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Abstract

Grothendieck’s standard conjecture of Lefschetz type has two main forms: the
weak form 𝐶 and the strong form 𝐵. The weak form is known for varieties over
finite fields as a consequence of the proof of theWeil conjectures. This suggests that
the strong form of the conjecture in the same setting may be the most accessible of
the standard conjectures. Here, as an advertisement for the conjecture, we explain
some of its remarkable consequences.
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All algebraic varieties are projective, smooth, and connected (unless denoted by 𝑆).
Let𝐻 be aWeil cohomology theory on the algebraic varieties over an algebraically closed
field 𝑘. Let 𝑋 be a variety over 𝑘 of dimension 𝑑, and let 𝐿∶ 𝐻∗(𝑋) → 𝐻∗+2(𝑋) be the
Lefschetz operator defined by a hyperplane section. The strong Lefschetz theorem states
that

𝐿𝑑−𝑖 ∶ 𝐻𝑖(𝑋) → 𝐻2𝑑−𝑖(𝑋)
is an isomorphism for all 𝑖 ≤ 𝑑. The Lefschetz standard conjecture (in its strong form)
states that 𝐿𝑑−2𝑖 induces an isomorphism on theℚ-subspaces of algebraic classes (see
Kleiman 1968). We say that the Lefschetz standard conjecture holds for the algebraic
varieties over a field 𝑘 if the strong form holds for the classical Weil cohomology theories
(𝓁-adic étale, de Rham in characteristic zero, crystalline in characteristic 𝑝).

An almost-algebraic class on an algebraic variety in characteristic zero is an absolute
Hodge class that becomes algebraic modulo 𝑝 for almost all 𝑝 (see 1.3 below).

Theorem 1. The Lefschetz standard conjecture for algebraic varieties over finite fields
implies the almost-Hodge conjecture for abelian varieties, i.e., all Hodge classes on complex
abelian varieties are almost-algebraic.
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In the remaining statements, 𝑝 is a fixed prime number and 𝔽 is an algebraic closure
of the field 𝔽𝑝 of 𝑝 elements.

Theorem 2. The Lefschetz standard conjecture for algebraic varieties over 𝔽 implies
(a) the full Tate conjecture for abelian varieties over 𝔽;
(b) the standard conjecture of Hodge type for abelian varieties in characteristic 𝑝.

See §3 for the statement of the Tate conjecture and Kleiman 1994, p. 16, for the
statement of the Hodge standard conjecture.

Theorem 3. The full Tate conjecture for algebraic varieties over 𝔽 implies Grothendieck’s
standard conjectures over 𝔽.

We prove these theorems in the first four sections of the paper. In Section 5, we use
a construction of Schäppi to give unconditional variants of our theorems, and in Section
6, we list some statements that imply the Lefschetz standard conjecture.

We refer to Kleiman 1994 for the various forms, 𝐴, 𝐵, 𝐶, 𝐷, of the Lefschetz standard
conjecture. We assume that the reader is familiar with the expository article Milne 2020,
cited as HAV. Throughout, ℚal is the algebraic closure of ℚ in ℂ.

Let𝐴 be an abelian variety over a number field𝐾, and let𝑤 be a prime of𝐾 dividiing
𝑝. We say that 𝐴 has very good reduction at 𝑤 if
(a) 𝐴 has good reduction at 𝑤, and
(b) the Mumford-Tate group of 𝐴ℂ (a reductive group over ℚ) is unramified at 𝑝.

Note that if 𝐾 has finite degree over ℚ, then 𝐴 has very good reduction at almost all
primes of 𝐾.

1 Proof of Theorem 1
In this section, 𝑋 is an algebraic variety over a field 𝑘 of characteristic zero.

1.1. Suppose first that 𝑘 is algebraically closed. We let𝐵𝑟(𝑋) denote the space of absolute
Hodge classes of codimension 𝑟 on 𝑋. Thus 𝐵𝑟(𝑋) is a finite-dimensional ℚ-subspace
of the adèlic cohomology group 𝐻2𝑟

𝔸 (𝑋)(𝑟) (Deligne 1982, §3). Let 𝑘 → 𝑘′ be a homo-
morphism from 𝑘 into a second algebraically closed field 𝑘′; then the canonical map
𝐻2𝑟
𝔸 (𝑋)(𝑟) → 𝐻2𝑟

𝔸 (𝑋𝑘′)(𝑟) induces an isomorphism 𝐵𝑟(𝑋) → 𝐵𝑟(𝑋𝑘′) (ibid., 2.9). For an
abelian variety over ℂ, every Hodge class is absolutely Hodge (ibid., Main Theorem
2.11).

1.2. Now allow 𝑘 to be arbitrary of characteristic 0, and let 𝑘al be an algebraic closure of 𝑘.
ThenGal(𝑘al∕𝑘) acts on 𝐵𝑟(𝑋𝑘al) through a finite quotient, and 𝐵𝑟(𝑋)

def= 𝐵𝑟(𝑋𝑘al)Gal(𝑘
al∕𝑘).

1.3. We define an almost-algebraic class of codimension 𝑟 on 𝑋 to be an absolute
Hodge class 𝛾 of codimension 𝑟 such that there exists a cartesian square

𝒳 𝑋

𝑆 Spec(𝑘)

←→ 𝑓
←→

←→

←→

and a global section 𝛾̃ of 𝑅2𝑟𝑓∗𝔸(𝑟) satisfying the following conditions,
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⋄ 𝑆 is the spectrum of a regular integral domain of finite type over ℤ;
⋄ 𝑓 is smooth and projective;
⋄ the fibre of 𝛾̃ over Spec(𝑘) is 𝛾, and the reduction of 𝛾̃ at 𝑠 is algebraic for all closed

points 𝑠 in a dense open subset of 𝑆.
Cf. Serre 1974, 5.2, and Tate 1994, p.76. Usually, almost-algebraic classes are not required
to be absolutely Hodge, but since we have a robust theory of absolute Hodge classes, it is
natural to include it.

Theorem 1.4. Assume that the Lefschetz standard conjecture holds for algebraic vari-
eties over finite fields. Then all absolute Hodge classes on abelian varieties over fields of
characteristic zero are almost-algebraic.

