . We say that .B;�/ has type (A), (C), or (BD)
if .B˝F0;� k

a;�/ has that type for all k-homomorphisms �WF0! ka. This will always be
the case if F0 is a field. Assume that B is free as an F -module. Then F is free of rank
2 over F0 in case (A) and equals F0 in the cases (C) and (BD). We put ŒBWF �D n2 and
ŒF0Wk�D g:
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Let .V; / be a symplectic .B;�/-module with V free over F . The reduced dimension
of V is

mD
dimF .V /
ŒBWF �1=2

D
dimF .V /

n
.

Let G1 and G be the algebraic subgroups of GLB.V / such that

G1.k/D fg 2 GLB.V / j  .gx;gy/D  .�.g/x;y/ for some �.g/ 2 F �0 g

G.k/D fg 2 GLB.V / j  .gx;gy/D �.g/ � .x;y/ for some �.g/ 2 k�g:

There is a homomorphism of algebraic groups �WG1! .Gm/F0=k , and G is the inverse
image of Gm � .Gm/F0=k . We put

G0 D Ker.�/\Ker.det/; T1 DG1=G
0; T DG=G0:

The following diagrams summarize the situation:

B V

F

F0

k

n2

1 or 2

mn

g

G0

Z.G/ G1 Gad
1

T1

�

ad

G0

Z.G/ G Gad

T

�

ad

We let � denote the adjoint involution on Endk.V / with respect to  — by assumption,
it induces � on B . Let C denote the commutant EndB.V / of B in EndF .V /. Then C is
a semisimple algebra, and it is stable � on Endk.V /. The groups G1; G, and G0 have the
following descriptions:

G1.k/D fx 2 C j x
�x 2 F �0 g

G.k/D fx 2 C j x�x 2 k�g

G0.k/D fx 2 C j x�x D 1; Nrd.x/D 1g:

EXAMPLE 8.5. Let F be an étale k-algebra of degree 2. Thus F is k�k or a field of degree
2 over k, and there is a unique nontrivial involution � of F fixing the elements of k. We
determine the symplectic .B;�/-modules in the case that B is isomorphic to a matrix algebra
over F and .B;�/ is of type (A). These conditions imply that B ' EndF .W /, where W is
any simple B-module, and � is the adjoint involution of a hermitian form �WW �W ! F .

Let V0 be a free F -module of finite rank, and let  0WV0�V0! F be a skew-hermitian
form. Then B acts on V def

D W ˝F V0 through the first factor, and we let  denote the
k-bilinear form V �V ! k such that

 .w˝v;w0˝v0/D TrF=k.�.w;w
0/ 0.v;v

0//. (46)

Then .V; / is a symplectic .B;�/-module.
Conversely, let .V; / be a symplectic .B;�/-module. As a B-module, V is a direct

sum of copies of W , and so V DW ˝F V0, where V0 is a free F -module of finite rank. Let
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f 2 F � be such that f � D�f . According to Lemma A.7, there is a unique hermitian form
	 WV �V ! F such that

 .u;v/D TrF=k .f 	.u;v//

for all u;v 2 V ; moreover 	.b�u;v/D 	.u;bv/ for all b 2 B . The adjoint involution of 	
on V preserves EndB.V /' EndF .V0/. We choose a skew-hermitian form  0WV0�V0! F

whose adjoint involution is the restriction of �	 to EndF .V0/. The form .u;v/ 7! f 	.u;v/

is skew-hermitian, and f 	 D �˝ 0 (after possibly scaling  0). Now  ;�; 0 are related
by (46).

We now determine the corresponding algebraic groups. We have

C
def
D EndB.V /' EndF .V0/

and � acts on C as the adjoint involution of the skew-hermitian form  0. Therefore, G1
(resp. G) is the group of unitary similitudes of  0 whose multiplier lies in F � (resp. k�/,
and G0 is the special unitary group of  0 (or the hermitian form f  0).

EXAMPLE 8.6. We determine the symplectic .B;�/-modules in the case that B is isomor-
phic to a matrix algebra over k and .B;�/ is of type (C). These conditions imply that
B ' Endk.W /, where W is any simple B-module, and � is the adjoint involution of a
symmetric bilinear form �WW �W ! k. Let V0 be a k-vector space, and let  0 be a
skew-symmetric form V0�V0! k. Let  denote the k-bilinear form on V def

DW ˝V0 such
that

 .w˝v;w0˝v0/D �.w;w0/ 0.v;v
0/.

Then .V; / is a symplectic .B;�/-module, and every such module arises in this way by an
argument similar to that in 8.5. We have

C
def
D EndB.V /' Endk.V0/;

and � acts on C as the adjoint involution of  0. Therefore G D GSp.V0; 0/ and G0 D
Sp.V0; 0/.

PROPOSITION 8.7. Let .B;�/ be a semisimple k-algebra with involution, and let .V; / be
a symplectic .B;�/-module. Let F denote the centre of B and F0 its subalgebra of elements
fixed by �. Assume that V and B are free over F . Set

ŒBWF �D n2; ŒF0Wk�D g; dimF .V /Dmn:

We have, case-by-case.

(A) The groups G and G1 are connected and reductive, and G0 is semisimple and simply
connected; F is a quadratic extension of F0, and

det.g/ �det.g/� D �.g/m; all g 2G1.k/:

When k is algebraically closed, G0 � .SLm/ŒF0Wk� (hence G0 is of type Am�1).
If m is even, say mD 2`, then .det�1 ��`;�/ defines isomorphisms

T1 ' Ker
�
.Gm/F=k

Nm
�! .Gm/F0=k

�
� .Gm/F0=k

T ' Ker
�
.Gm/F=k

Nm
�! .Gm/F0=k

�
�Gm.
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If m is odd, say mD 2`�1, then � def
D det�1 ��` defines an isomorphism

T1 ' .Gm/F=k;

and �D � ���.

(C) The groups G and G1 are connected and reductive, and G0 is semisimple and simply
connected. The integer m is even, say mD 2`, and

det.g/D �.g/`; all g 2G1.k/:

The map � identifies T1 with .Gm/F=k and T with Gm. When k is algebraically
closed, G0 � .Spm/

ŒF Wk� (hence G0 is of type Cm=2).

PROOF. It suffices to prove this after extending the base field k.
In case (A), we may suppose that B is isomorphic to a matrix algebra over F . Then

B ' EndF .W /, V DW˝F V0, and  D TrF=k.� � 0/, as in (8.5). The statement can now
be proved directly.

In case (C), we may suppose that B is isomorphic to a product of matrix algebras over k.
Then B '

Q
i2I Endk.Wi / with � on Endk.Wi / being the adjoint involution of a symmetric

form �i . Moreover, V '
Q
i2I Wi˝k Vi and  D

Q
i2I �i˝ i with  i a skew-symmetric

form on Vi (cf. 8.6). The statement can now be proved directly. 2

REMARK 8.8. We divide the case (BD) into the case (B) (m odd) and the case (D) (m even).
In case (B), the groups are not of interest because they are not part of a Shimura datum.

REMARK 8.9. In case (D), the groups G and G1 have 2ŒF Wk� connected components, and
their identity components are reductive. The subgroup G0 is semisimple (in particular,
connected) but not simply connected. When k is algebraically closed, G0 �(SOm/ŒF Wk�.

NOTES. This section follows Deligne 1971c, �5.

Algebras with positive involution
Let .C;�/ be a semisimple R-algebra with involution, and let V be a C -module. In the next
proposition, by a hermitian form on V we mean a C -balanced symmetric R-bilinear form
 WV �V ! R. For example, if C D C and � is complex conjugation, then such a form can
be written uniquely as  D TrC=R ı� with �WV �V !C a hermitian form in the usual sense
(see (8), p. 8). Such a form  is said to be positive-definite if  .v;v/ > 0 for all nonzero
v 2 V .

PROPOSITION 8.10. Let C be a semisimple algebra over R. The following conditions on
an involution � of C are equivalent:

(a) some faithful C -module admits a positive-definite hermitian form;

(b) every C -module admits a positive-definite hermitian form;

(c) TrC=R.c�c/ > 0 for all nonzero c 2 C .

PROOF. (a))(b). Let V be a faithful C -module. Every simple C -module occurs as a direct
summand of V , and so every C -module occurs as a direct summand of a direct sum of copies
of V . Hence, if V carries a positive-definite hermitian form, then so does every C -module.
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(b))(c). Let V be a C -module with a positive-definite hermitian form . j/, and choose
an orthonormal R-basis e1; : : : ; en for V . Then

TrR.c�cjV /D
X

i
.ei jc

�cei /D
X

i
.cei jcei /;

which is > 0 unless c acts as the zero map on V . On applying this remark with V D C , we
obtain (c).

(c))(a). Condition (c) says that the hermitian form .c;c0/ 7! TrC=R.c�c0/ on the
(faithful) C -module C is positive-definite. 2

DEFINITION 8.11. An involution satisfying the equivalent conditions of (8.10) is said to be
positive.

PROPOSITION 8.12. Let .B;�/ be a semisimple R-algebra with positive involution and let
.V; / a symplectic .B;�/-module. Assume that .B;�/ is of type (A) or (C) and let C be the
centralizer of B in EndR.V /. Then there exists a homomorphism of R-algebras hWC! C

such that

˘ h. Nz/D h.z/� and

˘ u;v 7!  .u;h.i/v/ is positive-definite and symmetric.

PROOF. To give an h satisfying the conditions amounts to giving an element J (D h.i/) of
C such that

J 2 D�1;  .Ju;J v/D  .u;v/;  .v;J v/ > 0 if v ¤ 0; (47)

i.e., a complex structure satisfying the period relations p. 72.
Suppose first that .B;�/ is of type (A). Then .B;�;V; / decomposes into a product of

systems as in (8.5). Thus, we may suppose that

˘ B D EndC.W /,

˘ � is the adjoint involution of a positive-definite hermitian form �WW �W ! C;
˘ V DW ˝C V0 with V0 a C-vector space, and

˘  D TrC=R.� � 0/ with  0 a skew-hermitian form on V0.

We then have to classify the J 2 C ' EndC.V0/ satisfying (47) with  replaced by  0.
There exists a basis .ej / for V0 such that

. 0.ej ; ek//j;k D diag.i
1
; : : : ; i

r
;�i; : : : ;�i/; i D

p
�1:

Define J by J.ej /D� 0.ej ; ej /ej , i.e.,

J.ej /D

�
�iej if j � r
iej if j > r:

Then J satisfies (47) with  0 for  . This proves the result for type (A).
The proof for .B:�/ is similar (but easier). 2

Let .B;�/ be a semisimple R-algebra with positive involution and let .V; / a sym-
plectic .B;�/-module. Let hWS! GR be a homomorphism such that .V;h/ is of type
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f.�1;0/; .0;�1/g and .u;v/ 7!  .u;h.i/v/ is symmetric and positive definite. There are
canonical isomorphisms of complex vector spaces

.V;J /' V.C/=F 0h V.C/' V
�1;0;

where J D h.i/. These are compatible with the actions of B , and we define t .b/ to be the
trace of b 2 B on any one of these spaces. Thus

t .b/D TrC.bj.V;J //; b 2 B; J D h.i/.

PROPOSITION 8.13 (DELIGNE 1971C, 5.10). With the above notation,

(a) the G0.R/ conjugacy class of h is uniquely determined by the map t WB! C;

(b) in case (A), the isomorphism class of .V; / is determined by t ; in cases (C) and (D),
it is determined by dimk.V / alone.

(c) The centralizer of h in G.R/ and G1.R/ is connected.

PROOF. These can be proved case by case. For example, if V DW ˝C V0, �,  0, etc. are
as in the above proof, then

Trk.bjV /D r �Trk.bjW /;

and r and dimV0 determine .V0; 0/ up to isomorphism. Since W and � are determined
(up to isomorphism) by the requirement that W be a simple B-module and � be a hermitian
form giving � on B , this proves the claim for type (A). 2

An involution � of a semisimple algebraB over Q is said to be positive if TrB=Q.b�b/> 0
for all nonzero b 2 B . This is equivalent to requiring that � becomed positive on B˝QR.

PEL data
We fix a simple algebra B over Q with a positive involution �. The centre of B is a number
field F , and we let F0 denote the subfield of elements fixed by �. Let ŒBWF � D n2 and
ŒF0Wk�D g: We assume throughout that .B;�/ is either of type (A) or type (C). In the first
case, the involution is of the second kind and the field F0 is totally real (because the trivial
involution is positive). In the second case, the involution is of the first kind, and for one
(hence every) splitting field L of B and isomorphism B˝F L!Mn.L/, the involution �
on B˝F L corresponds to an involution x 7! c�1 �xt � c on Mn.L/ with ct D c;53 in this
case, F D F0 is totally real.

Let .V; / be symplectic .B;�/-module, and let dimF .V /Dmn. Define G1, G, and
G0 as before.

PROPOSITION 8.14 (ZINK 1983, 3.1). There exists a homomorphism hWS!GR such that
.V;h/ has type f.�1:0/; .0:�1/gand 2�i is a polarization of .V;h/; moreover, h is unique
up to conjugation by an element of G.R/.

PROOF. We consider the decomposition

VR D
M

� WF0!R
V ˝F0;� R:

53In other words, B˝F K � EndF .W / and � corresponds to the adjoint involution of a symmetric bilinear
form.



PEL Shimura varieties 87

Obviously, the summands are pairwise orthogonal under  D
L
�  � . As h commutes

with the action of F0˝R, we have hD
L
h� . Therefore, we need only consider a direct

summand V ˝F0;� R. Our problem is then equivalent to finding a complex structure
J WV ˝F0;� R! V ˝F0;� R, J 2 D�1, that commutes with the action of B˝F0;� R, and
satisfied the period relations

 � .Ju;J v/D  � .u;v/;

 � .v;J v/ > 0:

Such a J is constructed in 8.12.
For type (A), let r� be the number of i and r N� the number of �i in the normal form of

 0. Then
t .b/

def
D TrC.x j VR/D

X
�WF!C

r��.Tr.b//; b 2 B:

Here VR is to be understood with the complex structure J and Tr is the reduced trace. We
remark that, conversely, r� determines the symplectic B ˝R-module .V ˝R;	/ up to
isomorphism and it determines h up to conjugation (8.13).

For type (C), we obtain for the trace

t .x/D .m=2/Tr0B=Qx: 2

The composite of h with G ,! G. / lies in X. /, and therefore satisfies SV1, SV2,
SV4. As h is nontrivial, SV3 follows from the fact that Gad is simple.

The trace function

t .b/D Tr.bjV.C/=F 0h .V .C//; h 2X;

depends only on X and it determines X . The pair .G;X/ satisfies the conditions SV1–4.

DEFINITION 8.15. The Shimura data arising in this way are called simple PEL data of
type (A) or (C).

The simple refers to the fact that we required B to be simple (which implies that Gad is
simple).

REMARK 8.16. Let b 2 B , and let tb be the tensor .x;y/ 7!  .x;by/ of V . An element
g of G. / fixes tb if and only if it commutes with b. Let b1; : : : ;bs be a set of generators
for B as a Q-algebra. Then .G;X/ is the Shimura datum of Hodge type associated with the
system .V;f ;tb1 ; : : : ; tbsg/.

PEL Shimura varieties
Let .B;�/ be a semisimple Q-algebra with involution and .V; / a faithful .B;�/-symplectic
module. Let G be the algebraic subgroup of GLB.V / such that

G.Q/D fg 2 GLB.V / j  .gx;gy/D �.g/ � .x;y/ for some �.g/ 2Q�g

The identity component of G is a reductive group, but G is not necessarily connected (see
8.7, 8.8, 8.9). Assume that there exists a homomorphism hWS! GR such that .V;h/ has
type f.�1;0/; .0;�1/g and the form  .u;h.i/v/ is symmetric and positive-definite, and
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let X denote its G.R/-conjugacy class. The action of G on V defines a homomorphism
G ,!G. / which sends X into X. /, and so .G;X/ satisfies the conditions SV1–4. When
G is connected,54 we call .G;X/ a PEL Shimura datum.

THEOREM 8.17. Let .G;X/ be PEL Shimura datum, as above, and letK be a compact open
subgroup of G.Af /. Then ShK.G;X/.C/ classifies the isomorphism classes of quadruples
..A; i/; s;�K/, where

˘ A is a complex abelian variety,

˘ ˙s is a polarization of the Hodge structure H1.A;Q/,
˘ i is a homomorphism B! End0.A/, and

˘ �K is a K-orbit of B˝Af -linear isomorphisms �WV.Af /! Vf .A/ sending  to
an A�

f
-multiple of s,

satisfying the following condition:

(**) there exists a B-linear isomorphism aWH1.A;Q/! V sending s to a
Q�-multiple of  , and for such an isomorphism a ıhA ıa

�1 2X:

PROOF. In view of the dictionary b$ tb between endomorphisms and tensors (8.16), this
follows from Theorem 7.4 2

For h 2X , we have a trace map

b 7! Tr.bjV.C/=F 0h /WB! C:

Since this map is independent of the choice of h in X , we denote it by TrX .

REMARK 8.18. Consider a triple .A;s; i;�K/ as in the theorem. The existence of the
isomorphism a in (**) implies that

(a) s.bu;v/D s.u;b�v/, and

(b) Tr.i.b/jTgt0.A//D TrX .b/ for all b 2 B˝C.

The first is obvious, because  has this property, and the second follows from the B-
isomorphisms

Tgt0.A/
.41/
' H1.A;C/=F 0

a
�! V.C/=F 0h :

We now divide the type (A) in two, depending on whether the reduced dimension of V
is even or odd.

PROPOSITION 8.19. For types (Aeven) and (C), the condition (**) of Theorem 8.17 is
implied by conditions (a) and (b) of (8.18).

PROOF. Let W DH1.A;Q/. We have to show that there exists a B-linear isomorphism
˛WW ! V sending s to a Q�-multiple of  . The existence of � shows that W has the same
dimension as V , and so there exists a B˝QQa-isomorphism ˛WV.Qa/!W.Qa/ sending
t to a Qal�-multiple of  . For � 2 Gal.Qa=Q/ write �˛ D ˛ ıa� with a� 2G.Qa/. Then
� 7! a� is a one-cocycle. If its class inH 1.Q;G/ is trivial, say, a� D a�1 ��a, then ˛ ıa�1

54This hypothesis is only necessary so that Sh.G;X/ is a Shimura variety in the sense of Deligne 1979. As
noted elsewhere, much of the theory goes through for nonconnected G. Of course, one can replace G with its
identity component, but then the theorem fails.
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is fixed by all � 2Gal.Qa=Q/, and is therefore defined over Q. Thus, it remains to show that
the class of .a� / in H 1.Q;G/ is trivial. The existence of � shows that the image of the class
in H 1.Q`;G/ is trivial for all finite primes `, and (8.13) shows that its image in H 1.R;G/
is trivial, and so the statement follows from the next two lemmas.

Finally, the fact that every isomorphism a makes hA correspond to an element of X
follows from 8.13(a). 2

LEMMA 8.20. Let G be a reductive group with simply connected derived group, and let
T DG=Gder. If H 1.Q;T /!

Q
l�1H

1.Ql ;T / is injective, then an element of H 1.Q;G/
that becomes trivial in H 1.Ql ;G/ for all l is itself trivial.

PROOF. Because Gder is simply connected, H 1.Ql ;Gder/D 0 for l ¤1 and

H 1.Q;Gder/!H 1.R;Gder/

is injective (5.19). Using this, we obtain a commutative diagram with exact rows

T .Q/ H 1.Q;Gder/ H 1.Q;G/ H 1.Q;T /

G.R/ T .R/ H 1.R;Gder/
Y
l

H 1.Ql ;G/
Y
l

H 1.Ql ;T /.

If an element c of H 1.Q;G/ becomes trivial in H 1.Ql ;G/ for all l , then a diagram chase
shows that it arises from an element c0 of H 1.Q;Gder/ whose image c01 in H 1.R;Gder/

maps to the trivial element in H 1.R;G/. The image of G.R/ in T .R/ contains T .R/C (see
5.1), and the real approximation theorem (5.4) shows that T .Q/ �T .R/C D T .R/. Therefore,
there exists a t 2 T .Q/ whose image in H 1.R;Gder/ is c01. Then t 7! c0 in H 1.Q;Gder/,
which shows that c is trivial. 2

LEMMA 8.21. Let .G;X/ be a simple PEL Shimura datum of type (Aeven) or (C), and let
T DG=Gder. Then H 1.Q;T /!

Q
l�1H

1.Ql ;T / is injective.

PROOF. For G of type (Aeven),

T D Ker
�
.Gm/F

NmF=k
�! .Gm/F0

�
�Gm:

The group H 1.Q;Gm/D 0, and the map on H 1’s of the first factor is

F �0 =NmF �!
Y

v
F �0v=NmF �v .

This is injective because F=F0 is cyclic (CFT, VIII 3.1).
For G of type (C), T DGm, and so H 1.Q;T /D 0: 2

NOTES. The theory of Shimura varieties of PEL-type is worked out in detail in several papers of
Shimura, for example, Shimura 1963, but in a language somewhat different from ours. The above
account follows Deligne 1971c, ��5,6. See also Zink 1983, Langlands and Rapoport 1987, �6, and
Kottwitz 1992, ��1–4.
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9 General Shimura varieties
By definition, the Shimura varieties of Hodge type are those that are moduli varieties for
abelian varieties with tensor and level structures. In order to realize more Shimura varieties
as moduli varieties, we must enlarge the category of objects considered. We define a category
of abelian motives that is generated by abelian varieties, and we define the class of Shimura
varieties said to be of abelian type. Those Shimura varieties of abelian type with rational
weight are moduli varieties for abelian motives. Finally, we note that the Shimura varieties
of abelian type do not exhaust the Shimura varieties.

Abelian motives
Let Hod.Q/ be the category of polarizable rational Hodge structures. It is an abelian
subcategory of the category of all rational Hodge structures closed under the formation of
tensor products and duals. Moreover is semisimple because the polarization allows us to
define a complement to a Hodge substructure.

Let V be a variety over C whose connected components are abelian varieties, say
V D

F
Vi with Vi an abelian variety. Recall that for manifolds M1 and M2,

H r.M1tM2;Q/'H r.M1;Q/˚H r.M2;Q/:

For each connected component V ı of V ,

H�.V ı;Q/'
V
H 1.V ı;Q/' HomQ.

V
H1.V

ı;Q/;Q/

(see 6.4). Therefore,H�.V;Q/ acquires a polarizable Hodge structure from that onH1.V;Q/.
We write H�.V;Q/.m/ for the Hodge structure H�.V;Q/˝Q.m/ (see 2.6).

Let .W;h/ be a rational Hodge structure. An endomorphism e of .W;h/ is an idempotent
if e2 D e. Then

.W;h/D Im.e/˚ Im.1� e/

(direct sum of rational Hodge structures).
An abelian motive over C is a triple .V;e;m/ in which V is a variety over C whose

connected components are abelian varieties, e is an idempotent in End.H�.V;Q//, and
m 2 Z. For example, let A be an abelian variety; then the projection

H�.A;Q/!H i .A;Q/�H�.A;Q/

is an idempotent ei , and we denote .A;ei ;0/ by hi .A/.
Define Hom..V;e;m/;.V 0; e0;m0// to be the set of mapsH�.V;Q/!H�.V 0;Q/ of the

form e0 ıf ı e with f a homomorphism H�.V;Q/!H�.V 0;Q/ of degree d D m0�m.
Moreover, define

.V;e;m/˚ .V 0; e0;m/D .V tV 0; e˚ e0;m/

.V;e;m/˝ .V 0; e0;m/D .V �V 0; e˝ e0;mCm0/

.V;e;m/_ D .V;et ;d �m/ if V is purely d -dimensional.

Here et denotes the transpose of e regarded as a correspondence.
For an abelian motive .V;e;m/ over C, let H.V;e;m/D eH�.V;Q/.m/. Then

.V;e;m/ H.V;e;m/
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is a functor from the category of abelian motives AM to Hod.Q/ commuting with ˚, ˝,
and _. We say that a rational Hodge structure is abelian if it is in the essential image of
this functor, i.e., if it is isomorphic to H.V;e;m/ for some abelian motive .V;e;m/. Every
abelian Hodge structure is polarizable. Note that Q.1/ '

V2
H1.A;Q/ for A an elliptic

curve, and so it is abelian. We let Hodab.Q/ denote the full subcategory of Hod.Q/ of abelian
Hodge structures.

PROPOSITION 9.1. The category Hodab.Q/ is the smallest strictly full subcategory of
Hod.Q/ containing H1.A;Q/ for each abelian variety A and closed under the formation of
direct sums, subquotients, duals, and tensor products; moreover, H WAM! Hodab.Q/ is an
equivalence of categories.

PROOF. Straightforward from the definitions. 2

Shimura varieties of abelian type
Recall (�6) that a symplectic space .V; / over Q defines a connected Shimura datum
.S. /;X. /C/ with S. / D Sp. / and X. /C the set of complex structures on J on
V.R/ such that  .Ju;J v/D  .u;v/ and  .u;Ju/ > 0.

DEFINITION 9.2. (a) A connected Shimura datum .H;XC/ is of primitive abelian type if
H is simple and there exists a symplectic space .V; / over Q and an injective homomor-
phism H ! S. / carrying XC into X. /.

(b) A connected Shimura datum .H;XC) is of abelian type if there exist connected
Shimura data .Hi ;XCi / of primitive abelian type and an isogeny

Q
iHi ! H carryingQ

i X
C
i into XC.

(c) A Shimura datum .G;X/ is of abelian type if .Gder;XC/ is of abelian type.
(d) A Shimura variety Sh.G;X/ is of abelian type if .G;X/ is of abelian type (and

similarly for connected Shimura varieties).55

PROPOSITION 9.3. Let .G;X/ be a Shimura datum, and assume

(a) the weight wX is rational SV4 and Z.G/ı splits over a CM-field SV6, and

(b) there exists a homomorphism �WG!Gm such that � ıwX D�2.

If G is of abelian type, then .V;� ıh/ is an abelian Hodge structure for all representations
.V;�/ of G and all h 2 X ; conversely, if there exists a faithful representation � of G such
that .V;� ıh/ is an abelian Hodge structure for all h, then .G;X/ is of abelian type.

PROOF. See Milne 1994b, 3.12. 2

Let .G;X/ be a Shimura datum of abelian type satisfying (a) and (b) of the proposition,
and let �WG! GL.V / be a faithful representation of G. Assume that there exists a pairing
 WV �V !Q such that

(a) g D �.g/m for all g 2G and a fixed m, and

(b)  is a polarization of .V;� ıh/ for all h 2X .

55The Shimura varieties of abelian type are exactly those proved to have canonical models in Deligne 1979.
The name, which was introduced in Milne and Shih 1979, was chosen because of the relation of the varieties to
abelian varieties. Only later was it realized that those with rational weight are the moduli of abelian motives
(Milne 1994b).
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Then there exist multilinear maps ti WV � � � � �V ! Q.ri /, 1 � i � n, such that G is the
subgroup of GL.V / whose elements satisfy (a) and fix t1; : : : tn (cf. 7.2).

THEOREM 9.4. With the above notation, Sh.G;X/ classifies the isomorphism classes of
triples .A;.si /0�i�n;�K/ in which

˘ A is an abelian motive,

˘ ˙s0 is a polarization for the rational Hodge structure H.A/;

˘ s1; : : : ; sn are tensors for A, and

˘ �K is a K-orbit of Af -linear isomorphisms V.Af /! Vf .A/ sending  to an A�
f

-
multiple of s0 and each ti to si ,

satisfying the following condition:

(**) there exists an isomorphism aWH.A/! V sending s0 to a Q�-multiple of
 , each si to ti , and h onto an element of X:

PROOF. With A replaced by a Hodge structure, this can be proved by an elementary argu-
ment (cf. 6.3, 7.3), but Proposition 9.3 shows that the Hodge structures arising are abelian,
and so they can be replaced by abelian motives (9.1). For more details, see Milne 1994b,
Theorem 3.31. 2

Classification of Shimura varieties of abelian type

Deligne (1979) classifies the connected Shimura data of abelian type. Let .G;XC/ be a
connected Shimura datum with G simple. If Gad is of type A, B, or C, then .G;XC/ is of
abelian type. If Gad is of type E6 or E7, then .G;XC/ is not of abelian type because there is
no symplectic embedding. If Gad is of type D, .G;XC/ may or may not be of abelian type.
In this last case, there are two problems that may arise.

