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Abstract
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1 DEFINITIONS 2

This article reviews the theory of abelian varieties emphasizing those points of particular
interest to arithmetic geometers. In the main it follows Mumford’s book (Mumford 1970)
except that most of the results are stated relative to an arbitrary base field, some additional
results are proved, and étale cohomology is included. Many proofs have had to be omitted or
only sketched. The reader is assumed to be familiar with (Hartshorne 1977, Chaps. II, III)
and (for a few sections that can be skipped) some étale cohomology. The last section of my
article, Jacobian Varieties, contains bibliographic notes for both articles.

Conventions

The algebraic closure of a field k is denoted by xk and its separable closure by ks. For a
scheme V over k and a k-algebra R, VR denotes V �Spec.k/ Spec.R/, and V.R/ denotes
Mork.Spec.R/;V /. By a scheme over k, we shall always mean a scheme of finite type over
k.

A variety V over k is a separated scheme of finite type over k such that Vxk is integral, i.e.,
reduced and irreducible. In particular, we require a variety to be geometrically connected.
It is nonsingular if Vxk is regular. Note that, with these definitions, if V is a variety (and
is nonsingular), then VK is integral (and regular) for all fields K � k, and a product of
(nonsingular) varieties is a (nonsingular) variety; moreover, V.ks/ is nonempty. A k-rational
point of V is often identified with a closed point v of V such that k.v/D k.

All statements are relative to a fixed ground field: if V and W are varieties over k, then
a sheaf of divisor on V , or a morphism V !W is automatically meant to be defined over k
(not over some “universal domain” as in the pre-scheme days).

Divisor means Cartier divisor, except that, because most of our varieties are nonsingular,
we can usually think of them as Weil divisors. If � WW ! V is a map and D is a divisor on
V with local equation f near v, the ��D (or ��1D) is the divisor onW with local equation
f ı� near ��1.v/. The invertible sheaf defined by D is denoted by L.D/.

The tangent space to V at v is denoted by Tv.V /. Canonical isomorphisms are denoted by
'. The two projection maps pWV �W ! V and qWV �W !W are always so denoted. The
kernel of multiplication by n, X !X , is denoted by Xn. An equivalence class containing x
is often denoted by Œx�.

1 Definitions
A group variety over k is an algebraic variety V over k together with morphisms

mWV �V ! V (multiplication)

invWV ! V (inverse)

and an element " 2 V.k/ such that the structure on V.xk/ defined by m and inv is a group
with identity element ".

Such a quadruple .V;m; inv; "/ is a group in the category of varieties over k, i.e., the
diagrams Shatz 1986, p. 31, commute. (To see this, note that two morphisms with domain
a variety W are equal if they become equal over xk, and that W.xk/ is dense in Wxk .) Thus,
for every k-algebra R, V.R/ acquires a group structure, and these group structures depend
functorially on R.
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For a 2 V.xk/, the projection map qWVxk�Vxk! Vxk induces an isomorphism fag�Vxk
'
�!

Vxk , and we define ta to be the composite

Vxk ' fag�Vxk � Vxk �Vxk
m
�! Vxk :

On points ta is the translation map P 7!m.a;P /. Similarly, for any point a 2 V , there is a
translation map taWVk.a/! Vk.a/. In particular, if a 2 V.k/, then ta maps V into V .

A group variety is automatically nonsingular: as does every variety, it contains a
nonempty nonsingular open subvariety U , and the translates of Uxk cover Vxk .

A complete connected group variety is called an abelian variety . As we shall see, they
are projective and (fortunately) commutative. Their group laws will be written additively.

An affine group variety is called a linear algebraic group. Each such variety can be
realized as a closed subgroup of GLn for some n (Waterhouse 1979, 3.4).

2 Rigidity
The paucity of maps between complete varieties has some interesting consequences.

THEOREM 2.1 (RIGIDITY THEOREM). Let f WV �W ! U be a morphism of varieties
over k. If V is complete and

f .V �fw0g/D fu0g D f .fv0g�W /

for some u0 2 U.k/, v0 2 V.k/, w0 2W.k/, then f .V �W /D fu0g.

PROOF. Let U0 be an open affine neighbourhood of u0. The projection map qWV �W !W

is closed (this is what it means for V to be complete), and so the setZ def
D q.f �1.U XU0// is

closed inW . Note that a closed point w ofW lies outside Z if and only if f .V �fwg/�U0.
In particular, w0 2 W XZ, and so W XZ is a dense open subset of W . As V � fwg is
complete and U0 is affine, f .V �fwg/ must be a point whenever w is a closed point of
W XZ (Mumford 1966, I, �9); in fact, f .V �fwg/D f .fv0g� fwg/D fu0g. Thus f is
constant on the dense subset V � .W XZ/ of V �W , and so is constant. 2

COROLLARY 2.2. Every morphism f WA! B of abelian varieties is the composite of a
homomorphism with a translation.

PROOF. Let aD�f .0/; after replacing f with ta ıf , we can assume that f .0/D 0. Define
'WA�A! B to be f ımA�mB ı .f �f /, so that on points

'.a;a0/D f .aCa0/�f .a/�f .a0/:

Then '.A�f0g/D 0D '.f0g�A/, and so the theorem shows that ' D 0 on A�A. Thus
f ımA DmB ı .f �f /, which is what we mean by f being a homomorphism. 2

REMARK 2.3. The corollary shows that the group structure on an abelian variety is uniquely
determined by the choice of a zero element.

COROLLARY 2.4. The group law on an abelian variety is commutative.
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PROOF. Commutative groups are distinguished among all groups by the fact that the map
taking an element to its inverse is a homomorphism. The preceding corollary shows that
invWA! A is a homomorphism. 2

COROLLARY 2.5. Let V andW be complete varieties over k with rational points v0 2 V.k/,
w0 2 W.k/, and let A be an abelian variety. Then a morphism hWV �W ! A such that
h.v0;w0/D 0 can be written uniquely as hD f ıpCg ıq with f WV ! A and gWW ! A

morphisms such that f .v0/D 0 and g.w0/D 0.

PROOF. Define f to be V ' V �fw0g
h
�! A and g to be W ' fv0g�W

h
�! A, so that

k def
D h� .f ıpCg ıq/ is the map such that on points

k.v;w/D h.v;w/�h.v;w0/�h.v0;w/:

Then
k.V �fw0g/D 0D k.fv0g�W /;

and so the theorem shows that k D 0. 2

3 Rational Maps into Abelian Varieties
We improve some of the results in the last section.

Recall (Hartshorne 1977, I, 4) that a rational map f WV W of varieties is an equiva-
lence class of pairs .U;fU / with U a dense open subset of V and fU a morphism U !W ;
two pairs .U;fU / and .U 0;fU 0/ are equivalent if fU and fU 0 agree on U \U 0. There is a
largest open subset U of V such that f defines a morphism U !W , and f is said to be
defined at the points of U .

THEOREM 3.1. A rational map f WV A from a nonsingular variety to an abelian variety
is defined on the whole of V

PROOF. Combine the next two lemmas. 2

LEMMA 3.2. A rational map f WV W from a normal variety to a complete variety is
defined on an open subset U of V whose complement V XU has codimension � 2

PROOF. Let fU WU !W be a representative of f , and let v be a point of V XU of codimen-
sion 1 in V (that is, whose closure fvg has codimension 1). Then OV;v is a discrete valuation
ring (because V is normal) whose field of fractions is k.V /, and the valuative criterion of
properness (Hartshorne 1977, II, 4.7) shows that the map Spec.k.V //!W defined by f
extends to a map Spec.OV;v/!W . This implies that f has a representative defined on a
neighbourhood of v, and so the set on which f is defined contains all points of codimension
� 1. This proves the lemma. 2

LEMMA 3.3. Let f WV G be a rational map from a nonsingular variety to a group variety.
Then either f is defined on all of V or the points where it is not defined form a closed subset
of pure codimension 1 in V

PROOF. See Artin 1986, 1.3. 2
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THEOREM 3.4. Let f WV �W ! A be a morphism from a product of nonsingular varieties
into an abelian variety. If

f .V �fw0g/D fa0g D f .fv0g�W /

for some a0 2 A.K/;v0 2 V.k/, and w0 2W.k/, then f .V �W /D fa0g.

PROOF. We can assume k to be algebraically closed. First consider the case that V has
dimension 1. Then V can be embedded in a nonsingular complete curve xV , and (3.1) shows
that f extends to a map xf W xV �W ! A. Now (2.1) shows that xf is constant.

In the general case, letC be an irreducible curve on V passing through v0 and nonsingular
at v0, and let zC ! C be the normalization of C . Then f defines a morphism zC �W ! A

which the preceding argument shows to be constant. Therefore f .C �W /D fa0g, and the
next lemma completes the proof. 2

LEMMA 3.5. Let V be an integral scheme of finite type over a field k, and let v0 2 V.k/
be a nonsingular point of V . Then the union of the integral one-dimensional subschemes
passing through v0 and nonsingular at v0 is dense in V

PROOF. By induction it suffices to show that the union of the integral subschemes of
codimension 1 passing through v0 and smooth at v0 is dense in V . We can assume that V is
affine and that v0 is the origin. For H a hyperplane passing through v0 but not containing
Tv0.V /, V \H is smooth at v0. Let VH be the component of V \H passing through v0,
regarded as an integral subscheme of V , and let Z be a closed subset of V containing all
VH . Regard Z as a reduced subscheme of V , and let Cv0.Z/ be the tangent cone to Z at v0
(Mumford 1966, III.3). Clearly

Tv0.V /\H D Tv0.VH /D Cv0.VH /� Cv0.Z/� Cv0.V /D Tv0.V /;

and it follows that Cv0.Z/D Tv0.V /. As dimCv0.Z/D dim.Z/ (see Mumford 1966, III.3,
p. 320), this implies that Z D V 2

COROLLARY 3.6. Every rational map from a group variety to an abelian variety is the
composite of a homomorphism with a translation.

PROOF. Theorem 3.1 shows that f is a morphism. The rest of the proof is the same as that
of (2.2). 2

REMARK 3.7. The corollary shows that A is determined by k.A/ up to the choice of a zero
element. In particular, if A and B are abelian varieties and k.A/ is isomorphic to k.B/, then
A is isomorphic to B (as an abelian variety).

COROLLARY 3.8. Every rational map f WP1 A is constant.

PROOF. The variety P1Xf1g becomes a group variety under addition, and P1Xf0;1g
becomes a group variety under multiplication. Therefore the last corollary shows that there
exist a;b 2 A.k/ such that

f .xCy/D f .x/Cf .y/Ca, all x; y 2 xk D P1.xk/Xf1g;
f .xy/D f .x/Cf .y/Cb, all x; y 2 xk� D P1.xk/Xf0;1g:

This is clearly impossible unless f is constant. 2
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Recall that a variety V of dimension d is unirational if there exists an embedding
of xk.V / into a purely transcendental extension xk.X1; : : : ;Xd / of xk. Such an embedding
corresponds to a rational map Pd

xk
Vxk whose image is dense in Vxk .

COROLLARY 3.9. Every rational map from a unirational variety to an abelian variety is
constant.

PROOF. We may suppose that k is algebraically closed. By assumption there is a rational
map Ad V with dense image, and the composite of this with a rational map f WV A

extends to a morphism xf WP1�� � ��P1!A (apply 3.1). According to (2.5), xf .x1; : : : ;xn/DP
i fi .xi / for some morphisms fi WP1! A, and (3.8) show that each fi is constant. 2

4 Review of the Cohomology of Schemes
In order to prove some of the theorems concering abelian varieties, we shall need to make
use of results from the cohomology of coherent sheaves. The first of these is Grothendieck’s
relative version of the theorem asserting that the cohomology groups of coherent sheaves on
complete varieties are finite dimensional.

THEOREM 4.1. If f WV ! T is a proper morphism of Noetherian schemes and F is a
coherent OV -module, then the higher direct image sheavesRrf�F are coherent OT -modules
for all r � 0.

PROOF. When f is projective, this is proved in (Hartshorne 1977, III, 8.8). Chow’s lemma
(ibid., II, Ex. 4.10) allows one to extend the result to the general case (EGA, III.3.2.1)2. 2

The second result describes how the dimensions of the cohomology groups of the
members of a flat family of coherent sheaves vary.

THEOREM 4.2. Let f WV ! T be a proper flat morphism of Noetherian schemes, and let F
be a locally free OV -module of finite rank. For each t in T , write Vt for the fibre of V over
t and F t for the inverse image of F on Vt .

(a) The formation of the higher direct images of F commutes with flat base change. In
particular, if T D Spec.R/ is affine and R0 is a flat R-algebra, then

H r.V 0;F 0/DH r.V;F/˝RR0;

where V 0 D V �Spec.R/ Spec.R0/ and F 0 is the inverse image of F on V 0.
(b) The function

t 7! �.F t / def
D

X
r
.�1/r dimk.t/H

r.Vt ;F t /

is locally constant on T .
(c) For each r , the function t 7! dimkht/H r.Vt ;F�/ is upper semicontinuous (i.e., it jumps

on closed subsets).
(d) If T is integral and dimk.t/H r.Vt ;F t / is equal to a constant s for all t in T , then

Rrf�F is a locally free OT -module and the natural maps

Rrf�F˝OT k.t/!H r.Vt ;F t /

are isomorphisms.
2Grothendieck, A. (with Dieudonné, J.). Eléments de géométrie algébrique. Publ. Math. I.H.E.S., 4, 8, 11,

17, 20, 24, 28, 32 (1960-67).
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(e) If H 1.Vt ;F t /D 0 for all t in T , then R1f�F D 0, the sheaf f�F is locally free, and
the formation of f�F commutes with base change.

PROOF. (a) The statement is local on the base, and so it suffices to prove it for the particular
case in which we have given an explicit statement. In Mumford 1970, �5, p. 46, a complex
K� of R-modules is constructed with the property that, for all R-algebras R0, H r.V 0;F 0/D
H r.K�˝RR

0/. In our case, R0 is flat over R, and so H r.K�˝RR
0/DH r.K�/˝RR

0,
which equals H r.V;F/˝RR0.

(b), (c), (d). These are proved in Mumford 1970, �5.
(e). That the hypothesis implies that R1f�F D 0 is proved in Hartshorne 1977, III,

12.11a. It follows that f�F˝OT k.t/!H 0.Vt ;F t / is surjective for all t (ibid. III, 12.11b),
and so is an isomorphism. Now this last reference (applied with i D 0) shows that f�F is
locally free. 2

5 The Seesaw Principle
We shall frequently need to consider the following situation: V is a variety over k;T is a
scheme of finite type over k, and L is an invertible sheaf on V �T . For t 2 T;Lt will then
always denote the invertible sheaf .1 � �/�L on Vt D Vk.t/ D .V �T /�T t , where � is the
inclusion of t D Spec.k.t// into T . There is the diagram

.V �T;L/ .Vt ;Lt /

T t:
�

It is often useful to regard L as defining a family of invertible sheaves on V parametrized by
T .

THEOREM 5.1. Let V be a complete variety and T an integral scheme of finite type over k,
and let L and M be invertible sheaves on V �T . If Lt �Mt for all t 2 T , then there exists
an invertible sheaf N on T such that L� L˝q�N .

PROOF. By assumption, .L˝M�1/t is trivial for all t 2 T , and soH 0.Vt ; .L˝M�1/t /�

H 0.Vt ;OVt /D k.t/. Therefore (4.2d) shows that the sheaf N def
D q�.L˝M�1/ is invertible.

