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Abstract

The article surveys what was known, or conjectured, about canonical models of
Shimura varieties and related objects at the time it was written (1988).
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Introduction

This article surveys what is known to be true, or is conjectured, concerning the rationality
properties over Q of automorphic functions, holomorphic automorphic forms, and the
Fourier-Jacobi series of automorphic forms.

The first chapter reviews the theory of abelian varieties with potential complex multipli-
cation over Q and the motives that are built out of them. The constructions and results in
this chapter are the basis of the statements in the succeeding chapters.

The second chapter reviews the definition and basic properties of Shimura varieties, and
then states the main results: every Shimura variety has a canonical model over its reflex
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field, and the conjugate of the canonical model by an element of Gal.Qal=Q/ is again the
canonical model of a Shimura variety.

Holomorphic automorphic forms can be interpreted as the sections of certain vector
bundles, called automorphic vector bundles, on a Shimura variety. These bundles are defined
in the Chapter III, and the main theorems for them, which parallel those for Shimura varieties,
are stated. In particular, every automorphic vector bundle has a canonical model over a
specific number field, and we can define a holomorphic automorphic form to be rational over
a field if it is a section of the canonical model of the vector bundle over that field.

As one approaches the boundary of a Hermitian symmetric domain, Hodge structures
degenerate into mixed Hodge structures, and as one approaches the boundary of a Shimura
variety, abelian varieties degenerate into one-motives. The theories of mixed Hodge structures
and of one-motives are reviewed in Chapter IV.

In contrast to the Baily-Borel compactification of a Shimura variety, the method of
toroidal compactification provides smooth compactifications of Shimura varieties. In Chap-
ter V we describe these compactifications, and suggest how the various isomorphisms
constructed in Chapters II and III should extend to the compactified varieties.

The study of the boundary of a Shimura variety suggests the introduction of a new object,
generalizing that of a Shimura variety, which we here call a mixed Shimura variety. These
varieties are defined in Chapter VI, and we indicate there how the results in Chapters II
and III should extend to them. To give the reader some idea of how the notion of a mixed
Shimura variety relates to that of a Shimura variety, we list some of the objects attached to a
Shimura variety and the corresponding object attached to a mixed Shimura variety:

Shimura variety Mixed Shimura variety
bounded symmetric domain Siegel domain (of the third kind)
Hodge structure mixed Hodge structure
reductive group algebraic group with 3-step filtration
abelian variety one-motive
motive mixed motive

Roughly speaking, everything that is true for Shimura varieties should also be true for
mixed Shimura varieties. For example, it will probably turn out to be most natural to study
Hasse-Weil zeta functions in the context of mixed Shimura varieties rather than Shimura
varieties. Lest the reader fear an unending hierachy, I mention that the study of the boundary
of a mixed Shimura variety leads only to mixed Shimura varieties, not to some higher order
object.

In the last chapter, we give a formal-algebraic definition of Fourier-Jacobi series, and
suggest a theory for them also over Q.

The contents of the second and third chapters will eventually be part of a book that I am
currently writing1 on Shimura varieties. Once the theory outlined in the last four chapters is
complete, a second book will be appropriate. Lest the reader think that that will then be the
end of the subject, I point out that the theory for a general Shimura variety will then be in
roughly the same happy state as the theory for elliptic modular curves was at the time of the
publication of Shimura’s book, Shimura (1971b), and that 1971 was the start of an explosion
of interest in elliptic modular curves that continues to this day.

One of my goals in this article has been to write out the implications of Deligne’s vision
that Shimura varieties should be thought of as moduli varieties of motives and mixed Shimura

1Added 22.06.01: Not so!
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varieties as the moduli varieties of mixed motives. I wish to thank Deligne for his patient
explanation of his ideas to me over the years, and I mention specifically that the definition of
a mixed Shimura variety in Chapter VI and the formal-algebraic definition of Fourier-Jacobi
series in Chapter VII were suggested to me by him.

In this article, I have not attempted to describe in detail the origins of theorems, but have
largely confined myself to listing the most recent work. Thus it is appropriate to mention
that most of the questions discussed in this article first arose in the work of Shimura, and
were often answered by him (or his students) in key cases. See in particular his talks to the
International Congresses (Shimura 1968, 1971a, 1978a).

Finally I wish to thank Don Blasius and Michael Harris for many enjoyable and illumi-
nating discussions on these questions; also I would like to thank them, Greg Anderson, and
Pierre Deligne for their comments on parts of earlier drafts of this manuscript.

Conventions

All vector spaces and locally free sheaves are of finite rank. We use the same letter for a
vector bundle and its associated locally free sheaf of sections.

A variety Y is a geometrically reduced scheme of finite-type over a field (it is not
necessarily connected). For a variety Y over a field k and a homomorphism � Wk ,! k0, we
write �Y for Y �Spec.k/;� Spec.k0/ (the polynomials defining �Y are obtained from those
defining Y by applying � to their coefficients). When it is not necessary to mention � , we
write Yk0 for �Y .

The following construction will be often used: let G be an algebraic group over Q acting
on a variety Y on the left, and let P be a right principal homogeneous space for G; then
P �G Y , the variety obtained from Y “by twisting by P ”, is the variety over Q such that, as
a Gal.Qal=Q/-set,

.P �G Y /.Qal/D P.Qal/�Y.Qal/=�; .pg;y/� .p;gy/; g 2G.Qal/:

For an algebraic group G over R, G.R/C is the identity component of the topological
group G.R/ and G.R/C is the inverse image of Gad.R/C in G.R/; also G.Q/C DG.Q/\
G.R/C and G.Q/C DG.Q/\G.R/C. An algebraic group is said to be simple when all its
proper normal closed subgroups are finite. When an algebraic group G is defined over a field
k, then all statements are relative to k; for example, “simple” means “k-simple”, subgroups
are defined over k, and representations take values in k-vector spaces.

When k is a field, kal is an algebraic closure of k, ksep is a separable algebraic closure,
and kab is a maximal abelian extension of k. We always take Qal to be the algebraic closure
of Q in C.

For a number field E, AE is the ring of adèles of E and OE the ring of finite adèles. We
write A for AQ, Af for OQ, and A0 for C�Af . The reciprocity law recE WA�E !Gal.Eab=E/

is normalized so that a local uniformizing element maps to the inverse of the usual (number-
theorists) Frobenius automorphism. Complex conjugation is denoted by � or by a 7! Na, and
Œ�� is the equivalence class of � .

Except in Chapter V, the symbol T F denotes the restriction of scalars (in the sense of
Weil) of Gm from F to Q.

When V is a vector space over a field k, and k0 is an extension of k, we sometimes
denote V ˝k k0 by V.k0/ or Vk0 .



Chapter I

Abelian varieties with complex
multiplication

In this chapter we review the theory of abelian varieties with potential complex multiplication
over Q, the category of motives they generate, and their periods.

1. Tannakian categories

The Pontryagin duality theorem allows one to recover a locally compact abelian group from
its character group. Tannaka (1938) showed that a compact group can be recovered from the
category of continuous finite-dimensional real representations of the group. The theory of
Tannakian categories allows one to recover an affine group scheme from its category of finite-
dimensional representations, and it gives an axiomatic characterization of the categories
that arise in this fashion. It therefore provides a way of realizing certain abstractly defined
categories as the category of representations of an affine group scheme.

A tensor category .C;˝/ is a category C together with a functor ˝WC�C! C and
sufficient constraints so that the tensor product of any finite unordered set of objects is
well-defined up to a unique isomorphism. In particular, there is an identity object 11, defined
to be the tensor product of the empty set of objects, which has the property that

X˝11ŠX Š 11˝X

for all objects X of C.
A tensor category .C;˝/ is said to be abelian when C is abelian and ˝ is bi-additive.

Then k def
D End.11/ is a commutative ring which acts on all objects of C in such a way that

all morphisms of C are k-linear and˝ is bilinear; we call .C;˝/ a k-linear abelian tensor
category (in an alternative terminology, .C;˝/ is called an abelian tensor category with
coefficents k). For example, Veck is a k-linear abelian tensor category.

A tensor category is said to be rigid if every object X of C has a dual LX and these duals
have certain natural properties, for example,

Hom.T ˝ LX;Y /' Hom.T;X˝Y /:

A functor from one tensor category to a second is called a tensor functor if it carries
tensor products into tensor products (including the identity object to the identity object). A

5



6 CHAPTER I. ABELIAN VARIETIES WITH COMPLEX MULTIPLICATION

morphism of tensor functors cWF ! F 0 is a morphism of functors commuting with tensor
products, i.e., such that the diagrams

110 F.11/

110 F 0.11/

'

c11

'

F.X˝Y / F.X/˝F.Y /

F 0.X˝Y / F 0.X/˝F 0.Y /

'

cX˝cY cX˝cY

'

commute. (The horizontal isomorphisms are part of the data that F and F 0 are tensor
functors.)

Let k be a field. A k-linear neutral Tannakian category is a rigid k-linear abelian
tensor category for which there exists an exact k-linear tensor functor !WC! Veck . Such a
functor is called a fibre functor for .C;˝/. Since we shall never need to consider non-neutral
Tannakian categories, from now “Tannakian category” means “neutral Tannakian category”.

EXAMPLE 1.1. For any affine group scheme G over a field k, the category Repk.G/ of
finite-dimensional representations of G on k-vector spaces is a k-linear Tannakian category
with an obvious fibre functor, namely .V;�/ 7! V . (An affine group scheme over k is an
affine scheme G over k together with morphisms G �G ! G (multiplication), G ! G

(inverse), Spec k!G (identity element) satisfying the usual axioms. ThusG is an algebraic
group if it is of finite-type. Every affine group scheme is a projective limit of algebraic
groups, and conversely every projective system of affine algebraic groups has an affine group
scheme as limit.)

If ! is a fibre functor for the k-linear Tannakian category .C;˝/ and R is a k-algebra,
we define !R to be the tensor functor X 7! !.X/˝k R from .C;˝/ to the category of
R-modules. When !0 is a second fibre functor, Isom˝.!;!0/ denotes the functor from the
category of k-algebras to that of sets,

R 7! Isom˝.!R;!0R/ .isomorphisms of tensor functors/:

Also Aut˝.!/ denotes Isom˝.!;!/.

THEOREM 1.2. Let .C;˝/ be a Tannakian category with fibre functor !. The functor
Aut˝.!/ is represented by an affine group scheme G over k, and ! defines an equivalence
of tensor categories

.C;˝/! .Repk.G/;˝/:

If !0 is a second fibre functor, then the functor Isom˝.!;!0/ is represented by an affine
scheme P.!;!0/, which is a principal homogeneous space for G. The affine group scheme
G0 representing Aut˝.!0/ is the inner form of G obtained from G by twisting by P.!;!0/.

PROOF. See for example Deligne and Milne 1982, 2.11, 3.2. 2

The picture to keep in mind when thinking of Tannakian categories is the following.
Let X be a connected topological manifold, and let C be the category of local systems of
Q-vector spaces on X (= locally constant sheaves of Q-vector spaces). When endowed with
its usual tensor structure, this category is Tannakian. The choice of a point x ofX determines
a fibre functor !x WV 7! Vx (stalk of V at x) for C, and the fundamental group �1.X;x/ acts
on Vx; moreover !x defines an equivalence from .C;˝/ to the tensor category of rational
representations of the abstract group �1.X;x/. If y is a second point, then the set P.x;y/
of paths from x to y (taken up to homotopy) is a principal homogeneous space for �1.X;x/,
and �1.X;y/ is the inner form of �1.X;x/ obtained from �1.X;x/ by twisting by P.x;y/.
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EXAMPLE 1.3. To give a grading on a vector space is the same as to give a representation
of Gm on V : the grading V D˚V n corresponds to the representation for which Gm acts
on V n through the character �n D .t 7! tn/. The category of graded vector spaces over k
has an obvious k-linear Tannakian structure, and our observation shows that the associated
affine group scheme is Gm.

EXAMPLE 1.4. Let C be the category of continuous representations of Gal.ksep=k/ on
vector spaces over Q. This is a Q-linear Tannakian category with the forgetful functor as
fibre functor. Write Gal.ksep=k/ as a limit lim

 �
Gal.K=k/ of finite Galois groups, and give

each group Gal.K=k/ the structure of a constant algebraic group of dimension zero. Then
Gal.ksep=k/ acquires the structure of a pro-algebraic group, and this is the affine group
scheme attached to C.

REMARK 1.5. (a) A homomorphism f WG!G0 of affine group schemes over k defines a
tensor functor F WRepk.G0/!Repk.G/. Conversely, a tensor functor of k-linear Tannakian
categories F W.C;˝/! .C0;˝/ carrying a fibre functor !0 into a fibre functor ! defines a
homomorphism of affine group schemes f WAut˝.!0/! Aut˝.!/. Moreover, f is injective
if and only if the image of F generates Repk.G/ as a Tannakian category1, and f is
surjective if and only if F is fully faithful and the essential image is stable under the
formation of subquotients.

(b) Let .C;˝/ be a k-linear Tannakian category, and let k0 be a finite separable extension
of k. The category Ck0 is defined to be the pseudo-abelian envelope2 of the category whose
objects are those of C and whose morphisms are given by

HomCk0 .X;Y /D HomC.X;Y /˝k k
0:

It is a k0-linear Tannakian category. Any fibre functor ! of C extends in a natural way to a
fibre functor !0 of Ck0 , and the affine group scheme attached to .Ck0 ;!0/ is Gk0 .

Graded Tannakian categories

DEFINITION 1.6. A grading of a k-linear Tannakian category C can be described as either:
(a) a grading X D

N
m2ZX

m on each object of C that depends functorially on X and is
compatible with tensor products in the sense that .X˝Y /m D

L
rCsDmX

r˝Y s; or
(b) a central homomorphism wWGm!G, G D Aut˝.!/, for some fibre functor !.

Central means that the image is contained in the centre of G. Note that, by (1.2), the centre
of G is independent of the choice of !. A grading of C defines a grading on !.X/ for each
object X and fibre functor !; we have !.X/n D !.Xn/, which is the subspace of !.X/ on
which w.z/ acts as zn.

1We say that a set of objects S in a Tannakian category C generates C if there is no full Tannakian
subcategory of C containing all objects of S and their subquotients other than C itself.

2An additive category is pseudo-abelian or (Karoubian) if, for every morphism pWX ! X such that
p2 D p, the kernel of p�1 exists. For any additive category C, there is a pseudo-abelian category PC and a
functor C! PC that is universal among functors from C into pseudo-abelian categories. The objects of PC are
pairs .X;p/ with p as above, and the morphisms are defined so as to make .X;p/ the image of p in the enlarged
category.
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Filtrations of Repk.G/

Let V be a vector space. A homomorphism �WGm!GL.V / defines a filtration

� � � � F pV � F pC1V � �� � ; F pV D˚i�pV
i ;

of V , where V D˚V i is the grading defined by �.
Let G be an algebraic group over a field k of characteristic zero. A homomorphism

�WGm! G defines a filtration F � on V for each representation .V;�/ of G, namely, that
corresponding to � ı�. These filtrations are compatible with the formation of tensor products
and duals, and they are exact in the sense that V 7!Gr�F .V / is exact. Conversely, any functor
.V;�/ 7! .V;F �/ from representations of G to filtered vector spaces compatible with tensor
products and duals which is exact in this sense arises from a (nonunique) homomorphism
�WGm! G. We call such a functor a filtration F � of Repk.G/, and a homomorphism
�WGm!G defining F � is said to split F �. We write F ilt.�/ for the filtration defined by
�.

For each p, we define F pG to be the subgroup of G of elements acting as the identity
map on˚iF iV=F iCpV for all representations V ofG. Clearly F pG is unipotent for p � 1,
and F 0G is the semi-direct product of F 1G with the centralizer Z.�/ of any � splitting
F �.

PROPOSITION 1.7. Let G be a reductive group over a field k of characteristic zero, and let
F � be a filtration of Repk.G/. From the adjoint action of G on g

df
D Lie.G/, we acquire a

filtration of g.
(a) F 0G is the subgroup of G respecting the filtration on each representation of G; it is

a parabolic subgroup of G with Lie algebra F 0g.
(b)F 1G is the subgroup ofF 0G acting trivially on the graded module

L
.F pV=F pC1V /

associated with each representation ofG; it is the unipotent radical ofF 0G, and Lie.F 1G/D
F 1g.

(c) The centralizer Z.�/ of any � splitting F � is a Levi subgroup of F 0G; therefore,
Z.�/

�
! F 0G=F 1G, and the composite N� of � with F 0G! F 0G=F 1G is central.

(d) Two cocharacters � and �0 of G define the same filtration of G if and only if they
define the same group F 0G and N�D N�0; � and �0 are then conjugate under F 1G.

PROOF. See Saavedra 1972, especially IV 2.2.5. 2

REMARK 1.8. It is sometimes more convenient to work with ascending filtrations. To turn
a descending filtration F � into an ascending filtration W�, set Wi D F�i ; if � splits F �,
then z 7! �.z/�1 splits W�. With this terminology, we have W0G DW�1GÌZ.�/.

NOTES. The essentials of the theory of Tannakian categories are due to Grothendieck3 A full account
of the theory can be found in Saavedra 1972 and a more succinct account in Deligne and Milne 1982.
The paper Deligne 1989 fills an important gap in the theory of non-neutral Tannakian categories.

2. Hodge structures

A real Hodge structure is a real vector space V together with a decomposition

V ˝CD
M

V p;q

3Added 2017: It would be better to say that the basic idea of the theory of Tannakian categories is due to
Grothendieck. . .
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such that the complex conjugate of V p;q is V q;p, all p, q. The category of such structures
has a natural Tannakian structure, and the affine group scheme attached to the category
and the forgetful fibre functor is S def

D ResC=RGm. According to Deligne’s convention,
z 2 S.R/D C� acts on V p;q as multiplication by z�p Nz�q . A Hodge structure is said to be
of weight n if pCq D n for all .p;q/ with V p;q ¤ 0. The type of a Hodge structure is the
set of pairs .p;q/ for which V p;q ¤ 0.

The Hodge filtration defined by a Hodge structure is

� � � � F p � F pC1 � �� � ; F p D
M
r�p

V r;s:

If V has weight n, then

NF q D .
L
s�q V

s;r
/D

L
s�q V

r;s D
N
r�n�q V

r;s;

and so VC is the direct sum of F p and NF q whenever pCq D nC1. Conversely, if F � is a
finite descending filtration of VC such that VC D F p˚ NF q whenever pCq D nC1, then
F � defines a Hodge structure of weight n on VC by the rule V p;q D F p\ NF q .

From now on, we shall regard a real Hodge structure as being a pair .V;h/ consisting of
a real vector space V and a homomorphism hWS! GL.V /. We identify SC with Gm�Gm
in such a way that S.R/ ,! S.C/ becomes z 7! .z; �z/. The Hodge filtration on V is then
the descending filtration defined by �hWGm! GL.VC/, �h.z/D hC.z;1/, and the weight
grading is defined by whWGm! GL.V /, wh.r/D h.r�1/, r 2 R�.

For any k � R, a Hodge k-structure is a vector space V over k together with a Hodge
structure on V ˝k R such that the weight grading is defined over k. The category of such
structures is a k-linear Tannakian category Hdgk . A Hodge Q-structure will simply be
called a Hodge structure. The Mumford-Tate group MT.V;h/ of a Hodge structure is the
smallest Q-rational algebraic subgroup of GL.V /�Gm such that MT.V;h/C contains the
image of .�h;1/WGm!GL.V /�Gm. It is a connected subgroup of GL.V /�Gm. blah

EXAMPLE 2.1. (a) For any smooth projective variety X over C, Hodge theory provides
Hn.X.C/;Q/with a Hodge structure of weight n. SinceHn.X.C/;Q/ is dual toHn.X.C/;Q/,
it acquires a Hodge structure of weight �n.

(b) Giving a Hodge structure of type f.�1;0/; .0;�1/g on a real vector space V cor-
responds to giving a complex structure on V : given the complex structure, define h.z/
to be multiplication by z; given the Hodge structure, define the complex structure by the
isomorphism V ! VC=F

0.
(c) For each integer n, Q.n/ denotes the vector space .2� ı/nQ with the Hodge structure

of type f.�n;�n/g.

A polarization of a Hodge k-structure .V;h/ of weight n is a morphism of Hodge struc-
tures WV.R/˝V.R/!R.�n/ such that the real-valued form .x;y/ 7! .2�{/n .x;h.i/y/

is symmetric and positive-definite. The Mumford-Tate group of a polarizable Hodge structure
is reductive.

EXAMPLE 2.2. For an abelian variety A over C, H1.A;Q/ is a polarizable Hodge structure
of type f.0;�1/; .�1;0/g, and A 7!H1.A;Q/ defines an equivalence between the category
of abelian varieties over C, considered up to isogeny, and the category of polarizable Hodge
structures of type f.0;�1/; .�1;0/g. The Mumford-Tate group MT A of A is defined to be
the Mumford-Tate group of H1.A;Q/.
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Hodge structures of CM-type

A Hodge structure is said to be of CM-type if it is polarizable and its Mumford-Tate group is
commutative (and hence a torus).

EXAMPLE 2.3. A field E of finite degree over Q is said to be a CM-field if there is a
nontrivial involution � of E that becomes complex conjugation under every embedding
E ,! C. A finite product of CM-fields is called a CM-algebra. An abelian variety A is
said to have complex multiplication (or be of CM-type) if there is a faithful homomorphism
E! End.A/˝Q (mapping 1 to 1) with E a CM-algebra of degree ŒEWQ�D 2dim.A/, and
it is said to have potential complex multiplication if it acquires complex multiplication over
some extension of the ground field. With these definitions, an abelian variety over C is of
CM-type if and only if the Hodge structure H1.A;Q/ is of CM-type.

The category of Hodge structures of CM-type is Tannakian. Let S be the affine group
scheme attached to it and the forgetful fibre functor. The functor sending a Hodge structure
.V;h/ to the real Hodge structure .V ˝R;h/ defines a homomorphism hcanWS!SR, and
hence a cocharacter �can of SC.

PROPOSITION 2.4. (a) The group scheme S is a pro-torus. The map

� 7! n�; n�.�/D h�;��cani;

identifies the character group of S with the group of all functions

nWGal.Qal=Q/! Z

which factor through Gal.F=Q/ for some CM-field F and which have the property that

n.��/Cn.�/D constant:

(b) The pair .S;�can/ has the following universal property: for any torus T over Q and
� 2X�.T / satisfying

.� �1/.�C1/�D 0D .�C1/.� �1/�; all � 2 Gal.Qal=Q/; (*)

there is a unique homomorphism ��WS! T (defined over Q) such that .��/C ı�can D �.

The pro-torus S is called the Serre group, and the condition (*) is called the Serre
condition.

REMARK 2.5. (a) For a field F of finite degree over Q, define SF to be the quotient of
T F

def
D ResF=QGm whose character group X�.SF / is the subgroup of X�.T F / of elements

satisfying the Serre condition. The norm map induces a homomorphism SF
0

!SF for
any F 0 containing F , and it is easily seen that SD lim

 �
SF (limit over F �Qal). In fact, it

suffices to take the limit over all CM-fields F �Qal.
(b) Let F � Qal be a finite Galois extension of Q. The action of Gal.Qal=Q/ on T F

defined by its action on F induces an action of Gal.Qal=Q/ on SF . In the limit we obtain
an action of Gal.Qal=Q/ on S (rational over Q). There are therefore two distinct actions of
Gal.Qal=Q/ on S.Qal/: the first arises from the action of Gal.Qal=Q/ on S, and the second
from its action on Qal.
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EXAMPLE 2.6. Let E be a CM-algebra. A CM-type for E is a subset ˚ of Hom.E;C/
such that Hom.E;C/D ˚ [ �˚ (disjoint union). Let A be an abelian variety over C with
complex multiplication i WE ! End.A/˝Q by E. For � 2 Hom.E;C/, write C� for C
with E acting through � . Then Tgt0.A/�

Q
'2˚ C' with ˚ a CM-type for E, and .A; i/ is

said to be of CM-type .E;˚/. By assumption, V DH1.A;Q/ is a free E-module of rank
one, and we can regard T E as a subtorus of GL.V /. Define �˚ WGm! .T E /C to be the
cocharacter such that

� ı�˚ D

�
1 if � 2 ˚
0 otherwise

and let h˚ be the associated homomorphism h˚ WS! .T E /R. When regarded as a homo-
morphism S! GL.VR/, h˚ is the representation of S defined by the Hodge structure on
H1.A;Q/.

Since �˚ satisfies the Serre condition, it determines a homomorphism �˚ WS! T E �

GL.V /; �˚ is the representation of S defined by the CM-Hodge structure H1.A;Q/.
The field of definition of �˚ (contained in C) is called the reflex field E�.˚/ of .E;˚/.

For any number field F �E�.˚/, �˚ defines a homomorphism N˚

T F
ResF=Q.�˚ /
��������! ResF=Q.T

E /
NormF=Q
������! T E

called the reflex norm.
For any isomorphism � WE ! E 0 of CM-fields and automorphism � of Qal, �˚��1

denotes the CM-type f����1j� 2 ˚g of E 0; for any CM-field E 0 � E, ˚ extends to a
CM-type ˚ 0 D f� 2 Hom.E 0;Qal/ j �jE 2 ˚g. We shall need the following formulas:

�˚ ı � D ���1˚ ; � ı�˚ D �˚��1 ; NE 0=E ı�˚ 0 D �˚ :

Hodge tensors

Let V be a Hodge structure. A Hodge element in V is an element of type .0;0/ in V .
For example, the Hodge elements in LV ˝W are precisely the elements corresponding to
homomorphisms V !W that are morphisms of Hodge structures. According to the Hodge
conjecture, the Hodge elements of H 2p.X;Q.p// should be linear combinations of the
classes of algebraic cycles. A Hodge tensor of V is an element of type .0;0/ in

T V df
D

M
V ˝r˝ LV ˝s˝Q.m/ (sum over .r; s;m/ 2 N�N�Z/.

We let GL.V / act on T V through its actions on V and LV , and we let Gm act on T V through
its action on Q.1/.

PROPOSITION 2.7. The Mumford-Tate group of a Hodge structure .V;h/ is the subgroup
of GL.V /�Gm of elements fixing all the Hodge tensors of V .

PROOF. See Deligne 1982a, pp. 40-45. 2

PROPOSITION 2.8. Let C be the Tannakian subcategory of HdgQ generated by V and Q.1/.
The affine group scheme attached by (1.2) to C and the forgetful fibre functor is MT.V;h/.

PROOF. Since V and Q.1/ generate C, the affine group scheme is a subgroup of GL.V /�
Gm, and it consists of those elements of GL.V /�Gm that commute with all morphisms
of Hodge structures. But every morphism of Hodge structures in C can be interpreted as a
Hodge tensor of V . 2
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NOTES. The Mumford-Tate group was introduced in Mumford 1966, and the Serre group in Serre
1968, pII-2. They are discussed in more detail in Deligne 1982a, � 3, and Milne and Shih 1982a.

3. Hodge cycles

A theorem of Deligne shows that Hodge cycles on an abelian variety have some of the
properties of algebraic cycles; in particular, it will enable us to define Hodge cycles on an
abelian variety over any field of characteristic zero.

We review the first homology groups attached to an abelian variety A over a field k of
characteristic zero.

When k D C, we have the usual “Betti” homology group HB.A/
df
DH1.A.C/;Q/. This

is a vector space of dimension 2dimA over Q, and, as we noted in �2, it has a Hodge
structure of type f.�1;0/; .0;�1/g. For any field k and embedding � Wk ,! C, we set
H� .A/DHB.�A/. When k is a subfield of C, we sometimes write HB.A/ for HB.AC/.

For any choice of an algebraic closure kal of k, we define the `-adic homology group
H`.A/ to be the dual of the étale cohomology group H 1

et.Akal ;Q`/. This is a vector space of
dimension 2dimA over Q`. In more down-to-earth terms, we could setH`.A/D T`.A/˝Q,
where T`.A/ is the Tate module lim

 �
A.kal/`n ofA. An embedding of kal into an algebraically

closed field K defines an isomorphism H`.Akal/!H`.AK/; in particular, Gal.kal=k/ acts
on H`.A/. We set Q`.1/D T`.Gm/˝Q, and Q`.n/DQ`.1/˝n, n 2 Z.

We define HdR.A/ to be the dual of the de Rham cohomology group H 1
dR.A/

def
D

H1.A;˝�
A=k

/. It is a vector space of dimension 2dimA over k, and if K � k, then
HdR.AK/DHdR.A/˝kK. We sometimes write H1.A/ for HdR.A/.

When k D C, there are canonical comparison isomorphisms

HB.A/˝Q`!H`.A/; HB.A/˝C!HdR.A/:

The second of these can be obtained as follows: the map


 7! .! 7!

Z



!/;

identifies HB.A/˝C with the dual of the space of differential forms of the first or second
kind on A, which equals LH 1

dR.A/DHdR.A/. Thus the map is defined by the periods of A.
We extend these notations as follows:

TB.A/D T .HB.A// (case that k D C);

T� .A/D T .HB.�A// (where � is an embedding of k into C);

T`.A/D˚H`.A/˝r˝ LH`.A/˝s˝Q`.m/I

T1.A/D TdR.A/D˝HdR.A/
˝r
˝ LHdR.A/

˝s
I

Tf .A/D˘ 0T`.A/ (restricted product over finite primes `).

When k D C, the comparison isomorphisms extend to canonical isomorphisms

TB.A/˝Q`! T`.A/; TB.A/˝C! TdR.A/:

Thus, for any abelian variety A over k and inclusion � Wkal ,! C, there are canonical maps

TB.�A/! T`.�A/ T`.A/
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for each ` (including `D1).
When A is an abelian variety over C, a Hodge tensor s for the Hodge structure HB.A/

is called a Hodge cycle on A; thus s is an element of type .0;0/ in TB.A/. The images of
s under the comparison isomorphisms are called the local components s` of s for each `
(including1).

Let A be an abelian variety over an algebraically closed field k. A family .s`/` with
s` 2 T`.A/ (`D1 included) is called a Hodge cycle on A relative to � Wk ,! C if there is
a Hodge cycle s on �A whose local components are the images of the s` in T`.�A/ for all `.
Equivalently, we can say that .s`/ is a Hodge cycle on A relative to � if

(a) s1 2 F 0T1;
(b) the image of .s`/ in Tf .�A/�T1.�A/ lies in the Q-subspace TB.�A/.

THEOREM 3.1. Let A be an abelian variety over an algebraically closed field k of charac-
teristic zero. If s is a Hodge cycle on A relative to one embedding � Wk ,! C, then it is a
Hodge cycle relative to every such embedding.

PROOF. This is the main theorem of Deligne 1982a. 2

Of course, the theorem says nothing if there are no embeddings of k into C. When k is
an algebraically closed field of finite transcendence degree over Q, we write CH .A/ for the
subspace of Tf .A/�T1.A/ of elements that are Hodge cycles relative to some embedding
of k into C. It is a vector space over Q, and an inclusion k ,!K of algebraically closed
fields of finite transcendence degree over Q induces an isomorphism CH .A/! CH .AK/.
This remark allows us to define CH .A/ for an abelian variety over any algebraically closed
field K of characteristic zero: choose an algebraically closed subfield k of K of finite
transcendence degree over Q such that A has a model Ak over k and set CH .A/D CH .Ak/.

An embedding k ,!K of algebraically closed fields defines a map CH .A/! CH .AK/.
In particular, when A has a model A0 over subfield k0 of k, Gal.k=k0/ acts on CH .A/. In
this case, we define CH .A0/ to be the subspace of CH .A/ of elements fixed by Gal.k=k0/.

Much of the above discussion extends to arbitrary smooth projective varieties X . In
particular, it is possible to define the notion of a Hodge cycle on X relative to an embedding
� Wk ,! C (see Deligne 1982a, �2), and it is reasonable to expect that (3.1) will hold also for
X .

CONJECTURE 3.2. For any smooth projective variety X over an algebraically closed field
k of characteristic zero, a cycle s that is a Hodge cycle relative to one embedding � Wk ,! C
will be a Hodge cycle relative to every such embedding.

This conjecture is implied by the Hodge conjecture. In the absence of a proof of (3.2),
Deligne makes the following definition: when X is defined over an algebraically closed
field k of finite transcendence degree over Q, an absolute Hodge cycle on X is a cycle that
is Hodge relative to every embedding k ,! C. The definition is extended to other ground
fields by the same procedure as for Hodge cycles on abelian varieties. This gives a notion of
an absolute Hodge cycle on any smooth projective variety over a field of characteristic zero,
which, when the variety is an abelian variety, coincides with that of a Hodge cycle.

REMARK 3.3. Let A be an abelian variety over C. Proposition 2.7 provides the following
description ofMT A: for any Q-algebraR,MT A.R/ is equal to the group of automorphisms
HB.A/˝R fixing all elements of CH .A/.
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NOTES

This section summarizes part of Deligne (1982a).

4. Motives

Let k be a field of characteristic zero, and let V=k be a category of smooth projective
varieties over k. The aim of the theory of motives is to attach to V=k a Q-linear Tannakian
category Mot=k and a “universal cohomology functor” hWV=k!Mot=k (see Saavedra
1972, VI.4).

