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Abstract
In despair, as Deligne (2000) put it, of proving the Hodge and Tate conjectures, we can try
to find substitutes. For abelian varieties in characteristic zero, Deligne (1982) constructed a
theory of Hodge classes having many of the properties that the algebraic classes would have
if the Hodge conjecture were known. In this article I investigate whether there exists a theory
of “rational Tate classes” on varieties over finite fields having the properties that the algebraic
classes would have if the Hodge and Tate conjectures were known. In particular, I prove that
there exists at most one “good” such theory.
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Introduction

In the absence of any significant progress towards a proof of the Hodge or Tate conjectures, we can
instead try to attach to each smooth projective variety X a graded Q-algebra of cohomology classes
having the properties that the algebraic classes would have if one of the conjectures were true. When
the ground field k is algebraically closed of characteristic zero, every embedding � W k ,! C gives a
candidate for this Q-algebra, namely, the Q-algebra of Hodge classes on �X . The problem is then
to show that this Q-algebra is independent of the embedding. Deligne (1982) proves this for abelian
varieties.

When the ground field is algebraically closed of characteristic p ¤ 0 the problem is different.
To each smooth projective variety one can attach a Ql -algebra of Tate classes for every prime l
(including p), and the problem is then to find a canonical Q-structure on these Ql -algebras. The
purpose of this article is to examine this problem for varieties over an algebraic closure F of Fp.

First I write down a list of properties that these Q-structures should have (and would have if
the Hodge and Tate conjectures were known in the relevant cases) in order to be a “good theory of
rational Tate classes”. Then I prove (in �3) that there exists at most one such theory (meaning exactly
one theory) on any class of varieties for which the Frobenius maps are semisimple, for example, for
abelian varieties. Next I prove that the existence of such a theory would have many of the same
consequences for motives that the aforementioned conjectures have. In addition, we recover the
theorem (Milne 1999b) that the Hodge conjecture for CM abelian varieties over C implies the Tate
conjecture for abelian varieties over F.

The Q-algebra generated by the divisor classes on an abelian variety A over F is a partial Q-
structure on the cohomology of A. The Hodge classes on any CM lift of A provide a second
partial Q-structure. The rationality conjecture in �4 predicts that these two partial Q-structures
are compatible. This conjecture implies the existence of a good theory of rational Tate classes on
abelian varieties over F, and is implied by the Hodge conjecture for CM abelian varieties. However,
since it is trivially true for simple ordinary abelian varieties, it should be easier to prove than either
the Hodge or Tate conjectures.

With these results, it is possible to divide the Tate conjecture over F into two parts:
(a) There exists a good theory of rational Tate classes for smooth projective varieties over F

(which will be unique if it exists).
(b) Every rational Tate class is algebraic.

As noted, the Hodge conjecture for CM abelian varieties over C implies the rationality conjec-
ture for abelian varieties. However, in some respects the rationality conjecture is stronger than the
Tate conjecture for abelian varieties over F, since it implies the Hodge standard conjecture for ratio-
nal Tate classes whereas the Tate conjecture over F does not imply the Hodge standard conjecture
for algebraic classes. It seems to me that the rationality conjecture is the minimum that is necessary
to obtain a full understanding of Shimura varieties over finite fields and, in particular, to prove the
conjecture of Langlands and Rapoport (1987).

Conventions

All algebraic varieties are smooth and projective. Complex conjugation on C is denoted by �. The
symbol F denotes an algebraic closure of Fp, and ` always denotes a prime¤ p. On the other hand,
l is allowed to equal p. The degree of an algebra over a field is its dimension as a vector space.
We say that an extension K of a field k splits a semisimple k-algebra E if E ˝k K is isomorphic
to a product of matrix algebras over K. The symbol ' denotes a canonical (or a specifically given)
isomorphism.
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For a variety X , H�.X/ D
L

i H
i .X/ and H 2�.X/.�/ D

L
i H

2i .X/.i/; both are graded
algebras over the coefficient field of the cohomology.

LetX be a variety over F. A regular map � WX ! X is a Frobenius map if it arises by extension
of scalars from the q-power Frobenius map on a model of X over some subfield Fq of F. We let �X

denote the family of Frobenius maps of X . For ` ¤ p, H�
`
.X/ denotes the étale cohomology of

X with coefficients in Q`. An element of H 2�
`
.X/.�/ is an `-adic Tate class if it is fixed by some

Frobenius map. The `-adic Tate classes on X form a graded Q`-subalgebra T`.X/ of H 2�
`
.X/.�/

of finite degree.
For a perfect field k of characteristic p, W.k/ denotes the ring of Witt vectors with coefficients

in k, and � denotes the automorphism of W.k/ that acts as x 7! xp on the residue field k. For a
variety X over k, H�

p .X/ denotes the crystalline cohomology of X with coefficients in the field of
fractions B.k/ of W.k/. It is a graded B.k/-algebra of finite degree with a � -linear Frobenius map
F . For a variety X over F,

T r
p .X/ D

[
X1=Fq

˚
a 2 H 2r

p .X1/.r/ j Fa D a
	

(union over the models X1=Fq of X over finite subfields of F). Then T p.X/
def
D
L

r T r
p.X/ is a

graded Qp-algebra of finite degree whose elements are called the p-adic Tate classes on X .
The classes of the algebraic cycles on X lie in T �

l
.X/, and the Tate conjecture for l states that

their Ql -span is T �
l
.X/.

1 Preliminaries

Some linear algebra

Throughout this subsection, Q is a field.

1.1 Let V be a finite dimensional vector space over a fieldQ. Let � be an endomorphism of V , and
let V � be the subspace of of V of elements fixed by � . Then dimQ V

� is at most the multiplicity
of 1 as a root of the characteristic polynomial of � , and equals the multiplicity if and only if 1 is not
a multiple root of the minimum polynomial of � .

1.2 Let V and V 0 be vector spaces over a fieldQ in duality by a pairing h ; iWV �V 0 ! Q, and let
� and � 0 be endomorphisms of V and V 0 such that h�v; � 0v0i D hv; v0i for all v 2 V and v0 2 V 0.
The pairing

v; v 7! hv; v0
iWV �

� V 0� 0

! Q (1)

is degenerate if and only if 1 is a multiple root of the minimum polynomial of � on V .

To see this, note that if 1 is a multiple root of the minimum polynomial of � , then there exists a
nonzero v 2 V � of the form .� � 1/w for some w 2 V , and

hv; v0
i D h.� � 1/w; v0

i D h�w; v0
i � hw; v0

i D h�w; � 0v0
i � hw; v0

i D 0

for all v0 2 V 0� 0

. Conversely, if 1 is not a multiple root of the minimum polynomial of � , then the
same is true of � 0 and the pairing (1) is obviously nondegenerate.

1.3 Recall that an isocrystal over perfect field k is a finite-dimensional B.k/-vector space V to-
gether with a � -linear isomorphism F WV ! V . Let k D Fpa . Then � def

D F a is B.k/-linear. The
following statements are equivalent:



1 PRELIMINARIES 4

(a) the isocrystal .V; F / is semisimple;
(b) the Qp-algebra End.V; F / is semisimple;
(c) � is a semisimple endomorphism of the B.k/-vector space V .

(See, for example, Milne 1994, 2.10.)

1.4 Let .V; F / be an isocrystal over k D Fpa , and let V F D fv 2 F j Fv D vg. Then V F is a

Qp-subspace of V � and B.k/˝Qp
V F '
�! V � .

Certainly, V F is a Qp-subspace of V � , and we have to prove that it is a Qp-structure on it.
Obviously this is true for a direct sum of isocrystals if and only if it is for each summand. Therefore,
we may assume that .V; F / is indecomposable. According to the structure theory of modules over
the skew polynomial ring A def

D B.k/ŒF � (Jacobson 1943, Chapter 3), there exists a smallest r for
which V r � A=cA with c in the centre of A. The centre of A is QpŒF

a�, and in fact c D m.F a/

withm a power of an irreducible polynomial. One can identifym with the minimum polynomial for
F a as a Qp-linear map on V . After the above remark, we may replace V with V r , and so assume
that V D A=.m.F a//. Clearly, V F D V � D 0 unless m.T / is a power of T � 1, in which case a
direct calculation shows that B.k/˝Qp

V F ' V � .

1.5 Let .V; F / and .V 0; F / be isocrystals over k D Fq , and suppose that V and V 0 are in duality
by a pairing h ; iWV � V 0 ! B.k/ such that hFv; F v0i D hv; v0i for all v 2 V and v0 2 V 0. Then
hV F ; V F 0

i � B.k/F D Qp, and pairing

v; v 7! hv; v0
iWV F

� V 0F
! Qp (2)

is degenerate if and only if 1 is a multiple root of the minimum polynomial of � on V .

That hV F ; V F 0

i � Qp is obvious. Statement (1.2) shows that the pairing V � � V 0� 0

! B.k/

is degenerate if and only if 1 is a multiple root of the minimum polynomial of � on V 0, and so this
follows immediately from (1.4).

Let Q0 be a subfield of Q. Let W and W 0 be finite dimensional Q-vector spaces, and let
h ; iWW �W 0 ! Q be a bilinear pairing. Let R and R0 be finite dimensional Q0-subspaces of W
and W 0 such that hR;R0i � Q0:

W � W 0 ! Q

� � �

R � R0 ! Q0:

Consider the following statements.
T: The map f ˝ r 7! f r WQ˝Q0

R! W is surjective.
I: The map f ˝ r 7! f r WQ˝Q0

R! W is injective.
S: The pairing h ; iWW �W 0 ! Q is left nondegenerate.
E: The pairing h ; iWR �R0 ! Q0 is left nondegenerate.
There are also primed versions of these statements, for example, T0 is the statement “QR0 D W 0”.
Let N be the left kernel of the pairing R �R0 ! Q0, and consider the diagram:

Q˝Q0
R

b
����! W

c
����! .W 0/_??ya

??yd

Q˝Q0
.R=N/

f
�����!
injective

Q˝Q0
HomQ0

.R0;Q0/
e

����!
'

.Q˝Q0
R0/_:
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Here .�/_ D HomQ.�;Q/, b is the map f ˝ r 7! f r , and d is the dual of the similar map. The
remaining maps are obvious.

