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Abstract

We show that every algebraic group scheme over a field with at least 8 elements
can be realized as the group of automorphisms of a nonassociative algebra. This
is only a modest improvement of the theorem of Gordeev and Popov (2003), but it
allows us to give a new characterization of algebraic Lie algebras and to simplify the
standard descriptions of Mumford–Tate domains and Shimura varieties as moduli
spaces. Once the original argument of Gordeev and Popov has been rewritten in the
language of schemes, we find that it also applies to algebraic groups over Dedekind
domains.
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Introduction
Let 𝑘 be a field. We use the following conventions: an algebra 𝐴 over 𝑘 is a 𝑘-vector
space 𝑉 equipped with a 𝑘-linear map 𝑡 ∶ 𝑉 ⊗𝑘 𝑉 → 𝑉 (no conditions);1 a commutative
𝑘-algebra is a commutative associative 𝑘-algebra with an identity element; an algebraic
group over 𝑘 is an affine group scheme of finite type over 𝑘. When 𝑉 is a vector space
over 𝑘 and 𝑅 is a commutative 𝑘-algebra, 𝑉𝑅 denotes the 𝑅-module 𝑅 ⊗𝑘 𝑉.

Let 𝐴 = (𝑉, 𝑡) be a finite-dimensional algebra over 𝑘. The functor 𝑅 ⇝ Aut𝑅(𝐴𝑅)
of commutative 𝑘-algebras is represented by an algebraic subgroup of GL𝑉 , which we
denote by Aut(𝐴). In general, Aut(𝐴) need not be smooth.

In the remainder of the introduction, 𝑘 is a field with at least 8 elements.

Theorem 1. Every algebraic group over𝑘 is isomorphic toAut(𝐴) for somefinite-dimensional
algebra 𝐴 over 𝑘.

This statement is almost the same as that of Theorem 1 in Gordeev and Popov 2003.
However, there “algebraic group” is meant in the sense of Borel 1991, not schemes. In
the language of schemes, they prove that, for each smooth algebraic group 𝐺 over 𝑘,
there exists a finite-dimensional algebra 𝐴 over 𝑘 such that 𝐺(𝐾) = Aut(𝐾 ⊗ 𝐴) for all

1This is Bourbaki’s definition. Note that we do not require an algebra to have a two-sided identity.
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fields 𝐾 containing 𝑘 (ibid., Corollary 1). By contrast, we prove that, for each algebraic
group 𝐺 (not necessarily smooth) over 𝑘, there exists a finite-dimensional algebra𝐴 over
𝑘 such that 𝐺(𝑅) = Aut(𝑅 ⊗ 𝐴) for all commutative 𝑘-algebras 𝑅.

If𝐺 = Aut(𝐴), then, in particular,𝐺(𝑅) = Aut(𝑅⊗𝐴) for 𝑅 the ring of dual numbers
over 𝑘. From this it follows that Lie(𝐺) is the Lie algebra Der(𝐴) of derivations of 𝐴. We
now have the following simple criterion for a Lie algebra to be algebraic.

Corollary 1. Let 𝔤 be a finite-dimensional Lie algebra over 𝑘. Then 𝔤 = Lie(𝐺) for some
algebraic group 𝐺 over 𝑘 if and only if 𝔤 = Der(𝐴) for some finite-dimensional algebra 𝐴
over 𝑘.

Proof. If 𝔤 = Der(𝐴), we define 𝐺 to be Aut(𝐴), and then Lie(𝐺) = Der(𝐴) = 𝔤.
Conversely, if 𝔤 = Lie(𝐺), we use Theorem 1 to set 𝐺 = Aut(𝐴), and then Der(𝐴) =
Lie(𝐺) = 𝔤. ■

Remark 1. When 𝑘 has characteristic 𝑝 ≠ 0, both Lie(𝐺) and Der(𝐴) have natural
𝑝-Lie algebra structures, and Corollary 1 holds with “Lie algebra” replaced by “𝑝-Lie
algebra”.

Theorem 1 extends to neutral tannakian categories. An algebra in a tensor category
is an object 𝑋 equipped with an algebra structure, i.e., a morphism 𝑡 ∶ 𝑋 ⊗ 𝑋 → 𝑋.

Corollary 2. Let 𝖢 be a neutral algebraic2 tannakian category over 𝑘. There exists an
algebra (𝑋, 𝑡) in 𝖢 such that, for every fibre functor 𝜔 with values in a field 𝑘′ ⊃ 𝑘,

Aut⊗(𝜔) = Aut(𝜔(𝑋), 𝜔(𝑡)).

Proof. As 𝖢 is neutral, there exists a 𝑘-valued fibre functor 𝜔0, and 𝜔0 defines an
equivalence of tensor categories 𝖢 → 𝖱𝖾𝗉(𝐺), where 𝐺 = Aut⊗(𝜔0). According to
Theorem 1, 𝐺 = Aut(𝐴) for some algebra 𝐴 = (𝑉, 𝑡) in 𝖱𝖾𝗉(𝐺). There exists an algebra
(𝑋, 𝑡) in 𝖢 such that 𝜔0(𝑋, 𝑡) is isomorphic to (𝑉, 𝑡). For any 𝑘′-valued fibre functor 𝜔,

Aut⊗(𝜔) ⊂ Aut(𝜔(𝑋), 𝜔(𝑡)),

but 𝜔 becomes isomorphic to 𝜔0 over some field containing 𝑘′, and so the inclusion is
an equality. ■

Question 1. Does Corollary 2 hold for nonneutral tannakian categories?

Let 𝐺 be an algebraic group over 𝑘. A standard result says that there exists a finite-
dimensional 𝑘-vector space 𝑉 and a family of tensors for 𝑉 such that 𝐺 is isomorphic to
the subgroup of GL𝑉 fixing the tensors. Theorem 1 gives a more precise statement.

Corollary 3. Let 𝐺 be an algebraic group over 𝑘. There exists a finite-dimensional 𝑘-
vector space 𝑉 and a 𝑡 ∈ 𝑉 ⊗ 𝑉∨ ⊗𝑉∨ such that 𝐺 is isomorphic to the subgroup of GL𝑉
fixing 𝑡. Here 𝑉∨ is the linear dual of 𝑉.

2A tannakian category over a field is said to be algebraic if it corresponds to an algebraic gerbe. This
amounts to saying that the affine group scheme attached to a fibre functor over some extension field of the
base field is algebraic, i.e., of finite type. See Saavedra 1972, III, 3.3.1.
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Proof. Let 𝑉 be a finite-dimensional 𝑘-vector space, and let 𝑡′∶ 𝑉 ⊗ 𝑉 → 𝑉 be the
linear map corresponding to 𝑡 ∈ 𝑉 ⊗ 𝑉∨ ⊗ 𝑉∨. Let 𝑅 be a commutative 𝑘-algebra
and 𝛼 an 𝑅-linear automorphism of 𝑉𝑅. Then 𝛼(𝑡) = 𝑡 if and only if 𝛼 is an algebra
automorphism of (𝑉, 𝑡′). Thus, the corollary is a restatement of Theorem 1. ■

Once the proof of Theorem1 ofGordeev and Popov has been rewritten in the language
of schemes, one sees that it in fact applies over more general bases. In particular, we
prove the following statement.

Theorem 2. Let 𝐺 be a flat algebraic group over a Dedekind domain 𝑅. If 𝑅 has enough
units, then there exists an algebra𝐴 over 𝑅, flat and finitely generated as an 𝑅-module, such
that 𝐺 is isomorphic to Aut(𝐴) (i.e., 𝐺 represents the functor of commutative 𝑅-algebras
𝑅′ ⇝ Aut(𝐴𝑅′)).

See Theorem 4 for a precise statement. In the course of proving Theorem 2, we obtain
the following result (Corollary 1 to Proposition 8), which has applications to Shimura
varieties.3

Theorem 3. Let 𝐺 be a flat algebraic group over a Dedekind domain 𝑅. There exists a
finite flat 𝑅-submodule𝑉 of𝒪(𝐺), stable under𝐺, such that the homomorphism𝐺 → GL𝑉
is a closed immersion. If 𝑅 is principal and the generic fibre of 𝐺 over 𝑅 is linearly reductive,
then 𝐺 is the subgroup of GL𝑉 fixing a finite collection of tensors in spaces 𝑉⊗𝑚 ⊗ (𝑉∨)⊗𝑛.