(a) Let G be the universal covering group of Gad. There may exist homomorphisms
.G;XC/! .S. /;X. /C/ but no injective such homomorphism, i.e., there may be a
nonzero finite algebraic subgroup N � G that is in the kernel of all homomorphisms
G! S. / sending XC into X. /C. Then .G=N 0;XC/ is of abelian type for all N 0 �N ,
but .G;XC/ is not of abelian type.

(b) There may not exist a homomorphism G! S. / at all.

This last problem arises for the following reason. Even when Gad is Q-simple, it may
decompose into a product of simple group Gad

R DG1�� � ��Gr over R. For each i , Gi has a
Dynkin diagram of the shape shown below:
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Dn.1/

Dn.n�1/

Dn.n/

Solid nodes are special (p. 19), and nodes marked by stars correspond to symplectic
representations. The number in parenthesis indicates the position of the special node. As
is explained in �1, the projection of XC to a conjugacy class of homomorphisms S!Gi
corresponds to a solid node. Since XC is defined over R, the solid nodes can be chosen
independently for each i . On the other hand, the representations GiR! S. /R correspond
to nodes marked with a star. Note that the star has to be at the opposite end of the diagram
from the solid node. In order for a family of representations GiR! S. /R, 1 � i � r , to
arise from a symplectic representation over Q, the stars must be all in the same position since
a Galois group must permute the Dynkin diagrams of the Gi . Clearly, this is impossible if
the solid nodes occur at different ends. See Deligne 1979, 2.3, or Milne 2013, �10, for more
details.

In Addendum B, we provide a list of Shimura data .G;X/ such that every connected
Shimura datum of primitive abelian type is of the form .Gder;XC/ for some pair on the list.

Shimura varieties not of abelian type

It is hoped (Deligne 1979, p. 248)56 that all Shimura varieties with rational weight classify
isomorphism classes of motives with additional structure, but this is not known for those not
of abelian type. More precisely, from the choice of a rational representation �WG! GL.V /,
we obtain a family of Hodge structures �R ıh on V indexed by X . When the weight of
.G;X/ is defined over Q, it is hoped that these Hodge structures always occur (in a natural
way) in the cohomology of algebraic varieties. When the weight of .G;X/ is not defined
over Q they obviously cannot.

56Pour interpréter des structures de Hodge de type plus compliqué, on aimerait remplacer les variétés
abéliennes par de “motifs” convenables, mais il ne s’agit encore que d’un rêve. (To interpret Hodge structures of
a more complicated type, one would like to replace the abelian varieties with suitable “motives”, but this remains
only a dream.)
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Example: simple Shimura varieties of type A1
Let .G;X/ be the Shimura datum attached to a B be a quaternion algebra over a totally real
field F , as in Example 5.24. With the notation of that example,

G.R/�
Y
v2Ic

H��
Y
v2Inc

GL2.R/.

(a) If B DM2.F /, then .G;X/ is of PEL-type, and ShK.G;X/ classifies isomorphism
classes of quadruples .A; i; t;�K/ in which A is an abelian variety of dimension d D ŒF WQ�
and i is a homomorphism i WF !End.A/˝Q. These Shimura varieties are called Hilbert (or
Hilbert-Blumenthal) varieties. They form a natural first generalization of elliptic modular
curves, and there are several books on them and their associated modular forms.57

(b) If B is a division algebra, but Ic D ;, then .G;X/ is again of PEL-type, and
ShK.G;X/ classifies isomorphism classes of quadruples .A; i; t;�K/ in which A is an
abelian variety of dimension 2ŒF WQ� and i is a homomorphism i WB! End.A/˝Q. In this
case, the varieties are projective. These varieties have also been extensively studied.

(c) If B is a division algebra and Ic ¤;, then .G;X/ is of abelian type, but the weight is
not defined over Q. Over R, the weight map wX sends a 2 R to the element of .F ˝R/� 'Q
vWF!RR with component 1 for v 2 Ic and component a for v 2 Inc . Let T be the torus

over Q with T .Q/D F �. Then wX WGm! TR is defined over the subfield L of NQ whose
fixed group is the subgroup of Gal. NQ=Q/ stabilizing Ic � Ic tInc . On choosing a rational
representation ofG, we find that ShK.G;X/ classifies certain isomorphism classes of Hodge
structures with additional structure, but the Hodge structures are not motivic — they do not
arise in the cohomology of algebraic varieties (they are not rational Hodge structures).

(d) When jIncj D 1, the Shimura variety is a curve. These are the famous Shimura
curves.

ASIDE. A Shimura variety ShK that is a moduli variety will be a coarse moduli variety if K is
insufficiently small or the condition SV5 fails (i.e., Z.Q/ is not discrete in Z.Af /) because then
the objects classified may admit automorphisms. For example, an abelian variety, even a polarized
abelian variety, may admit nontrivial automorphisms unless endowed with a level structure of level at
least 3. The condition SV5 fails for Hilbert modular varieties because a totally real field of degree at
least 2 has infinitely many units congruent to 1 modulo N for every N . In these situations, one may
consider the Shimura stack instead. Form the complex analytic stack

Shan
K ŒG;X�D

�
G.Q/nX �G.Af /=K

�
:

The groupoid of its complex points is equivalent to the following groupoid:�
objects: pairs .x;g/ in X �G.Af /I
morphisms .x0;g0/! .x1;g1/: pairs .q;k/ in G.Q/�K with qx0 D x1 and qg0k D g1:

When the condition SV5 holds, the stabilizers in Shan
K ŒG;X� are finite, and this complex analytic

stack can be given the structure of a smooth Deligne–Mumford stack over C. To see this, let K0 be
an open normal subgroup of K such that K0\G.Q/ is neat (cf. 3.5). The finite group K=K0 acts on
ShK.G;X/, and we can define

ShK ŒG;X�D ŒShK0.G;X/=.K=K0/�:

See Taelman 2017.
57Freitag, Hilbert modular forms, 1990; van der Geer, Hilbert modular surfaces, 1988; Garrett, Holomorphic

Hilbert modular forms, 1990; Goren, Lectures on Hilbert modular varieties and modular forms, 2002.
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Shimura varieties as moduli varieties58

Let B be a semisimple algebra over Q with a positive involution �, and let .V; / be a
symplectic .B;�/-module. Let K be a compact open subgroup of G.Af /. There exists an
algebraic variety MK over C classifying the isomorphism classes of quadruples .A;s; i;�K/
satisfying (a) and (b) of (8.18) (but not necessarily condition (**)), which is called the PEL
modular variety attached to .B;�;V; /. In the simple cases (Aeven) and (C), Proposition
8.17 shows that MK coincides with ShK.G;X/, but in general it is a finite disjoint union of
Shimura varieties.

Summary
As we noted in �8, in general a (naturally-defined) moduli variety for abelian varieties is not
a Shimura variety but only a finite union of Shimura varieties because the group G is not
connected. Probably, the definition of a Shimura variety should be relaxed to allow G to be
a nonconnected reductive group.59 Also, the study of the boundaries of Shimura varieties
suggests that the definition of a Shimura datum should be relaxed to allow X to be a finite
covering of a conjugacy class of homomorphisms S! GR. Then a “Shimura variety of
dimension zero” will indeed be a Shimura variety.

Shimura varieties

SVs of abelian type SVs with rational weight

SVs of abelian type with rational weight (moduli varieties)

SVs of Hodge type

SVs of PEL type Moduli varieties of PEL type

SVs of simple PEL type A, C (moduli varieties)

58I should include much more on this topic. See Milne 2013.
59In his Bourbaki talk (1971b) Deligne allowed a reductive group to be nonconnected, but in his Corvallis

article (1979) he requires G to be connected, and it is the second article that became the fundamental reference.
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10 Complex multiplication: the Shimura–Taniyama
formula

Where we are headed
Let V be a variety over Q. For any � 2 Gal.Qa=Q/ and P 2 V.Qa/, the point �P lies in
V.Qa/. For example, if V is the subvariety of An defined by equations

f .X1; : : : ;Xn/D 0, f 2QŒX1; : : : ;Xn�;

then
f .a1; : : : ;an/D 0 .ai 2Qa/ H) f .�a1; : : : ;�an/D 0

(apply � to the first equality). Therefore, if we have a variety V over Qa that we suspect is
actually defined over Q, then we should be able to describe an action of Gal.Qa=Q/ on its
points V.Qa/.

Let E be a number field contained in C, and let Aut.C=E/ denote the group of automor-
phisms of C (as an abstract field) fixing the elements of E. Then a similar remark applies: if
a variety V over C is defined by equations with coefficients in E, then Aut.C=E/ will act on
V.C/. Now, I claim that all Shimura varieties are defined (in a canonical way) over specific
number fields, and so I should be able to describe an action on their points of a subgroup of
finite index in Aut.C=Q/. Suppose, for example, that our Shimura variety is of Hodge type.
For each K, there is a set MK whose elements are abelian varieties plus additional data and
a map

.A; : : :/ 7! P.A; : : :/WMK ! ShK.C/

whose fibres are the isomorphism classes in MK (7.4). On applying � 2 Aut.C=Q/ to the
coefficients of the polynomials defining A;: : :, we get a new triple .�A; : : :/ which may or
may not lie in MK . When it does we define �.P.A; : : :// to be P.�A; : : :/. Our task will
be to show that, for some specific number field E, this does give an action of Aut.C=E/ on
ShK.G;X/ and that the action does indeed arise from a model of ShK.G;X/ over E.

For example, we have surjective map

felliptic curves over Cg ! � .1/nH1

whose fibres are the isomorphism classes of elliptic curves (send C=.ZCZ�/ to Œ� �/: How
does the natural action of Aut.C=Q/ on the left transfer to an action on the right. If A maps
to P , then I claim that �A maps to the unique point �P such that j.�P /D � .j.P //. Here j
is the usual j -function on H1. Indeed, if A is the curve Y 2 DX3CaXCb, then

j.A/
def
D
1728.4a3/

4a3C27b2
and j.�A/D

1728.4�a3/

4�a3C27�b2
D �j.A/:

But j.A/ D j.P / and j.�A/ D j.�P /, which proves the claim. If j were a polynomial
with coefficients in Z (rather than a power series with coefficients in Z), we would have
j.�P / D �j.P /, with the obvious meaning of �P , and �P D �P , but this is definitely
false (if � is not complex conjugation, then it is not continuous, nor even measurable).
Unless A has complex multiplication, the only way to describe �P is as the point such that
j.�P /D � .j.A// for every elliptic curve A mapping to P .
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You may complain that the action of Aut.C=E/ on ShK.C/ in the above examples is not
explicit, but I contend that there cannot be a completely explicit description of the action.
What are the elements of Aut.C=E/? To construct them, we have to choose a transcendence
basis B for C over E, choose a permutation of the elements of B , and then choose an
extension of the induced automorphism of Q.B/ to its algebraic closure C. These choices
require the axiom of choice, and so we can have no explicit description of, or way of naming,
the elements of Aut.C=E/, and hence no completely explicit description of its action is
possible.

However, all is not lost. Abelian class field theory names the elements of Gal.Eab=E/,
where Eab is the maximal abelian extension of E in C. If a point P has coordinates in Eab,
then the action of Aut.C=E/ on it factors through Gal.Eab=E/, and so we may be able to
describe the action of Aut.C=E/ explicitly. This the theory of complex multiplication allows
us to do for certain special points P .

Briefly, when our Shimura variety arises naturally as a parameter variety (better, moduli
variety) over C, we can use the action on the C-points to define a model of the variety over
a specific number field. The theory of complex multiplication then gives us an explicit
description of the action of Aut.C=E/ on certain special points (we call this the reciprocity
law at the special point). The reciprocity laws at the special points determine the model
uniquely. For a general Shimura variety, we define a model to be canonical if the “correct”
reciprocity laws hold at the special points. We then use trickery to prove the existence of a
canonical model.

Review of abelian varieties
The theory of abelian varieties is very similar to that of elliptic curves — just replace E with
A, 1 with g (the dimension of A), and, whenever E occurs twice, replace one copy with the
dual A_ of A.

Let A be an abelian variety of dimension g over a field k. For all m not divisible by the
characteristic of k,

A.ks/m � .Z=mZ/2g : (48)

Here A.ks/m is the set of elements of A.ks/ killed by m. Hence, for `¤ char.k/,

T`A
def
D lim
 �

A.ks/`n

is a free Z`-module of rank 2g, and

V`.A/
def
D T`A˝Z`Q`

is a Q`-vector space of dimension 2g. When k has characteristic zero, we set

Tf AD
Y

`
T`AD lim

 �
m

A.ka/m;

Vf AD Tf ˝ZQD
Y

`
.V`A;T`A/ (restricted topological product).

Thus Tf A is a free OZ-module of rank 2g and Vf A is a free Af -module of rank 2g. The
Galois group Gal.ka=k/ acts continuously and linearly on these modules.

For an endomorphism a of A, there is a unique monic polynomial Pa.T / with integer
coefficients (the characteristic polynomial of a) such that

jPa.n/j D deg.n�a/
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for all n2Z. Moreover, Pa is the characteristic polynomial of a acting on V`A (`¤ char.k/).
The tangent space Tgt0.A/ to A at 0 is a vector space over k of dimension g. As

we noted in �6, when k D C, the exponential map defines a surjective homomorphism
Tgt0.A/!A.C/ whose kernel is a lattice� in Tgt0.A/. Thus A.C/m ' 1

m
�=�'�=m�,

and

T`A'�˝ZZ`; V`A'�˝ZQ`; Tf AD�˝Z OZ; Vf AD�˝ZAf : (49)

An endomorphism a of A defines a C-linear endomorphism .da/0 of Tgt0.A/ such that
.da/0.�/�� (see 6.5), and Pa.T / is the characteristic polynomial of .da/0 on �.

For abelian varieties A and B over k, Hom.A;B/ is a torsion-free Z-module of finite
rank. We let AV.k/ denote the category of abelian varieties and homomorphisms over k and
AV0.k/ the category with the same objects but with

HomAV0.k/.A;B/D Hom0.A;B/D HomAV.k/.A;B/˝Q:

An isogeny of abelian varieties is a surjective homomorphism with finite kernel. A homo-
morphism of abelian varieties is an isogeny if and only if it becomes an isomorphism in the
category AV0.60 Two abelian varieties are said to be isogenous if there is an isogeny from
one to the other — this is an equivalence relation.

An abelian variety A over a field k is simple if it is nonzero and contains no nonzero
proper abelian subvariety. Every abelian variety is isogenous to a product of simple abelian
varieties. If A and B are simple, then every nonzero homomorphism from A to B is an
isogeny. It follows that End0.A/ is a division algebra when A is simple and a semisimple
algebra in general.

NOTES. For a detailed account of abelian varieties over algebraically closed fields, see Mumford
1970, and for a summary over arbitrary fields, see Milne 1986.

CM fields
A number field E is a CM (or complex multiplication) field if it is a quadratic totally
imaginary extension of a totally real field F . Let a 7! a� denote the nontrivial automorphism
of E fixing F . Then �.a�/D �.a/ for every �WE ,! C. We have the following picture:

E˝QR
Y

� WF!R

C� C� DE˝F;� R� C

a˝ r 7! .�a � r/� WF ˝QR
Y

� WF!R

R� R� D R

'

'

(50)

The involution � is positive (in the sense of Definition 8.11), because we can compute
TrE˝QR=F˝QR.b

�b/ on each factor on the right, where it becomes TrC=R. Nzz/D 2jzj2 > 0.
Thus, we are in the PEL situation considered in �8.

Let E be a CM-field with largest real subfield F . Each embedding of F into R will
extend to two conjugate embeddings of E into C. A CM-type ˚ for E is a choice of one

60Thus the objects of the skeleton of AV0 are the isogeny classes of abelian varieties. Sometimes the objects
of AV0 itself are called “abelian varieties up to isogeny”.
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element from each conjugate pair f'; N'g: In other words, it is a subset ˚ � Hom.E;C/ such
that

Hom.E;C/D ˚ t N̊ (disjoint union, N̊ D f N' j ' 2 ˚g).

Because E is quadratic over F , we have E D F Œ˛� with ˛ a root of a polynomial
X2CaXCb. On completing the square, we obtain an ˛ such that ˛2 2 F �. Then ˛�D�˛.
Such an element ˛ of E is said to be totally imaginary — note that its image in C under
every embedding E ,! C is purely imaginary.

The simplest CM-field is an imaginary quadratic extension E of Q. A CM-type on E is
the choice of an embedding E ,! C.

Abelian varieties of CM-type
Let E be a CM-field of degree 2g over Q. Let A be an abelian variety of dimension g over
C, and let i be a homomorphism E! End0.A/. If

Tgt0.A/� C˚ (as an E˝QC-module)

for some CM -type ˚ , then we say that .A; i/ is of CM-type .E;˚/. Equivalently, .A; i/ is
of CM-type ˚ if

Tr.i.a/ j Tgt0.A//D
X

'2˚
'.a/; all a 2E: (51)

REMARK 10.1. (a) In fact, .A; i/ will always be of CM-type for some ˚ . Recall (p. 73)
that A.C/' Tgt0.A/=� with � a lattice in Tgt0.A/. Then

�˝R' Tgt0.A/, �˝Q'H1.A;Q/; �˝R'H1.A;R/I

�˝C'H1.A;C/'H�1;0˚H 0;�1
' Tgt0.A/˚Tgt0.A/:

NowH1.A;Q/ is a one-dimensional vector space over E, and soH1.A;C/'
L
'WE!CC' ,

where C' denotes a 1-dimensional vector space with E acting through '. If ' occurs in
Tgt0.A/, then N' occurs in Tgt0.A/, and so Tgt0.A/'

L
'2˚ C' with ˚ a CM-type for E.

(b) A field E of degree 2g over Q acting on a complex abelian variety A of dimension g
is CM if A is simple, but not necessarily otherwise. For example, if B is an elliptic curve
with complex multiplication by a quadratic field E, then every quadratic extension E 0 of E
embeds into M2.E/' End0.B �B/, but such an E 0 need not be a CM field.

Let ˚ be a CM-type on E, and let C˚ be a direct sum of copies of C indexed by ˚ .
Denote by ˚ again the homomorphism OE ! C˚ , a 7! .'a/'2˚ .

PROPOSITION 10.2. The image ˚.OE / of OE in C˚ is a lattice, and the quotient

A˚ D C˚=˚.OE /

is an abelian variety of CM-type .E;˚/ for the natural homomorphism i˚ WE! End0.A˚ /.
Any other pair .A; i/ of CM-type .E;˚/ is E-isogenous to .A˚ ; i˚ /.

PROOF. We have

OE ˝ZR'OE ˝ZQ˝QR'E˝QR
e˝r 7!.:::;'e�r;:::/
������������!

'
C˚ ;
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and so ˚.OE / is a lattice in C˚ .
To show that the quotient is an abelian variety, we have to exhibit a Riemann form (see

6.7). Let ˛ be a totally imaginary element of E. The weak approximation theorem allows
us to choose ˛ so that =.'˛/ > 0 for ' 2 ˚ , and we can multiply it by a positive integer to
make it an algebraic integer. Define

 .u;v/D TrE=Q.˛uv
�/; u;v 2OE :

Then  .u;v/ 2 Z. The remaining conditions for  to be a Riemann form can be checked on
the right of (50). Here  takes the form  D

P
'2˚  ' , where

 '.u;v/D TrC=R.˛' �u � Nv/; ˛' D '.˛/; u;v 2 C:

Because ˛ is totally imaginary,

 '.u;v/D ˛'.u Nv� Nuv/ 2 R;

from which it follows that  '.u;u/ D 0,  '.iu; iv/ D  '.u;v/, and  '.u; iu/ > 0 for
u¤ 0. Thus,  is a Riemann form and A˚ is an abelian variety.

An element ˛ 2OE acts on C˚ as multiplication by ˚.˛/. This preserves ˚.OE /, and
so defines a homomorphism OE ! End.A˚ /. On tensoring this with Q, we obtain the ho-
momorphism i˚ . The map C˚ !C˚=˚.OE / defines an isomorphism C˚ D Tgt0.C˚ /!
Tgt0.A˚ / compatible with the actions of E. Therefore, .A˚ ; i˚ / is of CM-type .E;˚/.

Finally, let .A; i/ be of CM-type .E;˚/. This means that there exists an isomorphism
C˚ ! Tgt0.A/ of E˝QC-modules, and so A.C/ is a quotient of C˚ by a lattice � such
that Q� is stable under the action of E on C˚ given by ˚ (see 6.7 et seq.). Therefore
Q�D ˚.E/ �� for some � 2 .E˝R/�. After replacing the isomorphism C˚ ! Tgt0.A/

by its composite with C˚
�
�! C˚ , we may suppose that Q�D ˚.E/, and so �D ˚.�0/,

where �0 is a lattice in E. Now, N�0 �OE for some N , and there are OE -isogenies

C˚=�
N
! C˚=N� C˚=˚.OE /: 2

LetA be an abelian variety of dimension g over a subfield k of C, and let i WE!End0.A/
be a homomorphism with E a CM-field of degree 2g. Then Tgt0.A/ is a k-vector space
of dimension g on which E acts k-linearly, and, provided k is large enough to contain all
conjugates of E, it will decompose into one-dimensional k-subspaces indexed by a subset
˚ of Hom.E;k/. When we identify ˚ with a subset of Hom.E;C/, it becomes a CM-type,
and we again say .A; i/ is of CM-type .E;˚/.

PROPOSITION 10.3. Let .A; i/ be an abelian variety of CM-type .E;˚/ over C. Then
.A; i/ has a model over Qa, uniquely determined up to isomorphism.

PROOF. Let k � ˝ be algebraically closed fields of characteristic zero. For an abelian
variety A over k, the torsion points in A.k/ are Zariski dense, and the map on torsion points
A.k/tors ! A.˝/tors is bijective (see (48)), and so every regular map A˝ ! W˝ (W a
variety over k) is fixed by the automorphisms of ˝=k and is therefore defined over k (see
13.1 below). It follows that A 7! A˝ WAV.k/! AV.˝/ is fully faithful.

It remains to show that every abelian variety .A; i/ of CM-type over C arises from a pair
over Qa. The polynomials defining A and i have coefficients in some subring R of C that is
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finitely generated over Qa. According to the Hilbert Nullstellensatz, a maximal ideal m of R
will have residue field Qa, and the reduction of .A; i/ mod m is called a specialization of
.A; i/. Every specialization .A0; i 0/ of .A; i/ to a pair over Qa with A0 nonsingular will still
be of CM-type .E;˚/, because the CM-type is determined by the set of eigenvalues of a
generator e of E over Q acting on the tangent space, and this set is unchanged by the change
of ground ring from C to R to Qa. Therefore, by Proposition 10.2, there exists an isogeny
.A0; i 0/C! .A; i/. The kernel H of this isogeny is a subgroup of A0.C/tors D A

0.Qa/tors,
and .A0=H;i/ is a model of .A; i/ over Qa. 2

REMARK 10.4. The proposition implies that, in order for an elliptic curve A over C to be
of CM-type, its j -invariant must be algebraic.61

Let A be an abelian variety over a number field K, and let OK;P denote the localization
of OK at a prime ideal P. We say that A has good reduction at P if it extends to an
abelian scheme over OK;P, i.e., to a smooth proper scheme over OK;P with a group
structure. In down-to-earth terms this means the following: embed A as a closed subvariety
of some projective space PnK ; for each polynomial P.X0; : : : ;Xn/ in the homogeneous ideal
a defining A � PnK , multiply P by an element of K so that it (just) lies in the subring
OK;PŒX0; : : : ;Xn�, and let NP denote the reduction of P modulo P; the NP ’s obtained in this
fashion generate a homogeneous ideal Na in kŒX0; : : : ;Xn�, where k DOK=P; the abelian
variety A has good reduction at P if it is possible to choose the projective embedding of A
so that the zero set of Na is an abelian variety NA over k: Then NA is called the reduction of A
at P. It can be shown that, up to a canonical isomorphism, NA is independent of all choices.
For `¤ char.k/, V`.A/' V`. NA/. There is an injective homomorphism End.A/! End. NA/
compatible with V`.A/' V`. NA/ (both are reduction maps).

PROPOSITION 10.5. Let .A; i/ be an abelian variety of CM-type .E;˚/ over a number
field K � C, and let P be a prime ideal in OK . After possibly replacing K by a finite
extension, A will have good reduction at P.

PROOF. We use the Néron–Ogg–Shafarevich criterion (Serre and Tate 1968, Theorem 1):

an abelian variety over a number field K has good reduction at P if for some
prime `¤ char.OK=P/, the inertia group I at P acts trivially on T`A.

In our case, V`A is a free E˝QQ`-module of rank 1 because H1.AC;Q/ is a one-dimen-
sional vector space over E and V`A'H1.AC;Q/˝Q` (see (49)). Therefore, E˝QQ` is
its own centralizer in EndQ`.V`A/ and the representation of Gal.Qa=Q/ on V`A has image
in .E˝Q`/�, and, in fact, in a compact subgroup of .E˝Q`/�. But such a subgroup will
have a pro-` subgroup of finite index. Since I has a pro-p subgroup of finite index (ANT,
7.59), this shows that image of I is finite. After K has been replaced by a finite extension,
the image of I will be trivial, and the criterion applies. 2

61Consider the curve

E W Y 2C .j �1728/XY DX3�36.j �1728/2X � .j �1728/3;

where j 2 C is transcendental. Specializing E to Qa amounts to replacing j with an algebraic number, say, j 0,
in the equation. Since E has j -invariant j , and the specialized curve E 0 has j -invariant j 0, we see that E 0C is
not isomorphic to E.
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Abelian varieties over a finite field
Let F be an algebraic closure of the field Fp of p-elements, and let Fq be the subfield of F
with q D pm elements. An element a of F lies in Fq if and only if aq D a. Recall that, in
characteristic p, .XCY /p DXpCY p: Therefore, if f .X1; : : : ;Xn/ has coefficients in Fq ,
then

f .X1; : : : ;Xn/
q
D f .X

q
1 ; : : : ;X

q
n /; f .a1; : : : ;an/

q
D f .a

q
1 ; : : : ;a

q
n/; ai 2 F.

In particular, for a1; : : : ;an 2 F,

f .a1; : : : ;an/D 0 H) f .a
q
1 ; : : : ;a

q
n/D 0:

PROPOSITION 10.6. There is a unique way of attaching to every variety V over Fq a regular
map �V WV ! V such that

(a) for every regular map ˛WV !W , ˛ ı�V D �W ı˛;

(b) �A1 is the map a 7! aq .

PROOF. For an affine variety V D SpmA, define �V be the map corresponding to the
Fq-homomorphism x 7! xqWA! A. The rest of the proof is straightforward. 2

The map �V is called the Frobenius map of V .

THEOREM 10.7 (WEIL 1948). For an abelian variety A over Fq , End0.A/ is a finite-
dimensional semisimple Q-algebra with �A in its centre. For every embedding �WQŒ�A�!C,
j�.�A/j D q

1
2 .

