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Tate helped shape the great reformulation of arithmetic
and geometry which has taken place since the 1950s.

Andrew Wiles.1

This is my article on Tate’s work for the second volume in the book series on the Abel
Prize winners. True to the epigraph, I have attempted to explain it in the context of the
“great reformulation”.

Contents

1 Hecke L-series and the cohomology of number fields 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Tate’s thesis and the local constants . . . . . . . . . . . . . . . . . . . . . 5
1.3 The cohomology of number fields . . . . . . . . . . . . . . . . . . . . . . 8
1.4 The cohomology of profinite groups . . . . . . . . . . . . . . . . . . . . . 12
1.5 Duality theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Expositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Abelian varieties and curves 15
2.1 The Riemann hypothesis for curves . . . . . . . . . . . . . . . . . . . . . 15
2.2 Heights on abelian varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 The cohomology of abelian varieties . . . . . . . . . . . . . . . . . . . . . 18
2.4 Serre-Tate liftings of abelian varieties . . . . . . . . . . . . . . . . . . . . 21
2.5 Mumford-Tate groups and the Mumford-Tate conjecture . . . . . . . . . . 22
2.6 Abelian varieties over finite fields (Weil, Tate, Honda theory) . . . . . . . . 23
2.7 Good reduction of Abelian Varieties . . . . . . . . . . . . . . . . . . . . . 24
2.8 CM abelian varieties and Hilbert’s twelfth problem . . . . . . . . . . . . . 25

3 Rigid analytic spaces 26
3.1 The Tate curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Rigid analytic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1 Introduction to Tate’s talk at the conference on the Millenium Prizes, 2000.

1



CONTENTS 2

4 The Tate conjecture 31
4.1 Beginnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Statement of the Tate conjecture . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Homomorphisms of abelian varieties . . . . . . . . . . . . . . . . . . . . . 33
4.4 Relation to the conjectures of Birch and Swinnerton-Dyer . . . . . . . . . . 34
4.5 Poles of zeta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Relation to the Hodge conjecture . . . . . . . . . . . . . . . . . . . . . . . 37

5 Lubin-Tate theory and Barsotti-Tate group schemes 38
5.1 Formal group laws and applications . . . . . . . . . . . . . . . . . . . . . 38
5.2 Finite flat group schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Barsotti-Tate groups (p-divisible groups) . . . . . . . . . . . . . . . . . . 42
5.4 Hodge-Tate decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Elliptic curves 44
6.1 Ranks of elliptic curves over global fields . . . . . . . . . . . . . . . . . . 44
6.2 Torsion points on elliptic curves over Q . . . . . . . . . . . . . . . . . . . 44
6.3 Explicit formulas and algorithms . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Analogues at p of the conjecture of Birch and Swinnerton-Dyer . . . . . . 45
6.5 Jacobians of curves of genus one . . . . . . . . . . . . . . . . . . . . . . . 47
6.6 Expositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 The K-theory of number fields 48
7.1 K-groups and symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2 The group K2F for F a global field . . . . . . . . . . . . . . . . . . . . . 49
7.3 The Milnor K-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 Other results on K2F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 The Stark conjectures 52

9 Noncommutative ring theory 56
9.1 Regular algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.2 Quantum groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.3 Sklyanin algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10 Miscellaneous articles 58

Bibliography 66

Index 72

Notations
We speak of the primes of a global field where others speak of the places.

MS D S˝RM for M an R-module and S and R-algebra.
jS j is the cardinality of S .
XnDKer.x 7! nxWX!X/ and X.`/D

S
m�0X`m (`-primary component, ` a prime).

Gal.K=k/ or G.K=k/ denotes the Galois group of K=k.
�.R/ is the group of roots of 1 in R.
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R� denotes the group of invertible elements of a ring R (apologies to Bourbaki).
V _ denotes the dual of a vector space or the contragredient of a representation.
Kal, Ksep, Kab,Kun. . . denote an algebraic, separable, abelian, unramified: : :closure of a

field K.
OK denotes the ring of integers in a local or global field K.

1 HeckeL-series and the cohomology of number fields

1.1 Background

KRONECKER, WEBER, HILBERT, AND RAY CLASS GROUPS

For every abelian extension L of Q, there is an integer m such that L is contained in the
cyclotomic field QŒ�m�; it follows that the abelian extensions of Q are classified by the
subgroups of the groups .Z=mZ/� 'G.QŒ�m�=Q/ (Kronecker-Weber). On the other hand,
the unramified abelian extensions of a number field K are classified by the subgroups of the
ideal class group C of K (Hilbert). In order to be able to state a common generalization of
these two results, Weber introduced the ray class groups. A modulus m for a number field K
is the formal product of an ideal m0 in OK with a certain number of real primes of K. The
corresponding ray class group Cm is the quotient of the group of ideals relatively prime to
m0 by the principal ideals generated by elements congruent to 1 modulo m0 and positive
at the real primes dividing m. For mD .m/1 and K D Q, Cm ' .Z=mZ/�. For mD 1,
Cm D C .

TAKAGI AND THE CLASSIFICATION OF ABELIAN EXTENSIONS

Let K be a number field. Takagi showed that the abelian extensions of K are classified by
the ray class groups: for each modulus m, there is a well-defined “ray class field” Lm with
G.Lm=K/� Cm, and every abelian extension of K is contained in a ray class field for some
modulus m. Takagi also proved precise decomposition rules for the primes in an extension
L=K in terms of the associated ray class group. These would follow from knowing that the
map sending a prime ideal to its Frobenius element gives an isomorphism Cm!G.Lm=K/,
but Takagi didn’t prove that.

DIRICHLET, HECKE, AND L-SERIES

For a character � of .Z=mZ/�, Dirichlet introduced the L-series

L.s;�/D
Y

.p;m/D1

1

1��.p/p�s
D

X
.n;m/D1

�.n/n�s

in order to prove that each arithmetic progression, a, aCm, aC2m, : : : with a relatively
prime to m has infinitely many primes. When � is the trivial character, L.s;�/ differs from
the zeta function �.s/ by a finite number of factors, and so has a pole at s D 1. Otherwise
L.s;�/ can be continued to a holomorphic function on the entire complex plane and satisfies
a functional equation relating L.s;�/ and L.1� s; x�/.

Hecke proved that the L-series of characters of the ray class groups Cm had similar
properties to Dirichlet L-series, and noted that his methods apply to the L-series of even
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more general characters, now called Hecke characters (Hecke 1918, 1920).2 The L-series of
Hecke characters are of fundamental importance. For example, Deuring (1953)3 showed
that the L-series of an elliptic curve with complex multiplication is a product of two Hecke
L-series.

ARTIN AND THE RECIPROCITY LAW

Let K=k be an abelian extension of number fields, corresponding to a subgroup H of a ray
class group Cm. Then

�K.s/=�k.s/D
Y

�
L.s;�/ (up to a finite number of factors) (1)

where � runs through the nontrivial characters of Cm=H . From this and the results of
Dirichlet and Hecke, it follows that �K.s/=�k.s/ is holomorphic on the entire complex
plane. In the hope of extending this statement to nonabelian extensions K=k, Artin (1923)4

introduced what are now called Artin L-series.
Let K=k be a Galois extension of number fields with Galois group G, and let �WG!

GL.V / be a representation of G on a finite dimensional complex vector space V . The Artin
L-series of � is

L.s;�/D
Y

p

1

det.1��.�p/NP�s j V IP/
where p runs through the prime ideals of K, P is a prime ideal of K lying over p, �p is the
Frobenius element of P, NPD .OK WP/, and IP is the inertia group.

Artin observed that his L-series for one-dimensional representations would coincide
with the L-series of characters on ray class groups if the following “theorem” were true:

for the field L corresponding to a subgroup H of a ray class group Cm, the map
p 7! .p;L=K/ sending a prime ideal p not dividing m to its Frobenius element
induces an isomorphism Cm=H !G.L=K/.

Initially, Artin was able to prove this statement only for certain extensions. After Chebotarev
had proved his density theorem by a reduction to the cyclotomic case, Artin (1927)5 proved
the statement in general. He called it the reciprocity law because, when K contains a
primitive mth root of 1, it directly implies the classical mth power reciprocity law.

Artin noted that L.s;�/ can be analytically continued to a meromorphic function on the
whole complex plane if its character � can be expressed in the form

�D
X

i
ni Ind�i ; ni 2 Z; (2)

with the �i one-dimensional characters on subgroups of G, because then

L.s;�/D
Y

i
L.s;�i /

ni

2 Hecke, E., Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. I,
Math. Zeit. 1, 357-376 (1918); II, Math. Zeit. 6, 11-51 (1920). 3 Deuring, Max, Die Zetafunktion einer
algebraischen Kurve vom Geschlechte Eins. Nachr. Akad. Wiss. Göttingen. 1953, 85–94. 4 Artin, E. Über
die Zetafunktionen gewisser algebraischer Zahlkörper. Math. Ann. 89 (1923), no. 1-2, 147–156. 5 Artin, E.,
Beweis des allgemeinen Reziprozitätsgesetzes. Abhandlungen Hamburg 5, 353-363 (1927).
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with the L.s;�i / abelian L-series. Brauer (1947)6 proved that the character of a representa-
tion can always be expressed in the form (1), and Brauer and Tate found what is probably
the simplest known proof of this fact (see p.59).

To complete his program, Artin conjectured that, for every nontrivial irreducible rep-
resentation �, L.s;�/ is holomorphic on the entire complex plane. This is called the Artin
conjecture. It is known to be true if the character of � can be expressed in the form (2) with
ni � 0, and in a few other cases.

CHEVALLEY AND IDÈLES

Chevalley gave a purely local proof of local class field theory, and a purely algebraic proof
of global class field theory, but probably his most lasting contribution was to reformulate
class field theory in terms of idèles.

An idèle of a number field K is an element .av/v of
Q
vK
�
v such that av 2O�v for all

but finitely many primes v. The idèles form a group JK , which becomes a locally compact
topological group when endowed with the topology for which the subgroupY

vj1
K�v �

Y
v finite

O�v

is open and has the product topology.7

Let K be number field. In Chevalley’s reinterpretation, global class field theory provides
a homomorphism �WJK=K

�!G.Kab=K/ that induces an isomorphism

JK=.K
�
�NmJL/ �!G.L=K/

for each finite abelian extension L=K. For each prime v of K, local class field theory
provides a homomorphism �vWK

�
v !G.Kab

v =Kv/ that induces an isomorphism

K�v =NmL�!G.L=Kv/

for each finite abelian extension L=Kv. The maps �v and � are related by the diagram:

K�v
�v
����! G.Kab

v =Kv/??yiv ??y
JK

�
����! G.Kab=K/:

Beyond allowing class field theory to be stated for infinite extensions, Chevalley’s idèlic
approach greatly clarified the relation between the local and global reciprocity maps.

1.2 Tate’s thesis and the local constants
The modern definition is that a Hecke character is a quasicharacter of J=K�, i.e., a con-
tinuous homomorphism �WJ ! C� such that �.x/D 1 for all x 2K�. We explain how to
interpret � as a map on a group of ideals, which is the classical definition.

6 Brauer, Richard, On Artin’s L-series with general group characters. Ann. of Math. (2) 48, (1947). 502–514.
7 The original topology defined by Chevalley is not Hausdorff. It was Weil who pointed out the need for a
topology in which the Hecke characters become the characters on J (Weil, A., Remarques sur des résultats
recents de C. Chevalley. C. R. Acad. Sci., Paris 203, 1208-1210 1936). By the time of Tate’s thesis, the correct
definition seems to have been common knowledge.
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For a finite set S of primes, including the infinite primes, let J S denote the subgroup of
JK consisting of the idèles .av/v with av D 1 for all v 2 S , and let IS denote the group of
fractional ideals generated by those prime ideals not in S . There is a canonical surjection
J S ! IS . For each Hecke character �, there exists a finite set S such that � factors through
J S

can.
�! IS , and a homomorphism 'WIS ! C� arises from a Hecke character if and only if

there exists an integral ideal m with support in S , complex numbers .s� /�2Hom.K;C/, and
integers .m� /�2Hom.K;C/ such that

'..˛//D
Y

�2Hom.K;C/

�.˛/m� j�.˛/js�

for all ˛ 2K� with .˛/ 2 IS and ˛ � 1 (mod m/.

HECKE’S PROOF

The classical proof uses that Rn is self-dual as an additive topological group, and that the
discrete subgroup Zn of Rn is its own orthogonal complement under the duality. The Poisson
summation formula follows easily8 from this: for any Schwartz function f on Rn and its
Fourier transform yf , X

m2Zn
f .m/D

X
m2Zn

yf .m/.

Write the L-series as a sum over integral ideals, and decompose it into a finite family of
sums, each of which is over the integral ideals in a fixed element of an ideal class group. The
individual series are Mellin transforms of theta series, and the functional equation follows
from the transformation properties of the theta series, which, in turn, follow from the Poisson
summation formula.

TATE’S PROOF

An adèle of K is an element .av/v of
Q
Kv such that av 2 Ov for all but finitely many

primes v. The adèles form a ring A, which becomes a locally compact topological ring when
endowed with its natural topology.

Tate proved that the ring of adèles A of K is self-dual as an additive topological group,
and that the discrete subgroupK of A is its own orthogonal complement under the duality. As
in the classical case, this implies an (adèlic) Poisson summation formula: for any Schwartz
function f on A and its Fourier transform yfX


2K
f .
/D

X

2K

yf .
/:

Let � be a Hecke character of K, and let �v be the quasicharacter �ı iv on K�v . Tate
defines local L-functions L.�v/ for each prime v of K (including the infinite primes) as
integrals overKv , and proves functional equations for them. He writes the global L-function
as an integral over J , which then naturally decomposes into a product of local L-functions.
The functional equation for the global L-function follows from the functional equations of
the local L-functions and the Poisson summation formula.
8 Let f be a Schwartz function on R, and let yf be its Fourier transform on yR D R. Let � be the function
xCZ 7!

P
n2Zf .xCn/ on R=Z, and let y� be its Fourier transform on bR=ZD Z. A direct computation shows

that yf .n/D y�.n/ for all n 2 Z. The Fourier inversion formula says that �.x/D
P
n2Z y�.n/�.x/; in particular,

�.0/D
P
n2Z y�.n/D

P
n2Z
yf .n/. But, by definition, �.0/D

P
n2Zf .n/.
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Although, the two proofs are superficially similar, in the details they are quite different.
Once Tate has developed the harmonic analysis of the local fields and of the adèle ring,
including the Poisson summation formula, “an analytic continuation can be given at one
stroke for all of the generalized �-functions, and an elegant functional equation can be
established for them . . . without Hecke’s complicated theta-formulas”.9

One consequence of Tate’s treating all primes equally, is that the � -factors arise naturally
as the local zeta functions of the infinite primes. By contrast, in the classical treatment, their
appearance is more mysterious.

As Kudla writes:10

Tate provides an elegant and unified treatment of the analytic continuation
and functional equation of Hecke L-functions. The power of the methods of
abelian harmonic analysis in the setting of Chevalley’s adèles/idèles provided
a remarkable advance over the classical techniques used by Hecke. . . . In
hindsight, Tate’s work may be viewed as giving the theory of automorphic
representations and L-functions of the simplest connected reductive group
G D GL.1/, and so it remains a fundamental reference and starting point for
anyone interested in the modern theory of automorphic representations.

Tate’s thesis completed the re-expression of the classical theory in terms of idèles. In this
way, it marked the end of one era, and the start of a new.

NOTES. Tate completed his thesis in May 1950. It was widely quoted long before its publication in
1967. Iwasawa obtained similar results about the same time as Tate, but published nothing except for
the brief notes Iwasawa 1950, 1952.11

LOCAL CONSTANTS

Let � be a Hecke character, and let �.s;�/ be its completed L-series. The theorem of Hecke
and Tate says that �.s;�/ admits a meromorphic continuation to the whole complex plane,
and satisfies a functional equation

�.1� s;�/DW.�/ ��.s; x�/

with W.�/ a complex number of absolute value 1. The number W.�/ is called the root num-
ber or the epsilon factor. It is a very interesting number. For example, for a Dirichlet character
� with conductor f , it equals �.�/=

p
˙f where �.�/ is the Gauss sum

Pf
aD1�.a/e.a=f /.

An importance consequence of Tate’s description of the global functional equation as a
product of local functional equations is that he obtains an expression

W.�/D
Y

v
W.�v/ (3)

of W.�/ as a product of (explicit) local root numbers W.�v/.
Langlands pointed out12 that his conjectural correspondence between degree n repre-

sentations of the Galois groups of number fields and automorphic representations of GLn
9 Tate 1967, pp. 305–306. 10 Kudla, S. In: An introduction to the Langlands program. Edited by Joseph
Bernstein and Stephen Gelbart. Birkhäuser Boston, Inc., Boston, MA, 2003, p.133. 11 Iwasawa, K., A Note
on Functions, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1,
p.322. Amer. Math. Soc., Providence, R. I., 1952; Letter to J. Dieudonné. Zeta functions in geometry, April
8, 1952, Adv. Stud. Pure Math., 21, pp.445–450, Kinokuniya, Tokyo, 1992. 12 See his “Notes on Artin
L-functions” and the associated comments at http://publications.ias.edu/rpl/section/22.

http://publications.ias.edu/rpl/section/22


1 HECKE L-SERIES AND THE COHOMOLOGY OF NUMBER FIELDS 8

requires that there be a similar decomposition for the root numbers of Artin L-series, or,
more generally, for the Artin-Hecke L-series that generalize both Artin and Hecke L-series
(see p.11). For a Hecke character, the required decomposition is just that of Tate. Every
expression (2), p.4, of an Artin character � as a sum of monomial characters gives a decom-
position of its root number W.�/ as a product of local root numbers — the problem is to
show that the decomposition is independent of the expression of � as a sum.13

For an Artin character �, Dwork (1956)14 proved that there exists a decomposition (3) of
W.�/ well-defined up to signs; more precisely, he proved that there exists a well-defined
decomposition for �.�1/W.�/2. Langlands completed Dwork’s work and thereby found a
local proof that there exists a well-defined decomposition for W.�/. However, he abandoned
the writing up of his proof when Deligne (1973)15 found a simpler global proof.

Tate (1977b) gives an elegant exposition of these questions, including a proof of (3) for
Artin root numbers by a variant of Deligne’s method, and a proof of a theorem of Fröhlich
and Queyrut that W.�/ D 1 when � is the character of a representation that preserves a
quadratic form.

1.3 The cohomology of number fields

TATE COHOMOLOGY

With the action of a group G on an abelian group M , there are associated homology groups
Hr.G;M/, r � 0, and cohomology groups H r.G;M/, r � 0. When G is finite, the map
m 7!

P
�2G �m defines a homomorphism

H0.G;M/
def
DMG

NmG
�!MG def

DH 0.G;M/,

and Tate defined cohomology groups yH r.G;M/ for all integers r by setting

yH r.G;M/
def
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
H�r�1.G;M/ r < �1

Ker.NmG/ r D�1

Coker.NmG/ r D 0

H r.G;M/ r > 0:

13 In fact, this is not quite true, but is true for “virtual representations” with “virtual degree 0”. The de-
composition of the root number of the character � of a Galois representation is obtained by writing it as
�D .��dim� �1/Cdim� �1: 14 Dwork, B., On the Artin root number. Amer. J. Math. 78 (1956), 444–472.
Based on his 1954 thesis as a student of Tate. 15 Deligne, P. Les constantes des équations fonctionnelles des
fonctions L. Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp,
1972), pp. 501–597. Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973.
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The diagram

yH�1.G;M 0/ yH�1.G;M/ yH�1.G;M 00/

� � � H1.G;M
00/ H0.G;M

0/ H0.G;M/ H0.G;M
00/ 0

0 H 0.G;M 0/ H 0.G;M/ H 0.G;M 00/ H 1.G;M 0/ � � �

yH 0.G;M 0/ yH 0.G;M/ yH 0.G;M 00/

NmG NmG NmG

shows that a short exact sequence of G-modules gives an exact sequence of cohomology
groups infinite in both directions. These groups are now called the Tate cohomology groups.
Most of the usual constructions for cohomology groups (except the inflation maps) extend to
the Tate groups.

NOTES. Tate’s construction was included in Serre 1953,16 Cartan and Eilenberg 1956,17 and else-
where. Farrell 197818 extended Tate’s construction to infinite groups having finite virtual cohomo-
logical dimension (Tate-Farrell cohomology), and others have defined an analogous extension of
Hochschild cohomology (Tate-Hochschild cohomology).

THE COHOMOLOGY GROUPS OF ALGEBRAIC NUMBER FIELDS

Let G be a finite group, let C be a G-module, and let u be an element ofH 2.G;C /. Assume
that H 1.H;C /D 0 for all subgroups H of G and that H 2.H;C / is cyclic of order .H W1/
with generator the restriction of u. Then Tate (1952c) showed that cup product with u defines
an isomorphism

x 7! x[uW yH r.G;Z/! yH rC2.G;C / (4)

for all r 2 Z. He proves this by constructing an exact sequence

0! C ! C.'/! ZŒG�! Z! 0;

depending on the choice of a 2-cocycle ' representing u, and showing that

yH r.G;C.'//D 0D yH r.G;ZŒG�/

for all r 2 Z. Now the double boundary map is an isomorphism yH r.G;Z/! yH rC2.G;C /.
On taking G to be the Galois group of a finite extension L=K of number fields, C to be

the idèle class group of L, and u the fundamental class of L=K,19 one obtains for r D�2
the inverse of the Artin reciprocity map

G=ŒG;G�
'
�! CG .

16 Serre, Jean-Pierre, Cohomologie et arithmétique, Séminaire Bourbaki 1952/1953, no. 77. 17 Cartan, Henri;
Eilenberg, Samuel. Homological algebra. Princeton University Press, Princeton, N. J., 1956 18 Farrell, F.
Thomas, An extension of Tate cohomology to a class of infinite groups. J. Pure Appl. Algebra 10 (1977/78), no.
2, 153-161. 19 Which had been discovered by Nakayama and Weil, cf. Artin and Tate, 2009, p189.
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Let L=K be a finite Galois extension of global fields (e.g., number fields) with Galois
group G. There is an exact sequence of G-modules

1! L�! JL! CL! 1 (5)

where JL is the group of idèles of L and CL is the idèle class group. Tate determined the
cohomology groups of the terms in this sequence by relating them to those in the much
simpler sequence

0!X ! Y !Z! 0: (6)

Here Y is the free abelian group on the set of primes of L (including the infinite primes)
with G acting through its action on the primes, and Z is just Z with G acting trivially; the
map Y !Z is

P
nPP 7!

P
nP , and X is its kernel. Tate proved that there is a canonical

isomorphism of doubly infinite exact sequences

� � � ��! yH r.G;X/ ��! yH r.G;Y / ��! yH r.G;Z/ ��! �� �??y' ??y' ??y'
� � � ��! yH rC2.G;L�/ ��! yH rC2.G;JL/ ��! yH rC2.G;CL/ ��! �� � :

(7)

Tate announced this result in his Short Lecture at the 1954 International Congress, but did
not immediately publish the proof.

