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Abstract

Grothendieck introduced the notion of a “motif” in a letter to Serre in 1964. Later
he wrote that, among the objects he had been privileged to discover, they were the most
charged with mystery and formed perhaps the most powerful instrument of discovery.1

In this talk, I shall explain what motives are, and why Grothendieck valued them so
highly.

These are my notes for a “popular” talk in the ‘What is . . . ?’ seminar at the Uni-
versity of Michigan, Feb 3, 2009. 2
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1 Cohomology in topology

LetX be a compact manifold of dimension 2n. There are attached toX cohomology groups

H 0.X;Q/; : : : ;H 2n.X;Q/;
�First posted February 18, 2009 (v1.00). Available at www.jmilne.org/math/
1Parmi toutes les chose mathématiques que j’avais eu le privilège de découvrir et d’amener au jour, cette

réalité des motifs m’apparaı̂t encore comme la plus fascinante, la plus chargée de mystère — au coeur même
de l’identité profonde entre la “géométrie” et l’ “arithmétique”. Et le “yoga des motifs” . . . est peut-être le plus
puissant instrument de décourverte que j’aie dégagé dans cette première période de ma vie de mathématicien.

Grothendieck, Récoltes et Semailles, Introduction.
(Among all the mathematical things that I have had the privilege to discover and bring to the light of day, the
reality of motives still appears to me the most fascinating, the most charged with mystery — at the heart even
of the profound identity between “geometry” and “arithmetic”. And the “yoga of motives” . . . is perhaps the
most powerful instrument of discovery found by me during the first period of my life as a mathematician.)

2Written after the lecture, of course. This is what I would have said if I’d been better organized and had had
more time.
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2 COHOMOLOGY IN ALGEBRAIC GEOMETRY 2

which are finite-dimensional Q-vector spaces satisfying Poincaré duality (H i is dual to
H 2n�i ), a Lefschetz fixed point formula, etc.. There are many different ways of defining
them — singular cochains, C̆ech cohomology, derived functors — but the different methods
all give exactly the same groups (provided they satisfy the Eilenberg-Steenrod axioms).
When X is a complex analytic manifold, there are also the de Rham cohomology groups
H i

dR.X/. These are vector spaces over C, but they are not really new either because3

H i
dR.X/ ' H

i .X;Q/˝Q C (however, whenX is Kähler, the de Rham cohomology groups
have a Hodge decomposition which provides additional information. . . ).

2 Cohomology in algebraic geometry

Now consider a nonsingular projective algebraic variety X of dimension n over an alge-
braically closed field k. Thus X is defined by polynomials over k, and the conditions mean
that, if k D C, the points X.C/ of the variety form a compact manifold of dimension 2n.

Weil’s work on the numbers of points on algebraic varieties with coordinates in finite
fields led him (in 1949) to make his famous “Weil” conjectures “concerning the number of
solutions of equations over finite fields and their relation to the topological properties of
the varieties defined by the corresponding equation over the field of complex numbers”. In
particular, he found that the numbers of points seemed to be controlled by the Betti numbers
of a similar variety over C. For example, for a curve C of genus g over the field Fp with p
elements ˇ̌

jC.Fp/j � p � 1
ˇ̌
� 2gp

1
2 ; g D genus of C;

and he was able to predict the Betti numbers of certain hypersurfaces over C by count-
ing the numbers of points on a hypersurface of the same dimension and degree over Fp

(his predictions were confirmed by Dolbeault). It was clear that most of the conjectures
would follow from a cohomology theory for algebraic varieties with good properties (Q co-
efficients, correct Betti numbers, Poincaré duality theorem, Lefschetz fixed point theorem,
: : :). In fact, as we shall see, no such cohomology theory exists with Q coefficients, but in
the following years attempts were made to find a good cohomology theory with coefficients
in some field of characteristic zero (not Q). Eventually, in the 1960s Grothendieck defined
étale cohomology and crystalline cohomology, and showed that the algebraically-defined
de Rham cohomology has good properties in characteristic zero. The problem then became
that we had too many good cohomology theories!