As polarizable rational Hodge structures form a tannakian category, it is possible to
equip such a Hodge structure with an algebra structure. Theorem 1 allows us to realize
Mumford–Tate domains as a moduli spaces for polarized rational Hodge structures with
an algebra structure. This is simpler than the usual description in terms of polarized
rational Hodge structures equipped with some family of Hodge tensors.

Similarly, Theorem 1 and its corollaries allow us to realize Shimura varieties of
abelian type with rational weight as moduli schemes for abelian motives with an algebra
structure. This is simpler than the description in Theorems 3.13 and 3.31 of Milne 1994.
As this depends on Deligne’s theory of absolute Hodge classes on abelian varieties, at
present it applies only in characteristic zero. However, once Deligne’s theory has been
extended to mixed characteristic (cf. Milne 2009), Theorem 2 will allow us to obtain a
new moduli description of Shimura varieties in mixed characteristic. This should allow
a significant simplification of the theory. It was this that sparked the author’s interest in
the topic. We do not explain these applications here as we plan to return to them in a
future work. For a brief explanation, see the last two sections of arXiv:2012.05708v1.

In Section 1 of the article we explain, following Gordeev and Popov, the construction
of some algebras, and in Section 2 we prove our main theorems.

Notation and conventions.
Throughout, 𝑅 is a commutative ring with 1. By a finite flat 𝑅-module, we mean an
𝑅-module that is finitely presented and flat. Unadorned tensor products are over 𝑅. We
say that an 𝑅-module 𝑆 is a direct summand of an 𝑅-module𝑊 if it is a submodule of𝑊
and admits a complement, i.e.,𝑊 = 𝑆 ⊕𝑊′ for some𝑊′.

3The second statement should be considered folklore. Gabber has proved a similar result over noetherian
regular base schemes of dimension ≤ 2— see the revised 2011 version of SGA 3, Exposé VI𝐵, Prop. 13.2.
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An algebra 𝐴 over 𝑅 is an 𝑅-module 𝑉 = mod(𝐴) together with an 𝑅-linear map
𝑡 ∶ 𝑉 ⊗𝑘 𝑉 → 𝑉. We say that 𝐴 is finitely presented, flat, . . . if the 𝑅-modulemod(𝐴) is
finitely presented, flat, . . . . For an element 𝑎 of an algebra, 𝑟𝑎 denotes rightmultiplication
by 𝑎. We let ⟨𝑆⟩ denote the linear span of a subset 𝑆 of a module.

For a finite flat 𝑅-module 𝑉, we let T(𝑉) denote the tensor algebra of 𝑉,

T(𝑉) =
⨁

𝑖⩾0
𝑉⊗𝑖,

and we let T(𝑉)+ denote the following ideal in 𝑇(𝑉),

T(𝑉)+ =
⨁

𝑖⩾1
𝑉⊗𝑖.

Both are algebras over 𝑅 equipped with a natural action of the algebraic group GL𝑉 :

𝑔 ⋅ 𝑡𝑖 = 𝑔⊗𝑖(𝑡𝑖), 𝑔∈GL(𝑉𝑅), 𝑡𝑖 ∈ 𝑉⊗𝑖
𝑅 , 𝑅 a commutative 𝑘-algebra.

By an algebraic group over 𝑅, we mean an affine group scheme of finite presentation
over 𝑅. An embedding of algebraic groups is a morphism that is both a homomorphism
and a closed immersion. For an 𝑅-module 𝑉 with an action of an algebraic group 𝐺, we
let 𝑉0 denote 𝑉 equipped with the trivial action of 𝐺.

1 Some special algebras
This section is adapted from Gordeev and Popov 2003 and Perepechko 2009.

The algebra 𝐴(𝑉, 𝑆)
Proposition 1. Let𝑉 be a nonzero finite flat 𝑅-module. Let 𝑆 be a finite flat 𝑅-submodule
of 𝑉⊗𝑟, some 𝑟 > 1, such that 𝑉⊗𝑟∕𝑆 is flat. Then there exists a finite flat graded algebra4
𝐴 = 𝑉 ⊕𝐴2 ⊕⋯ over 𝑅 such that

(GL𝑉)𝑆 = Aut(𝐴, 𝑉) (automorphisms of 𝐴 stabilizing 𝑉).

Here (GL𝑉)𝑆 represents the functor 𝑅′ ⇝ {𝑔 ∈ GL(𝑉𝑅′) ∣ 𝑔⊗𝑟(𝑆𝑅′) = 𝑆𝑅′}.

Proof. Let
𝐼(𝑆) = 𝑆 ⊕

(⨁
𝑖>𝑟

𝑉⊗𝑖
)
.

It is an ideal in the algebra T(𝑉)+, and we define

𝐴(𝑉, 𝑆) = T(𝑉)+∕𝐼(𝑆).

This is a finite flat algebra over 𝑅 with

mod(𝐴(𝑉, 𝑆)) =
(⨁𝑟−1

𝑖=1
𝑉⊗𝑖

)
⊕ (𝑉⊗𝑟∕𝑆)

as a graded 𝑅-module. Let 𝑅′ be a commutative 𝑅-algebra. When we replace 𝑉 and 𝑆
with 𝑉𝑅′ and 𝑆𝑅′ in the above definition, we obtain an algebra 𝐴(𝑉𝑅′ , 𝑆𝑅′) over 𝑅′, and

𝐴(𝑉𝑅′ , 𝑆𝑅′) ≃ 𝑅′ ⊗𝑅 𝐴(𝑉, 𝑆).
4Here 𝐴2 is the part of degree 2 of the graded algebra 𝐴.
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The ideal 𝐼(𝑆) is stable under the natural action of (GL𝑉)𝑆 on T(𝑉)+, and so (GL𝑉)𝑆
acts on 𝐴(𝑉, 𝑆) by algebra automorphisms. The quotient map 𝜋∶ T(𝑉)+ → 𝐴(𝑉, 𝑆)
is (GL𝑉)𝑆-equivariant. The condition 𝑟 > 1 ensures that 𝑉 = 𝑉⊗1 is a submodule of
𝐴(𝑉, 𝑆). Hence (GL𝑉)𝑆 acts faithfully on 𝐴(𝑉, 𝑆), and it stabilizes 𝑉. It remains to show
that the algebraic group (GL𝑉)𝑆 represents the functor

𝑅′ ⇝ {𝜎 ∈ Aut(𝐴(𝑉, 𝑆)𝑅′) ∣ 𝜎(𝑉𝑅′) = 𝑉𝑅′}.

Let 𝑅′ be a commutative 𝑅-algebra. We have seen that

(GL𝑉)𝑆(𝑅′) ⊂ {𝜎 ∈ Aut(𝐴(𝑉𝑅′ , 𝑆𝑅′)) ∣ 𝜎(𝑉𝑅′) = 𝑉𝑅′}

and it remains to prove equality. Let 𝜎 be an elementAut(𝐴(𝑉𝑅′ , 𝑆𝑅′)) such that 𝜎(𝑉𝑅′) =
𝑉𝑅′ . Put 𝑔 = 𝜎|𝑉𝑅′ , and let 𝑔

∙ denote the canonical extension of 𝑔 to an automorphism
of T(𝑉𝑅′)+. Then 𝑔∙|𝑉𝑅′ = 𝑔 = 𝜎|𝑉𝑅′ , and the diagram

T(𝑉𝑅)+ T(𝑉𝑅)+

𝐴(𝑉𝑅, 𝑆𝑅) 𝐴(𝑉𝑅, 𝑆𝑅)

← →𝑔∙

←→ 𝜋𝑅 ←→ 𝜋𝑅

←→𝜎

commutes because it does on 𝑉𝑅′ , which generates the algebra T(𝑉𝑅′)+. The commu-
tativity of the diagram implies that 𝑔∙(Ker(𝜋𝑅′)) = Ker(𝜋𝑅′). As Ker(𝜋𝑅′) = 𝐼(𝑆𝑅′), it
follows that 𝑔 is an element of GL(𝑉𝑅′) such that 𝑔⊗𝑟(𝑆𝑅′) = 𝑆𝑅′ . The diagram shows
that its image in Aut(𝐴(𝑉𝑅′ , 𝑆𝑅′)) is 𝜎. ■

