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Abstract

These are my notes for a talk at the The Tate Conjecture workshop at the American
Institute of Mathematics in Palo Alto, CA, July 23–July 27, 2007, somewhat revised
and expanded. The intent of the talk was to review what is known and to suggest
directions for research.
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CONVENTIONS All varieties are smooth and projective. Complex conjugation on C is de-
noted by �. The symbol F denotes an algebraic closure of Fp, and ` always denotes a prime
¤ p. On the other hand, l is allowed to equal p. For a variety X , H�.X/ D

L
i H

i .X/

and H 2�.X/.�/ D
L
i H

2i .X/.i/; both are graded algebras. I denote a canonical (or a
specifically given) isomorphism by '. I assume that the reader is familiar with the basic
theory of abelian varieties as, for example, in Milne 1986.
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2 THE TATE CONJECTURE OVER FINITE FIELDS

1 The conjecture, and some folklore

Let X be a variety over F. A model X1 of X over a finite subfield k1 of F gives rise to a
commutative diagram:

Zr.X/
cr

����! H 2r.X;Q`.r//x?? x??
Zr.X1/

cr

����! H 2r.X1;Q`.r//:

Here Zr.�/ denotes the group of algebraic cycles of codimension r on a variety (free Z-
module generated by the closed irreducible subvarieties of codimension r) and cr is the
cycle map. The image of the vertical arrow at right is contained in H 2r.X;Q`.r//Gal.F=k1/

and Zr.X/ D lim
�!X1=k1

Zr.X1/, and so the image of the top cycle map is contained in

H 2r.X;Q`.r//0
def
D

[
X1=k1

H 2r.X;Q`.r//Gal.F=k1/:

In his talk at the AMS Summer Institute at Woods Hole in July, 1964, Tate conjectured the
following:1

CONJECTURE T r.X; `/ (TATE). The Q`-vector space H 2r.X;Q`.r//0 is spanned by al-
gebraic classes.

The conjecture implies that, for any modelX1=k1, the Q`-subspaceH 2r.X;Q`.r//Gal.F=k1/

is spanned by the classes of algebraic cycles on X1; conversely, if this is true for all models
X1=k1 over (sufficiently large) finite fields k1, then T r.X; `/ is true.

I write T r.X/ (resp. T .X; `/, resp. T .X/) for the conjecture that T r.X; `/ is true for
all ` (resp. all r , resp. all r and `).

In the same talk, Tate mentioned the following “conjectural statement”:

CONJECTURE Er.X; `/ (EQUALITY OF EQUIVALENCE RELATIONS). The kernel of the cy-
cle class map cr WZr.X/ ! H 2r.XF;Q`.r// consists exactly of the cycles numerically
equivalent to zero.

Both conjectures are existence statements for algebraic classes. It is well known that Con-
jecture E1.X/ holds for all X (see Tate 1994, �5).

LetX be a variety over F. The choice of a model ofX over a finite subfield of F defines
a Frobenius map � WX ! X . For example, for a model X1 � Pn over Fq , � acts as

.a1W a2W : : :/ 7! .a
q
1 W a

q
2 W : : :/WX1.F/! X1.F/; X1.F/ ' X.F/:

Any such map will be called a Frobenius map ofX (or a q-Frobenius map if it is defined by
a model over Fq). If �1 and �2 are pn1- and pn2-Frobenius maps ofX , then �n2N1 D �

n1N
2

1Tate’s talk is included in the mimeographed proceedings of the conference, which were distributed by
the AMS to only a select few. Despite their great historical importance — for example, they contain the only
written account by Artin and Verdier of their duality theorem, and the only written account by Serre and Tate
of their lifting theorem — the AMS has ignored requests to make the proceedings more widely available. For-
tunately, Tate’s talk was reprinted in the proceedings of an earlier conference (Arithmetical algebraic geometry.
Proceedings of a Conference held at Purdue University, December 5–7, 1963. Edited by O. F. G. Schilling,
Harper & Row, Publishers, New York 1965).
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for some N > 1.2 For a Frobenius map � of X , we use a subscript a to denote the
generalized eigenspace with eigenvalue a, i.e.,

S
N Ker

�
.� � a/N

�
:

CONJECTURE Sr.X; `/ (PARTIAL SEMISIMPLICITY). Every Frobenius map � of X acts
semisimply on H 2r.X;Q`.r//1 (i.e., it acts as 1).

Weil proved that, for an abelian varietyA over F, the Frobenius maps act semisimply on
H 1.A;Q`/. It follows that they act semisimply on all the cohomology groupsH i .A;Q`/ 'Vi

H 1.A;Q`/. In particular, Conjecture S.X/ holds when X is an abelian variety over F.
From now on, I’ll write T r

`
.X/ for H 2r.X;Q`.r//0 and call its elements the Tate

classes of degree r on X . Note that T �
`
.X/

def
D
L
r T r`.X/ is a graded Q`-subalgebra

of H 2�.X;Q`.�//.

ASIDE 1.4. One can ask whether the Tate conjecture holds integrally, i.e., whether the map

cr WZr .X/˝ Z` ! H 2r .XF;Z`.r//0 (1)

is surjective for all varieties X over F. Clearly H 2r .XF;Z`.r//0 contains all torsion classes, and
essentially the same argument that shows that not all torsion classes in Betti cohomology are alge-
braic, shows that not all torsion classes in étale cohomology are algebraic.3 However, I don’t know
of any varieties over F for which the map (1) is not surjective modulo torsion. It is known that if
T r .X; `/ and Er .X; `/ hold for a single `, then the map (1) is surjective for all but possibly finitely
many `. See Milne and Ramachandran 2004, �3.

Folklore

The next three theorems are folklore.

THEOREM 1.5. Let X be a variety over F of dimension d , and let r 2 N. The following
statements are equivalent:

(a) T r.X; `/ and Er.X; `/ are true for a single `.
(b) T r.X; `/, Sr.X; `/, and T d�r.X; `/ are true for a single `.
(c) T r.X; `/, Er.X; `/, Sr.X; `/, T d�r.X; `/, and Ed�r.X; `/ are true for all `, and

the Q-subspace Ar
`
.X/ of T r

`
.X/ generated by the algebraic classes is a Q-structure

on T r
`
.X/, i.e., Ar

`
.X/˝Q Q` ' T r`.X/.

(d) the order of the pole of the zeta function Z.X; t/ at t D q�r is equal to the rank of
the group of numerical equivalence classes of algebraic cycles of codimension r .

The proof is explained in Tate 1994, �2.

THEOREM 1.6. Let X be a variety over F of dimension d . If S2d .X � X; `/ is true, then
every Frobenius map � acts semisimply on H�.X;Q`/.

PROOF. If a occurs as an eigenvalue of � onH r.X;Q`/, then 1=a occurs as an eigenvalue
of � on H 2d�r.X;Q`.d// (by Poincaré duality), and

H r.X;Q`/a ˝H 2d�r.X;Q`.d//1=a � H 2d .X �X;Q`.d//1

(Künneth formula), from which the claim follows. 2

2Because any two models of X become isomorphic over a finite subfield of F; when the model X1=k1 is
replaced by X1K=K, then its Frobenius map � is replaced by � ŒKWk1�.

3The proof shows that the odd dimensional Steenrod operations are zero on the torsion algebraic classes
but not on all torsion cohomology classes.
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An `-adic Tate q-structure is a finite dimensional Q`-vector space together with a linear
(Frobenius) map � whose characteristic polynomial has rational coefficients and whose
eigenvalues are Weil q-numbers, i.e., algebraic numbers ˛ such that, for some integer m
called the weight of ˛, j�.˛/j D qm=2 for every homomorphism �WQŒ˛� ! C and, for
some integer n, qn˛ is an algebraic integer. When the eigenvalues of � are all algebraic
integers, the Tate structure is said to be effective. For example, for a variety X over Fq ,
H r.XF;Q`.s// is a Tate q-structure of weight r � 2s, which is effective if s D 0.

