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Abstract

These notes prove the basic theorems in commutative algebra required for alge-
braic geometry and algebraic groups. They assume only a knowledge of the algebra
usually taught in advanced undergraduate or first-year graduate courses.
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NOTATIONS AND CONVENTIONS

Our convention is that rings have identity elementsﬂ and homomorphisms of rings respect
the identity elements. A unit of a ring is an element admitting an inverse. The units of a

(©2009 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit
permission from the copyright holder.
An element e of a ring A is an identity element if ea = a = ae for all elements a of the ring. It is usually
denoted 14 or just 1. Some authors call this a unit element, but then an element can be a unit without being a
unit element. Worse, a unit need not be the unit.
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ring A form a group, which we denoteE] A*. Throughout “ring” means “commutative ring”.
Following Bourbaki, we let N = {0, 1,2,...}.
X CY Xisasubsetof Y (not necessarily proper).

def

X =Y X isdefinedtobe Y, orequals Y by definition.
X ~Y X isisomorphicto Y.
X ~Y X and Y are canonically isomorphic (or there is a given or unique isomorphism).
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1 Rings and algebras

Let A be aring. A subring of A is a subset that contains 14 and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together with a
homomorphism ig: A — B. A homomorphism of A-algebras B — C is a homomorphism
of rings ¢: B — C such that p(ip(a)) = ic(a) foralla € A.

Elements x1,...,x, of an A-algebra B are said to generate it if every element of B can
be expressed as a polynomial in the x; with coefficients in i g (A), i.e., if the homomorphism
of A-algebras A[X1,...,X,] — B acting as i g on A and sending X; to x; is surjective. We
then write B = (ip A)[x1,...,Xn].

A ring homomorphism A — B is of finite type, and B is a finitely generated A-algebra,
if B is generated by a finite set of elements as an A-algebra.

A ring homomorphism A — B is finite, and B is a ﬁniteE] A-algebra, if B is finitely
generated as an A-module. If A — B and B — C are finite ring homomorphisms, then so
also is their composite A — C.

Let k be a field, and let A be a k-algebra. When 14 # 0, the map k — A is injective,
and we can identify k& with its image, i.e., we can regard k as a subring of A. When 14 =0,
the ring A is the zero ring {0}.

Let A[X] be the ring of polynomials in the symbol X with coefficients in A. If A is an
integral domain, then deg( fig) = deg( f) + deg(g), and so A[X] is also an integral domain;
moreover, A[X]* = A*.

Let A be an algebra over a field k. If A is an integral domain and finite as a k-algebra,
then it is a field, because, for each nonzero a € A, the k-linear map x — ax: A — A is
injective, and hence is surjective, which shows that a has an inverse. If A is an integral
domain and each element of A is algebraic over k, then for each a € A, k[a] is an integral
domain finite over k, and hence contains an inverse of a; again A is a field.

PRODUCTS AND IDEMPOTENTS

An element e of a ring A is idempotent if e> = e. For example, 0 and 1 are both idempo-
tents — they are called the #rivial idempotents. ldempotents eq,...,e, are orthogonal if
eiej =0=¢je; fori # j. Any sum of orthogonal idempotents is again idempotent. A set

2This notation differs from that of Bourbaki, who writes A for the multiplicative monoid A \. {0} and A*
for the group of units. We shall rarely need the former, and * is overused.
3The term “module-finite” is also used.
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{e1,...,en} of orthogonal idempotents is complete if e1 +--- 4+ e, = 1. Any set of orthogo-
nal idempotents {eq,...,e,} can be made into a complete set of orthogonal idempotents by
adding the idempotent e = 1 — (e1 + -+ + e5,).

If A= A; x---x A, (direct product of rings), then the elements

ei=(07""1”"’0)’ 1§l§n’

form a complete set of orthogonal idempotents in A. Conversely, if {e1,...,e,} is a com-
plete set of orthogonal idempotents in A, then Ae; becomes a rinﬂ with the addition and
multiplication induced by that of A, and A >~ Ae; x--- X Aey.

2 Ideals

Let A be aring. Anideal a in A is a subset such that

¢ ais asubgroup of A regarded as a group under addition;

o a€ea,reA=raca.
The ideal generated by a subset S of A is the intersection of all ideals a containing A —
it is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the
form ) r;s; withr; € A, s; € S. The ideal generated by the empty set is the zero ideal {0}.
When S = {s1,52,...}, we write (s1,52,...) for the ideal it generates.

An ideal is ideal!principal if it is generated by a single element. Such an ideal (a) is
proper if and only a is not a unit. Thus a ring A is a field if and only if 14 # 0 and A4
contains no nonzero proper ideals.

Let a and b be ideals in A. The set {a +b | a € a, b € b} is an ideal, denoted a + b.
The ideal generated by {ab | a € a, b € b} is denoted by ab. Clearly ab consists of all finite
sums Y a;b; with a; € a and b; € b, and if a = (ay,...,a,) and b = (b1,...,by), then
ab = (a1b1,...,aibj,...,amby,). Note that ab C a4 = a and ab C Ab = b, and so

ab Canb. (1)

The kernel of a homomorphism A — B is an ideal in A. Conversely, for any ideal a in
aring A, the set of cosets of a in A forms a ring A/a, and a@ + a + a is a homomorphism
@: A — A/a whose kernel is a. There is a one-to-one correspondence

. . b>e(b) .
{ideals of A containing a} {ideals of A/a}. 2)
<«~ib

e~ 1(b)

For any ideal b of 4, ¢~ 1¢(b) = a+b.
Anideal p in A is prime if p # A and ab € p = a € p or b € p. Thus p is prime if and
only if the quotient ring A/p is nonzero and has the property that

ab=0, b#0=a=0,

i.e., A/p is an integral domain. Note that if p is prime and a1 ---a, € p, then either a; € p
or az---ay € p; if the latter, then either ap € p or a3---a, € p; continuing in this fashion,
we find that at least one of the a; € p.

“But Ae; is not a subring of A if n # 1 because its identity element is e; # 14. However, the map a
ae;: A — Ae; realizes Ae; as a quotient of A.



2 IDEALS 4

An ideal m in A is maximal if it is a maximal element of the set of proper ideals in A.
Therefore an ideal m is maximal if and only if the quotient ring A/m is nonzero and has no
proper nonzero ideals (by (2)), and so is a field. Note that

m maximal = m prime.
The radical rad(a) of an ideal a is
{feA|f  €ea somer eN,r >0}

An ideal a is said to be radical if it equals its radical. Thus a is radical if and only if the quo-
tient ring A/a is reduced, i.e., without nonzero nilpotent elements (elements some power
of which is zero). Since integral domains are reduced, prime ideals (a fortiori maximal
ideals) are radical. The radical of (0) consists of the nilpotent elements of A — it is called
the nilradical of A.

If b <> b’ under the one-to-one correspondence (2)), then 4/b >~ (A/a)/b’, and so b is
prime (resp. maximal, radical) if and only if b’ is prime (resp. maximal, radical).

PROPOSITION 2.1. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad(rad(a)) = rad(a).

PROOF. (a) If a € rad(a), then clearly fa € rad(a) for all f € A. Suppose a,b € rad(a),
with say a” € a and b* € a. When we expand (a + b)" " using the binomial theorem, we
find that every term has a factor a” or b*, and so lies in a.

(b) If a” € rad(a), then a™ = (a")’ € a for some s > 0. 0

Note that (b) of the proposition shows that rad(a) is radical, and so is the smallest radical
ideal containing a.

If a and b are radical, then a N b is radical, but a + b need not be: consider, for example,
a=(X2-Y)and b= (X?+7Y); they are both prime ideals in k[X, Y] (by below, for
example), but a 4+ b = (X2,Y), which contains X2 but not X.

PROPOSITION 2.2. The radical of an ideal is equal to the intersection of the prime ideals
containing it.

PROOF. If a = A, then the set of prime ideals containing it is empty, and so the intersection
is A. Thus we may suppose that a is a proper ideal of A. Then rad(a) C ﬂpjap because
prime ideals are radical and rad(a) is the smallest radical ideal containing a.

Conversely, suppose that f* ¢ rad(a) — we have to show that there exists a prime ideal
containing a but not f. Let S be the set of ideals in A containing a but no power of f.
Then S is nonempty because a € S. Suppose (for the moment) that S contains a maximal
element ¢, and let bb’ € ¢. If neither b nor b’ is in ¢, then ¢ + (b) and ¢ + (b’) properly
contain ¢, and so do not lie in S. Therefore

4
fr=c+ab, f" =c +a'b' somer,r'>1,c,c’€c,a,d €A.

Hence
’
T =cc' +abc’ +a'b'c +aad'bb’ e,

which contradicts the definition of ¢. Therefore ¢ is prime, and so f ¢ ﬂpgap.
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It remains to show that S always contains a maximal element. If A is noetherian (see
§3| below), this is automatic. Otherwise, we apply Zorn’s lemma to S. Let by C by C ---
be a chain of ideals in S, and let b =(_Jb;. Then b € S, because otherwise some power of
f lies in b, and hence in some b;, which contradicts the definition of S. Therefore b is an
upper bound for the chain. As every chain in S has an upper bound, Zorn’s lemma implies
that S' has a maximal element. o

REMARK 2.3. (a) The argument in the last paragraph of the proof applied to the set S of
ideals containing a but not 1 shows that every proper ideal of A is contained in a maximal
ideal.

(b) The above proof is one of many in commutative algebra in which an ideal, maximal
with respect to some property, is shown to be prime. For a general examination of this
phenomenon, see Lam and Reyes|2008|

DEFINITION 2.4. The Jacobson radical J of a ring is the intersection of the maximal ideals
of the ring:

J(A) = ﬂ{m | m maximal in A}.

A ring A is local if it has exactly one maximal ideal. For such a ring, the Jacobson
radical is m.

PROPOSITION 2.5. An element c of A is in the Jacobson radical of A if and only if 1 —ac
is a unit for alla € A.

PROOF. We prove the contrapositive: there exists a maximal ideal m such that ¢ ¢ m if and
only if there exists an a € A such that 1 —ac is not a unit.

<: As 1 —ac is not a unit, it lies in some maximal ideal m of A (by[2.3p). Then ¢ ¢ m,
because otherwise 1 = (1 —ac) +ac € m.

=>: Suppose that ¢ is not in the maximal ideal m. Then m+ (c¢) = A, andso 1 =m +ac
for some m e mand a € A. Now 1 —ac € m, and so it is not a unit. o

PROPOSITION 2.6. Let S be a nonempty finite set of ideals in A, at most one of which is
not prime. Any ideal contained in the union of the ideals in S' is contained in at least one of
the ideals.

PROOF. We prove the contrapositive:

if the ideal a in not contained in any ideal in S, then it is not contained in their
union.

For |S| = 1, there is nothing to prove, and so we assume that |S| = r + 1 > 1 and (induc-

tively) that the statement is true for r. We can list the elements of S as py,...,pr+1 With
Pr+1 prime. As a is not contained in any of the ideals p1,...,pr+1, for each i, there exists
an g; in a not in the union of the ideals p1,...,p;i—1,Pi+1,-..,Pr+1. If some a; does not lie

in p;, thenthata; e a~pyU...Up,+1, and the proof is complete. Thus suppose that every
a; € p;, and consider
a=ap-ar+ar41.

Because p, 41 is prime and none of the elements ay,...,a, lies in p, 41, their product does
not lie in p,41; however, a,4+1 € pr+1, and so a ¢ pr4+1. Next consider a prime p; with
i <r.Inthiscaseaj---a, € p; because the product involves a;, but a,1 ¢ p;, and so again
a¢pi.Nowa €a~piU...Up,+1, and so a is not contained in the union of the p;. O
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EXTENSION AND CONTRACTION OF IDEALS
Let ¢: A — B be a homomorphism of rings.

NOTATION 2.7. For anideal b of B, ¢~ !(b) is an ideal in A, called the contraction of b to
A, which is often denoted b€. For an ideal a of A, the ideal in B generated by ¢(a) is called
the extension of a to B, and is often denoted a®.

When ¢ is surjective, ¢(a) is already an ideal, and when A is a subring of B, b = bN A.

2.8. There are the following equalities (a,a’ ideals in A4; b, b" ideals in B):
(a+d) =a+d° (ad)=0a%"% (6NB) =b°N0HC, rad(b) = rad(b°).

2.9. Obviously (i) a C a®¢ and (ii) b C b (a anideal of A; b an ideal of B). On applying e

to (i), we find that a® C a®“®, and (ii) with b replaced by a® shows that a®“¢ C a®; therefore
a® = a®“®. Similarly, b¢¢¢ = b€. It follows that extension and contraction define inverse
bijections between the set of contracted ideals in A and the set of extended ideals in B:

{b€ C A | b anideal in B}i\—{ae C B|aanidealin A}

c
Note that, for any ideal b in B, the map A/b° — B/b is injective, and so b is prime
(resp. radical) if b is prime (resp. radical).
THE CHINESE REMAINDER THEOREM

The ideals of A x B are all of the form a x b with a and b ideals in A and B. To see
this, note that if ¢ is an ideal in A x B and (a,b) € ¢, then (a,0) = (1,0)(a,b) € ¢ and
(0,b) = (0,1)(a,b) € c. Therefore, c = a x b with

a={al(a,0)ec}, b={b]|(0,b)ec}.

THEOREM 2.10 (CHINESE REMAINDER THEOREM). Letay,...,a, be ideals in a ring A.
If a; is coprime to a; (i.e., a; +a; = A) wheneveri # j, then the map

ar~(...,a+a;,...);A—> A/ay x---x A/ay 3)
is surjective, with kernel [Ja; = (a;.

PROOF. Suppose first that n = 2. As a; +a, = A, there exist a; € a; such thata; +a, = 1.
Then a1 x2 + azx; maps to (x; moday, x, moda,), which shows that is surjective.
For each i, there exist elements a; € a1 and b; € a; such that

ai+b; =1,alli >2.

The product [ [;5,(a; +b;) = 1, and lies in a1 +[[;5, a;, and so

a1+1_[a,- = A.

i>2

We can now apply the theorem in the case n = 2 to obtain an element y; of A4 such that

y1=1moda;, y;=0mod 1_[(1,-.

i>2
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These conditions imply

yi=Ilmoda;, y;=0modaj,all;j>1.
Similarly, there exist elements y», ..., y, such that

yi=1moda;, y;=0moda; forj #i.

The element x = ) _ x; y; maps to (x; moday,...,x, moda,), which shows that 18 sur-
jective.

It remains to prove that (a; =[] a;. Obviously [ [a; C () a;. Suppose first that n = 2,
and let a; +a, = 1, as before. For ¢ € a1 Nay, we have

c=aic+azceay-ap

which proves that a; Nay = ajaz. We complete the proof by induction. This allows us
to assume that [[;5,a; = ();5,a;. We showed above that a; and [];, a; are relatively

prime, and so
ar-([Ja) =arn([Jan)

i>2 i>2

by the n =2 case. Now a1 - ([[;5501) =[[;>1 @ and ar N ([ [;500) = a1 N (5o ) =
mizl a;, which completes the proof. O

3 Noetherian rings

PROPOSITION 3.1. The following conditions on a ring A are equivalent:
(a) every ideal in A is finitely generated;
(b) every ascending chain of ideals a; C ap C --- eventually becomes constant, i.e., for
some m, Gy = O] = -+ .
(c) every nonempty set of ideals in A has a maximal element (i.e., an element not prop-
erly contained in any other ideal in the set).

PROOF. (a) = (b): If a; C ap C --- is an ascending chain, then a = ( Ja; is an ideal, and
hence has a finite set {a1,...,a,} of generators. For some m, all the a; belong a,,, and then

Om = 041 =+ = 0.

(b) = (c): Let S be a nonempty set of ideals in A. Let a; € S; if a; is not maximal in
S, then there exists an ideal ay in S properly containing a;. Similarly, if a, is not maximal
in §, then there exists an ideal a3 in S properly containing a3, etc.. In this way, we obtain
an ascending chain of ideals a; C a, C a3 C --- in § that will eventually terminate in an
ideal that is maximal in S

(c) = (a): Let a be an ideal, and let S be the set of finitely generated ideals contained
in a. Then S is nonempty because it contains the zero ideal, and so it contains a maximal
element ¢ = (aq,...,a,). If ¢ # a, then there exists an element a € a~ ¢, and (a1,...,d,,a)
will be a finitely generated ideal in a properly containing c. This contradicts the definition
of ¢. o
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A ring A is noetherian if it satisfies the conditions of the proposition. For example,
fields and principal ideal domains are noetherian. On applying (c) to the set of all proper
ideals containing a fixed proper ideal, we see that every proper ideal in a noetherian ring is
contained in a maximal ideal. We saw in that this is, in fact, true for any ring, but the
proof for non-noetherian rings requires Zorn’s lemma.

A quotient A/a of a noetherian ring A is noetherian, because the ideals in A/a are all
of the form b/a with b an ideal in A, and any set of generators for b generates b/a.

PROPOSITION 3.2. Let A be a ring. The following conditions on an A-module M are
equivalent:
(a) every submodule of M is finitely generated;
(b) every ascending chain of submodules M1 C M, C --- eventually becomes constant.
(c) every nonempty set of submodules of M has a maximal element.

PROOF. Essentially the same as that of (3.1)). O

An A-module M is noetherian if it satisfies the equivalent conditions of the proposition.
Let 4A denote A regarded as a left A-module. Then the submodules of 4 A are exactly the
ideals in A, and so 4 A is noetherian (as a module) if and only if A is noetherian (as a ring).

PROPOSITION 3.3. Let .

0->M M-Im0
be an exact sequence of A-modules. The module M is noetherian if and only if M’ and
M" are both noetherian.

PROOF. =: An ascending chain of submodules in M’ or in M” gives rise to an ascending
chain in M, and therefore becomes constant.

&: That ascending chains of submodules of M eventually become constant follows
from the statement:

Submodules N’ C N of M are equal if g(N') = g(N) and i~} (N') =i~1(N).

To prove this, let x € N; because ¢(N') = q(N), there exists an x’ € N’ such that ¢(x) =
q(x"); now g(x —x") = 0, and so there exists a y € M’ such that i (y) = x —x’; in particular,
i(y)eN,andsoy i Y (N)=i"1(N’'); thereforei(y) € N’,andso x = x’+i(y) € N'.o

PROPOSITION 3.4. Every finitely generated module over a noetherian ring is noetherian.

PROOF. As such a module is a quotient of (4 A4)" for some r, it suffice to show that (4A4)"
is noetherian, but this can be proved by induction on r using the exact sequences

i(al,...,ar_l) = (al,...,ar_l,O)

0= (4A) 5 () L 4450
qai,...,ar) =ar. -

PROPOSITION 3.5. Every finitely generated module M over a noetherian ring A contains
a finite chain of submodules M D M, D --- O M1 D 0 such that each quotient M; /M;_ is
isomorphic to A/p; for some prime ideal p;.