Two lemmas
Lemma 1. Let 𝑉 be a finite flat 𝑅-module and 𝜙 an endomorphism of 𝑉. Suppose that 𝑉
decomposes into a direct sum of eigenspaces

𝑉 = 𝑉1 ⊕⋯⊕𝑉𝑛

for 𝜙 with eigenvalues 𝛼1, … , 𝛼𝑛 ∈ 𝑅 that are distinct modulo every maximal ideal of 𝑅.
For any commutative 𝑅-algebra 𝑅′, 𝑉𝑅′ = 𝑉1𝑅′ ⊕⋯⊕𝑉𝑛𝑅′ with

𝑉𝑖𝑅′ = {𝑥 ∈ 𝑉𝑅′ ∣ 𝜙𝑅′(𝑥) = 𝛼𝑖𝑥}. (1)

Proof. Certainly, 𝑉𝑅′
def= 𝑅′ ⊗𝑅 𝑉 is the direct sum of the 𝑅′-modules 𝑉𝑖𝑅′

def= 𝑅′ ⊗𝑅 𝑉𝑖
and𝑉𝑖𝑅′ is contained in the right-hand side of (1). For the opposite inclusion, let 𝑥 ∈ 𝑉𝑅′
be such that 𝜙𝑅′(𝑥) = 𝛼𝑖𝑥, and write 𝑥 = 𝑥1 +⋯+ 𝑥𝑛 with 𝑥𝑗 ∈ 𝑉𝑗𝑅′ . Then

𝜙𝑅′(𝑥) = 𝛼1𝑥1 +⋯+ 𝛼𝑛𝑥𝑛

and so
0 = 𝜙𝑅′(𝑥) − 𝛼𝑖𝑥 =

∑
𝑗(𝑎𝑗 − 𝛼𝑖)𝑥𝑗.

It follows that (𝑎𝑗 − 𝛼𝑖)𝑥𝑗 = 0 for all 𝑗 ≠ 𝑖. As (𝛼𝑗 − 𝛼𝑖) ∈ 𝑅× ⊂ 𝑅′×, this implies that
𝑥𝑗 = 0 for all 𝑗 ≠ 𝑖. ■
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Lemma 2. Let 𝐴 be an algebra over 𝑅 with a left identity element 𝑒 ∈ 𝐴. Suppose that
mod(𝐴) decomposes into a direct sum of eigenspaces

mod(𝐴) = 𝑅𝑒 ⊕ 𝐴1 ⊕⋯⊕𝐴𝑟

for 𝑟𝑒 with eigenvalues 1, 𝛼1, … , 𝛼𝑟 ∈ 𝑅 such that 0, 1, 𝛼1, … , 𝛼𝑟 are distinct modulo every
maximal ideal of 𝑅. For any commutative 𝑅-algebran 𝑅′,
(a) 𝑒 is the unique left identity element in 𝐴𝑅′ ;

(b) if 𝜎 ∈ Aut(𝐴𝑅′), then 𝜎(𝑒) = 𝑒 and 𝜎(𝐴𝑖𝑅′) = 𝐴𝑖𝑅′ for all 𝑖.

Proof. According to Lemma 1,

mod(𝐴𝑅′) = 𝑅′𝑒 ⊕ 𝐴1𝑅′ ⊕⋯⊕𝐴𝑟𝑅′

with 𝐴𝑖𝑅′ = {𝑥 ∈ 𝐴𝑅′ ∣ 𝑥𝑒 = 𝛼𝑖𝑥}.
(a) Let 𝑒′ be a left identity element of 𝐴𝑅′ , and write 𝑒′ = 𝛼𝑒 + 𝑎1 +⋯ + 𝑎𝑟 with

𝛼 ∈ 𝑅′ and 𝑎𝑖 ∈ 𝐴𝑖𝑅′ . Then 𝑒 = 𝑒′𝑒 = (𝛼𝑒 + 𝑎1 +⋯+𝑎𝑟)𝑒 = 𝛼𝑒 + 𝛼1𝑎1 +⋯+𝛼𝑟𝑎𝑟. As
𝛼𝑖 ∈ 𝑅× ⊂ 𝑅′× and 𝛼𝑖𝑎𝑖 ∈ 𝐴𝑖𝑅′ , this implies that 𝑎𝑖 = 0 for all 𝑖. Therefore 𝑒′ = 𝛼𝑒 and
𝑒 = 𝛼𝑒.

(b) We have 𝜎(𝑒) = 𝑒 because both are left identity elements in 𝐴𝑅′ . Moreover,
𝜎(𝐴𝑖𝑅′) is the submodule of 𝐴𝑅′ on which 𝑟𝜎(𝑒) acts as multiplication by 𝛼𝑖. As 𝑟𝜎(𝑒) = 𝑟𝑒,
we deduce that 𝜎(𝐴𝑖𝑅′) = 𝐴𝑖𝑅′ . ■

The algebra 𝐷(𝐿,𝑈, 𝑆, 𝛾)
Proposition 2. Let 𝑉 be a finite flat 𝑅-module of the form 𝑉 = 𝐿⊕𝑈 with 𝐿 free of rank
2. Let 𝑆 be a finite flat 𝑅-submodule of 𝑉⊗𝑟, some 𝑟 > 1, such that 𝑉⊗𝑟∕𝑆 is flat. Extend
the action of GL𝑈 on𝑈 to 𝑉 by letting it act trivially on 𝐿. If there exist 𝛾1, … , 𝛾6 ∈ 𝑅 such
that the elements 0, 1, 𝛾1, … , 𝛾6 are distinct modulo every maximal ideal of 𝑅, then there
exists a finite flat algebra 𝐷 over 𝑅 such that

(GL𝑈)𝑆 ≃ Aut(𝐷).

Proof. We define the underlying 𝑅-module of 𝐷 = 𝐷(𝐿,𝑈, 𝑆, 𝛾) to be

mod(𝐷) = 𝑅𝑒 ⊕ 𝑅𝑏 ⊕ 𝑅𝑐 ⊕ 𝑅𝑑 ⊕mod(𝐴(𝑉, 𝑆))

= 𝑅𝑒 ⊕ 𝑅𝑏 ⊕ 𝑅𝑐 ⊕ 𝑅𝑑 ⊕ 𝐿 ⊕𝑈 ⊕ (
𝑟−1⨁

𝑖=2
𝑉⊗𝑖) ⊕ (𝑉⊗𝑟∕𝑆).

Let {𝓁1, 𝓁2} be a basis for 𝐿. The multiplication map on 𝐷 is determined by the following
rules:

(a) 𝑒 is a left identity element for 𝐷;
(b) each submodule in the top row of the following table is an eigenspace for 𝑟𝑒 with

eigenvalue the element in the row below it,

⟨𝑒⟩ ⟨𝑏⟩ ⟨𝑐⟩ ⟨𝑑⟩ 𝐿 𝑈
(⨁𝑟−1

𝑖=2 𝑉
⊗𝑖
)
⊕ (𝑉⊗𝑟∕𝑆)

1 𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 𝛾6
;
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(c) the multiplication table for 𝑏, 𝑐, 𝑑 is

𝑏 𝑐 𝑑
𝑏 0 𝑐 + 𝛾2−𝛾1

𝛾2−𝛾3
𝑏 0

𝑐 −𝑐 𝑏 𝑒
𝑑 𝓁1 𝑑 𝓁2.

(d) ⟨𝑏, 𝑐, 𝑑⟩ ⋅ 𝐴(𝑉, 𝑆) = 0 = 𝐴(𝑉, 𝑆) ⋅ ⟨𝑏, 𝑐, 𝑑⟩;
(e) 𝐴(𝑉, 𝑆) is a subalgebra of 𝐷.
The action of (GL𝑈)𝑆 on T(𝑉)+ leaves the ideal 𝐼(𝑆) stable, and so it passes to the

quotient𝐴(𝑉, 𝑆) (see the proof of Proposition 1). We extend this action onmod(𝐴(𝑉, 𝑆))
to an action onmod(𝐷) by letting (GL𝑈)𝑆 act trivially on ⟨𝑒, 𝑏, 𝑐, 𝑑⟩. In this way, we get
a homomorphism

(GL𝑈)𝑆 → Aut(𝐷). (2)

It remains to show that this is an isomorphism.
Let 𝑅′ be a commutative 𝑅-algebra. We have to show that the map

(GL𝑈)𝑆(𝑅′) → Aut(𝐷𝑅′)

is an isomorphism. It is clearly injective. On the other hand, let 𝜎 be an automorphism
of the algebra 𝐷𝑅′ over 𝑅′. According to Lemma 2, 𝜎(𝑒) = 𝑒 and 𝜎 stabilizes each of
the 𝑅′-submodules 𝑅′𝑏, 𝑅′𝑐, 𝑅′𝑑, 𝐿𝑅′ ,𝑈𝑅′ , and

((⨁𝑟−1
𝑖=2 𝑉

⊗𝑖
)
⊕ (𝑉⊗𝑟∕𝑆)

)
𝑅′
ofmod(𝐷)𝑅′ .