EXAMPLE 4.1. Let V0=k be the category of varieties of dimension zero over k. For a
variety X D SpecR of dimension zero and � Wk ,! C, we have the (zeroth) cohomology
groups,

H� .X/D Hom.X.C/;Q/; H`.X/D Hom.X.kal/;Q`/; HdR.X/DR:

Fix an algebraic closure kal of k, and let Art=k be the Tannakian category defined in (1.4).
For a representation M D .V;�/ of Gal.kal=k/, define

H� .M/D V; H`.M/D V ˝Q`; HdR.M/D .V ˝kal/Gal.kal=k/

(diagonal action). Set hX D Hom.X.kal/;Q/ for X in V0; then Art=k is generated (as a
Tannakian category) by the objects hX , and H�.hX/DH�.X/ for � D � , `, or dR. Thus
hWV0! Art=k is the universal cohomology functor for V0=k. The objects of Art=k are
called Artin motives.

Unfortunately, not enough is known about algebraic cycles to construct a Tannakian
category of motives for all varieties using them4. Instead, we use Hodge cycles. Assume k is
algebraically closed, and let V=k be the category of abelian varieties over k. If A and B are
objects of V=k, define Hom.hA;hB/ to the set of families .f`WH`.A/!H`.B//` .`D1

included) such that, when we regard f` as an element of LH`.A/˝H`.B/� T`.A�B/, then
.f`/` is a Hodge cycle on A�B . Define CV=k to be the category with objects hA, one for
each A 2 ob.V=k/, and the morphisms just defined. Adjoin the images of projectors p to
the set of objects of CV=k, and so embed CV=k into its pseudo-abelian envelope CVC=k
(cf. 1.5a). Next adjoin to CVC=k all powers of the Tate motive Q.1/. Finally modify the
commutativity constraint (the identification of M ˝N with N ˝M ) to obtain the category
AV=k of motives of abelian varieties over k (for the details, see Deligne and Milne 1982,
�6).

THEOREM 4.2. The category AV=k is a semisimple Q-linear Tannakian category. It is
generated (as a Tannakian category) by the motives hAwithA an abelian variety overK. The
functors H� , H`, and HdR on V=k extend to Mot=k, as do the comparison isomorphisms.

4Surprisingly, the difficulty is in adjusting the commutativity constraint (the functorial isomorphismX˝Y �

Y ˝X ). For this one needs to use Grothendieck’s “standard conjectures”–see Saavedra (1972), VI.4.
Added 22.06.01: There is also the problem that the category will not be abelian unless the equivalence

relation is numerical equivalence, in which case one doesn’t know that the usual cohomology theories define
fibre functors.
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Variants 4.3.

(a) Drop the condition that k is algebraically closed, and take V=k to be the category of
abelian varieties and varieties of dimension zero over k. We then obtain a semisimple
Q-linear Tannakian category AV=k with the properties in (4.2) except that AV=k is now
generated by the motives of abelian varieties and the Artin motives.

(b) Drop the condition that k is algebraically closed, and take V=k to be the category
of all smooth projective varieties over k. Replace “Hodge cycle” with “absolute Hodge
cycle” in the definition of CV=k. We then obtain a semisimple Q-linear Tannakian category
Mot=k, the category of motives over k, with the properties in (4.2), except that it is now
generated by the motives of smooth projective varieties.

PROPOSITION 4.4. The functor HB WAV=C!HdgQ is fully faithful.

PROOF. In this case, Hom.hA;hB/ consists of the mapsHB.A/!HB.B/ given by Hodge
tensors. These are morphisms of Hodge structures. 2

Motives of CM-type

Define CM=k to be the Tannakian subcategory of AV=k generated by the motives of abelian
varieties of potential CM-type over k and the Artin motives. Objects of CM=k will be called
motives of CM-type or CM-motives over k.

PROPOSITION 4.5. The functorHB WCM=C!HdgQ is fully faithful, with essential image
the category of Hodge structures of CM-type. Therefore the affine group scheme attached to
the Tannakian category CM=C and the Betti fibre functor is the Serre group S.

PROOF. ThatHB is fully faithful follows from (4.4). If we let S0 be the affine group scheme
attached to CM=C, then (1.5a) shows that there is a surjective homomorphism S!S0. To
prove that this homomorphism is injective, it suffices to show that the intersection of the
kernels of the homomorphisms �AWS!GL.HB.A//, A an abelian variety A of CM-type
over C, is trivial. This follows from the next lemma. 2

LEMMA 4.6. Let F �Qal be a CM-field, Galois over Q. The intersection of the kernels of
the homomorphisms (see 2.6) �˚ WSF ! T F defined by the CM-types ˚ on F is trivial.

PROOF. It suffices to show thatX�.SF / is generated by the images of the homomorphisms
X�.�˚ /WX

�.T F /!X�.SF /. But, by definition, X�.SF / consists of the sums
P
n.�/� ,

� 2 Hom.F;C/, with n.�/Cn.��/ constant, and one sees easily that the image of X�.�˚ /
contains

P
'2˚ '. Thus the proof is an easy combinatorial exercise (see Lang 1983, p175).2

The functor A 7! AC defines an equivalence between the category of abelian varieties of
CM-type over Qal and the corresponding category over C. Thus the base-change functor
CM=Qal! CM=C is an equivalence of categories, and the affine group scheme attached to
CMQal and the Betti fibre functor is again the Serre group S.

NOTES. The concept of a motive is due to Grothendieck. The definition adopted in this article is a
variant of his. Most of the material in this section is from Deligne and Milne (1982), �6.
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5. The main theorem of complex multiplication

Let .A; i/ be an abelian variety with complex multiplication over Qal. The theorem of
Shimura and Taniyama (Lang 1983, p84) describes how those automorphisms of Qal fixing
the reflex field of .A; i/ act on the torsion points of A. Work of Deligne and Langlands
extends the result to the full Galois group of Qal over Q. In this section, we give a statement
and proof of this result in terms of abelian varieties, and in the next section, we re-interpret
it in terms of motives.

Definition of the Taniyama element f˚.�/

Let E be a CM-field. For each � 2Hom.E;Qal/, choose an element v� 2Hom.Eab;Qal/ in
such a way that v� jE D � and v�� D �v� . For any � 2 Gal.Qal=Q/, � ıv� and v�� have the
same action on elements of E, and so differ by an element of Gal.Eab=E/. For a CM-type
˚ for E, define

V˚ .�/D
Y
'2˚

v�1�' � � ıv' 2 Gal.Eab=E/:

It is easily checked that V˚ .�/ is independent of the choice of the elements v� .
The cyclotomic character �cycWGal.Qal=Q/! OZ� is defined by the condition that �� D

��cyc.�/ for every root of unity � in Qal. With our conventions, recQ.�cyc.�//D � jQab.

PROPOSITION 5.1. There is a unique element f˚ .�/ 2 OE�=E� such that
(a) recE .f˚ .�//D V˚ .�/, and

(b) f˚ .�/ � �f˚ .�/D �cyc.�/E
�.

PROOF. See Tate (1981) (also Lang 1983, p168). 2

We call f˚ .�/ the Taniyama element for .E;˚/ and � . With the notations of (2.6), we
we have the following result.

PROPOSITION 5.2. (a) f˚ .��/D f�˚ .�/ �f˚ .�/, �;� 2 Gal.Qal=Q/.
(b) �f˚ .�/D f˚��1.�/, � an isomorphism E!E 0, � 2 Gal.Qal=Q/.
(c) f˚ .�/D 1.
(d) If ˚ 0 is the extension of ˚ to E 0 �E, then f˚ .�/D f˚ 0.�/ (in OE 0�=E 0�).
(e) If � fixes E�, then f˚ .�/DN˚ .s/ �E� for any s 2 OE� such that recE�.s/D � jEab.

PROOF. See Tate (1981) (also Lang 1983, VII). 2

First statement of the main theorem

Let .A; i/ be an abelian variety over Qal of CM-type .E;˚/, and let � 2Gal.Qal=Q/. Define
� i to be the map

E! End.�A/˝Q; a 7! �.i.a//:

Then .�A;� i/ is an abelian variety of CM-type .E;�˚/.

THEOREM 5.3. (Main theorem, first form). Let .A; i/ be of CM-type .E;˚/. For each
f 2 OE� representing f˚ .�/, there is a unique E-linear isomorphism ˛WHB.A/!HB.�A/

such that �x D ˛.f x/ for all x 2Hf .A/.

PROOF. We explain in (5.10) below how to obtain a stronger result. 2



5. THE MAIN THEOREM OF COMPLEX MULTIPLICATION 17

REMARK 5.4. (a) It is obvious that ˛ is uniquely determined by the choice of f representing
f˚ .�/, and that if f is replaced by af .a 2E�/, then ˛ must be replaced by ˛a�1.

(b) Let ˛ be as in the theorem, and let  be a polarization of .A; i/, that is,  is a
polarization of HB.A/ such that  .ax;y/D  .x; Nay/ for a 2E. Then, for x, y 2Hf .A/

.� /.�x;�y/D �. .x;y//D �cyc.�/ � .x;y/

because  .x;y/ 2 Af .1/. Thus if ˛ is as in the theorem, then

�cyc.�/ � .x;y/D .� /.f ˛.x/;f ˛.y//D .� /.f Nf ˛.x/;˛.y//

and so
 .cx;y/D .� /.˛x;˛y/;

with c D �cyc.�/=f Nf 2E
�.

Now assume that A has complex multiplication by the full ring of integers OE of E.
The choice of a basis element e0 for HB.A/ determines an isomorphism E!HB.A/, and
hence an isomorphism C˚ DE˝QR!HB.A/˝RD Tgt0.A/ (see 2.6). On composing
this with the exponential map Tgt0.A/! A.C/, we obtain an OE -linear isomorphism
� WC˚=a! A.C/ for some ideal a in E. Moreover, the choice of e0 allows us to write a
polarization  of .A; i/ in the form

 .xe0;ye0/D 2�{ TrE=Q.tx Ny/

for some t 2E. The triple .A; i; / is then said to be of type .E;˚ Ia; t / with respect to the
parametrization � . The type determines .A; i; / up to isomorphism. If e0 is replaced by
a�1e0, then � is replaced by �a�1, and .A; i; / is of type .E;˚ Iaa; t=a Na/ with respect to
�a�1.

COROLLARY 5.5. Let .A; i; / be a polarized abelian variety over C of CM-type .E;˚ Ia; t /
with respect to a parametrization � WC˚ ! A.C/, and let � be an automorphism of C. For
each f 2 OE� representing f˚ .� jQal/, there is a unique parametrization � 0WC�˚ ! .�A/.C/
of �A such that:

(a) �.A; i; / has type .E;��If a; t�cyc.�/=f Nf / with respect to � 0;
(b) the diagram

E=a A.C/tors

E=f a .�A/.C/tors;

�

f �

� 0

commutes.

PROOF. If � is defined by e0 2HB.A/, take � 0 to be the parametrization of �A defined by
˛.e0/ 2HB.�A/, where ˛ is the map in the theorem. 2

REMARK 5.6. If � fixes the reflex field and s 2 OE is such that recE .s/ D � jEab, then
N˚ .s/ 2 f˚ .�/ by (5.2e) and (5.5) becomes the theorem of Shimura and Taniyama referred
to earlier.
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Definition of the universal Taniyama element f .�/

Let T be a torus over Q. For any Galois splitting field L of T , we set

}.T /D .T . OL/=T .L//Gal.L=Q/:

This is easily seen to be independent of the choice of L. Moreover, if

H 1.Q;T /!
Y
` finite

H 1.Q`;T /

is injective, then }.T /D T . OQ/=T .Q/. In particular, }.T E /D OE�=E�. Define

}.S/D lim
 �

}.SF /:

PROPOSITION 5.7. There is a unique element f .�/ 2 }.S/ such that for each CM-field E
and type ˚ , �˚ .f .�//D f˚ .�/ in }.T E /D OE�=E�. The map � 7! f .�/ is a continuous
reversed one-cocycle for Gal.Qal=Q/ with values in }.S/, that is, f F .��/D ��1f F .�/ �
f F .�/.

PROOF. The uniqueness follows from (4.6). It is possible to prove the existence of f .�/ by
verifying compatibilities between the f˚ .�/ for different ˚ , but I prefer use Langlands’s
original construction of f .�/. Let F be a finite Galois extension of Q contained in Qal. The
Weil group WF=Q of F fits into an exact commutative diagram,

1 A�F =F
� WF=Q Gal.F=Q/ 1

1 Gal.F ab=F / Gal.F ab=Q/ Gal.F=Q/ 1

recF

in which all the vertical arrows are surjective (see Tate 1979). If we assume further that F is
a totally imaginary, then .F ˝R/� is contained in the kernel of recF , and so we can divide
out by it and its image in WF=Q to obtain an exact commutative diagram

1 OF �=F � W
f

F=Q Gal.F=Q/ 1

1 Gal.F ab=F / Gal.F ab=Q/ Gal.F=Q/ 1:

recF

For each � 2 Gal.Qal=Q/, choose an element Q� 2 W f

F=Q whose image in Gal.F ab=Q/ is

� jF ab. Choose elements w� 2W
f

F=Q, one for each � 2 Gal.F=Q/, such that w� 7! � and
w�� D Q�w� . Then w�� and Q�w� have the same image in Gal.F=Q/, and so w�1�� � Q�w� 2
OF �=F �. 2

LEMMA 5.8. If F is a CM-field and ˚ is a CM-type for F , then

f˚ .�/D
Y
'2˚

w�1�' � Q�w' :
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PROOF. Write f 0�.�/ for the right hand side of the equation. It is obvious that the image
of f 0˚ .�/ in Gal.F ab=F / is V˚ .�/. Moreover, f 0˚ .�/ � �f

0
˚ .�/ D f

0
˚ .�/ �f

0
˚�.�/ D Ver. Q�/

where Ver is the transfer map .W f

F=Q/
ab! OF �=F � defined by the inclusion at top-left of the

above diagram. But Ver. Q�/D �cyc.�/ �F
�, and so f 0˚ .�/ has the properties characterizing

f˚ .�/. 2

The canonical cocharacter �F of SF is defined over F , and therefore gives rise to a
homomorphism R�!SF .R/ for any F -algebra R. Define

f F .�/D
Y

�2Gal.F=Q/

.��1�F /.w�1�� Q�w� / 2S
F . OF /=SF .F /:

LEMMA 5.9. Let E be a CM-field and ˚ a CM-type for E. Assume that F is large
enough to contain all conjugates of E in C. Then �˚ .f F .�// D f˚ .�/ as elements of
T E . OF /=T E .F /� T E . OQ/=T E .Q/D OE�=E�.

PROOF. Let �WE ,! F �Qal be an embedding of E. Then � defines a character � of T E ,
and it suffices to show that �.�˚ .f

F .�///D �.f˚ .�// in OF �=F �. First note that, by (5.2),

�.f˚ .�//D �.f˚ .�//D f˚��1.�/D f˚ 0.�/;

where ˚ 0 is the CM-type on F extending the CM-type ˚��1 on �E � F . Next

�.�˚ .f
F .�//D �.

Y
�

�˚ .�
�1�F /.w�1�� Q�w� // (definition of f E .�/)

D �.
Y
�

��1.�˚ ı�
F /.w�1�� Q�w� // (as �˚ is defined over Q)

D �.
Y
�

��1.�˚ /.w
�1
�� Q�w� // (definition of �˚ )

D

Y
�

.�ı��1.�˚ /.w
�1
�� Q�w� /

D

Y
�

.w�1�� Q�w� /
h�;��1.�˚ /i

where h:; :i is the usual pairing X�.T /�X�.T /! Z. But we have h�;��1�˚ i D h� ı
�;�˚ i, and from the definition of �� in (2.6), we see that h� ı�;�˚ i D 1 if �� 2 ˚ , and
is 0 otherwise. Therefore the last product is

Q
�2˚ 0w

�1
�� Q�w� , which (5.8) shows to equal

f˚ 0.�/. 2

We now complete the proof of (5.7). The elements f F .�/ have the following properties:
(a) f F .�/ is independent of all choices;

(b) f F is a reversed one-cocycle;

(c) �f F .�/D f F .�/, all � 2 Gal.F=Q/;
(d) if F 0 � F , then NF 0=F .f F

0

.�//D f F .�/.
Statement (a) follows from (4.6). The remainder can be proved by applying �˚ to both
sides and using (5.2) and the formulas in (2.6). Statements (a), (c), and (d) show that
f .�/

def
D .f F .�// is a well-defined element of }.S/. As �˚ .f .�//D f˚ .�/, this completes

the proof of the first statement in (5.7). The second statement follows from (b).
We call f .�/ the (universal) Taniyama element.
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Statement of the main theorem

Let A be an abelian variety of CM-type over Q. On applying the homomorphism �AWS!
MT A to f .�/, we obtain an element fA.�/ 2 }.MT A/.

THEOREM 5.10. (Main theorem of complex multiplication) Let F be a splitting field of
MT A. For each f 2MT A. OF / representing fA.�/, there is a unique F - linear isomorphism
˛WHB.A/˝F !HB.�A/˝F such that

(a) ˛.t/D � t for all Hodge cycles on A;

(b) �x D ˛.f x/ for all x 2Hf .A/˝F .

REMARK 5.11. (a) It is possible to replace A in the theorem with any CM-motive over
Q — it makes sense to speak of Hodge cycles on a CM-motive, and we can define the
Mumford-Tate group of a CM-motive to be the image of S in GL.HB.M//�Gm. The
proof we describe below also applies to this more general case.

(b) Endomorphisms of A are Hodge cycles on A, and so (a) implies that ˛ commutes
with the action of all endomorphisms of A.

(c) It is again obvious that ˛ is uniquely determined by the choice of f representing
fA.�/, and that if f is replaced by af (a 2MT A.F /), then ˛ must be replaced with ˛a�1.

(d) To see that (5.10) implies (5.3), let .A; i/ be as in (5.3), and let f 0 represent f˚ .�/.
Note that MT A � T E . The definition of f .�/ shows that there is an element a 2 T E .F /
such that f 0 D af . Then ˛0 D ˛ ıa�1 satisfies the conditions of (5.3).

Proof of the main theorem of complex multiplication

We first define an element g.�/ such that Theorem 5.10 holds (tautologically) with f
replaced by g.

LEMMA 5.12. Let A be an abelian variety over Qal of CM -type, and let F be a splitting
field for MT A. There exists an F -linear isomorphism ˛WHB.A/˝F !HB.�A/˝F such
that ˛.t/D � t for all Hodge cycles t on A.

PROOF. For any Q-algebra R, let

P.R/D f˛WHB.A/˝R!HB.�A/˝R j˛.t/D � t; all t 2 CH .A/g:

From (3.3) it is obvious that P is a torsor for MT A unless it is empty. The comparison
isomorphisms show that P.C/¤ 0. Because MT A is a torus split by F , the cohomology
class of P in H 1.Q;MT A/ becomes trivial in H 1.F;MT A/, which means that P.F / is
nonempty. 2

Let .A; i/ be of CM-type .E;˚/, and choose an element ˛ 2 P. OF /. We can regard ˛
as an isomorphism ˛WHf .A/˝F !Hf .�A/˝F sending t to � t , for all Hodge cycles t .
The map x 7! ˛�1.�x/ is an automorphism of Hf .A/˝F fixing all Hodge cycles, and so
(3.3) shows that it is multiplication by an element g 2MT A. OF /. Write gA.�/ for the image
of g in MT A. OF /=MT A.F /. Then gA.�/ is independent of the choice of ˛, and it is fixed
under the action of Gal.F=Q/. It therefore lies in }.MT A/. For varying A, the elements
gA.�/ form a projective system. As SD lim

 �
MT A, they define an element g.�/2}.MT A/.

Obviously (5.10) becomes true when f .�/ is replace by g.�/, and so, to prove (5.10), it
suffices to show that f .�/D g.�/. Let e.�/D g.�/=f .�/ and, for each CM-type .E;˚/, let
e˚ .�/D �˚ .e.�//. The next two lemmas prove that e˚ .�/D 1.
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LEMMA 5.13. The elements e˚ .�/ have the following properties:

(a) e˚ .��/D e�˚ .�/ � e˚ .�/, �1, �2 2 Gal.Qal=Q/.

(b) �e˚ .�/D e˚��1.�/, � an isomorphism E!E 0, � 2 Gal.Qal=Q/.

(c) e˚ .�/D 1.

(d) If E 0 �E and ˚ 0 is the extension of ˚ to E 0, then e˚ .�/D e˚ 0.�/.

(e) If �˚ D ˚ , then e˚ .�/D 1.

(f) If
P
ni˚i D 0, then

Q
e˚i .�/

ni D 1.

PROOF. Parts (b), (d), and (f) are automatic consequences of the fact that e˚ .�/D �˚ .e.�//
for an e.�/ in }.S/. Part (a) follows from the fact that f .�/ and g.�/, and hence e.�/, are
reversed one-cocycles. Part (c) holds for both f˚ and g˚ . For (e) note that �˚ D ˚ if and
only if � fixes the reflex field, and so the theorem of Shimura and Taniyama (see 5.6) shows
that in this case g˚ .�/DN˚ .s/ �E� where s is such that recE .s/D � jEab. Therefore (5.2e)
implies (e). 2

LEMMA 5.14. Let .e˚ .�// be a family of elements satisfying the conditions of (5.13). Then
e˚ .�/D 1 for all ˚ and � .

PROOF. See Deligne 1981 (also Lang 1983, VII.4). 2

REMARK 5.15. If f .�/ is a reversed one-cocycle, then � 7! �f .�/ and � 7! f .��1/�1

are both one-cocycles. It would have been possible to work throughout with one-cocycles
rather than reversed one-cocycles, but the reversed one-cocycles are more consistent with
the notations used in the literature.

NOTES. See the end of the next section.

6. CM-motives over Q; the Taniyama group

In this section we study CM=Q, the category of CM -motives over Q. It is a semisimple
Q-linear Tannakian category with additional structure, to which the Tannakian formalism
attaches certain objects.

(6.1a) To CM=Q and the Betti fibre functor HB , Theorem 1.2 attaches an affine group
scheme T.

(6.1b) To the fully faithful tensor functor Art=Q ,! CM=Q, (1.5a) attaches a surjective
homomorphism � WT! Gal.Qal=Q/.

(6.1c) HB is an essentially surjective functor from CM=Q to the category of Hodge
structures of CM-type; it therefore defines a injective homomorphism i WS! T.

(6.1d) The action of � 2 Gal.Qal=Q/ on H`.M/ sends s` to �s` for each Hodge cycle s.
Therefore, each � 2 Gal.Qal=Q/ defines an automorphism sp`.�/ of the fibre functor HB˝
Q` whose image in Gal.Qal=Q/ is � . The map sp` is a homomorphism sp`WGal.Qal=Q/!
T.Q`/ which is continuous for the Krull and `-adic topologies, and the product of the sp`’s
defines a homomorphism

spWGal.Qal=Q/! T.Af /:
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PROPOSITION 6.2. The sequence of affine group schemes

1!S
i
�! T

�
�! Gal.Qal=Q/! 1

is exact. In particular, i identifies S with the identity component of T. Moreover, the action
of Gal.Qal=Q/ on S defined by the sequence is that described in (2.5b).

PROOF. See Deligne (1982b). 2

Symbolically, we have a diagram

1 S T Gal.Qal=Q/ 1

T.Af /:

i �

sp

The group T, together with the structure .�; i; sp/, is called the Taniyama group. A
CM-motive M over Q corresponds to a representation �WT!GL.V /; then HB.M/D V ,
and its Hodge structure of CM-type is determined by � ı i ; the `-adic cohomology group
H`.M/ is V ˝Q` with Gal.Qal=Q/ acting through �ı sp`; and M is an Artin motive if and
only if � factors through � . The Taniyama group does not enable us to construct HdR.M/

from .V;�/ (we discuss what is needed for this in the next section).

REMARK 6.3. (a) It is possible to interpret the exact sequence in (6.2) in the following way:
a representation � of S determines a CM-motive M over Qal; extending � to T corresponds
to giving a descent datum on M , and descent is effective for CM-motives.

(b) For each � 2 Gal.Qal=Q/, M 7!H� .M/DHB.�M/ is a fibre functor for CM=Qal

with values in VecQ. Therefore Isom.HB ;H� / is a torsor for S. It is represented by
�S

def
D ��1.�/.

An explicit description of .T;�; i; sp/

In this subsection, we let .T;�; i; sp/ denote any quadruple for which (6.2) is true. Let S0

be a quotient of S of finite-type over Q, and let T0 be the quotient of T by the kernel of
S!S0:

1 S T Gal.Qal=Q/ 1

1 S0 T0 Gal.Qal=Q/ 1:

i �

i 0 � 0

If L is a finite Galois extension of Q (contained in Qal) splitting S0, then H 1.L;S0/D 0,
and so each of the S0-torsors � 0�1.�/ has a point in L. Therefore, we can choose a section
aWGal.Qal=Q/!T0.L/ to � 0. Identify T0.L/ and T0. OQ/ with subgroups of T0. OL/, and write

sp.�/D a.�/ �h0.�/; h0.�/ in S0. OL/:

The class of h0.�/ in S0. OL/=S0.L/ is independent of the choice of a.�/.

LEMMA 6.4. The map h0WGal.Qal=Q/!S0. OL/=S0.L/ has the following properties:
(a) h0 is a reversed one-cocycle;
(b) �h0.�/D h0.�/ for all � 2 Gal.L=Q/; thus h0.�/ 2 }.S0/.
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PROOF. Straightforward. 2

Recall that }.S/ D lim
 �

}.S0/. The h0’s therefore define a continuous reversed one-
cocycle hWGal.Qal=Q/! }.S/.

PROPOSITION 6.5. Every quadruple .T;�; i; sp/ satisfying the conditions of (6.2) defines
a continuous reversed one-cocycle

hWGal.Qal=Q/! }.S/

and h determines the quadruple .T;�; i; sp/ uniquely up to a unique isomorphism; moreover
every reversed one-cocycle arises from a quadruple .T;�; i; sp/ satisfying the conditions of
(6.2).

PROOF. We have already shown how to derive h from the quadruple. Obviously h deter-
mines the isomorphism class of .T;�; i; sp/, but such a quadruple is rigid: any automorphism
of T compatible with .�; i; sp/ is the identity map. Finally, it is straightforward to construct
the quadruple out of h (see for example Milne and Shih 1982a, �2). 2

The next result provides an explicit description of the Taniyama group.

THEOREM 6.6. The reversed one-cocycle corresponding to the Taniyama group is � 7!
f .�/, where f .�/ is the universal Taniyama element defined in �5.

PROOF. Let h be the reversed one-cocycle corresponding to the Taniyama group. After
the main theorem of complex multiplication (5.10) (more specifically, 5.14), we know that
f D g, and so we have to prove that h D g. Let A be an abelian variety of CM-type
over Q, and let hA.�/ D �A.h.�//. One sees immediately from their constructions that
hA.�/D gA.�/ in }.MT A/. Since SD lim

 �
MT A, this proves the theorem. 2

Application to the zeta functions of CM-motives

It is possible to attach an L-series L.�;s/ to a complex representation �WWQ! GL.V /

of the Weil group. Moreover, it is known that L.�;s/ extends to a meromorphic function
on the whole complex plane and satisfies a functional equation (see Tate 1979). These
L-series generalize both Hecke L-series and Artin L-series, and so are usually referred to as
Artin-Hecke L-series.

PROPOSITION 6.7. There is a homomorphism WQ! T.C/ making the following diagram
commute:

WQ

1 S.C/ T.C/ Gal.Qal=Q/ 1

PROOF. See for example Milne and Shih (1982a), 3.17. 2

THEOREM 6.8. For any CM-motive M , the system of `-adic representations H`.M/ is
strictly compatible (in the sense of Serre 1968). Therefore the zeta function of M is defined,
and it is an Artin-Hecke L-series.
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PROOF. This follows directly from (6.7) (see Schappacher 1988). 2

REMARK 6.9. There is in fact a one-to-one correspondence between the set of isomorphism
classes of CM-motives with coefficients in Qal defined over Q and the set of isomorphism
classes of representations of WQ of type A0.

Algebraic Hecke characters

Let F be a finite extension of Q, and let FT be the inverse image of Gal.Qal=F / in T:

1 S FT Gal.Qal=F / 1

1 S T Gal.Qal=Q/ 1

Then FT is the affine group scheme attached to the CM=F . A homomorphism �WF T! T E

is called an algebraic Hecke character for F with values in E. The restriction of � to S is
the infinity type of �, and for each prime `,

sp` ı�WGal.Qal=Q/! T E .Q`/D .E˝Q`/�

is the `-adic representation attached to �.

NOTES. The reversed one-cocycle f (the universal Taniyama element of �5) was defined by Lang-
lands in order to be able to describe the conjugate of a Shimura variety (Langlands 1979). Deligne
recognized that it should define the affine group scheme attached to CM=Q, and proved that this was
the case in (Deligne 1982b). The implications of Langlands’s construction for abelian varieties of
CM-type were also made explicit in Milne and Shih (1981a). Tate gave the construction of f˚ .�/
described in the first subsection of �5 in (Tate 1981). The relation between the constructions of
Langlands and Tate has not previously been elucidated in print.

Deligne first proved the main theorem of complex multiplication in the form (6.6), expressing
it in terms of extensions (Deligne 1982b). He then re-expressed the proof in terms of the functions
e˚ , as we did in � 5 (Deligne 1981). It is also possible to express the proof directly in terms of the
function e (Milne 1981).

7. Periods of CM-motives

After the last section, it remains to describe the de Rham fibre functor on CM=Q. This
is again a Q-linear fibre functor, and so (see 1.2) P D Isom˝.HB ;HdR/ is a principal
homogeneous space for T — we call it the period torsor. The comparison isomorphisms
HB.M/˝C! HdR.M ˝C/ preserve Hodge cycles, and so define a canonical point
p 2P.C/.

When M is the CM-motive corresponding to the representation �WT!GL.V / of T, P
enables us to construct the de Rham cohomology of M : HdR.M/DP�T;� V . The point p
gives us the comparison isomorphism HB.M/˝C!HdR.MC/.

The next conjecture, which is a variant of a conjecture of Grothendieck, predicts that
the only restrictions on the transcendence of the periods of CM-motives come from Hodge
cycles.

CONJECTURE 7.1. The point p is generic in the sense that it is not contained in the set of
complex points of any proper Q-rational subscheme of P.
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REMARK 7.2. Let QŒP� be the affine algebra of P. Then the point p corresponds to a
homomorphism QŒP�! C, and the conjecture is equivalent to this map’s being injective
(because P is irreducible).

REMARK 7.3. Let F �Qal be a number field. On CM=F , HdR is an F -linear fibre functor,
and so the comparison isomorphism gives us a period torsor FP for .FT/F

def
D FT�Spec Q

Spec F . One sees easily that FP is the inverse image of i under PF !Hom.F;Qal/, where
i is the given inclusion F ,!Qal. The canonical point p of P.C/ lies in FP.C/.

Let �WF T! T E be an algebraic Hecke character for F with values in E. Then
��.

FP/DP� is a principal homogeneous space for .T E /F with a distinguished complex
point p�. As H 1.F;T E / D 0, P� will have an F -rational point p0, and any two such
points differ by multiplication by an element of T E .F /. Write p� D p0 �p.�/; then p.�/
is a well-defined element of .E˝F /�n.E˝C/� called the period of �. For example, if
� is the algebraic Hecke character attached to an abelian variety A over F with complex
multiplication by E, then p.�/ is the family of periods attached to A in the usual sense. The
period p.�/ determines .P�;p�/ up to isomorphism.

Since many of the results in the following chapters will be expressed in terms of the pair
.P;p/, we would like to have a description of it that is as explicit as the description in �6 of
the Taniyama group. Unfortunately, this is probably not possible since such a description
would, in particular, include an explicit description of all periods of all abelian varieties with
potential complex multiplication which, as (7.1) suggests, tend to be transcendental numbers.
Thus the best we can hope for is an explicit characterization of the pair .P;p/ that does not
involve CM-motives (or abelian varieties).

It is easy to describe the period torsor Q attached to the category of Artin motives: Q
is Spec Qal regarded as a principal homogeneous space for Gal.Qal=Q/, and its canonical
C-valued point q is that defined by the given inclusion of Qal into C. This follows from the
description of HdR.X/ given in (4.1).

This suggests that we should consider the pair .P;'/, with ' the equivariant map
'WP! Q. Blasius has found a description of the isomorphism class of .P;'/. Before
explaining his result, we need to review a little of the theory of a Hodge-Tate modules. Write
T` D T�Spec Q` and P` DP�Spec Q` D Isom.H`;HdR˝Q`/.