3 NOETHERIAN RINGS 9

PROOF. The annihilator ann(x) of an element x of M is {a € A | ax = 0}. It is an ideal in
A, which is proper if x # 0. I claim that any ideal a that is maximal among the annihilators
of nonzero elements of A is prime. Suppose a = ann(x), and let ab € a, so that abx = 0.
Then a C (a) +a C ann(bx). If b ¢ a, then bx # 0, and so a = ann(bx) by maximality,
which implies that a € a.

We now prove the proposition. Note that, for any x € M, the submodule Ax of M is
isomorphic to A/ann(x). Therefore, if M is nonzero, then it contains a submodule M,
isomorphic to A/p; for some prime ideal p;. Similarly, M/M; contains a submodule
M5 /M, isomorphic A/p, for some prime ideal p,, and so on. The chain 0 C M; C M, C
-+ terminates because M is noetherian (by . o

THEOREM 3.6 (HILBERT BASIS THEOREM). Every finitely generated algebra over a noethe-
rian ring is noetherian.

PROOF. Let A be noetherian. Since every finitely generated A-algebra is a quotient of a
polynomial algebra, it suffices to prove the theorem for A[X1,..., X,]. Note that

A[X1,.... Xn] = A[X1, ..., Xn—1][Xn]. 4
This simply says that every polynomial f in n symbols Xi,..., X, can be expressed
uniquely as a polynomial in X,, with coefficients in k[X7q,..., Xn—1],

fX1,oo . Xn) = ao(X1..... Xp—0) X+ ar (X1, Xn—1).

Thus an induction argument shows that it suffices to prove the theorem for A[X].
Recall that for a polynomial

FX)=coX " +c1 X" 144, ci€A, co#0,

co is the leading coefficient of f .

Let a be an ideal in A[X], and let ¢; be the set of elements of A that occur as the leading
coefficient of a polynomial in a of degree i (we also include 0). Then ¢; is an ideal in 4,
and ¢;_; C ¢;, because if cX'~1 4 ... € a, then so also does X(CXi_l 4= cXi4.nn.
As A is noetherian, the sequence of ideals

(1 Cer C--C; T

eventually becomes constant, say, ¢; = ¢z4+1 = ... (and ¢z contains the leading coefficients
of all polynomials in a).

For each i < d, choose a finite generating set {c;1,¢;2,...} for ¢;, and for each (i, j),
choose a polynomial f;; € a of degree i with leading coefficient ¢;;. We shall show that the
Jij’s generate a.

Let f € a; we have to show that f € ( f;;). Suppose first that f has degree s > d. Then
f=cX®+--- withc € ¢g, and so

c= E J.Cledj» somea; € A.

Now

f= Zj ajfa X4
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is either zero and f* € (f;;), or it has degree < deg( /). In the second case, we repeat the
argument, until we obtain a polynomial f* with degree s < d that differs from the original
polynomial by an element of (f;;). By a similar argument, we then construct elements

aj € A such that
f=2_.aifs

is either zero or has degree < deg( /). In the second case, we repeat the argument, until we
obtain zero. o

PROPOSITION 3.7 (NAKAYAMA’S LEMMA). Let a be an ideal in a ring A contained in all
maximal ideals of A, and let M be a finitely generated A-module.

(a) If M =aM,then M = 0.

(b) If N is a submodule of M such that M = N +~aM ,then M = N.

PROOF. (a) Suppose M # 0. Choose a minimal set of generators {eq,...,e,} for M,n > 1,
and write
ey =aiey+---+aney, da;€a.

Then
(1—ay)ey = azez +---+apney
and, as 1 —aq is a unit (see @, ez,...,e, generate M. This contradicts the minimality of
the set.
(b) The hypothesis implies that M/N = a(M/N), and so M/N = 0. o

Now let A be a noetherian local ring with maximal ideal m. When we regard m as an
A-module, the action of 4 on m/m? factors through k ZA /m.

COROLLARY 3.8. The elementsay,...,a, of m generate m as an ideal if and only if a; +
m2,...,a, +m? generate m/m? as a vector space over k. In particular, the minimum
number of generators for the maximal ideal is equal to the dimension of the vector space
m/m?.

PROOF. Ifay,...,a, generate the ideal m, it is obvious that their images generate the vector
space m/m?2. Conversely, suppose that aj; +m?,...,a, +m? generate m/m?, so that m =
(a1,...,an) +m2. As A is noetherian, the ideal m is finitely generated, and so Nakayama’s

lemma, applied with M =m, N = (ay,...,a,), a = m, shows that m = (aq,...,dn). o

DEFINITION 3.9. Let A be a noetherian ring.
(a) The height ht(p) of a prime ideal p in A is the greatest length d of a chain of distinct
prime ideals
pP=PpqsDPi-12D Po. &)

(b) The (Krull) dimension of A is sup{ht(p) | p C A, p prime}.

Thus, the Krull dimension of a ring A is the supremum of the lengths of chains of
prime ideals in A (the length of a chain is the number of gaps, so the length of (5) is d).
For example, a field has Krull dimension 0, and conversely an integral domain of Krull
dimension 0 is a field. The height of every nonzero prime ideal in a principal ideal domain
is 1, and so such a ring has Krull dimension 1 (provided it is not a field). It is convenient to
define the Krull dimension of the zero ring to be —1.
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We shall see in §15] that the height of any prime ideal in a noetherian ring is finite.
However, the Krull dimension of the ring may be infinite, because it may contain a sequence
P1, P2, P3, ... of prime ideals such that ht(p;) tends to infinity (see Krull|1938| or [Nagata
1962 p.203, for examples).

LEMMA 3.10. In a noetherian ring, every set of generators for an ideal contains a finite
generating set.

PROOF. Let a be an ideal in a noetherian ring A, and let S be a set of generators for a.
An ideal maximal in the set of ideals generated by finite subsets of S must contain every
element of S (otherwise it wouldn’t be maximal), and so equals a. o

THEOREM 3.11 (KRULL INTERSECTION THEOREM). Let a be an ideal in a noetherian
ring A. If a is contained in all maximal ideals of A, then (), a" = {0}.

PROOF. We shall show that, for any ideal a in a noetherian ring,

mnzl a" = a-mnzl a”. (6)

When a is contained in all maximal ideals of A4, Nakayama’s lemma shows that (), ; a” is
Zero.
Letay,...,a, generate a. Then a” consists of finite sums

§ : i i
Cipiy@y 2@y, Cijeiy, € A.
i1 Hetip=n

In other words, a” consists of the elements of A of the form g(aq,...,a,) for some ho-
mogeneous polynomial g(Xy,...,X;) € A[X1,...,X;] of degree n. Let S, be the set of
homogeneous polynomials f of degree m such that f(ay,...,a,) € (),>; ", and let ¢ be
the ideal in A[X1y,..., X;] generated by all the S,,. According to the lemma, there exists
a finite set { f1,..., fs} of elements of (J,, S, that generates c. Let d; = deg f;, and let
d =maxd;. Leth €(),~,a";thenb € a®*!, and so b = f(ay,...,a,) for some homoge-
neous polynomial f of degree d + 1. By definition, f € Sy C a, and so

f=g1fi++gfs

for some g; € A[X1,...,Xy]. As f and the f; are homogeneous, we can omit from each g;
all terms not of degree deg f —deg f;, since these terms cancel out. Thus, we may choose
the g; to be homogeneous of degree deg f —deg fi =d +1—d; > 0. Then g;(ay,...,a,) €
a, and so

b= f(ay,...,ay) = Zig,-(al,...,ar)-f,-(al,...,ar) € a‘ﬂnan,
which completes the proof of (6). O
The equality (6)) can also be proved using primary decompositions — see (I3.15).

PROPOSITION 3.12. In a noetherian ring, every ideal contains a power of its radical; in
particular, some power of the nilradical of the ring is zero.

PROOF. Letay,...,a, generate rad(a). For each i, some power of a;, say al.ri, lies in a.
Then every term of the expansion of

(c1a1 +-+++cpan) T e A,

r; . . .
has a factor of the form a;' for some i, and so lies in a. o
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4 Unique factorization

Let A be an integral domain. An element a of A is irreducible if it is not zero, not a unit,
and admits only trivial factorizations, i.e., those in which one of the factors is a unit. If every
nonzero nonunit in A can be written as a finite product of irreducible elements in exactly
one way up to units and the order of the factors, then A is called a unique factorization
domain. In such a ring, an irreducible element a can divide a product b¢ only if it divides b
or ¢ (write bc = aq and express b, ¢, q as products of irreducible elements). Every principal
ideal domain, for example, the polynomial ring k[X] over a field k, is a unique factorization
domain (proved in most algebra courses).

PROPOSITION 4.1. Let (a) be a nonzero proper principal ideal in an integral domain A.
If (a) is a prime ideal, then a is irreducible, and the converse holds when A is a unique
factorization domain.

PROOF. Assume that (a) is prime. Because (a) is neither (0) nor A4, a is neither zero nor
aunit. If @ = bc, then bc € (a), which, because (a) is prime, implies that b or ¢ is in (a),
say b = aq. Now a = bc = aqc, which implies that gc = 1, and that ¢ is a unit.

For the converse, assume that « is irreducible. If bc € (a), then a|bc, which (as we
noted above) implies that a|b or a|c, i.e., that b or ¢ € (a). o

PROPOSITION 4.2 (GAUSS’S LEMMA). Let A be a unique factorization domain with field
of fractions F. If f(X) € A[X] factors into the product of two nonconstant polynomials
in F[X], then it factors into the product of two nonconstant polynomials in A[X].

PROOF. Let f = ghin F[X]. For suitable c,d € A, the polynomials gy =cg and h; = dh
have coefficients in A, and so we have a factorization

cdf = g1hy in A[X].
If an irreducible element p of A divides cd, then, looking modulo (p), we see that
0=g1-hyin (4/(p)[X].

According to Proposition the ideal (p) is prime, and so (A/(p))[X] is an integral
domain. Therefore, p divides all the coefficients of at least one of the polynomials g1,/41,
say g1, so that g1 = pg» for some g, € A[X]. Thus, we have a factorization

(cd/p)f = g2h1 in A[X].

Continuing in this fashion, we can remove all the irreducible factors of c¢d, and so obtain a
factorization of f in A[X]. 0

Let A be a unique factorization domain. A nonzero polynomial
f=ao+aiX +-+amX"

in A[X] is said to be primitive if the coefficients a; have no common factor other than units.
Every polynomial f in A[X] can be written f = c(f)- f1 withc(f) € A and f; primitive.
The element ¢( f'), well-defined up to multiplication by a unit, is called the content of f.
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LEMMA 4.3. The product of two primitive polynomials is primitive.
PROOF. Let

f=ao+a1 X +--+an X"
g=bo+b1 X +--+b, X",

be primitive polynomials, and let p be an irreducible element of A. Let a;, be the first
coefficient of f not divisible by p and b, the first coefficient of g not divisible by p. Then
all the terms in ) ; J=io+jo a;b; are divisible by p, except a;,b j,, which is not divisible
by p. Therefore, p doesn’t divide the (ip + jo)th-coefficient of fg. We have shown that
no irreducible element of A divides all the coefficients of fg, which must therefore be
primitive. o

LEMMA 4.4. For polynomials f,g € A[X], ¢(fg) = c(f)-c(g); hence every factor in
A[X] of a primitive polynomial is primitive.

PROOF. Let f =c(f) f1and g =c(g)g1 with f1 and g; primitive. Then fg =c(f)c(g) f1€1
with f1 g1 primitive, and so ¢(fg) = c¢(f)c(g)- o

PROPOSITION 4.5. If A is a unique factorization domain, then so also is A[X].

PROOF. From the factorization f = c(f) f1, we see that the irreducible elements of A[X]
are to be found among the constant polynomials and the primitive polynomials, but a con-
stant polynomial « is irreducible if and only if a is an irreducible element of A (obvious)
and a primitive polynomial is irreducible if and only if it has no primitive factor of lower
degree (by [4.4). From this it is clear that every nonzero nonunit f in A[X] is a product of
irreducible elements.

Let

f=cemfrfa=di--drgi--gs

be two factorizations of an element f of A[X] into irreducible elements with the ¢;,d;
constants and the f;, g; primitive polynomials. Then

c(f)=ci1-cm =d1---dr (up to units in A),

and, on using that A is a unique factorization domain, we see that m = r and the c;’s differ
from the d;’s only by units and ordering. Hence,

f1+ fn = g1 &s (up to units in A).

Gauss’s lemma shows that the f;,g; are irreducible polynomials in F[X] and, on using
that F[X] is a unique factorization domain, we see that n = s and that the f;’s differ from
the g;’s only by units in F* and by their ordering. Butif f; = £ g, with @ and b nonzero
elements of A, then bf; = ag;. As f; and g; are primitive, this implies thath =a (up to a
unit in A4), and hence that ¢ is a unit in 4. o

Let k be a field. A monomial in X1,..., X, is an expression of the form

ai a .
X{teXgn ajeN.
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The total degree of the monomial is Y_a;. The degree, deg( f'), of a nonzero polynomial
f(X1,...,Xy) is the largest total degree of a monomial occurring in f* with nonzero coef-
ficient. Since

deg(fg) = deg(f) +deg(g),

k[X1,...,Xy] is an integral domain and k[X71,..., X,|* = k™. Therefore, an element f of
k[X1,...,Xn] is irreducible if it is nonconstant and f = gh = g or h is constant.

THEOREM 4.6. The ring k[X1,..., Xy] is a unique factorization domain.

PROOF. This is trivially true when n = 0, and an induction argument using (), p[9] proves
it for all n. o

COROLLARY 4.7. A nonzero proper principal ideal (f) in k[X1,..., X,] is prime if and
only f is irreducible.

PROOF. Special case of (4.1J). u]

S5 Integrality

Let A be a subring of a ring B. An element o of B is said to be integral over A if it is a
root of a moni(ﬂ polynomial with coefficients in A, i.e., if it satisfies an equation

" +a " ' +4a,=0, a;€A.

If every element of B is integral over A, then B is said to be integral over A.
In the next proof, we shall need to apply Cramer’s formula. As usually stated in linear
algebra courses, this says that, if x1,...,X;, is a solution to the system of linear equations

m
Zcijxj- =d;, i=1,....,m,
Jj=1

then
det(C;)
Xi= , where C = (¢;;) and
77 det(C) (cij)
i1+ c1j-1 di Cij41  Cim
Cj: . . . .
Cmi *° Cm,j—1 dm Cm,j+1 ** Cmm

‘When one restates the formula as
det(C)-x; = det(C;)

it becomes true over any ring (whether or not det(C) is a unit). The proof is elementary—
expand out the right hand side of
C11 chjxj .. Cim

detC; = det : :
Cm1 e ZCmej ces Cmm

using standard properties of determinants.

3 A polynomial is monic if its leading coefficient is 1, i.e., f(X) = X"+ terms of degree less than 7.
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PROPOSITION 5.1. Let A be a subring of a ring B. An element « of B is integral over
A if and only if there exists a faithfuﬁ finitely generated A-submodule M of B such that
aM C M.

PROOF. =: Suppose
o"+a " N+ 4a, =0, a;€A.

Then the A-submodule M of B generated by 1, «, ..., @” ! has the property that aM C M,
and it is faithful because it contains 1.

«<: Let M be a nonzero A-module in B such that «M C M, and let eq,...,e, be a
finite set of generators for M. Then, for each i,

oe; =) ajjej,somea;;j € A.
We can rewrite this system of equations as

(x—ajr)e; —aipez —ayzez—- =
—aziei + (Ol—azz)ez —ap3e3 —-r =
=0

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s formula tells us
that det(C)-e; = 0 for all i. As the e; generate M and M is faithful, this implies that
det(C) = 0. On expanding out the determinant, we obtain an equation

an +clan—1+62an—2+...+cn =O’ cl- EA o

PROPOSITION 5.2. An A-algebra B is finite if and only if it is finitely generated and inte-
gral over A.

PROOF. <«: Suppose B = Al«yq,...,0] and that
Otlm +ai10ll’~1i_l +--+ain;, =0, a;;€A, i=1,..m

Any monomial in the «;’s divisible by a?i is equal (in B) to a linear combination of
monomials of lower degree. Therefore, B is generated as an A-module by the monomi-
also' o, 1 <ri <nj.

=: As an A-module, B is faithful (because a - 1 g = a), and so (5.1)) implies that every
element of B is integral over A. As B is finitely generated as an A-module, it is certainly
finitely generated as an A-algebra. O

THEOREM 5.3. Let A be a subring of the ring B. The elements of B integral over A form
a subring of B.

PROOF. Let @ and B be two elements of B integral over A. Then Afx, ] is a faithful
finitely generated A-submodule of B, which is stable under multiplication by o 4= 8 and
af. According to (5.1)), this implies that o« 4= 8 and «f8 are integral over A. o

5An A-module M is faithful if aM =0, a € A, implies a = 0.
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DEFINITION 5.4. Let A be a subring of the ring B. The integral closure of A in B is the
subring of B consisting of the elements integral over A .

PROPOSITION 5.5. Let A be an integral domain with field of fractions F, and let L be a
field containing F. If « € L is algebraic over F, then there exists a d € A such that du is
integral over A.

PROOF. By assumption, « satisfies an equation
o +ad™ ' +-+a, =0, a; €F.

Let d be a common denominator for the a;, so that da; € A for all i, and multiply through
the equation by d™:

d™o™ +a1dma™ Vot ad™ =0.
We can rewrite this as
(do)™ +a1d(doe) 1+ 4+ ayd™ =0.
Asaid,...,and™ € A, this shows that do is integral over A. O

COROLLARY 5.6. Let A be an integral domain and let L be an algebraic extension of the
field of fractions of A. Then L is the field of fractions of the integral closure of A in L.

PROOF. In fact, the proposition shows that every element of L is a quotient 8/d with 8
integral over A and d € A. o

DEFINITION 5.7. An integral domain A is integrally closed if it is equal to its integral
closure in its field of fractions F, i.e., if

o€ F, ointegralover A =— o € A.
PROPOSITION 5.8. Every unique factorization domain is integrally closed.

PROOF. An element of the field of fractions of A not in A can be written a/b witha,b € A
and b divisible by some irreducible element p not dividing a. If a/b is integral over A, then
it satisfies an equation

(a/b)" +ai(a/b)" ' +---4a,=0, a;cA.
On multiplying through by b”, we obtain the equation
a"+a1a" b+ +a,b" =0.

The element p then divides every term on the left except a”, and hence must divide a”.
Since it doesn’t divide a, this is a contradiction. o

PROPOSITION 5.9. Let A be an integrally closed integral domain, and let L be a finite
extension of the field of fractions F of A. An element of L is integral over A if and only if
its minimum po]ynomia[] over F' has coefficients in A.

"Most authors write “minimal polynomial” but the polynomial in question is in fact minimum (smallest
element in the set of monic polynomials having « as a root).
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PROOF. Let o be integral over A, so that
o +ad™ 444, =0, somea; €A, m>0.

Let o be a conjugate of «, i.e., a root of the minimum polynomial f(X) of « over F in
some field containing L. Then there is an F'-isomorphis

o:Fla] = F['], o(x)=d
On applying o to the above equation we obtain the equation
o +ard™ M+ tay, =0,

which shows that o’ is integral over A. Hence all the conjugates of « are integral over
A, and it follows from that the coefficients of f(X) are integral over A. They lie in
F, and A is integrally closed, and so they lie in A. This proves the “only if” part of the
statement, and the “if” part is obvious. O

COROLLARY 5.10. Let A be an integrally closed integral domain with field of fractions F,
and let f(X) be a monic polynomial in A[X]. Then every monic factor of f(X) in F[X]
has coefficients in A.