Proof. It suffices to prove this with 𝑘 = ℂ, where it becomes a question of showing that
Hodge classes on abelian varieties are almost-algebraic. Let 𝑋 be an algebraic variety of
dimension 𝑑 over ℂ, and let 𝐿∶ 𝐻∗(𝑋,ℚ) → 𝐻∗+2(𝑋,ℚ(1)) be the Lefschetz operator
on Betti cohomology defined by a hyperplane section. According to the strong Lefschetz
theorem, the map 𝐿𝑑−𝑖 ∶ 𝐻𝑖(𝑋,ℚ) → 𝐻2𝑑−𝑖(𝑋,ℚ)(𝑑 − 𝑖) is an isomorphism for 𝑖 ≤ 𝑑;
let 𝜃𝑖 ∶ 𝐻2𝑑−𝑖(𝑋,ℚ)(𝑑 − 𝑖) → 𝐻𝑖(𝑋,ℚ) denote the inverse isomorphism.

The isomorphism 𝜃𝑖 ⊗ 1∶ 𝐻2𝑑−𝑖
𝔸 (𝑋)(𝑑 − 𝑖) → 𝐻𝑖

𝔸(𝑋) is absolutely Hodge (i.e., its
graph is an absolute Hodge class). Consider a diagram as in 1.3. For a closed point
𝑠 of 𝑆 such that 𝑋 and 𝐿 have good reduction, 𝜃𝑖 ⊗ 1 specializes to the inverse of the
isomorphism 𝐿(𝑠)𝑑−𝑖 ∶ 𝐻𝑖

𝔸(𝑋(𝑠)) → 𝐻2𝑑−𝑖
𝔸 (𝑋(𝑠))(𝑑−𝑖). As we are assuming the standard

conjecture over 𝔽, this inverse is algebraic (Kleiman 1994, 4-1, 𝜃 ⇔ 𝐵). Hence 𝜃𝑖 is
almost-algebraic.

Since this holds for all 𝑋 and 𝑖, the Lefschetz standard conjecture holds for almost-
algebraic classes on algebraic varieties over ℂ. As for algebraic classes, this implies that
all Hodge classes on abelian varieties are almost-algebraic (HAV, Theorem 4). 2

Note that the theorem does not say that an absolute Hodge class becomes algebraic
modulo 𝑝 for any specific 𝑝. In the next section, we prove this in some cases.

2 Almost-algebraic classes on abelian varieties
Fix a prime number 𝑝, and let 𝔽 be an algebraic closure of 𝔽𝑝. In the following, 𝓁 is a
prime number ≠ 𝑝.

Variation of algebraic classes over 𝔽
Proposition 2.1. Let 𝑆 be a complete smooth curve over 𝔽 and 𝑓∶ 𝑋 → 𝑆 an abelian
scheme over 𝑆. Assume that the Lefschetz standard conjecture holds for 𝑋 and 𝓁-adic étale
cohomology. Let 𝑡 be a global section of the sheaf 𝑅2𝑟𝑓∗ℚ𝓁(𝑟); if 𝑡𝑠 is algebraic for one
𝑠 ∈ 𝑆(𝔽), then it is algebraic for all 𝑠.

Proof. For a positive integer 𝑛 prime to 𝑝, let 𝜃𝑛 denote the endomorphism of 𝑋∕𝑆
acting as multiplication by 𝑛 on the fibres. By a standard argument (Kleiman 1968,
p. 374), 𝜃∗𝑛 acts as 𝑛𝑗 on 𝑅𝑗𝑓∗ℚ𝓁. As 𝜃∗𝑛 commutes with the differentials 𝑑2 of the Leray
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spectral sequence 𝐻𝑖(𝑆, 𝑅𝑗𝑓∗ℚ𝓁) ⇐⇒ 𝐻𝑖+𝑗(𝑋,ℚ𝓁), we see that it degenerates at the
𝐸2-term and

𝐻𝑟(𝑋,ℚ𝓁) ≃
⨁

𝑖+𝑗=𝑟
𝐻𝑖(𝑆, 𝑅𝑗𝑓∗ℚ𝓁),

where𝐻𝑖(𝑆, 𝑅𝑗𝑓∗ℚ𝓁) is the direct summand of𝐻𝑟(𝑋,ℚ𝓁) on which 𝑛 acts as 𝑛𝑗. We let
𝑎𝐻 denote the ℚ-subspace of a cohomology group𝐻 spanned by the algebraic classes.

Let 𝑠 ∈ 𝑆(𝔽) and let 𝜋 = 𝜋1(𝑆, 𝑠). The inclusion 𝑗𝑠 ∶ 𝑋𝑠 → 𝑋 induces an isomor-
phism 𝑗∗𝑠 ∶ 𝐻0(𝑆, 𝑅2𝑟𝑓∗ℚ𝓁) → 𝐻2𝑟(𝑋𝑠, ℚ𝓁)𝜋 preserving algebraic classes, and so

dim𝑎𝐻0(𝑆, 𝑅2𝑟𝑓∗ℚ𝓁) ≤ dim𝑎𝐻2𝑟(𝑋𝑠, ℚ𝓁)𝜋. (1)

Similarly, theGysinmap 𝑗𝑠∗∶ 𝐻2𝑑−2𝑟(𝑋𝑠, ℚ𝓁) → 𝐻2𝑑−2𝑟+2(𝑋,ℚ𝓁), where𝑑 = dim(𝑋∕𝑆),
induces a map 𝐻2𝑑−2𝑟(𝑋𝑠, ℚ𝓁)𝜋 → 𝐻2(𝑆, 𝑅2𝑑−2𝑟𝑓∗ℚ𝓁) preserving algebraic classes, and
so

dim𝑎𝐻2𝑑−2𝑟(𝑋𝑠, ℚ𝓁)𝜋 ≤ dim𝑎𝐻2(𝑆, 𝑅2𝑑−2𝑟𝑓∗ℚ𝓁). (2)

Because the Lefschetz standard conjecture holds for 𝑋𝑠 (Kleiman 1968, 2A11),

dim𝑎𝐻2𝑟(𝑋𝑠, ℚ𝓁)𝜋 = dim𝑎𝐻2𝑑−2𝑟(𝑋𝑠, ℚ𝓁)𝜋. (3)

Hence,

dim𝑎𝐻0(𝑆, 𝑅2𝑟𝑓∗ℚ𝓁)
(1)
≤ dim𝑎𝐻2𝑟(𝑋𝑠, ℚ𝓁)𝜋

(3)= dim𝑎𝐻2𝑑−2𝑟(𝑋𝑠, ℚ𝓁)𝜋
(2)
≤ dim𝑎𝐻2(𝑆, 𝑅2𝑑−2𝑟𝑓∗ℚ𝓁).