Besides the usual valuation on Q, there is another valuation for each prime number `
defined by

j`r m
n
j D 1=`r ; m; n 2 Z and not divisible by `:

Each valuation makes Q into a metric space, and on completing it we obtain fields Q2, Q3,
Q5, : : :, R. For each prime ` distinct from the characteristic of k, étale cohomology gives
cohomology groups

H 0.X;Q`/; : : : ;H
2n.X;Q`/

which are finite-dimensional vector spaces4 over Q` and satisfy Poincaré duality, a Lef-
schetz fixed point formula, etc.. Also, there are de Rham groups H i

dR.X/, which are finite-
dimensional vector spaces over k, and in characteristic p ¤ 0, there are crystalline co-

3I use' to denote a canonical isomorphism.
4There are also étale cohomology groups H i .X;Qp/ for p the characteristic of k, but they are anomolous;

for example, when E is a supersingular elliptic curve, H1.E;Qp/ D 0.
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homology groups, which are finite-dimensional vector spaces over a field of characteristic
zero (field of fractions of the ring of Witt vectors with coefficients in k).

These cohomology theories can’t be the same, because they give vector spaces over
very different fields. But they are not unrelated, because, for example, the trace of the
map ˛i WH i .X/ ! H i .X/ defined by a regular map ˛WX ! X is a rational number
independent of the cohomology theory5. Thus, in many ways, they behave as if there were
algebraically-defined cohomology groupsH i .X;Q/ such thatH i .X;Q`/ ' H

i .X;Q/˝Q
Q` etc., but, in fact, there aren’t.

3 Why is there no algebraic Q-cohomology?

Why is there no algebraically-defined Q-cohomology (functor from algebraic varieties to
Q-vector spaces) underlying the different cohomologies defined by Grothendieck?

FIRST EXPLANATION

LetX be nonsingular projective variety over an algebraically closed field k of characteristic
zero (and not too big). When we choose an embedding k ! C, we get a complex manifold
X.C/ and it is known that

H i .X;Q`/ ' H
i .X.C/;Q/˝Q`

H i
dR.X/˝k C ' H i .X.C/;Q/˝Q C:

In other words, each embedding k ,! C does define a Q-structure on the different coho-
mology groups. However, in general, different embeddings give very different Q-structures.

To see this, note that because, becauseX is defined by finitely many polynomials having
only finitely many coefficients, it has a model X0 over a subfield k0 of k such that k is an
infinite Galois extension of k0 — let � D Gal.k=k0/. The choice of the model defines an
action of � on H i .X;Q`/. If the different embeddings of k into C restricting to a fixed
embedding of k0 gave the same subspace H i .X.C/;Q/ of H i .X;Q`/, then the action of
� on H i .X;Q`/, would stabilize H i .X;Q/. But infinite Galois groups are uncountable
and H i .X;Q/ is countable, and so this would imply that � acts through a finite quotient
on H i .X;Q`/. However, this is false in general.6

The same argument shows that an algebraically-defined cohomology that gave a Q-
structure on the Q`-cohomology would force � to act through a finite quotient, and so
can’t exist.

SECOND EXPLANATION

An elliptic curve E is a curve of genus 1 with a chosen point (the zero for the group struc-
ture). Over C, E.C/ is isomorphic to the quotient of C by a lattice � (thus, topologically
it is a torus). In particular E.C/ is a group, and the endomorphisms of E are the maps
z C � 7! ˛z C � defined by a complex number ˛ such that ˛� D �. From this, it easy
to see that End.E/ ˝ Q is either Q or a field K of degree 2 over Q. The cohomology

5The proof of this in nonzero characteristic requires Deligne’s results on the Weil conjectures (1973).
6Roughly speaking, the Tate conjecture says that, when k0 is finitely generated over Q, the image of the

Galois group in Aut.H i .X;Q`// is as large as possible subject to the constraints imposed by the existence of
algebraic cycles.



4 ALGEBRAIC CYCLES 4

group H 1.X.C/;Q/ has dimension 2 as a Q-vector space, and so in the second case it has
dimension 1 as a K-vector space.

In characteristic p ¤ 0, there is a third possibility, namely, End.E/ ˝ Q can be a
division algebra (noncommutative field) of degree 4 over Q. The smallest Q-vector space
such a division algebra can act on has dimension 4.7

Thus there is not a Q-cohomology theory underlying the different cohomology theories
defined by Grothendieck, so how are we going to express the fact that, in many ways, they
behave as if there were? Grothendieck’s answer is the theory of motives. Before discussing
it, I need to explain algebraic cycles.