PROOF. It suffices to prove this for an irreducible monic factor g of f in F[X]. Let @ be a
root of g in some extension field of F'. Then g is the minimum polynomial o, which, being
also aroot of f, is integral. Therefore g has coefficients in A4. O

THEOREM 5.11 (NOETHER NORMALIZATION THEOREM). Every finitely generated alge-
bra A over a field k contains a polynomial algebra R such that A is a finite R-algebra.

In other words, there exist elements yi,...,y, of A such that A4 is a finite k[y1,..., yr]-
algebra and yq,..., y, are algebraically independent over k.

PROOF. We may suppose that
A=k[x1,....,xp] = k[X1,..., Xn]/a.

Let yq,...,y, beelements of k[X1,..., X,] such that k[X1,..., X,] is afinite k[y1,..., yn]-
algebra, and let y; be the image of y; in A. We may suppose that the y; have been
numbered so that yi,...,y, are nonzero but y,4+1 =+ =y, = 0. Then A is a finite
k[y1,...,yr]-algebra (generated by the images of any set of generators for k[X1,..., X,] as
ak[y1,...,yn]-module). We shall show that, if y1,..., y, are not algebraically independent,
then it is possible to replace {y1,..., y,} with a similar set having fewer nonzero images
in A. By repeating the argument, we will eventually arrive at an n-tuple whose nonzero
images in A are algebraically independent.

If yi1,...,y, are algebraically dependent, then there exists a nonconstant polynomial
f(Ty,...,Ty) such that z e f(y1,...,yr) € a. Some T; occurs in f, say 71, and we can
write

f=cT]N 4TV '+ vy, ci€k[Tn.....Ty], c¢#0.

8Recall that the homomorphism X — «: F[X] — F|[a] defines an isomorphism F[X]/(f) — F|[a].
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If ¢ € k, then the equation

ey 1o YN T b en (2 ) =2 =0

shows that y; is integral over k[z, y»,..., ¥r]. Therefore the elements z, y»,..., y, have the
property that k[X1,..., X,] is a finite k[z, y2,..., y,]|-algebra but, because z € a, at most
r —1 < r of them have nonzero image in A.

If ¢ ¢ k, we choose an integer m and make the change of variables

22=J’2—y;n2,---,2r=yr—y{”r.
Then k[y1.22....Zr, Vr 41+, Yn] = k[y1....,yn] and
f(yl,Zery{"z,...,erry{”r)=zea.
When m is chosen sufficiently large,
JOL T+ T T+ TP ) =T + e TV ey, coci kDo Tyl ¢ #0

with ¢ € kﬂ Therefore, the previous argument applies with y1,z2,...,2r, Yr41,... yn for
yl LU yn . O

EXAMPLE 5.12. Let
A=k[X1,....Xal/(f) =k[x1,...,xn]
where f is a nonconstant polynomial. Some X; occurs in f, say X, and we can write
FX1 o X)) =cXN e XNV qeo, ci€k[Xa,.... Xn], c#0.
If ¢ € k, then the equation
0= cx{v +cl(x2,...,xn)xf]_1 4+t col(x2,...,Xn),

in A shows that x; is integral over k[x2,...,x,] and so A is a finite k[x5,..., x,]-algebra.
As X; occurs in every nonzero multiple of f, the elements x3,...,x, are algebraically
independent in A.
2 .

Ifc ¢ k,thenwesetwy = x2 —x1"",..., wy =xn—x’1"n. Thering A =k[x1,wa,..., wy,]

and s
n
S, wa+x . wy + X)) =0.

If m is chosen sufficiently large,
f(Xl,Wz—i-X{"z,..,) =cy XN 4+

with ¢y € k, and so A is finite over k[wz, ..., wy].

ILet ) .
ST 1 Ty =) ey, TN T
If m is chosen so large that the numbers
Jrem?jptetm’

with j1,..., jr running over the r-tuples such that ¢, | ;. # 0, are distinct, say with largest value N, then

2 r _
fTL T+ T T+ Ty =cTN 4o TN+
with ¢ € k \ {0}.
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REMARK 5.13. When £ is infinite, there is a simpler proof of a somewhat stronger result:
let A = k[x1,...,Xn]; then there exist algebraically independent elements fi,..., f; that
are linear combinations of the x; such that A is finite over k[ f1,..., f] (see 8.13 of my
algebraic geometry notes).

6 Rings of fractions

A multiplicative subset of a ring A is a subset S with the property:

1eS, abeS — abels.

In other words, it is a nonempty subset closed under the formation of finite productsm
Let S be a multiplicative subset of 4, and define an equivalence relation on 4 x S by

(a,s) ~ (b,t) <= u(at —bs) =0 forsomeu € S.

Write $ for the equivalence class containing (a,s), and define addition and multiplication
of equivalence classes in the obvious way:

It is easy to show that these do not depend on the choices of representatives for the equiva-
lence classes, and that we obtain in this way a ring

ST'A={%|acA s€eS}

and a ring homomorphism a — $: 4 5, §~1 4 whose kernel is
{a € A|sa =0 forsomes € S}.

If S contains no zero-divisors, for example, if A is an integral domain and 0 ¢ S, then
is:A— S A is injective. At the opposite extreme, if 0 € S, then S™! 4 is the zero ring.

PROPOSITION 6.1. The pair (S~ A,ig) has the following universal property:

is
every element of S maps to a unit in S~' A, and A—=5857'4
any other ring homomorphism «: A — B with this 3
o :
property factors uniquely throughig l\g

PROOF. Let @: A — B be a homomorphism, and let 8:S~14 — B be a homomorphism
such that foig = . Then

=8 = BIBG =B

and so

a -1
B(§) = al@)als)™. (M
10Recall that, in a commutative monoid, products over subsets are defined so as to satisfy

(Maes @) ([Taer @) = ([Taesura) fSNT =0.

In particular, the product over the empty subset is 1.




6 RINGS OF FRACTIONS 20

This shows that there can be at most one 8 such that f oig = o. When o maps the elements
of S to units in B, we define § by the formula (7). Then

b a(u)eB™
=2 = u(at—bs)=0someuecS — a(a)a(t)—ad)a(s)=0,

which shows that § is well-defined, and it is easy to check that it is a homomorphism. g

As usual, this universal property determines the pair (S~! A4, ig) uniquely up to a unique
isomorphismE-]

When A is an integral domain and § = A ~ {0}, the ring S~! 4 is the field of fractions
F of A. In this case, for any other multiplicative subset 7" of A not containing 0, the ring
T~ A can be identified with the subring of F consisting of the fractions ¢ witha € 4 and
teT.

EXAMPLE 6.2. Leth € A. Then Sj, = {1,h,h?,...} is a multiplicative subset of 4, and we
let A, =S 1 A. Thus every element of Ay, can be written in the form a/h™, a € A, and

hLm = hin <= hN(ah® —bh™) =0, some N.

If & is nilpotent, then Ay = 0, and if A4 is an integral domain with field of fractions F and
h #£ 0, then Ay, is the subring of F of elements of the form a/h™,a € A, m € N.

a

PROPOSITION 6.3. For any ring A and h € A, the map > a; X' > Y h—; defines an iso-
morphism
A[X]/(1=hX) — Ay.

PROOF. If & = 0, both rings are zero, and so we may assume / # 0. In the ring A[x] =
A[X]/(1—=hX), 1 =hx, and so & is a unit. Let «: A — B be a homomorphism of rings such
that (/) is a unit in B. The homomorphism Y a; X’ — > a(a;)a(h)™: A[X] — B factors
through A[x] because 1 —hX + 1 —a(h)a(h)~! = 0, and this is the unique extension of «
to A[x]. Therefore A[x] has the same universal property as Ay, and so the two are (uniquely)
isomorphic by an A-algebra isomorphism that makes 4 ~! correspond to x. O

Let S be a multiplicative subset of a ring A, and let S~! A be the corresponding ring of
fractions. For any ideal a in 4, the ideal generated by the image of ain S™! 4 is

S‘la:{%|aea, seS}.

If a contains an element of S, then S~!a contains 1, and so is the whole ring. Thus some of
the ideal structure of A is lost in the passage to S ~1 4, but, as the next lemma shows, some
is retained.

ITRecall the proof: let (A1,i1) and (Az,i») have the universal property in the proposition; because every
element of S maps to a unit in A, there exists a unique homomorphism o: A; — Ap such that ¢ oiy = ip
(universal property of A1,i1); similarly, there exists a unique homomorphism &’: A, — A such that o’ 0ip =
i1; NnOW

’ . ;. . . .
' oaoip =a oip =i =idy, oiy,
and so o/ o = id4, (universal property of Aj,i1); similarly, o oa’ = id4,, and so « and o’ are inverse
isomorphisms (and they are uniquely determined by the conditions o 0i; = i and o’ 0ip = i7).
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PROPOSITION 6.4. Let S be a multiplicative subset of the ring A, and consider extension
a a® = S~ 'a and contraction a +— a° ={a € A | ¢ € a} of ideals with respect to the
homomorphism A — S~ A. Then

a‘® =a  forall ideals of S~' 4
a*“=a if a is a prime ideal of A disjoint from S.

Moreover, the p +— p¢ is a bijection from the set of prime ideals of A disjoint from S onto
the set of all prime ideals of S~1 A; the inverse map is p > p°.

PROOF. Let a be an ideal in S~ A. Certainly a“® C a. For the reverse inclusion, let b € a.
We can write b = & witha € A,s € S. Then ¢ =5(§) €a,andsoa € a®. Thus b = £ € a®®,
and so a C a®®.

Let p be a prime ideal of A disjoint from S. Clearly p¢¢ D p. For the reverse inclusion,
let a € p°¢ so that § = a?/ for some a’ € p, s € S. Then t(as —a’) = 0 for some ¢ € S, and
so ast € p. Because st ¢ p and p is prime, this implies that a € p, and so p¢© C p.

Let p be a prime ideal of A disjoint from S, and let S be the image of S in A/p.
Then (S~1A4)/p¢ ~ S~1(A/p) because S~ A/p¢ has the correct universal property, and
S~1(A/p) is an integral domain because A/p is an integral domain and S doesn’t contain
0. Therefore p¢ is prime. From §2| we know that p€ is prime if p is, and so p — p® and
p — p€ are inverse bijections on the two sets. 0

COROLLARY 6.5. If A is noetherian, then so also is S~ A for any multiplicative set S.
PROOF. As b€ is finitely generated, so also is (b€)¢ = b. o

EXAMPLE 6.6. Let p be a prime ideal in A. Then S, = A \ p is a multiplicative subset of
A, and we let Ay = Sp_ 1 4. Thus each element of Ay can be written in the form %, cép,

and
a b

¢ =g < s(ad —bc) =0, somes ¢ p.
It follows from (6.4b) that A, is a local ring with maximal ideal m = {% |a € p, s £ p}.

PROPOSITION 6.7. Let m be a maximal ideal of a noetherian ring A, and let n = mA,, be
the maximal ideal of Ay,. For all n, the map

a+m">a+n"A/m" —> Ay /"
is an isomorphism. Moreover, it induces isomorphisms
mr /mn N nr /nn
for all pairs (r,n) withr <n.

PRrROOF. The second statement follows from the first, because of the exact commutative
diagram (r < n):

0 — m'/m" —— A/m" —— A/m’ — 0

L b

0 —— /0" —— Ap/n" —— A, /0" —— 0.
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We consider extension and contraction with respect to @ > §:4 — Ay. In order to
show that the map A/m"” — A, /n” is injective, we have to show that (m”)¢¢ = m”". If
a € (m")¢¢, then ¢ = ls—’ with b € m” and s € S. Then s’sa € m” for some s’ € S, and so
s’sa = 01in A/m". The only maximal ideal containing m” is m, and so the only maximal
ideal in A/m” is m/m”. As s’s is not in m/m”, it must be a unit in A/m”, and so a = 0 in
A/m" ie., a € m". We have shown that (m”)¢ C m, and the reverse inclusion is always
true.

We now prove that A/m” — Ay /n” is surjective. Let £ € Ay, a € A, s € A~ m. The
only maximal ideal of A containing m” is m, and so no maximal ideal contains both s
and m”; it follows that (s) + m” = A. Therefore, there exist b € A and g € m” such that
sb+q = 1. Because s is invertible in Ay, /0", % is the unique element of this ring such that
5% =a. As s(ba) = a(1 —q), the image of ba in Ay, also has this property and therefore
equals . o

PROPOSITION 6.8. In a noetherian ring, only O lies in all powers of all maximal ideals.

PROOF. Let a be an element of a noetherian ring A. If a £ 0, then {b | ba = 0} is a proper
ideal, and so it is contained in some maximal ideal m. Then % i1s nonzero in A, and so
¢ ¢ (mAy)" for some n (by the Krull intersection theorem 3.11)), which implies that a ¢ m”

(by [6.7). o

MODULES OF FRACTIONS

Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an
equivalence relation on M x S by

(m,s) ~(n,t) <= u(mt—ns) =0 forsome u € S.

Write 7 for the equivalence class containing (1, s), and define addition and multiplication
of equivalence classes by the formulas:
m—i—%zw, et =42 mmneM, steS, acA.

s St st

It is easy to show that these definitions do not depend on the choices of representatives for
the equivalence classes, and that we obtain in this way an S ~1 A-module

sTM={"\meM,seS)
N

and a homomorphism m — 5: M L5, =M of A-modules whose kernel is
{a € M | sa =0 forsome s € S}.

PROPOSITION 6.9. The pair (S™! M, ig) has the following universal property:

every element of S acts invertibly on S~ M, M5 sl
and any other homomorphism a: M — N of A-

modules such that the elements of S act invertibly X va!
on N factors uniquely throughig N.

PROOF. Similar to that of Proposition [6.1] O
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EXAMPLE 6.10. Let M be an A-module. For h € A, let M) = Sh_lM where S =
{1,h,h?,...}. Then every element of M} can be written m/h", m € M, r € N, and
m/h" =m’/h"" if and only if AN (h"'m —h"m’) = 0 for some N € N.

PROPOSITION 6.11. The functor M ~+ S~ M is exact.
In other words, if the sequence of A-modules
M - M- M
is exact, then so also is the sequence of S~! A-modules
STIM' - ST'M - Ss7'M”.

The proof is an easy exercise, which we leave to the reader.

7 Direct limits

DEFINITION 7.1. A partial ordering < on a set / is said to be directed, and the pair (I, <)
is called a directed set, if for all i, j € I there existsak € [ such thati,j <k.

DEFINITION 7.2. Let (I, <) be a directed set, and let A be a ring.

(a) Andirect system of A-modules indexed by (1, <) is a family (M;);es of A-modules
together with a family (oz; :M; — M;);<; of A-linear maps such that ocf =idp; and
a,jcoa; :ot;c alli <j <k.

(b) An A-module M together with a family (a': M; — M);ej of A-linear maps satisfy-
ing ol = o/ ooc; alli < j is said to be a direct limit of the system in (a) if it has the
following universal property: for any other A-module N and family (8': M; — N)
of A-linear maps such that B/ = 8/ o a; all i < j, there exists a unique morphism
a:M — N such that v o’ = B’ fori.

As usual, the universal property determines the direct limit (if it exists) uniquely up to a
unique isomorphism. We denote it l‘i)n(Ml- , aij ), or just li_n)lM,-.

CRITERION

An A-module M together with A-linear maps o' M; — M is the direct limit of a system
(M; o) if and only if

@ M =J;es o' (M;), and

(b) m; € M; maps to zero in M if and only if it maps to zero in M ; for some j >1i.

CONSTRUCTION

Let
M= M/M
iel

where M’ is the A-submodule generated by the elements

mi—aé-(mi) alli < j,m; € M;.
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Let o (m;) = m; + M’. Then certainly o/ = o/ ooe§. for all i < j. For any A-module N
and A-linear maps B/: M 7 — N, there is a unique map

Pui—nN.

iel

namely, Y m; > _ B’ (m;), sending m; to B’ (m;), and this map factors through M and is
the unique A-linear map with the required properties.
Direct limits of A-algebras, etc., are defined similarly.

AN EXAMPLE

PROPOSITION 7.3. For any multiplicative subset S of aring A, S™1A ~ llmAh, where h
runs over the elements of S (partially ordered by division).

PROOF. When h|h’, say, h' = hg, there is a unique homomorphism A — Ay respecting
the maps A — Ay and A — Ay, namely, % h’ , and so the rings Ay, form a direct system
indexed by the set S. When h e S, the homomorphlsm A — S~! A extends uniquely to a
homomorphism £ A Ah - S714 (see , and these homomorphisms are compatible
with the maps in the dlrect system. Now apply the criterion pﬂ to see that S~14 is the
direct limit of the Ay,. |

8 Tensor Products

TENSOR PRODUCTS OF MODULES

Let A be aring, and let M, N, and P be A-modules. A map ¢: M x N — P of A-modules
is said to be A-bilinear if

p(x+x",y) =¢(x,y)+o(x".y), x,x'eM, yeN

P(x,y+)) = (x.y) +¢(x.)"), xeM, y.y'eN
Plax,y) =ap(x,y), a€A, xeM, yeN
¢(x,ay) =ag(x,y), acA, xeM, yeN,

i.e., if ¢ is A-linear in each variable.
An A-module 7' together with an A-bilinear map ¢: M X
N — T is called the tensor product of M and N over A if @

it has the following universal property: every A-bilinear map MxN T
¢':M x N — T’ factors uniquely through ¢. k\ “3! linear
v

As usual, the universal property determines the tensor prod-
uct uniquely up to a unique isomorphism. We write it M @ 4 N.
Note that

T
HomA—bilinear(M x N, T) = HomA-linear(M ®4 N, T)-

Construction

Let M and N be A-modules, and let AMXN) pe the free A-module with basis M x N.
Thus each element A *N) can be expressed uniquely as a finite sum

D ai(xi.yi). ai€A xieM, yeN.
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Let P be the submodule of AM*N) generated by the following elements

x+x"y)—(x,y)—&',y), x,x’eM, yeN

(x’y+y/)_(x’y)_(x’y,)’ XGM, yvy/EN
ax,y)—a(x,y), a€A, xeM, eN
(ax,y)—a(x,y) y
x,ay)—a(x,y), a€A, xeM, e N,
(x,ay)—a(x,y) y

and define
M®@qN=AMN/p

Write x ® y for the class of (x,y)in M ® 4 N. Then
X, V) xQYyMXN—>MQuN

is A-bilinear — we have imposed the fewest relations necessary to ensure this. Every
element of M ® 4 N can be written as a finite sum

Y ai(xi®yi), ai€A xieM, yeN,
and all relations among these symbols are generated by the following relations

(x+xN®y=x®y+x'®y
xR +Y)=x®@y+x®)y
ax®y)=(ax)®y =xQay.