Fix a prime `, and let D` D Gal.Qal
`
=Q`/. The `-adic cyclotomic character is the map

�cycWD`! Z�
`

such that �.�/D ��cyc.�/ for each root of unity � in Qal
`

of `-power order.
The action of D` on Qal

`
extends by continuity to the completion C` of Qal

`
. Let V be a

Q`-vector space with a continuous action ofD`. We extend the action ofD` on V to C`˝V
by the rule:

�.c˝v/D �c˝�v; � 2D`; c 2 C`; v 2 V:

For m 2 Z, write V fmg for the set of v 2 C`˝V such that

�.v/D �cyc.�/
m
�v:

It is a Q`-subspace of C`˝V . The inclusions of the V fmg into C`˝V define a C`-linear
map

C`˝ .˚m2ZV fmg/! C`˝V;

which a theorem of Tate (Serre 1967) shows to be injective. When this map is an isomorphism,
the D`-module V is said to be Hodge-Tate.
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Let BHT be the ring C`ŒT;T �1� withD` acting according to the rule �.T /D �cyc.�/T .
It is an immediate consequence of the definitions that˚V fmg D .V ˝Q` BHT /

D` .
TheD`-moduleH`.A/ is known to be Hodge-Tate for all abelian varieties, and it follows

that H`.M/ is Hodge-Tate for all CM -motives over Q. Therefore we can define a new fibre
functor H 0

`
on CM=Q with values in VecQ` by setting

H 0`.M/D .H`.M/˝BHT /
D` :

Let P0
`

be the T`-torsor Isom˝.H`;H 0`/. It is represented by

Spec.Q`ŒT`�˝BHT /D` (diagonal action of D`):

These definitions can be extended to ` D1 by replacing BHT with C and D` with
D1 D Gal.C=R/.

THEOREM 7.4. (a) P` is (canonically) isomorphic to P0
`

for each prime ` (including1).
(b) The isomorphisms5 in (a) uniquely determine the isomorphism class of .P;'/.

PROOF. (a) Let HHg.M/D Gr.HdR.M//. A Hodge cycle s on an abelian variety A has
components s` in H 0

`
.A/ and sHg in HHg.A/, and Blasius shows that the isomorphism of

Tate-Faltings H 0
`
.A/!HHg.A/˝Q` maps one component to the other, and so defines an

isomorphism of fibre functors H 0
`
!HHg. Since there is a canonical isomorphism of fibre

functors HdR˝Q`!HHg˝Q`, this shows that there is a canonical isomorphism

Isom˝.H`;H
0
`/� Isom˝.H`;HdR˝Q`/;

as required. (b) Let S0 be the affine group scheme obtained from S by twisting by Q
according to the action of Gal.Qal=Q/ on S defined in (2.5b). Thus S0.Qal/ D S.Qal/

with Gal.Qal=Q/ acting through its action on both S and Qal. There is a natural action
of S0 on .P;'/: if s0 2 S0.Qal/ is represented by .s;q/, then s0 acts on the fibre over q
by multiplication by s. Moreover, for a second pair .P0;'0/, Isom˝..P;'/; .P0;'0// is a
principal homogeneous space for S0. Thus the set of isomorphism classes of pairs .P0;'0/ is
a principal homogeneous space for H 1.Q;S0/, and Blasius shows that H 1.Q;S0/ satisfies
the Hasse principle. 2

Theorem 7.4 satisfactorily characterizes .P;'/. It remains to characterize the canonical
complex point p. This can be done in terms of the periods of Hecke characters.

PROPOSITION 7.5. Let p0 be a point of P.C/ mapping to q. If p0 maps to p� in P�.C/
for all algebraic Hecke characters �, then p0 D p.

PROOF. We can write p0 D p � s with s 2S.C/, and the condition implies that �.s/D 1 for
all characters � of S. 2

REMARK 7.6. (a) It suffices to assume that the condition in (7.5) holds for enough Hecke
characters � so that their infinity types generate X�.S/; for example, it suffices to take
the Hecke characters arising from abelian varieties with complex multiplication. Thus
the combination of (7.4) and (7.5) characterizes the periods of abelian varieties over Q of

517.08.02. This statement is probably not correct — the isomorphism class of .P;'/ is determined by its
class in the flat cohomology group H1.Q;S0/, not the inverse limit of the Galois cohomology groups. See my
paper “Periods of Abelian Varieties”, 2002.
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potential CM-type in terms of the periods of abelian varieties defined over a number field
and with complex multiplication defined over that field.

(b) Blasius (1986) shows that certain products of the periods of the motives attached
to Hecke characters are equal to critical values of the L-series of the Hecke character. If it
could be shown that .P;p/ is characterized by the property in (7.4) and the critical values of
Hecke L-series, this would be the characterization sought.

NOTES. Theorem 7.4 is proved in Blasius 1989. The monograph Schappacher 1988 provides a
detailed introduction to the periods of motives of CM-type.



Chapter II

Shimura varieties

In this chapter, we define Shimura varieties and state the main theorems on canonical
models: every Shimura variety Sh.G;X/ has a (unique) canonical model Sh.G;X/E over
its reflex field E.G;X/; for each � 2 Gal.Qal=Q/, � Sh.G;X/E is the canonical model over
�E.G;X/ of an explicitly determined Shimura variety Sh.�G; �X/.

1. Connected Shimura varieties over C

A bounded symmetric domain is a bounded open connected subset D of Cm, some m, that
is symmetric in the sense that, for each point x 2D, there is an involutive automorphism
sx of D (the symmetry with respect to x) having x as an isolated fixed point. The simplest
bounded symmetric domain is the open unit disk fz 2 C j jzj< 1g.

A complex manifold isomorphic to a bounded symmetric domain will be called a
symmetric Hermitian domain. The simplest example of a symmetric Hermitian domain is
the complex upper-half-plane,

HC D fz 2 C j jIm.z/ > 0g:

The Bergmann metric on a bounded symmetric domain provides it with a natural structure of
a Hermitian manifold. Thus every symmetric Hermitian domain D has a Hermitian structure
which is invariant under all automorphisms; in particular, D is symmetric as a Hermitian
manifold.

Let D be a symmetric Hermitian domain. The group Aut.D/ of automorphisms of D
(as a complex manifold) is a real semisimple Lie group with only finitely many connected
components, and trivial centre. If G is a connected simple real algebraic group with trivial
centre such that D DG.R/C=K for some maximal compact subgroup K of G.R/C, then
Aut.D/\G.R/DG.R/C, and G.R/ has either one or two connected components.

Locally symmetric varieties

Let D be a symmetric Hermitian domain, and let G be a semisimple algebraic group over
Q such that D DG.R/C=K with K a maximal compact subgroup of G.R/C. Let � be an
arithmetic subgroup in G.Q/, which we suppose to be torsion-free. Then S def

D � nD will
again be a complex manifold.

28
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THEOREM 1.1. The complex manifold S has a canonical structure of an algebraic variety.
With this structure, every holomorphic map V an! S from a complex algebraic variety V
(viewed as an analytic space) to S is a morphism of algebraic varieties.

PROOF. The first statement is the theorem of Baily and Borel (1966). It can also be regarded
as a special case of the more general theorem of Nadel and Tsuji (1988). The second
statement is proved in Borel (1972), 3.10. 2

The second statement shows that the algebraic structure on S is not only canonical but is
also unique. With this structure, S is called a locally symmetric variety.

REMARK 1.2. IfD is has no factors isomorphic to the unit disk, then the algebraic structure
on S can be described as follows. Let ˝1 be the sheaf of holomorphic differentials on S (re-
garded as a complex manifold), and let !D^d˝1, d D dim S . ThenAD˚n�0� .S;!˝n/
is a graded ring, and there is a canonical map S ! Proj A, which identifies S with an open
subvariety of Proj A. Since Proj A is a projective algebraic variety, this shows that S is a
quasi-projective algebraic variety.

This description extends to the case where D has factors isomorphic to the unit disk pro-
vided � .S;!˝n/ is replaced with the group of sections of !˝n having at worst logarithmic
poles along the boundary in some smooth compactification of S (see Iitaka 1982, XI, for the
definitions).

Let NS be the closure of S in Proj A. Then Borel (1972) shows that NS has the follow-
ing property: for any nonsingular algebraic variety V containing S as an open subvariety
and such that the complement of S in V has only normal crossings as singularities, there
is a unique morphism V ! NS whose restriction to S is the identity map. For this rea-
son, NS is called the minimal compactification of S (alternatively, the Satake-Baily-Borel
compactification of S).

The axioms for a connected Shimura variety

A connected Shimura variety is a projective system of locally symmetric varieties. The
datum needed to define it is a pair .G;XC/ comprising a semisimple group G over Q
and a Gad.R/C-conjugacy class XC of homomorphisms S!Gad

R satisfying the following
conditions:

(1.3.1) when composed with Gad
R ! GL.g/, each h in XC defines a Hodge structure on

g; this Hodge structure is required to be of type f.�1;1/; .0;0/; .1;�1/g;
(1.3.2) for each h in XC, adh.i/ is a Cartan involution of GR;
(1.3.3) Gad has no factor defined over Q whose real points form a compact group.

REMARK 1.4. (a) It suffices to check the conditions in (1.3.1) and (1.3.2) for a single
h 2XC.

(b) Axiom (1.3.1) implies that the Hodge structure on g defined by h has weight zero.
Hence the weight map wh (see I 2) is trivial, and so h factors through S! S=Gm.

(c) Since h.i/2 D h.�1/D 1, adh.i/ is an involution of GR. To say that it is a Cartan
involution means that the corresponding real form G0 of G, with complex conjugation
g 7! h.i/ � Ng �h.i/�1, is compact. Equivalently, for every representation .V;�/ of G, the
Hodge structure .V;� ıh/ admits a G-invariant polarization (see Deligne 1972, 2.8).

(d) Axiom (1.3.3) is included for the sake of convenience. It has the following conse-
quence: let H be a simple factor of the simply connected covering group Gsc of G; then
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H.R/ is not compact, and so the strong approximation theorem shows that H.R/ �H.Q/
is dense in H.A/. This implies that H.Q/ is dense in H.Af /. Thus Gsc.Q/ is dense in
Gsc.Af /.

EXAMPLE 1.5. Let G D SL2, and let XC be the set of PGL2.R/C conjugates of

h0WS!GRI aC ib 7!

�
a �b

b a

�
:

Then .G;XC/ satisfies the axioms (1.3). If we write�
a b

c d

�
� z D

azCb

czCd
;

then ad.g/ıh0 7! g � i identifies XC with HC, the complex upper-half-plane.

The complex structure on XC

Let .G;XC/ satisfy the axioms (1.3). Fix a point o 2 XC, and let Ko be the subgroup of
G.R/C fixing o. Then the action of G.R/C on XC defines a bijection

G.R/C=Ko!XC (*)

Since Ko is fixed by ad ho.i/, axiom (1.3.2) implies that it is compact; moreover

gD koCpo; gD LieG; ko D LieKo

where ko and po are the C1 and �1 eigenspaces for adh.i/ acting on g. When we use (*)
to endow XC with a real analytic structure, then (*) identifies po with Tgto.X

C/. There
is a unique homogeneous complex structure on XC such that the action of i on Tgto.X

C/

corresponds to the action of h.e2�i=8/ on po, and relative to this structure, XC becomes a
symmetric Hermitian domain.

Since I prefer to regard XC as a symmetric Hermitian domain rather than a conjugacy
class of homomorphisms, I write x for a point of XC (thought of as a domain) and hx for
the corresponding homomorphism S!Gad

R ; thus hg �x D ad.g/ıhx for g 2Gad.R/C and
x 2XC. Also �x denotes the cocharacter z 7! hx;C.z;1/ attached to hx (see I 2).

The connected Shimura variety

We now construct the connected Shimura variety associated with a pair .G;XC/. A con-
gruence subgroup of G.Q/ is a subgroup of the form � DK\G.Q/ with K a compact
open subgroup of G.Af /. Endow Gad.Q/ with the topology for which the images of the
congruence subgroups inG.Q/ form a fundamental system of neighbourhoods of the identity
element, and let Gad.Q/Cˆ be the completion of Gad.Q/C relative to this topology. The
connected Shimura variety Sh0.G;XC/ will be a scheme with a continuous right action of
Gad.Q/Cˆ in the sense of �10 below.

Let ˙.G/ be the set of torsion-free arithmetic subgroups of Gad.Q/C that contain the
image of a congruence subgroup of G.Q/. For � 2˙.G/, � nXC is a locally symmetric
algebraic variety. The group Gad.Q/C acts on the projective system .� nXC/� 2˙.G/ as
follows: for each � 2˙.G/ and g 2Gad.Q/C, g defines a map

� nXC! g�1�gnXC; Œx� 7! Œg�1x�:
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This map is holomorphic, and hence algebraic by (1.1). The action of Gad.Q/C on
.� nXC/� 2˙.G/ extends by continuity to Gad.Q/Cˆ. The connected Shimura variety
Sh0.G;X/ is defined to be the projective system .� nXC/� 2˙.G/ (or its limit) together with
the continuous right action of Gad.Q/Cˆ just defined.

When G is simply connected, some simplifications occur. Then G.R/ is connected, and
(1.4d) shows that G.Q/ �K D G.Af /. For any congruence subgroup � D G.Q/\K of
G.Q/,

Œx� 7! Œx;1�; � nXC 7!G.Q/nXC�G.Af /=K

is an isomorphism (on the right, Œqx;qak�D Œx;a�, for q 2G.Q/, k 2K).
In the limit,

Sh0.G;X/.C/D lim
 �

� nXC DG.Q/nXC�G.Af /;

(apply 10.1 below). The semi-direct product G.Af /ÌGad.Q/C acts on this scheme:

Œx;a�.g;q/D Œq�1x;ad.q�1/.ag/�;x 2XC;a;g 2G.Af /;q 2Gad.Q/C:

The homomorphism q 7! .q�1;adq/ identifies G.Q/ with a normal subgroup G.Af /Ì
Gad.Q/C, and the quotient group G.Af /�G.Q/Gad.Q/C continues to act on Sh0.G;XC/.
In this case

G.Af /�G.Q/Gad.Q/C DGad.Q/Cˆ

(Deligne 1979, 2.1.6.2), and the action just described agrees with that defined in the preceding
paragraph.

EXAMPLE 1.6. If � is an arithmetic subgroup of PGL2.Q/ containing the image of a
congruence subgroup in SL2.Q/, then � nHC is (by definition) an elliptic modular curve.
Thus Sh0.SL2;HC/ is the projective system of elliptic modular curves equipped with a
continuous right action of PGL2.Q/Cˆ. This is the object of study of Shimura 1971b.

Etale coverings and automorphisms of connected Shimura varieties

Connected Shimura varieties behave as though they are simply connected: a finite étale
equivariant morphism from one connected Shimura variety to a second is an isomorphism
(Milne 1983, 2.1). It is possible to compute the group of Gad.Q/Cˆ-equivariant automor-
phisms of Sh0.G;XC/; for example, if G DGad, then this group is zero (ib., 2.4). The full
group of (not necessarily equivariant) automorphisms of Sh0.G;XC/ contains Gad.Q/Cˆ as
a subgroup of finite index (Milne and Shih 1981b, 1.3).

NOTES. The axioms for a connected Shimura variety are those of Deligne (1979), 2.1.8.

2. Shimura varieties over C

For many reasons, for example, in order to have models over number fields of finite
degree, it is necessary to consider nonconnected Shimura varieties. They are defined by
reductive groups rather than semisimple groups. The connected Shimura varieties occur as
the connected components of Shimura varieties.
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The axioms for a Shimura variety

The datum needed to define a Shimura variety is a pair .G;X/ comprising a reductive
group G over Q and a G.R/-conjugacy class X of homomorphisms S!GR satisfying the
following conditions:

(2.1.1) for each x 2X , the Hodge structure on g defined by hx is of type f.�1;1/; .0;0/; .1;�1/g;
(2.1.2) for each x 2X , adhx.i/ is a Cartan involution on Gad

R ;
(2.1.3) Gad has no factor defined over Q whose real points form a compact group;
(2.1.4) the identity component Z.G/0 of the centre of Z.G/ of G splits over a CM-field.

Simplifications occur when (2.1.2) is replaced by a stronger axiom:
(2.1.2*) let Z0.G/ be the maximal subtorus of Z.G/ split over Q; then adhx.i/ is a

Cartan involution on G=Z0.G/.
We say that .G;X/ satisfies (2.1) when it satisfies (2.1.1) – (2.1.4); when it also satisfies

(2.1.2*), we say that it satisfies (2.1*).

REMARK 2.2. (a) Again it suffices to check (2.1.1) and (2.1.2) for a single x 2X .
(b) Let XC be a connected component of X , and for each x 2 XC, let h0x be the

composite of hx with GR!Gad
R . Then x 7! h0x identifies XC with a Gad.R/C-conjugacy

class of homomorphisms S!Gad
R , which satisfies the axioms (1.3). Therefore XC acquires

from �1 a natural structure of a symmetric Hermitian domain, and so X is a finite disjoint
union of symmetric Hermitian domains (indexed by G.R/=G.R/C).

(c) Axiom (2.1.1) implies that the Hodge structure on g defined by adıhx has weight
zero. Hence the weight map wx is central, and so it is independent of x — we write it wX .

(d) Axiom (2.1.4) is not in Deligne’s list of axioms (Deligne 1979, 2.1.1), but it is harm-
less to impose it since, in practice, all examples satisfy it, and it allows some simplifications;
for example, it implies that wX is defined over a totally real field.

(e) Axiom (2.1.2*) is very restrictive; it excludes many important Shimura varieties, for
example, all Hilbert modular varieties of dimension greater than one.

EXAMPLE 2.3. Let V be a vector space of dimension 2 over Q. Let G D GL.V /, and
let X be the set of complex structures on V ˝R. With each x 2 X we associate the
homomorphism hx WS! GR such that hx.z/ acts on V ˝R as z for all z 2 S.R/ D C�.
Then x 7! hx identifies X with a G.R/-conjugacy class of homomorphisms S!GR, and
the pair .G;X/ satisfies the axioms (2.1). The choice of a basis for V identifies G with GL2
and X with CXRD fz 2 C jR.z/¤ 0g, the union of the upper and lower half-planes.

The Shimura variety

Let .G;X/ satisfy the conditions (2.1). For K a compact open subgroup in G.Af /, consider
the double coset space

ShK.G;X/DG.Q/nX �G.Af /=K;

where
q.x;a/k D .qx;qak/; q 2G.Q/;x 2X; a 2G.Af /; k 2K:

Let C be a set of representatives for the finite set G.Q/CnG.Af /=K, and, for each g 2 C, let
�g be the image in Gad.R/C of the subgroup � 0g D gKg

�1\G.Q/C of G.Q/C. Then

ShK.G;X/D
[
�gnX

C (disjoint union over g 2 C)
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for any connected component XC of X . When K is sufficiently small, �g will be torsion-
free, and we conclude from (1.1) that ShK.G;X/ will then be a finite disjoint union of
locally symmetric varieties. It therefore has a unique structure of an algebraic variety. Let

Sh.G;X/D lim
 �

ShK.G;X/:

This is a scheme over C whose complex points are

Sh.G;X/DG.Q/nX �G.Af /=Z.Q/�;

where Z.Q/� is the closure of Z.Q/ in Z.Af / (to prove this, apply (10.1) below with
E DG.Q/nX �G.Af /=Z.Q/�). When the maximal R-split subtorus of Z.G/ is Q-split,
Z.Q/ is closed in Z.Af /, and so

Sh.G;X/DG.Q/nX �G.Af /:

There is a continuous action of G.Af / on Sh.G;X/, given by

Œx;a�g D Œx;ag�; x 2X; a 2G.Af /; g 2G.Af /:

The scheme Sh.G;X/ together with this continuous action of G.Af / is called the Shimura
variety defined by .G;X/. We write .g/ or T .g/ for the operation of g 2 G.Af / on
Sh.G;X/ — it is often called the Hecke operator defined by g.

EXAMPLE 2.4. (a) A symplectic space over Q is a vector space V over Q together with a
nondegenerate skew-symmetric form  on V . The group G D GSp.V; / of symplectic
similitudes of .V; / has rational points

G.Q/D f˛ 2 GL.V / j 9 q 2Q� s.t.  .˛v;˛w/D q .v;w/, 8v;w 2 V g:

Let S˙ be the set of all Hodge structures of type f.�1;0/; .0;�1/g on V for which˙2�i 
is a polarization. Then S˙ is a G.R/-conjugacy class of homomorphisms S!GR, and the
pair .G;S˙/ satisfies the conditions (2.1). The space S˙, regarded as a disjoint union of
two Hermitian symmetric domain, is the Siegel double space, and the variety Sh.G;S˙/ is
the Siegel modular variety.

(b) LetF be a totally real number field, and letGDGL2;F , so thatG.R/D
Q

Hom.F;R/GL2.R/.
Let X be the set of G.R/-conjugates of

h0WS!GR; aC ib 7!

��
a �b

b a

�
; : : : ;

�
a �b

b a

��
:

Then X is a product of ŒF WQ� copies of CXR, and .G;X/ satisfies the axioms (2.1). The
variety Sh.G;X/ is the Hilbert modular scheme.

REMARK 2.5. The semi-direct productG.Af /=Z.Q/�ÌGad.Q/C acts on Sh.G;X/. More-
over, the quotient

G.G/ df
D .G.Af /=Z.Q/�/�G.Q/C=Z.Q/G

ad.Q/C

of this group by its normal subgroup

f.q�1;adq/ j q 2G.Q/C=Z.Q/g

continues to act. The Shimura variety Sh.G;X/ is a scheme with a continuous action of
G.G/ in the sense of � 10 below.
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The reflex field

The reflex field is the natural field of definition of the Shimura variety. It is defined purely in
terms of G and X .

For any field k of characteristic zero, let M.k/ be the set of G.k/-conjugacy classes of
homomorphisms Gm!Gk . The map M.k1/!M.k2/ defined by an inclusion k1 ,! k2
of algebraically closed fields is bijective. In particular, M.Qal/�M.C/.

The cocharacters �x for x in X lie in a single class MX 2M.C/, which we can regard
as an element of M.Qal/. The reflex field E.G;X/ is the fixed field of the subgroup
f� j �MX DMXg of Gal.Qal=Q/; it is therefore the field of definition of the conjugacy class
MX . With our axiom (2.1.4), E.G;X/ will be contained in a CM -field (see Deligne 1971c,
3.8), which means that it is either a CM-field or a totally real field.

Special points

A point x 2X is special if there is a maximal Q-rational torus T �G such that hx factors
through TR (equivalently, T .R/ fixes x). Then

�ad
x

df
D .Gm

�x
! T ! T=Z.G/�Gad/

satisfies the Serre condition, and so there is a unique homomorphism �ad
x WS! Gad such

that �can ı .�
ad
x /C D �

ad
x (see I 2.4b). There always exist many special points in X (Deligne

1971c, 5.1).
When �x itself satisfies the Serre condition, we call x a CM-point. In this case there

exists a unique Q-rational homomorphism �x WS! G such that �can ı .�x/C D �x . A
Q-linear representation .V;�/ of G attaches a CM-motive over Qal to each CM-point x,
namely, that corresponding to the representation .V;� ı�x/ of g (see I 4). The existence of
a single CM-point implies that the weight wX is defined over Q, and conversely, if wX is
defined over Q, then every special point is CM (under our axiom (2.1.4); see Milne (1988),
A.3).

A pair .T;x/ comprising a point x of X (necessarily special) and a maximal torus
T �G such that hx factors through TR will be called a special pair in .G;X/. When x is a
CM-point, we refer to a CM-pair.

A point Œx;g� of Sh.G;X/ is said to be special (or CM) if x is special (or CM) in X .
There is always a special point in X , and for any special point x, Œx;1� �G.Af / is dense in
Sh.G;X/ for the Zariski topology (Deligne 1971c, 5.1).

Shimura varieties defined by tori

Let T be a torus over Q split by a CM-field. A pair .T;x/, hx WS! TR, automatically
satisfies the axioms (2.1). The associated Shimura variety

Sh.T;x/D lim
 �

T .Q/nT .Af /=K D T .Af /=T .Q/�

has dimension zero. The reflex field E.T;x/ of .T;x/ is the field of definition of �x .
For example, let E be a CM-field and ˚ a CM-type for E. Then .T E ;h˚ / defines a

Shimura variety whose reflex field is E�.˚/, the reflex field of .E;˚/. (Notations as in I
2.6.)
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Morphisms of Shimura varieties

Let .G;X/ and .G0;X 0/ be pairs satisfying (2.1). By a morphism f W.G;X/! .G0;X 0/, we
mean a homomorphism f WG!G0 mapping X into X 0. Such an f defines a morphism of
schemes

Sh.f /WSh.G;X/! Sh.G0;X 0/; Œx;a� 7! Œf .x/;f .a/�

which is equivariant for f WG.Af /!G0.Af /, that is,

Sh.f /ıT .g/D T .f .g//ıSh.f /; for g 2G.Af /:

If f WG!G0 is a closed immersion, then so also is Sh.f / (Deligne 1971c, 1.15).

PROPOSITION 2.6. Let .G;X/ and .G0;X 0/ be two pairs satisfying (2.1), and suppose given
(i) a morphism f1W.G;X/! .G0;X 0/;
(ii) a continuous homomorphism f2WG.Af /!G0.Af /;
(iii) an element a 2G1.Af / such that f1 ı ada�1 D f2.

Then the morphism '
df
D Sh.f1/ ı T .a/WSh.G1;X1/! Sh.G2;X2/ maps Œx;a�1� to

Œf1.x/;1� for all x 2X1, and is equivariant:

' ıT .g/D T .f2.g//ı' for all g 2G1.Af /:

Moreover, ' is unchanged when f1 is replaced with f1 ı adq, q 2G.Q/, and a with aq.

PROOF. Straightforward. 2

The relation between connected and nonconnected Shimura varieties

Let XC be a connected component of X , and let Sh.G;X/0 be the connected component of
Sh.G;X/ containing the image of XC. As we observed in (2.2b), XC can be identified with
a Gad.R/C-conjugacy class of homomorphisms S!Gad

R . It is an important observation of
Deligne that Sh.G;X/0 can be described solely in terms of Gder and XC; in particular, it is
independent of the centre of G (except for Z.G/\Gder).

PROPOSITION 2.7. Let .G;X/ be a pair satisfying (2.1), and let XC be a connected com-
ponent of X . When XC is regarded as a conjugacy class of maps S! Gad.R/C, the pair
.Gder;XC/ satisfies the axioms (1.3), and

Œx� 7! Œx;1�WSh0.G;XC/! Sh.G;X/

defines an equivariant isomorphism of Sh0.G;XC/ onto Sh.G;X/0 . The stabilizer of
Sh0.G;X/ in G.G/ is Gad.Q/Cˆ.

PROOF. Deligne 1979, 2.1.16. 2

In the language of �10 below, the proposition says that Sh.G;X/ is obtained from
Sh0.Gder;XC/ by induction from Gad.Q/Cˆ to G.G/. This result will enable us to relate
statements about connected Shimura varieties to statements about nonconnected Shimura
varieties. To this end, the following result, which shows that each connected Shimura variety
occurs as a connected component of a particularly good Shimura variety, is useful.
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PROPOSITION 2.8. For any pair .G;XC/ defining a connected Shimura variety, there is a
pair .G1;X1/ defining a Shimura variety and such that:

(a) .Gder
1 ;XC1 /D .G;X

C/;
(b) the weight wX1 is defined over Q.
Moreover, G1 can be chosen so that either:
(c) H 1.k;Z.G1//D 0 for all fields k �Q; or
(d) adh.i/ is a Cartan involution on G1=wX1.Gm/ (hence (2.1.2*) holds).

PROOF. See the Appendix to Milne 1988. 2

The minimal compactification of Sh.G;X/

Assume that Gad has no factors of dimension 3, and let

AD
M
n�0

� .Sh.G;X/;!˝n/; ! D
^d

˝1; d D dimX:

There is a canonical inclusion Sh.G;X/! Proj A, the closure of whose image, Sh.G;X/,
is called the minimal (or Satake-Baily-Borel) compactification of Sh.G;X/. When Gad

has factors of dimension 3, we must replace � .S;!˝n/ with the group of sections having
at worst logarithmic singularities along the boundary of some smooth compactification of
Sh.G;X/ (cf. 1.2).

Automorphisms of Shimura varieties

It is possible to use the results in �1 on automorphisms of connected Shimura varieties to
compute the group of G.Af /-equivariant automorphisms of a Shimura variety. Clearly the
Hecke operator T .g/ associated with any g 2Z.Af / is such an automorphism of Sh.G;X/,
and conversely one can show that when Z.G/ satisfies the Hasse principle for finite primes,
that is, H 1.Q;Z.G// ,!

Q
finite primesH

1.Q`;Z.G//, then all G.Af /-automorphisms of
Sh.G;X/ are of this form. Thus, in this case,

AutG.Af /Sh.G;X/DZ.Af /=Z.Q/�:

See Milne 1983, 2.7.

NOTES. The axioms for a Shimura variety were introduced in Deligne 1971c and, in slightly revised
form, in Deligne 1979. They were suggested by the work of Shimura. This section summarizes parts
of the two articles of Deligne.

3. Shimura varieties as moduli varieties for motives

In this section, we explain how the choice of a representation �WG!GL.V /, V a Q-vector
space, endows Sh.G;X/ with all the additional structure that a family of motives over
Sh.G;X/ would give. This suggests that, under some restrictions on .G;X/, Sh.G;X/
should be a fine moduli space for motives.
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Review of local systems and flat vector bundles

Let S be an algebraic variety over k, and let V be a vector bundle on S . A connection on V
is a k-linear homomorphism

rWV!˝1S ˝V .V regarded as a sheaf /

satisfying the Leibniz identity,

r.f v/D df �vCf �rv

for all local sections f of OS and v of V . A vector field Z on S defines a mapping
rZ WV! V by the rule: for a section v of V on an open subset U of S ,

rZ.v/D hrv;Zi 2 � .U;V/:

A connection is said to be flat (or integrable) if its curvature tensor is zero, that is,

rY �rZ �rZ �rY DrŒY;Z�; all Y and Z.

A local section v of V is said to be horizontal for r if rv D 0. A vector bundle with a flat
connection can be regarded as a D-module, where D is the ring of differential operators —
see Borel et al. 1987, Chapter VI.

These definition carry over mutatis mutandis to a complex manifold S . Let �1.S;s/ be
the fundamental group of S regarded as the group of covering transformations of the universal
covering space QS of S (acting on the right). A complex representation �W�1.S;s/! GL.V /
defines a vector bundle on S

V.�/D QS �V=�; .s
;v/D .s;
v/; s 2 QS; 
 2 �1.S;s/; v 2 V;

having a canonical flat connection r.�/. Conversely, if V is a vector bundle on S with a flat
connection r, then V df

D Vr is a local system of C-vector spaces on S , and for any such
system, there is an natural representation of �1.S;s/ on the stalk Vs of V at s 2 S .

We refer to Borel et al. 1987, Chapter IV, for the notion of a flat connection being
regular at infinity.

PROPOSITION 3.1. Let S be a complex manifold. The above constructions define equiva-
lences between:

(a) the category of vector bundles with flat connection .V ,r/ on S ;

(b) the category of local systems of C-vector spaces;

(c) the category of complex representations of �1.S;s/.

When X is a smooth algebraic variety, the functor (V ,r) 7! (Van,ran) is an equivalence
from the category of algebraic vector bundles with a flat connection regular at infinity to that
of analytic vector bundles with a flat connection.

PROOF. Except for the last statement, this is a standard result. The last statement can be
found in Deligne 1970 and Borel et al. 1987, IV 7.2.1. 2
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Variations of Hodge structures

A variation of Hodge structures on a complex manifold S is a local system of Q-vector
spaces V on S together with a continuously varying family of Hodge structures on the stalks
Vs of V such that

(a) the Hodge filtration on .C˝Q V /s varies holomorphically with s, that is, it defines a
filtration of the vector bundle V def

DOS ˝Q V ;

(b) (axiom of transversality): r.F pV/�˝1S ˝F
p�1V .

When Q is replaced by k �R, we speak of a variation of Hodge k-structures. All families of
Hodge structures arising naturally in algebraic geometry are variations of Hodge structures.

X as a parameter space for Hodge structures

As a first step to realizing Sh.G;X/ as a moduli variety for motives, we show how to realize
X as a parameter space for Hodge structures; in fact, the axioms (2.1) are virtually forced
on us by our wish that this be so. Let G be a connected algebraic group over R, and let
XC be a connected component of the space of homomorphisms S! GR. Then XC is
a G.R/C-conjugacy class of homomorphisms. Choose a faithful representation .V;�/ of
G. For each x 2 XC, we obtain a real Hodge structure � ıhx on V . We assume that the
corresponding weight gradation is independent of x (equivalently, � ıhx.R�/ is contained
in the centre of G.R/C for all x).

PROPOSITION 3.2. Let V.�/ be the constant sheaf of R-vector spaces on XC defined by V .

(a) There is a unique complex structure on XC such that the Hodge filtrations on the
stalks of C˝V.�/ vary holomorphically.

(b) The Hodge structures � ıhx make V.�/ into a variation of real Hodge structures if
and only if the Hodge structure on g defined by hx is of type f.�1;1/; .0;0/; .1;�1/g
for all x 2XC.

(c) Let G1 be the smallest algebraic subgroup of G through which all the hx , x 2 XC,
factor, and let Vn be the component of V of weight n. There exists a bilinear form
 WVn˝Vn! R.�n/ that is a polarization of .Vn; � ıhx/ for all x 2XC if and only
if G1 is reductive and adhx.i/ is a Cartan involution on Gad

1 , all x.