PROOF. For a modern exposition of Weil’s proof, see Milne 1986, 19.1. 2

Moreover, End0.A/ is simple if and only if A is simple. Therefore, if A is simple, then
QŒ�A� is a field, and �A is an algebraic integer in it (p. 97). An algebraic integer � such
that j�.�/j D q

1
2 for all embeddings �WQŒ��! C is called a Weil q-integer (formerly, Weil

q-number).
For a Weil q-integer � ,

�.�/ ��.�/D q D �.q/D �.�/ ��.q=�/; all �WQŒ��! C,

and so �.q=�/D �.�/. It follows that the field �.QŒ��/ is stable under complex conjugation
and that the automorphism of QŒ�� induced by complex conjugation sends � to q=� and is
independent of �. This implies that QŒ�� is a CM-field (the typical case), Q, or QŒpp�.

LEMMA 10.8. Let � and � 0 be Weil q-integers lying in the same field E. If ordv.�/D
ordv.� 0/ for all vjp, then � 0 D �� for some root of 1 in E.

PROOF. As noted above, there is an automorphism of QŒ�� sending � to q=� . Therefore
q=� is also an algebraic integer, and so ordv.�/D 0 for every finite v − p. Since the same
is true for � 0, we find that j�jv D j� 0jv for all v. Hence �=� 0 is a unit in OE such that
j�=� 0jv D 1 for all vj1. But in the course of proving the unit theorem, one shows that such
a unit has to be root of 1 (ANT, 5.6). 2
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The Shimura–Taniyama formula.

LEMMA 10.9. Let .A; i/ be an abelian variety of CM-type .E;˚/ over a number field
k � C having good reduction at P �Ok to . NA; N{/ over Ok=PD Fq . Then the Frobenius
map � NA of NA lies in N{.E/.

PROOF. Let � D � NA. It suffices to check that � lies in N{.E/ after tensoring62 with Q`. As
we saw in the proof of (10.5), V`A is a free E˝QQ`-module of rank 1. It follows that
V` NA is also a free E˝QQ`-module of rank 1 (via N{). Therefore, any endomorphism of V` NA
commuting with the action of E˝Q` will lie in E˝Q`. 2

Thus, from .A; i/ and a prime P of k at which A has good reduction, we get a Weil
q-integer � 2E.

THEOREM 10.10 (SHIMURA–TANIYAMA). In the situation of the lemma, assume that k
is Galois over Q and contains all conjugates of E. Then for all primes v of E dividing p,

ordv.�/
ordv.q/

D
j˚ \Hvj

jHvj
; (52)

where Hv D f�WE! k j ��1.P/D pvg and jS j denotes the order of a set S .

We sketch a proof of the theorem at the end of the section.

REMARK 10.11. (a) According to (10.8), the theorem determines � up to a root of 1. Note
that the formula depends only on .E;˚/. It is possible to see directly that different pairs
.A; i/ over k of CM-type .E;˚/ can give different Frobenius elements, but they will differ
only by a root of 1.63

(b) Let � denote complex conjugation on QŒ��. Then ��� D q, and so

ordv.�/Cordv.��/D ordv.q/: (53)

Moreover,
ordv.��/D ordv�.�/

and
˚ \Hv� D N̊ \Hv.

Therefore, (52) is consistent with (53):

ordv.�/
ordv.q/

C
ordv.��/
ordv.q/

.52/
D
j˚ \HvjC j˚ \Hv� j

jHvj
D
j.˚ [ N̊ /\Hvj

jHvj
D 1:

In fact, (52) is the only obvious formula for ordv.�/ consistent with (53), which is probably
a more convincing argument for its validity than the proof sketched below.

62Let W be a subspace of a k-vector space V , and let R be a ring containing k. Then (R˝kW /\V DW
(intersection inside V ). To see this, note that an element v of V lies in W if and only if f .v/ D 0 for all
f 2 .V=W /_, and that f .v/ is zero if and only if it is zero in R.

63Let � 0 arise from second model .A0; i 0/. Then .A0; i 0/ will become E-isogenous to .A; i/ over a finite
extension k0 of k (see 10.2), from which it follows that �f D � 0f for f the degree of the residue field extension.
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THE OE -STRUCTURE OF THE TANGENT SPACE

Let R be a Dedekind domain. Any finitely generated torsion R-module M can be written as
a direct sum

L
i R=p

ri
i with each pi an ideal in R and ri � 1, and the set (with multiplicities)

of pairs .pi ; ri / is uniquely determined by M . Define64 jM jR D
Q

prii . For example, for
RD Z, M is a finite abelian group and jM jZ is the ideal in Z generated by the order of M .

For Dedekind domains R � S with S finite over R, there is a norm homomorphism
sending fractional ideals of S to fractional ideals of R (ANT, p. 68). It is compatible with
norms of elements, and

Nm.P/D pf .P=p/; P prime, pDP\R

Clearly,
jS=AjR D Nm.A/ (54)

since this is true for prime ideals, and both sides are multiplicative.

PROPOSITION 10.12. Let A be an abelian variety of dimension g over Fq , and let i be a
homomorphism from the ring of integers OE of a field E of degree 2g over Q into End.A/.
Then

jTgt0.A/jOE D .�A/:

PROOF. Omitted (for a scheme-theoretic proof, see Giraud 1968, Théorème 1). 2

SKETCH OF THE PROOF THE SHIMURA–TANIYAMA FORMULA

We return to the situation of the Theorem 10.10. After replacing A with an isogenous variety,
we may assume i.OE /� End.A/. By assumption, there exists an abelian scheme A over
Ok;P with generic fibre A and special fibre an abelian variety NA. Because A is smooth over
Ok;P, the relative tangent space of A=Ok;P is a free Ok;P-module T of rank g endowed
with an action of OE such that

T ˝Ok;P k D Tgt0.A/; T ˝Ok;P Ok;P=PD Tgt0. NA/:

Therefore,
.�/

10:12
D

ˇ̌
Tgt0. NA/

ˇ̌
OE D

ˇ̌
T ˝Ok;P .Ok;P=P/

ˇ̌
OE

: (55)

For simplicity, assume65 that .p/ def
DP\Z is unramified in E. Then the isomorphism of

E-modules
T ˝Ok;P k! k˚

restricts to an isomorphism of OE -modules66

T !O˚k;P. (56)

64Better, the first statement shows that the K-group of the category of finitely generated torsion R-modules
is canonically isomorphic to the group of fractional ideals of R, and so jM jR denotes the class of M in the
K-group.

65This, in fact, is the only case we need, because it suffices for the proof of the main theorem in �10, which in
turn implies the Shimura–Taniyama formula.

66Since OE is unramified at p, OE ˝ZZp is étale over Zp , and so OE ˝ZOP is étale over OP. In fact, the
isomorphism E˝Q k '

Q
� WE!k k� induces an isomorphism OE ˝ZOP '

Q
� WE!kO� where O� denotes

OP regarded as a OE -algebra via � . Thus, the finitely generated projective OE ˝ZOP-modules are direct
sums of O� ’s, from which the statement follows. For a more explicit proof, see Shimura 1999, 13.2.
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In other words, T is a direct sum of copies of Ok;P indexed by the elements of ˚ , and OE
acts on the 'th copy through the map

OE
'
�!Ok �Ok;P:

As Ok=P'Ok;P=P (ANT, 3.10), the contribution of the 'th copy to .�/ in (55) is

jOk=Pj'OE
.54/
D '�1.Nmk='EP/:

Thus,
.�/D

Y
'2˚

'�1.Nmk='EP/: (57)

This is how Shimura and Taniyama state their formula (Shimura and Taniyama 1961, III,
Theorem 1).

The derivation of (52) from (57) is easy. Because p is unramified in E, ordv.p/D 1 for
all primes v of E dividing p, and so

ordv.q/D f .P=p/:

The formula (57) can be restated as

ordv.�/D
X

'2˚\Hv

f .P='pv/;

and so
ordv.�/
ordv.q/

D

X
'2˚\Hv

1

f .pv=p/
D j˚ \Hvj �

1

jHvj
:

ASIDE. As Yoshida (BAMS 2002, p. 441) wrote, “Shimura’s mathematics developed by stages:
(A) complex multiplication of abelian varieties H)
(B) the theory of canonical models = Shimura varieties H)
(C) critical values of zeta functions and periods of automorphic forms.

(B) includes (A) as the 0-dimensional special case of canonical models. The relation of (B) and (C)
is more involved, but (B) provides a solid foundation of the notion of the arithmetic automorphic
forms.” In these notes, we treat only (A) and (B).

NOTES. The first statement of the Shimura-Taniyama formula that I know of is in Weil’s conference
talk (Weil 1956b, p. 21), where he writes “[For this] it is enough to determine the prime ideal
decomposition of � . . . But this has been done by Taniyama” (italics in original). The formula (57) is
proved in Shimura and Taniyama 1961, III.13, in the unramified case using spaces of differentials
rather than tangent spaces. For a modern exposition of their proof, which is quite short and elementary,
see II, 8, of my notes Complex Multiplication. These notes also discuss other proofs of the theorem
(Giraud 1968, Tate 1968, Serre 1968).
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11 Complex multiplication: the main theo-
rem

Let E be an imaginary quadratic extension of Q, and let A be an elliptic curve over C such
that End.A/DOE . Then j.A/ generates the Hilbert class field QE of E (maximum abelian
unramified extension of E). Now let A be an elliptic curve over QE with End.A/DOE , and
suppose that O�E D f˙1g. Then the x-coordinates of the torsion points on A generate the
maximum abelian extension Eab of E. This is a brief statement of the classical theory of
complex multiplication for elliptic curves (Kronecker, Weber, . . . ; see Serre 1967a). To prove
these results one first determines how Gal.Eab=E/ acts on A and its torsion points, and then
one applies class field theory. Shimura and Taniyama (and Weil) extended the theory to
abelian varieties. To a CM-field E and CM-type ˚ on E, they attach a second CM-field E�,
called the reflex field. When E is quadratic over Q, then E� DE. Now let A be a complex
abelian variety of CM-type .E;˚/. The main theorem of complex multiplication (11.2)
describes how Gal.E�ab=E�/ acts on A and its torsion points. Later we shall re-interpret the
theorem as describing how Aut.C=E�/ acts on the complex points of the Shimura variety
defined by a torus.

Review of class field theory
Classical class field theory classifies the abelian extensions of a number field E, i.e., the
Galois extensions L=E such Gal.L=E/ is commutative. Let Eab be the composite of all the
finite abelian extensions of E inside some fixed algebraic closure Ea of E. Then Eab is an
infinite Galois extension of E.

According to class field theory, there exists a continuous surjective homomorphism (the
reciprocity or Artin map)

recE WA�E ! Gal.Eab=E/

such that, for every finite extensionL ofE contained inEab, recE gives rise to a commutative
diagram

E�nA�E Gal.Eab=E/

E�nA�E=NmL=E .A�L/ Gal.L=E/:

recE
onto

� 7!� jL

recL=E
'

It has the following properties (which determine it):

(a) recL=E .u/D 1 for every uD .uv/ 2 A�E such that

i) if v is unramified in L, then uv is a unit,

ii) if v is ramified in L, then uv is sufficiently close to 1 (depending only on L=E),
and

iii) if v is real but becomes complex in L, then uv > 0.

(b) For every prime v of E unramified in L, the idèle

˛ D .1; : : : ;1;�
v
;1; : : :/; � a prime element of OEv ;

maps to the Frobenius element .v;L=E/ 2 Gal.L=E/.
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Recall that if P is a prime ideal of L lying over pv, then .v;L=E/ is the automorphism of
L=E fixing P and acting as x 7! x.OE Wpv/ on the residue field OL=P.

To see that there is at most one map satisfying these conditions, let ˛ 2 A�E , and use
the weak approximation theorem to choose an a 2 E� that is close to ˛v for all primes v
that ramify in L or become complex. Then ˛ D auˇ with u an idèle as in (a) and ˇ a finite
product of idèles as in (b). Now recL=E .˛/D recL=E .ˇ/, which can be computed using (b).

Note that, because the group Gal.Eab=E/ is totally disconnected, the identity component
of E�nA�E is contained in the kernel of recE . In particular, the identity component ofQ
vj1E

�
v is contained in the kernel, and so, when E is totally imaginary, recE factors

through E�nA�
E;f

.
For E DQ, the reciprocity map factors through Q�nf˙g�A�

f
, and every element in

this quotient is uniquely represented by an element of OZ� � A�
f
: In this case, we get the

diagram
OZ� Gal.Qab=Q/ Qab D

S
QŒ�N �

.Z=NZ/� Gal.QŒ�N �=Q/

recQ
'

restrict
Œa� 7!.�N 7!�

a
N /

'

(58)

which commutes with an inverse, i.e., the two maps send an element of OZ� to inverse
elements of Gal.QŒ�N �=Q/. This can be checked by writing an idèle ˛ in the form auˇ as
above, but it is more instructive to look at an example. Let p be a prime not dividing N , and
let

˛ D p � .1
2
; : : : ;1;p�1

p
;1; : : :/ 2 Z �A�f D A�f :

Then ˛ 2 OZ� and has image Œp� in Z=NZ, which acts as .p;QŒ�N �=Q/ on QŒ�N �. On the
other hand, recQ.˛/D recQ..1; : : : ;p�1; : : ://, which acts as .p;QŒ�N �=Q/�1.

NOTES. For the proofs of the above statements, see Tate 1967 or my notes Class Field Theory.

Convention for the (Artin) reciprocity map
It simplifies the formulas in Langlands theory if one replaces the reciprocity map with its
reciprocal. For ˛ 2 A�E , write

artE .˛/D recE .˛/�1: (59)

Now, the diagram (58) commutes with artQ for recQ. In other words,

artQ.�.�//D �; for � 2 Gal.Qab=Q/,

where � is the cyclotomic character Gal.Qab=Q/! OZ�, which is characterized by

�� D ��.�/; � a root of 1 in C�:

The reflex field and norm of a CM-type
Let .E;˚/ be a CM-type.

DEFINITION 11.1. The reflex field E� of .E;˚/ is the subfield of Qa characterized by any
one of the following equivalent conditions:
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(a) � 2 Gal.Qa=Q/ fixes E� if and only if �˚ D ˚ ; here �˚ D f� ı'j' 2 ˚g;

(b) E� is the field generated over Q by the elements
P
'2˚ '.a/, a 2E;

(c) E� is the smallest subfield k of Qa such that there exists a k-vector space V with an
action of E for which

Trk.ajV /D
P
'2˚ '.a/; all a 2E:

ASIDE. We verify the equivalence.
(a),(b). If � 2 Gal.Qa=Q/ permutes the '’s, then clearly it fixes all elements of the formP

'2˚ '.a/. Conversely, if
P
'2˚ '.a/D

P
'2˚ .�'/.a/ for all a 2E�, then f�'j' 2 ˚g D ˚ by

Dedekind’s theorem on the independence of characters. This shows that conditions (a) and (b) define
the same field.

(b),(c). If there exists a k-vector space V as in (c), then clearly k contains the field in (b). On
the other hand, there exists a representation of .Gm/E=Q on a vector space V over the field E� in
(a) with ˚ as its set of characters (p. 17), and the action of E� D .Gm/E=Q.Q/ on V extends to an
action of E with trace

P
'2˚ '.a/.

Let V be anE�-vector space with an action ofE such that TrE�.ajV /D
P
'2˚ '.a/ for

all a 2E. We can regard V as an E�˝QE-space, or as an E-vector space with a E-linear
action of E�. The reflex norm is the homomorphism67 N˚� W.Gm/E�=Q! .Gm/E=Q such
that

N˚�.a/D detE .ajV /; all a 2E��.

This definition is independent of the choice of V because V is unique up to an isomorphism
respecting the actions of E and E�.

Let .A; i/ be an abelian variety of CM-type .E;˚/ defined over C. According to (11.1c)
applied to Tgt0.A/, any field of definition of .A; i/ contains E�.

Statement of the main theorem of complex multiplication
A homomorphism � Wk!˝ of fields defines a functor V 7! �V , ˛ 7! �˛, “extension of the
base field” from varieties over k to varieties over ˝. In particular, an abelian variety A over
k equipped with a homomorphism i WE! End0.A/ defines a similar pair �.A;i/D .�A;� i/
over ˝. Here � i WE! End.�A/ is defined by

� i.a/D �.i.a//:

A point P 2A.k/ gives a point �P 2A.˝/, and so � defines a homomorphism � WVf .A/!

Vf .�A/ provided that k and˝ are algebraically closed (otherwise one would have to choose
an extension of k to a homomorphism ka!˝a).

THEOREM 11.2. Let .A; i/ be an abelian variety of CM-type .E;˚/ over C, and let � 2
Aut.C=E�/. For any s 2 A�

E�;f
with artE�.s/ D � jE�ab, there exists a unique E-linear

‘isogeny’ ˛WA! �A such that ˛.N˚�.s/ �x/D �x for all x 2 Vf A.

PROOF. Formation of the tangent space commutes with extension of the base field, and so

Tgt0.�A/D Tgt0.A/˝C;� C
67One can show that E� is again a CM-field, and that an embedding of E into Qa defines a CM-type on E�.

The reflex norm is usually defined in terms of ˚� but we will not need it.
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as an E˝QC-module. Therefore, .�A;� i/ is of CM type �˚ . Since � fixes E�, �˚ D ˚ ,
and so there exists an E-linear ‘isogeny’ ˛WA! �A (see 10.2). The map

Vf .A/
�
! Vf .�A/

Vf .˛/
�1

! Vf .A/

is E˝QAf -linear. As Vf .A/ is free of rank one over E˝QAf D AE;f , this map must
be multiplication by an element of a 2 A�

E;f
. When the choice of ˛ is changed, then a is

changed only by an element of E�, and so we have a well-defined map

� 7! aE�WGal.Qa=E�/! A�E;f =E
�;

which one checks to be a homomorphism. The map factors through Gal.E�ab=E�/, and so,
when composed with the reciprocity map artE� , it gives a homomorphism

�WA�E�;f =E
��
! A�E;f =E

�:

We have to check that � is the homomorphism defined by N˚� , but it can be shown that this
follows from the Shimura–Taniyama formula (Theorem 10.10). Now ˛.N˚�.s/ �x/D �x

after possibly replacing ˛ with a multiple of ˛ by an element of E�. The uniqueness follows
from the faithfulness of the functor A Vf .A/. 2

REMARK 11.3. (a) If s is replaced by as, a 2 E��, then ˛ must be replaced by ˛ ı
N˚�.a/

�1:

(b) The theorem is a statement about the E-isogeny class of .A; i/ — if ˇW.A; i/!
.B;j / is an E-linear isogeny, and ˛ satisfies the conditions of the theorem for .A; i/, then
.�ˇ/ı˛ ıˇ�1 satisfies the conditions for .B;j /.

ASIDE 11.4. What happens in (11.2) when � is not assumed to fix E�? This also is known,
thanks to Deligne and Langlands. For a discussion of this, see �10 of Chapter II of my notes
Complex Multiplication.

ASIDE. The Kronecker-Weber theorem says that Qab can be obtained from Q by adjoining the special
values e2�iz , z 2Q�, of the exponential function e. The classical theory of complex multiplication
for elliptic curves says the maximum abelian extension of an imaginary quadratic field E can be
obtained from E by adjoining certain special values of elliptic modular functions.

The twelfth of Hilbert’s famous problems asked for an extension of these results to all number
fields.

What answer does the theory of complex multiplication give to Hilbert’s problem? This was
worked out by Wafa Wei in her Ph.D. thesis (University of Michigan, 2003). Let E be a CM-field
and let F be the totally real subfield of E such that ŒEWF �D 2. It is well-known that the theory of
complex multiplication gives nothing about the abelian extensions of the totally real field F (except
for those extensions coming from Q). Subject to this limitation, it gives everything. The precise
statement is the following. Let H be the image of the Verlagerung map Gal.F a=F /! Gal.Ea=E/.
Then the extension of E obtained by adjoining the special values of all automorphic functions on the
canonical models of all Shimura varieties with rational weight is .Eab/H �Qab.
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12 Definition of canonical models
Let .G;X/ be a Shimura datum and .G0;XC/ the associated connected Shimura datum.
Attached to every compact open subgroup K of G.Af /, there is a map

fK WShK.G;X/! �K

of varieties over C. Here �K is a variety of dimension zero, and the fibres of fK are
connected Shimura varieties attached to .G;XC/.

The theory of canonical models defines

(a) a “reflex” field E D E.G;X/, which is an algebraic number field contained in C
depending only on .G;X/;

(b) a “canonical” model .fK/0 WShK.G;X/0! .�K/0 of fK over E, which is uniquely
characterized by the reciprocity laws at the special points.

It also describes the action of Aut.C=E/ on �K corresponding to its model .�K/0, and
hence it defines a model of each connected component of ShK.G;X/ over a finite extension
of E.

Models of varieties
Let k be a subfield of a field ˝, and let V be a variety over ˝. A model of V over k (or a
k-structure on V ) is a variety V0 over k together with an isomorphism 'WV0˝ ! V . We
often omit the map ' and regard a model as a variety V0 over k such that V0˝ D V .

Consider an affine variety V over C and a subfield k of C. An embedding V ,! AnC
defines a model of V over k if the ideal I.V / of polynomials zero on V is generated by
polynomials in kŒX1; : : : ;Xn�, because then I0

def
D I.V /\kŒX1; : : : ;Xn� is a radical ideal,

kŒX1; : : : ;Xn�=I0 is an affine k-algebra, and V.I0/� An
k

is a model of V . Moreover, every
model .V0;'/ arises in this way because every model of an affine variety is affine. However,
different embeddings in affine space will usually give rise to different models. For example,
the embeddings

A2C
.x;y/ [.x;y/
 ��������� V.X2CY 2�1/

.x;y/7!.x;y=
p
2/

������������! A2C

define the Q-structures
X2CY 2 D 1; X2C2Y 2 D 1

on the curve X2CY 2 D 1. These are not isomorphic.
Similar remarks apply to projective varieties.
In general, a variety over C will not have a model over a number field, and when it

does, it will have many. For example, an elliptic curve E over C has a model over a
number field if and only if its j -invariant j.E/ is an algebraic number, and if Y 2Z D
X3C aXZ2C bZ3 is one model of E over a number field k (meaning, a;b 2 k), then
Y 2Z DX3Cac2XZ2Cbc3Z3 is a second, which is isomorphic to the first only if c is a
square in k.

ASIDE. Most complex algebraic varieties have no model over a number field, so why do Shimura
varieties have such a model? Here is a heuristic explanation. If the smallest field of definition of a
complex algebraic variety is transcendental over Q, then we can spread the variety out and obtain
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a flat family of varieties. Therefore, such a variety should not be locally rigid, i.e., it should admit
nontrivial local deformations. This means that a complex algebraic variety should admit a model
over Qa if it is locally rigid. The fact that there are only countably many arithmetic locally symmetric
varieties up to isomorphism suggests that they are locally rigid and hence defined over Qa. This
heuristic argument can be made rigorous (Shimura, Faltings). For a recent exposition, see Peters
2017b,a.

The reflex field
The reflex field of a Shimura variety is a number field that is the “natural” field of definition
of the Shimura variety. Indeed, whenever the Shimura is a moduli variety in some natural
way, the reflex field is the field of definition of the moduli problem.

For a reductive group G over Q and a subfield k of C, we write C.k/ for the set of
G.k/-conjugacy classes of cocharacters of Gk defined over k:

C.k/DG.k/nHom.Gm;Gk/:

A homomorphism k! k0 induces a map C.k/! C.k0/; in particular, Aut.k0=k/ acts on
C.k0/.

Assume thatG splits over k, so thatGk contains a split maximal torus T . The Weyl group
W DW.Gk;T / is the constant étale algebraic group N=N ı, where N is the normalizer of
T in Gk . For every field k0 containing k

W.k/DW.k0/DN.k0/=T .k0/

(Milne 2017, 21.1).

LEMMA 12.1. Let T be a split maximal torus in Gk . Then the map

W nHom.Gm;Tk/!G.k/nHom.Gm;Gk/

is bijective.

PROOF. As any two maximal split tori are conjugate (Milne 2017, 17.105), the map is
surjective. Let � and �0 be cocharacters of T that are conjugate by an element of G.k/,
say, �D ad.g/ı�0 with g 2G.k/. Then ad.g/.T / and T are both maximal split tori in the
centralizer68 C of �.Gm/, which is a connected reductive group (ibid., 17.59). Therefore,
there exists a c 2C.k/ such that ad.cg/.T /D T . Now cg normalizes T and ad.cg/ı�0D�,
which proves that � and �0 are in the same W -orbit. 2

Let .G;X/ be a Shimura datum. For each x 2X , we have a cocharacter �x of GC:

�x.z/D hxC.z;1/.

A different x 2 X will give a conjugate �x , and so X defines an element c.X/ of C.C/.
Neither Hom.Gm;TQa/ nor W changes when we replace C with the algebraic closure Qa

of Q in C, and so the lemma shows that c.X/ contains a � defined over Qa and that the
G.Qa/-conjugacy class of � is independent of the choice of �. This allows us to regard
c.X/ as an element of C.Qa/.

68Certainly T � C . Let t 2 T .ka/ and a 2Gm.ka/. Then

gtg�1 ��.a/D gt ��0.a/ �g�1 D g ��0.a/ � tg�1 D �.a/ �gtg�1;

and so gTg�1 � C . More conceptually, T centralizes both �.Gm/ and �0.Gm/, and the second condition
implies that ad.g/.T / centralizes ad.g/�0.Gm/D �.Gm/.
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DEFINITION 12.2. The reflex (or dual) field E.G;X/ is the field of definition of c.X/ in
Qa, i.e., it is the fixed field of the subgroup of Gal.Qa=Q/ fixing c.X/ as an element of
C.Qa/ (or stabilizing c.X/ as a subset of Hom.Gm;GQa/).

We will see in 12.4(b) that this generalizes the reflex field of a CM type.

REMARK 12.3. (a) Any subfield k of Qa splitting G contains E.G;X/. This follows from
the lemma, because W nHom.Gm;T / does not change when we pass from k to Qa. It
follows that E.G;X/ has finite degree over Q.

(b) If c.X/ contains a � defined over k, then k � E.G;X/. Conversely, if G is quasi-
split over k and k � E.G;X/, then c.X/ contains a � defined over k (Kottwitz 1984,
1.1.3).

(c) Let .G;X/
i
,! .G0;X 0/ be an inclusion of Shimura data. Then i WG!G0 induces a

Gal.Qa=Q/-equivariant map CG.Qa/! CG0.Qa/ sending c.X/ to c.X 0/. Therefore,

E.G;X/�E.G0;X 0/.

EXAMPLE 12.4. We explain how to calculate the reflex field.

(a) Let T be a torus over Q, and let h be a homomorphism S! TR. Then �hWGmC! TC
is defined over Qa, and E.T;fhg/ is the fixed field of the subgroup of Gal.Qa=Q/
fixing �h 2X�.T /.

(b) Let .E;˚/ be a CM-type, and let T D .Gm/E=Q. Then T .R/D .E˝QR/�' .C˚ /�,
and we define h˚ WS! TR to be the homomorphism such that h˚ .R/ is

z 7! .z; : : : ; z/WC�! .C˚ /�.

On C-points, .h˚ /CWSC! TC is the map

.z1;z2/ 7! .z1; : : : ; z1;z2; : : : ; z2/WC��C� �! .C˚ /�� .C N̊ /�;

and the corresponding cocharacter �˚ is

z 7! .z; : : : ; z;1; : : : ;1/WC� �! .C˚ /�� .C N̊ /�.

Clearly, �˚ is defined over Qa, and the elements of Gal.Qa=Q/ fixing it are those
stabilizing ˚ . Therefore E.T;fh˚g/ is equal to the reflex field of .E;˚/ (see 11.1).