PROPOSITION 1.6 (a) Ker.a/ � Ker.b/, with equality if and only if E is true.
(b) If E is true, then so is I.
(c) If S and T0 are true, then so is E.
(d) dimQ0

.R=N/ � dimW , with equality if and only if T and E are true.

PROOF (FOLLOWING TATE 1994, �2) (a) We have Ker.a/ � Ker.b/ because e ı f is injective.
Moreover, b.Ker.a// D Q �N , and so Ker.a/ � Ker.b/ if and only if Q �N D 0, i.e., N D 0.

(b) We have E” Ker.a/ D 0
(a)
H) Ker.b/ D 0 ” I.

(c) If S and T0 are true, then c and d are injective, and so Ker.a/ D Ker.b/.
(d) As Ker.b/ � Ker.a/, we have a surjection

Q �R ' .Q˝Q0
R/=Ker.b/� .Q˝Q0

R/=Ker.a/ ' Q˝Q0
.R=N/;

and so dimQ.Q �R/ � dimQ0
.R=N/, with equality if and only if Ker.a/ D Ker.b/, i.e., E holds.

As dimQ.Q �R/ � dimW , with equality if and only if T; this implies statement (d). 2

Recall that the cup-product makes H 2�
l
.X/.�/ into a graded Ql -algebra (or B.k/-algebra if

l D p), and that Poincaré duality says that the product pairings

H 2r
l .X/ .r/ �H 2d�2r

l .X/.d � r/! H 2d
l .X/.d/

h�i

' Ql , d D dimX;

are nondegenerate for connected varieties X .
Let X be a variety over F. In this section and the next, we let1

H�
A .X/ D

�
.lim
 �p−m

H�.Xet;Z=mZ//˝Z Q
�
�H�

p .X/:

When X is connected, there is an “orientation” isomorphism

h�iWH 2 dim X
A .X/.dimX/ ' A def

D Ap;1
� B.F/:

For each l , there is a projection map H�
A .X/! H�

l
.X/.

THEOREM 1.7 Let X be a connected variety of dimension d over F, and let R� be a graded Q-
subalgebra of H 2�

A .X/.�/ of finite degree such that hRd i � Q and, for all l , the image of R� in
H 2�

l
.X/.�/ under the projection map is contained in T �

l
.X/. Fix an r . If, for some l ,

(�) the product pairings

T r
l .X/ � T

d�r
l .X/! T d

l .X/ ' Ql

are nondegenerate and the images of Rr in T r
l
.X/ and of Rd�r in T d�r

l
.X/ span

them,

then this is true for all l ; moreover, the pairing Rr � Rd�r ! Q is nondegenerate and the map
Ql ˝Q Rr ! T r

l
.X/ is an isomorphism for all l .

1For generalities on cohomology with adèlic coefficients, see Milne and Ramachandran 2004, �2.
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PROOF. Recall that, for any model X1=Fpa of X over a finite subfield of F, the characteristic poly-
nomial P r.X1=Fpa ; T /

def
D det.1 � �jH 2r

`
.X/.r// of the Frobenius endomorphism � of X1=Fq

is independent of ` ¤ p, and moreover equals the characteristic polynomial of F a acting on
H 2r

p .X1/.r/ (Katz and Messing 1974). We let mr.X1/ denote the multiplicity of 1 as a root of
this polynomial, and we let mr D maxX1

mr.X1/. Then dimQl
T r

l
.X/ � mr (see 1.1 and 1.4).

LetRr
l

denote the image ofRr in T r
l
, and let N r and N r

l
denote the left kernels of the pairings

Rr �Rd�r ! Rd and Rr
l
�Rd�r

l
! Rd

l
. Note that, because Rd�r ! Rd�r

l
is surjective, the

map Rr ! Rr
l

sends N r into N r
l

and defines an isomorphism Rr=N r ! Rr
l
=N r

l
.

We apply Proposition 1.6 to the Ql -vector spaces T r
l
.X/ and T d�r

l
.X/ and their Q-subspaces

Rr
l

and Rd�r
l

. Note that condition (�) says that, for some l , statements S , T , and T 0 hold, and
hence also E (by 1.6c).

For all l ,

dimQ.Rr=N r/ D dimQ.Rr
l =N

r
l /

(1.6d)
� dimQl

.T r
l / � m

r . (3)

Note that
dimQ.Rr

l =N
r
l / D dimQl

.T r
l /

(1.6d)
” Ql �Rr

l D T
r
l and N r

l D 0 (4)

and that

dimQl
.T r

l / D m
r

.1.2,1.5)
” the pairing T r

l � T
d�r

l ! T d
l ' Ql is nondegenerate. (5)

For those l for which (�) holds, the right hand statements in (4) and (5) hold, and so equality
holds throughout in (3). Since the two end terms do not depend on l , equality holds throughout in
(3) for all l . Therefore the left hand statements in (4) and (5) hold for all l , and we deduce that
˘ the pairing T r

l
� T d�r

l
! Ql is nondegenerate for all l ,

˘ the group N r
l
D 0 for all l , and (by 1.6b)

˘ the map Ql ˝Q Rr
l
! T r

l
.X/ is an isomorphism for all l .

As N r maps into N r
l

for all l and the map R� !
Q

l H
2�
l
.X/.�/ is injective, this implies that

N r D 0 and so Rr ' Rr
l

for all l . Therefore Ql ˝Q Rr ! T r
l
.X/ is an isomorphism for all l and

r . 2

REMARK 1.8 (a) In Proposition 1.6, it is not necessary to assume that the maps R ! W and
R0 ! W 0 are injective.

(b) When applied to the Q-subalgebra of H 2�
A .X/.�/ generated by algebraic classes, Theorem

1.7 extends Theorem 2.9 of Tate 1994 by allowing ` D p.

An application of tannakian theory

Throughout this section, k is an algebraically closed field and HW is a Weil cohomology theory
on the algebraic varieties over k. By this I mean that HW is a contravariant functor defined on the
varieties over k, sending disjoint unions to direct sums, and satisfying the conditions (1)–(4) and (6)
of Kleiman 1994, �3, on connected varieties (finiteness, Poincaré duality, Künneth formula, cycle
map, strong Lefschetz theorem). The coefficient field of HW is denoted Q.

Let S be a class of algebraic varieties over k satisfying the following condition:

(*) the projective spaces Pn are in S, and S is closed under passage to a connected
component and under the formation of products and disjoint unions.

Let Q0 be a subfield of Q, and for each X 2 S, let R�.X/ be a graded Q0-subalgebra of
H 2�

W .X/.�/ of finite degree. We assume the following:
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(R0) for all connected X 2 S, the “orientation” isomorphism H 2 dim X
W .X/.dimX/ ' Q induces

an isomorphism h�iWRdim X .X/ ' Q0;
(R1) for every regular map f WX ! Y of varieties in S, f �WH 2�

W .Y /.�/ ! H 2�
W .X/.�/ maps

R�.Y / into R�.X/ and f� maps R�.X/ into R�Cdim Y �dim X .Y /;2

(R2) for every X in S, R1.X/ contains the divisor classes.
Because R�.X/ is closed under cup-products, condition (R2) implies that the class of every point
on X lies in Rdim X .X/, and so the isomorphism Rdim X .X/ ' Q0 in (R0) is that sending the
class of a point to 1. The cohomology class of the graph �f of any regular map f WX ! Y lies in
Rdim Y .X � Y / because �f D .idX ; f /�.X/ and so

cl.�f / D .idX ; f /�.cl.X// D .idX ; f /�.1/:

The category of correspondences C.k/ defined byR has one object hX for eachX 2 S, and the
morphisms from X to Y are the elements of Rdim X .X � Y /; composition of morphisms is defined
by the formula:

.f; g/ 7! g ı f D pXZ�.p
�
XY f � p

�
YZg/WR

dim X .X � Y / �Rdim Y .Y �Z/! Rdim X .X �Z/:

This is a Q0-linear category, and there is a contravariant functor from the category of varieties
in S to C.k/ sending X to hX and a regular map f WY ! X to the transpose of its graph in
Rdim X .X � Y /.

Recall that the pseudo-abelian hull CC of an additive category C has one object .x; e/ for each
object x in C and idempotent e in End.x/, and the morphisms from .x; e/ to .y; f / are the elements
of the subgroup f ıHom.x; y/ ı e of Hom.x; y/.

PROPOSITION 1.9 If the product pairings

Rr.X/ �Rdim X�r.X/ �! Rdim X .X/ ' Q0 (6)

are nondegenerate for all connected X 2 S and all r � 0, then C.k/C is a semisimple abelian
category.