The pair (M ® 4 N, (x,y) — x ® y) has the correct universal property because any bilin-
ear map ¢': M x N — T’ defines an A-linear map AM>N) _ T’ which factors through
AMXN) /K and gives a commutative triangle.

Extension of scalars

Let A be a commutative ring and let B be an A-algebra (not necessarily commutative) such
that the image of A — B lies in the centre of B. Then M ~~ B ® 4 M is a functor from left
A-modules to left B-modules, which has the following universal property:

Hom 4_jinear(M, N) ~ Homp_jinear(B ® 4 M,N), N a B-module. (8

If (eq)oer is a family of generators (resp. basis) for M as an A-module, then (1 ® ey)ger
is a family of generators (resp. basis) for B ® 4 M as a B-module.
Behaviour with respect to direct limits
PROPOSITION 8.1. Direct limits commute with tensor products:
h_I)an'®Ah_r)an2 li)n M,'®ANJ'.
iel jeJ (i,j)elxJ

PROOF. Using the universal properties of direct limits and tensor products, one sees eas-
ily that l_iI_>1’l(Ml' ®4 N;) has the universal property to be the tensor product of liIE)lMi and
1iI_)IlN j- O
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TENSOR PRODUCTS OF ALGEBRAS

Let k be a ring, and let A and B be k-algebras. A k-algebra C together with homomor-
phisms i:A — C and j: B — C is called the tensor product of A and B if it has the
following universal property:

for every pair of homomorphisms (of k-algebras) At C - B
a:A — R and B: B — R, there exists a unique
homomorphism y:C — R such that y oi = « and o H!VV;/'B
vej =5 R

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this
property. We write it A ®; B. Note that the universal property says that

Homk—algebra(A ®k B, R) ~ Homk—algebra(Av R) x Homk—algebra(Bv R). )

Construction

Regard A and B as k-modules, and form the tensor product A ®; B. There is a multiplica-
tion map A @ B x A Q) B — A ®y B for which

(a®b)(d' ®b")=aad’ @bb', alla,a’ €A, b,b' €B.
This makes A ®; B into a ring, and the homomorphism
cHc(le)=c1l=1®c
makes it into a k-algebra. The maps
a—~>a®1:A—> AQrBandb—> 1Qb:B —> AR, B

are homomorphisms, and they make A ® B into the tensor product of A and B in the above
sense.

EXAMPLE 8.2. The algebra A, together with the given map k — A and the identity map
A — A, has the universal property characterizing k ®; A. In terms of the constructive
definition of tensor products, the map ¢ ® A — cA:k ®; A — A is an isomorphism.

EXAMPLE 8.3. The ring k[X1,..., Xm, Xm+1,-..» Xm+n], together with the obvious in-
clusions

k[Xlw--,Xm] — k[le--me—i-n] <~ k[Xm-H’---’Xm-i-n]

is the tensor product of k[ X1, ..., Xm] and k[ Xy +1, ..., Xm+n]. To verify this we only have
to check that, for every k-algebra R, the map

Homy g (k[X1,. ... Xm4n], R) = Homy_yq(k[X1,...], R) x Homy_yq (kK [Xm+1,...]. R)
induced by the inclusions is a bijection. But this map can be identified with the bijection
R™TM 5 R™M x R".
In terms of the constructive definition of tensor products, the map
k[Xl,...,Xm] ®kk[Xm+1,...,Xm+n] —> k[Xl,...,Xm+n]

sending f ® g to fg is an isomorphism.
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REMARK 8.4. (a) Let k < k’ be a homomorphism of rings. Then
K ®rk[X1,....Xn) 2K [1® X1,...,1® X,] =2 k'[X1,..., Xn].
If A=k[X1,...,Xn]/(g1,--.,8m), then
K @k A~k [X1,...,Xnl/ (g1, &m).

(b) If A and B are algebras of k-valued functions on sets S and T respectively, then
definition

(f®g)x,y)=f(x)g(y), feAgeB,xeS, yeT,

realizes A ®j B as an algebra of k-valued functions on S x T'.

THE TENSOR ALGEBRA OF A MODULE

Let M be a module over a ring A. For each A > 0, set
T"™M =M@y QuM (r factors),

sothat T°M = A and T'M = M, and define

™ = @TZO T M.

This can be made into a noncommutative A-algebra, called the tensor algebra of M, by
requiring that the multiplication map

T"MxTSM —T" M

send (M1 @ - @My, Mp41 Q- @Mypys) tOM] Q-+ @ My 5.
The pair (TM, M — T M) has the following universal prop-
erty: any A-linear map from M to an A-algebra R (not nec- M ——=TM

essarily commutative) extends uniquely to an A-algebra homo- \ 3 Aalgebra
morphism TM — R. A-linear v

If M is a free A-module with basis x1,...,x,, then TM is R
the (noncommutative) polynomial ring over A in the noncom-
muting symbols x; (because this A-algebra has the same universal property as TM ).

THE SYMMETRIC ALGEBRA OF A MODULE

The symmetric algebra Sym(M) of an A-module M is the quotient of TM by the ideal
generated by all elements of 72 M of the form

m®n—nm@m, m,necM.

It is a graded algebra Sym(M) = P, o Sym’ (M) with Sym” (M) equal to the quotient of
M ®" by the A-submodule generated by all elements of the form

Mm@ Q@my—mg1) R @Mg(r), m; €M, o € B, (symmetric group).
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The pair (Sym(M), M — Sym(M)) has the following M —— Sym(M)
universal property: any A-linear map M — R from :
M to a commutative A-algebra R extends uniquely to A-linear v
an A-algebra homomorphism Sym(M) — R (because R
it extends to an A-algebra homomorphism TM — R,
which factors through Sym(M ) because R is commutative).

If M is a free A-module with basis x1, ..., Xy, then Sym(M ) is the polynomial ring over
A in the (commuting) symbols x; (because this A-algebra has the same universal property
as TM).

3! A-algebra

9 Flatness
Let M be an A-module. If the sequence of A-modules
0N —-N—->N"-0 (10)
is exact, then the sequence
MUN - MRIUN >M4N" =0

is exact, but M ® 4 N’ — M ® 4 N need not be injective. For example, when we tensor the
exact sequence of Z-modules

0757 —7/mZ—0

with Z/mZ, we get the sequence

2)mZ. 2% 7/ m7 — 7/mZ 0.
Moreover, M ® 4 N may be zero even when neither M nor N is nonzero. For example,
7)27.Q77/3Z =0
because it is killed by both 2 and 3FZI
DEFINITION 9.1. An A-module M is flat if
N’ — N injective = M ®4 N — M ®4 N injective.
It is faithfully flat if, in addition,
M@qN=0=— N=0.

A homomorphism of rings A — B is said to be (faithfully) flat when B is (faithfully) flat
as an A-module.

121t was once customary to require a ring to have an identity element 1 % 0 (see, for example, [Northcott|1953|
p-3). However, the example shows that tensor products do not always exist in the category of such objects, .
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Thus, an A-module M is flat if and only if M ® 4 — is an exact functor, i.e.,
0O>MUN > MUN >MQUuN"—0 (11D

is exact whenever is exact.

The functor M ® — takes direct sums to direct sums, and therefore split-exact sequences
to split-exact sequences. Therefore, all vector spaces over a field are flat, and nonzero vector
spaces are faithfully flat.

PROPOSITION 9.2. Leti: A — B be a homomorphism of rings. Ifi is faithfully flat, then
a sequence of A-modules
0N —->N->N'=>0 (12)

is exact if and only if
0—>B®sN —-B®4N—>B®4N"—0 (13)

is exact. Conversely, if

(I2) exact <= (13) exact,
theni: A — B is faithfully flat.

PROOF. For the first statement, we have to show that (12) is exact if (13)) is exact. Let
Ny be the kernel of N’ — N. Then, because A — B is flat, B ® 4 Ng is the kernel of
B®4 N’ — B®y4 N, which is zero by assumption. Because A — B is faithfully flat, this
implies that Ny = 0. This proves the exactness at N’, and the proof of exactness elsewhere
is similar.

For the converse statement, the condition implies that i is flat (this is the definition).
Now let N be an A-module, and consider the sequence

0—-0—->N—->0—0.

If B®4 N =0, then this sequence becomes exact when tensored with B, and so is itself
exact, which implies that N = 0. This shows that i is faithfully flat. o

PROPOSITION 9.3. Leti:A — B be a tfaithfully flat homomorphism. For any A-module
M, the sequence

d d
0>M-"5BOsM—>BRuBOsM (*)
do(m) = 1Q@m,
dib®m) = 1bdm—->bR1Q@m

1S exact.

PROOF. Assume first that there exists an A-linear section to A — B, i.e., an A-linear map
f:B — Asuchthat f oi =id4, and define

ko:B®aM — M, ko(b®m) = f(b)m
ki:BR4BRuM — B4 M, ki(b@b' @m) = f(b)b'@m.

Then kody = idps, which shows that dj is injective. Moreover,

kiody+dooko =idpg ,m
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which shows that, if d; (x) = 0, then x = dy(ko(x)), as required.

We now consider the general case. Because A — B is faithfully flat, it suffices to prove
that the sequence (*) becomes exact after tensoring in B. But the sequence obtained from
(*) by tensoring with B is isomorphic to the sequence (*) for the homomorphism of rings
B—1® B:B — B®4 B and the B-module B ® 4 M, because, for example,

BR4(BRaM)~(BR®4B)R®p(BR4M).

Now B — B ® 4 B has an B-linear section, namely, /(B ® B’) = BB’, and so we can
apply the first part. O

COROLLARY 9.4. If A — B is faithfully flat, then it is injective with image the set of
elements on which the maps

b — 1®b .
b > bol :B—>BR®yB
agree.
PROOF. This is the special case M = A of the Proposition. O

PROPOSITION 9.5. Let A — A’ be a homomorphism of rings. If A — B is flat (or faithfully
flat), then so alsois A’ — B®4 A’

PROOF. For any A’-module M,
(BR4A)@4M=BRA(A @4 M)~BR4M,
from which the statement follows. O
PROPOSITION 9.6. For any multiplicative subset S of a ring A and A-module M,
ST'A®4M ~ S~ M.
Therefore the homomorphism a > §: A — S 14 js flat.

PROOF. To give an S~! A-module is the same as giving an A-module on which the elements
of S act invertibly. Therefore S™!4® 4 M and S~! M satisfy the same universal property
(see especially ), which proves the first statement. As M ~» S~™1M is exact (6.11)),
soalsois M ~ S714A® 4 M, which proves the second statement. o

PROPOSITION 9.7. The following conditions on a flat homomorphism ¢: A — B are equiv-
alent:

(a) o is faithtully flat;

(b) for every maximal ideal m of A, the ideal p(m)B # B;

(c) every maximal ideal m of A is of the form ¢! (n) for some maximal ideal n of B.

PROOF. (a) = (b): Let m be a maximal ideal of A4, and let M = A/m; then
B®q4 M >~ B/p(m)B.

As B4 M # 0, we see that o(m)B # B.
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(b) = (c): If p(m)B # B, then ¢(m) is contained in a maximal ideal n of B. Now
¢~ !(n) is a proper ideal in A containing m, and hence equals m.

(¢) = (a): Let M be a nonzero A-module. Let x be a nonzero element of M, and
let a={a € A|ax =0}. Then a is an ideal in 4, and M’ = Ax ~ A/a. Moreover,
B®4 M’ ~ B/p(a)-B and, because A — B is flat, B® 4 M’ is a submodule of B ® 4 M.
Because a is proper, it is contained in a maximal ideal m of A, and therefore

@(a) Cp(m)Cn

for some maximal ideal n of A. Hence ¢(a)-B Cn## B,andso BRaM D B4 M’ #0.o

THEOREM 9.8 (GENERIC FLATNESS). Let A an integral domain with field of fractions F,
and let B be a finitely generated A-algebra such that B C F ® 4 B. Then for some nonzero
elements a of A and b of B, the homomorphism A, — By, is faithfully flat.

PROOF. As F ® 4 B is a finitely generated F'-algebra, the Noether normalization theorem
(5.11)) shows that there exist elements x1,...,X, of F ®4 B such that F[xy,...,xn]is a
polynomial ring over F and F ® 4 B is a finite F[x1,...,X;]-algebra. After multiplying

each x; by an element of A, we may suppose that it lies in B. Let by,...,b, generate
B as an A-algebra. Each b; satisfies a monic polynomial equation with coefficients in
F[x1,...,xm]. Leta € A be acommon denominator for the coefficients of these polynomi-

als. Then each b; is integral over A,. As the b; generate B, as an A,-algebra, this shows
that B, is a finite Ag[x1,...,Xx;,]-algebra (by [5.2). Therefore, after replacing A with A,
and B with B,, we may suppose that B is a finite A[xy,...,X;]-algebra.

injective

—5  F®4B —— EQu,

.....

finite Tﬁnite Tﬁnite

def

B
Alx1,..0,xm] —— Flx1,...,xm] —— E = F(x1,...,Xn)
A

I

—_— F

Let E = F(x1,...,xm) be the field of fractions of A[x1,...,X,], and let by,...,b, be
elements of B that form a basis for £ ® 4, .....x,,] B as an E-vector space. Each element
of B can be expressed a linear combination of the b; with coefficients in E. Let g be
a common denominator for the coefficients arising from a set of generators for B as an
A[x1,...,xXp]-module. Then by,...,b, generate B, as an A[xy,...,X;u]q-module. In other
words, the map

(c1,...,cr)HZcibi:A[xl,...,xm];—>Bq (14)

is surjective. This map becomes an isomorphism when tensored with E over A[x1,...,Xm]q,
which implies that each element of its kernel is killed by a nonzero element of A[x1,...,Xm]q
and so is zero (because A[X1,...,Xx,]q is an integral domain). Hence the map is an
isomorphism, and By is free of finite rank over A[x1,...,Xx]q. Let a be some nonzero
coefficient of the polynomial g, and consider the maps

Aa _)Aa[.xl,...,Xm] _)Aa[.xl,...,Xm]q ad Baq.

The first and third arrows realize their targets as nonzero free modules over their sources,
and so are faithfully flat. The middle arrow is flat by (9.6). Let m be a maximal ideal in A,.
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Then mAg[x1,...,Xm] does not contain the polynomial g because the coefficient a of ¢ is
invertible in A,. Hence mAg,[x1,...,X]q is a proper ideal of A4[x1,...,Xm]q, and so the
map Ag — Aalx1,...,Xmlq is faithfully flat (apply . This completes the proof. O

REMARK 9.9. The theorem holds for any finitely generated B-algebra, i.e., without the
requirement that B C F' ® 4 B. To see this, note that F ® 4 B is the ring of fractions of B
with respect to the multiplicative subset A\ {0} (see[9.6)), and so the kernel of B — F ® 4 B
is the ideal

n=1{b € B |ab = 0 for some nonzero a € A}.

This is finitely generated (Hilbert basis theorem [3.6), and so there exists a nonzero ¢ € A
such that cb = 0 for all b € n. I claim that the homomorphism B, — F ® 4. B is injective.
If c% lies in its kernel, then C“—Sc% = 0 in B, for some nonzero c"—s € Ac, and so cNab =0
in B for some N ; therefore b € n, and so cb = 0, which implies that c% = 0 already in B..
Therefore, after replacing A, B, and M with A., B., and M., we may suppose that the
map B — F ® 4 B is injective. On identifying B with its image, we arrive at the situation

of the theorem.

10 The Hilbert Nullstellensatz

THEOREM 10.1 (ZARISKI’S LEMMA). Let k C K be fields. If K is finitely generated
as a k-algebra, then it is algebraic over k (hence K is finite over k, and equals it if k is
algebraically closed).

PROOF. We shall prove this by induction on r, the smallest number of elements required to
generate K as a k-algebra. The case r = 0 being trivial, we may suppose that

K =k[xy,...,x;] withr > 1.

If K is not algebraic over k, then at least one x;, say x1, is not algebraic over k. Then, k[x1]
is a polynomial ring in one symbol over k, and its field of fractions k(x1) is a subfield of K.
Clearly K is generated as a k(x1)-algebra by x»,...,x;, and so the induction hypothesis
implies that x5,...,x, are algebraic over k(x1). Proposition shows that there exists
a ¢ € k[x1] such that cxs,...,cx;, are integral over k[x1]. Let f € K. For a sufficiently
large N, ¢V f € k[x1,cx2,...,cx,], and so ¢ f is integral over k[x1] by When we
apply this statement to an element f of k(x1), it shows that ¢V f € k[x1] because k[x1]
is integrally closed. Therefore, k(x1) =y ¢ Nk[x1], but this is absurd, because k[x;]
(=~ k[X]) has infinitely many distinct monic irreducible polynomial that can occur as
denominators of elements of k(x1). o

THEOREM 10.2 (NULLSTELLENSATZ). Every proper ideal a in k[X1,..., X,] has a zero
in (k)" £ k¥l x-.-x k¥, j.e., there exists apoint(ay,...,a,) € (k™) suchthat f(ay,....an) =
0 forall f €a.

PROOF. We have to show that there exists a k-algebra homomorphism k[X1,..., X,] — k¥
containing a in its kernel. Let m be a maximal ideal containing a. Then k[X7q,..., Xy]/m

13When k is infinite, there are infinitely many polynomials X —a, and when  is finite, we can adapt Euclid’s
argument: if pq,..., pr are monic irreducible polynomials in k[X], then pj--- p, + 1 is divisible by a monic
irreducible polynomial distinct from pyq,..., Pr-
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is a field, which is algebraic over k by Zariski’s lemma, and so there exists a k-algebra
homomorphism k[X7,..., X,]/m — k%. The composite of this with the quotient map
k[X1,...,Xn] — k[X1,..., Xn]/m contains a in its kernel. o

COROLLARY 10.3. When k is algebraically closed, the maximal ideals in k[X1q,..., Xz]
are exactly the ideals (X1 —az,..., Xy —an), (ai,...,an) € k™.

PROOF. Clearly, k[X1,...,Xn]/(X1—ay,...,Xn—ay) ~k,andso (X1 —ay,...,Xn—an)
is maximal. Conversely, because k is algebraically closed, a proper ideal a has a zero
(ai,...,ap) in k™. Let f € k[X1,...,Xy]; when we write f as a polynomial in X —
ai,...,Xn —ay, its constant term is f(ay,...,a,). Therefore, if f € a, then f € (X; —
ai,...,X —ap). o

THEOREM 10.4 (STRONG NULLSTELLENSATZ). Foranidealaink[Xq,...,X,], let Z(a)
be the set of zeros of a in (k¥)". If a polynomial h € k[X1,...,Xy] is zero on Z(a), then
some power of h lies in a.

PROOF. We may assume & # 0. Let g1,...,8, generate a, and consider the system of

m + 1 equations in n + 1 variables, X1,..., X, 7Y,
gi(Xla---,Xn) = 0, i=1,...,m
1-Yh(Xy,....Xn) = 0.