4 Algebraic cycles

DEFINITIONS

Let X be a nonsingular projective variety of dimension n over a field k (not necessarily
algebraically closed). A prime cycle on X is a closed algebraic subvariety Z on V that can
not be written as a union of two proper closed algebraic subvarieties. Its codimension is
n � dimZ. If Z1 and Z2 are prime cycles, then

codim.Z1 \Z2/ � codim.Z1/C codim.Z2/;

and when equality holds we say that Z1 and Z2 intersect properly.
The group C r.X/ of algebraic cycles of codimension r on X is the free abelian group

generated by the prime cycles of codimension r . Two algebraic cycles 
1 and 
2 are said
to intersect properly if every prime cycle in 
1 intersects properly with every prime cycle
in 
2, in which case their intersection product 
1 � 
2 is well-defined — it is a cycle of
codimension codimZ1 C codimZ2. For example:

P2

P

P3
P1


1 � 
2 D P1 C P2 C P3


1


2


1


2


1 � 
2 D 2P

In this way, we get a partially defined map

C r.X/ � C s.X/ � � > C rCs.X/:

In order to get a map defined on the whole of a set, we need to be able to move cycles.
Two cycles 
0 and 
1 on X are rationally equivalent8 if there exists an algebraic cycle 
 on

7The alert reader will ask how End.E/˝Z Q` can act on the two-dimensional Q`-vector spaceH1.E;Q`/.
It can because End.E/˝Z Q` � M2.Q`/ when ` ¤ p. The ring End.E/˝Z Qp may be a division algebra,
but this is OK because the coefficient field for crystalline cohomology is not Qp unless k D Fp , in which case
the third possibility doesn’t occur. Thus there is no contradiction (but only just).

8This is the algebraic analogue of homotopy equivalence.
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X � P1 such that 
0 is the fibre of 
 over 0 and 
1 is the fibre of 
 over 1. This generates
an equivalence relation, and we let C r

rat.X/ denote the quotient group. It can be shown that
the intersection product defines a bi-additive map9

C r
rat.X/ � C

s
rat.X/! C rCs

rat .X/: (1)

Let C �rat.X/ D
L

r C
r
rat.X/. This is a Q-algebra, called the Chow ring of X .

Rational equivalence is the finest equivalence relation on algebraic cycles giving a well
defined map (1) on equivalence classes. The coarsest such equivalence relation is numerical
equivalence: two algebraic cycles 
 and 
 0 are numerically equivalent if 
 � ı D 
 0 � ı for
all algebraic cycles ı of complementary dimension. The numerical equivalence classes of
algebraic cycles form a ring C �num D

L
r C

r
num.X/ which is a quotient of the Chow ring.

For example, a prime cycle of codimension 1 on P2 is a curve defined by an irreducible
homogeneous polynomial P.X0; X1; X2/. The prime cycles defined by two polynomials
are rationally equivalent if and only if the polynomials have the same degree. The group
C 1

rat.P2/ ' Z (generated by any line in P2).
A prime cycle of codimension 1 in P1 � P1 is a curve defined by an irreducible poly-

nomial P.X0; X1IY0; Y1/ separately homogeneous in each pair of symbols .X0; X1/ and
.Y0; Y1/. The rational equivalence class of the cycle is determined by the pair of degrees.
The groupZ1

rat.P1�P1/ ' Z�Z (basis e0 D P1�f0g and e2 D f0g�P1, and the diagonal
�P1 �rat e0 C e2).

I write C ��.X/Q for C ��.X/˝Z Q — here and elsewhere �D rat or num:

CYCLE MAPS

For all the cohomology theories we are interested in, there is a cycle class map

clWC �rat.X/Q ! H�.X/
def
D

M
r
H r.X/

that doubles degrees and sends intersection products to cup products.

CORRESPONDENCES

We are only interested cohomology theories that are contravariant functors, i.e., such that a
regular map f WY ! X defines homomorphismsH i .f /WH i .X/! H i .Y /. However, this
is a weak condition, because there are typically not many regular maps from one algebraic
variety to a second. Instead, we should allow “many-valued maps”, or, more precisely,
correspondences.

The group of correspondences of degree r from X to Y is defined to be

Corrr.X; Y / D C dim XCr.X � Y /:

For example, the graph �f of a regular map f WY ! X lies in C dim X .Y �X/; its transpose
� t

f
lies in C dim X .X � Y / D Corr0.X; Y /. In other words, a regular map from Y to X

defines a correspondence of degree zero from X to Y .10

9In particular, any two algebraic cycles 
1 and 
2 are rationally equivalent to algebaic cycles 
 01 and 
 02 that
intersect properly, and the rational equivalence class of 
 01 � 


0
2 is independent of the choice of 
 01 and 
 02.