A Tate pn1-structure �1 and a Tate pn2-structure �2 on a Q`-vector space V are said to
be equivalent if �n1N1 D �

n2N
2 for some N . This is an equivalence relation, and an `-adic

Tate structure is a finite dimensional Q`-vector space together with an equivalence class of
Tate q-structures. For example, for a variety X over F, H r.X;Q`.s// is a Tate structure of
weight r � 2s, which is effective if s D 0.

Let X be a smooth projective variety over F. For each r , let F raH
i .X;Q`/ denote the

subspace of H i .X;Q`/ of classes with support in codimension r , i.e.,

F raH
i .X;Q`/ D

[
U

Ker.H i .X;Q`/! H i .U;Q`//

where U runs over the open subvarieties of X such that X X U has codimension � r . If
Z D X X U has codimension r and eZ ! Z is a desingularization of Z, then

H i�2r.eZ;Q`/.�r/! H i .X;Q`/! H i .U;Q`/

is exact (see Deligne 1974, 8.2.8; a similar proof applies to étale cohomology). This shows
thatF raH

i .X;Q`/ is an effective Tate substructure ofH i .X;Q`/ such thatF raH
i .X;Q`/.r/

is still effective.

CONJECTURE (GENERALIZED TATE CONJECTURE). For a smooth projective variety X
over F, every Tate substructure V � H i .X;Q`/ such that V.r/ is effective is contained in
F raH

i .X;Q`/ (cf. Grothendieck 1968, 10.3).

THEOREM 1.8. Let X be a variety over F. If the Tate conjecture holds for all varieties of
the formA�X withA an abelian variety (and some `), then the generalized Tate conjecture
holds for X (and the same `).

The proof is explained in Milne and Ramachandran 2006, 1.10.

REMARK 1.9. There are p-analogues of all of the above conjectures and statements. Let
W.k/ be the ring of Witt vectors with coefficients in a perfect field k, and let B.k/ be its
field of fractions. Let � be the automorphism of W.k/ (or B.k/) that acts as x 7! xp

on k. For a variety X over k, let H r
p.X/ denote the crystalline cohomology group with

coefficients in B.k/. It is a finite dimensional B.k/-vector space with a � -linear Frobenius
map F . Define

T rp.X/ D
[

X1=k1
H 2r
p .X1/.r/

F n1D1 (pn1 D jk1j).

This is a finite dimensional Qp-vector space, which the Tate conjecture T r.X; p/ says is
spanned by algebraic classes.
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Motivic interpretation

Let Mot.F/ be the category of motives over F defined using algebraic cycles modulo nu-
merical equivalence. It is known that Mot.F/ is a semisimple Tannakian category (Jannsen
1992). Etale cohomology defines a functor !` on Mot.F/ if and only if Conjecture E.X; `/
holds for all varieties X . Assuming this, conjecture T .X; `/ holds for all X if and only if,
for all X and Y , the image of the map

Hom.X; Y /˝Q` ! HomQ`.!`.X/; !`.Y // (2)

consists of the homomorphisms ˛W!`.X/ ! !`.Y / such that ˛ ı �X D �Y ı ˛ for some
Frobenius maps �X and �Y of X and Y (necessarily q-Frobenius maps for the same q).
In other words, conjectures E.X; `/ and T .X; `/ hold for all X if and only if `-adic étale
cohomology defines an equivalence from Mot.F/ ˝Q Q` to the category of `-adic Tate
structures.

2 Divisors on abelian varieties

Tate (1966) proved the Tate conjecture for divisors on abelian varieties over F, in the form:

THEOREM 2.1. For all abelian varieties A and B over Fq , the map

Hom.A;B/˝ Z` ! HomQ`.T`A; T`B/
Gal.F=Fq/ (3)

is an isomorphism.

SKETCH OF PROOF. It suffices to prove this with A D B (because Hom.A;B/ is a direct
summand of End.A � B/). Choose a polarization on A, of degree d2 say. It defines a
nondegenerate skew-symmetric form on V`A, and a maximal isotropic subspace W of V`A
stable under Gal.F=Fq/ will have dimension g D 1

2
dimV`A. For n 2 N, let

X.n/ D T`A \W C `
nT`A � T`A:

For each n, there exists an abelian variety A.n/ and an isogeny A.n/! Amapping T`A.n/
isomorphically onto X.n/. There are only finitely many isomorphism classes of abelian
varieties in the set fA.n/g because each A.n/ has a polarization of degree d2, and hence
can be realized as a closed subvariety of P3gd�1 of degree 3gd.gŠ/. Thus two of the A.n/’s
are isomorphic, and we have constructed a (nonobvious) isogeny. From this beginning, Tate
was able to deduce the theorem by exploiting the semisimplicity of the Frobenius map. 2

COROLLARY 2.2. For varieties X and Y over F,

T 1.X � Y; `/ ” T 1.X; `/C T 1.Y; `/:

PROOF. Compare the decomposition

NS.X � Y / ' NS.X/˚ NS.Y /˚ Hom.Alb.X/;Pic0.Y //

with the similar decomposition of H 2.X � Y;Q`.1// given by the Künneth formula. 2

COROLLARY 2.3. The Tate conjecture T 1.X/ is true when X is a product of curves and
abelian varieties over F.
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PROOF. Let A be an abelian variety over F. Choose a polarization �WA ! A_ of A, and
let � be the Rosati involution on End0.A/ defined by �. The map D 7! ��1 ı �D defines
an isomorphism

NS.A/˝Q ' f˛ 2 End0.A/ j ˛� D ˛g:

Similarly,

T 1`.A/ ' f˛ 2 EndQ`.V`A/ j ˛
�
D ˛ and ˛� D �˛ for some Frobenius map �g;

and so T 1 for abelian varieties follows from Theorem 2.1. Since T 1 is obvious for curves,
the general statement follows from Corollary 2.2. 2

As E1.X; `/ is true for all varieties X , the equivalent statements in Theorem 1.5 hold
for products of curves and abelian varieties in the case r D 1. According to some more
folklore (Tate 1994, 5.2), T 1.X/ and E1.X/ hold for any variety X for which there exists
a dominant rational map Y ! X with Y a product of curves and abelian varieties.

ASIDE 2.4. The reader will have noted the similarity of (2) and (3). Tate (1994) describes how he
was led to his conjecture partly by his belief that (3) was true. Today, one would say that if (3) is true,
then so must (2) because “everything that’s true for abelian varieties is true for motives”.4 However,
when Tate was thinking about these things, motives didn’t exist. Apparently, the first text in which
the notion of a motif appears is Grothendieck’s letter to Serre of August 16, 1964 (Grothendieck and
Serre 2001, p173, p276).

ASIDE 2.5. Theorem 2.1 has been extended to abelian varieties over fields finitely generated over
the prime field by Zarhin and Faltings (Zarhin 1974a,b; Faltings 1983; Faltings and Wüstholz 1984).

Abelian varieties with no exotic Tate classes

THEOREM 2.6. The Tate conjecture T .A/ holds for any abelian variety A such that, for
some `, the Q`-algebra T �

`
.A/ is generated by T 1

`
.A/; in fact, the equivalent statements of

(1.5) hold for such an A and all r � 0.

PROOF. If the Q`-algebra T �
`
.A/ is generated by T 1

`
.A/, then, because the latter is spanned

by algebraic classes (2.3), so is the former. Thus T r.A; `/ holds for all r , and as S.A/ is
known, this implies that the equivalent statements of (1.5) hold for A. 2

For an abelian variety A, let L�
`
.A/ be the Q-subalgebra of H 2�.A;Q`.�// generated

by the divisor classes. Then L�
`
.A/ � Q` � T �` .A/. The elements of L�

`
.A/ are called the

Lefschetz classes on A, and the Tate classes not in L�
`
.A/ are said to be exotic.

An abelian variety A is said to have sufficiently many endomorphisms if End0.A/
contains an étale Q-subalgebra of degree 2 dimA over Q. Tate’s theorem (2.1) implies that
every abelian variety over F has sufficiently many endomorphisms.