The Lefschetz standard conjecture for 𝑋 implies that

dim𝑎𝐻0(𝑆, 𝑅2𝑟𝑓∗ℚ𝓁) = dim𝑎𝐻2(𝑆, 𝑅2𝑑−2𝑟𝑓∗ℚ𝓁),

and so the inequalities are equalities. Thus

𝑎𝐻2𝑟(𝑋𝑠, ℚ𝓁)𝜋 = 𝑎𝐻0(𝑆, 𝑅2𝑟𝑓∗ℚ𝓁),

which is independent of 𝑠. 2

Remark 2.2. The proof shows that 𝑡, when regarded as an element of𝐻2𝑟(𝑋,ℚ𝓁(𝑟)), is
algebraic.

Weil classes
Fix a prime 𝑤 of ℚal dividing 𝑝. The residue field at 𝑤 is an algebraic closure 𝔽 of 𝔽𝑝.
We refer to Deligne 1982 or HAV for facts on abelian varieties of Weil type.

Proposition 2.3. Assume that the Lefschetz standard conjecture holds for algebraic vari-
eties over 𝔽 and 𝓁-adic étale cohomology, some 𝓁 ≠ 𝑝. Let (𝐴, 𝜈) be an abelian variety over
ℚal of split Weil type relative to a CM field 𝐸, and let 𝑡 ∈ 𝑊𝐸(𝐴) ⊂ 𝐻2𝑟

𝔸 (𝐴) be a Weil class
on 𝐴. If 𝐴 has good reduction at 𝑤 to an abelian variety 𝐴0 over 𝔽, then the element (𝑡𝓁)0
of𝐻2𝑟(𝐴0, ℚ𝓁) is algebraic.
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The proof will occupy the remainder of this subsection. In outline, it follows the
proof of Deligne 1982, Theorem 4.8, but requires a delicate reduction argument of André.

Lemma 2.4. Let (𝐴, 𝜈) be an abelian variety overℚal of split Weil type relative to 𝐸. Then
there exists a connected smooth variety 𝑆 over ℂ, an abelian scheme 𝑓∶ 𝑋 → 𝑆 over 𝑆, and
an action 𝜈 of 𝐸 on 𝑋∕𝑆 such that
(a) for some 𝑠1 ∈ 𝑆(ℂ), (𝑋𝑠1 , 𝜈𝑠1) ≈ (𝐴, 𝜈)ℂ;
(b) for all 𝑠 ∈ 𝑆(ℂ), (𝑋𝑠, 𝜈𝑠) is of split Weil type relative to 𝐸;
(c) for some 𝑠2 ∈ 𝑆(ℂ), 𝑋𝑠2 is of the form 𝐵 ⊗ℚ 𝐸 with 𝑒 ∈ 𝐸 acting as id⊗𝑒.

Proof. See the proof of Deligne 1982, 4.8. 2

We shall need to use additional properties of the family𝑋 → 𝑆 constructed byDeligne.
For example, there is a local subsystem 𝑊𝐸(𝑋∕𝑆) of 𝑅2𝑟𝑓∗ℚ such that 𝑊𝐸(𝑋∕𝑆)𝑠 =
𝑊𝐸(𝑋𝑠) for all 𝑠 ∈ 𝑆(ℂ). Also, the variety 𝐵 in (c) can be chosen to be a power of CM
elliptic curve (so 𝑋𝑠2 is isogenous to a power of a CM elliptic curve).

The variety 𝑆 has a unique model over ℚal with the property that every CM-point
𝑠 ∈ 𝑆(ℂ) lies in 𝑆(ℚal). This follows from the general theory of Shimura varieties; or
from the general theory of locally symmetric varieties (Faltings; Peters 2017); or (best)
from descent theory (Milne 1999a, 2.3) using that 𝑆 is a moduli variety over ℂ and that
themoduli problem is defined overℚal. Themorphism 𝑓 is also defined overℚal, and we
will now simply write 𝑓∶ 𝑋 → 𝑆 for the family overℚal. There is a ℚ-local subsystem
𝑊𝐸(𝑋∕𝑆) of 𝑅2𝑟𝑓∗ℚ𝓁 such that𝑊𝐸(𝑋∕𝑆)𝑠 = 𝑊𝐸(𝑋𝑠) for all 𝑠 ∈ 𝑆(ℚal). The points 𝑠1
and 𝑠2 lie in 𝑆(ℚal).

We now assume that 𝐸 contains an imaginary quadratic field in which the prime 𝑝
splits — this is the only case we shall need, and it implies the general case.

The family𝑋 → 𝑆 (without the action of 𝐸) defines a morphism from 𝑆 into a moduli
variety𝑀 overℚal for polarized abelian varieties with certain level structures. Letℳ be
the corresponding moduli scheme over 𝒪𝑤 andℳ∗ its minimal compactification (Chai
and Faltings 1990). Let 𝒮∗ be the closure of 𝑆 inℳ∗.

Lemma 2.5. The complement of 𝒮∗𝔽 ∩ℳ𝔽 in 𝒮∗𝔽 has codimension at least two.