PROOF. This is proved in Deligne 1979, 1.1.14. We merely note that the Hodge filtrations on
the stalks of C˝V.�/ define a map from X into a Grassman manifold, and (a) is equivalent
to this map being holomorphic. Moreover, that if Z is a vector field on X corresponding to
an element of F rx .LieG/ then rZ.F sVx/� F rCsVx; the condition implies that LieG D
F�1x .LieG/. Finally, the result noted in (1.4c) implies the existence of  . 2

Now assume that .G;X/ is a pair satisfying (2.1). The structure on X that we defined in
�2 is the unique complex structure such that every real representation .V;�/ of G defines a
variation of real polarizable Hodge structures on X . If the weight wX is defined over Q, then
every rational representation .V;�/ of G defines a rational polarizable variation of Hodge
structures on X . We can extend V.�/ to X �G.Af /, and when (2.1.2*) holds we can pass
to the quotient to obtain a polarizable variation of Hodge structures (rational or real) on
Sh.G;X/. In the rational case, this variation of Hodge structures is a candidate to be the
family of Betti cohomology groups of a family of motives over Sh.G;X/.
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Local systems of Q`-adic vector spaces

Let S be a scheme. By a local system of Q`-vector spaces on Set I mean a twisted-constant
constructible (or smooth) Q`-sheaf; see, for example, Milne 1980, p. 165. When S is
connected and s is a geometric point of S , the map V 7! Vs (stalk of V at s) defines an
equivalence from the category of local systems of Q`-vector spaces on S to that of continuous
representations of �et

1 .S;s/ on Q`-vector spaces. More generally, if X ! S is a Galois
covering of S with Galois group G (see 10.2), then

V 7! lim
�!

V.XH/ (limit over the open subgroups H of G),

defines an equivalence from the category of local systems of Q`-vector spaces on S whose
pull-back to X is constant to that of continuous representations of G.

Now take S to be a smooth connected variety over C, and let s 2 S.C/. In this case, s is
also a geometric point of S , and �et

1 .S;s/ is the profinite completion of �1.S;s/. A local
system of Q-vector spaces V on S.C/ defines a representation �W�et

1 .S;s/! GL.Vs˝Q`/
if and only if it is continuous relative to the `-adic topology on V and the profinite topology
on �1.S;s/. In this case, we abuse notation, and write V ˝Q` for the local system of
Q`-vector spaces on Set associated with �`.

The systems attached to a rational representation of G

PROPOSITION 3.3. Assume that .G;X/ satisfies (2.1*). A representation .V;�/ of G de-
fines (in a natural way):

(a) a local system of Q-vector spaces V.�/ on Sh.G;X/;

(b) a local system of Q`-vector spaces V`.�/ on Sh.G;X/et, each `;

(c) a vector bundle V.�/ on Sh.G;X/ together with a (regular) flat connection r(�).

These are related by canonical isomorphisms:
(i) V.�/˝Q`! V`.�/;
(ii) V.�/˝C! V.�/r.�/:

When the weight wX is defined over Q, the maps � ıhx define on V (�) the structure of a
variation of polarizable Hodge structures.

PROOF. Let K be compact open subgroup of G.Af /. Then (see �2) ShK.G;X/ is a finite
union [�gnXC, where �g is the image of � 0g D gKg

�1\G.Q/C in Gad.Q/C. When K
is sufficiently small, �g will be the fundamental group of �gXC. The condition (2.1.2*)
implies that Z.Q/ is discrete in Z.Af /, and so we can take K to be sufficiently small so
that K\Z.Q/D f1g. Since the kernel of � 0g ! �g is contained in Z.Q/, this shows that
we can assume that � 0g D �g . Now each of V.�/ and .V .�/;r.�// is defined on �gnXC

by the restriction of � to � 0g . The sheaf V`.�/ can be defined to be V.�/˝Q` or, better,
we can proceed as follows. The above discussion shows that when K is sufficiently small,
� 0g will act without fixed points on XC. Under the same hypothesis, K will act without
fixed points on Sh.G;X/DG.Q/nX �G.Af /. Then Sh.G;X/ will be a Galois covering of
ShK.G;X/, and we can take V`.�/ to be sheaf associated with the representation of K on
V ˝Q` defined by � . 2
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The motives attached to the points of Sh.G;X/

Our discussion in this and the next subsection is predicated on the assumption of (I 3.2),
so that there is a theory of motives over any field of characteristic zero, and the Betti fibre
functor Mot=C! HdgQ is fully faithful (see I 4). Let .G;X/ be a pair satisfying (2.1*),
and assume that wX is defined over Q. To simplify the discussion, we assume there is a
homomorphism t WG!Gm such that t ıwX .z/D z�2. Fix a faithful representation .V;�/
of G.

HOPE 3.4. 1Each .V;� ıhx/ is the rational Hodge structure attached to a motive Mx over
C (uniquely determined, because of our assumption of I 3.2).

As we noted in �2, when x is a CM-point we know that Mx exists, and it is a motive
of CM-type. Let tD .t˛/˛2I be a family of tensors for V such that G is the subgroup of
GL.V /�Gm fixing the t˛ . Consider the set of triples .M;s;�/ consisting of a motiveM over
C, a family sD .s˛/˛2I of Hodge cycles on M , and an isomorphism �WV.Af /!Hf .M/

such that:
(3.5a) there exists an isomorphism i WHB.M/! V mapping each s˛ to t˛ and such that

.z 7! i ıhM .z/ı i
�1/ 2X ;

(3.5b) � maps each s˛ to t˛.
An isomorphism from one such triple .M;s;�/ to a second .M 0;s0;�0/ is an isomorphism

 WM !M 0 sending each s˛ to s0˛ and such that 
 ı�D �0. Write M.G;X;�/ for the set of
isomorphism classes of such triples.

PROPOSITION 3.6. Under the above assumptions, there is a canonical bijection

˚� WM.G;X;�/! Sh.G;X/:

PROOF. Given .M;s;�/, choose an isomorphism i WHB.M/! V as in (3.5a), and let x 2X
be such that hx.z/D i ıhM .z/ı i�1. Because iAf ı�WV.Af /! V.Af / preserves Hodge
cycles, it is multiplication by �.a/, some a 2 G.Af /. The map i is uniquely determined
up to an element of G.Q/, and so the class of .x;a/ in Sh.G;X/ is well-defined: we
set ˚�.M;s;�/ D Œx;a�. Conversely, given .x;a/ 2 X �G.Af /, let Mx be the motive
determined by (3.4), and define t˛ to be s˛ and � to be multiplication by �.a/. 2

REMARK 3.7. It is possible to recover .G;X/ from the triple .M;s;�/ attached to a single
point of Sh.G;X/: by definition G is the subgroup of GL.HB.M//�Gm fixing the s˛;
because s˛ is a Hodge cycle, hM .S/ fixes it, and so hM factors through GR; X is the
G.R/-conjugacy class of hM .

Families of motives

We define a family of motives over a scheme S to be a motive over the generic point “with
good reduction everywhere”.

DEFINITION 3.8. Let S be a smooth connected variety over C with generic point �, and let
N� be a geometric point lying over �. A motive M over S is a motiveM� over C.�/ such that
the action of Gal.C.�/al=C.�// on H`.M�/ factors through �et

1 .S; N�/, all `.
1Added 22.06.01: For Shimura varieties of abelian type, Hopes 3.4, 3.9, and 3.10 are proved (without any

assumptions) in J.S. Milne, Shimura varieties and motives. In: Motives (Eds. U. Jannsen, S. Kleiman, J.-P.
Serre), Proc. Symp. Pure Math., AMS, 55, 1994, Part 2, pp447–523.
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Write H`.M/ for the local system of Q`-vector spaces on Set defined by the rep-
resentation of �et

1 .S; N�/ on H`.M�/. Let S0 be a model of S over a subfield k0 of C
of finite transcendence degree over Q, and let �0 be the generic point of S0; assume
k0 is sufficiently large that M� has a model M0 over �0. For any sufficiently general
closed point t of S , there will be a k-morphism �0! S with image t , and M0 will de-
fine a motive Mt over t . There is a local system of Q-vector spaces HB.M/ on S such
that HB.M/t DHB.Mt / �H`.M/t for every such t . From (3.1) we then obtain a pair
.HdR.M/;r/ such that HdR.M/r D C˝HB.M/.

A motive on a nonconnected smooth scheme S over C is defined to be a motive on each
of the connected components of S .

HOPE 3.9. For any representation .V;�/ of G, there exists a motive M on Sh.G;X/ such
that

HB.M/D V.�/; H`.M/D V`.�/ each `; HdR.M/D V.�/:

Take � to be faithful, and let M be the family of motives given by (3.9). There will be a
family tD .t˛/ of tensors for V such that G is the subgroup of GL.V /�Gm fixing the t˛.
For each ˛, t˛ defines a global section s˛ of HB.M/, and we let sD .s˛/. By construction,
there is an isomorphism �WVf .�/!Hf .M/ sending t˛ to s˛.

HOPE 3.10. The triple .M;s;�/ is universal: let S be a smooth C-scheme with a continuous
action of G.Af /, and let .M0;s0;�0/ be a triple over S such that .M0;s0;�0/s 2M.G;X;�/

for all closed points s of S ; then there is a unique G.Af /-morphism 	 WS ! Sh.G;X/ such
that 	�.M;s;�/D .M0;s0;�0/.

Shimura varieties as moduli varieties for abelian varieties

We now drop all assumptions on motives. Let .G;X/ be a pair satisfying (2.1), and assume
that there is an inclusion �W.G;X/ ,! .GSp;S˙/, where GSp and S˙ are as in (2.4a). In
this case, (3.4) is true; in fact, .V;� ıhx/ is the Hodge structure of an abelian variety A
over C, uniquely determined up isogeny. Thus M.G;X;�/ consists of isogeny classes of
triples .A;s;�/ satisfying (3.5), with A an abelian variety. (We say .A;s;�/ and .A0;s0;�0/
are isogenous if there is an isogeny 
 WA! A0 sending s˛ to s0˛, each ˛, and such that

 ı�D �0.)

THEOREM 3.11. (a) The map˚� WM.G;X;�/! Sh.G;X/ realizes Sh.G;X/ as the coarse
moduli scheme for the set M.G;X;�/ of isogeny classes of triples .A;s;�/.

(b) When .G;X/ satisfies (2.1.2*), Sh.G;X/ is a fine moduli scheme; in particular, it
carries a universal family .A;s;�/.

PROOF. This follows from the main theorem of Mumford 1965. 2

A Shimura variety Sh.G;X/ is said to be of Hodge type when there is an embedding
.G;X/ ,! .GSp.V; /;S˙/. As we have just seen, every such Shimura variety is a (coarse)
moduli scheme for abelian varieties with Hodge-cycle and level structure. When each of the
Hodge cycles defining the moduli problem is an endomorphism or a polarization then the
Shimura variety is said to be of PEL-type.

NOTES. This section makes more explicit the philosophy underlying Deligne (1979).
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4. Conjugates of Shimura varieties

Let � be an automorphism of C. We want to identify � Sh.G;X/ with the Shimura variety
defined by a possibly different pair .G0;X 0/. Fix a faithful representation .V;�/ of G,
and assume (3.4), so that attached to each point s of Sh.G;X/, there is a triple .M;s;�/s
satisfying the conditions (3.5). The triple attached to �s 2 � Sh.G;X/D Sh.G0;X 0/ should
be �.M;s;�/s . As we noted in (3.7) it is possible to recover .G0;X 0/ from �.M;s;�/s . This
gives us a description of .G0;X 0/, but only in terms of a conjectural theory of motives. A
key observation in Langlands 1979 is that, when we take s to be a CM-point, Ms becomes a
CM-motive, and so we can apply the theory of the Taniyama group to define .G0;X 0/.

Now drop all assumptions, and choose a special point x 2X . Then x defines a homomor-
phism �ad

x WS!Gad (see �2), and hence an action of S on G. Write �;xG for the inner twist
of G defined by �SW �;xG D �S�SG. The point sp.�/ 2 �S.Af / defines an isomorphism

G.Af /! �;xG.Af /; g 7! �;xg
df
D sp.�/ �g:

Let T �G be a maximal torus such that T .R/ fixes x. The action of S on T is trivial, and
so T D �;xT � �;xG. Thus ��x can be regarded as a homomorphism

Gm! T D �;xT ,! �;xG:

Since ��x commutes with its complex conjugate, it defines a homomorphism h�X WS! �;xG,
and when we take �;xX to be the set of G.R/-conjugates of �;xh, the pair .�;xG; �;xX/
satisfies the axioms (2.1).

REMARK 4.1. (a) If x is a CM-point and .V;�/ is a faithful representation of G, then, as
we observed in �2, .V;hx ı �/ is HB.M/ for a well-defined CM -motive M over C. Let t
be a family of Hodge tensors for V such that G is the subgroup of GL.V /�Gm fixing the
elements of t. Then �;xG is the subgroup of GL.HB.�M//�Gm fixing � t for each t 2 t.
Moreover, h�x D h�M , and g 7! �;xg is defined by Hf .M/

�
!Hf .�M/.

(b) The group �;xG is obtained from G by twisting at infinity. For example, if G D
GL1.B/ with B a quaternion algebra over a totally real field F , then �;xG DGL1.B 0/ where
B 0˝QQ` � B˝QQ`, all `, and B 0˝F;� R� B˝F;�ı� R, all � WF ,! R.

The next result is the main theorem of the chapter: it shows that the choice of a special
point x determines a realization of � Sh.G;X/ as the Shimura variety of .�;xG; �;xX/; the
following Theorem 4.4 then shows that the realization is essentially independent of the
choice of x.

THEOREM 4.2. For each � 2Aut.C/ and special point x 2X , there is a unique isomorphism

'�;x W� Sh.G;X/! Sh.�;xG; �;xX/

such that
(a) �Œx;1� 7! Œ�x;1�, and

(b) '�;x ı �T .g/D T .�;xg/ı'�;x , all g 2G.Af /.

PROOF. The uniqueness is obvious from the fact that Œx;1� �G.Af / is dense in Sh.G;X/.
We discuss the proof of the existence in �9 below. (If we knew (3.10), '�;x would be
the map given by the family of motives �M over � Sh.G;X/ and the universality of
Sh.�;xG;�;xX/.) 2



4. CONJUGATES OF SHIMURA VARIETIES 43

Let x and x0 be CM-points of X (supposed to exist). A calculation shows that �x�.�S/
and �x0�.�S/ have the same class inH 1.Q;G/. The choice of an isomorphism f W�x�.

�S/!
�x0�.

�S/ determines an isomorphism f1W
�;xG! �;x0G, and there is an a 2 �;xG.Af / such

that f1.a�1 � �;x
0

g/D �;x0g. If f is replaced by f ıq, q 2 �;xG.Q/, then f1 is replaced by
f1 ı adq and a with aq. Therefore (see 2.6), there is a well-defined isomorphism

'.� Ix0;x/WSh.�;xG;�;xX/! Sh.�;x
0

G;�;x
0

X/:

PROPOSITION 4.3. Let � 2 Aut.C/. For each pair .G;X/ defining a Shimura variety and
special points x and x0 of X , there is an isomorphism

'.� Ix0;x/WSh.�;xG;�;xX/! Sh.�;x
0

G;�;x
0

X/

such that '.� Ix0;x/ıT .�;xg/D T .�;x0g/ı'.� Ix0;x/, all g 2G.Af /. These isomorphisms
are uniquely determined by the following properties:

(a) when x and x0 are CM-points, '.� Ix0;x/ is as defined above;

(b) if .G;X/C D .G0;X 0/C and x and x0 2XC .DX 0C/, then

'.� Ix0;x/jSh.G;X/0 D '.� Ix0;x/jSh.G0;X 0/0.

PROOF. When the weight wX is defined over Q, every special point is CM and the map is
as above. Next check that

'.� Ix0;x/jSh.G;X/0 D '.� Ix0;x/jSh.G0;X 0/0

when .Gder;XC/D .Gder;X 0C/, x and x0 both lie in XC, and wX and wX 0 are defined over
Q. In the general case, after possibly replacing x0 by gx0 with g 2 G.Q/, we can assume
that x and x0 lie in the same connected component XC of X . Now (2.8) provides us with a
pair .G0;X 0/ such that .G0;X 0/C D .G;X/C and wX 0 is defined over Q. Take '.� Ix0;x/ to
be the unique equivariant map whose restriction to Sh.G;X/0 is '.� Ix0;x/jSh.G0;X 0/0.2

THEOREM 4.4. For any pair of special points x and x0, we have '.� Ix0;x/ı'�;x D '�;x0 :

Sh.�;xG; �;xX/

� Sh.G;X/

Sh.�;x
0

G; �;x
0

X/

'.� Ix0;x/

'�;x

'�;x0

PROOF. We discuss the proof in Section 9. 2

REMARK 4.5. Let I be an index set. To give a family of objects .Si /i2I and isomorphisms
'j i WSi ! Sj , one for each pair .i;j /, such that 'kj ı'j i D 'ki for all i , j , k, is essentially
the same as to give a single object: the inverse limit of the family is an object S together
with isomorphisms 'i WS ! Si such that 'j i ı'i D 'j . From this point of view, Theorems
4.2 and 4.4 realize � Sh.G;X/ as the inverse limit of the Shimura varieties Sh.�;xG; �;xX/,
x running over the special points of X .
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REMARK 4.6. Let K be a compact open subgroup of G.Af /, and let K 0 be the image of K
in �;xG.Af / under g 7! �;xg. Then '�;x induces an isomorphism

� ShK.G;X/! ShK0.�;xG; �;xX/:

Let f be a rational function on ShK.G;X/ that is defined at the special point Œx;1�. Then
(4.2) associates with f a function

�f
df
D � ıf ı ��1 ı'�1�;x on ShK0.�;xG; �;xX/

such that
(i) �f .Œ�x;1�/D �.f .Œx;1�//
(ii) f 7! �f commutes with the Hecke operators.

This leads to a reciprocity law, which can be made more explicit (see Milne and Shih 1981b,
�5).

NOTES. Theorems (4.2) and (4.4) were conjectured by Langlands (Langlands 1979), who was
motivated by the problem of computing the zeta function of a Shimura variety. For Shimura varieties
of abelian type (see �9 for a definition of this class), they were proved in Milne and Shih 1982b,
where also the proof of the general case was reduced to a statement about connected Shimura varieties
defined by simply-connected simple groups. This statement was proved in Milne 1983 using a
theorem of Kazhdan 1982 (whose proof is completed in Clozel 1986) and theorems of Margulis 1977.
See also Borovoi 1983/4 (completed in Borovoi 1987) and the notes to �9 below.

5. Canonical models

By a model of Sh.G;X/ over a subfield E of C, we mean a scheme S over E endowed
with an action of G.Af / (defined over E) and an equivariant isomorphism (over C)
 WSh.G;X/! S ˝E C. Note that  can also be regarded as morphism Sh.G;X/! S

over E inducing an isomorphism Sh.G;X/! S˝E C.
Let .T;x/ be a special pair in .G;X/. The field of definition of the cocharacter �x of T is

the reflex field E.T;x/. As in (I 2.6), �x defines a Q-rational homomorphism Nx WT
E ! T

for any field E �E.T;x/. The reciprocity map2

rE .T;x/WGal.Eab=E/! T .Af /=T .Q/�

is defined as follows: let � 2Gal.Eab=E/, and let s 2A�E be such that recE .s/D ��1; write
s D s1 � sf with s1 2E1 and sf 2 OE; then rE .T;x/.�/DNx.sf / (mod T .Q/�).

DEFINITION 5.1. A model Sh.G;X/E of Sh.G;X/ overE DE.G;X/ is said to be canon-
ical if each special point Œx;a� is rational over E.T;xab/ and Gal.E.T;x/ab=E.T;x// acts
on Œx;a� according to the rule:

�Œx;a�D Œx;r.�/ �a�; where r D rE .T;x/:

2Added 22.06.01: In the definition of the reciprocity map, one should take recE .s/D � (not ��1). For a
discussion of this, see 1.10 of J.S. Milne, The points on a Shimura variety modulo a prime of good reduction. In:
The Zeta Function of Picard Modular Surfaces, Publ. Centre de Rech. Math., Montreal (Eds. R. Langlands and
D. Ramakrishnan), 1992, pp151–253.
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PROPOSITION 5.2. Consider a morphism f W.G;X/! .G0;X 0/. If Sh.G;X/ and Sh.G0;X 0/
have canonical models, then the morphism

Sh.f /WSh.G;X/! Sh.G0;X 0/

is defined over every field E containing the reflex fields of .G;X/ and .G0;X 0/, that is, there
exists a (unique) morphism Sh.f /E making the following diagram commute:

Sh.G;X/ Sh.G0;X 0/

Sh.G;X/E Sh.G0;X 0/E :

Sh.f /

  0

Sh.f /E

PROOF. See Deligne 1971c, 5.4. 2

COROLLARY 5.3. The canonical model of Sh.G;X/ (if it exists) is uniquely determined
up to a unique isomorphism.

PROOF. This is an immediate consequence of the proposition. 2

EXAMPLE 5.4. (a) Let T be a torus. Since Sh.T;x/ is of dimension zero, it is completely
described by its set of points (with the profinite topology), and so it has a unique model
over Qal. Giving a model of Sh.T;x/ over E DE.T;x/ corresponds to giving an action of
Gal.Qal=E/ on Sh.T;x/.Qal/D T .Af /=T .Q/�. If the model is to be the canonical model,
this action must be that given by r.T;x/.

(b) When .G;X/ is of Hodge type, it follows from the theorem of Shimura and Taniyama
(see I 5.6) that a solution to the moduli problem over E.G;X/ will be a canonical model.

THEOREM 5.5. Let .G;X/ be a pair satisfying (2.1), and write E DE.G;X/.
(a) The Shimura variety Sh.G;X/ has a canonical model Sh.G;X/E .

(b) For any � 2 Gal.Qal=Q/, �E.G;X/DE.�;xG;�;xX/, and � Sh.G;X/E is the canon-
ical model of Sh.�;xG; �;xX/.

PROOF. This follows from (4.2) and (4.4). Suppose first that wX is defined over Q. A
calculation shows that if � fixes E.G;X/, then the class of �x�.�S/ in H 1.Q;G/ is trivial.
The choice of a point p 2 �x�.�S/ determines an isomorphism f1WG !

�;xG. Write
p D sp.�/ �ˇ. Then (2.6) give us a well-defined equivariant isomorphism

'x WSh.G;X/! Sh.�;xG; �;xX/:

A similar argument to that in the proof of (4.3) allows us to extend the definition of 'x to
any Shimura variety. For each � , let

f� D '
�1
x ı'�;x W� Sh.G;X/! Sh.G;X/:

Then f�� D f� ı�.f� /, and so the f� define a descent datum3 for Sh.G;X/ which gives
us a model Sh.G;X/E over E.G;X/. When applied to a pair .T;x/, this procedure leads

3Added 22.06.01: The original source for this argument is pp. 233-234 of Langlands 1979, which sketches
the derivation of a descent datum from the conjugation conjecture and says that “one applies the Weil criterion
for descent of the field of definition”. In Milne and Shih 1982b the sketch is made more detailed. In neither
reference is there a proof that the descent datum satisfies the continuity condition necessary before one can apply
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directly to the canonical model of Sh.T;x/; thus Œx;a� is rational over E.T;x/ab, and the
action of the Galois group on it is as required. Now (4.4) can be used to show that the model
obtained is independent of the special point x, and so it fulfills the condition for every special
point. This completes the proof of (a). The statement in (b) about the reflex fields is obvious
from the definitions. Moreover, it is straightforward to check that

.� Sh.G;X/E /˝�E CD � Sh.G;X/
'�;x
! Sh.�;xG; �;xX/

realizes � Sh.G;X/E as the canonical model of Sh.�;xG; �;xX/. 2

COROLLARY 5.6. Let E DE.G;X/. ThenY
�2Hom.E;C/

Sh.�;xG; �;xX/

has a canonical model over Q.

PROOF. In fact, the maps '�;x define an isomorphism

.ResE=Q Sh.G;X/E /C!
Y

Sh.�;xG; �;xX/:
2

For any field L containing E.G;X/, Sh.G;X/E gives rise to a model Sh.G;X/L of
Sh.G;X/ over L. This model will be referred to as the canonical model of Sh.G;X/ over
L.

NOTES. Canonical models (in the above sense) were introduced, and shown to be unique in Deligne
1971c. Again, the notion was suggested by a similar notion introduced by Shimura (see the next
section). They were shown to exist for Shimura varieties of abelian type (see �9) in Deligne (1979).
That (4.2) and (4.4) imply the existence of canonical models was already noted in Langlands (1979).

6. Canonical models in the sense of Shimura

According to Shimura’s original definition, the canonical model of a Shimura variety should
be a projective system of connected varieties. We explain how such models can be con-
structed from the canonical models of the preceding section.

Let .G;X/ be a pair satisfying (2.1), and choose a connected component XC of X . The
canonical model (in the sense of Shimura) will be defined in terms of the pair .G;XC/
— note that this is not a pair satisfying (1.3) — G is a reductive group. Write Sh.G;X/0

for the connected component of Sh.G;X/ containing the image of XC, and let E be the
reflex field of .G;X/. Since Sh.G;X/ has a canonical model over E, there is a homomor-
phism `WGal.Qal=E/! �0.Sh.G;X// giving the action of the Galois group on the set of
connected components of Sh.G;X/ (see Deligne 1979, 2.6.2.1, for an explicit description of
`). According to (2.7), there is an exact sequence

1!Gad.Q/Cˆ! G.G/! �0.Sh.G;X//! 1:

Weil’s criterion, although there is no reason (that I know of) to think that Langlands did not in fact check the
continuity. The fact that the continuity was not explicitly proved anywhere in the literature has achieved a certain
notoriety with authors stating “this argument is flawed” and referring to a “gap in the argument” and to the need
to “correct the proof”. One author went so far as to claim as a “new result” the statement that had been proved
17 years earlier. In fact the descent datum does satisfy the continuity condition, and it is relatively easy to verify
this. Moreover, the proof requires nothing that was not available in 1977 when Langlands wrote his article. See
J.S. Milne, Descent for Shimura varieties. Michigan Math. J., 46 (1999), pp. 203–208.
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On pulling back by `, we obtain a sequence

1!Gad.Q/Cˆ! E.G;X/ �! Gal.k=E/! 1

with Gal.k=E/ the image of Gal.Qal=E/ in �0.Sh.G;X// and E.G;X/ the subgroup of
G.G/ of elements mapping to Gal.k=E/). From Sh.G;X/E we obtain a canonical model
Sh.G;X/0k of Sh.G;X/0 over k.

Let z be the set of compact open subgroups of E.G;X/. For any S in z, set
�S D S \G

ad.Q/C;
kS D the subfield of k fixed by �.S/;
VS D SnSh.G;X/0; it is defined over kS , and there is an isomorphism 'S W�SnX

C!

.VS /C. Let ˛ 2 E.G;X/; if ˛S˛�1 � T , then the action of ˛ on Sh.G;X/0 induces a map
JTS .˛/WVS ! �.˛/�1VT .

THEOREM 6.1. (a) For each S 2 z, .VS ;'S / is a model of �SnXC over kS .
(b) Let ˛ 2 E.G;X/; for any S , T 2 k such that ˛S˛�1 � T , the map

JTS .˛/W�SnX
C
! �.˛/�1�T nX

C

is defined over kS . Moreover
JSS .˛/ is the identity map if ˛ 2 S ;
.�.˛/�1JTS .ˇ//ıJSR.˛/D JTR.ˇ˛/;
JTS .˛/ı'S D 'T ı˛ for all ˛ 2G.Q/C such that ˛S˛�1 � T .
(c) Let x 2XC be special; for each S 2 z, 'S .z/ is rational over E.x/ab, and for every

� 2 OE.x/�,

recE .�/.'S .x//D JST .Nx.�//'T .x/; T DNx.�/
�1
�S �Nx.�/

where Nx WT E.x/!G is defined by �x .

PROOF. This can be deduced from (5.5a), using results about the automorphism groups of
Sh.G;X/ and its function field. See Milne and Shih 1981b. 2

NOTES. Theorem 6.1 says that canonical models exist in the sense of Shimura 1971a. It was proved
in various cases in Shimura 1970, Miyake 1971, and Shih 1978. It was shown to follow from Theorem
5.5 in Milne and Shih 1981b (the restriction to classical groups in that paper is unnecessary).

7. The action of complex conjugation on a Shimura variety
with a real canonical model

Let Sh.G;X/ be a Shimura variety whose reflex E.G;X/ is real. Then Sh.G;X/ has a
canonical model Sh.G;X/R over R, and so complex conjugation defines an involution
of Sh.G;X/. In order to be able to compute the factor of the zeta function of Sh.G;X/
corresponding to the (given) infinite prime of E.G;X/, it is necessary to have an explicit
description of this involution.

LEMMA 7.1. Let x be a special point of X . There is a unique G.R/-equivariant antiholo-
morphic map X !X such that �.x/D �x, where �x is the point in X such that ��x D ��x .

PROOF. The uniqueness is obvious. Let T be a maximal torus in G such that T .R/ fixes x,
and let N be the normalizer of T in G. There is an n 2 N.R/ such that n �x D �x (Milne
and Shih 1982b, 4.3), and we can define � to be g �x 7! gn �x. 2
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THEOREM 7.2. Let Sh.G;X/ be a Shimura variety whose reflex field is real. The involution
of Sh.G;X/ defined by complex conjugation is Œx;g� 7! Œ�.x/;g�.

PROOF. Since both maps are continuous and equivariant, it suffices to show that they agree
at the single point Œx;1�. The action of � on Sh.G;X/ (relative to Sh.G;X/E is

Sh.G;X/
�
! �Sh.G;X/

'�;x
! Sh.�;xG; �;xX/

'�1x
! Sh.G;X/:

From �5 and �6, we see that

Œx;1� 7! �Œx;1� 7! Œ�x;1� 7! Œ�.x/;1�

under these maps. 2

NOTES. Theorem 7.2 was conjectured in Langlands 1979. An equivalent statement for connected
Shimura varieties defined by groups G of type C was proved in Shih 1976, and this result was
extended to all Shimura varieties of abelian type in Milne and Shih 1981a. That Theorem 7.2 follows
from Theorems 4.2 and 4.4 was noted in Langlands 1979.

8. The minimal compactification

Let Sh.G;X/� be the minimal compactification of Sh.G;X/. Because Sh.G;X/� can be
constructed out of Sh.G;X/ by a canonical algebraic method (see �2), all the maps '�;x ,
'.� Ix0;x/, and 'x have unique extensions to Sh.G;X/�. In particular, we see that all the
theorems in this chapter remain valid when the Shimura varieties are replaced by their
minimal compactifications. (We shall discuss the boundary components of Sh.G;X/� in
more detail in Chapter V.)

9. The strategy for proving the main theorems

The proofs of Theorems 4.2 and 4.4 are too long to describe in detail. Instead I outline the
strategy for proving them, and other theorems, on Shimura varieties. Recall that in �3 we
defined the notion of a Shimura variety of Hodge type and noted that the choice of a faithful
representation of G realizes such a variety as a moduli variety (over C) for abelian varieties
with Hodge cycle and level structure. The class of connected Shimura varieties of abelian
type is the smallest containing:

(a) the connected component of every Shimura variety of Hodge type;

(b) a product of connected Shimura varieties if it contains the factors;

(c) Sh.G;XC/ if it contains Sh.G0;XC/ with G0 a finite covering group of G.

Deligne 1979 gives a classification of connected Shimura varieties of abelian type based
on Satake’s classification of symplectic embeddings (Satake 1965). A (nonconnected)
Shimura variety is of abelian type if a connected component of it is of abelian type. Note
that a Shimura variety of abelian type will not in general be a moduli variety for abelian
varieties, contrary to some assertions in the literature.

Let P.G;X/ be a statement about the Shimura variety Sh.G;X/. The first step in
proving P for all Shimura varieties is to prove it for those of Hodge type by identifying
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the Shimura variety with a moduli variety for abelian varieties. The second step is to find a
statement PC.G;XC/ for connected Shimura varieties, and to prove that

P.G;X/ is true , PC.Gder;XC/ is true.

As a consequence, one finds that if P.G0;X 0/ is true and .Gder;XC/D .G0der;X 0C/,
then P.G;X/ is true. The third step (usually easy) is to prove:

PC.Gi ;X
C
i / true for all i ) PC.

Q
Gi ;

Q
XCi / true;

PC.G0;XC/ true for G0 a finite covering of G) PC.G;XC/ is true.
This then implies that PC is true for all connected Shimura varieties of abelian type,

and hence (by the previous step) that P is true for all Shimura varieties of abelian type.
Moreover, it shows that in order to prove P for all Shimura varieties, it suffices to prove
PC.G;XC/ in the case thatG is a simply connected Q-simple group. ThenG is of the form
G D ResF=QG0 for some absolutely simple group G0 over a totally real field F . For a totally
real field F 0 containing F , setG�DResF 0=QG and defineXC� so that .G;XC/� .G�;XC� /.
When F 0 is chosen sufficiently large, there will be many embeddings .G˛;XC˛ / ,! .G;XC/

with G˛ a group of type A1 (thus G˛ is an algebraic group associated with a quaternion
algebra, possibly split, over a totally real field). We have

Sh.G;XC/ ,! Sh.G�;XC� / - Sh.G˛;XC˛ /:

The final step is to exploit these inclusions, and the fact that the statement PC.G˛;XC˛ / is
known (the associated Shimura variety is of abelian type), to prove PC.G;XC/.