LetA be an abelian variety with sufficiently many endomorphisms over an algebraically
closed field k, and let C.A/ be the centre of End0.A/. The Rosati involution � defined by
any polarization of A stabilizes C.A/, and its restriction to C.A/ is independent of the
choice of the polarization. Define L.A/ to be the algebraic group over Q such that, for any
commutative Q-algebra R,

L.A/.R/ D fa 2 C.A/˝R j aa� 2 R�g:

4This reasoning is circular: what we hope to be true for motives is partly based on our hope that the Tate
and Hodge conjectures are true.



2. DIVISORS ON ABELIAN VARIETIES 7

It is a group of multiplicative type (not necessarily connected), which acts in a natural way
on the cohomology groups H 2�.An;Q`.�// for all n. It is known that the subspace fixed
by L.A/ consists of the Lefschetz classes,

H 2�.An;Q`.�//L.A/ D L�` .A
n/ �Q`, all n and `; (4)

(see Milne 1999a). Let � be a Frobenius endomorphism of A. Some power �N of � lies in
C.A/, hence in L.A/.Q/, and (4) shows that no power of A has an exotic Tate class if and
only if �N is Zariski dense in L.A/. This gives the following explicit criterion:

2.7 Let A be a simple abelian variety over F, let �A be a q-Frobenius en-
domorphism of A lying in C.A/, and let .�i /1�i�2s be the roots in C of the
minimum polynomial of �A, numbered so that �i�iCs D q. Then no power
of A has an exotic Tate class (and so the Tate conjecture holds for all pow-
ers of A) if and only if f�1; : : : ; �s; qg is a Z-linearly independent in C� (i.e.,
�
m1
1 � � ��

ms
s D q

m, mi ; m 2 Z, implies m1 D � � � D ms D 0 D m).

Kowalski (2005, 2.2(2), 2.7) verifies the criterion for any simple ordinary abelian variety A
such that the Galois group of QŒ�1; : : : ; �2g � over Q is the full group of permutations of
f�1; : : : ; �2gg preserving the relations �i�iCg D q.

More generally, let P.A/ be the smallest algebraic subgroup of L.A/ containing a
Frobenius element. Then no power of A has an exotic Tate class if and only if P.A/ D
L.A/. Spiess (1999) proves this for products of elliptic curves, and Zarhin (1991) and
Lenstra and Zarhin (1993) prove it for certain abelian varieties. See also Milne 2001, A7.

REMARK 2.8. Let K be a CM subfield of C, finite and Galois over Q, and let G D
Gal.K=Q/. We say that an abelian variety A is split by K if End0.A/ is split by K, i.e.,
End0.A/˝Q K is isomorphic to a product of matrix algebras over Q.

Let A be a simple abelian variety over F, and let � be a q-Frobenius endomorphism for
A. If A is split by K, then, for any p-adic prime w of K

fA.w/
def
D

ordw.�/
ordw.q/

ŒKw WQp�

lies in Z (apply Tate 1966, p142). Clearly, fA.w/ is independent of the choice of � , and the
equality � � �� D q implies that fA.w/C fA.�w/ D ŒKw WQp�. Let W be the set of p-adic
primes of K, and let d be the local degree ŒKw WQp�. The map A 7! fA defines a bijection
from the set of isogeny classes of simple abelian varieties over F split by K to the set

ff WW ! Z j f C �f D d; 0 � f .w/ � d all wg: (5)

The character groups of P.A/ and L.A/ have a simple description in terms of fA, and so
computing the dimensions of P.A/ and L.A/ is only an exercise in linear algebra (cf. Wei
1993, Part I; Milne 2001, A7).

Abelian varieties with exotic Tate classes

Typically, some power of a simple abelian variety over F will have exotic Tate classes.

PROPOSITION 2.9. Let K be a CM-subfield of C, finite and Galois over Q, with Galois
group G.
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(a) There exists a CM-field K0 such that, if K � K0, then

i) the decomposition groupsDw inG of the p-adic primes w ofK are not normal
in G,

ii) � acts without fixed points on the set W of p-adic primes of K.

(b) Assume K � K0, so that Dw ¤ Dw 0 for some w;w0 2 W . Let A be the simple
abelian variety over F corresponding (as in 2.8) to a function f WW ! Z such that
f .w/ ¤ f .w0/ and neither f .w/ nor f .w0/ lie in f .W X fw;w0g/. Then some
power of A supports an exotic Tate class.

PROOF. (a) There exists a totally real field F with Galois group S5 over Q having at least
three p-adic primes (Wei 1993, 1.6.9), we can take K0 D F �Q where Q is any quadratic
imaginary field in which p splits.

(b) We have
dimP.A/ � t C 1; where jW j D 2t;

(Wei 1993, 1.4.4). Let

H D fg 2 G j f .gw/ D f .w/ for all w 2 W g:

Then C.A/ � KH , and so

dimL.A/ D 1
2
.GWH/C 1:

The conditions on f imply that H � Dw \Dw 0 , which is properly contained in Dw . As
2t D .GWDw/, we see that dimL.A/ > dimP.A/, and so L.A/ ¤ P.A/. 2

The set (5) has td elements, of which t .t � 1/.t � 2/d�2 satisfy the conditions of (2.9b).
As we let K grow, the ratio t .t � 1/.t � 2/d�2=td tends to 1, which justifies the statement
preceding the proposition:

THEOREM 2.10. There exists a family of abelian varieties A over F for which the Tate
conjecture T .A/ is true and T �

`
.A/ is not generated by T 1

`
.A/.

PROOF. See Milne 2001 (the proof makes use of Schoen 1988, 1998). 2

3 K3 surfaces

The next theorem was proved by Artin and Swinnerton-Dyer (1973).

THEOREM 3.1. The Tate conjecture holds for K3 surfaces over F that admit a pencil of
elliptic curves.

SKETCH OF PROOF. Let X be an elliptic K3 surface, and let f WX ! P1 be the pencil
of elliptic curves. A transcendental Tate class on X gives rise to a sequence .pn/n�1 of
elements of the Tate-Shafarevich group of the generic fibre of E D X� of f such that
`pnC1 D pn for all n. From these elements, we get a tower

� � � ! PnC1 ! Pn ! � � �

of principle homogeneous spaces for E over F.P1/. By studying the behaviour of certain
invariants attached to the Pn, Artin and Swinnerton-Dyer were able to show that no such
tower can exist. 2
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For later work on K3 surfaces, see Nygaard 1983; Nygaard and Ogus 1985; Zarhin 1996.

ASIDE 3.2. With the proof of the theorems of Tate (2.1) and of Artin and Swinnerton-Dyer (3.1),
there was considerable optimism in the early 1970s that the Tate conjecture would soon be proved
for surfaces over finite fields — all one had to do was attach a sequence of algebro-geometric objects
to a transcendental Tate class, and then prove that the sequence couldn’t exist. However, the progress
since then has been meagre. For example, we still don’t know the Tate conjecture for allK3 surfaces
over F.

4 Algebraic classes have the Tannaka property

Let S be a class of algebraic varieties over F containing the projective spaces and closed
under disjoint unions and products and passage to a connected component.

THEOREM 4.1. Let HW be a Weil cohomology theory on the algebraic varieties over F
with coefficients in a field Q in the sense of Kleiman 1994, �3). Assume that for all
X 2 S the kernel of the cycle map Z�.X/ ! H 2�

W .X/.�/ consists exactly of the cy-
cles numerically equivalent to zero. Let X 2 S, and let GX be the algebraic subgroup
of GL.H�W .X// � GL.Q.1// fixing all algebraic classes on all powers of X . Then the
Q-vector space H 2�

W .Xn/.�/GX is spanned by algebraic classes for all n.