If (a1,...,an,b) satisfies the first m equations, then (ay,...,a,) € Z(a); consequently,
h(ay,...,an) =0, and (ay,...,an,b) doesn’t satisfy the last equation. Therefore, the
equations are inconsistent, and so, according to the Nullstellensatz (10.2)), there exist f; €
k[X1,...,Xn,Y] such that

m
1= figi+ fms1-(1=Yh)
i=1
ink[X1,...,Xn,Y]. On applying the homomorphism

{ Xio Xi Xy X Y] > k(X1.. ... Xy)

Y h!

to the above equality, we obtain the identity

1= filXi. Xnh™) gi(X1..... Xn) (15)

ink(Xy,...,Xy). Clearly

polynomial in Xq,..., X,
hNi

fi(X1,.... X, h ™Y =

for some N;. Let N be the largest of the &;. On multiplying by 4V we obtain an
identity
WV = Z_(polynomial in X1,...,X,)-gi(X1,....X3),
1

which shows that &V € a. o
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PROPOSITION 10.5. The radical of an ideal a in a finitely generated k-algebra A is equal
to the intersection of the maximal ideals containing it: rad(a) = (.,~,m. In particular, if
A is reduced, then [

mDa

m maximal ™ = 0.

PROOF. Because of the correspondence (2), p[3] it suffices to prove this for A = k[X1,..., X,].
Let a be an ideal in k[ X1, ..., X,]. Because rad(a) is the smallest radical ideal contain-

ing a and maximal ideals are radical rad(a) C ()5, m. Conversely, suppose / is contained

in all maximal ideals containing a, and let (a1,...,a,) € Z(a). The evaluation map

e flar,....an):k[X1,....Xn] > kY

has image a subring of k2 which is algebraic over k, and hence is a field (see . Therefore,
the kernel of the map is a maximal ideal, which contains a, and therefore also contains /4.
This shows that A(ay,...,a,) = 0, and we conclude from the strong Nullstellensatz that
h € rad(a). o

11 The max spectrum of a ring

Let A be aring, and let V' be the set of maximal ideals in A. For an ideal a in A, let
Vie)={meV | |mDa}.

PROPOSITION 11.1. There are the following relations:
(a) aCb = V(a) D V(b);
®) V() =V; V(4)=0;
(c) V(ab) =V(anb)=V(a)UV(b);
d) VQQ_jerai) =()jes V(a;) for any family of ideals (a;);e; -

PROOF. The first two statements are obvious. For (c), note that
abCanbCab = V(ab) D V(anb) D V(a)UV(b).

For the reverse inclusions, observe that if m ¢ V(a) U V(b), then there exist an f € a~m
and a g € b~ m; but then fg € ab~ m, and so m ¢ V(ab). For (d) recall that, by definition,
> " a; consists of all finite sums of the form ) f;, fi € a;. Thus (d) is obvious. o

Statements (b), (c), and (d) show that the sets V' (a) satisfy the axioms to be the closed
subsets for a topology on V': both the whole space and the empty set are closed; a finite
union of closed sets is closed; an arbitrary intersection of closed sets is closed. This topol-
ogy is called the Zariski topology on V. We let spm(A) denote the set of maximal ideals in
A endowed with its Zariski topology.

For h € A, let

Dh)y={meV |h¢mj.

Then D(h) is open in V, being the complement of V((k)). If S is a set of generators for an
ideal a, then

vV~ V(a) = Uhes D(h),

and so the sets D (/) form a base for the topology on V. Note that, because maximal ideals
are prime,
D(hy---hy) = D(hy)N---0 D(hy).
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For any element / of A, spm(Ay,) >~ D(h) (see[6.4), and for any ideal a in A, spm(A4)/a =~
V(a) (isomorphisms of topological spaces).

The ideals in a finite product of rings A = A1 x--- x A, are all of the form a; x--- X ay
with a; an ideal in A; (cf. p[6). The prime (resp. maximal) ideals are those of the form

Ay XX Aj—p xa; X Aj41 X+ X Ay

with a; prime (resp. maximal). It follows that spm(A) = | |; spm(4;) (disjoint union of
open subsets).

THE MAX SPECTRUM OF A FINITELY GENERATED k-ALGEBRA

Let k be a field, and let A be a finitely generated k-algebra. For any maximal ideal m of
A, the field k(m) £ A /m is a finitely generated k-algebra, and so k(m) is finite over k
(Zariski’s lemma, [10.1). In particular, it equals k(m) = k when k is algebraically closed.
Now fix an algebraic closure k. The image of any k-algebra homomorphism A — k%
is a subring of k¥ which is an integral domain algebraic over k and therefore a field (see
§I). Hence the kernel of the homomorphism is a maximal ideal in A. In this way, we get a
surjective map
Homy_,(A. k™) — spm(A). (16)

Two homomorphisms A — k2 with the same kernel m factor as
A — k(m) — k¥,

and so differ by an automorphisnﬂ of k. Therefore, the fibres of are exactly the
orbits of Gal(k®/k). When k is perfect, each extension k(m)/k is separable, and so each
orbit has [k(m): k] elements, and when k is algebraically closed, the map is a bijection.

Set A=k[Xq,...,X,]/a. Then to give a homomorphism 4 — k? is the same as giving
an n-tuple (ay,...,a,) of elements of k! (the images of the X;) such that f(ay,...,a,) =0
forall f € a,i.e., an element of the zero-set Z(a) of a. The homomorphism corresponding
to (a1,...,an) maps k(m) isomorphically onto the subfield of k¥ generated by the a;’s.
Therefore, we have a canonical surjection

Z(a) — spm(A) (17)

whose fibres are the orbits of Gal(k®/k). When the field k is perfect, each orbit has
[k[a1,...,an] : k]-elements, and when k is algebraically closed, Z(a) 2~ spm(A).

ASIDE 11.2. Letk =R or C. Let X be a set and let A be a k-algebra of k-valued functions on X .
In analysis, X is called the spectrum of A if, for each k-algebra homomorphism ¢: A — k, there
exists a unique x € X such that ¢(f) = f(x) forall f € A, and every x arises from a ¢ (cf. |Cartier
2007, 3.3.1, footnote).

Let A be a finitely generated algebra over an arbitrary algebraically closed field k, and let
X = spm(A). An element f of A defines a k-valued function

me f modm

on X. When 4 is reduced, Proposition[T0.5|shows that this realizes A as a ring of k-valued functions
on X. Moreover, because is an isomorphism in this case, for each k-algebra homomorphism
¢@: A — k, there exists a unique x € X such that ¢(f) = f(x) for all f € A. In particular, when
k = C and A is reduced, spm(A) is the spectrum of A in the sense of analysis.

41et f and g be two k-homomorphisms from a finite field extension k’ of k into k¥, We consider the
set of pairs (K,«) in which « is a k-homomorphism from a subfield K of k2! containing f(k’) into k2! such
that @ o f = g. The set is nonempty, and Zorn’s lemma can be applied to show that it has a maximal element
(K’,a). For such an element K’ will be algebraically closed, and hence equal to k%',
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JACOBSON RINGS

DEFINITION 11.3. A ring A is Jacobson if every prime ideal in A is an intersection of
maximal ideals.

A field is Jacobson. The ring Z is Jacobson because every nonzero prime ideal is max-
imal and (0) =) p=2,3,5,..(P)- A principal ideal domain (more generally, a Dedekind
domain) is Jacobson if it has an infinite number of maximal ideals A local ring is Ja-
cobson if and only if its maximal ideal is its only prime ideal. Proposition [T0.5]shows that
every finitely generated algebra over a field is Jacobson.

PROPOSITION 11.4. The radical of an ideal in a Jacobson ring is equal to the intersec-
tion of the maximal ideals containing it. (Therefore, the radical ideals are precisely the
intersections of maximal ideals.)

PROOF. Proposition [2.2] says that the radical of an ideal is an intersection of prime ideals,
and so this follows from the definition of a Jacobson ring. o

ASIDE 11.5. Any ring of finite type over a Jacobson ring is a Jacobson ring (EGA IV 10.4.6).
Moreover, if B is of finite type over A and A is Jacobson, then the map A — B defines a continuous
map spm(B) — spm(A4).

THE TOPOLOGICAL SPACE spm(A)

We study more closely the Zariski topology on spm(A). For each subset S of A4, let V(S)
denote the set of maximal ideals containing S, and for each subset W of spm(A), let 1(W)
denote the intersection of the maximal ideals in W:

S CA, V(S)={mespm(A4)|S Cm},
W C spm(A), (W)= ﬂmewm

Thus V(S) is a closed subset of spm(A) and /(W) is a radical ideal in A. If V(a) D W,
then a C I(W), and so V(a) D VI(W). Therefore VI(W) is the closure of W (smallest
closed subset of spm(A) containing W); in particular, VI(W) = W if W is closed.

PROPOSITION 11.6. Let V be a closed subset of spm(A).

(a) The points of V are closed for the Zariski topology.

(b) If A is noetherien, then every ascending chain of open subsets Uy C Uy C --- of V
eventually becomes constant; equivalently, every descending chain of closed subsets of V
eventually becomes constant.

(c) If A is noetherian, every open covering of V has a finite subcovering.

PROOF. (a) Clearly {m} = V(m), and so it is closed.

(b) We prove the second statement. A sequence V7 D V> D --- of closed subsets of V'
gives rise to a sequence of ideals /(1) C I(V>2) C ..., which eventually becomes constant.
If I(Vm) = I(Vm+1), then V](Vm) = V](Vm+1), ie., Vin = Vins1.

1511 a principal ideal domain, a nonzero element a factors as @ = u pI' .-~ pt% with u a unit and the p; prime.
The only prime divisors of a are p1,..., ps, and so a is contained in only finitely many prime ideals. Similarly,
in a Dedekind domain, a nonzero ideal a factors as a = p;‘ ---p5* with the p; prime ideals (cf. below),
and pq,..., pr are the only prime ideals containing a. On taking a = (a), we see that again a is contained in
only finitely many prime ideals.
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(c) Let V = Uie] U; with each U; open. Choose an ig € I; if U;, # V, then there
exists an i; € I such that U;, g Ui, UU;,. It U;, UU;, # V, then there exists an iy € [ etc..
Because of (b), this process must eventually stop. O

A topological space V' having the property (b) is said to be noetherian. This condition
is equivalent to the following: every nonempty set of closed subsets of V' has a minimal el-
ement. A topological space V having property (c) is said to be quasicompact (by Bourbaki
at least; others call it compact, but Bourbaki requires a compact space to be Hausdorff). The
proof of (c) shows that every noetherian space is quasicompact. Since an open subspace of
a noetherian space is again noetherian, it will also be quasicompact.

DEFINITION 11.7. A nonempty topological space is said to be irreducible if it is not the
union of two proper closed subsets. Equivalent conditions: any two nonempty open subsets
have a nonempty intersection; every nonempty open subset is dense.

If an irreducible space W is a finite union of closed subsets, W = Wy U...U W, then
W =Wy or Wo U...UW,;; if the latter, then W = W, or W3 U...U W;, etc.. Continuing in
this fashion, we find that W = W; for some i.

The notion of irreducibility is not useful for Hausdorff topological spaces, because the
only irreducible Hausdorff spaces are those consisting of a single point — two points would
have disjoint open neighbourhoods.

PROPOSITION 11.8. Let W be a closed subset of spm(A). If W is irreducible, then I(W)
is prime; the converse is true if A is a Jacobson ring. In particular, the max spectrum of a
Jacobson ring A is irreducible if and only if the nilradical of A is prime.

PROOF. =: Let W be an irreducible closed subset of spm(A), and suppose fg € I[(W).
Then fg lies in each m in W, and so either f e mor g € m; hence W C V(f)UV(g), and
SO

W=WnVv())Humwnv(g)).

As W is irreducible, one of these sets, say W N V( f), must equal W. But then f € I(W).
We have shown that /(W) is prime.

&: Assume /(W) is prime, and suppose W = V(a) U V(b) with a and b radical ideals
— we have to show that W equals V' (a) or V(b). Recall that V(a) U V(b) = V(aNb) (see
[11.1k) and that aN b is radical; hence I(W) = anb (by [I1.4). If W # V(a), then there
existsan f € a~ I(W). Forall g € b,

fgeanb=I1(W).
Because I(W) is prime, this implies that b C I(W); therefore W C V(b). o
Thus, in the max spectrum of a Jacobson ring, there are one-to-one correspondences

radical ideals <> closed subsets
prime ideals <> irreducible closed subsets

maximal ideals <> one-point sets.
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EXAMPLE 11.9. Let f € k[X1,...,Xs]. According to Theorem [4.6] k[X1,...,Xn] is a
unique factorization domain, and so (f) is a prime ideal if and only if f is irreducible

@.1). Thus

V(f) isirreducible <= f is irreducible.

On the other hand, suppose f factors,
f= 1_[ f;’”, /i distinct irreducible polynomials.
Then

)=, (f™) distinct ideals,
rad((f)) = )(/}). (/) distinct prime ideals,
V(f)= U V(f)), V(f;) distinctirreducible algebraic sets.

PROPOSITION 11.10. Let V' be a noetherian topological space. Then V is a finite union
of irreducible closed subsets, V = V1 U...U Vy,. If the decomposition is irredundant in the
sense that there are no inclusions among the V;, then the V; are uniquely determined up to
order.

PROOF. Suppose that V' can not be written as a finite union of irreducible closed subsets.
Then, because V' is noetherian, there will be a closed subset W of V' that is minimal among
those that cannot be written in this way. But W itself cannot be irreducible, and so W =
W1 U W,, with each W; a proper closed subset of W. Because W is minimal, both W; and
W, can be expressed as finite unions of irreducible closed subsets, but then so can W. We
have arrived at a contradiction.
Suppose that
V=Vu..UuV,=mu...uw,

are two irredundant decompositions. Then V; = j(VI- N W;), and so, because V; is irre-
ducible, V; = V; N W; for some j. Consequently, there exists a function f:{1,...,m} —
{1,....n} such that V; C Wy for each i. Similarly, there is a function g:{1,...,n} —
{1,...,m} such that W; C Vg(;) for each j. Since V; C Wy C Vgr(), we must have
gf(i)=1iandV; = Wg(y; similarly fg =id. Thus f and g are bijections, and the decom-
positions differ only in the numbering of the sets. O

The V; given uniquely by the proposition are called the irreducible components of V.
They are the maximal closed irreducible subsets of V. In Example|11.9] the V( f;) are the
irreducible components of V( f).

COROLLARY 11.11. A radical ideal a in a noetherian Jacobson ring is a finite intersection
of prime ideals, a = p; N ...Np,; if there are no inclusions among the p;, then the p; are
uniquely determined up to order.

PROOF. Write V(a) as a union of its irreducible components, V(a) = | J V;, and take p; =
1(V}). O

REMARK 11.12. (a) An irreducible topological space is connected, but a connected topo-
logical space need not be irreducible. For example, Z (X X») is the union of the coordinate
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axes in k2, which is connected but not irreducible. A closed subset V of spm(A) is not
connected if and only if there exist ideals a and b such thatanNb = I(V) and a+ b = A.

(b) A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

(¢) In a noetherian ring, every proper ideal a has a decomposition into primary ideals:
a=()q; (see . For radical ideals, this becomes a simpler decomposition into prime
ideals, as in the corollary. For an ideal (/) in k[X1,..., X,] with f = ]_[flm’ it is the
decomposition (f) = [\( ]”imi) noted in Example

MAPS OF MAX SPECTRA

Let ¢: A — B be a homomorphism of finitely generated k-algebras (k a field). Because B is
finitely generated over k, its quotient B/m by any maximal ideal m is a finite field extension
of k (Zariski’s lemma, [I0.1)). Therefore the image of A in B/m is an integral domain finite
over k, and hence is a field (see . Since this image is isomorphic to A/¢~!(m), this
shows that the ideal ¢! (m) is maximal in A. Therefore ¢ defines a map

@*:spm(B) — spm(A), mi>g~ ! (m),

which is continuous because (¢*)"1(D(f)) = D(¢(f)). In this way, spm becomes a
functor from finitely generated k-algebras to topological spaces.

THEOREM 11.13. Lety: A — B be a homomorphism of finitely generated k -algebras. Let
U be a nonempty open subset of spm(B), and let ¢*(U)™ be the closure of its image in
spm(A). Then ¢*(U) contains a nonempty open subset of each irreducible component of

p*(U)~.

PROOF. Let W = spm(B) and V = spm(A), so that ¢* is a continuous map W — V.

We first prove the theorem in the case that ¢ is an injective homomorphism of integral
domains. For some b # 0, D(b) C U. According to Proposition below, there exists
a nonzero element a € A such that every homomorphim a: 4 — k% such that a(a) # 0
extends to a homomorphism B: B — k? such that B(b) # 0. Let m € D(a), and choose «
to be a homomorphism 4 — k? with kernel m. The kernel of B is a maximal ideal n € D(b)
such that ¢! (n) = m, and so D(a) C ¢*(D(b)).

We now prove the general case. If Wy,..., W, are the irreducible components of W,
then ¢* (W)~ is a union of the sets ¢*(W;)~, and any irreducible component C of ¢*(U)~
is contained in one of *(W;)~, say ¢*(W;)~. Let q = I(W;) and let p = ¢~ 1(q). Because
W) is irreducible, they are both prime ideals. The homomorphism ¢: A — B induces an
injective homomorphism ¢: A/p — B/q, and ¢* can be identified with the restriction of ¢*
to Wj. From the first case, we know that ¢*(U N W}) contains a nonempty open subset of
C, which implies that ¢*(U) does also. o

In the next two statements, A and B are arbitrary commutative rings — they need not
be k-algebras.

PROPOSITION 11.14. Let A C B be integral domains with B finitely generated as an al-
gebra over A, and let b be a nonzero element of B. Then there exists an elementa # 0 in A
with the following property: every homomorphism a: A — §2 from A into an algebraically
closed field §2 such that a(a) # 0 can be extended to a homomorphism B: B — §2 such that

B(b) # 0.
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We first need a lemma.

LEMMA 11.15. Let B D A be integral domains, and assume B = A[t] = A[T]/a. Let ¢ C
A be the ideal of leading coefficients of the polynomials in a. Then every homomorphism
a: A — £2 from A into an algebraically closed field §2 such that «(c) # 0 can be extended
to a homomorphism of B into §2.

PROOF. If a = 0, then ¢ = 0, and every « extends. Thus we may assume a # 0. Let o be a
homomorphism A — £2 such that a(¢) % 0. Then there exist polynomials a,, T™ +--- 4+ ag
in a such that @(a,,) # 0, and we choose one, denoted f, of minimum degree. Because
B # 0, the polynomial f is nonconstant.

Extend « to a homomorphism A[T] — §2[T], again denoted «, by sending T to 7', and
consider the subset «(a) of 2[T].

FIRST CASE: «(a) DOES NOT CONTAIN A NONZERO CONSTANT. If the §2-subspace
of £2[T] spanned by «(a) contained 1, then so also would a(a)E-] contrary to hypothesis.
Because

T-> cia(gi)=> cia(giT), ci€f2, gie<a,

this §2-subspace an ideal, which we have shown to be proper, and so it has a zero ¢ in £2.
The composite of the homomorphisms

AT] S QT — 2, TwTre,

factors through A[T']/a = B and extends «.
SECOND CASE: «(a) CONTAINS A NONZERO CONSTANT. This means that a contains
a polynomial

g(T) =b,T" +---+by suchthat a(bg)#0, a(by)=a(by)=--=0.
On dividing f(T) into g(7T') we obtain an equation
ahg(T)=q(T)f(T)+r(T), deN, qreAlT], degr<m.
When we apply «, this becomes

a(am)?a(bo) = a(q)a(f) +a(r).

