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Abstract

These notes prove the basic theorems in commutative algebra required for algebraic
geometry and algebraic groups. They assume only a knowledge of the algebra usually
taught in advanced undergraduate or first-year graduate courses.
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1 RINGS AND ALGEBRAS 2

Notations and conventions

Our convention is that rings have identity elements,! and homomorphisms of rings respect
the identity elements. A unit of a ring is an element admitting an inverse. The units of a ring
A form a group, which we denote by?> A*. Throughout “ring” means “commutative ring”.
Following Bourbaki, we let N = {0,1,2,...}. For a field k, k¥ denotes an algebraic closure
of k.

N

o
a,

X is a subset of Y (not necessarily proper).

X is defined to be Y, or equals Y by definition.
X is isomorphic to Y.

X and Y are canonically isomorphic

(or there is a given or unique isomorphism).
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1 Rings and algebras

Let A be aring. A subring of A is a subset that contains 14 and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together with a
homomorphism ig: A — B. A homomorphism of A-algebras B — C is a homomorphism
of rings ¢: B — C such that ¢(ip(a)) = ic(a) foralla € A.

Elements x1,...,x, of an A-algebra B are said to generate it if every element of B can
be expressed as a polynomial in the x; with coefficients in i g (A4), i.e., if the homomorphism
of A-algebras A[Xq,...,X,] — B acting as i g on A and sending X; to x; is surjective. We
then write B = (ip A)[x1,...,Xn].

A ring homomorphism A — B is of finite type, and B is a finitely generated A-algebra,
if B is generated by a finite set of elements as an A-algebra.

A ring homomorphism A — B is finite, and B is a finite’ A-algebra, if B is finitely
generated as an A-module. If A — B and B — C are finite ring homomorphisms, then so
also is their composite A — C.

Let k be a field, and let A be a k-algebra. When 14 # 0, the map k — A is injective,
and we can identify k& with its image, i.e., we can regard k as a subring of A. When 14 =0,
the ring A is the zero ring {0}.

Let A[X] be the ring of polynomials in the symbol X with coefficients in A. If 4 is an
integral domain, then deg( fg) = deg(f) + deg(g), and so A[X] is also an integral domain;
moreover, A[X]* = A*.

T An element e of aring A is an identity element if ea = a = ae for all elements a of the ring. It is usually
denoted 14 or just 1. Some authors call this a unit element, but then an element can be a unit without being a
unit element. Worse, a unit need not be the unit.

2This notation differs from that of Bourbaki, who writes A* for the multiplicative monoid A ~ {0} and A*
for the group of units. We shall rarely need the former, and * is overused.

3This is Bourbaki’s terminology (AC V §1, 1). Finite homomorphisms of rings correspond to finite maps of
varieties and schemes. Some other authors say “module-finite”.
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Let A be an algebra over a field k. If A4 is an integral domain and finite as a k-algebra,
then it is a field because, for each nonzero a € A, the k-linear map x — ax: A — A is
injective, and hence is surjective, which shows that a has an inverse. If A is an integral
domain and each element of A is algebraic over k, then for each a € A, k[a] is an integral
domain finite over k, and hence contains an inverse of a; again A is a field.

Products and idempotents

An element e of aring A is idempotent if > = e. For example, 0 and 1 are both idempotents
— they are called the trivial idempotents. Idempotents e1, ..., e, are orthogonal if e;je; =0
for i # j. Any sum of orthogonal idempotents is again idempotent. A set {eq,...,e,} of
orthogonal idempotents is complete if e; + --- 4+ e, = 1. Any set of orthogonal idempotents
{e1,...,en} can be made into a complete set of orthogonal idempotents by adding the
idempotente = 1 —(e; +---+ey).
If A= A; x---x A, (direct product of rings), then the elements

e = (O,...,ll,...,O), 1<i<n,
form a complete set of orthogonal idempotents in A. Conversely, if {eq,...,e,} is a com-
plete set of orthogonal idempotents in A4, then Ae; becomes a ring* with the addition and
multiplication induced by that of A, and A >~ Ae; x--- X Aey.

2 Ideals

Let A be aring. An ideal a in A is a subset such that

¢ ais asubgroup of A regarded as a group under addition;

o aca,redA=raca.
The ideal generated by a subset S of A is the intersection of all ideals a containing S — it
is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the form
> ris; withr; € A, s; € S. The ideal generated by the empty set is the zero ideal {0}. When
S ={a,b,...}, we write (a,b,...) for the ideal it generates.

An ideal is principal if it is generated by a single element. Such an ideal (@) is proper
if and only a is not a unit. Thus a ring A is a field if and only if 1 4 # 0 and A contains no
nonzero proper ideals.

Let a and b be ideals in A. The set {a + b | a € a, b € b} is an ideal, denoted a + b. The
ideal generated by {ab | a € a, b € b} is denoted by ab. Clearly ab consists of all finite
sums » a;b; with a; € a and b; € b, and if a = (ay,...,am) and b = (by,...,by), then
ab = (a1b1,...,a;bj,...,amby). Note that ab C a4 = a and ab C Ab = b, and so

ab C anb. (1)

The kernel of a homomorphism A — B is an ideal in A. Conversely, for every ideal a in
aring A, the set of cosets of a in A forms aring A/a, and a — a + a is a homomorphism
¢: A — A/a whose kernel is a. There is a one-to-one correspondence

b—=>@(b)

{ideals of A containing a} «—— {ideals of A/a}. 2)
¢~ L(b)<b

4But Ae; is not a subring of A if n # 1 because its identity element is e; # 1 4. However, the map a +—
aej: A — Ae; realizes Ae; as a quotient of A.
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For every ideal b of A, ¢ 1¢(b) = a+b.

The ideals of A x B are all of the form a x b with a and b ideals in A and B. To see
this, note that if ¢ is an ideal in A x B and (a,b) € ¢, then (a,0) = (1,0)(a,b) € ¢ and
(0,b) = (0,1)(a,b) € c. Therefore, ¢ = a x b with

a=1{a|@0)ec, b=1{h]|(0b)ecc.

Anideal pin A is prime if p # A and ab € p = a € p or b € p. Thus p is prime if and
only if the quotient ring A/p is nonzero and has the property that

ab=0, b#0=a=0,

i.e., A/p is an integral domain. Note that if p is prime and a; ---a, € p, then at least one
of the a; € p (because either a; € p or a,---a, € p; if the latter, then either a; € p or
as---ay € p; etc.).

An ideal m in A is maximal if it is a maximal element of the set of proper ideals in A.
Therefore an ideal m is maximal if and only if the quotient ring A/m is nonzero and has no
proper nonzero ideals (by (2)), and so is a field. Note that

m maximal = m prime.
A multiplicative subset of aring A is a subset S with the property:
1€eS, a,beS — abes.

For example, the following are multiplicative subsets:
the multiplicative subset {1, f,..., f",...} generated by an element f of 4;
the complement of a prime ideal (or of a union of prime ideals);

1+a={l+a|a < a}forany ideal a of A.

PROPOSITION 2.1. Let S be a subset of a ring A, and let a be an ideal disjoint from S.
The set of ideals in A containing a and disjoint from S contains maximal elements (i.e., an
element not properly contained in any other ideal in the set). If S is multiplicative, then
every such maximal element is prime.

PROOF. The set X of ideals containing a and disjoint from S is nonempty (it contains a).
If A is noetherian (see §3 below), X~ automatically contains maximal elements. Otherwise,
we apply Zorn’s lemma. Let by C by C -+ be a chain of ideals in X, and let b = b;.
Then b € X', because otherwise some element of S lies in b, and hence in some b;, which
contradicts the definition of X. Therefore b is an upper bound for the chain. As every chain
in X has an upper bound, Zorn’s lemma implies that X' has a maximal element.

Assume that S is a multiplicative subset of A, and let ¢ be maximal in X. Let b’ € c. If
b is not in ¢, then ¢ + (b) properly contains ¢, and so it is not in X'. Therefore there exist an
f eSn(c+ (b)), say, f =c+ab with ¢ € c. Similarly, if 5" is not in ¢, then there exists
an " € S such that /" = ¢’ +a’b’ with ¢’ € ¢. Now

ff =cc’ +abc’ +a'b'c+aa'bb e,

which contradicts

frles. O
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COROLLARY 2.2. Every proper ideal in a ring is contained in a maximal ideal.
PROOF. For a proper ideal a of A, apply the proposition with § = {1}. O

ASIDE 2.3. The proof of (2.1) is one of many in commutative algebra in which an ideal, maximal
with respect to some property, is shown to be prime. For a general examination of this phenomenon,
see Lam, T. Y. and Reyes, Manuel L., A prime ideal principle in commutative algebra. J. Algebra
319 (2008), no. 7, 3006-3027.

The radical rad(a) of an ideal a is
{feA|f €a,somereN,r>0}.

An ideal a is said to be radical if it equals its radical. Thus a is radical if and only if the
quotient ring A/a is reduced, i.e., without nonzero nilpotent elements (elements some power
of which is zero). Since integral domains are reduced, prime ideals (a fortiori maximal
ideals) are radical. The radical of (0) consists of the nilpotent elements of A — it is called
the nilradical of A.

If b <> b’ under the one-to-one correspondence (2), then A/b ~ (A/a)/b’, and so b is
prime (resp. maximal, radical) if and only if b’ is prime (resp. maximal, radical).

PROPOSITION 2.4. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad(rad(a)) = rad(a).

PROOF. (a) If a € rad(a), then clearly fa € rad(a) for all f € A. Suppose a,b € rad(a),
with say a” € a and b® € a. When we expand (a + b)" ™ using the binomial theorem, we
find that every term has a factor a” or b*, and so lies in a.

(b) If a” € rad(a), then a™ = (a")’ € a for some s > 0, and so a € rad(a). o

Note that (b) of the proposition shows that rad(a) is radical, and so is the smallest radical
ideal containing a.

If a and b are radical, then a N b is radical, but a + b need not be: consider, for example,
a=(X2-Y)and b = (X?+7Y); they are both prime ideals in k[ X, Y] (by 4.7 below), but
a+b=(X2,Y), which contains X2 but not X.

PROPOSITION 2.5. The radical of an ideal is equal to the intersection of the prime ideals
containing it. In particular, the nilradical of a ring A is equal to the intersection of the prime
ideals of A.

PROOF. If a = A, then the set of prime ideals containing it is empty, and so the intersection
is A. Thus we may suppose that a is a proper ideal of A. Then rad(a) C ﬂpjap because
prime ideals are radical and rad(a) is the smallest radical ideal containing a.

Conversely, suppose that f ¢ rad(a). According to Proposition 2.1, there exists a
prime ideal containing a and disjoint from the multiplicative subset {1, f,...}. Therefore

f ¢ mpjap' [m]

DEFINITION 2.6. The Jacobson radical JJ of a ring is the intersection of the maximal ideals
of the ring:

J(A4) = ﬂ{m | m maximal in A4}.
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A ring A is local if it has exactly one maximal ideal. For such a ring, the Jacobson
radical is m.

PROPOSITION 2.7. An element ¢ of A is in the Jacobson radical of A if and only if 1 —ac
is a unit for all a € A.

PROOF. We prove the contrapositive: there exists a maximal ideal m such that ¢ ¢ m if and
only if there exists an a € A such that 1 —ac is not a unit.

<: As 1 —ac is not a unit, it lies in some maximal ideal m of A (by 2.2). Then ¢ ¢ m,
because otherwise 1 = (1 —ac) +ac € m.

=>: Suppose that ¢ is not in the maximal ideal m. Then m+ (¢) = A, and so 1 =m +ac
forsome m e mand a € A. Now 1 —ac € m, and so it is not a unit. o

PROPOSITION 2.8. Letp1,...,pr, r > 1, be ideals in A with p», ..., p, prime, and let a be
an ideal in A. Then
ac Ulfiﬁrpi = a Cp; forsomei.

PROOF. We prove the contrapositive:

if the ideal a in not contained in any of the ideals p;, then it is not contained in
their union.

For r = 1, there is nothing to prove, and so we may assume that r > 1 and (inductively) that
the statement is true for r — 1. As a is not contained in any of the ideals py,...,p,, for each i,
there exists an a; in a not in the union of the ideals p1,...,p;i—1,Pi+1,...,pr. If there exists
an i such that a; does not lie in p;, then that a; € a~p; U...Up,, and the proof is complete.
Thus suppose that every a; € p;, and consider

a=aj--ar—1t+ar.

Because p, is prime and none of the elements ay,...,a,— lies in p,, their product does not
lie in p,; however, a, € p,, and so a ¢ p,. Next consider a prime p; with i <r — 1. In this
case dy---dr—1 € p; because the product involves a;, but a, ¢ p;, and so again a ¢ p;. Now
aca~prU...Up,, and so a is not contained in the union of the p; . O

Extension and contraction of ideals
Let ¢: A — B be a homomorphism of rings.

NOTATION 2.9. For an ideal b of B, ¢~ 1(b) is an ideal in A, called the contraction of b to
A, which is often denoted b€. For an ideal a of A, the ideal in B generated by ¢(a) is called
the extension of a to B, and is often denoted a®. When ¢ is surjective, ¢(a) is already an
ideal, and when A is a subring of B, b€ = b N A.

2.10. There are the following equalities (a,a’ ideals in A; b, b’ ideals in B):

(a+ad) =a®+d° (ad)®=0a"%, (bNB)°=b°Nb", rad(b)®=rad(b).
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2.11. Obviously (i) a C a®¢ and (i) b C b (a an ideal of A; b an ideal of B). On applying

e to (i), we find that a® C a®“¢, and (ii) with b replaced by a® shows that a®“¢ C a?; therefore
a® = a®“®. Similarly, b¢®¢ = b°. It follows that extension and contraction define inverse
bijections between the set of contracted ideals in A and the set of extended ideals in B:

{b€ C A | b anideal in B}\i—{ae C B|aanidealin A}

[

Note that, for every ideal b in B, the map A/b¢ — B/b is injective, and so b€ is prime
(resp. radical) if b is prime (resp. radical).

The Chinese remainder theorem

Recall the classical form of the theorem: let dy, ..., d, be integers, relatively prime in pairs;
then for any integers xi, ..., X, the congruences

x = x; mod d;

have a simultaneous solution x € Z; moreover, if x is one solution, then the other solutions
are the integers of the form x +md withm € Z and d =[] d;.

We want to translate this in terms of ideals. Integers m and n are relatively prime if and
only if (m,n) = Z, i.e., if and only if (m) + (n) = Z. This suggests defining ideals a and b
in a ring A to be relatively prime (or coprime) if a + b = A.

If my,...,my are integers, then ((m;) = (m) where m is the least common multiple of
the m;. Thus (\(m;) D ([ [m;), which equals [ [(m;). If the m; are relatively prime in pairs,
then m = [[m;, and so we have (\(m;) = [[(m;). Note that in general,

ar-ar---ap CayNaxN...Nay,

but the two ideals need not be equal.
These remarks suggest the following statement.

THEOREM 2.12 (CHINESE REMAINDER THEOREM). Letay,...,a, be ideals in a ring A.
If a; is relatively prime to a; whenever i # j, then the map

ar~>(...,a+a;,...);A—> A/ay x---x A/ay 3)
is surjective with kernel [[a; = (a;.

PROOF. Suppose first thatn = 2. As a; + ap = A, there exist a; € a; such thata; +a, = 1.
Then a1x2 + asx; maps to (x; moday, x, modas), which shows that (3) is surjective.
For each i, there exist elements a; € a; and b; € a; such that

a;+b; =1,alli >2.
The product [ [;5,(a; +b;) = 1, and lies in a; +[[;5, a;, and so
ay + l—[ a; = A.
i>2
We can now apply the theorem in the case n = 2 to obtain an element y; of A such that

y1=1moda;, y;=0mod Hai.

i>2
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These conditions imply

yi=Ilmoda;, y;=0modaj,all;j>1.
Similarly, there exist elements y», ..., y, such that

yi=1moda;, y; =0moda; forj #i.

The element x = > x;y; maps to (x; moday,...,x, moda,), which shows that (3) is
surjective.

It remains to prove that (Ja; = []a;. Obviously [Ja; C () a;. Suppose first that n = 2,
and let a; +a, = 1, as before. For ¢ € a; Nay, we have

c=ajic+azceay-ap

which proves that a; Nay = ajaz. We complete the proof by induction. This allows us to
assume that [ [;5, a; = [");5, a;. We showed above that a; and [ ;- , a; are relatively prime,

and so
ar-(JJa)=arn([]an
i>2 i>2
by the n = 2 case. Now a '(Hizz a;) = Hizl a; and a; N (Hizz a;)=a; N (ﬂizz a;) =
ﬂizl a;, which completes the proof. o

3 Noetherian rings

PROPOSITION 3.1. The following three conditions on a ring A are equivalent:
(a) every ideal in A is finitely generated;
(b) every ascending chain of ideals 0y C a C --- eventually becomes constant, i.e., for
somem, Oy = Qg1 =+
(c) every nonempty set of ideals in A has a maximal element.

PROOF. (a) = (b): If a; C a C --- is an ascending chain, then a = | Jg; is an ideal, and
hence has a finite set {a1,...,a,} of generators. For some m, all the a; belong a,,, and then

O = Q] = +- =0

(b) = (c): Let X be a nonempty set of ideals in A. If X' has no maximal element, then
the axiom of dependent choice® shows that there exists a strictly ascending sequence of
ideals in X', contradicting (b).

(c) = (a): Let a be an ideal, and let X' be the set of finitely generated ideals contained
in a. Then § is nonempty because it contains the zero ideal, and so it contains a maximal
element ¢ = (ay,...,a,). If ¢ # a, then there exists an element a € a~¢, and (a1,...,dr,a)
will be a finitely generated ideal in a properly containing ¢. This contradicts the definition of

C. O

5This says: Let R be a binary relation on a nonempty set X, and suppose that, for each a in X, there exists
a b such that a Rb; then there exists a sequence (ap),en of elements of X such that a, Ray, 41 for all n. It is
strictly stronger than the axiom of countable choice but weaker than the axiom of choice. See the Wikipedia.
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A ring A is noetherian if it satisfies the equivalent conditions of the proposition. For
example, fields and principal ideal domains are noetherian. On applying (c) to the set of all
proper ideals containing a fixed proper ideal, we see that every proper ideal in a noetherian
ring is contained in a maximal ideal. We saw in (2.3) that this is, in fact, true for every ring,
but the proof for non-noetherian rings requires Zorn’s lemma.

A quotient A/a of a noetherian ring A is noetherian, because the ideals in A/a are all of
the form b/a with b an ideal in A, and every set of generators for b generates b/a.

PROPOSITION 3.2. Let A be a ring. The following conditions on an A-module M are
equivalent:
(a) every submodule of M is finitely generated (in particular, M is finitely generated);
(b) every ascending chain of submodules M1 C M, C --- eventually becomes constant.
(c) every nonempty set of submodules of M has a maximal element.

PROOF. Essentially the same as that of (3.1). o

An A-module M is noetherian if it satisfies the equivalent conditions of the proposition.
Let 4 A denote A regarded as a left A-module. Then the submodules of 4 A are exactly the
ideals in A, and so 4 A4 is noetherian (as an A-module) if and only if A is noetherian (as a

ring).

PROPOSITION 3.3. Let M be an A-module, and let N be a submodule of M. The module
M is noetherian if and if only both N and M/ N are noetherian.

PROOF. =>: An ascending chain of submodules in N orin M/N gives rise to an ascending
chain in M, and therefore becomes constant.

«: I claim that if M’ C M" are submodules of M such that M'NN = M" N N and
M’ and M" have the same image in M/N, then M’ = M". To see this, let x € M"; the
second condition implies that there exists a y € M’ with the same image as x in M/ N, i.e.,
suchthat x—y € N. Thenx—y e M"NN Cc M’,andso x € M'.

Now consider an ascending chain of submodules of M. If M/N is Noetherian, the
image of the chain in M/N becomes stationary, and if N is Noetherian, the intersection of
the chain with N becomes stationary. Now the claim shows that the chain itself becomes
stationary. O

More generally, consider an exact sequence
0O—-M —>M-—>M"—0

of A-modules. The module M is noetherian if and only if M’ and M" are both noetherian.
For example, a direct sum
M =M, ® M,

of A-modules is noetherian if and only if M; and M, are both noetherian (because 0 —
M; —> M — M, — 0 is exact).

PROPOSITION 3.4. Let A be a noetherian ring. Then every finitely generated A-module is
noetherian.

PROOF. If M is generated by a single element, then M ~ A/a for some ideal a in A, and
the statement is obvious. We argue by induction on the minimum number » of generators of
M . Since M contains a submodule N generated by n — 1 elements such that the quotient
M/ N is generated by a single element, the statement follows from (3.3). O
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PROPOSITION 3.5. Every finitely generated module M over a noetherian ring A contains a
finite chain of submodules M D M, D --- D M7 D 0 such that each quotient M; / M;_1 is
isomorphic to A/p; for some prime ideal p;.

PROOF. The annihilator ann(x) of an element x of M is {a € A | ax = 0}. It is an ideal in
A, which is proper if x # 0. I claim that any ideal a that is maximal among the annihilators
of nonzero elements of A is prime. Suppose that a = ann(x), and let ab € a, so that abx = 0.
Then a C (@) +a C ann(bx). If b ¢ a, then bx # 0, and so a = ann(bx) by maximality,
which implies that a € a.

We now prove the proposition. Note that, for every x € M, the submodule Ax of
M is isomorphic to A/ann(x). Therefore, if M is nonzero, then it contains a submodule
M isomorphic to A/p; for some prime ideal p;. Similarly, M/ M; contains a submodule
M5/ My isomorphic A/p; for some prime ideal p,, and so on. The chain0 C My C M, C ---
terminates because M is noetherian (by 3.4). o

THEOREM 3.6 (HILBERT BASIS THEOREM). Every finitely generated algebra over a noethe-
rian ring is noetherian.

PROOF. Let A be noetherian. Since every finitely generated A-algebra is a quotient of a
polynomial algebra, it suffices to prove the theorem for A[X1,..., X;,]. Note that

AlX1,.... Xnl = A[X1, ..o, Xn—1][Xa]- 4
This simply says that every polynomial f in#n symbols X1,..., X, can be expressed uniquely
as a polynomial in X, with coefficients in k[X1,..., X,—1],

f(X1,...,Xn) Iao(Xl,...,Xn_l)X,';+---+Clr(X1,...,Xn_1).