Let 𝜎(𝑏) = 𝛾𝑏𝑏, 𝜎(𝑐) = 𝛾𝑐𝑐, and 𝜎(𝑑) = 𝛾𝑑𝑑, where the 𝛾 lie in 𝑅′. Now

𝑐 ⋅ 𝑑 = 𝑒 ⇐⇒ 𝛾𝑐𝛾𝑑 = 1
𝑑 ⋅ 𝑐 = 𝑑 ⇐⇒ 𝛾𝑐𝛾𝑑 = 𝛾𝑑
𝑐 ⋅ 𝑏 = −𝑐 ⇐⇒ 𝛾𝑐𝛾𝑏 = 𝛾𝑐.

From the first equation, we see that 𝛾𝑐 and 𝛾𝑑 are units in 𝑅′, and so the remaining
equations show that 𝛾𝑐 = 1 = 𝛾𝑏. Therefore 𝛾𝑑 = 1 also, and so 𝜎 acts as the identity
map on ⟨𝑒, 𝑏, 𝑐, 𝑑⟩𝑅′ . Next

𝑑 ⋅ 𝑏 = 𝓁1 ⇐⇒ 𝜎(𝓁1) = 𝓁1
𝑑 ⋅ 𝑑 = 𝓁2 ⇐⇒ 𝜎(𝓁2) = 𝓁2,

and so𝜎 acts as the identity on𝐿𝑅′ . Finally, 𝜎 acts onmod(𝐴(𝑉, 𝑆))𝑅′ as an automorphism
of 𝐴(𝑉, 𝑆)𝑅′ . As it maps 𝑉𝑅′ into 𝑉𝑅′ , Proposition 2 shows that 𝜎 arises from an element
of (GL𝑈)𝑆(𝑅′). ■

Note that 𝐷 is not associative: we need not have 𝑥𝑒 ⋅ 𝑦 = 𝑥 ⋅ 𝑒𝑦.

2 Algebraic groups as stabilizers
In this section, we explain how to realize algebraic groups as the stabilizers of submodules
or of families of tensors, and we prove Theorems 2 and 3.
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Preliminaries
In this subsection, we extend some standard results from base fields to more general
rings.

2.1. An 𝑅-module 𝑉 is finite flat if it satisfies the following equivalent conditions (see
the author’s notes on commutative algebra, 12.6):

⋄ 𝑉 is finitely generated and projective;

⋄ 𝑉 is finitely presented and flat;

⋄ 𝑉 is locally free of finite rank.

Assume that 𝑅 is noetherian, and let𝑊 be an 𝑅-submodule of an 𝑅-module 𝑉. If
𝑉 is finitely generated and 𝑉∕𝑊 is flat, then 𝑉∕𝑊 is projective, and so𝑊 is a direct
summand of 𝑉, i.e., 𝑉 = 𝑊 ⊕𝑊′ for some 𝑅-submodule𝑊′ of 𝑉. Conversely, if 𝑉 is
finite flat and𝑊 is a direct summand of𝑉, then𝑉∕𝑊 is isomorphic to a direct summand
of 𝑉, and hence is (finite) flat (ibid., 11.3).

2.2. Let 𝑓1, … , 𝑓𝑚 ∈ 𝑅 be such that 𝑓1 +⋯+ 𝑓𝑚 = 1. For any 𝑅-module 𝑉,

0 𝑉
∏

𝑖 𝑉𝑓𝑖
∏

𝑖,𝑗 𝑉𝑓𝑖𝑓𝑗

is exact (ibid., 11.22). When 𝑉 is finite flat, the 𝑓𝑖 may be chosen so that 𝑉𝑓𝑖 is free as an
𝑅𝑓𝑖 -module. This often allows us in proofs to suppose that 𝑉 is free.

2.3. Assume that 𝑅 is an integral domain, and let 𝑉 and𝑊 be finite flat 𝑅-modules. If
𝑣 and 𝑤 are nonzero elements of 𝑉 and𝑊, then 𝑣 ⊗ 𝑤 is a nonzero element of 𝑉 ⊗𝑊.
This becomes obvious once we tensor with the field of fractions of 𝑅. Note that the
hypothesis on 𝑅 is necessary: if 𝑅 contains nonzero elements 𝑎, 𝑏 such that 𝑎𝑏 = 0, then
𝑎 and 𝑏 are nonzero elements of the 𝑅-module 𝑅, but 𝑎 ⊗ 𝑏 = 0 in 𝑅 ⊗ 𝑅 ≃ 𝑅.

2.4. Assume that 𝑅 is noetherian. Let 𝑉 be an 𝑅-module, and let T𝑉 =
⨁

𝑛 𝑉
⊗𝑛 be its

tensor algebra. The exterior algebra
⋀
𝑉 of 𝑉 is T𝑉∕𝐼, where 𝐼 is the two-sided ideal

generated by the elements 𝑥 ⊗ 𝑥, 𝑥 ∈ 𝑉. The antisymmetrization map is

𝑎𝑛 ∶ 𝑉⊗𝑛 → 𝑉⊗𝑛, 𝑎𝑛(𝑡) =
∑

𝜎∈𝑆𝑛
sign(𝜎)𝜎(𝑡).

If 𝑉 is finite flat, then the kernel of 𝑎𝑛 is 𝐼𝑛, and so 𝑎𝑛 defines an isomorphism
⋀𝑛 𝑉 → 𝐴′′

𝑛 (𝑉) ⊂ 𝑉⊗𝑛, 𝐴′′
𝑛 (𝑉)

def= Im(𝑎𝑛);

moreover,𝐴′′
𝑛 (𝑉) is locally a direct summand of 𝑇𝑛𝑉, and so it is finite flat. See Bourbaki,

Algebra, III, §7, no. 4, Remark, and Exercise 8.

2.5. Let 𝑉 be a finite flat 𝑅-module. Then GL𝑉 is a flat algebraic group over 𝑅, locally
isomorphic to GL𝑛, 𝑛 = rank𝑉.

2.6. Let 𝐺 be an algebraic group over 𝑅 and 𝑉 an 𝑅-module. By an action of 𝐺 on 𝑉, we
mean an action of 𝐺(𝑅′) on 𝑉(𝑅′) functorial in the 𝑅-algebra 𝑅′. When 𝑉 is finite flat,
to give an action of 𝐺 on 𝑉 is the same as giving a homomorphism of algebraic groups
𝐺 → GL𝑉 .
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2.7. Let 𝑉 be a finite flat 𝑅-module. An action 𝑟∶ 𝐺 → GL𝑉 of 𝐺 on 𝑉 maps the
universal element in 𝐺(𝒪(𝐺)) to an 𝒪(𝐺)-linear endomorphism of 𝑉 ⊗𝒪(𝐺), which is
determined by its restriction to 𝑉,

𝜌∶ 𝑉 → 𝑉 ⊗𝒪(𝐺).

The map 𝜌 is a co-action of the Hopf algebra 𝒪(𝐺) on 𝑉, i.e.,

{ (id𝑉⊗∆)◦𝜌 = (𝜌 ⊗ id𝒪(𝐺))◦𝜌
(id𝑉⊗𝜖)◦𝜌 = id𝑉 .

(3)

In this way, we get a one-to-one correspondence 𝑟 ↔ 𝜌 between the actions of 𝐺 on 𝑉
and the co-actions of 𝒪(𝐺) on 𝑉 (Milne 2017, 4.1).

