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Abstract

These notes prove the fundamental theorems in commutative algebra required for
algebraic geometry, algebraic groups, and algebraic number theory.

The reader is assumed to have taken an advanced undergraduate or first-year grad-
uate course in algebra.
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NOTATIONS AND CONVENTIONS

Our convention is that rings have identity elementsﬂ and homomorphisms of rings respect
the identity elements. A unit of a ring is an element admitting an inverse. The units of a

(©2009 1.S. Milne
L An element e of a ring A is an identity element if ea = a = ae for all elements a of the ring. It is usually
denoted 14 or just 1. Other authors call this a unit element, but then an element can be a unit without being a
unit element. Worse, a unit need not be the unit.
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ring A form a group, which we denote A EI Throughout “ring” means “commutative ring”.
Following Bourbaki, we let N = {0, 1,2,...}.
X CY X isasubsetof Y (not necessarily proper).

def

X =Y X isdefinedtobe Y, orequals Y by definition.
X ~ Y X isisomorphicto Y.
X ~Y X andY are canonically isomorphic (or there is a given or unique isomorphism).

1 Algebras

Let A be aring. A subring of A is a subset that contains 14 and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together with a
homomorphismipg: A — B. A homomorphism of A-algebras B — C is ahomomorphism
of rings ¢: B — C such that p(ip(a)) = ic(a) foralla € A.

Elements x1, ..., x, of an A-algebra B are said to generate it if every element of B can
be expressed as a polynomial in the x; with coefficients in i g (A), i.e., if the homomorphism
of A-algebras A[Xy,...,X,] — B sending X; to x; is surjective. We then write B =
(ipA)[x1,...,xn].

A ring homomorphism A — B is of finite type, and B is a finitely generated A-algebra,
if B is generated by a finite set of elements as an A-algebra.

A ring homomorphism A — B is finite, and B is a ﬁniteE] A-algebra, if B is finitely
generated as an A-module. If A — B and B — C are finite ring homomorphisms, then so
also is their composite 4 — C.

Let k be a field, and let A be a k-algebra. When 14 # 0, the map k — A is injective,
and we can identify k with its image, i.e., we can regard k as a subring of A. When 14 = 0,
the ring A is the zero ring, i.e., A = {0}.

Let A[X] be the ring of polynomials in the symbol X with coefficients in A. If A4 is
an integral domain, then deg(fg) = deg(f) + deg(g), and so A[X] is also an integral
domain; moreover, A[X]* = A*.

Let A be an algebra over a field k. If A is an integral domain and finite as a k-algebra,
then it is a field, because, for each nonzero a € A, the k-linear map x — ax: A — A is
injective, and hence is surjective; the element a has an inverse. If A is an integral domain
and each element of A is algebraic over k, then for each a € A, k[a] is an integral domain
finite over k, and hence contains an inverse of @; again A is a field.

2 Ideals

Let A be aring. An ideal a in A is a subset such that

¢ ais asubgroup of A regarded as a group under addition;

o a€eaq,reA=raca.
The ideal generated by a subset S of A is the intersection of all ideals a containing A —
it is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the
form > r;s; with r; € A, s; € S. The ideal generated by the empty set is the zero ideal
{0}. When S = {s1, 52, ...}, we write (s1, 52, ...) for the ideal it generates.

2This notation differs from Bourbaki’s, who writes A for the multiplicative monoid A ~. {0} and A* for
the group of units. We shall never need the former, and * is overused.
3The term “module-finite” is also used.



2 IDEALS 3

An ideal is principal if it is generated by a single element. Such an ideal (a) is proper
if and only a is not a unit. Thus a ring A is a field if and only if 14 # 0 and A contains no
nonzero proper ideals.

Let a and b be ideals in A. The set {a + b | a € a, b € b} is an ideal, denoted a + b.
The ideal generated by {ab | a € a, b € b} is denoted by ab. Clearly ab consists of all
finite sums ) _a;b; witha; € aand b; € b, and ifa = (ay,...,a,) and b = (by,...,by),
then ab = (a1b1,....aib;,...,amby). Note that ab C a4 = aand ab C bA = b, and so

abCanb. (D)

The kernel of a homomorphism A — B is an ideal in A. Conversely, for any ideal a in
aring A, the set of cosets of a in A forms aring A/a, and a + a + a is a homomorphism
@: A — A/a whose kernel is a. There is a one-to-one correspondence

—¢(b)

b
{ideals of A containing a} «——— {ideals of A/a}. 2)
¢~ 1(b)<b

For any ideal b of A, ¢~ lp(b) = a + b.
Anideal pin A is prime ifp # Aandab € p = a € porb € p. Thus p is prime if and
only if A/p is nonzero and has the property that

ab=0, b#0=a=0,

i.e., A/p is an integral domain.

An ideal m in A is maximal if it is maximal among the proper ideals in A. Therefore
(see[2), an ideal m is maximal if and only if the quotient ring A/m is nonzero and has no
proper nonzero ideals, and so is a field. Note that

m maximal == m prime.
The radical rad(a) of an ideal a is
{feA| fl ea,somer € N, r > 0}.

An ideal a is said to be radical if it equals its radical, ie., if f©" € a — f € a.
Equivalently, a is radical if and only if A/a is a reduced ring, i.e., a ring without nonzero
nilpotent elements (elements some power of which is zero). Since integral domains are
reduced, prime ideals (a fortiori maximal ideals) are radical.

If b <> b’ under the one-to-one correspondence (2)), then A/b ~ (4/a)/b’, and so b is
prime (resp. maximal, radical) if and only if b’ is prime (resp. maximal, radical).

PROPOSITION 2.1. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad(rad(a)) = rad(a).

PROOF. (a)Ifa € rad(a), then clearly fa € rad(a) forall f € A. Suppose a,b € rad(a),
with say a” € a and b* € a. When we expand (a + b)"** using the binomial theorem, we
find that every term has a factor a” or *, and so lies in a.

(b) If a” € rad(a), then a™ = (a")® € a for some s. o
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Note that (b) of the proposition shows that rad(a) is radical, and therefore is the smallest
radical ideal containing a.

If a and b are radical, then a N b is radical, but a + b need not be: consider, for example,
a=(X?2-Y)and b = (X2 + Y); they are both prime ideals in k[X, Y] (bybelow),
but a + b = (X2,Y), which contains X2 but not X.

PROPOSITION 2.2. The radical of an ideal is equal to the intersection of the prime ideals
containing it.

PROOF. If a = A, then the set of prime ideals containing it is empty, and so the intersection
is A. Thus we may suppose that a is a proper ideal of A. As prime ideals are radical, rad(a)
is contained in every prime ideal p containing a, and so rad(a) C mpDa p.

Conversely, suppose that f ¢ rad(a), and let S be the set of ideals in A containing a
but no power of f. Then S is nonempty, because (0) € S. Suppose S contains a maximal
element ¢, and let bb’ € ¢. If neither b nor b’ is in ¢, then ¢ + (b) and ¢ + (b’) properly
contain ¢, and so do not lie in S'. Therefore

ff=c+ab, fT=c +db somer,r'>1,c,c’€c a,a € A.

Hence
7 =cc' +abc’ +a'b'c + ad'bb’ e ¢,

which is a contradiction. Therefore ¢ is prime, and so f ¢ ﬂpgap.

It remains to show that S always contains a maximal element. If 4 is noetherian (see
§3| below), this is automatic. Otherwise, we apply Zorn’s lemma to S. Let by C by C ---
be a chain of ideals in S, and let b =[] b;. Then b € S, because otherwise some power of
f lies in b, and hence in some b;, which contradicts the definition of S. Therefore b is an
upper bound for the chain. As every chain in S has an upper bound, Zorn’s lemma shows
that S has a maximal element. o

REMARK 2.3. The argument in the last paragraph of the proof applied to the set S of ideals
containing a but not 1 shows that every proper ideal of A4 is contained in a maximal ideal.

DEFINITION 2.4. The Jacobson radical J of a ring is the intersection of the maximal ideals
of the ring:
J(A) = ﬂ{m | m maximal in A}.

A ring A is local if it has exactly one maximal ideal. For such a ring, the Jacobson
radical is m — this is the most important example.

PROPOSITION 2.5. An element c of A is in the Jacobson radical of A if and only if 1 —ac
is a unit for alla € A.

PROOF. We prove the contrapositive: there exists a maximal ideal m such that ¢ ¢ m if and
only if there exists an @ € A such that 1 — ac is not a unit.

<: As 1 —ac is not a unit, it lies in some maximal ideal m of 4 (by[2.3). Then ¢ ¢ m,
because otherwise 1| = (1 —ac) + ac € m.

=>: Suppose that ¢ is not in the maximal ideal m. Then m+(c) = A, andso 1 = m+ac
forsome m e manda € A. Now 1 —ac € m, and so it is not a unit. o
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PROPOSITION 2.6. Let S be a nonempty finite set of ideals in A, at most one of which is
not prime. Any ideal contained in the union of the ideals in §' is contained in at least one of
the ideals.

PROOF. We prove the contrapositive:

if the ideal a in not contained in any of the ideals in S, then it is not contained
in their union.

For |S| = 1, there is nothing to prove, and so we assume that |S| = r +1 > 1 and
(inductively) that the statement is true for r. We can list the elements of S as p1,...,Pr+1
with p, 41 prime. As a is not contained in any of the ideals py, ..., pr+1, by induction, for
each i, there exists an a; in a not in the union of the ideals py, ..., pi—1,Pi+1,--., Pr41. If
some a; does not lie in p;, then that a; € a ~ p; U ... U p,41, and the proof is complete.
Thus assume that every a; € p;, and consider

a=ap --ar+ary1.

Because p; 1 is prime and none of the elements ay, ..., a, lies in p,4 1, their product does
not lie in p,41; however, a,4+1 € Pr+1, and so a ¢ p,41. Next consider a prime p; with
i < r. Inthis case aj ---a, € p; because the product involves a;, but a,+1 ¢ p;, and so
againa ¢ p;. Nowa € a~ p; U...Up,+1, and so a is not contained in the union of the

pi. ]
EXTENSION AND CONTRACTION OF IDEALS

Let ¢: A — B be a homomorphism of rings.

NOTATION 2.7. For any ideal b of B, ¢~!(b) is an ideal in A, called the contraction of b
to A, which is often denoted b¢. For any ideal a of A, the ideal ¢(a) B generated by ¢(a) is
called the extension of a to B, and is often denoted a®.

When ¢ is surjective, ¢(a) is already an ideal, and when A is a subring of B, b¢ = bN A.

2.8. There are the following equalities (a, a’ ideals in A; b, b” ideals in B):
(a+a) =a®+d° (ad)®=0a%" (bNDH) =b°Nb° rad(b)® =rad(b®).
2.9. There are the following relations (a an ideal of 4; b an ideal of B):

acCa®, b°°Cb, a®Ca®’ b CbC.

Therefore, extension and contraction define inverse bijections between the set of contracted
ideals in A and the set of extended ideals in B:

{b€ C A | banidealin B} <> {a® C B | a anideal in A}

Note that, for any ideal b in B, the map A/b¢ — B/b is injective, and so b€ is prime
(resp. radical) if b is prime (resp. radical).
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THE CHINESE REMAINDER THEOREM

The ideals of A x B are all of the form a x b with a and b ideals in A and B. To see
this, note that if ¢ is an ideal in A x B and (a, b) € ¢, then (a,0) = (1,0)(a,b) € ¢ and
(0,b) = (0,1)(a, b) € c. Therefore, ¢ = a x b with

a={a|(@0)ec}, b=1{b]|(0,b)€c}.

THEOREM 2.10 (CHINESE REMAINDER THEOREM). Let ay,...,qa, be ideals in a ring
A. If a; is coprime to a; (i.e., a; + a; = A) wheneveri # j, then the map

A— Ajay x---x A/a, 3)
is surjective, with kernel [[a; = () a;.

PROOF. Suppose firstthatn = 2. As a; + a; = A, there exista; € a; suchthata; +ap =
1. Then ajxz 4+ apx1 maps to (x; mod ay, X mod a;), which shows that (3)) is surjective.
For each i, there exist elements a¢; € a; and b; € a; such that

a; +b; =1,alli > 2.

The product [];>,(a; + b;) = 1, and lies in a; + [[;5, a;, and so
a; + 1_[ a; = A.
i>2

We can now apply the theorem in the case n = 2 to obtain an element y; of A such that

y1 =1moda;, y; =0mod Ha,-.

i>2
These conditions imply
yi=1moda;, y;=0modaj,allj > 1.
Similarly, there exist elements ys, ..., ¥, such that
yi =1moda;, y; =0moda;forj #i.

The element x = ) x; y; maps to (x; moday,..., X, moda,), which shows that is
surjective.

It remains to prove that (a; = [[a;. Obviously [[a; C ()a;. Suppose first that
n =2,andleta; + a; = 1, as before. For ¢ € a; N a,, we have

¢c=aic+azcea-ay

which proves that a; N ay = aja;. We complete the proof by induction. This allows us
to assume that [[;., a; = (");>, a;. We showed above that a; and [[,., a; are relatively

prime, and so
ar-([Ja) =arn(]an
i>2 i>2

by the n = 2 case. Now a1+ ([[;5, ) = [[;>y @i and ar N ([ [;550) = a1N((;5p ) =
N i>1 %is which completes the proof. 5
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3 Noetherian rings

PROPOSITION 3.1. The following conditions on a ring A are equivalent:
(a) every ideal in A is finitely generated;
(b) every ascending chain of ideals a; C ap C --- eventually becomes constant, i.e., for
somem, Oy = Opmipq = -
(c) every nonempty set of ideals in A has a maximal element (i.e., an element not prop-
erly contained in any other ideal in the set).

PROOF. (a) = (b): If a; C ap C --- is an ascending chain, then a = | J ¢; is an ideal, and
hence has a finite set {ay,...,a,} of generators. For some m, all the a; belong a,,, and
then

O = U1 =+ = 0.

(b) = (c): Let S be a nonempty set of ideals in A. Let a; € S; if a; is not maximal in
S, then there exists an ideal a, in S properly containing a;. Similarly, if a, is not maximal
in S, then there exists an ideal a3 in .S properly containing a,, etc.. In this way, we obtain
an ascending chain of ideals a; C ap C a3 C --- in S that will eventually terminate in an
ideal that is maximal in S.

(c) = (a): Let a be an ideal, and let S be the set of finitely generated ideals contained in
a. Then S is nonempty because it contains the zero ideal, and so it contains a maximal ele-

ment ¢ = (ay,...,a,). If ¢ # a, then there exists an elementa € a~ ¢, and (ay,...,dr,q)
will be a finitely generated ideal in a properly containing c. This contradicts the definition
of c. o

A ring A is noetherian if it satisfies the conditions of the proposition. For example,
fields and principal ideal domains are noetherian. On applying (c) to the set of all proper
ideals containing a fixed proper ideal, we see that every proper ideal in a noetherian ring is
contained in a maximal ideal. We saw in that this is, in fact, true for any ring, but the
proof for non-noetherian rings requires Zorn’s lemma.