Thus an induction argument shows that it suffices to prove the theorem for A[X].
Recall that for a polynomial

fX)=coX " +c1 X"V +ihe, €A, co#0,

¢ is the leading coefficient of f.

Let a be an ideal in A[X], and let ¢; be the set of elements of A that occur as the leading
coefficient of a polynomial in a of degree i (we also include 0). Then ¢; is obviously an
ideal in A4, and ¢;—; C ¢; because, if cX?~! 4 ... € a, then so also does X(CXi_l +-) =
cX'+---. As A is noetherian, the sequence of ideals

i CepC--C¢; Co-e

eventually becomes constant, say, ¢; = c¢74+1 = ... (and then ¢z contains the leading coeffi-
cients of all polynomials in a).

For each i < d, choose a finite generating set {c;1,¢;2,...} for ¢;, and for each (i, j),
choose a polynomial f;; € a of degree i with leading coefficient ¢;;. We shall show that the
fij’s generate a.

Let f € a; we have to show that f € (/f;;). Suppose first that f has degree s > d. Then
f=cX®+--- withc € ¢g, and so

c= E j4icdj. someda; €A.
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Now
_ . _Xs—d
f E ja]fd]

is either zero and f € (f;;), or it has degree < deg( /). In the second case, we repeat the
argument, until we obtain a polynomial f of degree s < d that differs from the original
polynomial by an element of (f;;). By a similar argument, we then construct elements

a; € A such that
f—zjajfsj

is either zero or has degree < deg( f). In the second case, we repeat the argument, until we
obtain zero. o

NAKAYAMA’S LEMMA 3.7. Let a be an ideal in a ring A contained in all maximal ideals
of A, and let M be a finitely generated A-module.

(a) If M =aM, then M = 0.

(b) If N is a submodule of M such that M = N +~aM ,then M = N.

PROOF. (a) Suppose M ## 0. Choose a minimal set of generators {eq,...,e,} for M, n > 1,
and write
ey =ayey+---+aney, a;c€a.

Then
(1—ay)ey = azez +---+apey
and, as 1 —a lies in no maximal ideal, it is a unit. Therefore e, ..., e, generate M, which
contradicts the minimality of the original set.
(b) The hypothesis implies that M/N = a(M/N), and so M/N = 0. o

Recall (2.6) that the Jacobson radical J of A is the intersection of the maximal ideals of
A, and so the condition on a is that a C J. In particular, the lemma holds with a = J; for
example, when 4 is a local ring, it holds with a the maximal ideal in A.

COROLLARY 3.8. Let A be a local ring with maximal ideal m and residue field k < A/m,
and let M be a finitely generated module over A. The action of A on M /mM factors through
k, and elements ay,...,a, of M generate it as an A-module if and only if

ai+mM,...,a, +mM
span M /mM as k-vector space.

ProOOF. If ay,...,a, generate M, then it is obvious that their images generate the vector
space M /mM . Conversely, suppose that a; +mM,...,a, + mM span M/mM, and let N
be the submodule of M generated by ay,...,a,. The composite N - M — M/mM is
surjective, and so M = N +mM . Now Nakayama’s lemma shows that M = N. o

COROLLARY 3.9. Let A be a noetherian local ring with maximal ideal m. Elements
ai,...,a, of m generate m as an ideal if and only if a; +m?,... a, +m? span m/m2
as a vector space over k £ A /m. In particular, the minimum number of generators for the
maximal ideal is equal to the dimension of the vector space m/m?>.

PROOF. Because A is noetherian, m is finitely generated, and we can apply the preceding
corollary with M = m. o



3 NOETHERIAN RINGS 12

EXAMPLE 3.10. Nakayama’s lemma may fail if M is not finitely generated. For example,
let Z(py = {7 | p does not divide n} and let M = Q. Then Z,) is a local ring with maximal
ideal (p) (see §6 below) and M = pM but M # 0.

DEFINITION 3.11. An algebra A over a ring R is finitely presented if it is isomorphic to
the quotient of a polynomial ring k[X1,..., X,] by a finitely generated ideal.

The Hilbert basis theorem says that, when R is noetherian, every finitely generated
R-algebra is finitely presented.

DEFINITION 3.12. Let A be a noetherian ring.
(a) The height ht(p) of a prime ideal p in A is the greatest length d of a chain of distinct
prime ideals
p=Ppg DPg—12D:D Po. )

(b) The (Krull) dimension of A is sup{ht(p) | p C A, p prime}.

Thus, the Krull dimension of a ring A is the supremum of the lengths of chains of
prime ideals in A (the length of a chain is the number of gaps, so the length of (5) is d).
For example, a field has Krull dimension 0, and conversely an integral domain of Krull
dimension 0 is a field. The height of every nonzero prime ideal in a principal ideal domain
is 1, and so such a ring has Krull dimension 1 (provided it is not a field). It is sometimes
convenient to define the Krull dimension of the zero ring to be —1.

We shall see in §16 that the height of every prime ideal in a noetherian ring is finite.
However, the Krull dimension of the ring may be infinite, because it may contain a sequence
P1, P2, p3, ... of prime ideals such that ht(p;) tends to infinity (see Krull 1938 or Nagata
1962, p.203,6 for examples).

LEMMA 3.13. In a noetherian ring, every set of generators for an ideal contains a finite
generating set.

PROOF. Let S be a set of generators for an ideal a in a noetherian ring A. An ideal maximal
in the set of ideals generated by finite subsets of S must contain every element of S' (otherwise
it wouldn’t be maximal), and so equals a. o

THEOREM 3.14 (KRULL INTERSECTION THEOREM). Let a be an ideal in a noetherian
ring A. If a is contained in all maximal ideals of A, then (), a” = {0}.

PROOF. We shall show that, for every ideal a in a noetherian ring,

mnzla” = a-mnzlan. (6)

When a is contained in all maximal ideals of A, Nakayama’s lemma shows that [, ; a” is
zero.

Letay,...,ar generate a. Then a” consists of finite sums
i i
E Ciyiy@y =+ Ay, Cijip € A.
i1 +etiy=n

®Nagata’s example is the following. Let N = I1 Li I Ll... be a partition of N into finite sets with strictly
increasing cardinality. Let A = k[Xo, X1,...], and let p; be the prime ideal in 4 generated by the X ;’s with
J in I;. Let S be the multiplicative set A~ (_Jp;. Then S~1 4 is noetherian and regular, and the prime ideal
S~1p; has height | ;.
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In other words, a” consists of the elements of A of the form g(ay,...,a;) for some ho-
mogeneous polynomial g(X1,...,X;) € A[X1,..., X;] of degree n. Let Sy, be the set of
homogeneous polynomials f of degree m such that f(ai.....ar) € (),~; @", and let ¢ be
the ideal in A[X1,..., X,] generated by all the Sy,. According to the lemma, there exists
a finite set { f1,..., fs} of elements of | J,, S, that generates ¢. Let d; = deg f;, and let
d = maxd;.

Let b € (), a"; then b € a*!, and so b = f(ay,...,a,) for some homogeneous
polynomial f of degree d + 1. By definition, f € Sy41 C a, and so

f=a1fi++gfs

for some g; € A[X1,...,Xn]. As f and the f; are homogeneous, we can omit from each g;
all terms not of degree deg f —deg f;, since these terms cancel out. In other words, we may
choose the g; to be homogeneous of degree deg f —deg f; = d + 1 —d; > 0. In particular,

the constant term of g; is zero, and so g;(aq,...,a,) € a. Now
b= flar...ar) =) gilar,....ar)- fiar.....ar) €a-[ ] a".
which completes the proof of (6). O

The equality (6) can also be proved using primary decompositions — see (14.15).

PROPOSITION 3.15. In a noetherian ring, every ideal contains a power of its radical; in
particular, some power of the nilradical of the ring is zero.

PROOF. Let ay,...,a, generate rad(a). For each i, some power of a;, say al.ri, lies in a.
Then every term of the expansion of

(crar+-++cpan)" T i€ A,
has a factor of the form al.ri for some i, and so lies in a. o

NOTES. (a) In a noetherian ring, every ideal is finitely generated, but there is little that one can say
in general about the number of generators required. For example, in k[X] every ideal is generated by
a single element, but in k[ X, Y] the ideal (X, Y )" requires at least n + 1 generators.

(b) The following example shows that the Krull intersection theorem fails for nonnoetherian
rings. Let A be the ring of germs of C*° functions at 0 on the real line. Then A is a local ring with
maximal ideal m equal to the set of germs zero at 0. Then (), , m” consists of all germs whose

derivatives at zero are all zero. Therefore it contains e~ 1/ [A germ of a function at 0 is represented
by a function f on an open neighbourhood U of 0. Two pairs (f,U) and (f’,U’) represent the same
germ if f and f’ agree on some neighbourhood of 0in U NU’.]

4 Unique factorization

Let A be an integral domain, and let a be an element of A that is neither zero nor a unit.
Then a is said to be irreducible if it admits only trivial factorizations, i.e.,

a=bc = borcisaunit.
The element a is said to be prime if (a) is a prime ideal, i.e.,

albc = alboralc.
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An integral domain 4 is called a unique factorization domain if every nonzero nonunit
a in A can be written as a finite product of irreducible elements in exactly one way up
to units and the order of the factors, i.e., a = Hi <7 ai with each q; irreducible, and if
a=1]] jesbj with each b; irreducible, then there exists a bijection i - j(i):/ — J such
that b ;) = a; X unit for each i. Every principal ideal domain is a unique factorization
domain (proved in most algebra courses).

PROPOSITION 4.1. Let A be an integral domain, and let a be an element of A that is neither
zero nor a unit. If a is prime, then a is irreducible, and the converse holds when A is a
unique factorization domain.

PROOF. Assume that a is prime. If a = bc, then a divides bc and so a divides b or c.
Suppose the first, and write b = aq. Now a = bc = aqc, which implies that gc = 1 because
A is an integral domain, and so ¢ is a unit. Therefore a is irreducible.
For the converse, assume that a is irreducible and that A is a unique factorization domain.
If a|bc, then
bc =aq, some g € A.

On writing each of b, ¢, and ¢ as a product of irreducible elements, and using the uniqueness
of factorizations, we see that a differs from one of the irreducible factors of b or ¢ by a unit.
Therefore a divides b or c. o

GAUSS’S LEMMA 4.2. Let A be a unique factorization domain with field of fractions F .
If f(X) € A[X] factors into the product of two nonconstant polynomials in F[X], then it
factors into the product of two nonconstant polynomials in A[X].

PROOF. Let f = gh in F[X]. For suitable ¢,d € A, the polynomials g; = cg and h; = dh
have coefficients in A, and so we have a factorization

cdf = g1hy in A[X].
If an irreducible element p of A divides cd, then, looking modulo (p), we see that
0=g1-hyin (4/(p))[X].

According to Proposition 4.1, the ideal (p) is prime, and so (A/(p))[X] is an integral
domain. Therefore, p divides all the coefficients of at least one of the polynomials g1, 41,
say g1, so that g1 = pg» for some g, € A[X]. Thus, we have a factorization

(cd/p)f = g2h1in A[X].

Continuing in this fashion, we can remove all the irreducible factors of c¢d, and so obtain a
factorization of f in A[X]. o

The proof shows that every factorization f = gh in F[X] of an element f of A[X]
gives a factorization f = (cg)(c~'h) in A[X] for a suitable ¢ € F.
Let A be a unique factorization domain. A nonzero polynomial

f=a+ai X+ +anX"

in A[X] is said to be primitive if the coefficients a; have no common factor other than units.
Every polynomial f in A[X] can be written f = c(f)- f1 with c¢(f) € A and f; primitive.
The element ¢ ( f'), well-defined up to multiplication by a unit, is called the content of f .
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LEMMA 4.3. The product of two primitive polynomials is primitive.
PROOF. Let

f=a+ar1 X +--+apX™
g=bo+b1 X +--+b X",

be primitive polynomials, and let p be an irreducible element of A. Let a;, be the first
coefficient of f not divisible by p and b, the first coefficient of g not divisible by p. Then
all the termsin ), , j=ig+jo dibj are divisible by p, except aiyb j,, which is not divisible
by p. Therefore, p doesn’t divide the (ip + jo)th-coefficient of fg. We have shown that
no irreducible element of A divides all the coefficients of fg, which must therefore be
primitive. o

LEMMA 4.4. For polynomials f,g € A[X], ¢(fg) = c(f)-c(g); hence every factor in
A[X] of a primitive polynomial is primitive.

PROOF. Let f =c(f) f1 and g = c(g)g1 with fi and g; primitive. Then

J8=c(fe(g) figa
with £} g1 primitive, and so ¢(fg) = c(f)c(g). o
PROPOSITION 4.5. If A is a unique factorization domain, then so also is A[X].

PROOF. From the factorization f = c¢(f) f1, we see that the irreducible elements of A[X]
are to be found among the constant polynomials and the primitive polynomials, but a constant
polynomial a is irreducible if and only if a is an irreducible element of A (obvious) and a
primitive polynomial is irreducible if and only if it has no primitive factor of lower degree (by
4.4). From this it is clear that every nonzero nonunit f in A[X] is a product of irreducible
elements.

Let

f=ciocmfifo=didrgigs

be two factorizations of an element f of A[X] into irreducible elements with the ¢;,d;
constants and the f;, g; primitive polynomials. Then

c(f)=c1--cm =dy--dy (up to units in 4).

From this it follows that:

(a) m = r and the ¢;’s differ from the d;’s only by units and ordering, and

(b) fi++-fn = g1---gs (up to units in A). Gauss’s lemma shows that the f;,g; are
irreducible polynomials in F[X] and, on using that F[X] is a unique factorization
domain, we see that n = s and that the f;’s differ from the g;’s only by units in F
and by their ordering. But if f; = Z—’ g, with a and b nonzero elements of A, then
bfi =agj. As f; and g; are primitive, this implies that 5 = a (up to a unitin A), and
hence that % is a unitin A. O
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Let k be a field. A monomial in X1,..., X, is an expression of the form
Xla1 - Xgn, ajeN.

The total degree of the monomial is ) a;. The degree, deg( f), of a nonzero polyno-
mial f(Xq,...,Xy) is the largest total degree of a monomial occurring in f with nonzero
coefficient. Since

deg(fg) = deg(f) +deg(g),

k[X1,...,Xy] is an integral domain and k[X1,..., X,|* = k™. Therefore, an element f of
k[X1,...,Xyn] is irreducible if it is nonconstant and f = gh == g or & is constant.

THEOREM 4.6. The ring k[X1,..., Xy] is a unique factorization domain.

PROOF. This is trivially true when n = 0, and an induction argument using (4), p.10, proves
it for all n. o

COROLLARY 4.7. A nonzero proper principal ideal (f) in k[X1,..., X,] is prime if and
only f is irreducible.

PROOF. Special case of (4.1). o

S5 Integrality

Let A be a subring of a ring B. An element « of B is said to be integral over A if it is a root
of a monic’ polynomial with coefficients in A4, i.e., if it satisfies an equation

a"+a " '+ ta, =0, a;€A.

If every element of B is integral over A, then B is said to be integral over A.
In the next proof, we shall need to apply Cramer’s formula. As usually stated in linear
algebra courses, this says that, if x1,...,X;, is a solution to the system of linear equations

m
E CijXj =d;, i=1,....m,
Jj=1

then
det(C,-)
x; = ——=, where C = (c¢;;) and
77 det(C) (€if)
ci1 o c1,j—1 di cij+1 t Cim
Cj: . . . .
Cml ** Cm,j—1 dm Cm,j+1 *** Cmm

‘When one restates the formula as

det(C)-x; =det(Cj)

7 A polynomial is monic if its leading coefficient is 1, i.e., f(X) = X"+ terms of degree less than 7.
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it becomes true over any ring (whether or not det(C) is a unit). The proof is elementary—
expand out the right hand side of

‘11 ... C1j-1 chjxj Cl1j+1 oo Cim
detC; = det : : : :

Cm1 e Cm]—l ZCmJXJ ij-'—l ces Cmm
using standard properties of determinants.

PROPOSITION 5.1. Let A be a subring of aring B. An element o of B is integral over A if
and only if there exists a faithful® A[a]-submodule M of B that is finitely generated as an
A-module.

PROOF. =>: Suppose
" +a1ad" '+ ta,=0, a €A

Then the A-submodule M of B generated by 1, , ..., @~ ! has the property that «M C M,
and it is faithful because it contains 1.

&: Let M be an A-module in B with a finite set {eq,...,e,} of generators such that
aM C M and M is faithful as an A[«]-module. Then, for each i,

ae; =) a;jej,somea;j; € A.

We can rewrite this system of equations as

(e —ar1)er —aizex —agzez —---=0
—az1e1 + (@ —az)es —azzez—--- =0
=0

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s formula tells us that
det(C)-e; =0foralli. As M is faithful and the e; generate M, this implies that det(C) = 0.
On expanding out the determinant, we obtain an equation

a”+c1a”_1+c2an_2+"'+cn:0’ ¢ € A. -

PROPOSITION 5.2. An A-algebra B is finite if and only if it is finitely generated and integral
over A.

PROOF. <«: Suppose B = Alay,...,a,] and that

ol fana T ot aig, =0, a;eA, i=1,...m.
Any monomial in the ¢;’s divisible by some al'.' " is equal (in B) to a linear combination of
monomials of lower degree. Therefore, B is generated as an A-module by the monomials
al o 1 <ri <nj.

=>: As an A-module, B is faithful (because a-1p = a), and so (5.1) show that every
element of B is integral over A. As B is finitely generated as an A-module, it is certainly

finitely generated as an A-algebra. O

8 An A-module M is faithful if aM = 0, a € A, implies a = 0.
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The proof shows that, if an A-algebra B is generated by a finite number of elements each
of which is integral over A, then it is finitely generated as an A-module.

THEOREM 5.3. Let A be a subring of a ring B. The elements of B integral over A form a
subring of B.

PROOF. Let o and B be two elements of B integral over A. As just noted, A[c, B] is finitely
generated as an A-module. It is stable under multiplication by « &= 8 and @8 and it is faithful
as an A[a £ B]-module and as an A[xf]-module (because it contains 1 4). Therefore (5.1)
shows that « = 8 and o are integral over A. o

DEFINITION 5.4. Let A be a subring of the ring B. The integral closure of A in B is the
subring of B consisting of the elements integral over A.

PROPOSITION 5.5. Let A be an integral domain with field of fractions F, and let L be a
field containing F. If « € L is algebraic over F, then there exists ad € A such that du is
integral over A.

PROOF. By assumption, « satisfies an equation
o™ +ad™ ' +---+a, =0, aq; €F.

Let d be a common denominator for the a;, so that da; € A for all i, and multiply through
the equation by d":

d™e™ +ardmod™ ot ayd™ =0.
We can rewrite this as
(da)™ +a1d(da)™ ' + -+ ad™ =0.
Asaid,...,and™ € A, this shows that du is integral over A. O

COROLLARY 5.6. Let A be an integral domain and let L be an algebraic extension of the
field of fractions of A. Then L is the field of fractions of the integral closure of A in L.

PROOF. In fact, the proposition shows that every element of L is a quotient 8/d with
integral over A and d € A. o

DEFINITION 5.7. An integral domain A is integrally closed if it is equal to its integral
closure in its field of fractions F, i.e., if

a € F, ointegralover A — «a € A.
PROPOSITION 5.8. Every unique factorization domain is integrally closed.

PROOF. An element of the field of fractions of 4 not in A can be written a/b with a,b € A
and b divisible by some irreducible element p not dividing a. If a/b is integral over A, then
it satisfies an equation

(a/b)"+ai(a/b)" ' +---4a,=0, a;€A.
On multiplying through by ", we obtain the equation
a*+a1d® b+ +ayb" =0.

The element p then divides every term on the left except a”, and hence must divide a”.
Since it doesn’t divide a, this is a contradiction. O
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PROPOSITION 5.9. Let A be an integrally closed integral domain, and let L be a finite
extension of the field of fractions F of A. An element of L is integral over A if and only if
its minimum polynomial’ over F has coefficients in A.

PROOF. Let « be integral over A, so that
a™ —i—alo{m_l +---4+a, =0, somea;c€ A, m>0.

Let o’ be a conjugate of «, i.e., a root of the minimum polynomial f(X) of & over F in
some field containing L. Then there is an F-isomorphism!®

o:Fla] — F[d'], o(ax)=d'
On applying o to the above equation we obtain the equation
o™ +ard™ o tam =0,

which shows that o’ is integral over A. Hence all the conjugates of « are integral over A, and
it follows from (5.3) that the coefficients of f(X) are integral over A. They lie in F, and A
is integrally closed, and so they lie in A. This proves the “only if” part of the statement, and
the “if” part is obvious. o

COROLLARY 5.10. Let A be an integrally closed integral domain with field of fractions F,
and let f(X) be a monic polynomial in A[X]. Then every monic factor of f(X) in F[X]
has coefficients in A.

PROOF. Tt suffices to prove this for an irreducible monic factor g of f in F[X]. Let o be a
root of g in some extension field of F'. Then g is the minimum polynomial o, which, being
also a root of f, is integral. Therefore g has coefficients in A. O

THEOREM 5.11 (NOETHER NORMALIZATION THEOREM). Every finitely generated alge-
bra A over a field k contains a polynomial algebra R such that A is a finite R-algebra.

In other words, there exist elements yp,...,y, of A such that A4 is a finitely generated
k[y1,...,yr]-module and y1,..., y, are algebraically independent'' over k.

PROOF. We use induction on the minimum number # of generators of A as a k-algebra. If
n = 0, there is nothing to prove, and so we may suppose that n > 1 and that the statement is
true for k-algebras generated by n — 1 (or fewer) elements.

Let A = k[x1,...,xn]. If the x; are algebraically independent, then there is nothing to
prove, and so we may suppose that there exists a nonconstant polynomial f(71,...,T,) such
that f(x1,...,x,) = 0. Some T; occurs in f, say 77, and we can write

f=coT1N—|—clTlN_1+~--+cN, ci €k[Ts,...,Ty], co#0O.

9Most authors write “minimal polynomial” but the polynomial in question is in fact minimum (smallest
element in the set of monic polynomials having « as a root).

10Recall that the homomorphism X +— a: F[X] — F[a] defines an isomorphism F[X]/(f) — Fl[a].