(c) If .G;X/ is a simple PEL datum of type (A) or (C), thenE.G;X/ is the field generated
over Q by fTrX .b/ j b 2 Bg (Deligne 1971c, 6.1). [This is a motivating example. The
� fixing the reflex field are exactly those that preserve the family of abelian varieties
(with additional structure) parametrized by the Shimura variety. In other words, the
reflex field is the natural field of definition of the moduli problem.]

(d) Let .G;X/ be the Shimura datum defined by a quaternion algebra B over a totally
real number field F , as in Example 5.24. With the notation of that example, the class
c.X/ contains the cocharacter �WGmC!GC,

z 7! .1; : : : ;1/�
��
z 0
0 1

�
; : : : ;

�
z 0
0 1

��
2 GLIc2C�GLInc2C :

This is defined over Qa, and E.G;X/ is the fixed field of the subgroup of Gal.Qa=Q/
stabilizing Inc � I . For example, if Inc consists of a single element v, so Sh.G;X/ is
a curve, then E.G;X/D v.F /.
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(e) Let .G;X/ be a Shimura datum in which G is adjoint. Choose a maximal torus T
in GQa and a base � for the roots of .G;T /Qa . Recall that the nodes of the Dynkin
diagram of .G;T / are indexed by �. There is a natural “�”-action of the Galois group
Gal.Qa=Q/ on � (see A.8). Each c 2 C.Qa/ contains a unique �WGm! GQa such
that h˛;�i � 0 for all ˛ 2� (because the Weyl group acts simply transitively on the
Weyl chambers), and the map

c 7! .h˛;�i/˛2�WC.Qa/! N� (product of copies of N indexed by �)

is bijective. Therefore, E.G;X/ is the fixed field of the subgroup of Gal.Qa=Q/ fixing
.h˛;�i/˛2� 2 N�. See Deligne 1971b, p. 139.
As GR contains a compact maximal torus, complex conjugation acts as the opposition
involution on �. It follows that E.G;X/ is a totally real field if the opposition
involution fixes .h˛;�i/˛2� and otherwise it is a CM-field.

(f) Let .G;X/ be a Shimura datum. Let G1; : : : ;Gg be the simple factors of Gad, and let
T D G=Gder. Then .G;X/ defines Shimura data .G1;X1/; : : : ; .Gr ;Xr/;and .T;h/,
and

E.G;X/DE.G1;X1/ � � � � �E.Gr ;Xr/ �E.T;h/.

It follows that if T is split by a CM-field (SV6), then E.G;X/ is either a CM-field or
is totally real. See Deligne 1971b, 3.8.

Special points

DEFINITION 12.5. A point x 2X is said to be special if there exists a torus69 T �G such
that hx.C�/ � T .R/. We then call .T;x/, or .T;hx/, a special pair in .G;X/. When the
weight is rational and Z.G/ı splits over a CM-field (i.e., SV4 and SV6 hold), the special
points and special pairs are called CM points and CM pairs.70

REMARK 12.6. If .T;x/ is special, then T .R/ fixes x. Conversely, let T be a maximal
torus of G such that T .R/ fixes x, i.e., such that ad.t/ ıhx D hx for all t 2 T .R/. Then
h.C�/ is contained in the centralizer of T .R/ in G.R/. Because TR is its own centralizer in
GR, this implies that hx.C�/� T .R/, and so x is special.

EXAMPLE 12.7. Let G D GL2 and let H˙1 D CXR. Then G.R/ acts on H˙1 by�
a b

c d

�
z D

azCb

czCd
.

Suppose that z 2 CXR generates a quadratic imaginary extension E of Q. Using the Q-
basis f1;�zg for E, we obtain an embedding E ,!M2.Q/, and hence a maximal subtorus
.Gm/E=Q �G.

The C-vector space E˝C has basis f1˝1; 1˝ .�z/g. The kernel of the map e˝ z!
ezWE˝C! C is the one-dimensional space spanned by z˝ 1C 1˝ .�z/, which, with
respect to our basis, is .z1 /. This represents the point z 2H˙1 . The map is E˝R-linear, and
so .E˝R/� fixes z, i.e., .Gm/E=Q.R/ fixes z. This shows that z is special. Conversely,
if z 2H˙1 is special, then QŒz� is a field of degree 2 over Q. Thus, the special points are
exactly the points such that the elliptic curve C=ZCZz has complex multiplication.

69Meaning, of course, defined over Q.
70Because then the homomorphism hx WS! T factors through the Serre group, and for any representation

.V;�/ of T , .V;�R ıhx/ is the Hodge structure of a CM-motive. [Reference to be added.]
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More generally, whenever the Shimura variety is a moduli variety for abelian varieties
with additional structure in some natural way, the special points correspond to abelian
varieties of CM-type. Therefore the theory of complex multiplication describes how an open
subgroup of Aut.C/ acts on the abelian variety and its additional structure, and hence on the
corresponding points of the Shimura variety. In the next two subsections, we define an action
of an open subgroup of Aut.C/ on the special points of a Shimura variety. When the Shimura
variety is a moduli variety, this agrees with the action given by complex multiplication.

The homomorphism rx

Let T be a torus over Q and let � be a cocharacter of T defined over a finite extension E of
Q. For Q 2 T .E/, the element

P
�WE!Qa �.Q/ of T .Qa/ is stable under Gal.Qa=Q/ and

hence lies in T .Q/. Let r.T;�/ be the homomorphism .Gm/E=Q! T such that

r.T;�/.P /D
X

�WE!Qa

�.�.P //; all P 2E�: (60)

Let .T;x/� .G;X/ be a special pair, and let E.x/ be the field of definition of �x . We
define rx to be the homomorphism

A�E.x/
r.T;�/
����! T .AQ/

project
����! T .AQ;f /: (61)

Let a 2 A�
E.x/

, and write aD .a1;af / 2 .E.x/˝QR/��A�
E.x/;f

; then

rx.a/D
X

�WE!Qa

�.�x.af //:

Definition of a canonical model
For a special pair .T;x/� .G;X/, we have homomorphisms ((59),(61)),

artE.x/WA�E.x/� Gal.E.x/ab=E.x//

rx WA�E.x/! T .Af /:

We write Œx;a�K for the element of

ShK.G;X/DG.Q/nX �G.Af /=K

represented by .x;a/ 2X �G.Af /.

DEFINITION 12.8. Let .G;X/ be a Shimura datum, and let K be a compact open subgroup
of G.Af /. A model MK.G;X/ of ShK.G;X/ over E.G;X/ is canonical if, for every
special pair .T;x/� .G;X/ and a 2G.Af /, Œx;a�K has coordinates in E.x/ab and

�Œx;a�K D Œx;rx.s/a�K ; (62)

for all71

� 2 Gal.E.x/ab=E.x//

s 2 A�
E.x/

�
with artE.x/.s/D � .

In other words, MK.G;X/ is canonical if every automorphism � of C fixing E.x/ acts on
Œx;a�K according to the rule (62), where s is any idèle such that artE.x/.s/D � jE.x/ab.

71If q 2 G.Q/ and qx D x, then Œx;qa�K D Œx;a�K , and so, according to (62), we should have
Œx;rx.s/qa�K D Œx;rx.s/a�K . Following Deligne 1979, 2.2.4, I leave it to the reader to check this.
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REMARK 12.9. Let .T1;x/ and .T2;x/ be special pairs in .G;X/ (with the same x). Then
.T1\T2;x/ is also a special pair, and if the condition in (62) holds for one of .T1\T2;x/,
.T1;x/, or .T2;x/, then it holds for all three. Therefore, in stating the definition, we could
have considered only special pairs .T;x/ with, for example, T minimal among the tori such
that TR contains hx.S/.

DEFINITION 12.10. Let .G;X/ be a Shimura datum.
(a) A model of Sh.G;X/ over a subfield k of C is an inverse system M.G;X/ D

.MK.G;X//K of varieties over k endowed with a right action of G.Af / such that
M.G;X/C D Sh.G;X/ (with its G.Af / action).

(b) A model M.G;X/ of Sh.G;X/ over E.G;X/ is canonical if each MK.G;X/ is
canonical.

Examples: Shimura varieties defined by tori
For a field k of characteristic zero, the functor V  V.ka/ is an equivalence from the
category of zero-dimensional varieties over k to the category of finite sets endowed with
a continuous action of Gal.ka=k/. “Continuous” here just means that the action factors
through Gal.L=k/ for some finite Galois extension L of k contained in ka. In particular,
to give a zero-dimensional variety over an algebraically closed field of characteristic zero
is just to give a finite set. Thus, a zero-dimensional variety over C can be regarded as a
zero-dimensional variety over Qa, and to give a model of V over a number field E amounts
to giving a continuous action of Gal.Qa=Q/ on V.C/.

TORI

Let T be a torus over Q, and let h be a homomorphism S! TR. Then .T;h/ is a Shimura
datum, and E def

DE.T;h/ is the field of definition of �h. In this case

ShK.T;h/D T .Q/nfhg�T .Af /=K

is a finite set (see 5.22), and (62) defines a continuous action of Gal.Eab=E/ on ShK.T;h/.
This action defines a model of ShK.T;h/ over E, which, by definition, is canonical.

CM-TORI

Let .E;˚/ be a CM-type, and let .T;h˚ / be the Shimura pair defined in (12.4b). Then
E.T;h˚ /DE

�, and r.T;�˚ /W.Gm/E�=Q! .Gm/E=Q is the reflex norm N˚� .
Let K be a compact open subgroup of T .Af /. I claim that the Shimura variety

ShK.T;h˚ / classifies isomorphism classes of triples .A; i;�K/ in which .A; i/ is an abelian
variety over C of CM-type .E;˚/ and � is anE˝Af -linear isomorphism V.Af /! Vf .A/.
An isomorphism .A; i;�K/! .A0; i 0;�0K/ is an E-linear isomorphism A! A0 in AV0.C/
sending �K to �0K.

To prove the claim, let V be a one-dimensional E-vector space, and regard it as a
Q-vector space. The action of E on V realizes T as a subtorus of GL.V /. If .A; i/ is of
CM-type .E;˚/, then there exists an E-isomorphism aWH1.A;Q/! V carrying hA to h˚
(see 10.2). Now the isomorphism

V.Af /
�
�! Vf .A/

a
�! V.Af /
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is E˝Af -linear, and hence is multiplication by an element g of .E˝Af /� D T .Af /:
The map .A; i;�/ 7! Œg� gives the bijection.

In (10.3) and its proof, we showed that the functor .A; i/ .AC; iC/ defines an equiv-
alence from the category of abelian varieties over Qa of CM-type .E;˚/ to the similar
category over C (the abelian varieties are to be regarded as objects of AV0). Therefore,
ShK.T;h˚ / classifies isomorphism classes of triples .A; i;�K/, where .A; i/ is now an
abelian variety over Qa of CM-type .E;˚/.

The group Gal.Qa=E�) acts on the set MK of such triples: let .A; i;�/ 2MK ; for � 2
Gal.Qa=E�/, define �.A;i;�K/ to be the triple .�A;� i;��K/, where �� is the composite

V.Af /
�
�! Vf .A/

�
�! Vf .�A/I (63)

because � fixes E�, .�A;� i/ is again of CM-type .E;˚/.
The group Gal.Qa=E�) acts on ShK.T;h˚ / by the rule (62):

�Œg�D Œrh˚ .s/g�K ; artE�.s/D � jE�:

This defines a model of ShK.T;h˚ / over E�, and next proposition shows that it is canonical.

PROPOSITION 12.11. The map .A; i;�/ 7! Œaı��K WMK! ShK.T E ;h˚ / commutes with
the actions of Gal.Qa=E�/.

PROOF. Let .A; i;�/ 2MK map to Œaı��K for an appropriate isomorphism aWH1.A;Q/!
V , and let � 2Gal.Qa=E�/. According to the main theorem of complex multiplication (11.2),
there exists an E-linear isogeny ˛WA! �A such that ˛.N˚�.s/ �x/D �x for x 2 Vf .A/,
where s 2 AE� is such that artE�.s/ D � jE�. Then �.A;i;�/ 7! Œa ıVf .˛/

�1 ı� ı ��K .
But

Vf .˛/
�1
ı� DN˚�.s/D rh˚ .s/;

and so
Œa ıVf .˛/

�1
ı� ı��K D Œrh˚ .s/ � .a ı�/�K

as required. 2

ASIDE. Every elliptic modular curve is defined in a natural way over a number field k (which
depends on the curve). For analysts, the explanation for this is that the Fourier expansions at the
cusps provide a k-structure on the spaces of modular forms (hence a projective embedding over k).
For algebraic geometers, the explanation is that the curve is the solution of a moduli problem that
is defined over k. Shimura (1967) showed that every quotient of H1 by a quaternionic congruence
group has a “naturally-defined” model over a specific number field, even when the quotient is compact
(hence without cusps) and is not a moduli variety in any natural way. This surprised both the analysts
and the algebraic geometers. Although Shimura’s construction of the model involved choices, he
showed that it is uniquely determined by certain reciprocity laws at the special points. This was the
birth of the theory of canonical models. The conjecture that every Shimura variety has a canonical
model is often called Shimura’s conjecture. See Appendix C.

NOTES. Our definitions coincide with those of Deligne 1979, except that we have corrected a sign
error there (it is necessary to delete “inverse” in ibid. 2.2.3, p. 269, line 10, and in 2.6.3, p. 284, line
21). See my letter to Deligne, 28.03.90 (available on my website under articles).
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13 Uniqueness of canonical models
In this section, we sketch a proof that a Shimura variety has at most one canonical model (up
to a unique isomorphism).

Extension of the base field
PROPOSITION 13.1. Let k be a subfield of an algebraically closed field ˝ of characteristic
zero. If V and W are varieties over k, then a regular map V˝ !W˝ commuting with the
actions of Aut.˝=k/ on V.˝/ and W.˝/ arises from a unique regular map V !W . In
other words, the functor

V  V˝C action of Aut.˝=k/ on V.˝/

is fully faithful.

PROOF. See AG 16.9. [The first step is to show that the ˝Aut.˝=k/ D k, which requires
Zorn’s lemma in general.] 2

COROLLARY 13.2. A variety V over k is uniquely determined (up to a unique isomorphism)
by V˝ and the action of Aut.˝=k/ on V.˝/.

Uniqueness of canonical models
Let .G;X/ be a Shimura datum.

LEMMA 13.3. There exists a special point in X .

PROOF. Let g be a Lie algebra over an algebraically closed field k of characteristic zero. A
subalgebra h is Cartan if it is nilpotent and equal to its own normalizer. When g is the Lie
algebra of a semisimple algebraic group G over k, then the Cartan subalgebras are exactly
the Lie algebras of maximal tori in G. Let Px.T / denote the characteristic polynomial
det.T � ad.x// of an element x in g. Then we can write

Px.T /D T
n
Can�1.x/T

n�1
C�� �Car.x/T

r ; nD dim.g/;

with the ai regular functions on g and ar ¤ 0. The x 2 g such that ar.x/¤ 0 are said to be
regular. The regular x form a connected dense open subset of g for the Zariski topology.
The Cartan subalgebras are exactly the centralizers of regular elements of g, and any two
are conjugate by an inner automorphism. More generally, an element of a Lie algebra over
a nonalgebraically closed field k is said to be regular if it becomes so over the algebraic
closure of k. See Serre 1966, Chap. III.

Now let .G;X/ be a Shimura datum. Let x 2 X , and let T be a maximal torus in GR
containing hx.C/. Then T is the centralizer in GR of a regular element � of Lie.GR/. If
�0 2 Lie.G/ is chosen to be sufficiently close to � in Lie.GR/, then it will also be regular,
and so its centralizer T0 in G is a maximal torus in G. Moreover, T0 will become conjugate
to T over R:72

T0R D gTg
�1 for some g 2G.R/:

72Not all maximal tori in GR are conjugate. Rather, the maximal tori fall into several connected components
with any two in the same connected component being conjugate. This explains why T0R is conjugate to T if �0
is chosen sufficiently close to �.
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Now hgx.S/
def
D ghg�1.S/� T0R, and so gx is special. 2

KEY LEMMA 13.4. For every finite extension L of E.G;X/ in C, there exists a special
point x0 such that E.x0/ is linearly disjoint from L:

PROOF. See Deligne 1971b, 5.1. The basic idea is the same as that of the proof of 13.3
above, but the proof requires the Hilbert irreducibility theorem. 2

When G D GL2, the key lemma just says that, for every finite extension L of Q in C,
there exists a quadratic imaginary extension E over Q linearly disjoint from L. This is
obvious — for example, take E DQŒp�p� for any prime p unramified in L. The statement
of the key lemma is unsurprising, but the proof is a little delicate.

LEMMA 13.5. For any x 2X , fŒx;a�K j a 2G.Af /g is dense in ShK.G;X/ (in the Zariski
topology).

PROOF. Write
ShK.G;X/.C/DG.Q/nX � .G.Af /=K

and note that the real approximation theorem (5.4) implies that G.Q/x is dense in X for
the complex topology. Then G.Q/x �G.Af / is dense in X �G.Af /, and its image in
ShK.G;X/.C/ is dense for the complex topology and, a fortiori, for the Zariski topology.
That image equals fŒx;a�K j a 2G.Af /g because Œgx;b�K D Œx;g�1b�K for g 2G.Q/ and
b 2G.Af /. 2

Let g 2G.Af /, and let K and K 0 be compact open subgroups such that K 0 � g�1Kg.
Then the map T .g/

Œx;a�K 7! Œx;ag�K0 WShK.C/! ShK0.C/

is well-defined. Here ShK D ShK.G;X/. The map T .g/ is a morphism of algebraic varieties
over C (because of Theorem 3.14).

THEOREM 13.6. If ShK .G;X/ and ShK0 .G;X/ have canonical models over E.G;X/,
then T .g/ is defined over E.G;X/.

PROOF. After (13.1), it suffices to show that �.T .g//D T .g/ for all automorphisms � of
C fixing E.G;X/. Let x0 2 X be special. Then E.x0/ � E.G;X/ (see 12.3b), and we
first show that �.T .g//D T .g/ for those �’s fixing E.x0). Choose an s 2 A�E0 such that
art.s/D � jE.x0/ab. For a 2G.Af /,

Œx0;a�K Œx0;ag�K0

Œx0; rx0.s/a�K Œx0; rx0.s/ag�K0

T .g/

� �

T .g/

commutes. Thus, T .g/ and �.T .g// agree on fŒx0;a� j a 2 G.Af /g, and hence on all of
ShK by Lemma 13.5. We have shown that �.T .g//D T .g/ for all � fixing the reflex field
of any special point, but Lemma 13.4 shows that these � ’s generate Aut.C=E.G;X//. 2
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THEOREM 13.7. (a) A canonical model of ShK.G;X/ (if it exists) is unique up to a unique
isomorphism.

(b) If, for all compact open subgroups K of G.Af /, ShK.G;X/ has a canonical model,
then so also does Sh.G;X/, and it is unique up to a unique isomorphism.

PROOF. (a) Take K DK 0 and g D 1 in Theorem 13.6. In more detail, let .MK.G;X/;'/

and .M 0K.G;X/;'
0/ be canonical models of ShK.G;X/ over E.G;X/. Then the composite

MK.G;X/C
'
�! ShK.G;X/

'0�1

�!M 0K.G;X/C

is fixed by all automorphisms of C fixing E.G;X/, and is therefore defined over E.G;X/.
(b) Obvious from (13.6). 2

REMARK 13.8. In fact, one can prove more. Let aW.G;X/! .G0;X 0/ be a morphism of
Shimura data, and suppose Sh.G;X/ and Sh.G0;X 0/ have canonical models M.G;X/ and
M.G0;X 0/: Then the morphism Sh.a/WSh.G;X/! Sh.G0;X 0/ is defined over E.G;X/ �
E.G0;X 0/.

The Galois action on the connected components
A canonical model for ShK.G;X/ will define an action of Aut.C=E.G;X// on the set
�0.ShK.G;X//. In the case that Gder is simply connected, we saw in �5 that

�0.ShK.G;X//' T .Q/nY �T .Af /=�.K/

where �WG! T is the quotient of G by Gder and Y is the quotient of T .R/ by the image
T .R/� of Z.R/ in T .R/. Let hD � ıhx for any x 2X . Then �h is certainly defined over
E.G;X/. Therefore, it defines a homomorphism

r D r.T;�h/WA�E.G;X/! T .AQ/:

The action of � 2 Aut.C=E.G;X// on �0.ShK.G;X// can be described as follows: let
s 2 A�

E.G;X/
be such that artE.G;X/.s/ D � jE.G;X/ab, and let r.s/ D .r.s/1; r.s/f / 2

T .R/�T .Af /; then73

�Œy;a�K D Œr.s/1y;r.s/f �a�K ; for all y 2 Y; a 2 T .Af /: (64)

When we use (64) to define the notion a canonical model of a zero-dimensional Shimura
variety, we can say that �0 of the canonical model of ShK.G;X/ is the canonical model of
Sh.T;Y /.

If � fixes a special x0 mapping to y, then (64) follows from (62), and a slight improve-
ment of (13.4) shows that such � ’s generate Aut.C=E.G;X//:

NOTES. The proof of uniqueness follows Deligne 1971b, �3, except that I am more unscrupulous in
my use of Zorn’s lemma.

73To prove that this description is correct, check that, for each special x0 2X , the map ShK.C/! T .Q/nY �
T .Af /=�.K/ is Aut.C=E.x0//-equivariant on the points Œx0;a�K for a 2G.Af /, and then apply 13.4.
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14 Existence of canonical models
Canonical models are known to exist for all Shimura varieties. In this section, we explain
some of the ideas that go into the proof.

Descent of the base field
Let k be a subfield of an algebraically closed field ˝ of characteristic zero, and let AD
Aut.˝=k/. In 13.1 we observed that the functor

fvarieties over kg fvarieties V over ˝C action of A on V.˝/g;

is fully faithful. In this subsection, we find conditions on a pair .V; �/ that ensure that it is
in the essential image of the functor, i.e., that it arises from a variety over k. We begin by
listing two necessary conditions.

THE REGULARITY CONDITION

Obviously, the action � should recognize that V.˝/ is not just a set, but rather the set of
points of an algebraic variety. Recall that, for � 2A, �V is obtained from V by applying �
to the coefficients of the polynomials defining V and �P is the element of .�V /.˝/ obtained
from P 2 V.˝/ by applying � to the coordinates of P .

DEFINITION 14.1. An action � of A on V.˝/ is regular if the map

�P 7! � �P W.�V /.˝/! V.˝/

is a regular isomorphism for all � .

A priori, this is only a map of sets. The condition requires that it be induced by a regular
map f� W�V ! V . If .V; �/ arises from a variety over k, then �V D V and �P D � �P , and
so the condition is clearly necessary.

REMARK 14.2. (a) When regular, the maps f� are automatically isomorphisms provided
V is nonsingular.

(b) The maps f� satisfy the cocycle condition f� ı�f� D f�� . Conversely, every family
.f� /�2A of regular isomorphisms satisfying the cocycle condition arises from an action of
A satisfying the regularity condition. Such families .f� /�2A are called descent data, and
normally one expresses descent theory in terms of them rather than actions of A.

THE CONTINUITY CONDITION

DEFINITION 14.3. An action � of A on V.˝/ is continuous if there exists a subfield L of
˝ finitely generated over k and a model V0 of V over L such that the action of Aut.˝=L/
on V.˝/ defined by V0 is �.

More precisely, the condition requires that there exist a model .V0;'/ of V over L such
that '.�P / D � � '.P / for all P 2 V0.˝/ and � 2 Aut.C=L/. Clearly this condition is
necessary.
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PROPOSITION 14.4. A regular action � of A on V.˝/ is continuous if there exist points
P1; : : : ;Pn 2 V.˝/ such that

(a) the only automorphism of V fixing every Pi is the identity map;

(b) there exists a subfield L of ˝ finitely generated over k such that � �Pi D Pi for all �
fixing L.

PROOF. Let .V0;'/ be a model of V over a subfield L of ˝ finitely generated over k. After
possibly enlarging L, we may assume that '�1.Pi / 2 V0.L/ and that � �Pi D Pi for all
� fixing L (because of (b)). For such a � , f� and ' ı .�'/�1 are regular maps �V ! V

sending �Pi to Pi for each i , and so they are equal (because of (a)). Hence

'.�P /D f� ..�'/.�P //D f� .�.'.P ///D � �'.P /

for all P 2 V0.˝/, and so the action of Aut.C=L/ on V.˝/ defined by .V0;'/ is �. 2

A SUFFICIENT CONDITION FOR DESCENT

THEOREM 14.5. If V is quasiprojective and � is regular and continuous, then .V; �/ arises
from a variety over k.

PROOF. This is a restatement of the results of Weil 1956a (see Milne 1999, 1.1). 2

COROLLARY 14.6. The pair .V; �/ arises from a variety over k if

(a) V is quasiprojective,

(b) � is regular, and

(c) there exist points P1; : : : ;Pn in V.˝/ satisfying the conditions (a) and (b) of (14.4).

PROOF. Combine 14.4 and 14.5. 2

For an elementary proof of the corollary, not using the results of Weil 1956a, see AG
16.33.

Review of local systems and families of abelian varieties
Let S be a connected topological manifold. A local system of Z-modules on S is a sheaf F
on S that is locally isomorphic to the constant sheaf Zn (n 2 N).

Let F be a local system of Z-modules on S , and let 
 W Œ0;1�! S be a path in S . The
interval Œ0;1� is simply connected, and there is a unique isomorphism from 
�F to the
constant sheaf defined by F
.0/ that restricts to the identity map on the fibres at 0. This
isomorphism defines an isomorphism between .
�F /0 and .
�F /1, i.e., an isomorphism


.F /WF
.0/! F
.1/:

This isomorphism depends only on the homotopy class of 
 , and satisfies the condition


 0.F /D 
.F / � 
 0.F /. Therefore, for every o 2 S , we obtain an action �o of the funda-
mental group �1.S;o/ on the fibre Fo at o. The proof of the next statement is well known
and easy (but not easy to find in the literature).
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PROPOSITION 14.7. If S is connected, then F  .Fo;�o/ is an equivalence from the
category of local systems of Z-modules on S to the category of free Z-modules of finite rank
endowed with an action of �1.S;o/.

In particular, if S is simply connected, then every local system on S is trivial.
Now let S be a complex manifold, and let F be a local system of Z-modules on S .

Suppose that we have a Hodge structure hs on Fs˝R for every s 2 S . We say that F ,
together with the Hodge structures, is a variation of integral Hodge structures on S if
.F ˝R; .hs// becomes a variation of Hodge structures in the sense of �2 on every open
subset of S on which the local system F is trivial. This is equivalent to requiring that the
pull-back of .F ˝R; .hs// to the universal covering of S is a local system in the sense of �2.
A polarization of a variation of Hodge structures .F;.hs// is a pairing  WF �F ! Z such
that  s is a polarization of .Fs;hs/ for every s.

Let V be a nonsingular algebraic variety over C. A family of abelian varieties over V is
a regular map f WA! V of nonsingular varieties plus a regular multiplication A�V A! A

over V such that the fibres of f are abelian varieties of constant dimension. In a different
language, A is an abelian scheme over V .

THEOREM 14.8. Let V be a nonsingular variety over C. Then .A;f / .R1f�Z/_ is an
equivalence from the category of families of abelian varieties over V to the category of
polarizable integral variations of Hodge structures of type .�1;0/, .0;�1/ on S .

This is a generalization of Riemann’s theorem (6.8) — see Deligne 1971a, 4.4.3.

The Siegel modular variety
Let .V; / be a symplectic space over Q, and let .G;X/D .GSp. /;X. // be the associated
Shimura datum (see �6). We also denote Sp. / by S . We abbreviate ShK.G;X/ to ShK .