PROOF (FOLLOWING JANNSEN 1992) An f 2 Rdim XCr.X � Y / defines a linear map

x 7! q�.p
�x � f / �H�

W .X/! H�C2r
W .Y /.r/:

In particular, an element f of Rdim X .X � X/ defines an endomorphism of H�
W .X/. There is the

following Lefschetz formula: let f; g 2 RdimX .X �X/, and let gt be the transpose of g; then

hf � gt
i D

X2 dim X

iD0
.�1/i Tr.f ı gjH i

W .X//

(Kleiman 1968, 1.3.6).
Let f be an element of the ring R.X/ def

D Rdim X .X � X/. If f is in the Jacobson radical3 of
R.X/, then f �gt is nilpotent for all g 2 R.X/, and so the Lefschetz formula shows that hf �gi D 0.
Now (6) implies that f D 0, and so the ring R.X/ is semisimple. It follows that e � R.X/ � e is
also semisimple for any idempotent e in R.X/. Thus C.k/C is a pseudo-abelian category such that
End.x/ is a semisimple Q0-algebra of finite degree for every object x, and this implies that it is a
semisimple abelian category (Jannsen 1992, Lemma 2). 2

2Whenever I write dimX , I am implicitly assuming that X is equidimensional (and often that it is connected). I leave
it to the reader to make the necessary adjustments when it isn’t.

3Recall that the Jacobson radical of a ring R is the set of elements of R that annihilate every simple R-module. It is a
two-sided ideal in R, which is nilpotent if R is Artinian. A ring is semisimple if and only if its Jacobson radical is zero.
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The tensor product structure
hX ˝ hY

def
D h.X � Y /

on C.k/ extends to C.k/C, and with this structure C.k/C becomes a pseudo-abelian tensor category.
The object hP1 of C.k/ decomposes into a direct sum 11˚L in C.k/C, where L is (by definition) the
Lefschetz object. On inverting L, we obtain the category M.k/ of false motives, which is a pseudo-
abelian rigid tensor category (Saavedra Rivano 1972, VI 4.1.3.5). When the Künneth components
of the diagonal of every variety X in S lie in Rdim X .X � X/, they can be used to modify the
commutativity constraint on M.k/ to obtain the category Mot.k/ of (true) motives (ibid. VI 4.2.1.5).
Every triple .X; e;m/ with X 2 S, e an idempotent in the ringRdim X .X �X/, andm 2 Z, defines
an object

h.X; e;m/
def
D .hX; e/˝ L�m

in Mot.k/, and all objects of Mot.k/ are isomorphic to an object of this form.
Now (1.9) implies the following statement:

THEOREM 1.10 Assume that, for all connected X 2 S, the product pairings (6) are nondegenerate
and the Künneth components of the diagonal lie in R. Then Mot.k/ is a semisimple tannakian
category over k with the Q-valued fibre functor !W W h.X; e;m/ e.H�

W .X//.m/:

Recall that, for a variety X and any n � 0, the Künneth formula provides an isomorphism

H�
W .X

n/ '
On

H�
W .X/: (7)

Therefore, every automorphism of theQ-vector spaceH�
W .X/ defines an automorphism ofH�

W .X
n/:

COROLLARY 1.11 With the assumptions of the theorem, let GX be the largest algebraic subgroup
of GL.H�

W .X// �GL.Q.1// fixing some elements of
L

nR�.Xn/. Then

H 2�
W .Xn/.�/GX � Q �R�.Xn/ for all n:

PROOF. Let G D Aut˝.!W /. For every Y 2 S, G acts on H 2�
W .Y /.�/ and

H 2�
W .Y /.�/G D Q �R�.Y /

(e.g., Deligne and Milne 1982). The image of G in GL.H�
W .X// �GL.Q.1// is contained in GX ,

and the isomorphism (7) is G-equivariant, and so

H 2�
W .Xn/.�/GX � H 2�

W .Xn/.�/G D Q �R�.Xn/: 2

Decomposition of the cohomology of an abelian variety over F

Again let HW be a Weil cohomology theory with coefficient field Q. The elements of the Q-
subalgebra of H 2�

W .X/.�/ generated by the divisor classes on a variety X are called Lefschetz
classes. A correspondence on a variety is said to be Lefschetz if it is defined by a Lefschetz class.
For an abelian variety A, the Q-span of the endomorphisms of H 2�

W .A/.�/ defined by Lefschetz
classes consists exactly of those commuting with the action of the Lefschetz group of A. See Milne
1999a.

Let A be an abelian variety over k with sufficiently many endomorphisms, i.e., such that
End0.A/ contains an étale subalgebra of degree 2dimA over Q. The centre C.A/ of End0.A/
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is a product of CM-fields with possibly a copy of Q, and so it has a well-defined complex conjuga-
tion �A. The Rosati involution of any polarization of A preserves each factor of C.A/ and acts on it
as �A. The special Lefschetz group S.A/ of A is the algebraic group of multiplicative type over Q
such that, for each Q-algebra R,

S.A/.R/ D f
 2 C.A/˝Q R j 
 � �A
 D 1g

(Milne 1999a). It acts on H�
W .A/, and when Q splits S.A/, we let H�

W .A/� denote the subspace
on which S.A/ acts through the character � of S.A/.

Fix an isomorphism Q! Q.1/ and use it to identify H r
W .A/.s/ with H r

W .A/.

LEMMA 1.12 Let A be an abelian variety with sufficiently many endomorphisms, and assume that
Q splits C.A/. Let G be the centralizer (in the sense of algebraic groups) of the image of S.A/Q
in GL.H�

W .A//. Then for each character � of S.A/, the representation of G on H�
W .A/� is irre-

ducible.

PROOF. Let H�
W .A/ D

L
�2� H

�
W .A/�. Then G D

Q
�2� GL.H�

W .A/�/, and so the statement
is obvious. 2

We next compute X�.S.A//. Let ˙ D HomQ-alg.C.A/;Q/. If A is a supersingular elliptic
curve, then C.A/ D Q and S.A/ D �2. In this case X�.C.A// D Z=2Z. If A is simple, but not a
supersingular elliptic curve, then C.A/ is a CM field E and X�.S.A// is the quotient of Z˙ by the
group of functions h such that h.�/ D h.� ı �A/ for all � 2 ˙ . For h 2 Z˙ , let

f .�/ D h.�/ � h.� ı �A/; � 2 ˙:

Then f is a map f W˙ ! Z such that

f .� ı �A/ D �f .�/ (8)

which depends only on the class of h in X�.S.A//, and every f satisfying (8) arises from a unique
h 2 X�.S.A//. For a general A, let I.A/ be a set of representatives for the simple isogeny factors
of A. Then S.A/ '

Q
B2I.A/ S.B/ and so

X�.S.A// '
M

B2I.A/
X�.S.B//.

It follows that X�.S.A// can be identified with the set of families f D .f .�//�2˙ such that:
˘ if � D � ı �A, then f .�/ 2 Z=2Z;
˘ if � ¤ � ı �A, then f .�/ 2 Z and f .� ı �/ D �f .�/.

For h 2 Z˙ , let H.A/h be the subspace of H�
W .A/ on which the torus .Gm/E=Q acts through

the character h. Then there is a decomposition

H�
W .A/ D

M
f 2X�.S.A//

H.A/f where H.A/f D
M

h2Z˙ , h7!f

H.A/h:

The cup-product pairing H�
W .A/ �H

2 dim A��
W .A/ ! H 2 dim A

W ' Q is equivariant for the action
of S.A/, and so the subspaces H.A/f and H.A/f 0 are orthogonal unless f C f 0 D 0 in which
case they are dual. Note that �A acts on X�.S.A// as �1.
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THEOREM 1.13 Let A be an abelian variety over k with sufficiently many endomorphisms, and
let d D dimA. Let R� be a graded Q-subalgebra of H 2�

W .A/.�/ of finite degree such that R1

contains the divisor classes, R� is stable under the endomorphisms of H 2�
W .A/.�/ defined by Lef-

schetz correspondences, and dimQRdim A D 1. If there exists a finite Galois extension Q0 of Q
splitting C.A/ and admitting aQ-automorphism �0 such that � ı �A D �0 ı� for all homomorphisms
� WC.A/! Q, then the product pairings

Rr
�Rd�r

! Rd
' Q

are nondegenerate for all r , and the map

R�
˝Q Q! H 2�

W .A/.�/

is injective.

PROOF. The group G acts on H�
W .A/ by Lefschetz correspondences because its action commutes

with that of S.A/. Therefore, QR� is stable under G. For f 2 X�.S.A//, let H.A/f D
.Q0 ˝Q H�

W .A//f . As H.A/f is a simple G-module (by 1.12 applied to HW 0 D Q0 ˝ HW ),
the intersection Q0R� \H.A/f is either 0 or the whole of H.A/f . Because Q0R� is stable under
the action of �0,

H.A/f � Q
0R�

H) �0H.A/f � Q
0R�.

But �0H.A/f D H.A/�f , and so the cup-product pairings

Q0Rr
�Q0Rd

! Q0Rd
' Q0

are nondegenerate. Now we can apply (1.6c) and (1.6b). 2

THEOREM 1.14 (CLOZEL 1999) For any abelian variety A over F, `-adic homological equiva-
lence coincides with numerical equivalence on a set S of primes ` of density > 0.

PROOF. Let R�.A/ be the Q-subalgebra of H�
`
.A/ generated by the algebraic classes, and let

E � C be the smallest Galois extension of Q splitting C.A/. Then � ı �A D �jE ı � for all
homomorphisms � WC.A/! E. Let S be the set of primes ` such that �jE is the Frobenius element
of some prime � of E dividing `. Then the hypotheses of Theorem 1.13 hold with Q0 D E�. 2

REMARK 1.15 Theorem 1.14 holds for An with the same set S because C.A/ ' C.An/.

ASIDE 1.16 The proof of Clozel’s theorem in this subsection simplifies that of Deligne (see Clozel
2008), who takes the group G in Lemma 1.13 to be the algebraic subgroup of GL.H�

W .A// gener-
ated by End.A/� and the group (isomorphic to SL2) given by Lefschetz theory, and then proves the
lemma by an explicit computation.