Lemma 3. Let 𝐺 be an algebraic group over 𝑅. Let𝑊 be a finite flat 𝑅-module with an
action of 𝐺, and let 𝜌∶ 𝑊 → 𝑊0 ⊗𝒪(𝐺) be the corresponding co-action map. Then 𝜌 is
𝐺-equivariant, and realizes𝑊 as a direct summand of𝑊0 ⊗𝒪(𝐺). (Here𝑊0 denotes𝑊
with the trivial action of 𝐺.)

Proof. The first equality in (3) says that 𝜌 is a homomorphism of 𝒪(𝐺)-comodules
(and hence a homomorphism of 𝐺-modules). The second equality in (3) says that the
composite of 𝜌 with id𝑉0 ⊗𝜖 is the identity map. ■

2.8. Let 𝐺 be an algebraic group over 𝑅 and 𝑉 an 𝑅-module on which 𝐺 acts. When
𝑖 ∶ 𝑆 → 𝑉 is an 𝑅-submodule of 𝑉, we define 𝐺𝑆 (stabilizer of 𝑆 in 𝐺) to be the functor

𝑅′ ⇝ {𝛼 ∈ Aut𝑅′(𝑉𝑅′) ∣ 𝛼(𝑖𝑅′(𝑆𝑅′)) = 𝑖𝑅′(𝑆𝑅′)}.

When 𝑆 is a subset of 𝑉, we define 𝐺𝑆 to be the functor

𝑅′ ⇝ {𝛼 ∈ Aut𝑅′(𝑉𝑅′) ∣ 𝛼(𝑠) = 𝑠 for all 𝑠 ∈ 𝑆}.

If 𝑆 is contained in an 𝑅-submodule 𝑉′ of 𝑉, stable under 𝐺, and 𝑉∕𝑉′ is flat, then the
group functor 𝐺𝑆 is the same for 𝑆 ⊂ 𝑉′ as for 𝑆 ⊂ 𝑉 (because the map 𝑉′

𝑅′ → 𝑉𝑅′ is
injective for all 𝑅-algebras 𝑅′).

2.9. When 𝑅 is noetherian, every comodule over a flat 𝑅-coalgebra is a filtered union of
finitely generated subcomodules (Serre 1993, 1.4). In particular, every 𝐺-module, where
𝐺 is a flat algebraic group over 𝑅, is a filtered union of finite generated 𝐺-submodules.

Lemma 4. Let 𝑅 be an integral domain and 𝐺 an algebraic group over 𝑅.
(a) Let 𝑉1 and 𝑉2 be finite flat 𝑅-modules on which 𝐺 acts, and let 𝑆1 ⊂ 𝑉1 and 𝑆2 ⊂ 𝑉2

be nonzero submodules such that 𝑉1∕𝑆1 and 𝑉2∕𝑆2 are flat. Then the stabilizer of
𝑆1 ⊗ 𝑆2 ⊂ 𝑉1 ⊗𝑉2 in GL𝑉1 ×GL𝑉2 is equal to the stabilizer of 𝑆1 ⊕ 𝑆2 ⊂ 𝑉1 ⊕𝑉2
in GL𝑉1 ×GL𝑉2 .

(b) Let 𝑉1 = 𝑉 = 𝑉2 in (a). Then the stabilizer of 𝑆1 ⊗ 𝑆2 ⊂ 𝑉 ⊗ 𝑉 in GL𝑉 is equal to
the intersection of the stabilizers of 𝑆1 ⊂ 𝑉 and 𝑆2 ⊂ 𝑉 in GL𝑉 .

(c) Let𝑉 be afinite flat𝑅-module onwhich𝐺 acts, and let𝐿 be a line (i.e., one-dimensional
subspace) in 𝑉 such that 𝑉∕𝐿 is flat. For every 𝑟 > 0, the stabilizer of 𝐿 ⊂ 𝑉 in GL𝑉
is equal to the stabilizer of 𝐿⊗𝑟 ⊂ 𝑉⊗𝑟 in GL𝑉 .
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Proof. (a) As 𝑉1∕𝑆1 and 𝑉2∕𝑆2 are flat and finitely generated and 𝑅 is integral domain,
they are finitely presented. The hypotheses imply that 𝑉1 = 𝑆1⊕𝑊1 and 𝑉2 = 𝑆2⊕𝑊2
for some finite flat 𝑅-submodules𝑊1 and𝑊2 of 𝑉1 and 𝑉2. Then

𝑉1 ⊗𝑉2 = (𝑆1 ⊗ 𝑆2) ⊕ (𝑆1 ⊗𝑊2) ⊕ (𝑊1 ⊗ 𝑆2) ⊕ (𝑊1 ⊗𝑊2) .

Let 𝑅′ be an 𝑅-algebra and 𝛼1 and 𝛼2 automorphisms of 𝑉1𝑅′ and 𝑉2𝑅′ . We have to show
that

(𝛼1 ⊗ 𝛼2)(𝑆1 ⊗ 𝑆2) ⊂ 𝑆1 ⊗ 𝑆2 ⇐⇒ 𝛼1(𝑆1) ⊂ 𝑆1 and 𝛼2(𝑆2) ⊂ 𝑆2,

the reverse implication being obvious. Let 𝑠1 and 𝑠2 be nonzero elements of 𝑆1 and 𝑆2,
and let 𝛼1(𝑠1) = 𝑠′1 + 𝑤1 and 𝛼2(𝑠2) = 𝑠′2 + 𝑤2. Then

𝑆1 ⊗ 𝑆2 ∋ (𝛼1 ⊗ 𝛼2)(𝑠1 ⊗ 𝑠2) = 𝑠′1 ⊗ 𝑠′2 + 𝑠′1 ⊗𝑤2 + 𝑤1 ⊗ 𝑠′2 + 𝑤1 ⊗𝑤2.

If 𝑤1 ≠ 0, then 𝑠′2 = 0 = 𝑤2 (see 2.3), contradicting 𝑠2 ≠ 0. Hence 𝑤1 = 0, and similarly,
𝑤2 = 0.

Statement (b) follows from (a), and (c) follows from (b).

Lemma 5. Assume that 𝑅 is noetherian. Let 𝑉 be a finite flat 𝑅-module and 𝑆 an 𝑅-
submodule such that 𝑉∕𝑆 is flat. If 𝑆 is locally free of rank 𝑑, then the stabilizer of 𝑆 ⊂ 𝑉
in GL𝑉 is equal to the stabilizer of

⋀𝑑 𝑆 ⊂
⋀𝑑 𝑉 in GL𝑉 .5

Proof. If 𝑆 = 𝑉, this is obvious, and so we assume that 𝑆 ≠ 𝑉. Because 𝑉∕𝑆 is flat,
𝑉 = 𝑆 ⊕𝑊 for some 𝑅-submodule𝑊 of 𝑉 (here we use that 𝑅 is noetherian). As 𝑉 is
finite flat, so also is𝑊.

Let 𝐿 =
⋀𝑑 𝑆. Let 𝑅′ be an 𝑅-algebra and 𝛼 an automorphism of 𝑉𝑅′ . We shall show

that
𝛼𝐿𝑅′ = 𝐿𝑅′ ⇐⇒ 𝛼𝑆𝑅′ = 𝑆𝑅′ ,

the reverse implication being obvious. We may suppose that 𝑆 and𝑊 are free (2.2).
Let (𝑒𝑗)1≤𝑖≤𝑑 be a basis for 𝑆, and extend it to a basis (𝑒𝑖)1≤𝑖≤𝑛 of𝑉. Let 𝑠 = 𝑒1∧⋯∧𝑒𝑑.

Then
𝑆𝑅 = {𝑣 ∈ 𝑉𝑅 ∣ 𝑠 ∧ 𝑣 = 0 (in

⋀𝑑+1 𝑉𝑅)}.

To see this, let 𝑣 =
∑𝑛

𝑖=1 𝑎𝑖𝑒𝑖, 𝑎𝑖 ∈ 𝑅, be an element of 𝑉𝑅. Then

𝑠 ∧ 𝑣 =
∑

𝑑+1≤𝑖≤𝑛
𝑎𝑖𝑒1 ∧⋯ ∧ 𝑒𝑑 ∧ 𝑒𝑖.

As the elements 𝑒1 ∧⋯∧𝑒𝑑 ∧𝑒𝑖, 𝑑+1 ≤ 𝑖 ≤ 𝑛, are part of a basis for
⋀𝑑+1 𝑉, we see that

𝑠 ∧ 𝑣 = 0 ⇐⇒ 𝑎𝑖 = 0 for all 𝑑 + 1 ≤ 𝑖 ≤ 𝑛 ⇐⇒ 𝑣 ∈ 𝑆.