THE REFLEX FIELD

Consider the set of pairs .L;L0/ of complementary lagrangians in V.C/:

V.C/D L˚L0; L;L0 totally isotropic. (65)

Every symplectic basis for V.C/ defines such a pair, and the every such pair arises from
a symplectic basis. Therefore, G.C/ (even S.C/) acts transitively on the set of pairs
.L;L0/ of complementary lagrangians. For such a pair, let �.L;L0/ be the homomorphism
Gm! GL.V / such that �.z/ acts as z on L and as 1 on L0. Then, �.L;L0/ takes values
in GC, and as .L;L0/ runs through the set of pairs of complementary lagrangians in V.C/,
�.L;L0/ runs through c.X/ (notation as on p. 111). Since V itself has symplectic bases,
there exist pairs of complementary lagrangians in V . For such a pair, �.L;L0/ is defined
over Q, and so c.X/ has a representative defined over Q. This shows that the reflex field
E.G;X/DQ.

THE SPECIAL POINTS

Let K be a compact open subgroup of G.Af /, and, as in �6, let MK be the set of triples
.A;s;�K/ in which A is an abelian variety over C, s is an alternating form on H1.A;Q/
such that ˙s is a polarization, and � is an isomorphism V.Af /! Vf .A/ sending  to a
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multiple of s. Recall (6.11) that there is a natural map MK ! ShK.C/ whose fibres are the
isomorphism classes.

In this subsubsection we answer the question: which triples .A;s;�K/ correspond to
points Œx;a� with x special?

DEFINITION 14.9. A CM-algebra is a finite product of CM-fields. An abelian variety
A over C is CM (or of CM-type) if there exists a CM-algebra E and a homomorphism
E! End0.A/ such that H1.A;Q/ is a free E-module of rank 1.

Let E ! End0.A/ be as in the definition, and write E is a product of CM-fields,
E DE1�� � ��Em. Then A is isogenous to a product of abelian varieties A1�� � ��Am with
Ai of CM-type .Ei ;˚i / for some ˚i .

Recall that, for an abelian variety A over C, there is a homomorphism hAWC� !
GL.H1.A;R// describing the natural complex structure on H1.A;R/ (see �6).74

PROPOSITION 14.10. An abelian variety A over C is CM if and only if there exists a torus
T � GL.H1.A;Q// such that hA.C�/� T .R/.

PROOF. The statements depend only on A up to isogeny, and every abelian variety is
isogenous to a product of simple abelian varieties. It follows that we may assume that A is
simple. For a simple A, we shall prove that the following conditions are equivalent:

(a) A is of CM-type;

(b) Endı.A/ is a CM-field of degree 2dimA over Q;

(c) there exists a torus T � GL.H1.A;Q// such that hA.C�/� T .R/;
(d) there exists a torus T � GL.H1.A;Q// such that �A.C�/� T .C/.

The equivalences (a),(b) and (c),(d) are easy (the second doesn’t use that A is simple).
As A is simple, E D End0.A/ is a division algebra of degree � dimH1.A;Q/ over Q.

(b))(c). Let A be an abelian variety such that End0.A/ contains a field E for which
H1.A;Q/ has dimension 1 as anE-vector space. The action ofE˝R onH1.A;R/ preserves
the Hodge structure, and so hA.C�/ commutes with E˝R in End.H1.A;R//. Therefore

hA.C�/� .E˝R/� D .Gm/E=Q.R/:

(d))(b). As for any abelian variety, End0.A/ is the subalgebra of End.H1.A;Q// of
elements preserving the Hodge structure or, equivalently, that commute with �A.Gm/ in
GL.H1.A;C//. By assumption, there is a torus T � GL.H1.A;Q// such that �A.C�/ �
T .C/. Therefore

End0.A/� f˛ 2 End.H1/ j ˛ commutes with the action of T g

and so

End0.A/˝C� f˛ 2 End.H1/ j ˛ commutes with the action of T g˝C
D f˛ 2 End.H1˝C/ j ˛ commutes with the action of TCg:

74If A.C/D Cg=�, then

H1.A;Z/D�; H1.A;Q/D�˝Q; H1.A;R/D�˝R' Cg :
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Because T is a torus, H1.A;C/D
L
�2X�.T /H�, and so EndT .H1˝C/ contains an étale

C-algebra of degree 2dimA. It follows that End0.A/ does also.
It remains to show that E def

D End0.A/ is a CM-field. We shall show that the involution
� of E defined by any Riemann form on H1.A;Q/ is a complex conjugation on E, i.e.,
a nontrivial involution such that �.a�/D �.a/ for every embedding �WE ,! C. Note that
h.i/ 2 E˝R. Let  be a Riemann form corresponding to some polarization on A. The
Rosati involution e 7! e� on E is determined by the condition

 .x;ey/D  .e�x;y/; x;y 2H1.A;Q/.

It follows from
 .x;y/D  .h.i/x;h.i/y/

that
h.i/� D h.i/�1 .D�h.i//:

The Rosati involution therefore is nontrivial on E, and E has degree 2 over its fixed field F .
There exists an ˛ 2 F � such that

E D F Œ
p
˛�;

p
˛
�
D�
p
˛;

and ˛ is uniquely determined up to multiplication by a square in F . If E is identified with
H1.A;R/ through the choice of an appropriate basis vector, then

 .x;y/D TrE=Q˛xy
�; x;y 2E;

(cf. A.7). The positivity condition on  implies that

TrE˝R=R.f x
2/ > 0; x ¤ 0; x 2 F ˝R; f D ˛=h.i/,

which implies that F is totally real. Moreover, for every embedding � WF ,! R, we must
have �.˛/ < 0, for otherwise E˝F;� RDR�R with .r1; r2/� D .r2; r1/, and the positivity
condition is impossible. Thus, �.˛/ < 0, and � is complex conjugation relative to any
embedding of E into C. This completes the proof. 2

COROLLARY 14.11. If .A;s;�K/maps to Œx;a�K under MK! ShK , then A is CM if and
only if x is special.

PROOF. Recall that if .A;s;�K/ 7! Œx;a�K , then there exists an isomorphism H1.A;Q/!
V sending hA to hx . Thus, the statement follows from the proposition. 2

A CRITERION TO BE CANONICAL

We now define an action of Aut.C/ on MK . Let .A;s;�K/ 2MK . Then s 2H 2.A;Q/
is a Hodge tensor, and therefore equals rŒD� for some r 2 Q� and divisor D on A (see
7.5). We let �s D rŒ�D�. The condition that ˙s be positive-definite is equivalent to an
algebro-geometric condition on D (Mumford 1970, pp. 29–30) which is preserved by � .
Therefore, ˙�s is a polarization forH1.�A;Q). We define �.A;s;�K/ to be .�A;�s;��K/
with �� as in (63).
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PROPOSITION 14.12. Suppose that ShK has a model MK over Q for which the map

MK !MK.C/

commutes with the actions of Aut.C/. Then MK is canonical.

PROOF. For a special point Œx;a�K corresponding to an abelian variety A with complex
multiplication by a field E, the condition (62) is an immediate consequence of the main
theorem of complex multiplication (cf. 12.11). For more general special points, it also
follows from the main theorem of complex multiplication, but not quite so immediately. 2

ASIDE. Explain the existence using Mumford’s results.

OUTLINE OF THE PROOF OF THE EXISTENCE OF A CANONICAL MODEL

Since the action of Aut.C/ on MK preserves the isomorphism classes, from the map
MK ! ShK.C/, we get an action of Aut.C/ on ShK.C/, which we denote by �. If this
action satisfies the conditions of hypotheses of Corollary 14.6, then ShK has a model over
Q, which Proposition 14.12 will show to be canonical.

Condition (a) of (14.6). We know that ShK is quasi-projective from (3.12).

Condition (b) of (14.6). We have to show that the map

�P 7! � �P W� ShK.C/
f�
�! ShK.C/

is regular. It suffices to do this for K small, because if K 0 � K, then ShK0.G;X/ is a
quotient of ShK.G;X/.

Recall (5.17) that �0.ShK/' Q>0nA�f =�.K/. Let " 2 Q>0nA�f =�.K/, and let Sh"K
be the corresponding connected component of ShK . Then Sh"K D �"nX

C, where �" D
G.Q/\K" for some conjugate K" of K (see 5.17, 5.23)

Let .A;s;�K/ 2MK and choose an isomorphism aWH1.A;Q/! V sending s to a
multiple of  . Then the image of .A;s;�K/ in Q>0nA�f =�.K/ is represented by �.a ı�/,
where aı�WV.Af /! V.Af / is to be regarded as an element of G.Af /. Write M"

K for the
set of triples with �.a ı�/ 2 ".

The map MK !Q>0nA�f =�.K/ is equivariant for the action of Aut.C/ when we let
Aut.C/ act on Q>0nA�f =�.K/ through the cyclotomic character, i.e.,

�Œ˛�D Œ�.�/˛� where �.�/ 2 OZ�, ��.�/ D ��, � a root of 1:

Write XC.�"/ for �"nXC regarded as an algebraic variety, and let �.XC.�"// be the
algebraic variety obtained from XC.�"/ by change of base field � WC! C. Consider the
diagram:

XC U

XC.��"/ �.XC.�"//

M�"
K M"

K

�

f�

�
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The map � sends .A; : : :/ to �.A; : : :/, and the map f� is the map of sets �P 7! � �P . The
two maps are compatible. The map U ! �.XC.�"// is the universal covering space of the
complex manifold .�.XC.�"///an.

Fix a lattice � in V that is stable under the action of �". From the action of �" on �,
we get a local system of Z-modules M on XC.�"/ (see 14.7), which, in fact, is a polarized
integral variation of Hodge structures F . According to Theorem 14.8, this variation of
Hodge structures arises from a polarized family of abelian varieties f WA!XC.�"/. As f
is a regular map of algebraic varieties, we can apply � to it, and obtain a polarized family of
abelian varieties �f W�A! �.XC.�"//. Then .R1.�f /�Z/_ is a polarized integral Hodge
structure on �.XC.�"//. On pulling this back to U and tensoring with Q, we obtain a
variation of polarized rational Hodge structures over the space U , whose underlying local
system can be identified with the constant sheaf defined by V . When this identification is
done correctly, each u 2 U defines a complex structure on V that is positive for  , i.e., a
point x of XC, and the map u 7! x makes the diagram commute. Now (2.15) shows that
u 7! x is holomorphic. It follows that f� is holomorphic, and Borel’s theorem (3.14) shows
that it is regular.

Condition (c) of (14.6) For any x 2 X , the set fŒx;a�K j a 2 G.Af /g has the property
that only the identity automorphism of ShK.G;X/ fixes its elements (see 13.5). But, there
are only finitely many automorphisms of ShK.G;X/ (see 3.21), and so a finite sequence of
points Œx;a1�; : : : ; Œx;an� will have this property. When we choose x to be special, the main
theorem of complex multiplication (11.2) tells us that � � Œx;ai � D Œx;ai � for all � fixing
some fixed finite extension of E.x/, and so condition (c) holds for these points.

Simple PEL Shimura varieties of type A or C
The proof is similar to the Siegel case. Here ShK.G;X/ classifies quadruples .A; i; s;�K/
satisfying certain conditions. One checks that if � fixes the reflex field E.G;X/, then
�.A;i; s;�K/ lies in the family again (see 12.7). Again the special points correspond to CM
abelian varieties, and the Shimura–Taniyama theorem shows that, if ShK.G;X/ has a model
MK over E.G;X/ for which the action of Aut.C=E.G;X// on MK.C/D ShK.G;X/.C/
agrees with its action on the quadruples, then it is canonical.

Shimura varieties of Hodge type
In this case, ShK.G;X/ classifies isomorphism classes of triples .A;.si /0�i�n;�K/, where
the si are Hodge tensors. A proof similar to that in the Siegel case will apply once we have
defined �s for s a Hodge tensor on an abelian variety.

If the Hodge conjecture is true, then s is the cohomology class of some algebraic cycleZ
on A (i.e., formal Q-linear combination of integral subvarieties of A). Then we could define
�s to be the cohomology class of �Z on �A. Unfortunately, a proof of the Hodge conjecture
seems remote, even for abelian varieties. Deligne succeeded in defining �s without the
Hodge conjecture. It is important to note that there is no natural map between Hn.A;Q/
and Hn.�A;Q/ (unless � is continuous, and hence is the identity or complex conjugation).
However, there is a natural isomorphism � WHn.A;Af /!Hn.�A;Af / coming from the
identification

Hn.A;Af /' Hom.
nV
�;Af /' Hom.

nV
.�˝Af /;Af /' Hom.

nV
Vf A;Af /
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(or, equivalently, from identifying Hn.A;Af / with étale cohomology).

THEOREM 14.13. Let s be a Hodge tensor on an abelian variety A over C, and let sAf be
the image of s in the Af -cohomology. For any automorphism � of C, there exists a Hodge
tensor �s on �A (necessarily unique) such that .�s/Af D �.sAf /.

PROOF. This is the main theorem of Deligne 1982. For a concise exposition of the proof,
with some simplifications, see Milne 2013, 9.9. [Interestingly, the theory of locally symmetric
varieties is used in the proof.] 2

As an alternative to using Deligne’s theorem, one can apply the following result (note,
however, that the above approach has the advantage of giving a description of the points of
the canonical model with coordinates in any field containing the reflex field).

PROPOSITION 14.14. Let .G;X/ ,! .G0;X 0/ be an inclusion of Shimura data. If
Sh.G0;X 0/ has canonical model, so also does Sh.G;X/.

PROOF. This follows easily from 5.16. 2

Shimura varieties of abelian type
Deligne (1979, 2.7.10) defines the notion of a canonical model of a connected Shimura
variety Shı.G;X/. This is an inverse system of connected varieties over Qa endowed with
the action of a large group (a mixture of a Galois group and an adèlic group). A key result is
the following.

THEOREM 14.15. Let .G;X/ be a Shimura datum and let XC be a connected component
of X . Then Sh.G;X/ has a canonical model if and only if Shı.Gder;XC/ has a canonical
model.

PROOF. See Deligne 1979, 2.7.13. 2

Thus, for example, if .G1;X1/ and .G2;X2/ are Shimura data such that .Gder
1 ;XC1 /�

.G
der

2 ;X
C
2 /, and one of Sh.G1;X1/ or Sh.G2;X2/ has a canonical model, then they both do.

The next result is more obvious (ibid. 2.7.11).

PROPOSITION 14.16. (a) Let .Gi ;Xi / (1� i �m) be connected Shimura data. If each con-
nected Shimura variety Shı.Gi ;Xi / has a canonical model M ı.Gi ;Xi /, thenQ
iM
ı.Gi ;Xi / is a canonical model for Shı.

Q
i Gi ;

Q
i Xi /:

(b) Let .G1;X1/! .G2;X2/ be an isogeny of connected Shimura data. If Shı.G1;X1/
has a canonical model, then so also does Shı.G2;X2/.

More precisely, in case (b) of the theorem, letGad.Q/C1 andGad.Q/C2 be the completions
of Gad.Q/C for the topologies defined by the images of congruence subgroups in G1.Q/C
and G2.Q/C respectively; then the canonical model for Shı.G2;X2/ is the quotient of the
canonical model for Shı.G2;X2/ by the kernel of Gad.Q/C1 !Gad.Q/C2 .

We can now prove the existence of canonical models for all Shimura varieties of abelian
type. A connected Shimura datum .H;XC/ is of primitive abelian type if and only if it
is of the form .Gder;XC/, where .G;X/ a Shimura datum of Hodge type (this is almost
the definition), and so Shı.H;XC/ has a canonical model because Sh.G;X/ does (14.15).
Now (14.16) proves the existence of canonical models for all connected Shimura varieties of
abelian type, and (14.16) proves the existence for all Shimura varieties of abelian type.



128 14 EXISTENCE OF CANONICAL MODELS

REMARK 14.17. The above proof is only an existence proof: it gives little information
about the canonical model. For the Shimura varieties it treats, Theorem 9.4 can be used to
construct canonical models and give a description of the points of the canonical model in
any field containing the reflex field.

General Shimura varieties
As noted above, Deligne proved the existence of canonical models for Shimura varieties
of abelian type in his Corvallis article (Deligne 1979). At the time, Shimura’s conjecture
remained open for Shimura varieties of type E6, E7, and many of type D.75 There was some
progress using analytic methods (Baily, Karel, Garrett), but the general case seemed to be
beyond reach until Piatetski-Shapiro suggested using Shimura subvarieties of type A1. This
was perhaps suggested by the fact that the standard method for studying split reductive
groups is to exploit their subgroups of type A1.

By the techniques developed by Deligne, it suffices to prove Shimura’s conjecture
for a connected Shimura datum .G;XC/ with G simple and simply connected. Then
G D .H/F=Q, where F is a totally real field and H is geometrically simple over F . In
general, Shı.G;XC/ will contain no Shimura subvarieties of type A1, but it will after we
have replaced G with G� D .HF 0/F 0=Q, where F 0 is a totally real field containing F and
large enough that HF 0 splits over CM-extension of degree 2. The idea is then to prove
Shimura’s conjecture for Shı.G�;XC� / by exploiting its Shimura subvarieties of type A1,
and then deduce it for Shı.G;XC/ by using that it is a Shimura subvariety of Shı.G�;XC� /.

After Borovoi had unsuccessfully attempted to use this idea to prove Shimura’s conjec-
ture, the author used it to prove a conjecture of Langlands on the conjugation of Shimura
varieties,76 which has Shimura’s conjecture as a consequence (Milne 1983). This completed
the proof of Shimura’s conjecture for all Shimura varieties.

Let .G;X/ be a Shimura datum, and let � be an automorphism of C. Langlands defines
a new Shimura datum .G� ;X� / and conjectured that there exists an isomorphism

f� W�Sh.G;X/! Sh.G� ;X� /

satisfying certain conditions sufficient to determine it uniquely.77 The maps f� for � fixing
the reflex field E.G;X/ form a descent datum, and the descended variety is canonical.
Although the conjecture is stronger than that of Shimura, it is often easier to work with
because it involves only varieties over C (not varieties over possibly different reflex fields).
As far as I know, Shimura’s conjecture has not been proved except through Langlands’s
conjecture. This approach to proving Shimura’s conjecture is independent of the previous
approach, and hence of the moduli of abelian varieties, except for results on Shimura varieties
defined by groups of type A1 over totally real fields (see p. 94).

ASIDE. Langlands’s conjugacy conjecture also grew out of his work on the zeta functions of Shimura
varieties. Let X be an algebraic variety over a number field E. The zeta function of X has a local
factor for each embedding � WE ,! C, which depends on the geometry of �X . The reflex field E of a
Shimura variety is (by definition) a subfield of C. For the canonical model X over E, we know what
�X is when � is the given embedding; but what if it is a different embedding? The axiom of choice
allows us to extend � to an automorphism of C, and the answer is given by Langlands’s conjecture.

75As the dimension tends to infinity, the proportion of Shimura varieties that are of abelian type tends to zero.
76Langlands’s conjecture had been proved earlier for Shimura varieties of abelian type in Milne and Shih

1979.
77More precisely, .G� ;X� / and f� depend on the choice of an h 2X , but only up to a given isomorphism.
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Langlands has suggested that the fact that his conjecture, arising from the study of zeta functions,
permitted us to complete the proof of Shimura’s conjecture is another indication that we algebraists
need to allow ourselves to be guided by the analysts.

Final remark: rigidity
One might expect that if one modified the condition (62), for example, by replacing rx.s/
with rx.s/�1, then one would arrive at a modified notion of canonical model, and the
same theorems would hold. This is not true: the condition (62) is the only one for which
canonical models can exist. In fact, if G is adjoint, then the Shimura variety Sh.G;X/ has
no automorphisms commuting with the action of G.Af / (Milne 1983, 2.7), from which it
follows that the canonical model is the only model of Sh.G;X/ over E.G;X/, and we know
that for the canonical model the reciprocity law at the special points is given by (62).

NOTES. The concept of a canonical model characterized by reciprocity laws at special points is due
to Shimura, and the existence of such models was proved for major families by Shimura, Miyake,
and Shih. Shimura recognized that to have a canonical model it is necessary to have a reductive
group, but for him the semisimple group was paramount: in our language, given a connected Shimura
datum .H;Y /, he asked for Shimura datum .G;X/ such that .Gder;XC/ D .H;Y / and Sh.G;X/
has a canonical model (see his talk at the 1970 International Congress Shimura 1971). In his
Bourbaki report on Shimura’s work (1971b), Deligne placed the emphasis on reductive groups,
thereby enlarging the scope of the field.
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15 Abelian varieties over finite fields
For each Shimura datum .G;X/, we now have a canonical model Sh.G;X/ of the Shimura
variety over its reflex field E.G;X/. In order, for example, to understand the zeta function
of the Shimura variety or the Galois representations occurring in its cohomology, we need to
understand the points on the canonical model when we reduce it modulo a prime of E.G;X/.
After everything we have discussed, it would be natural to do this in terms of abelian varieties
(or motives) over the finite field plus additional structure. However, such a description will
not be immediately useful — what we want is something more combinatorial, which can be
plugged into the trace formula. The idea of Langlands and Rapoport (1987) is to give an
elementary definition of a category of “fake” abelian varieties (better, abelian motives) over
the algebraic closure of a finite field that looks just like the true category, and to describe the
points in terms of it. In this section, we explain how to define such a category.

The goal of this section and the next is to give an elementary statement of the conjecture
of Langlands and Rapoport, and in the following section we explain how the conjecture
leads to a formula that permits the analysts to compute the local zeta function. In an aside at
the end of the section (p. 140), we explain the philosophy underlying the construction.

Semisimple categories
An object of an abelian category M is simple if it is nonzero and has no proper nonzero
subobjects. Let F be a field. By an F -category, we mean an additive category in which the
Hom-sets Hom.x;y/ are finite-dimensional F -vector spaces and composition is F -bilinear.
An F -category M is said to be semisimple if it is abelian and every object is a direct sum
(necessarily finite) of simple objects.

If e is simple, then a nonzero morphism e! e is an isomorphism. Therefore, End.e/ is
a division algebra over F . Moreover, End.re/'Mr.End.e//. Here re denotes the direct
sum of r copies of e. If e0 is a second simple object, then either e � e0 or Hom.e;e0/D 0.
Therefore, if x D

P
riei (ri � 0) and y D

P
siei (si � 0) are two objects of M expressed as

sums of copies of simple objects ei with ei 6� ej for i ¤ j , then

Hom.x;y/D
Y
Msi ;ri .End.ei //:

Thus, the category M is described up to equivalence by:

(a) the set ˙.M/ of isomorphism classes of simple objects in M;

(b) for each � 2˙ , the isomorphism class ŒD� � of the endomorphism algebra D� of a
representative of � .

We call .˙.M/; .ŒD� �/�2˙.M// the numerical invariants of M.

Division algebras; the Brauer group
We shall need to understand what the set of isomorphism classes of division algebras over a
field F look like.

Recall our conventions: by an F -algebra, we mean a ring A containing F in its centre
and finite-dimensional as F -vector space; if F equals the centre of A, then A is called a
central F -algebra; a division algebra is an algebra in which every nonzero element has
an inverse; an F -algebra A is simple if it contains no two-sided ideals other than 0 and A.
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According to a theorem of Wedderburn, the simple F -algebras are the matrix algebras over
division F -algebras.

EXAMPLE 15.1. (a) If F is algebraically closed or finite, then78 every central division
algebra is isomorphic to F .

(b) Every central division algebra over R is isomorphic either to R or to the (usual)
quaternion algebra:

HD C˚Cj; j 2 D�1; jzj�1 D Nz .z 2 C/:

(c) Let F be a p-adic field (finite extension of Qp), and let � be a prime element of
OF . Let L be an unramified extension field of F of degree n, and let � denote the
Frobenius generator of Gal.L=F / — � acts as x 7! xq on the residue field of L,
where q is the size of the residue field of F . For each i , 1 � i � n, we define an
F -algebra as follows:

Di;n D Le0˚Le1˚�� �˚Len�1

as an F -vector space and the multiplication is determined by

ej � c D �
j c � ej all c 2 L

ej el D

�
ejCl if j C l � n�1

� iejCl�n if j C l > n�1:

Identify L with a subfield of Di;n by identifying e0 with 1, and let aD e1; now

Di;n D L˚La˚�� �˚La
n�1; an D � i ; aca�1 D �.c/ .z 2 L/:

Then Di;n is a central simple algebra over F , and it is a division algebra if and only if
gcd.i;n/D 1. Every central division algebra over F is isomorphic to Di;n for exactly
one relatively prime pair .i;n/ (CFT, IV 4.2).

If B and B 0 are central simple F -algebras, then so also is B˝F B 0 (CFT, 2.8). If D
and D0 are central division algebras, then Wedderburn’s theorem shows that D˝F D0 �
Mr.D

00/ for some r and some central division algebra D00 well-defined up to isomorphism,
and so we can set

ŒD�ŒD0�D ŒD00�:

This law of composition is obviously associative, and ŒF � is an identity element. Let Dopp

denote the opposite algebra to D (the same algebra but with the multiplication reversed:
aoppbopp D .ba/opp). Then (CFT, IV 2.9)

D˝F D
opp
' EndF -linear.D/�Mr.F /;

and so ŒD�ŒDopp�D ŒF �. Therefore, the isomorphism classes of central division algebras
over F (equivalently, the isomorphism classes of central simple algebras over F ) form a
group, called the Brauer group of F .

EXAMPLE 15.2. (a) The Brauer group of an algebraically closed field or a finite field is
zero.

78If F is algebraically closed, then each element of a central division algebra over F generates a field of finite
degree over F , and so lies in F . For the proof in the finite case, see CFT, IV 4.1.
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(b) The Brauer group R has order two: Br.R/' 1
2
Z=Z.

(c) For a p-adic field F , the map ŒDn;i � 7! i
n

mod Z is an isomorphism Br.F /'Q=Z.

(d) For a number field F and a prime v, write invv for the canonical homomorphism
Br.Fv/!Q=Z given by (a,b,c) (so invv is an isomorphism except when v is real or
complex, in which case it has image 1

2
Z=Z or 0). For a central simple algebra B over

F , ŒB˝F Fv�D 0 for almost all v, and the sequence

0! Br.F /
ŒB�7!ŒB˝FFv�
����������!

M
v

Br.Fv/
P
v invv
�����!Q=Z! 0:

is exact.

Statement (d) is shown in the course of proving the main theorem of class field theory
by the cohomological approach (CFT, VIII 4.2). It says that to give a division algebra over
F (up to isomorphism) is the same as to give a family .iv/ 2

L
v finiteQ=Z˚

L
v real

1
2
Z=Z

such that
P
iv D 0.

The key tool in computing Brauer groups is an isomorphism

Br.F /'H 2.F;Gm/
def
DH 2.Gal.F s=F /;F a�/

def
D lim
�!

H 2.Gal.L=F /;L�/:

The last limit is over the fields L� F s of finite degree and Galois over G. This isomorphism
can be most elegantly defined as follows. Let D be a central division algebra of degree
n2 over F , and assume79 that D contains a subfield L of degree n over F and Galois over
F . Then each ˇ 2D normalizing L defines an element x 7! ˇxˇ�1 of Gal.L=F /, and the
theorem of Skolem and Noether (footnote 52, p. 80) shows that every element of Gal.L=F /
arises in this way. Because L is its own centralizer (ibid., 3.4), the sequence

1! L�!N.L/! Gal.L=F /! 1

is exact. For each � 2 Gal.L=F /, choose an s� 2N.L/ mapping to � , and let

s� � s� D d�;� � s�� ; d�;� 2 L
�:

Then .d�;� / is a 2-cocycle whose cohomology class is independent of the choice of the
family .s� /. Its class in H 2.Gal.L=F /;L�/�H 2.F;Gm/ is the cohomology class of ŒD�.