Quotients of tannakian categories

I review some definitions and results from Milne 2007a. Let k be a field, and let T be a tannakian
category over k. A tannakian subcategory of T is a full k-linear subcategory closed under the
formation of subquotients, direct sums, tensor products, and duals. In particular, it is strictly full
(i.e., it contains with any object, every object in T isomorphic to the object). For any subgroupH of
the fundamental group �.T/ of T, the full subcategory TH of T whose objects are those on whichH
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acts trivially is a tannakian subcategory of T, and every tannakian subcategory of T is of this form
for a uniquely determined subgroup of �.T/.

For simplicity, I assume throughout this subsection that T has a commutative fundamental group.
Then �.T/ is an ind-object in the subcategory T0 of T of trivial objects (those isomorphic to the a
direct sum of copies of the identity object 11), and the equivalence of categories

Hom.11;�/WT0 ! Veck (9)

maps it to a pro-algebraic group in the usual sense. I often write T�.T) or T� for T0 and 
T for the
functor (9). Note that 
T is a k-valued fibre functor on T� and that, for any other k-valued fibre
functor ! on T� , there is a unique isomorphism 
T ! ! (because Hom˝.
T; !/ is a torsor for the
trivial group).

An exact tensor functor qWT ! Q of tannakian categories is a quotient functor if every object
of Q is a subquotient of an object of the image of q. Then the full subcategory Tq of T consisting
of the objects that become trivial in Q is a tannakian subcategory of T, and X  Hom.11; qX/ is a
k-valued fibre functor !q on Tq . In particular, Tq is neutral. For any X; Y in T,

Hom.qX; qY / ' !q.Hom.X; Y /H /; (10)

where H is the subgroup of �.T/ corresponding to Tq . Every k-valued fibre functor !0 on a
tannakian subcategory S of T arises from a well-defined quotient T=!0 of T. For example, when T
is semisimple, we can take T=!0 to be the pseudo-abelian hull of the category with one object qX
for each object X of T and whose morphisms are given (10).

1.17 In summary, .Q; q/$ !q where

T Q
q

//

� �

T q Q�qjT q

// Q� Veck

Q

//T q Veck

!q

66

Hom.qX; qY / ' !q.Hom.X; Y /H /:

Let qWT ! Q be a quotient functor, and let R be a k-algebra. An R-valued fibre functor ! on
Q defines an R-valued fibre functor ! ı q on T, and the (unique) isomorphism of fibre functors

Hom.11;�/! !jQ0

defines an isomorphism a.!/W!q˝k R! .! ı q/jTq . Conversely, an R-valued fibre functor !0 on
T together with an isomorphism aW!q ˝k R ! !0jTq defines a fibre functor ! on Q whose action
on objects is determined by !.qX/ D !0.X/ and whose action on morphisms is determined by

Hom.qX; qY / Hom.!.qX/; !.qY //! //______________Hom.qX; qY /

!q.Hom.X; Y /H /˝R

.10/

��

!q.Hom.X; Y /H /˝R !0.Hom.X; Y /H /a // !0.Hom.X; Y /H / Hom.!0X;!0Y /!
0.H/' // Hom.!0X;!0Y /!
0.H/

Hom.!.qX/; !.qY //

?�

OO

1.18 In summary, ! $ .!0; a/ where

T Q
q

// Q Veck
! //T Veck

!0

((

S Veck

T q

Veck

!qllllllll

55llllllll T q Veck

!0jT q

((

T q Veck

!q

66
a

KS



2 RATIONAL TATE CLASSES 12

2 Rational Tate classes

Throughout this section, S is a class of smooth projective varieties over F satisfying the condition (*)
(see p6) and containing the abelian varieties. The smallest such class will be denoted S0. Thus, S0

consists of all varieties whose connected components are products of abelian varieties and projective
spaces.

Definition

DEFINITION 2.1 A family .R�.X//X2S with each R�.X/ a graded Q-subalgebra of H 2�
A .X/.�/

is a theory of rational Tate classes on S if it satisfies the following conditions:
(R1) for every regular map f WX ! Y of varieties in S, f � mapsR�.Y / intoR�.X/ and f� maps

R�.X/ into R�.Y /;
(R2) for every X in S, R1.X/ contains the divisor classes;
(R4) for every prime l (including l D p) and every X in S, the projection map H�

A .X/ !
H�.X;Ql/ induces an isomorphism R�.X/˝Q Ql ! T �

l
.X/.

Condition (R4) says that R�.X/ is simultaneously a Q-structure on each of the Ql -spaces T �
l
.X/

of Tate classes (including for l D p). The elements of R�.X/ are called the rational Tate classes
on X for the theory R.

For any X in S, let A�.X/ denote the Q-subalgebra of H 2�
A .X/.�/ generated by the algebraic

classes. Then A�.X/ is a graded Q-algebra, and the family .A�.X//X2S satisfies (R1) and (R2) of
the definition. It is a theory of rational Tate classes on S if the Tate conjecture holds for all X 2 S
and numerical equivalence coincides with homological equivalence for one (hence all) l .

Properties of a theory of rational Tate classes

Let R� be a theory of rational Tate classes on S.

2.2 For every X in S, R�.X/ is a Q-algebra of finite degree. Indeed, for each l , R�.X/ is a
Q-structure on the Ql -algebra T �

l
.X/, which has finite degree.

2.3 When X is connected, there is a unique isomorphism Rdim X .X/ ! Q sending the class of
any point to 1. To see this, note that (R2) implies that R�.X/ contains all Lefschetz classes, and
that the class of every point is Lefschetz. Now apply (R4) noting that the similar statement is true
for T dim X

l
.X/ and Ql .

2.4 For varieties X; Y 2 S, the maps X ! X t Y  Y define an isomorphism

R�.X t Y /! R�.X/˚R�.Y /: (11)

To see this, note that the isomorphism H 2�
A .X t Y / ! H 2�

A .X/ ˚H 2�
A .Y / induces an injection

(11), which becomes an isomorphism when tensored with l .

2.5 For any two varieties X; Y in S, there is a Q-algebra homomorphism

x ˝ y 7! p�x � q�yWR�.X/˝Q R�.Y /! R�.X � Y /: (12)

2.6 A c 2 Rdim XCr.X � Y / defines a linear map

x 7! q�.p
�x � c//WR�.X/! R�Cr.Y /:

In particular, Lefschetz correspondences map rational Tate classes to rational Tate classes.
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2.7 Let L be the Lefschetz operator on cohomology defined by a hyperplane section of X . For
2r � dimX , the map

Ldim X�2r
WRr.X/! Rdim X�r.X/

is injective. It is an isomorphism when X is an abelian variety because then the inverse map is a
Lefschetz correspondence (Milne 1999a, 5.9).

2.8 For any n,R�.Pn/ ' QŒt �=.tnC1/ where t denotes the class of any hyperplane in Pn, and, for
any X 2 S, the map (12) is an isomorphism

x ˝ y 7! p�x � q�yWR�.X/˝R�.Pn/ ' R�.X � Pn/:

2.9 Let X be connected, and let R.X/ D Rdim X .X �X/. Then R.X/ becomes a Q-algebra with
the product,

.f; g/ 7! p13�.p
�
12f � p

�
23g/WRdim X .X �X/ �Rdim X .X �X/! Rdim X .X �X/:

It contains the graph of any regular map f WX ! X , and f 7! cl.�f /WEnd.X/ ! R.X/ is
a homomorphism. When X is not connected, we set R.X/ D

Q
R.Xi / where the Xi are the

connected components of X .

Semisimple Frobenius maps

Let R� be a theory of rational Tate classes on S.
Recall that �X is the set of Frobenius maps of X . For � 2 �X , QŒ�� denotes the Q-subalgebra

of R.X/ generated by the graph of � (see 2.9). For N sufficiently divisible, the Q-algebra QŒ�N �

depends only on �X , and is the algebra of least degree generated by an element of �X — we denote
it Qf�Xg. We say that �X is semisimple, or that X has semisimple Frobenius maps, if Qf�Xg

is semisimple, i.e., a product of fields. When �X is semisimple, the Frobenius maps of X act
semisimply on all Weil cohomology groups of X .

Weil (1948, Théorème 38) shows that the Frobenius maps are semisimple if S D S0.

PROPOSITION 2.10 Let X be a connected variety of dimension d in S. If �X is semisimple, then
R.X/

def
D Rd .X �X/ is a semisimple Q-algebra with centre Qf�Xg, and the product pairings

Rr.X/ �Rd�r.X/! Rd .X/ ' Q (13)

are nondegenerate.

PROOF. Fix an ` ¤ p, and let � be a Frobenius element of X such that Qf�Xg D QŒ��. The
Künneth formula and the Poincaré duality theorem give an isomorphism

H 2d
` .X �X/.d/ ' End.H�

` .X//

(endomorphisms of H�
`
.X/ as a graded Q`-vector space), and the centralizer of Q`Œ�� in this Q`-

algebra is T d
`
.X�X/. Because QŒ�� is semisimple, so also is Q`Œ��, and it follows that T d

`
.X�X/

is a semisimple Q`-algebra with centre Q`Œ��. As R.X/˝Q` ' T d
`
.X �X/, it follows that R.X/

is semisimple with centre QŒ��.
The semisimplicity of �X implies that the pairings T r

l
.X/ � T d�r

l
.X/ ! T d

l
' Ql are

nondegenerate (see 1.2), and so an element of the left kernel of the pairing (13) maps to zero in
T �

l
.X/ � H 2�

l
.X/.�/ for all l (apply 1.6c). 2
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The Lefschetz standard conjecture

Let HW be a Weil cohomology theory on the algebraic varieties over F, and let .R�.X//X2S be
a family of graded Q-subalgebras of the Q-algebras H 2�

W .X/.�/ satisfying (R1, R2, R4) — we
call this a theory of rational Tate classes for HW . Let X 2 S be connected, and let L be the
Lefschetz operator defined by a smooth hyperplane section of X . The following statements are
the analogues for rational Tate classes of the various forms of Grothendieck’s Lefschetz standard
conjecture (Grothendieck 1968; Kleiman 1968, 1994):
A.X/: for 2r � d D dimX , Ld�2r WRr.X/! Rd�r.X/ is an isomorphism;
B.X/: the Lefschetz operator � lies in R�.X �X/;
C.X/: the projectors H�

W .X/! H i
W .X/ � H

�
W .X/ lie in R�.X �X/;

D.X/: the pairings Rr.X/ �Rd�r.X/! Rd .X/ ' Q are nondegenerate.