Consider the natural map

q�N D q�q�.L˝M�1/
˛
�! L˝M�1:

As .L˝M�1/t �OVt , the restriction of ˛ to the fibre Vt is isomorphic to the natural map
˛t WOVt ˝� .Vt ;OVt /!OVt , which is an isomorphism. Now Nakayama’s lemma implies
that ˛ is surjective, and because both q�N and L˝M�1 are invertible sheaves, it follows
that ˛ is an isomorphism (if R is a local ring, then a surjective R-linear map R!R is an
isomorphism because it must send 1 to a unit). 2

COROLLARY 5.2 (SEESAW PRINCIPLE). Suppose in addition to the hypotheses of the the-
orem that Lv �Mv for at least one v 2 V.k/. Then L�M.
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PROOF. The theorem shows that L�M˝ q�N for some N on T . On pulling back by
T ' fvg�T ,! V �T , we obtain an isomorphism Lv �Mv˝q

�N v. As Lv �Mv and
.q�N /v DN , this shows that N is trivial. 2

The next result shows that the condition Lt �Mt of the theorem needs only to be
checked for t in some dense subset of T (for example, it needs only to be checked for t the
generic point of T ).

THEOREM 5.3. Let V be a complete variety, and let L be an invertible sheaf on V �T Then
ft 2 T j Lt is trivialg is closed in T

LEMMA 5.4. An invertible sheaf L on a complete variety is trivial if and only if both it and
its dual L�1 have nonzero global sections.

PROOF. The sections define nonzero homomorphisms s1WOV !L and s2WOV !L�1. The
dual of s2 is a homomorphism s_2 WL!OV , and s_2 ı s1, being nonzero, is an isomorphism
(note that Hom.OV ;OV /DH 0.V;OV /D k). Because L is an invertible sheaf, this implies
that s1 is also an isomorphism. 2

PROOF (OF (5.3)). The lemma identifies the set of t for which Lt is trivial with the set of t
for which both dimH 0.Vt ;Lt / > 0 and dimH 0.Vt ;L�1t / > 0. Part (c) of (4.2) shows that
this set is closed. 2

REMARK 5.5. Let V;T , and L be as at the start of the section, but with V complete. We
shall say that L defines a trivial family of sheaves on V if L� q�N for some invertible
sheaf N on T . According to (5.1), if T is integral, then L defines a trivial family if and
only if each Lt is trivial. In general, let Z be the closed subset of T determined by (5.3).
Clearly Z has the following property: a morphism f WT 0! T from an integral scheme to T
factors through Z if and only if .1 �f /�L defines a trivial family on V . This result can be
significantly strengthened: there exists a unique closed subscheme Z of T (not necessarily
reduced) such that a morphism f WT 0! T (with T 0 not necessarily integral) factors through
the inclusion morphism Z ,! T if and only if .1 �f /�L defines a trivial family on V . See
Mumford 1970, �10, p. 89.

6 The Theorems of the Cube and the Square
THEOREM 6.1 (THEOREM OF THE CUBE). Let U;V;W be complete varieties over k with
base points u0 2 U.k/, v0 2 V.k/, w0 2 W.k/. An invertible sheaf L on U �V �W is
trivial if its restrictions to fu0g�V �W , U �fv0g�W , and U �V �fw0g are all trivial.

PROOF. Because Lj.U �V �fw0g/ is trivial, the seesaw principle shows that it suffices
to prove that Lj.z�W / is trivial for a dense set of z in U �V . Next one shows that U
can be taken to be a complete curve (Lemma 3.5 accomplishes this reduction when u0 is
nonsingular). This case is proved in Mumford 1970, �6, pp. 57-58, when k is algebraically
closed, and the next lemma shows that we may assume that. 2

LEMMA 6.2. Let L be an invertible sheaf on a complete variety V over a field k; if L
becomes trivial on Vxk , then it is trivial on V
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PROOF. The triviality of L on Vxk implies that both H 0.Vxk;L/ and H 0.Vxk;L
�1/ are

nonzero. As
H 0.Vxk;L

˙1/DH 0.V;L˙1/˝k xk

(see 4.2a), both H 0.V;L/ and H 0.V;L�1/ are nonzero, and Lemma 5.4 shows that L is
trivial. 2

REMARK 6.3. At least in the case that k is algebraically closed, it is not necessary to assume
in (6.1) thatW is complete (Mumford 1970, �6, p. 55), nor even that it is a variety (Mumford
1970, �10, p. 91).

COROLLARY 6.4. Let A be an abelian variety, and let pi WA�A�A! A be the projection
onto the i th factor; let pij D pi Cpj and pijk D pi Cpj Cpk . For any invertible sheaf L
on A, the sheaf

p�123L˝p�12L�1˝p�23L�1˝p�13L�1˝p�1L˝p�2L˝p�3L

on A�A�A is trivial.

PROOF. The restriction of the sheaf to f0g�A�A (' A�A/ is

m�L˝p�L�1˝m�L�1˝q�L�1˝OA�A˝p�L˝q�L;

which is trivial. Similarly its restrictions to A�f0g�A and A�A�f0g are trivial, which
implies that it is trivial on A�A�A: 2

COROLLARY 6.5. Let f;g;h be morphisms from a variety V to an abelian variety A. For
any invertible sheaf L on A, the sheaf

.f CgCh/�L˝ .f Cg/�L�1˝ .gCh/�L�1˝ .f Ch/�L˝f �L˝g�L˝h�L

on V is trivial.

PROOF. The sheaf in question is the inverse image of the sheaf in (6.4) by .f;g;h/WV !
A�A�A: 2

COROLLARY 6.6. Consider the map nAWA! A equal to multiplication by n. For all
invertible sheaves L on A,

n�AL� L.n2Cn/=2˝ .�1/�L.n2�n/=2:

In particular,

n�AL� Ln2 if L is symmetric (i.e., L� .�1/�AL)

n�AL� Ln if L is antisymmetric (i.e.; L�1 � .�1/�AL).

PROOF. On applying the last corollary to the maps nA, 1A, .�1/A : A! A we find that

.nC1/�AL
�1
˝n�AL

2
˝ .n�1/�AL

�1
� L�1˝ .�1/�L�1:

This fact can be used to prove the corollary by induction, starting from the easy cases nD 0,
1, �1: 2
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THEOREM 6.7 (THEOREM OF THE SQUARE). For all invertible sheaves L on an abelian
variety A and points a;b 2 A.k/,

t�aCbL˝L� t�aL˝ t�bL:

PROOF. Apply (6.5) with f the identity map on A and g and h the constant maps with
images a and b: 2

REMARK 6.8. When tensored with L�2, the isomorphism in (6.7) becomes

t�aCbL˝L�1 � .t�aL˝L�1/˝ .t�bL˝L�1/;

which says that the map 'L,

a 7! t�aL˝L�1WA.k/! Pic.A/;

is a homomorphism. Therefore,Xn

iD1
ai D 0 in A.k/ H) t�a1L˝�� �˝ t

�
an
L' Ln:

REMARK 6.9. We write � for linear equivalence of divisors, so that D �D0 if and only
if L.D/ � L.D0/. Also, we write Da for the translate taD D DC a of D. Note that
t�aL.D/D L.t�1a D/D L.D�a/. The isomorphisms in (6.7) and (6.8) become the relations:

DaCbCD �DaCDb; a; b 2 A.k/;Xn

iD1
Dai � nD if

Xn

iD1
ai D 0 in A.k/:

7 Abelian Varieties Are Projective
For D a divisor on a variety V , we let

L.D/D ff 2 k.V / j .f /CD � 0g[f0g DH 0.V;L.D//;
jDj D f.f /CD j f 2 L.D/g:

Thus jDj is the complete linear system containing D.
A projective embedding of an elliptic curve can be constructed as follows: let D D P0,

where P0 is the zero element of A, and choose a suitable basis 1;x;y of L.3D/; then the
map A! P2 defined by f1;x;yg identifies A with the cubic projective curve

Y 2ZCa1XYZCa3YZ
2
DX3Ca2X

2ZCa4XZ
2
Ca6Z

3

(see Hartshorne 1977, IV, 4.6). This argument can be extended to every abelian variety.

THEOREM 7.1. Every abelian variety is projective.

PROOF. We first prove this under the assumption that the abelian variety A is defined over
an algebraically closed field.

Recall (Hartshorne 1977, II, 7.8.2) that a variety is projective if it has a very ample linear
system, and that a linear system d is very ample if:
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(a) it separates points (for every pair a;b of distinct closed points on the variety, there is a
D in d such that a 2D but b 62D); and

(b) it separates tangent vectors (for every closed point a and tangent vector t to the variety
at a, there exists a D 2 d such that a 2D but t 62 Ta.D/).

The first step of the proof is to show that there exists a linear system that separates 0
from the other points of A and separates tangent vectors at 0. More precisely, we show that
there exists a finite set fZig of prime divisors on A such that:

(a)
T
Zi D f0g; and

(b) for every t 2 T0.A/, there exists a Zi such that ti 62 T0.Zi /.
The second step is to show that if D D

P
Zi , then j3Dj is very ample.

The existence of the set fZig is an immediate consequence of the observations:
(i) for every closed point a¤ 0 of A, there is a prime divisor Z such that 0 2Z, a 62Z;
(ii) for every t 2 T0.A/, there is a prime divisorZ passing through 0 such that t 62 T0.Z/.

The proof of (ii) is obvious: choose an open affine neighbourhood U of 0, let Z0 be an
irreducible component of A\H , where H is any hyperplane through 0 not containing t ,
and take Z to be the closure of Z0. The proof of (i) will be equally obvious once we have
shown that 0 and a are contained in a single open affine subset of A. Let U again be an
open affine neighbourhood of 0, and let U Ca be its translate by a. Choose a closed point
u of U \ .U Ca/. Then both u and uCa lie in U Ca, and so U Ca�u is an open affine
neighbourhood of both 0 and a.

Now let D be the divisor
P
Zi where .Zi /1�i�n satisfies (a) and (b). For any family

.ai ;bi /1�i�n of closed points of A, the theorem of the square (see 6.9) shows thatX
i

.Zi;ai CZi;bi CZi;�ai�bi /�
X
i

3Zi D 3D:

Let a and b be distinct closed points of A. By (a), for some i , say i D 1;Zi does not contain
b�a. Choose a1 D a. Then Z1;a1 passes through a but not b. The sets

fb1 jZ1;b1 passes through bg;

fb1 jZ1;�a1�b1 passes through bg;

are proper closed subsets of A. Therefore, it is possible to choose a b1 that lies in neither.
Similarly ai and bi for i � 2 can be chosen so that none of the Zi;ai , Zi;bi , or Zi;�ai�bi
passes through b. Then a is in the support of

P
.Zi;ai CZi;bi CZi;�ai�bi / but b is not,

which shows that j3Dj separates points. The proof that it separates tangents is similar.
The final step is to show that if Axk is projective, then so also is Ak . Let D be an ample

divisor on Axk; then D is defined over a finite extension of k, and the following statements
explain how to construct from D an ample divisor on A.

(a) LetD be a divisor onA; if jDxkj is very ample, then so also is jDj. (The mapAxk ,!Pn
defined by jDxkj is obtained by base change from that defined by jDj:)

(b) If jD1j and jD2j are ample, then so also is jD1CD2j. (See Hartshorne 1977, II, Ex.
7.5.)

(c) LetD be a divisor on Ak0 , where k0 is a finite Galois extension of k; then
P
�D (sum

over � 2 Gal.k0=k/) arises from a divisor on A. (This is obvious.)
(d) Let D be a divisor on Ak0 , where k0 is a finite purely inseparable extension of k; then

k0p
m

� k for some m, and pmD arises from a divisor on A. (Regard D as the Cartier
divisor defined by a family of pairs .fi ;U 0i /, fi 2 k

0.A/, and let Ui be the image of U 0i
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in A; then k0.A/p
m

� k.A/, and so the pairs .f p
m

i ;Ui / define a divisor on A whose
inverse image on Ak0 is pmD:) 2

COROLLARY 7.2. Every abelian variety has a symmetric ample invertible sheaf.

PROOF. According to the theorem, it has an ample invertible sheaf L. As multiplication by
�1 is an isomorphism, .�1/�L is ample, and therefore L˝ .�1/�L is ample (Hartshorne
1977, II, Ex. 7.5) and symmetric. 2

REMARK 7.3. If L is an ample invertible sheaf on A, then by definition Ln is very ample
for some n. It is an important theorem that in fact L3 will be very ample (see Mumford 1970,
�17, p. 163). The 3 is needed, as in the above proof, so that one can apply the theorem of the
square.

8 Isogenies
Let f WA! B be a homomorphism of abelian varieties. The kernel N of f in the sense
of Shatz 1986, �2, is a closed subgroup scheme of A of finite type over k. When k has
characteristic zero, N is reduced (ibid. �3), and so its identity component N 0 is an abelian
variety (possibly zero); in general, N will be an extension of a finite group scheme by an
abelian variety (in fact N 0

red will be an abelian variety — see a lemma following 12.1). When
f is surjective and its kernel is finite, it is called an isogeny.

PROPOSITION 8.1. For a homomorphism f WA! B of abelian varieties, the following
statements are equivalent:

(a) f is an isogeny;
(b) dimAD dimB and f is surjective;
(c) dimAD dimB and Ker.f / is a finite group scheme;
(d) f is finite, flat, and surjective.

PROOF. As f .A/ is closed in B , the equivalence of the first three statements follows from
the theorem on the dimension of fibres of morphisms; see Mumford 1966, I, 8.3

Clearly (d) implies (a), and so assume (a). We may suppose that k is algebraically
closed. Because f is a homomorphism, the translation map tb can be used to show that the
(scheme-theoretic) fibre f �1.b/ is isomorphic to f �1.0/khb/. Therefore f is quasi-finite.
It is also projective (Hartshorne 1977, II, Ex. 4.9), and this shows that it is finite (ibid.
III, Ex. 11.2). The sheaf f�OA is a coherent OB -module, and dimk.b/.f�OA˝k.b//D
dimk.f�OA˝k.0// is independent of b, and so (4.2d) shows that f�OA is locally free. 2

The degree of an isogeny f WA! B is defined to be the order of the kernel of f (as
a finite group scheme); equivalently, it is the rank of f�OA as a locally free OB -module.
Clearly, deg.g ıf /D deg.g/deg.f /. Let nD deg.f /; then Ker.f /� Ker.nA/ and so nA
factors as nA D g ıf with g an isogeny B! A.

For an integer n we write nA, or simply n, for the morphism a 7! naWA! A.

3Let f WX ! Y be a dominating morphism of varieties, and let r D dimX � dimY . Then there exists a
nonempty open subset U of Y such that (i) U � f .X/ and (ii) for all closed point y 2 Y and all irreducible
components Z of f �1.y/, dimZ D dimW C r .
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THEOREM 8.2. Let A be an abelian variety of dimension g, and let n > 0 be an integer.
Then nAWA! A is an isogeny of degree n2g ; it is étale if and only if the characteristic of k
does not divide n.

PROOF. From (7.2) we know there is an ample symmetric invertible sheaf L on A, and
according to (6.6) n�AL � Ln2 . The restriction of an ample invertible sheaf to a closed
subscheme is again ample, and so the restriction of n�AL to Ker.nA/ is both trivial and
ample. This is impossible unless Ker.nA/ has dimension zero. We have shown that nA is an
isogeny. 2

Before proving that nA has degree n2g , we review some elementary intersection theory
from Shafarevich 1994, IV, 1. Clearly we may assume k is algebraically closed.