Proof. See André 2.4.2. 2

Recall that 𝑠1 and 𝑠2 are points in 𝑆(ℚal) such that𝑋𝑠1 = 𝐴 and𝑋𝑠2 is a power of a CM-
elliptic curve. As𝐴 and the elliptic curve have good reduction, the points extend to points
𝓈1 and 𝓈2 of 𝒮∗ ∩ℳ. Let 𝒮 denote the blow-up of 𝒮∗ centred at the closed subscheme
defined by the image of 𝓈1 and 𝓈2, and let 𝒮 be the open subscheme obtained by removing
the strict transform of the boundary 𝒮∗∖(𝒮∗∩ℳ). It follows from 2.5 that 𝒮𝔽 is connected,
and that any sufficiently general linear section of relative dimension dim(𝑆) − 1 in a
projective embedding 𝒮 → ℙ𝑁𝒪𝑤

is a projective flat 𝒪𝑤-curve 𝒞 contained in 𝒮 with
smooth geometrically connected generic fibre (André 2.5.1). Consider (𝒳|𝒞)𝔽 → 𝒞𝔽.
After replacing 𝒞𝔽 by its normalization and pulling back (𝒳|𝒞)𝔽, we are in the situation
of Proposition 2.1. The class 𝑡𝑠2 is algebraic because the Hodge conjecture holds for
powers of elliptic curves (theℚ-algebra of Hodge classes is generated by divisor classes).
Hence (𝑡𝑠2𝓁)0 is algebraic, and 2.1 shows that (𝑡𝑠1𝓁)0 is algebraic. This completes the
proof of Proposition 2.3.
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Absolute Hodge classes on abelian varieties
Again, 𝑤 is a prime of ℚal lying over 𝑝 and 𝓁 is a prime number ≠ 𝑝.

Theorem 2.6. Assume that the Lefschetz standard conjecture holds for algebraic varieties
over 𝔽. Let 𝐴 be an abelian variety overℚal with good reduction at 𝑤 to an abelian variety
𝐴0 over 𝔽, and let 𝑡 be an absolute Hodge class on 𝐴. If 𝐴 is CM or has very good reduction
at 𝑤, then the class (𝑡𝓁)0 on 𝐴0 is algebraic.

Proof. We first assume that 𝐴 is CM, say, of type (𝐸, Φ). Let 𝐹 be a CM-subfield of ℂ,
finite and Galois over ℚ, that splits 𝐸. We may suppose that 𝐹 contains an imaginary
quadratic field in which 𝑝 splits.

For each subset∆ ofHom(𝐸, 𝐹) such that |𝑡∆∩Φ| = 𝑟 = |𝑡∆∩Φ̄| for all 𝑡 ∈ Gal(𝐹∕ℚ),
we let 𝐴∆ =

∏
𝑠∈∆𝐴 ⊗𝐸,𝑠 𝐹. There is an obvious homomorphism 𝑓∆∶ 𝐴 → 𝐴∆. The

abelian variety 𝐴∆ is of split Weil type, and every absolute Hodge class 𝑡 on 𝐴 can be
written as a sum 𝑡 = ∑𝑓∗∆(𝑡∆) with 𝑡∆ a Weil class on 𝐴∆ (André 1992; HAV, Theorem
1). Thus the theorem in this case follows from Proposition 2.3.

We now consider the case that 𝐴 has very good reduction. There exists an abelian
scheme 𝑓∶ 𝑋 → 𝑆 overℂwith 𝑆 a connected Shimura variety, and a section 𝛾 of 𝑅2𝑟𝑓∗𝔸
such that (𝑋, 𝛾)𝑠 = (𝐴, 𝑡) (Deligne 1982, 6.1). As before, wemay suppose that 𝑓 is defined
over ℚal and that 𝑠 ∈ 𝑆(ℚal). There exists a point 𝑠′ ∈ 𝑆(ℚal) such that (𝑠′)0 = 𝑠0 in
𝑆0(𝔽) and𝑋𝑠′ is a CM abelian variety (Kisin, Vasiu, using that𝐴 has very good reduction).
Now the theorem for 𝑋𝑠′ implies that (𝑡𝑠𝓁)0 is algebraic. 2

3 Proof of Theorem 2.
Fix an algebraic closure 𝔽 of 𝔽𝑝, and let 𝔽𝑞 be the subfield of 𝔽 with 𝑞 elements.

3.1. Let 𝑋 be an algebraic variety over 𝔽𝑞. For 𝓁 ≠ 𝑝, the Tate conjecture 𝑇(𝑋, 𝓁) states
that the ℚ𝓁-vector space 𝐻2∗

𝓁 (𝑋)(∗)
Gal(𝔽∕𝔽𝑞) is spanned by algebraic classes, and the

conjecture 𝑆(𝑋, 𝓁) states that the obvious map 𝐻2∗
𝓁 (𝑋)(∗)

Gal(𝔽∕𝔽𝑞) → 𝐻2∗
𝓁 (𝑋)(∗)Gal(𝔽∕𝔽𝑞)

is an isomorphism. The full Tate conjecture 𝑇(𝑋) states that, for all 𝑟, the pole of the zeta
function 𝑍(𝑋, 𝑡) at 𝑡 = 𝑞−𝑟 is equal to the rank of the group of numerical equivalence
classes of algebraic cycles on 𝑋 of codimension 𝑟. It is known (folklore) that, if 𝑇(𝑋, 𝓁)
and 𝑆(𝑋, 𝓁) hold for a single 𝓁, then the full Tate conjecture 𝑇(𝑋) holds, in which case
𝑇(𝑋, 𝓁) and 𝑆(𝑋, 𝓁) hold for all 𝓁. See Tate 1994.

We say that one of these conjectures holds for an algebraic variety 𝑋 over 𝔽 if it holds
for all models of 𝑋 over finite subfields of 𝔽 (it suffices to check that it holds for some
model over a sufficiently large subfield).

Theorem 3.2. Assume that the Lefschetz standard conjecture holds for algebraic varieties
over 𝔽 and 𝓁-adic étale cohomology (some 𝓁 ≠ 𝑝). Then the full Tate conjecture holds for
abelian varieties over finite fields of characteristic 𝑝.