TRecall that this means that the homomorphism of k-algebras k[X71,..., Xn] = k[y1,..., yn] sending X; to
y; is an isomorphism, or, equivalently, that if

P(y1,...,yn) =0, P(X1,....,Xn) €k[X1,...,Xu],
then P = 0.
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If co € k, then the equation

0= f(x1,...,%Xn) =c0x{V+c1(x2,...,xn)x{V_1 4+ ten(xa,...,xn)

shows that x; is integral over k[x2,...,x,]. By induction, there exist algebraically indepen-
dent elements y1,..., y, such that k[xa,...,xp] is finite over k[y1,..., yr]. It follows that A
is finite over k[y1,..., yr] (a composite of finite ring homorphisms is finite).

If ¢o ¢ k, then we choose different generators for A. Fix an integer m > 0, and let

2 r
m m
VI =X1, Y2 =Xo— X1,y =x— X"

Then
k[yi,....vnl =k[x1,....x0] = A

because each y; € k[x1,...,x,] and, conversely, each x; € k[x1,V2,...,yn]l = k[¥1,..., n].
Moreover,

2 r
FOLy2+Y" Ly YY) =0.

In other words, when we let
g(Th....Ty) = f(TL. T+ T ... T, +T" ) € k[T1.....Tp].
g(y1,-..,yn) = 0. I claim that, if m is chosen sufficiently large, then
g(Ti,....Ty) = coT +e | TNV -4y, ¢l ek[Ts,....T;], ¢4 #0

with ¢;, € k, and so the previous argument applies.
To prove the claim, let

ST Ty =) e, T T
Choose m so large that the numbers
Ji+m?ja - tm’ 9

are distinct when (1, ..., jr) runs over the r-tuples with ¢, .. ;. # 0. Then

.....

FL T+ T T+ Ty = TN 4oy TN 4.
with ¢ € k ~{0} and N equal to the largest value of (7). -

REMARK 5.12. When £ is infinite, there is a simpler proof of a somewhat stronger result:
let A = k[x1,...,x,]; then there exist algebraically independent elements fi,..., f, that
are linear combinations of the x; such that A is finite over k[ f1,..., fr] (see 8.13 of my
algebraic geometry notes).
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6 Rings of fractions

Recall that a multiplicative subset of a ring is a nonempty subset closed under the formation
of finite products.
Let S be a multiplicative subset of 4, and define an equivalence relation on A x S by

(a,s) ~(b,t) <= u(at —bs) =0 forsomeu € S.
Write % for the equivalence class containing (a,s), and define addition and multiplication of

equivalence classes according to the rules:

g+ll __ at+bs

b _ab
s - t

a
s st

t st

It is easily checked these do not depend on the choices of representatives for the equivalence
classes, and that we obtain in this way a ring

ST'A={%]acA s€eS}

and a ring homomorphism a — $: 4 5, §~1 4 whose kernel is
{a € A|sa =0forsomes e S}.

If S contains no zero-divisors, for example, if A is an integral domain and 0 ¢ S, then
is:A— S A is injective. At the opposite extreme, if 0 € S, then S~! 4 is the zero ring.

PROPOSITION 6.1. The pair (S~ A,is) has the following universal property:

is 1
every element of S maps to a unit in S~' A, and A S | A
any other ring homomorphism A — B with this \ i
property factors uniquely throughig l;

PROOF. Let a: 4 — B be a homomorphism, and let 8:S~!4 — B be a homomorphism
such that B oig = . Then

15=1 = BB =B(D),
and so
B($) = al@a(s) ™. ®)
This shows that there can be at most one 8 such that § oig = a. When « maps the elements

of S to units in B, we define 8 by the formula (8). Then

b (u)e

B
@b — y(ar—bs)=0someucS = a(@a(t)—ab)ls) =0,

x

which shows that 8 is well-defined, and it is easy to check that it is a homomorphism. g

As usual, this universal property determines the pair (S~ A4,ig) uniquely up to a unique
isomorphism.'?

12Recall the proof: let (Ay,i1) and (Az,iz) have the universal property in the proposition; because every
element of S maps to a unit in A, there exists a unique homomorphism «: A1 — A2 such that ¢ 0i] =ip
(universal property of A1,i1); similarly, there exists a unique homomorphism o’: Ap — A1 such that @’ cip =iy;
now
o oaoii =d oip =i = idg4, oiq,
and so o’ oo = id4, (universal property of Ay,i1); similarly, o oo’ =idy4,, and so « and &’ are inverse
isomorphisms (and they are uniquely determined by the conditions o 0iy = ip and o’ 0ip = i7).
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When 4 is an integral domain and S = A4 ~ {0}, the ring S~ 4 is the field of fractions
F of A. In this case, for any other multiplicative subset 7' of A not containing 0, the ring
T~ A can be identified with the subring of F consisting of the fractions ¢ witha € 4 and
reT.

EXAMPLE 6.2. Leth € A. Then S, = {1,h,h?,...} is a multiplicative subset of 4, and we
let Ay =S, 1 A. Thus every element of Ay, can be written in the form a/h™, a € A, and

= hL" < hN(ah™ —bh™) =0, some N.

If /4 is nilpotent, then Ay = 0, and if A is an integral domain with field of fractions F' and
h # 0, then Ay, is the subring of F of elements of the forma/h™,a € A, m € N.

PROPOSITION 6.3. For every ring A and h € A, the map Y a; X' > Z;’l—ﬁ defines an
isomorphism

AIX]/(1=hX) — Ap,.

PROOF. If & = 0, both rings are zero, and so we may assume 4 # 0. In the ring A[x] =
A[X]/(1—hX),1 = hx, and so A& is a unit. Let @: A — B be a homomorphism of rings such
that (%) is a unit in B. The homomorphism Y a; X' > 3" a/(a;)a(h) ™ : A[X] — B factors
through A[x] because 1 =7 X + 1 —a(h)a(h)~! = 0, and this is the unique extension of «
to A[x]. Therefore A[x] has the same universal property as Ay, and so the two are (uniquely)
isomorphic by an A-algebra isomorphism that makes 4! correspond to x. o

Let S be a multiplicative subset of a ring 4, and let S~! A be the corresponding ring of
fractions. For every ideal a in A, the ideal generated by the image of a in S™! 4 is

S"laz{%|aea, s€ S}

If a contains an element of S, then S ~!a contains 1, and so is the whole ring. Thus some of
the ideal structure of A is lost in the passage to S™! A, but, as the next proposition shows,
some is retained.

PROPOSITION 6.4. Let S be a multiplicative subset of the ring A, and consider extension
ar a® = S~ la and contraction a > a° ={a € A | ¢ € a} of ideals with respect to the
homomorphism A — S~!A. Then

a’® =a  forall ideals of S~' A
a*“=a if a is a prime ideal of A disjoint from S.

Moreover, the p — p¢ is a bijection from the set of prime ideals of A disjoint from S onto
the set of all prime ideals of S~™! A; the inverse map is p +> p°¢.

PROOF. Let a be an ideal in S~! A. Certainly a® C a. For the reverse inclusion, let b € a.
We can write b = & witha € A, s € S. Then § :s(%) €a,andsoa €a. Thush = £ € a,
and so a C a®®.

Let p be a prime ideal of A disjoint from S. Clearly p®“ D p. For the reverse inclusion,
let a € p°¢ so that ¢ = %/ for some a’ € p, s € S. Then t(as —a’) = 0 for some 7 € S, and
so ast € p. Because st ¢ p and p is prime, this implies that a € p, and so p¢¢ C p.

Let p be a prime ideal of A disjoint from S, and let S be the image of S in A/p.
Then (S™1A4)/p¢ ~ S~1(A4/p) because S~! 4/p® has the correct universal property, and
S~1(A/p) is an integral domain because A/p is an integral domain and S doesn’t contain 0.
Therefore p€ is prime. From §2 we know that p€ is prime if p is, and so p — p¢ and p — p€
are inverse bijections on the two sets. O
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COROLLARY 6.5. If A is noetherian, then so also is S~! A for any multiplicative set S.
PROOF. As b€ is finitely generated, so also is (b€)¢ = b. o

EXAMPLE 6.6. Let p be a prime ideal in A. Then S, = A~ p is a multiplicative subset of
A, and we let A, = Sp_ 1 A. Thus each element of Ajp can be written in the form %, ¢ ¢p,and

¢= g <= s(ad —bc) =0, some s ¢ p.
According to (6.4), the prime ideals of Ay, correspond to the prime ideals of A disjoint from
A~p,i.e., contained in p. Therefore, A, is a local ring with maximal ideal m = p¢ = {£ |

aEp,s¢pl.

PROPOSITION 6.7. Letm be a maximal ideal of a ring A, and let n = m Ay, be the maximal
ideal of Ay,. For all n, the map

a+m">a+n"A/m" - Ay /0"
is an isomorphism. Moreover, it induces isomorphisms
m’/m"” —n"/n"
for all pairs (r,n) withr <n.

PrROOF. The second statement follows from the first, because of the exact commutative
diagram (r < n):

0——m'/m" — > A/m" — A/m" ——— 0

| Ll

0 —— /0" —— Ay/n" —— Ay /v —— 0.

We consider extension and contraction with respect to a > §:4 — Ay. In order to
show that the map A/m” — A, /n” is injective, we have to show that (m”)¢¢ = m”. If
a € (m")¢, then { = ? with b € m" and s € S. Then s'sa € m” for some s’ € S, and so
s’sa = 0 in A/m”". The only maximal ideal containing m” is m, and so the only maximal
ideal in A/m” is m/m”. As s’s is not in m/m”, it must be a unit in A/m”, and so a = 0 in
A/m" ie., a € m". We have shown that (m”)¢¢ C m, and the reverse inclusion is always
true.

We now prove that A/m” — Ay /n" is surjective. Let § € A, a € 4,5 € A~m. The
only maximal ideal of A containing m” is m, and so no maximal ideal contains both s
and m”; it follows that (s) + m” = A. Therefore, there exist b € A and ¢ € m” such that
sb+q = 1. Because s is invertible in Ay /n", < is the unique element of this ring such that
5% =a. As s(ba) = a(1 —q), the image of ba in Ay, also has this property and therefore
equals . o

PROPOSITION 6.8. In a noetherian ring, only O lies in all powers of all maximal ideals.

PROOF. Leta be an element of a noetherian ring A. If a # 0, then its annihilator {b | ba = 0}
is a proper ideal, and so it is contained in some maximal ideal m. Then { is nonzero in Ay,
and so ¢ ¢ (mAy)" for some n (by the Krull intersection theorem 3.14), which implies that
a ¢ m" (by 6.7). a)
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Modules of fractions

Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an
equivalence relation on M x S by

(m,s) ~(n,t) <= u(tm—sn)=0"forsomeu € S.

Write “* for the equivalence class containing (m,s), and define addition and scalar multipli-
cation by the rules:

m_ n_ mittns am _ am
ct T ="5r 57 , mneM, s,teS, acA.

It is easily checked these do not depend on the choices of representatives for the equivalence
classes, and that we obtain in this way an S~! 4-module

ST'M={Z|meM,seS}

and a homomorphism m — %: M 5, =M of A-modules whose kernel is
{a € M | sa =0 for some s € S}.

EXAMPLE 6.9. Let M be an A-module. For & € A, let M}, = Sh_lM where Sj, = {1,h,h?,...}.
Then every element of M}, can be written in the form %, meM,reN,and hﬂ' = hlr// if
and only if N (h"'m—h"m’) = 0 for some N € N.

PROPOSITION 6.10. The pair (S~'M,ig) has the following universal property:

every element of S acts invertibly on S M, and M- sy
any other homomorphism M — N of A-modules 1 \
such that every element of S acts invertibly on N f'
factors uniquely through i g N.
PROOF. Similar to that of Proposition 6.1. O

In particular, for any homomorphism «: M — N of A-modules, there is a unique
homomorphism S 1a:S™!M — STIN such that S~ laoig =igoa:

M5 51y

[

N 1S s-1N,
In this way, M ~> S~!M becomes a functor.

PROPOSITION 6.11. The functor M ~> S~'M is exact. In other words, if the sequence of
A-modules

YR VLNV
is exact, then so also is the sequence of S™! A-modules

— —1
S—IM/ ‘:;x S—IM S_)ﬂ S_IMN.
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PROOF. Because Boa =0, wehave 0= S~ (Boa) =S 1B0S la. Therefore Im(S o) C
Ker(S~!B). For the reverse inclusion, let % e Ker(S~!B) wherem € M and s € S. Then

B(m) _ _ _ —
Tm = 0 and so, for some 7 € S, we have t8(m) = 0. Then B(tm) = 0, and so tm = a(m’)
for some m’ € M’. Now

_tm __ a(m’) -1
T == elm(ST ).

EXERCISE 6.12. A multiplicative subset S of a ring A is said to be saturated if
abeS =aandbeS.

(a) Show that the saturated multiplicative subsets of A are exactly the subsets .S such that
A~ S is a union of prime ideals.

(b) Let S be a multiplicative subset of A, and let S be the set of a € A such that ab € S
for some b € A. Show that S is a saturated multiplicative subset of A (hence it is the
smallest such subset containing ), and that 4 ~ S is the union of the prime ideals
of A not meeting S. Show that for any A-module M, the canonical homomorphism
S~1M — S~ M is bijective. (Cf. Bourbaki AC, II §2, Exercises 1,2.)

7 Direct limits

DEFINITION 7.1. A partial ordering < on a set / is said to be directed, and the pair (/, <)
is called a directed set, if for all i, j € I there existsa k € I such thati,j <k.

DEFINITION 7.2. Let (1, <) be a directed set, and let A be a ring.

A direct system of A-modules indexed by (/, <) A M,
is a family (M;);cs of A-modules together with a @
family (alj :M; — M )<, of A-linear maps such ol

thatozf =idp, and a]i oa; =o¢fc alli <j <k.

An A-module M together with a family (a: M; —

M);cy of A-linear maps satisfying o’ = o/ oa; o M
all i < j is said to be a direct limit of the sys- |
tem ((M;), (a;)) if it has the following universal ' / }
property: for any other A-module N and fam- M; —ao; > M; X
ily (B/:M; — N) of A-linear maps such that K 3
gi =g oo(; all i < j, there exists a unique mor- Py K]

phism a: M — N such that « oo/ = B for all
i.

As usual, the universal property determines the direct limit (if it exists) uniquely up to a
unique isomorphism. We denote it 1i_r>n(M,~ ,(xl.] ), or just h_n)l M;.

Criterion

An A-module M together with A-linear maps o’: M; — M such that o’ = o/ oozi- for all

i < j is the direct limit of a system (M;, aij ) if and only if
(@) M =;era' (Mi), and
(b) m; € M; maps to zero in M if and only if it maps to zero in M ; for some j >i.
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Construction

Let
M= M/M

iel

where M’ is the A-submodule generated by the elements
m;j —oz;-(mi) alli < j,m; € M;.

Let o’ (m;) = m; + M’. Then certainly o’ = o/ oozi. foralli < j. For every A-module N

and A-linear maps 8/: M 7 — N, there is a unique map

@M,-—>N,

iel

namely, > m; — Y B’ (m;), sending m; to B’ (m;), and this map factors through M and is
the unique A-linear map with the required properties.
Direct limits of A-algebras, etc., are defined similarly.

An example

PROPOSITION 7.3. For every multiplicative subset S of aring A, S~'A ~ lim A;,, where
h runs over the elements of S (partially ordered by division).

PROOF. When h|h', say, h’ = hg, there is a unique homomorphism A, — A} respecting
the maps A — Ay and A — Ay, namely, % — ‘;l—é’/’, and so the rings Ay form a direct system
indexed by the set S. When & € S, the homomorphism 4 — S~! A extends uniquely to a
homomorphism % — 7: 4, — S ~14 (see 6.1), and these homomorphisms are compatible
with the maps in the direct system. Now apply the criterion p. 25 to see that S™1 A4 is the
direct limit of the Ay. O

8 Tensor Products

Tensor products of modules

Let A be aring, and let M, N, and P be A-modules. A map ¢: M x N — P of A-modules
is said to be A-bilinear if

dp(x+x',y)=dx.y)+o(x",y), x,x’eM, yeN

(x,y+y) =¢(x,y)+¢(x, ), xeM, yy'eN
plax,y) =ap(x,y), acA, xeM, yeN
¢(x,ay) =ap(x,y), a€A, xeM, yeN,

i.e., if ¢ is A-linear in each variable.
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An A-module T together with an A-bilinear map P
MxN ——T

¢MxN—->T |
: o ¢’ | 3! linear
is called the tensor product of M and N over A if it has the \ |

following universal property: every A-bilinear map Tv/.

¢ MxN—>T

factors uniquely through ¢.
As usual, the universal property determines the tensor product uniquely up to a unique
isomorphism. We write it M ® 4 N. Note that

HomA-bilinear(M XN, T) = HomA—linear(M ®4 N, T)-

CONSTRUCTION

Let M and N be A-modules, and let AM*N) pe the free A-module with basis M x N. Thus
each element A™>*N) can be expressed uniquely as a finite sum

Zai(xi,yi), ai€A, xieM, y;€N.
Let P be the submodule of A *N) generated by the following elements

x+x,y)—(x,.y)—(K".y), x,x’eM, yeN
(X, y+y)=(x,y)—(x,)), xeM, y,y eN
(ax,y)—a(x,y), aeA, xeM, yeN
(x,ay)—a(x,y), a€A, xeM, yeN,
and define
M@uN=AMN/p
Write x ® y for the class of (x,y) in M ® 4 N. Then
X, ) xQ@Yy MXN—->M@qN

is A-bilinear — we have imposed the fewest relations necessary to ensure this. Every element
of M ® 4 N can be written as a finite sum'>

Y ai(xi®yi), ai€A, x;eM, y €N,
and all relations among these symbols are generated by the following relations
F+x)®y=x®y+x'®y

xQ+Y)=x®y+x®)
ax®y)=(ax)Q@y =xQ®ay.
The pair (M ® 4 N, (x, y) — x ® y) has the correct universal property because any bilinear

map ¢':M x N — T’ defines an A-linear map AM>*N) s T’  which factors through
AMXN) /K, and gives a commutative triangle.

13¢«An element of the tensor product of two vector spaces is not necessarily a tensor product of two vectors,
but sometimes a sum of such. This might be considered a mathematical shenanigan but if you start with the
state vectors of two quantum systems it exactly corresponds to the notorious notion of entanglement which so
displeased Einstein.” Georges Elencwajg on mathoverflow.net.
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EXTENSION OF SCALARS

Let A be a commutative ring and let B be an A-algebra (not necessarily commutative) such
that the image of A — B lies in the centre of B. Then M ~> B ® 4 M is a functor from left
A-modules to left B-modules, which has the following universal property:

HomA-linear(Ma N) = HomB-linear(B R4 M, N), N a B-module. 9

If (eq)qer is a family of generators (resp. basis) for M as an A-module, then (1 ® eq)qey is
a family of generators (resp. basis) for B ® 4 M as a B-module.

BEHAVIOUR WITH RESPECT TO DIRECT LIMITS

PROPOSITION 8.1. Direct limits commute with tensor products:
lim M; i i~ i ~ B
am 1®Ah_H)1NJ h_r)n M1®AN/
iel jeJ (i,j)elxJ

PRrROOF. Using the universal properties of direct limits and tensor products, one sees easily
that lir_)n(M ®4 N;) has the universal property to be the tensor product of hmM and
hm Nj. o

Tensor products of algebras

Let k be aring, and let A and B be k-algebras. A k-algebra C together with homomorphisms
i:A— C and j: B — C is called the tensor product of A and B if it has the following
universal property:

for every pair of homomorphisms (of k-algebras) A—sc<l B
a:A — R and B: B — R, there exists a unique

homomorphism y:C — R such that y oi = « and \I' | y/
vej=5

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this
property. We write it A ®; B. Note that the universal property says that

Homk-algebra(A ® B, R) = Homk-algebra(Av R) X Homk-algebra(B7 R) (10)

CONSTRUCTION

Regard A and B as k-modules, and form the tensor product A ® B. There is a multiplication
map A Qy Bx AQy B — A®j B for which

(a®b)(d ®b")=ad’ @bb’, alla,a’ € A, b,b' €B.
This makes A ®j B into a ring, and the homomorphism
cHc(l®)=c®1l=1Qc
makes it into a k-algebra. The maps
a—~»a®l:A—> AQ Bandb— 1Q®b:B —> AQ; B

are homomorphisms, and they make A ®; B into the tensor product of A and B in the above
sense.



8 TENSOR PRODUCTS 29

EXAMPLE 8.2. The algebra A, together with the maps
k— A <id—A A,

is k ® A (because it has the correct universal property). In terms of the constructive
definition of tensor products, the map ¢ ® a — ca:k ®j A — A is an isomorphism.

EXAMPLE 8.3. Thering k[X1,..., Xm, Xm+1,- .., Xm+n], together with the obvious inclu-

sions
k[Xl,...,Xm] — k[Xl,...,Xm+n] < k[Xm+1,...,Xm+n]

is the tensor product of the k-algebras k[X1,..., X;n] and k[ X;m+1,- .., Xm+n]. To verify
this we only have to check that, for every k-algebra R, the map

Homy_a1g(K[X1,.... Xm+n], R) — Homy o (k[ X71,...], R) X Homy_yio (k[ X +1....], R)

induced by the inclusions is a bijection. But this map can be identified with the bijection
R™" 5 R™M x R".
In terms of the constructive definition of tensor products, the map
k[ X1,..., Xm] @k k[ Xm+1, s Xm+n] = k[ X1,..., Xonta]
sending f ® g to fg is an isomorphism.
REMARK 8.4. (a) Let k < k’ be a homomorphism of rings. Then
K @rk[Xt,....Xn] 2k [1® X1,....1® X,] ~ k'[X1,.... Xx].
If A=k[Xy1,...,Xn]/(g1,...,8m), then
K ®rA~k[X1,....Xn)/(g1,.-..8m)-

(b) If A and B are algebras of k-valued functions on sets S and T respectively, then the
definition

(f®g)x,y)=f(x)gly), fe€eAgeB,xeS, yeT,

realizes A ®j, B as an algebra of k-valued functions on S x T'.

The tensor algebra of a module

Let M be a module over a ring A. For each A > 0, set
T"M=MQ®4 QM (r factors),

sothat T°M = A and T'M = M, and define

™ = @rzo T" M.