Let V be a smooth projective variety of dimension g. IfD1,: : : ;Dg are effective divisors
on V such that

T
Di has dimension zero, then their intersection number is defined by the

equations

.D1; : : : ;Dg/D
X

v2
T
Di

.D1; : : : ;Dg/v,

.D1; : : : ;Dg/v D dimk.OV;v=.f1;v; : : : ;fg;v//;

where fi;v is a local equation for Di near v. The definition extends by linearity to nonef-
fective divisors whose components intersect properly. Then one checks that .D1; : : : ;Dg/
is unchanged if each Di is replaced by a linearly equivalent divisor and shows that this
can be used to extend the definition to all g-tuples of divisors (loc. cit.). In particular
.Dg/D .D;D; : : :/ is defined.

LEMMA 8.3. Let V and W be smooth projective varieties of dimension g, and let f WW !
V be a finite flat map of degree d . Then for any divisors D1; : : : ;Dg on V

.f �D1; : : : ;f
�Dg/D d.D1; : : : ;Dg/:

PROOF. It suffices to prove the equality in the case that the Di are effective and
T
Di is

finite. Let v 2
T
Di . Then

.f�OW /˝OV OV;v D
Y

f .w/Dv

OW;w ;

which is therefore a free OV;v-module of rank d . If fi;v is a local equation for Di near v,
then fi;v ıf is a local equation for f �Di near each of the points in f �1.v/. ThereforeX
f .w/Dv

.f �D1; : : : ;f
�Dg/w D

X
f hw/Dv

dimk.OW;w=.f1;v ıf; : : : ;fg;v ıf //

D dimk

�� Y
f .w/Dv

OW;w
�
˝OV:v .OV;v=.f1;v; : : : ;fg;v//

�
D d.D1; : : : ;Dg/v. 2
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PROOF (OF THEOREM 8.2). We apply this theory to a divisor D on A such that D is
linearly equivalent to .�1/�D (i.e., such that L.D/ is symmetric). Let d D deg.nA/. Then
(8.3) shows that ..n�AD/

g/D d.Dg/, but (6.6) shows that n�AD is linearly equivalent to
n2D and therefore that

..n�AD//
g
D ..n2D/g/D n2g.Dg/:

These equalities will imply that d D n2g once we shown that there exists a D for which
.Dg/¤ 0. ChooseD to be very ample (see (7.2)), and letA ,!PN be the embedding defined
by jDj. Then for any hyperplane sections H1; : : : ;Hg of A in PN ; .Dg/D .H1; : : : ;Hg/,
and this is obviously positive.

It remains to prove the second assertion of the theorem. For a homomorphism f WA!B ,
let .df /0WT0.A/! T0.B/ be the map on tangent spaces defined by f . It is neither surprising
nor difficult to show that d.f C g/0 D .df /0C .dg/0 (cf. Mumford 1970, �4, p. 42).
Therefore .dnA/0 is multiplication by n on the k-vector-space T0.A/, and so .dnA/0 is an
isomorphism (and nA is étale at zero) if and only if the characteristic of k does not divide n.
By using the translation maps, one shows that a homomorphism is étale at zero if and only if
it is étale at all points. 2

REMARK 8.4. If k is separably algebraically closed and n is not divisible by its characteris-
tic, then the theorem says that the kernel An.k/ of nWA.k/! A.k/ has n2g elements. As
this is also true for all n0 dividing n, it follows that An.k/ is a free Z=nZ-module of rank
2g. Therefore for all primes l ¤ char.k/;TlA

def
D lim
 �n

Aln.k/ is a free Zl -module of rank
2g. Note that an element aD .an/ of TlA is a sequence a1, a2, a3, : : : of elements of A.k/
such that la1 D 0 and lan D an�1 for all n.

When k is not separably algebraically closed, we set TlAD TlAks — this is called the
Tate module of A. In this case there is a continuous action of Gal.ks=k/ on TlA.

REMARK 8.5. Assume that k is algebraically closed of characteristic p ¤ 0. Then Ap
def
D

Ker.pA/ is a finite group scheme of order p2g killed by p. Therefore (see Shatz 1986)
Ap � .Z=pZ/r ��sp �˛tp for some r;s; t such that rC sC t D 2g. It is known that r D s
and r � g (the inequality is a consequence of the fact that .dpA/0 D 0/. All values of r;s,
and t are possible subject to these constraints. The case r D g is the “general” case. For
example, if gD 1, then r D 0 only for supersingular elliptic curves and there are only finitely
many of these over a given k (Mumford 1970, �22, p. 216).

9 The Dual Abelian Variety: Definition
Let L be an invertible sheaf on A. Recall (6.8) that the map

'LWA.k/! Pic.A/; a 7! t�aL˝L�1

is a homomorphism. Define

KL D fa 2 A j the restriction of m�L˝q�L�1 to fag�A is trivialg:

According to (5.3), KL is a closed subset of A, and we regard it as a reduced subscheme of
A. For a in A.k/, the maps

A' fag�A ,! A�A
m

�
q

A
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send

P 7! .a;P /
7! aCP

7! P
;

and so m�L˝q�L�1jfag�A can be identified with t�aL˝L�1 on A. Thus

KL.k/D fa 2 A.k/ j t
�
aL� Lg:

Note that (6.2) implies that the definition of KL commutes with a change of the base field.

PROPOSITION 9.1. Let L be an invertible sheaf such that H 0.A;L/¤ 0. Then L is ample
if and only if KL has dimension zero, i.e., if and only if t�aL� L on Axk for only a finite set
of a 2 A.xk/.

PROOF. Let s be a nonzero global section of L, and let D be its divisor of zeros. Then D is
effective and LD L.D/, and so the result Mumford 1970, �6, p. 60, applies. 2

We shall be more concerned in this section with the L of opposite type.

PROPOSITION 9.2. For L an invertible sheaf on A, the following conditions are equivalent:
(a) KL D A;
(b) t�aL� L on Axk for all a 2 A.xk/;
(c) m�L� p�L˝q�L.

PROOF. The equivalence of (a) and (b) follows from the remarks in the first paragraph of
this section. Clearly (c) implies that for all a 2 A,

m�L˝q�L�1jfag�A � p�Ljfag�A,

which is trivial. Thus (c) implies (a), and the converse follows easily from the seesaw
principle (5.2) because m�L˝q�L�1jfag�A and p�Ljfag�A are both trivial for all a 2 A
and m�L˝q�L�1jA�f0g ' L' p�LjA�f0g. 2

Define Pic0.A/ to be the group of isomorphism classes of invertible sheaves on A
satisfying the conditions of (9.2). Note that if f and g are maps from some k-scheme S into
A and L 2 Pic0.A/, then

.f Cg/�L' .f;g/�m�L
(c)
� .f;g/�.p�L˝q�L/' f �L˝g�L:

From this it follows that n�L� Ln all n 2 Z, L 2 Pic0.A/.

REMARK 9.3. An invertible sheaf L lies in Pic0A if and only if it occurs in an algebraic
family containing a trivial sheaf, i.e., there exists a connected variety T and an invertible
sheaf M on A�T such that, for some t0; t1 2 T .k/, Mt0 is trivial and Mt1 � L. The
sufficiency of the condition can be proved directly using the theorem of the cube (Mumford
1970, �8, (vi)); the necessity follows from the existence of the dual abelian variety (see
below).

Roughly speaking, the dual (or Picard) variety A_ of A is an abelian variety over k such
that A_.xk/D Pic0.Axk/; moreover, there is to be an invertible sheaf (the Poincaré sheaf) P
on A�A_ such that for all a 2 A_.xk/, the inverse image of P on A�fag D Axk represents
a as an element of Pic0.Axk/. One usually normalizes P so that Pjf0g�A_ is trivial.

The precise definition is as follows: an abelian variety A_ is the dual abelian variety of
A and an invertible sheaf P on A�A_ is the Poincaré sheaf if:
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(a) Pjf0g�A_ is trivial and PjA�fag lies in Pic0.Ak.a// for all a 2 A_; and
(b) for every k-scheme T and invertible sheaf L on A�T such that Ljf0g�T is trivial and

LjA�ftg lies in Pic0.Akht// for all t 2 T , there is a unique morphism f WT !A_ such
that .1 �f /�P � L.

REMARK 9.4. (a) Clearly the pair .A_;L/ is uniquely determined up to a unique isomor-
phism by these conditions.

(b) On applying condition (b) with T D SpecK;K a field, one finds that

A_.K/D Pic0.AK/:

In particular A_.xk/D Pic0.Axk/, and every element of Pic0.Axk/ is represented exactly once
in the family .Pa/a2A_hxk/. The map f WT ! A_ in condition (b) sends t 2 T .xk/ to the
unique a 2 A_.k/ such that Lt � Pa.

(c) By using the description of tangent vectors as maps from the dual numbers to A_

(Hartshorne 1977, II, Ex. 2.8), one can show easily that there is a canonical isomorphism
T0.A

_/!H 1.A;OA/; in particular, dimA_ D dimA. In the case that k D C, there is an
isomorphismH 1.A;OA/!H 1.Aan;OAan/ (cohomology relative to the complex topology),
and expWT0.A_/� A.C/ induces an isomorphism H 1.Aan;OAan/=H 1.Aan;Z/! A.C/.

One expects of course that A__ D A. Mumford (1970) gives an elegant proof of this.

PROPOSITION 9.5. Let P be an invertible sheaf on the product A�B of two abelian
varieties of the same dimension, and assume that the restrictions of P to A �f0g and
f0g�B are both trivial. Then B is the dual of A and P is the Poincaré sheaf if and only if
�.A�B;P/D˙1.

PROOF. Mumford 1970, �13, p. 131. 2

Note that the second condition is symmetric between A and B; therefore if .B;P/ is
the dual of A, then .A;s�P/ is the dual of B , where sWB �A! A�B is the morphism
switching the factors.

10 The Dual Abelian Variety: Construction
We can include only a brief sketch — for the details, see Mumford 1970, �8, ��10–12.

PROPOSITION 10.1. Let L be an invertible sheaf on A; then the image of 'LWA.k/!
Pic.A/ is contained in Pic0.A/; if L is ample and k is algebraically closed, then 'L maps
onto Pic0.A/.

PROOF. Let b 2 A.k/; in order to show that 'L.b/ is in Pic0.A/, we have to check that
t�a .'L.b//D 'L.b/ for all a 2 A.xk/. But

t�a .'L.b//D t
�
a .t
�
bL˝L�1/D t�aCbL˝ .t

�
aL/�1;

which the theorem of the square (6.7) shows to be isomorphic to

t�bL˝L�1 D 'L.b/:

This shows that 'L maps into Pic0.A/, and for the proof that it maps onto, we refer the
reader to Mumford 1970, �8, p. 77. 2
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Let L be an invertible sheaf on A, and consider the sheaf

L� def
Dm�L˝p�L�1˝q�L�1

on A�A. Then L�jf0g�A ' L˝L�1, which is trivial, and for a in A.xk/;

L�jA�fag ' t�aL˝L�1 D 'L.a/;

which, as we have just seen, lies in Pic0.Axk/. Therefore, if L is ample, then L� defines a
family of sheaves on A parametrized by A such that each element of Pic0.Axk/ is represented
by L�a for a (nonzero) finite number of a in A.xk/. Consequently, if .A_;P/ exists, then
there is a unique isogeny 'WA! A_ such that .1 �'/�LD L�. Moreover ' D 'L, and the
fibres of A.xk/! A_.xk/ are the equivalence classes for the relation “a � a0 if and only if
La � La0 ”.

In characteristic zero, we even know what the kernel of ' as a finite subgroup scheme
of A must be because it is determined by its underlying set: it equals KL with its unique
reduced subscheme structure. Therefore, in this case we define A_ to be the quotient A=KL
(see Mumford 1970, �7, p. 66 or �12, p. 111 for the construction of quotients). The action of
KL on the second factor of A�A lifts to an action on L� over A�A, and on forming the
quotient we obtain a sheaf P on A�A_ such that .1 �'L/�P D L�.

Assume further that k is algebraically closed. It easy to check that the pair .A_;P/ just
constructed has the correct universal property for families of sheaves M parametrized by
normal k-schemes. Let M on A�T be such a family, and let F be the invertible sheaf
q�12M˝q�13P�1 on A�T �A_, where qij is the projection onto the .i;j /th factor. Then
F jA�.t;b/ �Mt ˝P�1

b
, and so if we let � denote the closed subset of T �A_ of points

.t;b/ such that F jA�.t;b/ is trivial, then � .k/ is the graph of a map T .k/! A_.k/ sending
a point t to the unique point b such that Pb � F t . Regard � as a closed reduced subscheme
of T �A_. Then the projection � ! T has separable degree 1 because it induces a bijection
on points (see Shafarevich 1994, II, 5). As k has characteristic zero, it must in fact have
degree 1, and now the original form of Zariski’s Main Theorem (Mumford 1966, III.9,
p. 413) shows that � ! T is an isomorphism. The morphism f WT ' �

q
�! A_ has the

property that .1 �f /�P DM, as required.
When k has nonzero characteristic, then A_ is still the quotient of A by a subgroup

scheme KL having support KL, but KL need not be reduced. Instead one defines KL to be
the largest subscheme of A such that the restriction of m�L˝q�L�1 to KL�A defines a
trivial family on A (see 5.5), and takes A_ D A=KL. The proof that this has the correct
universal property is similar to the above, but involves much more.

11 The Dual Exact Sequence
Let f WA! B be a homomorphism of abelian varieties, and let PB be the Poincaré sheaf
on B �B_. The invertible sheaf .f � 1/�PB on A�B_ gives rise to a homomorphism
f _WB_! A_ such that

.1 �f _/�PA � .f �1/�PB :

On points f is simply the map Pic0.B/! Pic0.A/ sending the isomorphism class of an
invertible sheaf on B to it inverse image on A.
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THEOREM 11.1. If f WA! B is an isogeny with kernel N , then f _WB_ ! A_ is an
isogeny with kernel N_, the Cartier dual of N . In other words, the exact sequence

0!N ! A! B! 0

gives rise to a dual exact sequence

0!N_! B_! A_! 0:

PROOF. See Mumford 1970, �15, p. 143. 2

There is another approach to this theorem which offers a different insight. Let L be an
invertible sheaf on A whose class is in Pic0.A/, and let L be the line bundle associated with
L. The isomorphism p�L˝q�L!m�L of (9.2) gives rise to a map mLWL�L! L lying
over mWA�A! A. The absence of nonconstant regular functions on A forces numerous
compatibility properties of mL, which are summarized by the following statement.

PROPOSITION 11.2. Let G.L/ denote L with the zero section removed; then, for some
k-rational point e ofG.L/,mL defines onG.L/ the structure of a commutative group variety
with identity element e relative to which G.L/ is an extension of A by Gm.

Thus L gives rise to an exact sequence

E.L/W 0!Gm!G.L/! A! 0:

The commutative group varieties over k form an abelian category, and so it is possible
to define Ext1

k
.A;Gm/ to be the group of classes of extensions of A by Gm in this category.

We have:

PROPOSITION 11.3. The map L 7!E.L/ defines an isomorphism

Pic0.A/! Ext1k.A;Gm/:

Proofs of these results can be found in Serre 1959, VII, �3. They show that the sequence

0!N_.k/! B_.k/! A_.k/

can be identified with the sequence of Exts

0! Homk.N;Gm/! Ext1k.B;Gm/! Ext1k.A;Gm/:

(The reason for the zero at the left of the second sequence is that Homk.A;Gm/D 0:/
The isomorphism in (11.3) extends to any base (Oort 1966, III.18). This means that if we

let Extr denote Ext in the category of sheaves on the flat site over Spec.k/ (see Milne 1980,
III, 1.5(e)), then A_ can be identified with the sheaf Ext1.A;Gm/, and the exact sequence

0!N_! B_! A_! 0

can be identified with

0!Hom.N;Gm/! Ext1.B;Gm/! Ext1.A;Gm/! 0:
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12 Endomorphisms

The main result in this section is that End0.A/ def
DQ˝End.A/ is a finite-dimensional semisim-

ple algebra over Q. As in the classical case (Rosen 1986), the semisimplicity follows from
the existence of approximate complements for abelian subvarieties. If W is a subspace of a
vector space V , one way of constructing a complement W 0 for W is to choose a nondegener-
ate bilinear form on V and take W 0 DW ?I equivalently, choose an isomorphism V ! {V

and take W 0 to be the kernel of V ! {V ! {W . The same method works for abelian varieties.