PROOF. Let Mot.F/ be the category of motives over F based on the varieties in S and using
numerical equivalence classes of algebraic cycles as correspondences. Because the Künneth
components of the diagonal are known to be algebraic, Mot.F/ is a semisimple Tannakian
category (Jannsen 1992). Our assumption on the cycle map implies thatHW defines a fibre
functor ! on Mot.F/. It follows from the definition of Mot.F/, that for any variety X over
F and n � 0,

Z�num.X
n/Q ' Hom.11; h2�.Xn/.�//

whereZ�num.X
n/ is the graded Z-algebra of algebraic cycles modulo numerical equivalence

and the subscript means that we have tensored with Q. On applying ! to this isomorphism,
we obtain an isomorphism

Z�num.X
n/Q ' HomG.Q;H 2�

W .Xn/.�// D H 2�
W .Xn/.�/G

where G D Aut˝.!/. Since GX is the image of G in GL.H�W .X// � GL.Q.1//, this
implies the assertion. 2

This is a powerful result: once we know that some cohomology classes are algebraic, it
allows us to deduce that many more are (the group fixing the classes we know to be algebraic
contains the group fixing all algebraic classes, and so any class that it fixes is in the span
of the algebraic classes). On applying the theorem to the smallest class S satisfying the
conditions and containing a variety X , we obtain the following criterion:

4.2 LetX be an algebraic variety over F such thatE.Xn; `/ holds for all n. In
order to prove that T .Xn; `/ holds for all n, it suffices to find enough algebraic
classes on the powers of X for some Frobenius map to be Zariski dense in the
algebraic subgroup of GL.H�.X;Q`// � GL.Q`.1// fixing the classes.

ASIDE 4.3. Theorem 4.1 holds also for almost-algebraic classes in characteristic zero in the sense
of Serre 1974, 5.2 and Tate 1994, p76.



10 THE TATE CONJECTURE OVER FINITE FIELDS

5 On the equality of equivalence relations

Recall that an abelian variety A has sufficiently many endomorphisms if End0.A/ contains
an étale Q-subalgebraE of degree 2 dimA. It is known that such anE can be chosen to be a
product of CM-fields. There then exists a unique involution �E of E such that �ı �E D �ı�
for any homomorphism �WE ! C.

The next theorem (and its proof) is an abstract version of the main theorem of Clozel
1999.

THEOREM 5.1. Let k be an algebraically closed field, and let H�W be a Weil cohomology
theory with coefficient field Q . Let A be an abelian variety over k with sufficiently many
endomorphisms, and choose a Q-subalgebra E of End0.A/ as above. Assume that Q splits
E (i.e., E ˝Q Q � Q

ŒE WQ�) and that there exists an involution �Q of Q such that

˘ � ı �E D �Q ı � for all � WE ! Q,

˘ there exists a Weil cohomology theory H�W0 � H�W with coefficient field Q0
def
D

Qh�Qi such that H�W D Q˝Q0 H
�
W0

.

Then the kernel of the cycle class mapZ�.X/! H 2�
W .X/.�/ consists exactly of the cycles

numerically equivalent to zero.

SKETCH OF PROOF. Choose a subset ˚ of Hom.E;Q/ such that

Hom.E;Q/ D ˚ t �Q˚

where
�Q˚ D f�Q ı ' j ' 2 ˚g D ˚�E :

The spaceH 1
W .A/ is free of rank one overE˝QQ, and soH 1

W .A/ D
L
�2˚t�˚ H

1
W .A/�

where H 1
W .A/� is the one-dimensional Q-subspace on which E acts through � . Similarly,

H r
W .A/ '

^r

Q
H 1
W .A/ D

M
I;J;jI jCjJ jDr

H r
W .A/I;J

where I and J are subsets of ˚ and �˚ respectively, andH r
W .A/I;J is the one-dimensional

subspace on which a 2 E acts as
Q
�2ItJ �a. Let A�W .A/ be the Q-subalgebra of

H 2�
W .A/.�/ generated by the algebraic classes. Since A�W .A/ � H 2�

W0
.A/.�/, the Q-

subspace Q � A�W .A/ of H 2�
W .A/.�/ is stable under the involution �H of H 2�

W .A/.�/ de-
fined by the Q0-substructure H 2�

W0
.A/.�/. Therefore, if H 2r

W .A/ItJ .r/ is contained in
Q �A�W .A/, then so also is

�WH
2r
W .A/ItJ .r/ D H

2r
W .A/�QIt�QJ .r/:

Using this, Clozel constructs, for every nonzero algebraic class, an algebraic class of com-
plementary degree whose product with the first class is nonzero. 2

COROLLARY 5.2. For an abelian variety A over F, there is an infinite set of primes ` ¤ p
such that E.An; `/ is true for all n.

PROOF. Choose a Q-subalgebra E of End0.A/ as before, and let Q0 be the composite of
the images of E in C under homomorphisms E ! C. Then Q0 is a finite Galois extension
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of Q that splits E and it is a CM-field. Let S be the set of primes ` ¤ p such that �
lies in the decomposition group of some `-adic prime v of Q0. For example, if � is the
Frobenius element of an `-adic prime of Q0, then ` 2 S , and so S has density > 0. The
Weil cohomology theory HW

def
D H` ˝Q

0
v satisfies the hypotheses of the theorem for A.

For An, we can choose the Q-algebra to be En acting diagonally and use the same set S . 2

On combining (5.2) with (4.2) we obtain the following criterion:

5.3 Let A be an abelian variety over F. In order to prove that T .An/ holds for
all n, it suffices to find enough algebraic classes on powers of A for some
Frobenius endomorphism to be Zariski dense in the algebraic subgroup of
GL.H�

`
.X// � GL.Q`.1// fixing the classes for a suitable `.

6 The Hodge conjecture and the Tate conjecture

To go further, we shall need to consider the Hodge conjecture (following Deligne 1982).
For a variety X over an algebraically closed field k of characteristic zero, define

H�A .X/ D H
�
Af .X/ �H

�
dR.X/ where H�Af .X/ D

 
lim
 �
m

H�.Xet;Z=mZ/

!
˝Z Q:

For any algebraically closed field K containing k;

H�Af .XK/ ' H
�
Af .X/ and H�dR.XK/ ' H

�
dR.X/˝k K;

and so there is a canonical homomorphism H�A .X/! H�A .XK/.
Let � be a homomorphism k ! C.5 An element of H 2�

A .X/.�/ is Hodge relative to �
if its image in H 2�

A .XC/.�/ is a Hodge class, i.e., lies in H 2�.XC;Q/.�/ � H 2�
A .XC/.�/

and is of type .0; 0/.

CONJECTURE (DELIGNE). If an element of H 2�
A .X/.�/ is Hodge relative to one homo-

morphism � W k ! C, then it is Hodge relative to every such homomorphism.

An element of H 2�
A .X/.�/ is absolutely Hodge if it is Hodge relative to every � .

Let B�abs.X/ be the set of absolutely Hodge classes on X . Then B�abs.X/ is a graded Q-
subalgebra of H 2�

A .X/.�/, and Deligne (1982) shows:

(a) for every regular map f WX ! Y , f � maps B�abs.Y / into B�abs.X/ and f� maps
B�abs.X/ into B�abs.Y /;

(b) for every X , B�abs.X/ contains the algebraic classes;
(c) for every homomorphism k ! K of algebraically closed fields, B�abs.X/ ' B�abs.XK/;
(d) for any model X1 of X over a subfield k1 of k with k algebraic over k1, Gal.k=k1/

acts on B�abs.X/ through a finite quotient.

Property (d) shows that the image of B�abs.X/ in H 2�.X;Q`.�// consists of Tate classes.

THEOREM 6.2. If the Tate conjecture holds for X , then all absolutely Hodge classes on X
are algebraic.

5Throughout, I assume that k is not too big to be embedded into C. For fields that are “too big”, one can
use property (c) of B�abs below as a definition of B�abs.K/.
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PROOF. Let A�.X/ be the Q-subspace of H 2�
A .X/.�/ spanned by the classes of algebraic

cycles, and consider the diagram defined by a homomorphism k ! C,

B�.XC/
�

����! H 2�
B .XC/.�/

�
����! H 2�

`
.XC/.�/x??S x??'