Proof. In Milne 1999b, the Tate conjecture for abelian varieties over 𝔽 is shown to
follow from the Hodge conjecture for CM abelian varieties over ℂ. However, the proof
does not use that the Hodge classes are algebraic, but only that they become algebraic
modulo 𝑝. Hence we can deduce from Proposition 2.6 that the Tate conjecture holds
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for abelian varieties over 𝔽 and some 𝓁. As the Frobenius map acts semisimply on the
cohomology of abelian varieties (Weil 1948), this implies that the full Tate conjecture
holds for abelian varieties over 𝔽. 2

Theorem 3.3. Assume that the Lefschetz standard conjecture holds for algebraic varieties
over𝔽 and𝓁-adic étale cohomology (some𝓁 ≠ 𝑝). ThenGrothendieck’s standard conjecture
of Hodge type holds for abelian varieties over fields of characteristic 𝑝 and the classical Weil
cohomology theories.

Proof. In Milne 2002 the Hodge standard conjecture for abelian varieties in character-
istic 𝑝 is shown to follow from the Hodge conjecture for CM abelian varieties over ℂ.
Again, the proof uses only that the Hodge classes become algebraic modulo 𝑝, and so
the theorem follows from Proposition 2.6. 2

Corollary 3.4. Assume that the Lefschetz standard conjecture holds for algebraic vari-
eties over 𝔽 and 𝓁-adic étale cohomology (some 𝓁 ≠ 𝑝). Then the conjecture of Langlands
and Rapoport (1987, 5.e) is true for simple Shimura varieties of PEL-types A and C.

Proof. Langlands and Rapoport (ibid., §6) prove this under the assumption of the
Hodge conjecture for CM abelian varieties and the Tate and Hodge standard conjectures
for abelian varieties over 𝔽. However, their argument does not use that Hodge classes on
CM abelian varieties are algebraic, but only that they become algebraic modulo 𝑝. As
this, together with the Tate andHodge standard conjectures, are implied by the Lefschetz
standard conjecture, so also is their conjecture. 2

4 Proof of Theorem 3.
Briefly, the Tate conjecture over 𝔽 implies the Lefschetz standard conjecture over 𝔽, and
hence the Hodge standard conjecture for abelian varieties (Theorem 2). Now form the
category of abelian motives over 𝔽: Grothendieck’s standard conjectues hold for it. The
full Tate conjecture implies that the category of abelian motives contains the motives of
all algebraic varieties over 𝔽, and so the Hodge standard conjecture holds for them also.

We now prove more precise statements.

Proposition 4.1. Let 𝑋 be an algebraic variety over 𝔽. If the Tate conjecture holds for 𝑋
and some 𝓁, then the Lefschetz standard conjecture holds for 𝑋 and the same 𝓁.

Proof. To prove the Lefschetz standard conjecture for 𝑋 and a prime 𝓁, it suffices to
show that, for each 𝑖 ≤ 𝑑 def= dim(𝑋), there exists an algebraic correspondence inducing an
isomorphism𝐻2𝑑−𝑖

𝓁 (𝑋) → 𝐻𝑖
𝓁(𝑋) (Kleiman 1994, 4-1, 𝜈(𝑋) ⇔ 𝐵(𝑋)). The inverse 𝜃𝑖 of

the Lefschetzmap 𝐿𝑑−𝑖 ∶ 𝐻𝑖
𝓁(𝑋) → 𝐻2𝑑−𝑖

𝓁 (𝑋)(𝑑−𝑖) is an isomorphism𝐻2𝑑−𝑖
𝓁 (𝑋)(𝑑−𝑖) →

𝐻𝑖
𝓁(𝑋) commuting with the action of the Galois group. Any algebraic class 𝜈𝑖 sufficiently

close to the graph of 𝜃𝑖 will induce the required isomorphism. 2

Proposition 4.2. Let𝐻 be a Weil cohomology theory on algebraic varieties over an alge-
braically closed field 𝑘, and let 𝑋 and 𝑌 be algebraic varieties over 𝑘. Assume that there
exists an algebraic correspondence 𝛼 on 𝑋 × 𝑌 such that

𝛼∗∶ 𝐻∗(𝑋) → 𝐻∗(𝑌)
is injective. If the Hodge standard conjecture holds for 𝑌, then it holds for 𝑋.
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Proof. Apply Kleiman 1968, 3.11, and Saavedra Rivano 1972, VI, 4.4.2. 2

Lemma 4.3. Let 𝑋 be an algebraic variety over 𝔽𝑞. If 𝑆(𝑋 × 𝑋, 𝓁) holds for some 𝓁, then
the Frobenius endomorphism acts semisimply on the 𝓁-adic étale cohomology of 𝑋.
Proof. The statement 𝑆(𝑋 ×𝑋, 𝓁) says that 1, if an eigenvalue of the Frobenius element
acting on the 𝓁-adic cohomology of 𝑋 × 𝑋, is semisimple. From the Künneth formula

𝐻𝑟
𝓁(𝑋 × 𝑋) ≃

⨁
𝑖+𝑗=𝑟

𝐻𝑖
𝓁(𝑋) ⊗ 𝐻𝑗

𝓁(𝑋)

and linear algebra, we see that this implies that all eigenvalues on𝐻∗
𝓁(𝑋) are semisim-

ple. 2

It is conjectured that the Frobenius element always acts semisimply (Semisimplicity
Conjecture).

Fix a power 𝑞 of 𝑝 and a prime 𝓁 ≠ 𝑝. Define a Tate structure to be a finite-
dimensional ℚ𝓁-vector space with a linear (Frobenius) map 𝜛 whose characteristic
polynomial lies in ℚ[𝑇] and whose eigenvalues are Weil 𝑞-numbers, i.e., algebraic
numbers 𝛼 such that, for some integer𝑚 (called the weight of 𝛼), |||𝜌(𝛼)||| = 𝑞𝑚∕2 for every
homomorphism 𝜌∶ ℚ[𝛼] → ℂ, and, for some integer 𝑛, 𝑞𝑛𝛼 is an algebraic integer.
When the eigenvalues are all of weight𝑚 (resp. algebraic integers, resp. semisimple),
we say that 𝑉 is ofweight𝑚 (resp. effective, resp. semisimple). For example, for any
smooth complete variety 𝑋 over 𝑘, 𝐻𝑖

𝓁(𝑋) is an effective Tate structure of weight 𝑖∕2
(Deligne 1974), which is semisimple if 𝑋 is an abelian variety (Weil 1948, no. 70).