THE TATE-NAKAYAMA THEOREM

Nakayama (1957) generalized Tate’s isomorphism (4) by weakening the hypotheses — it
suffices to require them for Sylow subgroups — and strengthening the conclusion — cup
product with u defines an isomorphism

x 7! x[uW yH r.G;M/! yH rC2.G;C ˝M/

provided C orM is torsion-free. Building on this, Tate (1966c) proved that the isomorphism
(7) holds with each of the sequences (5) and (6) replaced by its tensor product with M . In
other words, he replaced the torus Gm implicit in (7) with an arbitrary torus defined over
K. He also proved the result for any “suitably large” set of primes S — the module L� is
replaced with the group of S-units in L and JL is replaced by the group of idèles whose
components are units outside S . This result is usually referred to as the Tate-Nakayama
theorem, and is widely used, for example, throughout the Langlands program including in
the proof of the fundamental lemma.

ABSTRACT CLASS FIELD THEORY: CLASS FORMATIONS

Tate’s theorem (see (4) above) shows that, in order to have a class field theory over a field k,
all one needs is, for each system of fields

ksep
� L�K � k; ŒLWk� <1; L=K Galois,

a G.L=K/-module CL and a “fundamental class” uL=K 2 H 2.G.L=K/;CL/ satisfying
Tate’s hypotheses; the pairs .CL;uL=K/ should also satisfy certain natural conditions when
K and L vary. Then Tate’s theorem then provides “reciprocity” isomorphisms

CGL
'
�!G=ŒG;G�; G DG.L=K/;
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Artin and Tate (1961, Chapter 14) formalized this by introducing the abstract notion of a
class formation.

For example, for any nonarchimedean local field k, there is a class formation with
CL D L

� for any finite extension L of k, and for any global field, there is a class formation
with CL D JL=L�. In both cases, uL=K is the fundamental class.

Let k be an algebraic function field in one variable with algebraically closed constant
field. Kawada and Tate (1955a) show that there is a class formation for unramified extensions
ofK with CL the dual of the group of divisor classes of L. In this way they obtain a “pseudo
class field theory” for k, which they examine in some detail when k D C.

THE WEIL GROUP

Weil was the first to find a common generalization of Artin L-series and Hecke L-series.
For this he defined what is now known as the Weil group. The Weil group of a finite Galois
extension of number fields L=K is an extension

1! CL!WL=K ! Gal.L=K/! 1

corresponding to the fundamental class in H 2.GL=K ;CL/. Each representation of WL=K
has an L-series attached to it, and the L-series arising in this way are called Artin-Hecke
L-series. Weil (1951)20 constructed these groups, thereby discovering the fundamental class,
and proved the fundamental properties of Weil groups. Artin and Tate (1961, Chapter XV)
developed the theory of the Weil groups in the abstract setting of class formations, basing
their definition on the existence of a fundamental class. In the latest (2009) edition of the
work, Tate expanded their presentation and included a sketch of Weil’s original construction
(pp. 185–189).

SUMMARY

The first published exposition of class field theory in which full use of the cohomology
theory is made is Chevalley 1954.21 There Chevalley writes:

One of the most baffling features of classical class field theory was that it
appeared to say practically nothing about normal extensions that are not abelian.
It was discovered by A. Weil and, from a different point of view, T. Nakayama
that class field theory was actually much richer than hitherto suspected; in fact,
it can now be formulated in the form of statements about normal extensions
without any mention whatsoever of abelian extensions. Of course, it is true that
it is only in the abelian case that these statements lead to laws of decomposition
for prime ideals of the subfield and to the law of reciprocity. Nevertheless, it
is clear that, by now, we know something about the arithmetic of non abelian
extensions. In fact, since the work of J. Tate, it may be said that we know almost
everything that may be formulated in terms of cohomology in the idèle class
group, and generally a great deal about everything that can be formulated in
cohomological terms.

NOTES. Tate was not the first to make use of group cohomology in class field theory. In a sense
it had always been there, since crossed homomorphisms and factor systems had long been used.

20 Weil, André, Sur la théorie du corps de classes. J. Math. Soc. Japan 3, (1951). 1–35. 21 Chevalley, C.
Class field theory. Nagoya University, Nagoya, 1954.
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Weil and Nakayama independently discovered the fundamental class, Weil by constructing the Weil
group, and Nakayama as a consequence of his work (partly with Hochschild) to determine the
cohomology groups of number fields in degrees 1 and 2. Tate’s contribution was to give a remarkably
simple description of all the basic cohomology groups of number fields, and to construct a general
isomorphism that, in the particular case of an abelian extension and in degree �2, became the Artin
reciprocity isomorphism.

1.4 The cohomology of profinite groups

Krull (1928)22 showed that, when the Galois group of an infinite Galois extension of fields
˝=F is endowed with a natural topology, there is a Galois correspondence between the
intermediate fields of ˝=F and the closed subgroups of the Galois group. The topological
groups that arise as Galois groups are exactly the compact groups G whose open normal
subgroups U form a fundamental system N of neighbourhoods of 1. Tate described such
topological groups as being “of Galois-type”, but we now say they are “profinite”.

For a profinite group G, Tate (1958d) considered the G-modules M such that M DS
U2NM

U . These are the G-modules M for which the action is continuous relative to the
discrete topology on M . For such a module, Tate defined cohomology groups H r.G;M/,
r � 0, using continuous cochains, and he showed that

H r.G;M/D lim
�!U2N

H r.G=U;MU /

where H r.G=U;MU / denotes the usual cohomology of the (discrete) finite group G=U
acting on the abelian group MU . In particular, H r.G;M/ is torsion for r > 0.

The cohomological dimension and strict cohomological dimension of a profinite group
G relative to a prime number p are defined by the conditions:

cdp.G/� n ” H r.G;M/.p/D 0 whenever r > n and M is torsion;

scdp.G/� n ” H r.G;M/.p/D 0 whenever r > n.

Here .p/ denotes the p-primary component. The (strict) cohomological dimension of a field
is the (strict) cohomological dimension of its absolute Galois group. Among Tate’s theorems
are the following statements:

(a) A pro p-groupG is free if and only if cdp.G/D 1. (A pro p-group is a profinite group
G such that G=U is a p-group for all U 2N ; it is free if it is of the form lim

 �
F=N

where F is the free group on symbols .ai /i2I , say, and N runs through the normal
subgroups of G containing all but finitely many of the ai and such G=N is a finite
p-group).

(b) If k is a local field other than R or C, then scdp.k/D 2 for all p ¤ char.k/.
(c) Let K � k be an extension of fields of transcendence degree n. Then

cdp.K/� cdp.k/Cn,

with equality if K is finitely generated over k, cdp.k/ <1, and p ¤ char.k/. In
particular, if k is algebraically closed, then the p-cohomological dimension of a
finitely generated K is equal to its transcendence degree over k (p ¤ char.k/).

22 Krull, W., Galoissche Theorie der unendlichen algebraischen Erweiterungen. Math. Ann. 100, 687-698
(1928).
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According to Tate 1958d, statement (c) “historically arose at [the theory’s] beginning. Its
conjecture and the sketch of its proof are due to Grothendieck”. Indeed, from Grothendieck’s
point of view, the cohomology of the absolute Galois group of a field k should be interpreted
as the étale cohomology of Speck, and the last statement of (c) is suggested by the weak
Lefschetz theorem in étale cohomology.
NOTES. Tate explained the above theory in his 1958 seminar at Harvard.23 Douady reported on
Tate’s work in a Bourbaki seminar in 1959,24 and Lang included Tate’s unpublished article 1958d as
Chapter VII of his 1967 book.25 Serre included the theory in his course at the Collège de France,
1962–63; see Serre 1964.26 Tate himself published only the brief lectures Tate 2001.

1.5 Duality theorems
In the early 1960s, Tate proved duality theorems for modules over the absolute Galois groups
of local and global fields that have become an indispensable tool in Iwasawa theory, the
theory of abelian varieties, and in other parts of arithmetic geometry. The main global
theorem was obtained independently by Poitou, and is now referred to as the Poitou-Tate
duality theorem.

Throughout, K is a field, xK is a separable closure of K, and G is the absolute Galois
group Gal. xK=K/. All G-modules are discrete (i.e., the action is continuous for the discrete
topology on the module). The dual M 0 of such a module is Hom.M; xK�/.

LOCAL RESULTS

Let K be a nonarchimedean local field, i.e., a finite extension of Qp or Fp..t//. Local class
field theory provides us with a canonical isomorphism H 2.G; xK�/' Q=Z. Tate proved
that, for every finite G-module M whose order m is not divisible by characteristic of K, the
cup-product pairing

H r.G;M/�H 2�r.G;M 0/!H 2.G; xK�/'Q=Z (8)

is a perfect duality of finite groups for all r 2 N . In particular, H r.G;M/D 0 for r > 2.
Moreover, the following holds for the Euler-Poincaré characteristic of M :ˇ̌

H 0.G;M/
ˇ̌ ˇ̌
H 2.G;M/

ˇ̌ˇ̌
H 1.G;M/

ˇ̌ D
1

.OK WmOK/
.

A G-module M is said to be unramified if the inertia group I in G acts trivially on M .
When M is unramified and its order is prime to the residue characteristic, Tate proved that
the submodules H 1.G=I;M/ and H 1.G=I;M 0/ of H 1.G;M/ and H 1.G;M 0/ are exact
annihilators in the pairing (8).

Let K D R. In this case, there is a canonical isomorphism H 2.G; xK�/' 1
2
Z=Z. For

any finite G-module M , the cup-product pairing of Tate cohomology groups
yH r.G;M/� yH 2�r.G;M 0/!H 2.G; xK�/' 1

2
Z=Z

is a perfect pairing for all r 2 Z. Moreover, yH r.G;M/ is a finite group, killed by 2, whose
order is independent of r .
23 See Shatz, Math Reviews 0212073. 24 Douady, Adrien, Cohomologie des groupes compacts totalement
discontinus (d’après des notes de Serge Lang sur un article non publie de Tate). Séminaire Bourbaki, Vol. 5,
Exp. No. 189, 287–298, Soc. Math. France, Paris, 1959. 25 Lang, Serge, Rapport sur la cohomologie des
groupes. W. A. Benjamin, Inc., New York-Amsterdam 1967. 26 Serre, Jean-Pierre, Cohomologie Galoisienne.
Cours au Collège de France, 1962-1963. Seconde édition. Lecture Notes in Mathematics 5 Springer-Verlag,
Berlin-Heidelberg-New York.
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GLOBAL RESULTS

Let K be a global field, and let M be a finite G-module whose order is not divisible by the
characteristic of K. Let

H r.Kv;M/D

�
H r.GKv ;M/ if v is nonarchmedean
yH r.GKv ;M/ otherwise.

The local duality results show that
Q
vH

0.Kv;M/ is dual to
L
vH

2.Kv;M
0/ and thatQ0

vH
1.Kv;M/ is dual to

Q0
vH

1.Kv;M
0/ — the 0 means that we are taking the restricted

product with respect to the subgroups H 1.GKv=Iv;M
Iv /.

In the table below, the homomorphisms at right are the duals of the homomorphisms at
left with M replaced by M 0, i.e., ˇr.M/D ˛2�r.M 0/� with �� D Hom.�;Q=Z/:

H 0.K;M/
˛0

�!
Q
vH

0.Kv;M/
L
vH

2.Kv;M/
ˇ2

�!H 0.K;M 0/�

H 1.K;M/
˛1

�!
Q0
vH

1.Kv;M/
Q0
vH

1.Kv;M/
ˇ1

�!H 1.K;M 0/�

H 2.K;M/
˛2

�!
L
vH

2.Kv;M/
Q
vH

0.Kv;M/
ˇ0

�!H 2.K;M 0/�:

The Poitou-Tate duality theorem states that there is an exact sequence

0 ���! H 0.K;M/
˛0

���!

Y
v
H 0.Kv;M/

ˇ0

���! H 2.K;M 0/�??y
H 1.K;M 0/�

ˇ1

 ���

Y0

v
H 1.Kv;M/

˛1

 ��� H 1.K;M/??y
H 2.K;M/

˛2

���!

M
v
H 2.Kv;M/

ˇ2

���! H 0.K;M 0/� ���! 0.

(9)

(with explicit descriptions for the unnamed arrows). Moreover, for r � 3; the map

H r.K;M/!
Y

v real
H r.Kv;M/

is an isomorphism. In fact, the statement is more general in that one replaces the set of all
primes with a nonempty set S containing the archimedean primes in the number field case
(there is then a restriction on the order of M ).

For the Euler-Poincaré characteristic, Tate proved thatˇ̌
H 0.G;M/

ˇ̌ ˇ̌
H 2.G;M/

ˇ̌ˇ̌
H 1.G;M/

ˇ̌ D
1

jM jr1C2r2

Y
vj1

ˇ̌̌
MGv

ˇ̌̌
(10)

where r1 and r2 are the numbers of real and complex primes.

NOTES. Tate announced the above results (with brief indications of proof) in his talk at the 1962
International Congress except for the last statement on the Euler-Poincaré characteristic, which was
announced in Tate 1966e. Tate’s proofs of the local statements were included in Serre 1964.26 Later
Tate (1966f) proved a duality theorem for an abstract class formation, which included both the local
and global duality results, and in which the exact sequence (9) arises as a sequence of Exts. This
proof, as well as proofs of the formulas for the Euler-Poincaré characteristics, are included in Milne
1986.27

27 Milne, J. S. Arithmetic duality theorems. Perspectives in Mathematics, 1. Academic Press, Inc., Boston, MA,
1986.
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1.6 Expositions
The notes of the famous Artin-Tate seminar on class field theory have been a standard
reference on the topic since they first became available in 1961. They have recently been
republished in slightly revised form by the American Mathematical Society. Tate made
important contributions, both in his article on global class field theory and in the exercises,
to another classic exposition of algebraic number theory, namely, the proceeding of the 1965
Brighton conference.28 His talk on Hilbert’s ninth problem, which asked for “a proof of the
most general reciprocity law in any number field”, illuminates the problem and the work
done on it (Tate 1976a). Tate’s contribution to the proceedings of the Corvallis conference,
gave a modern account of the Weil group and an explanation of the hypothetical nonabelian
reciprocity law in terms of the more general Weil-Deligne group (Tate 1979).

2 Abelian varieties and curves
In the course of proving the Riemann hypothesis for curves and abelian varieties in the
1940s, Weil rewrote the foundations of algebraic geometry, including the theory of abelian
varieties. This made it possible to do algebraic geometry in a rigorous fashion over arbitrary
base fields. In the late 1950s, Grothendieck rewrote the foundations again, developing the
more natural and flexible language of schemes.

2.1 The Riemann hypothesis for curves
After Hasse proved the Riemann hypothesis for elliptic curves over finite fields in 1930, he
and Deuring realized that, in order to extend the proof to curves of higher genus, one should
replace the endomorphisms of the elliptic curve by correspondences. However, they regarded
correspondences as objects in a double field, and this approach didn’t lead to a proof until
Roquette 195329 (Roquette was a student of Hasse). In the meantime Weil had realized that
everything needed for the proof could be found already in the work of the Italian geometers
on correspondences, at least in characteristic zero. In order to give a rigorous proof, he laid
the foundations for algebraic geometry over arbitrary fields,30 and completed the proof of
the Riemann hypothesis for all curves over finite fields in 1945.3132

The key point of Weil’s proof is that the inequality of Castelnuovo-Severi continues to
hold in characteristic p, i.e., for a divisor D on the product of two complete nonsingular
curves C and C 0 over an algebraically closed field,

ŒD �D�� 2dd 0 (11)

where d D ŒD � .P �C 0/� and d 0 D ŒD � .C �P 0/� are the degrees of D over C and C 0

respectively. Mattuck and Tate (1958a) showed that it is possible to derive (11) directly and
28 Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical
Society. Edited by J. W. S. Cassels and A. Fröhlich, Academic Press, London; Thompson Book Co., Inc.,
Washington, D.C. 1967 29 Roquette, Peter, Arithmetischer Beweis der Riemannschen Vermutung in Kon-
gruenzfunktionenkörpern beliebigen Geschlechts. J. Reine Angew. Math. 191, (1953). 199–252. 30 The main
lacunae at the time were a rigorous intersection theory taking account of the phenomenon of pure inseparability
and the construction of the Jacobian variety in nonzero characteristic. 31 Weil, André. Sur les courbes
algébriques et les variétés qui s’en déduisent. Publ. Inst. Math. Univ. Strasbourg 7 (1945). 32 Much has
been written on these events. I’ve found the following particularly useful: Schappacher, Norbert, The Bourbaki
Congress at El Escorial and other mathematical (non)events of 1936. The Mathematical Intelligencer, Special
issue International Congress of Mathematicians Madrid August 2006, 8-15.
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easily from the Riemann-Roch theorem for surfaces, for which they were able to appeal to
Zariski 195233 or to a sheaf-theoretic proof of Serre which is sketched in Zariski 1956.34

The Mattuck-Tate proof is the most attractive geometric proof of Weil’s theorem. Grot-
hendieck35 simplified it further by showing that the Castelnuovo-Severi inequality can most
naturally be derived from the Hodge index theorem for surfaces, which itself can be derived
directly from the Riemann-Roch theorem.

Hodge proved his index theorem for smooth projective varieties over C. That it should
hold for such varieties in nonzero characteristic is known as Grothendieck’s “Hodge standard
conjecture”, whose proof Grothendieck calls one of the “most urgent tasks in algebraic
geometry”.36 In the more than forty years since Grothendieck formulated the conjecture,
almost no progress has been made towards its proof — even in characteristic zero, there
exists no algebraic proof in dimensions greater than 2.

THE TATE MODULE OF AN ABELIAN VARIETY

Let A be an abelian variety over a field k. For a prime l , let A.l/ D
S
A.ksep/ln where

A.ksep/ln D Ker.A.ksep/
ln

�! A.ksep//. Then A A.l/ is a functor from abelian varieties
over k to l-divisible groups equipped with an action of Gal.ksep=k/. When l ¤ char.k/,
A.l/' .Q`=Z`/2dimA, and Weil used A.l/ to study the endomorphisms of A. Tate observed
that it is more convenient to work with

TlAD lim
 �

A.ksep/ln ;

which is a free Zl -module of rank 2dimA when l ¤ char.k/ — this is now called the Tate
module of A.

2.2 Heights on abelian varieties

THE NÉRON-TATE (CANONICAL) HEIGHT

Let K be a number field, and normalize the absolute values j � jv of K so that the product
formula holds: Y

v
jajv D 1 for all v 2K�.

The logarithmic height of a point P D .a0W : : : Wan/ of Pn.K/ is defined to be

h.P /D log
�Y

v
maxfja0jv; : : : ; janjvg

�
:

The product formula shows that this is independent of the representation of P .
Let X be a projective variety. A morphism f WX ! Pn from X into projective space

defines a height function hf .P /D h.f .P // on X . In a Short Communication at the 1958
International Congress, Néron conjectured that, in certain cases, the height is given by a
quadratic form.37 Tate proved this for abelian varieties by a simple direct argument.
33 Zariski, Oscar, Complete linear systems on normal varieties and a generalization of a lemma of Enriques–
Severi. Ann. of Math. (2) 55, (1952). 552–592. 34 Zariski, Oscar, Scientific report on the Second Summer
Institute, III Algebraic Sheaf Theory, Bull. Amer. Math. Soc. 62 (1956), 117–141. 35 Grothendieck, A.
Sur une note de Mattuck-Tate. J. Reine Angew. Math. 200 1958 208–215. 36 Grothendieck, A. Standard
conjectures on algebraic cycles. 1969 Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay,
1968) pp. 193–199 Oxford Univ. Press, London. 37 Only the title, Valeur asymptotique du nombre des
points rationnels de hauteur borndée sur une courbe elliptique, of Néron’s communication is included in
the Proceedings. The sentence paraphrases one from: Lang, Serge. Les formes bilinéaires de Néron et Tate.
Séminaire Bourbaki, 1963/64, Fasc. 3, Exposé 274.
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Let A be an abelian variety over a number field K. A nonconstant map f WA! Pn of
A into projective space is said to be symmetric if the inverse image D of a hyperplane is
linearly equivalent to .�1/�D. For a symmetric embedding f , Tate proved that there exists
a unique quadratic map yhWA.K/!R such that yh.P /�hf .P / is bounded on A.K/. To say
that yh is quadratic means that yh.2P /D 4yh.P / and that the function

P;Q 7!
1

2

�
yh.P CQ/� yh.P /� yh.Q/

�
(12)

is bi-additive on A.K/�A.K/.
Note first that there exists at most one function yhWA.K/!R such that (a) yh.P /�hf .P /

is bounded on A.K/, and (b) yh.2P /D 4yh.P / for all P 2 A.K/. Indeed, if yh satisfies (a)
with bound B , then ˇ̌̌

yh.2nP /�hf .2
nP /

ˇ̌̌
� B

for all P 2 A.K/ and all n� 0. If in addition it satisfies (b), thenˇ̌̌̌
yh.P /�

hf .2
nP /

4n

ˇ̌̌̌
�
B

4n

for all n, and so
yh.P /D lim

n!1

hf .2
nP /

4n
: (13)

Tate used the equation (13) to define yh, and applied results of Weil on abelian varieties to
verify that it is quadratic.

Let A0 be the dual abelian variety to A. For a map f WA! Pn corresponding to a divisor
D, let 'f WA.K/!A0.K/ be the map sending P to the point onA represented by the divisor
.DCP /�D. Tate showed that there is a unique bi-additive pairing

h ; iWA0.K/�A.K/! R (14)

such that, for every symmetric f , the function h'f .P /;P iC2hf .P / is bounded on A.K/.
Néron (1965)38 found his own construction of yh, which is much longer than Tate’s, but

which has the advantage of expressing yh as a sum of local heights. The height function yh, is
now called the Néron-Tate, or canonical, height. It plays a fundamental role in arithmetic
geometry.

NOTES. Tate explained his construction in his course on abelian varieties at Harvard in the fall of
1962, but did not publish it. However, it was soon published by others.39

VARIATION OF THE CANONICAL HEIGHT OF A POINT DEPENDING ON A PARAMETER

Let T be an algebraic curve over Qal, and let E ! T be an algebraic family of elliptic
curves parametrised by T . Let P WT !E be a section of E=T , and let yht be the Néron-Tate
height on the fibre Et of E=T over a closed point t of T . Tate (1983a) proves that the
map t 7! yht .Pt / is a height function on the curve T for a certain divisor class q.P / on

38 Néron, A., Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. of Math. (2) 82 1965 249–331.
39 Lang, S., see footnote 37, and Diophantine approximations on toruses. Amer. J. Math. 86 1964 521–533;
Manin, Ju. I., The Tate height of points on an abelian variety, its variants and applications. (Russian) Izv. Akad.
Nauk SSSR Ser. Mat. 28 1964 1363–1390.
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T ; moreover, the degree of q.P / is the Néron-Tate height of P regarded as a point on the
generic fibre of E=T .

As Tate noted “The main obstacle to extending the theorem in this paper to abelian
varieties seems to be the lack of a canonical compactification of the Néron model in higher
dimensions.” After Faltings compactified the moduli stack of abelian varieties,40 one of his
students, William Green, extended Tate’s theorem to abelian varieties.41

HEIGHT PAIRINGS VIA BIEXTENSIONS

Let A be an abelian variety over a number field K, and let A0 be its dual. The classical
Néron-Tate height pairing is a pairing

A.K/�A0.K/! R

whose kernels are precisely the torsion subgroups of A.K/ and A0.K/. In order, for example,
to state a p-adic version of the conjecture of Birch and Swinnerton-Dyer, it is necessary to
define a Qp-valued height pairing,

A.K/�A0.K/!Qp.