This can be made into a noncommutative A-algebra, called the tensor algebra of M, by
requiring that the multiplication map

T"MxTSM — T" M

send (M1 @ Qmy, Myy1 Q- @Mypys) tOM] Q-+ QMy4s.
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The pair (TM, M — T M) has the following universal prop-

erty: every A-linear map from M to an A-algebra R (not neces- M — TM
sarily commutative) extends uniquely to an A-algebra homomor- A_hk i 3 A-algebra
phism TM — R. y

If M is a free A-module with basis x1,...,x,, then TM is R

the (noncommutative) polynomial ring over A in the noncommut-
ing symbols x; (because this A-algebra has the same universal
property as TM).

The symmetric algebra of a module

The symmetric algebra Sym(M) of an A-module M is the quotient of TM by the ideal
generated by all elements of 72 M of the form

mn—nmnQm, m,neM.

Itis a graded algebra Sym(M) = (P, Sym” (M) with Sym” (M) equal to the quotient of
M ®7 by the A-submodule generated by all elements of the form

Mm@ Q@my—mMg1) R @Mgy(r), m; €M, o € By (symmetric group).

The pair (Sym(M), M — Sym(M)) has the following
universal property: every A-linear map M — R from M

M —— Sym(M
to a commutative A-algebra R extends uniquely to an ym(M)

A-algebra homomorphism Sym(M ) — R (because it ex- A_“near\J i 31 A-algebra
tends to an A-algebra homomorphism 7M — R, which 2
factors through Sym(M ) because R is commutative). R

If M is a free A-module with basis x1,...,Xx;, then

Sym(M) is the polynomial ring over A in the (commut-
ing) symbols x; (because this A-algebra has the same universal property as TM).

9 Flatness
Let M be an A-module. If the sequence of A-modules
0—>N —-N—->N"-0 (11)
is exact, then the sequence
MUN > MUN > MQUuN"—0

is exact, but M ® 4 N' — M ® 4 N need not be injective. For example, when we tensor the
exact sequence of Z-modules

O—>Zﬂ>Z—>Z/mZ—>0

with Z/mZ, we get the sequence

2/mz =% 7)mz 7/ mZ — 0.




9 FLATNESS 31

Moreover, M ® 4 N may be zero even when neither M nor N is nonzero. For example,
7/27.®77/37Z =0
because it is killed by both 2 and 3.4

DEFINITION 9.1. An A-module M is flat if
N’ — N injective = M ® 4N’ — M ®4 N injective.
It is faithfully flat if, in addition,
M®@qN=0= N=0.

A homomorphism of rings A — B is said to be (faithfully) flat when B is (faithfully) flat as
an A-module.

Thus, an A-module M is flat if and only if M ® 4 — is an exact functor, i.e.,
0>MIUN - MUN ->MuN" -0 (12)

is exact whenever (11) is exact.

The functor M ® — takes direct sums to direct sums, and therefore split-exact sequences
to split-exact sequences. Therefore, all vector spaces over a field are flat, and nonzero vector
spaces are faithfully flat.

PROPOSITION 9.2. Let A — B be a faithfully flat homomorphism of rings. A sequence of
A-modules
0N —-N—->N"-0 (13)

is exact if
0—>BR4N - BR4N—->B4N' —0 (14)

is exact.

PROOF. Let Ny be the kernel of N’ — N. Because A — B is flat, B ® 4 Ny is the kernel of
B®4N'— B ®4 N, which is zero by assumption; because A — B is faithfully flat, this
implies that No = 0. We have proved the exactness at N, and the proof of the exactness
elsewhere is similar. u]

REMARK 9.3. There is a converse to the proposition: suppose that
(13) is exact < (14) is exact;

then A — B is faithfully flat. The implication “=" shows that A — B is flat. Now let N be
an A-module, and consider the sequence

0—-0—->N—-0—0.

If B®4 N =0, then this sequence becomes exact when tensored with B, and so is itself
exact, which implies that N = 0. This shows that A — B is faithfully flat.

141t was once customary to require a ring to have an identity element 1 0 (see, for example, Northcott 1953,
p.3). However, without the zero ring, tensor products don’t always exist. In fact, Bourbaki’s first example of a
ring is the zero ring.
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COROLLARY 9.4. Let A — B be tfaithfully flat. An A-module M is flat (resp. faithfully
flat) it B ® 4 M is flat (resp. faithfully flat) as a B-module.

PROOF. Assume that Mg = B ®4 N is flat, and let N’ — N be an injective map of A-
modules. We have that

B®A(M®AN,—>M®AN)2MB®B(N)§—>NB),

and the map at right is injective because A — B is flat and M p is flat. Now (9.2) shows that
M®qN' — M ®4N is injective. Thus M is flat.

Assume that M p is faithfully flat, and let N be an A-module. If M ® 4 N = 0, then
Mp ®p Np is zero because it is isomorphic to (M ® 4 N)p. Now Np = 0 because Mp is
faithfully flat, and so N = 0 because A — B is faithfully flat. =

PROPOSITION 9.5. Leti: A — B be a faithfully flat homomorphism. For every A-module
M, the sequence

d d
0>M-5BRIAM--"5BRuUBRIuM (15)
with
do(m) = 1®@m,
dib@m) = 1Qbdm—->bR1Qm
is exact.

PROOF. Assume first that there exists an A-linear section to A — B, i.e., an A-linear map
f:B — A suchthat f oi =1idy, and define

ko:BRaM — M, ko(b@m) = f(b)m
ki:BRQABR4M — B4 M, kib®@b' ®@m)= f(b)b'@m.

Then kodo = idps, which shows that dy is injective. Moreover,
kiody+dyoko =idpg M

which shows that, if d; (x) = 0, then x = dg(ko(x)), as required.

We now consider the general case. Because A — B is faithfully flat, it suffices to prove
that the sequence (15) becomes exact after tensoring in B. But the sequence obtained from
(15) by tensoring with B is isomorphic to the sequence (15) for the homomorphism of rings
br—>1®b:B — B®4 B and the B-module B ® 4 M, because, for example,

BR4(BROAM)~=(BR4B)Qp(BRaM).

Now B — B ® 4 B has an B-linear section, namely, /(b ® b’) = bb’, and so we can apply
the first part. O

COROLLARY 9.6. If A — B is faithfully flat, then it is injective with image the set of
elements on which the maps

b — 1®b

b > bel :B—>B®uyB

agree.
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PROOF. This is the special case M = A of the Proposition. O

PROPOSITION 9.7. Let A — A’ be a homomorphism of rings. If A — B is flat (or faithfully
flat), then so alsois A’ — B®4 A’.

PROOEF. For any A’-module M,

BRgAYQ4 M ~BRu(A Q4 M)~BRsM,
from which the statement follows. o
PROPOSITION 9.8. For every multiplicative subset S of a ring A and A-module M,

ST'A®aM ~S7'M.

The homomorphism a + 4: A — S™' A is flat.
PROOF. To give an S ~! A-module is the same as giving an A-module on which the elements
of S act invertibly. Therefore S™! A ® 4 M and S~! M satisfy the same universal property

(see §8, especially (9)), which proves the first statement. As M ~»> S ~1M is exact (6.11), so
alsois M » S™1A® 4 M, which proves the second statement. o

PROPOSITION 9.9. A homomorphism of rings ¢: A — B is flat if A,—1(,) — By is flat for
all maximal idealsn in B.

PROOF. Let N’ — N be an injective homomorphism of A-modules, and let n be a maximal
ideal of B. Then p = ¢! (n) is a prime ideal in A, and Ap ®4 (N’ — N) is injective (9.8).
Therefore, the map

By ®A(N' = N)~ B, ®4, (4, ®4 (N — N))

is injective, and so the kernel M of B ® 4 (N’ — N) has the property that M, = 0. Let
x € M,andleta={b € B | bx = 0}. For each maximal ideal n of B, x maps to zero in M,
and so a contains an element not in n. Hence a = B, and so x = 0. O

PROPOSITION 9.10. The following conditions on a flat homomorphism ¢: A — B are
equivalent:

(a) ¢ is faithfully flat;

(b) for every maximal ideal m of A, the ideal p(m)B # B;

(c) every maximal ideal m of A is of the form ¢! (n) for some maximal ideal n of B.

PROOF. (a) = (b): Let m be a maximal ideal of A4, and let M = A/m; then
B4 M ~ B/p(m)B.

As B®4 M # 0, we see that o(m)B # B.

(b) = (c): If p(m)B # B, then ¢(m) is contained in a maximal ideal n of B. Now
¢~ 1(n) is a proper ideal in A containing m, and hence equals m.

(c) = (a): Let M be a nonzero A-module. Let x be a nonzero element of M, and let
a = ann(x) e {a € A|ax =0}. Then a is an ideal in A, and M’ < Ax ~ A/a. Moreover,
B® M’ ~ B/¢(a)- B and, because A — B is flat, B ® 4 M’ is a submodule of B ® 4 M .
Because a is proper, it is contained in a maximal ideal m of A, and therefore

¢(a) Cp(m) Cn
for some maximal ideal n of A. Hence ¢(a)-B Cn# B,andso B4 M D BR4 M’ # 0.0
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THEOREM 9.11 (GENERIC FLATNESS). Let A an integral domain with field of fractions
F, and let B be a finitely generated A-algebra contained in F ® 4 B. Then for some nonzero
elements a of A and b of B, the homomorphism A, — By, is faithtully flat.

PROOF. As F ® 4 B is a finitely generated F-algebra, the Noether normalization theorem
(5.11) shows that there exist elements x1,...,X, of F ® 4 B such that F[x1,...,X;]is a
polynomial ring over F and F ®4 B is a finite F[xy,...,Xx]-algebra. After multiplying
each x; by an element of A, we may suppose that it lies in B. Let by, ...,b, generate B as an
A-algebra. Each b; satisfies a monic polynomial equation with coefficients in F[xy,...,Xpm].
Let a € A be a common denominator for the coefficients of these polynomials. Then each b;
is integral over A,. As the b; generate B, as an A,-algebra, this shows that By, is a finite
Aglx1,...,xm]-algebra (by 5.2). Therefore, after replacing A with A, and B with B,, we
may suppose that B is a finite A[x1,...,x]-algebra.

injective

B F®AB ——— E®4x,..xm] B

finite Tﬁnite Tﬁnite

A[X1,. o Xm] — Flx1,...,Xm] — EgF(xl,...,xn)

T

A F.

Let E = F(x1,...,X,) be the field of fractions of A[x1y,...,x], and let by,...,b, be
elements of B that form a basis for £ ® 4[,,...,x,,] B as an E-vector space. Each element
of B can be expressed a linear combination of the b; with coefficients in E. Let g be
a common denominator for the coefficients arising from a set of generators for B as an
Alx1,...,Xm]-module. Then by,...,b, generate B, as an A[x1,..., X;u]g-module. In other

words, the map
(c1,...,cr)HZcibi:A[xl,...,xm]g—>Bq (16)

is surjective. This map becomes an isomorphism when tensored with £ over A[X1,...,Xm]q,
which implies that each element of its kernel is killed by a nonzero element of A[x1,...,Xmlq
and so is zero (because A[x1,...,Xx,]q is an integral domain). Hence the map (16) is an
isomorphism, and so By, is free of finite rank over A[xy,...,Xx,]qs. Let a be some nonzero
coefficient of the polynomial g, and consider the maps

Ag = Aglx1,...,Xm] = Aalx1,....Xmlq = Bag.

The first and third arrows realize their targets as nonzero free modules over their sources,
and so are faithfully flat. The middle arrow is flat by (9.8). Let m be a maximal ideal in A4,.
Then mAg[x1,...,Xn] does not contain the polynomial g because the coefficient a of g is
invertible in A,. Hence mA4[x1,...,Xn]q is a proper ideal of A4[x1,...,Xm]q, and so the
map Aqg — Aalx1,...,Xmlq is faithfully flat (apply 9.10). This completes the proof. O

REMARK 9.12. The theorem holds for every finitely generated B-algebra, i.e., without the
requirement that B C F' ® 4 B. To see this, note that F' ® 4 B is the ring of fractions of B
with respect to the multiplicative subset A ~ {0} (see 9.8), and so the kernel of B —> F ® 4 B
is the ideal

n=1{b € B |ab =0 for some nonzero a € A}.
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This is finitely generated (Hilbert basis theorem 3.6), and so there exists a nonzero ¢ € A
such that ¢b = 0 for all b € n. I claim that the homomorphism B, — F ® 4, B is injective.
If cir lies in its kernel, then %c% = 0 in B, for some nonzero C% € A.,and so cNab =0
in B for some N; therefore b € n, and so ¢ch = 0, which implies that CA, = 0 already in B,.
Therefore, after replacing A, B, and M with A, B., and M., we may suppose that the map
B — F ® 4 B is injective. On identifying B with its image, we arrive at the situation of the

theorem.

EXERCISE 9.13. Let (A,-,a;) be a direct system of rings, and let (M,-,,B;) be a direct
system of abelian groups with the same indexing set. Suppose that each M; has the structure
of an A;-module, and that the diagrams

AiXM,' — M;

[ s |

AjXMj—>Mj

commute forall i < j.Let A = l_iI_)nAi and M = 111_>an
(a) Show that M has a unique structure of an A-module for which the diagrams

Al'XMi — M;

J{ai Xﬁi J{Bt

AXM — M

commute for all ;.
(b) Show that M is flat as an A-module if each M; is flat as an A;-module.
(Bourbaki AC, I, §2, Prop. 9.)

10 Finitely generated projective modules

In many situations, the correct generalization of “finite-dimensional vector space” is not
“finitely generated module” but “finitely generated projective module”. From a different
perspective, they are the algebraists analogue of the differential geometers vector bundle.
Throughout this section, 4 is a commutative ring.

Projective modules

DEFINITION 10.1. An A-module P is projective if, for each surjective A-linear map
f:M — N and A-linear map g: P — N, there exists an A-linear map h: P — M (not
necessarily unique) such that f oh = g:
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In other words, P is projective if every map from P onto a quotient of a module M lifts to a
map to M. Equivalently, P is projective if the functor M ~> Hom 4 j;, (P, M) is exact.
As
Hom(Ep; P;. M) ~ ; Hom(P;, M)

we see that a direct sum of A-modules is projective if and only if each direct summand
is projective. As A itself is projective, this shows that every free A-module is projective
and every direct summand of a free module is projective. Conversely, let P be a projective
module, and write it as a quotient of a free module,

S

F—P—0;
because P is projective, there exists an A-linear map h: P — F such that f oh =idp; then
F ~Im(h)®Ker(f)~ P & Ker(f),

and so P is a direct summand of F. We conclude: the projective A-modules are exactly the
direct summands of free A-modules.

Finitely presented modules

DEFINITION 10.2. An A-module M is finitely presented if there exists an exact sequence
A" - A" > M — 0, some m,n € N.

A finite family (e;);ey of generators for an A-module M defines a homomorphism
(a;) =) ;cqaiei: Al — M. The elements of the kernel of this homomorphism are called
the relations between the generators. Thus, M is finitely presented if it admits a finite family
of generators whose module of relations is finitely generated. Obviously

finitely presented = finitely generated,
and the converse is true when A is noetherian (by 3.4).

PrROPOSITION 10.3. If M is finitely presented, then the kernel of every surjective homo-
morphism A™ — M, m € N, is finitely generated.

In other words, if M is finitely presented, then the module of relations for every finite
generating set is finitely generated.

PROOF. We are given that there exists a surjective homomorphism A" — M with finitely
generated kernel R, and we wish to show that the kernel R’ of A™ — M is finitely generated.
Consider the diagram:

0 R A" M 0
i f i g idas
v v

0 R’ A™ M 0

The map g exists because A” is projective, and it induces the map f. From the diagram, we
get an exact sequence

R-EsR = Am/ga™ -0,
either from the snake lemma or by a direct diagram chase. As R and A™/gA" are both
finitely generated, so also is R’. O
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If M is finitely generated and projective, then the kernel of A” — M is a direct summand
(hence quotient) of A", and so is finitely generated. Therefore M is finitely presented.

Finitely generated projective modules

According to the above discussion, the finitely generated projective modules are exactly the
direct summands of free A-modules of finite rank.

THEOREM 10.4. The following conditions on an A-module are equivalent:
(a) M is finitely generated and projective;
(b) M is finitely presented and M, is a free An,-module for all maximal ideals m of A;
(c) there exists a finite family ( f;)ie of elements of A generating the ideal A and such
that, for alli € I, the A .-module M g, is free of finite rank;
(d) M is finitely presented and flat.
Moreover, when A is an integral domain and M is finitely presented, they are equivalent to:
(e) dimg(,)(M ® 4 k(p)) is the same for all prime ideals p of A (here k(p) denotes the
field of fractions of A/p).

PROOF. (a)=-(d). As tensor products commute with direct sums, every free module is flat
and every direct summand of a flat module is flat. Therefore, every projective module M is
flat, and we saw above that such a module is finitely presented if it is finitely generated.

(b)=(c). Let m be a maximal ideal of A, and let xy, ..., x, be elements of M
whose images in M, form a basis for My, over An,. The kernel N’ and cokernel N of the
homomorphism

a: A" —> M, g(a, ..., ar)=Za,~xi,

are both finitely generated, and N, = 0 = Ny,. Therefore, there exists'> an f € A~m such
that N, =0 = N . Now « becomes an isomorphism when tensored with A4 7.

The set T of elements f arising in this way is contained in no maximal ideal, and so
generates the ideal A. Therefore, 1 = Zie yai fi forcertainag; € Aand f; € T.

(c)=(d). Let B =[];c; Af,. Then B is faithfully flat over A,and B4 M =[[M,,
which is clearly a flat B-module. It follows that M is a flat A-module (apply 9.4).

(c)=>(e). This is obvious.

(e)=(c). Fix a prime ideal p of A. For some f ¢ p, there exist elements x1, ..., x, of
M ¢ whose images in M ® 4 k(p) form a basis. Then the map

a:A} — My, aay, ..., ar) =) a;ix;,

defines a surjection A; — M), (Nakayama’s lemma; note that k(p) >~ 4,/pAy). Because
the cokernel of « is finitely generated, the map « itself will be surjective once f has been
replaced by a multiple. For any prime ideal q of A4 s, the map k(q)" — M ® 4 k(q) defined
by « is surjective, and hence is an isomorphism because dim(M ® 4 k(q)) = r. Thus
Ker(a) C qA’f for every q, which implies that it is zero as A4 s is reduced. Therefore M ¢ is
free. As in the proof of (b), a finite set of such f’s will generate A. O

To prove the remaining implications, (d)=>(a),(b) we shall need the following lemma.

150 say that STIN =0 means that, for each x € N, there exists an s € S such that s, x = 0. If xq,..., Xn
generate N, then s & Sxp **+Sx, liesin § and has the property that sN = 0. Therefore, Ny = 0.



10 FINITELY GENERATED PROJECTIVE MODULES 38

LEMMA 10.5. Let
O>N—>F—->M-—0 17)

be an exact sequence of A-modules with N a submodule of F.
(a) If M and F are flat over A, then N NaF = aN (inside F ) for all ideals a of A.
(b) Assume that F is free with basis (y;);cy and that M is flat. If the element n =
Y ieyaiyi of F liesin N, then there existn; € N suchthatn =) ;. a;n;.
(¢c) Assume that M is flat and F is free. For every finite set {ny, ..., n,} of elements of
N, there exists an A-linear map f:F — N with f(n;)=n;, j=1,...,r.

PROOF. (a) Consider

a@QN —— a®@F —— a®@M

-l

0—— NNaF aF aM

The first row is obtained from (17) by tensoring with a, and the second row is a subsequence
of (17). Both rows are exact. On tensoring a — A with F' we getamap a® F' — F, which is
injective because F is flat. Therefore a ® F — aF is an isomorphism. Similarly, a @ M —
aM is an isomorphism. From the diagram we get a surjective map a® N — N NaF, and
so the image of a® N in aF is N NaF. But this image is aN.

(b) Let a be the ideal generated by the a;. Thenn € N NaF = aN, and so there are
ni € N such thatn =) a;n;.

(c) We use induction on r. Assume first that » = 1, and write

ny = jer,diVi
where (y;)ier is a basis for F' and [y is a finite subset of /. Then
ny = Zieloain;

for some n; € N (by (b)), and f may be taken to be the map such that f(y;) = n} fori € Io
and f(y;) = 0 otherwise. Now suppose that 7 > 1, and that there are maps f1, f»: F - N
such that f1(nq) =n; and

fani— fi(ni)) =n;— fi(n;), i=2, ...

>

Then
fiF—=N, f=fi+/fa—/fa0ohfi

has the required property. O

We now complete the proof of the theorem.
(d)=(a). Because M is finitely presented, there is an exact sequence

O—->N—->F—>M-—0

in which F is free and N and F are both finitely generated. Because M is flat, (c) of the
lemma shows that this sequence splits, and so M is projective.
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(d)=(b). We may suppose that A itself is local, with maximal ideal m. Let xq, ..., x, €
M be such that their images in M/mM form a basis for this over the field A/m. Then the
x; generate M (by Nakayama’s lemma), and so there exists an exact

0—>N—>Fi>M—>0

in which F is free with basis {y1, ..., y,} and g(y;) = x;. According to (a) of the lemma,
mN = N N(mF), which equals N because N C mF . Therefore N is zero by Nakayama’s
lemma.

EXAMPLE 10.6. (a) When regarded as a Z-module, Q is flat but not projective (it is not
finitely generated, much less finitely presented, and so this doesn’t contradict the theorem).
(b) Let R be a product of copies of I, indexed by N, and let a be the ideal in R consisting
of the elements (an)nen such that a; is nonzero for only finitely many values of n (so a is a
direct sum of copies of I, indexed by N). The R-module R/ is finitely generated and flat,
but not projective (it is not finitely presented, and so this doesn’t contradict the theorem).

ASIDE 10.7. Nonfree projective finitely generated modules are common: for example, the ideals
in a Dedekind domain are projective and finitely generated, but they are free only if principal. The
situation with modules that are not finitely generated is quite different: if A4 is a noetherian ring with
no nontrivial idempotents, then every nonfinitely generated projective A-module is free (Bass, Hyman.
Big projective modules are free. Illinois J. Math. 7 1963, 24-31, Corollary 4.5). The condition on the
idempotents is necessary because, for a ring A x B, the module AY) x B(“) is not free when the sets
I and J have different cardinalities.

Duals
The dual Hom 4_;,(M, A) of an A-module M is denoted MV .