Let 𝛼 ∈ GL(𝑉𝑅). If (
⋀𝑑 𝛼)(𝐿𝑅) = 𝐿𝑅, then (

⋀𝑑 𝛼)𝑠 = 𝑐𝑠 for some 𝑐 ∈ 𝑅×. If 𝑣 ∈ 𝑆𝑅,
then 𝑠 ∧ 𝑣 = 0, and so

0 = (
⋀𝑑+1 𝛼)(𝑠 ∧ 𝑣) = (

⋀𝑑 𝛼)𝑠 ∧ 𝛼𝑣 = 𝑐 (𝑠 ∧ (𝛼𝑣)) ,

which implies that 𝛼𝑣 ∈ 𝑆𝑅. ■
5This is a standard fact, implicit in the proof of the projectivity of Grassmanians.
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Recall that there is a natural left action of 𝐺 on 𝒪(𝐺) (the regular representation),
namely,

(𝑔𝑓)(𝑥) = 𝑓(𝑥𝑔), 𝑓 ∈ 𝒪(𝐺), 𝑔 ∈ 𝐺, 𝑥 ∈ 𝐺.

Lemma 6. Let 𝐺 be an algebraic group over 𝑅 and𝐻 a closed algebraic subgroup of 𝐺. Let
𝐼 ⊂ 𝒪(𝐺) be the ideal of𝐻. Then𝐻 is the stabilizer of 𝐼 in 𝒪(𝐺), i.e., for all 𝑅-algebras 𝑅′,

𝐻(𝑅′) = {𝑔 ∈ 𝐺(𝑅′) ∣ 𝑔𝐼𝑅′ ⊂ 𝐼𝑅′}.

Proof. Let ℎ ∈ 𝐻(𝑅′) some 𝑅′, and let 𝑓 ∈ 𝐼𝑅′ . Then, for all 𝑅′-algebras 𝑅′′ and
𝑥 ∈ 𝐻(𝑅′′),

(ℎ𝑓)(𝑥) def= 𝑓(𝑥ℎ) = 0

because 𝑥ℎ ∈ 𝐻(𝑅′′). Hence ℎ𝑓 ∈ 𝐼𝑅′ .
Let 𝑔 ∈ 𝐺(𝑅′) be such that 𝑔𝐼𝑅′ ⊂ 𝐼𝑅′ , and let 𝑓 ∈ 𝐼. Then

𝑓(𝑔) = 𝑓(𝑒 ⋅ 𝑔) = (𝑔𝑓)(𝑒) = 0,

because 𝑔𝑓 ∈ 𝐼𝑅′ . Hence 𝑔 ∈ 𝐻(𝑅′). ■

2.10. Let 𝑉 be a finite flat 𝑅-module. We let GL𝑉 act on the (finite flat) 𝑅-module
End(𝑉) by setting

𝑔𝛼 = 𝑔◦𝛼, 𝑔 ∈ GL(𝑉𝑅′), 𝛼 ∈ End(𝑉𝑅′), some 𝑅′.

Then the canonical isomorphism End(𝑉) ≃ 𝑉∨
0 ⊗𝑉 of 𝑅-modules is GL𝑉-equivariant.

Here 𝑉0 denotes 𝑉 with the trivial action of 𝐺.

2.11. Let 𝑉 be a finite flat 𝑅-module and 𝐺 a closed algebraic subgroup of GL𝑉 . Then
GL𝑉 is a schematically dense open subscheme of End𝑉 (multiplicative monoid scheme).
Correspondingly

Sym(End(𝑉)) = 𝒪(End𝑉) ⊂ 𝒪(GL𝑉).

For example, if 𝑉 is free, then the choice of a basis for 𝑉 identifies the inclusion with

𝑅[𝑋𝑖𝑗] ⊂ 𝑅[𝑋𝑖𝑗][1∕ det(𝑋𝑖𝑗)].

The inclusion Sym(End(𝑉)) → 𝒪(GL𝑉) isGL𝑉-equivariant for the actions considered in
2.10. Let 𝐼 be the ideal of 𝐺 in𝒪(GL𝑉), and let 𝐼′ = 𝐼 ∩ Sym(End(𝑉)). Then 𝐼′ generates
the ideal 𝐼, and so 𝐺 is the stabilizer of 𝐼′ ⊂ Sym(End(𝑉)) in GL𝑉 (Lemma 6).

2.12. Recall that an algebraic group over a field is said to be linearly reductive if every
finite-dimensional representation is semisimple. In characteristic zero, 𝐺 is linearly
reductive if and only if 𝐺◦ is reductive. In characteristic 𝑝 ≠ 0, 𝐺 is linearly reductive if
and only if𝐺◦ is of multiplicative type and 𝑝 does not divide the index (𝐺 ∶ 𝐺◦) (Nagata’s
theorem). See Milne 2017, 12.56.
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Are algebraic groups linear?
Let𝐺 be a flat algebraic group over a ring 𝑅. Does there exist an embedding of𝐺 intoGL𝑛
for some 𝑛? Apparently the answer is not known even for 𝑅 the ring of dual numbers
over a field. However, there is the following result.6

Proposition 3. Let 𝐺 be a flat algebraic group over a Dedekind domain 𝑅. There exists a
finite flat 𝑅-submodule𝑉 of𝒪(𝐺), stable under𝐺, such that the homomorphism𝐺 → GL𝑉
is a closed immersion.

Proof. There exists a finitely generated 𝑅-submodule 𝑉 of 𝒪(GL𝑉), stable under 𝐺,
containing a set of generators for 𝒪(𝐺) (see 2.9). Now 𝐺 flat over 𝑅 ⇐⇒ 𝒪(𝐺) is torsion-
free (as an 𝑅-module) ⇐⇒ 𝑉 is torsion-free ⇐⇒ 𝑉 is flat (because 𝑅 is a Dedekind
domain). It remains to show that the homomorphism 𝛼∶ 𝒪(GL𝑉) → 𝒪(𝐺) defined by
the action of 𝐺 on 𝑉 is surjective.

We may suppose that 𝑉 is free (see 2.2). Let ∆∶ 𝒪(𝐺) → 𝒪(𝐺) ⊗ 𝒪(𝐺) be the
comultiplication map and 𝜖∶ 𝒪(𝐺) → 𝑅 the co-identity map. Let (𝑒𝑖)1≤𝑖≤𝑛 be a basis
for 𝑉, and write ∆(𝑒𝑗) =

∑
𝑖 𝑒𝑖 ⊗ 𝑎𝑖𝑗, 𝑎𝑖𝑗 ∈ 𝒪(𝐺). The image of 𝛼 contains the 𝑎𝑖𝑗 (the

choice of the basis (𝑒𝑖), determines an isomorphism 𝒪(GL𝑉) ≃ 𝑅[𝑇𝑖𝑗], and 𝛼 maps 𝑇𝑖𝑗
to 𝑎𝑖𝑗; see Milne 2017, 4.1). As 𝜖∶ 𝒪(𝐺) → 𝑅 is the co-identity,

𝑒𝑗 = (𝜖 ⊗ id𝐴)∆(𝑒𝑗) =
∑

𝑖
𝜖(𝑒𝑖)𝑎𝑖𝑗,

and so the image of 𝛼 contains 𝑉, which we chose to generate 𝒪(𝐺). ■

Thus, if 𝑅 is a Dedekind domain and 𝐺 is flat, then there is an embedding of 𝐺 into
GL𝑉 for some finite flat 𝑅-module 𝑉. Such a 𝑉 is a direct summand 𝐹 = 𝑉⊕𝑊 of a free
𝑅-module 𝐹 of finite rank. Extend the action of 𝐺 on 𝑉 to 𝐹 by letting it act trivially on
𝑊 and choose a basis for 𝐹. Now 𝐺 is a closed algebraic subgroup of GL𝑛, 𝑛 = rank𝐹.

Expressing all representations in terms of one faithful representation
Let 𝐺 be an algebraic group over a field 𝑘, and let (𝑉, 𝑟) be a faithful representation of
𝐺. Then 𝑉 generates the tannakian category of finite-dimensional representations of 𝐺.
This means that every finite-dimensional representation of 𝐺 can be constructed from 𝑉
by forming tensor products, direct sums, duals, and subquotients (Milne 2017, 4.14).