When A has good ordinary or multiplicative reduction at the p-adic primes, Mazur and Tate
(1983b) use the expression of the duality between A and A0 in terms of biextensions, and
exploit the local splittings of these biextensions, to define such pairings. They compare
their definition with other suggested definitions. It is not known whether the pairings are
nondegenerate modulo torsion.

2.3 The cohomology of abelian varieties

THE LOCAL DUALITY FOR ABELIAN VARIETIES

Let A be an abelian variety over a field k. A principal homogeneous space over A is a variety
V over k together with a regular map A�V ! V such that, for every field K containing
k for which V.K/ is nonempty, the pairing A.K/�V.K/! V.K/ makes V.K/ into a
principal homogeneous space for A.K/ in the usual sense. The isomorphism classes of
principal homogeneous spaces form a group, which Tate (1958b) named the Weil-Châtelet
group, and denoted WC.A=k/.

For a finite extension k of Qp , local class field theory provides a canonical isomorphism
H 2.k;Gm/'Q=Z. Tate (ibid.) defines an “augmented” cup-product pairing

H r.k;A/�H 1�r.k;A0/!H 2.k;Gm/'Q=Z; (15)

and proves that it is a perfect duality for r D 1. In other words, the discrete group WC.A=k/
is canonically dual to the compact group A0.k/. Later, he showed that (15) is a perfect
duality for all r . In the case k D R, he proved that H 1.R;A/ is canonically dual to
A0.R/=A0.R/ı D �0.A0.R//.
NOTES. The above results are proved in Tate 1958b, 1959b, or 1962d. The analogous statements for
local fields of characteristic p are proved in Milne 1970.42

40 Faltings, G. Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten. Workshop Bonn
1984 (Bonn, 1984), 321–383, Lecture Notes in Math., 1111, Springer, Berlin, 1985. 41 Green, William,
Heights in families of abelian varieties. Duke Math. J. 58 (1989), no. 3, 617–632. 42 Milne, J. S. Weil-Châtelet
groups over local fields. Ann. Sci. École Norm. Sup. (4) 3 1970 273–284; ibid. 5 (1972), 261-264.
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PRINCIPAL HOMOGENEOUS SPACES OVER ABELIAN VARIETIES

Lang and Tate (1958c) explain the relation between the set WC.A=k/ of isomorphism
classes of principal homogeneous spaces over a group variety A and the Galois cohomology
group H 1.k;A/. Briefly, there is a canonical injective map WC.A=k/!H 1.k;A/ which
Weil’s descent theorems show to be surjective. This generalizes results of Châtelet.

Let K be a field complete with respect to a discrete valuation with residue field k, and
let A be an abelian variety over K with good reduction to an abelian variety xA over k. Then,
for any integer m prime to the characteristic of k, Lang and Tate (ibid.) prove that there is a
canonical exact sequence

0!H 1.k; xA/m!H 1.k;A/m! Hom.�m.k/; xA.ksep/m/! 0:

In the final section of the article, they study abelian varieties over global fields. In particular,
they prove the weak Mordell-Weil theorem.

As Cassels wrote,43 the article Tate 1962b provides “A laconic but useful review of the
existing state of knowledge [on principal homogeneous spaces for abelian varieties] for
different types of groundfield.”

THE CONJECTURE OF BIRCH AND SWINNERTON-DYER

For an elliptic curve A over Q, Mordell showed that the group A.Q/ is finitely generated. It
is easy to compute the torsion subgroup of A.Q/, but there is at present no proven algorithm
for computing its rank r.A/. Computations led Birch and Swinnerton-Dyer to conjecture
that r.A/ is equal to the order of the zero at 1 of the L-series of A, and further work led to a
more precise conjecture. Tate (1966e) formulated the analogues of their conjectures for an
abelian variety A over a global field K.

Let v be a nonarchimedean prime of K, and let �.v/ be the corresponding residue field.
If A has good reduction at v, then it gives rise to an abelian variety A.v/ over �.v/. The
characteristic polynomial of the Frobenius endomorphism of A.v/ is a polynomial Pv.T / of
degree 2d with coefficients in Z such that, when we factor it as Pv.T /D

Q
i .1�aiT /, thenQ

i .1�a
m
i / is the number of points on A.v/ with coordinates in the finite field of degree m

over �.v/. For any finite set S of primes of K including the archimedean primes and those
where A has bad reduction, we define the L-series LS .s;A/ by the formula

LS .A;s/D
Q
v…SPv.A;Nv

�s/�1

where Nv D Œ�.v/�. The product converges for <.s/ > 3=2, and it is conjectured that
LS .A;s/ can be analytically continued to a meromorphic function on the whole complex
plane. This is known in the function field case, and over Q for elliptic curves. The analogue
of the first conjecture of Birch and Swinnerton-Dyer for A is that

LS .A;s/ has a zero of order r.A/ at s D 1. (16)

Let ! be a nonzero global differential d -form on A. As � .A;˝dA/ has dimension 1, !
is uniquely determined up to multiplication by an element of K�. For each nonarchimedean
prime v of K, let �v be the Haar measure on Kv for which Ov has measure 1, and for each
archimedean prime, take �v to be the usual Lebesgue measure on Kv. Define

�v.A;!/D

Z
A.Kv/

j!jv�
d
v

43 Math. Reviews 0138625.
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Let � be the measure
Q
�v on the adèle ring AK of K, and set j�j D

R
AK=K�. For any

finite set S of primes of K including all archimedean primes and those nonarchimedean
primes for which A has bad reduction or such that ! does not reduce to a nonzero differential
d -form on A.v/, we define

L�S .s;A/D LS .s;A/
j�jdQ

v2S�v.A;!/
.

The product formula shows that this is independent of the choice of !. The asymptotic
behaviour of L�S .s;A/ as s! 1, which is all we are interested in, doesn’t depend on S . The
analogue of the second conjecture of Birch and Swinnerton-Dyer is that

lim
s!1

L�S .s;A/

.s�1/r.A/
D

ŒX.A/� � jDj

ŒA0.K/tors� � ŒA.K/tors�
(17)

where X.A/ is the Tate-Shafarevich group of A,

X.A/
def
D Ker

�
H 1.K;A/!

Y
v
H 1.Kv;A/

�
;

which is conjectured to be finite, and D is the discriminant of the height pairing (14), which
is known to be nonzero.

GLOBAL DUALITY

In his talk at the 1962 International Congress, Tate stated the local duality theorems reviewed
above (p.18), and he announced some global theorems which we now discuss.

In their computations, Birch and Swinnerton-Dyer found that the order of the Tate-
Shafarevich group predicted by (17) is always a square. Cassels and Tate conjectured
independently that the explanation for this is that there exists an alternating pairing

X.A/�X.A/!Q=Z (18)

that annihilates only the divisible subgroup of X.A/. Cassels proved this for an elliptic
curve over a number field.44 For an abelian variety A and its dual abelian variety A0, Tate
proved that there exists a canonical pairing

X.A/�X.A0/!Q=Z (19)

that annihilates only the divisible subgroups; moreover, for a divisor D on A and the
homomorphism 'DWA! A0, a 7! ŒDa�D�, it defines, the pair .˛;'D.˛// maps to zero
under (19) for all ˛ 2X.A/. The pairing (19), or one of its several variants, is now called
the Cassels-Tate pairing.

For an elliptic curveA over a number field k such that X.A/ is finite, Cassels determined
the Pontryagin dual of the exact sequence

0!X.A/!H 1.k;A/!
M

v
H 1.kv;A/!B.A/! 0 (20)

44 Cassels, J. W. S. Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung. J. Reine Angew. Math.
211 1962 95–112.
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(regarded as a sequence of discrete groups). Assume that X.A/ is finite. Using Tate’s local
duality theorem (see p.18) for an elliptic curve, Cassels (1964)45 showed that the dual of
(20) takes the form

0 X � 
Y

v
A.kv/

0
 eA.k/ 0 (21)

for a certain explicit � and with eA.k/ equal to the closure of A.k/ in
Q
vA.kv/

0. Tate
proved the same statement for abelian varieties over number fields, except that, in (21), it is
necessary to replace A with its dual A0. So modified, the sequence (21) is now called the
Cassels-Tate dual exact sequence.

LetA andB be isogenous elliptic curves over a number field. ThenLS .s;A/DLS .s;B/
and r.A/D r.B/, and so the first conjecture of Birch and Swinnerton-Dyer is true for A if
and only if it is true for B . Cassels proved the same statement for the second conjecture.46

This amounts to showing that a certain product of terms doesn’t change in passing from A

to B (even though the individual terms may change). Using his duality theorems and the
formula (10), p.14, for the Euler-Poincaré characteristic, Tate (1966e, 2.1) proved the same
result for abelian varieties over number fields.

Tate’s global duality theorems were widely used, even before there were published
proofs. Since 1994, the duality theorems have been used in cryptography.

NOTES. Tate’s results are more general and complete than stated above; in particular, he works with
a nonempty set S of primes of k (not necessarily the complete set). Proofs of the theorems of Tate in
this subsection can be found in Milne 1986.27

2.4 Serre-Tate liftings of abelian varieties
In a talk at the 1964 Woods Hole conference, Tate discussed some results of his and Serre on
the lifting of abelian varieties from characteristic p.

For an abelian scheme A over a ring R, let An denote the kernel of A
pn

�! A regarded as
a finite group scheme over R, and let A.p/ denote the direct system

A1 ,! A2 ,! �� � ,! An ,! �� �

of finite group schemes. Let R be an artinian local ring with residue field k of characteristic
p ¤ 0. An abelian scheme A over R defines an abelian variety xA over k and a system of
finite group schemes A.p/ over R. Serre and Tate prove that the functor

A . xA;A.p//

is an equivalence of categories (Serre-Tate theorem). In particular, to lift an abelian variety
A from k to R amounts to lifting the system of finite group schemes A.p/.

This has many important consequences.
˘ Let A and B be abelian schemes over a complete local noetherian ring R with residue

field a field k of characteristic p¤ 0. A homomorphism f W xA! xB of abelian varieties
over k lifts to a homomorphism A! B of abelian schemes over R if and only if
f .p/W xA.p/! xB.p/ lifts toR. For the artinian quotients ofR, this is part of the above
statement, and the statement for R follows by passing to the limit over the artinian
quotients of R and applying a theorem of Grothendieck.

45 Cassels, J. W. S., Arithmetic on curves of genus 1. VII. The dual exact sequence. J. Reine Angew. Math.
216 1964 150–158. 46 Cassels, J. W. S. Arithmetic on curves of genus 1. VIII. On conjectures of Birch and
Swinnerton-Dyer. J. Reine Angew. Math. 217 1965 180–199.
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˘ Let A be an abelian variety over a perfect field k of characteristic p ¤ 0. If A is
ordinary, then

An � .Z=pnZ/dimA
� .�pn/

dimA;

and so each An has a canonical lifting to a finite group scheme over the ring W.k/ of
Witt vectors of k. Thus A has a canonical lifting to an abelian scheme over W.k/ (at
least formally, but the existence of polarizations implies that the formal abelian scheme
is an abelian scheme). Deligne has used this to give a “linear algebra” description
of the category of ordinary abelian varieties over a finite field similar to the classical
description of abelian varieties over C.47

˘ Over a ring R in which p is nilpotent, the infinitesimal deformation theory of A is
equivalent to the infinitesimal deformation theory of A.p/. For example, when A is
ordinary, this implies that the local deformation space of an ordinary abelian variety
A over k has a natural structure of a formal torus over W.k/ of relative dimension
dim.A/2.

NOTES. Lifting results were known to Hasse and Deuring for elliptic curves. The canonical lifting
of an ordinary abelian variety was found by Serre, prompting Tate to prove the general result. Lubin,
Serre, and Tate 1964b contains a sketch of the proofs. The liftings of A obtained from liftings of
the system A.p/ are sometimes called Serre-Tate liftings, especially in the ordinary case. Messing
197248 includes a proof of the Serre-Tate theorem.

2.5 Mumford-Tate groups and the Mumford-Tate conjecture

In 1965, Mumford gave a talk at the AMS Summer Institute49 whose results he described
as being “partly joint work with J. Tate”. In it, he attached a reductive group to an abelian
variety, and stated a conjecture. The first is now called the Mumford-Tate group, and the
second is the Mumford-Tate conjecture.

Let A be a complex abelian variety of dimension g. Then V def
DH1.A;Q/ is a Q-vector

space of dimension 2g whose tensor product with R acquires a complex structure through
the canonical isomorphism

H1.A;Q/R ' Tgt0.A/:

Let uWU 1 ! GL.VR/ be the homomorphism describing this complex structure, where
U 1 D fz 2 C j jzj D 1g. The Mumford-Tate group of A is defined to be the smallest
algebraic subgroup H of GLV such that H.R/ contains u.U 1/.50 Then H is a reductive
algebraic group over Q, which acts on H�.Ar ;Q/, r 2 N, through the isomorphisms

H�.Ar ;Q/'
^�

H 1.Ar ;Q/;

H 1.Ar ;Q/' rH 1.A;Q/;
H 1.A;Q/' Hom.V;Q/:

It can be characterized as the algebraic subgroup of GLV that fixes exactly the Hodge tensors
in the spaces H�.Ar ;Q/, i.e., the elements of the Q-spaces

H 2p.Ar ;Q/\
M

Hp;p.Ar/.

47 Deligne, Pierre. Variétés abéliennes ordinaires sur un corps fini. Invent. Math. 8 1969 238–243. 48 Messing,
William. The crystals associated to Barsotti-Tate groups: with applications to abelian schemes. Lecture Notes in
Mathematics, Vol. 264. Springer-Verlag, Berlin-New York, 1972. 49 Mumford, David. Families of abelian
varieties. 1966 Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo.,
1965) pp. 347–351 Amer. Math. Soc., Providence, R.I. 50 Better, it should be thought of as the pair .H;u/.
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Let A be an abelian variety over a number field k, and, for a prime number l , let

VlADQl˝Zl TlA

where TlA is the Tate module of A (p.16). Then

VlA'Ql˝QH1.AC;Q/.

The Galois group G.kal=k/ acts on A.kal/, and hence there is a representation

�l WG.k
al=k/! GL.VlA/

The Zariski closure Hl.A/ of �l.G.kal=k// is an algebraic group in GLVlA. Although
Hl.A/ may change when k is replaced by a finite extension, its identity component Hl.A/ı

does not and can be thought of as determining the image of �l up to finite groups. The
Mumford-Tate conjecture states that

Hl.A/
ı
D .Mumford-Tate group of AC/Ql inside GLVlA ' .GLH1.AC;Q//Ql .

In particular, it posits that the Ql -algebraic groups Hl.A/ı are independent of l in the sense
that they all arise by base change from a single algebraic group over Q. In the presence of
the Mumford-Tate conjecture, the Hodge and Tate conjectures for A are equivalent. Much is
known about the Mumford-Tate conjecture.

LetH be the Mumford-Tate group of an abelian variety A, and let uWU 1!H.R/ be the
above homomorphism. The centralizer K of u in H.R/ is a maximal compact subgroup of
H.R/, and the quotient manifold X DH.R/=K has a unique complex structure for which
u.z/ acts on the tangent space at the origin as multiplication by z. With this structure X is
isomorphic to a bounded symmetric domain, and it supports a family of abelian varieties
whose Mumford-Tate groups “refine” that ofA. The quotients ofX by congruence subgroups
of H.Q/ are connected Shimura varieties.

The notion of a Mumford-Tate group has a natural generalization to an arbitrary polariz-
able rational Hodge structure. In this case the quotient space X is a homogeneous complex
manifold, but it is not necessarily a bounded symmetric domain. The complex manifolds
arising in this way were called Mumford-Tate domains by Green, Griffiths, and Kerr.51 As
these authors say: “Mumford-Tate groups have emerged as the principal symmetry groups in
Hodge theory.”

2.6 Abelian varieties over finite fields (Weil, Tate, Honda theory)
Consider the category whose objects are the abelian varieties over a field k and whose
morphisms are given by

Hom0.A;B/ def
D Hom.A;B/˝Q:

Weil’s results52 imply that this is a semisimple abelian category whose endomorphism
algebras are finite dimensional Q-algebras. Thus, to describe the category up to equivalence,
it suffices to list the isomorphism classes of simple objects and, for each class, describe the

51 Green, Mark; Griffiths, Phillip; Kerr, Matt, Mumford-Tate domains. Boll. Unione Mat. Ital. (9) 3 (2010), no.
2, 281–307. 52 Weil, André. Variétés abéliennes et courbes algébriques. Actualités Sci. Ind., no. 1064 = Publ.
Inst. Math. Univ. Strasbourg 8 (1946). Hermann & Cie., Paris, 1948.
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endomorphism algebra of an object in the class. This the theory of Weil, Tate, and Honda
does when k is finite. Briefly: Weil showed that there is a well-defined map from isogeny
classes of simple abelian varieties to conjugacy classes of Weil numbers, Tate proved that
the map is injective and determined the endomorphism algebra of each simple class, and
Honda used the theory of Shimura and Taniyama to prove that the map is surjective.

In more detail, let k be a field with q D pa elements. Each abelian variety A over k
admits a Frobenius endomorphism �A, which acts on the kal-points of A as .a0Wa1W : : :/ 7!
.a
q
0 Wa

q
1 W : : :/. Weil proved that the image of �A in C under any homomorphism QŒ�A�! C

is a Weil q-integer, i.e., it is an algebraic integer with absolute value q
1
2 (this is the Riemann

hypothesis). Thus, attached to every simple abelian variety A over k, there is a conjugacy
class of Weil q-integers. Isogenous simple abelian varieties give the same conjugacy class.

Tate (1966b) proved that a simple abelianA is determined up to isogeny by the conjugacy
class of �A, and moreover, that QŒ�A� is the centre of End0.A/. Since End0.A/ is a division
algebra with centre the field QŒ�A�, class field theory shows that its isomorphism class is
determined by its invariants at the primes v of QŒ�A�. These Tate determined as follows:

invv.End0.A//D

8̂̂<̂
:̂

1
2

if v is real,
ordv.�A/
ordv.q/

ŒQŒ�A�vWQp� if vjp,

0 otherwise.

Moreover,
2dimAD ŒEnd0.A/WQŒ�A��

1
2 � ŒQŒ�A�WQ�.

The abelian varieties of CM-type over C are classified up to isogeny by their CM-types,
and every such abelian variety has a model over Qal. When we choose a p-adic prime of Qal,
an abelian variety A of CM-type over Qal specializes to an abelian variety xA over a finite
field of characteristic p. The Shimura-Taniyama formula determines � xA up to a root of 1 in
terms of the CM-type of A. Using this, Honda proved that every Weil q-number arises from
an abelian variety, possibly after a finite extension of the base field.53 An application of Weil
restriction of scalars completes the proof.

2.7 Good reduction of Abelian Varieties
The language of Weil’s foundations of algebraic geometry is ill-suited to the study of
algebraic varieties in mixed characteristic. For example, it makes it cumbersome to prove
even that an algebraic variety over a number field has good reduction at almost all primes of
the field.54 Serre and Tate (1968a) use schemes and Néron’s theory of minimal models55

to simplify and sharpen known results for abelian varieties, and to extend some statements
from elliptic curves to abelian varieties.

Let R be a discrete valuation ring with field of fractions K and perfect residue field k.
For an abelian variety A over K, Néron proved that the functor sending a smooth R-scheme
X to Hom.XK ;A/ is represented by a smooth group scheme zA of finite type over R. Using
this, Serre and Tate prove the following criterion:

53 Honda, Taira, Isogeny classes of abelian varieties over finite fields. J. Math. Soc. Japan 20 1968 83–95.
54 See the proof of Theorem 26 of Shimura, Goro, Reduction of algebraic varieties with respect to a discrete
valuation of the basic field. Amer. J. Math. 77, (1955). 134–176. 55 Néron, André. Modèles minimaux des
variétés abéliennes sur les corps locaux et globaux. Inst. Hautes Études Sci. Publ.Math. No. 21 1964 128 pp.
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IfA has good reduction, then the Gal.Ksep=K/-moduleA.Ksep/m is unramified
for all integers m prime to char.k/; conversely, if A.Ksep/m is unramified for
infinitely many m prime to char.k/, then A has good reduction.

The necessity was known earlier, and the sufficiency was known to Ogg and Shafarevich. in
the case of elliptic curves. Because it is a direct consequence of the existence of Néron’s
models, Serre and Tate call it the “Néron-Ogg-Shafarevich criterion”. It is of fundamental
importance.

Serre and Tate say that an abelian variety has potential good reduction if it acquires good
reduction after a finite extension of the base field, and they prove a number of results about
such varieties. For example, when R is strictly henselian, there is a smallest extension L of
K in Kal over which such an abelian variety A has good reduction, namely, the extension
of K generated by the coordinates of the points of order m for any m� 3 prime to char.k/.
Moreover, just as for elliptic curves, the notion of the conductor of an abelian variety is well
defined.

Let .A; i/ be an abelian variety over a number field K with complex multiplication
by E. By this we mean that E is a CM field of degree 2dimA over Q, and that i is a
homomorphism of Q-algebras E ! End0.A/. Serre and Tate apply their earlier results
to show that such an abelian variety A acquires good reduction everywhere over a cyclic
extension L of K; moreover, L can be chosen to have degree m or 2m where m is the least
common multiple of the images of the inertia groups acting on the torsion points of A.

Let .A; i/ and E be as in the last paragraph, and let CK be the idèle class group of
K. Shimura and Taniyama (1961, 18.3)56 show there exists a (unique) homomorphism
�WCK ! .R˝QE/

� with the following property: for each � WE! C, let �� be the Hecke
character

�� WCK
�
�! .R˝QE/

� 1˝�
�! C�I

then the L-series L.s;A/ coincides with the product
Q
� L.s;�� / of the L-series of the �� ,

except possibly for the factors corresponding to a finite number of primes of K.57 Serre
and Tate make this more precise by showing that the conductor of A is the product of the
conductors of the �� (which each equals the conductor of �). In particular, the support of
the conductor of each �� equals the set of primes where A has bad reduction, from which it
follows that L.s;A/ and

Q
� L.s;�� / coincide exactly.

2.8 CM abelian varieties and Hilbert’s twelfth problem

A CM-type on a CM field E is a subset ˚ of Hom.E;C/ such that ˚ t x̊ D Hom.E;C/.
For � 2 Aut.C/, let �˚ D f� ı' j ' 2 ˚g. Then �˚ is also a CM-type on E. The reflex
field of .E;˚/ is the subfield F of C such that an automorphism � of C fixes F if and only
if �˚ D ˚ . It is easy to see that F is a CM-subfield of Qal � C.

Let .A; i/ be an abelian variety over C with complex multiplication by E. Then E
acts on the tangent space of A at 0 through a CM-type ˚ , and .A; i/ is said to be of CM-
type .E;˚/. For � 2 Aut.C=Q/, �.A;i/ is of CM-type �˚ , and it follows that �.A;i/
is isogenous to .A; i/ if and only if � fixes the reflex field F . Fix a polarization � of A
whose Rosati involution acts as complex multiplication on E. For an integer m � 1, let
56 Shimura, Goro; Taniyama, Yutaka Complex multiplication of abelian varieties and its applications to number
theory. Publications of the Mathematical Society of Japan, 6 The Mathematical Society of Japan, Tokyo 1961.
57 Rather, this is Serre and Tate’s interpretation of what they prove; Shimura and Taniyama express their results
in terms of ideals.
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S.m/ be the set of isomorphism classes of quadruples .A0;�0; i 0;�/ such that .A0;�0; i 0/ is
isogenous to .A;�; i/ and � is a level m-structure on .A0; i 0/. According to the preceding
observation, Aut.C=F / acts on the set S.m/. Shimura and Taniyama prove that this action
factors through Aut.F ab=F /, and they describe it explicitly. In this way, they generalized the
theory of complex multiplication from elliptic curves to abelian varieties, and they provided
a partial solution to Hilbert’s twelfth problem for F .