THEOREM 2.11 If statement D.X/ holds for all X 2 S, then �X is semisimple for all X 2 S.
Conversely, if �X is semisimple for all X 2 S, then A.X/, B.X/, C.X/, and D.X/ hold for all
X 2 S and all L.

PROOF. Statement D.X/ implies that the Q-algebra R.X/ def
D Rdim X .X � X/ is semisimple (see

1.9), and therefore its centre Qf�Xg is semisimple. Conversely, as in (2.10), the semisimplicity of
Qf�Xg implies that D.X/ holds, and it is known that if D.X/ holds for all X in a set S satisfying
(*), then so do A.X/, B.X/, and C.X/ (e.g., Kleiman 1994, 4-1, 5-1). 2

The category of motives for rational Tate classes

LetR� be a theory of rational Tate classes on S. As in �1, the category of correspondences C.F/ has
one object hX for eachX 2 S, and the morphisms fromX to Y are the elements ofRdim X .X�Y /.

PROPOSITION 2.12 If �X is semisimple for every X 2 S, then the pseudo-abelian hull of C.F/ is
a semisimple abelian category.

PROOF. ForX 2 S, End.hX/ ' R.X/opp, which Proposition 2.10 shows to be semisimple. Thus,
the semisimplicity of the Frobenius elements implies that the endomorphism algebras of the objects
of C.F/ are semisimple Q-algebras of finite degree, and so C.F/ is a semisimple abelian category
by Jannsen 1992, Lemma 2. 2

PROPOSITION 2.13 For every X in S, the Künneth components of the diagonal are rational Tate
classes.

PROOF. In fact, they are polynomials in the graph of the Frobenius map with rational coefficients
(see, for example, Katz and Messing 1974, Theorem 2). 2

The category of motives Mot.F/ is obtained from C.F/ by passing to the pseudo-abelian hull,
inverting the Lefschetz object, and using (2.13) to change the commutativity constraint. When
the Frobenius elements are semisimple, the article Milne 1994 can be rewritten with the algebraic
classes replaced by rational Tate classes. In particular, we have the following result.

THEOREM 2.14 If the Frobenius maps of the varieties in S are semisimple, then the category
Mot.F/ is a semisimple tannakian category over Q with fundamental group P , the Weil-number
protorus. For each l (including l D p), l-adic cohomology defines a fibre functor !l on Mot.F/.
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We recall the definition of the Weil-number torus P . An algebraic number � is said to be
a Weil pn-number of weight m if, for every embedding � WQŒ�� ! C, j��j D .pn/m=2 and,
for some N , pN� is an algebraic integer. Let W.pn/ be the set of Weil pn-numbers (of any
weight) in Qal. Then W.pn/ is a commutative group, stable under the action of Gal.Qal=Q/. Let
W.p1/ D lim

�!n
W.pn/. It is a torsion free commutative group with an action of Gal.Qal=Q/, and

P is defined to be the protorus over Q with character group X�.P / D W.p1/.

COROLLARY 2.15 If the Frobenius maps of the varieties in S are semisimple, then for any theory
of rational Tate classes on a class S, the functor

e � hX.m/ 7! e � hX.m/WMot.FIS0/! Mot.FIS/

is an equivalence of tensor categories.

PROOF. It is an exact tensor functor of tannakian categories over Q that induces an isomorphism
on the fundamental groups. 2

COROLLARY 2.16 If the Frobenius maps of the varieties in S are semisimple, a theory of rational
Tate classes on S is determined by its values on the objects in S0.

PROOF. Let X 2 S, and choose an isomorphism x ! h2rX with x in Mot.F;S0/. The isomor-
phism !A.x/.r/! !A.h

2rX/.r/
def
D H 2r

A .X/.r/ maps

Hom.11; x.r// � Hom.A; !A.x/.r// D !A.x/.r/

onto Rr.X/. 2

The category of motives as a quotient category

In this subsubsection, we assume that the Frobenius maps are semisimple for the varieties in S.
Let LMot.F/ be the category of motives based on S0 using the Lefschetz classes as correspon-

dences. It is a semisimple tannakian category over Q (Milne 1999b). There is a natural action of P
on the objects of LMot.F/.

PROPOSITION 2.17 For any theory of rational Tate classes on S, the natural functor

qW LMot.F/! Mot.F/; e � hX.m/ e � hX.m/;

is a quotient functor, and
LMot.F/q D LMot.F/P : (14)

Conversely, every quotient functor qW LMot.F/ ! M satisfying (14) and such that each standard
fibre functor factors through q arises from a unique theory of rational Tate classes on S0.

PROOF. The first statement is obvious. Conversely, for each x and y in LMot.F/, the map

Hom.x; y/˝Q Ql

!l
�! Hom.!l.x/; !l.y//

is injective (Deligne 1990, 2.13). In particular, for each X 2 S0, !l defines an inclusion

Hom.11; h2rX.r// ,! Hom.Ql ;H
2r
l .X/.r// ' H 2r

l .X/.r/

for l ¤ p, and similarly for p. On combining these maps, we get an inclusion

Hom.11; h2rX.r// ,! H 2r
A .X/.r/

for each X 2 S0, and we define Rr.X/ to be the image of this map. The family .R�.X//X2S0

with R�.X/ D
L

r Rr.X/ satisfies (R1,R2), and (14) implies that it satisfies (R4). 2
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COROLLARY 2.18 To give a theory of rational Tate classes on S0 is the same as to give a Q-
structure on the restriction of !A to LMot.F/P , i.e., a subfunctor !0 � !A such that A˝Q !0.x/ '

!A.x/ for all x 2 LMot.F/P .

PROOF. Obvious from the above. 2

3 Good theories of rational Tate classes

In this section, S consists of the varieties over F whose Frobenius elements are semisimple. Clearly
S satisfies the condition (*), and includes S0 (by a theorem of Weil). Conjecturally, S includes all
varieties over F.

Definition

An abelian variety with sufficiently many endomorphisms over an algebraically closed field of char-
acteristic zero will be called a CM abelian variety. Let Qal be the algebraic closure of Q in C. The
functor A AC from CM abelian varieties over Qal to CM abelian varieties over C is an equiva-
lence of categories (see, for example, Milne 2006, �7).

Fix a p-adic prime w of Qal, and let F be its residue field. Thus, F is an algebraic closure of Fp.
It follows from the theory of Néron models that there is a well-defined reduction functor A A0

sending a CM abelian variety over Qal to an abelian variety over F (Serre and Tate 1968, Theorem
6).

For a variety X over an algebraically closed field of characteristic zero, we write

H�
A .X/ D

 
lim
 �
m

H�.Xet;Z=mZ/˝Z Q

!
�H�

dR.X/,

and for a variety X0 over F, we now write

H�
A .X0/ D

0@ lim
 �
p−m

H�.X0et;Z=mZ/˝Z Q

1A �H�
p .X0/˝B.F/ Qal

w ;

where Qal
w is the completion of Qal at w. If X has good reduction to X0 at w, then

H�.Xet;Z=mZ/ ' H�.X0et;Z=mZ/ for all m not divisible by p, and

H�
dR.X/˝Qal Qal

w ' H
�
p .X0/˝B.F/ Qal

w ;

and so there is a canonical map H�
A .X/! H�

A .X0/, called the specialization map.
For a variety X over a field of characteristic zero, B�.X/ denotes the Q-subalgebra of absolute

Hodge classes in H 2�
A .X/.�/. Because of Deligne’s theorem (1982), I refer to the absolute Hodge

classes on a variety X 2 S0 simply as Hodge classes.

DEFINITION 3.1 A theory of rational Tate classes R on S (over F) is good if
(R3) for all CM abelian varieties A over Qal, the Hodge classes on A map to elements of R�.A0/

under the specialization map H 2�
A .A/.�/! H 2�

A .A0/.�/.
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In other words, (R3) requires that there exists a commutative diagam

B�.A/ � H 2�
A .A/.�/

# #specialization

R�.A/ � H 2�
A .A0/.�/:

Recall (Deligne 1982, 2.9b) that Gal.Qal=Q/ acts on B�.A/ through a finite quotient, and so the
Hodge classes on A are Tate classes. Therefore, they specialize to Tate classes on A0, i.e., there is
a commutative diagram

B�.A/ � H 2�
l
.A/.�/

# # '

T �
l
.A/ � H 2�

l
.A0/.�/

(15)

for each l , except that for l D p the cohomology groups have to be tensored with Qal
w .

The fundamental theorems

THEOREM 3.2 A family .R�.X//X2S0
is a good theory of rational Tate classes on S0 if it satisfies

the conditions (R1), (R2), and (R3), and the following weakening of (R4):
(R4*) for all varieties X in S, the Q-algebra R�.X/ is of finite degree, and for all primes l , the

projection map H 2�
A .X/.�/! H 2�

l
.X/.�/ sends R�.X/ into T �

l
.X/.