PROPOSITION 12.1. LetB be an abelian subvariety ofA; then there is an abelian subvariety
B 0 � A such that B \B 0 is finite and BCB 0 D A, i.e., such that B �B 0! A is an isogeny.

PROOF. Choose an ample sheaf L on A and define B 0 to be the reduced subscheme of the

zero component of the kernel of A
�L
�! A_! B_. When k is perfect, B 0 is obviously an

abelian variety, and for an imperfect base field, this is proved in the lemmas below4. From the
theorem on the dimension of fibres of morphisms, dimB 0 � dimA�dimB . The restriction
of the morphism A! B_ to B is �LjB WB! B_, which has finite kernel because LjB is
ample. Therefore B \B 0 is finite, and so B �B 0! A is an isogeny. 2

LEMMA. For an abelian variety A over a field k of characteristic p, the subset
S
.n;p/D1An

of A is Zariski dense (recall that An is the kernel of nAWA! A).

PROOF. In proving this, we may assume that k is algebraically closed. Let B be the Zariski
closure of

S
.n;p/D1An, endowed with its structure as a reduced subscheme of A. Then B0

is an abelian subvariety of A. Let n > 1 be an integer prime to p. Then

#.B0/n.k/D n2dimB0 , and

#Bn.k/D #An.k/D n2dimA:

(see 8.4). If n is prime to the index of B0 in B , then #.B0/n.k/D #Bn.k/, and so dimB0D
dimA. Therefore B0 D A. 2

LEMMA. Let A be an abelian variety over a field k. Every abelian subvariety C of Axk is
defined over a finite separable extension of k.

PROOF. In proving this, we may assume that k is separably closed and has characteristic
p ¤ 0. For n prime to p, An is an étale group scheme over k. Because k is separably closed,
there exists an étale subgroup Fn of An such that .Fn/xk D .An/xk \C . Let B be the Zariski
closure of

S
nFn, endowed with its structure as a reduced subscheme of A. By the preceding

lemma, Bxk D C as a set, and so it remains to show that Bxk is reduced. For an open affine
subset U of B , the natural map

OB.U /!
Y

n
OFn.Fn\U/�

Y
n
OAn.An/

is injective, because every f in the kernel is zero on the dense subset
�S

nFn
�
\U of U ,

and hence is zero because U is reduced. As
Q
nOAn.An/ is geometrically reduced, this

shows that U (hence B) is geometrically reduced. 2

4Based on an email from Qing Liu.
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LEMMA. Let G be a connected closed subgroup scheme of an abelian variety A. Then Gred
is an abelian variety.

PROOF. In proving this, we may assume that k is separably closed. Note that C def
D .Gxk/red

is an abelian subvariety of Axk . Let B be the abelian subvariety of A constructed in the last
proof. Then Bxk D C and it is clear from its definition that B DGred. 2

An abelian variety is said to be simple if it has no proper nonzero abelian subvarieties.
As in the classical case, each abelian variety A is isogenous to a product

Q
i A

ri
i of powers

of nonisogenous simple abelian varieties Ai ; the ri are uniquely determined and the Ai are
uniquely determined up to isogeny. The endomorphism algebra End0.Ai / of each Ai is a
skew field, End0.Arii /'Mri .End0.Ai //, and End0.A/'

Q
i End0.Arii /.

LEMMA 12.2. For every prime l ¤ char.k/, the natural map

Hom.A;B/! HomZl .TlA;TlB/

is injective; in particular, Hom.A;B/ is torsion free.

PROOF. Let 'WA! B be a homomorphism such that Tl' D 0; then '.Aln.xk//D 0 for all
n. For any simple abelian subvariety A0 of A, this implies that the kernel of 'jA0 is not finite
and therefore must equal the whole of A0. It follows that ' D 0: 2

A function f WV ! K on a vector space V over a field K is said to be a polynomial
function of degree d if for every finite linearly independent set fe1; : : : ; eng of elements of
V;f .x1e1C �� �Cxnen/ is a polynomial function of degree d in the xi with coefficients
in K. Similarly, f is a homogeneous polynomial function if f .x1e1C �� � C xnen/ is a
homogeneous polynomial function.

LEMMA 12.3. Assume thatK is infinite, and let f WV !K be a function such that f .xv C
w/ is a polynomial in x with coefficients in K, for all v;w in V ; then f is a polynomial
function.

PROOF. We show by induction on n that, for every subset fv1; : : : ;vn;wg of V , f .x1v1C
�� �CxnvnCw/ is a polynomial in the xi . For nD 1, this is true by hypothesis; assume it
for n�1. The original hypothesis applied with v D vn shows that

f .x1v1C�� �CxnvnCw/D a0.x1; : : : ;xn�1/C�� �Cad .x1; : : : ;xn�1/x
d
n

for some d , with the ai functions Kn�1!K. Choose distinct elements c0; : : : ; cd of K; on
solving the system of linear equations

f .x1v1C�� �Cxn�1vn�1C cj vnCw/D
X

ai .x1; : : : ;xn�1/c
i
j ; j D 0;1; : : : d;

for ai , we obtain an expression for ai as a linear combination of the terms

f .x1v1C�� �Cxn�1vn�1C cj vnCw/;

which the induction assumption says are polynomials in x1; : : : ;xn�1: 2
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Let A be an abelian variety of dimension g over k. For ' 2 End.A/, we define deg'
to be the degree of ' in the sense of Section 8 if ' is an isogeny, and otherwise we set
deg' D 0. As

deg.n'/D degnA deg' D n2g deg';

we can extend this notion to all of End0.A/ by setting

deg' D n�2g deg.n'/

if n' 2 End.A/.

PROPOSITION 12.4. The function

' 7! deg'WEnd0.A/!Q

is a homogeneous polynomial function of degree 2g on End0.A/.

PROOF. As deg.n'/D n2g deg', the lemma shows that it suffices to prove that deg.n'C
 / is a polynomial of degree � 2g in n for n 2 Z and fixed '; 2 End.A/. Let D be a very
ample divisor on A, and letDnD .n'C /�D. Then (see 8.3), deg.n'C /.Dg/D .Dgn /,
where g D dimA, and so it suffices to prove that .Dgn / is a polynomial of degree � 2g in n.
Corollary 6.5 applied to the maps n'C , ', 'WA!A and the sheaf LD L.D/ shows that

DnC2�2DnC1� .2'/
�DCDnC2.'

�D/� 0;

i.e.,
DnC2�2DnC1CDn DD

0;

where D0 D 2.'�D/� .2'/�D.
An induction argument now shows that

Dn D
n.n�1/

2
D0CnD1� .n�1/D0

and so

.Dgn /D

�
n.n�1/

2

�g
.D0g/C�� �

is a polynomial in n of degree � 2g: 2

THEOREM 12.5. For all abelian varieties A and B , Hom.A;B/ is a free Z-module of finite
rank � 4dimAdimB; for each prime l ¤ char.k/, the natural map

Zl˝Hom.A;B/! Hom.TlA;TlB/

is injective with torsion-free cokernel.

LEMMA 12.6. Let ' 2 Hom.A;B/; if ' is divisible by ln in Hom.TlA;TlB/, then it is
divisible by ln in Hom.A;B/.

PROOF. The hypothesis implies that ' is zero on Aln.xk/. As Aln is an étale subgroup
scheme of A, this means that ' is zero on Aln , and therefore factors as ' D '0 ı ln:

0 Aln A A 0

B:

ln

'
'0

2
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PROOF (OF THEOREM 12.5). Lemma 12.6 shows that the map

Z`˝Hom.A;B/! Hom.T`A;T`B/ (1)

has torsion-free cokernel. We next show that it is injective in the case that A is simple and
B D A. The elements of Z`˝End.A/ are finite sumsX

ci ˝ai ; ci 2 Z`; ai 2 End.A/;

and so it suffices to show that the map Z`˝M ! End.T`A/ is injective for any finitely
generated submodule M of End.A/. Let e1; : : : ; em be a basis for M ; we have to show that
T`.e1/; : : : ;T`.em/ are linearly independent over Z` in End.T`A/. Let P be the polynomial
function on End0.A/ such that P.˛/D deg.˛/ for all ˛ 2 End.A/. Because A is simple,
every nonzero endomorphism ˛ of A is an isogeny, and so P.˛/ is an integer > 0. The map
P WQM !Q is continuous for the real topology because it is a polynomial function, and so
U D fvjP.v/ < 1g is an open neighbourhood of 0. As

.QM \End.A//\U � End.A/\U D 0;

we see that QM \End.A/ is discrete in QM , and therefore is a finitely generated Z-module
(see 4.15 of my notes on algebraic number theory). Hence there is a common denominator
for the elements of QM \End.A/:

(*) there exists an integer N such that N.QM \End.A//�M .

Suppose that T`.e1/; : : : ;T`.em/ are linearly dependent, so that there exist ai 2 Z`, not all
zero, such that

P
aiT`.ei /D 0. For any n2N, there exist ni 2Z such that `nj.ai �ni / in Z`

for all i . Then
P
niT`.ei / is divisible by `n in End.T`A/, and so

P
niei is divisible by `n in

End.A/ (by 12.6). Hence N .
P
niei=`

n/ 2N.QM \End.A//:When n is sufficiently large,
jni j`D jai j` and jNai j` > 1=`n for some i with ai ¤ 0. Then jNni=`nj`D jNai j` �`

n > 1,
and so Nni=`n … Z. Therefore N .

P
niei=`

n/ does not lie in M , which contradicts (*).
This completes the proof that (1) is injective when A D B is simple. For arbitrary A;B
choose isogenies

Q
i Ai ! A and B!

Q
j Bj with the Ai and Bj simple. Then

Hom.A;B/!
Y

i;j
Hom.Ai ;Bj /

is injective. As Hom.Ai ;Bj /D 0 if Ai and Bj are not isogenous, and Hom.Ai ;Bj / ,!
End.Ai / if there exists an isogeny Bj ! Ai , the natural map�Y

i;j
Hom.Ai ;Bj /

�
˝Z`!

Y
i;j

Hom.T`Ai ;T`Bj /

is injective. It follows that (1) is injective for A and B . 2

Define the Néron-Severi group NS.A/ of an abelian variety to be the quotient group
Pic.A/=Pic0.A/. Clearly L 7! 'L defines an injection NS.A/ ,! Hom.A;A_/, and so
(12.5) has the following consequence.

COROLLARY 12.8. The Néron-Severi group of an abelian variety is a free Z-module of
finite rank.
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Proposition 12.4 shows that, for each ˛ in End0.A/, there is a polynomial P˛.X/2QŒX�
of degree 2g such that, for all rational numbers r ,P˛.r/D deg.˛� rA/. Let ˛ 2 End.A/,
and let D be an ample symmetric divisor on A; then the calculation in the proof of (12.4)
shows that

P˛.�n/D deg.˛Cn/D .Dgn /=.D
g/;

where Dn D .n.n�1/=2/D0Cn.˛C1A/�D� .n�1/˛�D, with

D0 D 2D�2�AD � 2D:

In particular, we see that P˛ is monic and that it has integer coefficients when ˛ 2 End.A/.
We call P˛ the characteristic polynomial of ˛ and we define the trace of ˛ by the equation

P˛.X/DX
2g
�Tr.˛/X2g�1C�� �Cdeg.˛/:

PROPOSITION 12.9. For all l ¤ char.k/;P˛.X/ is the characteristic polynomial of ˛ acting
on Ql˝TlA; hence the trace and degree of ˛ are the trace and determinant of ˛ acting on
Ql˝TlA.

PROOF. We need two elementary lemmas. 2

LEMMA 12.10. Let P.X/D
Q
.X �ai / and Q.X/D

Q
.X �bi / be monic polynomials

of the same degree with coefficients in Ql ; if j
Q
F.ai /jl D j

Q
F.bi /jl for all F 2 ZŒT �,

then P DQ.

PROOF. See Lang 1959, VII, 1, Lemma 1. 2

LEMMA 12.11. Let E be an algebra over a field K, and let ıWE ! K be a polynomial
function on E (regarded as a vector space over K) such that ı.˛ˇ/ D ı.˛/ı.ˇ/ for all
˛;ˇ 2E. Let ˛ 2E, and let P D

Q
.X �ai / be the polynomial such that P.x/D ı.˛�x/.

Then ı.F.˛//D˙
Q
F.ai / for all F 2KŒT �.

PROOF. After extending K, we may assume that the roots b1;b2; : : : of F and of P lie in
K; then

ı.F.˛//D ı.
Y
j

.˛�bj //D
Y
j

ı.˛�bj /D
Y
j

P.bj /D
Y
i;j

.bj �ai /D˙
Y
i

F.ai /:

2

We now prove (12.9). Clearly we may assume k D ks . For any ˇ 2 End.A/

jdeg.ˇ/jl D j#.Ker.ˇ//jl
D #.Ker.ˇ/.l//�1

D #.Coker.Tlˇ//
�1

D jdet.Tlˇ/jl :

Consider ˛ 2 End.A/, and let a1;a2; : : : be the roots of P˛. Then for any polynomial
F 2 ZŒT �,
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j

Y
i
F.ai /jl D jdegF.˛/jl by (12.11)

D jdetTl.F.˛//jl

D j

Y
i
F.bi /jl ; by (12.11)

where the bi are the eigenvalues of Tlˇ. By Lemma 12.10, this proves the proposition.

Let D be a simple algebra of finite degree over Q, let K be the centre of D, and let
d D

p
ŒDWK�. The reduced trace and norm of D over K satisfy (˛ 2D/

TrD=K.˛/D d �TrdD=K.˛/;

NmD=K.˛/D NrdD=K.˛/
d :

We shall always set Trd D TrK=Q ıTrdD=K and Nrd D NK=Q ıNrdD=K . Let V1; : : : ;Vf ,
f D ŒKWQ�, be a set of representatives for the isomorphism classes of simple representations
of D over xQ; each has degree d . The representation V D

Lf
iD1Vi is called the reduced

representation of D. For all ˛ in D;

Trd.˛/D Tr.˛jV /

Nrd.˛/D det.˛jV /:

The reduced representation is defined over any field k �Q that splits D, i.e., is such that
D˝k is a product of matrix algebras over fields.

PROPOSITION 12.12. Let D be a simple Q-subalgebra5 of End0.A/ , and let d , f , and
K be as above. Let V be the reduced representation of D over Ql . Then 2g=fd is
an integer, and VlA

def
D Ql ˝ TlA is a direct sum of 2g=fd copies of V ; consequently

Tr.˛/D .2g=fd/Trd.˛/ and deg.˛/D Nrd.˛/2g=fd for all ˛ in D.