EXAMPLE 15.3. Let L be the completion of Qun
p (equal to the field of fractions of the

ring of Witt vectors with coefficients in F), and let � be the automorphism of L inducing
x 7! xp on its residue field. An isocrystal is a finite-dimensional L-vector space V equipped
with a �-linear isomorphism F WV ! V . The category Isoc of isocrystals is a semisimple
Qp-linear category with ˙.Isoc/DQ, and the endomorphism algebra of a representative
of the isomorphism class � is a division algebra E� over Qp with invariant �. If � � 0,
�D r=s, gcd.r; s/D 1, s > 0; then E� can be taken to be .QpŒT �=.T r �ps//˝Qp L, and
if � < 0, E� can be taken to be the dual of E��. See Demazure 1972, Chap. IV.

Abelian varieties

Recall (p. 98) that AV0.k/ is the category whose objects are the abelian varieties over k,
but whose homs are Hom0.A;B/D Hom.A;B/˝Q. It follows from results of Weil that
AV0.k/ is a semisimple Q-category with the simple abelian varieties (see p. 98) as its simple
objects. Amazingly, when k is finite, we know its numerical invariants.

79This will always be true when F is a p-adic or number field, but is not true (or, at least, not known to be
true) for other fields. In the general case, it becomes true after D has been replaced by Mr .D/ for some r .
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ABELIAN VARIETIES OVER Fq , q D pn

Recall that a Weil q-integer is an algebraic integer such that, for every embedding �WQŒ��!
C, j��j D q

1
2 . Two Weil q-integers � and � 0 are conjugate if there exists an isomorphism

QŒ��!QŒ� 0� sending � to � 0.
Recall also (10.7) that the Frobenius endomorphism �A of an abelian variety A over Fq

lies in the centre of End0.A/ and is a Weil q-integer.

THEOREM 15.4 (HONDA-TATE). The mapA 7!�A defines a bijection from˙.AV.Fq// to
the set of conjugacy classes of Weil q-integers. For any simpleA, the centre ofD def

D End0.A/
is F DQŒ�A�, and for a prime v of F ,

invv.D/D

8̂<̂
:

1
2

if v is real
ordv.�A/
ordv.q/

ŒFvWQp� if vjp
0 otherwise.

Moreover, 2dimAD ŒDWF �
1
2 � ŒF WQ�.

In fact, QŒ�� can only have a real prime if � D
p
pn. Let W1.q/ be the set of Weil

q-integers in Qa � C. Then the theorem gives a bijection

˙.AV0.Fq//! � nW1.q/; � D Gal.Qa=Q/:

NOTES. Except for the statement that every �A arises from an A, the theorem is due to Tate. That
every Weil q-integer arises from an abelian variety was proved (using 10.10) by Honda. See Tate
1968 for a discussion of the theorem.

ABELIAN VARIETIES OVER F

We shall need a similar result for an algebraic closure F of Fp.
If � is a Weil pn-integer, then �m is a Weil pmn-integer, and so we have a homomor-

phism � 7! �mWW1.p
n/!W1.p

nm/. Define

W1 D lim
�!

W1.p
n/:

If � 2 W1 is represented by �n 2 W1.pn/, then �mn 2 W1.p
nm/ also represents � , and

QŒ�n� � QŒ�mn �. Define Qf�g to be the field of smallest degree over Q generated by a
representative of � .

Every abelian variety over F has a model defined over a finite field, and if two abelian
varieties over a finite field become isomorphic over F, then they are isomorphic already over
a finite field. Let A be an abelian variety over Fq . When we regard A as an abelian variety
over Fqm , then the Frobenius map is raised to the mth-power (obviously): �AFqm

D �mA :

Let A be a simple abelian variety defined over F, and let A0 be a model of A over

Fq . The above remarks show that sA.v/
def
D

ordv.�A
0
/

ordv.q/
is independent of the choice of A0.

Moreover, for any �WQŒ�A0 � ,! Qa, the � -orbit of the element �A of W1 represented by
��A0 depends only on A.

THEOREM 15.5. The map A 7! � �A defines a bijection ˙.AV0.F//! � nW1. For any
simple A, the centre of D def

D End0.A/ is isomorphic to F DQf�Ag, and for any prime v of
F ,

invv.D/D

8<:
1
2

if v is real
sA.v/ � ŒFvWQp� if vjp
0 otherwise.
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PROOF. This follows from the Honda-Tate theorem and the above discussion. 2

Our goal in the remainder of this section is to give an elementary construction of a
semisimple Q-category that contains, in a natural way, a category of “fake abelian varieties
over F” with the same numerical invariants as AV0.F/.

For the remainder of this section F is a field of characteristic zero.

Tori and their representations
Let T be a torus over F split by a Galois extension L=F with Galois group � . As we noted
on p. 17, to give a representation � of T on an F -vector space V amounts to giving an
X�.T /-gradation V.L/D

L
�2X�.T /V� of V.L/ with the property that �V� D V�� for all

� 2 � and � 2X�.T /. In this, L=F can be an infinite Galois extension.

PROPOSITION 15.6. Let � D Gal.F a=F /. The category of representations Rep.T / of T
on F -vector spaces is semisimple. The set of isomorphism classes of simple objects is in
natural one-to-one correspondence with the orbits of � acting on X�.T /, i.e.,

˙.Rep.T //D � nX�.T /:

If V� � is a simple object corresponding to � �, then dim.V� �/ is the order of � �, and

End.V�/� F.�/

where F.�/ is the fixed field of the subgroup � .�/ of � fixing �.

PROOF. Follows easily from the preceding discussion (Milne 2017, 12.30). 2

REMARK 15.7. Let � 2 X�.T /, and let � .�/ and F.�/ be as in the proposition. Then
Hom.F.�/;F a/' �=� .�/, and so X�..Gm/F.�/=F /D Z�=� .�/. The mapX

�
n�� 7!

X
�
n���WZ�=� .�/!X�.T /

defines a homomorphism
T ! .Gm/F.�/=F : (66)

From this, we get a homomorphism of cohomology groups

H 2.F;T /!H 2.F;.Gm/F.�/=F /:

But Shapiro’s lemma (CFT, II 1.11) shows that H 2.F;.Gm/F.�/=F / ' H 2.F.�/;Gm/,
which is the Brauer group of F.�/. On composing these maps, we get a homomorphism

H 2.F;T /! Br.F.�//: (67)

The proposition gives a natural construction of a semisimple category M with ˙.M/D
� nN , where N is any finitely generated Z-module equipped with a continuous action of � .
However, the simple objects have commutative endomorphism algebras. To go further, we
need to look at new type of structure.
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Affine extensions
In the remainder of this section, F is of characteristic zero. Let L=F be a Galois extension
of fields with Galois group � , and let G be an algebraic group over F . In the following, we
consider only extensions

1!G.L/!E! � ! 1

in which the action of � on G.L/ defined by the extension is the natural action up to
conjugation, i.e., if e� in E maps to � 2 � , then there is an a 2G.L/ such that

e�ge
�1
� D a.�g/a

�1 for all g 2 T .F a/:

For example, there is always the split extension EG
def
DG.L/Ì� .

An extension E is affine if its pull-back to some open subgroup of � is split.80 Equiva-
lently, if for the � in some open subgroup of � , there exist e� 7! � such that e�� D e�e� .
We call G the kernel of the affine extension.

Consider an extension
1! T !E! � ! 1

with T commutative. If E is affine, then it is possible to choose the e� ’s so that the 2-cocycle
d W� �� ! T .L/ defined by

e�� D d�;�e�e� ; d�;� 2 T .F
a/.

is continuous. Thus, in this case E defines a class cl.E/ 2H 2.F;T /.
A homomorphism of affine extensions is a commutative diagram

1 G1.L/ E1 � 1

1 G2.L/ E2 � 1

�

such that the restriction of the homomorphism � to G1.L/ is defined by a homomorphism
of algebraic groups (over L).81 A morphism �! �0 of homomorphisms E1! E2 is an
element of g of G2.L/ such that ad.g/ı� D �0, i.e., such that

g ��.e/ �g�1 D �0.e/; all e 2E1.

For a vector space V over F , let EV be the split affine extension defined by the algebraic
group GL.V /. A representation of an affine extension E is a homomorphism E!EV .

REMARK 15.8. To give a representation ofEG onEV is the same as to give a representation
of G on V . More precisely, the functor Rep.G/ Rep.EG/ is an equivalence of categories.
The proof of this uses that H 1.L=F;GL.V //D 1:

PROPOSITION 15.9. Let E be an L=F -affine extension whose kernel is a torus T split by
L. The category Rep.E/ is a semisimple F -category with ˙.Rep.E//D � nX�.T /. Let
V� � be a simple representation of E corresponding to � � 2 � nX�.T /. Then, End.V��/
has centre F.�/, and its class in Br.F.�// is the image of cl.E/ under the homomorphism
(67).

80An affine extension is a down-to-earth realization of an affine groupoid. Langlands and Rapoport (1987, �1)
use the term Galoisgerbe. See the aside and note at the end of this section (p. 140).

81As F has characteristic zero, there is at most one homomorphism of algebraic groups acting as �1jG1.L/
on the L-points when G1 is connected or L is algebraically closed; otherwise we specify it as part of the data.
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PROOF. Omitted (but it is not difficult). 2

We shall also need to consider affine extensions in which the kernel is allowed to be a
protorus, i.e., the limit of an inverse system of tori. For T D lim

 �
Ti , X�.T /D lim

�!
X�.Ti /,

and T 7! X�.T / defines an equivalence from the category of protori to the category of
torsion-free Z-modules with a continuous action of � .82 Here continuous means that every
element of the module is fixed by an open subgroup of � . Let L D F a. By an affine
extension with kernel T , we mean an exact sequence

1! T .F a/!E! � ! 1

whose push-out
1! Ti .F

a/!Ei ! � ! 1

by T .F a/! Ti .F
a/ is an affine extension in the previous sense. A representation of such

an extension is defined exactly as before.

REMARK 15.10. Let
L L0

F F 0

�

� � 0

�

be a diagram of fields in which L0=F 0 is Galois with group � 0: From an L=F -affine
extension

1!G.L/!E! � ! 1

with kernel G we obtain an L0=F 0-affine extension

1!G.L0/!E 0! � 0! 1

with kernel GF 0 by pulling back by � 7! � jLW� 0! � and pushing out by G.L/!G.L0/).

EXAMPLE 15.11. Let Qun
p be a maximal unramified extension of Qp, and let Ln be the

subfield of Qun
p of degree n over Qp. Let �n D Gal.Ln=Qp/, let D1;n be the division

algebra in (15.1c), and let

1! L�n !N.L�n /! �n! 1

be the corresponding extension. Here N.L�n / is the normalizer of L�n in D1;n:

N.L�n /D
G

0�i�n�1
L�na

i :

This is anLn=Qp-affine extension with kernel Gm. On pulling back by � !�n and pushing
out by L�n !Qun�

p ,

�

1 L�n N.L�n / �n 1

Qun�
p

82Over a general ring R, a direct limit of finitely generated free R-modules need not be free, but it is flat.
Moreover, every flat R-module arises in this way (theorem of D. Lazard). For Z-modules, “flat” is equivalent to
“torsion-free”.
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we obtain a Qun
p =Qp-affine extension

1!Qun�
p !Dn! Gal.Qun

p =Qp/! 1

with kernel Gm. From a representation

�WDn!EV D GL.V .Qun
p //ÌGal.Qun

p =Qp/

of Dn we obtain a vector space V over Qun
p equipped with a �-linear map F (the image

of .1;a/ under � is .F;�/). On tensoring this with the completion L of Qun
p , we obtain an

isocrystal that can be expressed as a sum of E�’s with � 2 1
n
Z.

Note that there is a canonical section to N.L�n /! �n, namely, � i 7! ai (0� i � n�1)
which defines a canonical section to Dn! � .

There is a homomorphismDnm!Dn whose restriction to the kernel is multiplication by
m. The inverse limit of this system is a Qun

p =Qp-affine extensionD with kernel G def
D lim
 �

Gm.

Note that X�.G/D lim
�!

1
n
Z=ZDQ. There is a natural functor from Rep.D/ to the category

of isocrystals, which is faithful and essentially surjective on objects but not full. We call D
the Dieudonné affine extension.

The affine extension P

Let W.pn/ be the subgroup of Qa� generated by W1.pn/, and let W D lim
�!n

W.pn/.
Then W is a free Z-module of infinite rank with a continuous action of � DGal.Qa=Q/.

For � 2W , we define Qf�g to be the smallest field generated by a representative of � . If �
is represented by �n 2W.pn/ and j�.�n/j D .pn/m=2, we say that � has weight m, and for
a prime v of Qf�g above p, we write

s�.v/D
ordv.�n/
ordv.pn/

:

THEOREM 15.12. Let P be the protorus over Q with X�.P /DW . Then there exists an
affine extension

1! P.Qa/!P! � ! 1

such that

(a) ˙.Rep.P//D � nW ;

(b) for � 2W , let D.�/D End.V� �/, where V� � is a representation corresponding to
� �; then D.�/ is isomorphic to the division algebra D with centre Qf�g and the
invariants

invv.D/D

8<:
wt.�/
2

if v is real
s�.v/ � ŒQf�gvWQp� if vjp
0 otherwise.

Moreover, P is unique up to isomorphism.

PROOF. Let c.�/ denote the class in Br.Qf�g/ of the division algebra D in (b). To prove
the result, we have to show that there exists a unique class in H 2.Q;P / mapping to c.�/ in
Br.Qf�g/ for all � :

c 7! .c.�//WH 2.Q;P /
.67/
!

Y
� �2� nW

Br.Qf�g/:

This is an exercise in Galois cohomology, which, happily, is easier than it looks. 2
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We call a representation of P a fake motive over F, and a fake abelian variety if its
simple summands correspond to � 2 � nW1. Note that the category of fake abelian varieties
is a semisimple Q-category with the same numerical invariants as AV0.F/.

THE LOCAL FORM P.l/ OF P

Let l be a prime83 of Q, and choose a prime wl of Qa dividing l . Let Qa
l

be the algebraic

closure of Ql in the completion of Qa at wl . Then �l
def
D Gal.Qa

l
=Ql/ is a closed subgroup

of � def
D Gal.Qa=Q/, and we have a diagram

Qa Qa
l

Q Ql :

� �l
(68)

From P we obtain a Qa
l
=Ql -affine extension P.l/ by pulling back by �l ! � and pushing

out by P.Qa/! P.Qa
l
/ (cf. 15.10).

THE Q`-SPACE ATTACHED TO A FAKE MOTIVE

Let `¤ p;1 be a prime of Q.

PROPOSITION 15.13. There exists a continuous homomorphism �` making

�`

1 P.Qa
`
/ P.`/ �` 1

�`

commute.

PROOF. To prove this, we have to show that the cohomology class of P in H 2.Q;P / maps
to zero in H 2.Q`;P /, but this is not difficult. 2

Fix a homomorphism �`W�`!P.`/ as in the diagram. Let �WP!EV be a fake motive.
On pulling back by �`! � and pushing out using the commutative diagram

P.Qa/ P.Qa
`
/

GL.V .Qa// GL.V .Qa
`
//;

we obtain from � a representation

�.`/WP.`/! GL.V .Qa
`//Ì�`

of P.`/ on V.Q`/.
83So l 2 f2;3;5; : : : ;1g. The symbol ` always denotes a prime¤ p;1.
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For � 2 �`, let .�.`/ı �`/.�/D .e� ;�/. Because �` is a homomorphism, the automor-
phisms e� of V.Qa

`
/ satisfy

e� ı�e� D e�� ; �;� 2 �`;

and so
� �v D e� .�v/

is an action of �` on V.Qa
`
/, which one can check to be continuous. Therefore (AG, 16.7),

V`.�/
def
D V.Qa

`
/�` is a Q`-structure on V.Qa

`
/: In this way, we get a functor � V`.�/ from

the category of fake motives over F to vector spaces over Q`.
With a little more effort, it is possible to define a functor

� V
p

f
.�/ (free module over Ap

f

def
D

Y
`¤p;1

.Q`;Z`/)

such that V`.�/D V
p

f
.�/˝Ap

f
Q` for all `¤ p;1.

THE ISOCRYSTAL OF A FAKE MOTIVE

Choose a prime wp of Qa dividing p, and let Qun
p and Qa

p denote the subfields of the

completion of Qa at wp . Then �p
def
DGal.Qa

p=Qp/ is a closed subgroup of � def
DGal.Qa=Q/

and � un
p

def
D Gal.Qun

p =Qp/ is a quotient of �p.

PROPOSITION 15.14. (a) The affine extension P.p/ arises by pull-back and push-out from
a Qun

p =Qp-affine extension P.p/un.
(b) There is a homomorphism of Qun

p =Qp-extensions D!P.p/un whose restriction to
the kernels, G! PQp , corresponds to the map on characters � 7! s�.wp/WW !Q.

PROOF. (a) This follows from the fact that the image of the cohomology class of P in
H 2.�p;P.Qa

p// arises from a cohomology class in H 2.� un
p ;P.Qun

p // (proof omitted).
(b) This follows from the fact that the homomorphism H 2.Qp;G/!H 2.Qp;PQp /

sends the cohomology class of D to that of P.p/un. 2

In summary, we have a diagram

1 Gm.Qun
p / D � un

p 1

1 P.Qun
p / P.p/un � un

p 1

1 P.Qa
p/ P.p/ �p 1:

A fake motive �WP! EV gives rise to a representation of P.p/, which arises from
a representation of P.p/un (cf. the argument following 15.13). On composing this with
the homomorphism D!P.p/un, we obtain a representation of D, which gives rise to an
isocrystal D.�/ as in (15.11).
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ABELIAN VARIETIES OF CM-TYPE AND FAKE ABELIAN VARIETIES

We saw in (10.5) that an abelian variety of CM-type over Qa defines an abelian variety over
F. Does it also define a fake abelian variety? The answer is yes.

PROPOSITION 15.15. Let T be a torus over Q split by a CM-field, and let� be a cocharacter
of T such that �C �� is defined over Q (here � is complex conjugation). Then there is a
homomorphism, well defined up to isomorphism,

��WP!ET .

PROOF. This is obvious from the fact, implicit in the statement following 15.12, that
the functor sending an object of AV0.F/ to the corresponding fake abelian variety is an
equivalence of categories. 2

Let A be an abelian variety of CM-type .E;˚/ over Qa, and let T D .Gm/E=Q. Then
˚ defines a cocharacter �˚ of T (see 12.4(b)), which obviously satisfies the conditions
of the proposition. Hence we obtain a homomorphism �WP! ET . Let V D H1.A;Q/.
From � and the representation � of T on V we obtain a fake abelian variety � ı� such that
V`.� ı�/DH1.A;Q`/ (obvious) and D.�/ is isomorphic to the Dieudonné module of the
reduction of A (restatement of the Shimura–Taniyama formula).

ASIDE 15.16. The category of fake abelian varieties has similar properties to AV0.F/. By
using the Q`-spaces and the isocrystals attached to a fake abelian variety, it is possible to
define a Z-linear category with properties similar to AV.F/.84

ASIDE. Over every field k, there is a Q-linear semisimple category Mot.k/ of numerical motives.
Now assume k to be the algebraic closure of Fp . When one assumes that the Tate conjecture
and Grothendieck’s standard conjectures hold over k, then it is possible to describe Mot.k/ quite
explicitly: in particular, the isomorphism classes of objects are indexed by the elements of � nW
and the endomorphism algebras have the same description as in Theorem 15.12(b) (folklore; see
Milne 1994a). The category Mot.k/ is Tannakian. If it had a fibre functor over Q, then the choice of
such a functor would identify the category with the category of representations of an affine group
scheme. The category Mot.k/ does not have a fibre functor over Q, but the choice of a fibre functor
over Qa identifies it with the category of representations of an affine groupoid scheme. Tannakian
theory determines the “kernel” of the groupoid to be the pro-torus P and the fibre functors at all `
and of a polarization determine the class of the groupoid scheme in H 2.Ql ;P / for all l . Langlands
and Rapoport (1987) showed that this family of local cohomology classes arises from a global
cohomology class in H 2.Q;P /, and hence showed that there does exist a groupoid scheme with the
properties expected of that attached to Mot.k/ and a fibre functor over Qa. This is explained in my
article Milne 1992.

There is a functor from affine groupoid schemes to affine extensions that can be made into
an equivalence. Since extensions are more elementary than groupoid schemes, I have explained
everything here in terms of them. This is a little like identifying an algebraic group over a field k
with its group of ka-points plus a k-structure. Purists can read the articles mentioned above.

NOTES. The affine extension P is defined in Langlands and Rapoport 1987, ��1–3, where it is called
“die pseudomotivische Galoisgruppe”. There an affine extension is called a Galoisgerbe although,
rather than a gerbe, it can more accurately be described as a concrete realization of a groupoid. See
also Milne 1992. In the above, I have ignored uniqueness questions, which can be difficult (see Milne
2003).

84Abelian varieties over finite fields have applications to coding theory and cryptography. Perhaps false
abelian varieties, being more elementary, also have such applications.
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16 The good reduction of Shimura varieties
We now write ShK.G;X/, or just ShK , for the canonical model of the Shimura variety over
its reflex field.

The points of the Shimura variety with coordinates in the algebraic
closure of the rational numbers

When we have a description of the points of the Shimura variety over C in terms of abelian
varieties or motives plus additional data, then the same description holds over Qa.85 For
example, for the Siegel modular variety attached to a symplectic space .V; /, ShK.Qa/

classifies the isomorphism classes of triples .A;s;�K/ in which A is an abelian variety
defined over Qa, s is an element of NS.A/˝Q containing a Q�-multiple of an ample divisor,
and � is a K-orbit of isomorphisms V.Af /! Vf .A/ sending  to an A�

f
-multiple of the

pairing defined by s. Here NS.A/ is the Nèron-Severi group of A (divisor classes modulo
algebraic equivalence).

On the other hand, I do not know a description of ShK.Qa/ when, for example, Gad has
factors of type E6 or E7 or mixed type D. In these cases, the proof of the existence of a
canonical model is quite indirect.

The points of the Shimura variety with coordinates in the reflex field

Over E D E.G;X/ the following additional problem arises. Let A be an abelian variety
over Qa. Suppose we know that �A is isomorphic to A for all � 2 Gal.Qa=E/. Does this
imply that A is defined over E‹ Choose an isomorphism f� W�A! A for each � fixing E.
A necessary condition that the f� arise from a model over E is that they satisfy the cocycle
condition: f� ı�f� D f�� . Of course, if the cocycle condition fails for one choice of the
f� ’s, we can try another, but there is an obstruction to obtaining a cocycle which lies in the
cohomology set H 2.Gal.Qa=E/;Aut.A//.

Certainly, this obstruction would vanish if Aut.A/ were trivial. One may hope that the
automorphism group of an abelian variety (or motive) plus data in the family classified by
ShK.G;X/ is trivial, at least when K is small. This is so when condition SV5 holds, but not
otherwise.

In the Siegel case, the centre of G is Gm and so SV5 holds. Therefore, provided K is
sufficiently small, for any field L containing E.G;X/, ShK.L/ classifies triples .A;s;�K/
satisfying the same conditions as when L D Qa. Here A an abelian variety over L, s 2
NS.A/˝Q, and � is an isomorphism V.Af /! Vf .A/ such that �K is stable under the
action of Gal.La=L/.

In the Hilbert case (4.14), the centre of G is .Gm/F=Q for F a totally real field and
SV5 fails: F � is not discrete in A�

F;f
because every nonempty open subgroup of A�

F;f
will contain infinitely many units. In this case, one has a description of ShK.L/ when L is
algebraically closed, but otherwise all one can say is that ShK.L/D ShK.La/Gal.La=L/.

85This is a heuristic principle that could be made precise.
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Hyperspecial subgroups

The modular curve �0.N /nH1 is defined over Q, and it has good reduction at the primes
not dividing the level N but not necessarily at the other primes. Before explaining what is
known in general, we need to introduce the notion of a hyperspecial subgroup.

DEFINITION 16.1. Let G be a reductive group over Q (over Qp will do). A subgroup
K �G.Qp/ is hyperspecial if there exists a flat group scheme G over Zp such that

˘ GQp DG (i.e., G extends G to Zp);

˘ GFp is a connected reductive group (necessarily of the same dimension as G because
of flatness);

˘ G.Zp/DK.

EXAMPLE 16.2. Let G D GSp.V; /. Let � be a Zp-lattice in V.Qp/, and let Kp be
the stabilizer of �. Then Kp is hyperspecial if the restriction of  to ��� takes values
in Zp and is perfect, i.e., induces an isomorphism �! �_. Then  on � in induces a
nondegenerate alternating pairing �=p���=p�! Fp , and GFp is its group of symplectic
similitudes.

EXAMPLE 16.3. In the PEL-case, in order for there to exist a hyperspecial group, the algebra
B must be unramified above p, i.e., B˝QQp must be a product of matrix algebras over
unramified extensions of Qp . When this condition holds, the description of the hyperspecial
groups is similar to that in the Siegel case.

It is known (Tits 1979, 1.10) that there exists a hyperspecial subgroup in G.Qp/ if
and only if G is unramified over Qp, i.e., quasisplit over Qp and split over an unramified
extension.

For the remainder of this section we fix a hyperspecial subgroup Kp �G.Qp/, and we
write Shp.G;X/ for the inverse system of varieties ShKp�Kp .G;X/ with Kp running over
the compact open subgroups of G.Ap

f
/, where Ap

f
D
Q
`¤p;1.Q`;Z`/. The group G.Ap

f
/

acts on the family Shp.G;X/.

The good reduction of Shimura varieties

Roughly speaking, there are two reasons a Shimura variety may have bad reduction at a
prime dividing p: the reductive group itself may be ramified at p or p may divide the level.
For example, the Shimura curve defined by a quaternion algebra B over Q will have bad
reduction at a prime p dividing the discriminant of B , and (as we noted above) �0.N /nH1

has bad reduction at a prime dividing N . The existence of a hyperspecial subgroup Kp
forces G to be unramified at p, and by considering only the varieties ShKpKp .G;X/ we
avoid the second problem.

We first state a theorem and then explain it.

THEOREM 16.4. Let Shp.G;X/ be the inverse system of varieties over E.G;X/ defined
by a Shimura datum .G;X/ of abelian type and a hyperspecial subgroup Kp � G.Qp/.
Then, except possibly for some small set of primes p depending only on .G;X/, Shp.G;X/
has canonical good reduction at every prime p of E.G;X/ dividing p.
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REMARK 16.5. Let Ep be the completion of E at p, let OOp be the ring of integers in Ep,
and let k.p/ be the residue field OOp=p.

(a) By Shp.G;X/ having good reduction at p, we mean that the inverse system

.ShKpKp .G;X//Kp ; Kp �G.Ap
f
/ compact open, Kp fixed,

extends to an inverse system of flat schemes Sp D .SKp / over OOp whose reduction modulo
p is an inverse system of varieties .ShKpKp .G;X//Kp over k.p/ such that, for Kp �K 0p

sufficiently small,
ShKpKp  ShK0pKp

is a finite étale map of smooth varieties. We require also that the action of G.Ap
f
/ on Shp

extends to an action on Sp.
(b) A variety over Ep may not have good reduction to a smooth variety over k.p/ —

this can already be seen for elliptic curves — and, when it does it will generally have
good reduction to many different smooth varieties, none of which is obviously the best.
For example, given one good reduction, one often obtain another by blowing up a smooth
subvariety of the closed fibre. By Shp.G;X/ having canonical good reduction at p, we mean
that, for any formally smooth scheme T over OOp, the natural map

Hom OOp
.T; lim
 �
Kp

SKp /! HomEp.TEp ; lim �
Kp

ShKpKp / (69)

is an isomorphism. A smooth scheme is formally smooth, and an inverse limit of schemes
étale over a smooth scheme is formally smooth. As lim

 �
SKp is formally smooth over OOp,

(69) characterizes it uniquely up to a unique isomorphism (by the Yoneda lemma).
(c) In the Siegel case, Theorem 16.4 was proved by Mumford (Mumford 1965). In this

case, the SKp and ShKpKp are moduli schemes. The PEL-case can be considered folklore
in that several authors have deduced it from the Siegel case and published sketches of proof,
the most convincing of which is in Kottwitz 1992. In this case, Sp.G;X/ is the Zariski
closure of Shp.G;X/ in Sp.G. /;X. // (cf. 5.16), and it is a moduli scheme. The Hodge
case86 was proved by Vasiu (1999) except for a small set of primes. In this case, Sp.G;X/
is the normalization of the Zariski closure of Shp.G;X/ in Sp.G. /;X. //. The case of
abelian type follows easily from the Hodge case. See also Kisin 2010 and the later papers of
Vasiu.