In one respect the result of Shimura and Taniyama falls short of generalizing the elliptic
curve case: for an elliptic curve, the reflex field F is a complex quadratic extension of Q;
since one knows how complex conjugation acts on CM elliptic curves and their torsion
points, the elliptic curve case provides a description of how the full group Aut.C=Q/ acts on
CM elliptic curves and their torsion points. Shimura asked whether there was a similar result
for abelian varieties, but concluded rather pessimistically that “In the higher-dimensional
case, however, no such general answer seems possible.”58

Grothendieck’s theory of motives suggests the framework for an answer. The Hodge
conjecture implies the existence of Tannakian category of CM-motives over Q, whose
motivic Galois group is an extension

1! S ! T ! Gal.Qal=Q/! 1

of Gal.Qal=Q/ (regarded as a pro-constant group scheme) by the Serre group S (a certain
pro-torus). Étale cohomology defines a section � of T ! Gal.Qal=Q/ over the finite adèles.
The pair .T;�/ (tautologically) describes the action of Aut.C=Q/ on the CM abelian varieties
and their torsion points. Deligne’s theorem on Hodge classes on abelian varieties allows one
to construct the pair .T;�/ without assuming the Hodge conjecture. To answer Shimura’s
question, it remains to give a direct explicit description of .T;�/.

Langlands’s work on the zeta functions of Shimura varieties led him to define a certain
explicit cocycle,59 which Deligne recognized as conjecturally being that describing the pair
.T;�/.

Tate was inspired by this to commence his own investigation of Shimura’s question. He
gave a simple direct construction of a map f that he conjectured describes how Aut.C=Q/
acts on the CM abelian varieties and their torsion points, and proved this up to signs. More
precisely, he proved it up to a map e with values in an adèlic group such that e2 D 1. See
Tate 1981c.

It was soon checked that Langlands’s and Tate’s conjectural descriptions of how Aut.C=Q/
acts on the CM abelian varieties and their torsion points coincided, and a few months later
Deligne proved that their conjectural descriptions are indeed correct.60

3 Rigid analytic spaces
After Hensel introduced the p-adic number field Qp in the 1890s, there were attempts to
develop a theory of analytic functions over Qp, the most prominent being that of Krasner.
The problem is that every disk D in Qp can be written as a disjoint union of arbitrarily many

58 Shimura, Goro. On abelian varieties with complex multiplication. Proc. London Math. Soc. (3) 34 (1977),
no. 1, 65–86. 59 See §5 of Langlands, R. P. Automorphic representations, Shimura varieties, and motives. Ein
Märchen. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ.,
Corvallis, Ore., 1977), Part 2, pp. 205–246, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence,
R.I., 1979 60 Deligne, P., Motifs et groupe de Taniyama, pp.261–279 in Hodge cycles, motives, and Shimura
varieties. Lecture Notes in Mathematics, 900. Springer-Verlag, Berlin-New York, 1982.
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open-closed smaller disks, and so there are too many functions on D that can be represented
locally by power series. Outside a small group of mathematicians, p-adic analysis attracted
little attention until the work of Dwork and Tate in late 1950s. In February, 1958, Tate
sent Dwork a letter in which he stated a result concerning elliptic curves, and challenged
Dwork to find a proof using p-adic analysis. In answering the letter, Dwork found “the first
suggestion of a connection between p-adic analysis and the theory of zeta functions.”61 By
November, 1959, Dwork had found his famous proof of the rationality of the zeta function
Z.V;T / of an algebraic variety V over a finite field, a key point of which is to express
Z.V;T /, which initially is a power series with integer coefficients, as a quotient of two
p-adically entire functions.62

In 1959 also, Tate discovered that, suitably normalized, certain classical formulas allow
one to express many elliptic curves E over a nonarchimedean local field K as a quotient
E.K/DK�=qZ. This persuaded him that there should exist a category in which E itself,
not just its points, is a quotient; in other words, that there exists a category in which E, as
an “analytic space”, is the quotient of K�, as an “analytic space”, by the discrete group qZ.
Two years later, Tate constructed the correct category of “rigid analytic spaces”, thereby
founding a new subject in mathematics (with its own Math. Reviews number 14G22).

3.1 The Tate curve
LetE be an elliptic curve over C. The choice of a differential ! realizesE.C/ as the quotient
C=�' E.C/ of C by the lattice of periods of !. More precisely, it realizes the complex
analytic manifold Ean as the quotient of the complex analytic manifold C by the action of
the discrete group �.

For an elliptic curve E over a p-adic field K, there is no similar description of E.K/
because there are no nonzero discrete subgroups of K (if � 2K, then pn�! 0 as n!1).
However, there is an alternative uniformization of elliptic curves over C. Let � be the lattice
ZCZ� in C. Then the exponential map eWC! C� sends C=� isomorphically onto C�=qZ
where q D e.�/, and so C�=qZ 'Ean (as analytic spaces). If Im.�/ > 0, then jqj< 1, and
the elliptic curve Eq is given by the equation

Y 2ZCXYZ DX3�b2XZ
2
�b3Z

3, (22)

where 8̂̂̂<̂
ˆ̂:
b2 D 5

X1

nD1

n3qn

1�qn
D 5qC45q2C140q3C�� �

b3 D
X1

nD1

7n5C5n3

12

qn

1�qn
D qC23q2C154q3C�� �

(23)

are power series with integer coefficients. The discriminant and modular invariant of Eq are
given by the usual formulas

�D q
Y

n�1
.1�qn/24 (24)

j.Eq/D
.1C48b2/

3

q
Q
n�1.1�q

n/24
D
1

q
C744C196884qC�� � : (25)

61 Katz and Tate, 1999, p.343; Dwork, Bernard. A deformation theory for the zeta function of a hypersurface.
1963 Proc. Internat. Congr. Mathematicians (Stockholm, 1962) pp. 247–259 Inst. Mittag-Leffler, Djursholm.
62 Dwork, Bernard. On the rationality of the zeta function of an algebraic variety. Amer. J. Math. 82 1960
631–648.
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Now let K be a field complete with respect to a nontrivial nonarchimedean valuation
with residue field of characteristic p ¤ 0, and let q be an element of K� with jqj< 1. The
series (23) converge in K, and Tate discovered63 that (22) is an elliptic curve Eq such that
K 0=qZ ' Eq.K

0/ for all finite extension K 0 of K. It follows from certain power series
identities, valid over Z, that the discriminant and modular invariant of Eq are given by (24)
and (25). Every j 2K� with jj j< 1 arises from a q (determined by (25), which allows q to
be expressed as a power series in 1=j with integer coefficients). The function field K.Eq/ of
Eq consists of the quotients F=G of Laurent series

F D
X1

�1
anz

n; G D
X1

�1
bnz

n; an;bn 2K;

converging for all nonzero z in Cp, such that the F=G is invariant under qZ:

F.qz/=G.qz/D F.z/=G.z/:

The elliptic curves E over K with jj.E/j< 1 that arise in this way are exactly those whose
reduced curve has a node with tangents that are rational over the base field. They are now
called Tate (elliptic) curves.

Tate’s results were contained in a 1959 manuscript, which he did not publish until 1995,
but there soon appeared several summaries of his results in the literature, and Roquette64

gave a very detailed account of the theory. The Tate curve has found many applications,
for example, to Tate’s isogeny conjecture (Serre 1968;65 Tate 1995, p.180) and to the study
of elliptic modular curves near a cusp (Deligne and Rapoport66). Mumford67 generalized
Tate’s construction to curves of higher genus, and McCabe68 and Raynaud69 generalized it
to abelian varieties of higher dimension.

3.2 Rigid analytic spaces
Tate’s idea that his p-adic uniformization of elliptic curves indicated the existence of a
general theory of p-adic analytic spaces was radically new. For example, Grothendieck was
initially very negative.70 However, when Tate began to work out his theory in the fall of
1961, Grothendieck, who was visiting Harvard at the time, became very optimistic,71 and
was very supportive.

63 “I still remember the thrill and amazement I felt when it occurred to me that the classical formulas for
such an isomorphism over C made sense p-adically when properly normalized.” Tate 2008. 64 Roquette,
Peter, Analytic theory of elliptic functions over local fields. Hamburger Mathematische Einzelschriften (N.F.),
Heft 1 Vandenhoeck & Ruprecht, Göttingen 1970 65 Serre, Jean-Pierre. Abelian l-adic representations and
elliptic curves. W. A. Benjamin, Inc., New York-Amsterdam 1968. 66 Deligne, P.; Rapoport, M. Les schémas
de modules de courbes elliptiques. Modular functions of one variable, II (Proc. Internat. Summer School,
Univ. Antwerp, Antwerp, 1972), pp. 143–316. Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973.
67 Mumford, David. An analytic construction of degenerating curves over complete local rings. Compositio
Math. 24 (1972), 129–174. 68 McCabe, John. p-adic theta functions. Ph.D. thesis, Harvard, 1968, 222
pages. 69 Raynaud, Michel. Variétés abéliennes et géométrie rigide. Actes du Congrès International des
Mathématiciens (Nice, 1970), Tome 1, pp. 473–477. Gauthier-Villars, Paris, 1971. 70 “Tate has written to me
about his elliptic curve stuff, and has asked me if I had any ideas for a global definition of analytic varieties over
complete valuation fields. I must admit that I have absolutely not understood why his results might suggest the
existence of such a definition, and I remain skeptical. Nor do I have the impression of having understood his
theorem at all; it does nothing more than exhibit, via brute formulas, a certain isomorphism of analytic groups.”
Grothendieck, letter to Serre, August 18, 1959. 71 “Sooner or later it will be necessary to subsume ordinary
analytic spaces, rigid analytic spaces, formal schemes, and maybe even schemes themselves into a single kind of
structure for which all these usual theorems will hold.” Grothendieck, letter to Serre, October 19, 1961.
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Let K be a field complete with respect to a nontrivial nonarchmedean valuation, and let
xK be its algebraic closure. Tate began by introducing a new class of K-algebras. The Tate

algebra Tn DKfX1; : : : ;Xng consists of the formal power series in KŒŒX1; : : : ;Xn�� that are
convergent on the unit ball,

Bn D
˚
.ci /1�i�n 2 xK j jci j � 1

	
:

Thus the elements of Tn are the power series

f D
X

ai1���inX
i1
1 � � �X

in
n ; ai1���in 2K; such that ai1���in ! 0 as .i1; : : : ; in/!1:

Tate (1962c) shows that Tn is a Banach algebra for the norm kf k D sup jai1���in j, and that
the ideals a of Tn are closed and finitely generated. A quotient Tn=a of Tn is a Banach
algebra whose topology is independent of its presentation (because every homomorphism of
such algebras is continuous). Such quotients are called affinoid (or Tate)K-algebras, and the
category of affine rigid analytic spaces is the opposite of the category of affinoid K-algebras.

We need a geometric interpretation of this category. Tate showed that Tn is Jacobson
(i.e., every prime ideal is an intersection of maximal ideals), and that the map A 7!max.A/
sending an affinoid algebra to its set of maximal ideals is a functor: a homomorphism
'WA! B of affinoid algebras defines a map 'ıWmax.B/!max.A/. The set max.A/ has
the Zariski topology, which is very coarse, and a canonical topology induced from that of K.
When K is algebraically closed, max.Tn/' Bn, and, by definition, max.A/ can be realized
as a closed subset of max.Tn/ for some n.

Let X Dmax.A/. One would like to define a sheaf OX on X such that, for every open
subset U isomorphic to Bn, OX .U / ' Tn. As noted at the start of this section, this is
impossible. However, Tate’s realized that it is possible to achieve something like this by
allowing only certain “admissible” open subsets and certain “admissible” coverings. He
defined an affine subset of X to be a subset Y such that the functor of affinoid K-algebras

B 
˚
'WA! B j 'ı.max.B//� Y

	
is representable (say, by A!A.Y /). A subset Y of X is a special affine subset of X if there
exist two finite families .fi / and .gj / of elements of A such that

Y D
˚
x 2X

ˇ̌
jfi .x/j � 1;

ˇ̌
gj .x/

ˇ̌
� 1; all i;j

	
:

Every special affine subset is affine. Tate’s acyclicity theorem (Tate 1962c, 8.2) says that,
for every finite covering .Xi /i2I of X by special affines, the C̆ech complex of the presheaf
Y 7! A.Y /,

0! A!
Y
i0

A.Xi0/!
Y
i0<i1

A.Xi0 \Xi1/! �� � !
Y

i0<���<ip

A.Xi0 \� � �\Xip /! �� � ;

is exact. In particular, Y 7! A.Y / satisfies the sheaf condition on such coverings.
Using Tate’s acyclicity theorem it is possible to define a collection of admissible open

subsets of X Dmax.A/ and admissible coverings of them for which there exists a functor
OX satisfying the sheaf conditions and such that OX .Y / D A.Y / for any affine subset.
Although the admissible open subsets and coverings don’t form a topology in the usual sense,
they satisfy the conditions necessary for them to support a sheaf theory — in fact, they form
a Grothendieck topology. So, in this sense, Tate recovers analytic continuation.
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For the final step, extending the category of affine rigid analytic spaces to a category of
global rigid analytic spaces, Tate followed suggestions of Grothendieck. This step has since
been clarified and simplified; see, for example, Bosch 2005,72 especially 1.12.

Tate reported on his work in a series of letters to Serre, who had them typed by IHES
as the notes Tate 1962c. These notes were distributed to a number of mathematicians
and libraries. They soon attracted the attention of the German school of complex analytic
geometers, who were able to transfer many of their arguments and results to the new setting
(e.g., Kiehl 196773). Already by 1984 to give a comprehensive account of the theory required
a book of over 400 pages (Bosch, Güntzer, Remmert 198474). Tate did not publish his work,
but eventually the editors of “Mir” published a Russian translation of his notes (Tate 1969a),
and the editors of “Inventiones” published the original (Tate 1971).

There have been a number of extensions of Tate’s theory. For example, following a
suggestion of Grothendieck, Raynaud showed that it is possible to realize a rigid analytic
space over a field K as the “generic fibre” of a formal scheme over the valuation ring of
K. One problem with rigid analytic spaces is that, while they are adequate for the study
of coherent sheaves, they have too few points for the study of locally constant sheaves —
for example, there exist nonzero such sheaves whose stalks are all zero. Berkovich found a
solution to this problem by enlarging the underlying set of a rigid analytic space without
altering the sheaf of functions so that the spaces now support an étale cohomology theory
(Berkovich 1990;75 199376).

Rigid analytic spaces are now part of the landscape of arithmetic geometry: just as
it is natural to regard the R-points of a Q-variety as a real analytic space, it has become
natural to regard the Qp-points of the variety as a rigid analytic space. They have found
numerous applications, for example, in the solution by Harbater and Raynaud of Abyhankar’s
conjecture on the étale fundamental groups of curves, and in the Langlands program (see
5.1).

72 Bosch, S., Lectures on Formal and Rigid Geometry, Preprint 378 of the SFB Geometrische Strukturen in
der Mathematik, Múnster, 2005. 73 Kiehl, Reinhardt. Der Endlichkeitssatz für eigentliche Abbildungen
in der nichtarchimedischen Funktionentheorie. Invent. Math. 2 1967 191–214; Theorem A und Theorem
B in der nichtarchimedischen Funktionentheorie. Ibid. 256–273. 74 Bosch, S.; Güntzer, U.; Remmert, R.
Non-Archimedean analysis. A systematic approach to rigid analytic geometry. Grundlehren der Mathematischen
Wissenschaften, 261. Springer-Verlag, Berlin, 1984. 75 Berkovich, Vladimir G. Spectral theory and analytic
geometry over non-Archimedean fields. Mathematical Surveys and Monographs, 33. American Mathematical
Society, Providence, RI, 1990. 76 Berkovich, Vladimir G. Etale cohomology for non-Archimedean analytic
spaces. Inst. Hautes Études Sci. Publ. Math. No. 78 (1993), 5–161.
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4 The Tate conjecture
This stuff is too beautiful not to be true

Tate77

The Hodge conjecture says that a rational cohomology class on a nonsingular projective
variety over C is algebraic if it is of type .p;p/. The Tate conjecture says that an `-adic
cohomology class on a nonsingular projective variety over a finitely generated field k is
in the span of the algebraic classes if it is fixed by the Galois group. (A field is finitely
generated if it is finitely generated as a field over its prime field.)

4.1 Beginnings
In the last section of his talk at the 1962 International Congress, Tate states several conjec-
tures.

4.1.1. For every abelian varietyA over a global field k and prime `¤ char.k/, X.A=k/.`/

is finite.

Let k be a global function field, and let k0 be its finite field of
constants, so that k D k0.C / for a complete nonsingular curve C
over k0. An elliptic curve A over k is the generic fibre of a map
X!C withX a complete nonsingular surface over k0, which may
be taken to be a minimal. Tate showed that, in this case, (4.1.1) is
equivalent to the following conjecture.

X A

C Spec.k/

4.1.2. Let q D jk0j. The Z`-submodule of H 2
et.Xkal

0
;Z`/ on which the Frobenius map acts

as multiplication by q is exactly the submodule generated by the algebraic classes.

As Tate notes, (4.1.2) makes sense for any complete nonsingular surface over k0, and
that, so generalized, it is equivalent to the following statement.78

4.1.3. Let X be a complete nonsingular surface over a finite field. The order of the pole of
�.X;s/ at s D 1 is equal to the number of algebraically independent divisors on X .

Mumford pointed out that (4.1.3) implies that elliptic curves over a finite field are
isogenous if and only if they have the same zeta function, and he proved this using results of
Deuring79 on the lifting to characteristic 0 of the Frobenius automorphism.

In his talk at the 1964 Woods Hole conference, Tate vastly generalized these conjectures.
77 As a thesis topic, Tate gave me the problem of proving a formula that he and Mike Artin had conjectured
concerning algebraic surfaces over finite fields (Conjecture C below). One day he ran into me in the corridors
of 2 Divinity Avenue and asked how it was going. “Not well” I said, “In one example, I computed the left
hand side and got p13; for the other side, I got p17; 13 is not equal to 17, and so the conjecture is false.” For
a moment, Tate was taken aback, but then he broke into a grin and said “That’s great! That’s really great!
Mike and I must have overlooked some small factor which you have discovered.” He took me off to his office
to show him. In writing it out in front of him, I discovered a mistake in my work, which in fact proved that
the conjecture is correct in the example I considered. So I apologized to Tate for my carelessness. But Tate
responded: “Your error was not that you made a mistake — we all make mistakes. Your error was not realizing
that you must have made a mistake. This stuff is too beautiful not to be true.” Benedict Gross tells of a similar
experience, but as he writes: “John was so encouraging, saying that everyone made mistakes, and the key was to
understand them and to keep thinking about the problem. I felt that one of his greatest talents as an advisor was
to make his students feel like we were partners in a great enterprise, modern number theory.” 78 Assuming
the Weil conjectures, which weren’t proved until 1973. 79 Deuring, Max. Die Typen der Multiplikatorenringe
elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, (1941). 197–272.
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4.2 Statement of the Tate conjecture
For a connected nonsingular projective variety V over a field k, we let Zr.V / denote the
Q-vector space of algebraic cycles on V of codimension r , i.e., the Q-vector space with basis
the irreducible closed subsets of V of dimension dimV � r . We let H r

et.V;Q`.s// denote
the étale cohomology group of V with coefficients in the “Tate twist” Q`.s/ of Q`. There
are cycle maps

cr WZr.V /!H 2r
et .V;Q`.r//:

Assume that `¤ char.k/. Let xk be an algebraically closed field containing k, and let
G.xk=k/ be the group of automorphisms of xk fixing k. ThenG.xk=k/ acts onH 2r

et .Vxk;Q`.r//,
and the Tate conjecture80 (Tate 1964a, Conjecture 1) is the following statement:81

T r.V /: When k is finitely generated, the Q`-space spanned by cr.Zr.Vxk//
consists of the elements of H 2r

et .Vxk;Q`.r// fixed by some open subgroup of
G.xk=k/.

Suppose for simplicity that xk is an algebraic closure of k. For any finite extension k0 of k in
xk, there is a commutative diagram

Zr.Vxk/
cr

����! H 2r
et .Vxk;Q`.r//x?? x??

Zr.Vk0/
cr

����! H 2r
et .Vk0 ;Q`.r//;

and the image of the right hand map is H 2r
et .Vxk;Q`.r//

G.xk=k0/. As Zr.Vxk/D
S
k0Zr.Vk0/,

we see that
cr.Zr.Vxk//�

[
k0
H 2r

et .Vxk;Q`.r//
G.xk=k0/.

The content of the Tate conjecture is that the first set spans the space on the right. If an
element of Zr.Vxk/ is fixed by G.xk=k0/, then it lies in Zr.Vk0/, and so T r.V / implies that

cr.Zr.Vk0//Q` DH 2r
et .Vxk;Q`.r//

G.xk=k0/
I (26)

conversely, if (26) holds for all (sufficiently large) k0, then T r.V / is true.

When asked about the origin of the Tate conjecture, Tate responded (Tate 2011):

Early on I somehow had the idea that the special case about endomorphisms
of abelian varieties over finite fields might be true. A bit later I realized that
a generalization fit perfectly with the function field version of the Birch and
Swinnerton-Dyer conjecture. Also it was true in various particular examples
which I looked at and gave a heuristic reason for the Sato-Tate distribution. So
it seemed a reasonable conjecture.

I discuss each of these motivations in turn.
80 In the literature, a number of variants of T r .V /, not obviously equivalent to it, are also called the Tate
conjecture. It is not always easy to discern what an author means by the “Tate conjecture”. 81 Since Atiyah
and Hirzebruch had already found their counterexample to an integral Hodge conjecture, Tate was not tempted
to state his conjecture integrally.
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4.3 Homomorphisms of abelian varieties

Let A be an abelian variety over a field k, let xk be an algebraically closed field containing k,
and let G.xk=k/ denote the group of automorphisms of xk over k. For `¤ char.k/,

A T`AD lim
 �

A.xk/`n

is a functor from abelian varieties over k to Z`-modules equipped with an action of G.xk=k/.
The (Tate) isogeny conjecture is the following statement:

H.A;B/: For abelian varieties A;B over a finitely generated field k, the canon-
ical map

Z`˝Hom.A;B/! Hom.T`A;T`B/
G.xk=k/

is an isomorphism.