Proposition 4.4. Every effective semisimple Tate structure is isomorphic to a Tate sub-
structure of𝐻∗

𝓁(𝐴) for some abelian variety 𝐴 over 𝔽𝑞.
Proof. We may assume that the Tate structure 𝑉 is simple. Then 𝑉 has weight𝑚 for
some𝑚 ≥ 0, and the characteristic polynomial 𝑃(𝑇) of𝜛 is a monic irreducible poly-
nomial with coefficients in ℤ whose roots all have real absolute value 𝑞𝑚∕2. According
to Honda’s theorem (Honda 1968; Tate 1968), 𝑃(𝑇) is the characteristic polynomial of
an abelian variety 𝐴 over 𝔽𝑞𝑚 . Let 𝐵 be the abelian variety over 𝔽𝑞 obtained from 𝐴 by
restriction of the base field. The eigenvalues of the Frobenius map on 𝐻1

𝓁(𝐵) are the
𝑚th-roots of the eigenvalues of the Frobenius map on𝐻1

𝓁(𝐴), and it follows that 𝑉 is a
Tate substructure of𝐻𝑚

𝓁 (𝐵). 2

Theorem 4.5. Let 𝑋 be an algebraic variety over 𝔽, and let 𝓁 be a prime ≠ 𝑝. If the
Frobenius map acts semisimply on 𝐻∗

𝓁(𝑋) and the Tate conjecture holds for 𝓁 and all
varieties of the form 𝑋 × 𝐴 with 𝐴 an abelian variety, then the Hodge standard conjecture
holds for 𝑋 and 𝓁.
Proof. According to 4.4, there exists an inclusion 𝐻∗

𝓁(𝑋) → 𝐻∗
𝓁(𝐴) of Tate structures

with 𝐴 an abelian variety. This map is defined by a cohomological correspondence on
𝑋 × 𝐴 fixed by the Galois group. Any algebraic correspondence sufficiently close to this
correspondence defines an inclusion𝐻∗

𝓁(𝑋) → 𝐻∗
𝓁(𝐴). Now we can apply Proposition

4.2. 2

Corollary 4.6. If the Tate and semisimplicity conjectures hold for all algebraic varieties
over 𝔽 and some prime number 𝓁, then both the full Tate and Grothendieck standard
conjectures hold for all algebraic varieties over 𝔽 and all 𝓁.
Proof. Immediate consquence of the theorem. 2
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5 An unconditional variant
We use Schäppi 2020 to replace some of the above statements by unconditional variants.

Characteristic zero
Let 𝑘 be an algebraically closed field of characteristic zero, and fix an embedding 𝑘 → ℂ.
Let 𝐻 denote the Weil cohomology theory 𝑋 ⇝ 𝐻∗(𝑋(ℂ),ℚ), and let𝖬𝗈𝗍𝐻(𝑘) denote
the category of motives defined using almost-algebraic classes as correspondences. It is
a graded pseudo-abelian rigid tensor category1 over ℚ.

According to Schäppi 2020, §3, the fibre functor2 𝜔𝐻 ∶ 𝖬𝗈𝗍𝐻(𝑘) → ℤ-𝖵𝖾𝖼ℚ factors
in a canonical way through a “universal” graded tannakian categoryℳ𝐻(𝑘) over ℚ,

𝖬𝗈𝗍𝐻(𝑘)
[−],→ ℳ𝐻(𝑘)

𝜔,→ ℤ-𝖵𝖾𝖼ℚ,

where 𝜔 is a graded fibre functor.3
Wedefine the algebraic* classes on an algebraic variety𝑋 over 𝑘 to be the elements of

Hom(11, [ℎ(𝑋)]). The Lefschetz standard conjecture holds for algebraic* classes (Schäppi
2020, §3; alternatively, apply Corollary 6.5 below).

Now 𝜔𝐻 is a functor from 𝖬𝗈𝗍𝐻(𝑘) into the category 𝖧𝖽𝗀ℚ of polarizable rational
Hodge structures. This factors throughℳ𝐻(𝑘),

𝖬𝗈𝗍𝐻(𝑘)
[−],→ ℳ𝐻(𝑘)

𝜔,→ 𝖧𝖽𝗀ℚ,

where𝜔 is a functor of graded tannakian categories. Therefore algebraic* classes on𝑋 are
Hodge classes relative to the given embedding of 𝑘 into ℂ. It follows that Grothendieck’s
standard conjecture of Hodge type holds for algebraic* classes. Moreover, all algebraic*
classes on abelian varieties are absolutely Hodge (Deligne 1982, 2.11).

The same proof as for almost-algebraic classes (see §1) shows that the Hodge conjec-
ture holds for algebraic* classes on abelian varieties over ℂ, i.e., all Hodge classes on
abelian varieties over ℂ are algebraic*. As a consequence, for abelian varieties satisfying
the Mumford-Tate conjecture, the Tate conjecture holds for algebraic* classes.

Characteristic 𝑝
Fix a prime number 𝑝, and let 𝔽 denote an algebraic closure of 𝔽𝑝. For 𝓁 ≠ 𝑝, we let
𝖬𝗈𝗍𝓁(𝔽) denote the category of motives over 𝔽 defined using algebraic classes modulo
𝓁-adic homological equivalence as correspondences. It is a graded pseudo-abelian rigid
tensor category over ℚ.