A�.X/ �
����! B�abs.X/ ����! T �

`
.X/

�
����! H 2�

`
.X/.�/:

The four groups at upper left are finite dimensional Q-vector spaces, and the map at top
right gives an isomorphism H 2�

B .XC/.�/˝Q Q` ' H 2�
`
.XC/.�/. Therefore, on tensoring

the Q-vector spaces in the above diagram with Q`, we get injective maps

A�.X/˝Q Q` ,! B�abs.X/˝Q Q` ,! T �` .X/:

If the Tate conjecture holds forX , then the composite of these maps is an isomorphism, and
so the first is also an isomorphism. This implies that A�.X/ D B�abs.X/. 2

THEOREM 6.3. For varieties X satisfying Deligne’s conjecture, the Tate conjecture for X
implies the Hodge conjecture for XC.

PROOF. For any homomorphism k ! C, the homomorphismH 2�
A .X/.�/ ,! H 2�

A .XC/.�/
maps B�abs.X/ into B�.XC/. When Deligne’s conjecture holds for X , B�abs.X/ ' B�.XC/.
Therefore, if B�abs.X/ consists of algebraic classes, so also does B�.XC/. 2

ASIDE 6.4. The Hodge conjecture is known for divisors, and the Tate conjecture is generally ex-
pected to be true for divisors. However, there is little evidence for either conjecture in higher codi-
mensions, and hence little reason to believe them. On the other hand, Deligne believes his conjecture
to be true.6

ASIDE 6.5. As Tate pointed out at the workshop, one reason the Tate conjecture is harder than the
Hodge conjecture is that it doesn’t tell you which cohomology classes are algebraic; it only tells you
the Q`-span of the algebraic classes.

Deligne’s theorem on abelian varieties

The following is an abstract version of the main theorem of Deligne 1982.

THEOREM 6.6. Let k be an algebraically closed subfield of C. Suppose that for every
abelian variety A over k, we have a graded Q-subalgebra C�.A/ of B�.AC/ such that

(A1) for every regular map f WA! B of abelian varieties over k, f � maps C�.B/ into
C�.A/ and f� maps C�.A/ into C�.B/;

(A2) for every abelian variety A, C1.A/ contains the divisor classes; and
(A3) let f WA ! S be an abelian scheme over a connected smooth (not necessarily

complete) k-variety S , and let 
 2 � .SC; R
2�fC�Q.�/); if 
t is a Hodge class for all

t 2 S.C/ and 
s lies in C�.As/ for one s 2 S.k/, then it lies in C�.As/ for all s 2 S.k/.
Then C�.A/ ' B�.AC/ for all abelian varieties over k.

6When asked at the workshop, Tate said that he believes the Tate conjecture for divisors, but that in higher
codimension he has no idea. Also it worth recalling that Hodge didn’t conjecture the Hodge conjecture: he
raised it as a problem (Hodge 1952, p184). There is considerable evidence (and some proofs) that the classes
predicted to be algebraic by the Hodge and Tate conjectures do behave as if they are algebraic, at least in some
respects, but there is little evidence that they are actually algebraic.
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For the proof, see the endnotes to Deligne 1982). I list three applications of this theorem.

THEOREM 6.7. In order to prove the Hodge conjecture for abelian varieties, it suffices to
prove the variational Hodge conjecture.

PROOF. Take C�.A/ to be the Q-subspace of H 2�
B .AC/.�/ spanned by the classes of alge-

braic cycles on A. Clearly (A1) and (A2) hold, and (A3) is (one form of) the variational
Hodge conjecture. 2

The following is the original version of the main theorem of Deligne 1982.

THEOREM 6.8. Deligne’s conjecture holds for all abelian varieties A over k (hence the
Tate conjecture implies the Hodge conjecture for abelian varieties).

PROOF. Take C�.A/ to be B�abs.A/. Clearly (A2) holds, and we have already noted that
(A1) holds. That (A3) holds is proved in Deligne 1982. 2

The theorem implies that, for an abelian variety A over an algebraically closed field
k of characteristic zero, any homomorphism k ! C defines an isomorphism B�abs.A/ !

B�.AC/. In view of this, I now write B�.A/ for B�abs.A/ and call its elements the Hodge
classes on A.

MOTIVATED CLASSES (FOLLOWING ANDRÉ 1996) Let k be an algebraically closed
field, and letH�W be a Weil cohomology theory on the varieties over k with coefficient field
Q. For a variety X over k, let L and � be the operators defined by a hyperplane section of
X , and define

E�.X/ D QŒL;�� �A�W .X/ � H
2�
W .X/.�/

where A�W .X/ is the Q-subspace of H 2�
W .X/.�/ generated by algebraic classes. Then

E�.X/ is a graded Q-subalgebra of H 2�
W .X/.�/, but these subalgebras are not (obviously)

stable under direct images. However, when we define

C�.X/ D
[

Y
p�E�.X � Y /;

then C�.X/ is a gradedQ-subalgebra ofH 2�
W .X/.�/, and these algebras satisfy (A1). They

obviously satisfy (A2).

THEOREM 6.9. Let k be an algebraically closed subfield of C, and let HW be the Weil
cohomology theory X 7! H�B.XC/. For every abelian variety A, C�.A/ D B�.AC/.

PROOF. Clearly (A2) holds, and that (A3) holds is proved in André 1996, 0.5. 2

The elements of C�.X/ are called motivated classes.

ASIDE 6.10. As Ramakrishnan pointed out at the workshop, since proving the Hodge conjecture is
worth a million dollars and the Tate conjecture is harder, it should be worth more.

7 Rational Tate classes

There are by now many papers proving that, if the Tate conjecture is true, then something
else even more wonderful is true. But what if we are never able to decide whether the Tate



14 THE TATE CONJECTURE OVER FINITE FIELDS

conjecture is true? or worse, what if it turns out to be false? In this section, I suggest an
alternative to the Tate conjecture for varieties over finite fields, which appears to be much
more accessible, and which has some of the same consequences.

An abelian variety with sufficiently many endomorphisms over an algebraically closed
field of characteristic zero will now be called a CM abelian variety. Let Qal be the algebraic
closure of Q in C. Then the functor A  AC from CM abelian varieties over Qal to CM
abelian varieties over C is an equivalence of categories (see, for example, Milne 2006, �7).

Fix a p-adic prime w of Qal, and let F be its residue field. It follows from the theory
of Néron models that there is a well-defined reduction functor A  A0 from CM abelian
varieties over Qal to abelian varieties over F, which the Honda-Tate theorem shows to be
surjective on isogeny classes.

Let Qal

w be the completion of Q at w. For a variety X over F, define

H�A .X/ D H
�
Af .X/�H

�
p .X/ where

(
H�Af .X/ D

�
lim
 �m;p−m

H�.Xet;Z=mZ/
�
˝Z Q

H�p .X/ D H�crys.X/˝W.F/ Qal

w :

For a CM abelian variety A over Qal,

H�Af .AK/ .not-p/ ' H�Af .A0/

H�dR.A/˝Qal Q
al

w ' H
�
crys.A0/˝W.F/ Q

al

w ;

and so there so there is a canonical (specialization) map H�A .A/! H�A .A0/.
Let S be a class of smooth projective varieties over F satisfying the following condition:

(*) it contains the abelian varieties and projective spaces and is closed under
disjoint unions, products, and passage to a connected component.

DEFINITION 7.1. A family .R�.X//X2S with each R�.X/ a graded Q-subalgebra of
H 2�

A .X/.�/ is a good theory of rational Tate classes if
(R1) for all regular maps f WX ! Y of varieties in S, f � maps R�.Y / into R�.X/

and f� maps R�.X/ into R�.Y /;
(R2) for all varieties X in S, R1.X/ contains the divisor classes;
(R3) for all CM abelian varieties A over Qal, the specialization map H 2�

A .A/.�/ !

H 2�
A .A0/.�/ sends the Hodge classes on A to elements of R�.A0/;

(R4) for all varietiesX in S and all primes l (including l D p), the projectionH 2�
A .X/.�/!

H 2�
l
.X/.�/ defines an isomorphism R�.X/˝Q Ql ! T �

l
.X/.