A quotient A/a of a noetherian ring A4 is noetherian, because the ideals in A/a are all
of the form b/a with b an ideal in A, and any set of generators for b generates b/a.

PROPOSITION 3.2. Let A be a ring. The following conditions on an A-module M are
equivalent:
(a) every submodule of M is finitely generated;
(b) every ascending chain of submodules M1 C M, C --- eventually becomes constant.
(c) every nonempty set of submodules of M has a maximal element.

PROOF. Essentially the same as that of (3.1). O

An A-module M is noetherian if it satisfies the equivalent conditions of the proposition.
Note that a ring A is noetherian if and only if it is noetherian as an A-module (because the
submodules of A are exactly the ideals in A4).

PROPOSITION 3.3. Let .
0o->M S5M-L M >0

be an exact sequence of A-modules. The module M is noetherian if and only if M’ and
M" are both noetherian.
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PROOF. =: An ascending chain of submodules in M’ or in M” gives rise to an ascending
chain in M, and therefore becomes constant.

&: That ascending chains of submodules of M eventually become constant follows
from the statement:

Submodules N’ C N of M are equal if ¢(N') = g(N) and i "' (N') =
i~Y(N).

To prove this, let x € N; because g(N') = q(N), there exists an x’ € N’ such that g(x) =
q(x"); now g(x—x’) = 0, and so there exists y € M’ suchthati(y) = x—x’. Asi(y) € N,
we have y € i"}(N) =i~} (N’),and soi(y) € N'. Therefore x = x’ +i(y) € N'. ¢

PROPOSITION 3.4. Every finitely generated module over a noetherian ring is noetherian.

PROOF. As such a module is a quotient of A” for some r, it suffice to show that A" is
noetherian, but this can be proved by induction on r using the exact sequences

i(al,...,ar_l) = (al,...,ar_l,O)

0 A a4 40
q(ai,...,ar) = ar. -

THEOREM 3.5 (HILBERT BASIS THEOREM). If A is noetherian, then so also is every finitely
generated A-algebra.

In particular, a polynomial ring A[X71, ..., X,] over a noetherian ring is noetherian.

PROOF. As A[x1,...,xs] = A[X1,...,Xp—1][xn], an induction argument shows that it
suffices to prove the theorem for an A-algebra generated by a single element. But such an
A-algebra is a quotient of the polynomial algebra A[X], and so it suffices to show that A[X]
is noetherian.

Recall that for a polynomial

fX)=coX " +c1 X" V44, €A co#0,

co is the leading coefficient of f.

Let a be an ideal in A[X], and let ¢; be the set of elements of A that occur as the leading
coefficient of a polynomial in a of degree i (we also include 0). Then ¢; is an ideal in 4,
and ¢;_; C ¢;, because if c X'~ 4. .. € a, then so also does X(CXi_l +--0) = cXi4---.
As A is noetherian, the sequence of ideals

¢ CepC-Cg¢; C---

eventually becomes constant, say, ¢; = ¢g4+1 = ... (and ¢4 contains the leading coeffi-
cients of all polynomials in a).

For each i < d, choose a finite generating set {c;1, ¢j2, ...} for ¢;, and for each (i, j),
choose a polynomial f;; € a of degree i with leading coefficient ¢;;. We shall show that
the f;;s generate a.

Let f € a; we have to show that f € (f;j). Suppose first that f has degree s > d.
Then f = cX® +--- withc € ¢4, and so

c= E jadej» somea; € A.
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Now

f —Zj ajfa; X577

is either zero, and f € (fi;), or it has degree < deg(f). If the latter, we repeat the
argument, until we obtain a polynomial f with degree s < d that differs from the original
polynomial by an element of (f;;). By a similar argument, we then construct elements

aj € A such that
f=22 a4t

is either zero or has degree < deg( f). If the latter, we repeat the argument, until we obtain
ZEe10. O

PROPOSITION 3.6 (NAKAYAMA’S LEMMA). Let A be a noetherian ring, let a be an ideal
in A contained in all maximal ideals of A, and let M be a finitely generated A-module.

(a) If M = aM,then M = 0.

(b) If N is a submodule of M such that M = N + aM,then M = N.

PROOF. (a) Suppose M # 0. Choose a minimal set of generators {ey,...,e,} for M,
n > 1, and write
ey =aier +---+axe,, a €a.

Then
(1 —ay)er = azez + -+ aney
and, as 1 —a is a unit (see @ ea,...,e, generate M. This contradicts the minimality of
the set.
(b) The hypothesis implies that M/N = a(M/N), and so M/N = 0. o

Now let A be a local noetherian ring with maximal ideal m. When we regard m as an
A-module, the action of A on m/m? factors through k £4 /m.

COROLLARY 3.7. The elementsay, . ..,a, of m generate m as an ideal if and only if their
residues modulo m? generate m/m? as a vector space over k. In particular, the minimum
number of generators for the maximal ideal is equal to the dimension of the vector space
m/m?2.

PROOF. If ay,...,a, generate the ideal m, it is obvious that their residues generate the
vector space m/m?2. Conversely, suppose that their residues generate m/m?, so that m =
(a1, ...,an) +m?2. Since A is noetherian and (hence) m is finitely generated, Nakayama’s
lemma, applied witha = m, M = m,and N = (ay,...,a,),showsthatm = (ay,...,a,).o

DEFINITION 3.8. Let A be a noetherian ring.
(a) The height ht(p) of a prime ideal p in A is the greatest length d of a chain of distinct
prime ideals

P ="Pa DPa—1DD po. 4)
(b) The (Krull) dimension of A is sup{ht(p) | p C A, p prime}.
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Thus, the Krull dimension of a ring A is the supremum of the lengths of chains of
prime ideals in A (the length of a chain is the number of gaps, so the length of (4) is d).
For example, a field has Krull dimension 0, and conversely an integral domain of Krull
dimension 0 is a field. The height of every nonzero prime ideal in a principal ideal domain
is 1, and so such a ring has Krull dimension 1 (provided it is not a field).

We shall see in that the height of any prime ideal in a noetherian ring is finite.
However, the Krull dimension of the ring may be infinite, because it may contain a sequence
P1, P2, P3, ... of prime ideals such that ht(p;) tends to infinity (see Krull|1938 or [Nagata
1962).

LEMMA 3.9. In a noetherian ring, every set of generators for an ideal contains a finite
generating set.

PROOF. Let a be an ideal in a noetherian ring A, and let S be a set of generators for a.

Because A is noetherian, a admits a finite generating set, say, a = (a1, ...,d,). Each a;
lies in the ideal generated by a finite subset S; of S, and {J;_; _, Si is finite and generates
a. |

THEOREM 3.10 (KRULL INTERSECTION THEOREM). Let a be an ideal in a noetherian
ring A. If a is contained in all maximal ideals of A, then ﬂnzl a” = {0}.

PROOF. We shall show that, for any ideal a in a noetherian ring,

ﬂnzl o =q- ﬂnzl a”. 5)

When a is contained all maximal ideals of A, Nakayama’s lemma then shows that (), ; a”
is zero. -

Let ay,...,a, generate a. Then a” is generated by the monomials of degree n in
the a;. In other words, a” consists of the elements of A of the form g(ay,...,a,) for
some homogeneous polynomial g(X1,..., X;) € A[X1,..., X,] of degree n. Let S,, be
the set of homogeneous polynomials f of degree m such that f(ai.....a;) € (), 0",
and let a be the ideal generated by all the S,,. According to the lemma, there exists a
finite set { f1,..., fs} of elements of | J,, S, that generates a. Let d; = deg f;, and let
d = maxd;. Letb € (), a”; in particular, b € a?*1 andso b = f(a,...,ay) for
some homogeneous f of degree d + 1. By definition, f € Sy4; C a, and so

f=ga1fi+-+gf

for some g; € A. As f and the f; are homogeneous, we can omit from each g; all terms
not of degree deg f — deg f;, since these terms cancel out. Thus, we may choose the g; to
be homogeneous of degree deg f —deg f; =d + 1 —d; > 0. Then

b= flar....ar) = ) gilar.....a) filar,....a;) €a-) a",
which completes the proof of (5). O

The equality (3)) can also be proved using primary decompositions — see

PROPOSITION 3.11. In a noetherian ring, every ideal contains a power of its radical; in
particular, some power of the radical of the ring is zero.
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PROOF. Letay,...,a, generate rad(a). For each i, some power of a;, say al.r[, lies in a.
Then every term of the expansion of

(Clal +"‘+Cnan)r1+."+rn, ci EA,

has a factor of the form al.r ! for some i, and so lies in a. o

4 Unique factorization

Let A be an integral domain. An element a of A is irreducible if it is not zero, not a unit,
and admits only trivial factorizations, i.e., those in which one of the factors is a unit. If every
nonzero nonunit in A can be written as a finite product of irreducible elements in exactly
one way up to units and the order of the factors, then A is called a unique factorization
domain. In such a ring, an irreducible element a can divide a product bc only if it divides
b or ¢ (write bc = aq and express b, c,q as products of irreducible elements). Every
principal ideal domain, for example, the polynomial ring k[X] over a field k, is a unique
factorization domain.

PROPOSITION 4.1. Let (a) be a nonzero proper principal ideal in an integral domain A.
If (a) is a prime ideal, then a is irreducible, and the converse holds when A is a unique
factorization domain.

PROOF. Assume (a) is prime. Because (a) is neither (0) nor A, a is neither zero nor a unit.
If a = bc, then bc € (a), which, because (a) is prime, implies that b or ¢ is in (a), say
b = aq. Now a = bc = agc, which implies that gc = 1, and that ¢ is a unit.

For the converse, assume that « is irreducible. If bc¢ € (a), then a|bc, which (as we
noted above) implies that a|b or a|c, i.e., that b or ¢ € (a). o

PROPOSITION 4.2 (GAUSS’S LEMMA). Let A be a unique factorization domain with field
of fractions F. If f(X) € A[X] factors into the product of two nonconstant polynomials
in F[X], then it factors into the product of two nonconstant polynomials in A[X].

PROOF. Let f = gh in F[X]. For suitable ¢,d € A, the polynomials g; = cg and
h1 = dh have coefficients in 4, and so we have a factorization

cdf = g1hy in A[X].
If an irreducible element p of A divides cd, then, looking modulo (p), we see that

0=g1-h1in (4/(p)) [X].

According to Proposition the ideal (p) is prime, and so (4/(p))[X] is an integral
domain. Therefore, p divides all the coefficients of at least one of the polynomials g1, /1,
say g1, so that g; = pg», for some go € A[X]. Thus, we have a factorization

(cd/p)f = gahy in A[X].

Continuing in this fashion, we can remove all the irreducible factors of c¢d, and so obtain a
factorization of f in A[X]. o
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Let A be a unique factorization domain. A nonzero polynomial
f=a+a1 X+ +anX"

in A[X] is said to be primitive if the coefficients a; have no common factor (other than
units). Every polynomial f in A[X] can be written f = c(f) - f1 with ¢(f) € A and
f1 primitive. The element c( f), well-defined up to multiplication by a unit, is called the
content of f.

LEMMA 4.3. The product of two primitive polynomials is primitive.
PROOF. Let

f=ao+a1X+--~—|—ame
g=b0+b1X—i—--~—|—an",

be primitive polynomials, and let p be an irreducible element of A. Let a;, be the first
coefficient of f not divisible by p and b, the first coefficient of g not divisible by p. Then
all the terms in ), ;_; 1 ;, aib; are divisible by p, except aj,b j,, which is not divisible
by p. Therefore, p doesn’t divide the (ip + jo)th-coefficient of fg. We have shown that
no irreducible element of A divides all the coefficients of fg, which must therefore be
primitive. o

LEMMA 4.4. For polynomials f,g € A[X], c(fg) = c(f) - c(g); hence every factor in
A[X] of a primitive polynomial is primitive.

PROOF. Let f = c(f)f1 and g = c(g)g1 with f; and g, primitive. Then fg =
c(f)c(g) fig1 with figq primitive, and so c¢(fg) = c(f)c(g). o

PROPOSITION 4.5. If A is a unique factorization domain, then so also is A[X].

PROOF. We first show that every element f of A[X] is a product of irreducible elements.
From the factorization f = c(f) f1 with f primitive, we see that it suffices to do this for
f primitive. If f is not irreducible in A[X], then it factors as f = gh with g, 4 primitive
polynomials in A[X] of lower degree. Continuing in this fashion, we obtain the required
factorization.

From the factorization f = c(f) f1, we see that the irreducible elements of A[X] are
to be found among the constant polynomials and the primitive polynomials.

Let

f=ca-emfr--fn=di--drg1--gs

be two factorizations of an element f of A[X] into irreducible elements with the ¢;, d;
constants and the f;, g; primitive polynomials. Then

c(f)=c1--cm = dy--dy (up to units in A),

and, on using that A is a unique factorization domain, we see that m = r and the ¢;s differ
from the d;s only by units and ordering. Hence,

J1-o fn = &1+ &5 (up to units in A).
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Gauss’s lemma shows that the f;, g; are irreducible polynomials in F[X] and, on using
that F[X] is a unique factorization domain, we see that n = s and that the f;’s differ from
the g;’s only by units in F and by their ordering. But if f; = Z—’g j with @ and b nonzero
elements of A4, then bf; = ag;. As f; and g; are primitive, this implies that b = a (up to
a unit in A), and hence that % is a unit in A. O

Let k be a field. A monomial in X1, ..., X, is an expression of the form
Xf‘ e Xgm, aj eN.

The total degree of the monomial is > a;. The degree, deg(f), of a nonzero polyno-
mial f(X1,...,X,) is the largest total degree of a monomial occurring in f* with nonzero
coefficient. Since

deg(fg) = deg(f) + deg(g),

k[X1,...,Xy] is an integral domain and k[X1, ..., X,]* = k*. Therefore, an element f
of k[X1,..., X,] is irreducible if it is nonconstant and f = gh = g or & is constant.
THEOREM 4.6. Thering k[X1,..., X,] is a unique factorization domain.

PROOF. Note that k[X1,..., Xn] = k[X1,..., Xn—1][Xn]: this simply says that every
polynomial f in n variables X1, ..., X, can be expressed uniquely as a polynomial in X,
with coefficients in k[ X1, ..., Xn—1],

f(Xl,...,Xn) :a()(Xl,...,Xn_l)X,: 4+ +ar(X1,..., Xn-1).

Since k[X1] is a unique factorization domain, the theorem follows by induction from Propo-

sition [4.3] o

COROLLARY 4.7. A nonzero proper principal ideal (f) in k[X1, ..., X,] is prime if and
only f is irreducible.