PROPOSITION 10.8. For any A-modules M, S, T with M finitely generated and projective,
the canonical maps

Hom 4.y (S, T ® 4 M) — Hom 4_jin(S ® 4 M ¥, T) (18)
T ®4 M — Homg.jj,(MY,T) (19)

MYRTY > (M&T)" (20)

M — MY @1)

are isomorphisms.

PROOF. The canonical map (18) sends f:S - T ® 4 M to the map f:S Q@4 MY —> T
such that f/(s ® g) = (T ® g)(f(s)). It becomes the canonical isomorphism

HomA—lin(S, Tn) - HomA—lin(Sn s T)

when M = A". Tt follows that (18) is an isomorphism whenever M is a direct summand of
a finitely generated free module, i.e., whenever M is finitely generated and projective.

The canonical map (19) sends ¢ ® m to the map f +— f(m)t. It is the special case of
(18) in which § = A.

The canonical map (20) sends f @ g€ MY Q@ TV tothemapm @t — f(m)Rg(): M ®
T — A, and the canonical map (21) sends m to the map f + f(m): MY — A. Again, it is
obviously an isomorphism if one of M or T is free of finite rank, and hence also if one is a
direct summand of such a module. o
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We letev: MY ® 4 M — A denote the evaluation map f @ m +— f(m).

LEMMA 10.9. Let M and N be modules over commutative ring A, andlete: N @ 4 M — A
be an A-linear map. There exists at most one A-linear map §: A — M ® 4 N such that the

composites

SQM M
M 2% wenem X2 M

N®§ N
N 2% nNemen BN N

(22)

are the identity maps on M and N respectively. When such a map exists,
T®4N ~Homy (M, T) (23)
for all A-modules T . In particular,
(N,e) ~ (M"Y ,ev). (24)
PROOF. From e we get an A-linear map
TQRe:T QAN QUM — T,
which allows us to define an A-linear map
x> fx:T®4N — Homy_jn(M,T) 25)

by setting
fxm) =T e)x®m), x€TRQ4N,meM.
An A-linear map f: M — T definesamap f Q N:M ® 4 N - T ® 4 N, and so a map
0:A—> M ®4 N defines an A-linear map
f = (f®N)(@S(1):Homgin(M,T) > T ®4 N. (26)

When the first (resp. the second) composite in (22) is the identity, then (26) is a right
(resp. a left) inverse to (25).!6 Therefore, when a map § exists with the required properties,
the map (25) defined by e is an isomorphism. In particular, e defines an isomorphism

X+ fx:M ®4 N — Homgin (M, M),

which sends §(a) to the endomorphism x — ax of M. This proves that § is unique.
To get (24), take T = M in (23). o

16 Assume § satisfies the condition in the statement of the lemma.
Let x € T ® 4 N; by definition, (fx @ N)(6(1)) = (T ® e ® N)(x ®§(1)). On tensoring the second sequence
in (22) with T', we obtain maps

TON®S T N
TOAN~TOAN@UA-—2 T NosMasN 2 1o, N

whose composite is the identity mapon 7 ® 4 N. As x = x ® 1 maps to x ® §(1) under T ® N ® §, this shows
that (fx ® N)(8(1)) = x.
Let f € Hom4.j;n(M, T), and consider the commutative diagram

ToAN@ M —L18¢ 1
Tf@N@M Tf

MM e Noam MOy

For m € M, the two images of §(1) ® m in T are f(m) and f(ron)5(1))(M)> and so [ = f(renN) (1))
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PROPOSITION 10.10. An A-module M is finitely generated and projective if and only if
there exists an A-linear map §: A — M ® M such that

(M ®ev)o(6® M) =idys and
(MY ®8)o(ev®MY) =idpyv .

PROOF. = : Suppose first that M is free with finite basis (¢;);c7, and let (elf),-el be the
dual basis of M. The linear map §: 4 - M @ MV, 1 = Xe; ® e;, satisfies the conditions.
Let (fi)ier be as in (10.4c). Then § is defined for each module M f,, and the uniqueness
assertion in Lemma 10.9 implies that the §’s for the different M f,’s patch together to give a
6 for M.

<=: Ontaking 7 = M in (23), we see that MV @ 4 M ~End g.5in(M ). If X", c; fi ®m;
corresponds to idps, so that ) .., fi(m)m; = m for allm € M, then

m—>(fi (m)) A4l (a3 aim;

M M

is a factorization of ids. Therefore M is a direct summand of a free module of finite rank.g

ASIDE 10.11. A module M over aring A is said to be reflexive if the canonical map M — MV is
an isomorphism. We have seen that for finitely generated modules “projective” implies “reflexive”,
but the converse is false. In fact, for a finite generated module M over an integrally closed noetherian
integral domain A, the following are equivalent (Bourbaki AC, VII §4, 2):

(a) M is reflexive;

(b) M is torsion-free and equals the intersection of its localizations at the prime ideals of A of

height 1;
(c) M is the dual of a finitely generated module.
For noetherian rings of global dimension < 2, for example, for regular local rings of Krull

dimension < 2, every finitely generated reflexive module is projective: for every finitely generated
module M over a noetherian ring A, there exists an exact sequence

A" > A" > M —0
with m,n € N; on taking duals and forming the cokernel, we get an exact sequence
0>MY > A" > A" > N - 0;

if A has global dimension < 2, then MV is projective, and if M is reflexive, then M ~ (MV)V."

7For those interested in general statements, here is a summary of the assumptions under which the canonical
morphisms of A-modules below are isomorphisms:
If P is finitely generated projective:

P=pYY
A module P is finitely generated projective if and only if the following canonical map is an isomorphism
PV ® P —> End(P).

If P or P’ is finitely generated projective:

PV ® P’ —> Hom(P, P’).
If both P and P’ or both P and M or both P’ and M’ are finitely generated projective

Hom(P, M) ® Hom(P', M') —> Hom(P ® P',M @ M').

In particular, for P or P’ finitely generated projective

PV PV = (P®P)V.

(Georges Elencwajg on mathoverflow.net).
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ASIDE 10.12. For a finitely generated torsion-free module M over an integrally closed noetherian
integral domain A, there exists a free submodule L of M such that M/ L is isomorphic an ideal a in
A (Bourbaki AC, VII, §4, Thm 6). When A is Dedekind, every ideal is projective, and so M ~ L & a.
In particular, M is projective. Therefore, the finitely generated projective modules over a Dedekind
domain are exactly the finitely generated torsion-free modules.

11 The Hilbert Nullstellensatz

Zariski’s lemma

In proving Zariski’s lemma, we shall need to use that the ring k[X] contains infinitely many
distinct monic irreducible polynomials. When k is infinite, this is obvious, because the
polynomials X —a, a € k, are distinct and irreducible. When £ is finite, we can adapt Euclid’s
argument: if pj,..., p, are monic irreducible polynomials in k[X], then py---p, + 1 is
divisible by a monic irreducible polynomial distinct from py,..., pr.

THEOREM 11.1 (ZARISKI’S LEMMA). Letk C K be fields. If K is finitely generated as a
k-algebra, then it is algebraic over k (hence finite over k, and K equals k if k is algebraically
closed).

PROOF. We shall prove this by induction on 7, the smallest number of elements required to
generate K as a k-algebra. The case r = 0 being trivial, we may suppose that

K =k[x1,...,xs] withr > 1.

If K is not algebraic over k, then at least one x;, say x1, is not algebraic over k. Then, k[x1]
is a polynomial ring in one symbol over k, and its field of fractions k(x1) is a subfield of
K. Clearly K is generated as a k(x1)-algebra by x»,..., X, and so the induction hypothesis
implies that x5, ..., x, are algebraic over k(x1). Proposition 5.5 shows that there exists a
¢ € k[x1] such that cx3,...,cx, are integral over k[x1]. Let f € K. For a sufficiently large
N,cN fek[xi,cxa,....cx;],and so ¥ f is integral over k[x1] by 5.3. When we apply this
statement to an element f of k(x1), it shows that ¢V f € k[x;] because k[x1] is integrally
closed. Therefore, k(x1) =y ¢ Nk[x1], but this is absurd, because k[x1] (~ k[X]) has
infinitely many distinct monic irreducible polynomials that can occur as denominators of
elements of k(x1). 0

Alternative proof of Zariski’s lemma '8

LEMMA 11.2. For an integral domain A, there does not exist an f € A[X] such that A[X] f
is a field.

PROOF. Suppose, on the contrary, that A[X] ¢ is a field. Then f ¢ A, andso f —1 ¢ A.
Write (f —1)"! = g/f" with g € A[X] and n > 1. Then

(f=Dg=f"=0+(-D))"=1+(f-Dh

with h € A[X],and so (f —1)(g—h) = 1. Hence f — 1 is a unit in A, which is absurd. g

18 A simplification of Swan’s simplication of a proof of Munshi — see www.math.uchicago.edu/~swan/.
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LEMMA 11.3. Consider rings A C B. If B is integral over A, then AN B* = AX. In
particular, if B is a field, then so also is A.

PROOF. Let a be an element of A that becomes a unit in B, say, ab = 1 with b € B. There
existay,...,a, € A such that b” +a1h" ! +.-- +a, = 0. On multiplying through by a1,
we find that b = —ay —---—a,a™ 1 € A, and soa € A%. o

PROPOSITION 11.4. Let A be an integral domain, and suppose that there exists a maximal
ideal m in A[X1,..., Xn] such that ANm = (0). Then there exists a nonzero element a in A
such that A, is a field and A[X1,..., X,]/m is a finite extension of Ag.

PROOF. Note that the condition A Nm = (0) implies that A (hence also A,) is a subring of
the field K = A[X1,..., Xn]/m, and so the statement makes sense.

We argue by induction on n. When n = 0, A is a field, and the statement is trivial.
Therefore, suppose that n > 1, and regard A[X1,..., X,] as a polynomial ring in n — 1
symbols over A[X;]. Then m N A[X;] # (0) because otherwise the induction hypothesis
would contradict Lemma 11.2. Let a; X ln " +... be a nonzero element of m N A[X;]. The
image x; of X; in K satisfies the equation

aixl! 4+ =0,

and so K is integral over its subring Ag,..q,. By Lemma 11.3, A4, .4, is a field, and K is
finite over it because it is integral (algebraic) and finitely generated. O

We now prove Zariski’s lemma. Write K = k[X1,..., X»]/m. According to the proposi-
tion, K is a finite extension of k, for some nonzero a € k, but because k is a field k, = k.

The Nullstellensatz
Recall that k%' denotes an algebraic closure of the field k.

THEOREM 11.5 (NULLSTELLENSATZ). Every properidealaink[Xy,..., X,] has a zero in
(k¥Hn © kailx---x k¥, je., there exists apoint(ay,...,an) € (k™" suchthat f(ay,....an) =
0 forall f €a.

PROOF. We have to show that there exists a k-algebra homomorphism k[X1,..., X,] — k¥
containing a in its kernel. Let m be a maximal ideal containing a. Then k[X7,..., X,]/m
is a field, which is algebraic over k by Zariski’s lemma, and so there exists a k-algebra
homomorphism k[X1,...,X,]/m — k%. The composite of this with the quotient map
k[X1,...,Xn] = k[X1,..., Xn]/m contains a in its kernel. o

COROLLARY 11.6. When k is algebraically closed, the maximal ideals in k[X1,..., Xy]
are exactly the ideals (X1 —ay, ..., Xn—an), (a1,...,an) € k™.

PROOF. Clearly, k[X1,...,X,]/(X1—a1,....Xn —ay) ~ k, and so (X1 —ay,...,Xn —
an) is maximal. Conversely, because k is algebraically closed, a proper ideal a has a
zero (ai,...,an) in k™. Let f € k[X1,...,X,]; when we write f as a polynomial in
X1 —aj,...,Xn —ay, its constant term is f(ay,...,a,). Therefore, if f € a, then f €
(X1—aq,...,Xn—an). o
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THEOREM 11.7 (STRONG NULLSTELLENSATZ). Foranidealaink[Xy,...,Xy], let Z(a)
be the set of zeros of a in (k®)". If a polynomial h € k[X1,..., X,] is zero on Z(a), then
some power of h lies in a.

PROOF. We may assume & # 0. Let g1,...,gm generate a, and consider the system of
m + 1 equations in n + 1 variables, X1,..., X, 7Y,

gi(Xl,...,Xn) = 0, izl,...,m
1-Yh(X1,....Xn) = O.

If (ay,...,an,b) satisfies the first m equations, then (ai,...,a,) € Z(a); consequently,
h(ai,...,an) =0, and (a1,...,an,b) doesn’t satisfy the last equation. Therefore, the equa-
tions are inconsistent, and so, according to the Nullstellensatz (11.5), the ideal

(gl,...,gm,l—Yh) =k[X1,...,Xn,Y]
and there exist f; € k[X1,..., Xy, Y] such that

1= fi-gi+ fmi1-(1=Yh).

i=1
On applying the homomorphism

Xi— X
{ Yl}_>h—ll :k[le"‘7Xan]_>k(X11""Xn)

to the above equality, we obtain the identity

1= filXt,.o Xah™) g1 (X1, Xn) 27)
in k(X1,...,Xn). Clearly

polynomial in X7q,..., X},

filX1..... Xn h™h = N

for some N;. Let N be the largest of the N;. On multiplying (27) by 4" we obtain an
identity
N = Z (polynomial in X1,..., X,)-gi (X1,..., Xn),
1

which shows that 4V € a. o

PROPOSITION 11.8. The radical of an ideal a in a finitely generated k -algebra A is equal
to the intersection of the maximal ideals containing it: rad(a) = (.5, m. In particular, if A
is reduced, then )

mDa

m maximal ™ = 0.

PROOF. Because of the correspondence (2), p. 3, it suffices to prove this for A = k[ X1, ..., X,].
Let abe anideal in k[X1,..., X,]. Because rad(a) is the smallest radical ideal containing

a and maximal ideals are radical rad(a) C (),,5,m. Conversely, suppose / is contained in

all maximal ideals containing a, and let (a1, ...,a) € Z(a). The evaluation map

e fai,....an):k[X1,..., Xn] = k¥

has image a subring of k¥ which is algebraic over k, and hence is a field (see §1). Therefore,
the kernel of the map is a maximal ideal, which contains a, and therefore also contains /.
This shows that h(ay,...,a,) = 0, and we conclude from the strong Nullstellensatz that
h € rad(a). a)
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12 The max spectrum of a ring

Let A be aring, and let V' be the set of maximal ideals in A. For an ideal a in A, let
Vie)={meV |mDa}.

PROPOSITION 12.1. There are the following relations:
(a) aCb = V(a) D V(b);
b) VO)y=V; V(A)=0;
(¢) V(ab) =V(anb) = V(a)UV(b);
(d) V(O ;s i) =(\ies V(a;) for every family of ideals (a;);er -

PROOF. The first two statements are obvious. For (c), note that
abCanbCab = V(ab) D V(anb) D V(a)UV(b).

For the reverse inclusions, observe that if m ¢ V(a) U V(b), then there exist an f € a~m
and a g € b~m; but then fg € ab~m, and so m ¢ V' (ab). For (d) recall that, by definition,
> a; consists of all finite sums of the form ) f;, fi € a;. Thus (d) is obvious. o

Statements (b), (¢), and (d) show that the sets V' (a) satisfy the axioms to be the closed
subsets for a topology on V: both the whole space and the empty set are closed; a finite
union of closed sets is closed; an arbitrary intersection of closed sets is closed. This topology
is called the Zariski topology on V. We let specm(A) denote the set of maximal ideals in A
endowed with its Zariski topology.

For h € A, let

Dh)y={meV |h¢m}.

Then D(h) is open in V', being the complement of V((4)). If S is a set of generators for an
ideal a, then

V~V(a) = Uhes D(h),

and so the sets D (/) form a base for the topology on V. Note that, because maximal ideals
are prime,
D(hy---hy) = D(h1)N---N D(hy).

For every element i of A, specm(Ay) >~ D(h) (see 6.4), and for every ideal a in A,
specm(A)/a >~ V(a) (isomorphisms of topological spaces).

The ideals in a finite product of rings A = A1 X --- X A, are all of the form a; X --- X ay
with a; an ideal in A; (cf. p.7). The prime (resp. maximal) ideals are those of the form

Ap X x Aj—1 X a; X Aj1 XX Ap

with a; prime (resp. maximal). It follows that specm(A) = |_|; specm(4;) (disjoint union of
open subsets).
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The max spectrum of a finitely generated k-algebra

Let k be a field, and let A be a finitely generated k-algebra. For any maximal ideal m of A4,
the field k (m) = A /m is a finitely generated k-algebra, and so k(m) is finite over k (Zariski’s
lemma, 11.1). In particular, it equals k(m) = k when k is algebraically closed.

Now fix an algebraic closure k. The image of any k-algebra homomorphism A4 — k@
is a subring of k! which is an integral domain algebraic over k and therefore a field (see
§1). Hence the kernel of the homomorphism is a maximal ideal in A. In this way, we get a
surjective map

Homy_q,(4, k) — specm(A). (28)

Two homomorphisms A — k% with the same kernel m factor as
A — k(m) — k%,

and so differ by an automorphism'® of k. Therefore, the fibres of (28) are exactly the orbits
of Gal(k¥/k). When k is perfect, each extension k(m)/k is separable, and so each orbit
has [k(m): k] elements, and when k is algebraically closed, the map (28) is a bijection.

Set A = k[X1,...,Xn]/a. Then to give a homomorphism 4 — k? is the same as giving
an n-tuple (ay,...,a,) of elements of k* (the images of the X;) such that f(ay,...,a,) =0
for all f € a,i.e., an element of the zero-set Z(a) of a. The homomorphism corresponding
to (ay,....an) maps k(m) isomorphically onto the subfield of k% generated by the a;’s.
Therefore, we have a canonical surjection

Z(a) — specm(A) 29)

whose fibres are the orbits of Gal(k®/k). When the field k is perfect, each orbit has
[k[ai,...,an] : k]-elements, and when k is algebraically closed, Z(a) >~ specm(A).

ASIDE 12.2. Letk =Ror C. Let X be a set and let A be a k-algebra of k-valued functions on X.
In analysis, X is called the spectrum of A if, for each k-algebra homomorphism ¢: A — k, there
exists a unique x € X such that ¢(f) = f(x) for all f € A, and every x arises from a ¢ (cf. Cartier
2007, 3.3.1, footnote).

Let A be a finitely generated algebra over an arbitrary algebraically closed field k, and let
X = specm(A). An element f of A defines a k-valued function

me f modm

on X. When A is reduced, Proposition 11.8 shows that this realizes A4 as a ring of k-valued functions
on X. Moreover, because (29) is an isomorphism in this case, for each k-algebra homomorphism
¢: A — k, there exists a unique x € X such that ¢(f) = f(x) for all f € A. In particular, when
k = C and A is reduced, specm(A) is the spectrum of A in the sense of analysis.

Jacobson rings

DEFINITION 12.3. A ring A is Jacobson if every prime ideal in A is an intersection of
maximal ideals.

191 et f and g be two k-homomorphisms from a finite field extension k’ of k into k. We consider the set
of pairs (K, a) in which o is a k-homomorphism from a subfield K of k2! containing f(k’) into k' such that
ao f = g. The set is nonempty, and Zorn’s lemma can be applied to show that it has a maximal element (K’, o).
For such an element K’ will be algebraically closed, and hence equal to k2.
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A field is Jacobson. The ring Z is Jacobson because every nonzero prime ideal is
maximal and (0) =) p=23.5...(P)- A principal ideal domain (more generally, a Dedekind
domain) is Jacobson if it has infinitely many maximal ideals.?® A local ring is Jacobson
if and only if its maximal ideal is its only prime ideal. Proposition 11.8 shows that every

finitely generated algebra over a field is Jacobson.

PROPOSITION 12.4. The radical of an ideal in a Jacobson ring is equal to the intersection of
the maximal ideals containing it. (Therefore, the radical ideals are precisely the intersections
of maximal ideals.)

PROOF. Proposition 2.5 says that the radical of an ideal is an intersection of prime ideals,
and so this follows from the definition of a Jacobson ring. o

ASIDE 12.5. Any ring of finite type over a Jacobson ring is a Jacobson ring (EGA IV 10.4.6).
Moreover, if B is of finite type over A and A is Jacobson, then the map A — B defines a continuous
map specm(B) — specm(A).

The topological space specm(A)

We study more closely the Zariski topology on specm(A). For each subset S of A, let V(S)
denote the set of maximal ideals containing S, and for each subset W of specm(A4), let (W)
denote the intersection of the maximal ideals in W:

S C A, V(S) ={m e specm(A4) | S C m},
W C specm(A), (W) = ﬂmewm

Thus V(S) is a closed subset of specm(A) and /(W) is a radical ideal in A. If V(a) D W,
then a C I(W), and so V(a) D VI(W). Therefore VI(W) is the closure of W (smallest
closed subset of specm(A) containing W); in particular, VI(W) = W if W is closed.

PROPOSITION 12.6. Let V be a closed subset of specm(A).

(a) The points of V are closed for the Zariski topology.

(b) If A is noetherien, then every ascending chain of open subsets Uy C U, C --- of V
eventually becomes constant; equivalently, every descending chain of closed subsets of V
eventually becomes constant.

(c) If A is noetherian, every open covering of V' has a finite subcovering.

PROOF. (a) Clearly {m} = V(m), and so it is closed.

(b) We prove the second statement. A sequence Vi D V5 D --- of closed subsets of V
gives rise to a sequence of ideals /(1) C 1(V2) C ..., which eventually becomes constant.
IfI(Vin) = I(Vip+1), then VI(Vy) = VI(Vipt1), ie., Vip = Vipt1.

(c) Let V = J;¢; Ui with each U; open. Choose an ig € I; if U;, # V, then there
exists an i1 € [ such that U;; & U;, UU;,. If U;, U U;; # V, then there exists an i € [ etc..
Because of (b), this process must eventually stop. O

2011 a principal ideal domain, a nonzero element a factors as a = u p:' ... p¥% with u a unit and the p; prime.
The only prime divisors of a are py,..., ps, and so a is contained in only finitely many prime ideals. Similarly,
in a Dedekind domain, a nonzero ideal a factors as a = p;l ---ps* with the p; prime ideals (cf. 14.17 below),
and p1,...,p, are the only prime ideals containing a. On taking a = (a), we see that again a is contained in
only finitely many prime ideals.
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A topological space V having the property (b) is said to be noetherian. This condition
is equivalent to the following: every nonempty set of closed subsets of V' has a minimal
element. A topological space V' having property (c) is said to be quasicompact (by Bourbaki
at least; others call it compact, but Bourbaki requires a compact space to be Hausdorff). The
proof of (c) shows that every noetherian space is quasicompact. Since an open subspace of a
noetherian space is again noetherian, it will also be quasicompact.