Thus, (R3) says that there is a diagram

B�.A/ � H 2�
A .A/.�/

# #

R�.A/ � H 2�
A .A0/.�/;

and (R4) says thatR�.X/ is simultaneously a Q-structure on each of the Ql -spaces T �
l
.X/

of Tate classes (including for l D p). The elements of R�.X/ will be called the rational
Tate classes on X (for the theory R).

The next theorem is an abstract version of the main theorem of Milne 1999b.

THEOREM 7.2. In the definition of a good theory of rational Tate classes, the condition
(R4) can be weakened to:
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(R4*) for all varieties X in S and all primes l , the projection map H 2�
A .X/!

H 2�
l
.X/.�/ sends R�.X/ into T �

`
.X/.

In other words, if a family satisfies (R1-3), and (R4*), then it satisfies (R4). For the proof,
see Milne 2007. I list three applications of it.

Any choice of a basis for a Ql -vector space defines a Q-structure on the vector space.
Thus, there are many choices of Q-structures on the Ql -spaces T �

l
.X/. The next theo-

rem says, however, that there is exactly one family of choices satisfying the compatibility
conditions (R1–4).

THEOREM 7.3. There exists at most one good theory of rational Tate classes on S. In other
words, if R�1 and R�2 are two such theories, then, for all X 2 S, the Q-subalgebras R�1.X/
and R�2.X/ of H 2�

A .X/.�/ are equal.

PROOF. It follows from (R4) that if R�1 and R�2 are both good theories of rational Tate
classes andR�1 � R�2 , then they are equal. But ifR�1 andR�2 satisfy (R1–4), thenR�1\R�2
satisfies (R1–3) and (R4*), and hence also (R4). Therefore R�1 D R�1 \R�2 D R�2 . 2

The following is the main theorem of Milne 1999b.

THEOREM 7.4. The Hodge conjecture for CM abelian varieties implies the Tate conjecture
for abelian varieties over F.

PROOF. Let S0 be the smallest class satisfying (*). For X 2 S0, let R�.X/ be the Q-
subalgebra of H 2�

A .X/.�/ spanned by the algebraic classes. The family .R�.X//X2S0
satisfies (R1), (R2), and (R4*), and the Hodge conjecture implies that it satisfies (R3).
Therefore it satisfies (R4), which means that the Tate conjecture holds for abelian varieties
over F. 2

The following is the main theorem of André 2006.

THEOREM 7.5. All Tate classes on abelian varieties over F are motivated.

PROOF. Let S0 be the smallest class satisfying (*). Fix an `, and for X 2 S0, let C�.X/
be the Q`-algebra of motivated classes in H 2�

`
.X/.�/. The family .C�.X//X2S0 satis-

fies (R1), (R2), and (R4�) with A replaced by `, and André shows that it satisfies (R3).
Therefore, by Theorem 7.2 with A replaced by `, it satisfies (R4). 2

ASIDE 7.6. Assume that there exists a good theory of rational Tate classes for abelian varieties over
F. Then we expect that all Hodge classes on all abelian varieties over Qal with good reduction at w
(not necessarily CM) specialize to rational Tate classes. This will follow from knowing that every
F-point on a Shimura variety lifts to a special point, which is perhaps already known (Zink 1983,
Vasiu 2003). Note that it implies the “particularly interesting” corollary of the Hodge conjecture
noted in Deligne 2006, �6.

8 Reduction to the case of codimension 2

Throughout this section, K is a CM subfield of C, finite and Galois over Q, and G D
Gal.K=Q/. Recall that an abelian variety A is said to be split by K if End0.A/ ˝Q K is
isomorphic to a product of matrix algebras over K.
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CM abelian varieties

8.1 Let S be a finite left G-set on which � acts without fixed points, and let SC be a
subset of S such that S D SC t �SC. Then E def

D Hom.S;K/G is a Q-algebra split by
K such that Hom.E;K/ ' S . The condition on � implies that E is a CM-algebra, and
the condition on SC implies that it is a CM-type on E, and so SC defines an isomorphism
E˝Q C ' CSC . The quotient of CSC by any lattice in E is an abelian variety of CM-type
.E; SC/. Thus, from such a pair .S; SC/ we obtain a CM abelian variety A.S; SC/, well-
defined up to isogeny, which is split by K, and every such abelian variety arises in this way
(up to isogeny). For example, an abelian variety of CM-type .E;˚/ where E is split by K
is isogenous to .S; ˚/ where S D Hom.E;Q/. Note that if .S; SC/ D

F
.Si ; S

C
i /, then,

by construction, A.S; S 0/ is isogenous to the product of the varieties A.Si ; SCi /.

PROPOSITION 8.2. Let G act on the set S of CM-types on K by the rule

g˚ D ˚ ı g�1
def
D f' ı g�1 j ' 2 ˚g; g 2 G; ˚ 2 S;

and let SC be the subset of CM-types containing 1G . The pair .S; SC/ defines an abelian
variety A.S; SC/, and every simple CM abelian variety split by K occurs as an isogeny
factor of A.S; SC/.

PROOF. Certainly S is a finite left G-set on which � acts without fixed points, and for any
CM-type ˚ on K, exactly one of ˚ or �˚ contains 1G , and so A.S; S 0/ is defined.

Let A be a simple CM abelian variety split by K, say, of CM-type .E;˚/. Fix a
homomorphism i WE ! K, and let

˚ 0 D fg 2 G j g ı i 2 ˚g

— it is a CM-type on K. An element g of G fixes iE if and only if g˚ 0 D ˚ 0 (see, for
example, Milne 2006, 1.10), and so g ı i 7! g˚ 0 is a bijection of G-sets from Hom.E;K/
onto the orbit O of ˚ 0 in S . Moreover, 1G 2 g˚ 0

def
D ˚ 0 ı g�1 if and only if g 2 ˚ 0, i.e.,

g ı i 2 ˚ . Thus, g ı i 7! g˚ 0 sends ˚ onto O \ SC. This shows that A is isogenous to
the factor A.O;O \ SC/ of A.S; SC/. 2

The Hodge conjecture

Let 2m D ŒKWQ�. Let a.2m/ be the hyperplane arrangement fH1; : : : ;Hmg in Rm withHi
the coordinate hyperplane xi D 0. The hyperplanes Hi divide Rm X

S
Hi into connected

regions
R."1; : : : ; "m/ D f.x1; : : : ; xm/ 2 Rm X

[
Hi j sign.xi / D "ig

indexed by the set f˙gm. Let R.2m/ be the set of connected regions, and let R.2m/C be
the subset of those with "1 D C.

Let � be a faithful linear representation of G on Rm such that G acts transitively on the
set a.2m/ of coordinate hyperplanes and �.�/ acts as�1 on Rm. The pair .R.2m/; R.2m/C/
then satisfies the conditions of (8.5), and so defines a CM abelian variety A D A.G;K; �/

of dimension 2m�1 split by K.
The next statement is the main technical result of Hazama 2003.

THEOREM 8.3. Let A D A.G;K; �/. For every n � 0, the Q-algebra B�.An/ is generated
by the classes of degree � 2.
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PROOF. See Hazama 2003, �7. 2

LetF be the largest totally real subfield ofK. The choice of a CM-type˚ D f'1; : : : ; 'mg
on K determines a commutative diagram:

1 ����! h�i ����! G ����! Gal.F=Q/ ����! 1??y�7!.�;:::;�/ ??y�˚ ??y
1 ����! f˙gm ����! f˙gm Ì Sm ����! Sm ����! 1

Here f˙g denotes the multiplicative group of order 2, and the symmetric group Sm acts on
f˙g

m by permutating the factors,

.�"/i D "��1.i/; � 2 Sm; " D ."i /1�i�m 2 f˙g
m:

Let � be the unique isomorphism of groups f˙g ! f0; 1g. For g 2 G, write

g ı 'i D �
�."i /'��1.i/:

Then �˚ is the homomorphism g 7! .."i /i ; �/.
There is a natural action of f˙gm Ì Sm on Rm:

.."i /1�i�m; �/.xi /1�i�m D ."ix��1.i//1�i�m.

By composition, we get a linear representation of G on Rm, also denoted �˚ . This acts
transitively transitively on a.2m/, and �˚ .�/ acts as �1.