PROOF. Suppose VlA becomes isomorphic to
L
imiVi over xQl ;mi � 0, and let �i be the

embedding of K into xQ corresponding to Vi . Then, for any ˛ in K, the characteristic
polynomial of ˛ on Vi is .X � �i˛/d , and so P˛.X/ D

Q
i .X � �i˛/

dmi . Choose ˛ to
generateK, so that its characteristic polynomial PK=Q;˛.X/ is irreducible. Both PK=Q;˛.X/
and P˛.X/ have coefficients in Q, and the equality shows that every monic irreducible factor
of P˛.X/ shares a root with PK=Q;˛.X/, and so equals it. Thus P˛.X/D PK=Q:˛.X/m for
some integer m, and each mi Dm. On equating degrees, we find 2dimADmfd . 2

ASIDE. If D is split over Q, then its reduced representation V is defined over Q, and the proposition
gives an isomorphism V 2g=fd˝Ql!VlA ofD˝Ql -modules for every l . Let AD .

Q
l¤pZl /˝ZQ

be the ring of finite adèles away from p, and let VAAD .
Q
l¤p TlA/˝ZQ. It is possible choose the

isomorphisms so that they induce an isomorphism V 2g=fd ˝A! VAA of D˝A-modules.

REMARK 12.13. The group NS.A/ is a functor of A. Direct calculations show that ta acts
as the identity on NS.A/ for all a in A.k/ (because 't�aL D 'L) and n acts as n2 (because
�1 acts as 1, and so n�LD Ln2 in NS.A/ by (6.6)).

5In particular, this means D and End0.A/ have the same identity element.
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13 Polarizations and the Cohomology of Invertible
Sheaves

For many purposes the correct higher dimensional analogue of an elliptic curve is not an
abelian variety but a polarized abelian variety.

A polarization � on an abelian variety A is an isogeny �WA!A_ such that �xk D 'L for
some ample invertible sheaf L on Axk . The degree of a polarization is its degree as an isogeny.
An abelian variety together with a polarization is called a polarized abelian variety; there
is an obvious notion of a morphism of polarized abelian varieties. If � has degree 1, then
.A;�/ is said to belong to the principal family and � is said to be a principal polarization.

REMARK 13.1. If A has dimension 1, then NS.A/ D Z. For each integer d , there is a
unique polarization of degree d2; it is 'L where g D L.D/ for D any effective divisor of
degree d .

REMARK 13.2. If � is a polarization, there need not exist an L on A such that � D 'L.
Suppose, for example, that k is perfect and let G D Gal.xk=k/. By assumption, there is an L
on Axk such that 'L D �xk . As �xk is fixed by the action of G on Hom.Axk;A

_

k
/, the class ŒL�

of L in NS.Axk/ will also be fixed by G. Unfortunately this does not imply that ŒL� lifts to
an element of Pic.A/: there is a sequence of Galois cohomology groups

0! A_.k/! Pic.A/! NS.Axk/
G
!H 1.G;A_.xk//

and the obstruction inH 1.G;A_.xk//may be nonzero. However, if k is finite, an easy lemma
(Mumford 1970, �21, p. 205) shows that H 1.G;A_.xk//D 0 and therefore �D 'L for some
L in Pic.A/.

There is an important formula for the degree of a polarization, which it is convenient to
state as part of a more general theorem.

THEOREM 13.3. Let L be an invertible sheaf on A, and write

�.L/D
X

.�1/i dimkH
i .A;L/:

(a) The degree of 'L is �.L/2.
(b) (Riemann-Roch). If LD L.D/, then �.L/D .Dg/=gŠ.
(c) If dimKL D 0, then there is exactly one integer r for which H r.A;L/ is nonzero.

PROOF. Combine Mumford 1970, �16, p. 150, with (4.2a). 2

EXERCISE 13.4. Verify (13.3) for elliptic curves using only the results in Hartshorne 1977,
IV.

REMARK 13.5. The definition of polarization that we have adopted (following Mumford)
is the one that is most useful for moduli questions. It differs from Weil’s original notion (see
Lang 1959, p. 193; Rosen 1986, �5).
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14 A Finiteness Theorem
THEOREM 14.1. Let k be a finite field, and let g and d be positive integers. Up to isomor-
phism, there are only finitely many abelian varieties A over k of dimension g possessing a
polarization of degree d2.

PROOF. First assume that dimAD 1. Then A automatically has a polarization of degree
1, defined by LD L.P / for any P 2 A.k/. The linear system j3P j defines an embedding
A ,! P2, and the image is a cubic curve in P2. The cubic curve is determined by a
polynomial of degree 3 in three variables. As there are only finitely many such polynomials
with coefficients in k, we have shown that there are only finitely many isomorphism classes
of A’s.

The proof in the general case is essentially the same. By (13.2) we know there exists an
ample invertible sheaf L on A such that 'L is a polarization of degree d2. Let LD L.D/;
then, by (13.3), �.L/D d and .Dg/D �.L/gŠD d.gŠ/. As L3 D L.3D/;

�.L3/D ..3D/g/=gŠD 3gd:

Moreover L3 is very ample (see (7.3)); in particular H 0.A;L3/¤ 0, and so (13.3c) shows
that dimH 0.A;L3/D �.L3/D 3gd . The linear system j3Dj therefore gives an embedding
A ,! P3gd�1.

Recall (Shafarevich 1994, I.6) that if V is a smooth variety of dimension g in PN , then
the degree of V is .D1; : : : ;Dg/, whereD1; : : : ;Dg are hyperplane sections of V . Moreover,
there is a polynomial, called the Cayley or Chow form of V ,

FV .a
.0/
0 ; : : : ;a

.0/
N I : : : I a

.g/
0 ; : : : ;a

.g/
N /

associated with V , which is a polynomial separately homogeneous of degree degV in each
of gC1 sets of N C1 variables. If we regard each set of variables a.i/0 ; : : : ;a

.i/
N as defining

a hyperplane,
H .i/

W a
.i/
0 X0C�� �Ca

.i/
N XN D 0;

then FV is defined by the condition:

FV .H
.0/; : : : ;H .g//D 0 ” A\H .0/

\ : : :\H .g/ is nonempty.

A theorem states that FV uniquely determines V
Returning to the proof of (14.1), we see that the degree of A in P3gd�1 is ..3D/g/D

3gd.gŠ/. It is therefore determined by a polynomial FA of degree 3gd.gŠ/ in each of gC1
sets of 3gd variables with coefficients in k. There are only finitely many such polynomials.2

REMARK 14.2. Of course, Theorem 14.1 is trivial if one assumes the existence of moduli
varieties. However, everything used in the above proof (and much more) is required for the
construction of moduli varieties.

REMARK 14.3. The assumption that A has a polarization of a given degree plays a crucial
role in the above proof. Nevertheless, we shall see in (18.9) below that it can be removed
from the statement of the theorem.
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15 The Étale Cohomology of an Abelian Variety
The usual cohomology groups H r.A.C/;Z/ of an abelian variety are determined by the
statements:

(a) a representation of A.C/ as a quotient A.C/ D Cg=L determines an isomorphism
H 1.A.C/;Z/! Hom.L;Z/;

(b) the cup-product pairings define isomorphisms^r
H 1.A.C/;Z/!H r.A.C/;Z/ for all r:

To prove (a), note that Cg is the universal covering space of A.C/, and that L is its group
of covering transformations. Therefore, �1.A.C/;0/' L, and for any pointed manifold
.M;m/;

H 1.M;Z/' Hom.�1.M;m/;Z/:

Statement (b) can be proved by observing that A.C/ is homeomorphic to a product of 2g
circles and using the Künneth formula (see Mumford 1970, �1, p. 3), or by using the same
argument as that given below for the étale topology.

THEOREM 15.1. Let A be an abelian variety of dimension g over an algebraically closed
field k, and let l be a prime different from char.k/.

(a) There is a canonical isomorphism H 1.Aet;Zl/! HomZl .TlA;Zl/.
(b) The cup-product pairings define isomorphisms^r

H 1.Aet;Zl/!H r.Aet;Zl/ for all r:

In particular, H r.Aet;Zl/ is a free Zl -module of rank
�
2g

r

�
.

PROOF. We have
H 1.A;Zl/' Homconts.�

et
1 .A;0/;Zl/;

where �et
1 .A;0/ denotes the étale fundamental group. For each n, lnAWA! A is a finite

étale covering of A with group of covering transformations Ker.lnA/ D Aln.k/. By def-
inition �et

1 .A;0/ classifies such coverings, and therefore there is canonical epimorphism
�et
1 .A;0/�Aln.k/ (see Milne 1980, I.5). On passing to the inverse limit, we get an epimor-

phism �et
1 .A;0/� TlA, and consequently an injection HomZl .TlA;Zl/ ,!H 1.A;Zl/.

To proceed further we need to work with other coefficient groups. Let R be Zl ;Fl , or
Ql , and write H�.A/ for

L
r�0H

r.Aet;R/. The cup-product pairing makes this into a
graded, associative, anticommutative algebra. There is a canonical mapH�.A/˝H�.A/!
H�.A�A/, which the Künneth formula shows to be an isomorphism when R is a field. In
this case, the addition map mWA�A! A defines a map

m�W H�.A/!H�.A�A/ DH�.A/˝H�.A/:

Moreover, the map a 7! .a;0/WA! A�A identifies H�.A/ with the direct summand
H�.A/˝H 0.A/ ofH�.A/˝H�.A/. Asmı.a 7! .a;0//D id, the projection ofH�.A/˝
H�.A/ onto H�.A/˝H 0.A/ sends m�.x/ to x˝ 1. As the same remark applies to
a 7! .0;a/, this shows that

m�.x/D x˝1C1˝xC
X

xi ˝yi ; deg.xi /, deg.yi / > 0:
2
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LEMMA 15.2. Let H� be a graded, associative, anticommutative algebra over a perfect
field K. Assume that there is map m�WH�!H�˝H� satisfying the above identity. If
H 0 DK and H r D 0 for all r greater than some integer d , then dim.H 1/� d , and when
equality holds, H� is isomorphic to the exterior algebra on H 1.

PROOF. A fundamental structure theorem for Hopf algebras (Borel 1953, Theorem 6.1)
shows that H� is equal to the associative algebra generated by certain elements xi subject
only to the relations imposed by the anticommutativity of H� and the nilpotence of each xi .
The product of the xi has degree

P
deg.xi /, from which it follows that

P
deg.xi /� d . In

particular, the number of xi of degree 1 is � d ; as this number is equal to the dimension of
H 1, this shows that its dimension is � d . When equality holds, all the xi must have degree
1; moreover their squares must all be zero because otherwise there would be a nonzero
element x1x2 � � �x2i � � �xd of degree d C1. Hence H� is the exterior algebra on H 1: 2

When R is Ql or Fl , the conditions of the lemma are fulfilled with d D 2g (Milne 1980,
VI, 1.1). Therefore H 1.A;Ql/ has dimension � 2g. But H 1.A;Ql/D Ql ˝H 1.A;Zl/,
and so the earlier calculation shows that H 1.A;Ql/ has dimension 2g. The lemma now
shows that H r.A;Ql/D

Vr
H 1.A;Ql/, and, in particular, that its dimension is

�
2g
r

�
. This

implies that H r.A;Zl/ has rank
�
2g
r

�
. The exact sequence (Milne 1980, V, 1.11/

� � � !H r.A;Z�/
l
�!H r.A;Z�/!H r.A;Fl/!H rC1.A;Zl/

l
�!H rC1.A;Zl/! �� �

now shows that dim.H 1.A;Fl/� 2g, and so the lemma implies that this dimension equals
2g and that dim.H r.A;Fl// D

�
2g
r

�
. On looking at the exact sequence again, we see

that H r.A;Zl/ must be torsion-free for all r . Consequently,
Vr

H 1.A;Zl/!H r.A;Zl/
is injective because it becomes so when tensored with Ql , and it is surjective because it
becomes so when tensored with Fl . This completes the proof.

REMARK 15.3. In the course of the above proof, we have shown that the maximal abelian
l-quotient of �et

1 .A;0/ is isomorphic to TlA. In fact, it is known that �et
1 .A;0/D TA; where

TAD lim
 �n

An.k/. In order to prove this one has to show that the all finite étale coverings
of A are isogenies. This is accomplished by the following theorem (Mumford 1966, �18,
p. 167):

Let A be an abelian variety over an algebraically closed field, and let f WB!A

be a finite étale covering with B connected; then it is possible to define on B
the structure of an abelian variety relative to which f is an isogeny.

REMARK 15.4. We have shown that the following three algebras are isomorphic:
(i) H�.A;Zl/ with its cup-product structure;

(ii)
V�

H 1.A;Zl/ with its wedge-product structure;
(iii) the dual of

V�
TlA with its wedge-product structure.

If we denote the pairing
TlA�H

1.A;Zl/! Zl
by h�j�i, then the pairing ^r

TlA�H
r.A;Zl/! Zl

is determined by
.a1^� � �^ar ;b1[� � �[br/ D det.hai jbj i/:

See Bourbaki ALG, �8.
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REMARK 15.5. Theorem 15.1 is still true if k is only separably closed (see Milne 1980, II,
3.17). If A is defined over a field k, then the isomorphism^�

Hom.Tl ;Zt /!H�.Aks ;Zl/

is compatible with the natural actions of Gal.ks=k/.

16 Pairings
As we discussed in Section 11, if M and N denote the kernels of an isogeny f and its dual
f _, then there is a canonical pairingM �N !Gm which identifies each group scheme with
the Cartier dual of the other. In the case that f is multiplication by m;mA : A! A, then
f _ ismA_ WA_!A_, and so the general theory gives a pairing xemWAm�A_m!Gm. If we
assume further that m is not divisible by the characteristic of k, then this can be identified
with a nondegenerate pairing of Gal.xk=k/-modules

xemWAm.xk/�A
_
m.
xk/! xk�:

This pairing has a very explicit description. Let a 2 Am.xk/ and let a0 2 A_m.xk/� Pic0.Axk/.
If a0 is represented by the divisorD on Axk , thenm�1A D is linearly equivalent tomD (see the
paragraph following 9.2), which is linearly equivalent to zero. Therefore there are functions
f and g on Axk such that mD D .f / and m�1A D D .g/. Since the divisor

.f ımA/Dm
�1
A ..f //Dm�1A .mD/Dm.m�1A D/D .gm/;

we see that gm=f ımA is a constant function c on Axk . In particular,

g.x Ca/m D cf .mx Cma/D cf .mx/ D g.x/m:

Therefore g=g ı ta is a function on Axk whose mth power is one. This means that it is an mth
root of 1 in xk.A/ and can be identified with an element of xk. It is shown in Mumford 1970,
�20, p. 184, that xem.a;a0/D g=g ı ta.

LEMMA 16.1. Let m and n be integers not divisible by the characteristic of k. Then for all
a 2 Amn.xk/ and a0 2 A_mn.xk/,

xemn.a;a
0/n D xem.na;na

0/:

PROOF. Let D represent a0, and let .mn/�1A .D/D .g/ and m�1A .nD/D .g0/. Then

.g0 ınA/D n
�1
A ..g0//D n�1A .m�1A .nD/D n.mn/�1A .D/D .gn/;

and so gn D c.g0 ınA/ for some constant function c. Therefore

.g.x/=g.xCa//n D g0.nx/=g0.nxCna/;

and this equals xem.na;na0/ for all x. 2
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Regard xem as taking values in �m D f� 2 xk j �m D 1g, and let Zl.1/D lim
 �n

�ln for l a
prime not equal to the characteristic of k. (Warning: We sometimes write Zl.1/ additively
and sometimes multiplicatively.) The lemma allows us to define a pairing el WTlA�TlA_!
Zl.1/ by the rule

el..an/; .a
0
n//D .xeln.an;a

0
n//:

For a homomorphism �WA! A_, we define pairings

xe�mWAm�Am! �m; .a;a0/ 7! xem.a;�a
0/;

e�l WTlA�TlA! Zl.1/; .a;a0/ 7! el.a;�a
0/:

If �D 'L, L 2 Pic.A/, then we write xeLm and eL
l

for xe�m and e�
l

.