In other words, instead of requiring R�.X/ to be a Q-structure on T �
l
.X/ for all l , we merely

require that it be finite dimensional and map into T �
l
.X/ for all l .

PROOF. We fix a CM-subfield K of C that is finite and Galois over Q and contains a quadratic
imaginary number field in which p splits, and we let � D Gal.K=Q/. Let ` be a prime ¤ p, and
let A be an abelian variety over Qal split by K (i.e., such that End0.A/ is split by K).

The inclusion End0.A/ ,! End0.A0/ maps the centre C.A/ of End0.A/ onto a Q-subalgebra
of End0.A0/ containing its centre C.A0/, and hence it defines an inclusion L.A0/ ! L.A/ of
Lefschetz groups. Consider the diagram

MT.A/ �
�

// L.A/

P.A0/

OO�
�
�

� � // L.A0/
?�

OO

in which MT.A/ is the Mumford-Tate group of A and P.A0/ is the smallest algebraic subgroup of
L.A0/ containing a Frobenius endomorphism of A0. Almost by definition, MT.A/ is the largest
algebraic subgroup of L.A/ fixing the Hodge classes in H 2�

B .An
C/.�/ for all n, and so MT.A/Q`

is the largest algebraic subgroup of L.A/Q`
fixing the Hodge classes in H 2�

`
.An/.�/ for all n. On

the other hand, the classes in H 2�
`
.An

0/.�/ fixed by P.A0/Ql
are exactly the Tate classes. The

specialization map H 2�
`
.A/.�/ ! H 2�

`
.A0/.�/ is equivariant for the homomorphism L.A0/ !

L.A/. From (15), we see that P .A0/Q`
� MT.A/Q`

(inside L.A/Q`
). This implies that P.A0/ �

MT.A/ (inside L.A/), and explains the left hand arrow in the above diagram.
Now choose A to be so large that every simple abelian variety over Qal split by K is isogenous

to an abelian subvariety of A. Then A0 is an abelian variety over F such that every abelian variety
over F split by K is isogenous to an abelian subvariety of A0 (see Milne 2007b, 8.7). With this
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choice of A, the groups L.A/, L.A0/, MT.A/, and P.A0/ are equal to the groups denoted TK ,
LK , SK , and PK in Milne 1999b, and so (ibid., Theorem 6.1),

P.A0/ D MT.A/ \ L.A0/ (intersection inside L.A/). (16)

Let R�
`
.A/ be the image of R�.A/ in H 2�

`
.A/.�/. The hypotheses of Theorem 1.13 hold with

HW D H` for an infinite set of primes ` (see the proof of Theorem 1.14). In particular, there exists
a prime ` such that the product pairings

Rr
`.A/ �R

dim A�r
` .A/! Rdim A.A/ ' Q

are nondegenerate for all r . Let G be the largest algebraic subgroup of L.A0/Q`
fixing the rational

Tate classes in H 2�
`
.An

0/.�/ for all n. The group G acts on H 2�
`
.An/.�/ through the homomor-

phisms G ! L.A0/Q`
! L.A/Q`

, and it fixes the Hodge classes (because of (R3)). Therefore,

G � MT.A/Q`
\ L.A0/Q`

D P.A0/Q`
;

and so G fixes all Tate classes in H 2�
`
.An

0/.�/ (all n). According to (1.11), this implies that the
space of Tate classes inH 2�

`
.An

0/.�/ (all n) is spanned byR�.A0/. Because the Frobenius maps on
abelian varieties are semisimple (Weil’s theorem), Theorem 1.7 shows that the maps R�.An

0/ ˝Q
Ql ! T �

l
.A0/ are isomorphisms for all l (including l D p). It follows that the same is true of every

abelian subvariety of some power A0 (because it is an isogeny factor), i.e., for all abelian varieties
over F split by K. Since every abelian variety over F is split by some CM-field, this completes the
proof. 2

THEOREM 3.3 There exists at most one good theory of rational Tate classes on S.

PROOF. It suffices to prove this with S D S0 (see 2.16). Certainly, if R�
1 and R�

2 are two theories
of rational Tate classes and one is contained in the other, then they are equal (by condition (R4)).
But Theorem 2.3 shows that ifR�

1 andR�
2 are good theories of rational Tate classes on S0.F/, then

R�
1 \R�

2 is also a good theory of rational Tate classes, and so it is equal to each of R�
1 and R�

2 . 2

THEOREM 3.4 (MILNE 1999b) If the Hodge classes on CM abelian varieties over Qal specialize to
algebraic classes on abelian varieties over F, then the Tate conjecture holds for abelian varieties over
F. In particular, the Hodge conjecture for CM abelian varieties over Qal implies the Tate conjecture
for abelian varieties over F.

PROOF. Let A�.X/ be the Q-subalgebra of H�
A .X/ generated by the algebraic classes. Theorem

3.2 shows that A� is a good theory of rational Tate classes on S0. 2

REMARK 3.5 For any CM subfield K of C finite and Galois over Q, Hazama (2002, 2003) con-
structs a CM abelian variety A with the following properties:
˘ A is split by K and every simple CM abelian variety split by K is isogenous to an abelian

subvariety of A, and
˘ for all n � 0, the Q-algebra of Hodge classes on An is generated by those of degree � 2.

It follows that, in order to prove the Hodge conjecture for CM abelian varieties, it suffices to prove it
in codimension 2. On combining Hazama’s ideas with those from Milne 1999b, one can show that in
order to prove the Tate conjecture for abelian varieties over F, it suffices to prove it in codimension
2 (Milne 2007b, 8.6).
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Motives defined by a good theory of rational Tate classes

Recall (2.14) that a theory of rational Tate classes R� on S defines a semisimple tannakian cate-
gory of motives Mot.F/ with fundamental group P . Moreover (2.17), there is a quotient functor
LMot.F/! Mot.F/ bound by a homomorphism of fundamental group P ! L. WhenR� is a good
theory, then this extends to a commutative diagram of exact tensor functors of semisimple tannakian
categories, as at left, bound by the commutative diagram of fundamental groups at right:

CM.Qal/
J

 ���� LCM.Qal/??yR

??yRL

Mot.F/
I

 ���� LMot.F/

S ����! Tx?? x??
P ����! L:

(17)

Here:
˘ CM.Qal/ is the category of motives based on the CM abelian varieties over Qal using the

Hodge classes as correspondences. Its fundamental group is the Serre group S .
˘ LCM.Qal/ is the similar category, except using the Lefschetz classes as correspondences. Its

fundamental group is a certain pro-algebraic group T of multiplicative type.
˘ The horizontal functors are of the form e � hX.r/ e � hX.r/, and the vertical functors are

of the form e � hX.r/ e � hX0.r/.
˘ The groups and homomorphisms in the diagram at right have elementary explicit descriptions,

and the homomorphisms are all injective.
˘ For each l (including l D p), there exists a fibre functor !l on Mot.F/ such that !l ı R and

!l ı I are equal (meaning really equal) to the standard fibre functors.
See Milne 1999b.

The last statement places a condition on Mot.F/ for every finite prime. We shall also need a
condition at the infinite prime, and this is expressed in terms of polarizations on Tate triples (see
Deligne and Milne 1982, �5, for this theory).

A divisor D on an abelian variety A over F defines a pairing  DW h1A � h1A! T, which is a
Weil form if D is very ample (Weil 1948, Théorème 38). A Weil form arising in this way from a
very ample divisor is said to be geometric.

The categories in (17) all have natural Tate triple structures which are preserved by the functors.
Moreover, each of the categories CM.Qal/, LCM.Qal/, and LMot.F/ has a unique polarization˘CM,
˘LCM, ˘LMot called the geometric polarization, for which the geometric Weil forms are positive.
More precisely, for each homogeneous object X in the category, the geometric Weil forms on X are
contained in a single equivalence class˘.X/, and the family .˘.X//X is a polarization on the Tate
triple. Moreover J W˘LCM 7! ˘CM and RLW˘LCM 7! ˘LMot. See Milne 2002a, 1.1, 1.5.

LEMMA 3.6 Let S D S0. There exists a unique polarization˘ on Mot.F/ such thatRW˘CM 7! ˘ .

PROOF (FOLLOWING Milne 2002b, PROOF OF 2.1) Fix a CM subfieldK of C such thatK is finite
and Galois over Q and K properly contains an imaginary quadratic field in which p splits. Let
CMK.Qal/ and MotK.F/ denote the tannakian subcategories of CM.Qal/ and Mot.F/ generated by
the abelian varieties split byK. It suffices to prove the proposition forRK WCMK.Qal/! MotK.F/.

Let A be a CM abelian variety over Qal split by K such that every simple CM abelian variety
over Qal split by K is isogenous to a subvariety of A, and let X D End.h1A/

P . It follows from
Milne 1999b that SK=PK acts faithfully on X ,4 and hence that X generates MotK .

4As Yves André pointed out to me, this is not entirely obvious, so I include a proof. I begin with an elementary
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Let � be the geometric Weil form on h1A defined by an ample divisor D on A, and let  D
T � jX , where T � is the symmetric bilinear form on End.X/ defined by � (Milne 2002b, 1.1).
Then  2 ˘CM.X/, and it suffices to show that RK. / is positive-definite (ibid. 1.4, 1.5). But
RK.X/ D End0.A0/ and RK. / is the trace pairing u; v 7! Tr.u � v�/ of the Rosati involution
defined by D0 on A0, which is positive definite by Théorème 38 of Weil 1948. 2

THEOREM 3.7 There exists a unique polarization ˘ on Mot.F/ such that
(a) the geometric Weil forms are positive,
(b) RW˘CM 7! ˘ , and
(c) I W˘LMot 7! ˘ .