One final note: several authors have criticized the above approach for its dependence
on abelian varieties and their moduli. In defence I point out that, in the case that the weight
is defined over Q, all of the results in this and the next chapter would be an immediate
consquence of the existence of a sufficiently strong theory of motives and their moduli;
moreover, this is the only heuristic argument I know for them. Also, the approach does not
use the classification of semisimple algebraic groups (at present, the only place where this is
used is in Kazhdan 1982, but the author has shown4 that it is unnecessary there). Finally,
this is the only approach that gives strong results.

NOTES. For the existence of canonical models, the first three steps were carried out in Deligne 1979.
For Langlands’s conjecture (theorems 4.2 and 4.4) they were carried out in Milne and Shih 1982b.
The embedding of Sh.G;X/ into Sh.G�;X�/ was used in Piatetski-Shapiro 1971 in the case the
group G is of type An to obtain a pair .G�;X�/ for which G�.Q`/ has no compact factors. Borovoi
suggested (in 1981) using the embeddings .G˛;X˛/ ,! .G�;X�/ to prove the existence of canonical
models for Shimura varieties not of abelian type. (Obtaining canonical models using embeddings of
Shimura varieties of type A1 was also an unstated object of Garrett (1982, 1984).)

10. Appendix: Schemes with a continuous action of a locally
profinite group

A locally profinite group is a locally compact totally disconnected group. In such a group
G, the compact open subgroups K form a fundamental system of neighbourhoods of the
identity element, and \K D 1.

4Added: J.S. Milne, Kazhdan’s theorem on arithmetic varieties. 42pp, March 28, 1984. Available at
www.jmilne.org and as arXiv:math/0106197.
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LEMMA 10.1. Let G be a locally profinite group, and let E be a separated topological space
with a continuous action E �G! E of G. For each compact open subgroup K in G, set
EK DE=K. Then5 .EK/ is a projective system, and E D lim

 �
E=K.

PROOF. Apply Bourbaki 1960, III.7.2, Cor 1 to the groups K acting on E, and observe that
lim
 �

K D
T
K D 1. 2

To give E together with the action of G is the same as to give the family .EK/ together
with the maps

x 7! xgWEK !EL; L� g�1Kg:

These remarks motivate the following definitions.
For the remainder of this section, “scheme” will mean “quasi-projective scheme over a

field k”, or a projective limit of such schemes.
Let G be a locally profinite group, and consider a family .SK/ of schemes, indexed by

the open compact subgroups K of G. Suppose that for each g 2 G and each K and L with
L� g�1Kg, there is given a morphism

�L;K.g/WSK ! SL

satisfying the conditions:
(i) �K;K.k/D id if k 2K;
(ii) �M;L.g/ı�L;K.h/D �M;L.gh/;
(iii) whenever K is normal in L, so that �K;K defines an action of the finite group L=K

on SK , SL is isomorphic to the quotient of SK by the finite group L=K.
We then call the family .SK ;�L;K/ a scheme with a continuous right action of G.

For each K � L, there is a map �L;K.1/WSK ! SL. In this way we get a projective
system of schemes whose limit S has a right action by G such that SK D S=K for all
compact open subgroups K of G. We shall also refer to S as a scheme with a continuous
right action of G.

EXAMPLE 10.2. Suppose G is compact and S is smooth. If G acts continuously on S in
such a way that the isotropy group of each geometric point of S is trivial, then S ! S=G
is a Galois covering with Galois group G. Conversely, if S ! S0 is a Galois covering with
Galois group G, then G acts on S in such a way that the isotropy group of each geometric
point is trivial.

For example, let S0 be a connected scheme, and fix a geometric point s! S0. Take S
to be the projective system of commutative triangles

s S 0

S0

�

with � finite and étale. Then S is a Galois covering of S0 with Galois group the étale
fundamental group �et

1 .S0; s/.

5Added 22.06.01: Need to assume that each EK is separated.
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Let S be a scheme over k with a continuous action of G. For a scheme Y over k, we set
Hom.Y;S/D lim

�!
Hom.Y;SK/. To give a scheme Y over S is the same as to give a scheme

YK over SK , each K sufficiently small, such that YK D YL�SL SK for K �L. Fix a locally
profinite group G and a profinite set � with a continuous right action of G. Assume that the
action is transitive, and that the orbits of a compact open subgroup are open: for any e 2 � ,
the bijection G=Ge! � (Ge D isotropy group at e) is a homeomorphism. Consider systems
consisting of a scheme S with a continuous right action of G together with a continuous
equivariant map S ! � . For e 2 � , the fibre Se over e is endowed with a continuous action
of Ge.

PROPOSITION 10.3. The functor S 7! Se is an equivalence from the category of schemes
S , endowed with a continuous action of G and a continuous equivariant map S ! � , to the
category of schemes Se endowed with a continuous action of Ge.

PROOF. See Deligne 1979, 2.7.3. 2

In particular, there is a reverse functor, Se 7! S . The scheme S will be said to have been
obtained from Se by induction from Ge to G.



Chapter III

Automorphic vector bundles

Just as automorphic functions are sections of the sheaf of germs of functions on a Shimura
variety, holomorphic automorphic forms are sections of certain vector bundles, called
automorphic vector bundles, on a Shimura variety. The main theorems for automorphic
vector bundles parallel those for Shimura varieties: every automorphic vector bundle V.J /
has a canonical model V.J /E over its reflex fieldE, and for each � 2Gal.Qal=Q/, �V.J /E
is the canonical model over �E of an explicitly determined automorphic vector bundle
V.�J /. In particular, this allows us to define, in complete generality, the notion of a
holomorphic automorphic form being rational over a number field.

Throughout this chapter .G;X/ is a pair satisfying (II 2.1). We write Zs.G/ for the
largest subtorus of Z.G/ that is split over R but which has no subtorus split over Q; thus
Zs.G/ is the largest subtorus of Z.G/ such that�

X�.Zs/
Gal.Qal=Q/ D 0

� acts as C1 on X�.Zs/

We write Gc for G=Zs.G/. Note that .G;X/ satisfies (II 2.1.2*) if and only if G DGc .

1. The compact dual symmetric Hermitian space LX

For each x 2 X , �x defines a decreasing filtration Filt.�x/ of RepC.G/ (see I 1), and we
define LX to be the G.C/-conjugacy class of filtrations of RepC.G/ containing Filt.�x/. If
.V;�/ is a faithful representation of GC, then LX can be identified with a G.C/-conjugacy
class of filtrations of V .

Fix a point o of X , and let Po be the subgroup of GC fixing Filt.�o/. Then Po is a
parabolic subgroup of GC (see I 1.7) and there is a bijection

G.C/=Po.C/! LX;

which endows LX with the structure of a smooth projective variety over C. We call LX the
compact dual symmetric Hermitian space of X . For any connected component XC of X ,
LX is the dual of XC in the sense of Helgason 1978, V.2.

Interpretation of LX as a classifying space

Let V be a vector bundle on a connected complex variety S . The type of a filtration

V � S1 � �� � � Sn D 0

52
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is the sequence of numbers, di D rank Si . Fix a vector space V over C and a filtration F �o
of V of type dD .d1; : : : ;dn/. Then the functor of complex varieties

F.S/D ffiltrations of VS
df
D S �V of type dg

is represented by the Grassman variety GL.V /=Qo, where Qo is the subgroup of GL.V /
stabilizing F �o . When V is defined over Q, so also is the Grassman variety.

Fix a family of tensors tD .t˛/˛2I for V , and let G be the subgroup of GL.V / fixing
the t˛. Then each t˛ defines a global tensor of VS , and the functor

Fo.S/D ffiltrations F � of VS s.t. .Vs;F �s ; t/� .V;F �o ; t/ all s 2 Sg

is represented by the subvarietyG=Po of the Grassman variety, where Po is now the stabilizer
of F �o in G.

We apply these remarks to .G;X/. Choose a faithful representation �WG! GL.V / of
G, and let tD .t˛/ be a family of tensors of V such that G is the subgroup of GL.V / fixing
the t˛. Choose a point o 2 X , and let F �o be the corresponding Hodge filtration of V.C/.
Then LX represents the functor Fo described above: the F �x for x 2 LX define a filtration of

the vector bundle V df
D LX �V.C/ and the triple .V;F �; t/ is universal.

In particular, we see that LX is realized as a subvariety of a Grassman variety GL.V .C//=Qo.
As in (II 2), we let MX be the G.C/-conjugacy class of homomorphisms Gm!GC contain-
ing �x for x 2X , and we let E.G;X/ be the field of definition of MX . The map

�x 7! Filt.�x/WMX ! LX

is surjective, from which it is clear that LX , regarded as a subvariety of GL.V /=Qo, is stable
under the action of any automorphism � fixing E.G;X/. Therefore LX is defined over
E.G;X/.

The Borel embedding

PROPOSITION 1.1. The map

ˇWX ! LX; x 7! Filt.�x/

embeds X as an open complex submanifold of LX . For o 2X , let Ko be the isotropy group
at o in G.R/, and let Po be the isotropy group at o 2 LX in G.C/; thenKo D Po\G.R/, and
the inclusion of Ko into Po identifies .Ko/C with a Levi subgroup of Po; we have

G.R/=Ko G.C/=Po.C/

X LX:

' '

PROOF. The fact that ˇ is holomorphic is a restatement of (II 3.2a). For the rest, we merely
note that the injectivity of X ! LX follows from the fact that the Hodge filtration determines
the Hodge decomposition (I 2). (See Helgason 1978, VIII 7 for the details.) 2

The map ˇ is the Borel embedding of X into LX .

EXAMPLE 1.2. Let .V; / be a symplectic space, and let .G;S˙/ be as in (II 2.4a). Thus
G D GSp.V; / and S˙ is the space of Hodge structures on V of type f.�1;0/; .0;�1/g for
which˙.2�{/ is a polarization. In this case, LX can be identified with the set of maximal
isotropic subspaces of V.C/ and ˇ with the map x 7! F 0x V .
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Conjugates of LX

As LX is an algebraic variety, � LX is defined for any � 2 Aut.C/. Recall from (I 7) that the
period torsor P is a torsor for T having a canonical point p 2P.C/. Define z1.�/ 2 T.C/
by:

�p D p � z1.�/:

Then z1.�/ 2 �S.C/, and so it defines an isomorphism

g 7! �;xg
df
D Œz1.�/ �g�WG.C/! �;xG.C/:

PROPOSITION 1.3. (a) Let x be a special point of X , and let �;x LX be the dual Hermitian
symmetric space associated with .�;xG; �;xX/. There is a unique isomorphism

L'�;x W � LX !
�;x LX

such that

(i) the point �x is mapped to �x, and

(ii) L'�;x ı .�g/D .�;xg/ı L'�;x , for all g in G.C/.

(b) Let x0 be a second special point; then the isomorphism

�;xg 7! �;x0gW �;xG.C/! �;x0G.C/

induces an isomorphism L'.� Ix0;x/W �;x LX ! �;x0 LX such that

L'.� Ix0;x/ı L'�;x D L'�;x0 .

PROOF. Straightforward. 2

REMARK 1.4. Let x be a CM-point of X , and let .V;�/ be a faithful representation of G.
Then .V;� ı �x/ defines a CM-motive M over Qal with V D HB.M/. There are Hodge
cycles t˛ on M such that G is the subgroup of GL.V /�Gm fixing the t˛, and we noted
in (II 4.1) that �;xG is the subgroup of GL.HB.�M//�Gm fixing the tensors � t˛. The
comparison isomorphisms between Betti and de Rham cohomology allow us to interpreteGC
and �;xGC as subgroups of GL.HdR.MC//�Gm and GL.HdR.�MC//�Gm respectively. If
we regard � as an embedding of Qal into C, then the map G.C/! �;xG.C/ is induced by
the isomorphism

HdR.M/˝Qal;� C!HdR.�M/:

2. Automorphic vector bundles

Let S be an algebraic variety over a field k with an action G�S ! S of an algebraic group.
By a G-vector bundle on S we mean a vector bundle .V;p/ on S together with an action of
G on V (as an algebraic variety) such that

(a) p.g �v/D g �p.v/ for all g 2G, v 2 V;

(b) the maps gWVs! Vgs are linear for all s 2 S .
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We shall be interested inGC vector bundles J on LX . As we saw in (1.1), the map ˇWX ,! LX

embeds X as an open submanifold of LX , and the action of G.C/ on LX extends that of G.R/
on X . Therefore such a vector bundle J restricts to a G.R/-vector bundle ˇ�1.J / on X . If
the action of GC on J factors through GcC, and K is sufficiently small, then, as in the proof
of (II 3.3), we can pass to the quotient and obtain a vector bundle

VK.J /DG.Q/nˇ�1.J /�G.Af /=K

on Sh.G;X/. (In �8 we discuss what happens when we no longer require that the action
factors through Gc .) For each g 2G.Af / and pair of open compact subgroups K and L of
G.Af / such that L� g�1Kg, there is a morphism

�L;K.g/ W VK.J /! VL.J /; Œx;a� 7! Œx;ag�:

PROPOSITION 2.1. (a) The vector bundles VK.J /, and the maps

�L;K.g/WVK.J /! VL.J /;

are algebraic.
(b) If XC has no factors isomorphic to the unit disk, then every analytic section of

VK.J / is algebraic, and the space of such sections is finite-dimensional over C.

PROOF. (a) When the boundary of Sh.G;X/ in its minimal compactification has codimen-
sion� 3, the proposition is a consequence of the following general lemma. We omit the proof
in the remaining case (but see (3.6) below). (b) The hypothesis implies that the codimension
of the boundary is � 2, and so the next lemma applies. 2

LEMMA 2.2. Let S be a nonsingular algebraic variety over C, embedded as an open sub-
variety of a complete algebraic variety NS . If NS XS has codimension � 2, then the functor
V 7! Van taking an algebraic vector bundle on S to its associated analytic vector bundle is
fully faithful; moreover � .S;V/D � .S;Van/ and these spaces are finite-dimensional. If
NS XS has codimension � 3, then V 7! Van is an equivalence of categories.

PROOF. This follows from theorems of Serre, Grothendieck, Siu, and Trautmann; see
Hartshorne 1970, p222. 2

The family V.J /D .VK.J //K is a scheme with a right action of G.Af /, in the sense
of (II 10). A vector bundle of the form VK.J /, J a GC-vector bundle on LX , will be
called an automorphic vector bundle, and a section f of V.J /K over ShK.G;X/ will be
called a (holomorphic) automorphic form1 of type J and level K. (When the boundary of
Sh.G;X/ in its minimal compactification has codimension one we must also require that f
be “holomorphic at infinity”.)

REMARK 2.3. (a) Fix a point o 2 LX , and let Po be the (parabolic) subgroup of GC fixing o.
For any GC-vector bundle J on LX , Po acts on the fibre Jo, and the map J 7! Jo defines an
equivalence from the category of GC-vector bundles on LX to RepC.Po/.

1Added 22.06.01. Sometime in the early 80’s, I became puzzled that, while there were dozens of papers and
books in which some class of functions was defined and its members called “automorphic forms”, there was
no definition of “automorphic form”, so I asked Deligne, who told me the above definition. As Larry Breen
says, one should get credit for knowing the right question to ask Deligne. The name “automorphic vector bundle”
arose in a conversation with Michael Harris.
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(b) From (a) we see that, in particular, every complex representation .V;�/ of Gc defines
a Gc-vector bundle on LX , and hence an automorphic vector bundle V.�/. There is a local
system V.�/ of C-vector spaces underlying V.�/, which can be described as follows: for K
sufficiently small, the fundamental group of �gnXC is the image � cg of gKg�1\G.Q/C
in Gc.Q/C (notation as in II 2); the restriction of VK.�/ to �gnXC is defined by the
representation of � cg on V given by �. It follows from (II 3.1) that V.�/ in this case has
a natural flat connection and that it is algebraic. (Note that a representation .V;�/ of Gc

defined over a subfield L of C gives rise, in the same way, to an L-local system on Sh.G;X/
contained in V.�/r.�/.)

(c) There is an infinite-dimensional version of the above construction: .g;Po/-modules
(not necessarily finite-dimensional) correspond toGC-equivariant quasi-coherent D-modules
on LX , and the same construction as above defines a functor from the category of GcC-
equivariant quasi-coherent D-modules on LX to the category of G.Af /-equivariant quasi-
coherent D-modules on Sh.G;X/. Recall that a .g;Po/-module is a Po-module with an
action of g whose restriction to po coincides with the differential of the Po-action. In the
case that the module is finite-dimensional, the action of g can be integrated to an action of G
extending that of P , and the corresponding D-module is coherent; it is therefore locally free
(Borel et al. 1987, p. 211), and the D-module structure on the module corresponds to a flat
connection. Thus this case reverts to that discussed in (b).

EXAMPLE 2.4. Let .G;X/ be the pair, as in (II 2.4), associated with a symplectic space
.V; /. There is a naturally defined abelian scheme A over Sh.G;X/ (cf. II 3.11). A point
o 2 LX corresponds to a maximal isotropic subspace W of V.C/, and Po is the subgroup of
G stabilizing W . Write S for Sh.G;X/, and 2g for the dimension of V .

(a) The automorphic vector bundle associated with the natural representation of Po on
V=W is the tangent space of A=S .

(b) The line bundle !.A=S/ is the dual of the automorphic vector bundle associated with
the determinant of the natural representation of Po on V=W .

(c) The canonical line bundle on S is the automorphic vector bundle associated with the
.gC1/st-power of the determinant of the natural representation of Po on V=W .

(d) The automorphic vector bundle associated with the standard representation of G on V
is HdR.A/, and the flat connection on it is the Gauss-Manin connection.

Relation to automorphic forms in the classical sense

The above discussion also makes sense for connected Shimura varieties Sh0.G;XC/: ˇ
defines an embedding XC ,! LX , and a GC-vector bundle J on LX defines an automorphic
vector bundle V0.J / on Sh0.G;XC/. We now explain how to interprete sections of such
bundles as holomorphic automorphic forms in the classical sense.

Let � be a discrete subgroup of Aut.XC/. Classically, one defines an automorphy factor
for .�;XC/ with values in a complex vector space V to be a mapping j W� �XC!GL.V /

such that:
(a) for each 
 2 � , x 7! j.
;x/ is holomorphic on XC;

(b) j.

 0;x/D j.
;
 0x/ �j.
 0;x/, all 
 , 
 0 2 � , x 2XC.
An automorphic form for � of type j is then a function f WXC! V such that

(a) f is holomorphic;
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(b) f .
x/D j.
;x/f .x/;

(c) f is “holomorphic at infinity”.
Let J be a GC-vector bundle on LX ; choose a point o 2 XC, and let V D Jˇ.o/. Because
XC is simply connected, the isomorphism V ! ˇ�1.J /o extends to an isomorphism
XC�V � ˇ�1.J /, and we can transfer the action of G.R/C on ˇ�1.J / to XC�V . Write


.x;v/D .
x;j.
;x/v/ for 
 2G.R/C; x 2XC; and v 2 V:

Then j WG.R/C�V ! V satisfies the conditions (a) and (b), and so its restriction to �K �V
is an automorphy factor. A section of V0.J /K on Sh0K.G;X

C/ can then be identified with
an automorphic form for �K of type j .

EXAMPLE 2.5. Let G D SL2, and let XC be the complex upper-half-plane (see II 1.5). The
map z 7! z�i

zCi
is an isomorphism from XC to D D fz 2 C j jzj< 1g. In this case LX is the

Riemann sphere, and X ,! LX is an isomorphism of X with the upper hemisphere. If we
take oD i (in the upper-half-plane), then

Po D

��
cos� �sin�
sin� cos�

��
If �k is the 2kth power of the obvious character of P0 and Vk is the corresponding automor-
phic vector bundle, then the sections of Vk holomorphic at infinity are elliptic modular forms
of weight k.

3. The standard principal bundle

The functor J 7! V.J / takes one algebraic object to a second, but passes through the
intermediary of the non-algebraic object X . In order to understand the rationality properties
of the functor, we need to replace X by an algebraic object — this we call the standard
principal bundle.

Review of principal bundles

Let S a complex manifold, and letG be a complex Lie group. A flat structure on a principal
G-bundle P is given by a covering U˛ of S for which the transition maps are constant.

Assume S is connected, and let QS be the universal covering space of S . A homomorphism
�W�1.S;s/!G defines a principal G-bundle

P.�/D QS �G=�; .s
;g/� .s;�.
/g/; s 2 QS; 
 2 �1.S;s/; g 2G;

on S , and there is a canonical flat structure on P.�/. Every principal G-bundle P over
S admitting a flat structure arises in this way. In the case that G D GL.V /, V a C-vector
space, P.�/ is the frame bundle of V.�/: the sections of P.�/ over an open subset U of
S can be identified with the isomorphisms aWU �V

�
! VjU (trivializations of V over U ).

Now suppose that � factors through a reductive algebraic subgroup G of GL.V /. Then P.�/
can be interpreted as the bundle of frames of V.�/ respecting certain tensors. When S is a
complex algebraic variety and V.�/ and the tensors are algebraic, then P.�/ is also algebraic:
it is a G-torsor over S .
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LEMMA 3.1. Let G be an algebraic group over a field k, and let � WP ! S be a torsor for
G over an algebraic k-variety S .

(a) The functor V 7! ��1V defines an equivalence between the category of vector bundles
on S and the category of G-vector bundles on P .

(b) If P has a flat structure, then to give a (flat) connection on V is the same as to give a
(flat) connection in ��1.V/.

PROOF. This is a standard consequence of descent theory. 2

Define
P.G;X/DG.Q/nX �Gc.C/�G.Af /=Z.Q/�;

q.x;c;a/z D .qx;qc;qaz/; q 2G.Q/; z 2Z.Q/�:

Then P.G;X/ is a principal Gc.C/-bundle on Sh.G;X/an, which we call the standard
principal bundle. The groupG.A0/ def

DG.C/�G.Af / acts on P.G;X/ according to the rule

Œx;z;a�.c;g/D Œx;zc;ag�; x 2X; z;c 2G.C/; a;g 2G.Af /:

Write � for the projection map P.G;X/! Sh.G;X/.

PROPOSITION 3.2. The bundle P.G;X/ is algebraic, and the action of G.A0/ is algebraic.

PROOF. For any faithful representation .V;�/ of GcC, P.G;X/ is the bundle of frames,
respecting certain tensors, of the vector bundle V.�/. Now apply (II 3.1). 2

REMARK 3.3. Let � be as in the above proof. The functor represented by P.G;X/ can be
described as follows: for any morphism 
 WT ! Sh.G;X/, the liftings of 
 to P.G;X/ cor-
respond to the trivializations T �V ! 
�1.V.�// of 
�1.V.�// respecting certain tensors.

For example, suppose .G;X/ satisfies (II 2.1*) and is of Hodge type. Corresponding to
a symplectic representation �WG ,! GSp.V; / there is an abelian scheme A over Sh.G;X/
such that HB.A/ D V.�/. For any point s 2 Sh.G;X/, ��1.s/ is equal to the set of
morphisms HB.As/˝C!HdR.As/ respecting certain Hodge cycles on As .

PROPOSITION 3.4. There is a canonical G.C/-equivariant map


 WP.G;X/! LX:

PROOF. Choose a faithful representation �WGcC ,!GL.V /, as before. The last remark shows
that a complex point p of P.G;X/ corresponds to an isomorphism V ! V.�/�.p/ respecting
certain tensors. The Hodge filtration on V.�/�.p/ pulls back to a filtration on V , and we
can map p to the corresponding point of LX . That this is a morphism of algebraic varieties
follows from the universal property of LX described in �1. 2

PROPOSITION 3.5. Let J be a GC- vector bundle on LX . Then V.J / is the unique vector
bundle on Sh.G;X/ such that ��1.V.J //D 
�1.J / (as a Gc-vector bundle).

PROOF. This follows directly from (3.3) and the definitions. 2
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The following diagram summarizes the situation:

V.J / ��1.V.J //D 
�1.J / J

Sh.G;X/ P.G;X/ X

X

� 


REMARK 3.6. Proposition 3.5 provides an alternative proof that the vector bundles V.J /
are algebraic.

4. Canonical models of standard principal bundles

The key result that allows us to construct canonical models is the following.

THEOREM 4.1. Let � 2 Aut.C/.
(a) For any special point x 2X , '�;x lifts canonically to an equivariant morphism

'P�;x W �P.G;X/! P.�;xG; �;xX/:

(b) If x0 is a second special point, then '.� Ix0;x/ lifts canonically to an equivariant
morphism

'P .� Ix0;x/WP.�;xG; �;xX/! P.�;x
0

G; �;x
0

X/

and
'P .� Ix0;x/ı'P�;x D '

P
�;x0 :

PROOF. The strategy is that outlined in (II 9); see the notes at the end of the Chapter. 2

EXAMPLE 4.2. (a) Suppose that .G;X/ is of Hodge type, and that it satisfies (II 2.1.2*).
Then the choice of a faithful representation .V;�/ of G defines an abelian scheme A (with
additional structure) on Sh.G;X/. From a CM-point x, we obtain a representation of
.�;xV; �;x�/ of �;xG, and therefore an abelian scheme (with additional structure) �;xA on
Sh.�;xG; �;xX/. Under our hypotheses, Sh.�;xG; �;xX/ is a fine moduli variety and �;xA is
the universal abelian scheme over it. The universality implies the existence of a commutative
diagram:

�A �;xA

� Sh.G;X/ Sh.�;xG; �;xX/:

As V.�/ D HdR.A/ and V.�;x�/ D HdR.
�;xA/, and P.G;X/ and P .�;xG; �;xX/ are the

frame bundles of V.�/ and V.�;x�/, the diagram gives 'P�;x .
(b) For the Shimura variety defined by a CM-pair .T;x/, it is possible to give an explicit

description of 'P�;x in terms of the period torsor.

THEOREM 4.3. (a) The standard principal bundleP.G;X/ has a canonical modelP.G;X/E
over E DE.G;X/.

(b) For any � 2 Gal.Qal=Q/, �P.G;X/E is a canonical model of P .�;xG; �;xX/.
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PROOF. This can be deduced from (4.1) in the same way as (II 5.5) is deduced from (II 4.2)
and (II 4.4). 2

EXAMPLE 4.4. (a) In the situation of (4.2a), A is defined over the canonical model Sh.G;X/E ,
and for any point s 2 Sh.G;X/E , ��1.s/ is equal to the set of morphisms HB.As/˝E!
HdR.As=E/ respecting certain Hodge cycles on As .

(b) In the situation of (4.2b), it is possible to give an explicit description of P.T;x/E in
terms of the period torsor.

REMARK 4.5. The following properties of 'P�;x provide justification for calling it canonical.
(i) A morphism .G;X/! .G0;X 0/ and a special point x 2X give rise to a commutative

diagram,

�P.G;X/ P.�;xG; �;xX/

�P.G0;X 0/ P.�;x
0

G0; �;x
0

X 0/:

'P�;x

'P
�;x0

Here x0 is the image of x in X 0.
(ii) Consider two pairs .G;X/ and .G0;X 0/ together with an identification .Gder;XC/D

.G0der;X 0C/. Let x be a special point of XC, and let x0 be the corresponding point of X 0C.
Then there is an equivariant commutative diagram:

�P.G;X/ �P 0.Gder;XC/ �P.G0;X 0/

P .�;xG; �;xX/ P 0.�;xGder; �;xXC/ P.�;x
0

G0; �;x
0

X 0/

'P�;x
'P
�;x0

whereP 0.Gder;XC/ is a principal bundle forGder on Sh0.Gder;XC/ andP 0.�;xGder; �;xXC/

is a certain principal bundle for �;xGder on Sh0 .�;xGder; �;xXC/.
The family of maps .'P�;x/ is uniquely determined by the properties (i) and (ii) and that

mentioned in (4.2b).

So far as the canonical model of P.G;X/ is concerned all one can say in general is that
it is constructed in a canonical fashion using the (canonical) maps 'P�;x . However, if one is
prepared to confine one’s attention to Shimura varieties whose weight is defined over Q, it is
possible to give a characterization similar to that for canonical models of Shimura varieties:
the map P.G;X/! P.G0;X 0/ defined by a morphism .G;X/! .G0;X 0/ is defined over
any field containing the reflex fields of .G;X/ and .G0;X 0/; for a pair .T;x/ as in (4.2b),
there is an explicit description of the canonical model of P.T;x/ in terms of the period
torsor; the canonical model of P.G;X/ is uniquely determined by the condition that, for
each CM-pair .T;x/� .G;X/, P.T;x/! P.G;X/ is defined over E.T;x/.

THEOREM 4.6. (a) The map 
 WP.G;X/! LX is rational over E.G;X/.
(b) For every � 2 Gal.Qal=Q/, the diagram

�P.G;X/E � LXE

P.�;xG; �;xX/�E
�;x LX�E

commutes.
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PROOF. See the notes at the end of the Chapter. 2

5. Canonical models of automorphic vector bundles

From the results in �4 on the standard principal bundle, it is possible to read off similar
results for automorphic bundles.

THEOREM 5.1. Let J be a Gc-vector bundle on LX , and assume that J is defined over a
number field E �E.G;X/.

(a) The automorphic vector bundle V.J / has a canonical model V.J /E over E.

(b) Let � be an automorphism of C, and let �;xJ be the vector bundle on �;x LX corre-
sponding to �J under the isomorphism of (1.3). There is a canonical commutative
diagram

�V.J /E V.�;xJ /�E

� Sh.G;X/E Sh.�;xG; �;xX/�E I

that is, �V.J /E is isomorphic to the canonical model of V.�;xJ /.
When J is defined by a representation .V;�/ of Gc , then the flat connection r.�/ descends
to the canonical model V.J /E and the isomorphism in (b) respects the flat connections on
�V.J /E and V.�;xJ /�E .

PROOF. According to (4.3) and (4.5), the maps

Sh.G;X/
�
 � P.G;X/



�! LX

are defined over E. We define V.J /E to be the vector bundle on Sh.G;X/E such that
��1.V.J /E /D 
�1.JE / (see 4.4). Part (b) can be proved using the diagram:

� Sh.G;X/E �P.G;X/E � LXE

Sh.�;xG; �;xX/�E P .�;xG; �;xX/�E
�;xX�E :

2

REMARK 5.2. Any equivariant differential operatorDWJ !J 0 betweenGC-vector bundles
on LX induces a differential operator V.D/WV.J /! V.J 0/ between the G.Af /-vector
bundles on Sh.G;X/. If D, J , and J 0 are defined over E �E.G;X/, then so also is V.D/.

REMARK 5.3. It would be of interest to re-interprete the above results in the context of (II
6), and to extend (II 7.2) to the standard principal bundle.

6. The local systems defined by a rational representation

We examine in more detail the various local systems defined by a representation .V;�/ of
Gc . As is explained above and in Chapter II, attached to such a representation we have:

(a) a local system of Q-vector spaces V.�/ on Sh.G;X/;
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(b) a local system of Q`-vector spaces V`.�/ on Sh.G;X/;

(c) a vector bundle V(�) with a flat connection r(�) on Sh.G;X/.
These are related by canonical comparison isomorphisms:

(i) V.�/˝Q`! V`.�/;
(ii) V.�/˝C! V.�/r.�/.

All these objects have an action of G.Af /, and the comparison isomorphisms are compatible
with the actions.

REMARK 6.1. It is an elementary result that V`.�/ has a canonical model overE.G;X/. For
K sufficiently small, Sh.G;X/ is Galois over ShK.G;X/ with Galois group the image Kc

of K in Gc.Af /, and V`.�/ is the sheaf on ShK.G;X/ corresponding to the representation
of Kc on V ˝Q` defined by �. This construction works over E.G;X/, and gives us the
canonical model of V`.�/. Moreover, when the weightwX is defined over Q, the local system
�V`.�/ on � Sh.G;X/ corresponds under '�;x to V`.�;x�/, where �;x� is the representation
of �;xG obtained from � by twisting by �S.

The objects in (b) and (c) are algebraic, and we can think of V.�/ as providing a
rational structure to the family .V`.�/; .V.�/;r.�//. The next result shows that the family
.�V`.�/;�.V.�/;r.�// on � Sh.G;X/ also has a canonical rational structure.

THEOREM 6.2. Let � be an automorphism of C, and let .V;�/ be a representation of Gc .
Assume that the composite of the weight map wX with G! Gc is defined over Q. Then
there is a canonical local system �V.�/ of Q-vector spaces on �Sh.G;X/ such that

(a) �V.�/˝Q` D �V`.�/, for all primes `;

(b) �V.�/˝CD .�V.�//�r.�/.

PROOF. We can use �S and the map �x WS! Gc to twist the representation .V;�/, and
so obtain a representation .�;xV; �;x�/ of �;xGc . Define �V.�/ to be the local system of Q-
vector spaces on �Sh.G;X/ corresponding to V.�;x�/ under the isomorphism '�;x . Theorem
4.4 implies that �V.�/ is independent of the choice of x, and it follows directly from its
construction that �V satisfies (a) and (b). 2

If we assume (II 3.9, 3.10), then .V;�/ defines a family of motives on Sh.G;X/, and we
should have

�V.�/DHB.�M/ (�M on � Sh.G;X/);
V`.�/E DH`.ME /, ME the canonical model of over Sh.G;X/E ;
.V.�/;r.�//E DHdR.ME / with its Gauss-Manin connection.