10The switching of directions is unfortunate, but we have to do it somewhere, and I’m following
Grothendieck and most subsequent authors.
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A correspondence 
 of degree 0 from X to Y defines a homomorphism H�.X/ !

H�.Y /, namely,
x 7! q�.p

�x [ cl.
//:

Here p and q are the projection maps

X
p
 � X � Y

q
�! Y:

The map on cohomology defined by the correspondence � t
f

is the same as that defined by
f .

We use the notations:

Corrr
�.X; Y / D C

dim XCr
� .X � Y /; Corrr

�.X; Y /Q D Corrr
�.X; Y /˝Z Q:

5 Definition of motives

Grothendieck’s idea was that there should be a universal cohomology theory taking values
in a Q-category of motivesM.k/.11

˘ Thus,M.k/ should be a category like the category VecQ of finite-dimensional Q-
vector spaces (but not too like). Specifically:

– Homs should be Q-vector spaces (preferably finite-dimensional);
– M.k/ should be an abelian category;
– even better,M.k/ should be a tannakian category over Q (see below).

˘ There should be a universal cohomology theory

X  hX W .nonsingular projective varieties/!M.k/:

Specifically:
– each variety X should define a motive hX , and each correspondence of degree

zero from X to Y should define a homomorphism hX ! hY (in particular, a
regular map Y ! X defines a homomorphism hX ! hY ).

– every good12 cohomology theory should factor uniquely through X  hX .

FIRST ATTEMPT

We can simply defineM�.k/ to be the category with one object hX for each nonsingular
projective variety X over k, and with the morphisms defined by

Hom.hX; hY / D Corr0
�.X; Y /Q:

11J’appelle “motif” sur k quelque chose comme un group de cohomologie `-adique d’un schéma algébrique
sur k, mais considéré comme indépendent de `, et avec sa structure “entière”, ou disons pour l’instant “sur Q”,
déduire de la théorie des cycles algébriques. La triste vérité, c’est que pour le moment je ne sais pas définir la
catégorie abélienne des motifs, bien que je commence à avoir un yoga assez précis sur cette catégorie...

Grothendieck, letter to Serre, 16.8.1964.
(I call a “motif” over k something like an `-adic cohomology group of an algebraic scheme over k, but

considered as independent of `, and with its “integral” structure, or, let us say for the moment “Q” structure,
deduced from the theory of algebraic cycles. The sad truth is that for the moment I do not know how to define
the abelian category of motives, even though I am beginning to have a rather precise yoga on this category.)

12The technical term is Weil cohomology theory.
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Correspondences compose, and so this is a category. However, it is clearly deficient. For
example, an endomorphism e of a Q-vector space V such that e2 D e decomposes the
vector space into its 0 and 1 eigenspaces

V D Ker.e/˚ eV;

and if .W; f / is a second such pair, then

HomQ-linear.eV; f W / ' f ıHomQ-linear.V;W / ı e .inside HomQ-linear.V;W //:

A similar statement holds in any abelian category, and so, if we wantM�.k/ to be abelian,
we should at least add the images of idempotents in

End.hX/ def
D Corr0

�.X;X/Q
def
D C dim X

� .X �X/:

SECOND ATTEMPT

We now defineM�.k/ to be the category with one object h.X; e/ for each pair with X as
before and e an idempotent in the ring Corr0

�.X;X/. Morphisms are defined by

Hom.h.X; e/; h.Y; f // D f ı Corr0
�.X; Y /Q ı e

(subset of Corr0
�.X; Y /Q). That’s it! This is the category of effective motives for rational

or numerical equivalence depending on the choice of �, which we should denoteMeff
� .k/.

It contains the preceding category as the full subcategory of objects h.X;�X /.
For example, the discussion earlier shows that Corr0

rat.P1;P1/ D Z ˚ Z with e0
def
D

.1; 0/ represented by P1 � f0g and e2
def
D .0; 1/ represented by f0g � P1. Correspondingly,

h.P1; �P1/ D h0P1
˚ h2P1

with hiP1 D h.P1; ei / (this is true both inMeff
rat.k/ and inMeff

num.k/). We write 11 D h0P1

and L D h2P1.
For some purposes, the category of effective motives is the most useful,13 but generally

one would prefer a category in which objects have duals. This can be achieved quite easily
by inverting the Lefschetz motive L.