Moreover, each of these conditions determines ˘ uniquely.

PROOF. The uniqueness being obvious, it remains to prove the existence. As Mot.FIS0/ !

Mot.FIS/ is an equivalence, there exists an unique polarization˘ on Mot.FIS/ such thatRW˘CM 7!

˘ . The geometric Weil forms are positive for ˘CM, and every polarized abelian variety over F is
isogenous to the reduction of a polarized CM abelian variety over Qal (Zink 1983, 2.7), and so if
RW˘CM ! ˘ , then every geometric Weil form on a homogeneous factor of the motive of an abelian
variety is positive, but all homogeneous objects in Mot.F/ are such factors. This proves that ˘ has
the properties (a) and (b), and property (c) follows obviously from (a). 2

ASIDE 3.8 In fact, ˘ is the only polarization on Mot.F/ for which the geometric Weil forms on a
supersingular elliptic curve are positive (Milne 1994, 3.17c).

The Hodge standard conjecture

Let R� be a good theory of rational Tate classes on S, and fix a prime l . Let X 2 S, and let
LWH r

l
.X/ ! H rC2

l
.X/.1/ be the Lefschetz operator defined by a smooth hyperplane section of

X . When X is connected, the primitive part of Rr.X/ is defined to be

Rr.X/prim D fz 2 Rr.X/ j Ldim X�2rC1z D 0g:

The next theorem shows that the Hodge standard conjecture holds for rational Tate classes.

THEOREM 3.9 For every connected X 2 S and r � 1
2

dimX , the bilinear form �r

x; y 7! .�1/rhLdim X�2rx � yiWRr.X/prim �Rdim X�r.X/prim ! Rdim X .X/ ' Q (18)

is positive definite.

remark. Let T � L be tori with T acting on a finite dimensional vector space V . Let �1; : : : ; �n be the characters of T
occurring in V . Then T acts faithfully on V if and only if �1; : : : ; �n span X�.T / as a Z-module — assume this. The
characters of T occurring in End.V / are f�i � �j g, and the set of those occurring in End.V /L is

f�i � �j j �i jL D �j jLg: (*)

On the other hand,
X�.T=L/ D f

P
ai�i j

P
ai�i jL D 0g: (**)

Thus, T=L will act faithfully on End.V /L if the set (*) spans the Z-module (**).
I now prove the statement. With the notations of Milne 1999b, �6 (especially p69), T 	 acts on a realization of

h1A
	 through the characters  0; : : : ;  n�1; � 0; : : : ; � n�1, where the  i have been numbered so that �. 0/ D � � � D

�. d�1/ D �0, �. d / D � � � D �. 2d�1/ D �1; etc.. Now
P
ai �  i jL

	 D
P
ai � �. i /, which is zero if and only

if
Pd�1

iD0 ai D 0,
P2d�1

iDd ai D 0, . . . ; but then
P
ai i D

Pd�1
iD0 ai . i �  0/C � � � , which (by the remark) shows that

T 	=L˘ acts faithfully on End.h1A
	 /L

˘
. Similarly T 	=L˘ acts faithfully on End.h1A

	 /L
˘

and it follows that

TA	 �A	
=LA˘ �A˘

acts faithfully on End.h1.A
	 �A	 //L

A˘ �A˘

. As PK=LK ,! TA	 �A	
=LA˘ �A˘

(cf. ibid.
Lemma 6.9), this implies the statement.
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Let d D dimX . Let pr.X/ be the largest subobject of

Ker.Ld�2rC1
W h2r.X/.r/! h2d�2rC2.X/.d � r C 1/

on which � def
D �.Mot.F// acts trivially. Then

Hom.11; pr.X// D Rr.X/prim

and there is a pairing
#r
Wpr.X/˝ pr.X/! 11;

also fixed by � , such that Hom.11; #r/ D �r . Theorem 3.9 follows from Theorem 3.7 and the next
two lemmas.

LEMMA 3.10 If Mot.F/ admits a polarization for which the forms #r are positive, then the pairings
�r are positive definite.

PROOF. See the proof of Milne 2002b, 4.5. 2

LEMMA 3.11 If ˘ is a polarization of Mot.F/ for which RW˘CM 7! ˘ , then the forms #r are
positive for ˘ .

PROOF (FOLLOWING MILNE 2002b, 4.5)) Let A1 be a polarized abelian variety over F. Accord-
ing to Zink 1983, there exists an abelian variety A over Qal and an isogeny A0 ! A1. The bilinear
forms

'r
W hrA˝ hrA

id ˝�
�! hrA˝ h2d�r.A/.d � r/! h2n.A/.d � r/ ' 11.�r/

are positive for the polarization ˘CM (cf. Saavedra Rivano 1972, VI 4.4) — here d D dimA and �
is defined by the given polarization on A. The restriction of '2r˝ id11.2r/ to the subobject pr.A/ of
h2r.A/.r/ is of the form #r , which is therefore positive (Deligne and Milne 1982, 4.11b). Because
of the isogeny A0 ! A1 and our hypothesis on ˘ , the similar statement is true for A1. As every
object of Mot.F/ is a direct factor of the motive of an abelian variety, this proves the result. 2

COROLLARY 3.12 If there exists a good theory of rational Tate classes such that all algebraic
classes are rational Tate classes, then the Hodge standard conjecture holds for all X 2 S.

PROOF. The form (18) is positive definite if and only if the quadratic form x 7! hx � �xi on
Rr.X/prim is positive definite. The restriction of a positive definite quadratic form to a subspace is
positive definite. 2

REMARK 3.13 Let S contain all varieties over an algebraically closed field k, and let HW be a
Weil cohomology theory with coefficient field Q. André (1996) defines a countable subfield Q0

of Q and constructs a family .R�.X//X2S of Q0-subalgebras of H 2�
W .X/.�/ that is the smallest

containing the algebraic classes, the Lefschetz operator �, and satisfying (R1) — the elements of
R�.X/ are called the motivated classes onX . WhenHW is `-adic étale cohomology with ` distinct
from the characteristic of k, he has proved the following:

(a) the motivated classes on abelian varieties in characteristic zero are exactly the Hodge classes
(André 1996);

(b) the motivated classes on a CM abelian variety over Qal specialize to motivated classes on A0

(André 2006, 2.4.1).
On applying the obvious variant of Theorem 3.2, one finds that the motivated classes on abelian
varieties over F form a theory of rational Tate classes in H` (in the sense on p14), except that Q
must be replaced by Q0. In particular, the space of motivated classes in H 2�

`
.A0/.�/ is a Q0-

structure on T �.A0/. If Q0 is formally real, the obvious variant of Theorem 3.9 implies the Hodge
standard conjecture for abelian varieties over F.
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Finite fields

Suppose that we have a good theory of rational Tate classes R on some class S of varieties over F.
For any variety X over a finite subfield Fq of F such that XF 2 S, Gal.F=Fq/ acts through a finite
quotient on R�.XF/ because it acts continuously, and a countable profinite group is finite. In this
case, we define

R�.X/ D R�.XF/
Gal.F=Fq/:

4 The rationality conjecture

In this section, I state a conjecture that has many of the same consequences for motives over F as
the Hodge conjecture for CM abelian varieties but appears to be much more accessible.

Statement

RATIONALITY CONJECTURE 4.1 Let A be an abelian variety over Qal with good reduction to an
abelian variety A0 over F. The cup product of the specialization to A0 of any Hodge class on A
with any Lefschetz class of complementary dimension lies in Q.

In more detail, a Hodge class on A is an element of 
 of H 2�
A .A/.�/ and its specialization


0 is an element of H 2�
A .A0/.�/. Thus the cup product 
0 [ ı of 
0 with a Lefschetz class of

complementary dimension ı lies in

H 2d
A .A0/.d/ ' Ap

f
�Qal

w ; d D dim.A/:

The conjecture says that it lies in Q � Ap

f
� Qal

w . Equivalently, it says that the l-component of

0 [ ı is a rational number independent of l .

The conjecture is true for a particular 
 if 
0 is algebraic. Therefore, the conjecture is implied by
the Hodge conjecture for abelian varieties (or even by the weaker statement that the Hodge classes
specialize to algebraic classes).

EXAMPLE 4.2 If A is a CM abelian variety such that A0 is simple and ordinary, then the ratio-
nality conjecture holds for A and its powers. To see this, note that the hypotheses imply that
End0.A0/ ' End0.A/, which is a CM-field of degree 2dimA. This isomorphism defines an iso-
morphism L.A0/ ' L.A/ of Lefschetz groups, and hence the specialization map H 2�

A .An/.�/ !

H 2�
A .An

0/.�/ defines an isomorphism D�.An/ ' D�.An
0/ on the Lefschetz classes for all n. In

other words, every Lefschetz class ı on An
0 lifts uniquely to a Lefschetz class ı0 on An, and so


0 [ ı D 
 [ ı
0
2 Q:

DEFINITION 4.3 Let A be an abelian variety over Qal with good reduction to an abelian variety A0

over F. A Hodge class 
 on A is locally w-Lefschetz if its image 
0 inH 2�
A .A0/.�/ is in the A-span

of the Lefschetz classes, and it is w-Lefschetz if 
0 is itself a Lefschetz class.

WEAK RATIONALITY CONJECTURE 4.4 LetA be an abelian variety over Qal with good reduction
to an abelian variety A0 over F. Every locally w-Lefschetz Hodge class on A is w-Lefschetz.