LEMMA 16.2. For a homomorphism f WA! B , there are the following formulas:
(a) xem.a;f _.b//D xem.f .a/;b/; a 2 Am, b 2 Bm;
(b) el.a;f _.b//D el.f .a/;b/; a 2 TlA, b 2 TlB;
(c) ef

_ı�ıf

l
.a;a0/D e�

l
.f .a/;f .a0//; a;a0 2 TlA, � 2 Hom.B;B_/;

(d) ef
�L

l
.a;a0/D eL

l
.f .a/;f .a0//; a;a0 2 TlA, L 2 Pic.B/.

Moreover,
(e) L 7! eL

l
is a homomorphism Pic.A/! Hom.

V2
TlA;Zl.1//.

PROOF. Let a and b be as in (a); let the divisor D on B represent b, and let m�1B D D .g/.
Then xem.f .a/;b/ D g.x/=g.xC f .a// for all x. On the other hand, f �1D represents
f _.b/ on A, and m�1A f �1D D f �1m�1B D D .g ıf /, and so

xem.a;f
_.b//D g.f .x//=g.f .x/Cf .a//:

This proves (a), and (b) and (c) follow immediately. Formula (d) follows from (c) because

'f �L.a/D t
�
a f
�L˝f �L�1

D f �t�faL˝f
�L�1

D f �.'L.fa//

D f _ ı'L ıf .a/;

which shows that 'f �L D f _ ı'L ıf . Finally, (e) follows from the fact that 'L˝L0 D
'LC'L0 : 2

EXAMPLE 16.3. Let A be an abelian variety over C, and let OA denote the sheaf of
holomorphic functions on Aan. The exact sequence of sheaves on Aan

0! Z!OA
e2�i.�/

�! O�A! 0

gives rise to an exact sequence

H 1.Aan;Z/!H 1.Aan;OA/!H 1.Aan;O�A/!H 2.Aan;Z/!H 2.Aan;OA/:

As H 1.Aan;O�A/ ' Pic.A/ and H 1.Aan;OA/=H 1.Aan;Z/ ' Pic0.A/ (see 9.4c), we can
extract from this an exact sequence

0! NS.A/!H 2.Aan;Z/!H 2.Aan;OA/:
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Let � 2 NS.A/, and let E� be its image in H 2.Aan;Z/. Then (see �15) E� can be regarded
as a skew-symmetric form on H1.Aan;Z/. It is a nondegenerate Riemann form if and only if
� is ample. As was explained above, � induces a pairing e�

l
, and it is shown in Mumford

1970, �24, p. 237, that the diagram

H1.A
an;Z/ � H1.A

an;Z/ Z

TlA � TlA Zl.1/

E�

e�
l

commutes with a minus sign if the maps H 1.Aan;Z/! TlA are taken to be the obvious
ones and Z! Zt .1/ is taken to be m 7! �m; � D .: : : ; e2�i=l

n

; : : :/; in other words,

e�l .a;a
0/D ��E

�.a;a0/:

In the remainder of this section, we shall show how étale cohomology can be used to give
short proofs (except for the char.k/ part) of some important results concerning polarizations.
Proofs not using étale cohomology can be found in Mumford 1970, �20, �23.

The family of exact sequences of sheaves

0! �ln !Gm
ln

�!Gm! 0;

l ¤ char.k/, n� 1, plays the same role for the étale topology that the exponential sequence in
(16.3) plays for the complex topology (they are called the Kummer sequences). As Pic.A/D
H 1.A;Gm/ (étale cohomology), these sequences give rise to cohomology sequences

0! Pic.Axk/=l
nPic.Axk/ !H 2.Axk;�ln/!H 2.Axk;Gm/ln ! 0:

Note that Pic0.Axk/DA
_.xk/ is divisible, and so Pic.Axk/=l

nPic.Axk/DNS.Axk/=l
nNS.Axk/.

On passing to the inverse limit over these sequences, we get an exact sequence

0! NS.Axk/˝Zl !H 2.Axk;Zl.1//! TlH
2.Axk;Gm/! 0;

where TlM for any group M is lim
 �n

Mln . Note that TlM is always torsion-free. As in the
above example, an element � of NS.Axk/ defines a skew-symmetric pairing

E�l WTlA�TlA! Zl.1/;

and one can show as in the previous case that E�
l
D�e�

l
(in fact, this provides a convenient

alternative definition of e�
l

in the case that � arises from an element of NS.Axk//.
We now assume that k is algebraically closed.

THEOREM 16.4. Let f WA! B be an isogeny of degree prime to the characteristic of k,
and let � 2 NS.A/. Then �D f �.�0/ for some �0 2 NS.B/ if and only if, for all l dividing
deg.f /, there exists an el in Hom.

V2
TlB;Zl.1// such that e�

l
.a;a0/D el.f .a/;f .a

0// all
a;a0 2 TlA.
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PROOF. The necessity is obvious from (16.2c). For the converse, consider for each l ¤
char.k/ the commutative diagram

0 NS.A/˝Zl H 2.A;Zl.1// Tl.H
2.A;Gm//

0 NS.B/˝Zl H 2.B;Zl.1// Tl.H
2.B;Gm//:

The right-hand vertical arrow is injective because there exists an isogeny f 0WB! A such
that f ıf 0 is multiplication by deg.f / on B (see �8) and Tl.H 2.B;Gm// is torsion-free.
A diagram chase now shows that � is in the image of NS.B/˝Zl ! NS.A/˝Zl for all
l dividing deg.f /, and the existence of f 0 shows that it is in the image for all remaining
primes. This implies that it is in the image of NS.B/! NS.A/ because NS.A/ is a finitely
generated Z-module. 2

COROLLARY 16.5. Assume that l ¤ char.k/. An element � of NS.A/ is divisible by ln if
and only if e�

l
is divisible by ln in Hom.

V2
TlA;Zl.1//.

PROOF. Apply the proposition to lnAWA! A: 2

PROPOSITION 16.6. Assume that char.k/¤ 2, l . A homomorphism �WA! A_ is of the
form 'L for some L 2 Pic.A/ if and only if e�

l
is skew-symmetric.

PROOF. If � is in the subgroup NS.A/ of Hom.A;A_/, we already know that e�
l

is skew-
symmetric. Conversely, suppose that e�

l
is skew-symmetric, and let L be the pull-back of

the Poincaré sheaf P by .1;�/WA! A�A_. For all a;a0 2 TlA,

el.a;'La
0/D eLl .a;a

0/

D ePl ..a;�a/; .a
0;�a0// by 16.2d

D el.a;�a
0/� el.a

0;�a/ see the next lemma

D e�l .a;a
0/� e�l .a

0;a/

D 2e�l .a;a
0/ because e�l is skew-symmetric

D el.a;2�a
0/:

As el is nondegenerate, this shows that 2�D 'L, and (16.5) shows that L is divisible by 2 in
NS.A/. 2

LEMMA 16.7. Let P be the Poincaré sheaf on A�A_. Then

ePl ..a;b/; .a
0;b0//D el.a;b

0/� el.a
0;b/

for a;a0 2 TlA and b;b0 2 TlA_.

PROOF. Because Zl.1/ is torsion-free, it suffices to prove the identity for b and b0 in a
subgroup of finite index in TlA_. Therefore we can assume that b D �c and b0 D �c0 for
some polarization �D 'L of A and elements c and c0 of TlA. From �10 we know that

.1 ��/�P Dm�L˝p�L�1˝q�L�1;
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and so

ePl ..a;b/; .a
0;b0//D e

.1��/�P
l

..a;c/; .a0; c0//

D eLl .aC c;a
0
C c0/� eLl .a;a

0/� eLl .c;c
0/

D eLl .a;c
0/� eLl .a

0; c/

D el.a;b
0/� el.a

0;b/: 2

For a polarization �WA! A_, define

e�WKer.�/�Ker.�/! �m

as follows: suppose m kills Ker.�/, and let a and a0 be in Ker.�/; choose a b such that
mb D a0, and let e�.a;a0/ D xem.a;�b/; this makes sense because m.�b/ D �.mb/ D 0.
Also it is independent of the choice of b and m because if mnb0 D a0 and nc D a, then

xemn.a;�b
0/D xemn.c;�b

0/n D xem.a;�nb
0/ (by 16.1)

and so

xemn.a;�b
0/=xem.a;�b/D xem.a;�.nb

0
�b//

D xe�m.a;nb
0
�b/

D xe�m.nb
0
�b;a/�1

D 1 as �aD 0:

Let aD .an/ and a0 D .a0n/ be in TlA. If �am D 0D �a0m for some m, then

e�.am;a
0
m/D xelm.am;�a

0
2m/

D xel2m.a2m;�a
0
3m/

lm

D xe�
l2m
.a2m;a

0
2m/:

Note that this implies that e� is skew-symmetric.

PROPOSITION 16.8. Let f WA! B be an isogeny of degree prime to char.k/, and let
�WA! A_ be a polarization of A. Then �D f �.�0/ for some polarization �0 on B if and
only if Ker.f /� Ker.�/ and e� is trivial on Ker.f /�Ker.f /.

PROOF. We will assume the second condition and construct an el in Hom.
V2

TlB;Zl.1//
such that e�

l
.a;a0/D el.fa;fa

0/ for all a;a0 in TlA; then (16.4) will show the existence of
�0. Let b;b0 2 TlB; for somem there will exist a;a0 2 TlA such that lmbD f .a/ and lmb0D
f .a0/. If we write a D .an/ and a0 D .a0n/, then these equations imply that f .am/D 0D
f .a0m/, and therefore that am and a0m are in Ker.�/ and that e�.am;a0m/D 0. The calculation
preceding the statement of the proposition now shows that xe�

l2m
.a2m;a

0
2m/D 0 and therefore

that e�
l
.a;a0/ is divisible by l2m. We can therefore define el.b;b0/D l�2me�l .a;a

0/. This
proves the sufficiency of the second condition, and the necessity is easy. 2

REMARK 16.9. The degrees of � and �0 are related by

deg.�/D deg.�0/ �deg.f /2;

because �D f _ ı�0 ıf
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COROLLARY 16.10. Let A be an abelian variety having a polarization of degree prime to
char.k/. Then A is isogenous to a principally polarized abelian variety.

PROOF. Let � be a polarization of A, and let l be a prime dividing the degree of �. Choose
a subgroup N of Ker.�/ of order l , and let B D A=N . As e� is skew-symmetric, it must
be zero on N �N , and so the last proposition implies that B has a polarization of degree
deg.�/=l2: 2

COROLLARY 16.11. Let � be a polarization of A, and assume that Ker.�/� Am with m
prime to char.k/. If there exists an element ˛ of End.A/ such that ˛.Ker.�//� Ker.�/ and
˛_ ı�ı˛ D�� on Am2 , then A�A_ is principally polarized.

PROOF. Let
N D f.a;˛a/ j a 2 Ker.�/g � A�A:

Then N � Ker.���/, and for .a;˛a/ and .a0;˛a0/ in N ,

e���..a;˛a/; .a0;˛a0/D e�.a;a0/C e�.˛a;˛a0/

D xem.a;�b/Cxem.a;˛
_
ı�ı˛.b// where mb D a0

D xem.a;�b/Cxem.a;��b/

D 0:

Therefore, (16.8) applied to A�A! .A�A/=N and the polarization ��� on A�A shows
that .A�A/=N is principally polarized. The kernel of

.a;a0/ 7! .a;˛aCa0/WA�A! .A�A/=N

is Ker.�/�f0g, and so the map induces an isomorphism A_�A! .A�A/=N: 2

REMARK 16.12. (Zarhin’s Trick).6 Let A and � be as in the statement of the corollary.
Then there always exists an ˛ satisfying the conditions for .A4;�4/ and therefore .A�A_/4

is principally polarized. To see this choose integers a;b;c;d such that

a2Cb2C c2Cd2 ��1 mod m2;

and let

˛ D

0BB@
a �b �c �d

b a d �c

c �d a b

d c �b a

1CCA 2M4.Z/� End.A4/:

Clearly ˛.Ker.�4//� Ker.�4/. Moreover ˛_ can be identified with the transpose ˛tr of ˛
(as a matrix), and so

˛_ ı�4 ı˛ D ˛tr
ı�4 ı˛ D �4 ı˛tr

ı˛:

But ˛tr ı˛ D .a2Cb2C c2Cd2/I4.

REMARK 16.13. In Mumford 1970, �20, �23, there is a different and much more profound
treatment of the above theory using finite group schemes. In particular, it is possible to
remove the restrictions on l or a degree being prime to the characteristic in the results (16.4)
through (16.12).

6Zarhin himself calls it the quaternion trick (Zarhin, Yuri G., Homomorphisms of abelian varieties over finite
fields. Higher-dimensional geometry over finite fields, 315–343, IOS, Amsterdam, 2008).
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REMARK 16.14. Some of the above results extend to fields that are not algebraically closed.
For example, if A is an abelian variety over a perfect field, then (16.5) implies immediately
that a polarization � of A can be written as lm times a polarization if and only if e�

l
is

divisible by lm; similarly (16.11) implies that the same result holds over a perfect field.
On the other hand (16.10) seems to be false unless one allows a field extension (roughly
speaking, it is necessary to divide out by half the kernel of the polarization �, which need
not be rational over k).7

17 The Rosati Involution
Fix a polarization � on A. As � is an isogeny A! A_, it has an inverse in Hom0.A_;A/ def

D

Hom.A_;A/˝Q. The Rosati involution on End0.A/ corresponding to � is

˛ 7! ˛� D ��1 ı˛_ ı�:

This has the following obvious properties:

.˛Cˇ/� D ˛�Cˇ�; .˛ˇ/� D ˇ�˛�; a� D a for a 2Q:

For all a;a0 2 TlA˝Q, l ¤ char.k/,

e�l .˛a;a
0/D el.˛a;�a

0/D el.a;˛
_
ı�a0/D e�l .a;˛

�a0/;

from which it follows that ˛�� D ˛.

REMARK 17.1. The second condition on ˛ in (16.11) can now be stated as ˛� ı˛ D�1 on
Am2 (provided ˛� lies in End.A/).

PROPOSITION 17.2. Assume that k is algebraically closed. Then the map

L 7! ��1 ı'LWNS.A/˝Q! End0.A/;

identifies NS.A/˝Q with the subset8 of End0.A/ of elements fixed by �.

PROOF. Let ˛ 2 End0.A/, and let l be an odd prime¤ char.k/. According to (16.6), �ı˛
is of the form 'L if and only if e�ı˛

l
.a;a0/D�e�ı˛

l
.a0;a/ for all a;a0 2 TlA˝Q. But

e�ı˛l .a;a0/D e�l .a;˛a
0/D�e�l .˛a

0;a/D�el.a
0;˛_ ı�.a//;

and so this is equivalent to �ı˛ D ˛_ ı�, that is, to ˛ D ˛�: 2

THEOREM 17.3. The bilinear form

.˛;ˇ/ 7! Tr.˛ ıˇ�/WEnd0.A/�End0.A/!Q

is positive definite. More precisely, if �D 'L.D/, then

Tr.˛ ı˛�/D
2g

.Dg/
.Dg�1 �˛�.D//:

7Indeed, there are examples of abelian varieties over finite fields not isogenous to a principally polarized
abelian variety.

8Not a subalgebra!
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As D is ample and ˛�.D/ is effective, the intersection number .Dg�1 � ˛�.D// is
positive. Thus the second statement implies the first. Clearly it suffices to prove it with k
algebraically closed. We first need a lemma.