PROOF. Special case of {.1). O

S Integrality

Let A be a subring of a ring B. An element « of B is said to be integral over A if it is a
root of a moniqﬂ polynomial with coefficients in 4, i.e., if it satisfies an equation

" +a1 " '+ .. +a, =0, a€A.

In the next proof, we shall need to apply Cramer’s rule. As usually stated in linear
algebra courses, this says that, if x1, ..., X, is a solution to the system of linear equations

m
E cijxj=di, i=1,...,m,
Jj=1

then
x; = det(C;)/ det(C)

4A polynomial is monic if its leading coefficient is 1, i.e., f(X) = X"+ terms of degree < n.
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where C = (c¢;;) and C; is obtained from C by replacing the elements of the jth column
with the d;s. When one restates the equation as

det(C) - x; = det(C;)

it becomes true over any ring (whether or not det(C) is invertible). The proof is elementary—
essentially it is what you wind up with when you eliminate the other variables (try it for
m = 2). Alternatively, expand out

c11 ... chij oo Cim
detC; =
Cml oo D CmjXj ... Cmm
using standard properties of determinants.

PROPOSITION 5.1. Let A be a subring of a ring B. An element o of B is integral over
A if and only if there exists a faithqu] finitely generated A-submodule M of B such that
aM C M (in fact, we can take M to be A[w], the A-subalgebra generated by o).

PROOF. =: Suppose
" +a @ '+ 4a,=0, a €A.

Then the A-submodule M of B generated by 1, «, ..., @~ ! has the property that aM C M.
«<: Let M be a nonzero A-module in B such that «M C M, and let vq,...,v, be a
finite set of generators for M. Then, for each i,

av; = ) a;jvj,somea;; € A.

We can rewrite this system of equations as

(¢ —ap)vi —appvp —azvz —--- =0
—a21v1 + (@ — azz)vz —azzvz —--- =0
e =0,

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s rule tells us that
det(C) - v; = O for all i. As the v; generate M and M is faithful, this implies that
det(C) = 0. On expanding out the determinant, we obtain an equation

an+clan—1+62an—2+...+cn:()’ CieA. O

PROPOSITION 5.2. An A-algebra B is finite if and only if it is finitely generated and inte-
gral over A (i.e., every element of B is integral over A).

PROOF. <«: Suppose B = A, ..., o] and that
al'-” +ai1a?i_1 +-+ain, =0, aj€A i=1,...,m.

Any monomial in the «;s divisible by a;” is equal (in B) to a linear combination of
monomials of lower degree. Therefore, B is generated as an A-module by the monomi-
also' o, 1 <ri <nj.

=: As an A-module, B is faithful (because a - 1 g = a), and so (5.1)) implies that every
element of B is integral over A. As B is finitely generated as an A-module, it is certainly
finitely generated as an A-algebra. o

5An A-module M is faithful if aM = 0, a € A, implies a = 0.
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THEOREM 5.3. Let A be a subring of the ring B. The elements of B integral over A form
a subring of B.

PROOF. Let @ and B be two elements of B integral over A. Then Alw, B] is a faithful
finitely generated A-submodule of B, which is stable under multiplication by o + 8 and
af. According to (5.1)), this implies that & & 8 and «f are integral over A. o

DEFINITION 5.4. Let A be a subring of the ring B. The integral closure of A in B is the
subring of B consisting of the elements integral A .

PROPOSITION 5.5. Let A be an integral domain with field of fractions F, and let L be a
field containing F. If @ € L is algebraic over F, then there exists ad € A such that do is
integral over A.

PROOF. By assumption, « satisfies an equation
o +a™ '+ +a, =0 a €F.

Let d be a common denominator for the a;, so that da; € A for all i, and multiply through
the equation by d"™:

d™e™ + a;d™a™ V4 - 4 ayd™ = 0.
We can rewrite this as
(do)™ + ard(da)™ 1 + -+ a;d™ = 0.
Asaid,...,a,d™ € A, this shows that do is integral over A. o

COROLLARY 5.6. Let A be an integral domain and let L be an algebraic extension of the
field of fractions of A. Then L is the field of fractions of the integral closure of A in L.

PROOF. In fact, the proposition shows that every element of L is a quotient 8/d with 8
integral over A and d € A. o

DEFINITION 5.7. An integral domain A is integrally closed if it is equal to its integral
closure in its field of fractions F, i.e., if

o€ F, ointegralover A — o« € A.
PROPOSITION 5.8. Every unique factorization domain is integrally closed.

PROOF. Leta/b, a,b € A, be integral over A. If a/b ¢ A, then there is an irreducible
element p of A dividing b but not a. As a/b is integral over A, it satisfies an equation

(a/b)" +ai(a/b)" 1 +.-.-4a,=0,a; € A.
On multiplying through by ", we obtain the equation
a* +a1d" b+ -+ a,b™ = 0.

The element p then divides every term on the left except a”, and hence must divide a”.
Since it doesn’t divide a, this is a contradiction. o
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PROPOSITION 5.9. Let A be an integrally closed integral domain, and let L be a finite
extension of the field of fractions F of A. An element « of L is integral over A if and only
if its minimum polynomial over F has coefficients in A.

PROOF. Let « be integral over A4, so that
" +a@d™ '+ +a, =0, somea; € A,m>0.

Let o be a conjugate of «, i.e., a root of the minimum polynomial f(X) of « over F in
some algebraic closure of L. Then there is an F'-isomorphis

o:Fla] — Fld'], o(a)=0d
On applying o to the above equation we obtain the equation
o™+ a4 ay, =0,

which shows that «’ is integral over A. Hence all the conjugates of « are integral over
A, and it follows from that the coefficients of f(X) are integral over A. They lie in
F, and A is integrally closed, and so they lie in A. This proves the “only if” part of the
statement, and the “if” part is obvious. o

COROLLARY 5.10. Let A be an integrally closed integral domain with field of fractions F,
and let f(X) be a monic polynomial in A[X]. Then every monic factor of f(X) in F[X]
has coefficients in A.

PROOF. It suffices to prove this for an irreducible monic factor g(X) of f(X)in F[X]. Let
o be a root of g(X) in some extension field of F'. Then g(X) is the minimum polynomial
a, which, being also a root of f(X), is integral. Therefore g(X) € A[X]. 0

THEOREM 5.11 (NOETHER NORMALIZATION THEOREM). Every finitely generated alge-
bra A over a field k contains a polynomial algebra R such that A is a finite R-algebra.

In other words, there exist elements f1, ..., fr of A suchthat Aisafinite k[ f1,..., fr]-
algebra and f1, ..., f; are algebraically independent over k.

PROOF. We may suppose that
A=kl[x1,...,x5] = k[X1,..., Xn]/a.

Let f1,..., fa beelementsofk[Xl,_. .., Xp]suchthatk[Xy,..., X,]isafinite k[ f1,..., fa]-
algebra (e.g., x1,..., xn), and let f; be the image of f; in A. We may suppose that the f;

have been nu_mbered_so that f1,..., f, are nonzero but f’tl = = fn = 0. Then A
is a finite k[ f1, ..., fr]-algebra, and we shall show that, if f1,..., f, are not algebraically
independent, then it is possible to replace { fi,..., f,} with a similar set having fewer

nonzero images in A. By repeating the argument, we will eventually arrive at an n-tuple
whose nonzero images in A are algebraically independent.
If fi1,..., fr are algebraically dependent, then there exists a nonzero polynomial

P=>"cjjX{" X} ek[X1.....X/]

6Recall that the homomorphism X + «: F[X] — F[a] defines an isomorphism F[X]/(f) — F[a], where
£ is the minimum polynomial of c.
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such that
def
w1 = P(f1,..., fr) €Ea.

Fori =2,...,r,setw;, = f; — flmi for some positive integer m. On expanding out
wy = P(flv f1m2 + wa,..., f1mr + wy),
we obtain an equality
wy = Z Cjrejr (f1j1+m2j2+'"+mrj’ + terms of lower degree in f7).
When m is chosen sufficiently large, the exponents
Jim? e tm’

will be distinct — let N be the largest of them. Then the last equality can be rearranged to
express le as a polynomial co + ¢1 f1 + -+ + cN_lle_l with ¢; € k[wy,...,w,]. It
follows that

KUt Jad © ) kwn e owr frat Jal - S

Therefore the elements wy, ..., W, fr+1, ..., fn have the property that k[X, ..., X,] is
a finite k[wy, ..., wr, fr+1,..., fn]-algebra, but, because w; € a, at most r — 1 < r of
them have nonzero image in A. O

6 Rings of fractions
A multiplicative subset of a ring A is a subset S with the property:
leS, abeS = abes.

In other words, it is a nonempty subset closed under the formation of finite products.
Let S be a multiplicative subset of A, and define an equivalence relation on A x S by

(a,s) ~ (b,t) < u(at —bs) =0forsomeu € S.
Write $ for the equivalence class containing (a, s), and define addition and multiplication
in the obvious way:

a b _ at+bs
s+t_ st

It is easy to show that these are well defined, i.e., do not depend on the choices of represen-
tatives for the equivalence classes, and that we obtain in this way a ring

ST'A={%]acA seS}

and a ring homomorphism a - §: A BN A, whose kernel is
{a € A|sa = 0forsomes € S}.

If S contains no zero-divisors, for example, if A is an integral domain and 0 ¢ S, then
is: A — ST!Ais injective. At the opposite extreme, if 0 € S, then S~ 4 is the zero ring.



6 RINGS OF FRACTIONS 18

PROPOSITION 6.1. The pair (S™! A, ig) has the following universal property:

is
every element of S maps to a unit in S~' A, and A i S_:1A
any other ring homomorphism «: A — B with 3
this property factors uniquely throughig, * l;

PROOF. Let B: S™'A4 — B be a ring homomorphism such that 8 o ig = a. Then

s§=a = BEBS) = pla).

and so

B(%) = al@)a(s)™". (6)
This shows that there can be at most one such homomorphism §. Define 8 by the formula
(6). Then

%:% = s(ad —bc) =0somes € S,

which implies that a(a)x(d) — a(b)a(c) = 0 because «(s) is a unit in B. This shows that
B is well-defined, and it is easy to check that it is a homomorphism. O

As usual, this universal property determines the pair (S~ A4, i) uniquely up to a unique
isomorphismm

When A is an integral domain and S = A ~\ {0}, F £ S$1 4 is the field of fractions of
A. In this case, for any other multiplicative subset 7' of A not containing 0, the ring 7~ A
can be identified with the subring of F consisting of the fractions ¢ witha € Aandt € T

EXAMPLE 6.2. Let h € A. Then S, = {1,h,h?,...} is a multiplicative subset of 4, and
we let Ay = S 1 A. Thus every element of A, can be written in the form a/h™, a € A,
and

= hin = hN(ah™ —bh™) =0, some N.

If A is nilpotent, then A; = 0, and if A is an integral domain with field of fractions F' and
h # 0, then Ay, is the subring of F of elements of the form a/h™,a € A, m € N.

EXAMPLE 6.3. Let p be a prime ideal in A. Then S, = A \ p is a multiplicative subset of
A, and we let A, = Sp_lA. Thus each element of Ay can be written in the form ‘C—’, cé¢p,
and

%:% <= s(ad —bc) =0,some s ¢ p.

The subset m = {£ | a € p, s ¢ p} is a maximal ideal in Ay, and it is the only maximal
ideal, i.e., Ap is a local ring. To see this, first check m is an ideal. Next, if m = A, then
1 € m;butif 1 = £ forsomea € pand s ¢ p, then u(s —a) = 0 some u ¢ p, and so
ua = us ¢ p, which contradicts a € p. Finally, m is maximal because every element of 4,
not in m is a unit.

When A is an integral domain with field of fractions F, A, is the subring of F' of
elements of the form %,a € A, s ¢ p.

"Recall the proof: let (A1,i1) and (A3, i) have the universal property in the proposition; because every
element of S maps to a unit in A5, there exists a unique homomorphism «: A7 — A such thatw o i1 = is
(universal property of A1, i1); similarly, there exists a unique homomorphism «’: A — A1 such thata’ oip =
i1; now

o oaoii =d oiy =i = idAl oif,
andso o’ o = id4, (universal property of Aq,i1); similarly, & o o = id4,, and so o and o’ are inverse
isomorphisms.



6 RINGS OF FRACTIONS 19

PROPOSITION 6.4. For any ring A and h € A, the map > a; X' +— 5 % defines an
isomorphism
A[X]/(A —hX) — Ap.

PROOF. (a) If h = 0, both rings are zero, and so we may assume £ # 0. In the ring A[x] =
A[X]/(1 —=hX),1 = hx, and so A is a unit. Let «: A — B be a homomorphism of rings
such that a(h) is a unit in B. The homomorphism Y a; X' +— 3 a(a;)a(h)™': A[X] — B
factors through A[x] because 1 — 21X +— 1 — a(h)a(h)™! = 0, and this is the unique
extension of @ to A[x]. Therefore A[x] has the same universal property as Ay, and so the
two are (uniquely) isomorphic by an A-algebra isomorphism that makes 4~ correspond to
X. 8]

Let S be a multiplicative subset of a ring 4, and let S~! A be the corresponding ring of
fractions. For any ideal a in A, the ideal generated by the image of ain S™! 4 is

S_la:{%laea, s € S}.

If a contains an element of S, then S~!a contains 1, and so is the whole ring. Thus some of
the ideal structure of A is lost in the passage to S~1 A, but, as the next lemma shows, some
is retained.

e def

PROPOSITION 6.5. Let S be a multiplicative subset of the ring A. The map p +— p°¢ =
S~1p is a bijection from the set of prime ideals of A disjoint from S onto the set of all
prime ideals of S~ A, with inverse p > p¢ = {a € A | T € p}. In particular, p*¢ = p for
any prime ideal p of A disjoint from S, and p¢¢ = p for any prime ideal p of S~ A (in fact,
b¢¢ = b for all ideals b of ST A).

PROOE. For an ideal a of A, let a¢ = S~ la, and for an ideal b of S™1A4, let b¢ be the
inverse image of b in 4, so b¢ = {a € A | { € b}.

For an ideal b of S™14, certainly, b D b¢¢. Conversely, if% €b,ae A, s eS,then
7 € b,and soa € b°. Thus § € b, and so b = b°°.

For an ideal a of A, certainly a C a®‘. Conversely, if a € a®®, then % € a, and so

-

= "?/ for some a’ € a, s € S. Thus, t(as —a’) = 0 forsome 7 € S, and so ast € a. If a
a prime ideal disjoint from S, this implies that a € a: for such an ideal, a = a®“.

For any ideal b of S™' 4, A/b¢ < S~1A4/b, and so b€ is prime if b is.

Let a be an ideal of A, and let S be the image of S in A/a. Then S™!A4/a® ~
S~1(A/a), which is a subring of the field of fractions of A/a if a is a prime ideal dis-
joint from S, and so a® is prime in this case. =

i

»

COROLLARY 6.6. If A is noetherian, then so also is S~ A for any multiplicative set S.