Because a( f) has degree m > 0, we must have «(q) = 0, and so «(r) is a nonzero constant.
After replacing g (7)) with r(T'), we may suppose n < m. If m = 1, such a g(T') can’t exist,
and so we may suppose m > 1 and (by induction) that the lemma holds for smaller values
of m.

For h(T) = ¢;T" 4+ ¢, 1 T" V-4 co, let W(T) =c, +---+coT". Then the A-
module generated by the polynomials 754'(T), s > 0, h € a, is an ideal a’ in A[T]. More-
over, a’ contains a nonzero constant if and only if a contains a nonzero polynomial ¢77,
which implies # = 0 and A = B (since B is an integral domain).

When a’ does not contain a nonzero constant, we set B’ = A[T]/a’ = A[t’]. Then o
contains the polynomial g’ = b,, +--- + boT", and a(bg)# 0. Because degg’ < m, the

16Use that, if a system of linear equation with coefficients in a field k has a solution in some larger field, then
it has a solution in k.
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induction hypothesis implies that o extends to a homomorphism B’ — £2. Therefore, there
exists a ¢ € 2 such that, forall A(T) = ¢, T" +cr1T" 1+ 4co€aq,

h(c)=alc,)+al(cr—1)c+ - +coc” =0.

On taking & = g, we see that ¢ = 0, and on taking &7 = f, we obtain the contradiction
a(am) =0. O

PROOF (OF[IT.T4]) Suppose that we know the proposition in the case that B is generated
by a single element, and write B = A[t1,...,t,]. Then there exists an element b,—1 such
that any homomorphism «: A[t1,...,t,—1] — £2 such that a(b,—1) # 0 extends to a homo-
morphism B: B — §2 such that 8(b) # 0. Continuing in this fashion (with b,_ for b), we
eventually obtain an element a € A with the required property.

Thus we may assume B = A[t]. Let a be the kernel of the homomorphism 7 + ¢,
A[T] — Alt].

Case (i). The ideal a = (0). Write

b= f(t)=aot" +ait" '+ +a, a; €A,

and take a = ag. If a: A — §2 is such that a(ag) # 0, then there exists a ¢ € £2 such that
f(c) # 0, and we can take B to be the homomorphism Y d;t" — Y a(d;)c'.

Case (ii). The ideal a # (0). Let f(T) = amT™ 4+ --- 4+ ag, am # 0, be an element
of a of minimum degree. Let #(T') € A[T] represent b. Since b # 0, h ¢ a. Because f
is irreducible over the field of fractions of A, it and % are coprime over that field. In other
words, there exist u,v € A[T] and a nonzero ¢ € A such that

uh+vf =c.

It follows now that ca,, satisfies our requirements, for if @(ca,,) # 0, then o can be ex-
tended to B: B — £2 by the lemma, and B(u(t)-b) = B(c) # 0, and so S(b) # 0. o

REMARK 11.16. In case (ii) of the last proof, both » and b~! are algebraic over A4, and so
there exist equations

aobm+"'+am =0, a; €A, aO?éO;

agh™ ++-+an =0, a, €A, ay#0.

One can show that a = agay, has the property required by the proposition.

ASIDE 11.17. The spectrum spec(A) of a ring A is the set of prime ideals in A endowed with the
topology for which the closed subsets are those of the form

V(a)={p|pDa}, aanidealin A.

Thus spm(A) is the subspace of spec(A4) consisting of the closed points. When A is Jacobson, the
map U +— U Nspm(A) is a bijection from the set of open subsets of spec(A) onto the set of open
subsets of spm(A); therefore spm(A) and spec(A4) have the same topologies — only the underlying
sets differ.
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12 Dimension theory for finitely generated k-algebras

Throughout this section, A is both a finitely generated algebra over field k and an integral
domain. We define the transcendence degree of A over k, trdegy A, to be the transcendence
degree over k of the field of fractions of A (see F §8). Thus A has transcendence degree
d if it contains an algebraically independent set of d elements, but no larger set (FT 8.12).

PROPOSITION 12.1. For any linear forms £1,...,¢,, in X1,..., X,, the quotient ring
k[X1,....Xnl/(E1,. .., 4m)

is an integral domain of transcendence degree equal to the dimension of the subspace of k"
defined by the equations

PROOF. This follows from the more precise statement:

Let ¢ be an ideal in k[X1,..., X,] generated by linearly independent linear
forms €1,...,¢,, and let X;,,..., X;,_, be such that

oo br Xiyy oo Xiy )}
is a basis for the linear forms in X1,..., X,. Then

K[X1..... Xn)/c ~k[Xi,oo Xi, .

This is obvious if the forms ¢; are X1,..., X,. In the general case, because {X1,..., X}
and {{1,...,4,X;i,,..., X;,_, } are both bases for the linear forms, each element of one set
can be expressed as a linear combination of the elements of the other. Therefore,

k[X1,....Xp)=kll1,....4r. Xy oo Xipp )
and so

k[X1,....,Xnl e =kl[ly1,.... 0, Xiy oo, Xip /¢
~k[Xi,....Xi,_, ] O

PROPOSITION 12.2. For any irreducible polynomial f ink[X1,..., Xy], the quotient ring
k[X1,...,Xn]/(f) has transcendence degree n — 1.

PROOF. Let
k[xla---,xn]=k[X1’---,Xn]/(f)’ xl=Xl+(f)a

and let k(x1,...,x,) be the field of fractions of k[x1,...,x,]. Since f is not zero, some X;,
say, Xp, occurs in it. Then X, occurs in every nonzero multiple of f, and so no nonzero
polynomial in X1,..., X,—1 belongs to (/). This means that x1,...,x,—1 are algebraically
independent. On the other hand, x;, is algebraic over k(x1,...,X,—1), and so {X1,...,Xn—1}
is a transcendence basis for k(x1,...,x,) over k. o

I7ET = Fields and Galois Theory, available on my website.
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PROPOSITION 12.3. For any nonzero prime ideal p in a k-algebra A,
trdeg; (A/p) < trdegy (A).
PROOF. We may suppose
A=k[X1,...,Xn]/a=k[x1,....xn].

For f € A, let f denote the image of f in A/p, so that A/p = k[%1,...,%,]. Let d =
trdeg; A/p, and number the X; so that Xi,...,X; are algebraically independent (see FT
8.9 for the proof that this is possible). I shall show that, for any nonzero f € p, the d + 1
elements x1,...,X4, f are algebraically independent, which shows that trdeg; A > d + 1.
Suppose otherwise. Then there is a nontrivial algebraic relation, which we can write

ao(X1.....x0) fM+ar(xt,....xg) f™ V4o Fam(xr,....xq) =0,

with a; € k[X1,...,X4] and ag # 0. Because A is an integral domain, we can cancel a
power of f if necessary to make a(x1,...,xg) nonzero. On applying the homomorphism
A — A/p to the above equality, we find that

am(X1,...,X4) =0,

which contradicts the algebraic independence of x1,...,X . O

PROPOSITION 12.4. Let A be a unique factorization domain. If p is a prime ideal in A
such that trdeg; A/p = trdegz A—1, thenp = (f) for some f € A.

PROOF. The ideal p is nonzero because otherwise A and A/p would have the same tran-
scendence degree. Therefore p contains a nonzero polynomial, and even an irreducible
polynomial f', because it is prime. According to (4.1)), the ideal ( f') is prime. If () # p,
then

trdegkA/me]trdegkA/(f)trdegkA -1,

which contradicts the hypothesis. O

THEOREM 12.5. Let f € A be neither zero nor a unit, and let p be a prime ideal that is
minimal among those containing ( f'); then

trdeg; A/p = trdeg; A — 1.
We first need a lemma.

LEMMA 12.6. Let A be an integrally closed integral domain, and let L be a finite extension
of the field of fractions K of A. Ifa € L is integral over A, then Nmp g« € A, and a divides
Nmy ,k « in the ring Ala].

PROOF. Let X" +ay—1 X"~ +---+ap be the minimum polynomial of o over K. Then r
divides the degree n of L/K, and Nmy, /g (o) = :i:ag (FT 5.40). Moreover, ag lies in A by
(5.9). From the equation

O=a(@ ' +a,_10" 2+ +ai)+ag

we see that « divides ag in A[a], and therefore it also divides Nmy, /g o. O
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PROOF (OF THEOREM [12.3)). Write rad( f) as an irredundant intersection of prime ideals

rad(f) =p1N...Np, (see[l1.11). Then V(a) = V(p1) U---U V(p;) is the decomposition
of V(a) into its irreducible components. There exists an mo € V(p1) \ ;> V(pi) and an

open neighbourhood D (h) of mq disjoint from | J;~, V(p;). The ring Ay, (resp. A;,/S™1p)
is an integral domain with the same transcendance degree as A (resp. A/p) — in fact, with
the same field of fractions. In Ay, rad(%) =rad(f)® = p{. Therefore, after replacing A
with Ay, we may suppose that rad( /) is prime, say, equal to p.

According to the Noether normalization theorem (5.T1)), there exist algebraically inde-
pendent elements x1,...,X; in A such that A4 is a finite k[xy,...,xz]-algebra. Note that
d = trdegy A. According to the lemma, fo = Nm( f) lies in k[x1,...,x4], and we shall
show that p N k[x1,...,x4] = rad( fo). Therefore, the homomorphism

klxi,....xq]/rad(fo) — A/p

is injective. As it is also finite, this implies that

trdeg A/p = trdegkk[xl,...,xd]/rad(fo)d -1,

as required.

By assumption A is finite (hence integral) over its subring k[x1,...,x4]. The lemma
shows that f divides fp in A, and so fo € (f) C p. Hence (fo) C pNk[xy,...,xg], which
implies

rad( fo) CpNklxy,...,xq]
because p is radical. For the reverse inclusion, let g € pNk[x1,...,x4]. Then g € rad(f),
and so g™ = fh for some h € A, m € N. Taking norms, we find that

g™ =Nm(fh) = fo-Nm(h) € (fo),
where e is the degree of the extension of the fields of fractions, which proves the claim. g

COROLLARY 12.7. Let p be a minimal nonzero prime ideal in A; then trdeg; (A/p) =
trdegy (A)—1.

PROOF. Let f be a nonzero element of p. Then f is not a unit, and p is minimal among
the prime ideals containing f. a)

THEOREM 12.8. The length d of any maximal (i.e., nonrefinable) chain of distinct prime
ideals

Pd DPad—1D-DPo (18)

in A is trdegy (A). In particular, every maximal ideal of A has height trdeg; (A), and so
the Krull dimension of A is equal to trdegy, (A).

PROOF. From (12.7)), we find that

trdeg; (A) = trdegy (A/p1) +1 =--- =trdeg; (A/pg) +d.

But p, is maximal, and so A/p is a finite field extension of k. In particular, trdegy (A/pg) =
0. O
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EXAMPLE 12.9. Let f(X,Y) and g(X,Y) be nonconstant polynomials with no common
factor. Then k[ X, Y]/(f) has Krull dimension 1, and so k[ X, Y]/( f, g) has dimension zero.

EXAMPLE 12.10. We classify the prime ideals p in A = k[X,Y]. If A/p has dimension
2, then p = (0). If A/p has dimension 1, then p = (f) for some irreducible polynomial
S of A (by[12.4). Finally, if A/p has dimension zero, then p is maximal. Thus, when k
is algebraically closed, the prime ideals in k[X, Y] are exactly the ideals (0), (f) (with f
irreducible), and (X —a,Y —b) (with a,b € k).

REMARK 12.11. Let A be a finitely generated k-algebra (not necessarily an integral do-
main). Every maximal chain of prime ideals in A ending in fixed prime ideal p has length
trdegy (A/p), and so the Krull dimension of A is max(trdegy (A/p)) where p runs over the
minimal prime ideals of A. In the next section, we show that a noetherian ring has only
finitely many minimal prime ideals, and so the Krull dimension of A is finite.

If x1,..., X is an algebraically independent set of elements of A such that A is a finite
k[x1,...,Xxm]-algebra, then dim A = m.

13 Primary decompositions

In this section, A is an arbitrary commutative ring.

DEFINITION 13.1. Anideal q in A is primary if it is proper and
abeq,b¢q = a" € qforsomen > 1.

Thus, a proper ideal g in A is primary if and only if all zero-divisors in A/q are nilpotent.
A radical ideal is primary if and only if it is prime. An ideal (m) in Z is primary if and only
if m is a power of a prime.

PROPOSITION 13.2. The radical of a primary ideal q is a prime ideal containing ¢, and
it is contained in every other prime ideal containing q (i.e., it is the smallest prime ideal
containing p).

PROOF. Suppose ab € rad(q) but b ¢ rad(q). Then some power, say a"b", of ab lies in q,
but " ¢ q, and so a € rad(q). The shows that rad(q) is primary, and hence prime (because
it is radical).

Let p be a second prime ideal containing g, and let a € rad(q). For some n, a” € q C p,
which implies that a € p. o

When q is a primary ideal and p is its radical, we say that q is p-primary.

PROPOSITION 13.3. Every ideal q whose radical is a maximal ideal m is primary (in fact,
m-primary); in particular, every power of a maximal ideal m is m-primary.

PROOF. Every prime ideal containing q contains its radical m, and therefore equals m. This
shows that A/a is local with maximal ideal m/a. Therefore, every element of A/a is either
a unit, and hence is not a zero-divisor, or it lies in m/a, and hence is nilpotent. O

PROPOSITION 13.4. Let ¢: A — B be a homomorphism of rings. If q is a p-primary ideal
in B, then q¢ = ¢~1(q) is a p° -primary ideal in A.
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PROOF. The map A/q¢ — B/q is injective, and so every zero-divisor in A/q¢ is nilpotent.
This shows that q¢ is primary, and therefore rad(q)-primary. But (see [2.8)), rad(q®) =
rad(q)¢ = p°, as claimed. o

LEMMA 13.5. Let q and p be a pair of ideals in A such that q C p C rad(q) and
abeq = acporbeq. (19)
Then p is a prime ideal and q is p-primary.

PROOF. Clearly q is primary, hence rad(q)-primary, and rad(q) is prime. By assumption
p C rad(q), and it remains to show that they are equal. Let a € rad(q), and let n be the
smallest positive integer such that a” € q. If n = 1, then a € q C p; on the other hand, if
n>1,thena” =aa" ' €qanda™ ! ¢ q, and so a € p by . o

PROPOSITION 13.6. A finite intersection of p-primary ideals is p-primary.

PROOF. Let q1,...,q, be p-primary, and let g = q; N...N g,. We show that the pair of
ideals q C p satisfies the conditions of (13.5)).

Let a € p; since some power of a belongs to each q;, a sufficiently high power of it will
belong to all of them, and so p C rad(q).

Letab € qbuta ¢ p. Then ab € q; buta ¢ p, and so b € g;. Since this is true for all i,
we have that b € q. o

The minimal prime ideals of an ideal a are the minimal elements of the set of prime
ideals containing a.

DEFINITION 13.7. A primary decomposition of an ideal a is a finite set of primary ideals
whose intersection is a. A primary decomposition S of a is minimal if

(a) the prime ideals rad(q), q € S, are distinct, and

(b) no element of S can be omitted, i.e., fornoqo € Sisqo C( {q|q€ S, q+# qo}-

If a admits a primary decomposition, then it admits a minimal primary decomposition,
because Proposition[I3.6]can be used to combine primary ideals with the same radical, and
any ¢; that fails (b) can simply be omitted. The prime ideals occurring as the radical of an
ideal in a minimal primary decomposition of a are said to belong to a.

PROPOSITION 13.8. Suppose a = q1 N---Nq, where q; is p;-primary fori = 1,...,n.
Then the minimal prime ideals of a are the minimal elements of the set {p1,...,pn}.

PROOF. Let p be a prime ideal containing a, and let q; be the image of q; in the integral
domain A/p. Then p contains ¢y ---qy, and so q ---q,, = 0. This implies that, for some i,
q; = 0, and so p contains g;. Now (13.2) shows that p contains p; . o

In particular, if a admits a primary decomposition, then it has only finitely many mini-
mal prime ideals, and so its radical is a finite intersection of prime ideals.
For an ideal a in A and an element x € A, we let

(xx)={a € A|ax € a}.

It is again an ideal in A, which equals A if x € a.
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LEMMA 13.9. Let q be a p-primary ideal and let x € A~ q. Then (q: x) is p-primary (and
hencerad(q:x) = p).

PROOF. For any a € (q: x), we know that ax € q and x ¢ g, and so a € p. Hence (g: x) C p.
On taking radicals, we find that rad(q: x) = p. Let ab € (q: x). Then xab € q, and so either
a € por xb € q (because q is p-primary); in the second case, b € (q: x) as required. o

THEOREM 13.10. Leta=q;N...Ng, be a minimal primary decomposition of a, and let
p; =rad(q;). Then

{p1,...,pn} ={rad(a:x) | x € A, rad(a:x) prime}.

In particular, the set {p1,...,pn} is independent of the choice of the minimal primary de-
composition.

PROOF. Foranya € A,
(a:a) = (Naiza) =((ai:a),
and so

rad(a:a) = rad(\(q;:a) LR Naga, Pi- (20)

If rad(a:a) is prime, then it equals one of the p; (otherwise, for each i there exists an
a; €epi~p,anda;---ay € ﬂam p; but not p, which is a contradiction). Hence RHSDLHS.
For each i, there exists ana € [ ) j+i 9/ 4 because the decomposition is minimal, and
shows that rad(a:a) = p;. O

THEOREM 13.11. In a noetherian ring, every ideal admits a primary decomposition.

The theorem is a consequence of the following more precise statement, but first we need
a definition: an ideal a is said to be irreducible if

a=bNc(b,cideals) =— a=bora=c.

PROPOSITION 13.12. Let A be a noetherian ring.
(a) Every ideal in A can be expressed as a finite intersection of irreducible ideals.
(b) Every irreducible ideal in A is primary.

PROOF. (a) Suppose (a) fails, and let a be maximal among the ideals for which it fails.
Then, in particular, a itself is not irreducible, and so a = b M ¢ with b and ¢ properly con-
taining a. Because a is maximal, both b and ¢ can be expressed as finite intersections of
irreducible ideals, but then so can a.

(b) Let a be irreducible in A, and consider the quotient ring A’ £ A /a. Let a be a
zero-divisor in A’, say ab = 0 with b # 0. We have to show that a is nilpotent. As A’ is
noetherian, the chain of ideals

((0):a) C ((0):a®) C ---

becomes constant, say, ((0):a™) = ((0):a™ 1)) =---. Let ¢ € (a™)N (b). Then ¢ € (b)
implies ca = 0, and ¢ € (¢™) implies that ¢ = da”™ for some d € A. Now

(da™a=0=d € (0:a™) = (0:a™) = ¢ =0.