LEMMA 17.4. Let A be an abelian variety over an algebraically closed field, and let
Zl.g/DZl.1/˝g . Then there is a canonical generator " of Hom.

V2g
.TlA/;Zl.g//with the

following property: ifD1; : : : ;Dg are divisors onA and ei D e
L.Di /
l

2Hom.
V2

TlA;Zl.1//,
then e1^� � �^ eg is the multiple .D1;D2; : : : ;Dg/" of ".

PROOF. See Mumford 1970, �20, Theorem 3, p. 190. (From the point of view of étale
cohomology, " corresponds to the canonical generator of H 2g.A;Zl.g//, which is equal
to the cohomology class of any point on A. If ci is the class of Di in H 2.A;Zl.1//, then
the compatibility of intersection products with cup products shows that .D1; : : : ;Dg/"D
c1[� � �[ cg . Consequently, the lemma follows from (15.4). 2

PROOF (OF 17.3). From the lemma, we find that

e�l ^� � �^ e
�
l D .D

g/";

e�l ^� � �^ e
�
l ^ e

˛�h�/

l
D .Dg�1 �˛�.D//":

It suffices therefore to show that, for some basis a1; : : : ;a2g of TlA˝Q,

ha1^� � �^a2g je
�
l
^� � �^ e�

l
^ e

˛�.�/

l
i

ha1^� � �^a2g je
�
l
^� � �^ e�

l
i

D
1

2g
Tr.˛ ı˛�/

(see 15.4). Choose the basis a1;a2; : : : ;a2g so that

e�l .a2i�1;a2i /D 1D�e
�
l .a2i ;a2i�1/; i D 1;2; : : : ; g;

e�l .ai ;aj /D 0; otherwise.

Let f1; : : : ;f2g be the dual basis; then for j ¤ j 0,

hai ^ai 0 jfj ^fj 0i D

ˇ̌̌̌
fj .ai / fj 0.ai /

fj .ai 0/ fj 0.ai 0/

ˇ̌̌̌
D

8<:
1 if i D j , i 0 D j 0;
�1 if i D j 0, i 0 D j;
0 otherwise.

Therefore e�
l
D
Pg
iD1f2i�1^f2i , and so e�

l
^� � �^ e�

l
D gŠ.f1^� � �^f2g/. Thus

ha1^� � �^a2g je
�
l ^� � �^ e

�
l i D ha1^� � �^a2g jgŠ.f1^� � �^f2g/i D gŠ:

Similarly,

ha1^� � �^a2g je
�
l ^� � �^ e

�
l ^ e

˛�.L/
l

i

D .g �1/Š

gX
iD1

e�l .˛a2i�1;˛a2i /

D
.g�1/Š

2

X
.e�l .a2i�1;˛

�˛a2i /C e
�
l .˛

�˛a2i�1;a2i //

D
gŠ

2g
Tr.˛�˛/;

which completes the proof. 2
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PROPOSITION 17.5. Let � be a polarization of the abelian variety A.
(a) The automorphism group of .A;�/ is finite.
(b) For any integer n� 3, an automorphism of .A;�/ acting as the identity on An.xk/ is

equal to the identity.

PROOF. Let ˛ be an automorphism of A. In order for ˛ to be an automorphism of .A;�/, we
must have �D ˛_ ı�ı˛, and therefore ˛�˛ D 1, where � is the Rosati involution defined
by �. Consequently,

˛ 2 End.A/\f˛ 2 End.A/˝R j Tr.˛�˛/D 2gg;

and the first of these sets is discrete in End.A/˝R, while the second is compact. This proves
(a).

Assume further that ˛ acts as the identity on An. Then ˛�1 is zero on An, and so it is of
the form nˇ with ˇ 2 End.A/ (see (12.6)). The eigenvalues of ˛ and ˇ are algebraic integers,
and those of ˛ are roots of 1 because it has finite order. The elementary lemma below
shows that the eigenvalues of ˛ equal 1. Thus, ˛ is unipotent, and therefore ˛�1D nˇ is
nilpotent. Suppose that ˇ¤ 0. Then ˇ0 D ˇ�ˇ¤ 0, because Tr.ˇ�ˇ/ > 0. As ˇ0 D ˇ0�, this
implies that Tr.ˇ02/ > 0 and so ˇ02 ¤ 0. Similarly, ˇ04 ¤ 0, and so on, which contradicts
the nilpotence of ˇ:

LEMMA 17.6. If � is a root of 1 such that for some algebraic integer 
 and rational integer
n� 3, � D 1Cn
 , then � D 1.

PROOF. If � ¤ 1, then after raising it to a power, we may assume that it is a primitive pth
root of 1 for some prime p. Then NQ.�/=Q.1� �/D p, and so the equation 1 �� D �n

implies that p D˙np�1N.
/. This is impossible because p is prime. 2

REMARK 17.7. Let .A;�/ and .A0;�0/ be polarized abelian varieties over a field k, and
assume thatA andA0 have all their points of order n rational over k for some n� 3. Then any
isomorphism ˛W.A;�/! .A0;�0/ defined over a separable closure ks of k is automatically
defined over k because, for all � 2Gal.ks=k/, ˛�1 ı�˛ is an automorphism of .A;�/ fixing
the points of order n and therefore is the identity map.

REMARK 17.8. On combining the results in �12 with (17.3), we see that the endomorphism
algebra End0.A/ of a polarized simple abelian variety A is a skew field endowed with an
involution � such that Tr.˛ ı˛�/ > 0 for all nonzero ˛.

18 Two More Finiteness Theorems
The first theorem shows that an abelian variety can be endowed with a polarization of a fixed
degree d in only a finite number of essentially different ways. The second shows that an
abelian variety has only finitely many nonisomorphic direct factors.

THEOREM 18.1. Let A be an abelian variety over a field k, and let d be an integer; then
there exist only finitely many isomorphism classes of polarized abelian varieties .A;�/ with
� of degree d .
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Fix a polarization �0 of A, and let � be the Rosati involution on End0.A/ defined by
�0. The map � 7! �

�
0 ı� identifies the set of polarizations of A with a subset of the set

End0.A/� of elements of End0.A/ fixed by �. As NS.Axk/ is a finitely generated abelian
group, there exists anN such that all the ��10 ı� are contained in a latticeLDN�1End.A/�

in End0.A/�. Note that L is stable under the action

˛ 7! u�˛u; u 2 End.A/�; ˛ 2 End0.A/

of End.A/� on End0.A/.
Let � be a polarization of A, and let u 2 End.A/�. Then u defines an isomorphism

.A;u_ ı � ı u/! .A;�/, and ��10 ı .u
_ ı � ı u/ D u� ı .��10 ı �/ ı u. Thus with each

isomorphism class of polarized abelian varieties .A;�/, we can associate an orbit of End.A/�

in L. Recall (12.12) that the map ˛ 7! deg.˛/ is a positive power of the reduced norm on
each simple factor of End0.A/, and so Nrd is bounded on the set of elements of L with
degree d . These remarks show that the theorem is a consequence of the following result on
algebras.

PROPOSITION 18.2. Let E be a finite-dimensional semisimple algebra over Q with an
involution �, and let R be an order in E. Let L be a lattice in E� that is stable under the
action e 7! u�eu of R� on E. Then, for every integer d , fv 2 L j Nrd.v/� dg is the union
of a finite number of orbits.

This proposition will be proved using a general result from the reduction theory of
arithmetic subgroups.

THEOREM 18.3. Let G be a reductive group over Q, and let � be an arithmetic subgroup
of G; let G! GL.V / be a representation of G over Q, and let L be a lattice in V that is
stable under � . If X is a closed orbit of G in V , then L\X is the union of a finite number
of orbits of � .

PROOF. See Borel 1969, 9.11. 2

REMARK 18.4. (a) An algebraic group G is reductive if its identity component is an ex-
tension of a semisimple group by a torus. A subgroup � of G.Q/ is arithmetic if it is
commensurable with G.Z/ for some Z-structure on G.

(b) The following example may give the reader some idea of the nature of the above
theorem. Let G D SLn, and let � D SLn.Z/. Then G acts in a natural way on the space V
of quadratic forms in n variables with rational coefficients, and � preserves the lattice L of
such forms with integer coefficients. Let q be a quadratic form with nonzero discriminant
d . By the orbit X of q we mean the image G �q of G under the map of algebraic varieties
g 7! g �qWG! V . The theory of quadratic forms shows that X.xQ/ is equal to the set of all
quadratic forms (with coefficients in xQ) of discriminant d . Clearly this is closed, and so the
theorem shows that X \L contains only finitely many SLn.Z/-orbits: the quadratic forms
with integer coefficients and discriminant d fall into a finite number of proper equivalence
classes.

We shall apply (18.3) with G a reductive group such that

G.Q/D fe 2E j Nrd.e/D˙1gI

we take � D R�, V D E�, and L � V the lattice in (18.2). In order to prove (18.2), we
shall show
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(a) there exists a reductive group G over Q with G.Q/ as described and having � as an
arithmetic subgroup;

(b) the orbits of G on V are all closed;
(c) for every rational number d;Vd

def
Dfv 2 V jNrd.v/D dg is the union of a finite number

of orbits of G.
Then (18.3) will show that L\Vd comprises only finitely many � -orbits, as asserted by
(18.2).

To prove (a), embed E into some matrix algebra Mn.Q/. Then the condition that
Nrd.e/D˙1 can be expressed as a polynomial equation in the matrix coefficients of e, and
this polynomial equation defines a linear algebraic group G over Q such that

G.S/D fe 2E˝S j Nrd.e/D˙1g

for all Q-algebras S . Over xQ, E is isomorphic to a product of matrix algebras
Q
iMni .

xQ/;
consequently,

G.xQ/D f.ei / 2
Y

i
GLni .xQ/ j

Y
i
det.ei /D˙1g:

From this it is clear that the identity component of G is an extension of
Q

PGLni by a torus,
and so G is reductive. It is easy to see that � is an arithmetic subgroup of G.Q/.

To prove (b), we need the following lemma from the theory of algebras with involution.

LEMMA 18.5. Let E be a semisimple algebra over an algebraically closed field K of
characteristic zero, and let � be an involution of E fixing the elements of K. Then every
element e of E such that e� D e can be written e D ca�a, where c is in the centre of E and
Nrd.a/D 1.

PROOF. Lacking a good proof, we make use of the classification of pairs .E;�/. Each pair
is a direct sum of pairs of the following types:
(An) E DMn.K/�Mn.K/ and .e1; e2/� D .etr

2 ; e
tr
1/;

(Bn) E is the matrix algebra Mn.K/ and e� D etr;
(Cn) E DM2n.K/ and e� D J�1etrJ with J an invertible alternating matrix;
(see, for example, Weil 1960). In the cases .Bn/ and .Cn/, the lemma follows from ele-
mentary linear algebra; in the case (An), e D .e0; e0tr/, and we can take c D d.In;In/ and
aD .e0=d;In/, where d D det.e0/1=n: 2

From the lemma, we see that if Ge is the isotropy group at e 2 V , then there is an
isomorphism g 7! agWGe!G1 defined over xQ. In particular, all isotropy groups have the
same dimension, and therefore all orbits of G in V have the same dimension. This implies
that they are all closed, because every orbit of minimal dimension is closed (see, for example,
Humphreys 1975, 8.3).

It remains to prove (c). Let v;v0 2 Vd ˝C, and write v D ca�a, v0 D c0a0�a0 with c;c0

and a;a0 as in the lemma. Clearly v and v0 are in the same orbit if and only if c and c0 are.
Note that c and c0 lie in Vd ˝C. Let Z be the subalgebra of the centre of E˝C of elements
fixed by �. Then c and c0 are in Z, and they lie in the same orbit of G if c=c0 2Z2. But Z
is a finite product of copies of R and C, and so Z=Z�2 is finite.

COROLLARY 18.6. Let k be a finite field, and let g and d be positive integers. Up to
isomorphism, there are only finitely many polarized abelian varieties .A;�/ over k with
dimAD g and deg�D d2.
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PROOF. From (14.1) we know that there are only finitely many possible A’s, and .18:1/
shows that for each A there are only finitely many �’s. 2

We come now to the second main result of this section. An abelian variety A0 is said to
be a direct factor of an abelian variety A if A� A0�A00 for some abelian variety A00.

THEOREM 18.7. Up to isomorphism, an abelian variety A has only finitely many direct
factors.

PROOF. To each direct factor A0 of A, there corresponds an element e of End.A/ defined by

A� A0�A00
.a0;a00/ 7!a0

��������! A0
a 7!.a;0/
������! A0�A00 � A:

Moreover e2 D e, and A0 is determined by e because it equals the kernel of 1� e. If
e0 D ueu�1 with u in End.A/�, then u.1� e/u�1 D 1� e0, and so e and e0 correspond to
isomorphic direct factors. These remarks show that the theorem is a consequence of the next
lemma. 2

LEMMA 18.8. Let E be a semisimple algebra of finite dimension over Q, and let R be an
order in E. Then R�, acting on the set of idempotents of R by inner automorphisms, has
only finitely many orbits.

PROOF. Apply (18.3) with G the algebraic group such that G.Q/DE�I take � to be the
arithmetic group R�;V to be E withG acting by inner automorphisms, and L to be R. Then
the idempotents in E form a finite set of orbits under G, and each of these orbits is closed.
In proving these statements we may replace Q by xQ and assume E to be a matrix algebra.
Then each idempotent is conjugate to one of the form

e D diag.1; : : : ;1;0; : : : ;0/;

and the stabilizer Ge of e is a parabolic subgroup of G and so G=Ge is a projective variety
(see Humphreys 1975, 21.3), which implies that its image Ge in V is closed. 2

COROLLARY 18.9. Let k be a finite field; for each integer g, there exist only finitely many
isomorphism classes of abelian varieties of dimension g over k.

PROOF. Let A be an abelian variety of dimension g over k. From (16.12) we know that
.A�A_/4 has a principal polarization, and according to (14.1), the abelian varieties of
dimension 8g over k having principal polarizations form only finitely many isomorphism
classes. The result therefore follows from (18.7). 2

19 The Zeta Function of an Abelian Variety
Throughout this section, A will be an abelian variety over a finite field k with q elements,
and km will be the unique subfield of xk with qm elements. Thus the elements of km are the
solutions of cq

m

D c. We write Nm for the order of A.km/.

THEOREM 19.1. There are algebraic integers a1; : : : ;a2g such that:
(a) the polynomial P.X/D

Q2g
iD1.X �ai / has coefficients in Z;
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(b) Nm D
Q2g
iD1.1�a

m
i / for all m� 1; and

(c) (Riemann hypothesis) jai j D q1=2.
In particular,

jNm�q
mg
j � 2gqm.g�

1
2
/
C .22g �2g�1/qm.g�1/:

The proof will use the Frobenius morphism. For a variety V over k, this is defined to be
the morphism �V WV ! V which is the identity map on the underlying topological space
of V and is the map f 7! f q on OV . For example, if V D Pn D Proj.kŒX0; : : : ;Xn�/, then
�V is defined by the homomorphism of rings

Xi 7!X
q
i WkŒX0; : : : ;Xn�! kŒX0; : : : ;Xn�

and induces the map on points

.x0W : : : Wxn/ 7! .x
q
0 W : : : Wx

q
n/WP

n.xk/! Pn.xk/:

For any map 'WW ! V , it is obvious that ' ı�W D �V ı '. Therefore, if A ,! Pn is
a projective embedding of A, then �A induces the map .x0W : : : Wxn/ 7! .x

q
0 :: : :: xqn/ on

A.xk/. In particular, we see that the kernel of 1��mA WA.
xk/! A.xk/ is A.km/. Note that

�A maps zero to zero, and therefore (see 2.2) is a homomorphism. Clearly � always
defines the zero map on tangent spaces (look at its action on the cotangent space), and so
d.1��mA /0WT0.A/! T0.A/ is the identity map. Therefore, 1��mA is étale, and the order
Nm of its kernel in A.xk/ is equal to its degree. Let P be the characteristic polynomial of
�A. It is a monic polynomial of degree 2g with integer coefficients, and if we let a1; : : : ;a2g
denote its roots, then (12.9) shows that

Q
.X �ami / is the characteristic polynomial of �mA .