PROOF. We saw in the above proof that, b = b€ for any ideal b of S~™!A. As b€ is finitely
generated, so also is (b€)¢ = b. o

PROPOSITION 6.7. Let m be a maximal ideal of a noetherian ring A, and let n = mA,.
For all n, the map
a+m"i—>a+n"A/m" - Ay /0"

is an isomorphism. Moreover, it induces isomorphisms
m"/m" — n" /n"

for all pairs (r,n) withr < n.
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PROOF. The second statement follows from the first, because of the exact commutative
diagram (r < n):

0O — m"/m" —— A/m" —— A/m" —— 0

Lk

0 —— /0" —— Ap/n" —— Ay/n —— 0.

Let S = A~ m,sothat Ay, = S 'A4, and leti: A — A, be the map a — % In order
to show that the map A/m” — A,/n”" is injective, we have to show that i ~!(n”?) = m™.
But n”* = m"A, = S~ !m™, and so we have to show that m™ = ;i~1(§~lm™). If
a € i71(S7'm™), then § = g with b € m™ and s € S. Then s'sa € m™ for some
s’ € S, and so s’sa = 0 in A/m™. The only maximal ideal containing m” is m (because
m’ D m™ = m’ D m), and so the only maximal ideal in A/m™ is m/m™. As s's is not
inm/m™, it must be a unitin A/m™, and as s’sa = 0in A/m™, a mustbe 0 in A/m™, i.e.,
a em™.

We now prove that 4/m” — Ay/n” is surjective. Let ¢ € Ay, a € A, s € A\ m.
The only maximal ideal of A containing m” is m, and so no maximal ideal contains both
s and m™; it follows that (s) + m™ = A. Therefore, there exist b € A and ¢ € m”” such
that sb + ¢ = 1. Because s is invertible in Ay /0™, £ is the unique element of this ring
such that s¢ = a. As s(ba) = a(l — q), the image of ba in Ay, also has this property and
therefore equals <. o

PROPOSITION 6.8. In any noetherian ring, only 0 lies in all powers of all maximal ideals.

PROOF. Let a be an element of a noetherian ring A. If a # 0, then {b | ba = 0} is a
proper ideal, and so it is contained in some maximal ideal m. Then ¢ is nonzero in A, and
so ¢ ¢ (mAy)" for some n (by the Krull intersection theorem [3.10), which implies that

a ¢ m" (by[6.7). o
MODULES OF FRACTIONS

Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an
equivalence relation on M x S by

(m,s) ~ (n,t) < u(mt —ns) =0 forsomeu € S.

Write % for the equivalence class containing (m, s), and define an addition and multiplica-
tion in the obvious way:

m _ n _ mttns am _ am
et =55 7 =% mneM, s,teS, aeA.

It is easy to show that these are well defined, i.e., do not depend on the choices of rep-
resentatives for the equivalence classes, and that we obtain in this way an S~ A-module

SYIM = {% | m e M,s € S} and a homomorphism m + 75: M 25, S7IM of
A-modules whose kernel is

{a € M | sa =0 forsomes € S}.
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PROPOSITION 6.9. The pair (S~' M, i) has the following universal property:

every element of S acts invertibly on S™'M, M — sl
and any other homomorphism o«: M — N of
A-modules with this property factors uniquely o va!
throughig, N.
PROOF. Similar to that of Proposition [6.1] O

PROPOSITION 6.10. The functor M ~ S™1M is exact.
In other words, if the sequence of A-modules
M —->M-—>M
is exact, then so also is the sequence of S~! A-modules
ST'M' - ST'M - ST'M”.

The proof is an easy exercise, which we leave to the reader.

7 Direct limits

DEFINITION 7.1. A partial ordering < on a set / is said to be directed, and the pair (1, <)
is called a directed set, if for all i, j € [ there existsa k € [ such thati, j < k.

DEFINITION 7.2. Let (I, <) be a directed set, and let R be a ring.

(a) Andirect system of R-modules indexed by (/, <) is a family (M;);es of R-modules
together with a family (aj.: M; — Mj);<; of R-linear maps such that ozf = idp;
andaioai.:ol;callifjfk. '

(b) An R-module M together with a family («’: M; — M);cy of R-linear maps satisfy-
inga! =a’o a; all i < j is said to be a direct limit of the system in (a) if it has the
following universal property: for any other R-module N and family (8': M; — N)
of R-linear maps such that 8/ = B/ o oz; all i < j, there exists a unique morphism
o:M — N suchthate oo’ = B’ fori.

As usual, the universal property determines the direct limit (if it exists) uniquely up to a
unique isomorphism. We denote it h_H)l(Mj , ai]), or just h_II)l M,;.

CRITERION

An R-module M together with R-linear maps o' M; — M is the direct limit of a system
(M;, ) if and only if

(@) M = ;e @' (M;), and

(b) m; € M; maps to zero in M if and only if it maps to zero in M ; for some j > i.
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CONSTRUCTION

Let
M= M/M
iel
where M’ is the R-submodule generated by the elements
mj —a;(m,-) alli < j,m; € M;.

Let o’ (m;) = m; + M’. Then certainly o' = a/ o oz; foralli < j. For any R-module N
and R-linear maps B/: M j — N, there is a unique map

@ M,' — N,

iel
namely, " m; + Y B?(m;), sending m; to B (m;), and this map factors through M and

is the unique R-linear map with the required properties.
Direct limits of R-algebras, etc., are defined similarly.

AN EXAMPLE

PROPOSITION 7.3. For any multiplicative subset S of aring A, S™'A ~ lim Aj,, where h
runs over the elements of S (partially ordered by division).

PROOF. When h|h/, say, h' = hg, there is a unique homomorphism A;, — Ay respecting
the maps A — Aj and A — Ay, namely, § ‘;l—é,', and so the rings Ay form a direct
system indexed by the set S. When & € S, the homomorphism 4 — S~1'A4 extends
uniquely to a homomorphism % > %: Ap — S714 , and these homomorphisms are
compatible with the maps in the direct system. Now apply the criterion to see that
S~1A is the direct limit of the Ay,. O

8 Tensor Products

TENSOR PRODUCTS OF MODULES

Let R be aring, and let M, N, and P be A-modules. A map ¢: M x N — P of R-modules
is said to be R-bilinear if

P(x +x',y) = d(x,y) + o (x', y), x,x'eM, yeN

p(x,y +) =d(x.y) + p(x. ¥, xeM, y,y'eN
d)(rxa)’):r(b(xa)’), rER, XEM, yEN
P(x.ry) =ro(x,y), reR, xeM, yeN,

i.e., if ¢ is R-linear in each variable.
An R-module T together with an R-bilinear map ¢: M x N — T

is called the tensor product of M and N over R if it has the following ¢

universal property: every R-bilinear map ¢': M x N — T’ factors M x N r

uniquely through ¢. x al
v

As usual, the universal property determines the tensor product
uniquely up to a unique isomorphism. We write it M ® g N. Note
that

T/

HomR—bilinear(M x N, T) ~ HomR—linear(M ®Rr N, T)-
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Construction

Let M and N be R-modules, and let RMXN) pe the free R-module with basis M x N.
Thus each element R *N) can be expressed uniquely as a finite sum

> ri(xi.yi). ri€R. x;€M, yi€N.
Let K be the submodule of R(M*N) generated by the following elements

x+x,y)—(x,y)—&"y), x,x’eM, yeN

.y +y)—(,y)—(x,y), xeM, yy eN
(rx,y)—r(x,y), reR, xeM, yeN
(x,ry)—r(x,y), reR, xeM, yeN,

and define
M ®gr N = RMN) /g

Write x ® y for the class of (x, y) in M @ g N. Then
X, V)P x®y:MxN —>MQ®grN

is R-bilinear — we have imposed the fewest relations necessary to ensure this. Every
element of M ® g N can be written as a finite sum

Zri(xi ®yi), ri€R, xieM, yieN,
and all relations among these symbols are generated by the following
r+x)®y=x®@y+x'®y

x®+Y)=x®y+x®)
rx®y)=0x) @y =xQry.

The pair (M ®Rg N, (x, y) = x ® y) has the correct universal property.

Extension of scalars

Let R be a commutative ring and let A be an R-algebra (not necessarily commutative) such
that the image of R — A lies in the centre of A. Then we have a functor M — A Qr M
from left R-modules to left A-modules, which has the following universal property:

Homg jinear(M, N) >~ Hom g jinear(A ® g M, N), N an A-module. (7

Behaviour with respect to direct limits

PROPOSITION 8.1. Direct limits commute with tensor products:
lim M; i T i ; ;.
— Z®Rh_n)1Nj h_H)l MZ®RNJ
iel jeJ (i,j)elxJ

PROOF. Using the universal properties of direct limits and tensor products, one sees easily
that li_I)n(Mi ®R N;) has the universal property to be the tensor product of li_n)1M,~ and
H_I)n N;. O
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TENSOR PRODUCTS OF ALGEBRAS

Let k be a ring, and let A and B be k-algebras. A k-algebra C together with homomor-
phisms i:A — C and j: B — C is called the tensor product of A and B if it has the
following universal property:

for every pair of homomorphisms (of k-algebras) At C - B
a:A — R and B: B — R, there exists a unique
homomorphism y:C — R suchthat yoi = « o H!VV;/'B
andyoj =g R

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this
property. We write it A ®; B. Note that

Homk—algebra(A ®k B, R) ~ Homk—algebra(A’ R) x Homk—algebra(Bv R).

Construction

Regard A and B as k-modules, and form the tensor product A ®; B. There is a multiplica-
tionmap A Q@ B x A ®; B - A ® B for which

(a®b)d ®b')=ad ®bb'.
This makes A ®; B into a ring, and the homomorphism
chc(I®)=c®1=1Qc
makes it into a k-algebra. The maps
a—~a®l:A—->Candb—1®b:B - C

are homomorphisms, and they make A ®; B into the tensor product of A and B in the
above sense.

EXAMPLE 8.2. The algebra B, together with the given map k — B and the identity map
B — B, has the universal property characterizing k ®; B. In terms of the constructive
definition of tensor products, the map ¢ ® b + c¢b:k ®; B — B is an isomorphism.

EXAMPLE 8.3. Thering k[X1,..., Xm, Xm=+1,- .., Xm+n], together with the obvious in-
clusions

k[Xla---,Xm] — k[le---,Xm—f-n] <~ k[Xm+1,~--,Xm+n]

is the tensor product of k[X1q,..., Xmn] and k[Xsm+1, ..., Xm+n]. To verify this we only
have to check that, for every k-algebra R, the map

Homy o (k[ X1, ..., Xm+n], R) — Homy g0 (kK[X1,...], R) X Homy o (kK[Xm+1,...], R)
induced by the inclusions is a bijection. But this map can be identified with the bijection
R™T" _ R™ x R™.
In terms of the constructive definition of tensor products, the map
k[Xl, ce ey Xm] ®k ]C[AXrn_i-l7 o e ,Xm_l’_n] —> k[Xl, ceey Xm+n]

sending f ® g to fg is an isomorphism.
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REMARK 8.4. (a) If (by) is a family of generators (resp. basis) for B as a k-module, then
(1 ® by) is a family of generators (resp. basis) for A ®; B as an A-module.
(b) Let k < k’ be a homomorphism of rings. Then

K @rk[Xt,.... X, 2kK[1® X1,...,1Q® X,] = k'[X1,...,Xn].
IfA=k[Xy,...,Xn]/(g1,...,8&m), then
K@ A~k [X1.....Xul/(g1.....8m)-

(c) If A and B are algebras of k-valued functions on sets S and 7 respectively, then
(f®g)(x,y) = f(x)g(y) realizes A ®; B as an algebra of k-valued functionson S x T'.

THE TENSOR ALGEBRA OF A MODULE
Let M be a module over a ring R. For each r > 0, set
T"M =M Qr---Qr M (r factors),

sothat T°M = R and T'M = M, and define

™ = @rzo T" M.

This can be made into a noncommutative graded R-algebra, called the tensor algebra of
M, by requiring that the multiplication map

T"M xTM — T" M

send (M @ -+ @My, Mypy1 Q- @Mpys)tom; -+ @ Myys.
Any R-linear map from M to an R-algebra A (not

necessarily commutative) extends uniquely to an R- M ——TM
algebra homomorphism 7M — A. \ 31 R—algebra
If M is a free R-module with basis x1, ..., X,, then R—linear v

TM is the (noncommutative) polynomial ring over R in
the noncommuting symbols x; (because this R-algebra
has the same universal property as TM).

THE SYMMETRIC ALGEBRA OF A MODULE

The symmetric algebra Sym(M ) of an R-module M is the quotient of TM by the ideal
generated by all elements of 72 M of the form

men—nQ@m, m,neM.

It is a graded algebra Sym(M) = P, o Sym” (M) with Sym” (M) equal to the quotient
of M ®" by the R-submodule generated by all elements of the form

my@--@mp —mg)® - @Mg), mi €M, o €S8, (symmetric group).
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Any R-linear map M — A from M to a commuta- M —— Sym(M)
tive R-algebra A extends uniquely to an R-algebra ho- :

> . . 3! R—algebra
momorphism Sym(M) — A (because it extends to an ~ R—linear v
R-algebra homomorphism TM — A, which factors A
through Sym (M) because A is commutative).
If M is a free R-module with basis x1, ..., xy, then TM is the polynomial ring over R

in the (commuting) symbols x; (because this R-algebra has the same universal property as
™).

9 Flatness

Let M be an R-module. If the sequence of R-modules
0—>N —->N->N"—0 @)
is exact, then the sequence
MRN - MRRN > MR RRN'" =0

is exact, but M @ g N’ — M ®pg N need not be injective. For example, when we tensor
the exact sequence of Z-modules

O—>Zi>Z—>Z/mZ—>O

with Z/mZ, we get the sequence

2/m2"= 7)mZ — Z)mZ — 0.
Moreover, if M and N are nonzero, then M ® g N need not be nonzero. For example,
7)27 @7 737 = 0
because it is killed by both 2 and 3
DEFINITION 9.1. An R-module M is flat if
N’ — N injective = M ®gr N’ — M ®pg N injective.
It is faithfully flat if, in addition,
M®@rRN=0 = N=0.

A homomorphism of rings R — S is said to be (faithfully) flat when S is (faithfully) flat
as an R-module.

Thus, a homomorphism R — § of rings is flat if and only if S ® g — is an exact functor,
ie.,

0> SR RN >SRN —>SQRRRN"=0 ©))

is exact whenever (8)) is exact.

The functor M ® — takes finite direct sums to direct sums, and therefore split-exact
sequences to split-exact sequences. Therefore, all vector spaces over a field are flat, and
nonzero vector spaces are faithfully flat.