In this section, we present variants of this statement. For a finite flat 𝑅-module of
rank 𝑟, we let det =

⋀𝑟 𝑉 and det−1 = det∨. For an 𝑅-module 𝑉, we let 𝑇𝑚,𝑛(𝑉) =
𝑉⊗𝑚 ⊗ (𝑉∨)⊗𝑛.

Proposition 4. Let 𝐺 be a closed algebraic subgroup of GL𝑉 , where 𝑉 is a free 𝑅-module
of finite rank. Let𝑊 be a 𝐺-module that is free of finite rank as an 𝑅-module. For some 𝑠,
𝑊 ⋅ det𝑠 is isomorphic to a submodule of a quotient of a direct sum of tensor powers of 𝑉.

Proof. The choice of a basis for𝑊0 realizes𝑊 as a𝐺-submodule of𝒪(𝐺)𝑚,𝑚 = rank𝑊
(see Lemma 3). The embedding 𝐺 → GL𝑉 corresponds to a surjective homomorphism
𝒪(GL𝑉) → 𝒪(𝐺). Recall that 𝒪(GL𝑉) = Sym(End(𝑉))[1∕ det] and that End(𝑉) ≃

6This should be considered folklore. See an earlier footnote.



2 ALGEBRAIC GROUPS AS STABILIZERS 13

𝑉∨
0 ⊗𝑉 as a 𝐺-module (2.10). The choice of a basis for 𝑉0 determines a 𝐺-isomorphism

End(𝑉) ≃ 𝑛𝑉, 𝑛 = rank𝑉. We have 𝐺-homomorphisms

T(𝑛𝑉)𝑚 ↠ Sym(𝑛𝑉)𝑚 ⊂ 𝒪(GL𝑉)𝑚 ↠ 𝒪(𝐺)𝑚.

For some 𝑠 ≥ 0,𝑊 ⋅ det𝑠 is contained in the image of T(𝑛𝑉)𝑚 in 𝒪(𝐺)𝑚 . Hence𝑊 ⋅ det𝑠

is contained in a quotient of T≤ℎ(𝑛𝑉)𝑚 for some ℎ, and T≤ℎ(𝑛𝑉)𝑚 is a sum of tensor
powers of 𝑉. ■

Corollary 1. Let 𝐺, 𝑉, and 𝑊 be as in the proposition. Then 𝑊 is isomorphic to a
submodule of a quotient of a direct sum of modules 𝑇𝑚,𝑛(𝑉).

Proof. Let 𝑛 = rank𝑉. As det is a direct summand of 𝑉⊗𝑛 (see 2.4), its dual det−1 is a
direct summand of (𝑉∨)⊗𝑛. In the proof of Proposition 4, we constructed a diagram

𝑊⊗ det𝑠 → 𝑄 ↞ T≤ℎ(𝑛𝑉)𝑚.

On tensoring this with (𝑉∨)⊗𝑛𝑠, we get a diagram

𝑊 ⊂ 𝑊 ⊗ det𝑠⊗(𝑉∨)⊗𝑛𝑠 → 𝑄 ⊗ (𝑉∨)⊗𝑛𝑠 ↞ T≤ℎ(𝑛𝑉)𝑚 ⊗ (𝑉∨)⊗𝑛𝑠,

as required. ■

Remark 2. If 𝑅 is a field and 𝐺 is linearly reductive, then “of a quotient” can be omitted
from the statements of Proposition 4 and Corollary 1.

When 𝐺 ⊂ SL𝑉 , the proof of Proposition 4 simplifies.

Proposition 5. Let 𝐺 be a closed algebraic subgroup of SL𝑉 , where 𝑉 is a free 𝑅-module
of finite rank. Let𝑊 be a 𝐺-module that is free of finite rank as an 𝑅-module. Then𝑊 is
isomorphic to a submodule of a quotient of a direct sum of tensor powers of 𝑉.

Proof. As before,𝑊 ⊂ 𝒪(𝐺)𝑚,𝑚 = rank𝑊. In this case, we get 𝐺-homomorphisms

𝑇(𝑛𝑉)𝑚 ↠ Sym(𝑛𝑉)𝑚 ↠ 𝒪(SL𝑉)𝑚 ↠ 𝒪(𝐺)𝑚.

For some ℎ,𝑊 is contained in a quotient of 𝑇≤ℎ(𝑛𝑉)𝑚. ■

When 𝑉 is a finite-dimensional vector space over a field 𝑘 of characteristic zero,
Proposition 5 shows that every finite-dimensional SL𝑉-module𝑊 is isomorphic to a
submodule of 𝑇(𝑛𝑉)𝑚, where 𝑛 = dim𝑉 and 𝑚 = dim𝑊. In fact, a stronger result
holds.

Proposition 6 (Gordeev–Popov). Let 𝑉 be a finite-dimensional vector space over a
field 𝑘. Every finite-dimensional SL𝑉-module is isomorphic to a submodule of 𝑇(𝑉)+.

Proof. See Gordeev and Popov 2003, Proposition 11. ■
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Algebraic groups as stabilizers
Proposition 7. Let 𝑅 be a noetherian ring. Let 𝐺 be a closed algebraic subgroup of
GL𝑉 , where 𝑉 is a finite flat 𝑅-module. For some ℎ ≥ 0, there exists an 𝑅-submodule
𝑆 ⊂ T≤ℎ(𝑉∨

0 ⊗𝑉) such that 𝐺 is the stabilizer of 𝑆 in GL𝑉 .

Proof. Let 𝐼 be the kernel of the homomorphism of 𝑅-algebras

Sym(𝑉∨
0 ⊗𝑉) → 𝒪(GL𝑉) ↠ 𝒪(𝐺).

Then 𝐺 is the stabilizer of 𝐼 inGL𝑉 (see 2.11). For some ℎ ≥ 0, Sym≤ℎ(𝑉∨
0 ⊗𝑉) contains

a set of generators for the ideal 𝐼 (here we use that 𝑅 is noetherian), and𝐺 is the stabilizer
of

𝐼 ∩ Sym≤ℎ(𝑉∨
0 ⊗𝑉) ⊂ Sym≤ℎ(𝑉∨

0 ⊗𝑉)

in GL𝑉 . Now 𝐺 is the stabilizer in GL𝑉 of the preimage 𝑆 of 𝐼 ∩ Sym
≤ℎ(𝑉∨

0 ⊗𝑉) under
the quotient map

T≤ℎ(𝑉∨
0 ⊗𝑉) ↠ Sym≤ℎ(𝑉∨

0 ⊗𝑉). ■

Remark 3. If𝑅 is a Dedekind domain and𝐺 is flat, then the𝑅-submodule 𝑆 constructed
in the proof of the proposition has the property that T≤ℎ(𝑉∨

0 ⊗𝑉)∕𝑆 is flat. To see this,
note that the hypotheses imply that Sym(𝑉∨

0 ⊗𝑉)∕𝐼 is torsion-free, and so 𝐼 is saturated
as an 𝑅-submodule of Sym(𝑉∨

0 ⊗ 𝑉). It follows that 𝐼 ∩ Sym≤ℎ(𝑉∨
0 ⊗ 𝑉) is saturated,

and so
T≤ℎ(𝑉∨

0 ⊗𝑉)∕𝑆 ≃ Sym≤ℎ(𝑉∨
0 ⊗𝑉)∕𝐼 ∩ Sym≤ℎ(𝑉∨

0 ⊗𝑉)

is flat.

The next statement improves results of Deligne (1982, 3.1) and Kisin (2010, 1.3.1). It
has applications to Shimura varieties in mixed characteristic.

Proposition 8. Let 𝑅 be a Dedekind domain. Let 𝐺 be a closed algebraic subgroup of
GL𝑉 , where 𝑉 is a finite flat 𝑅-module. If the generic fibre of 𝐺 is linearly reductive, then,
locally on Spec 𝑅, 𝐺 is the algebraic subgroup of GL𝑉 fixing a finite collection of tensors in
spaces 𝑉⊗𝑚 ⊗ (𝑉∨)⊗𝑛,𝑚, 𝑛 ≥ 0.