7. Automorphic forms rational over a subfield of C

DEFINITION 7.1. Let J be a GC-vector bundle on LX , rational over a number field E, with
E.G;X/�E � C. An automorphic form f of type J and level K is rational over E if it
arises from a section of VK.J /E over ShK.G;X/E .

Write AK.J /E D AK.G;X;J /E for the space of such forms; it is a vector space over
E.

PROPOSITION 7.2. With the above notations:

AK.J /E ˝E CD AK.J /C:
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PROOF. In general, if V is a vector bundle on a variety S over a field E, and C is an
extension field of E, then � .S;V/˝E C D � .SC ;VC /. 2

COROLLARY 7.3. The vector space Ak.J /E is finite-dimensional over E.

PROOF. This follows from (2.1b). 2

We now discuss rationality criteria in terms of special values. Assume that the weight
wX is defined over Q and that .G;X/ satisfies (II 2.1*). Consider the automorphic vector
bundle V.�/ defined by a representation .V;�/ of G. For each CM-pair .T;x/ � .G;X/,
there is a unique homomorphism �x WS! T such that �can ı�x D �x (see II 2.4). From
the representation .�jT /ı�x we obtain a CM-motive M over Qal with HB.M/D V , and
from the model ME of M over the canonical model of Sh.T;x/, we obtain an E.T;x/-
structure VE;x Ddf HdR.ME / on V.C/. It is also possible to construct VE;x directly from
the period torsor. There is a canonical identification of VE;x with the fibre V.�/E;x . Thus,
if an automorphic form f is defined over E.G;X/, then f .x/, regarded as an element
of V.�/x D V.C/ lies in the subspace VE;x; conversely, when this condition holds for all
CM-points, then f is defined over E.G;X/.

8. Automorphic stacks

Throughout this chapter we have insisted that the action of GC on a vector bundle J on LX
factor through GcC, and that a representation � of G factor through Gc . We now explain why
we have made these assumptions, and why it would be better to avoid them. Then we explain
how to do this.

Consider the case of a representation �WG ! GL.V /, and let K be a compact open
subgroup of G.Af /. The connected components of ShK.G;X/ are of the form �gnX

C

where �g is the image of � 0g
df
D gKg�1\G.Q/C in Gad.QC; here g 2G.Af / and XC is

a connected component of X . When � factors through Gc we define V.�/ to be the vector
bundle whose restriction to �gnXC is � cg nX

C �V.C/ where � cg is the image of � 0g in
Gc.Q/. This makes sense because, when K is is sufficiently small, the map � cg ! �g is
an isomorphism, the fibre of � cg nX

C�V.C/! �gnX
C over any point is isomorphic to

V.C/, and V.�/ is a vector bundle. When we drop this condition, V(�) will no longer be a
vector bundle. Consider for example the pair .G;X/ in (II 2.4b) defining the Hilbert modular
variety, and assume F ¤Q. The centre Z of G is F �. For g D 1, the kernel of � 0g ! �g is
K\Z.Q/, which is equal to the set of elements of F � congruent to 1 modulo some ideal.
This will be of finite index in the group of units of F �, and so is never trivial. The fibre
of � 0gnX �V.C/! �gnX will be the quotient of V.C/ by the action of this kernel, and so
we do not get a vector bundle by this construction. This same problem also occurs when
trying to define the universal family of abelian varieties over Sh.G;X/ (van der Geer 1988,
Chapter X).

So why not simply do as have done in this chapter and exclude them? Classically, one
defines automorphic forms as functions on the universal covering space X transforming in
certain ways relative to the group � . The reason we wish to consider them as sections of a
vector bundle on Sh.G;X/ is so that we can apply the methods of algebraic geometry. From
the classical point of view, it is unnatural to exclude them.

So how do we handle them? Just as in the case of the universal abelian scheme over the
Hilbert moduli variety, we should use stacks. Briefly, the idea is to pass to a partial quotient
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of X which makes sense algebraically, and on which V.�/ is an equivariant vector bundle.
In this way we obtain the notion of an automorphic stack.

In the case that the weight is defined over Q, it is possible to consider a concrete
realization of the stack. Let G0 be the smallest subgroup of G such that all h factor through
G0R. Then Zs.G0/D 0. Consider

Sh0.G;X/ df
DG0.Q/nX �G.Af /D lim

 �
G0.Q/nX �G.Af /=K:

It is a covering of Sh.G;X/, and every GC-vector bundle on LX defines a vector bundle on
Sh0.G;X/.

All results in the chapter continue to hold mutandis mutatis for automorphic stacks. In
fact, since the proofs proceed via connected Shimura varieties, where this problem doesn’t
arise, there is little extra difficulty in working with stacks rather than vector bundles.

NOTES. The principal theme of this chapter has been the problem of making sense of what it
means for an automorphic form to be defined over a number field. In the case of elliptic modular
functions, there is no difficulty: a modular form is defined over a number field if and only if its Fourier
coefficients lie in the field. Unfortunately, in higher dimension, Fourier-Jacobi series are much more
difficult to work with (see Chapter VII); moreover this method can only apply to noncompact Shimura
varieties.

There are basically four approaches to defining rationality of automorphic forms:

(a) using Fourier-Jacobi series (or their null-values...)

(b) in terms of the special values of the forms (that is, values at the special points);

(c) pulling-back to sub-Shimura varieties of type A1;

(d) directly defining a canonical model of the automorphic vector bundle.

Of course these approaches are not independent, and all should give the same answer when they
apply.

Shimura used special values (and periods) to define the notion of an automorphic form being
rational over Qal — see Shimura 1979. For applications of his results, see Shimura 1980, 1981. He
studies Fourier-Jacobi series in Shimura 1978a, 1978b. For certain Shimura varieties Garrett 1983
shows that (a), (b), and (c) lead to consistent notions of rationality.

Under the hypothesis that the weight wX is defined over Q and .G;X/ satisfies (2.1.2*), Harris
1985 defined a functor J 7! V.J /E from GC-vector bundles on LX to vector bundles on Sh.G;X/E ,
but did not show that the functor was canonical. This result was the inspiration for Milne 1988, which
proves the major statements in this section in the context of connected Shimura varieties. They can
be extended to (nonconnected) Shimura varieties by “induction” (in the sense of (II 10)). Full details
will be given2 in the book mentioned in the introduction. See also Harris 1986 where the relation
between (a) and (d) is investigated.

2Added 22.06.01: Alas, not.



Chapter IV

One-motives

A mixed Hodge structure on a vector space is an increasing filtration of the vector space
together with a Hodge structure on each of the quotients. Hodge structures degenerate
into mixed Hodge structures. The cohomology groups of a complex algebraic variety (not
necessarily smooth or complete) carry mixed Hodge structures.

Just as abelian varieties provide an algebro-geometric realization of certain Hodge
structures, one-motives provide an algebro-geometric realization of certain mixed Hodge
structures.

1. Mixed Hodge structures

A mixed Hodge structure is
(a) a finite-dimensional vector space V over Q,

(b) a finite increasing (weight) filtration W� on V , and

(c) a finite decreasing (Hodge) filtration F � on V ˝C such that, for each n, F � induces a
Hodge structure of weight n on

GrWn .V /
df
DWnV=Wn�1V:

When Q in the definition is replaced by k �R, we obtain the notion of a mixed k-Hodge
structure.

EXAMPLE 1.1. (a) A Hodge structure .V;F �/ of weight n can be made into a mixed Hodge
structure by setting WnV D V and Wn�1V D 0.

(b) The cohomology groups Hn.X;Q/ of any variety X over C (not necessarily non-
singular or complete) have natural mixed Hodge structures. This is the main theorem in
Deligne 1975.

(c) Let .V; / be a symplectic space over Q, and endow V ˝R with a Hodge structure
of type f.�1;0/; .0;�1/g for which  is a Riemann form (i.e., such that .2�i/ is a
polarization of the Hodge structure). Write F � for the corresponding filtration of V ˝C.
Let W be a totally isotropic subspace of V , and let W ? be the orthogonal complement of
W in V . Then we have a filtration

0 � W � W ? � V

jj jj jj jj

W�3V W�2V W�1V W0V;

65
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and one can check .V;W�;F �/ is a mixed Hodge structure (see Brylinski 1983, 4.2.1).

The level of a mixed Hodge structure is the length of the shortest interval Œc;d � such that

F p=F pC1 ¤ 0) c � p � d:

A morphism of mixed Hodge structures F WV ! V 0 is a linear map V ! V 0 respecting
the weight filtrations on V and V 0 and the Hodge filtrations on V ˝C and V 0˝C. The
category of mixed Hodge structures has a natural structure of a Tannakian category. The
Mumford-Tate group MT.V / of a mixed Hodge structure V is defined to be the affine
group scheme attached to the sub-Tannakian category generated by V and Q.1/.

The canonical bigrading

Let V be a mixed Hodge structure. For integers p and q, set QV p;q equal to

�
Wn.V /\F

p.V /
�
\

0@Wn.V /\ NF q.V /CX
2�i

Wn�i .V /\ NF
q�iC1.V //

1A
where nD�p�q. Then

(a) V D p̊;q
QV p;qI

(b) the projection of Wn.V / onto GrWn .V / induces an isomorphism

QV p;q!Hp;q.GrWn .V //

for all p;q with pCq D nI

(c) Wn.V /D
P
pCq�n

QV p;qI

(d) If W is a second mixed Hodge structure, then

.V Q̋ W /m;n D
O

pCp0Dm
qCq0Dn

QV p;q˝ QW p0;q0 :

(e) A morphism of mixed Hodge structures respects the bigrading.

For the proof, see Deligne 1971a, 1.2.10, 1.2.11. We may visualize (c) and (d) as:

p0 D p

! F p

Wn #

pCq D n

� QHp0;q0
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Clearly, an element of V.R/ is in QV 0;0 if and only if it is in bothW0V and F 0V . An element
of a space T D V ˝m˝ LV ˝n˝Q.r/ lying in QH 0;0 (or a sum of such elements) will be called
a Hodge tensor of V . As before, we let Gm act on T through its action on Q.1/. Define

QhWSC! GL.V .C//; Qh.z1;z2/ �v D z
�p
1 z

�q
2 �v; v 2 QV p;q;

and define Qh0WSC! GL.V .C//�Gm to be .z1;z2/ 7! . Qh.z1;z2/;z1z2/. Then t 2 T is a
Hodge tensor if and only if it is fixed by the image of h0.

PROPOSITION 1.2. (a) The Mumford-Tate group of V is the subgroup of GL.V /�Gm of
elements fixing all Hodge tensors of V .

(b) The Mumford-Tate group of V is the smallest subgroup of GL.V /�Gm whose
complex points contain the image of Qh0.

PROOF. (a) With any t 2V ˝m˝ LV ˝n˝Q.r/we can associate an ˛.t/2Hom.V ˝n;V ˝m.r//,
and t will be a Hodge cycle if and only if ˛.t/ is a morphism of Hodge structures. From
this it follows that Hodge tensors are fixed by GL.V /�Gm, and that Im. Qh0/�MT.V /.C/.
Thus the tensors fixed by MT.V / are precisely the Hodge tensors. Let M 0 be the subgroup
of GL.V /�Gm fixing the Hodge tensors. According to Deligne 1982a, 3.1c, in order to
prove that M 0 DMT.V /, it suffices to show that every Q-rational character of MT.V /

extends to GL.V /�Gm. Let �WMT.V /!GL.W / be such a character. Then W acquires a
mixed Hodge structure, and since it has dimension one, we must have W �Q.r/ for some
r . It is now obvious that � extends to GL.V /�Gm. (b) Let H be the smallest subgroup of
GL.V /�Gm such thatH.C/ contains the image of Qh0. Then an element of some subquotient
S of V ˝m˝ LV ˝n˝Q.r/ is in QS0;0 if and only if it is fixed by H . Thus MT.V / and H fix
the same tensors in all such subquotients, and this shows that the two groups are equal (see
Deligne 1982a, 3.2a). 2

PROPOSITION 1.3. Let G be an algebraic group over R, and let W� and F � be filtrations of
Rep.G/. Suppose that for some family .Vi ; �i / of representations of G such that \Ker.�i /
is finite, .W�;F �/ defines a mixed Hodge structure on Vi for all i ; then .W�;F �/ defines a
mixed Hodge structure on V for all representations .V;�/ of G.

PROOF. See Deligne 1973, III 1.11. 2

Variations of mixed Hodge structures.

A variation of mixed Hodge structures on a complex manifold S is
(a) a local system of Q-vector spaces V on S ,

(b) a filtration W� of V by local systems WiV ,

(c) a holomorphic filtration F � of V Ddef OS ˝V such that
(H1) r.F pV/�˝1˝F p�1V
(H2) for all s 2 S , .Vs;W�s;F �s / is a mixed Hodge structure.

When Q in the definition is replaced by k � R, then we obtain the notion of a variation
of mixed k-Hodge structures. The families of mixed Hodge structures arising naturally in
algebraic geometry are variations of mixed Hodge structures.

NOTES. Mixed Hodge structures were introduced by Deligne in order to be able to state the theorem
quoted in (1.1b). See Deligne 1971a, 1971b, 1975.
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2. One-motives

A semi-abelian variety over a field k is an extension of an abelian variety by a torus:

0! T !G! A! 0:

When k is algebraically closed, a character � of T then defines (by pushout) an element of
Ext1.A;Gm/D LA.k/; conversely, a homomorphism X�.T /! LA.k/ defines an extension
of A by T .

A one-motiveM over an algebraically closed field k is a triple .GM ;XM ;u/ comprising
a semi-abelian variety GM over k, a finitely generated torsion-free abelian group XM , and
a homomorphism uWXM ! GM .k/. The definition when k is not algebraically closed is
the same except that XM is a Gal.kal=k/-module and u is required to be an equivariant
homomorphismXM !GM .k

al/. We often drop the subscriptsM , and writeM D .X
u
!G/.

We regard it as a complex of length one. Thus a morphism of one-motives is a commutative
square:

X G

X 0 G0:

˛ ˇ

u0

A morphism (˛,ˇ ) is an isogeny if the cokernel of ˛ and the kernel of ˇ are both finite1. A
one-motive has a filtration:

W0M D .X ! G/

[ [ Gr0.M/ D X

W�1M D .0 ! G/

[ [ Gr�1.M/ D A

W�2M D .0 ! T /

[ [ Gr�2.M/ D T

0 ! 0

Betti homology

The Betti homology group of a one-motiveM over C is a mixed Hodge structure .HB.M/;F �;W�/

of type f.0;0/I.0;�1/; .�1;0/I.�1;�1/g such that

Gr0HB.M/DX˝Q
Gr�1HB.M/DH1.AM ;Q/
Gr�2HB.M/DH1.TM ;Q/�X�.T /˝Q:

To construct it, pull-back the top row of the following diagram by X !G,

0 H1.G/ Lie.G/ G 0

0 H1.G/ HB.M;Z/ X 0

exp

and define HB.M/DHB.M;Z/˝Q.
1Added 22.06.01: and ˛ is injective and ˇ is surjective.
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THEOREM 2.1. The functor M 7!HB.M/ defines an equivalence between the category of
one-motives over C, considered up to isogeny, and the category of mixed Hodge structures
of level � 1 for which Gr�1HB.M/ is polarizable.

PROOF. Deligne 1975, 10.1.3. 2

COROLLARY 2.2. Let .V;h/ be a Hodge structure of type f.�1;0/; .0;�1/g, and let  be
a polarization for .V;h/. Let W � V be a totally isotropic subspace. There is a unique
one-motive M (up to isogeny) such that HB.M/ is the mixed Hodge structure defined in
(1.1c).

REMARK 2.3. The theorem explains the one in “one-motive”. Note that one-motives are
not motives but mixed motives (the Betti homology of a motive is a sum of (pure) Hodge
structures).

The Mumford-Tate group MTM of M is defined to be the Mumford-Tate group of the
mixed Hodge structure HB.M/.

de Rham homology

Let M D .X !G/ be a one-motive over a field k. The exact sequence

0!X !G!M ! 0;

gives rise to an exact sequence of vector groups,

0! Hom.X;Ga/! Ext1.G;Ga/! Ext1.M;Ga/! 0:

There is an extension M \ D .X !G\/ of M by Ext1.M;Ga/_, which fits into a diagram,

X

0 Ext1.M;Ga/_ G\ G 0;

and which is universal among extensions of M by vector groups (Deligne 1975, 10.1.7).
Define HdR.M/D Lie.G\/. The map M 7!HdR.M/ is functorial in M , and so the weight
filtration on M defines a filtration W� on HdR.M/. The Hodge filtration is defined by

F�1HdR.M/DHdR.M/; (1)

F 0HdR.M/D Ext1.M;Ga/_ D Ker.LieG\! LieG/; (2)

F 1HdR.M/D 0: (3)

PROPOSITION 2.4. When k D C, there is a canonical isomorphism

.HdR.M/;F �;W�/! .HB.M/˝C;F �;W�/:

PROOF. See Deligne 1975, 10.1.8. 2
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`-adic homology

LetM D .X
u
!G/ be a one-motive over an algebraically closed field k, which, for simplicity,

we take to be of characteristic zero. Define

Mm DH
0.M ˝L .Z=mZ//:

Thus Mm is the zeroth cohomology group of the simple complex associated with the double
complex:

X G

X G;

u

m

u

�m

so that
Mm D f.x;g/ 2X �G.k/ j u.g/Dmgg=f.mx;u.x// j x 2Xg:

Define

H`.M/D .lim
 �

M`n/˝Z`Q`;

Hf .M/D˘ 0H`.M/ (restricted product).

When k is not algebraically closed, we set H`.M/DH`.M ˝k k
al/.

PROPOSITION 2.5. When k D C there is a canonical isomorphism

HB.M/˝Q`!H`.M/:

PROOF. This amounts to checking that HB.M;Z/˝ .Z=mZ/DMm. 2

The dual one-motive

There is a functor sending a one-motive M to its dual LM . Set

LX DX�.T /D Hom.T;Gm/;
LAD the dual abelian variety of A, Ext1.A;Gm/;
LT D Hom.X;Gm/:

Define LG to be Ext1.M=W�2M;Gm/. The sequence

0!X ! A!M=W�2M ! 0

gives rise to an exact sequence

0! LT ! LG! LA! 0:

As M is an extension of M=W�2M by T , from each x 2 LX we get an extension of
M=W�2M by Gm, and hence an element Lu.k/ of LG.k/. This defines the map Lu, and
completes the construction of LM . There are the following formulas:

HB. LM/D Hom.HB.M/;Q.1//;

H`. LM/D Hom.H`.M/;Q`.1//;

HdR. LM/D Hom.HdR.M/;k/:
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Symmetric one-motives

A polarization of a one-motive M is an isogeny �WM ! LM such that Gr�1.�/WA! LA

is a polarization of A. A one-motive together with a polarization, is called a symmetric
one-motive.

PROPOSITION 2.6. Giving a symmetric one-motive over k is equivalent to giving the
following data:

(a) a polarized abelian variety .A;�/ over k;

(b) a finitely generated torsion-free abelian group X with an action of Gal.kal=k/;

(c) a Gal.kal=k/-homorphism vWX ! A.kal/; let Lv D �ıv;

(d) a trivialization  of the inverse image by .v; Lv/ of the Poincaré biextension of A;  is
required to be symmetric, i.e., invariant under .x;x0/ 7! .x0;x/WX �X !X �X .

PROOF. In fact2, .M;�/ 7! .Gr�1.M/;Gr�1.�/;v/ can be made into an equivalence of
categories; cf. Deligne 1975, 10.2.14. 2

We explain (d). The Poincaré line bundle is the line bundle on A� LA which expresses the
duality between A and LA (Mumford 1970, �13). The Poincaré biextension is the Gm torsor
on A� LA obtained by removing the zero section from the Poincaré line bundle. Its inverse
image by .v; Lv/ is a Gm-torsor L on X �X regarded as a scheme of dimension zero. If  
is one trivialization, then any other is of the form  ıg, with g an element of Gm.X �X/
invariant under the symmetry X �X !X �X . Consequently, we have the following result.

COROLLARY 2.7. The symmetric one-motives with .A;�;vWX ! A/ fixed form a torsor
under Homsym.X �X;Gm/D Hom.S2.X/;Gm/.

Hodge cycles

When M is a one-motive over C, we define a Hodge cycle on M to be a Hodge tensor for
the mixed Hodge structure HB.M/. Propositions 2.4 and 2.5 show that such a cycle has
realizations in the de Rham and `-adic homology groups of M . When M is defined over an
algebraically closed field k, we say that a family s D .sdR; .s`// is a Hodge cycle relative to
an embedding � Wk ,! C if the components of s become the components of a Hodge cycle
s0 on �M .

PROPOSITION 2.8. Let M be a one-motive over an algebraically closed field k. If s is a
Hodge cycle on M relative to one embedding of k in C, then it is a Hodge cycle for every
embedding.

PROOF. The proof of (I 3.1) can be extended to one-motives; see Brylinski 1983, 2.2.5. 2

The procedure of (I 3) now allows us to define the notion of a Hodge cycle for a
one-motive over any field of characteristic zero.

2Added 22.06.01: Should be .M;�/ 7! .A;�;X; : : :/ ...
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One-motives of CM-type

A one-motiveM D .X
u
!G/ over a field k is said to be rationally decomposed if the image

of u is finite and the class of G in Ext1.A;T / is of finite order. It is then isogenous to

the one motive X
0
! T �A. When k D C, M is rationally decomposed if and only if the

mixed Hodge structure HB.M/ is isomorphic to the direct sum of the pure Hodge structures
HB.T /, HB.A/, and X˝Q (these are of types f.�1;�1/g, f.�1;0/; .0;�1/g, and f.0;0/g
respectively). To such a one-motive M , we attach a motive

hM D h.X�.T /˝Q/˚h.A/˚h.X˝Q/

in AV=k (the first and last summands are elements of Art=k; see I 4.1). A one-motive M is
said to be of CM-type if it is rationally decomposed and AM is of CM-type. Then hM lies
in CM=k. In particular, when M is defined over C, its Mumford-Tate group is a quotient of
S, and when M is defined over Q, it corresponds to a representation of the Taniyama group.

Moduli of one-motives

Let M be a one-motive over C, and write .H;W�;F �/ for HB.M/ with its mixed Hodge
structure. As in (I 1), the Mumford-Tate group P of M acquires a filtration

1DW�3P �W�2P �W�1P �W0P D P

from the weight filtration on H :

W�iP D fp 2 P j .1�p/.WmHB.M//�Wm�iHB.M/; all mg:

The group W�1P is unipotent, and the quotient P=W�1P is the Mumford-Tate group of
Gr�1.M/D A. Therefore P=W�1P is reductive, and W�1P is the unipotent radical of P .

LEMMA 2.9. (a) For all p 2 P.R/ �W�1P.C/, the filtration p �F � of H ˝C defines a
mixed Hodge structure on .H;W /.

(b) There exists a p 2W�1P.C/ such that the mixed Hodge structure .H;W�;p �F �/ is
rationally decomposed.

PROOF. Brylinski 1983, 2.2.8 (see also VI 1). 2

LEMMA 2.10. The mixed Hodge structure on LieP defined by .W�;p �F �/ is of type
f.�1;�1/I.�1;0/; .0;�1/I.�1;1/; .0;0/; .1;�1/g.

�1

1

1

�1

It follows that F 0P \W�1P is commutative, because,

ŒF 0P \W�1P;F
0P \W�1P �� F

0P \W�2P D 0:
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Choose a lattice H.Z/ in H . The family of one-motives p �M , p 2 P.R/ �W�1P.C/ is
parametrized by the space

V D � nP.R/ �W�1P.C/=F 0P.C/

where � is the subgroup of P.Q/ respecting the lattice.

THEOREM 2.11. When � is replaced by a sufficiently small congruence subgroup, the
variety V has a natural structure of an algebraic variety, and the analytic family of one-
motives over it also has a natural structure of an algebraic variety.

PROOF. Brylinski 1983, 2.3.2.1 (see also Chapter VI). 2

By introducing level structures and Hodge cycles, it is possible to strengthen the theorem
in order to obtain a universal family of one-motives.

NOTES. The concept of a one-motive is due to Deligne 1975.

3. Degenerating families of symmetric one-motives

Understanding the boundaries of Shimura varieties of Hodge type is closely related to
understanding the degeneration of abelian varieties and one-motives. The degeneration
theorem we state below is an algebraic analogue of the following analytic statements. Let D
be the unit disk and let D0 DD�f0g. Consider functions fi WD! C such that fi .z/¤ 0
for z ¤ 0 and fi .0/D 0 for 1� i � r . Let T , G, and A be the complex manifolds over D
whose fibres over z 2D are:

Tz D C�r ;
Gz D C�m=hfrC1.z/; : : : ;fm.z/i ;
Az D C�m�r=hfrC1.z/; : : : ;fm.z/i :

Here hfrC1.z/; : : : ;fm.z/i is the abelian subgroup generated by frC1.z/, . . . , fm.z/. There
is an exact sequence

0 T G A 1:

The functions f1; : : : ;fr define a map uWX ! G where X is the constant local system Zr on
D. Let AD G=u.X/. Then A is the complex-analytic analogue of a semi-abelian variety,
the map G! A is a local isomorphism, and the fibre of A over 0 is equal to the fibre of G
over 0.

Let R a Noetherian, excellent, normal ring that is complete with respect to a radical ideal
I; let

S D SpecRI

�D generic point of S D SpecKI

S0 D SpecA=I:

Intuitively, a degenerating one-motive over S is a one-motive over S XS0 whose period
group degenerates totally along S0. It is most convenient to state the definition in terms of
the quadruple considered in (2.6).
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DEFINITION 3.1. A degenerating family of symmetric one-motives over S is:
(a) an abelian scheme pWA! S and a polarization �WA! LA;

(b) a morphism vWX !A.S/, where X is a free Z-module of finite rank; let Lv D �ıv;

(c) a symmetric trivialisation  of the inverse image by .v; Lv/ of the Poincaré biextension
of AK and LAK by Gm.

There is also a degeneracy condition for whose statement we refer to Brylinski 1983,
3.1.1.

From the data in (a) and (b), we can construct a semi-abelian variety G over S : let T be
the constant split torus over S with X�.T /D X ; then G is an extension of A by T , such
that, for all characters � of T , ��.G/ is an element of Ext1.A;Gm/ representing Lv.�/.

THEOREM 3.2. There exists a semi-abelian scheme A over S , arising in a natural way from
a degenerating one-motive, such that

(a) the formal completion of A is the quotient of the formal completion of G by the group
of periods u.X/;

(b) the restrictions to S0 of the semi-abelian schemes A and G are canonically isomorphic.

PROOF. In the case that G D T this was proved by Mumford 1972. Apparently, he also
proved the general case, but never published it. There is a sketch of a proof in Brylinski
1983 and a detailed proof in Chai 1985. 2

REMARK 3.3. In Faltings 1985 there is an important converse to (3.2).

NOTES. The theorems in this section are due to Mumford 1972, Brylinski 1983, Faltings 1985, and
Chai 1985. The most complete account is in Chai and Faltings 1989.



Chapter V

Toroidal compactification

We explain how to construct (smooth) toroidal compactifications of Shimura varieties, and
suggest how the isomorphisms of Chapters II and III extend to these compactifications.

1. Torus embeddings

We review (without proofs) the construction in algebraic geometry on which the method
of toroidal compactifications is based. Throughout this section, k will be an algebraically
closed field, and “variety” will mean a reduced irreducible separated scheme locally of
finite-type over k. All semigroups have zero elements and a subsemigroup of a (semi-) group
contains the zero element of the (semi-) group.

Definitions

Let T be a d -dimensional torus over a field k. Write M D X�.T /� � .T;OT / and N D
X�.T /. For r 2M let �r be the corresponding element of � .T;OT /, and for a 2 N , let
�aWGm! T be the corresponding cocharacter. We have a pairing

h ;i WM �N ! Z; �r.�a.t//D t
hr;ai:

As a k-algebra, � .T;OT / is generated by f�r j r 2M g. Moreover, if r1; : : : ; rd is a basis
for M , then

� .T;OT /D kŒ�r1 ;��1r1 ; : : : ;�rd ;�
�1
rd
�:

A torus embedding of T is an open immersion T ,! X of varieties together with an
action of T on X whose restriction to T is the multiplication map. A morphism of torus
embeddings is a homomorphism f WX ! X 0 whose restriction to T is a homomorphism
T ! T 0 and which makes

T �X X

T 0�X 0 X 0

.F jT /�f f

commute. The torus embedding is said to be affine if X is affine.

75
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Affine torus embeddings

Let S �M be a finitely generated semigroup, and let kŒS� be the subalgebra of � .T;OT /
generated by f�r j r 2 Sg. It is a finitely generated k-subalgebra of � .T;OT /, and its field
of fractions is k.T / if and only if S generates M (as a group). In this case, T acts on
XS Ddef SpeckŒS�, and T ,!XS is an affine torus embedding. We have

XS .k/D Hom�.S;k/
df
D fx W S ! k j x.0/D 1; x.sC s0/D x.s/x.s0/g:

EXAMPLE 1.1. Let T D Gdm, so that M D Zd and the coordinate ring of T , kŒT � D
kŒ�1;�

�1
1 ; : : : �. Let

S D f.mi ; : : : ;md / jm1 � 0; i D 1; : : : ; sg:

Then SpeckŒS�D ks � .k�/d�s .

Let ' be a morphism A1Xf0g!X ; when ' extends to a morphism Q'WA1!X , we say
that limt!0'.t/ exists and equals Q'.a/. With this definition, it is possible to describe XS as
the variety obtained from T by adding certain limit points: for each a 2N , limt!0�a.t/

exists in XS if and only if ha;Si � 0.

PROPOSITION 1.2. (a) The map S 7! .T ,! XS / defines a one-to-one correspondence
between the set of finitely generated semigroups S in M generating M as a group and the
set of isomorphism classes of affine torus embeddings of T .

(b) An inclusion S � S 0 defines a morphism XS 0 ,!XS
(c) XS is a normal variety if and only if S is a saturated in M , i.e., m 2 S whenever

rm 2 S for some r 2 N, r ¤ 0.

We want to patch affine torus embeddings together; for this it is convenient use different
combinatorial data, so that the functor attaching a torus embedding to the data is covariant.
A subset � �NR is called a convex polyhedral cone if there exist vectors n1; : : : ;ns in NR
such that

� D

8<:X
i�1

aini j ai 2 R; ai � 0

9=; :
It is rational if the ni can be chosen in N , and it is strongly convex if further � \ .��/D 0
(equivalently, � contains no nonzero subspace of NR). The dimension of the subspace
generated by � is called the dimension of � .

Let � D
P

R�0ni be a strongly convex rational polyhedral cone. If we remove redundant
ni ’s and require each to be primitive (that is, such that rni …N , r 2 Z, r > 1), then the set
fn1; : : : ;nrg is uniquely determined. These ni are called the fundamental generators of � .

The dual of � is the convex rational polyhedral cone L� in MR:

L� D fr DMR j hr;ai � 0; all a 2 �g:

PROPOSITION 1.3. The map � 7! L� \M defines a one-to-one correspondence between
the set of strongly convex rational polyhedral cones in NR and the set of finitely generated
semigroups S �M generating M and saturated in M .

For a convex rational polyhedral cone � in NR, write X� for SpeckŒ L� \M�. Note that
for the cone �0 D f0g, X�0 D T . On combining the last two propositions, we obtain the
following result.
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COROLLARY 1.4. The map � 7! X� defines a one-to-one correspondence between the
set of strongly convex rational polyhedral cones in NR and the set of affine normal torus
embeddings of T .

REMARK 1.5. The following criterion allows us to reconstruct � from X� : an element a of
N lies in �, limt!0�a.t/ exists in X� .

PROPOSITION 1.6. The variety X� is nonsingular if and only if the fundamental generators
of � form part of a Z-basis of N .

A strongly convex rational polyhedral cone satisfying the condition in the proposition is
said to be nonsingular.

The intersection of a strongly convex rational polyhedral cone � with a hyperplane that
does not meet the interior of � is called a face, � � � , of � . There is then an r0 in L� \M
such that

� D fx 2 � j hr0;xi D 0g;

and � is again a strongly convex rational polyhedral cone. The semigroup L� \M associated
with � is L� \M CN.�r0/.

PROPOSITION 1.7. If � and � are strictly convex rational polyhedral cones and � � � ,
then there is a natural morphism X� !X� of torus embeddings; the morphism is an open
immersion if and only if � is a face of � .

On points, the map is the natural inclusion

Hom�. L� \M;k/ ,! Hom�. L� \M;k/

induced by L� \M ,! L� \M .

General torus embeddings

The last result suggests how to patch together X� for different � .

DEFINITION 1.8. A fan (formerly, rational partial polyhedral decomposition) of NR is a
nonempty collection �D f�g of strongly convex rational polyhedral cones such that:

(i) every face of a cone in � is also in �;
(ii) if � and � 0 are in �, then � \� 0 is a face of both � and � 0 .

The set j�j D [�2�� is called the support of �, and � is said to be complete if j�j DNR.

For example, the set of all faces of a strongly convex rational polyhedral cone is a fan.
Let � be a fan in NR, and let

X� D f.�;�/ j � 2�; � 2 Hom�. L� \M;k/g=�;

where .�;�/ � .� 0;� 0/ if and only if � and � 0 are restrictions of a single element of
Hom�..� \� 0/_\M;k/.