81t was once customary to require a ring to have an identity element 1 # 0 (see, for example, [Northcott
1953, p3). However, tensor products do not always exist in the category of such objects, .
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PROPOSITION 9.2. Leti: R — S be faithtully fiat.
(a) A sequence (8) is exact if and only if (9) is exact.
(b) For any R-module M, the sequence

d d
0>M-—>S®M—>SQRRSQrM (*)
doim) = 1®@m,
dis®@m) = 1sdm—sQ1Qm

is exact.

PROOF. (a) We have to show that (8) is exact if (9) is exact. Let N be the kernel of M’ —
M . Then, because R — S is flat, S @ g N is the kernel of S @ g M’ — S ® g M, which is
zero by assumption. Because R — S is faithfully flat, this implies that N = 0. This proves
the exactness at M, and the proof of exactness elsewhere is similar.

(b) Assume first that there exists an R-linear section to R — S, i.e., an R-linear map
f:S — Rsuchthat f oi = idg, and define

ko:S ®r M — M, ko(s @m) = f(s)m
ki:SQRSQrM — S Qr M, kis ®s' ®@m) = f(s)s’ @ m.

Then kodoy = idps, which shows that dj is injective. Moreover,
kl Odl + do Ok() = idS®RM

which shows that if d1(x) = 0 then x = dy(ko(x)), as required.

We now consider the general case. Because R — § is faithfully flat, it suffices to prove
that the sequence (*) becomes exact after tensoring in S. But the sequence obtained from
(*) by tensoring with S is isomorphic to the sequence (*) for the homomorphism of rings
s> 1®s:5 — S ®g S and the S-module S ® g M, because, for example,

SOR(SQrRM) = (S®ORS)®s (S Qr M).

Now S — S ®pg S has an S-linear section, namely, /(s ® s') = ss’, and so we can apply
the first part. o

COROLLARY 9.3. If R — S is faithfully flat, then it is injective with image the set of
elements on which the maps

s = 1®s

s > s®1 S —>S®rS
coincide.

PROOF. This is the special case M = R of the Proposition. o

PROPOSITION 9.4. Let R — R’ be a homomorphism of rings. If R — S is flat (or
faithfully flat), then so alsois R" — S Qg R’.

PROOF. For any R’-module,
(SRR)Y®r M ~SQr M,

from which the statement follows. O
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PROPOSITION 9.5. For any multiplicative subset S of a ring R and R-module M,
ST'TR®r M ~ S™'M.
Therefore the homomorphism r — %: R — ST'R is flat.

PROOF. To give an S~!R-module is the same as giving an R-module on which the ele-
ments of S act invertibly. Therefore ST'R ® g M and S~!M satisfy the same universal
property (see §8| especially ), which proves the first statement. As M ~» S~1M is exact
, soalsois M ~ STIR ® g M, which proves the second statement. o

PROPOSITION 9.6. The following conditions on a flat homomorphism ¢: R — S are
equivalent:

(a) ¢ is faithfully flat;

(b) for every maximal ideal m of R, the ideal p(m)S # S;

(c) every maximal ideal m of R is of the form ¢! (n) for some maximal ideal n of S.

PROOF. (a) = (b): Let m be a maximal ideal of R, and let M = R/m,; then
SQRrM ~ S/p(m)S.

As S @ g M # 0, we have that p(m)S # S.

(b) = (c): If p(m)S # S, then ¢(m) is contained in a maximal ideal n of S. Now
¢~ 1(n) is a proper ideal in R containing m, and hence equals m.

(c) = (a): Let M be a nonzero R-module. Let x be a nonzero element of M, and let
a=1{a € A| ax = 0}. Then ais an ideal in R, and M’ 2 Rx ~ R/a. Moreover,
SQrM’' >~ S/p(a)-S and, because R — S is flat, S ® g M’ is a submodule of S @ g M .
Because a is proper, it is contained in a maximal ideal m of R, and therefore

¢(a) Co(m) Cn
for some maximal ideal n of A. Hence ¢(a)-S Cn # S,andso SQrM D SQrM’ # 0.0

THEOREM 9.7 (GENERIC FLATNESS). Let A C B be finitely generated k -algebras with A
an integral domain. Then for some nonzero elements a of A and b of B, the homomorphism
Aq — By is faithfully flat.

PROOF. Let K be the field of fractions of A. Then K ® 4 B is the ring of fractions of B with
respect to the multiplicative subset 4 \ {0} (see[9.5), and so the kernel of B — K ®4 B is
the ideal

n={b € B |ab = 0 for some nonzero a € A}.

This is finitely generated (Hilbert basis theorem [3.5), and so there exists a nonzero ¢ € A
such that ¢cb = O forall b € n. Let CL, lie in the kernel of B, — K ®4,. B.. The same

argument shows that Ca—qci,
B for some N. Therefore b € n, and so ¢b = 0 and CL, = 0 in B.. This shows that,
after replacing A with A, and B with B., we may suppose that the map B — K ® 4 B is
injective. We shall identify B with its image in K ® 4 B.

As K ® 4 B is a finitely generated K-algebra, the Noether normalization theorem
shows that there exist elements x1, ..., x, of K ® 4 B such that K[x1, ..., x] is a poly-

nomial ring over K and K ®4 B is a finite K[xy,..., x;]-algebra. After multiplying

= 0 in B, for some nonzero C“—S € Ac, and so ¢cNab = 01in
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each x; by an element of A, we may suppose that it lies in B. Let {by,...,b,} gener-
ate B as an A-algebra. After possibly enlarging this set, we may suppose that it spans
K ®4 B asaK[xy,...,Xxp]-module. For each pair (i, j), write b;b; = Y ; p;jxbx with
Pijk € K[x1,...,xm]. There exists a nonzero a € A such thata - p;jx € A[x1,..., Xm]
for all i, j,k. Now each p;jx € Ag[x1,...,Xm], and it follows that every monomial in
the b;s lies in the Ag4[x1,..., Xp]-module spanned by the {b1,...,b,}. Therefore B C
Y i Aalx1.....xm]-b;i,andso B, =) ; Aa[X1,...,Xm] b;. This shows that, after replac-
ing A with A, and B with B,, we may suppose that B is a finite A[x1, ..., X, ]-algebra.
injective

——  K®4B —— Ly,

.....

B
Tﬁnite Tﬁnite Tﬁnite
A

Alx1, ..., xm] —— K[x1,...,xm] —— L = K(x1,...,%)

I

— K

Let L = K(x1,...,X,) be the field of fractions of A[x1,...,xn], andlet by,..., b, be
elements of B that form a basis for L ® 4[x,,...,x,,] B as an L-vector space. Thus, each ele-
ment b of Bisasum ) ; ¢;b; withe; € L,andsogb =) ;(gci)b; € Y ; A[X1, ..., Xm]-bi
for some nonzero ¢ € A[x1,...,Xm]. As Bisafinite A[xq, ..., X;;]-algebra, it follows that
there exists a nonzero element ¢ of A[x1,...,x,] such that gB C >, A[x1,...,xp] - b;,
and so B; = >, A[x1....,Xnlg - bi. In other words, the map

(cl,...,cr)|—>Zcibi:A[xl,...,xm](’l—>Bq (10)
is surjective. This map becomes an isomorphism when tensored with L over A[x1, ..., X;],
which implies that its kernel is torsion. But A[x1, ..., x,]; is a torsion-free A[x1, ..., xpm]-
module, and so the map is an isomorphism. Thus B, is free of finite rank over
A[x1....,Xm]q. Let a be some nonzero coefficient of the polynomial ¢, and consider the
maps
Ag = Aalx1, ... xXm) = Aglx1, ..., Xmlg = Bag.

The first and third arrows realize their targets as nonzero free modules over their sources,
and so are faithfully flat. The middle arrow is flat by (9.5). Let m be a maximal ideal in A,.
Then mAg,[x1, ..., X,] does not contain the polynomial g because the coefficient a of ¢q is
invertible in A,. Hence mA4 (X1, ..., Xm]q is a proper ideal of A4 [x1, ..., Xm]q, and so the
map Aqg — Aglx1, ..., Xmlq is faithfully flat (apply . This completes the proof. =

10 The Hilbert Nullstellensatz

THEOREM 10.1 (ZARISKI’S LEMMA). Let k C K be fields. If K is finitely generated
as a k-algebra, then it is algebraic over k (hence K is finite over k, and equals it if k is
algebraically closed).

PROOF. We shall prove this by induction on r, the smallest number of elements required
to generate K as a k-algebra. The case r = 0 being trivial, we may suppose that K is
generated by x1,...,x, with r > 1. If K is not algebraic over k, then at least one x;, say
X1, is not algebraic over k. Then, k[x1] is a polynomial ring in one symbol over k, and its
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field of fractions k(xp) is a subfield of K. Clearly K is generated as a k(x)-algebra by

X2,...,Xr,and so the induction hypothesis implies that x», .. ., x, are algebraic over k(x1).
Proposition shows that there exists a ¢ € k[x1] such that cx», ..., ¢, x, are integral over

k[x1]. Let f € K = k[x1,...,x;]. For a sufficiently large N, cNf € k[x1,¢cx2,...,cxr],
and so ¢V f is integral over k[x1] . When we apply this statement to an element f
of k(x1), shows that ¢V f € k[x;]. Therefore, k(x1) = Unx ¢ Nk[x1], but this is
absurd, because k[x1] (= k[X]) has infinitely many distinct monic irreducible polynomialsﬂ
that can occur as denominators of elements of k(x1). O

THEOREM 10.2 (NULLSTELLENSATZ). Every proper ideal a ink[X,..., X,] has a zero
in (k" £kl x.ox kAl

PROOF. We have to show that there exists a k-algebra homomorphism k[X1, ..., X,] —
k®! containing a in its kernel. Let m be a maximal ideal containing a. Then k[X1, ..., X,]/m
is a field, which is algebraic over k by Zariski’s lemma, and so there exists a k-algebra
homomorphism k[X1, ..., X,]/m — k2. The composite of this with the quotient map
k[X1,...,Xn] = k[X1,..., Xn]/m contains a in its kernel. 0

THEOREM 10.3 (STRONG NULLSTELLENSATZ). Foranidealaink[Xy,..., Xy], let Z(a)
be the set of zeros of a in (k*)". If a polynomial h € k[X1,..., X,] is zero on Z(a), then
some power of h lies in a.

PROOF. We may assume i # 0. Let g1, ..., gm generate a, and consider the system of
m + 1 equations in n + 1 variables, X1, ..., Xy, Y,

gi(X1,....Xp) = 0, i=1,....m
1-Yh(X1,....Xn) = O.

If (ai,...,an, b) satisfies the first m equations, then (ay,...,a,) € Z(a); consequently,
h(ai,...,an) = 0, and (ay,...,an,b) doesn’t satisfy the last equation. Therefore, the
equations are inconsistent, and so, according to the Nullstellensatz , there exist f; €
k[X1,...,Xn, Y] such that

1= fi g+ fmr1-(1=Yh)
i=1

ink[X1,..., Xy, Y]. On applying the homomorphism

Ik[Xl,...,Xn,Y] —)k(Xl,...,Xn)

Xl'l—>Xl'
Y — h!

to the above equality, we obtain the identity
1= filX1..... Xp k™) gi(X1..... Xp) (11)
l

ink(Xy,...,Xy). Clearly

polynomial in X1, ..., X,
hNi

fl(Xl»»Xn,h_l) =

9When k is infinite, there are infinitely many polynomials X —a, and when k is finite, we can adapt Euclid’s
argument: if pq,..., pr are monic irreducible polynomials in k[X], then p; --- p + 1 is divisible by a monic
irreducible polynomial distinct from pyq, ..., Dr-
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for some N;. Let N be the largest of the N;. On multiplying by 4V we obtain an
identity
N = Z (polynomial in X1q,...,X,)-gi(X1,...,Xn),
1

which shows that AV € a. o

PROPOSITION 10.4. The radical of an ideal in k[X1, ..., X] is equal to the intersection
of the maximal ideals containing it.

PROOF. Let a be an ideal in k[X1, ..., X]. Because rad(a) is the smallest radical ideal
containing a and maximal ideals are radical rad(a) C ()54 ™.
Conversely, suppose / is contained in all maximal ideals containing a, and let (ay,...,a,) €

Z(a). The evaluation map
e flai,....an): k[X1,..., Xn] — k¥

has image a subring of k! which is algebraic over k, and hence is a field (see §1)). Therefore,
the kernel of the map is a maximal ideal, which contains a, and therefore also contains /.
This shows that k(aq,...,a,) = 0, and we conclude from the strong Nullstellensatz that
h € rad(a). a)

11 The max spectrum of a ring

Let A be a commutative ring, and let V' be the set of maximal ideals in A. For an ideal a in
A, let
Vie={meV |mDal

PROPOSITION 11.1. There are the following relations:
(@ aCb = V(a) D V(b);
() V() =V: V(4) =0;
(¢) V(ab) = V(anb) = V(a) U V(b);
(d) V(O ey ai) =(\jeg V(a;) for any family of ideals (a;);ej -

PROOF. The first two statements are obvious. For (c), note that
abCanbCab = V(ab) D V(anb) D V(a) UV(b).

For the reverse inclusions, observe that if m ¢ V(a) U V(b), then there exist f € a, g € b
such that f ¢ m, g ¢ m; but then fg ¢ m, and so m ¢ V(ab). For (d) recall that, by
definition, ) _ a; consists of all finite sums of the form ) _ f;, f; € a;. Thus (d) is obvious.g

Statements (b), (c), and (d) show that the sets V'(a) satisfy the axioms to be the closed
subsets for a topology on V': both the whole space and the empty set are closed; a finite
union of closed sets is closed; an arbitrary intersection of closed sets is closed. This topol-
ogy is called the Zariski topology on V.

For hh € A, let

Dh)y={meV |hé¢m}.

Then D(h) is open in V, being the complement of V((4)). If S is a set of generators for an
ideal a, then

Vav@={]J . DM.

hesS
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The sets D(h) form a base for the topology on V.

We let spm A denote the set of maximal ideals in A endowed with its Zariski topology.
For any element & of A, spm A, ~ D(h) (see[6.5), and for any ideal a in A, spm A/a ~
V(a) (isomorphisms of topological spaces).

THE MAX SPECTRUM OF A FINITELY GENERATED k-ALGEBRA

def

Let A be a finitely generated k-algebra. For any maximal ideal m of A, the field k(m) =
A/m is a finitely generated k-algebra, and so k(m) is algebraic over k (Zariski’s lemma,
[10.1). Therefore, k(m) is a finite field extension of k, and so equals k when k is alge-
braically closed.