Hence (a™) N (b) = (0). Because a is irreducible, so also is the zero ideal in A’, and it
follows that a™ = 0. o
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A p-primary ideal a in a noetherian ring contains a power of p by Proposition[3.12] The
next result proves a converse when p is maximal.

PROPOSITION 13.13. Let m be a maximal ideal of a noetherian ring. Any proper ideal a
of A that contains a power of a maximal ideal m is m-primary.

PROOF. Suppose that m” C a, and let p be a prime ideal belonging to a. Then m” C a C p,
so that m C p, which implies that m = p. Thus m is the only prime ideal belonging to a,
which means that a is m-primary. O

EXAMPLE 13.14. We give an example of a power of a prime ideal p that is not p-primary.
Let
A=k[X.Y.Z]/(Y? = XZ) = k[x,y.z].

The ideal (X,Y) in k[X,Y, Z] is prime and contains (Y2 — X Z), and so the ideal p = (x, y)
in A is prime. Now xz = y? € p2, but one checks easily that x ¢ p? and z ¢ p, and so p? is
not p-primary.

REMARK 13.15. Let a be an ideal in a noetherian ring, and let b = ﬂnzl a’’. We give
another proof that ab = b (see p[IT). Let

ab=gq1N...Nqs, rad(q;) =i,

be a minimal primary decomposition of ab. We shall show that b C ab by showing that
b C q; foreachi.
If there exists a b € b\ q;, then

ab C ab C q;,
from which it follows that a C p;. We know that p} C q; for some r (see , and so
b=(")a"Cd Cp] Cai.
which is a contradiction. This completes the proof.

DEFINITION 13.16. A Dedekind domain is a noetherian integrally closed integral domain
of dimension 1.

THEOREM 13.17. Every proper nonzero ideal a in a Dedekind domain can be written in
the form

— 71 X
a_pl ...psV

with the p; distinct prime ideals and the r; > 0; the ideals p; are exactly the prime ideals
containing a, and the exponents r; are uniquely determined.

PROOF. For the proof, which is quite elementary, see Chapter 3 of my notes Algebraic
Number Theory. o
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14 Artinian rings

A ring A is artinian if every descending chain of ideals a; D a; D -+ in A eventually
becomes constant; equivalently, if every nonempty set of ideals has a minimal element.
Similarly, a module M over a ring A is artinian if every descending chain of submodules
N1 D N3 D -+ in M eventually becomes constant.

PROPOSITION 14.1. An artinian ring has Krull dimension zero; in other words, every
prime ideal is maximal.

PROOF. Let p be a prime ideal of an artinian ring A, and let A’ = A/p. Then A’ is an
artinian integral domain. For any nonzero element a of A’, the chain (a) D (a?) D ---
eventually becomes constant, and so a” = a"t1p for some b € A’ and n > 1. We can
cancel a” to obtain 1 = ab. Thus a is a unit, A’ is a field, and p is maximal. o

COROLLARY 14.2. In an artinian ring, the nilradical and the Jacobson radical coincide.

PROOF. The first is the intersection of the prime ideals (2.2)), and the second is the inter-
section of the maximal ideals (2.4). 0

PROPOSITION 14.3. An artinian ring has only finitely many maximal ideals.

PROOF. Let mi N...Nm,; be a minimal element in the set of all finite intersections of
maximal ideals in the artinian ring A4, and let m be a maximal ideal in A. Then m equals
one of the m;, because otherwise there exists an a¢; € m; ~m for each i, and a1 ---ay, lies
in my N...Nm, but not m (because m is prime); thus mNmy N ... N m, is smaller than
mj N...Nmy,, which contradicts the definition of m; N...Nm,. o

PROPOSITION 14.4. In an artinian ring, some power of the nilradical is zero.

PROOF. Let 91 be the nilradical of the artinian ring A. The chain 9T D 02 O --- eventually
becomes constant, and so 9" = N1 = ... for some n > 1. Suppose N” # 0. Then there
exist ideals a such that a- 91" £ 0, for example 9, and we may suppose that a has been
chosen to be minimal among such ideals. There exists an a € a such that a - 91" # 0, and
so a = (a) (by minimality). Now (aO")N" = aM?" = aN” # 0 and aN” C (a), and so
at"* = (a) (by minimality again). Hence a = ax for some x € ”. Now a = ax = ax? =
... = a0 = 0 because x € M. This contradicts the definition of a, and so 91" = 0. o

LEMMA 14.5. Let A be a ring in which some finite product of maximal ideals is zero.
Then A is artinian if and only if it is noetherian.

PROOF. Suppose mj ---m, = 0 with the m; maximal ideals (not necessarily distinct), and
consider
ADmyD---Dmy---Mp_y DMy---My D--- DMmy---my, = 0.

The action of A on the quotient M, = my ---my_1/myq ---m, factors through the field 4 /m,,
and the subspaces of the vector space M, are in one-to-one correspondence with the ideals
of A contained between my ---m,_1 and my ---m,. If A is either artinian or noetherian, then
M, satisfies a chain condition on subspaces and so it is finite-dimensional as a vector space
and both artinian and noetherian as an A-module. Now repeated applications of Proposition
3.3 (resp. its analogue for artinian modules) show that if A is artinian (resp. noetherian),
then it is noetherian (resp. artinian) as an A-module, and hence as a ring. O
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THEOREM 14.6. A ring is artinian if and only if it is noetherian of dimension zero.

PROOF. =: Let A be an artinian ring. After (T4.1)), it remains to show that A is noetherian,
but according to (14.2)), (14.3), and (14.4), some finite product of maximal ideals is zero,
and so this follows from the lemma.

&: Let A be a noetherian ring of dimension zero. The zero ideal admits a primary
decomposition (I3.11)), and so A has only finitely many minimal prime ideals, which are all
maximal because dim 4 = 0. Hence N is a finite intersection of maximal ideals (2.2), and
since some power of I is zero (3.12), we again have that some finite product of maximal
ideals is zero, and so can apply the lemma. O

THEOREM 14.7. Every artinian ring is (uniquely) a product of local artinian rings.

PROOF. Let A be artinian, and let my, ..., m;, be the distinct maximal ideals in A. We saw
in the proof of li that some product m|' ---my" = 0. For i # j, the ideal m?i + m:'.’ is
not contained in any maximal ideal, and so equals A. Now the Chinese remainder theorem
shows that

A~ Ajm]! X x A/mlr,

and each ring A/ m?i is obviously local. =

PROPOSITION 14.8. Let A be a local artinian ring with maximal ideal m. If m is principal,
so also is every ideal in A; in fact, if m = (t), then every ideal is of the form (¢t") for some
r=>0.

PROOF. Because m is the Jacobson radical of A, some power of m is zero (by [[4.4); in
particular, (0) = (¢") for some r. Let a be a nonzero ideal in A. There exists an integer
r >0 such that a C m” but a ¢ m” 7!, Therefore there exists an element a of a such that
a = ct" for some ¢ € Abuta ¢ (t"+1). The second condition implies that ¢ ¢ m, and so it
is a unit; therefore a = (a). o

15 Dimension theory for noetherian rings

Let A be a noetherian ring and let p be a prime ideal in A. Let A, = § 1A where S = A~ p.
We begin by studying extension and contraction of ideals with respect to the homomor-
phism A — A, (cf. . Recall that A, is a local ring with maximal ideal p® “ pAp.
The ideal

(p”)ec ={ae A|saecyp” forsomes e S}

is called the nth symbolic power of p, and is denoted p@®. If m is maximal, then m® = m”

(seel6.7).
LEMMA 15.1. The ideal p® is p-primary.

PROOF. According to Proposition [13.3] the ideal (p¢)” is p®-primary. Hence (see [13.4)),
((p®)™)€ is (p®)°-primary. But p¢¢ = p (see[6.4), and

()" B (pmye) & p 1)
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LEMMA 15.2. Consider ideals a C p’ C p with p’ prime. If p’ is a minimal prime ideal of
a, then p’® is a minimal prime ideal of a® (extension relative to A — Ay).

PROOF. If not, there exists a prime ideal p” # p’® such that p’¢ D p” D a®. Now, by (6.4),
p’ = p’®¢ and p”’¢ # p’¢¢, and so

p/ — p/e(,‘ 2 p//C D aec D a
contradicts the minimality of p’. O

THEOREM 15.3 (KRULL’S PRINCIPAL IDEAL THEOREM). Let A be a noetherian ring. For
any nonunit b € A, the height of a minimal prime ideal p of (b) is at most one.

PROOF. Consider A — A,. According to Lemma [15.2] p¢ is a minimal prime ideal of
(b))t = (%), and 1} shows that the theorem for A, D p¢ D (%) implies it for A D p D (b).
Therefore, we may replace A with Ay, and so assume that A is a noetherian local ring with
maximal ideal p.

Suppose that p properly contains a prime ideal p;: we have to show that p; D p, —

p1=p2.
Let pgr) be the rth symbolic power of p;. The only prime ideal of the ring A/(b) is
p/(b), and so A/(b) is artinian (apply [14.6). Therefore the descending chain of ideals

(6" +®) /@) > (657 +®)) /) > (57 + @) /) > -
eventually becomes constant: there exists an s such that
P+ =p T+ 0) =P o) = (22)
We claim that, for any m > s,
P C Byp{™ +p{" Y. (23)

Letx € pgm). Then

22
xe®)+p{" @ @) 4",
and so x = ab + x’ witha € A and x’ € p(1m+1). As pgm) is pp-primary (see | and

ab=x—x"¢€ pgm) but b ¢ p1, we have thata € pgm). Now x =ab+x' € (b)pgm) +p§m+1)

as claimed.
We next show that, for any m > s,

pgm) _ p(lm—}-l).
As b ep, shows that pgm)/pgmﬂ) =p- (pgm)/pgm’q)), and so pgm)/pgmH) =0 by
Nakayama'’s lemma (3.7)).

Now
picp =p

and so pj C ﬂstpgm). Note that

Nt E N, @™ =), 60 F o,

and so for any x € p}, there exists ana € A\ py such thatax =0. Let x € py; thenax® =0
for some a € A~ p; D A\ Py, and so x € p, (because py is prime). We have shown that
p1 = P2, as required. O

(s+1) G+2) _
1 1 =

=p
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In order to extend Theorem [I5.6]to non principal ideals, we shall need a lemma.

LEMMA 15.4. Let p be a prime ideal in a noetherian ring A, and let S be a finite set of
prime ideals in A, none of which contains p. If there exists a chain of distinct prime ideals

pOPd—12:2Po,
then there exists such a chain with p; not contained in any ideal in S

PROOF. We first prove this in the special case that the chain has length 2. Suppose that
p D p1 D po are distinct prime ideals and that p is not contained in any prime ideal in S.
According to Proposition 2.6 there exists an element

acp~(poUUtp’ €8}).

As p contains (a) + o, it also contains a minimal prime ideal p| of (a) + po. Now p’ /po
is a minimal prime ideal of the principal ideal ((a) + po) /po in A/po, and so has height 1,
whereas the chain p/po D p1/po D po/Po shows that p/po has height at least 2. Therefore
p D p/| D po are distinct primes, and p| ¢ S because it contains a. This completes the proof
of the special case.

Now consider the general case. On applying the special case to p D pg—1 D pg—z, We
see that there exists a chain of distinct prime ideals p D p;,_l D pg—o such that p;,_l is not
contained in any ideal in S. Then on applying the special case to p;_l DPd—2DPg—1,wWe
we see that there exists a chain of distinct prime ideals p D p;,_l D p;,_z D pg—o such that
pil—z is not contained in any ideal in S. Repeat the argument until the proof is complete. o

THEOREM 15.5. Let A be a noetherian ring. For any proper ideal a = (ay,...,an), the
height of a minimal prime ideal of a is at most m.

PROOF. Form = 1, this was just proved. Thus, we may suppose m > 2 and that the theorem
has been proved for ideals generated by m — 1 elements. Let p be a minimal prime ideal of
a,and let p’, ..., p; be the minimal prime ideals of (a2, ...,an). Each p; has height at most
m— 1. If p is contained in one of the p}, it will have height < m — 1, and so we may suppose
that it isn’t.

Let p have height d. We have to show that d < m. According to the lemma, there exists
a chain of distinct prime ideals

pP=pisDPg-1D:-Dpo. d=1,
with p; not contained in any p’, and so Proposition shows that there exists a

bepi~Uizp}-

We next show that p is a minimal prime ideal of (b,az,...,d,). Certainly p contains a
minimal prime ideal p’ of this ideal. As p’ D (az,...,am), p contains one of the p’s, but, by
construction, it cannot equal it. If p # p’, then

pOp Dpi

def

are distinct ideals, which shows that p dér_p/ (@2,...,am) has height at least 2 in A =
A/(ay,...,ay). Butpis aminimal ideal in A of the principal ideal (a1, ...,a,)/(az,...,an),
which contradicts Theorem[I5.3] Hence p is minimal, as claimed.
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But now p/(b) is a minimal prime ideal of (b,as,...,a,) in R/(b), and so the height
of p/(b) is at most m — 1 (by induction). The prime ideals

p/(b) =paq/(b) Dpg—1/(b) D - Dp1/(b)

are distinct, and so d — 1 < m — 1. This completes the proof that d = m. o

The height of an ideal a in a noetherian ring is the minimum height of a prime ideal
containing it,
ht(a) = min  ht(p).
pDa, p prime
The theorem shows that ht(a) is finite.
The following provides a (strong) converse to Theorem

THEOREM 15.6. Let A be a noetherian ring, and let a be a proper ideal of A of height r.
Then there exist r elements ay,...,a, of a such that, foreachi <r, (ay,...,a;) has height
i.

PROOF. If r = 0, then we take the empty set of a;s. Thus, suppose r > 1. There are only
finitely many prime ideals of height 0, because such an ideal is a minimal prime ideal of
(0), and none of these ideals can contain a because it has height > 1. Proposition[2.6|shows
that there exists an

ai € a~ | J{prime ideals of height 0}.

By construction, (a;) has height at least 1, and so Theorem shows it has height exactly
1.

This completes the proof when r = 1, and so suppose that » > 2. There are only finitely
many prime ideals of height 1 containing (a;) because such an ideal is a minimal prime
ideal of (a1), and none of these ideals can contain a because it has height > 2. Choose

ap € a~ | J{prime ideals of height 1 containing (a)}.

By construction, (a1, az2) has height at least 2, and so Theorem|[15.5]shows that it has height
exactly 2.

This completes the proof when r = 2, and when r > 2 we can continue in this fashion
until it is complete.

COROLLARY 15.7. Every prime ideal of height r in a noetherian ring arises as a minimal
prime ideal for an ideal generated by r elements.

PROOF. According to the theorem, an ideal a of height r contains an ideal (a1,...,a,) of
height r. If a is prime, then it is a minimal ideal of (a1,...,a;). o

COROLLARY 15.8. Let A be a commutative noetherian ring, and let a be an ideal in A that
can be generated by n elements. For any prime ideal p in A containing a,

ht(p/a) < ht(p) <ht(p/a) +n.
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PROOF. The first inequality follows immediately from the correspondence between ideals
in Aandin A/a.
Denote the quotient map A — A’ = A/a by a — a’. Let ht(p/a) = d. Then there

exist elements aq,...,ay4 in A such that p/a is a minimal prime ideal of (a’l,...,a&). Let
bi,...,by generate a. Then p is a minimal prime ideal of (a1,...,a4,b1,...,by), and hence
has height < d +n. o

We now use dimension theory to prove a stronger version of “generic flatness” (9.§).

THEOREM 15.9 (GENERIC FREENESS). Let A be a noetherian integral domain, and let B
be a finitely generated A-algebra. For any finitely generated B-module M, there exists a
nonzero element a of A such that M, is a free A,-module.

PROOF. Let F be the field of fractions of A. We prove the theorem by induction on the
Krull dimension of F ® 4 B, starting with the case of Krull dimension —1. Recall that this
means that F ® 4 B = 0, and so al g = 0 for some nonzero a € A. Then M, = 0, and so
the theorem is trivially true (M is the free A,-module generated by the empty set).

In the general case, and argument as in shows that, after replacing A, B, and M
with A4, B,, and M, for a suitable a € A, we may suppose that the map B — F ® 4 B
is injective — we identify B with its image. The Noether normalization shows that there
exist algebraically independent elements x1,...,x,, of I ®4 B such that F ® 4 B is a finite
F[x1,...,xm]-algebra. As in the proof of (9.8), there exists a nonzero a € A such that By is
a finite A4[x1,...,xm]-algebra. Hence M, is a finitely generated A,4[x1,..., X ]-module.

As any extension of free modules is free@ Proposition shows that it suffices to
prove the theorem for M, = Ag4[x1,...,Xm]/p for some prime ideal p in Ay[x1,...,Xm].
If p =0, then M, is free over A, (with basis the monomials in the x;). Otherwise, F' ® 4
(Ag[x1,...,%Xm]/p) has Krull dimension less than that of F ® 4 B, and so we can apply the
induction hypothesis. O

16 Regular local rings

Throughout this section, A is a noetherian local ring with maximal ideal m and residue field
k. The Krull dimension d of A is equal to the height of m, and

@3 B3 ..
ht(m) < minimum number of generators of m dimg (m/m?).

When equality holds, the ring A is said to be regular. In other words, dimy (m/m?) > d,
and equality holds exactly when the ring is regular.

For example, when A has dimension zero, it is regular if and only if its maximal ideal
can be generated by the empty set, and so is zero. This means that A is a field; in particular,
it is an integral domain. The main result of this section is that all regular rings are integral
domains.

LEMMA 16.1. Let A be a noetherian local ring with maximal ideal m, and let ¢ € m ~ m?2,

Denote the quotient map A — A’ = A/(c) by a — a’. Then
dimg m/m? = dimy m’/m’? + 1

where m’ £ m/(c) is the maximal ideal of A'.

I8Tf M is a submodule of M such that M" & M/ M’ is free, then M ~ M’ & M".
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PROOF. Letey,..., e, be elements of m such that {e/,...,ey,} is a k-linear basis for m’ /m'’2.
We shall show that {e1,...,e,,c} is a basis for m/m?.
Asel,...,e, spanm’/m’2, they generate the ideal m’ (see, andsom= (eq,...,en)+
(c), which implies that {eq,...,ep,c} spans m/m?.
Suppose that ay,...,an+1 are elements of A such that
alel+-~~—|—anen+an+1(:50m0dm2. 24)
Then

ajel+---+a)e, =0mod m?

and so a/,...,a, € m'. It follows that ay,...,a, € m. Now li shows that a,+1c € m?.
If ay+1 ¢ m, then it is a unitin A, and ¢ € m2, which contradicts its definition. Therefore,
dn+1 € m, and the relation (24)) is the trivial one. o

PROPOSITION 16.2. If A is regular, then so also is A/(a) for any a € m ~ m?; moreover,

dimA =dimA/(a)+ 1.
PROOF. With the usual notations, (I3.8]) shows that
ht(m’) < ht(m) <ht(m) + 1.
Therefore
dimg (m’/m’?) > ht(m) > ht(m) — 1 = dimg (m/m?) — 1 = dimg (m’/m’?).
Equalities must hold throughout, which proves that A’ is regular with dimension dim A — 1.5
THEOREM 16.3. Every regular noetherian local ring is an integral domain.