DEFINITION 12.7. A nonempty topological space is said to be irreducible if it is not the
union of two proper closed subsets. Equivalent conditions: any two nonempty open subsets
have a nonempty intersection; every nonempty open subset is dense.

If an irreducible space W is a finite union of closed subsets, W = W; U...U W,, then
W = Wi or W U...UW,; if the latter, then W = W, or W3 U...U W,, etc.. Continuing in
this fashion, we find that W = W; for some i.

The notion of irreducibility is not useful for Hausdorff topological spaces, because the
only irreducible Hausdorff spaces are those consisting of a single point — two points would
have disjoint open neighbourhoods.

PROPOSITION 12.8. Let W be a closed subset of specm(A). If W is irreducible, then I (W)
is prime; the converse is true if A is a Jacobson ring. In particular, the max spectrum of a
Jacobson ring A is irreducible if and only if the nilradical of A is prime.

PROOF. =>: Let W be an irreducible closed subset of specm(A), and suppose fg € I(W).
Then fg lies in each m in W, and so either f € mor g € m; hence W C V(f)U V(g), and
)

W=WnVv()Humwnr(g)).

As W is irreducible, one of these sets, say W N V( f), must equal W. But then f € I(W).
We have shown that /(W) is prime.

<: Assume I (W) is prime, and suppose W = V(a) U V(b) with a and b radical ideals
— we have to show that W equals V(a) or V(b). Recall that V(a) U V(b) = V(aNb) (see
12.1c) and that aN b is radical; hence (W) = anb (by 12.4). If W # V(a), then there
existsan f € a~I(W). Forall g € b,

fgeanb=I1(W).
Because I(W) is prime, this implies that b C I(W); therefore W C V(b). o
Thus, in the max spectrum of a Jacobson ring, there are one-to-one correspondences

radical ideals <> closed subsets
prime ideals <> irreducible closed subsets

maximal ideals <> one-point sets.

EXAMPLE 12.9. Let f € k[X1,...,Xn]. According to Theorem 4.6, k[X1,...,Xn] is a
unique factorization domain, and so ( f) is a prime ideal if and only if f is irreducible (4.1).
Thus

V(f) isirreducible <= f isirreducible.

On the other hand, suppose f factors,

f= l_[ fl.mi , fi distinct irreducible polynomials.
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Then

(f) = ﬂ(fimi), (f™") distinct ideals,
rad((f)) = ﬂ(fi), (fi) distinct prime ideals,
V(f) = U V(fi), V(f;) distinctirreducible algebraic sets.

PROPOSITION 12.10. Let V be a noetherian topological space. Then V is a finite union of
irreducible closed subsets, V = Vi U...UV,,. If the decomposition is irredundant in the
sense that there are no inclusions among the V;, then the V; are uniquely determined up to
order.

PROOF. Suppose that V' can not be written as a finite union of irreducible closed subsets.
Then, because V is noetherian, there will be a closed subset W of V' that is minimal
among those that cannot be written in this way. But W itself cannot be irreducible, and so
W = Wi UW,, with each W; a proper closed subset of W. Because W is minimal, both W
and W, can be expressed as finite unions of irreducible closed subsets, but then so can W'.
We have arrived at a contradiction.
Suppose that
V=WVu..uV,=wu...uw,

are two irredundant decompositions. Then V; = (| (Vi Wj), and so, because V; is
irreducible, V; = V; N W; for some j. Consequently, there exists a function f:{1,...,m} —
{1,....n} such that V; C Wy(;) for each i. Similarly, there is a function g:{1,...,n} —
{1,....m} such that W; C Vg (;) for each j. Since V; C Wy(;) C Vg (i), we must have
gf(i) =i and V; = Wy(;); similarly fg =id. Thus f and g are bijections, and the
decompositions differ only in the numbering of the sets. O

The V; given uniquely by the proposition are called the irreducible components of V.
They are the maximal closed irreducible subsets of V. In Example 12.9, the V( f;) are the
irreducible components of V( f).

COROLLARY 12.11. A radical ideal a in a noetherian Jacobson ring is a finite intersection
of prime ideals, a = p; N ... N py; if there are no inclusions among the p;, then the p; are
uniquely determined up to order.

PROOF. Write V(a) as a union of its irreducible components, V(a) = | J V;, and take p; =
I(Vi). O

COROLLARY 12.12. A noetherian topological space has only finitely many connected
components (each of which is open).

PROOF. Each connected component is closed, hence noetherian, and so is a finite union of
its irreducible components. Each of these is an irreducible component of the whole space,
and so there can be only finitely many. O

REMARK 12.13. (a) An irreducible topological space is connected, but a connected topo-
logical space need not be irreducible. For example, Z(X; X3) is the union of the coordinate
axes in k2, which is connected but not irreducible. A closed subset V of specm(A) is not
connected if and only if there exist ideals a and b such thatanNb = I(V) and a+ b = A.
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(b) A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

(c) In a noetherian ring, every proper ideal a has a decomposition into primary ideals:
a=()q; (see §14). For radical ideals, this becomes a simpler decomposition into prime
ideals, as in the corollary. For an ideal (f) in k[X1,..., X,] with f = ]_[fl-mi, it is the
decomposition (f) = [\( fimi ) noted in Example 12.9.

Maps of max spectra

Let ¢: A — B be a homomorphism of finitely generated k-algebras (k a field). Because B is
finitely generated over k, its quotient B /m by any maximal ideal m is a finite field extension
of k (Zariski’s lemma, 11.1). Therefore the image of A in B/m is an integral domain finite
over k, and hence is a field (see §1). Since this image is isomorphic to A/¢~!(m), this
shows that the ideal ¢ ~!(m) is maximal in A. Therefore ¢ defines a map

¢*:specm(B) — specm(A), m ¢~ (m),

which is continuous because (¢*)~1(D(f)) = D(¢(f)). In this way, specm becomes a
functor from finitely generated k-algebras to topological spaces.

THEOREM 12.14. Let ¢: A — B be a homomorphism of finitely generated k -algebras. Let
U be a nonempty open subset of specm(B), and let ¢*(U )~ be the closure of its image in
specm(A). Then ¢™*(U) contains a nonempty open subset of each irreducible component of

e*(U)".

PROOF. Let W = specm(B) and V = specm(A), so that ¢* is a continuous map W — V.

We first prove the theorem in the case that ¢ is an injective homomorphism of integral
domains. For some b # 0, D(b) C U. According to Proposition 12.15 below, there exists
a nonzero element a € A such that every homomorphim «: A — k2 such that a(a) # 0
extends to a homomorphism B: B — k? such that 8(b) # 0. Let m € D(a), and choose o to
be a homomorphism 4 — k® with kernel m. The kernel of B is a maximal ideal n € D(b)
such that ¢ ~1(n) = m, and so D(a) C ¢*(D(b)).

We now prove the general case. If Wy,..., W, are the irreducible components of W,
then ¢* (W)™ is a union of the sets ¢*(W;)~, and any irreducible component C of ¢*(U)~
is contained in one of ¢* (W;) ™, say ¢*(W;)~. Let q = I(W;) and let p = ¢~ !(q). Because
W is irreducible, they are both prime ideals. The homomorphism ¢: A — B induces an
injective homomorphism ¢: A/p — B/q, and ¢* can be identified with the restriction of ¢*
to Wy. From the first case, we know that ™* (U N Wj) contains a nonempty open subset of
C, which implies that ¢*(U) does also. o

In the next two statements, A and B are arbitrary commutative rings — they need not be
k-algebras.

PROPOSITION 12.15. Let A C B be integral domains with B finitely generated as an
algebra over A, and let b be a nonzero element of B. Then there exists an elementa # 0 in A
with the following property: every homomorphism «: A — §2 from A into an algebraically
closed field §2 such that «(a) # 0 can be extended to a homomorphism B: B — 2 such that

p(b) # 0.

We first need a lemma.
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LEMMA 12.16. Let B D A be integral domains, and assume B = A[t] = A[T]/a. Letc C A
be the ideal of leading coefficients of the polynomials in a. Then every homomorphism
a: A — 2 from A into an algebraically closed field §2 such that a(c) # 0 can be extended
to a homomorphism of B into §2.

PROOF. If a =0, then ¢ = 0, and every « extends. Thus we may assume a # 0. Let « be a
homomorphism A — £2 such that a(c) # 0. Then there exist polynomials a,, T™ +--- + ag
in a such that «(a,,) # 0, and we choose one, denoted f, of minimum degree. Because
B # 0, the polynomial f is nonconstant.

Extend & to a homomorphism A[T| — §2[T], again denoted «, by sending T to 7', and
consider the subset «(a) of 2[T].

FIRST CASE: o(a) DOES NOT CONTAIN A NONZERO CONSTANT. If the £2-subspace
of 22[T] spanned by a(a) contained 1, then so also would e(a),?' contrary to hypothesis.
Because

T-Y cia(gi) =Y cia(giT), ci€f2, gie€a,
this §£2-subspace an ideal, which we have shown to be proper, and so it has a zero c in £2.
The composite of the homomorphisms

A[T]L.Q[T]—).Q, T—Trc,

factors through A[T']/a = B and extends «.
SECOND CASE: o(a) CONTAINS A NONZERO CONSTANT. This means that a contains a
polynomial

g(T)=0b,T" +---+by suchthat a(bg) #0, «(by)=a(by)="---=0.
On dividing f(T) into g(T') we obtain an equation
alg(T)=q(T)f(T)+r(T), deN, q.reA[T], degr<m.
When we apply «, this becomes

a(am)? a(bo) = a(qg)a(f) +a(r).

Because o( /') has degree m > 0, we must have «(¢) = 0, and so «(r) is a nonzero constant.
After replacing g(7') with r(T"), we may suppose n < m. If m = 1, such a g(7T') can’t exist,
and so we may suppose m > 1 and (by induction) that the lemma holds for smaller values of
m.

For h(T) = ¢;T" +cr—1T" "' 44 o, let B'(T) = ¢y + -+ +coT". Then the A-
module generated by the polynomials 7*4’(T'), s > 0, h € a, is an ideal a’ in A[T']. Moreover,
a’ contains a nonzero constant if and only if a contains a nonzero polynomial ¢ 7", which
implies t = 0 and A = B (since B is an integral domain).

When a’ does not contain a nonzero constant, we set B’ = A[T]/a’ = A[t']. Then o
contains the polynomial g’ = b, +--- 4+ boT", and a(bg)# 0. Because degg’ < m, the
induction hypothesis implies that « extends to a homomorphism B’ — £2. Therefore, there
exists a ¢ € £2 such that, forall A(T) =c, T +c, 1 T" 14+ 4co€aq,

B (c) = a(cr) +alcr—1)c+---+coc” = 0.

On taking & = g, we see that ¢ = 0, and on taking 2 = f, we obtain the contradiction
alay,) =0. O

21Use that, if a system of linear equation with coefficients in a field k has a solution in some larger field, then
it has a solution in k.
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SKETCH OF PROOF (OF 12.15). Suppose that we know the proposition in the case that B
is generated by a single element, and write B = A[f1,...,%,]. Then there exists an element
bp—1 such that any homomorphism «: A[ty,...,t,—1] — §2 such that «(b,—1) # 0 extends
to a homomorphism f: B — §2 such that (b) # 0. Continuing in this fashion (with b,—;
for b), we eventually obtain an element a € A with the required property.

Thus we may assume B = A[t]. Let a be the kernel of the homomorphism 7 > ¢,
A[T] — Alt].

Case (i). The ideal a = (0). Write

b= f(t)=aot"+a1t" '+ +a,, a; €A,

and take a = ag. If a: A — £2 is such that a(ag) # 0, then there exists a ¢ € £2 such that
f(c) # 0, and we can take B to be the homomorphism Y d;t" > Y a(d;)c'.

Case (ii). The ideal a # (0). Let f(T) = amT™ +---+ ag, am # 0, be an element of
a of minimum degree. Let #(T) € A[T] represent b. Since b # 0, h ¢ a. Because f is
irreducible over the field of fractions of A, it and 4 are coprime over that field. In other
words, there exist #,v € A[T] and a nonzero ¢ € A such that

uh+vf =c.

It follows now that ca,, satisfies our requirements, for if &(caz,) # 0, then @ can be extended
to B: B — £2 by the lemma, and B(u(t)-b) = B(c) # 0, and so B(b) # 0. o

REMARK 12.17. In case (ii) of the last proof, both » and b~! are algebraic over A, and so
there exist equations

aph™ 4+ 4+ay, =0, a; €A, ag#0;

agh™ +--+an=0, a; €A, ay#0.

One can show that a = agay, has the property required by the proposition.

ASIDE 12.18. The spectrum spec(A4) of aring A is the set of prime ideals in A endowed with the
topology for which the closed subsets are those of the form

V(e)={p|pDa}, aanidealin A.

Thus specm(A) is the subspace of spec(A) consisting of the closed points. When A is Jacobson,
the map U — U Nspecm(A) is a bijection from the set of open subsets of spec(A4) onto the set of
open subsets of specm(A); therefore specm(A) and spec(A) have the same topologies — only the
underlying sets differ.

13 Dimension theory for finitely generated k-algebras

Throughout this section, A is both a finitely generated algebra over field k and an integral
domain. We define the transcendence degree of A over k, trdegy A, to be the transcendence
degree over k of the field of fractions of A (see §8 of my notes Fields and Galois Theory).
Thus A has transcendence degree d if it contains an algebraically independent set of d
elements, but no larger set (ibid. 8.12).
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PROPOSITION 13.1. For any linear forms {1, ...,¢,, in X1,..., X,, the quotient ring
k[X1,....Xnl/(C1,....4m)

is an integral domain of transcendence degree equal to the dimension of the subspace of k"
defined by the equations

PROOF. This follows from the more precise statement:

Let ¢ be an ideal in k[X1,..., X,] generated by linearly independent linear
forms £1,...,¢,, and let X;,,..., X;,_, be such that

{£1v~~-7€r7Xi17--~,Xin—r}
is a basis for the linear forms in X1,..., X;. Then

k[X1,....Xn) e =~ k[Xiy,.... Xi,_, ]

This is obvious if the forms ¢; are Xy,..., X,. In the general case, because {X1,..., X}
and {{1,...,4r, Xi,,..., Xj,_, } are both bases for the linear forms, each element of one set
can be expressed as a linear combination of the elements of the other. Therefore,

kiX1,....Xnl=k[l1,.... 40, Xiys oo . X0, ],
and so

k[X1,....,Xnl e =k[ly,.... 0, Xiy s, Xi, /¢
~k(Xi,....Xi,_, ] O

PROPOSITION 13.2. For any irreducible polynomial f in k[X1,..., X,], the quotient ring
k[X1,...,Xn]/(f) has transcendence degree n — 1.

PROOF. Let
k[xly---,xn]:k[Xl’---,Xn]/(f)’ xi:Xi+(f),

and let k(x1,...,x,) be the field of fractions of k[x1,...,x,]. Since f is not zero, some X,
say, X,, occurs in it. Then X,, occurs in every nonzero multiple of f, and so no nonzero
polynomial in X1,..., X,—1 belongs to (/). This means that x1,...,x,—; are algebraically
independent. On the other hand, x;, is algebraic over k(x1,...,x,—1), and so {X1,...,Xp—1}
is a transcendence basis for k(x1,...,x,) over k. o

PROPOSITION 13.3. For every nonzero prime ideal p in a k-algebra A,
trdeg; (A/p) < trdegy (A4).
PROOF. We may suppose
A=k[X1,...,Xnl/a=k[x1,...,xn].

For f € A, let f denote the image of f in A/p, so that A/p = k[X1,...,Xn]. Letd =
trdeg; A/p, and number the X; so that X1, ..., X, are algebraically independent (for a proof
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that this is possible, see 8.9 of my notes Fields and Galois Theory). I shall show that, for
any nonzero f € p, the d + 1 elements x1,...,xy, f are algebraically independent, which
shows that trdeg; A > d + 1.

Suppose otherwise. Then there is a nontrivial algebraic relation, which we can write

ao(x1,....xg) fM4+ar(xi,....xg) " 4o Fam(x,...,xg) =0,

with a; € k[X1,...,X4] and a¢ # 0. Because 4 is an integral domain, we can cancel a
power of f if necessary to make a,,(x1,...,xgz) nonzero. On applying the homomorphism
A — A/p to the above equality, we find that

am(x1,...,X3) =0,
which contradicts the algebraic independence of X1,...,X . O

PROPOSITION 13.4. Let A be a unique factorization domain. If p is a prime ideal in A such
that trdeg; A/p = trdegy A — 1, then p = (f) for some f € A.

PROOF. The ideal p is nonzero because otherwise A and A/p would have the same tran-
scendence degree. Therefore p contains a nonzero polynomial, and even an irreducible
polynomial f, because it is prime. According to (4.1), the ideal ( f) is prime. If (f) # p,
then

trdeg; A/p @3 trdeg, A/(f) 122 trdeg, A —1,

which contradicts the hypothesis. O

THEOREM 13.5. Let f € A be neither zero nor a unit, and let p be a prime ideal that is
minimal among those containing ( f'); then

trdeg; A/p = trdegp A — 1.

We first need a lemma.

LEMMA 13.6. Let A be an integrally closed integral domain, and let L be a finite extension
of the field of fractions K of A. If a € L is integral over A, then Nmy /ga € A, and o
divides Nmp ) x « in the ring Alc].

PROOF. Let X7 +a,_1X"~! +... 4+ ag be the minimum polynomial of « over K. Then

r divides the degree n of L/K, and Nmy, /g (o) = :I:ag (see 5.40 of my notes Fields and
Galois Theory). Moreover, ag lies in A by (5.9). From the equation

0=a(@ ' +a,_1a" % +---+a1)+ao
we see that o divides ag in A[«], and therefore it also divides Nmy, /g a. O

PROOF (OF THEOREM 13.5). Write rad( f) as an irredundant intersection of prime ideals
rad(f) =p1N...Np, (see 12.11). Then V(a) = V(p1) U---U V(p,) is the decomposition
of V(a) into its irreducible components. There exists an mg € V(p1) ~|J;~, V(p;) and an
open neighbourhood D(h) of mg disjoint from | -, V(p;). The ring Ay, (resp. Ap/S™1p)
is an integral domain with the same transcendance degree as A (resp. A/p) — in fact, with
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the same field of fractions. In Ay, rad(%) =rad(f)¢ = p{. Therefore, after replacing A
with Ay, we may suppose that rad( /) is prime, say, equal to p.

According to the Noether normalization theorem (5.11), there exist algebraically inde-
pendent elements x1,...,x4 in A such that A4 is a finite k[x1,...,x ]-algebra. Note that
d = trdeg; A. According to the lemma, fo e Nm( f) lies in k[x1,...,x4], and we shall
show that p N k[x1,...,x4] = rad( fp). Therefore, the homomorphism

klx1.....xq]/rad(fo) = A/p

is injective. As it is also finite, this implies that

trdeg, A/p = trdegi k[x1,...,x4]/rad( fo) 22 1,
as required.

By assumption A4 is finite (hence integral) over its subring k[x1,...,x4]. The lemma
shows that f divides fp in A, and so fo € (f) C p. Hence (fo) C pNk[xy,...,x4], which
implies

rad( fo) CpNklx1,...,x4]
because p is radical. For the reverse inclusion, let g € pNk[x1,...,x4]. Then g € rad(f),
and so g™ = fh for some h € A, m € N. Taking norms, we find that

g™ =Nm(fh) = fo-Nm(h) € (fo),
where e is the degree of the extension of the fields of fractions, which proves the claim. o

COROLLARY 13.7. Let p be a minimal nonzero prime ideal in A; then trdeg; (A/p) =
trdegy (A)—1.

PROOF. Let f be a nonzero element of p. Then f is not a unit, and p is minimal among the
prime ideals containing f . a)

THEOREM 13.8. The length d of any maximal (i.e., nonrefinable) chain of distinct prime
ideals

Pd DPd—1 D" DPo (30)

in A is trdegy, (A). In particular, every maximal ideal of A has height trdegy, (A), and so the
Krull dimension of A is equal to trdegy, (A).

PROOF. From (13.7), we find that
trdegy () = trdegy (A/p1) + 1 = - = trdegy (4 /pg) + d.

But p; is maximal, and so A/p is a finite field extension of k. In particular, trdeg; (4/py) =
0. O

EXAMPLE 13.9. Let f(X,Y) and g(X,Y) be nonconstant polynomials with no common
factor. Then k[X,Y]/(f) has Krull dimension 1, and so k[X,Y]/(f, g) has dimension zero.

EXAMPLE 13.10. We classify the prime ideals p in A = k[X,Y]. If A/p has dimension
2, then p = (0). If A/p has dimension 1, then p = (f) for some irreducible polynomial
f of A (by 13.4). Finally, if A/p has dimension zero, then p is maximal. Thus, when k
is algebraically closed, the prime ideals in k[ X, Y] are exactly the ideals (0), ( f) (with f
irreducible), and (X —a,Y —b) (with a,b € k).
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REMARK 13.11. Let A be a finitely generated k-algebra (not necessarily an integral do-
main). Every maximal chain of prime ideals in A ending in fixed prime ideal p has length
trdegy (A/p), and so the Krull dimension of A is max(trdegy (A/p)) where p runs over the
minimal prime ideals of A. In the next section, we show that a noetherian ring has only
finitely many minimal prime ideals, and so the Krull dimension of A is finite.

If x1,...,xm is an algebraically independent set of elements of 4 such that 4 is a finite
k[x1,...,xm]-algebra, then dim A = m.

14 Primary decompositions

In this section, A is an arbitrary commutative ring.

DEFINITION 14.1. Anideal q in 4 is primary if it is proper and
abeq,b¢q — a" € qforsomen > 1.

Thus, a proper ideal ¢ in A is primary if and only if all zero-divisors in A/q are nilpotent. A
radical ideal is primary if and only if it is prime. An ideal () in Z is primary if and only if
m is a power of a prime.

PROPOSITION 14.2. The radical of a primary ideal q is a prime ideal containing q, and
it is contained in every other prime ideal containing q (i.e., it is the smallest prime ideal
containing p).