Now fix an algebraic closure k®!. The image of any k-algebra homomorphism A — k&
is a subring of k® which is an integral domain algebraic over k and therefore a field (see
§I). Hence the kernel of the homomorphism is a maximal ideal in A. In this way, we get a
surjective map

Homy_yio (A, k) — spm A. (12)

Two homomorphisms A — k?! with the same kernel m factor as
A — k(m) —> k¥,

and so differ by an automorphism of k2 ['] Therefore, the fibres of are exactly the
orbits of Gal(k?!/k). When k is perfect, each extension k(m)/ k is separable, and so each
orbit has [k(m): k] elements, and when k is algebraically closed, the map is a bijection.

Set A = k[X1,...,X,]/a. Then to give a homomorphism A — k! is to give an n-
tuple (ay, ..., ay,) of elements of k@ (the images of the X;) such that f(aq,...,a,) = 0for
all f € a,i.e., an element of the zero-set Z(a) of a. This homomorphism corresponding
to (ai....,a) maps k(m) isomorphically onto the subfield of k! generated by the a;s.
Therefore, we have a canonical surjection

Z(a) —> spm A (13)

whose fibres are the orbits of Gal(k®/k). When the field k is perfect, each orbit has
[k[ai,...,an] : k]-elements, and when k is algebraically closed, Z(a) ~ spm A.

ASIDE 11.2. Letk = Ror C. Let X be a set and let 4 be a k-algebra of k-valued functions on X.
In analysis, X is called the spectrum of A if, for every k-algebra homomorphism ¢: A — k, there
exists a unique x € X such that ¢(f) = f(x) for all f € A (see, for example, |Cartier|2007, 3.3.1,
footnote).

Let A be a finitely generated algebra over an arbitrary algebraically closed field k, and let
X = spm A. An element f of A defines a k-valued function

m f modm

on X. When A4 is reduced, Proposition [7.2|shows that this realizes A as a ring of k-valued functions
on X. Moreover, because is an isomorphism in this case, for every k-algebra homomorphism
¢@: A — k, there exists a unique x € X such that p(f) = f(x) forall f € A. In particular, when
k = C and A is reduced, spm(A) is the spectrum of A in the sense of analysis.

107 et f and g be two k-homomorphisms from a finite field extension &’ of k into k®!. We consider the set
of pairs (K, &) in which o is a k-homomorphism from a subfield K of k?! containing f(k’) into k2! such that
a o f = g. The set is nonempty, and Zorn’s lemma can be applied to show that it has a maximal element
(K’, ). For such an element K’ will be algebraically closed, and hence equal to k2!,
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JACOBSON RINGS

DEFINITION 11.3. A ring A is Jacobson if every prime ideal in A is an intersection of
maximal ideals.

A field is Jacobson. The ring Z is Jacobson because every nonzero prime ideal is max-
imal and (0) = ) p=235,.(p). A principal ideal domain (more generally, a Dedekind
domain) is Jacobson if it has an infinite number of maximal ideals. A local ring is Jacobson
if and only if its maximal ideal is its only prime ideal. Proposition [I0.4] shows that every
finitely generated algebra over a field is Jacobson.

PROPOSITION 11.4. The radical of an ideal in a Jacobson ring is equal to the intersec-
tion of the maximal ideals containing it. (Therefore, the radical ideals are precisely the
intersections of maximal ideals.)

PROOF. Proposition [2.2] says that the radical of an ideal is an intersection of prime ideals,
and so this follows from the definition of a Jacobson ring. O

ASIDE 11.5. Any ring of finite type over a Jacobson ring is a Jacobson ring (EGA IV 10.4.6).
Moreover, if B is of finite type over 4 and A is Jacobson, then the map A — B defines a continuous
homomorphism spm B — spm 4.

THE TOPOLOGICAL SPACE spm(A)

We study more closely the Zariski topology on spm A. For each subset S of 4, let V(S) be
the set of maximal ideals containing S, and for each subset W of spm A, let (W) be the
intersection of the maximal ideals in W. Thus V(S) is a closed subset of spm 4 and (W)
is a radical ideal in A. If V(a) D W, then a C I(W), and so V(a) D VI(W). Therefore
VI(W) is the closure of W (smallest closed subset of spm A containing W); in particular,
VI(W) = W if W is closed.

PROPOSITION 11.6. Let V be a closed subset of spm A.

(a) The points of V are closed for the Zariski topology.

(b) If A is noetherien, then every ascending chain of open subsets Uy C U, C ---
of V eventually becomes constant; hence every descending chain of closed subsets of V
eventually becomes constant.

(c) If A is noetherian, every open covering of V has a finite subcovering.

PROOF. (a) Clearly {m} = V(m), and so it is closed.

(b) A sequence V] D V5, D --- of closed subsets of V' gives rise to a sequence of ideals
1(Vy) C I(V,) C ..., which eventually becomes constant. If (V) = I(Vy+1), then
Vi = VI(Vm) = VI(Vin+1) = Vint1.

(c) Let V = J;¢; Ui with each U; open. Choose an ig € I;if U;, # V, then there
exists an i1 € [ such that U;, g Ui, UU;,. If Ui, U U;, # V, then there exists an i € [
etc.. Because of (b), this process must eventually stop. O

A topological space V having the property (b) is said to be noetherian. The condition
is equivalent to the following: every nonempty set of closed subsets of V' has a minimal el-
ement. A topological space V having property (c) is said to be quasicompact (by Bourbaki
at least; others call it compact, but Bourbaki requires a compact space to be Hausdorff). The
proof of (c) shows that every noetherian space is quasicompact. Since an open subspace of
a noetherian space is again noetherian, it will also be quasicompact.



11 THE MAX SPECTRUM OF A RING 34

DEFINITION 11.7. A nonempty topological space is said to be irreducible if it is not the
union of two proper closed subsets; equivalently, if any two nonempty open subsets have a
nonempty intersection, or if every nonempty open subset is dense.

If an irreducible space W is a finite union of closed subsets, W = W; U ... U W,, then
W = Wi or Wo U...UW,;if the latter, then W = W, or W3 U... U W,, etc.. Continuing
in this fashion, we find that W = W; for some i.

The notion of irreducibility is not useful for Hausdorff topological spaces, because the
only irreducible Hausdorff spaces are those consisting of a single point — two points would
have disjoint open neighbourhoods contradicting the second condition.

PROPOSITION 11.8. Let W be a closed subset of spm A. If W is irreducible, then I(W)
is prime; the converse is true if A is a Jacobson ring. In particular, the max spectrum of a
Jacobson ring A is irreducible if and only if the nilradical of A is prime.

PROOF. =>: Assume W is irreducible, and suppose fg € I(W). For each m € W, either
femorgem,andso W C V(f)U V(g). Hence

W =WnV())umwnvg)).

As W is irreducible, one of these sets, say W N V( f), must equal W. But then f € I(W).
This shows that /(W) is prime.

<: Assume /(W) is prime, and suppose W = V(a) U V(b) with a and b radical ideals
— we have to show that W equals V(a) or V(b). Recall (11.1k) that V(a) UV (b) = V(anb)
and that a N b is radical; hence I(W) = an b (by[L1.4). If W # V(a), then there exists an
fea~I(W). Forallg €b,

fgeanb=I1(W).
Because /(W) is prime, this implies that b C I(W); therefore W C V(b). o
Thus, in the max spectrum of a Jacobson ring, there are one-to-one correspondences

radical ideals <> algebraic subsets
prime ideals < irreducible algebraic subsets

maximal ideals <> one-point sets.

EXAMPLE 11.9. Let f € k[Xy,..., X,]. According to Theorem4.6] k[X1,..., Xp]is a
unique factorization domain, and so () is a prime ideal if and only if f is irreducible (4.1}
Thus

V(f) isirreducible <= f isirreducible.

On the other hand, suppose f factors,
f= 1_[ flm’ fi distinct irreducible polynomials.
Then
(f) = ﬂ(fl.m"), (f"") distinct ideals,
rad((f)) = ﬂ( fi),  (fi) distinct prime ideals,
V(f)= U V(fi), V(f:) distinct irreducible algebraic sets.

10T a noetherian ring A, a proper ideal q is said to primary if every zero-divisor in A/q is nilpotent.
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PROPOSITION 11.10. Let V' be a noetherian topological space. Then V is a finite union
of irreducible closed subsets, V = Vi U ... U V,,. Moreover, if the decomposition is
irredundant in the sense that there are no inclusions among the V;, then the V; are uniquely
determined up to order.

PROOF. Suppose that V' can not be written as a finite union of irreducible closed subsets.
Then, because V is noetherian, there will be a closed subset W of V' that is minimal among
those that cannot be written in this way. But W itself cannot be irreducible, and so W =
W1 U W,, with each W; a proper closed subset of W. Because W is minimal, both W; and
W, can be expressed as finite unions of irreducible closed subsets, but then so can W. We
have arrived at a contradiction.

Suppose that
V=Vu..UV,=Wu...uWw,
are two irredundant decompositions. Then V; = Uj(V,- N W;), and so, because V; is
irreducible, V; = V; N W; for some j. Consequently, there is a function f: {1,...,m} —

{1,....n} such that V; C Wy for each i. Similarly, there is a function g: {1,...,n} —
{1,...,m} such that W; C V, ;) for each j. Since V; C Wy C Vg r(;), we must have
gf(i) = iand V; = Wp;); similarly fg = id. Thus f and g are bijections, and the
decompositions differ only in the numbering of the sets. O

The V; given uniquely by the proposition are called the irreducible components of V.
They are the maximal closed irreducible subsets of V. In Example[11.9] the V( f;) are the
irreducible components of V( f).

COROLLARY 11.11. A radical ideal a in a noetherian Jacobson ring is a finite intersection
of prime ideals, a = p1 N ... N py; if there are no inclusions among the p;, then the p; are
uniquely determined up to order.

PROOF. Write V(a) as a union of its irreducible components, V(a) = |JV;, and take
pi = 1(Vi). o

REMARK 11.12. (a) An irreducible topological space is connected, but a connected topo-
logical space need not be irreducible. For example, Z(X1 X>) is the union of the coordinate
axes in k2, which is connected but not irreducible. A closed subset V of spm A4 is not
connected if and only if there exist ideals a and b such thata Nb = I(V)anda + b # A.

(b) A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

(c) In a noetherian ring, every proper ideal a has a decomposition into primary ideals:
a = () q; (see §13). For radical ideals, this becomes a simpler decomposition into prime
ideals, as in the corollary. For an ideal (f) in k[X1,..., Xp] with f =[] fl-mi, it is the
decomposition (f) = ((f;"") noted in Example

12 Dimension theory for finitely generated % -algebras

Throughout this section, A is a finitely generated algebra over field k and an integral do-
main. We define the transcendence degree of A over k, tr degy A, to be the transcendence
degree over k of the field of fractions of A (see FTEI §8). Thus A has transcendence degree
d if it contains an algebraically independent set of d elements, but no larger set (FT 8.12).

''ET = Fields and Galois Theory, available on my website.
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PROPOSITION 12.1. For any linear forms £, ...,{, in Xy,..., Xy, the quotient ring
k[X1,...,Xn]l/(1,...,€n) is an integral domain of transcendence degree equal to the
dimension of the subspace of k" defined by the equations

PROOF. This follows from the more precise statement:

Let ¢ be an ideal in k[ X1, ..., X,] generated by linear forms {1, ..., £, which
we may assume to be linearly independent. Let X;,, ..., X;,_, be such that
AT 5. CRND. €N
is a basis for the linear forms in Xy, ..., X,. Then
k[X1,....Xnl/c ~k[Xi), ..., Xi,_, ]
This is obvious if the forms are X1, ..., X;. In the general case, because { X1, ..., X, } and
{€1..... 4, Xi,, ..., Xi,_, } are both bases for the linear forms, each element of one set can

be expressed as a linear combination of the elements of the other. Therefore,

k[ X1,....Xn] =kll1,.... 0. Xiyy oo, Xip o, ],
and so
k[X1,....Xnl/c=k[l1,....¢r. Xiy,.... Xi,_,]/¢c
~ k[X,'l,...,Xin_r]. O
PROPOSITION 12.2. For any irreducible polynomial f ink[X1, ..., X,], the quotient ring

k[X1,...,Xn]/(f) has transcendence degree n — 1.

PROOF. Let

k[x1,....xn) =k[X1,.... Xx1/(f), xi =Xi+p,
and let k(x1, ..., xp) be the field of fractions of k[x1,...,x,]. Since f is not zero, some
Xi, say, Xp, occurs in it. Then X, occurs in every nonzero multiple of f, and so no
nonzero polynomial in X1,..., X,—1 belongs to (f). This means that x1,...,x,—1 are
algebraically independent. On the other hand, x,, is algebraic over k(x1, ..., X;—1), and so
{X1,...,Xn—1} is a transcendence basis for k(x1, ..., x,) over k. O

PROPOSITION 12.3. For any nonzero prime ideal p in the k -algebra A,
trdegg (A/p) < trdegy (A).

PROOF. Write
A=k[Xy1,...,Xn]/a=k[x1,...,Xn].

For f € A, let f denote the image of f in A/p, so that A/p = k[X1....,%n]. Let
d = trdegy A/p, and number the X; so that X1, ..., X, are algebraically independent (see
FT 8.9 for the proof that this is possible). I will show that, for any nonzero f € p,thed + 1
elements x1,...,xg, f are algebraically independent, which shows that tr deg; A > d + 1.



12 DIMENSION THEORY FOR FINITELY GENERATED K-ALGEBRAS 37

Suppose otherwise. Then there is a nontrivial algebraic relation among the x; and f,
which we can write

ao(x1,....xg) ™ +ar(x1,....x0) ™" 4+ am(xy, .. xg) =0,

with a; (x1,...,xg) € k[x1,...,x4] and ap # 0. Because A is an integral domain, we
can cancel a power of f if necessary to make a,,(x1,...,x;) nonzero. On applying the
homomorphism A — A/p to the above equality, we find that

am(X1,...,Xq) =0,
which contradicts the algebraic independence of X1, ..., X . O

PROPOSITION 12.4. Let A be a unique factorization domain. If p is a prime ideal in A
such that trdegy A/p = trdegig A — 1, thenp = (f) for some f € A.

PROOF. The ideal p is nonzero because otherwise A and A/p would have the same tran-
scendence degree. Therefore p contains a nonzero polynomial, and even an irreducible
polynomial f, because it is prime. According to (4.1)), the ideal ( /) is prime. If (f) # p,
then

2.3 2.3
trdegy A Etr degi A/p Etr degi A/(f) tr degp A — 1,

which contradicts the hypothesis. O

THEOREM 12.5. Let f € A be neither zero nor a unit, and let p be a prime ideal that is
minimal among those containing ( f'); then

trdegig A/p = trdegg A — 1.

We first need a lemma.

LEMMA 12.6. Let A be an integrally closed integral domain, and let L be a finite extension
of the field of fractions K of A. If « € L is integral over A, then Nmy jxka € A, and «
divides Nmy ;g « in the ring Afa].