It follows from Weil’s theory of correspondences and the interpretation of divisorial corre-
spondences as homomorphisms, that, for varieties V and W ,

NS.V �W /' NS.V /˚NS.W /˚Hom.A;B/ (27)

where A is the Albanese variety of V , B is the Picard variety of W , and NS denotes the
Néron-Severi group. On comparing (27) with the decomposition of H 2.V �W;Q.1// given
by the Künneth formula, we find that, for varieties V and W over a finitely generated field k,

T 1.V �W / ” T 1.V /CT 1.W /CH.A;B/. (28)

When V is a curve, T 1.V / is obviously true, and so, for elliptic curves E and E 0,

T 1.E �E 0/ ” H.E;E 0/:

At the time Tate made his conjecture, H.E;E 0/ was known for elliptic curves over a
finite field as a consequence of work of Deuring (see above), and H.E;E/ was known for
elliptic curves over number fields with at least one real prime (Serre 1964).82

Tate (1966b) proved H.A;B/ for all abelian varieties over finite fields (see below). As
we discussed in (2.6), this has implication for the classification of abelian varieties over finite
fields (and even cryptography).

Zarhin extended Tate’s result to fields finitely generated over Fp, and Faltings proved
H.A;B/ for all abelian varieties over number fields in the same article in which he proved
Mordell’s conjecture. In fact, H.A;B/ has now been proved in all generality (Faltings et al.
1994).83

Tate’s theorem proves that T 1 is true for surfaces over finite fields that are a product
of curves (by (28)). When Artin and Swinnerton-Dyer (1973)84 proved T 1 for elliptic K3
surfaces over finite fields, there was considerable optimism that T 1 would soon be proved
for all surfaces over finite fields. However, there has been little progress in the years since
then. By contrast, the Hodge conjecture is easily proved for divisors.
82 Serre, Jean-Pierre, Groupes de Lie l-adiques attachés aux courbes elliptiques. Colloque de Clermond-Ferrand
1964, Les Tendances Géom. en Algébre et Théorie des Nombres pp. 239–256 Éditions du Centre National
de la Recherche Scientifique, Paris, 1966. 83 Rational points. Papers from the seminar held at the Max–
Planck-Institut für Mathematik, Bonn, 1983/1984. Edited by Gerd Faltings and Gisbert Wüstholz. Aspects of
Mathematics, E6. Friedr. Vieweg & Sohn, Braunschweig, 1984. 84 Artin, M.; Swinnerton-Dyer, H. P. F. , The
Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces. Invent. Math. 20 (1973), 249–266.
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TATE’S PROOF OF H.A;B/ OVER A FINITE FIELD

It suffices to prove the statement with AD B . As the map

Z`˝End.A/! End.T`A/
G.xk=k/

is injective, the problem is to construct enough endomorphisms of A. I briefly outline Tate’s
proof.

(a) If H.A;A/ is true for one prime `¤ char.k/, then it is true for all. This allows Tate
to choose an ` that is well adapted to his arguments.

(b) A polarization on A defines a skew-symmetric pairing V`A�V`A!Q`. Let W be
a maximal isotropic subspace of V`A that is stable under G.xk=k/, and let

Xn D .T`A\W /C`
nT`A:

There is an infinite sequence of isogenies

� � � ! Bn! Bn�1! �� � ! B1! B0 D A

such that the image of T`Bn in T`A is Xn. Using a theorem of Weil, Tate shows that each
Bn has a polarization of the same degree as the original polarization on A. As k is finite, this
implies that the Bn fall into finitely many isomorphism classes. An isomorphism Bn!Bn0 ;

n¤ n0, gives a nontrivial isogeny A! A.
(c) Having constructed one endomorphism of A not in Z, Tate makes adroit use of the

semisimplicity of the rings involved (and his choice of `) to complete the proof.

4.4 Relation to the conjectures of Birch and Swinnerton-Dyer
The original conjectures of Birch and Swinnerton-Dyer were stated for elliptic curves over
Q. Tate re-stated them more generally (see 2.3).

(A) For an abelian variety A over a global field K, the function L.s;A/ has a
zero of order r D rankA.K/ at s D 1.

(B) Moreover,

L�.s;A/ �
jX.A/j � jDj

jA.K/torsj � jA0.K/torsj
.s�1/r as s! 1:

Let f WV ! C be a proper map with fibres of dimension 1, where V (resp. C ) is a
nonsingular projective surface (resp. curve) over a finite field k. The generic fibre of f is a
curve over the global field k.C /, and we let A.f / denote its Jacobian variety (an abelian
variety over k.C /). A comparison of the invariants of V with the invariants of A.f / yields
the following statement:

Conjecture T 1 holds for V ” Conjecture (A) holds for A.f /.

In examining the situation further, Artin and Tate (Tate 1966e) were led to make the following
(Artin-Tate) conjecture:
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(C) For a projective smooth geometrically-connected surface V over a finite
field k, the Brauer group Br.V / of V is finite, and

P2.q
�s/ �

jBr.V /j � jDj

q˛.X/ jNS.V /torsj
2
.1�q1�s/�.V / as s! 1

where P2.T / is the characteristic polynomial of the Frobenius automorphism
acting on H 2.Vkal ;Q`/, D is the discriminant of the intersection pairing on
NS.V /, �.V / is the rank ofNS.V /, and ˛.V /D�.X;OX /�1Cdim.PicVar.V //:

Naturally, they also conjectured:

(d) Let f WV ! C be a proper map, as above, and assume that f has connected
geometric fibres and a smooth generic fibre. Then Conjecture (B) holds for
A.f / over k.C / if and only if Conjecture (C) holds for V over k.

Tate explains that he gave this conjecture “only a small letter (d) as label, because it is of a
more elementary nature than (B) and (C)”, and indeed, it has been proved. Artin and Tate
checked it directly when f is smooth and has a section, Gordon (1979)85 checked it when
the generic fibre has a rational cycle of degree 1, and Milne (1982)86 checked it when this
condition holds only locally. However, ultimately the proof of (d) came from a different
direction, by combining the following two statements:
˘ Conjecture C holds for a surface V over a finite field if and only if Br.V /.`/ is finite

for some prime ` (Tate 1966e ignoring the p part; Milne 197587 complete statement);
˘ Conjecture A holds for an abelian varietyA over a global field of nonzero characteristic

if and only if X.A/.`/ is finite for some ` (Kato and Trihan 200388).
In the situation of (d), Br.V /.`/ is finite if and only if X.A.f //.`/ is finite.89

The known cases of Conjecture B over function fields have proved useful in the construc-
tion of lattice packings.90

4.5 Poles of zeta functions
Throughout this subsection, V is a nonsingular projective variety over a field k. We regard
algebraic cycles on V as elements of the Q-vector spaces Zr.V /.

Algebraic cycles D and D0 are said to be numerically equivalent if D �E DD0 �E for
all algebraic cycles E on V of complementary dimension, and they are `-homologically
equivalent if they have the same class in H 2r.Vkal ;Q`.r//. In his Woods Hole talk, Tate
asked whether the following statement is always true:

Er.V /: Numerical equivalence coincides with `-homological equivalence for
algebraic cycles on V of codimension r .

85 Gordon, W. J. Linking the conjectures of Artin-Tate and Birch–Swinnerton-Dyer. Compositio Math. 38
(1979), no. 2, 163–199. 86 Comparison of the Brauer group with the Tate-Shafarevich group, J. Fac. Sci. Univ.
Tokyo (Shintani Memorial Volume) IA 28 (1982), 735-743. 87 Milne, J. S., On a conjecture of Artin and Tate.
Ann. of Math. (2) 102 (1975), no. 3, 517–533. 88 Kato, Kazuya; Trihan, Fabien, On the conjectures of Birch
and Swinnerton-Dyer in characteristic p > 0. Invent. Math. 153 (2003), no. 3, 537–592. 89 Cf. Liu, Qing;
Lorenzini, Dino; Raynaud, Michel, On the Brauer group of a surface. Invent. Math. 159 (2005), no. 3, 673–676.
90 “One of the most exciting developments has been Elkies’ (sic) and Shioda’s construction of lattice packings
from Mordell-Weil groups of elliptic curves over function fields. Such lattices have a greater density than any
previously known in dimensions from about 54 to 4096.” Preface to Conway, J. H.; Sloane, N. J. A. Sphere
packings, lattices and groups. Second edition. Springer-Verlag, New York, 1993.
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This is now generally regarded as a folklore conjecture (it is also a consequence of Grot-
hendieck’s standard conjectures). Note that, like the Tate conjecture, Er.V / is an existence
statement for algebraic cycles: for an algebraic cycle D, it says that there exists an algebraic
cycle E of complementary dimension such that D �E ¤ 0 if there exists a cohomological
cycle with this property.

Let Ar denote the image of Zr.V / in H 2r.V;Q`.r//, and let N r denote the subspace
of classes numerically equivalent to zero. Thus, Ar (resp. Ar=N r ) is the Q-space of
algebraic classes of codimension r modulo homological equivalence (resp. modulo numerical
equivalence). In particular, Ar=N r is independent of `.

Now assume that k is finitely generated. We need to consider also the following
statement:

Sr.V /: The mapH 2r.Vkal ;Q`.r//G.k
al=k/!H 2r.Vkal ;Q`.r//G.kal=k/ induced

by the identity map is bijective.

When k is finite, this means that 1 occurs semisimply (if at all) as an eigenvalue of the
Frobenius map acting on H 2r.Vkal ;Q`.r//.

An elementary argument suffices to prove that the following three statements are equiva-
lent (for a fixed variety V , integer r , and prime `):

(a) T rCEr I
(b) T rCT dimV�rCSr I

(c) dimQ.Ar=N r/D dimQlH
2r.Vkal ;Q`.r//G.k

al=k/:

When k is finite, each statement is equivalent to:
(d) the order of the pole of �.V;s/ at s D r is equal to dimQ.Ar=N r/.

See Tate 1979, 2.9. Note that (d) is independent of `.
Tate (1964a, Conjecture 2) conjectured the following general version of (d):

P r.V /: Let V be a nonsingular projective variety over a finitely generated field
k. Let d be the transcendence degree of k over the prime field, augmented by 1
if the prime field is Q. Then the 2r th component �2r.V;s/ of the zeta function
of V has a pole of order dimQ.Ar.V // at the point s D d C r .

This is also known as the Tate conjecture. For a discussion of the known cases of P r.V /,
see Tate 1964a, 1994a.

When k is a global function field, statements (a), (b), (c) are independent of `, and
are equivalent to the statement that �2rS .V;s/ has a pole of order dimQ.Ar.V // at the point
s D d C r ; here �2rS .V;s/ omits the factors at a suitably large finite set S of primes. This
follows from Lafforgue’s proof of the global Langlands correspondence and other results in
Langlands program by an argument that will, in principle, also work over number fields. —
see Lyons 2009.91

In the presence of Er , Conjecture T r.V / is equvalent to P r.V / if and only if the order
of the pole of �2r.V;s/ at s D r is dimQlH

2r.Vkal ;Q`.r//G.k
al=k/. This is known for some

Shimura varieties.
91 Lyons, Christopher. A rank inequality for the Tate conjecture over global function fields. Expo. Math. 27
(2009), no. 2, 93–108.
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THE SATO-TATE CONJECTURE

Let A be an elliptic curve over Q. For a prime p of good reduction, the number Np of points
on A mod p can be written

Np D pC1�ap

ap D 2
p
p cos�p; 0� �p � �:

When A has complex multiplication over C, it is easily proved that the �p are uniformly
distributed in the interval 0 � � � � as p!1. In the opposite case, Mikio Sato found
computationally that the �p appeared to have a density distribution 2

�
sin2 � .

Tate proved that, for a power of an elliptic curve, the Q-algebra of algebraic cycles is
generated modulo homological equivalence by divisor classes. Using this, he computed that,
for an elliptic curve A over Q without complex multiplication,

rank.Ai .Am//D
 
m

i

!2
�

 
m

i �1

! 
m

iC1

!
,

from which he deduced that Sato’s distribution is the only symmetric density distribution for
which the zeta functions of the powers of A have their zeros and poles in agreement with the
Conjecture P r.V /.

The conjecture that, for an elliptic curve over Q without complex multiplication, the
�p are distributed as 2

�
sin2 � is known as the Sato-Tate conjecture. It has been proved

only recently, as the fruit of a long collaboration (Richard Taylor, Michael Harris, Laurent
Clozel, Nicholas Shepherd-Barron, Thomas Barnet-Lamb, David Geraghty). As did Tate,
they approach the conjecture through the analytic properties of the zeta functions of the
powers of A.92

Needless to say, the Sato-Tate conjecture has been generalized to motives. Langlands
has pointed out that his functoriality conjecture contains a very general form of the Sato-Tate
conjecture.93

4.6 Relation to the Hodge conjecture
For a variety V over C, there is a well-defined cycle map

cr WZr.V /!H 2r.V;Q/

(cohomology with respect to the complex topology). Hodge proved that there is a decompo-
sition

H 2r.V;Q/C D
M

pCqD2r
Hp;q; Hp;q DH q;p:

In Hodge 1950,94 he observed that the image of cr is contained in

H 2r.V;Q/\V r;r

92 The proof was completed in: T.Barnet-Lamb, D.Geraghty, M.Harris and R.Taylor, A family of Calabi-Yau
varieties and potential automorphy II. P.R.I.M.S. 47 (2011), 29-98. For expository accounts, see: Carayol,
Henri, La conjecture de Sato-Tate (d’après Clozel, Harris, Shepherd-Barron, Taylor). Séminaire Bourbaki. Vol.
2006/2007. Astérisque No. 317 (2008), Exp. No. 977, ix, 345–391. Clozel, L. The Sato-Tate conjecture.
Current developments in mathematics, 2006, 1–34, Int. Press, Somerville, MA, 2008. 93 Langlands, Robert P.
Reflexions on receiving the Shaw Prize. On certain L-functions, 297–308, Clay Math. Proc., 13, Amer. Math.
Soc., Providence, RI, 2011. 94 Hodge, W. V. D., The topological invariants of algebraic varieties. Proceedings
of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, pp. 182–192. Amer. Math.
Soc., Providence, R. I., 1952.
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and asked whether this Q-module is exactly the image of cr . This has become known as the
Hodge conjecture.95

In his original article (Tate 1964), Tate wrote:

I can see no direct logical connection between [the Tate conjecture] and Hodge’s
conjecture that a rational cohomology class of type .p;p/ is algebraic. . . . How-
ever, the two conjectures have an air of compatibility.

Pohlmann (1968)96 proved that the Hodge and Tate conjectures are equivalent for CM abelian
varieties, Piatetski-Shapiro (1971)97 proved that the Tate conjecture for abelian varieties in
characteristic zero implies the Hodge conjecture for abelian varieties, and Milne (1999)98

proved that the Hodge conjecture for CM abelian varieties implies the Tate conjecture for
abelian varieties over finite fields.

The relation between the two conjectures has been greatly clarified by the work of
Deligne. He defines the notion of an absolute Hodge class on a (complete smooth) variety
over a field of characteristic zero, and conjectures that every Hodge class on a variety over
C is absolutely Hodge. The Tate conjecture for a variety implies that all absolute Hodge
classes on the variety are algebraic. Therefore, in the presence of Deligne’s conjecture, the
Tate conjecture implies the Hodge conjecture. As Deligne has proved his conjecture for
abelian varieties, this gives another proof of Piatetski-Shapiro’s theorem.

The twin conjectures of Hodge and Tate have a status in algebraic and arithmetic
geometry similar to that of the Riemann hypothesis in analytic number theory. A proof of
either one for any significantly large class of varieties would be a major breakthrough. On
the other hand, whether or not the Hodge conjecture is true, it is known that Hodge classes
behave in many ways as if they were algebraic.99 There is some fragmentary evidence that
the same is true for Tate classes in nonzero characteristic.100

5 Lubin-Tate theory and Barsotti-Tate group schemes

5.1 Formal group laws and applications
Let R be a commutative ring. By a formal group law over R, we shall always mean a
one-parameter commutative formal group law, i.e., a formal power series F 2 RŒŒX;Y �]
such that
˘ F.X;Y /DXCYCterms of higher degree,
˘ F.F.X;Y /;Z/D F.X;F.Y;Z//

˘ F.X;Y /D F.Y;X/.
These conditions imply that there exists a unique iF .X/2X �RŒŒX�� such thatF.X;iF .X//D
0. A homomorphism F !G of formal group laws is a formal power series f 2XRŒŒX��
such that f .F.X;Y //DG.f .X/;f .Y //.
95 Hodge actually asked the question with Z-coefficients. 96 Pohlmann, Henry. Algebraic cycles on abelian
varieties of complex multiplication type. Ann. of Math. (2) 88 1968 161–180. 97 Piatetski-Shapiro, I. I.,
Interrelations between the Tate and Hodge hypotheses for abelian varieties. (Russian) Mat. Sb. (N.S.) 85(127)
(1971), 610–620. 98 Milne, J. S., Lefschetz motives and the Tate conjecture. Compositio Math. 117 (1999), no.
1, 45–76. 99 Deligne, P., Hodge cycles on abelian varieties (notes by J.S. Milne). In: Hodge Cycles, Motives,
and Shimura Varieties, Lecture Notes in Math. 900, Springer-Verlag, 1982, pp. 9–100. Cattani, Eduardo;
Deligne, Pierre; Kaplan, Aroldo. On the locus of Hodge classes. J. Amer. Math. Soc. 8 (1995), no. 2, 483–506.
100 Milne, J. S. Rational Tate classes. Mosc. Math. J. 9 (2009), no. 1, 111–141.
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The formal group laws form a Z-linear category. Let c.f / be the first-degree coefficient
of an endomorphism f ofF . IfR is an integral domain of characteristic zero, then f 7! c.f /

is an injective homomorphism of rings EndR.F /!R. See Lubin 1964.101

Let F be a formal group law over a field k of characteristic p ¤ 0. A nonzero endomor-
phism f of F has the form

f D aXp
h

C terms of higher degree, a¤ 0;

where h is a nonnegative integer, called the height of f . The height of the multiplication-by-
p map is called the height of F .

LUBIN-TATE FORMAL GROUP LAWS AND LOCAL CLASS FIELD THEORY

Let K be a nonarchimedean local field, i.e., a finite extension of Qp or Fp..t//. Local class
field theory provides us with a homomorphism (the local reciprocity map)

recK WK�! Gal.Kab=K/

such that, for every finite abelian extension L of K in Kab, recK induces an isomorphism

.�;L=K/WK�=NmL�! Gal.L=K/I

moreover, every open subgroup K� of finite index arises as the norm group of a (unique)
finite abelian extension. This statement shows that the finite abelian extensions of K are
classified by the open subgroups of K� of finite index, but leaves open the following
problem:

Let L=K be the abelian extension corresponding to an open subgroup H of
K� of finite index; construct generators for L and describe how K�=H acts on
them.

Lubin and Tate (1965a) found an elegantly simple solution to this problem.
The choice of a prime element � determines a decomposition K� D O�K �h�i, and

hence (by local class field theory) a decomposition Kab DK� �K
un. Here K� is a totally

ramified extension of K with the property that � is a norm from every finite subextension.
Since Kun is well understood, the problem then is to find generators for the subfields of K�
and to describe the isomorphism

.�;K�=K/WO�K ! Gal.K�=K/

given by reciprocity map. Let O D OK , let p D .�/ be the maximal ideal in O, and let
q D .OWp/.

Let f 2OŒŒT �� be a formal power series such that�
f .T / D �T C terms of higher degree
f .T / � T q modulo �OŒŒT ��;

for example, f D �T CT q is such a power series. An elementary argument shows that, for
each a 2O, there is a unique formal power series Œa�f 2OK ŒŒT �� such that�

Œa�f .T / D aT C terms of higher degree
Œa�f ıf D f ı Œa�f .

101 Lubin, Jonathan, One-parameter formal Lie groups over p-adic integer rings. Ann. of Math. (2) 80 1964
464–484.



5 LUBIN-TATE THEORY AND BARSOTTI-TATE GROUP SCHEMES 40

Let

Xm D fx 2K
al
j jxj< 1,

m‚ …„ ƒ
.f ı � � � ıf /.x/D 0g:

Then Lubin and Tate (1965a) prove:
(a) the field KŒXm� is the totally ramified abelian extension of K with norm group

Um�h�i where Um D 1CpmK ;
(b) the map

O�=Um! Gal.KŒXm�=K/

u 7!
�
x 7! Œu�1�f .x/

�
is an isomorphism.

For example, if K DQp, � D p, and f .T /D .1CT /p�1, then

Xm D f��1 j �
pm
D 1g ' �pm.K

al/

and Œu�f .��1/D �u
�1

�1.
Lubin and Tate (1965a) show that, for each f as above, there is a unique formal group

law Ff admitting f as an endomorphism. Then Xm can be realized as a group of “torsion
points” on Ff , which endows it with the structure of an O-module for which it is isomorphic
to O=pm. From this the statements follow in a straightforward way.

The proof of the above results does not use local class field theory. Using the Hasse-Arf
theorem, one can show thatK� �KunDKab, and deduce local class field theory. Alternatively,
using local class field theory, one can show that K� �Kun DKab, and deduce the Hasse-Arf
theorem. In either case, one finds that the isomorphism in (b) is the local reciprocity map.

The Ff are called Lubin-Tate formal group laws, and the above theory is called Lubin-
Tate theory.

DEFORMATIONS OF FORMAL GROUP LAWS (LUBIN-TATE SPACES)

Let F be a formal group law of height h over a perfect field k of characteristic p ¤ 0. We
consider local artinian k-algebras A with residue field k. A deformation of F over such
an A is a formal group law FA over A such that FA � F mod mA. An isomorphism of
deformations is an isomorphism of 'WFA!GA of formal group laws such that '.T /� T
mod mA.

Let W denote the ring of Witt vectors with residue field k. Lubin and Tate (1966d)
prove that there exists a formal group F.t1; : : : ; th�1/.X;Y / over W ŒŒt1; : : : ; th�1�� with the
following properties:
˘ F.0; : : : ;0/� F mod mW ;
˘ for any deformation FA of F , there is a unique homomorphismW ŒŒt1; : : : ; th�1��!A

sending F to FA.
The results of Lubin and Tate are actually stronger, but this seems to be the form in which
they are most commonly used.

In particular, the above result identifies the space of deformations of F with the formal
scheme Spf.W ŒŒt1; : : : ; th�1�/: These spaces are now called Lubin-Tate deformation spaces.
Drinfeld showed that, by adding (Drinfeld) level structures, it is possible to construct towers
of deformation spaces, called Lubin-Tate towers.102 These play an important role in the

102 Drinfeld, V. G. Elliptic modules. (Russian) Mat. Sb. (N.S.) 94(136) (1974), 594–627, 656.
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study of the moduli varieties of abelian varieties with PEL-structure and in the Langlands
program. For example, it is known that both the Jacquet-Langlands correspondence and
the local Langlands correspondence for GLn can be realized in the étale cohomology of a
Lubin-Tate tower (or, more precisely, in the étale cohomology of the Berkovich space that is
attached to the rigid analytic space which is the generic fibre of the Lubin-Tate tower).103

5.2 Finite flat group schemes
A group scheme G over a scheme S is finite and flat if G D Spec.A/ with A locally free of
finite rank as a sheaf of OS -modules. When A has constant rank r , G is said to have order r .
A finite flat group scheme of prime order is necessarily commutative.

In his course on Formal Groups at Harvard in the fall of 1966, Tate discussed the
following classification problem:

letR be a local noetherian ring with residue field of characteristic p¤ 0; assume
that R contains the .p�1/st roots of 1, i.e., that R� contains a cyclic subgroup
of order p�1; determine the finite flat group schemes of order p over R.