Notice that 
0 is locallyw-Lefschetz if and only if it is fixed byL.A0/. Therefore, the conjecture
asserts that a Hodge class on A fixed by L.A0/ specializes to a Lefschetz class on A0. Equivalently,
B�.A/ \ D�.A0/ is a Q-structure on B�.A/A \ D�.A0/A (intersections inside H 2�

A .A0/.�/) (see
4.7 below).
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THEOREM 4.5 The following statements are equivalent:
(a) The rationality conjecture holds for all CM abelian varieties over Qal.
(b) The weak rationality conjecture holds for all CM abelian varieties over Qal.
(c) There exists a good theory of rational Tate classes on S0.
(d) There exists a commutative diagram of tannakian categories as in (17) bound by the diagram

of fundamental groups at right in (17) and, for every l (including l D p) there exists a fibre
functor !l on Mot.F/ such that !l ıR and !l ı I are equal to the standard fibre functors.

PROOF. (a) H) (b): Choose a Q-basis e1; : : : ; et for the space of Lefschetz classes of codimension
r on A0, and let f1; : : : ; ft be the dual basis for the space of Lefschetz classes of complementary
dimension (here we use Milne 1999a, 5.2, 5.3). If 
 is a locally w-Lefschetz class of codimension
r , then 
0 D

P
ciei for some ci 2 A. Now

h
0 [ fj i D cj

which the rationality conjecture implies lies in Q.
(c) H) (a): If there exists a good theoryR of rational Tate classes, then certainly the rationality

conjecture is true, because then h
0 [ ıi 2 Rdim A ' Q.
(d) H) (c):We saw in Proposition 2.17 that a quotient functor qW LMot.F/ ! M with certain

properties gives rise to a theory of rational Tate classes on S0. The existence of the commutative
square at the left of (17) implies that the theory is good.

We shall complete the proof of the theorem in the next subsection by proving that (b)” (d).2

REMARK 4.6 Let A be a CM abelian variety over Qal. For each r ,

H 2r
A .A/.r/L.A0/�MT .A/

� H 2r
A .A/.r/MT .A/

' Br.A/˝Q A

H 2r
A .A/.r/L.A0/�MT .A/

� H 2r
A .A/.r/L.A0/

' Dr.A0/˝Q A.

It follows that there are two Q-structures on H 2r
A .A/.r/L.A0/�MT .A/, namely, its intersection with

Br.A/ and its intersection with Dr.A0/. Conjecture 4.4 is the statement that these two Q-structures
are equal.

REMARK 4.7 Let A be a CM abelian variety over Qal. For each r and ` ¤ p,

Br.A/˝Q` ,! H 2r
` .A/.r/ ' H 2r

` .A0/.r/ - Dr.A0/˝Q`:

Conjecture 4.4 states that Br.A/ \ Dr.A0/ is a Q-structure on .Br.A/˝Q`/ \ .Dr.A0/˝Q`/

(for all ` ¤ p, and also the analogous statement for p).

ASIDE 4.8 It is conjectured that, in the case of good reduction, every F-point on a Shimura variety
lifts to a special point (special lift conjecture).5 This conjecture implies that, given an abelian
variety A over Qal with good reduction to an abelian variety A0 over F and a Hodge class 
 on A,
there exists a CM abelian variety A0 over Qal and a Hodge class 
 0 on A0 for which there exists
an isogeny A0

0 ! A0 sending 
 0
0 to 
0. From this it follows that the rationality conjecture for CM

abelian varieties implies the rationality conjecture for all abelian varieties.

5This conjecture arose when the author was extending the statement of the conjecture of Langlands and Rapoport
from Shimura varieties defined by reductive groups with simply connected derived group to all Shimura varieties (see
Milne 1992). A proof of it has been announce by Vasiu (2003)
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ASIDE 4.9 Deligne (2000) notes that the following corollary of the Hodge conjecture would be
particularly interesting: let A1 and A2 be two liftings of an abelian variety A0=F to characteristic
zero, and let 
1 and 
2 be Hodge classes of complementary dimension on A1 and A2; then .
1/0 [

.
2/0 2 Q. This is implied by the conjunction of the rationality conjecture for CM abelian varieties
and the special lift conjecture.

The rationality conjecture and the existence of good rational Tate classes

Assume, for the moment, that we have a good theory of rational Tate classes on S0. Then the
diagrams in (17) can be extended as follows:

CMP ; !R  ���� LCML; !RL

 ���� LCML�S??y ??y ??y
CM

J
 ���� LCM  ���� LCMS ; !J??yR

??yRL

??y
Mot

I
 ���� LMot  ���� LMotP ; !I

S=P ��! T=L ��! T=L � Sx?? x?? x??
S ��! T ��! T=Sx?? x?? x??
P ��! L ��! L=P:

Here, each of the functors R, RL, I , and J is a quotient functor. In summary:

Mot .F/ D CM.Qal/=!R with !R the Q-valued fibre functor X  HomMot.11;X/ on CM.Qal/P I

LMot.F/ D LCM.Qal/=!RL

with !RL

.X/ D HomLMot.F/.11;R
LX/ for X in LCM.Qal/LI

Mot.F/ D LMot.F/=!I with !I .X/ D HomMot.F/.11; IX/ for X in LMot.F/P I

CM.Qal/ D LCM.Qal/=!J with !J .X/ D HomCM.Qal/.11; JX/ for X in LCM.Qal/S :

For a fibre functor ! on a tannakian subcategory of LCM containing LCML�S , we let !j denote
the restriction of ! to LCML�S .

For X in LCM.Qal/L�S ,

!RL

.X/
def
D HomLMot.11;R

LX/ ' HomMot.11; IR
L.X//

because RLX lies in LMot.F/L and I defines an equivalence LMot.F/L ! Mot.F/P (recall that
both subcategories are canonically tensor equivalent with the category of Q-vector spaces). Simi-
larly,

HomMot.11; IR
L.X// D HomMot.11;RJ.X// ' HomCM.11; J.X//

def
D !J .X/:

In fact, !RL

.X/ D !J .X/ as subspaces of !A.X/. Thus, !RL

j D !J j as subfunctors of !Aj.
We now drop the assumption that Mot.F/ exists, and we attempt to construct it from the rest of

the diagram. We want to obtain Mot.F/ simultaneously as a quotient of CM and LMot, and for this
we need Q-valued fibre functors !I on LMotP and !R on CMP satisfying a compatibility condition
implying that the two quotients are essentially the same.

Because the sequence

0! S=P ! T=L! T= .S � L/! 0

is exact (Milne 1999b, 6.1), the category CMP is itself the quotient LCML=!1 of LCML by the
Q-valued fibre functor on LCML�S

!1WX  HomCM.Qal/.11; JX/ D !
J .X/:
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In other words, !1 D !J j. According to (1.18), to give a fibre functor !R on CMP is the same
as to give a fibre functor ! on LCM.Qal/L together with an isomorphism !J j ! !j. In order to
get a commutative diagram as in (17), we must take ! D !RL

, and so we need an isomorphism
!J j ! !RL

j. In order for the standard fibre functors to factor correctly through the quotient
CM.Qal/=!R we need this isomorphism to be compatible with the canonical isomorphism of the
functors !A, or, with the identification we are making, we need the isomorphism !J j ! !RL

j to
be an equality of subfunctors of !A. In summary, we have shown:

THEOREM 4.10 A diagram (17) exists, together with a functors !l on Mot such that !l ı I D !l

and !l ıR D !l for all l if and only if !J j D !RL

j as subfunctors of !A on LCML�S .

This completes the proof of Theorem 4.5, because “!J j D !RL

j as subfunctors of !A on
LCML�S ” is a restatement of Conjecture 4.4 (see Remark 4.6).

ASIDE 4.11 In the above, we have shown how to define Mot.F/ as a quotient of CM.Qal/. Similarly,
we could have defined it as a quotient of LMot.F/, but, more symmetrically, we can define it as a
quotient of LCM.Qal/ or of CM.Qal/˝ LMot.F/.

Ordinary abelian varieties

Let CM0.Qal/ and LCM0.Qal/ be the tannakian subcategories generated by CM abelian varieties over
Qal specializing to simple ordinary abelian varieties over F. Because the rationality conjecture holds
for such abelian varieties (see 4.2), we obtain unconditionally a good theory of rational Tate classes
on ordinary abelian varieties over F. Moreover, we obtain a canonical commutative diagram

CM0.Qal/
J

 ���� LCM0.Qal/??yR

??yR0

Motord.F/
I

 ���� LMotord.F/

in which Motord.F/ and LMotord.F/ are generated by the ordinary abelian varieties over F. For each
prime l , there exists a fibre functor !l on Motord.F/ such that !l ı R D !l and !l ı I D !l . In
this case, the functors R and R0 are tensor equivalences, and so there is a canonical Q-valued fibre
functor on Motord.F/.6 In other words, as expected, ordinary abelian varieties and their motives in
characteristic p behave very much as their counterparts in characteristic zero.
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Dix Exposés sur la Cohomologie des Schémas. North-Holland, Amsterdam. Available at www.
grothendieck-circle.org.

HAZAMA, F. 2002. General Hodge conjecture for abelian varieties of CM-type. Proc. Japan Acad. Ser. A
Math. Sci. 78:72–75.

HAZAMA, F. 2003. On the general Hodge conjecture for abelian varieties of CM-type. Publ. Res. Inst. Math.
Sci. 39:625–655.

JACOBSON, N. 1943. The Theory of Rings. American Mathematical Society Mathematical Surveys, vol. I.
American Mathematical Society, New York.

JANNSEN, U. 1992. Motives, numerical equivalence, and semi-simplicity. Invent. Math. 107:447–452.

KATZ, N. M. AND MESSING, W. 1974. Some consequences of the Riemann hypothesis for varieties over
finite fields. Invent. Math. 23:73–77.

KLEIMAN, S. L. 1968. Algebraic cycles and the Weil conjectures, pp. 359–386. In Dix esposés sur la
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