PROOF. Let g(X) be the minimum polynomial of & over K, say,
gX)=X"+ar1 X"+ +a,.

Then r divides the degree n of L/ K, and Nmy, /g (o) = iag (FT 5.40). Moreover, ag lies
in A by (5.9). From the equation

0=a@ ' +a,_1a" 2+ +ay)+ao
we see that o divides ag in A[a], and therefore it also divides Nmy, /g «. O

PROOF (OF THEOREM [12.3)). Write rad(f) as an irredundant intersection of prime ideals
rad(f) =p1 N...Npy. Then V(a) = V(p1) U--- U V(p;) is the decomposition of V(a)
into its irreducible components. There exists an mg € V(p1) ~ |J;>, V(p;) and an open
neighbourhood D (k) of my disjoint from | J;~, V(p;). The ring Ay, is an integral domain

with the same transcendance degree as A, and rad(%) =S5, 1y Therefore, after replacing
A with Ay, we may assume that rad( f) itself is prime, say, equal to p.
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According to the Noether normalization theorem (5.11)), there exist algebraically inde-
pendent elements x1,...,Xxs in A such that A4 is a finite k[x1, ..., x;]-algebra. Note that
d = trdegy A. According to the lemma, fy < Nm( f) lies in k[x1, ..., x4], and we shall
show that p N k[x1,...,x4] = rad(fo). Therefore, the homomorphism

klx1,....xq]/rad(fo) — A/p

is injective. As it is also finite, this implies that

trdegp A/p = trdegik[x1,. .., xg]/rad( fo) 22 d — 1,

as required.

By assumption A is finite (hence integral) over its subring k[x1,...,x4]. The lemma
shows that f divides fy in A4, and so fy € (f) C p. Hence (fo) C p Nk[x1,...,x4],
which implies

rad(fo) C pNk[xy,...,x4]

because p is radical. For the reverse inclusion, let g € pNk[xy,...,xg]. Then g € rad(f),
and so g™ = fh for some h € A, m € N. Taking norms, we find that

g™ =Nm(fh) = fo-Nm(h) € (/o).
where e is the degree of the extension of the fields of fractions, which proves the claim.

COROLLARY 12.7. Let p be a minimal nonzero prime ideal in A; then tr degy (A/p) =
trdegy (A) — 1.

PROOF. Let f be a nonzero element of p. Then f is not a unit, and p is minimal among
the prime ideals containing f". o

THEOREM 12.8. The length d of any maximal (i.e., nonrefinable) chain of distinct prime
ideals

Pa D Pi—1 D Dpo (14)

in A is tr degy (A). In particular, every maximal ideal of A has height tr degy (A), and so
the Krull dimension of A is equal to tr degy, (A).

PROOF. From (12.7), we find that

trdegy (4) = trdegg(A/p1) +1 =--- = trdegi(4/pg) +d.

But p, is maximal, and so A/p is a finite field extension of k. In particular, tr degy (A/pg) =
0. O

EXAMPLE 12.9. Let f(X,Y) and g(X, Y) be nonconstant polynomials with no common
factor. Then k[X, Y]/(f) has Krull dimension 1, and so k[X, Y]/(f, g) has dimension
Zero.

EXAMPLE 12.10. We classify the prime ideals p in k[ X, Y]. If A/p has dimension 2, then
p = (0). If A/p has dimension 1, then p # 0 and so it contains a nonzero polynomial,
and hence a nonzero irreducible polynomial f (being a prime ideal). Then p D (f), and
so equals (f). Finally, if A/p has dimension zero, then p is maximal. Thus, when k is
algebraically closed, the prime ideals in k[X, Y] are exactly the ideals (0), (f) (with f
irreducible), and (X —a,Y — b) (witha,b € k).
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REMARK 12.11. Let A be a finitely generated k-algebra whose nilradical 91 is prime (not

necessarily an integral domain). Then every maximal chain of distinct prime ideals in A
has length tr degy (4/9%). (Apply Theorem to A/9N.)

13 Primary decompositions

In this section, A is an arbitrary commutative ring.

DEFINITION 13.1. Anideal q in A is primary if it is proper and
ab € q,b ¢ q = a" € qforsomen > 1.

Thus, a proper ideal q in A is primary if and only if all zero-divisors in A/q are nilpotent.
Clearly prime ideals are primary, and an ideal (m) in Z is primary if and only if m is a
power of a prime.

PROPOSITION 13.2. The radical of a primary ideal q is a prime ideal containing ¢, and
it is contained in every other prime ideal containing q (i.e., it is the smallest prime ideal
containing p).

PROOF. Let ab € rad(q), so that some power, say a”b”", of ab lies in g. If b is not in
rad(q), then b” is not in ¢, and so some power of a” lies in g, which implies that a € rad(q).
Hence rad(q) is prime.

Let p be a second prime ideal containing ¢, and let a € rad(q). For somen,a” € q C p,
which implies that a € p. o

When q is a primary ideal and p is its radical, we say that q is p-primary.

PROPOSITION 13.3. Every ideal q whose radical is a maximal ideal m is primary (in fact,
m-primary); in particular, every power of a maximal ideal m is m-primary.

PROOF. Letab € q; we have to show that eithera € mor b € q. If a ¢ m, then (a) +m =
A,and so 1 = aa’ + m for some a’ € A and m € m. Therefore, b = baa’ +bm € q. o

PROPOSITION 13.4. Letp: A — B be a homomorphism of rings. If q is a p-primary ideal
in B, then q¢ < ¢~ 1(q) is a p¢-primary ideal in A.

PROOF. The map A/q¢ — B/qis injective, and so every zero-divisor in A/q° is nilpotent.
This shows that q° is primary, and therefore rad(q¢)-primary. But (see 2.8), rad(q¢) =
rad(q)¢ = p°, as claimed. o

LEMMA 13.5. Let q and p be a pair of ideals in A such that q C p C rad(q). If
abeq = aeporbeq, (15)
then p is a prime ideal and q is p-primary.

PROOF. Clearly q is primary because if ab € qbut b ¢ g, then a € p, and so some power
of a lies in q. Therefore p’ e rad(q) is prime. By assumption p C p’, and it remains to
show that they are equal. Let a € p’, and let n be the smallest positive integer such that
a" € q. Ifn = 1, thena € q C p; on the other hand, if n > 1, then a” = aa”! € q and

a"_1¢q,andsoaepby. o
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PROPOSITION 13.6. A finite intersection of p-primary ideals is p-primary.

PROOF. Letqy,...,q, be p-primary, and let ¢ = g1 N ... N g,. We show that the pair of
ideals q C p satisfies the conditions of (13.3).

Let a € p; since some power of a belongs to each q;, a sufficiently high power of it will
belong to all of them, and so p C rad(q).

Letab € qbuta ¢ p. Thenab € q; buta ¢ p, and so b € q;. Since this is true for all
i, we have that b € q. o

The minimal prime ideals of an ideal a are the minimal elements of the set of prime
ideals containing a.

DEFINITION 13.7. A primary decomposition of an ideal a is a finite set of primary ideals
whose intersection is a.

DEFINITION 13.8. A primary decomposition a = g1 N --- N g, of a is minimal if
(a) the prime ideals rad(q;) are distinct, and
(b) no q; can be omitted, i.e., forno i is q; C ﬂj# q;.

If a admits a primary decomposition, then it admits a minimal primary decomposition,
because Proposition[13.6|can be used to combine primary ideals with the same radical, and
any ¢; that fails (b) can simply be omitted. The prime ideals occurring as the radical of an
ideal in a minimal primary decomposition of a are said to belong to a.

PROPOSITION 13.9. Suppose a = q1 N -+ N q, where q; is p;-primary fori = 1,...,n.
Then the minimal prime ideals of a are the minimal elements of the set {p1,...,pn}.

PROOF. Let p be a prime ideal containing a, and let g; be the image of ¢; in the integral
domain A/p. Then p contains qy - - - qn, and so ¢} - - - g, = 0. This implies that, for some 7,
q; = 0, and so p contains g;. Now (13.2) shows that p contains p; . 0

In particular, if a admits a primary decomposition, then it has only finitely many mini-
mal prime ideals, and so its radical is a finite intersection of prime ideals.
For an ideal a in A and an element x € A4, we let

(xx) ={a e A]ax € a}.
It is again an ideal in A.

THEOREM 13.10. Leta = q; N ... N q, be a minimal primary decomposition of a, and
let p; = rad(q;). Then

{P1,....pn} = {rad(a:x) | x € A, rad(a:x) prime}.

In particular, the set {p1,...,Ppn} is independent of the choice of the minimal primary de-
composition.
PROOF. TBA. o

THEOREM 13.11. In a noetherian ring, every ideal admits a primary decomposition.
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An ideal a is said to be irreducible if
a=bNc(b,cideals) = a=Dbora=rc.
The theorem is a consequence of the following more precise statement.

PROPOSITION 13.12. Let A be a noetherian ring.
(a) Every ideal in A can be expressed as a finite intersection of irreducible ideals.
(b) Every irreducible ideal in A is primary.

PROOF. (a) Suppose (a) fails, and let a be maximal among the ideals for which it fails.
Then, in particular, a itself is not irreducible, and so a = b N ¢ with b and ¢ properly
containing a. Because a is maximal, both b and ¢ can be expressed as finite intersections of
irreducible ideals, but then so can a.

(b) Let a be irreducible, and consider the quotient ring A’ £ A /a. Let a be a zero-
divisor in A’, say ab = 0 with b # 0. We have to show that a is nilpotent. As A’ is
noetherian, the chain of ideals

(0: (a)) C (0: (a?)) C ---

becomes constant, say, (0: (@™)) = (0: (a™*!)) = .--. Letc € (a™) N (b). Because
¢ € (b), we have ca = 0; because ¢ € (a™), we have ¢ = da™ for some d € A; but
now (da™)a = 0, and so d € (0:a™*') = (0:a™), which implies that ¢ = 0. Hence
(@™) N (b) = (0). Because a is irreducible, so also is the zero ideal in A’, and it follows
that a™ = 0. o

PROPOSITION 13.13. Let m be a maximal ideal in a noetherian ring A. A proper ideal a
of A is m-primary if and only if it contains a power of m.

PROOF. By definition, if a is m-primary, then m = rad(a), and so a contains a power of m
by Proposition[3.11] Conversely, suppose that m” C a. Let p be a prime ideal belonging to
a. Then m” C a C p, so that m C p, which implies that m = p. Thus m is the only prime
ideal belonging to a, which means that a is m-primary. o

14 Artinian rings

A ring A is artinian if every descending chain of ideals a; D ap D --- in A eventually
becomes constant; equivalently, if every nonempty set of ideals has a minimal element.
Similarly, a module M over a ring A is artinian if every descending chain of submodules
N1 D Ny D -+ in M eventually becomes constant.

PROPOSITION 14.1. An artinian ring has Krull dimension zero; in other words, every
prime ideal is maximal.

PROOF. Let p be a prime ideal of an artinian ring A, and let A’ = A/p. Then A’ is an
artinian integral domain. For any nonzero element a of A’, the chain (a) D (a?) D ---
eventually becomes constant, and so a” = a"t1p for some b € A’ andn > 1. We can
cancel a” to obtain 1 = ab. It follows that a is a unit, A’ is a field, and p is maximal. g

COROLLARY 14.2. In an artinian ring, the radical and the Jacobson radical coincide.
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PROOF. The first is the intersection of the prime ideals (2.2), and the second is the inter-
section of the maximal ideals (2.4). O

PROPOSITION 14.3. An artinian ring has only finitely many maximal ideals.

PROOF. LetmjN...Nm,; be minimal in the set of all finite intersections of maximal ideals
in the artinian ring A. Then any other maximal ideal m contains m; N...MNm,. This implies
that m equals one of the m;, because otherwise there exists an a; € m; ~. m for each i, and
ai---ap liesinmj; N ... N m, but not m (because m is prime), which is a contradiction. g

PROPOSITION 14.4. In an artinian ring, some power of the radical is zero.

PROOF. Let 9 be the nilradical of the artinian ring A. The chain 9t D 912 O - - - eventually
becomes constant, and so N” = N"*! = ... for some n > 1. Suppose N”* # 0. Then
there exist ideals a such that a - 91" # 0, for example 91, and we may suppose that a has
been chosen to be minimal among such ideals. There exists a € a such that a - 9" # 0,
and so a = (a) (by minimality). Now (aO"")N” = aM?"* = aN” # 0 and a”* C (a),

and so af”" = (a) (by minimality again). Hence a = ax for some x € 9”. Now
a = ax = ax? = --- = a0 because x € M. This contradicts the definition of @, and so
N = 0. O

LEMMA 14.5. Let A be a ring in which some finite product of maximal ideals is zero.
Then A is artinian if and only if it is noetherian.

PROOF. Suppose m; ---m, = 0 with the m; maximal ideals (not necessarily distinct), and
consider

ADmp D Dmy-omp_g DMy eemy D Dmyeeem, = 0.

The action of A on the quotient M, e myp---my—q/my---m, factors through the field
A/m,, and the subspaces of the vector space M, are in one-to-one correspondence with the
ideals of A contained between my ---m,_1 and my ---m,. If A4 is either artinian or noethe-
rian, then M, satisfies a chain condition on subspaces and so it is finite-dimensional as a
vector space and both artinian and noetherian as an A-module. Now repeated applications
of Proposition [3.3] (resp. its analogue for artinian modules) show that if A is artinian (resp.
noetherian), then it is noetherian (resp. artinian) as an A-module, and hence as aring. g

THEOREM 14.6. A ring is artinian if and only if it is noetherian of dimension zero.

PROOF. =: Let A be an artinian ring. After @, it remains to show that A4 is noetherian,
but according to (14.2)), (14.3)), and (14.4)), some finite product of maximal ideals is zero,
and so this follows from the lemma.

<: Let A be a noetherian ring of dimension zero. The zero ideal admits a primary
decomposition (I3.11)), and so A has only finitely many minimal prime ideals, which are all
maximal because dim 4 = 0. Hence 1 is a finite intersection of maximal ideals (2.2), and
since some power of 9 is zero (3.11]), we again have that some finite product of maximal
ideals is zero, and so can apply the lemma. O

THEOREM 14.7. Every artinian ring is (uniquely) a product of local artinian rings.
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PROOF. Let A be artinian, and let my, ..., m, be the distinct maximal ideals in A. We saw
in the proof of li that some product my' ---m;” = 0. Fori # j, the ideal m}" +m’;" is
not contained in any maximal ideal, and so equals A. Now the Chinese remainder theorem
shows that

A~ A/m]! x - x A/ml",

and each ring A/ m?i is obviously local. =

15 Dimension theory for noetherian rings

Let A be a noetherian ring and let p be a prime idealin A. Let A, = S “1A where S = A\p.
We begin by studyintension and contraction of ideals with respect to the homomor-
2.7)

phism A — A (cf. . Note that A, is a local ring with maximal ideal p® = pAp (by

[6.3)). The ideal
(P”)ec ={a € A|saecp” forsomes € S}

is called the nth symbolic power of p, and is denoted p™.