When R is complete, Tate found that such group schemes correspond to pairs of elements
.a;c/ of R such that ac 2 p �R�; two pairs .a;c/ and .a1; c1/ correspond to isomorphic
groups if and only if a1 D up�1a and c1 D u1�pc for some u 2R�.

These results were extended and completed in Tate and Oort 1970a. Let

�p D ZŒ�;
1

p.p�1/
�\Zp

where � is a primitive .p� 1/st root of 1 in Zp. Tate and Oort define a sequence w1 D
1;w2; : : : ;wp of elements of �p in which w1; : : : ;wp�1 are units and wp D pwp�1. Then,
given an invertible OS -module L and sections a of L˝.p�1/ and b of L˝.1�p/ such that
a˝b D wp , they show that there is a group scheme GL

a;b
such that, for every S -scheme T ,

GLa;b.T /D fx 2 � .T;L˝OS OT / j x˝p D a˝xg;

and the multiplication on GL
a;b
.T / is given by

x1 �x2 D x1Cx2C
b

wp�1
˝Dp.x1˝1;1˝x2/;

where

Dp.X1;X2/D
wp�1

1�p

p�1X
iD1

X i1
wi

X
p�i
2

wp�i
2�pŒX1;X2�:

Every finite flat group scheme of order p over S is of the form GL
a;b

for some triple .L;a;b/,

and GL
a;b

is isomorphic to GL1
a1;b1

if and only if there exists an isomorphism from L to

103 Carayol, H. Nonabelian Lubin-Tate theory. Automorphic forms, Shimura varieties, and L-functions, Vol. II
(Ann Arbor, MI, 1988), 15–39, Perspect. Math., 11, Academic Press, Boston, MA, 1990. Boyer, P. Mauvaise
réduction des variétés de Drinfeld et correspondance de Langlands locale. Invent. Math. 138 (1999), no. 3,
573–629. Harris, Michael; Taylor, Richard The geometry and cohomology of some simple Shimura varieties.
With an appendix by Vladimir G. Berkovich. Annals of Mathematics Studies, 151. Princeton University Press,
Princeton, NJ, 2001.
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L1 carrying a to a1 and b to b1. The Cartier dual of GL
a;b

is GL
�1

b;a
. The proofs of these

statements make ingenious use of the action of F�p on OG .
Tate and Oort apply their result to give a classification of finite flat group schemes of

order p over the ring of integers in a number field in terms of idèle class characters. In
particular, they show that the only such group schemes over Z are the constant group scheme
Z=pZ and its dual �p.

In the years since Tate and Oort wrote their article, the classification of finite flat
commutative group schemes over various bases has been intensively studied, and some of
the results were used in the proof of the modularity conjecture for elliptic curves (hence of
Fermat’s last theorem). Tate (1997a) has given a beautiful exposition of the basic theory
of finite flat group schemes, including the results of Raynaud 1974104 extending the above
theory to group schemes of type .p; : : : ;p/.

5.3 Barsotti-Tate groups (p-divisible groups)
Let A be an abelian variety over a field k. In his study of abelian varieties and their zeta
functions, Weil used the `-primary component A.`/ of the group A.ksep/ for ` a prime
distinct from char.k/. This is an `-divisible group isomorphic to .Q`=Z`/2dimA equipped
with an action of Gal.ksep=k/. For p D char.k/, it is natural to replace A.`/ with the direct
system

A.p/W A1 ,! A2 ,! �� � ,! A� ,! A�C1 ,! �� �

where A� is the finite group scheme Ker.p� WA! A/.
In the mid sixties, Serre and Tate105 defined a p-divisible group of height h over a ring

R to be a direct system G D .G� ; i�/�2N where, for each � � 0, G� is a finite group scheme
over R of order p�h and the sequence

0 �!G�
i�
�!G�C1

p�

�!G�C1

is exact. An abelian scheme A over R defines a p-divisible group A.p/ over R of height
2dim.A/.

The dual of a p-divisible group G D .G� ; i�/ is the system G0 D .G0� ; i
0
�/ where G0� is

the Cartier dual of G� and i 0� is the Cartier dual of the map G�C1
p
�! G� . It is again a

p-divisible group.
Tate developed the basic theory p-divisible group in his article for the proceedings of

the 1966 Driebergen conference (Tate 1967c) and in a series of ten lectures at the Collège de
France in 1965-1966.106 He showed that p-divisible groups generalize formal Lie groups
in the following sense: let R be a complete noetherian local ring with residue field k
of characteristic p > 0; an n-dimensional commutative formal Lie group � over R can
be defined to be a family f .Y;Z/ D .fi .Y;Z//1�i�n of n power series in 2n variables
satisfying the conditions in the first paragraph of this section; if such a group � is divisible
(i.e., pW� ! � is an isogeny), then one can define the kernel G� of p� W� ! � as a group
scheme over R; Tate shows that � .p/D .G�/��1 is a p-divisible group � .p/, and that the
functor �  � .p/ is an equivalence from the category of divisible commutative formal Lie
groups over R to the category of connected p-divisible groups over R.
104 Raynaud, Michel, Schémas en groupes de type (p,. . . ,p). Bull. Soc. Math. France 102 (1974), 241–280.
105 Usually this is credited to Tate alone, but Tate writes: “We were both contemplating them. I think it was
probably Serre who first saw clearly the simple general definition and its relation to formal groups of finite
height.” The dual of a p-divisible group is often called the Serre dual. 106 See Serre, OEuvres, II pp.321–324.
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The main theorem of Tate 1967c states the following:

Let R be an integrally closed, noetherian, integral domain whose field of frac-
tions K is of characteristic zero, and let G and H be p-divisible groups over R.
Then every homomorphism GK !HK of the generic fibres extends uniquely
to a homomorphism G!H .

In other words, the functor G GK is fully faithful. This was extended to rings R of
characteristic p ¤ 0 by de Jong in 1998.107

Since their introduction, p-divisible groups have become an essential tool in the study
of abelian schemes. We have already seen in (2.4) one application of p-divisible groups to
the problem of lifting abelian varieties. Another application was to the proof of the Mordell
conjecture (Faltings 1983108).

In his talk at the 1970 International Congress, Grothendieck renamed p-divisible groups
“Barsotti-Tate groups”. Today, both terms are used.

5.4 Hodge-Tate decompositions
Now let R be a complete discrete valuation ring of unequal characteristics, and let K be its
field of fractions. Let Kal be an algebraic closure of K, and let C be the completion of Kal.
As Serre noted:109

One of the most surprising results of Tate’s theory is the fact that the properties
of p-divisible groups are intimately related to the structure of C as a Galois
module over Gal.Kal=K/.

Let G D Gal.Kal=K/, and let V be a C -vector space on which G acts semi-linearly. The
Tate twist V.i/, i 2 Z, is V with G acting by

.�;v/ 7! �.�/i ��v; � the p-adic cyclotomic character.

Tate proved thatH 0.G;C /DK andH 1.G;C /�K, and thatH q.G;C.i//D 0 for q D 0;1
and i ¤ 0.110 Using these statements, he proved that, for a p-divisible group G over R, there
is a canonical isomorphism

Hom.TG;C /' tG0.C /˚ t_G.C /.�1/: (29)

where TG D lim
 ��

G�.K
al/ is the Tate module of G, tG is the tangent space to G at zero,

and G0 is the dual p-divisible group. In particular TG determines the dimension of G, a fact
that is used in the proof of the main theorem in the last subsection.

When G is the p-divisible group of an abelian scheme A over R, (29) can be written as:

H 1
et.AC ;Qp/˝C 'H

1.AC ;˝
0
AC =C

/˚H 0.AC ;˝
1
AC =C

/.�1/:

This result led Tate to make the following (Hodge-Tate) conjecture:111

107 de Jong, A. J., Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic. Invent. Math.
134 (1998), no. 2, 301–333. Erratum: ibid. 138 (1999), no. 1, 225. 108 Faltings, G. Endlichkeitssätze für
abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), no. 3, 349–366. Erratum: Ibid. (1984), no. 2,
381. 109 Œ uvres, II, p.322. 110 Sen and Ax simplified and generalized Tate’s proof that CG DK, and the
result is now known as the Ax-Sen-Tate theorem. 111 Tate 1967c, p.180; see also Serre’s summary of Tate’s
lectures, Œuvres, II, p.324.
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For every nonsingular projective variety X over K, there exists a canonical
(Hodge-Tate) decomposition

Hn
et.XC ;Qp/˝Qp C '

M
pCqDn

Hp;q.XC /.�p/ (30)

where Hp;q.XC /DH
q.X;˝

p

X=K
/˝K C . This decomposition is compatible

with the action of Gal.Kal=K).

Tate’s conjecture launched a new subject in mathematics, called p-adic Hodge theory.
The isomorphism (30) can be regarded as a statement about the étale cohomology of XC
regarded as a module over Gal.Kal=K/. About 1980, Fontaine stated a series of successively
stronger conjectures, beginning with the Hodge-Tate conjecture, that describe the structure
of these Galois modules.112 Most of Fontaine’s conjectures have now been proved. The
Hodge-Tate conjecture itself was proved by Faltings in 1988.113

6 Elliptic curves
Although elliptic curves are just abelian varieties of dimension one, their study is quite
different. Throughout his career, Tate has returned to the study of elliptic curves.

6.1 Ranks of elliptic curves over global fields
Mordell proved that, for an elliptic curve E over Q, the group E.Q/ is finite generated.
At one time, it was widely conjectured that the rank of E.Q/ is bounded, but, as Cassels
1966 pointed out, this is implausible.114 Tate and Shafarevich (1967d)115 made it even
less plausible by proving that, for elliptic curves over the global field Fp.t/, the ranks
are unbounded. Their examples are quadratic twists of a supersingular elliptic curve with
coefficients in Fp; in particular, they are isotrivial (i.e., have j 2 Fp). More recently, it has
been shown that the ranks are unbounded even among the nonisotrivial elliptic curves over
Fp.t/.116 Meanwhile, the largest known rank for an elliptic curve over Q is 28.117

6.2 Torsion points on elliptic curves over Q
Beppo Levi constructed elliptic curves E over Q having each of the groups

Z=nZ nD 1;2; : : : ;10;12;

Z=2Z�Z=nZ nD 2;4;6;8;

112 See Fontaine, Jean-Marc. Sur certains types de représentations p-adiques du groupe de Galois d’un corps
local; construction d’un anneau de Barsotti-Tate. Ann. of Math. (2) 115 (1982), no. 3, 529–577, and many
other articles. 113 Faltings, Gerd. p-adic Hodge theory. J. Amer. Math. Soc. 1 (1988), no. 1, 255–299.
114 “It has been widely conjectured that there is an upper bound for the rank depending only on the groundfield.
This seems to me implausible because the theory makes it clear that an abelian variety can only have high rank
if it is defined by equations with very large coefficients.” p.257 of Cassels, J. W. S., Diophantine equations
with special reference to elliptic curves. J. London Math. Soc. 41 1966 193–291. 115 For a long time
I was puzzled as to how this article came to be written, because I was not aware that Shafarevich had been
allowed to travel to the West, but Tate writes: “sometime during the year 1965–66, which I spent in Paris,
Shafarevich appeared. There must have been a brief period when the Soviets relaxed their no-travel policy. . . .
Shafarevich was in Paris for a month or so, and the paper grew out of some discussion we had. We both liked
the idea of our having a joint paper, and I was happy to have it in Russian.” 116 Ulmer, Douglas Elliptic
curves with large rank over function fields. Ann. of Math. (2) 155 (2002), no. 1, 295–315. 117 Elkies, see
http://web.math.hr/~duje/tors/tors.html.

http://web.math.hr/~duje/tors/tors.html
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as the torsion subgroup of E.Q/, and he conjectured that this exhausted the list of possible
such groups.118

Consistent with this, Mazur and Tate (1973c) show that there is no elliptic curve over Q
with a rational point of order 13, or, equivalently, that the curve X1.13/ that classifies the
elliptic curves with a chosen point of order 13 has no rational points (except for its cusps).
Ogg found a rational point of order 19 on the Jacobian J of X1.13/, and Mazur and Tate
show that J has exactly 19 rational points. They then deduce thatX1.13/ has no noncuspidal
rational point by examining how it sits in its Jacobian.

The interest of their article is more in its methods than in the result itself.119 The ring
ZŒ 3
p
1� acts on J , and Mazur and Tate perform a 19-descent by studying the flat cohomology

of the exact sequence of group schemes

0! F ! J
�
�! J ! 0

on SpecZX .13/, where � is one of the factors of 19 in ZŒ 3
p
1�. In a major work, Mazur

developed these methods further, and completely proved Levi’s conjecture.120

The similar problem for an arbitrary number field K is probably beyond reach, but,
following work of Kamienny, Merel (1996121) proved that, for a fixed number field K, the
order of the torsion subgroup of E.K/ for E an elliptic curve over K is bounded by a
constant that depends only the degree of K over Q.

6.3 Explicit formulas and algorithms
The usual Weierstrass form of the equation of an elliptic curve is valid only in characteristics
¤ 2;3: About 1965 Tate wrote out the complete form, valid in all characteristics, and even
over Z. For an elliptic curve over a nonarchimedean local field with perfect residue field,
he wrote out an explicit algorithm (known as Tate’s algorithm) for computing the minimal
model of the curve and determining the Kodaira type of the special fibre. Ogg’s formula then
gives the conductor of the curve. The handwritten manuscript containing these formulas
was invaluable to people working in the field. A copy, which had been sent to Cassels,
was included, essentially verbatim, in the proceedings of the Antwerp conference (Tate
1975b).122

6.4 Analogues at p of the conjecture of Birch and Swinnerton-Dyer
For an elliptic curve E over Q, the conjecture of Birch and Swinnerton-Dyer states that

L.s;E/ � ˝
Y
p bad

cp
jX.E/j �R

jE.Q/torsj
2
.s�1/r as s! 1

118 Beppo Levi, Sull’equazione indeterminata del 3ı ordine, Rom. 4. Math. Kongr. 2, 173-177 1909. (Talk
at the 1908 ICM.) 119 About the same time, J. Blass found a more elementary proof of the same result.
120 Mazur, B. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. No. 47 (1977),
33–186. 121 Merel, Loïc. Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent.
Math. 124 (1996), no. 1-3, 437–449. 122 Tate writes: “Early in that summer [1965], Weil had told me of the
idea that all elliptic curves over Q are modular [and that the conductor of the elliptic curve equals the conductor
of the corresponding modular form]. That motivated Swinnerton-Dyer to make a big computer search for elliptic
curves over Q with not too big discriminant, in order to test Weil’s idea. But of course it was necessary to be
able to compute the conductor to do that test. That was my main motivation.”
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where r is the rank of E.Q/, X.E/ is the Tate-Shafarevich group, R is the discriminant
of the height pairing on E.Q/, ˝ is the real period of E, and the cp D .E.Qp/WE0.Qp/).
When E has good ordinary or multiplicative reduction at p, there is a p-adic zeta function
Lp.s;E/, and Mazur, Tate, and Teitelbaum (1986) investigated whether the behaviour of
Lp.s;E/ near s D 1 is similarly related to the arithmetic invariants of E.123 They found it
is, but with one major surprise: there is an “exceptional” case in which Lp.s;E/ is related
to an extended version of E.Q/ rather than E.Q/ itself. Supported by numerical evidence,
they conjectured:

BSD.p/. When E has good ordinary or nonsplit multiplicative reduction at
a prime p, the function Lp.s;E/ has a zero at s D 1 of order at least r D
rankE.Q/, and L.r/p .1;E/ is equal to a certain expression involving jX.E/j

and a p-adic regulator Rp.E/. When E has split multiplicative reduction, it is
necessary to replace r with rC1.

The L-function Lp.s;E/ is the p-adic Mellin transform of a p-adic measure obtained from
modular symbols. The p-adic regulator is the discriminant of the canonical p-adic height
pairing (augmented in the exceptional case). Much more is known about BSD.p/ than the
original conjecture of Birch and Swinnerton-Dyer. For example, Kato124 has proved the
following statement:

The function Lp.s;E/ has a zero at s D 1 of order at least r (at least rC1 in
the exceptional case). When the order of the zero equals its conjectured value,
then the p-primary component of X.E/ is finite and Rp.E/¤ 0.

In the exceptional case, EQp is a Tate elliptic curve and Lp.1;E/ D 0. On comparing
their conjecture in this case with the original conjecture of Birch and Swinnerton-Dyer, the
authors were led to the conjecture

L.1/p .1;E/D
logp.q/

ordp.q/
L.1;E/

˝

where q is the period of the Tate curve EQp and ˝ is the real period of E. This became
known as the Mazur-Tate-Teitelbaum conjecture. It was proved by Greenberg and Stevens in
1993125 for p ¤ 2;3, and by several authors in general.

Mazur and Tate (1987) state “refined” conjectures that avoid any mention of p-adic
L-functions and, in particular, avoid the problem of constructing these functions. Let E be
an elliptic curve over Q. For a fixed integer M > 0, they use modular symbols to construct
an element � in the group algebra QŒ.Z=MZ/�=f˙1g�. Let R be a subring of Q containing
the coefficients of � and such that the order the torsion subgroup of E.Q/ is invertible in
R. The analogue of an L-function having a zero of order r at s D 1 is that � lie in the r th
power of the augmentation ideal I of the group algebra RŒ.Z=MZ/�=f˙1g�. Assume that
M is not divisible by p2 for any prime p at which E has split multiplicative reduction. Then
Mazur and Tate conjectured:

123 The authors assume that E is modular — at the time, it was not known that all elliptic curves over Q are
modular. 124 Kato, Kazuya. p-adic Hodge theory and values of zeta functions of modular forms. Cohomologies
p-adiques et applications arithmétiques. III. Astérisque No. 295 (2004), ix, 117–290. 125 Greenberg, Ralph;
Stevens, Glenn, p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111 (1993), no. 2,
407–447.
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Let r be the rank of E.Q/, and let r 0 be the number of primes dividing M
at which E has split multiplicative reduction. Then � 2 I rCr

0

, and there is a
formula (involving the order of X.E/) for the image of � in I rCr

0

=I rCr
0C1.

Again, the authors provide numerical evidence for their conjecture. Tate’s student, Ki-Seng
Tan, restated the Mazur-Tate conjecture for an elliptic curve over a global field, and he proved
that part of the new conjecture is implied by the conjecture of Birch and Swinnerton-Dyer.126

In the first article discussed above, Mazur, Tate, Teitelbaum gave explicit formulas
relating the canonical p-adic height pairings to a p-adic sigma function, and used the sigma
function to study the height pairings. Mazur and Tate (1991), present a detailed construction
of the p-adic sigma function for an elliptic curve E with good ordinary reduction over a
p-adic field K, and they prove the properties used in the earlier article. In contrast to the
classical sigma function, which is defined on the universal covering of E, the p-adic sigma
function is defined on the formal group of E.

Finally, the article Mazur, Stein, and Tate 2006 studies the problem of efficiently com-
puting of p-adic heights for an elliptic curve E over a global field K. This amounts to
efficiently computing the sigma function, which in turn amounts to efficiently computing the
p-adic modular form E2.

6.5 Jacobians of curves of genus one
For a curve C of genus one over a field k, the Jacobian variety J of C is an elliptic curve
over k. The problem is to compute a Weierstrass equation for J from an equation for C .

Weil (1954)127 showed that, when C is defined by an equation Y 2 D f .X/, degf D 4,
then the Weierstrass equation of J can be computed using the invariant theory of the quartic
of f , which goes back to Hermite.

An et al. (2001)128 showed how formulas from classical invariant theory give Weierstrass
equations for J and for the map C ! J when char.k/¤ 2;3 and C is a double cover of P1,
a plane cubic, or a space quartic.

Tate and Rodrigues-Villegas found the Weierstrass equations over fields of characteristic
2 and 3, where the classical invariant theory no longer applies. Together with Artin they
extended their result to an arbitrary base scheme S (Artin, Rodriguez-Villegas, Tate 2005).
Specifically, let C be the family of curves over a scheme S defined, as a subscheme of
P2S , by a cubic f 2 � .S;OS /ŒX;Y;Z�, and assume that the ten coefficients of f have no
common zero. Then there is a Weierstrass equation

gW Y 2ZCa1XYZCa3YZ
2
DX3Ca2X

2ZCa4XZ
2
Ca6Z

3; ai 2 � .S;OS /;

whose coefficients are given explicitly in terms of the coefficients of f , such that the functor
Pic0C=S is represented by the smooth locus of the subscheme of P2S defined by g. A key
ingredient of the proof is a characterization, over sufficiently good base schemes, of the
group algebraic spaces that can be described by a Weierstrass equation.

126 Tan, Ki-Seng, Refined theorems of the Birch and Swinnerton-Dyer type. Ann. Inst. Fourier (Grenoble) 45
(1995), no. 2, 317–374. 127 Weil, André. Remarques sur un mémoire d’Hermite. Arch. Math. (Basel) 5,
(1954). 197–202. 128 An, Sang Yook; Kim, Seog Young; Marshall, David C.; Marshall, Susan H.; McCallum,
William G.; Perlis, Alexander R. Jacobians of genus one curves. J. Number Theory 90 (2001), no. 2, 304–315.
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6.6 Expositions
In 1961, Tate gave a series of lectures at Haverford College titled “Rational Points on Cubic
Curves” intended for bright undergraduates in mathematics. Notes were taken of the lectures,
and these were distributed in mimeographed form. The book, Silverman and Tate 1992, is a
revision, and expansion, of the notes.

In the spring of 1960, the fall of 1967, 1975,. . . , Tate gave courses on the arithmetic of
elliptic curves, whose informal notes have influenced later expositions.

7 The K-theory of number fields

7.1 K-groups and symbols
Grothendieck defined K0.X/ for X a scheme in order to be able to state his generalization
of the Riemann-Roch theorem. The topologists soon adapted Grothendieck’s definition to
topological spaces, and extended it to obtain groups Kn for all n 2 N.

For a commutative ring R, K0.R/ is just the Grothendieck group of the category of
finitely generated projective R-modules. In 1962, Bass and Schanuel129 defined K1.R/, and
in 1967, Milnor130 defined K2.R/. In the early 1970s, several authors suggested definitions
for the higher K-groups, which largely coincided when this could be checked. Quillen’s
definition131 was the most flexible, and it is his that has been adopted.