(d) That Shp should have good reduction when Kp is hyperspecial was conjectured in
Langlands 1976, p. 411. That there should be a canonical model characterized by a condition
like that in (b) was conjectured in Milne 1992, �2.

Definition of the Langlands-Rapoport set
Let .G;X/ be a Shimura datum for which SV4,5,6 hold, and let

Shp.C/D Sh.C/=Kp D lim
 �
Kp

ShKpKp .G;X/.C/:

86Over the reflex field, Shimura varieties of Hodge type are no more difficult than Shimura varieties of
PEL-type, but when one reduces modulo a prime they become much more difficult for two reasons: general
tensors are more difficult to work with than endomorphisms, and Deligne’s theory of absolute Hodge classes
works is defined only for varieties over a field of characteristic zero.
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For x 2X , let I.x/ be the subgroup G.Q/ fixing x, and let87

S.x/D I.x/nXp.x/�Xp.x/; Xp.x/DG.Ap
f
/; Xp.x/DG.Qp/=Kp:

One sees easily that there is a canonical bijection of sets with G.Ap
f
/-actionG

S.x/! Shp.C/

where the left hand side is the disjoint union over a set of representatives for G.Q/nX . This
decomposition has a modular interpretation. For example, in the case of a Shimura variety of
Hodge type, the set S.x/ classifies the family of isomorphism classes of triples .A;.si /;�K/
with .A;.si // isomorphic to a fixed pair.

Langlands and Rapoport (1987, 5e) conjecture that Shp.F/ has a similar description
except that now the left hand side runs over a set of isomorphism classes of homomorphisms
�WP! EG . Recall that an isomorphism from one � to a second �0 is an element g of
G.Qa/ such that

�0.p/D g ��.p/ �g�1 for all p 2P:

Such a � should be thought of as a “pre fake abelian motive with tensors”. Specifically, if we
fix a faithful representation G ,!GL.V / and tensors ti for V such that G is the subgroup of
GL.V / fixing the ti , then each � gives a representation P! GL.V .Qa//Ì� (i.e., a fake
abelian motive) plus tensors.

DEFINITION OF THE SET S.�/

We now fix a homomorphism �WP!EG and define a set S.�/ equipped with a right action
of G.Ap

f
/ and a commuting Frobenius operator ˚:

Definition of the group I.�/. The group I.�/ is defined to be the group of automorphisms
of �,

I.�/D fg 2G.Qa/ j ad.g/ı� D �g:

Note that if �WG! GL.V / is a faithful representation of G, then � ı�WP!EV is a fake
motive and I.�/� Aut.� ı�/ (here we have abbreviated �Ì1 to �).

Definition of Xp.�/. Let ` be a prime¤ p;1. We choose a prime w` of Qa dividing `,
and define Qa

`
and �` � � as on p. 138.

Regard �` as an Qa
`
=Q`-affine extension with trivial kernel, and write �` for the homo-

morphism
� 7! .1;�/W�`!EG.`/; EG.`/DG.Qa

`/Ì�`.

From � we get a homomorphism �.`/WP.`/! EG.`/, and, on composing this with
the homomorphism �`W�`!P.`/ provided by (15.13), we get a second homomorphism
�`!EG.`/.

Define
X`.�/D Isom.�`;�.`/ı �`/.

Clearly, Aut.�`/DG.Q`/ acts on X`.�/ on the right, and I.�/ acts on the left. If X`.�/ is
nonempty, then the first action makes X`.�/ into a principal homogeneous space for G.Q`/.

87The sets Xp.x/ and Xp.x/ do not depend on x, but it is useful to index them by x.
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Note that if �WG! GL.V / is a faithful representation of G, then

X`.�/� Isom.V .Q`/;V`.� ı�//: (70)

By choosing the �` judiciously (cf. p. 139), we obtain compact open subspaces of the
X`.�/, and we can define Xp.�/ to be the restricted product of the X`.�/. If nonempty, it
is a principal homogeneous space for G.Ap

f
/.

Definition of Xp.�/. We choose a prime wp of Qa dividing p, and we use the notation of
p. 139. We letL denote the completion of Qun

p , and we let OL denote the ring of integers inL
(it is the ring of Witt vectors with coefficients in F). We let � be the Frobenius automorphism
of Qun

p or L that acts as x 7! xp on the residue field.
From � and (15.14), we have homomorphisms

D �!P.p/un �.p/
un

�! G.Qun
p /Ì�

un
p :

For some n, the composite factors through Dn. There is a canonical element in Dn mapping
to � , and we let .b;�/ denote its image in G.Qun

p /Ì� un
p . The image b.�/ of b in G.L/ is

well-defined up to � -conjugacy, i.e., if b.�/0 also arises in this way, then b.�/0D g�1 �b.�/ �
�g.

Note that if �WG! GL.V / is a faithful representation of G, then D.� ı�/ is V.L/ with
F acting as v 7! b.�/�v.

Recall p. 112 that we have a well-defined G.Qa/-conjugacy class c.X/ of cocharacters
of GQa . We can transfer this to conjugacy class of cocharacters of GQa

p
, which contains an

element � defined over Qun
p (see 12.3; G splits over Qun

p because we are assuming it contains
a hyperspecial group). Let

Cp DG.OL/ ��.p/ �G.OL/:

Here we are writing G.OL/ for G.OL/ with G as in the definition of hyperspecial.
Define

Xp.�/D fg 2G.L/=G.OL/ j g�1 �b.�/ �g 2 Cpg:

There is a natural action of I.�/ on this set.

Definition of the Frobenius element ˚ . For g 2Xp.�/, define

˚.g/D b.�/ ��b.�/ � � � � ��m�1b.�/ ��mg

where mD ŒEvWQp�.

The set S.�/. Let
S.�/D I.�/nXp.�/�Xp.�/:

Since I.�/ acts on both Xp.�/ and Xp.�/, this makes sense. The group G.Ap
f
/ acts on

S.�/ through its action on Xp.�/ and ˚ acts through its action on Xp.�/.

THE ADMISSIBILITY CONDITION

The homomorphisms �WP!EG contributing to the Langlands-Rapoport set must satisfy
an admissibility condition at each prime plus one global condition.
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The condition at1. Let E1 be the extension

1! C�!E1! �1! 1; �1 D Gal.C=R/D h�i

associated with the quaternion algebra H, and regard it as an affine extension with kernel
Gm. Note that E1 D C�tC�j and jzj�1 D Nz.

From the diagram (68) with l D1, we obtain a C=R-affine extension

1! P.C/!P.1/! �1! 1:

LEMMA 16.6. There is a homomorphism �1WE1!P.1/whose restriction to the kernels,
Gm 7! PC, corresponds to the map on characters � 7! wt.�/.

PROOF. This follows from the fact that the homomorphism H 2.�1;Gm/!H 2.�1;PR/

sends the cohomology class of E1 to that of P.1/. 2

PROPOSITION 16.7. For any x 2X , the formulas

�x.z/D .wX .z/;1/; �x.j /D .�x.�1/
�1; �/

define a homomorphism E1! EG.1/. Replacing x with a different point, replaces the
homomorphism with an isomorphic homomorphism.

PROOF. Easy exercise. 2

Write �X for the isomorphism class of homomorphisms defined in (16.7). Then the
admissibility condition at1 is that �.1/ı �1 2 �X .

The condition at ` ¤ p. The admissibility condition at ` ¤ p is that the set X`.�/ be
nonempty, i.e., that �.`/ı �` be isomorphic to �`.

The condition at p. The condition at p is that the set Xp.�/ be nonempty.

The global condition. Let �WG! T be the quotient of G by its derived group. From X

we get a conjugacy class of cocharacters of GC, and hence a well defined cocharacter � of
T . Under our hypotheses on .G;X/, � satisfies the conditions of (15.15), and so defines a
homomorphism ��WP!ET . The global condition is that � ı� be isomorphic to ��.

THE LANGLANDS-RAPOPORT SET

The Langlands-Rapoport set

LR.G;X/D
G
S.�/

where the disjoint union is over a set of representatives for the isomorphism classes of
admissible homomorphisms �WP! EG . There are commuting actions of G.Ap

f
/ and of

the Frobenius operator ˚ on LR.G;X/.
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The conjecture of Langlands and Rapoport
CONJECTURE 16.8 (LANGLANDS AND RAPOPORT 1987). Let .G;X/ be a Shimura da-
tum satisfying SV4,5,6 and such that Gder is simply connected, and let Kp be a hyperspecial
subgroup of G.Qp/. Let p be a prime of E.G;X/ dividing p, and assume that Shp has
canonical good reduction at p. Then there is a bijection of sets

LR.G;X/! Shp.G;X/.F/ (71)

compatible with the actions G.Ap
f
/ and the Frobenius elements.

REMARK 16.9. (a) The conditions SV5 and SV6 are not in the original conjecture — I
included them to simplify the statement of the conjecture.

(b) There is also a conjecture in which one does not require SV4, but this requires that P
be replaced by a more complicated affine extension88 Q.

(c) The conjecture as originally stated is definitely wrong without the assumption that
Gder is simply connected. However, when one replaces the “admissible homomorphisms” in
the statement with another notion, that of “special homomorphisms”, one obtains a statement
that should be true for all Shimura varieties. In fact, it is known that the statement with Gder

simply connected then implies the general statement (see Milne 1992, �4, for the details and
a more precise statement).

(d) It is possible to state, and prove, a conjecture similar to (16.8) for zero-dimensional
Shimura varieties. The map .G;X/! .T;Y / (see p. 62) defines a map of the associated
Langlands-Rapoport sets, and we should add to the conjecture that

LR.G;X/ Shp.G;X/.F/

LR.T;Y / Shp.T;Y /.F/

commutes.
(e) For the Shimura varieties defined by quaternion algebras over totally real fields, it is

possible to deduce Conjecture 16.8 from the theorem of Honda and Tate (Milne 1979b,a;
Reimann 1997). For more general PEL Shimura varieties, this theorem yields only weaker
results.

88This is done in the original paper of Langlands and Rapoport, but their definition is of Q is wrong. For a
correct definition, see Pfau 1996.
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17 A formula for the number of points
A reader of the last two sections may be sceptical of the value of a description like (71),
even if proved. In this section we briefly explain how it leads to a very explicit, and useful,
formula for the number of points on the reduction of a Shimura variety with values in a finite
field.

Throughout, .G;X/ is a Shimura datum satisfying SV4,5,6 and Kp is a hyperspecial
subgroup of G.Qp/. We assume that Gder simply connected and that Shp.G;X/ has
canonical good reduction at a prime pjp of the reflex field E DE.G;X/. Other notation are
as in the last section; for example, Ln is the subfield of Qun

p of degree n over Qp and L is
the completion of Qun

p . We fix a field Fq � k.p/� Fp, q D pn.

Triples
We consider triples .
0I
;ı/ where

˘ 
0 is a semisimple element of G.Q/ that is contained in an elliptic torus of GR (i.e., a
torus whose image in Gad

R is anisotropic),

˘ 
 D .
.`//`¤p;1 is an element ofG.Ap
f
/ such that, for all `, 
.`/ becomes conjugate

to 
0 in G.Qa
`
/;

˘ ı is an element of G.Ln/ such that

N ı def
D ı ��ı � : : : ��n�1ı;

becomes conjugate to 
0 in G.Qa
p/.

Two triples .
0I
;ı/ and .
 00I

0; ı0/ are said to be equivalent, .
0I
;ı/� .
 00I


0; ı0/, if 
0
is conjugate to 
 00 in G.Q/, 
.`/ is conjugate to 
 0.`/ in G.Q`/ for each `¤ p;1, and ı is
� -conjugate to ı0 in G.Ln/.

Given such a triple .
0I
;ı/, we set:

˘ I0 D G
0 , the centralizer of 
0 in G; it is connected and reductive [why?];

˘ I1 D the inner form of I0R such that I1=Z.G/ is anisotropic;

˘ I` D the centralizer of 
.`/ in GQ` ;

˘ Ip D the inner form of GQp such that Ip.Qp/D fx 2G.Ln/ j x�1 � ı ��x D ıg.
We need to assume that the triple satisfies the following condition:

(*) there exists an inner form I of I0 such that IQ` is isomorphic to I` for
all ` (including p and1).

Because 
0 and 
` are stably conjugate [conjugate in G.Qa
`
/], there exists an isomor-

phism a`WI0;Qa
`
! I`;Qa

`
, well-defined up to an inner automorphism of I0 over Qa

`
. Choose

a system .I;a; .j`// consisting of a Q-group I , an inner twisting aWI0! I (isomorphism
over Qa/, and isomorphisms j`WIQ` ! I` over Q` for all `, unramified for almost all `,
such that j` ıa and a` differ by an inner automorphism of .I0/Qa

`
— our assumption (*)

guarantees the existence of such a system [j` and a are defined over different fields. Is j` ıa
defined over Qa

`
. P14]. Moreover, any other such system is isomorphic to one of the form

.I;a; .j` ı ad.h`///,[it seems to be being claimed that the I and a are the same. Why is this
so?] where .h`/ 2 I ad.A/.
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Let dx denote the Haar measure on G.Ap
f
/ giving measure 1 to Kp. Choose a Haar

measure dip on I.Ap
f
/ that gives rational measure to compact open subgroups of I.Ap

f
/,

and use the isomorphisms j` to transport it to a measure on G.Ap
f
/
 (the centralizer of 


in G.Ap
f
//. The resulting measure does not change if .j`/ is modified by an element of

I ad.A/ [Why?]. Write d Nx for the quotient of dx by dip . Let f be an element of the Hecke
algebra H of locally constantK-bi-invariant Q-valued functions on G.Af /, and assume that
f D f p �fp , where f p is a function on G.Ap

f
/ and fp is the characteristic function of Kp

in G.Qp/ divided by the measure of Kp. Define

O
 .f
p/D

Z
G.Ap

f
/
nG.Apf /

f p.x�1
x/ d Nx

Let dy denote the Haar measure on G.Ln/ giving measure 1 to G.OLn/. Choose a
Haar measure dip on I.Qp/ that gives rational measure to the compact open subgroups,
and use jp to transport the measure to Ip.Qp/. Again the resulting measure does not
change if jp is modified by an element of I ad.Qp/. Write d Ny for the quotient of dy by dip .
Proceeding as on p. 145, we choose a cocharacter � in c.X/ well-adapted to the hyperspecial
subgroup Kp and defined over Ln, and we let ' be the characteristic function of the coset
G.OLn/ ��.p/ �G.OLn/. Define

TOı.'/D

Z
I.Qp/nG.Ln/

'.y�1ı�.y//d Ny

Since I=Z.G/ is anisotropic over R, and since we are assuming SV5, I.Q/ is a discrete
subgroup of I.Ap

f
/, and we can define the volume of I.Q/nI.Af /. It is a rational number

because of our assumption on dip and dip. Finally, define

I.
0I
;ı/D I.
0I
;ı/.f
p; r/D vol.I.Q/nI.Af // �O
 .f p/ �TOı.�r/:

[�r has not been defined.]
The integral I.
0I
;ı/ is independent of the choices made, and

.
0I
;ı/� .

0
0I

0; ı0/ H) I.
0I
;ı/D I.


0
0I

0; ı0/:

The triple attached to an admissible pair .�;"/
An admissible pair .�;
0/ is an admissible homomorphism �WP! EG and a 
 2 I�.Q/
[I�.Q/ has not been defined] such that 
0xD˚rx for some x 2Xp.�/. Here r D Œk.p/WFp�.
An isomorphism .�;
0/! .�0;
 00/ of admissible pairs is an isomorphism �! �0 sending

0 to 
 00, i.e., it is a g 2G.Qa/ such that

ad.g/ı� D �0; ad.g/.
0/D 
 00:

Let .T;x/ � .G;X/ be a special pair. Because of our assumptions on .G;X/, the
cocharacter �x of T satisfies the conditions of (15.15) and so defines a homomorphism
�x WP! ET . Langlands and Rapoport (1987, 5.23) show that every admissible pair is
isomorphic to a pair .�;
/ with � D �x and 
 2 T .Q/. For such a pair .�;
/, b.�/ is
represented by a ı 2G.Ln/ which is well-defined up to conjugacy.

Let 
 be the image of 
0 in G.Ap
f
/. Then the triple .
0I
;ı/ satisfies the conditions

in the last subsection. A triple arising in this way from an admissible pair will be called
effective.
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The formula
For a 
0 belonging to a triple, the kernel of

H 1.Q;I0/!H 1.Q;G/˚
Y

l
H 1.Ql ;I0/

is finite — we denote its order by c.
0/.

THEOREM 17.1. Let .G;X/ be a Shimura datum satisfying the hypotheses of (16.8). If that
conjecture is true, then

#Shp.Fq/D
X

.
0I
;ı/

c.
0/ �I.
0I
;ı/ (72)

where the sum is over a set of representatives for the effective triples.

PROOF. See Milne 1992, 6.13. 2

NOTES. Early versions of (72) can be found in papers of Langlands, but the first precise general
statement of such a formula is in Kottwitz 1990. There Kottwitz attaches a cohomological invariant
˛.
0I
;ı/ to a triple .
0I
;ı/, and conjectures that the formula (72) holds if the sum is taken over
a set of representatives for the triples with ˛ D 1 (ibid. �3). Milne (1992, 7.9) proves that, among
triples contributing to the sum, ˛ D 1 if and only if the triple is effective, and so the conjecture of
Langlands and Rapoport implies Kottwitz’s conjecture.89 On the other hand, Kottwitz (1992) proves
his conjecture for Shimura varieties of simple PEL type A or C unconditionally (without however
proving the conjecture of Langlands and Rapoport for these varieties).

The following appendices were not in the original 2004 article.

89At least in the case that the weight is rational — Kottwitz does not make this assumption.
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Appendix A Complements
In this section, we add some details omitted from the main text.

The notion of a moduli variety
A.1. Let k be a field. A moduli problem .M;�/ over k consists of a contravariant functor
M from the category of algebraic varieties over k to the category of sets, and equivalence
relations � on each of the sets M.T / that are compatible with morphisms in the sense that

m�m0 H) '�.m/� '�.m0/; m;m0 2M.S/; 'WT ! S:

A point t of a variety T with coordinates in k can be regarded as a map Spec.k/! T , and
so defines a map

m 7!mt
def
D t�mWM.T /!M.k/:

A solution to the moduli problem is a variety V over k together with a bijection

˛WM.k/=� ! V.k/

with the properties:

(a) For any variety T over k andm 2M.T /, the map t 7! ˛.mt /WT .k/! V.k/ is regular
(i.e., defined by a morphism of algebraic varieties);

(b) (Universality) Let Z be a variety over k and let ˇWM.k/!Z.k/ be a map such that,
for any pair .T;m/ as in (a), the map t 7! ˇ.ft /WT .k/! Z.k/ is regular; then the
map ˇ ı˛�1WV.k/!Z.k/ is regular.

A variety V that occurs as the solution of a moduli problem is called a (coarse) moduli
variety. The moduli variety .V;˛/ is fine if there exists a universal m0 2M.V /, i.e., an
object such that, for all varieties T over k and m 2M.T /, there exists a unique regular map
'WT ! V such that '�m0 �m. Then V represents the functor T 7!M.T /=�.

PROPOSITION A.2. Up to a unique isomorphism, there exists at most one solution to a
moduli problem.

PROOF. Suppose there are two solutions .V;˛/ and .V 0;˛0/. Then because of the univer-
sality of .V;˛/, ˛0 ı˛�1WV.k/! V 0.k/ is a regular map, and because of the universality of
.V 0;˛0/, its inverse is also a regular map. 2

Of course, in general there may exist no solution to a moduli problem, and when there
does exist a solution, it may be very difficult to prove it.

The above definitions can be stated also for the category of complex manifolds: simply
replace “algebraic variety” by “complex manifold” and “regular map” by “holomorphic (or
complex analytic) map”. Proposition A.2 clearly also holds in this context.

The congruence subgroup problem
A.3. Let G be a semisimple group over Q. The arithmetic and congruence subgroups of
G.Q/ define topologies on it, and we denote the corresponding completions by OG and NG.
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Because every arithmetic group is congruence, the identity map on G.Q/ gives a surjective
homomorphism OG! NG, whose kernel C.G/ is called the congruence kernel. This kernel
is trivial if and only if all arithmetic subgroups are congruence. The modern congruence
subgroup problem is to compute C.G/. For example, the group C.SL2/ is infinite.

Now let G be simply connected, and let G0 DG=N , where N is a nontrivial subgroup
of Z.G/. Consider the diagram:

1 C.G/ OG NG 1

1 C.G0/ OG0 NG0 1:

O� N�

It follows from the strong approximation theorem (4.16) that NG D G.Af /, and it follows
from (3.2) that the kernel of O� is N.Q/, which is finite. On the other hand, the kernel
of N� is N.Af /, which is infinite. Because Ker. N�/ ¤ N.Q/, � WG.Q/! G0.Q/ doesn’t
map congruence subgroups to congruence subgroups, and because Ker. O�/! Ker. N�/ is
not surjective, C.G/! C.G0/ is not surjective, and so G0.Q/ contains a noncongruence
arithmetic subgroup. See Serre 1967b for more details.

For surveys of the congruence subgroup problem, see Raghunathan 2004 and Prasad and
Rapinchuk 2008.

Proof of Theorem 5.4 (real approximation)
Recall that the theorem says that G.Q/ is dense in G.R/ if G is a connected algebraic group
over Q.

A torus T over a field k is said to be induced (or quasisplit) if it is a product of tori of
the form ResF=kGm with F a finite separable extension of k. For such a torus T , Shapiro’s
lemma and Hilbert’s Theorem 90 imply that H 1.k;T /D 0.

STEP 1. Case that the algebraic group is a torus T over Q.

If T is induced, then the weak approximation theorem in algebraic number theory implies
that T .Q/ is dense in T .R/.

Let T be a torus over Q, and let F be a finite Galois extension of k splitting T with
Galois group � . From an x 2X�.T /, we get a homomorphism Œ
� 7! 
xWZŒ� =��!X�.T /

where � is the subgroup of � fixing x. On applying this observation to enough elements x,
we get an exact sequence

0!M2!M1!X�.T /! 0 (73)

of � -modules with M1 a finite direct sum of modules of the form ZŒ� =�� (varying �)
and M�

1 !X�.T /
� surjective for all subgroups � of � . It follows from the cohomology

sequence of (73) that H 1.�;M2/D 0 for all subgroups � of � . The sequence (73) is the
cocharacter sequence of an exact sequence of tori

0! T2! T1! T ! 0 (74)

with T1 induced. The cohomology sequence of (74) is an exact sequence

T1.R/! T .R/!H 1.C=R;T2/.
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But
H 1.C=R;T2/'H�1Tate.h�i;M2/'H

1.h�i;M2/D 0

where � denotes complex conjugation (the first isomorphism is Tate-Nakayama, and the
second is the periodicity of the cohomology of cyclic groups). Therefore, T1.R/ maps onto
T .R/, and so the real approximation theorem for T follows from that for T1.

STEP 2. If S is an algebraic group of multiplicative type over Q, then the mapH 1.Q;S/!
H 1.R;S/ is surjective.

The same argument as in the proof of Step 1, shows that X�.S/ is a quotient of a direct
sum of modules of the form ZŒ� =��, and correspondingly there is an exact sequence

0! S ! T1! T2! 0

with T1 and T2 tori and T1 induced. From the diagram

T1.Q/ T2.Q/ H 1.Q;S/ 0

T1.R/ T2.R/ H 1.R;S/ 0

dense

onto T2.R/C

we see that H 1.Q;S/!H 1.R;S/ is surjective.

STEP 3. Case that G is unirational and G.R/ is connected.

To say that G is unirational means that there is a dominant morphism f WU !G with
U a nonempty open subset of some projective space Pn. After possibly shrinking U , we
may suppose that f is smooth, and hence that f .R/WU.R/! G.R/ is open (for the real
topology). As Pn.Q/ is dense in Pn.R/, the subset U.Q/ is dense in U.R/. Now G.Q/
contains f .U.Q//, which is dense in the nonempty open subset f .U.R// of G.R/. The
closure of G.Q/ in G.R/ is a group, and hence is also open (because its complement is a
finite union of cosets). But G.R/ is connected, and so this closure equals G.R/.

STEP 4. Case that G is a reductive group.

Let G be a reductive group with centre Z. Then Z is of multiplicative type, and the
argument in the proof of Step 1 shows that there is a surjection T !Zı with T an induced
torus. As G DGderZı (almost direct product), there is an exact sequence

1! S !G0�T !G! 1

with G0 the simply connected covering group of Gder and S a group of multiplicative type.
The real approximation theorem holds for G0 because it is unirational (Milne 2017, 17.93)
and G0.R/ is connected (5.2). From the diagram

G0.Q/�T .Q/ G.Q/ H 1.Q;S/ H 1.Q;G0/

G0.R/�T .R/ G.R/ H 1.R;S/ H 1.R;G0/

dense image onto injective

ontoG.R/C

we see that the real approximation theorem holds for G (the injectivity of the arrow at right
is the Hasse principle for G0, Platonov and Rapinchuk 1994, Theorem 6.6, p. 286).
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STEP 5. The general case.

There is an exact sequence 1! U ! G ! G=U ! 1 with U a normal connected
unipotent algebraic subgroup of G and G=U reductive. A theorem of Mostow says that the
sequence splits, and every connected unipotent group over Q is isomorphic (as a scheme) to
affine n-space for some n. From this the statement follows. (See Milne 2017, 19.11, 25.49,
and 14.32, for the statements used.)

See also Platonov and Rapinchuk 1994, Theorem 7.7, p. 415.

SECOND PROOF (FROM A LETTER OF G. PRASAD, SEPT. 1, 1987).

“To prove that G.Q/ is dense in G.R/, what you need is a result of H. Matsumoto, which is
reproved in Borel-Tits “Groupes réductifs”, Publ. Math. IHES no. 27, as Théorème 14.4,
according to which given a maximal R-split torus S of G, S.R/ meets every connected
component of G.R/. Now we observe that there is a maximal torus T defined over Q which
contains a maximal R-split torus of G: To prove this, we will make use of the fact that the
closure of G.Q/ contains G.R/C. Take a maximal torus T defined over R and containing
a maximal R-split torus of G. In T .R/C, let U be the set of regular elements. U is open
in T .R/. Now let U D

S
g2G.R/gUg�1; then U is an open subset of G.R/C (to see this,

consider the map G.R/�U !G.R/ defined by .g;x/ 7! gxg�1; it is everywhere regular).
Hence, there exists t 2 U \G.Q/. As t is regular, the identity component of the centralizer
of t in G is a torus T defined over Q, and as t has a conjugate in U , it is obvious that T
contains a conjugate of the maximal R-split torus in T . This proves that there is a maximal
torus defined over Q which contains a maximal R-split torus of G.”