THIRD ATTEMPT

The objects ofM�.k/ are now triples h.X; e;m/ with X and e as before, and with m 2 Z.
Morphisms are defined by

Hom.h.X; e;m/; h.Y; f; n// D f ı Corrn�m
� .X; Y /Q ı e:

This is the category of motives over k. It contains the preceding category as the full subcat-
egory of objects h.X; e; 0/:

SometimesMrat.k/ is called the category of Chow motives andMnum.k/ the category
of Grothendieck (or numerical) motives.

13For example, in investigating a category of effective motives over finite fields with Z (rather than Q)
coefficients, Niranjan Ramachandran and I have discovered a beautiful relation between the orders of Exts in
the category and special values of zeta functions. The relation disappears when one passes to the full category
of motives.
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6 What is known aboutM�.k/ and X  hX

KNOWN PROPERTIES OF THE CATEGORYM�.k/

˘ The Hom sets are Q-vector space, which are finite-dimensional if �Dnum (but not
usually otherwise).

˘ Direct sums of motives exist, soM�.k/ is an additive category. For example,

.X; e;m/˚ .Y; f;m/ D .X t Y; e ˚ f;m/:

˘ An idempotent f in the endomorphism ring of a motive M decomposes the motive
into a direct sum of the kernel and image of e. In fact, if M D .X; e;m/, then

M D .X; e � efe;m/˚ .X; efe;m/:

ThusM�.k/ is pseudo-abelian.
˘ The categoryMnum.k/ is abelian and semisimple, butM�.k/ is not abelian, except

possibly when k is algebraic over a finite field.14

˘ There is a good tensor product structure onM�.k/, which is defined by

h.X; e;m/˝ h.Y; f; n/ D h.X � Y; e � f;mC n/:

Let hX D h.X;�X ; 0/; then hX ˝ hY D h.X � Y /, and so the Künneth formula
holds for X  hX .

˘ The above statements hold also for effective motives, but inM�.k/ there are duals.
This means that for each motive M there is a dual motive M_ and an “evaluation
map” evWM_ ˝M ! 11 having a certain universal property. For example,

h.X; e;m/_ D h.X; et ; dimX �m/

if X is irreducible.
I should stress that, althoughMrat.k/ is not abelian, it is still a very important category. In
particular, it contains more information thanMnum.k/:

IS X  hX A UNIVERSAL COHOMOLOGY THEORY?

Certainly, the functor X  hX sending a X to its Chow motive is universal. This is almost
a tautology: good cohomology theories are those that factor throughMrat.k/.

WithMnum.k/ there is a problem: a correspondence numerically equivalent to zero
will define the zero map on motives, but we don’t know in general that it defines the zero
map on cohomology. In order for a good cohomology theory to factor throughMnum.k/,
it must satisfy the following conjecture:

CONJECTURE D. The cohomology class of an algebraic cycle is zero if the cycle is numer-
ically equivalent to zero.

In other words, if cl.
/ ¤ 0 then 
 is not numerically equivalent to zero. Taking account
of Poincaré duality, we can restate this as follows: if there exists a cohomology class 
 0 such
that cl.
/ [ 
 0 ¤ 0, then there exists an algebraic cycle 
 00 such that 
 � 
 00 ¤ 0. Thus,

14There is a folklore conjecture that the natural functorMrat.k/ ! Mnum.k/ is an equivalence of cate-
gories when k is algebraic over a finite field.
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the conjecture is an existence statement for algebraic cycles. Unfortunately, we have no
method for proving the existence of algebraic cycles. More specifically, if we expect that a
cohomology class is algebraic, i.e., the class of an algebraic cycle, we have no way of going
about proving that it is. This is a major problem, perhaps the major problem, in arithmetic
geometry and in algebraic geometry.

Conjecture D is known for abelian varieties in characteristic zero, and it is implied by
the Hodge conjecture.

WHAT IS A TANNAKIAN CATEGORY?

By an affine group, I mean a matrix group (possibly infinite dimensional)15. For such a
group G over Q, the category RepQ.G/ of representations of G on finite-dimensional Q-
vector spaces is an abelian category with tensor products and duals, and the forgetful functor
is an exact faithful functor from RepQ.G/ to VecQ preserving tensor products.