The Steinberg group ST.R/ of a ring R is the group with generators

xij .r/; i;j D 1;2;3; : : : ; i ¤ j , r 2R

and relations

xij .r/xij .s/D xij .rC s/

Œxij .r/;xkl.s/�D

�
1 if i ¤ l and j ¤ k
xil.rs/ if i ¤ l and j D k:

The elementary matrices Eij .r/D I C reij in GL.R/ satisfy these relations, and so there is
a homomorphism xij .r/ 7! Eij .r/WST.R/! GL.R/. The groups K1.R/ and K2.R/ can
be defined by the exact sequence

1!K2.R/! ST.R/! GL.R/!K1.R/! 1:

Let F be a field. A symbol on F with values in a commutative group C is defined to be
a bimultiplicative map

. ; /WF ��F �! C

such that .a;1�a/D 1 whenever a ¤ 0;1: Matsumoto (1969)132 showed that the natural
map

f ; gWF ��F �!K2F

129 Bass, H.; Schanuel, S. The homotopy theory of projective modules. Bull. Amer. Math. Soc. 68
1962 425–428. 130 During a course at Princeton University; published as: Milnor, John. Introduction to
algebraic K-theory. Annals of Mathematics Studies, No. 72. Princeton University Press, Princeton, N.J., 1971.
131 Quillen, Daniel. Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories (Proc. Conf.,
Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85–147. Lecture Notes in Math., Vol. 341, Springer, Berlin
1973. 132 Matsumoto, Hideya, Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann.
Sci. École Norm. Sup. (4) 2 1969 1–62. (1968 thesis ENS).
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is a universal symbol, i.e., thatK2.F / is the free abelian group on the pairs fa;bg, a;b 2 F �,
subject only to the relations

faa0;bg D fa;bgfa0;bg all a;a0;b 2 F �

fa;bb0g D fa;bgfa;b0g all a;b;b0 2 F �

fa;1�ag D 1 all a¤ 0;1 in F �:

EXAMPLES OF SYMBOLS

(a) The tame (Hilbert) symbol. Let v be a discrete valuation of F , with residue field �.v/.
Then

.a;b/v D .�1/
v.a/v.b/a

v.b/

bv.a/
mod mv

is a symbol on F with values in �.v/�:
(b) The Galois symbol (Tate 1970b, §1). For m not divisible by char.F /, H 1.F;�m/'

F �=F �m, and the cup-product pairing

H 1.F;�m/�H
1.F;�m/!H 2.F;�m˝�m/

gives a symbol on F with values in H 2.F;�m˝�m/. When F contains the mth
roots of 1,

H 2.F;�m˝�m/'H
2.F;�m/˝�m ' Br.F /m˝�m

and the symbol was known classically.
(c) The differential symbol (Tate ibid.). For p D char.F /,

f;g 7!
df

f
^
dg

g
WF ��F �!˝2F=Fp

is a symbol.
(d) On C there are no continuous symbols, but on R there is the symbol

.a;b/1 D

�
1 if a > 0 or b > 0
�1 otherwise.

7.2 The group K2F for F a global field
Tate recognized that the study of the K2 of a global field is related to classical objects in
number fields, and sheds new light on them. He largely initiated the study of the K-groups
of global fields and their rings of integers.

For a field F , K0F ' Z is without particular interest. On the other hand, K1F ' F �.
For a number field, there is an exact sequence

0! UF ! F �
.ordv/
�!

M
v
Z! CF ! 0

where v runs over the finite primes of F . Dirichlet proved that UF � �.F /�Zr1Cr2�1,
where r1 and r2 are the numbers of real and complex primes, and Dedekind proved that the
class group CF is finite. Thus understanding K1F involves understanding the two basic
objects in classical algebraic number theory.
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Let F be a global field. For a noncomplex prime v of F , let �v D �.Fv/ and let
mv D j�vj. For a finite prime v of F , Br.Fv/ ' Q=Z, and so the Galois symbol with
mDmv gives a homomorphism �vWK2Fv! �v . Similarly, . ; /1 gives a homomorphism
�vWK2Fv! �v when v is real. The �v can be combined with the obvious maps K2F !
K2Fv to give the homomorphism �F in the sequence

0! Ker.�F /!K2F
�F
�!

M
v
�v! �F ! 0;

the direct sum is over the noncomplex primes of F , and the map from it sends .xv/v toQ
v
mv
mF
xv where mF D j�.F /j. A product formula,Y

.a;b/
mv
mF
v D 1

shows that the sequence is a complex, and Moore (1969)133 showed that the cokernel of �F
is �F . Thus, to compute K2F , it remains to identify Ker.�F /.

For Q, Tate proved that Ker.�F / is trivial, and then observed that most of his argument
was already contained in Gauss’s first proof of the quadratic reciprocity law.

For a global field F , Bass and Tate proved that Ker.�F / is finitely generated, and that it
is finite of order prime to the characteristic in the function field case. Garland (1971) proved
that it is also finite in the number field case.

In the function field case, Tate proved that

jKer.�F /j D .q�1/ � .q2�1/ � �F .�1/. (31)

For a number field, the Birch-Tate conjecture says that

jKer.�F /j D ˙w2.F / � �F .�1/ (32)

where w2.F / is the largest integerm such Gal.F al=F / acts trivially on �m.F al/˝�m.F
al/

(Birch 1971;134 Tate 1970b). The odd part of this conjecture was proved by Wiles.135

When Quillen defined the higher K-groups, he proved that

K2.OF /D Ker
�
K2.F /!

M
v finite

�v

�
and so there is an exact sequence

0! Ker.�F /!K2.OF /!
M

v real
�v:

Thus the computation of Ker.�F / is closely related to that of K2.OF /. Lichtenbaum136

generalized the Birch-Tate conjecture to the following statement: for all totally real number
fields F 137

jK4i�2.OF /j
jK4i�1.OF /j

D j�F .1�2i/j ; all i � 1:

133 Moore, Calvin C. Group extensions of p-adic and adelic linear groups. Inst. Hautes Études Sci. Publ.
Math. No. 35 1968 157–222. 134 Birch, B. J. K2 of global fields. 1969 Number Theory Institute (Proc.
Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), pp. 87–95. Amer. Math. Soc.,
Providence, R.I., 1971. 135 Wiles, A. The Iwasawa conjecture for totally real fields. Ann. of Math. (2) 131
(1990), no. 3, 493–540. 136 Lichtenbaum, Stephen. On the values of zeta and L-functions. I. Ann. of Math.
(2) 96 (1972), 338–360. 137 The first test of the conjecture was for F DQ and i D 1. Since �Q.�1/D�1=12
and K2.Z/D Z=2Z, the conjecture predicts that jK3.Z/j has 24 elements, but Lee and Szczarba showed that
it has 48 elements. When a seminar speaker at Harvard mentioned this, and scornfully concluded that the
conjecture was false, Tate responded from the audience “Only for 2”. In fact, Lichtenbaum’s conjecture is
believed to be correct up to a power of 2.



7 THE K-THEORY OF NUMBER FIELDS 51

THE GALOIS SYMBOL

Tate proved (31) by using Galois symbols. For a global field F , he proved that the map

K2F !H 2.F;�˝2m / (33)

defined by the Galois symbol induces an isomorphism

K2F=.K2F /
m
'H 2.F;�˝2m / (34)

when m is not divisible by char.F /, and wrote “I don’t know whether . . . this holds for all
fields” Tate (1970b, p.208). Merkurjev and Suslin (1982)138 proved that it does hold for all
fields.

Tate noted that the isomorphism (34) gives little information on Ker.�F / becauseT
m .K2F /

m is a subgroup of Ker.�F / of index at most 2, and Ker.�F /� .K2F /m for all
m not divisible by 8. He then defined more refined Galois symbols, which are faithful.

Fix a prime ` ¤ char.F /, and let Z`.1/ D lim
 �n

�`n.F
al//. This is a free Z`-module

of rank 1 with an action of Gal.F al=F /, and we let H r.F;Z`.1/˝2/ denote the Galois
cohomology group defined using continuous cocycles (natural topology on both Gal.F al=F /

and Z`.1/˝2). Tate proves that the maps (33) with mD `n lift to a map

K2F !H 2.F;Z`.1/˝2/;

and that this map induces an isomorphism

K2F.`/!H 2.F;Z`.1/˝2/tors.

As K2F is torsion, with no char.F /-torsion, this gives a purely cohomological description
of K2F .

NOTES. The results of Tate in this subsection were announced in Tate 1970b, and proved in Tate
1973b, 1976b, or in Tate’s appendix to Bass and Tate 1973a.

7.3 The Milnor K-groups

Milnor (1970)139 defines the (Milnor) K-groups of a field F as follows: regard F � as a
Z-module; then KM� F is the quotient of the tensor algebra of F � by the ideal generated by
the elements

a˝ .1�a/; a¤ 0;1:

This means that, for n� 2, KMn F is the quotient of .K1F /˝n by the subgroup generated by
the elements

a1˝�� �˝an; ai CaiC1 D 1 for some i:

There is a canonical homomorphism K�F !KM� F which induces isomorphisms KiF !
KMi F for i � 2. In the same article, Milnor defined for each discrete valuation v on F , a
homomorphism

@vWK�F !K��.v/

138 Merkurjev, A. S.; Suslin, A. A. K-cohomology of Severi-Brauer varieties and the norm residue homomor-
phism. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136. 139 Milnor,
John. Algebraic K-theory and quadratic forms. Invent. Math. 9 1969/1970 318–344.
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of degree �1, where �.v/ is the residue field.
Milnor (ibid.) quotes a theorem of Tate: for a global field F ,

KMn F=2K
M
n F '

M
v
KMn Fv=2K

M
n Fv; n� 3;

which implies that KMn F=2K
M
n F ' .Z=2Z/r1 (n � 3/ where r1 is the number of real

primes of F . Bass and Tate (1973a) improve this statement by showing that

KMn F ' .Z=2Z/
r1 for n� 3:

The proof makes essential use of the “transfer maps”

TrWK�E!K�F;

defined whenever E is a finite field extension of F . Since these had only been defined for
n� 2, a major part of the article is taken up with proving results on K�F for a general field,
including the existence of the transfer maps.

The theorem of Bass and Tate completes the determination of the Milnor K-groups of a
global field, except for K1 and K2.

7.4 Other results on K2F

Let F be a field containing a primitive mth root � of 1 for some m> 1. Tate (1976) showed
that, when F is a global field, every element ofK2F killed bym can be represented as f�;ag
for some a 2 F �. Tate (1977b) examines whether this holds for other fields and obtains a
number of positive results.

For a finite extension of fields E � F , there is a transfer (or trace) map TrE=F WK2E!
K2F . As K2E is generated by symbols fa;bg, in order to describe TrE=F it suffices to
describe its action on each symbol. This Rosset and Tate (1983c) do.

8 The Stark conjectures
In a series of four papers, Stark examined the behaviour of Artin L-series near s D 0
(equivalently, s D 1), and stated his now famous conjectures.140 Tate gave a seminar at
Harvard on Stark’s conjectures in the spring of 1978, after Stark had given some talks on
the subject in the number theory seminar in the fall of 1977. In 1980/81 Tate gave a course
at the Université de Paris-Sud (Orsay) in which he clarified and extended Stark’s work in
important ways. The notes of Tate’s course, when published in 1984, included most of the
results known at that date, and became the basic reference for the Stark conjectures.

Let �k.s/ be the zeta function of a number field k. A celebrated theorem of Dedekind
shows that

�k.s/ � �
R

.e=h/
sr1Cr2�1 as s! 0; (35)

where h is the class number of k, R is its regulator, e D j�.k/j, and r1C r2�1 is the rank
of the group of units in k.
140 Stark, H. M., Values of L-functions at s D 1. I. L-functions for quadratic forms. Advances in Math. 7 1971
301–343 (1971); II. Artin L-functions with rational characters. ibid. 17 (1975), no. 1, 60–92; III. Totally real
fields and Hilbert’s twelfth problem. ibid. 22 (1976), no. 1, 64–84; IV. First derivatives at s D 0. ibid. 35 (1980),
no. 3, 197–235.
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Let K be a finite Galois extension of k, with Galois group G D G.K=k/. Stark’s
insight was that the decomposition of �K.s/ into a product of Artin L-series indexed by the
irreducible characters of G should induce an interesting decomposition of (35).

STARK’S MAIN CONJECTURE

Let �WG!C be the character of a finite-dimensional complex representation �WG!GL.V /
of G. For a finite set S of primes of k containing the infinite primes, let

L.s;�/D
Y

p…S

1

det.1��.�p/Np�sjV IP/

(Artin L-function relative to S ; cf. 1.1). Let SK be the set of primes of K lying over a
prime in S , let Y be the free Z-module on SK , and let X be the submodule of Y of elementsP
nww such that

P
nw D 0. Then L.s;�/ has a zero of multiplicity r.�/ at s D 0, where

r.�/D dimC HomG.V _;XC/:

Let U be the group of SK-units in K. The unit theorem provides us with an isomorphism

�WUR!XR; u 7!
X

w2SK
log jujww.

For each choice of an isomorphism of G-modules f WXQ! UQ, Tate (1984, p.26) defines
the Stark regulator, R.�;f /, to be the determinant of the endomorphism of HomG.V _;XC/

induced by �C ıfC. Then

L.s;�/ �
R.�;f /

A.�;f /
sr.�/ as s! 0

for a complex number A.�;f /. The main conjecture of Stark, as formulated by Tate (1984,
p.27), says that

A.�;f /˛ D A.�˛;f / for all automorphisms ˛ of C;

where �˛ D ˛ ı�. In particular, A.�;f / is an algebraic number, lying in the cyclotomic
field Q.�/. Tate proves that the validity of the conjecture is independent of both f and S ,
and that it suffices to prove it for irreducible characters � of dimension 1 (application of
Brauer’s theorem p.59).

CHARACTERS WITH VALUES IN Q

When the character � takes its values in Q, Stark’s conjecture predicts that A.�;f / 2 Q
for all f . If, in addition, � is a Z-linear combination of characters induced from trivial
characters, then the proof of the conjecture comes down to the case of a trivial character,
where it follows from (35). Some multiple of � has this form, and so this shows that some
power of A.�;f / is in Q (Stark 1975). Tate proves (1984, Chapter II) that A.�;f / itself
lies in Q. His proof makes heavy use of the cohomology of number fields, including the
theorems in 1.3.
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THE CASE THAT L.s;�/ IS NONZERO AT s D 0

When r.�/ D 0, the Stark regulator R.�;f / D 1, and Stark’s conjecture becomes the
statement:

L.0;�/˛ D L.0;�˛/ for all automorphisms ˛ of C:

This special case of Stark’s conjecture is also a special case of Deligne’s conjecture on the
critical values of motives (Deligne 1979, §6).141 Using a refinement of Brauer’s theorem (cf.
p.59), Tate writes L.s;�/ as a sum of partial zeta functions:

L.s;�/D
X

�2G.K=k/

�.�/ � �.s;�/; �.s;�/D
X

.a;K=k/D�

Na�s

(Tate 1984, III 1). According to an important theorem of Siegel,142 �.0;�/ 2 Q, which
proves Stark’s conjecture in this case.

THE CASE THAT L.s;�/ HAS A FIRST ORDER ZERO AT s D 0

By contrast, when r.�/D 1, the conjecture is still unknown, but it has remarkable conse-
quences. Let CŒG� be the group algebra of G, and let

e� D
�.1/

jGj

X
�2G

�.��1/ ��

be the idempotent in CŒG� that projects every representation of G onto its �-component. For
an a 2Q.�/ and a character � with r.�/D 1, let

�.a;�/D
X

˛2G.Q.�/=Q/

a˛ �L0.0;�˛/ � ex�˛ 2 CŒG�:

The character � is realized on a QŒG�-submodule UW of UQ, and Stark’s conjecture is true
for � if and only if

�.a;�/XQ D �.UW / (inside XC).

(Tate 1984, III 2.1). More explicitly, let 	 be a set of irreducible characters �¤ 1 of G
such that r.�/D 1, and assume that 	 is stable under Aut.C/. Let .a�/�2	 be a family of
complex numbers such that a�˛ D .a�/˛ for all ˛ 2 Aut.C/. If Stark’s conjecture holds for
the � 2 	 , then for each prime v of S and extension of v to a prime w of K, there exists an
integer m> 0 and an S -unit " of K such that

�."/Dm
X
�2	

a� �L
0.0;�/ � ex� �wI (36)

once m has been fixed, " is unique up to a root of 1 in K (ibid. III §3). The units " arising
(conjecturally) in this way are called Stark units. They are analogous to the cyclotomic units
in cyclotomic fields.

141 Deligne, P. Valeurs de fonctions L et périodes d’intégrales. Proc. Sympos. Pure Math., XXXIII, Automorphic
forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Part 2, pp. 313–346, Amer. Math. Soc., Providence, R.I., 1979. 142 Siegel, Carl Ludwig. Über die
Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 15–56.
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FINER CONJECTURES WHEN K=k IS ABELIAN

When K=k is abelian, (36) can be made into a more precise form of Stark’s conjecture,
which Tate denotes St.K=k;S/ (Stark 1980; Tate 1984, IV 2). For a real prime w of K and
certain hypotheses on S , St.K=k;S/ predicts the existence of a unit ".K;S;w/ 2 U such
that

".K;S;w/� D exp.�2�0.0;�//; all � 2G:

When we use w to embed K in R, the ".K;S;w/ lie in the abelian closure of k in R. In the
case that k is totally real, Tate (1984, 3.8) determines the subfield they generate; for example,
when ŒKWQ� D 2, they generate the abelian closure of k in R. This has implications for
Hilbert’s 12th problem. To paraphrase Tate (ibid. p.95):

If the conjecture St.K=k;S/ is true in this situation, then the formula

"D exp.�2�0.0;1//

gives generators of abelian extensions of k that are special values of transcen-
dental functions. Finding generators of class fields of this shape is the vague
form of Hilbert’s 12th problem, and the Stark conjecture represents an important
contribution to this problem. However, it is a totally unexpected contribution:
Hilbert asked that we discover the functions that play, for an arbitrary number
field, the same role as the exponential function for Q and the elliptic modular
functions for a quadratic imaginary field. In contrast, Stark’s conjecture, by
using L-functions directly, bypasses the transcendental functions that Hilbert
asked for. Perhaps a knowledge of these last functions will be necessary for the
proof of Stark’s conjecture.

Remarkably, St.K=k;S/ is useful for the explicit computation of class fields, and has even
been incorporated into the computer algebra system PARI/GP.

For an abelian extension K=k, Tate introduced another conjecture, combining ideas of
Brumer and Stark, and which he calls the Brumer-Stark conjecture. Let S be a set of primes
of k including a finite prime p that splits completely in K, and let T D S Xfpg. Assume that
T contains the infinite primes and the primes that ramify in K. Let

�T .0/D
X

� irreducible

L.0;�/ex� 2 CŒG�:

Brumer conjectured that, for every ideal A of K, Ae�T .0/ is principal; the Brumer-Stark
conjecture BS.K=k;T / says that Ae�T .0/ D .˛/ for an ˛ satisfying certain conditions on
the absolute values j˛jw (w 2 T ) and that K.˛

1
e / is an abelian extension of k (Tate 1984,

6.2).143 Tate proved this conjecture for k DQ (ibid. 6.7) and for quadratic extensions K=k
(Tate 1981b).

FUNCTION FIELDS

All of the conjectures make sense for a global field k of characteristic p ¤ 0. In this case,
the Artin L-series are rational functions in q�s , where q is the order of the field of constants,
and Stark’s main conjecture follows easily from the known properties of these functions.

143 Recall that e D j�.k/j.
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However, as Mazur pointed out, the Brumer-Stark conjecture is far from trivial for function
fields. Tate gave a seminar in Paris in early fall 1980 in which he discussed the conjecture
and some partial results he had obtained. Deligne attended the seminar, and later gave a
proof of the conjecture using his one-motives. This proof is included in Chapter V of Tate
1984.

p-ADIC ANALOGUES

Tate’s reformulation of Stark’s conjecture helped inspire two p-adic analogues of his main
conjecture, one for s D 0 (Gross) and one for s D 1 (Serre) — the absence of a functional
equation for the p-adic L-series makes these distinct conjectures. In a 1997 letter, Tate
proposed a refinement of Gross’s conjecture. This letter was published, with additional
comments, as Tate 2004.

There is much numerical evidence for the Stark conjectures, found by Stark and others.
As Tate (1981a, p.977) notes: “Taken all together, the evidence for the conjectures seems to
me to be overwhelming”.

9 Noncommutative ring theory
The Tate conjecture for divisors on a variety is related to the finiteness of the Brauer
group of the variety, which is defined to be the set of the similarity classes of sheaves of
(noncommutative) Azumaya algebras on the variety. This connection led M. Artin to an
interest in noncommutative rings, which soon broadened beyond Azumaya algebras. Tate
wrote a number of articles on noncommutative rings in collaboration with Artin and others.

9.1 Regular algebras
A ring A is said to have finite global dimension if there exists an integer d such that every
A-module has a projective resolution of length at most d . The smallest such d is then called
the global dimension of A. Serre144 showed that a commutative ring is noetherian of finite
global dimension if and only if it is regular.

Let k be a field. Artin and Schelter (1987)145 defined a finitely generated k-algebra to be
regular if it is of the form

AD k˚A1˚A2˚�� � ; (37)

and
(a) A has finite global dimension (defined in terms of graded A-modules),
(b) A has polynomial growth (i.e., dimAn is bounded by a polynomial function in n), and
(c) A is Gorenstein (i.e., the k-vector space ExtiA.k;A/ has dimension 1 when i is the

global dimension of A, and is zero otherwise).
The only commutative graded k-algebras satisfying these conditions and generated in degree
1 are the polynomial rings. It is expected that the regular algebras have many of the good
properties of polynomial rings. For example, Artin and Schelter conjecture that they are
noetherian domains. The dimension of a regular algebra is its global dimension.

144 Serre, Jean-Pierre, Algèbre locale. Multiplicités. Seconde édition, 1965. Lecture Notes in Mathematics, 11
Springer-Verlag, Berlin-New York 1965 145 Artin, Michael; Schelter, William F.; Graded algebras of global
dimension 3. Adv. in Math. 66 (1987), no. 2, 171–216.



9 NONCOMMUTATIVE RING THEORY 57

In collaboration with Artin and others, Tate studied regular algebras, especially the
classification of those of low dimension.

From now on, we require regular k-algebras to be generated in degree 1. Such an algebra
is a quotient of a tensor algebra by a homogeneous ideal.

A regular k-algebra of dimension one is a polynomial ring, and one of dimension two is
the quotient of the free associative algebra khX;Y i by a single quadratic relation, which can
be taken to be XY � cYX .c ¤ 0/ or XY �YX �Y 2. Thus, the first interesting dimension
is three. Artin and Schelter (ibid.) showed that a regular k-algebra of dimension three either
has three generators and three relations of degree two, or two generators and two relations of
degree three. Moreover, they showed that the algebras fall into thirteen families. While the
generic members of each family are regular, they were unable to show that all the algebras
in the families are regular. Artin, Tate, Van den Bergh (1990a) overcame this problem, and
consequently gave a complete classification of these algebras. Having found an explicit
description of all the algebras, they were able to show that they are all noetherian.

These two articles introduced new geometric techniques into noncommutative ring
theory. They showed that the regular algebras of dimension 3 correspond to certain triples
.E;L;�/ where E is a one-dimensional scheme of arithmetic genus 1 which is embedded
either as a cubic divisor in P2 or as a divisor of bidegree .2;2/ in P1�P1, LDOE .1/ is
an invertible sheaf on E, and � is an automorphism of E. The scheme E parametrizes the
point modules for A, i.e., the graded cyclic right A-modules, generated in degree zero, such
that dimk.Mn/D 1 for all n� 0. The geometry of .E;�/ is reflected in the structure of the
point modules, and Artin, Tate, van den Bergh (1991a) exploit this relation to prove that
the 3-dimensional regular algebra corresponding to a triple .E;L;�/ is finite over its centre
if and only if the automorphism � has finite order. They also show that noetherian regular
k-algebras of dimension � 4 are domains.

9.2 Quantum groups
A bialgebra A over a field k is a k-module equipped with compatible structures of an
associative algebra with identity and of a coassociative coalgebra with coidentity. A bialgebra
is called a Hopf algebra if it admits an antipodal map (linear map S WA!A such that certain
diagrams commute).

A bialgebra is said to be commutative if it is commutative as a k-algebra. The commuta-
tive bialgebras (resp. Hopf algebras) over k are exactly the coordinate rings of affine monoid
schemes (resp. affine group schemes) over k.