PROPOSITION 1.9. The space X� has a unique structure of an algebraic variety for which
the maps X� ,!X� are open immersions for all � 2�. In particular, T DX�0 ,!X� is
an open immersion. There is a unique action of T on X� extending its action on each X� .

To summarize: we have attached to each fan in NR a normal torus embedding T �X�.
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EXAMPLE 1.10. Let N D Z, � D R�0 �NR, �D f�;��;f0gg; then X� D P1.

THEOREM 1.11. (a) X� is of finite-type if and only if � is finite.

(b) X� is nonsingular if and only each X� is nonsingular.

(c) X� is complete if and only if � is a finite and complete fan.

(d) X� is quasi-projective if and only if � is finite and there is a continuous real-valued
convex function on the convex hull of j�j such that

(i) f j� is R-linear, all � 2�;

(ii) f takes integer values on N \j�j;

(iii) for each � 2�, there is an r� 2M and an n� > 0 such that n�f � r� on j�j
and

� D fa 2NR j hr� ;ai D n�f .a/g:

The function f in (iii) is called a polar function. It defines a T -equivariant ample
invertible sheaf on X�.

REMARK 1.12. (a) The X� for � 2 � are the T -stable affine open subsets of X�. In
particular, X� is affine if and only if there is a � 2� such that � coincides with the set of
faces of � .

(b) The description given above for the k-points of X� extends to a description of the
functor of k-schemes defined by X� (see Ash et al. 1975, p. 10, except note that they forget
to pass to the equivalence classes).

PROPOSITION 1.13. Each torus embedding T � X with X normal is isomorphic to the
torus embedding defined by a fan � in X�.T /˝R, and � is uniquely determined.

Equivariant maps

A map of fans 'W.N 0;�0/! .N;�/ is a homomorphism 'WN 0! N such that the image
under 'R of each � 0 2�0 is contained in a � 2�.

PROPOSITION 1.14. Let 'W.N 0;�0/! .N;�/ be a map of fans; the map TN 0 ! TN de-
fined by ' extends uniquely to a morphism '�WX�0 ! X�, and �� is equivariant. Each
morphism of torus embeddings X�0 !X� arises in this way from a unique map of fans.

PROPOSITION 1.15. The morphism '� is proper and birational if and only if 'WN 0!N is
an isomorphism and �0 is a locally finite subdivision of �.

Rationality of torus embeddings over subfields

Let � Wk ,! k0 be an inclusion of k into a second algebraically closed field k0. Then � defines
an isomorphism X�.T /! X�.�T /, and a fan � in X�.T /˝R is mapped to a fan �� in
X�.�T /˝R. Clearly, �.X�/DX�� as torus embeddings of �T .

Now suppose that T is defined over a subfield k0 of k over which k is Galois. Then
Gal.k=k0/ acts on N (through its action on T ), and descent theory shows that a quasi-
projective normal torus embedding T ,! X� is defined over k0 if and only if � is stable
under the action of Gal.k=k0/ on NR.
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Toroidal embeddings

Let Y be a normal variety, and let U be a smooth open subset of Y . We say that U � Y is a
toroidal embedding if it is a torus embedding locally for the étale topology. We mean by
this that for every closed point y of Y there is an open neighbourhood Y 0 of y, a normal
affine torus embedding T �X , and an étale map � WY 0!X such that ��1.T /D U \Y 0:

Y Y 0 X

U U \Y 0 T:

open étale

Compactification of torsors

Let V be a variety, and let P be a T -torsor over V . For any torus embedding T ,! X we
can define:

P �TX D .P �X/=�; .pt;x/� .p; tx/; p 2 P; x 2X; t 2 T:

This is a variety over X . The choice of a point p in the fibre Pv of P over a closed point
v 2 V defines an isomorphism

T X

Pv .P �T X/v

' '

A similar construction can be made when V is a complex manifold. In this case, P �TX
is a fibre bundle over V with standard fibre X (see Kobayashi and Nomizu, 1963).

NOTES. Detailed proofs of the results in this section can be found in Kempf et al. 1972 and Oda
1978, 1987.

2. Study of the boundary of symmetric Hermitian domains

There is a very elaborate theory concerning the boundaries of Hermitian symmetric domains.
We can include only a very brief sketch.

Rational boundary components

Let D be a symmetric Hermitian domain. Since we are interested in its boundary, we
assume D to be noncompact. There then exists a semisimple group G over Q such that
G.R/C D Aut.D/C.

As was explained in (III 1), there is a canonical embedding ˇWD ,! LD of D into
its compact dual. The closure ND of D in LD is called the natural compactification of
D. The action of G.R/C on D extends to a continuous action on ND. The space ND can
be decomposed according to the equivalence relation generated by the following relation:
x � y if there is a holomorphic map �WD1! LD from the unit disk D1 into LD such that
fx;yg � �.D1/� ND. The equivalence classes are called the boundary components of D.
Note that this definition allows D itself to be an boundary component of ND (called the
improper boundary component).
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The normalizer of a boundary component F is the subgroup N of G.R/C containing
those g such that gF D F . The component F is said to be rational if there is a subgroup
NF �G (defined over Q such that NC DNF .R/C.

PROPOSITION 2.1. (a) When G is simple, the map F 7!NF is a bijection from the set of
proper rational boundary components of D to the set of maximal parabolic subgroups of G.

(b) Suppose G DG1�� � ��Gm with each Gi simple, and let D DD1�� � ��Dm be the
corresponding decomposition of X . The rational boundary components F of D are products
F1�� � ��Fm with each Fi a rational boundary component ofDi , and the normalizer of such
an F is the product of the normalizers of the Fi .

PROOF. See Baily and Borel 1966, 3.7. 2

From now on, we assume G to be simple (over Q).

EXAMPLE 2.2. Let .V; / be a symplectic space, let G D Sp.V; /, and let D be the
corresponding Siegel upper-half-space. For any totally isotropic subspace W of V , the
stabilizer N of W in V is a maximal parabolic subgroup of G, and all such subgroups are
of this form. The boundary component F corresponding to N is isomorphic to the Siegel
upper-half-space defined by the symplectic space .W ?=W; N /.

For example, if dimV D 2, then the totally isotropic subspaces are the (rational) lines in
V . They are in one-to-one correspondence with the points of P1.Q/. When D is realized as
the open unit disk, then the rational boundary components are the points on the circle that lie
on a line through the origin with rational slope.

Cayley filtrations

For each point x 2D, there is homomorphism hx W S!GR such that hx.z/ fixes x and acts
on Tgtx.D/ as multiplication by z2. The map x 7! hx identifiesD with aG.R/C-conjugacy
class of maps. For a representation .V;�/ of GR, � ıhx defines a Hodge structure on V and
a (decreasing) Hodge filtration F �x on V.C/.

DEFINITION 2.3. A filtration W� of RepQ.G/ is said to be Cayley if for all x 2 D and
all representations �WG! GL.V /, the filtrations W� and F �x of V define a mixed Hodge
structure on V .

PROPOSITION 2.4. If W� is a Cayley filtration, then W0G is a maximal parabolic subgroup
of G, and every maximal parabolic subgroup of G is associated in this way with a unique
Cayley filtration.

PROOF. See Deligne 1973, 3.1.13. 2

Thus each rational boundary component F defines a Cayley filtration W� of RepQ.G/.
Deligne (ibid. 3.1.14) shows that for each F , there is a unique cocharacter wF of G splitting
the corresponding Cayley filtration and such that .adh.i//ıwF D w�1F .

THEOREM 2.5. Fix a base point o 2D and a rational boundary component F of ND. Then
there exists a unique homomorphism

'F WU
1
�SL.2;R/!G.R/

such that
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(i) 'F .ei� ; r.�//D ho.ei� /; r.�/D

�
cos� �sin�
sin� cos�

�
,

(ii) 'F .1;
�
� 0
0 ��1

�
/D wF .�/; � 2 U 1:

PROOF. Deligne 1973, 3.1.14. 2

REMARK 2.6. (a) LetH be the upper-half-plane. There is a holomorphic map fF WH !D

that is equivariant for 'F and such that fF .i/D o and fF .1/ 2 F (Ash et al. 1975, p. 199).
(b) Since G is simple it can be written G D ResF=QG0 with G0 an absolutely simple

group over a totally real field F . Choose a point o 2D such that ho factors through T .R/
with T a maximal torus in G. If E is a CM-field splitting T 0, then 'F is defined over the
maximal totally real subfield of E (because both h0 and wF are).

The structure of N F

Fix a base point o 2D and a rational boundary component F . The Hodge structure on g
defined by ho is of type f.�1;1/; .0;0/; .1;�1/g (cf. II 1). It follows that the nonzero Hodge
numbers hpq of the mixed Hodge structure .g;W�;F �o / satisfy jpj, jqj � 1. The action of
wF therefore defines a grading:

gD g�2˚g�1˚g0˚g1˚g2:

There are attached to F the following algebraic groups over Q:
˘ NF DW0G; LieNF D g�2˚g�1˚g0.

˘ W F DW�1G D unipotent radical of NF ; LieW F D g�2˚g�1.

˘ UF DW�2G D centre of W F ; this is an abelian group, which we can identify with
its Lie algebra g�2.

˘ Z.wF /D centralizer of wF in NF ; Lie.wF /D g0, and NF DW F ÌZ.wF /.
˘ V F DW F =UF ; this is an abelian group, which we can identify with its Lie algebra

g�1. Write g` D Œg
2;g�2�, and gh D orthogonal complement Œg2;g�2� in g0. The

decomposition g0D g`Cgh can be integrated to an isogeny Gh�G`!Z.wF /. In
summary:

W F ÌZ.wF /D NF

j �Gh�G`
W F

j V F

UF

j

f1g

PROPOSITION 2.7. (a) F is a symmetric Hermitian domain; Gh is semisimple, and

Gh.R/C=.maximal compact subgroup/D Aut.F /C:

(b) The morphism 'W sends U 1 into Gh, and it sends SL2.R/ into G`; moreover,
'W jU

1WU 1!Gh.R/ defines the complex structure on F .

(c) G` is reductive without compact factors.
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(d) The centralizer of F , Z D fg 2 G.R/ j gx D x all x 2 F g, has identity component
G`�W

F .

(e) Gh �W F centralizes UF .

PROOF. Ash et al. 1975, III.3. 2

EXAMPLE 2.8. With the notations of (2.2), Gh D Sp.W ?=W; N /, G` D GL.W /, and
MF D 0. Moreover, UF is the space of symmetric bilinear forms on V.R/.

The canonical self-dual open cone in U F .R/

In addition to the closed cones of �1, we shall need to consider open cones in real vector
spaces. Such a cone C in a real space V is said to be self-dual if there exists a positive-
definite inner form h ;i on V with the property that x 2 C if and only if hx;yi> 0 whenever
0¤ y 2 NC (closure of C ). The cone is said to be homogeneous if the group Aut.V;C / of
automorphisms of V stabilizing C acts transitively on C .

EXAMPLE 2.9. Every homogeneous self-adjoint cone can be written as a product of in-
decomposable cones. Apart from one family of semi-classical cones and one exceptional
cone, every indecomposable homogeneous self-adjoint cone is isomorphic to a cone in the
following list:

(i) the cone of positive-definite real symmetric matrices;
(ii) the cone of positive-definite Hermitian complex matrices;
(iii) the cone of positive-definite Hermitian quaternion matrices.

The Killing form B defines a Hermitian form on gC,

B 0.x;y/D�B.x; �y/; x;y 2 gC;

which restricts to a positive-definite form on uF . The isomorphism expWuF ! UF allows
us to transfer this to UF .

Define ˝F to be the point 'F .1;
�
1 1
0 1

�
/ of UF . Then the orbit of ˝F in UF .R/ under

G`.R/,
C.F /D fg˝F g

�1
j g 2G`.R/g;

is a homogeneous open cone in UF .R/, which is self-dual relative to B 0.

EXAMPLE 2.10. In the situation of (2.2), C.F / is the cone of all positive-definite bilinear
forms on W .

Definition of Siegel domains

DEFINITION 2.11. Let U be a real vector space and let C be an open convex cone in U
whose closure does not contain an entire straight line. Then

S D fz 2 U.C/ j Im.z/ 2 C g D U C iC

is a tube domain (or Siegel domain of the first kind).

Let U be a real vector space and V a complex vector space; a real-bilinear map V �V !
U.C/ is said to be semi-Hermitian if it can be written as the sum of a symmetric complex-
bilinear map and a Hermitian map.
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DEFINITION 2.12. Let U be a real vector space, let V be a complex vector space, and let
D be a bounded domain in some space Ck ; let C � U be a cone satisfying the conditions of
(2.11). Suppose that for each t 2D there is given a nondegenerate semi-Hermitian form Lt
on V with values in U . Then

S D fw D .z;v; t/ 2 U �V �D j Im.z/�<.Lt .v;v// 2 C g

is a Siegel domain (of the third kind). Thus a Siegel domain can be thought of as a family
of tube domains parametrized by V �D.

Realization of D as a Siegel domain

We now describe the realization of D as a Siegel domain of the third kind, attached to the
component F . Let

D.F /D UF .C/ �D D
[

g2UF .C/

gD � LD:

EXAMPLE 2.13. In the situation of 2.2, D.F / is the set of maximal isotropic subspaces
F 0 � V such that .V;W�;F �/ is a mixed Hodge structure and N is a polarization ofW=W ?.
Here W� and F � are the filtrations:

0�W �W ? � V; V D F�1V � F 0 � F 1V D 0:

There is a NF .R/ �UF .C/-equivariant map ˚F WD.F /! UF .C/ such that DD ˚�1F .C /.
The space D.F / can be decomposed by means of two successive fibrations:

D.F /

D.F /0D UF .C/nD.F /

F

�1

�F

�2

Moreover,
D.F / is a fibre bundle over D.F /0 for the complex group UF .C/;
D.F /0! F is a principal C1-fibration for the group V F .R/.

Both fibrations can be trivialized,

D.F /� UF .C/�D.F /0 � UF .C/�V F .C/�F;

and with the choice of such a decomposition, ˚F can be expressed

˚F .z;v; t/D Im.z/�ht .v;v/; z 2 UF .C/; v 2 V F .C/; z 2 F

with ht a real bilinear form V F .R/�V F .R/! UF depending real-analytically on t . Thus
D is equal to

f.z;v; t/ j z 2 UF .C/; v 2 V F .C/; t 2 F; Im.z/�ht .v;v/ 2 C.F /g;

which realizes it as a Siegel domain.
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Algebraicity of the quotient of D.F / by a discrete group

An arithmetic subgroup � of G.R/ is said to be neat if it consists of elements g such that,
for one (hence every) faithful complex representation � of G, the subgroup of C� generated
by the eigenvalues of �.g/ is torsion-free. In particular, a neat subgroup is torsion-free.

Choose a neat arithmetic subgroup � of G.R/ (every arithmetic subgroup contains a
subgroup of finite index that is neat), and define:
˘ � .F /D � \N ; it is a discrete subgroup of NF ;

˘ � 0.F /D subgroup of � .F / of elements acting trivially (by conjugation) on UF ;

˘ �h.F /D image of � .F / in Gh.Q/; it is a neat subgroup of Gh.Q/, and so �h.F /nF
is a locally symmetric variety.

The quotient UF .C/=.UF .C/\� / is compact, and UF .C/\� is discrete in UF .C/;
therefore UF .C/\� is a lattice in UF .C/, and T F DUF .C/=.UF .C/\� / is a complex
torus.

THEOREM 2.14. The quotient � 0.F /nD.F / has a canonical structure of an algebraic
variety for which the map � 0.F /nD.F /! �h.F /nF is a morphism of algebraic varieties.
In fact, � 0F nDF is a torus bundle (with fibres T F .C/) over an abelian scheme over
�h.F /nF .

PROOF. This is proved in Brylinski 1979. (See also Brylinski 1983, 2.3.2.5, and Chapter VI
below.) 2

REMARK 2.15. The algebraic structure in (2.14) is canonical, but it is not unique: there is
no analogue of the Borel extension theorem (cf. II 1.1).

Example: the Siegel case

We return to the situation of (2.2). Choose a lattice V.Z/ in V such that  takes integral
values and has discriminant one on V.Z/, and let Sp.Z/ be the subgroup of Sp.V; /
preserving V.Z/. The quotient Sp.Z/nD is the moduli variety for polarized abelian varieties
in the principal series. Fix an isotropic subspace W of V , and define the filtration W� as in
(2.13). The form  induces on Gr�1.V .Z// a skew-symmetric form N of discriminant 1.
Set dimGr�1V D 2g0. We have:

(a) F is the space of Hodge structures of type f.�1;0/; .0;�1/g on Gr�1.V / for which
N is a polarization.

(b) D.F / is the space of maximal isotropic subspaces F 0 of V.C/ such that .V;W�;F �/
is a mixed Hodge structure and  is a polarization of Gr�1.V /.
Let � 0 be the subgroup of Sp.Z/ of elements that respect the filtration and act trivially
on Gr0.V /.

(c) The quotient � 0nD.F / is the (coarse) moduli variety for symmetric one-motives
.A;�;X;v;ı/ with .A;�/ a principally polarized abelian variety of dimension 2g0,
X the abelian group Gr0.V .Z//, v a homomorphism X ! A.C/, and ı a symmetric
trivialization of the Poincaré biextension (see IV 2.6).

(d) The quotient � 0nD.F /0 is the (coarse) moduli variety for the quadruples .A;�;X;v/.

(e) The quotient � 0nF is the (coarse) moduli variety for principally polarized abelian
varieties of dimension g0.
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The maps
� 0nD.F /! � 0nD0.F /! � 0nF

correspond to
.A;�;X;v;ı/ 7! .A;�;X;v/ 7! .A;�/:

NOTES. Piatetski-Shapiro 1966 showed how to realize all the classical symmetric Hermitian domains
as Siegel domains of the third kind. Wolf and Korányi 1965 gave a more uniform treatment that
includes the nonclassical domains. There are expositions of (parts of) the material in this section in
Baily and Borel 1966, Deligne 1973, Ash et al. 1975, Satake 1980, and Brylinski 1983.

3. Toroidal compactification of locally symmetric varieties

The results of the last two sections, allow us to construct toroidal compactifications of locally
symmetric varieties.

We use the same notations as in �2 (except that we no longer require G to be Q-
simple). Thus D is a symmetric Hermitian domain, G is an algebraic group over Q with
G.R/C D Aut.D/C, F is a rational boundary component of D, and NF , W F , and UF

are certain subgroups of G attached to F . Recall that we have a canonical self-adjoint
open cone C.F / in UF .R/. We choose a neat arithmetic subgroup � of G.R/C, and
define N� .F / to be the image of � .F / in Aut.UF /. As in �2, T F is the torus over C with
X�.T / D U

F .Z/ df
D UF .C/\� . Finally, we write S for the locally symmetric variety

� nD.

DEFINITION 3.1. A fan � in UF .R/ is said to be N� .F /-admissible if
(a) 
 2 N� .F /, � 2�) 
� 2�;

(b) the number of classes of cones mod N� .F / is finite;

(c) C.F /� j�j � C.F /� (closure of C.F /).

Note that X�.T /˝RD UF .R/. Therefore a N� .F /-admissible fan gives a torus em-
bedding T F � XF� . As UF .Z/nD.F / is a principal bundle for T F over D.F /0, we can
construct a partial compactification,

.UF .Z/nD.F //� D .UF .Z/nD.F //�T
F

XF� ;

as at the end of �1. This is a fibre bundle over D.F /0 with fibres XF� . Define .UF .Z/nD/�
to be the interior of the closure of UF .Z/nD in .UF .Z/nD.F //�. Because � is invariant
under N� .F /, � .F / acts on .UF .Z/nD.F //�, and it can be shown that � .F / acts properly
discontinuously on .UF .Z/nD/�.

DEFINITION 3.2. A family of fans �D .�F /, F running over the rational boundary com-
ponents of D, is � -admissible if

(a) each �F is N� .F /-admissible;

(b) for 
 2 � , 
�F D�
F (note that 
 defines an isomorphism 
 WC.F /! C.
F /);

(c) if F � F 0, �F
0

D f� \C.F 0/ j � 2�g (note that C.F 0/� D C.F /�\U.F 0/).

THEOREM 3.3. For every � -admissible family of fans �D .�F /, there is a unique normal
separated complex analytic variety .� nD/� containing � nD as an open dense set and such
that:



86 CHAPTER V. TOROIDAL COMPACTIFICATION

(a) for every rational boundary component F of D, there is an open analytic morphism
�F making the following diagram commute:

UF .Z/nD .UF .Z/nD/�F

� nD .� nD/�I

�F

(b) .� nD/� D
S

Im.�F /. Moreover, .� nD/� has a unique structure of a complete
algebraic space compatible with its analytic structure, and there is a natural morphism
.� nD/�! .� nD/� that restricts to the identity map on � nD.

PROOF. This is the main theorem of Ash et al. 1975 (ibid. p. 253). 2

The algebraic space .� nD/� in the theorem is called the toroidal compactification of
� nD defined by �.

An algebraic space is the quotient of a scheme by an étale equivalence relation (see
Knutson 1971 for a full account of the theory of algebraic spaces). In this article, the
distinction between a scheme and an algebraic space will not be important, and we shall
ignore it. The next two results show that� can be chosen so that the toroidal compactification
is in fact a projective variety.

Let U D
S
UF and C D

S
C.F / (unions over the rational boundary components of

D).

DEFINITION 3.4. Let �D .�F /F be a � -admissible family of fans.
(a) � is nonsingular if every cone in every �F is nonsingular (see 1.6);
(b) � is projective if there exists a � -invariant continuous convex piecewise linear func-

tion f WC ! R such that f jUF is a polar function for each F (see 1.11).

THEOREM 3.5. (a) If � is nonsingular, then .� nD/� is nonsingular.
(b) If � is projective, then .� nD/�! .� nD/� is the normalization of the blowing

up of .� nD/ along a sheaf of ideals I such that O=I has support on .� nD/�X� nD. In
particular, .� nD/� is projective.

PROOF. The first statement follows from (1.11). The second is a theorem of Tai (see Ash et
al. 1975, IV 2.1). 2

PROPOSITION 3.6. (a) There exist projective � -admissible families of fans.
(b) Every � -admissible fan has a refinement that is nonsingular.

PROOF. (a) See Ash et al. 1975, p. 310. (b) In Kempf et al. 1972, p. 32, this is proved for
torus embeddings of finite type, but essentially the same proof works in the present context.2

One can show, more precisely, that every toroidal compactification is dominated by a
nonsingular toroidal compactification whose boundary is a divisor with normal crossings—
we shall refer to such a compactification as a smooth toroidal compactification.

REMARK 3.7. (a) The sheaf of ideals I in (3.5b) has a precise description in terms of the
function f (see Ash et al. 1975, p. 312).

(b) In Ash et al. 1975, p. 287, there is a more intrinsic statement of the main theorem.

NOTES. Toroidal compactification were introduced independently by Mumford and Satake (see
Mumford 1975 and Satake 1973). The theory was worked out in detail by Mumford and his
collaborators Ash, Kempf, Knudsen, Rapoport, Saint-Donat, and Tai, in Kempf et al. 1972 and Ash
et al. 1975.
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4. Toroidal compactification of Shimura varieties

We extend the results of the last section to Shimura varieties.

Toroidal compactification of connected Shimura varieties

Let .G;XC/ be a pair satisfying the axioms (II 1.3). The group Gad plays the role of G in
the previous section. Let � be a neat arithmetic subgroup of Gad.QC containing the image
of a congruence subgroup of G.Q/C. A � -admissible fan � will also be � 0-admissible
for any arithmetic subgroup � 0 � � , and the morphism � 0nXC ! � nXC extends to
a morphism .� 0nXC/�! .� nXC/�. We write Sh0.G;X/� for the projective system
.� nXC/�, where � runs over the neat arithmetic subgroups containing the image of a
congruence subgroup. Unfortunately, the action of Gad.Q/Cˆ on Sh0.G;X/ does not extend
to Sh0.G;X/�. However, we have the following observation of Faltings and Stuhler.

LEMMA 4.1. Let � and � 0 be neat arithmetic subgroups of Gad.QC containing the image
of a congruence subgroup, and let 
1; : : : ;
n 2G.Q/C be such that 
�1i � 
i � �

0; then for
any pair of smooth toroidal compactifications .� nXC/� and .� 0nXC/�0 of � nXC and
� 0nXC, there exists a smooth compactification .� nXC/�00 of � nXC and maps:

.� nXC/�00 ! .� nXC/� restricting to id on � nXC, and
.� nXC/�00 ! .� 0nXC�0 restricting to 
i on � nXC.

PROOF. Stated in Faltings 1984. 2

Thus, if we define Sh0.G;X/� to be the projective system .� nXC/�, where � runs over
the neat arithmetic subgroups ofGad.Q/C containing the image of a congruence subgroup of
G.Q/C and (for each � )� runs over the � -admissible families of fans for which .� nXC/�
is a smooth toroidal compactification, then the action of Gad.Q/C on Sh0.G;X/ extends to
Sh0.G;X/�. By continuity, we obtain an action of Gad.Q/Cˆ on Sh0.G;X/�.

Toroidal compactification of Shimura varieties

Let .G;X/ be a pair defining a Shimura variety, and assume that the weight wX is defined
over Q (this is true for all naturally occurring Shimura varieties with boundary). Choose
a connected component XC of X . Corresponding to a boundary component F of XC,
we obtain a Cayley filtration wF of Gad. It follows from results in Deligne 1973 that wF

lifts to a filtration w of GC, and that w can be normalized so that .wX �w�1/.Gm/�Gder

(i.e., w and wX become equal when composed with GC! .G=Gder/C). Because the map
G!Gad� .G=Gder/ has finite kernel, w is uniquely determined, and because wF and wX
are defined over Q, so also is w. Moreover, for any representation .V;�/ of G, the filtrations
defined by w and F �x form a mixed Hodge structure on V (according to (IV 1.3), this has
to be checked only for representations factoring through Gad� .G=Gder/, and for these it is
obvious). These remarks suggest the following definition.

DEFINITION 4.2. A Cayley filtration W� on G is admissible if the filtration on G=Gder is
that defined by wX .

Now fix an admissible Cayley filtration W F
� of G. Here the F is simply an index. Set

NF
DW F

0 .G/; W F
DW F

�1.G/; UF DW F
�2.G/:
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Note that Z.G/ � Z.w/ for any w splitting W F
� , and so Z.G/\W F D f1g. Therefore

W F and UF are mapped isomorphically onto their images in Gad.
Choose a connected component XC of X , and let K be a compact open subgroup of

G.Af /. For any g 2G.Af /, let �g be the image inGad.Q/C of the group gKg�1\G.Q/C.
As in �3, associated with �g we have groups �g.F /, � 0g.F /, and N�g.F /, and we have
a canonical cone C.F / � UF .C/. Let C be a set of representatives for the finite set
G.Q/CnG.Af /=K (see II 2).

DEFINITION 4.3. A fan�� C.F / is said to be N� .F /-admissible if it is N�g.F /-admissible
for all g 2 C.

From such a fan, we obtain a partial toroidal compactification

ShK.G;X/� D
[
.�gnX

C/��

DEFINITION 4.4. A family of fans .�F /, with wF running over the admissible Cayley
filtrations of G, is K-admissible if

(a) each �F is N� .F /-admissible;

(b) for all g 2 C and all 
 2 �g , we have 
�F D�
F where W 
F
�

def
D ad.
/ �W F

� ;

(c) if NF �NF 0 , then �.F 0/D f� \C.F 0/ j � 2�F g.

A K-admissible family of fans �D .�F / defines a toroidal embedding Sh.G;X/ ,!
Sh.G;X/�. We say that Sh.G;X/� is a smooth toroidal compactification if Sh.G;X/� is
smooth and the boundary is a divisor with normal crossings, and we write Sh.G;X/� for the
projective system of smooth toroidal compactifications of Sh.G;X/. The actions of G.Af /
and G.G/ on Sh.G;X/ extend to Sh.G;X/�.

NOTES. There is a more detailed discussion, from a somewhat different point of view, of toroidal
compactifications of nonconnected Shimura varieties in Harris (1989), �2.

5. Canonical models of toroidal compactifications

Connected Shimura varieties

Let .G;XC/ be a pair defining a connected Shimura variety. Let x be a special point of XC,
and let � be an automorphism of C. Recall from (II 4.2) that there is a unique isomorphism

'0�;x W �Sh0.G;XC/! Sh0.�;xG; �;xXC/

sending �Œx� to Œ�x� and such that '0�;x ı�T .g/D T .�;xg/ı'0�;x . It would be very surprising
if the following statement were not true:

CONJECTURE 5.1. The isomorphism '0�;x extends uniquely to an isomorphism

'0��;x W �Sh0.G;XC/�! Sh0.�;xG; �;xXC/�:

Moreover, the following diagram commutes:

�Sh0.G;XC/� Sh0.�;xG; �;xXC/�

�Sh0.G;XC/� Sh0.�;xG; �;xXC/�:

'0��;x

'0��;x
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(The vertical arrows are the natural maps from the toroidal compactification to the minimal
compactification.)

Note that, because Sh0.�;xG; �;xXC/� is separated and Sh0.G;XC/ is dense in Sh0.G;XC/�,
'
0;�
�;x will certainly be unique if it exists. It appears likely that the following argument will

suffice to prove the existence of '0�;x . For connected Shimura varieties of Hodge type,
the existence of '�;x follows from the description of Sh0.G;XC/� as a moduli space of
degenerating abelian varieties (see Chai and Faltings 1989 and Brylinski 1983, �4). To apply
the strategy of II 9, the following statement will be needed:

(*) an inclusion .G;XC/ ,! .G0;X 0C/ induces a closed immersion Sh0.G;X/� ,!
Sh0.G0;X 0C/�.

Note that we already know that the map Sh0.G;XC/ ,! Sh0.G0;X 0C/ is a closed immersion
(cf. Deligne 1971c, 1.15), and so (*) comes down to a combinatorial question about fans. Let
� �Gad.Q/C and � 0 �G0ad.Q/C be such that � nXC ,! � 0nX 0C is a closed immersion;
when� is a � -admissible fan, we wish to find a � 0-admissible fan�0 such that the preceding
map extends to a closed immersion .� nXC/� ,! .� 0nX 0C/�0 (after possibly replacing �
by a refinement �00). For this we can take �0 to be any � 0-admissible fan refining the image
of �, and apply (Harris 1989, �3) to obtain a �00 for which .� nXC/ ,! .� 0nX 0C/ extends
to a map .� nXC/�00 ,! .� 0nX 0C/�0 .

Now assume G D ResL=QG0 with G0 absolutely simple. After extending L we can
suppose that there is an inclusion .G˛;XC˛ / ,! .G;XC/ with G˛ of type A1 and such
that a boundary point of Sh0.G˛;X˛/ maps into any particular boundary component of
Sh0.G;XC/� we choose (see 2.6b). Then the domain of definition of the rational map

�Sh0.G;XC/�! Sh0.�;xG; �;xX/�

includes at least one point of the boundary component in question, and the Hecke operators
then allow us to show that it will contain all points.

In practice, conjecture (5.1) is probably all one will need — in most situations where
toroidal compactifications are needed, exactly which toroidal compactification is being used
is irrelevant. In fact, the usual procedure is to choose a toroidal compactification and then
show that the statements or objects one arrives at are independent of the choice. Nevertheless,
it would be interesting to have a more precise result than (5.1) where, starting from a fan �,
one constructs a fan �0 for which '0�;x extends to an isomorphism

�Sh0.G;X/�! Sh.�;xG; �;xX/�0 :

It is easy to guess what �0 should be. For simplicity, assume G to be simply connected.
Let F be a rational boundary component of XC, and let � be a N� .F /-admissible fan. We
wish to identify �Sh0.G;X/� with a partial compactification of Sh0.�;xG; �;xX/. Choose
a faithful representation .V;�/ of Gad. Associated with this data, we have a one-motive
M D .XM ! GM / such that UF D Hom.S2XM ;C/. The fan � corresponds to a torus
embedding T ,!X� of T D Hom.S2XM ;Gm/. Then �M is the motive attached to �x 2
�;xX , and we can choose �0 � Hom.S2X�M ;C/ to be the fan corresponding to the torus
embedding �T ,! �X�.

CONJECTURE 5.2. The isomorphism '0�;x extends uniquely to an isomorphism

.'0�;x/�W�Sh0.G;X/�! Sh0.�;xG; �;xX/�0 :

compatible with the maps to the minimal compactification.
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Shimura varieties

Let .G;X/ be a pair defining a Shimura variety.

THEOREM 5.3. Assume (5.1). For any � 2 Aut.C/ and special point x 2 X , the isomor-
phism '�;x W�Sh.G;X/! Sh.�;xG; �;xX/ of (II 4.2) extends uniquely to an isomorphism
'��;x W�Sh.G;X/�! Sh.�;xG; �;xXC/�; moreover, the diagram

� Sh.G;X/� Sh.�;xG; �;xX/�

� Sh.G;X/� Sh.�;xG; �;xX/�

commutes.

PROOF. This can be obtained by induction from (5.1). 2

COROLLARY 5.4. (Assuming 5.1.)
(a) Sh.G;X/� has a canonical model over E.G;X/.