A neutral tannakian category T over Q is an abelian category with tensor products and
duals for which there exist exact faithful functors to VecQ preserving tensor products; the
tensor automorphisms of such a functor ! form an affine group G, and the choice of such
functor ! determines an equivalence of categories T ! RepQ.G/. Thus, a neutral tan-
nakian category is an abstract version of the category of representations of an affine group
that has no distinguished “forgetful” functor (just as a vector space is an abstract version of
kn that has no distinguished basis).

A tannakian category T over Q (not necessarily neutral) is an abelian category with
tensor products and duals for which there exists an exact faithful tensor functor to the cat-
egory of vector spaces over some field of characteristic zero (not necessarily Q); we also
require that End.11/ D Q; the choice of such a functor defines an equivalence of T with the
category of representations of an affine groupoid.

ISMNUM.k/ TANNAKIAN?

No, it isn’t. In an abelian category T with tensor products and duals it possible to define the
trace of an endomorphism. This is preserved by any exact faithful tensor functor !WT !
VecQ, and so, for the identity map u of an object M ,

Tr.ujM/ D Tr.!.u/j!.M// D dimQ !.M/ 2 N:

For the identity map u of a variety X , Tr.ujhX/ turns out to be the Euler-Poincaré charac-
teristic of X (alternating sum of the Betti numbers). For example, if X is a curve of genus
g, then

Tr.ujh.X// D dimH 0
� dimH 1

C dimH 2
D 2 � 2g;

which may be negative. This proves that there does not exist an exact faithful tensor functor
!WMnum.k/! VecQ.

To fix this we have to change the inner workings of the tensor product structure. When
we write

hX D h0X ˚ h1X ˚ � � � ˚ h2nX; (2)

15More precisely, an affine group is an affine group scheme over a field (not necessarily of finite type). Such
a group is an inverse limit of affine algebraic group schemes, each of which can be realized as a subgroup of
some GLn.
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and change the sign of the “canonical” isomorphism

hiX ˝ hjX ' hjX ˝ hiX

for ij odd, then Tr.ujh.X// becomes the sum of the Betti numbers of X rather than the
alternating sum. If we can do this for all X , thenM.k/ becomes a Tannakian category
(neutral if k has characteristic zero, but not otherwise).

However, in general, we don’t know that we can write hX in the form (2). For that, we
need the following conjecture.

CONJECTURE C. In the ring End.hX/ D C dim X
num .X �X/, the diagonal �X has a canon-

ical decomposition into a sum of orthogonal idempotents

�X D �0 C � � � C �2n: (3)

Such an expression defines a decomposition of hX as in (2) with hiX D h.X; �i ; 0/, and
this decomposition should have the property that it is mapped to the decomposition

H�.X/ D H 0.X/˚H 1.X/˚ � � � ˚H 2n.X/

for any good cohomology theory for which Conjecture D holds.
Again the conjecture is an existence statement for algebraic cycles, and hence is hard.

It is known for all nonsingular projective varieties over finite fields (here one constructs the
� i using the Frobenius map) and for abelian varieties in characteristic zero (by definition
abelian varieties have a group structure, which is commutative, and the maps nWA ! A,
n 2 Z, allow one to construct the � i ).

Until Conjectures C and D are proved, Grothendieck’s dream remains unfulfilled.

ASIDE 6.1. Murre (1993) conjectured that a decomposition (3) exists even in C dim X
rat .X � X/. It

has been shown that his conjecture is equivalent to the existence of an interesting filtration on the
Chow groups, which had been conjectured by Beilinson and Bloch.

ASIDE 6.2. Grothendieck (1968) described the ‘theory of motives’ as “a systematic theory of ‘arith-
metic properties’ of algebraic varieties, as embodied in their groups of classes of cycles for numerical
equivalence.”

7 Motives have zeta functions

Let X be a projective nonsingular variety over Q. Let Fp D Z=pZ (field with p-elements),
and fix an algebraic closure F of Fp. For each n, there is exactly one subfield Fpn of F of
with pn elements; and Fpm � Fpn if and only if mjn.