The next statement is Hazama 2003, 6.2, but the proof there is incomplete.7

PROPOSITION 8.4. Every simple CM abelian variety split by K is isogenous to a subvari-
ety of A.G;K; �˚ /.

PROOF. Because of Proposition 8.2, it suffices to show that A.G;K; �˚ / is isogenous to
the abelian variety A.S; SC/ of (8.1). For a CM-type ˚ 0 on K, let "i .˚ 0/ equal C or
� according as 'i 2 ˚ 0 or not. Then ˚ 0 7! ."i .˚

0//1�i�mWS ! f˙g
m ' R.2m/ is

a bijection, sending SC onto R.2m/C. This map is G-equivariant, and so A.S; SC/ is
isogenous to A.R.2m/; R.2m/C/ def

D A.G;K; �˚ /: 2

The following is the main theorem of Hazama 2002, 2003.

THEOREM 8.5. In order to prove the Hodge conjecture for CM abelian varieties over C, it
suffices to prove it in codimension 2:

PROOF. If the Hodge conjecture holds in codimension 2, then Theorem 8.3 shows that it
holds for the varieties A.G;K; �˚ /n, but Proposition 8.4 shows that every CM abelian A is
isogenous to a subvariety of A.G;K; �˚ /n for some K and n. It is easy to see that if the
Hodge conjecture holds for an abelian variety A, then it holds for any abelian subvariety
(because it is an isogeny factor). 2

7It applies only to the simple subvariety of the abelian variety of CM-type .K;˚/. Also the description
(ibid. p632) of the divisor classes is incorrect, and so the statement in Theorem 7.14 that AA.2n/.GIK/ has
exotic Hodge classes when n � 3 should be treated with caution.
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The Tate conjecture

Theorems 8.5 and 7.4 show that, in order to prove the Tate conjecture for abelian varieties
over F, it suffices to prove the Hodge conjecture in codimension 2. The following is a more
natural statement.

THEOREM 8.6. In order to prove the Tate conjecture for abelian varieties over F, it suffices
to prove it in codimension 2.

More precisely, we shall show that if T 2.A; `/ holds for all abelian varieties A over F
and some `, then T r.A; `/ and Er.A; `/ hold for all abelian varieties A over F and all r
and `. We fix a p-adic prime w of Qal, and use the same notations as in �7.

LEMMA 8.7. Let A be an abelian variety over Qal. If A is split by K, then so also is A0.
Conversely, every abelian variety over F split by K is isogenous to an abelian variety A0
with A split by K.

PROOF. Let E be an étale subalgebra of End0.A/ such that ŒEWQ� D 2 dimA. Then E is a
maximal étale subalgebra of End0.A0/. Because E is split by K, so also is End0.A0/. The
converse follows from Tate 1968, Lemme 3. 2

PROOF (OF THEOREM 8.6). Let A D A.S; SC/ be the abelian variety in (8.2), which (see
�7) we may regard as an abelian variety over Qal. Then A0 is an abelian variety over F
split by K, and every simple abelian variety over F split by K is isogenous to an abelian
subvariety of A0 (by 8.2, 8.7). The inclusion End0.A/ ,! End0.A0/ realizes C.A0/ as a
Q-subalgebra of C.A/, and hence defines an inclusion L.A0/! L.A/ of Lefschetz groups
(see �2). Consider the diagram

MT.A/ �
� // L.A/

P.A0/

OO�
�
�

� � // L.A0/
?�

OO

in which MT.A/ is the Mumford-Tate group of A and P.A0/ is the smallest algebraic
subgroup of L.A0/ containing a Frobenius endomorphism of A0. Almost by definition,
MT.A/ is the largest algebraic subgroup of L.A/ fixing the Hodge classes in H 2�

B .AnC/.�/
for all n, and so, for any prime `, MT.A/Q` is the largest algebraic subgroup of L.A/Q`
fixing the Hodge classes in H 2�

`
.An/.�/ for all n. On the other hand, the classes in

H 2�
`
.An0/.�/ fixed by P.A0/Q` are exactly the Tate classes. The specialization isomor-

phism H 2�
`
.A/.�/! H 2�

`
.A0/.�/ is equivariant for the homomorphism L.A0/! L.A/.

As Hodge classes map to Tate classes in H 2�
`
.A/.�/ (see �6), they map to Tate classes in

H 2�
`
.A0/.�/, and so they are fixed by P.A0/Q` . This shows that P .A0/Q` � MT.A/Q`

(inside L.A/Q`), and so P.A0/ � MT.A/ (inside L.A/). The following is the main tech-
nical result of Milne 1999a (Theorem 6.1):

Assume that K contains a quadratic imaginary field. Then the algebraic sub-
group MT.A/ and L.A0/ of L.A/ intersect in P.A0/.

We now enlarge K so that it contains a quadratic imaginary field. Corollary 5.2 allows
us to choose ` so that E.A0; `/ holds. Let G be the algebraic subgroup of L.A0/Q` fixing
the algebraic classes in H 2�

`
.An0/.�/ for all n. If the Tate conjecture holds in codimension

2, then G fixes the Tate classes in H 4
`
.An0/.2/ (all n); therefore (by Theorem 8.3), it fixes
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the Hodge classes in H 2�
`
.An/.�/ (all n), and so G � MT.A/Q` \ L.A0/Q` D P.A0/Q` ;

therefore, G fixes all Tate classes in H 2�
`
.An0/.�/ (all n), which shows that the space of

Tate classes in H 2�
`
.An0/.�/ (all n) is spanned by the algebraic classes (apply Theorem

4.1). Therefore, the equivalent statements in Theorem 1.5 hold for An0 for all r and n. It
follows that the same is true of every abelian subvariety of some power A0, which includes
all abelian varieties over F split by K (apply Lemma 8.7). Since every abelian variety over
F is split by some CM-field, this completes the proof. 2

Optimists will now try to prove the Hodge conjecture in codimension 2 for CM abelian
varieties, or, what may (or may not) be easier, the Tate conjecture in codimension 2 for
abelian varieties over F. Pessimists will try to prove the opposite. Others may prefer to
look at the questions in �10.

9 The Hodge standard conjecture

Let k be an algebraically closed field, and let HW be a Weil cohomology theory on the
varieties over k. For a variety X over k, let ArW .X/ be the Q-subspace of H 2r

W .X/.r/

spanned by the classes of algebraic cycles. Let � 2 H 2
W .X/.1/ be the class of a hyperplane

section of X , and let LWH i
W .X/ ! H iC2

W .X/.1/ be the map [�. The primitive part
ArW .X/prim of ArW .X/ is defined to be

ArW .X/prim D fz 2 ArW .X/ j L
dim.X/�2rC1z D 0g.

CONJECTURE (HODGE STANDARD). Let d D dimX . For 2r � d , the symmetric bilinear
form

.x; y/ 7! .�1/rx � y � �d�2r WArW .X/prim �ArW .X/prim ! AdW .X/ ' Q

is positive definite (Grothendieck 1969, Hdg(X )).

The next theorem is an abstract version of the main theorem of Milne 2002.

THEOREM 9.2. The Hodge standard conjecture holds for every good theory of rational
Tate classes.

In more detail, let .R�.X//X2S be a good theory of rational Tate classes. For X 2 S,
the cohomology class � of a hyperplane section of X lies in R1.X/, and we can define
Rr.X/prim and the pairing on Rr.X/prim by the above formulas. The theorem states that
this pairing

Rr.X/prim �Rr.X/prim ! Q

is positive definite.
For the proof, see Milne 2007. I list one application of this theorem.

THEOREM 9.3. If there exists a good theory of rational Tate classes for which all algebraic
classes are rational Tate classes, then the Hodge standard conjecture holds.