Proof of the claim in 5.23

PROPOSITION A.4. Let .G;X/ be a Shimura datum with Gder simply connected, and
assume that Z0 def

DZ\Gder satisfies the Hasse principle for H 1, i.e.,

H 1.Q;Z0/!
Y

lD2;3;:::;1

H 1.Ql ;Z
0/

is injective. Then, for any sufficiently small compact open subgroup K of G.Af /,

G.Q/C\K �Z.Q/ �Gder.Q/:

PROOF. (Cf. the proof of 5.20.) Consider the diagram:

1 Z0.Q/ Z.Q/�Gder.Q/ G.Q/ H 1.Q;Z0/

1 Z0.Q/ Gder.Q/ Gad.Q/ H 1.Q;Z0/:

Let q 2 G.Q/C. By definition, the image of q in Gad.R/ lies in its identity component,
and so lifts to an element of Gder.R/. Therefore, the image of q in H 1.R;Z0/ is zero. The
isogeny Z�Gder!G extends to an étale isogeny over SpecZŒd�1� for some d . For any `
not dividing d , the map Z.Z`/�Gder.Z`/!G.Z`/ is surjective, and so, if q 2G.Z`/, then
it maps to zero in H 1.Q`;Z0/. For the remaining `, the map Z.Z`/�Gder.Z`/! G.Z`/



Hermitian forms (details for �8) 155

will have open image K`. Therefore, if q 2
Q
`−d G.Z`/�

Q
`jd K`, then it maps to zero

in
Q
l finiteH

1.Ql ;Z0/. Because of the Hasse principle, this implies that g maps to zero in
H 1.Q;Z0/, and therefore lies in Z.Q/ �Gder.Q/. 2

Hermitian forms (details for �8)

By a k-algebra we mean a ring containing k in its centre and of finite dimension as a k-vector
space. A k-algebra A is said to be separable if A is semisimple and its centre is an étale
k-algebra. For such a k-algebra, the pairing

.a;b/ 7! TrA=k.ab/WA�A! k

given by the reduced trace TrA=k is nondegenerate (Curtis and Reiner 1981, 7.41).

LEMMA A.5. Let F be an étale k-algebra and V a free F -module of finite rank. The map

f 7! TrF=k ıf WHomF .V;F /! Homk.V;k/

is an isomorphism of k-vector spaces.

PROOF. The map f 7! TrF=k ıf is injective because the trace pairing is nondegenerate,
and it is surjective because the two spaces have the same dimension. 2

LEMMA A.6. Let .A;�/ be a separable k-algebra with involution, and let F be its centre.
Let V and W be A-modules that are free of finite rank over F , and let  WV �W ! k be an
A-balanced k-bilinear form. Then there exists a unique F -sesquilinear form �WV �W ! F

such that
 .v;w/D TrF=k.�.v;w// for all v 2 V and w 2W I

moreover, � is A-balanced.

PROOF. Make V into a right A-module by letting a act as a�. Then  factors through a k-
linear homomorphism 0WV ˝AW ! k. Let c 2F act on V ˝AW by c.v˝w/D cv˝wD
v˝ c�w. According to Lemma A.5, there is a unique F -linear map �0WV ˝AW ! F such
that TrF=k ı�0D 0. Now � def

D ..v;w/ 7! �0.v˝w// is an A-balanced F -sesquilinear form
such that  D TrF=k ı�:

V �W V ˝AW F

k:
 

�

v;w 7!v˝w

 0

�0

TrF=k

It remains to prove the uniqueness. Let �1 and �2 be F -sesquilinear forms V �W !
F such that TrF=k ı�1 D TrF=k ı�2: Let v 2 V and w 2 W . Then TrF=k �1.cv;w/ D
TrF=k �2.cv;w/ for all c 2 F , and so TrF=k c�1.v;w/ D TrF=k c�2.v;w/ for all c 2 F .
Because of the nondegeneracy of the trace pairing, this implies that �1.v;w/D �2.v;w/.2
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LEMMA A.7. Let .A;�/ be a separable k-algebra with involution, and let F be its centre.
Let f 2 F � be such that f � D�f , and let .V; / be a symplectic .A; /-module with V
free of finite rank over F . Then there exists a unique hermitian form �WV �V ! F such
that

 .u;v/D TrF=k.f �.u;v//

for all u;v 2 V ; moreover � is A-balanced.

PROOF. Lemma A.6 with V DW gives an A-balanced F -sesquilinear form �1WV �V !F

such that  .u;v/D TrF=k �1.u;v/. Let � D f �1�1, so that  .u;v/D TrF=k.f �.u;v//.
Now � is sesquilinear and A-balanced, and to show that it is hermitian it remains to show
that �.u;v/D �.v;u/�. By assumption  .u;v/D� .v;u/, and so

TrF=k.f �.u;v//D�TrF=k.f �.v;u//D TrF=k.f
��.v;u//:

On replacing u by cu with c 2 F , we find that

TrF=k.fc�.u;v//D TrF=k..fc/
��.v;u//:

But TrF=k.a/D TrF=k.a�/ for all a 2 F , and so

TrF=k..fc/
��.v;u//D TrF=k.fc�.v;u/

�/:

As fc is an arbitrary element of F , the non-degeneracy of the trace form implies that
�.u;v/D �.v;u/�. The uniqueness of � follows from Lemma A.6. 2

The �-action on the Dynkin diagram
A.8. Let G be a semisimple group G over Q and let T be a maximal torus in G. Then
.G;T /Qa is split and so the choice of a Borel subgroup B of GQa containing TQa determines
a based semisimple root datum .X;˚;�/. There is a natural action of Gal.Qa=Q) on
X

def
D X�.T / which preserves the subset ˚ (but not necessarily � because it depends on

the choice of B). The Weyl group of .G;T / acts simply transitively on the set of bases for
˚ . If � 2 Gal.Qa=Q/, then �.�/ is also a base for ˚ , and so w� .�.�//D� for a unique
w� 2 W . For ˛ 2 �, define � �˛ D w� .�˛/. One checks that this defines an action of
Gal.Qa=Q/ on �. When G is split, we can choose T to be a split maximal torus in G and
B to be a Borel subgroup of G (i.e., defined over Q) containing T . In this case, the action
is trivial. As G splits over a finite extension of Q, this shows that the action is continuous.
When G is quasi-split, we can choose a Borel pair .B;T / in G and define .X;˚;�/ to be
the based semisimple root datum attached to .G;B;T /ks . In this case, � is stable under the
action of � on X , and the �-action on � is induced by the natural action of � on X . See
Milne 2017, 24.6.
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Appendix B List of Shimura varieties of abelian
type

We give a list of classical reductive groups G0 such that .G0;X0/ defines a Shimura variety
for a suitable X0, and such that .Gder

0 ;X0/ is of primitive abelian type. Every .G;XC/ of
primitive abelian type is of the form .Gder

0 ;X0/ with .G0;X0/ from the following list. These
.G0;X0/ all have the property that E.G0;X0/DE.Gad

0 ;X
C
0 /.

In the following, F0 is a totally real number field, and I is the set of all embeddings of
F0 into R. We use Nz to denote the complex conjugate of a complex number z.

(A) Let K be a quadratic totally imaginary extension of F0 and A a central simple
algebra over K equipped with an involution � of the second kind. There is a reductive group
G0 over F0 such that

G0.F0/D fx 2 A
�
j xx� 2 F �0 g:

We put G0 D .G0/F0=Q. The center of G0 is .Gm/K=Q.
For non-negative integers r and s, we put

Ir;s D

�
Ir 0

0 �Ir

�
and

GU.r;s/D fg 2 GLrCs.C/ j gIr;s Ngt D �.g/Ir;s; �.g/ 2 R�g:

Then, for each v 2 I , there are non-negative integers rv and sv such that

G0.R/�
Y

v
GU.rv; sv/:

Let Inc D fv 2 I j rv � sv ¤ 0g and let Ic be the complement of Inc . Define hvWS' C�!
GU.rv; sv/ by

hv.z/D

8<:
�
zIrv 0

0 NzIsb

�
if v 2 Inc

1 if v 2 Ic ;

and define h0WS!G0.R/ to be the product of the hv . Let X0 be the G0.R/-conjugacy class
of h0. Then .G0;X0/ defines a Shimura variety. For any connected component XC0 of X0,
the pair .Gder

0 ;XC0 / is of type A.
The reflex field E.G0;X0/ is either Q or a CM-field. The first case happens if and only

if rv D sv for all v 2 I . In this case the map � defined in Section 3 takes h0 to h00 D
Q
v h
0
v ,

where

hv.z/D

8<:
�
NzIr 0

0 zIr

�
; r D rv D sv; if v 2 Inc

1 if v 2 Ic :

(B) Let n� 3 be an odd integer and q a quadratic form on an n-dimensional vector space
over F0 such that the signature of q at a v 2 I is .n;0/, .0;n/, .n�2;2/, or .2;n�2/. The
special Clifford group of q defines a reductive group G0 over F0. We put G0 D .G0/F0=Q.
The center of G0 is .Gm/F0=Q.

We assume that qv has signature .n�2;2/ for v D 1; : : : ; r (1� r � g), and is positive
definite for v > r:We have

GR D

gY
vD1

Gpn.qv/:
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Therefore, to define hoWS!GR;we only have to define its components S!Gpn.qv/.
For v > r , we let hv be the trivial homomorphism. To define hv for v � r , take the

even Clifford algebra Ev of qv:Denote the main involution of Evby �. Fix two orthogonal
vectors e1, e2 of Vv such that qv.e1/ D qv.e2/ D �1. Then jv D e1e2 2 Ev. We have
j 2v D �1 and j �v D �jv. Furthermore, for .a;b/ 2 R2 X .0;0/, aC bjv 2 Gpn.qv/. We
define hvWC�!Gpn.qv/.C/ by

hv.aCbi/D aCbjv:

Let K1 be the centralizer of h0 in G.R/. Then K1\G0.R/ is a maximal compact
subgroup of G0.R/ and the quotient G0.R/=K1\G0.R/ is a bounded symmetric domain
isomorphic to the product of r copies of8<:.�1; : : : ; �p/ 2 Cp j

pX
kD1

j�kj
2 <

1

2

0@1C ˇ̌̌̌ˇ
pX
kD1

�k

ˇ̌̌̌
ˇ
2
1A< 1

9=;
where we put p D n�2. The field E.G0;X0/ is generated over Q by

˚Pr
vD1x

�v j x 2 F
	

We refer to Shih 1978 for the description of X0 such that .G0;X0/ is a Shimura datum.
The reflex field E.G0;X0/ is totally real. The derived group Gder

0 is the spin group of q. For
any connected component XC0 of X0, the pair .Gder

0 ;XC0 / is of type B.
(C) G0 is the similitude group of a hermitian form over a quaternion algebra whose

centre is F0; see section 7.
(DR) There are two cases:

(a) Same as type B , except n� 4 is even.

(b) Let B be a totally indefinite quaternion algebra over F0 and denote by � the main
involution of B . Let q be a �-antihermitian form on a left free B-module of rank
n � 2. At each � 2 I , q defines a quadratic form on a 2n-dimensional real vector
space. We assume that its signature is .2n;0/, .0;2n/, .2n�2;2/, or .2;2n�2/. Let
G0 be the algebraic group over F0 defined by the special Clifford group of q, and let
G0 D .G

0/F0=Q. We define X0 as before(?) Shih 1978. Then .G0;X0/ is a Shimura
datum of type DR

In both cases E.G0;X0/ is totally real, and the center of G0 is .Z0/F0=Q, where Z0 is an
extension of �2 by Gm over F0.

(DH) Let B be a quaternion algebra over F0 with main involution � . Let q be a �-
anti-hermitian form on a free left B-module � of rank n � 4. Let Inc be the set of � 2 I
where B does not split, and let Ic be the complement of Inc As usual, we assume that Inc is
non-empty; let r be its cardinality. We assume also that at every � 2 Ic , the real quadratic
form defined by q is definite. Let G0 be the algebraic group over Q such that

G0.Q/D fg 2 GLB.�/ j gqtg� D �.g/q; �.g/ 2 F �0 and N.g/D �.g/ng;

where N denotes the reduced norm from EndB.�/ to F0. Then G0.R/ is isomorphic to

the product of r copies of GO�.2n/, where GO�.2n/ consists of the g D
�
A B

� NB NA

�
2

GL2n.C/ such that

g

�
In 0

0 �In

�
Ngt D �.g/

�
In 0

0 �In

�
; �.g/ 2 R�; det.g/D �.g/gn.
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Define h0WS' C�!G0.R/'GO�.2n/r so that each component of h0 is given by

z 7!

�
zIn 0

0 NzIn

�
and define X0 to be the G0.R/-conjugacy class of h0 Then .G0;X0/ is a Shimura datum.
The center of G0 is .Gm/F0=Q.

The reflex field E.G0;X0/ is a CM-field or a totally real field according as n is odd
or even. Let h00WS ' C� ! G0.R/ ' .GO�.2n//r be a homomorphism such that each
component of h00 is given by

z 7!

�
NzIn 0

0 zIn

�
:

Then h00 belongs to X0 if and only if n is even. In this case the map � defined in 7.3 takes h0
to h00.

When nD 4, we also allow G0 of the “mixed type”. We let Ic be the set of � 2 I such
that B splits at � and the quadratic form over R determined by q at � is definite. Denote the
complement of Ic by Inc Let s (resp. r) be the number of � 2 Inc at which B splits (resp.
does not split). We assume that r > 0. If B splits at a � 2 Inc , we assume that the signature
of the real quadratic form determined by q at � is .6;2/ or .2;6/. Then

G0.R/'GO�.8/r �
�
GO.6;2/C

�s
;

where

GO.6;2/s D

�
g 2 GL8.R/

ˇ̌̌̌
g

�
I6 0

0 I2

�
gt D �.g/

�
I6 0

0 I2

�
; �.g/ 2 R�; det.g/ > 0

�
:

We define h0WS! G0.R/ to be the homomorphism whose projection to the component
GO�.8/ is defined as before and the projection to the component GO.6;2/C is

z 7!

0@jzj2I6 0 0

0 <.z2/ =.z2/

0 �=.z2/ <.z2/

1A :
Let X0 be the G0.R/-conjugacy class of h0. Then .G0;X0/ is a Shimura datum.

The reflex field E.G0;X0/ is totally real. Let h00 be the image of h0 under the map � of
Section 3. Then the projection of h00 to GO�.8/ is

z 7!

�
NzI4 0

0 zI4

�
;

and the projection to GO.6;2/C is

z 7!

0@jzj2I6 0 0

0 <.z2/ �=.z2/

0 =.z2/ <.z2/

1A :
NOTES. This appendix is copied from the appendix of Milne and Shih 1981a.
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Appendix C Review of Shimura’s Collected
Papers 90

When Weil arrived in Tokyo in 1955, planning to speak about his ideas on the extension to
abelian varieties of the classical theory of complex multiplication, he was surprised to learn
that two young Japanese mathematicians had also made decisive progress on this topic.91

They were Shimura and Taniyama. While Weil wrote nothing on complex multiplication
except for the report on his talk, Shimura and Taniyama published their results in a book
in Japanese, which, after the premature death of Taniyama, was revised and published in
English by Shimura. For a polarized abelian variety with many complex multiplications, the
theory describes the action of the absolute Galois group of a certain reflex field on the moduli
of the variety and its points of finite order, and it expresses the zeta function of the abelian
variety in terms of Hecke L-series. Over the years Shimura found various improvements to
these original results, which are included among the papers collected in these volumes.

Complex multiplication is the foundation stone of what has become known as the theory
of canonical models. Each elliptic modular curve is defined in a natural way over a number
field k (which depends on the curve). For analysts, the explanation for this is that the Fourier
expansions at the cusps provide a k-structure on the spaces of modular functions and forms.
For geometers, the explanation is that the curve is the solution of a moduli problem which
is defined over k. In one of his most significant results, Shimura showed that quotients of
the complex upper half plane by quaternionic congruence groups are also naturally defined
over number fields, even when compact (hence without cusps) and even when they are not
moduli varieties in any natural way.92 As the fruit of a long series of investigations, he found
a precise notion of a canonical model for the congruence quotients of bounded symmetric
domains and proved that they exist for important families. Let G be a semisimple algebraic
group over Q such the quotient of G.R/ by a maximal compact subgroup is a bounded
symmetric domain X . Then each quotient � nX of X by a congruence subgroup � of G.Q/
has a model over a specific number field k� . As � varies, these models are compatible, and
the whole family is called the canonical model. It is characterized by reciprocity laws at the
CM-points, and its definition requires a realization of G as the derived group of a reductive
group.93

In his talk at the International Congress in 1978,94 Shimura raised five questions: I. Can
one define the notion of arithmetic automorphic functions? II. Same question for automorphic
forms. III. Are (holomorphic) Eisenstein series arithmetic? IV. Is there any explicit way to
construct arithmetic automorphic forms, similar to Eisenstein series, in the case of compact
quotient? V. Is there any interpretation of the values of such explicit arithmetic automorphic
forms at CM-points as [critical] values of zeta functions? Question I is answered by the
theory of canonical models: the model of � nX over k� provides a k� -structure on the
space of automorphic functions for � . Question II asks whether there is (at least) a natural
NQ-structure on the holomorphic automorphic forms. Much of Shimura’s work over the last

90This is MR1965574. The footnotes, which date from 2003, are not in the review sent to MR.
91Weil, CW II, p. 541. He was in Tokyo for the famous International Symposium on Algebraic Number

Theory at Tokyo and Nikko. See my webpage under documents.
92This work is described in his article NAMS 43 (1996), no. 11, 1340–1347 (CW IV, p. 491).
93See Shimura’s talk at the ICM 1970 (Nice) (CW II, p. 400) for more precise statements and a statement of

the “Shimura conjecture”.
94CW III, p. 147.
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twenty-five years has been directed towards answering these questions, especially question V.
This has involved the study of the periods of abelian varieties, Eisenstein series, differential
operators on bounded symmetric domains, and the notion of near holomorphy. (For a more
extensive overview of Shimura’s work, I recommend the article of H. Yoshida, Bull. AMS,
39 (2002), 441-448.)

The four volumes under review collect all the papers published by Shimura between
1954 and 2001 except for a few which are mainly expository. It also includes three articles
not previously published95 and two articles published only in mimeographed proceedings of
the conferences, and hence not generally available.96 Most papers are reproduced directly
from the originals, but fifteen have been newly typeset (not without the introduction of new
misprints), including three97 that were re-typeset from the author’s manuscripts because of
errors introduced into the published versions by incompetent typesetters and copyeditors.

Over fifty pages of endnotes have been added. Most notes correct misprints or other
minor errors, but some give more extended clarifications or complements to the papers. The
origins of the conjecture on the modularity of elliptic curves are revisited in the endnotes to
the papers [64e] and [89a] (and also in the article [96b] itself).

In the preface, Shimura writes: “Some of my recollections are included with the hope
that they may help the reader have a better perspective. I have also mentioned the results
in my later articles which supersede or are related to those in the article at issue. However,
I decided not to mention the results of other later investigators, mainly in order to make
my task easier”. Thus, the endnotes help place the individual papers in the general context
of Shimura’s work,98 but not in any wider context. In fact, the work whose origins can be
traced to that of Shimura is extensive.

Whereas reductive groups play a somewhat auxiliary role in Shimura’s work, Deligne
adopted them as the starting point in his 196999 Bourbaki report on Shimura’s work. There is
now a large body of work on what are called Shimura varieties, expressed in the language of
abstract reductive groups (roots and weights) and Grothendieck algebraic geometry (schemes
and motives). In this more general context, the existence of canonical models had been
proved for all Shimura varieties, including those attached to the exceptional groups, by
1982,100 and by 1986 the theory of automorphic vector bundles had yielded in complete
generality a notion of the arithmeticity of holomorphic automorphic forms over the reflex
field (or even Q/.101 Moreover, by 1982 the main theorems of complex multiplication had
been extended to all automorphisms of NQ (not just those fixing the reflex field).102 Thus, by
the mid 1980s, it was possible to ask some of the arithmeticity questions mentioned above
over Q.

[This paragraph was my attempt to briefly place Shimura’s work in context. In fact, since
about 1970 there have been two schools in the field, which I’ll refer to as the Shimura school
and the Deligne school. In terms of the number of published papers, the first is much larger
than the second (this was written in 2003).

951968c, 2001b, 2001c.
961963e, 1964e.
971967c, 1978c, 1997b.
98In his papers (including his survey papers), his books, and in the comments in his Collected Papers, Shimura

ignores almost all work not done by himself or his students. Consequently, a mathematician studying only his
writings will get an incorrect impression of what is known in the field.

99Actually, the report was in February 1971
100Deligne, Borovoi, Milne.
101Brylinski, Harris, Milne.
102Deligne, Langlands
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I will describe what I see as the essential difference between the two schools. Initially
one begins with a semisimple group G over Q with G.R/ acting on a hermitian symmetric
domain D (satisfying certain conditions). As Shimura first understood, to get a canonical
model one needs to realize G as the derived group of a reductive group. For Shimura the
reductive group is auxiliary: given G he makes the most convenient choice for the reductive
group. On the other hand, Deligne begins with the reductive group. Different choices of the
reductive group for a given G give different canonical models, but they all give the same
connected canonical model (in the sense of Deligne — it is an inverse system of connected
varieties over NQ with an action of a big group). I think that for most of what he does, Shimura
only needs the connected canonical model (and, in general, that’s all his theory gives). Thus,
except for special Shimura varieties (those given by his choice of the reductive group), his is
intrinsically a NQ-theory, whereas Deligne’s is a Q-theory. The challenge is to rewrite all of
the work done by the Shimura school in Deligne’s language. This will mean, for example,
that when the Shimura school proves that some special value is ap where a is an algebraic
number and p is a transcendental period, one should prove that a lies in an abelian extension
of a specific number field and describe how the Galois group acts (and, when the Shimura
school obtains the finer result for special Shimura varieties, one should obtain it for general
Shimura varieties).]
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Cartan; 10e année: 1957/58. Fonctions Automorphes, Exposé 15. Secrétariat mathématique, ENS,
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abelian motive, 90
abelian rational Hodge structure, 91
abelian type, 91
abelian variety, 71
abelian variety of CM-type, 123
adjoint Lie group, 6
admissible pair, 149
Af finite adèles, 42
affine algebra, 35
affine algebraic variety, 35
affine extension, 135
algebraic variety, 35
almost-complex structure, 7
analytic function, 7
analytic map, 7
anistropic torus, 64
arithmetic subgroup

of a Lie group, 34
of an algebraic group, 33

Baily–Borel compactification, 40
basis adapted to, 24
Brauer group, 131

canonical model, 114
of a Shimura variety, 115

canonical tensor, 13
Cartan involution, 15
characteristic polynomial, 97
chart, 5
class group of a torus, 62
CM abelian variety, 123
CM field, 98
CM pair, 113
CM point, 113
CM-algebra, 123
CM-type, 98
commensurable subgroups, 33
compact real algebraic group, 15
compact type, 40
complete, 13
complex analytic space, 37
complex manifold, 7
complex structure, 7
complex torus, 71
congruence kernel, 152

congruence subgroup, 42
conjugate q-integers, 133
connected Shimura datum, 44, 51
connected Shimura variety, 46
contragredient representation, 22

D1 open unit disk, 5
Dieudonné affine extension, 137
division algebra, 130
domain, 10
dual representation, 22

effective admissible pair, 149
étale, 36
exponential map, 14

fake abelian variety, 138
fake motive, 138
family of abelian varieties, 122
finite covolume, 33
Frobenius map, 102

G.Q/C, 52
G.R/C, 52
Gad, 3
Gd .V / Grassmann variety, 23
Gder, 3
geometric symmetry at p, 8
geodesically complete, 13
good reduction at a prime, 101
Grassmann variety, 23
Griffiths transversality, 29

H1 upper half plane, 5
hermitian form, 6, 81, 84
hermitian manifold, 8
hermitian metric, 7
hermitian symmetric domain, 10
hermitian symmetric space, 8
Hg Siegel upper half space, 10
highest root, 19
Hilbert modular varieties, 47
Hilbert–Blumenthal varieties, 94
Hod.Q/, 90
Hodab.Q/, 91
Hodge decomposition, 24
Hodge filtration, 25
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Hodge structure, 24
Hodge structures

continuous family of, 28
holomorphic family of, 29
variation of, 29

Hodge tensor, 27, 77
Hol.M/ biholomorphic automorphisms, 8
holomorphic function, 7
homogeneous manifold, 8
homomorphism of affine extensions, 135
hyperspecial, 142

idempotent endomorphism, 90
induced torus, 152
integrable complex structure, 7
integral Hodge structure, 24
involution, 79
irreducible hermitian symmetric space, 10
Is.M;g/ group of isometries, 8
isocrystal, 132
isogenous abelian varieties, 98
isogeny of abelian varieties, 98
isometry, 6

kernel of an affine extension, 135

langrangian, 68
Lefschetz (1,1)-theorem, 78
level-N structure, 75
local coordinates, 5
local system, 121
locally euclidean, 5
locally symmetric at p, 8
locally symmetric variety, 39

manifold, 5
minimal compactification, 40
minuscule, 20
model, 110
model of a Shimura variety, 115
moduli problem, 151
moduli variety, 151
morphism of affine extensions, 135
morphism of Shimura data, 58
morphism of Shimura varieties, 58
morphism of varieties, 35
Mumford-Tate group, 31

neat subgroup, 34

negative complex structure, 68
noncompact type, 40
nonsingular, 36
numerical invariants, 130

occurs (in a representation), 17

PEL modular variety, 95
period relations, 72
polarizable complex torus, 72
polarizable Hodge structure, 28
polarization of a Hodge structure, 28, 122
polarization of an abelian variety, 78
polarization on a representation, 16
positive complex structure, 68
positive involution, 85, 86
positive-definite bilinear form, 84
prevariety, 35
primitive abelian type, 91
projective manifold, 37
projective variety, 37

quasisplit, 152

rational Hodge structure, 24
real Lie group, 6
reduced determinant map, 81
reflex field, 107, 112
reflex norm, 108
regular function, 36
regular map, 36
representation of an affine extension, 135
Riemann form, 72
Riemann surface, 7
riemannian manifold, 6
riemannian metric, 6
ring of finite adèles, 42

Satake–Baily–Borel compactification, 40
sectional curvature

of manifold, 9
of surface, 9

self-dual representation, 22
semisimple algebra, 79
separated prevariety, 35
set of points with coordinates, 36
Shimura datum, 54
Shimura datum of Hodge type, 76
Shimura stack, 94
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Shimura variety, 58
Shimura variety of Hodge type, 76
Shimura’s conjecture, 116
Siegel modular variety, 70
Siegel Shimura datum, 69
Siegel upper half space, 10
simple algebra, 79, 130
simple object, 130
simple PEL datum, 87
simply connected algebraic group, 12
skew-hermitian form, 81
smooth function, 5
smooth manifold, 5
smooth map, 5
smooth structure, 5
smooth tensor field, 6
smooth vector field, 5
solution to a moduli problem, 151
special Hodge structure, 31
special node, 19
special pair, 113
special point, 113
specialization, 101
split extension, 135
subgroup fixing tensors, 22
symmetric domain, 10
symmetric manifold, 8
symmetric space, 8
symmetry at p, 8
symplectic basis, 67
symplectic group, 68
symplectic module, 81
symplectic similitude, 68
symplectic space, 67

T .Q/�, 59
T .R/�, 59
tangent space, 5, 36
tangent vector, 7
tensor product of Hodge structures, 27
Tf .A/, 74
Tgtp.M/ tangent space, 5
totally imaginary, 99
totally isotropic subspace, 67
trace map, 79

U1 circle group, 13
unipotent element, 34

unramified, 142

variation of integral Hodge structures, 122
Vf .A/, 74

weight decomposition, 24
weight homomorphism, 26, 56
weight of a Hodge structure, 24
Weil operator, 27

zero-dimensional Shimura variety, 63
OZ, 42
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