Scale the polynomials defining X so that they have integer coefficients, and let X.Fpn/

denote the set of zeros of the polynomials in Fpn . This set is finite, and the zeta function of
X at p is defined by

logZp.X; t/ D
X
jX.Fpm/j

tm

m
:

It is known that Zp.X; t/ is a quotient of polynomials with integer coefficients, and we set

�.X; s/ D
Y

p good
Zp.X; p

�s/:
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For example, let X D P0 D point. Then jX.Fpm/j D 1 for all p and m, and so

logZp.X; t/ D
X tm

m
D log

1

1 � t
;

thus
�.X; s/ D

Y
p

1

1 � p�s
;

which is the Riemann zeta function �.s/.
As our next example, let X D P1. Then jX.Fpm/j D 1C pm, and so

logZp.X; t/ D
X

.1C pm/
tm

m
D log

1

.1 � t /.1 � pt/
;

thus
�.X; s/ D �.s/�.s � 1/:

Finally, let X be an elliptic curve E over Q. Then

jE.Fpm/j D 1 � .am
p C Na

m
p /C p

m

where ap is a complex number of absolute value p
1
2 . Therefore

�.E; s/ D
�.s/�.s � 1/

L.E; s/

where
L.E; s/ D

Y
p

1

.1 � app�s/.1 � Napp�s/
:

This definition of the zeta function of variety doesn’t extend to motives, but there is
another cohomological definition that does.

For example, we saw that

h.P1/ D h0.P1/˚ h2.P1/;

and one shows that

�.h0.P1// D �.s/

�.h1.P1// D �.s � 1/:

For an elliptic curve E;

h.E/ D h0.E/˚ h1.E/˚ h2.E/

with
�.h1.E// D L.E; s/�1:

Thus, attached to every motive there is a zeta function �.M; s/, which is a function of
the complex variable s, having, conjecturally at least, many good properties. The functions
that arise in this way are called motivic L-functions. On the other hand, there is an en-
tirely different method of constructing functions L.s/ from modular forms, automorphic
forms, or, most generally, from automorphic representations — these are called automor-
phic L-functions. Their definition does not involve algebraic geometry. The following is a
fundamental guiding principle in the Langlands program16.

16By which I mean Langlands’s program, not the geometric analogue, which appears to lack arithmetic
interest.
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BIG MODULARITY CONJECTURE. Every motivic L-function is an alternating product of
automorphic L-functions.

LetE be an elliptic curve over Q. The (little) modularity conjecture says that �.h1E; s/

is the Mellin transform of a modular form. The proof of this by Wiles (et al.) was the main
step in the proof of Fermat’s last theorem.

8 The conjecture of Birch and Swinnerton-Dyer, and some mys-
terious squares

Let E be an elliptic curve over Q. Beginning about 1960, Birch and Swinnerton-Dyer used
one of the early computers (EDSAC 2) to study L.E; s/ near s D 1. These computations
led to their famous conjecture: letL.E; 1/� denote first nonzero coefficient in the expansion
of L.E; s/ as a power series in s � 1; the conjecture states that

L.E; 1/� D fterms understoodg fmysterious termg .

The mysterious term is conjectured to be the order of the Tate-Shafarevich group of E,
which (if finite) is known to be a square.

About the same time, they studied

L3.E; s/ D
Y

p

1

.1 � a3
pp
�s/.1 � Na3

pp
�s/

near s D 2, and they found (computationally) that

L3.E; 1/
�
D fterms understoodgfmysterious squareg:

The mysterious square can be quite large, for example 2401. What is it?
As we noted above, L.E; s/ D �.h1.E/; s/. We can regard the conjecture of Birch and

Swinnerton-Dyer as a statement about the motive h1.E/. The conjecture has been extended
to all motives over Q. One can show that

h1.E/˝ h1.E/˝ h1.E/ D 3h1.E;�E ;�1/˚M

for a certain motive M , and that

�.M; s/ D L3.E; s/:

Thus, the mysterious square is conjecturally the “Tate-Shafarevich group” of the motiveM .
[To be continued (maybe).]

9 Final note

Strictly,M.k/ should be called the category of pure motives. It is attached to the category
nonsingular projective varieties over k. Grothendieck also envisaged a category mixed mo-
tives attached to the category of all varieties over k. It should no longer be semisimple,
but each mixed motive should have a filtration whose quotients are pure motives. There is
at present no direct definition of the category of mixed motives, not even conjectural, but
several mathematicians have constructed triangulated categories that are candidates to be its
derived category; it remains to define a t -structure on one of these categories whose heart
is the category of mixed motives itself.