PROOF. The bilinear form onRr.X/prim restricts to the correct bilinear form onAr.X/prim.
If the first is positive definite, then so is the second, which implies that the form onArW .X/prim
is positive definite for any Weil cohomology theory HW . 2
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ASIDE 9.4. Let S0 be the smallest class satisfying (*) and let S be a second (possibly larger) class.
If the Hodge conjecture holds for CM abelian varieties, then the family .Ar .X//X2S0 is a good
theory of rational Tate classes for S0; if moreover, the Tate conjecture holds for all varieties in S,
then .Ar .X//X2S is a good theory of rational Tate classes for S. However, the Tate conjecture alone
does not imply that .Ar .X//X2S is a good theory of rational Tate classes on S; in particular, we
don’t know that the Tate conjecture implies the Hodge standard conjecture. Thus, in some respects,
the existence of a good theory of rational Tate classes is a stronger statement than the Tate conjecture
for varieties over F.

10 On the existence of a good theory of rational Tate classes

I consider this only for the smallest class S0 satisfying (*), which, I recall, contains the
abelian varieties.

CONJECTURE (RATIONALITY CONJECTURE). Let A be a CM abelian variety over Qal.
The product of the specialization to A0 of any Hodge class on A with any Lefschetz class
on A0 of complementary dimension lies in Q.

In more detail, a Hodge class on A is an element of 
 of H 2�
A .A/.�/ and its specializa-

tion 
0 is an element of H 2�
A .A0/.�/. Thus the product 
0 � ı of 
0 with a Lefschetz class

of complementary dimension ı lies in

H 2d
A .A0/.d/ ' Ap

f
�Qal

w ; d D dim.A/:

The conjecture says that it lies in Q � Ap
f
�Qal

w . Equivalently, it says that the l-component
of 
0 � ı is a rational number independent of l .

REMARK 10.2. (a) The conjecture is true for a particular 
 if 
0 is algebraic. Therefore,
the conjecture is implied by the Hodge conjecture for CM abelian varieties (or even by the
weaker statement that the Hodge classes specialize to algebraic classes).

(b) The conjecture is true for a particular ı if it lifts to a rational cohomology class on
A. In particular, the conjecture is true if A0 is ordinary and A is its canonical lift (because
then all Lefschetz classes on A0 lift to Lefschetz classes on A).

For an abelian varietyA over F, letL�.A/ be the Q-subalgebra ofH 2�
A .A/.�/ generated

by the divisor classes, and call its elements the Lefschetz classes on A.

DEFINITION 10.3. Let A be an abelian variety over Qal with good reduction to an abelian
varietyA0 over F. A Hodge class 
 onA is locallyw-Lefschetz if its image 
0 inH 2�

A .A0/.�/

is in the A-span of the Lefschetz classes, and it is w-Lefschetz if 
0 is itself Lefschetz.

CONJECTURE (WEAK RATIONALITY CONJECTURE). Let A be an abelian variety over
Qal with good reduction to an abelian variety A0 over F. Every locally w-Lefschetz Hodge
class is itself w-Lefschetz.

THEOREM 10.5. The following statements are equivalent:

(a) The rationality conjecture holds for all CM abelian varieties over Qal.
(b) The weak rationality conjecture holds for all CM abelian varieties over Qal.
(c) There exists a good theory of rational Tate classes on abelian varieties over F.
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PROOF. (a) H) (b): Choose a Q-basis e1; : : : ; et for the space of Lefschetz classes of
codimension r on A0, and let f1; : : : ; ft be the dual basis for the space of Lefschetz classes
of complementary dimension (here we use Milne 1999a, 5.2, 5.3). If 
 is a locally w-
Lefschetz class of codimension r , then 
0 D

P
ciei for some ci 2 A. Now

h
0 � fj i D cj ;

which (a) implies lies in Q.
(b) H) (c): See Milne 2007.
(c) H) (a): If there exists a good theory R of rational Tate classes, then certainly the

rationality conjecture is true, because then 
0 � ı 2 R2d ' Q. 2

Two questions

QUESTION 10.6. Let A be a CM abelian variety over Qal, let 
 be a Hodge class on A, and
let ı be a divisor class on A0. Does .A0; 
0; ı/ always lift to characteristic zero? That is,
does there always exist a CM abelian variety A0 over Qal, a Hodge class 
 0 on A0, a divisor
class ı0 on A0 and an isogeny A00 ! A0 sending 
 00 to 
0 and ı00 to ı?

PROPOSITION 10.7. If Question 10.6 has a positive answer, then the rationality conjecture
holds for all CM abelian varieties.

PROOF. Let 
 be a Hodge class on a CM abelian variety A of dimension d over Qal. If 

has dimension � 1, then it is algebraic and so satisfies the rationality conjecture. We shall
proceed by induction on the codimension of 
 . Assume 
 has dimension r � 2, and let
ı be a Lefschetz class of dimension d � r . We may suppose that ı D ı1 � ı2 � � � where
ı1; ı2; : : : are divisor classes. Apply (10.6) to .A; 
; ı/. Then 
 0 � ı01 is a Hodge class on A0

of codimension r � 1, and


0 � ı 2 .

0
� ı01/0 � ı2 � � � � � ıd�rQ � Q. 2

A pair .A; �/ consisting of an abelian variety A over C and a homomorphism � from
a CM field E to End0.A/ is said to be of Weil type if the tangent space to A at 0 is a free
E ˝Q k-module. For such a pair .A; �/, the space

W d .A; �/
def
D

^d

E
H 1.A;Q/ � Hd .A;Q/; where d D dimE H 1.A;Q/;

consists of Hodge classes (Deligne 1982, 4.4). When E is quadratic over Q, the spaces
W d were studied by Weil (1977), and for this reason its elements are called Weil classes.
A polarization of an abelian variety .A; �/ of Weil type is a polarization of A whose Rosati
involution stabilizes E and induces complex conjugation on it. There then exists an E-
hermitian form � on H1.A;Q/ and an f 2 E� with Nf D �f such that  .x; y/ def

D

TrE=Q.f �.x; y// is a Riemann form for � (ibid. 4.6). We say that the Weil classes on
.A; �/ are split if there exists a polarization of .A; �/ for which the E-hermitian form � is
split (i.e., admits a totally isotropic subspace of dimension dimE H1.A;Q/=2).

QUESTION 10.8. Is it possible to prove the weak rationality conjecture for split Weil
classes on CM abelian variety by considering the families of abelian varieties considered in
Deligne 1982, proof of 4.8, and André 2006, �3?
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A positive answer to this question implies the weak rationality conjecture because of
the following result of Andre (1992) (or the results of Deligne 1982, �5).

Let A be a CM abelian variety over C. Then there exist CM abelian varieties
Bi and homomorphisms A! Bi such that every Hodge class on A is a linear
combination of the inverse images of split Weil classes on the Bi .

In the spirit of Weil 1967, I leave the questions as exercises for the interested reader.

ASIDE 10.9. In the paper in which they state their conjecture concerning the structure of the points
on a Shimura variety over a finite field, Langlands and Rapoport prove the conjecture for some sim-
ple Shimura varieties of PEL-type under the assumption of the Hodge conjecture for CM-varieties,
the Tate conjecture for abelian varieties over finite fields, and the Hodge standard conjecture for
abelian varieties over finite fields. I’ve proved that the first of these conjectures implies the other
two (see 7.4 and 9.3), and so we have gone from needing three conjectures to needing only one. A
proof of the rationality conjecture would eliminate the need for the remaining conjecture. Probably
we can get by with much less, but having come so far I would like to finish it off with no fudges.

ASIDE 10.10. Readers of the Wall Street Journal on August 1, 2007, were excited to find a headline
on the front page of Section B directing them to a column on “The Secret Life of Mathematicians”.
The column was about the workshop, and included the following paragraph:

Progress, though, was made. V. Kumar Murty, of the University of Toronto, said that
as a result of the sessions, he’d be pursuing a new line of attack on Tate. It makes
use of ideas of the J.S. Milne of Michigan, who was also in attendance, and involves
Abelian varieties over finite fields, in case you want to get started yourself.

This becomes more-or-less correct when you replace “Tate” with the “weak rationality conjecture”.8
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des Nombres, Paris, 1989–90, volume 102 of Progr. Math. Birkhäuser Boston, Boston, MA.
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