(b) For any � 2 Gal.Qal=Q/, �Sh.G;X/� is canonically isomorphic to the canonical
model of Sh.�;xG; �;xX/� over �E.G;X/.

Conjecture 5.2 has an obvious analogue for nonconnected Shimura varieties.

REMARK 5.5. So far we have not mentioned Eisenstein series. Briefly, Eisenstein series
attach an automorphic form on the whole Shimura variety to a cusp form on a boundary
component. This construction should be compatible with all the isomorphisms in this article.
In particular, an Eisenstein series should be defined over a field E when the cusp form is.

NOTES. As we noted (3.7a) a smooth projective toroidal compactification is obtained from the
minimal compactification by blowing it up at certain ideals, described by the polarizing function f ,
and then normalizing. Brylinski 1983 uses this and Fourier-Jacobi series to prove the existence of
canonical models of projective toroidal compactifications of Shimura varieties of Hodge type. Harris
1989, 2.8, suggests that the results in Harris 1986 can be used to generalize this result. (I understand
that Richard Pink1 will also examine the question of the existence of canonical models of toroidal
compactifications in his Bonn thesis.)

6. Canonical extensions of automorphic vector bundles

First we note that automorphic vector bundles extend to toroidal compactifications.

THEOREM 6.1. Let .G;X/ be a pair defining a Shimura variety, and let Sh.G;X/� be
a smooth toroidal compactification of Sh.G;X/. There is an exact faithful functor J 7!
V�.J / from the category ofGcC-vector bundles on LX to that of vector bundles on Sh.G;X/�
such that

(a) V.J /�jSh.G;X/D V.J / (notation as in III 2);

(b) J 7! V.J /� commutes with tensor products and duals (i.e., it is a morphism of tensor
categories);

1Added 22.06.01: Pink, Richard Arithmetical compactification of mixed Shimura varieties. Disserta-
tion, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1989. Bonner Mathematische Schriften [Bonn
Mathematical Publications], 209. Universität Bonn, Mathematisches Institut, Bonn, 1990. xviii+340 pp.
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(c) equivariant differential operators between the V(J )’s extend to the V�.J /’s.
Moreover, V�.J / is uniquely determined by the properties (a), (b), and (c).

PROOF. Let o 2 LX . Then GC-vector bundles correspond to representations of Po (see III
2.3a). For the J corresponding to irreducible representations of Po, the result is essentially
proved in Mumford 1977. For Siegel modular varieties, the theorem is proved in Chai and
Faltings 1989, VI.4. Briefly, their proof proceeds as follows. Using the structure of Sh.G;X/
near the boundary, it is possible to construct the extension of V.J /� locally; the problem
is to show that the local extensions patch. It is clear that the category of representations
of Po for which this is true is closed under tensor products, duals, and subquotients. It
therefore suffices to construct V.Jo/� for a single faithful representation of Po. Chai and
Faltings take Jo to be the standard representation G, and show that V.Jo/� can be obtained
from the de Rham cohomology of the universal semi-abelian scheme that they have already
constructed. Harris 1989 shows that by applying Deligne’s existence theorem Deligne 1970
it is possible to avoid using the universal semi-abelian scheme. 2

THEOREM 6.2. Let Sh.G;X/� be a smooth toroidal compactification of a Shimura variety
having a canonical model over E �E.G;X/. If J is defined over E, then so also is V.J /�.

PROOF. The descent datum on V.J / extends to V.J /�. 2

Once general results on canonical models have been obtained, essentially all the results
in Chapter III will extend to vector bundles on the toroidal compactifications.

NOTES. See the references in the proof of (6.1).



Chapter VI

Mixed Shimura varieties

In this chapter, we suggest how the results of Chapter II should generalize to mixed Shimura
varieties.

1. Definition of a mixed Shimura variety

Let P be a connected algebraic group over Q. Recall from (I 1) that we have the notion of a
filtration W� of RepQ.P /. Moreover, P DW0P if and only if P preserves the filtration on
each representation of P , and W�1P is the (unipotent) subgroup of W0P acting trivially on
GrW� .V / for all representations of P . For any cocharacter w of P splitting the filtration,
W0P DW�1ÌZ.w/, where Z.w/ is centralizer of w.

The axioms for a mixed Shimura variety

The datum needed to define a mixed Shimura variety is a triple .P;W�;Y / comprising
a connected algebraic group P over Q, an ascending filtration W� of RepC.P /, and a
P.R/ � .W�2P.C//-conjugacy class Y of descending filtrations of RepC.P /. For y 2 Y ,
write F �y for the filtration defined by y 2 Y . The filtration W� is defined over some totally
real number field, and the filtration it induces on RepC.P=Z.P // is defined over Q. The
triple is required to satisfy the following conditions:
1.1.0 for any representation .�;V / of P , W� and F �y define a real mixed Hodge structure on

V.R/, all y 2 Y ;

1.1.1 Lie.PC/DW0Lie.PC/D F
�1
y Lie.PC/ for each y 2 Y ;

1.1.2 for any�y splitting the filtrationF �y ,�y.i/ ��y.i/ is a Cartan involution on .GrW0 P /
ad;

1.1.3 .GrW0 P /
ad has no Q-rational factors that are anisotropic over R;

1.1.4 Z.P /0 is a torus, splitting over a CM-field;

1.1.5 the (adjoint) action of GrW0 P on GrW
�1LieP factors through GrW0 .P /

c (notation as
in the introduction to Chapter III).

Simplifications occur when we strengthen some of the axioms:
1.1.0* the filtration W� is defined over Q, and W� and F �y define a rational mixed Hodge

structure on V for any representation .V;�/ of P ;

1.1.2* for any�y splitting the filtrationF �y ,�y.i/ ��y.i/ is a Cartan involution onP=.W�1P �
w.Gm//;

92
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1.1.4* (1.1.4) holds and there is a one-dimensional representation V0 of P such that
.V0;W�;F

�
y / is the pure Hodge structure Q.1/ for all y.

We usually drop the W from the notation GrWr . For each y 2 Y , there is a homomor-
phism Qhy WGm�Gm! PC such that, for every representation .V;�/ of P , � ı Qhy provides
V.C/with the bigrading associated with the mixed Hodge structure (see IV 1). It is important
to note, however, that in general Qhpy ¤ .adp/ı Qhy unless p 2 P.R/.

REMARK 1.2. (a) Axiom (1.1.5) has been imposed only so that the mixed Shimura variety
exists as a scheme rather than a stack. Probably this condition should be dropped. In any
case, the axioms should be viewed as tentative.

(b) Axiom (1.1.2) implies that .Gr0P /ad is semisimple, and (1.1.4) implies that the
connected centre of Gr0P is a torus. Therefore Gr0P is a reductive group, W�1PC is the
unipotent radical of PC, and, for any w splitting W�, Z.w/ is a Levi subgroup of PC. Note
that if Gr0P D 0, then w.Gm/D 0, which implies that W�1P D 0 and that P D 0.

(c) Let Lie.P /CD˚ QHp;q be the decomposition of Lie.P /C corresponding to the mixed
Hodge structure .W�;F �y/ some y 2 Y . Then (1.1.1) implies that QHp;q D 0 for pCq > 0
and p < �1. Hence

Gr0.LieP / has a Hodge structure of type f.�1;1/; .0;0/; .1;�1/g;
Gr�1.LieP / has a Hodge structure of type f.�1;0/; .0;�1/g;
Gr�2.LieP / has a Hodge structure of type f.0;0/g;

(see the picture in IV 2.10). Thus

LiePC D LiePRCF
0
y LiePCCW�2LiePC: (1.2.1)

From the last equality it follows that Y can also be regarded as a P.R/ �W�1P.C/-conjugacy
class.

(d) It suffices to check (1.1.0) for a single y 2 Y (cf. Brylinski 1983, 2.3.1.2), and for a
finite family of representations .Vi ; �i / such that \Ker.�i / is finite (see IV 1.3).

The complex structure on Y

PROPOSITION 1.3. Let LY be theP.C/-conjugacy class of filtrations of RepC.P / containing
F �y for all y 2 Y . Then LY is a Grassman variety, and the map

ˇ W Y ,! LY ; y 7! F �y ;

identifies Y with an open complex submanifold of LY . The induced complex structure on
Y is the unique structure such that, for all representations .V;�/ of P , the filtrations F �y on

V.�/ def
D Y �V.C/ vary holomorphically.

PROOF. Fix a point o 2 Y . Then LY D P.C/=F 0o P.C/, which is a Grassman variety, and ˇ
is the map

g �o 7! g .mod F 0o P.C//WY ! P.C/=F 0o P.C/:

This is obviously injective, and (1.2.1) shows that it identifies Y with an open (almost)
complex submanifold LY . 2

PROPOSITION 1.4. Let �WP ! GL.V / be a rational representation of P , and let VR D
˚V.i/ be the decomposition of VR under the action of Z.P /0R; then y 7! .V .i/;W�;F

�
y / is

a variation of real mixed Hodge structures on Y .
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PROOF. On Grn.V .i//, we have a representation of Gr0.P /; apply (II 3.2) to see that it
defines a variation of real Hodge structures. The transversality axiom (condition (H1) of (IV
1)) follows from the fact that LiePC D F

�1
y .LiePC/. 2

Define Y 0 to be the .P=W�2P /.R/-conjugacy class of filtrations of RepC.P=W�2P /

containing the image of Y , and define X to be the .Gr0P /.R/-conjugacy class of filtrations
of RepC.Gr0P / containing the image of Y 0. Proposition 1.3 shows that both Y 0 and X also
have natural complex structures.

PROPOSITION 1.5. The natural maps Y
�1
! Y 0

�2
!X are both holomorphic. Moreover,

X is a symmetric Hermitian domain;
Y 0!X is a fibre bundle with structure group V.R/, V DGr�1.P /;
Y ! Y 0 is a fibre bundle with structure group U.C/, U DGr�2.P /.

PROOF. Straightforward from the definitions (and II 3.2). 2

Write � for the composite Y !X .

The mixed Shimura variety

For any compact open subgroup K of P.Af /, define

MK.P;W�;Y /D P.Q/nY �P .Af /=K:

It is a complex manifold if K is sufficiently small; in fact, it is a disjoint union of varieties
of the form � nY C with Y C a connected component of Y and � a discrete subgroup of
P.R/C. Each g 2 P.Af / defines a holomorphic map,

T .g/WMK.P;W�;Y /!Mg�1Kg.P;W�;Y /; Œy;p� 7! Œy;pg�:

THEOREM 1.6. (a) The complex manifold MK.P;W�;Y / has a natural structure as an
algebraic variety. More precisely, it is a torus bundle over a polarizable abelian scheme over
a Shimura variety.

(b) For each g 2 P.Af /, T .g/ is algebraic.

PROOF. For any quotient P 0 of P by a subgroup of Z.P /, we have a triple .P 0;W 0�;Y
0/

satisfying the axioms (1.1), and for each pair of open compact subgroups K � P.Af / and
K 0 � P 0.Af / such that K 0 contains the image of K, there is a morphism

MK.P;W�;Y /!MK0.P
0;W 0�;Y

0/:

Each connected component of MK.P;W�;Y / is a finite covering of a connected component
of MK0.P

0;W 0�;Y
0/. Thus, if we can prove (a) for .P 0;W 0�;Y

0/, then the Riemann existence
theorem will show that it is also true for .P;W�;Y /. A similar remark applies to (b). This
allows us to assume that conditions (1.1.0*) and (1.1.2*) hold. Later in this section we
outline a proof of the theorem in this case. 2

We obtain a scheme M.P;W�;Y / with a continuous action of P .Af /, which we call the
mixed Shimura variety defined by .P;W�;Y /.
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Special points

A point y 2 Y is said to be special if for one faithful (hence every) representation .V;�/
of P ad, the mixed Hodge structure .V;W�;F �y / decomposes into a sum of pure Hodge
structures, each of CM-type. We say that y is a CM-point if the same condition holds for the
representations of P itself. A mixed Hodge structure is said to be rationally decomposed if
it is a direct sum of pure Hodge structures.

PROPOSITION 1.7. (a) Let x D �.y/; then y is special if and only if x is special and
.V;W�;F

�
y / is rationally decomposed for each representation of P ad.

(b) For each special x 2 X , there is a y 2 ��1.X/ such that .V;W�;F �y / is rationally
decomposed for each representation of P ad.

PROOF. Part (a) is obvious. We outline a proof of (b) later in this section. 2

For each special point y, there is a unique homomorphism �y WS! P ad such that
�y ı�can D �y . When y is a CM-point, �y is a homomorphism S! P .

Connected mixed Shimura varieties

Let .P;W�;Y / define a mixed Shimura variety, and let .G;X/D .Gr0P;Y .mod W�1P //.
The fibres of the map M.P;W�;Y /! Sh.G;X/ are connected, and so the inverse image of
Sh.G;X/0 is connected. Let P 0 be the inverse image of Gder in P , let W 0� be the filtration
of Rep.P ad/ defined by W�, and let Y C be a connected component of Y . Assume Gder to
be simply connected. Then

M.P;W�;Y /
0
D lim
 �

P 0.Q/nY C�P 0.Af /=K 0:

In particular, M.P;W�;Y /0 depends only on .P 0;W 0�;Y
C/. Just as in the case of (pure)

Shimura varieties, there is a theory of connected mixed Shimura varieties, which we will not
discuss this further.

Examples

Mixed Shimura varieties abound.

EXAMPLE 1.8. (W�1P D 0; Shimura varieties). Let .G;X/ be a pair satisfying (II 2.1).
Set

P DGI W� D F ilt.wX /I Y D fF ilt.�x/ j x 2Xg:

The triple .P;W�;Y / satisfies the axioms (1.1) (use II 3.2), and the variety M.P;W�;Y /D
Sh.G;X/. Conversely, if .P;W�;Y / satisfies (1.1) and W�1P D 0, then P is a reductive
group and the pair .P;X/, X D fz 7! Qhy.z; Nz/ j y 2 Y g satisfies the axioms (II 2.1). Thus
mixed Shimura varieties defined by triples .P;W�;Y / withW�1P D 0 are Shimura varieties,
and every Shimura variety is of this form.

EXAMPLE 1.9. .Gr�1P D 0; automorphic vector bundles). Consider a triple .P;W�;Y /
satisfying (1.1) and (1.1.0*), and assume that Gr�1P D 0. Write U D W�2P . It is
commutative, and so the exponential map allows us to identify it with its Lie algebra.
The adjoint action defines a representation � of P on U , factoring through G def

D Gr0P .
Then MK.P;W�;Y /D VK.�/=(lattice), where VK.�/ is the automorphic vector bundle on
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ShK.G;X/ defined by .V;�/. The fibre of MK.P;W�;Y / over a point of ShK.G;X/ is
V.C/=� for some lattice � in V , and the exponential map shows that this is isomorphic to a
product of copies of C�. In particular, M.P;W�;Y / is algebraic (by III 2.1).

Conversely, let .G;X/ be a pair satisfying (II 2.1*), and let .U;�/ be a faithful represen-

tation of G. Define P D U ÌG D
��

1 0

u g

��
in the obvious way. Define a filtration of

V by
0DW�3V � U ˚0DW�2V � V DW0V;

and give P the induced filtration W�. Define Y to be the set of filtrations of RepC.P /

inducing on RepC.G/ the Hodge filtration corresponding to some x 2X . Then .P;W�;Y /
defines a mixed Shimura variety, which is a quotient of the automorphic vector bundle V(�)
on Sh.G;X/.

EXAMPLE 1.10. (W�2P D 0; Kuga varieties). Consider a triple .P;W�;Y / satisfying (1.1)
and (1.1.0*), and assume that Gr�2P D 0. Write V DW�1P . It is a commutative algebraic
group over Q, and so the exponential map allows us to regard it as a vector space. The
adjoint action defines a representation � of P on V , factoring through G Ddf Gr0P . Each
y 2 Y defines a Hodge structure on V of type f.�1;0/; .0;�1/g, which, according to (II 3.2),
is polarizable. The choice of a compact open subgroup K 0 of P.Af / defines a lattice in V ,
and consequently we obtain a family of abelian varieties A over ShK.G;X/, where K is the
image of K 0 in GAf (cf. II 3.11). We have MK0.P;W�;Y /DA. In particular, M.P;W�;Y /
is algebraic.

The simplest example of such a mixed Shimura variety is the universal elliptic curve
over Sh.GL2;X/. This (rather, a connected component of it) has been extensively studied;
see for example Eichler and Zagier 1985 and Berndt 1983.

A more interesting case is that where the base Shimura variety is defined by a quaternion
algebra over a totally real field (not necessarily totally indefinite, so the Shimura variety
is not a moduli variety; see Deligne 1979, �6, Modèles étranges). These mixed Shimura
varieties (rather, their connected components) have been extensively studied by students of
Kuga; see for example Addington 1987 and Petri 1989.

We have noted that a connected component of a mixed Shimura varieties withW�2P D 0
is a Kuga fibre variety, but the converse is not true: there are “nonrigid” Kuga fibre varieties
that move in families and do not have models over number fields.

EXAMPLE 1.11. (Mixed Shimura varieties arising from boundary components). Consider
a Shimura variety Sh.G;X/, and let W� be an admissible Cayley filtration of G (see V
4.2). Define P to be the subgroup of W0G acting trivially on U def

DW�2G. Then there is a
natural way to attach toW� a family Y of filtrations of RepC.P / so that .P;W�;Y / defines a
mixed Shimura variety. The base Shimura variety is Sh.Gr0.P /;F /, where F is the rational
boundary component of X corresponding to W�.

EXAMPLE 1.12. (Mixed Shimura varieties of Hodge type). Let M be a one-motive over Q,
and let P be the Mumford-Tate group of M . The weight and Hodge filtrations on HB.M/

define filtrations W� and F �o on RepC.P /. Let Y be the P.R/ �W�2P.C/-conjugacy class
of F �o . Then .P;W�;Y / satisfies the stronger axioms (1.1*) (see IV 2.9). A mixed Shimura
variety M.P;W�;Y / will be said to be of Hodge type if there is a one-motive M and a
representation .V;�/ of P such that

(a) for some o 2 Y , .HB.M/;W�;F
�/D .V;W�;F

�
0 /;
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(b) P is the subgroup of GL.HB.M//�Gm fixing a family of Hodge tensors.
Such a mixed Shimura variety is a (coarse) moduli variety for a family of one-motives

with Hodge cycle and level structures. Note that the total space of a fine moduli variety for
abelian varieties is a moduli variety for one-motives of the form .Z! A/.

Outline for proofs of 1.6 and 1.7

Since it suffices to prove both statements for a triple .P;W�;Y / satisfying (1.1.0*) and
(1.1.2*), we henceforth assume this. We have already verified the statements when:

(i) P DGr0.P /; then M.P;W�;Y / is a Shimura variety;
(ii)W�2P D 0; thenM.P;W�;Y / is the total space of an abelian scheme over Sh.G;X/;
(iii) Gr�1.P /D 0; then both statements reduce to statements about automorphic vector

bundles.
The next lemma is slightly stronger than (1.7b).

LEMMA 1.13. Let .P;W�;Y / be as above, and let x 2X . For every representation .V;�/ of
P , there exists a y 2 ��1.x/ such that the mixed Hodge structure .V;W�;F �y / is rationally
decomposed.

PROOF. Fix a y 2 ��1.x/. We have to show that there is a p 2 W�1P.C/ such that
.V;W�;pF

�
y / is rationally decomposed. The proof proceeds by induction on the length of

the filtration W� of V (see Brylinski 1983, 2.3.1.5). 2

Under our assumptions, a representation .V;�/ of P defines a variation of mixed Hodge
structures V on M.P;W�;Y /. Let K be a compact open subgroup of P .Af /, and write K
also for its image in G.Af /, G DGr0P .

LEMMA 1.14. There exists a section sWShK.G;X/!MK.P;W�;Y / to � such that s�.V/
is rationally decomposed (after possibly replacing K by a subgroup).

PROOF. See Brylinksi 1983, 2.3.1.7. 2

Thus we get a canonical section sWSh.G;X/!M.P;W�;Y / to � .
We now come to the proof of (1.6). First, the sheaf R�1�Z is constant. Thus it splits up

(analytically) under the characters of T , where T is the algebraic torus W�2P.C/=W�2� ,
W�2� DK\ .W�2P.C//. Let � be such a character.

LEMMA 1.15. There exists on each L� a unique algebraic structure such that
(i) L2� is isomorphic (algebraically) to ��.L2�/ (� is the map x 7! �x on A);
(ii) The restriction of L� to the zero section of A is trivial.
Moreover, L�j(zero section) is canonically trivial.

PROOF. Brylinski 1983, 2.3.2.4. 2

LEMMA 1.16. M.P;W�;Y / has a unique algebraic structure such that
(i) � WA! C is algebraic;
(ii) the section sWSh.G;X/!M.P;W�;Y / is algebraic.

PROOF. See Brylinski 1983, 2.3.2.5. 2

REMARK 1.17. If M.P;W�;Y / is of Hodge type, then a representation of P defines an
algebraic family of one-motives over M.P;W�;Y /, except that the family may only exist as
a stack (cf. III 8).
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NOTES. The general notion of a mixed Shimura variety is due to Deligne. A slightly restricted
form can be found in Brylinski’s thesis (Brylinski 1983), where the varieties are called generalized
Shimura varieties. The proofs of (1.6) and (1.7) are adapted from this source.

2. Canonical models of mixed Shimura varieties

Let y be a special point of Y . Then we get a homomorphism �y WS! P ad. Thus the
S-torsor �S can be used to twist P to give a group �;yP , and the canonical element sp.�/
defines an isomorphism g 7! �;ygWP .Af /! �;yP .Af /. Define �;yY to be the conjugacy
class containing �F �y for y a special point of Y . Then the triple .�;yP; �;yW�; �;yY / satisfies
the axioms for a mixed Shimura variety.

CONJECTURE 2.1. For each � 2 Aut.C/, there exists a unique isomorphism

'�;y W �M.P;W�;Y /!M.�;yP; �;yW�;
�;yY /

such that
(i) '�;y.�Œy;1�/D Œ�y;1�;
(ii) '�;y ı �T .g/D T .�;yg/ı'�;y for all g 2G.Af /.
Moreover, when y0 is a second special point in Y , then there is a canonical map

'.� Iy0;y/WM.�;yP; �;yW�;
�;yY /!M.�;y

0
P; �;y

0
W�;

�;y 0Y /;

and we have the identity

'.� Iy0;y/ı'�;y D '�;y0 :

REMARK 2.2. We know the above result in several cases:
(i) W�1P D 0. Here the mixed Shimura variety is a (pure) Shimura variety, and the

conjecture is (II 4.2) and (II 4.4).
(ii) Gr�1P D 0. Here the conjecture follows from the results on automorphic vector

bundles in Chapter III.
(iii) W�2P D 0; assume (1.1.0*). Here the mixed Shimura variety is an abelian scheme

over a Shimura variety. To give an abelian scheme over Sh.G;X/ is the same as to give a
polarizable variation of integral Hodge structures on Sh.G;X/. In this case the conjecture
follows from (III 6.2).

(iv) Mixed Shimura varieties of Hodge type. Here the conjecture follows from the fact
that the mixed Shimura variety is a moduli variety for one-motives (see Brylinski 1983,
2.3.3.1).

Thus to complete the proof of the conjecture, it remains
(i) to lift the isomorphism

�M.P=W�2P;W�;Y
0/!M.�;y.P=W�2P /;

�;yW�;
�;yY 0/

to the covering �M.P;W�;Y / (equivalently, to the sheaves �L� on �M.P;W�;Y /) in the
case that (1.1.0*) holds, and

(ii) to remove the condition (1.1.0*).
Probably the best approach to (i) will be to deduce it from an extension of the theorems in
Chapter III to automorphic vector bundles on mixed Shimura varieties (see �4 below). It
should be possible to prove (ii) by using connected mixed Shimura varieties.
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Just as for Shimura varieties, the conjecture will imply that a mixed Shimura variety has
a canonical model over a reflex field (suitably defined), and that the conjugate of a canonical
model by � 2 Gal.Qal=Q/ is the canonical model of the mixed Shimura variety defined by
the conjugate data.

3. Partial compactification of mixed Shimura varieties

Consider a mixed Shimura variety MK.P;W�;Y /. Let U D W�2P , and let T be the
torus U.C/=U.Z/, where U.Z/D U.Q/\K. For a fan � � X�.T /˝RD U.R/ satisfy-
ing suitable conditions, the construction in Chapter V can be mimicked to give a partial
compactification

�1�WM.P;W�;Y /�!M.P=W�2P;W�;Y
0/

of the map �1WMK.P;W�;Y /! M.P=W�2P;W�;Y
0/ (cf. Brylinski 1983, �4)). The

isomorphism in (2.1) should extend to an isomorphism

�M.P;W�;Y /�!M.�;yP; �;yW�;
�;yY /�0

for a suitable fan �0 in �;yU.R/.

4. Automorphic vector bundles

As we saw in (1.3), there is an embedding ˇWY ,! LY from Y into a variety of filtrations
of Rep.P C/, and the action of PC on LY extends that of P.R/ �W�2P.C/ on Y . Let J
be an PC -vector bundle on LY . If ˇ�.J / defines a vector bundle VK.J / on the quotient
MK.P;W�;Y / of Y , then we call VK.J / an automorphic vector bundle. The theorems in
Chapter III for automorphic vector bundles on Shimura varieties should extend to mixed
Shimura varieties.

5. Toroidal compactification of mixed Shimura varieties

Consider a mixed Shimura variety,

M.P;W�;Y /
�1
!M.P=W�2P;W�;Y

0/
�2
! Sh.G;X/:

Form a toroidal compactification Sh.G;X/� of Sh.G;X/. It should be possible to compact-
ify successively the morphisms �2 and �1. The compactifications of the total space of the
Siegel modular variety by Namikawa over C (Namikawa 1976, 1979) and Chai over Z (Chai
and Faltings 1989), should serve as models for the compactification �2.



Chapter VII

Fourier-Jacobi series

Fourier-Jacobi series play a central role in the theory of holomorphic automorphic forms.
In this chapter, we briefly indicate how they fit into the schema described in the first six
chapters.

For elliptic modular forms, there are three different approaches to defining Fourier series:
the (classical) analytic approach; the modular approach, based on the moduli of elliptic
curves; and the formal-algebraic approach, based on analyzing the structure of the elliptic
modular curve at its cusps. The first is available for a general Shimura variety, but is badly
adapted for studying rationality questions. The second applies only to Shimura varieties of
Hodge type. Therefore, it is the third approach that will be most important.

The q-expansion principal asserts that an automorphic form is determined by (certain
of) its Fourier-Jacobi series. Since there should be the notion of the conjugate of a Fourier-
Jacobi series by an automorphism of C, and hence the notion of a Fourier-Jacobi series being
rational over a field, this means that it will be possible to read off the field of rationality of
an automorphic form from the coefficients of its Fourier-Jacobi series. Since these live on
lower dimensional (mixed Shimura) varieties, this will be a useful tool.

1. Elliptic modular forms

An elliptic modular function f of level N satisfies

f .zCN/D f .z/; z 2HC:

It therefore has a Fourier expansion

f .z/D
X

anq
n
N ; qN D e

2�iz=N

corresponding to the cusp at infinity, and a similar expansion at the other cusps. It is known
that f is rational over a subfield L � C (in the sense of Chapter III) if and only if the
coefficients of these series lie in L.

We next explain the moduli definition (for details, see Katz 1973). Let

KN D f˛ 2GL2.bZ/ j ˛ � I .mod N/g:

Write SN for the corresponding modular curve ShK.N/.GL2;HC/, and A for the universal
elliptic curve over SN . On SN we have the line bundle ! D !A=S , and a modular form
of weight k and level N is a section of !˝k holomorphic at the cusps. It is possible to

100
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re-write this definition so that it makes sense over any ring R containing 1=N . Briefly, a
modular form f of weight k and level N over R is a rule assigning to each triple .A;�;�/
consisting of an elliptic curve A over SpecR0, a basis � for !A=R0 , and a level structure �, an
element of R0; here R0 is an R-algebra. When we apply f to the Tate curve and its canonical
differential over RŒŒq��, then the element of RŒŒq�� that we obtain is the Fourier series of f .

For the final approach, one computes the formal completion at a cusp of the compact-
ification of SN . It is the formal spectrum of a power series ring over C in one variable.
By extending the modular form f to the compactification, and using the computation, one
obtains the Fourier series of f .

2. The analytic definition of Fourier-Jacobi series

Piatetski-Shapiro 1966 (especially �12, �15) associates a Fourier-Jacobi series with any
automorphic form (or function) on a Siegel domain. In order to apply the construction to an
automorphic form f on a bounded symmetric domain D, we use the realization of D as a
Siegel domain of the third kind corresponding to a rational boundary component F of X
(see V 2). The Fourier-Jacobi series attached to f and the boundary component F is then of
the form

FJF .f /D
X
�

 �.u; t/e
2�i.�;z/:

Here � runs over a finitely generated abelian group, t runs over the symmetric Hermitian
domain F , and, for a fixed � and t ,  �.u; t/ is a theta function. Recall that a theta function
can be regarded as a section of a line bundle on an abelian variety. Since a mixed Shimura
variety is, roughly speaking, a sum of line bundles (with the zero sections removed) over an
abelian scheme over a Shimura variety, a function on it can be written . �.u; t//� where t is
a point of the Shimura variety and  �.u; t/ is a section of the line bundle indexed by � on
the abelian variety over t . The similarity of two expressions is not a coincidence.

3. The modular definition of Fourier-Jacobi series

There is a very complete discussion of Fourier-Jacobi series for Siegel modular forms in
Chai and Faltings 1989, and a briefer discussion for automorphic forms on a Shimura variety
of Hodge type in Brylinski 1983, �5.

4. A formal-algebraic definition of Fourier-Jacobi series

Let .G;X/ be a pair defining a Shimura variety, and let W F
� be a Cayley filtration on

G. In (VI 1.11) above, we derived from these data a triple .P;W�;Y / defining a mixed
Shimura variety. Let K be a compact open subgroup of G.Af /, and let � D G.Q/\K
and �P D P.Q/\K. Then W�2P.C/ contains a canonical self-adjoint homogeneous
cone C . Choose a N� .F /-admissible fan � in C . Then we can form the partial compact-
ification ShK.G;X/� of ShK.G;X/ along F . Assume that ShK.G;X/� is smooth, and
that the boundary of ShK.G;X/ in it is a divisor with normal crossings. We then write
ShK.G;X/b� for the formal completion of ShK.G;X/ along the boundary. We can also
form the partial compactification MKP .P;W�;Y /� of MKP .P;W�;Y /, and the formal
completion MKP .P;W�;Y /b� of MKP .P;W�;Y / along its boundary in MKP .P;W�;Y /�.
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CONJECTURE 4.1. There is a canonical isomorphism

ShK.G;X/b�!G`.Z/nMKP .P;W�;Y /b�
The isomorphism should correspond to the isomorphism on the level of analytic spaces.

The statement should be regarded as giving a precise description of the structure of
Sh.G;X/ near the boundary component F . For Siegel modular varieties, it is proved in Chai
and Faltings 1989, IV.

A GC-equivariant vector bundle J on LX , defines automorphic vector bundles V.J /
and VM .J / on Sh.G;X/ and M.P;W�;Y / respectively; extend the vector bundles to the
partial compactifications; the isomorphism in (3.1) will give an isomorphism of the formal
completions: V.J /b� Ð VM .J /b�. A section f of V.J / will extend to a section of V.J /�,
and map to a section of FJF .f / of VM .J /b� — this is the Fourier-Jacobi series of f
along F .

5. Conjugates of Fourier-Jacobi series

The map f 7! FJF .f / should be compatible with the various maps ���;x (see V 5.1 and VI
4). The q-expansion principle should then allow us to deduce that an automorphic form is
rational over a field L if and only if its Fourier-Jacobi series are.

Note that for noncompact Shimura varieties, this will give another description of the
canonical model of minimal compactification: it is the Proj of the graded ring generated
by automorphic forms whose Fourier-Jacobi series have coefficients in the reflex field. We
mention that Baily and Karel have been attempting to give a totally different approach
to some of the results in this article by directly constructing automorphic forms whose
Fourier-Jacobi series are rational (in a suitable sense) over E.G;X/ and then showing that
the Proj of the graded ring they define is the canonical model of the Shimura variety (see for
example Baily 1985 and Karel 1986).

6. Automorphic forms of half-integral weight

Just as modular forms of half-integral weight for GL2 correspond in a natural way to
automorphic forms of integral weight on the mixed Shimura variety defined in (2.3) (see
Eichler and Zagier 1985), so should all automorphic forms of half-integral weight on a
Shimura variety correspond to automorphic forms of integral weight on a mixed Shimura
variety.

NOTES. There is an enormous literature on Fourier-Jacobi series. Apart from those referred to in
the text, the following papers are most closely related to the main theme of this Chapter: Shimura
1978b, 1978c; Garrett 1981, 1983; and Harris 1986. I understand that Richard Pink’s Bonn thesis
will examine the question of the formal-algebraic definition of Fourier-Jacobi series.
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Deligne, P., Théorie de Hodge I, in Actes du Congrés International des Math. (Nice, 1970),
1 Gauthier-Villars, 1971a, pp. 425–430.
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