According to Schäppi 2020, §3, the graded tensor functor 𝜔𝓁∶ 𝖬𝗈𝗍𝓁(𝔽) → ℤ-𝖵𝖾𝖼ℚ𝓁
factors in a canonical way through a graded tannakian categoryℳ𝓁(𝔽),

𝖬𝗈𝗍𝓁(𝑘)
[−],→ ℳ𝓁(𝔽)

𝜔,→ ℤ-𝖵𝖾𝖼ℚ,
1tensor category (functor)= symmetric monoidal category (functor)
2ℤ-𝖵𝖾𝖼ℚ is the category of finite-dimensional ℤ-graded vector space over ℚ.
3fibre functor= exact faithful tensor functor
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where 𝜔 is a graded fibre functor. Unfortunately, we do not know that End(11) = ℚ in
ℳ𝓁(𝔽), only that it is a subfield of ℚ𝓁.4

Let 𝑋 be an algebraic variety over 𝔽. We define the algebraic* classes on 𝑋 to be
the elements of Hom(11, [ℎ(𝑋)]). As before, the Lefschetz standard conjecture holds
for algebraic* classes. Therefore Proposition 2.1 holds unconditionally for algebraic*
classes: let 𝑓∶ 𝑋 → 𝑆 be as in the proposition, and let 𝑡 be a global section of the sheaf
𝑅2𝑟𝑓∗ℚ𝓁(𝑟); if 𝑡𝑠 is algebraic* for one 𝑠 ∈ 𝑆(𝔽), then it is algebraic* for all 𝑠.

Remark 5.1. Until it is shown that End(11) = ℚ inℳ𝓁(𝔽), this category is of only mod-
est interest. For abelian motives, what is needed is a proof of the rationality conjecture
(Milne 2009, 4.1).5

Mixed characteristic
Fix a prime 𝑤 ofℚal dividing 𝑝 and a prime number 𝓁 ≠ 𝑝. Theorem 2.6 holds uncondi-
tionally for algebraic* classes: let𝐴 be an abelian variety overℚal with good reduction at
𝑤 to an abelian variety𝐴0 over 𝔽, and let 𝑡 be an absolute Hodge class (e.g., an algebraic*
class) on 𝐴; if 𝐴 is CM or has very good reduction, then (𝑡𝓁)0 is an algebraic* class on
𝐴0. The proof is the same as before, using the * version of Proposition 2.1.

Wededuce, as in the proof of Theorem3.2, that the Tate conjecture holds for algebraic*
classes on abelian varieties over 𝔽, i.e., that 𝓁-adic Tate classes on abelian varieties over
𝔽 are algebraic*.

Letℳ′
𝐻(ℚal) denote the tannakian subcategory ofℳ𝐻(ℚal) generated by abelian

varieties with good reduction at 𝑤. There is a canonical tensor functorℳ′
𝐻(ℚal) →

ℳ𝓁(𝔽).

6 Statements implying the Lefschetz standard
conjecture

Conjecture 𝐷 and the Lefschetz standard conjecture
Let𝐻 be a Weil cohomology theory. The next statement goes back to Grothendieck.

Proposition 6.1. Assume that𝐻 satisfies the strong Lefschetz theorem. Conjecture 𝐷(𝑋)
implies 𝐴(𝑋, 𝐿) (all 𝐿); in the presence of the Hodge standard conjecture, 𝐴(𝑋, 𝐿) (one 𝐿)
implies 𝐷(𝑋).

Proof. Conjecture 𝐷(𝑋) says that the pairing

𝑥, 𝑦 ↦→ ⟨𝑥 ⋅ 𝑦⟩∶ 𝐴𝑖
𝐻(𝑋) × 𝐴𝑑−𝑖

𝐻 (𝑋) → 𝐴𝑑
𝐻(𝑋) ≃ ℚ (4)

is nondegenerate for all 𝑖 ≤ 𝑑 def= dim(𝑋). Therefore, dim𝐴𝑖
𝐻(𝑋) = dim𝐴𝑑−𝑖

𝐻 (𝑋). As
the map 𝐿𝑑−2𝑖 ∶ 𝐴𝑖

𝐻(𝑋) → 𝐴𝑑−𝑖
𝐻 (𝑋) is injective, it is surjective, i.e., 𝐴(𝑋, 𝐿) holds. The

converse is equally obvious. 2

4André’s category of motivated classes in characteristic 𝑝 has the same problem.
5Let𝐴 be an abelian variety overℚal with good reduction to an abelian variety𝐴0 over 𝔽; the cup product

of the specialization to 𝐴0 of any absolute Hodge class on 𝐴 with a product of divisors of complementary
codimension lies in ℚ .
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Corollary 6.2. Conjecture 𝐷(𝑋 × 𝑋) implies 𝐵(𝑋).

Proof. Indeed, 𝐴(𝑋 × 𝑋, 𝐿 ⊗ 1 + 1 ⊗ 𝐿) implies 𝐵(𝑋) (Kleiman 1968, Theorem 4-1).2

Remark 6.3. If Conjecture 𝐷(𝑋 × 𝑋) holds whenever 𝑋 is an abelian scheme over a
complete smooth curve over ℂ, then the Hodge conjecture holds for abelian varieties.

Does Conjecture C imply Conjecture B?
Kleiman (1994) states eight versions of Grothendieck’s standard conjecture of Lefschetz
type. He proves that six of the eight are equivalent and that a seventh is “practically
equivalent” to the others, but he states that the eighth version, Conjecture C, “is, doubt-
less, truly weaker”. In this subsection we examine whether Conjecture C is, in fact,
equivalent to the remaining conjectures.

Let𝐻 be a Weil cohomology theory on the algebraic varieties over an algebraically
closed field 𝑘. Assume that 𝐻 satisfies conjecture 𝐶, and let𝖬𝗈𝗍𝐻(𝑘) denote the cate-
gory of motives defined using algebraic classes modulo homological equivalence as the
correspondences. It is a graded pseudo-abelian rigid tensor category over ℚ equipped
with a graded tensor functor 𝜔𝐻 ∶ 𝖬𝗈𝗍𝐻 → ℤ-𝖵𝖾𝖼𝑄, where 𝑄 is the coefficient field of𝐻.

Proposition 6.4. Assume that 𝐻 satisfies the strong Lefschetz theorem in addition to
Conjecture 𝐶. If 𝜔𝐻 is conservative, then𝐻 satisfies the Lefschetz standard conjecture.