Proof. By “locally on Spec 𝑅”wemean that there exist𝑓𝑖 ∈ 𝑅 such that𝑓1+⋯+𝑓𝑚 = 1
and the statement holds after a base change 𝑅 → 𝑅𝑓𝑖 . Thus, we may suppose that 𝑉 is
free, say, of rank 𝑛, and replace 𝑉∨

0 ⊗𝑉 with 𝑛𝑉 in Proposition 7. Let 𝑆 ⊂ 𝑇≤ℎ(𝑛𝑉) def= 𝑊
be as in that proposition. Then𝑊 is free of finite rank, and so 𝑆 is finite flat (here we
use that 𝑅 is Dedekind). Let 𝑟 = rank 𝑆. Then 𝐺 is the stabilizer of 𝐿 def=

⋀𝑟 𝑆 ⊂
⋀𝑟𝑊 in

GL𝑉 (Lemma 5). Note that 𝐿 is locally free of rank 1 and that
⋀𝑟𝑊 is a direct summand

of
⨂𝑟𝑊 (see Lemma 8), which is a direct sum of tensor powers of 𝑉.
As the generic fibre of 𝐺 is linearly reductive, the quotient map

(⋀𝑟𝑊
)∨

→ 𝐿∨ has
a 𝐺-equivariant section over the generic point 𝜂 of Spec 𝑅. It follows that there exists a
𝐺-stable line 𝐿∗ ⊂

(⋀𝑟𝑊
)∨

that maps isomorphically to 𝐿∨ over 𝜂. Now 𝐺 acts trivially
on 𝐿 ⊗𝑅 𝐿∗ because this is so over 𝜂, and the stabilizer of

𝐿 ⊗𝑅 𝐿∗ ⊂
⋀𝑟

𝑊⊗ (
⋀𝑟

𝑊∨) ⊂
⨂𝑟

𝑊⊗ (
⨂𝑟

𝑊∨)
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in GL𝑉 is equal to 𝐺.
After a base change 𝑅 → 𝑅𝑓𝑖 , the module 𝐿 ⊗𝑅 𝐿∗ will be free. Let {𝑠} be a basis

for 𝐿 ⊗𝑅 𝐿∗, and write 𝑠 =
∑

𝑖∈𝐼 𝑠𝑖 with each 𝑠𝑖 an element of a module 𝑇
𝑚,𝑛(𝑉). Then

𝐺 = (GL𝑉)𝑆 with 𝑆 = {𝑠𝑖 ∣ 𝑖 ∈ 𝐼}. ■

Corollary 1. Let 𝐺 be a flat algebraic group over a Dedekind domain 𝑅. There exists a
finite flat 𝑅-module 𝑉 and an embedding 𝐺 → GL𝑉 . If 𝑅 is a principal ideal domain and
the generic fibre of 𝐺 over 𝑅 is linearly reductive, then 𝐺 is the algebraic subgroup of GL𝑉
fixing a finite collection of tensors in spaces 𝑉⊗𝑚 ⊗ (𝑉∨)⊗𝑛,𝑚, 𝑛 ≥ 0.

Proof. This follows from Propositions 3 and 8. ■

Remark 4. The condition that 𝐺𝜂 is linearly reductive can be replaced by the following
condition: the map Hom𝜂(𝐺𝜂, 𝔾𝑚) → Hom𝜂(GL𝑈𝜂 , 𝔾𝑚) has finite cokernel. The proof
requires Lemma 4(c).

Algebraic groups as automorphism groups of algebras
The next two lemmas are adapted from Gordeev and Popov 2003.7

Lemma 7. Let𝑈 (resp. 𝐿) be a free 𝑅-module of finite rank𝑚 (resp. rank 1). There exists
an injective homomorphism of graded GL𝑈-modules

𝜄 ∶ T(𝑚𝑈) → T(𝐿 ⊕ 𝑈)

realizing T(𝑚𝑈) as a direct summand of T(𝐿 ⊕ 𝑈). Here GL𝑈 acts trivially on 𝐿.

Proof. Let 𝑈𝑖 be the 𝑖th summand of𝑚𝑈 considered as a subspace of𝑚𝑈, and choose
a basis {𝑓𝑖𝑗 ∣ 𝑗 = 1, … ,𝑚} of 𝑈𝑖. Let {𝑙} be a basis for 𝐿, and set

𝜄(𝑓𝑖1𝑗1 ⊗⋯⊗𝑓𝑖𝑡𝑗𝑡 ) = 𝑙⊗𝑖1 ⊗ 𝑓𝑖1𝑗1 ⊗⋯⊗ 𝑙⊗𝑖𝑡 ⊗ 𝑓𝑖𝑡𝑗𝑡 .

Themap T(𝑚𝑈) → T(𝐿⊕𝑈), defined on a basis of T(𝑚𝑈)+ by this formula and sending
1 to 1, has the claimed properties. ■

When 𝑅 is a field, there even exists an injective homomorphism T≤ℎ(𝑚𝑈) → T+(𝑈)
(Proposition 6).

Lemma 8. Let 𝑈 be a finite flat 𝑅-module and 𝐿 a free 𝑅-module of rank 1. For all 𝑟 ≥
ℎ ≥ 2, there is an injective homomorphism of GL𝑈-modules

T≤ℎ(𝑈) → (𝐿 ⊕ 𝑈)⊗𝑟

realizing T≤ℎ(𝑈) as a direct summand of (𝐿 ⊕ 𝑈)⊗𝑟.

Proof. For any 𝑟 ≥ 1,

(𝐿 ⊕ 𝑈)⊗𝑟 ≃
⨁

𝑖+𝑗=𝑟
𝐿⊗𝑖 ⊗𝑈⊗𝑗 ⊕ other terms

≃ T≤𝑟𝑈 ⊕ other terms

(the second isomorphism depends on a choice of a basis for 𝐿). ■
7Readers should be careful not to confuse the tensor algebra with the symmetric algebra, for which the

proof of Lemma 7 fails.
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Proposition 9. Let 𝑅 be a Dedekind domain. Let 𝐺 be a closed algebraic subgroup of
GL𝑈 flat over 𝑅, where𝑈 is a free 𝑅-module of finite rank. Let 𝐿 be a free 𝑅-module of rank
2 with 𝐺 acting trivially. There exists a finite flat 𝑅-module 𝑆 of (𝐿 ⊕ 𝑈)⊗𝑟, some 𝑟 ≥ 2,
such that (𝐿 ⊕ 𝑈) ∕𝑆 is flat and 𝐺 = (GL𝑈)𝑆 .

Proof. Let𝑚 = rank𝑈. According to Proposition 7 and Remark 3, 𝐺 = (GL𝑈)𝑆 with 𝑆
a finite flat 𝑅-submodule of T≤ℎ(𝑚𝑈) such that T≤ℎ(𝑚𝑈)∕𝑆 flat. According to Lemmas
7 and 8, for all 𝑟 ≥ ℎ, there exists an injective homomorphism T≤ℎ(𝑚𝑈) → (𝐿 ⊕ 𝑈)⊗𝑟
making T≤ℎ(𝑚𝑈) a direct summand of (𝐿 ⊕ 𝑈)⊗𝑟.

On combining the last two statements, we find that 𝐺 = (GL𝑈)𝑆, where 𝑆 is a finite
flat 𝑅-submodule of (𝐿 ⊕ 𝑈)⊗𝑟 such that (𝐿 ⊕ 𝑈)⊗𝑟∕𝑆 is flat. ■

Theorem 4. Let 𝐺 be an algebraic group flat over a Dedekind domain 𝑅. If there exist
𝛾1, … , 𝛾6 ∈ 𝑅 such that the elements 0, 1, 𝛾1, … , 𝛾6 are distinct modulo every maximal ideal
of 𝑅, then there exists a finite flat algebra 𝐷 over 𝑅 such that 𝐺 = Aut(𝐷).

Proof. According to Proposition 3, there exists a finite flat 𝑅-module 𝑈 and an embed-
ding 𝐺 → GL𝑈 . Now we can apply Proposition 9 and Proposition 2. ■

Theorem 4 leaves open the question: given an algebraic group 𝐺 over 𝑅, what can be
said about the algebras 𝐴 over 𝑅 such that 𝐺 = Aut(𝐴). When 𝑅 is a field, Gordeev and
Popov (2003) prove a number of results about this, for example, that 𝐴 can be chosen to
be simple.
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