LEMMA 15.1. The ideal p™ is p-primary.

PROOF. According to Proposition [13.3] the ideal (p¢)” is p¢-primary. Hence (see [13.4)),
((p®)™)€ is (p®)°-primary. But p¢¢ = p (seel6.5), and

(69") E (m)9)° £ p. (16)

O

LEMMA 15.2. Consider ideals a C p’ C p with p’ prime. If p’ is a minimal prime ideal of
a, then p’¢ is a minimal prime ideal of a® (extension relative to A — Ap).

PROOF. If not, there exists a prime ideal p” # p’¢ such that p’®* D p” D a®. Now, by (6.5),

/

p — p/ec 2 p//C D) aec D a,

which contradicts the minimality of . O

THEOREM 15.3 (KRULL’S PRINCIPAL IDEAL THEOREM). Let A be a noetherian ring. For
any nonunit b € A, the height of a minimal prime ideal p of (b) is at most one.

PROOF. Consider A — Ay. According to Lemma p¢ is a minimal prime ideal of
(h)¢ = (%), and shows that the theorem for A, D p® D (IT’) implies it for A D p D
(b). Therefore, we may replace A with A, and so assume that A is a noetherian local ring
with maximal ideal p.

Suppose that p properly contains a prime ideal p1: we have to show that p; D p, —
p1 = pa2.

Let pgr) be the rth symbolic power of p;. The only prime ideal of the ring A/(b) is
p/(b), and so A/(b) is artinian (apply [14.6). Therefore the descending chain of ideals

(r" + ®) /@ > (¢ + ®) /0) > (o7 + ®)) /®) > -
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eventually becomes constant: there exists an s such that
Y+ ) = oY+ B) = pFY + 0) = - (17)
We claim that, for any m > s,
P € Bypy™ +p{" Y. (18)

Letx € pgm). Then
xe® +p" D @) 4 pim Y,

and so x = ab + x’ witha € Aand x’ € p(mH) As p(m) is p1-primary (1 and ab =
x—x'€ pgm) but b ¢ py, we have that a € pl ™ Now x = ab + x' € (b)p(m) + pﬁ’”*“
as claimed.

We next show that, for any m > s,

1
pgm) _ pgm—i- )

As b € p, (18) shows that p(m)/p(mH) ( (m)/p(m-irl)) and so p(m)/p(erl) 0 by
Nakayama s lemma (3.6).
Now

+1 +2
py Cpl® = pPtD = pit? =

and 0 py C (s pgm). Note that

N, BN, @0me =), 69 Loy,

and so for any x € pj, there exists an a € A \ pjp such that ax = 0. Let x € py; then
ax’ = 0forsomea € AN p; DO AN pa,and so x € py (because p; is prime). We have
shown that p; = p,, as required. O

LEMMA 15.4. Let p be a prime ideal in a noetherian ring A, and let S be a finite set of
prime ideals in A, none of which contains p. If there exists a chain of distinct prime ideals

PO Pg—1 2D Ppo.
then there exists such a chain with p; not contained in any ideal in S

PROOF. We first prove this in the special case that the chain has length 2. Suppose that
p D p1 D po are distinct prime ideals and that p is not contained in any prime ideal in S.
According to Proposition [2.5] there exists an element

aep~(poU 0 esy.

As p contains (a) + po C p, it also contains a minimal prime ideal p/ of (@) + po. ONow
p’/po is a minimal prime ideal of the principal ideal (a) + po/po in A/po, and so has
height 1, whereas the chain p/po D p1/po O po/Po shows that p/pg has height at least
2. Therefore p D p| D po are distinct primes, and p] ¢ S because it contains a. This
completes the proof of the special case.
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Now consider the general case. On applying the special case to p D pg—1 D Pg—>, We
see that there exists a chain of distinct prime ideals p D p’d_l D p4—»o such that p/d_l is not
contained in any ideal in S. Then on applying the special case to p;,_l D Pd—2 D Pg—1,
we we see that there exists a chain of distinct prime ideals p D pil—l D p/d_2 D Pa—2
such that p;,_z is not contained in any ideal in S. Repeat the argument until the proof is
complete. O

THEOREM 15.5. Let A be a noetherian ring. For any proper ideal a = (ay,...,an), the
height of a minimal prime ideal of a is at most m.

PROOF. For m = 1, this was just proved. Thus, we may suppose m > 2 and that the
theorem has been proved for ideals generated by m — 1 elements. Let p be a minimal prime
ideal of a, and let p’,...,p; be the minimal prime ideals of (a2,...,am). Each p’ has
height at most n — 1. If p is contained in one of the p’, it will have height < m — 1, and so
we may suppose that it isn’t.

Let p have height d. We have to show that d < m. According to the lemma, there exists
a chain of distinct prime ideals

pP=pg DpPpg—1D-+Dpo, d=>1,

with p; not contained in any p’, and so Proposition shows that there exists a

bepr~ U;lP;-

We next show that p is a minimal prime ideal of (b, as, ..., a). Certainly p contains a
minimal prime ideal p’ of this ideal. As p’ D (a2....,an), it contains one of the p’s, but,
by construction, it cannot equal it. If p # p’, then

pOp Dpi

ef def

are distinct ideals, which shows that p = p /(az,...,am) has height at least 2 in 4 =
A/(az, ..., am). Butpisaminimal ideal in A of the principal ideal (a1, ...,an)/(az, . ...an),
which contradicts Theorem[I5.3] Hence p is minimal, as claimed.

But now p/(b) is a minimal prime ideal of (b, a3, ...,a;) in R/(b), and so the height
of p/(b) is at most m — 1 (by induction). The prime ideals

p/(b) = pa/(b) D pa—1/(b) D --- D p1/(b)
are distinct, and so d — 1 < m — 1. This completes the proof that d = m. O

The height of an ideal in a noetherian ring is the minimum height of a prime ideal
containing it.
The following provides a (strong) converse to Theorem[15.5]

THEOREM 15.6. Let A be a noetherian ring, and let a be a proper ideal of A of height
r. Then there exist r elements ay,...,a, of a such that, for eachi < r, (ay,...,a;) has
height i.
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PROOF. If r = 0, then we take the empty set of a;s. Thus, suppose r > 1. There are only
finitely many prime ideals of height 0, because such an ideal is a minimal prime ideal of
(0), and none of these ideals can contain a because it has height > 1. Proposition[2.5|shows
that there exists an

ap €ax U{prime ideals of height 0}.

By construction, (a1) has height at least 1, and so Theorem[15.3]shows it has height exactly
1.

This completes the proof when r = 1, and so suppose that r > 2. There are only
finitely many prime ideals of height 1 containing (a1) because such an ideal is a minimal
prime ideal of (a1), and none of these ideals can contain a because it has height > 2.
Choose

az € a~ U{prime ideals of height 1 containing (a1)}.

By construction, (a1, a») has height at least 2, and so Theorem|[15.5]shows that it has height
exactly 2.

This completes the proof when r = 2, and when r > 2 we can continue in this fashion
until it is complete.

COROLLARY 15.7. Every prime ideal of height r in a noetherian ring arises as a minimal
prime ideal for an ideal generated by r elements.

PROOF. According to the theorem, an ideal a of height » contains an ideal (ay, ..., a;) of
height r. If a is prime, then it is a minimal ideal of (ay, ..., a,). o

COROLLARY 15.8. Let A be a commutative noetherian ring, and let a be an ideal in A that
can be generated by n elements. For any prime ideal p in A containing a,

ht(p/a) < ht(p) <ht(p/a) + n.

PROOF. The first inequality follows immediately from the correspondence between ideals
in Aandin A/a.

Denote the quotient map A — A’ = A/aby a — a’. Let ht(p/a) = d. Then there
exist elements ag, ..., ay in A such that p/a is a minimal prime ideal of (a,...,a}). Let
bi,...,b, generate a. Then p is a minimal prime ideal of (ay,...,a4,b1,...,by), and
hence has height < d + n. o

16 Regular local rings

Throughout this section, A is a noetherian local ring with maximal ideal m and residue field
k. Recall that A has finite height d, equal to the height of m. According to (15.5)), the ideal
m requires at least d generators; when it can be generated by d elements, the ring A is said
to be regular. In other words (see dimg (m/m?) > d, and equality holds exactly when
the ring is regular.

For example, when A has dimension zero, it is regular if and only if its maximal ideal
can be generated by the empty set, and so is zero. This means that A is a field; in particular,
it is an integral domain. The main result of this section is that this is true in general.
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LEMMA 16.1. Let A be a noetherian local ring with maximal ideal m, and let c € m ~ m?2,
Denote the quotient map A — A’ = A/(c) by a + a’. Then
dimg m/m? = dimg m’/m? 4+ 1

where m’ £ m/(c) is the maximal ideal of A’.

PROOF. Let eq,...,e, be elements of m such that {e’l, ...,ep} is a k-linear basis for
m’/m’2. We shall show that {ey, ..., e,,c} is a basis for m/m?.

Asel, ..., e, span m’/m’2, they generate the ideal m’ (see, andsom = (eq,...,ep)+
(¢), which implies that {eq, ..., e,, c} spans m/m?.

Suppose that ay, ..., an+1 are elements of A such that

aiey + -+ aney + an+1c = 0 mod m?. (19)
Then
ajej +---+ aje, = 0 mod m’?,

andsoal,...,a, € m' Itfollows thatay,...,a, € m. Now shows that a, 4 1¢ € m2.
If an+1 ¢ m, then itis a unitin A, and ¢ € m2, which contradicts its definition. Therefore,
dn+1 € m, and the relation (19) is the trivial one. o

PROPOSITION 16.2. If A is regular, then so also is A/(a) for any a € m ~. m?; moreover,
dim A =dim A/(a) + 1.

PROOF. With the usual notations, shows that
ht(m’) < ht(m) < ht(m’) + 1.
Therefore
dimg (m’/m’?) > ht(m’) > ht(m) — 1 = dimg (m/m?) — 1 = dimy (m’/m’?).
Equalities must hold throughout, which proves that A’ is regular with dimension dim A—1.5
THEOREM 16.3. Every regular noetherian local ring is an integral domain.

PROOF. Let A be a regular local ring of dimension d. We have already noted that the
statement is true when d = 0.

We next prove that A is an integral domain if it properly contains a principal ideal
a = (a) that properly contains a prime ideal p. Let b € p, and suppose b € a” = (a")
for some n > 1. Then b = a"c for some ¢ € A. As a is not in the prime ideal p, we
must have that ¢ € p C a, and so b € artl, Continuing in this fashion, we see that

be(),a I {0}. Therefore p = {0}, and so A is an integral domain.

We now assume d > 1, and proceed by induction on d. Leta € m ~. m2. As A/(a) is
regular of dimension d — 1, it is an integral domain, and so (@) is a prime ideal. If it has
height 1, then the last paragraph shows that A is an integral domain. Thus, we may suppose
that, for all @ € m \. m?, the prime ideal (a) has height 0, and so is a minimal prime ideal
of A. Let S be the set of all minimal prime ideals of A — recall (§I3) that S is finite. We
have shown that m~m? C | J{p | p € S}, andsom C m> U J{p | p € S}. It follows from
Proposition that either m C m? (and hence m = 0) or m is a minimal prime ideal of A,
but both of these statements contradict the assumption that d > 1. o

COROLLARY 16.4. A regular local ring of dimension 1 is a principal ideal domain (with a
single nonzero prime ideal).

PrROOF. TBA. o
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17 Connections with geometry

Throughout this section, k is a field.

For a finitely generated k-algebra A, define Spm A to be the pair (spm 4, A). We
(temporarily) call such a pair an affine algebraic space. When A is geometrically reduced
(i.e., A ®y k?! is reduced) we call Spm A and affine algebraic variety. The affine algebraic
spaces (resp. varieties) form a category with the obvious notion of morphism, in which
finite products exist.

TANGENT SPACES

For V' = Spm 4, define V(R) = Homy_yjgehra(4, R).
Let k[e] be the ring of dual numbers (so €2 = 0). For an affine algebraic variety V over
k, the map ¢ — 0: k[¢] — k defines a map

V(kle]) = V(k).

For any a € V(k), we define the tangent space to V at a, Tgt,(V), to be the fibre of this
map over a.

PROPOSITION 17.1. There is a canonical isomorphism
Tgtq (V) = Homy_jp(mg /mg, k).

This follows from the next two lemmas.

Let V = V(a) C k", and assume that the origin o lies on V. Let a; be the ideal
generated by the linear terms f; of the f € a. By definition, 7,(V) = V(ay). Let Ay =
k[X1,...,Xn]/ag, and let m be the maximal ideal in k[V] consisting of the functions zero
at o; thus m = (x1,...,xn).

LEMMA 17.2. There is a canonical isomorphism
Homk—lin(m/mzv k) — Homk—alg(A€7 k).

PROOF. Letn = (Xy,..., X,) be the maximal ideal at the origin in k[ X1, ..., X,]. Then
m/m? ~ n/(n®> + a), and as f — f; € n? for every f € a, it follows that m/m? =~
n/(n? + ay). Let 1,6+, fru be abasis for the vector space ay. From linear algebra we
know that there are n — r linear forms X; , ..., X;,_, forming with the f; ¢ a basis for the
linear forms on k”. Then X;, + m?,..., X;,_, + m? form a basis for m/m? as a k-vector
space, and the lemma shows that A, >~ k[X;, ..., X;,_,]. A homomorphism a: 4y — k
of k-algebras is determined by its values a(X;,), ..., «(X;,_,), and they can be arbitrarily
given. Since the k-linear maps m/m? — k have a similar description, the first isomorphism
is now obvious. o

LEMMA 17.3. There is a canonical isomorphism
Homk—alg(AZ, k) — To(V).

PROOF. To give a k-algebra homomorphism A, — k is the same as to give an element
(ai,...,an) € k™ such that f(ay,...,a,) = 0 forall f € Ay, which is the same as to
give an element of Tp (V). a)
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NONSINGULAR POINTS AND REGULAR POINTS

The dimension of an affine algebraic space Spm A is the Krull dimension of A. Therefore,
if A is integral, then it is the transcendence degree over k of the field of fractions of A.An
a € V(k) is nonsingular if dim Tgt, (V) = dim V, and V is nonsingular if every point
a € V(k) is nonsingular.

PROPOSITION 17.4. Let V' be an affine algebraic space over an algebraically closed field
k, and identity V with V (k). The set of nonsingular points of V' is open, and it is nonempty
for an affine algebraic variety.

PrOOF. TBA. o

An affine algebraic variety V' over a field k is smooth if Va1 is nonsingular.

AFFINE ALGEBRAIC SCHEMES, SPACES, AND VARIETIES
TBA.
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