PROOF. Suppose ab € rad(q) but b ¢ rad(q). Then some power, say a”"b", of ab lies in ¢,
but b ¢ q, and so a € rad(q). This shows that rad(q) is primary, and hence prime (because
it is radical).

Let p be a second prime ideal containing ¢, and let a € rad(q). For some n, a” € q C p,
which implies that a € p. u]

When q is a primary ideal and p is its radical, we say that q is p-primary.

PROPOSITION 14.3. Every ideal q¢ whose radical is a maximal ideal m is primary (in fact,
m-primary); in particular, every power of a maximal ideal m is m-primary.

PROOF. Every prime ideal containing ¢ contains its radical m, and therefore equals m. This
shows that A/a is local with maximal ideal m/a. Therefore, every element of A/a is either
a unit, and hence is not a zero-divisor, or it lies in m/a, and hence is nilpotent. O

PROPOSITION 14.4. Let ¢: A — B be a homomorphism of rings. If q is a p-primary ideal
in B, then q¢ = ¢~ 1(q) is a p° -primary ideal in A.

PROOF. The map A/q° — B/q is injective, and so every zero-divisor in A/¢¢ is nilpotent.
This shows that q¢ is primary, and therefore rad(q¢)-primary. But (see 2.10), rad(q¢) =
rad(q)¢ = p¢, as claimed. o

LEMMA 14.5. Let q and p be a pair of ideals in A such that q C p C rad(q) and
abeq = acporbeq. (31)

Then p is a prime ideal and q is p-primary.
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PROOF. Clearly q is primary, hence rad(q)-primary, and rad(q) is prime. By assumption
p C rad(q), and it remains to show that they are equal. Let ¢ € rad(q), and let n be the
smallest positive integer such that a” € q. If n = 1, then a € q C p; on the other hand, if
n>1,thena” =aa""' €qanda” ! ¢ q, and so a € p by (31). o

PROPOSITION 14.6. A finite intersection of p-primary ideals is p-primary.

PROOF. Let q1,...,q, be p-primary, and let ¢ = q; N... N q,. We show that the pair of
ideals q C p satisfies the conditions of (14.5).

Let a € p; since some power of a belongs to each q;, a sufficiently high power of it will
belong to all of them, and so p C rad(q).

Letab e qbuta ¢ p. Then ab € q; but a ¢ p, and so b € q;. Since this is true for all 7,
we have that b € q. o

The minimal prime ideals of an ideal a are the minimal elements of the set of prime
ideals containing a.

DEFINITION 14.7. A primary decomposition of an ideal a is a finite set of primary ideals
whose intersection is a. A primary decomposition S of a is minimal if

(a) the prime ideals rad(q), q € S, are distinct, and

(b) no element of S can be omitted, i.e., fornoqo € Sisqo C [ {qlqe S, q+# qo}-.

If a admits a primary decomposition, then it admits a minimal primary decomposition,
because Proposition 14.6 can be used to combine primary ideals with the same radical, and
any ¢; that fails (b) can simply be omitted. The prime ideals occurring as the radical of an
ideal in a minimal primary decomposition of a are said to belong to a.

PROPOSITION 14.8. Suppose a = q1 N---Nq, where q; is p;-primary fori = 1,...,n.
Then the minimal prime ideals of a are the minimal elements of the set {p1,...,pn}.

PROOF. Let p be a prime ideal containing a, and let g} be the image of g; in the integral
domain A/p. Then p contains q; - gy, and so ¢} ---q;, = 0. This implies that, for some 7,
q; = 0, and so p contains q;. Now (14.2) shows that p contains ;. O

In particular, if a admits a primary decomposition, then it has only finitely many minimal
prime ideals, and so its radical is a finite intersection of prime ideals.
For an ideal a in A and an element x € A, we let

(:x)={a€ A|ax € a}.
It is again an ideal in A, which equals A if x € a.

LEMMA 14.9. Let q be a p-primary ideal and let x € A~ q. Then (q: x) is p-primary (and
hencerad(q:x) = p).

PROOF. For any a € (q:x), we know that ax € g and x ¢ ¢, and so a € p. Hence (q:x) C p.
On taking radicals, we find that rad(q: x) = p. Let ab € (q: x). Then xab € q, and so either
a € p or xb € q (because q is p-primary); in the second case, b € (q: x) as required. O
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THEOREM 14.10. Leta=q1N...Nq, be a minimal primary decomposition of a, and let
p; =rad(q;). Then

{p1,...,pn} ={rad(a:x) | x € A, rad(a:x) prime}.

In particular, the set {p1,...,pn} is independent of the choice of the minimal primary
decomposition.

PROOF. Foranya € A,
(aza) = (Ngi:a) =\(qi:a),

and so

rad(a:a) =rad(\(q;:a) (129 MNagq; Pi- (32)
If rad(a:a) is prime, then it equals one of the p; (otherwise, for each i there exists an
a;i €p;j~p,anda;---a, € ﬂa¢qi p; but not p, which is a contradiction). Hence RHSDLHS.
For each 7, there exists an a € () =i 9/ 4 because the decomposition is minimal, and (32)
shows that rad(a:a) = p;. o

THEOREM 14.11. In a noetherian ring, every ideal admits a primary decomposition.

The theorem is a consequence of the following more precise statement, but first we need
a definition: an ideal a is said to be irreducible if

a=bNc(b,cideals) =— a=bora=c.

PROPOSITION 14.12. Let A be a noetherian ring.
(a) Every ideal in A can be expressed as a finite intersection of irreducible ideals.
(b) Every irreducible ideal in A is primary.

PROOF. (a) Suppose (a) fails, and let a be maximal among the ideals for which it fails. Then,
in particular, a itself is not irreducible, and so a = b N ¢ with b and ¢ properly containing a.
Because a is maximal, both b and ¢ can be expressed as finite intersections of irreducible
ideals, but then so can a.

(b) Let a be irreducible in A, and consider the quotient ring A’ =4 /a. Let a be a
zero-divisor in A’, say ab = 0 with b # 0. We have to show that a is nilpotent. As A’ is
noetherian, the chain of ideals

((0):a) C ((0):a?) C ---

becomes constant, say, ((0):a™) = ((0):a™ 1)) =-.-. Let ¢ € (™) N (b). Then ¢ € (b)
implies ca = 0, and ¢ € (a™) implies that ¢ = da” for some d € A. Now

(da™ya=0=d € (0:a™!) = (0:a™) = ¢ =0.

Hence (a™) N (b) = (0). Because a is irreducible, so also is the zero ideal in A’, and it
follows that a™ = 0. o

A p-primary ideal a in a noetherian ring contains a power of p by Proposition 3.15. The
next result proves a converse when p is maximal.

PROPOSITION 14.13. Letm be a maximal ideal of a noetherian ring. Any proper ideal a of
A that contains a power of a maximal ideal m is m-primary.
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PROOF. Suppose that m” C a, and let p be a prime ideal belonging to a. Then m” C a C p,
so that m C p, which implies that m = p. Thus m is the only prime ideal belonging to a,
which means that a is m-primary. o

EXAMPLE 14.14. We give an example of a power of a prime ideal p that is not p-primary.
Let
A=k[X.Y.Z]/(Y?>-XZ) =k[x,y.z].

The ideal (X,Y) in k[X,Y, Z] is prime and contains (Y2 — X Z), and so the ideal p = (x, y)
in A is prime. Now xz = y? € p?, but one checks easily that x ¢ p? and z ¢ p, and so p? is
not p-primary.

REMARK 14.15. Let a be an ideal in a noetherian ring, and let b = ﬂnzl a”. We give
another proof that ab = b (see p. 12). Let

ab=qiN...Nqs, rad(q;) =p;.

be a minimal primary decomposition of ab. We shall show that b C ab by showing that
b C q; foreachi.
If there exists a b € b~ q;, then

ab C ab Cq;,
from which it follows that a C p;. We know that p} C q; for some r (see 3.15), and so
b=(")a"Ca Cp] Cai.
which is a contradiction. This completes the proof.

DEFINITION 14.16. A Dedekind domain is a noetherian integrally closed integral domain
of dimension 1.

THEOREM 14.17. Every proper nonzero ideal a in a Dedekind domain can be written in
the form
a= pgl cee ;S

with the p; distinct prime ideals and the r; > 0; the ideals p; are exactly the prime ideals
containing a, and the exponents r; are uniquely determined.

PROOF. For the proof, which is quite elementary, see Chapter 3 of my notes Algebraic
Number Theory. O

15 Artinian rings

A ring A is artinian if every descending chain of ideals a; D a; D --- in A eventually
becomes constant; equivalently, if every nonempty set of ideals has a minimal element.
Similarly, a module M over aring A is artinian if every descending chain of submodules
N1 D Ny D --- in M eventually becomes constant.

PROPOSITION 15.1. An artinian ring has Krull dimension zero; in other words, every prime
ideal is maximal.
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PROOF. Let p be a prime ideal of an artinian ring 4, and let A’ = A/p. Then A’ is an artinian
integral domain. For any nonzero element a of A’, the chain (a) D (a?) D --- eventually
becomes constant, and so a” = a"T1b for some b € A’ and n > 1. We can cancel a” to
obtain 1 = ab. Thus a is a unit, A’ is a field, and p is maximal. O

COROLLARY 15.2. In an artinian ring, the nilradical and the Jacobson radical coincide.

PROOF. The first is the intersection of the prime ideals (2.5), and the second is the intersec-
tion of the maximal ideals (2.6). o

PROPOSITION 15.3. An artinian ring has only finitely many maximal ideals.

PROOF. Let mj N...Nm, be minimal among finite intersections of maximal ideals in an
artinian ring, and let m be another maximal ideal in the ring. If m is not equal to one of the
m;, then, for each i, there exists an ¢; € m; ~m. Now aj---a, lies in mq N... N'm, but not
in m (because m is prime), contradicting the minimality of m; N...Nm,. =

PROPOSITION 15.4. In an artinian ring, some power of the nilradical is zero.

PROOF. Let 91 be the nilradical of the artinian ring 4. The chain 91 D 92 O --- eventually
becomes constant, and so 0" = N1 = ... for some n > 1. Suppose N” # 0. Then there
exist ideals a such that a-91" # 0, for example 91, and we may suppose that a has been chosen
to be minimal among such ideals. There exists an a € a such that a - 91" # 0, and so a = (a)
(by minimality). Now (aO")" = aM?" = aN" # 0 and aN” C (a), and so aN”* = (a)
(by minimality again). Hence a = ax for some x € W*. Nowa =ax =ax?> =---=a0=0
because x € 91. This contradicts the definition of a, and so 91" = 0. o

LEMMA 15.5. Let A be a ring in which some finite product of maximal ideals is zero. Then
A is artinian if and only if it is noetherian.

PROOF. Suppose mj ---m, = 0 with the m; maximal ideals (not necessarily distinct), and
consider
ADmyD--Dmpe- My DMy oMy Do DMy -y =0,

The action of A on the quotient M, = my---my—1/my ---m, factors through the field A/m,,
and the subspaces of the vector space M, are in one-to-one correspondence with the ideals
of A contained between my ---m,—1 and mq ---m,. If A is either artinian or noetherian, then
M, satisfies a chain condition on subspaces and so it is finite-dimensional as a vector space
and both artinian and noetherian as an A-module. Now repeated applications of Proposition
3.3 (resp. its analogue for artinian modules) show that if A4 is artinian (resp. noetherian),
then it is noetherian (resp. artinian) as an A-module, and hence as a ring. O

THEOREM 15.6. A ring is artinian if and only if it is noetherian of dimension zero.

PROOF. =>: Let A4 be an artinian ring. After (15.1), it remains to show that A is noetherian,
but according to (15.2), (15.3), and (15.4), some finite product of maximal ideals is zero,
and so this follows from the lemma.

&: Let A be a noetherian ring of dimension zero. The zero ideal admits a primary
decomposition (14.11), and so A has only finitely many minimal prime ideals, which are all
maximal because dim A = 0. Hence 1 is a finite intersection of maximal ideals (2.5), and
since some power of 91 is zero (3.15), we again have that some finite product of maximal
ideals is zero, and so can apply the lemma. O
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THEOREM 15.7. Every artinian ring is (uniquely) a product of local artinian rings.

PROOF. Let A be artinian, and let my,...,m; be the distinct maximal ideals in A. We saw
in the proof of (15.6) that some product mrl” -.my;” = 0. Fori # j, the ideal m?i + m’}’ is
not contained in any maximal ideal, and so equals A. Now the Chinese remainder theorem
2.12 shows that

A~ Ajm]" X x A/m}r,

and each ring A/ m?’ is obviously local. O

PROPOSITION 15.8. Let A be a local artinian ring with maximal ideal m. If m is principal,
so also is every ideal in A; in fact, if m = (¢), then every ideal is of the form (t") for some
r=>0.

PROOF. Because m is the Jacobson radical of A, some power of m is zero (by 15.4); in
particular, (0) = (¢") for some r. Let a be a nonzero ideal in A. There exists an integer 7 > 0
such that a C m” but a ¢ m”+!1. Therefore there exists an element a of a such that a = ct”
for some ¢ € Abuta ¢ (1"1). The second condition implies that ¢ ¢ m, and so it is a unit;
therefore a = (a). O

EXAMPLE 15.9. Thering A =k[X1, X2, X3,...]/(X1,X2,X3,...) has only a single prime
ideal, namely, (x1,X2,X3,...), and so has dimension zero. However, it is not noetherian
(hence not artinian).

16 Dimension theory for noetherian rings

Let A be a noetherian ring and let p be a prime ideal in A. Let A, = S ~1A4 where S = A~p.
We begin by studying extension and contraction of ideals with respect to the homomorphism
A — Ay (cf. 2.9). Recall (6.6) that A is a local ring with maximal ideal p® o pAp. The
ideal

(p”)ec ={a € A|sa €p" for some s € S}

is called the nth symbolic power of p, and is denoted p@®. If m is maximal, then m®) = m”
(see 6.7).

LEMMA 16.1. The ideal p™ is p-primary.

PROOF. According to Proposition 14.3, the ideal (p¢)” is p®-primary. Hence (see 14.4),
((p®)™)€ is (p®)°-primary. But p¢¢ = p (see 6.4), and

("= (M) Ep®. (33)
LEMMA 16.2. Consider ideals a C p’ C p with p’ prime. If p’ is a minimal prime ideal of a,
then p’¢ is a minimal prime ideal of a® (extension relative to A — Ay).

PROOF. If not, there exists a prime ideal p” # p’¢ such that p’® D p” D a®. Now, by (6.4),
p/ — p/ec and p//(,‘ ;é p/ec, and SO

/

p :p/ec gp//C D aec D a

contradicts the minimality of p’. O
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THEOREM 16.3 (KRULL’S PRINCIPAL IDEAL THEOREM). Let A be a noetherian ring. For
any nonunit b € A, the height of a minimal prime ideal p of (b) is at most one.

PROOF. Consider A — Ap. According to Lemma 16.2, p¢ is a minimal prime ideal of
h)¢ = (%), and (6.4) shows that the theorem for A, D p® D (%) implies it for A D p D (b).
Therefore, we may replace A with A, and so assume that A is a noetherian local ring with
maximal ideal p.

Suppose that p properly contains a prime ideal p;: we have to show that p; D p, —
p1 =p2.

Let pgr) be the rth symbolic power of p;. The only prime ideal of the ring A/(b) is
p/(b), and so A/(b) is artinian (apply 15.6). Therefore the descending chain of ideals

(r" +®) /®) > (47 +®)) /1) > (57 + 1)) /B) > -
eventually becomes constant: there exists an s such that
i+ @ =pP O =pTP ) = (34)
We claim that, for any m > s,
P C Gy +p{" Y. (35)

Letx € pgm). Then
xe () +p™E () +p(’”+”,

and so x = ab + x" witha € A and x’ € p(m+1) As p ) is p1-primary (see 16.1) and

ab=x—x ep(m) but b §ép1,wehavethata€p1 ™ Now x = ab +x' e(b)p(m)—l—pgmﬂ)

as claimed.
We next show that, for any m > s,

pgm) — pgm—i-l)
As b € p, (35) shows that p(m)/p(m+1) ( (m)/p(m-i-l)) and so p(m)/p(m+1) 0 by
Nakayama’s lemma (3.7).

Now

p1 C p?)

and so p§ C ﬂmzsp(lm)' Note that

My P E ), @™ = (), GD™ = 0,

and so for any x € pj, there exists an a € A~y such thatax = 0. Let x € py; thenax® =0
for some a € A~p1; DO A~p2, and so x € p, (because p; is prime). We have shown that
p1 = P2, as required. o

p§s+1) p(s+z)

In order to extend Theorem 16.6 to non principal ideals, we shall need a lemma.

LEMMA 16.4. Let p be a prime ideal in a noetherian ring A, and let S be a finite set of
prime ideals in A, none of which contains p. If there exists a chain of distinct prime ideals

POPag—1 - 2Po,

then there exists such a chain with p1 not contained in any ideal in S
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PROOF. We first prove this in the special case that the chain has length 2. Suppose that
P D p1 D po are distinct prime ideals and that p is not contained in any prime ideal in S.
According to Proposition 2.8, there exists an element

acp~poUip €S}).

As p contains (a) + po, it also contains a minimal prime ideal p} of (a) + po. Now p/ /po
is a minimal prime ideal of the principal ideal ((a) + po) /po in A/pg, and so has height 1,
whereas the chain p/po D p1/Po D Po/Po shows that p/pg has height at least 2. Therefore
p D p D po are distinct primes, and p); ¢ S because it contains a. This completes the proof
of the special case.

Now consider the general case. On applying the special case to p D pg—_1 D Pg—2, We
see that there exists a chain of distinct prime ideals p D p’d_l D pg—p such that p;_l is not
contained in any ideal in S. Then on applying the special case to p/d_l DPd—2 DPg—1,We
we see that there exists a chain of distinct prime ideals p D pii_l D p/d—z D pg—p such that
p’d_2 is not contained in any ideal in S. Repeat the argument until the proof is complete. o

THEOREM 16.5. Let A be a noetherian ring. For any proper ideal a = (ay,...,an), the
height of a minimal prime ideal of a is at most m.

PROOF. For m = 1, this was just proved. Thus, we may suppose m > 2 and that the theorem
has been proved for ideals generated by m — 1 elements. Let p be a minimal prime ideal of a,
and let p/,...,p; be the minimal prime ideals of (a2,...,a;). Each p; has height at most
m— 1. If p is contained in one of the p}, it will have height < m — 1, and so we may suppose
that it isn’t.

Let p have height d. We have to show that d < m. According to the lemma, there exists
a chain of distinct prime ideals

p=psDpi—1D-Dpo, d=1,
with p; not contained in any p’, and so Proposition 2.8 shows that there exists a

We next show that p is a minimal prime ideal of (b,a»,...,a). Certainly p contains a
minimal prime ideal p’ of this ideal. As p’ D (az,....am), p contains one of the p’s, but, by
construction, it cannot equal it. If p # p’, then

pOp Dpi

are distinct ideals, which shows that p = p/(as.,...,am) has height at least 2 in 4 =
A/(az,....ay). Butp is a minimal ideal in A of the principal ideal (a1, ...,an)/(az, ... .an),
which contradicts Theorem 16.3. Hence p is minimal, as claimed.

But now p/(b) is a minimal prime ideal of (b,as,...,a;,) in R/(b), and so the height
of p/(b) is at most m — 1 (by induction). The prime ideals

p/(b) =pa/(b) Dpg—1/(b) >---Dp1/(b)

are distinct, and so d —1 < m — 1. This completes the proof that d = m. O
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The height of an ideal a in a noetherian ring is the minimum height of a prime ideal
containing it,
ht(a) = min  ht(p).
pDa, p prime
The theorem shows that ht(a) is finite.
The following provides a (strong) converse to Theorem 16.5.

THEOREM 16.6. Let A be a noetherian ring, and let a be a proper ideal of A of height r.
Then there exist r elements ay,...,a, of a such that, foreachi <r, (ay,...,a;) has height
i.

PRrROOF. If r =0, then we take the empty set of a;s. Thus, suppose r > 1. There are only
finitely many prime ideals of height 0, because such an ideal is a minimal prime ideal of (0),
and none of these ideals can contain a because it has height > 1. Proposition 2.8 shows that
there exists an

a € a~|J{prime ideals of height 0}.

By construction, (a;) has height at least 1, and so Theorem 16.3 shows it has height exactly
1.

This completes the proof when r = 1, and so suppose that r > 2. There are only finitely
many prime ideals of height 1 containing (a) because such an ideal is a minimal prime
ideal of (a1), and none of these ideals can contain a because it has height > 2. Choose

ar € a~|J{prime ideals of height 1 containing (a1)}.

By construction, (a1,a») has height at least 2, and so Theorem 16.5 shows that it has height
exactly 2.

This completes the proof when r = 2, and when r > 2 we can continue in this fashion
until it is complete.

COROLLARY 16.7. Every prime ideal of height r in a noetherian ring arises as a minimal
prime ideal for an ideal generated by r elements.

PROOF. According to the theorem, an ideal a of height r contains an ideal (a1,...,a,) of
height r. If a is prime, then it is a minimal ideal of (a1,...,a;). o

COROLLARY 16.8. Let A be a commutative noetherian ring, and let a be an ideal in A that
can be generated by n elements. For any prime ideal p in A containing a,

ht(p/a) < ht(p) <ht(p/a) +n.

PROOF. The first inequality follows immediately from the correspondence between ideals
in Aandin A/a.

Denote the quotient map A — A’ £ A/a by a — a’. Let ht(p/a) = d. Then there

exist elements ai,...,ag in A such that p/a is a minimal prime ideal of (a},...,a);). Let
bi,...,by, generate a. Then p is a minimal prime ideal of (a1,...,a4,b1,...,bs), and hence
has height < d +n. a]

We now use dimension theory to prove a stronger version of “generic flatness” (9.11).
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THEOREM 16.9 (GENERIC FREENESS). Let A be a noetherian integral domain, and let B
be a finitely generated A-algebra. For any finitely generated B-module M, there exists a
nonzero element a of A such that M, is a free A,-module.

PROOF. Let F be the field of fractions of A. We prove the theorem by induction on the
Krull dimension of F ® 4 B, starting with the case of Krull dimension —1. Recall that this
means that F ® 4 B = 0, and so al g = 0 for some nonzero a € A. Then M, = 0, and so
the theorem is trivially true (M, is the free A;-module generated by the empty set).