Proof. Let 𝐿∶ 𝐻𝑟(𝑋) → 𝐻𝑟+2(𝑋)(1) be the Lefschetz operator defined by a hyperplane
section of 𝑋. By assumption

𝐿𝑑−2𝑖 ∶ 𝐻2𝑖(𝑋)(𝑖) → 𝐻2𝑑−2𝑖(𝑋)(𝑑 − 𝑖) (5)

is an isomorphism for all 2𝑖 ≤ 𝑑 def= dim(𝑋). As 𝜔𝐻 is conservative,

𝑙𝑑−2𝑖 ∶ ℎ2𝑖(𝑋)(𝑖) → ℎ2𝑑−2𝑖(𝑋)(𝑑 − 𝑖) (6)

is an isomorphism for all 2𝑖 ≤ 𝑑. On applying the functorHom(11, −) to this isomorphism,
we get an isomorphism

𝐿𝑑−2𝑖 ∶ 𝐴𝑖
𝐻(𝑋) → 𝐴𝑑−𝑖

𝐻 (𝑋).
Thus, Conjecture 𝐴(𝑋, 𝐿) is true. 2

Corollary 6.5. Assume that𝐻 satisfies the strong Lefschetz theorem and Conjecture 𝐶.
If𝖬𝗈𝗍𝐻(𝑘) is tannakian, then𝐻 satisfies Conjecture 𝐵.

Proof. Fibre functors on tannakian categories are conservative. 2

Proposition 6.1 shows that a Weil cohomology theory satisfying both the strong
Lefschetz theorem and Conjecture 𝐷 also satisfies Conjecture 𝐵. Here we prove a
stronger result.

Proposition 6.6. Suppose that there exists a Weil cohomology theoryℋ satisfying both
the strong Lefschetz theorem and Conjecture 𝐷. Then every Weil cohomology theory 𝐻
satisfying the strong Lefschetz theorem and Conjecture 𝐶 also satisfies Conjecture 𝐵.
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Proof. Letℋ and𝐻 be Weil cohomology theories satisfying the strong Lefschetz the-
orem and assume thatℋ (resp. 𝐻) satisfies Conjecture 𝐷 (resp. Conjecture 𝐶). Then
ℋ satisfies the Lefschetz conjecture (6.1), in particular, Conjecture 𝐶. Let𝖬𝗈𝗍num(𝑘) =
𝖬𝗈𝗍ℋ(𝑘) be the category of motives defined using algebraic cycles modulo numerical
equivalence as correspondences. Then𝖬𝗈𝗍num is a semisimple tannakian category over
ℚ (Jannsen, Deligne), and there is a quotient functor 𝑞∶ 𝖬𝗈𝗍𝐻 → 𝖬𝗈𝗍num. For each𝑀
in𝖬𝗈𝗍𝐻 , the map End(𝑀) → End(𝑞𝑀) is surjective with kernel the radical of the ring
End(𝑀), and this radical is nilpotent (Jannsen 1992).

The conditions on ℋ imply that it satisfies Conjecture 𝐵 (Proposition 6.1). This
means that for each 𝑖 ≤ 𝑑 def= dim(𝑋), there exists amorphism ℎ2𝑑−𝑖num (𝑋)(𝑑−𝑖) → ℎ𝑖num(𝑋)
inducing the inverse of the map

𝐿𝑑−𝑖 ∶ ℋ𝑖
num(𝑋) → ℋ2𝑑−𝑖

num (𝑋)(𝑑 − 𝑖).

Write 𝛼 for the morphism ℎ𝑖(𝑋) → ℎ2𝑑−𝑖(𝑋)(𝑑 − 𝑖) in𝖬𝗈𝗍𝐻(𝑘) inducing the isomor-
phism

𝐿𝑑−𝑖 ∶ 𝐻𝑖(𝑋) → 𝐻2𝑑−𝑖(𝑋)(𝑑 − 𝑖). (7)

According to the last paragraph, there exists a morphism 𝛽∶ ℎ2𝑑−𝑖(𝑋)(𝑑 − 𝑖) → ℎ𝑖(𝑋)
such that 𝑞(𝛽◦𝛼) = idℎ𝑖num(𝑋). Now 𝛽◦𝛼 = 1+𝑛 in End(ℎ𝑖(𝑋)), where 𝑛 is nilpotent. On
replacing 𝛽 with (1 − 𝑛 + 𝑛2 −⋯)◦𝛽, we find that 𝛽◦𝛼 = 1 in End(ℎ𝑖(𝑋)). Hence the
inverse of the map (7) is algebraic, as required. 2

Proposition 6.7. If there exists oneWeil cohomology theory satisfying the strong Lefschetz
theorem and Conjecture 𝐷, then every Weil cohomology theory satisfying Conjecture 𝐷 also
satisfies the strong Lefschetz theorem

Proof. If there exists a Weil cohomology theory satisfying the strong Lefschetz theorem
and Conjecture 𝐷, then in𝖬𝗈𝗍num(𝑘),

𝑙𝑑−𝑖 ∶ ℎ𝑖(𝑋) → ℎ2𝑑−𝑖(𝑋)(𝑑 − 𝑖)

is an isomorphism for 𝑖 ≤ 𝑑. Let𝐻 be a Weil cohomology theory satisfying Conjecture
𝐷. On applying𝐻 to this isomorphism, we get an isomorphism

𝐿𝑑−𝑖 ∶ 𝐻𝑖(𝑋) → 𝐻2𝑛−𝑟(𝑋)(𝑛 − 𝑟).
2

Remark 6.8. Because𝖬𝗈𝗍num is Tannakian, there exists a field 𝑄 of characteristic zero
and a 𝑄-valued fibre functor 𝜔. Thenℋ∶ 𝑋 ⇝ ⨁

𝑖 𝜔(𝑋, 𝜋𝑖, 0) is a Weil cohomology
theory satisfying Conjecture 𝐷. It remains to show that 𝜔 can be chosen so that ℋ
satisfies the strong Lefschetz theorem. This comes down to showing that 𝑙𝑑−𝑖 ∶ ℎ𝑖(𝑋) →
ℎ2𝑑−𝑖(𝑋)(𝑑 − 𝑖) is an isomorphism in𝖬𝗈𝗍num(𝑘).

Remark 6.9. EveryWeil cohomology theory satisfying the weak Lefschetz theorem also
satisfies the strong Lefschetz theorem (Katz andMessing 1974, Corollaries to Theorem 1).
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