Certain Hopf algebras (not necessarily commutative) are called quantum groups. For
example, there is a standard one-parameter family O.GLn.q//, q 2 k�, of Hopf algebras
that takes the value O.GLn/ for q D 1. This can be regarded as a one-parameter deformation
of O.GLn/ by Hopf algebras, or of GLn by quantum groups.

Artin, Schelter, and Tate (1991b) construct a family of deformations of O.GLn/, depend-
ing on 1C

�
n
2

�
parameters, which includes the family O.GLn.q//. The algebras in the family

are all twists of O.GLn.q// by 2-cocycles. They first construct a family of deformations
of O.Mn/ by bialgebras that are graded algebras generated in degree 1, have the same
Hilbert series as the polynomial ring in n2 variables, and are noetherian domains. The family
of deformations of O.GLn/ is then obtained by inverting the quantum determinant. The
algebras in the family of deformations of O.Mn/ are regular in the sense of (9.1), and so
this gives a large class of regular algebras with the expected good properties.
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9.3 Sklyanin algebras
As noted in (9.1), regular algebras of degree 3 over a field k correspond to certain triples
.E;L;�/ with E a curve, L an invertible sheaf of degree 3 on E, and � an automorphism of
E. When E is a nonsingular elliptic curve and � is translation by a point P in E.k/, the
algebra A.E;L;�/ is called a Sklyanin algebra. Let U D � .E;L/. This is a 3-dimensional
k-vector space, and we can identify U ˝U with � .E;L�L/. The algebra A.E;L;�/ is
the quotient of the tensor algebra T .U / of U by ff 2 U ˝U j f .x;xCP / D 0g. It is
essentially independent of L, because any two invertible sheaves of degree 3 differ by a
translation. More generally, there is Sklyanin algebra A.E;L;�/ for every triple consisting
of a nonsingular elliptic curve, an invertible sheaf L of degree d on E, and a translation by a
point in E.k/. The algebra A.E;L;�/ has dimension d .

Artin, Schelter, and Tate (1994c) give a precise description of the centres of Sklyanin
algebras of dimension three, and Smith and Tate (1994d) extend the description to those of
dimension four.

Tate and van den Bergh (1996) prove that every d -dimensional Sklyanin algebra
A.E;L;�/ is a noetherian domain, is Koszul, has the same Hilbert series as a polyno-
mial ring in d variables, and is regular in the sense of (9.1); moreover, if � has finite order,
then A.E;L;�/ is finite over its centre.

10 Miscellaneous articles

1951a TATE, JOHN. ON THE RELATION BETWEEN EXTREMAL POINTS OF CONVEX SETS

AND HOMOMORPHISMS OF ALGEBRAS. COMM. PURE APPL. MATH. 4, (1951). 31–32.

Tate considers a convex set K of linear functionals on a commutative algebra A over R.
Under certain hypotheses on A and K, he proves that the extremal points of K are exactly
the homomorphisms from A into R.

1951b ARTIN, EMIL; TATE, JOHN T. A NOTE ON FINITE RING EXTENSIONS. J. MATH.
SOC. JAPAN 3, (1951). 74–77.

Artin and Tate prove that if S is a commutative finitely generated
algebra over a noetherian ring R, and T is a subalgebra of S such
that S is finitely generated as a T -module, then T is also finitely
generated over R. This statement generalizes a lemma of Zariski,
and is now known as the Artin-Tate lemma. There are various
generalizations of it to noncommutative rings.

S

T

R noetherian

finite

) fg

fg

1952a TATE, JOHN. GENUS CHANGE IN INSEPARABLE EXTENSIONS OF FUNCTION

FIELDS. PROC. AMER. MATH. SOC. 3, (1952). 400–406.

Let C be a complete normal geometrically integral curve over a field k of characteristic p,
and let C 0 be the curve obtained from C by an extension of the base field k! k0. If k0 is
inseparable over k, then C 0 need not be normal, and its normalization zC 0 may have genus
g. zC 0/ less than the genus g.C / of C . However, Tate proves that

p�1

2
divides g.C /�g. zC 0/: (38)
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In particular, the genus of C can’t change if g.C / < .p� 1/=2 (which implies that C is
smooth in this case).

Statement (38) is widely used. Tate derives it from a “Riemann-Hurwitz formula” for
purely inseparable coverings, which he proves using the methods of the day (function fields
and repartitions). A modern proof has been given of (38)146, but not, as far as I know, of the
more general formula.

1952b LANG, SERGE; TATE, JOHN. ON CHEVALLEY’S PROOF OF LUROTH’S THEOREM.
PROC. AMER. MATH. SOC. 3, (1952). 621–624.

Chevalley (1951, p. 106)147 proved Lüroth’s theorem in the following form: let k0 be a field,
and let k D k0.X/ be the field of rational functions in the symbol X (i.e., k is the field of
fractions of the polynomial ring k0ŒX�); then every intermediate field k0, k0 ¤ k0 � k, is of
the form k0.f / for some f 2 k.

A classical proof of Lüroth’s theorem uses the Riemann-Hurwitz formula. Let k be
a function field in one variable over a field k0, and let k0 be an intermediate field; the
Riemann-Hurwitz formula shows that, if k=k0 is separable, then

g.k0/� g.k/:

Therefore, if k has genus zero, so also does k0; if, in addition, k has a prime of degree 1, so
also does k0, and so k0 is a rational field (by a well-known criterion).

However, if k=k0 is not separable, it may happen that g.k0/ > g.k/. Chevalley proved
Lüroth’s theorem in nonzero characteristic by showing directly that, when k D k0.X/, every
intermediate field k has genus zero. Lang and Tate generalized Chevalley’s argument to
prove:

Let k be a function field in one variable over a field k0, and let k0 be an
intermediate field; if k is separably generated over k0, then g.k0/� g.k/:

In other words, they showed that Chevalley’s argument doesn’t require that k D k0.X/ but
only that it be separably generated over k0. They also prove a converse statement:

A field of genus zero that is not separably generated over its field of constants
contains subfields of arbitrarily high genus.

Finally, to complete their results, they exhibit a field of genus zero, not separably generated
over its field of constants.

1955b BRAUER, RICHARD; TATE, JOHN. ON THE CHARACTERS OF FINITE GROUPS.
ANN. OF MATH. (2) 62, (1955). 1–7.

Recall (p.5) that Brauer’s theorem says that every character � of a finite group G can be
expressed in the form

�D
X

i
ni Ind�i ; ni 2 Z;

146 Schröer, Stefan, On genus change in algebraic curves over imperfect fields. Proc. Amer. Math. Soc. 137
(2009), no. 4, 1239–1243. 147 Chevalley, Claude. Introduction to the Theory of Algebraic Functions of One
Variable. Mathematical Surveys, No. VI. American Mathematical Society, New York, N. Y., 1951.
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with the �i one-dimensional characters on subgroups of G (as conjectured by Artin). Brauer
and Tate found what is probably the simplest known proof of Brauer’s theorem. Recall that
a group is said to be elementary if it can be expressed as the product of a cyclic group with
a p-group for some prime p. An elementary group is nilpotent, and so every irreducible
character of it is induced from a one-dimensional character on a subgroup. Let G be a finite
group, and let H be a set of subgroups of G. Consider the following three Z-submodules of
the space of complex-valued functions on G:

X.G/D spanfirreducible characters of Gg (module of virtual characters)

Y D spanfcharacters of G induced from an irreducible character of an H in Hg
U D fclass functions � on G such that �jH 2X.H/ for all H in Hg:

Brauer and Tate show that
U �X.G/� Y ,

that U is a ring, and that Y is an ideal of U . Using this, they show that if H consists of
the elementary subgroups of G, then U D Y , thereby elegantly proving not only Artin’s
conjecture (the equality X.G/ D Y ), but also the main theorem of Brauer 1953148 (the
equality U DX.G/).

1957 TATE, JOHN. HOMOLOGY OF NOETHERIAN RINGS AND LOCAL RINGS. ILLINOIS J.
MATH. 1 (1957), 14–27.

Tate makes systematic use of the skew-commutative graded differential algebras over a
noetherian commutative ring R to obtain results concerning R and its quotient rings. The
differential of such an R-algebra allows it to be regarded as a complex, and Tate proves that
every quotient R=a of R has a free resolution that is an R-algebra (in the above sense). Such
resolutions are now called Tate resolutions.

LetR be a local noetherian ring with maximal ideal m. The Betti series ofR is defined to
be the formal power series RD

P
r�0 brZ

r with br equal to the length of TorRr .R=m;R=m/.
Serre (1956)149 showed that R is regular if and only if R is a polynomial, in which case
RD .1CZ/d with d D dim.R/. Tate showed that RD .1CZ/d=.1�Z2/b1�d if R is a
complete intersection. In general, he showed that the natural homomorphism^�

TorR1 .R=m;R=m/! TorR.R=m;R=m/

is injective and realizes TorR.R=m;R=m/ as a free module over
V�TorR1 .R=m;R=m/ with

a homogeneous basis. IfR is regular, then the homomorphism is an isomorphism; conversely,
if the homomorphism is an isomorphism on one homogeneous component of degree � 2,
then R is regular.

1962a FRÖHLICH, A.; SERRE, J.-P.; TATE, J. A DIFFERENT WITH AN ODD CLASS. J.
REINE ANGEW. MATH. 209 1962 6–7.

Let A be a Dedekind domain with field of fractions K, and let B be the integral closure of A
in a finite separable extension of K. The different D of B=A is an ideal in B , and its norm d

148 Brauer, Richard, A characterization of the characters of groups of finite order. Ann. of Math. (2) 57, (1953).
357–377. 149 Serre, Jean-Pierre, Sur la dimension homologique des anneaux et des modules noethériens.
Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, pp. 175–189.
Science Council of Japan, Tokyo, 1956.
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is the discriminant ideal of B=A. The ideal class of d is always a square, and Hecke (1954,
§63)150 proved that the ideal class of D is a square when K is a number field, but the authors
show that it need not be a square otherwise. Specifically, they construct examples of affine
curves over perfect fields whose coordinate rings A have extensions B for which the ideal
class of the different is not a square.151

This is not a major result. However, Martin Taylor152 writes:

[This article and Fröhlich’s earlier work on discriminants] seems to have marked
the start of [his] interest in parity questions. He would go on to be interested in
whether conductors of real-valued characters were squares; this in turn led to
questions about the signs of Artin root numbers — an issue that lay right at the
heart of his work on Galois modules.

Fröhlich’s work on Artin root numbers and Galois module structures was his most important.

1963 SEN, SHANKAR; TATE, JOHN. RAMIFICATION GROUPS OF LOCAL FIELDS. J.
INDIAN MATH. SOC. (N.S.) 27 1963 197–202 (1964).

Let F be a field, complete with respect to a discrete valuation, and let K be a finite Galois
extension of F . Assume initially that the residue field is finite, and let W be the Weil
group ofK=F (extension of G.K=F / byK� determined by the fundamental class ofK=F ).
Shafarevich showed that there is a homomorphism s making the following diagram commute

1 ����! K� ����! W ����! G.K=F / ����! 1??yr ??ys 



1 ����! G.Kab=K/ ����! G.Kab=F / ����! G.K=F / ����! 1;

where r is the reciprocity map. For a real t > 0, let G.Kab=K/t denote the t th ramification
subgroup of G.Kab=K/. Then

r�1.G.Kab=K/t /D U tK
def
D

�
fu 2K� j ordK.u/D 0g if t D 0
fu 2K� j ordK.u�1/� tg if t > 0:

(39)

Artin and Tate (1961) proved the existence of the Shafarevich map s for a general
class formation. When the residue field of F is algebraically closed, the groups �1.UK/
(fundamental group of UK regarded as a pro-algebraic group) form a class formation, and so
the above diagram exists with K� replaced by �1.UK/. In this case,

r�1.G.Kab=K/t /D �1.U
t
K/: (40)

In both cases, Sen and Tate give a description of the subgroups s�1.G.Kab=F /t / of W
generalizing those in (39) and (40), which can be considered the case K D F . Specifically,
let G.K=F /x , x � 0, denote with ramification groups of K=F with the lower numbering,
and let

'.x/D

Z x

0

du

.G.K=F /0WG.K=F /u/
for x � 0:

150 Hecke, Erich, Vorlesungen über die Theorie der algebraischen Zahlen. 2te Aufl. (German) Akademische
Verlagsgesellschaft, Geest & Portig K.-G., Leipzig, 1954. 151 Hecke’s theorem can be proved for global fields
of characteristic p ¤ 0 by methods similar to those of Hecke (Armitage, J. V., On a theorem of Hecke in number
fields and function fields. Invent. Math. 2 1967 238–246). 152 Taylor, M. J. Obituary: Albrecht Fröhlich,
1916–2001. Bull. London Math. Soc. 38 (2006), no. 2, 329–350.
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For u 2W , letm.u/ > 0 be the smallest integer such that um.u/ 2K� (resp. �1.UK/). Then

W '.x/
D

n
u 2W

ˇ̌̌
um.u/ 2 U

m.u/�x
K (resp. �1.U

m.u/�x
K /)

o
.

1964c TATE, JOHN. NILPOTENT QUOTIENT GROUPS. TOPOLOGY 3 1964 SUPPL. 1
109–111.

For a finite group G, subgroup S , and positive integer p; there are restriction maps r and
transfer maps t ,

H i .G;Z=pZ/
ri

�!H i .S;Z=pZ/
t i

�!H i .G;Z=pZ/; i � 0;

whose composite is multiplication by .GWS/.
Let S be Sylow p-subgroup of G (so p is prime). If S has a normal p-complement in

G, then the restriction maps are isomorphisms, and Atiyah asked whether the converse is
true. Thompson pointed out that the answer is yes, and that results of his and Huppert show
that one need only require that r1 is an isomorphism. Tate gives a very short cohomological
proof of a somewhat stronger result.

Specifically, for a finite group G, define a descending sequence of normal subgroups of
G as follows:

G0 DG; GnC1 D .Gn/
p ŒG;Gn� for n� 0; G1 D

\1

nD0
Gn

(p not necessarily prime). Thus, G=G1 (resp. G=G1) is the largest quotient group of G
that is abelian of exponent p (resp. nilpotent and p-primary). Let S be a subgroup of G of
index prime to p. The following three conditions are (obviously) equivalent,
˘ the restriction map r1WH 1.G;Z=pZ/!H 1.S;Z=pZ/ is an isomorphism,
˘ the map S=S1!G=G1 is an isomorphism,
˘ S \G1 D S1,

and Tate proves that they imply
˘ S \Gn D Sn for all 1� n�1.

When S is a Sylow p-subgroup of G, S \G1 D 1, and so the conditions imply that G1 is
a normal p-complement of S in G (thereby recovering the Huppert-Thompson theorem).

1968b TATE, JOHN. RESIDUES OF DIFFERENTIALS ON CURVES. ANN. SCI. ÉCOLE

NORM. SUP. (4) 1 1968 149–159.

Tate defines the residues of differentials on curves as the traces of certain “finite potent”
linear maps. From his definition, all the standard theorems on residues follow naturally and
easily. In particular, the residue formulaX

P2C
resp.!/D 0 (C a complete curve)

follows directly, without computation, from the finite dimensionality of the cohomology
groupsH 0.C;OC / andH 1.C;OC / “almost as though one had an abstract Stokes’s Theorem
available”.

A linear map � WV ! V is finite potent if �nV is finite dimensional for some n. The
trace TrV .�/ of such a map can be defined to be its trace on any finite dimensional subspace
W of V such that �W �W and �nV �W for some n. Many of the properties of the usual
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trace continue to hold, but not all. For example, linearity fails even for two finite potent
operators on an infinite-dimensional vector space.153 Tate defines the residue of a differential
f dg at a closed point p of a curve C to be the trace of the commutator Œfp;gp�, where fp ,
gp are representatives of f , g in a certain subspace of End.k.C /p/.

Tate’s approach to residues has found its way into the text books (e.g., Iwasawa 1993154).
Elzein155 used Tate’s ideas to give a definition of the residue that recaptures both Leray’s in
the case of a complex algebraic variety and Grothendieck’s in the case of a smooth integral
morphisms of relative dimension n.

Others have adapted his proof of the residue formula to other situations; for example,
Arbarello et al (1989)156 use it to prove an “abstract reciprocity law” for tame symbols on
a curve over an algebraically closed field, and Beilinson et al (2002)157 use it to prove a
product formula for "-factors in the de Rham setting.

In reading Tate’s article, Beilinson recognized that a certain linear algebra construction
there can be reformulated as the construction of a canonical central extension of Lie algebras.
This led to the notion of a Tate extension in various settings; see Beilinson and Schechtman
1988,158 and Beilinson and Drinfeld 2004, 2.7.159

1978a CARTIER, P.; TATE, J. A SIMPLE PROOF OF THE MAIN THEOREM OF ELIMINATION

THEORY IN ALGEBRAIC GEOMETRY. ENSEIGN. MATH. (2) 24 (1978), NO. 3-4, 311–
317.

The authors give an elementary one-page proof of the homogeneous form of Hilbert’s
theorem of zeros:

let a be a graded ideal in a polynomial ring kŒX0; : : : ;Xn� over a field k; either
the radical of a contains the ideal .X0; : : : ;Xn/, or a has a nontrivial zero in an
algebraic closure of k.

From this, they quickly deduce the main theorem of elimination theory, both in its classical
form and in its modern form:

let AD
L
d�0Ad be a graded commutative algebra such that A is generated

as an A0-algebra by A1 and each A0-module Ad is finitely generated; then the
map of topological spaces proj.A/! spec.A0/ is closed.

153 Julia Ramos Gonzalez and Fernando Pablos Romo, A Negative Answer to the Question Of the Linearity of
Tate’s Trace for the Sum of Two Endomorphisms (preprint 2012). 154 Iwasawa, Kenkichi Algebraic functions.
Translated from the 1973 Japanese edition by Goro Kato. Translations of Mathematical Monographs, 118.
American Mathematical Society, Providence, RI, 1993. 155 Elzein, Fouad, Résidus en géométrie algébrique.
C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A878–A881. 156 Arbarello, E.; De Concini, C.; Kac, V. G.
The infinite wedge representation and the reciprocity law for algebraic curves. Theta functions—Bowdoin
1987, Part 1 (Brunswick, ME, 1987), 171–190, Proc. Sympos. Pure Math., 49, Part 1, Amer. Math. Soc.,
Providence, RI, 1989. 157 Beilinson, Alexander; Bloch, Spencer; Esnault, Hélène, "-factors for Gauss-Manin
determinants. Dedicated to Yuri I. Manin on the occasion of his 65th birthday. Mosc. Math. J. 2 (2002), no. 3,
477–532. 158 Beı̆linson, A. A.; Schechtman, V. V. Determinant bundles and Virasoro algebras. Comm. Math.
Phys. 118 (1988), no. 4, 651–701. 159 Beilinson, Alexander; Drinfeld, Vladimir. Chiral algebras. American
Mathematical Society Colloquium Publications, 51. American Mathematical Society, Providence, RI, 2004.
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1989 GROSS, B.; TATE, J. COMMENTARY ON ALGEBRA. A CENTURY OF MATHEMATICS

IN AMERICA, PART II, 335–336, HIST. MATH., 2, AMER. MATH. SOC., PROVIDENCE,
RI, 1989.

For the bicentenary of Princeton University in 1946, there was a three-day conference in
which various distinguished mathematicians discussed Problems in Mathematics. Artin,
Brauer, and others contributed to the discussion on algebra, and in 1989 Gross and Tate
wrote a commentary on their remarks. For example:

Artin’s belief that “whatever can be said about non-Abelian class field theory
follows from what we know now,” and that “our difficulty is not in the proofs,
but in learning what to prove,” seems overly optimistic.

1994b TATE, JOHN. THE NON-EXISTENCE OF CERTAIN GALOIS EXTENSIONS OF Q
UNRAMIFIED OUTSIDE 2. ARITHMETIC GEOMETRY (TEMPE, AZ, 1993), 153–156,
CONTEMP. MATH., 174, AMER. MATH. SOC., PROVIDENCE, RI, 1994.

In a 1973 letter to Tate, Serre suggested that certain two-dimensional mod p representations
of Gal.Qal=Q/ should be modular. In response, Tate verified this for p D 2 by showing that
every two-dimensional mod 2 representation unramified outside 2 has zero trace. The article
is based on his letter.

Serre’s suggestion became Serre’s conjecture on the modularity of two-dimensional mod
p representations, which attracted much attention because of its relation to the modularity
conjecture for elliptic curves over Q and Fermat’s last theorem. Serre’s conjecture was
recently proved by an inductive argument that uses Tate’s result as one of the base cases.160

1996a TATE, JOHN; VOLOCH, JOSÉ FELIPE . LINEAR FORMS IN p-ADIC ROOTS OF

UNITY. INTERNAT. MATH. RES. NOTICES 1996, NO. 12, 589–601.

The authors make the following conjecture: for a semi-abelian variety A over Cp and a
closed subvariety X , there exists a lower bound c > 0 for the p-adic distance of torsion
points of A, not in X , to X . Here, as usual, Cp is the completion of an algebraic closure of
Qp. They prove the conjecture for the torus

AD SpecCpŒT1;T �11 ; : : : ;Tn;T
�1
n �:

This comes down to proving the following explicit statement: for every hyperplane

a1T1C�� �CanTn D 0

in Cnp, there exists a constant c > 0, depending on .a1; : : : ;an/, such that, for any n-tuple
�1; : : : ; �n of roots of 1 in Cp, either a1�1C�� �Ca1�n D 0 or ja1�1C�� �Ca1�nj � c.

2002a TATE, JOHN. ON A CONJECTURE OF FINOTTI. BULL. BRAZ. MATH. SOC. (N.S.)
33 (2002), NO. 2, 225–229.

In his study of the Teichmüller points in canonical lifts of elliptic curves, Finotti was led to a
conjecture on remainders of division by polynomials.161 He checked it by computer for all
primes p � 877, and Tate proved it in general. The statement is:
160 Khare, Chandrashekhar; Wintenberger, Jean-Pierre. Serre’s modularity conjecture. I. Invent. Math. 178
(2009), no. 3, 485–504. II. Ibid. 505–586. 161 L. R. A. Finotti, Canonical and minimal degree liftings of
curves, J. Math. Sci. Univ. Tokyo 11 (2004), no. 1, 1–47 (Ph.D. thesis, Univ. Texas, 2001).
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Let k be a field of characteristic p D 2mC 1 � 5. Let F 2 kŒX� be a monic
cubic polynomial, and let A be the coefficient of Xp�1 in Fm. Let G 2 kŒX�
be a polynomial of degree 3mC 1 such that G0 D Fm�AXp�1. Then the
remainder in the division of G2 by XpFmC1 has degree � 5mC2D 5p�1

2
.
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Added September 2012
I should have mentioned the work of Tate on liftings of Galois representations, as included
in Part II of: Serre, J.-P. Modular forms of weight one and Galois representations. Algebraic
number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham,
1975), pp. 193–268. Academic Press, London, 1977. See also: Variations on a theorem of
Tate. Stefan Patrikis. arXiv:1207.6724.

Also, “An oft cited (1979) letter from Tate to Serre on computing local heights on elliptic
curves.” was posted on the arXiv by Silverman (arXiv:1207.5765).

The collected works of Tate, which will include other unpublished letters, is in prepara-
tion.
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