PROOF. Let A be a regular local ring of dimension d. We have already noted that the
statement is true when d = 0.

We next prove that A is an integral domain if it contains distinct ideals a D p with
a = (a) principal and p prime. Let b € p, and suppose b € a” = (a") for some n > 1. Then
b = a"c for some ¢ € A. As a is not in the prime ideal p, we must have that ¢ € p C a, and

so b € a1, Continuing in this fashion, we see that b € M, a" ri11]{0}. Therefore p = {0},
and so A is an integral domain.

We now assume d > 1, and proceed by induction on d. Let a € m ~m?. As A/(a) is
regular of dimension d — 1, it is an integral domain, and so (@) is a prime ideal. If it has
height 1, then the last paragraph shows that A is an integral domain. Thus, we may suppose
that, for all @ € m \. m?, the prime ideal (@) has height 0, and so is a minimal prime ideal
of A. Let S be the set of all minimal prime ideals of A — recall (§I3) that S is finite. We
have shown that m~m? C [ J{p |p € S}, and som C m?> U J{p | p € S}. It follows from
Proposition [2.6 that either m C m? (and hence m = 0) or m is a minimal prime ideal of 4,
but both of these statements contradict the assumption that d > 1. o

COROLLARY 16.4. A regular noetherian local ring of dimension 1 is a principal ideal do-
main (with a single nonzero prime ideal).
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PROOF. Let A be a regular local ring of dimension 1 with maximal ideal m,and let a be
a nonzero proper ideal in A. The conditions imply that m is principal, say m = (¢). The
radical of a is m because m is the only prime ideal containing a, and so a D m” for some
r (by[3.12). The ring A/m" is local and artinian, and so a = (t*) +m” for some s > 1 (by

14.8)). This implies that a = (%) by Nakayama’s lemma (3.7). o

THEOREM 16.5. Let A be a regular noetherian local ring.
(a) For any prime ideal p in A, the ring Ay is regular.
(b) The ring A is a unique factorization domain (hence is integrally closed).

PROOF. The best proofs use homological algebra, and are beyond a primer. See Matsumura
1986/ 19.3, 20.3. a]

17 Connections with geometry

Throughout this section, k is a field.

AFFINE k-ALGEBRAS

Let A be a finitely generated k-algebra. Recall (10.5) that the nilradical of A is equal to the
intersection of the maximal ideals of A.

PROPOSITION 17.1. Let A be a finitely generated k-algebra over a perfect field k. If A is
reduced, then so also is K ®j, A for every field K D k.

PROOF. Let (e;) be a basis for K as a k-vector space, and suppose & = Y ¢; ®a; is a
nonzero nilpotent element in K ®; A. Because A is reduced, there exists a maximal ideal
min A such that some a; do not belong to m. The image @ of @ in K ®j, (4/m) is a nonzero
nilpotent, but A/m is a finite separable field extension of k, and so this is impossible O

When £ is not perfect, Proposition fails, because then k has characteristic p # 0
and it contains an element a that is not a pth power. The polynomial X ? —a is irreducible
in k[X], but X? —a = (X —a)? in k¥[X]. Therefore, A = k[X]/(X? —a) is a field, but
k4 ®@p A =k¥[X]/(X —a)? is not reduced.

DEFINITION 17.2. An affine k-algebra is a finitely generated k-algebra A such that k%' @
A is reduced.

Let A be a finitely generated k-algebra. If A is affine, then K ®j A is reduced for
every finite extension K of k, because a k-homomorphism K — k2 defines an injective
homomorphism K ®; A — k¥ ®; A. Conversely, if A is reduced and k is perfect, then
(17.1]) shows that A is affine.

PROPOSITION 17.3. If A is an affine k -algebra and B is a reduced k -algebra, then A @ B
is reduced.

19Every finite separable field extension of k is of the form k[X]/(f(X)) with f(X) separable and therefore
without repeated factors in any extension field of k; hence K ®j k[X]/(f(X)) >~ K[X]/(f (X)) is a product
of fields.
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PROOF. Let (¢;) be a basis for A as a k-vector space, and suppose & = Y ¢; ® b; is a
nonzero nilpotent element of A ®; B. Let B’ be the k-subalgebra of B generated by the
(finitely many) nonzero b;. Because B’ is reduced, there exists a maximal ideal m in B’
such that some b; do not belong to m. Then the image @ of @ in A ®j (B’/m) is a nonzero
nilpotent, but B/m is a finite field extension of k (Zariski’s lemma, [10.1), and so this is
impossible. o

COROLLARY 17.4. If A and B are affine k-algebras, then so also is A Q. B.

PROOF. By definition, k% ® A is reduced, and k' ®j (A ®x B) ~ (k¥ ®4 A) ®x B, which
is reduced by (17.2). a]

EXERCISE 17.5. Letk be a field k of characteristic p # 0, and let A be a finitely generated
k-algebra. We say that an element a of A is p-nilpotent if a? " =0 for some r.
(a) Let N be the set of all p-nilpotent elements of A. Show that N’ is an ideal in A and
that A/N/” has no nonzero p-nilpotent elements.
(b) Assume k is perfect. Show that if A has no nonzero p-nilpotents, then neither does
K ®j A for any field K containing k.
(c) Let A and B be finitely generated k-algebras with no nonzero p-nilpotents. Show
that if k is perfect, then A ® B has no nonzero p-nilpotent elements.

LOCALLY RINGED SPACES

Let V be a topological space, and let k be a k-algebra. A presheaf O of k-algebras on
V' assigns to each open subset U of V' a k-algebra O(U) and to each inclusion U’ C U a
“restriction” map

= flU:0WU)— oW,

when U = U’ the restriction map is required to be the identity map, and if
Uv'cu’'cu,
then the composite of the restriction maps
oU)— oW’ —oW”")

is required to be the restriction map O(U) — O(U”). In other words, a presheaf is a
contravariant functor to the category of k-algebras from the category whose objects are
the open subsets of V' and whose morphisms are the inclusions. A homomorphism of
presheaves a: O — (O’ is a family of homomorphisms of k-algebras

a(U):0U) - O'(U)

commuting with the restriction maps, i.e., a natural transformation.

A presheaf O is a sheaf if for every open covering {U;} of an open subset U of V
and family of elements f; € O(U;) agreeing on overlaps (that is, such that f;|[U; NU; =
filUiNU;j for all i, j), there is a unique element f € O(U) such that f; = f|U; for all
i "] A homomorphism of sheaves on V is a homomorphism of presheaves.

20This condition implies that O(%) = 0.
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For v € V, the stalk of a sheaf O (or presheaf) at v is
O, = h_r)n O(U) (limit over open neighbourhoods of v).

In other words, it is the set of equivalence classes of pairs (U, f) with U an open neighbour-
hood of v and f € O(U); two pairs (U, ) and (U’, f') are equivalent if f|U" = f|U"”
for some open neighbourhood U” of v contained in U NU".

A ringed space is a pair (V, O) consisting of topological space V together with a sheaf
of rings. If the stalk O, of O at v is a local ring for all v € V, then (V, O) is called a locally
ringed space.

A morphism (V,0) — (V',O") of ringed spaces is a pair (¢, V) with ¢ a continuous
map V — V'’ and ¢ a family of maps

Y (U):0'(U") — O~ (U")), U’ openin V',

commuting with the restriction maps. Such a pair defines homomorphism of rings v,,: (9;) )
Oy for all v € V.. A morphism of locally ringed spaces is a morphism of ringed space such
that v, is a local homomorphism for all v.

Let B be a base for the topology on V' that is closed under finite intersections. A sheaf
on B3 can be defined in the obvious way, and such a sheaf O extends to a sheaf @’ on V: for
any open subset U of V, define O’ (U) to be the set of families

(fudvcuuves, fur€eOU),

agreeing on overlaps. Then O’ is a sheaf of k-algebras on V, and there is a canonical
isomorphism O — O'|B.

—

AFFINE ALGEBRAIC SPACES AND VARIETIES

Let A be a finitely generated k-algebra, and let V' = spm(A). Recall (§T1)) that the set of
principal open subsets of V/
B={D(f)|f €A}

is a base for the topology on V' which is closed under finite intersections. If D(g) C D(f),
then V(g) D V(f), and so some power of g lies in (f) (by [10.4), say, g" = c¢f with
a € A. Therefore f becomes a unit in Ag, and so there is a well-defined “restriction”
homomorphism A y — Ag of k-algebras. When D(g) = D(f') this homomorphism is an
isomorphism. For each principal open subset D of spm(A), we choose an fp such that
D = D(fp).

PROPOSITION 17.6. There exists a sheat O of k -algebras on spm(A) such that
(a) for all basic open subsets D, the k-algebra O(D) = A ,,, and
(b) for all inclusions D’ C D of basic open subsets, the restriction map O(D) — O(D’)
is the canonical map A 5, — Ay, ,.
For any other sheaf O’ satisfying (a) and (b), there exists a unique isomorphism O — O’
inducing the identity map O(D) — O'(D) for every basic open subset.

PROOF. It suffices to check that D ~~ A 7, is a sheaf on the base of basic open subsets.
This is straightforward but tedious, and so is left as an exercise. o

We write Spm(A4) for spm(A) endowed with this sheaf of k-algebras. It is independent
of the choice of the elements fp (up to a unique isomorphism).
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PROPOSITION 17.7. Forevery m € spm(A), the stalk Oy, is canonically isomorphic to Oy,.

PROOF. Apply (7.3). o

Thus Spm(A) is a locally ringed space. An affine algebraic space is topological space
V together with a sheaf of k-algebras O such that (V, Q) is isomorphic to Spm(A4) for some
finitely generated k-algebra A. A regular mapof affine algebraic spaces is morphism of
locally ringed spaces.

EXAMPLE 17.8. Affine n-space A" = Spm(k[X1,...,Xy]). To give a regular map V —
Al is the same as giving a homomorphism of k-algebras k[X] — O(V), i.e., an element of
O(V). For this reason, O(V) is often called the ring (or k-algebra) of regular functions
on V.

PROPOSITION 17.9. For any affine algebraic space (V, Oy ) and locally ringed space (W, Ow ),
the canonical map
Hom(V, W) — Homy o (Ow (W), Oy (V))

is an isomorphism.
PROOF. Exercise for the reader. o

An affine algebraic space V' defines a functor

def

R~ V(R) £ Homy_yo(O(V), R). (25)

from k-algebras to sets. For example, A” (R) >~ R" for all k-algebras R.

An affine algebraic variety is an affine algebraic space V such that Oy (V) is an affine
algebra.
TANGENT SPACES; NONSINGULAR POINTS; REGULAR POINTS

Let k[e] be the ring of dual numbers (so 2 = 0). For an affine algebraic space V over k,
the map ¢ — 0:k[¢] — k defines a map

V(kle]) = V (k).

For any a € V(k), we define the tangent space to V at a, Tgt,(V'), to be the inverse image
of a under this map.

PROPOSITION 17.10. There is a canonical isomorphism
Tgt, (V) =~ Homy_jjn(mg /m, k).

This follows from the next two lemmas.

Let V = V(a) C k", and assume that the origin o lies on V. Let a; be the ideal gen-
erated by the linear terms f; of the f € a. By definition, T,(V) = V(ay). Let Ay =
k[X1,...,Xn]/ag, and let m be the maximal ideal in k[V'] consisting of the functions zero
at o; thus m = (x1,...,xp).

LEMMA 17.11. There is a canonical isomorphism

Homy_ji, (m/m27 k) — Homk—alg(AZ» k)
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PROOF. Let n = (X1,..., X,) be the maximal ideal at the origin in k[X1,..., X,]. Then
m/m? ~n/(n? +a),and as f — f; € n? forevery f € a, it follows that m/m? ~ n/(n? +

ag). Let fi ¢..... f¢ be a basis for the vector space ay. From linear algebra we know that
there are n —r linear forms X;,,..., X;,_, forming with the f; ; a basis for the linear forms
on k™. Then X;, +m?2,..., X;,_. +m? form a basis for m/m? as a k-vector space, and the

lemma shows that Ay >~ k[X;, ..., X;,_,]. A homomorphism a:A; — k of k-algebras is
determined by its values a(X;,),...,@(X;,_,), and they can be arbitrarily given. Since the
k-linear maps m/m? — k have a similar description, the first isomorphism is now obvious.

LEMMA 17.12. There is a canonical isomorphism
Homk-alg(Aka) — To(V).

PROOF. To give a k-algebra homomorphism A; — k is the same as to give an element
(ai,...,an) € k™ such that f(ay,...,an) =0forall f € Ay, which is the same as to give
an element of Tp (V). O

REMARK 17.13. Let V = Spmk[Xy,..., Xu]/(f1,-.., fm), and let (a1,...,an) € V(k).
Then Tgt, (V') is canonically isomorphic to the subspace of k" defined by the equations

dfi dfi

X, X,

Xi+--+

a

Xy, i=1,...,m.
a

When a is the origin, this is a restatement of (17.12)), and the general case can be deduced
from this case by a translation.

The dimension of an affine algebraic space V' is the Krull dimension of O(V). If V
is irreducible, then O(V')/M is an integral domain, and the dimension of V' is equal to the
transcendence degree over k of the field of fractions of O(V')/91; moreover, all maximal

ideals have height dim V' (12.11).

PROPOSITION 17.14. Let V be an affine algebraic space over k, and let a € V (k). Then
dimTgt, (V) > dim V', and equality holds if and only if O(V ), is regular.

PROOF. Let n be the maximal ideal of the local ring A = O(V)y,,. Then A/n =k, and
dimg n/n? > ht(n), with equality if and only if A is regular. As mg/m2 ~ n/n? (6.7),
Proposition [17.10] implies that dimTgt, (V) = dim n/n?, from which the statement fol-
lows. =

Ana € V(k) is nonsingular if dimTgt, (V') = dim V'; otherwise it is singular. An affine
algebraic space V is regular if all of its local rings O(V )y, are regular, and it is smooth if
Vi is regular. Thus an algebraic space over an algebraically closed field is smooth if and
only if all @ € V (k) are nonsingular. A smooth algebraic space is regular, but the converse
is false. For example, let &’ be a finite inseparable extension of k, and let V be a smooth
algebraic space over k’; when we regard V is an algebraic space over k, it is regular, but
not smooth.

PROPOSITION 17.15. A smooth affine algebraic space V is a regular affine algebraic vari-
ety; in particular, O(V') is an integral domain. Conversely, if k is perfect, then every regular
affine algebraic space over k is smooth.
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PROOF. Let A = O(V). If V is smooth, then all the local the local rings of k¥ ®; A
are regular; in particular, they are integral domains . This implies that k¥ ®j A is
reduced, because it implies that the annihilator of any nilpotent element is not contained in
any maximal ideal, and so is the whole ring. Therefore A is an affine algebra, and so V' is
an affine algebraic variety. Let m be a maximal ideal in A4, and let n = m(k* ® A4). Then
n is a maximal ideal of k¥ ®j A, and

n/n2 ~k'® (m/mz),

and so dimy (m/m?) = dimga (n/n?). This implies that A, is regular. In particular, Ay, is
an integral domain for all maximal ideals of A, which implies that A is integral domain,
because it implies that the annihilator of any zero-divisor is not contained in any maximal
ideal. Conversely, if V is regular, A is an integral domain, and hence an affine k-algebra if
k is perfect. o

PROPOSITION 17.16. Let V be an irreducible affine algebraic space over an algebraically
closed field k, and identify V with V (k). The set of nonsingular points of V' is open, and it
is nonempty if V' is an algebraic variety.

PROOF. We may suppose V = Spmk[X1,...,Xu]/(f1,..., fm). Letd = dim V. Accord-
ing to Remark|17.13] the set of singular points of V is the zero-set of the ideal generated by
the (n —d) x (n — d) minors of the matrix

%(a) s ;@
Jac(f1...., fm)(a) = ;
Sg}";w) af’m(a>

which is closed. Therefore the set of nonsingular points is open.

Now suppose that V' is an algebraic variety. The next two lemmas allow us to sup-
pose that V = k[X1,..., Xy]/(f) where f is a nonconstant irreducible polynomial. Then
dimV =n —1, and so we have to show that the equations

f=0, O o, 9

e -0

have no common zero. If af is identically zero on V(f), then f divides it. But a%{ has

degree less than that of f and f is irreducible, and so this implies that af = (. Therefore

f is a polynomial in X», ..., X, (characteristic zero) or X7 1 X2,..., Xy (characteristic p).
Continuing in this fashion, we find that either f is constant (characteristic zero) or a pth
power (characteristic p), which contradict the hypothesis. O

Let V' be an irreducible affine algebraic variety. Then O(V) is an integral domain, and
we let k(1) denote its field of fractions. Two irreducible affine algebraic varieties V' and
W are said to be birationally equivalent if k(V) ~ k(W).

LEMMA 17.17. Two irreducible varieties V and W are birationally equivalent if and only
if there are open subsets U and U’ of V and W respectively such that U ~ U’.
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PROOF. Assume that V' and W are birationally equivalent. We may suppose that A = O(V')
and B = O(W) have a common field of fractions K. Write B = k[xy,...,x,]. Then
x; =ai/bi,a;,bj € A, and B C Ap, p,. Since Spm(Ap, . p,) is a basic open subvariety
of V, we may replace A with Ay, ., and suppose that B C A. The same argument shows
that there existsad € B C A such A C B;. Now

BCACB; = B; CA; C(Bg)g = Bg,

and so Ay = B;. This shows that the open subvarieties D(b) C V and D(b) C W are
isomorphic. This proves the “only if” part, and the “if” part is obvious. O

LEMMA 17.18. Every irreducible algebraic variety of dimension d is birationally equiva-
lent to a hypersurtace in AdtL

PROOF. Let V be an irreducible variety of dimension d. According to FT 8.21, there exist
algebraically independent elements x1,...,x; € k(V') such that k(V') is finite and separable
over k(xi,...,xq). By the primitive element theorem (FT 5.1), k(V) = k(x1,...,Xg,Xg+1)
for some x;41. Let f € k[X1,..., X441] be an irreducible polynomial satisfied by the x;,
and let H be the hypersurface f = 0. Then k(V) ~ k(H). o

ALGEBRAIC SCHEMES, SPACES, AND VARIETIES

An algebraic space over k is a locally ringed space that admits a finite open covering by
affine algebraic spaces. An algebraic variety over k is a locally ringed space (X,Ox)
that admits a finite open covering by affine algebraic spaces and satisfies the following
separation condition: for every pair ¢1,¢2:Z — X of locally ringed space with Z and
affine algebraic variety, the subset of Z on which ¢; and ¢, agree is closed.

Let (X, Oyx) be an algebraic scheme over k, i.e., a scheme of finite type over k, and let
X’ be the subset of X obtained by omitting all the nonclosed points. Then (X’,Ox|X’) is
an algebraic space over k. Conversely, let (X, Oyx) be an algebraic space over k; for each
open subset U of X, let U’ be the set of irreducible closed subsets of U, and regard U’ as a
subset of X’ in the obvious way; then (X', Ox/) where Ox/(U’) = Ox (U) is an algebraic
scheme over k.
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