Consequently,
Nm D deg.�mA �1/D

Y
.1�ami /:

This proves (a) and (b) of the theorem with the added information that P is the characteristic
polynomial of �A. Part (c) follows from the next two lemmas.

LEMMA 19.2. Let � be the Rosati involution on End0.A/ defined by a polarization of A;
then ��A ı�A D qA.

PROOF. As was noted in (13.2), the polarization will be defined by an ample sheaf L on
A. We have to show that �_A ı'L ı�A D q'L. It follows from the definition of �A that
��AL� Lq . Therefore, for all a 2 A.xk/,

�_A ı'L ı�A.a/D �
�
A.t
�
�aL˝L�1/D t�a .��AL/˝ .�

�
AL/

�1
D q'L.a/;

as required. 2

LEMMA 19.3. Let ˛ be an element of End0.A/ such that ˛� ı˛ is an integer r ; for any root
a of P˛; jaj2 D r .

PROOF. Note that Q.˛/ is stable under �. The argument terminating the proof of (17.5)
shows that Q.˛/ contains no nilpotent elements, and therefore is a product of fields. The
tensor product Q.˛/˝R is a product of copies of R and C. Moreover � extends to an
R-linear involution of Q.˛/˝R, and Tr.ˇ�ˇ/� 0 for all ˇ ¤ 0, with inequality holding on
a dense subset. It follows easily that each factor K of Q.˛/˝R is stable under � and that �
is the identity map if K is real, and is complex conjugation if K is complex. Thus, for each
homomorphism � of Q.˛/ into C, �.˛�/ is the complex conjugate of �˛. The hypothesis of
the theorem therefore states that j�˛j2 D r , which, in essence, is also the conclusion. 2
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The zeta function of a variety V over k is defined to be the formal power series

Z.V; t/D exp
�X

m
Nmt

m=m
�
:

COROLLARY 19.4. Let Pr.t/ D
Q
.1� ai;r t /, where the ai;r run through the products

ai1ai2 : : :air ; 0 < i1 < � � �< ir � 2g, ai a root of P.t/. Then

Z.A;t/D
P1.t/ � � �P2g�1.t/

P0.t/ � � � P2g.t/
:

PROOF. Take the logarithm of each side, and use the identity

� log.1� t /D tC t2=2C t3=3C�� � : 2

REMARK 19.5. (a) The polynomial Pr.t/ is the characteristic polynomial of � acting onVr
TlA.
(b) Let �.V;s/DZ.V;q�s/; then (19.1c) implies that the zeros of �.V;s/ lie on the lines

<.s/D 1=2;3=2; : : : ; .2g�1/=2 and the poles on the lines <.s/D 0;1; : : : ;2g.

REMARK 19.6. The isomorphism
Vr

TlA'H
r.Aet;Ql/_ and the above results show that

Nm D

2gX
rD1

.�1/r Tr.�jH r.Aet;Ql//

and that

Z.A;t/D

2gY
iD1

det.1��t jH r.Aet;Ql//.�1/
r

:

20 Abelian Schemes
Let S be a scheme. A group scheme � WA! S over S is an abelian scheme if � is proper
and smooth and the geometric fibres of � are connected. The second condition means that,
for all maps xs! S with xs the spectrum of an algebraically closed field, the pull-back Axs of
A to xs is connected. In the presence of the first condition, it is equivalent to the fibres of �
being abelian varieties. Thus an abelian scheme over S can be thought of as a continuous
family of abelian varieties parametrized by S .

Many results concerning abelian varieties extend to abelian schemes.

PROPOSITION 20.1 (RIGIDITY LEMMA). Let S be a connected scheme, and let � WV! S

be a proper flat map whose fibres are varieties; let � 0WV 0! S be a second S -scheme, and let
f WV! V 0 be a morphism of S-schemes. If for some point s of S , the image of Vs in V 0s
is a single point, then f factors through S (that is, there exists a map f 0WS ! V 0 such that
f D f 0 ı�).

PROOF. See Mumford 1965, 6.1. 2
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COROLLARY 20.2. (a) Every morphism of abelian schemes carrying the zero section into
the zero section is a homomorphism.

(b) The group structure on an abelian scheme is uniquely determined by the choice of a
zero section.

(c) An abelian scheme is commutative.

PROOF. (a) Apply the proposition to the map 'WA�A!A defined as in the proof of (2.2).
(b) This follows immediately from (a).
(c) The map a 7! a�1 is a homomorphism. 2

Our next result shows that an abelian variety cannot contain a non-constant algebraic
family of subvarieties.

PROPOSITION 20.3. Let A be an abelian variety over a field k, and let S be a k-scheme
such that S.k/¤ ;. For any injective homomorphism f WB ,! A�S of abelian schemes
over S , there exists an abelian subvariety B of A (defined over k) such that f .B/D B �S .

PROOF. Let s 2 S.k/, and let B D Bs . Then fs identifies B with a subvariety of A. The

map hWB
f
�! A�S � .A=B/�S has fibre Bs! A! A=Bs over s, which is zero, and

so (20.1) shows that hD 0. It follows that f .B/D B �S . 2

Recall that a finitely generated extension K of a field k is regular if it is linearly disjoint
from xk.

COROLLARY 20.4. Let K be a regular extension of a field k.
(a) Let A be an abelian variety over k. Then every abelian subvariety B of AK is defined

over k.
(b) If A and B are abelian varieties over k, then every homomorphism ˛WAK ! BK is

defined over k.

PROOF. (a) There exists a variety V over k such that k.V /DK. After V has been replaced
by an open subvariety, we can assume that B extends to an abelian scheme over V (cf. (20.9)
below). If V has a k-rational point, then the proposition shows that B is defined over k. In
any case, there exists a finite Galois extension k0 of k and an abelian subvariety B 0 of Ak0
such that B 0

Kk0
D BKk0 as subvarieties of AKk0 . The equality uniquely determines B 0 as

a subvariety of Ak0 . As �B 0 has the same property for any � 2 Gal.k0=k/, we must have
�B 0 D B 0, and this shows that B 0 is defined over k.

(b) Part (a) shows that the graph of ˛ is defined over k: 2

THEOREM 20.5. Let K=k be a regular extension of fields, and let A be an abelian variety
over K. Then there exists an abelian variety B over k and a homomorphism f WBK ! A

with finite kernel having the following universal property: for any abelian variety B 0

and homomorphism f 0WB 0K ! A with finite kernel, there exists a unique homomorphism
'WB 0! B such that f 0 D f ı'K .

PROOF. Consider the collection of pairs .B;f / with B an abelian variety over k and f
a homomorphism BK ! A with finite kernel, and let A� be the abelian subvariety of A
generated by the images the f . Consider two pairs .B1;f1/ and .B2;f2/. Then the identity
component C of the kernel of .f1;f2/W.B1�B2/K!A is an abelian subvariety of B1�B2,
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which (20.4) shows to be defined over k. The map .B1�B2=C /K ! A has finite kernel
and image the subvariety of A generated by f1.B1/ and f2.B/. It is now clear that there
is a pair .B;f / such that the image of f is A�. Divide B by the largest subgroup scheme
N of Ker.f / to be defined over k. Then it is not difficult to see that the pair .B=N;f /
has the correct universal property (given f 0WB 0K ! A, note that for a suitable C contained
in the kernel of .B=N/K �B 0K ! A, the map b 7! .b;0/WB=N ! .B=N/�B 0=C is an
isomorphism). 2

REMARK 20.6. The pair .B;f / is obviously uniquely determined up to a unique isomor-
phism by the condition of the theorem; it is called the K=k-trace of A. (For more details on
the K=k-trace and the reverse concept, the K=k-image, see Lang 1959, VIII.)

PROPOSITION 20.7. Let A be an abelian scheme of relative dimension g over S , and let
nA be multiplication by n on A. Then nA is flat, surjective, and finite, and its kernel An is a
finite flat group scheme over S of order n2g . Moreover nA (and therefore its kernel) is étale
if and only if n is not divisible by any of the characteristics of the residue fields of S .

PROOF. The map nA is flat because A is flat over S and multiplication by n is flat on each
fibre of A over S (see �8). (For the criterion of flatness used here, see SGA 1, IV, 5.9,9 or
Bourbaki AC, III, 5.4, Prop.2.3.) Moreover nA is proper (Hartshorne 1977, II, 4.8e) with
finite fibres, and hence is finite (see, for example, Milne 1980, I, 1.10). It follows that An is
flat and finite, and (8.2) shows that it has order n2g . The remaining statement also follows
from (8.2). 2

COROLLARY 20.8. Let S be a connected normal scheme, and let A be an abelian variety
over the field of rational functions k of S . Assume that A extends to an abelian scheme
over S , and let n be an integer which is prime to the characteristics of the residue fields of
S . Then for any point P 2 A.k/, the normalization of S in k.n�1P / is étale over S . (By
k.n�1P / we mean the field generated over k by the coordinates of the points Q such that
nQD P:)

PROOF. The hypotheses imply that An is étale over S . Let k0 be the composite of the fields
of rational functions of the components of An, and let k00 be the Galois closure of k0. Then
the normalization of S in k00 is étale over S and An.k00/ has n2g elements. We may replace
k with k00 and so assume that A has all of its points of order n rational in k. The point P
extends (by the valuative criterion of properness) to a section s of A over S . The pull-back
of the covering nAWA!A to S by means of the section s is a finite étale covering S 0! S ,
and s lifts to a section in A.S 0/. Let S0 be any connected component of S 0; then the field K
of rational functions of S contains k.n�1P /, and S0 is the normalization of S in K. 2

REMARK 20.9. Let S be an integral Noetherian scheme, and let A be an abelian variety
over its field of rational functions K. Choose a projective embedding A ,! Pn and let A be
the closure of A in PnS . Then � WA! S is projective, and its generic fibre is a smooth variety.
As OS ! ��OA is an isomorphism at the generic point and OS and ��OA are coherent,
there will be an open subset over which it is an isomorphism and therefore over which �
has connected fibres (Hartshorne 1977, III, 11.5). The existence of a section implies that the
fibres will be geometrically connected there. Also there will be an open subset over which A

9Revêtements étales et groupe fondamental. Séminaire de géométrie algébrique du Bois Marie 1960–61.
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is smooth (ibid. III, Ex. 10.2), and an open subset where the group structure extends. These
remarks show that there is an open subset U of S such that A extends to an abelian scheme
over U .

When S is locally the spectrum of a Dedekind domain, we can be more precise. Then the
projective embedding of A determines a unique extension of A to a flat projective scheme
� WA! S (ibid. III, 9.8). The R-module ��OA is finitely-generated (because � is proper)
and torsion-free (because � is flat). It is therefore a projective R-module, and its rank is one
because its tensor product with K is � .A;OA/DK. Now, as before, the geometric fibres of
A are connected. We conclude: the choice of a projective embedding defines a flat projective
extension A of A to S ; A will be an abelian scheme over an open set U of S .

It is clear from looking at the example of an elliptic curve, that the extended scheme A
over S depends on the choice of the projective embedding of A, but its restriction to U does
not (see Artin 1986, 1.4). The purpose of the theory of Néron models is to replace A by a
“minimal” (nonproper) extension which is unique.

Using the above results, it is possible to give a short proof of a weak form of the
Mordell-Weil theorem.

THEOREM 20.10. Let A be an abelian variety over a number field k, and let n be an integer
such that all points of A of order n are rational over k. Then A.k/=nA.k/ is a finite group.

PROOF. Let a 2 A.k/, and let b 2 A.xk/ be such that nb D a. For � in the Galois group of
xk over k, define 'a.�/ to be �b�b. Then a 7! 'a defines an injection

A.k/=nA.k/,!Hom.G;An.k//:

Let Spec.R/ be an open subset of the spectrum of the ring of integers of k such that
A extends to an abelian scheme A over Spec.R/ and n is invertible in R. Let k0 be the
maximal abelian extension of k of exponent n unramified outside the finite set of primes not
corresponding to prime ideals of R. Then (20.8) shows that 'a factors through the group
Gal.k0=k/ for all a. This proves the theorem because k0 is a finite extension of k. 2

REMARK 20.11. Using the theory of heights, one can show that for an abelian variety over
a number field k, the finiteness of A.k/=nA.k/ implies that A.k/ is finitely generated (see
Silverman 1986). As the hypothesis of (20.10) always holds after a finite extension of k, this
proves the Mordell-Weil theorem: for any abelian variety A over a number field k, A.k/ is
finitely generated.

REMARK 20.12. Let A and B be polarized abelian varieties over a number field k, and
assume that they both have good reduction outside a given finite set of primes S ; let l be an
odd prime. If A and B are isomorphic over xk (as polarized abelian varieties), then they are
isomorphic over an extension k0 of k, unramified outside S and l , and of degree at most the
square of the order of GL2g.Fl/. (Because the l-torsion points of A and B are rational over
such a k0, and we can apply (17.7).)

In contrast to abelian varieties, abelian schemes are not always projective, even if the
base scheme is the spectrum of an integral local ring of dimension one or an Artinian ring
(see Raynaud 1970, XII). If A is projective over S , then the dual abelian scheme A_ is
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known to exist (see Grothendieck 1961/6210); if L is not projective then A_ exists only as
an algebraic space11 (see Artin 1969). In either case, a polarization of A is defined to be a
homomorphism �WA!A_ such that, for all geometric points xs of the base scheme S;�xs is
of the form 'L for some ample invertible sheaf A on Axs . Alternatively, � is a polarization if
�sWAs!A_s is a polarization of abelian varieties for all s 2 S . If S is connected, then the
degree of �s is independent of s and is called the degree of �.

For a field k and fixed integers g and d , let Fg;d , be the functor associating with each
k-scheme of finite type the set of isomorphism classes of polarized abelian schemes of
dimension g and which have a polarization of degree d2.

THEOREM 20.13. There exists a varietyMg;d over k and a natural transformation i WFg:d!
Mg;d such that:

(a) i.K/WFg;d .K/! Mg;d .K/ is a bijection for every algebraically closed field K
containing k;

(b) for any variety N over k and natural transformation j WFg:d !N , there is a unique
morphism 'WMg;d !N such that ' ı i D j .

PROOF. This one of the main results of Mumford 1965. 2

The variety Mg;d is uniquely determined up to a unique isomorphism by the conditions
of (20.13); it is the (coarse) moduli variety for polarized abelian varieties of dimension g
and degree d2. By introducing level structures, one can define a functor that is representable
by a fine moduli variety — see Chai 1986.

10Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique V. Les schémas
de Picard: Théorèmes d’existence. Séminaire Bourbaki, Éxposé 232, 1961/62. See also Kleiman’s article in
Fundamental algebraic geometry. Grothendieck’s FGA explained. Mathematical Surveys and Monographs, 123.
American Mathematical Society, Providence, RI, 2005.

11In fact, Raynaud showed that it exists as a scheme.
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ARTIN, M. 1986. Néron models, pp. 213–230. In Arithmetic geometry (Storrs, Conn., 1984).
Springer, New York.

BOREL, A. 1953. Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de
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