In the general case, an argument as in (9.12) shows that, after replacing A, B, and M
with A,, B,, and M, for a suitable a € A, we may suppose that the map B — F ®4 B
is injective — we identify B with its image. The Noether normalization theorem (5.11)
shows that there exist algebraically independent elements x1,...,x; of FF ® 4 B such that
F ® 4 B is afinite F[xy,...,xy]-algebra. As in the proof of (9.11), there exists a nonzero
a € A such that B, is a finite A4[x1,...,X;,]-algebra. Hence M, is a finitely generated
Aglx1,...,xm]-module.

As any extension of free modules is free’?, Proposition 3.5 shows that it suffices to
prove the theorem for M, = Ag[x1,...,Xm]/p for some prime ideal p in A4[x1,...,Xn]. If
p = 0, then M, is free over A, (with basis the monomials in the x;). Otherwise, F ® 4
(Ag[x1,-..,Xm]/p) has Krull dimension less than that of F ® 4 B, and so we can apply the
induction hypothesis. O

17 Regular local rings

Throughout this section, A is a noetherian local ring with maximal ideal m and residue field
k. The Krull dimension d of A4 is equal to the height of m, and

165 (3.9 .. 2
ht(m) < minimum number of generators of m =" dimy (m/m~).

When equality holds, the ring A4 is said to be regular. In other words, dimy (m/m?) > d,
and equality holds exactly when the ring is regular.

For example, when A has dimension zero, it is regular if and only if its maximal ideal
can be generated by the empty set, and so is zero. This means that A is a field; in particular,
it is an integral domain. The main result of this section is that all regular rings are integral
domains.

LEMMA 17.1. Let A be a noetherian local ring with maximal ideal m, and let ¢ € m~m?,
Denote the quotient map A — A’ = A/(c) by a +— a'. Then

dim m/m? = dimg m’/m? + 1

where m’ £ m/(c) is the maximal ideal of A’.

PROOF. Letey,... e, be elements of m such that {ef,..., e} is a k-linear basis for m’/m’2.
We shall show that {eq,...,e,,c} is a basis for m/m?.

Asel,... e, span m’/m’2, they generate the ideal m’ (see 3.9), and som = (eq,...,e,) +
(¢), which implies that {e,...,ep,c} spans m/m?2.

221f M’ is a submodule of M such that M" & M/ M is free, then M ~ M’ & M.
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Suppose that ay,...,a,4+1 are elements of A such that
alel+---+anen+an+1050modm2. 36)
Then
ajel+-+al e, =0mod m?,
and so a',...,a, € w'. It follows that ay,...,a, € m. Now (36) shows that a,ic € m2.
If a,41 ¢ m, then it is a unit in 4, and ¢ € m?, which contradicts its definition. Therefore,
an+1 € m, and the relation (36) is the trivial one. o

PROPOSITION 17.2. If A is regular, then so also is A/(a) for any a € m~m?; moreover,
dimA =dimA/(a)+ 1.

PROOF. With the usual notations, (16.8) shows that
ht(m’) < ht(m) < ht(m’) + 1.
Therefore
dimg (m’/m’?) > ht(m’) > ht(m) — 1 = dimg (m/m?) — 1 = dimy (m’/m’?).
Equalities must hold throughout, which proves that A’ is regular with dimension dim A4 — 1.
THEOREM 17.3. Every regular noetherian local ring is an integral domain.

PROOF. Let A be a regular local ring of dimension d. We have already noted that the
statement is true when d = 0.

We next prove that A is an integral domain if it contains distinct ideals a D p with
a = (a) principal and p prime. Let b € p, and suppose b € a” = (a™) for some n > 1. Then
b = a"c for some ¢ € A. As a is not in the prime ideal p, we must have that ¢ € p C a, and
so b € a"*1. Continuing in this fashion, we see that b € (), a” oy {0}. Therefore p = {0},
and so 4 is an integral domain.

We now assume d > 1, and proceed by induction on d. Let a € m~m?. As A/(a) is
regular of dimension d — 1, it is an integral domain, and so (a) is a prime ideal. If it has
height 1, then the last paragraph shows that A is an integral domain. Thus, we may suppose
that, for all @ € m ~m?, the prime ideal (a) has height 0, and so is a minimal prime ideal
of A. Let S be the set of all minimal prime ideals of A — recall (§14) that S is finite. We
have shown that m~m? C | J{p |p € S}, andsom C m? U J{p | p € S}. It follows from
Proposition 2.8 that either m C m? (and hence m = 0) or m is a minimal prime ideal of A,
but both of these statements contradict the assumption that d > 1. O

COROLLARY 17.4. A regular noetherian local ring of dimension 1 is a principal ideal
domain (with a single nonzero prime ideal).

PROOF. Let A be a regular local ring of dimension 1 with maximal ideal m,and let a be
a nonzero proper ideal in A. The conditions imply that m is principal, say m = (¢). The
radical of a is m because m is the only prime ideal containing a, and so a D m” for some
r (by 3.15). The ring A/m” is local and artinian, and so a = () +m” for some s > 1 (by
15.8). This implies that a = (¢°) by Nakayama’s lemma (3.7). o
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THEOREM 17.5. Let A be a regular noetherian local ring.
(a) For any prime ideal p in A, the ring Ay is regular.
(b) The ring A is a unique factorization domain (hence is integrally closed).

PROOF. The best proofs use homological algebra, and are (at present) beyond this primer.
For an account of the theorems in the same spirit as this primer, see http://www.math.
uchicago.edu/~may/MISC/RegularLocal.pdf. See also Matsumura 1986 19.3, 20.3.q

18 Connections with geometry

Throughout this section, k is a field.

Affine k-algebras

Let A be a finitely generated k-algebra. Recall (11.8) that the nilradical of A is equal to the
intersection of the maximal ideals of A.

PROPOSITION 18.1. Let A be a finitely generated k -algebra over a pertect field k. If A is
reduced, then so also is K Q. A for every field K D k.

PROOF. Let (¢;) be a basis for K as a k-vector space, and suppose @ = ) ¢; ®a; is a
nonzero nilpotent element in K ®; A. Because A is reduced, there exists a maximal ideal m
in A such that some a; do not belong to m. The image @ of & in K ®j (4/m) is a nonzero
nilpotent, but A/m is a finite separable field extension of k, and so this is impossible.”?

When £ is not perfect, Proposition 18.1 fails, because then k has characteristic p # 0
and it contains an element a that is not a pth power. The polynomial X7 —a is irreducible
in k[X], but X? —a = (X —)? in k¥[X]. Therefore, A = k[X]/(X? —a) is a field, but
k¥ @i A = k¥[X]/(X —a)P? is not reduced.

DEFINITION 18.2. An affine k-algebra is a finitely generated k-algebra A such that k¥ @
A is reduced.

Let A be a finitely generated k-algebra. If A is affine, then K ®; A is reduced for
every finite extension K of k, because a k-homomorphism K — k2 defines an injective
homomorphism K ®; A — k¥ ®; A. Conversely, if A is reduced and k is perfect, then
(18.1) shows that A is affine.

PROPOSITION 18.3. If A is an affine k -algebra and B is a reduced k -algebra, then A ® B
is reduced.

PROOF. Let (¢;) be a basis for A as a k-vector space, and suppose « = Y e; ® b; is a
nonzero nilpotent element of A ®; B. Let B’ be the k-subalgebra of B generated by the
(finitely many) nonzero b;. Because B’ is reduced, there exists a maximal ideal m in B’
such that some b; do not belong to m. Then the image @ of @ in A ® (B’/m) is a nonzero
nilpotent, but B’/m is a finite field extension of k (Zariski’s lemma, 11.1), and so this is
impossible. O

BEvery finite separable field extension of k is of the form k[X]/(f(X)) with f(X) separable and therefore
without repeated factors in any extension field of k; hence K ® k[X]/(f (X)) ~ K[X]/(f (X)) is a product of
fields.
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COROLLARY 18.4. If A and B are affine k-algebras, then so also is A ®;. B.

PROOF. By definition, k¥ ®j A is reduced, and k*' ®; (A ®x B) ~ (k¥ ®x A) ®x B, which
is reduced by (18.3). o

Locally ringed spaces

Let V be a topological space, and let k be a k-algebra. A presheaf O of k-algebras on
V assigns to each open subset U of V a k-algebra O(U) and to each inclusion U’ C U a
“restriction” map

f e fIU0U) - o)

when U = U’ the restriction map is required to be the identity map, and if
U”"cu’'cu,
then the composite of the restriction maps
o) — o) —oW”)

is required to be the restriction map O(U) — O(U"”). In other words, a presheaf is a
contravariant functor to the category of k-algebras from the category whose objects are
the open subsets of V' and whose morphisms are the inclusions. A homomorphism of
presheaves a: O — (O’ is a family of homomorphisms of k-algebras

a(U):0U) - O'(U)

commuting with the restriction maps, i.e., a natural transformation.

A presheaf O is a sheaf if for every open covering {U;} of an open subset U of V
and family of elements f; € O(U;) agreeing on overlaps (that is, such that f;|U; NU; =
filUiNU; forall i, j), there is a unique element f € O(U) such that f; = f|U; for all
i.%* A homomorphism of sheaves on V is a homomorphism of presheaves.

For v € V, the stalk of a sheaf O (or presheaf) at v is

Oy = 1113 OU) (limit over open neighbourhoods of v).

In other words, it is the set of equivalence classes of pairs (U, f) with U an open neighbour-
hood of v and f € O(U); two pairs (U, f) and (U’, f') are equivalent if f|U" = f'|U"
for some open neighbourhood U” of v contained in U NU’.

A ringed space is a pair (V, ) consisting of topological space V' together with a sheaf
of rings. If the stalk O, of O at v is a local ring for all v € V, then (V, O) is called a locally
ringed space.

A morphism (V,0) — (V',O’) of ringed spaces is a pair (¢, V) with ¢ a continuous
map V — V'’ and ¢ a family of maps

v(U):0'(U") - O~ (U")), U’ openin V',

commuting with the restriction maps. Such a pair defines homomorphism of rings ry,: O(’p W~
Oy for all v € V. A morphism of locally ringed spaces is a morphism of ringed space such
that v, is a local homomorphism for all v.

24This condition implies that O () = 0.
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Let B be a base for the topology on V that is closed under finite intersections. A sheaf
on B can be defined in the obvious way, and such a sheaf O extends to a sheaf @’ on V: for
any open subset U of V, define O'(U) to be the set of families

(fuvcuves, fu €OWU),

agreeing on overlaps. Then (0’ is a sheaf of k-algebras on V, and there is a canonical
isomorphism O — O'|B.

Affine algebraic spaces and varieties

Let A be a finitely generated k-algebra, and let V' = specm(A). Recall (§12) that the set of
principal open subsets of V'

B={D(f)|f €4}

is a base for the topology on V. Moreover, B is closed under finite intersections because

D(fl"'fr):D(fl)mn-mD(fr)-

For a principal open subset D of V', define O 4(D) = SBIA where Sp is the multiplicative
subset A ~ Upe ph. If D = D(f), then Sp is the smallest saturated multiplicative subset
containing f, and so O4(D) >~ A ¢ (see 6.12). If D D D’, then Sp C Spr, and so there
is a canonical “restriction” homomorphism O 4(D) — O 4(D’). These restriction maps
make D ~> O4(D) into a functor on B satisfying the sheaf condition: for any covering
D =J;e; Di of a D € Bby D; € B and family of elements f; € O4(D;) agreeing on
overlaps, there is a unique element f € O 4(D) such that f; = f|D; forall i.

For an open subset U of V', define O 4(U) to be the set of families ( fp)p agreeing on
overlaps; here D runs over the principal open sets D C U. Clearly U ~> O 4(U) is a functor
on the open subsets of V, and it is not difficult to check that it is a sheaf. Moreover, in the
definition of O 4(U), instead of taking all principal open subsets of U, it suffices to take a
covering collection. In particular, if U = D(f), then

O4U) =04(D(f)) = Ay.
In summary:

PROPOSITION 18.5. There exists an essentially unique sheat O 4 of k-algebras on V =
specm(A) such that
(a) for all basic open subsets D = D(f) of V,

O(D)=Sp'A~ Ay,

(b) for all inclusions D’ C D of basic open subsets, the restriction map O(D) — O(D’)
is the canonical map Sp' A — S5 A.

We write Specm(A) for specm(A) endowed with this sheaf of k-algebras.

PROPOSITION 18.6. For every m € specm(A), the stalk Oy, is canonically isomorphic to
Om.

PROOF. Apply (7.3). O
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Thus Specm(A) is a locally ringed space. An affine algebraic space is topological space
V together with a sheaf of k-algebras O such that (V, Q) is isomorphic to Specm(A) for
some finitely generated k-algebra A. A regular map of affine algebraic spaces is morphism
of locally ringed spaces.

EXAMPLE 18.7. Affine n-space A" = Specm(k[X1,...,Xy]). To give a regular map V' —
Al is the same as giving a homomorphism of k-algebras k[X] — O(V), i.e., an element of
O(V). For this reason, O(V) is often called the ring (or k-algebra) of regular functions
onV.

PROPOSITION 18.8. For any affine algebraic space (V,Oy) and locally ringed space
(W, Ow), the canonical map

is an isomorphism.
PrROOF. Exercise for the reader. o

An affine algebraic space V' defines a functor

def

R ~»> V(R) = Homy_g,(O(V), R). 37

from k-algebras to sets. For example, A”(R) >~ R" for all k-algebras R.
An affine algebraic variety is an affine algebraic space V' such that Oy (V') is an affine
algebra.

Tangent spaces; nonsingular points, regular points

Let k[g] be the ring of dual numbers (so €2 = 0). For an affine algebraic space V over k, the
map ¢ — 0:k[e] — k defines a map

Vikle]) — V (k).

For any a € V(k), we define the tangent space to V at a, Tgt,(V'), to be the inverse image
of a under this map.

PROPOSITION 18.9. There is a canonical isomorphism
Tety (V) =~ Homy_jin(mg /m k).

This follows from the next two lemmas.

Let V = V(a) C k", and assume that the origin o lies on V. Let a; be the ideal
generated by the linear terms fy of the f € a. By definition, T,(V) = V(ay). Let Ay =
k[X1,...,Xn]/ag, and let m be the maximal ideal in k[V] consisting of the functions zero at
o;thus m = (x1,...,X5).

LEMMA 18.10. There is a canonical isomorphism

Homy_jiy(m/m?, k) —> Homy_4o(Ag. k).
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PROOF. Let n = (X1,..., X,) be the maximal ideal at the origin in k[X1,..., X,]. Then
m/m? ~n/(n*+4a),andas f — f; e n? forevery f € a, it follows that m/m? ~ n/(n +ay).

Let f1,¢...., fr¢ be a basis for the vector space ay. From linear algebra we know that there
are n —r linear forms X;,..., X;,_, forming with the f; ; a basis for the linear forms on
k™. Then X;, + m2,.. W Xiy_, + m? form a basis for m/m? as a k-vector space, and the

lemma shows that Ay ~ k[X;, ..., X;,_,]. A homomorphism «:A; — k of k-algebras is
determined by its values «(Xj,),...,2(X;,_,), and they can be arbitrarily given. Since the
k-linear maps m/m? — k have a similar description, the first isomorphism is now obvious.q

LEMMA 18.11. There is a canonical isomorphism
Homk-alg(Ae’k) — To(V).

PROOF. To give a k-algebra homomorphism Ay, — k is the same as to give an element
(at,...,an) € k™ such that f(ai,...,ay) =0 forall f € Ay, which is the same as to give
an element of Tp (V). a)

REMARK 18.12. Let V = Specmk|[X1,..., Xn]/(f1,---, fm), and let (ay,...,an) € V(k).
Then Tgt, (V) is canonically isomorphic to the subspace of k" defined by the equations

% o,

X1+~

a

X, i=1,...,m.
a

When a is the origin, this is a restatement of (18.11), and the general case can be deduced
from this case by a translation.

The dimension of an affine algebraic space V' is the Krull dimension of O(V). If V is
irreducible, then O(V)/M is an integral domain, and the dimension of V' is equal to the
transcendence degree over k of the field of fractions of O(V)/9%; moreover, all maximal
ideals have height dim V' (13.11).

PROPOSITION 18.13. Let V be an affine algebraic space over k, and leta € V (k). Then
dimTgt, (V) > dimV, and equality holds if and only if O(V )y, is regular.

PROOF. Let n be the maximal ideal of the local ring A = O(V ). Then A/n =k, and
dimg n/n? > ht(n), with equality if and only if A is regular. As m,/m2 ~ n/n? (6.7),
Proposition 18.9 implies that dim Tgt, (V) = dimy n/n?, from which the statement follows.

Ana € V (k) is nonsingular it dimTgt, (V') = dim V'; otherwise it is singular. An affine
algebraic space V is regular if all of its local rings O(V )y, are regular, and it is smooth if
Vi 1s regular. Thus an algebraic space over an algebraically closed field is smooth if and
only if all @ € V(k) are nonsingular. A smooth algebraic space is regular, but the converse
is false. For example, let kK’ be a finite inseparable extension of k, and let V' be a smooth
algebraic space over k’; when we regard V' is an algebraic space over k, it is regular, but not
smooth.

PROPOSITION 18.14. A smooth affine algebraic space V is a regular affine algebraic vari-
ety; in particular, O(V) is an integral domain. Conversely, if k is perfect, then every regular
affine algebraic space over k is smooth.
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PROOF. Let A = O(V). If V is smooth, then all the local rings of k¥ ®; A are regular; in
particular, they are integral domains (17.3). This implies that k! ®j A is reduced, because it
implies that the annihilator of any nilpotent element is not contained in any maximal ideal,
and so is the whole ring. Therefore A is an affine algebra, and so V' is an affine algebraic
variety. Let m be a maximal ideal in A4, and let n = m(k® ®; A). Then n is a maximal
ideal® of k¥ ®j A, and

n/n? ~ k¥ ® (m/m?),

and so dimy (m/m?) = dimga (n/n?). This implies that A, is regular. In particular, A, is
an integral domain for all maximal ideals of A, which implies that A is integral domain,
because it implies that the annihilator of any zero-divisor is not contained in any maximal
ideal. Conversely, if V is regular, A is an integral domain, and hence an affine k-algebra if k
is perfect. O

PROPOSITION 18.15. Let V be an irreducible affine algebraic space over an algebraically
closed field k, and identify V with V (k). The set of nonsingular points of V is open, and it
is nonempty if V' is an algebraic variety.

PROOF. We may suppose V = Specmk|[X1,..., Xn]/(f1,..., fm). Letd =dim V. Accord-
ing to Remark 18.12, the set of singular points of V is the zero-set of the ideal generated by
the (n —d) x (n — d) minors of the matrix

@ @
Jac(fioo f)@) = | a
@ )

which is closed. Therefore the set of nonsingular points is open.
Now suppose that V' is an algebraic variety. The next two lemmas allow us to suppose that
V =k[X1,...,X,]/(f) where f is a nonconstant irreducible polynomial. Then dim V' =
n —1, and so we have to show that the equations
af

=0, — =0,
! 0X1

of
"0X,

have no common zero. If % is identically zero on V(f'), then f divides it. But % has

degree less than that of f and f is irreducible, and so this implies that % = 0. Therefore

f is a polynomial in X>,..., X, (characteristic zero) or X P X,,...,X, (characteristic p).
Continuing in this fashion, we find that either f is constant (characteristic zero) or a pth
power (characteristic p), which contradict the hypothesis. O

Let V be an irreducible affine algebraic variety. Then O(V) is an integral domain, and
we let k (V') denote its field of fractions. Two irreducible affine algebraic varieties V and W
are said to be birationally equivalent if k(V) ~ k(W).

LEMMA 18.16. Two irreducible varieties V and W are birationally equivalent if and only
if there are open subsets U and U’ of V and W respectively such that U ~ U’.

25This is only true if m corresponds to some k-valued point of A4, i.e., if A/m = k. To fix this, let n be a
maximal ideal of (k% ® A), and let m be the intersection of n with A. Then the displayed equation is true if the
tensor product is taken over A/m; in the next line, k should be replaced with A/m. [In fact, the whole proof
should be rewritten and completed. ]
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PROOF. Assume that V' and W are birationally equivalent. We may suppose that A = O(V')
and B = O(W) have a common field of fractions K. Write B = k[xy,...,x,]. Then
x; =a;/bi,a;,b; € A,and B C Ap, _p,. Since Specm(Ap, . p,.) is a basic open subvariety
of V', we may replace A with Ap, ., and suppose that B C A. The same argument shows
that there existsad € B C A such A C B;. Now

BCACB;=— B; CA; C(By)g = By,

and so Ay = B;. This shows that the open subvarieties D(b) C V and D(b) C W are
isomorphic. This proves the “only if” part, and the “if” part is obvious. O

LEMMA 18.17. Every irreducible algebraic variety of dimension d is birationally equivalent
to a hypersurface in A4+1,

PROOF. Let V be an irreducible variety of dimension d. According to 8.21 of my notes
Fields and Galois Theory, there exist algebraically independent elements x1,...,x47 € k(V)
such that k(1) is finite and separable over k(x1,...,x4). By the primitive element theorem
(ibid. 5.1), k(V) = k(x1,...,Xxq,Xq+1) for some xz41. Let f € k[X1,...,Xz41] be an
irreducible polynomial satisfied by the x;, and let H be the hypersurface f = 0. Then
k(V)~k(H). o

Algebraic schemes, spaces, and varieties

An algebraic space over k is a locally ringed space that admits a finite open covering by
affine algebraic spaces. An algebraic variety over k is a locally ringed space (X, Oy) that
admits a finite open covering by affine algebraic spaces and satisfies the following separation
condition: for every pair ¢1,¢2: Z — X of locally ringed space with Z and affine algebraic
variety, the subset of Z on which ¢ and ¢, agree is closed.

Let (X, Ox) be an algebraic scheme over k, i.e., a scheme of finite type over k, and let
X’ be the subset of X obtained by omitting all the nonclosed points. Then (X’,Ox|X’) is
an algebraic space over k. Conversely, let (X, Ox) be an algebraic space over k; for each
open subset U of X, let U’ be the set of irreducible closed subsets of U, and regard U as a
subset of X’ in the obvious way; then (X', Ox) where Ox/(U’) = Ox (U) is an algebraic
scheme over k.
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