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Abstract

We classify the “quotients” of a tannakian category in which the objects of a tan-
nakian subcategory become trivial, and we examine the properties of such quotient
categories.

Introduction
Given a tannakian category T and a tannakian subcategory S, we ask whether there exists
a quotient of T by S, by which we mean an exact tensor functor qWT ! Q from T to a
tannakian category Q such that

(a) the objects of T that become trivial in Q (i.e., isomorphic to a direct sum of copies of
11 in Q) are precisely those in S, and

(b) every object of Q is a subquotient of an object in the image of q.
When T is the category Rep.G/ of finite-dimensional representations of an affine group
scheme G the answer is obvious: there exists a unique normal subgroup H of G such
that the objects of S are the representations on which H acts trivially, and there exists
a canonical functor q satisfying (a) and (b), namely, the restriction functor Rep.G/ !
Rep.H/ corresponding to the inclusion H ,! G. By contrast, in the general case, there
need not exist a quotient, and when there does there will usually not be a canonical one. In
fact, we prove that there exists a q satisfying (a) and (b) if and only if S is neutral, in which
case the q are classified by the k-valued fibre functors on S. Here k def

D End.11/ is assumed
to be a field.

From a slightly different perspective, one can ask the following question: given a sub-
group H of the fundamental group �.T/ of T, does there exist an exact tensor functor
qWT ! Q such that the resulting homomorphism �.Q/ ! q.�.T// maps �.Q/ isomor-
phically onto q.H/? Again, there exists such a q if and only if the subcategory TH of T,
whose objects are those on which H acts trivially, is neutral, in which case the functors q
correspond to the k-valued fibre functors on TH .

The two questions are related by the “tannakian correspondence” between tannakian
subcategories of T and subgroups of �.T/ (see 1.7).

�Available at www.jmilne.org/math/.
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In addition to proving the above results, we determine the fibre functors, polarizations,
and fundamental groups of the quotient categories Q.

The original motivation for these investigations came from the theory of motives (see
Milne 2002, 2007).

Notation: The notation X � Y means that X and Y are isomorphic, and X ' Y means
that X and Y are canonically isomorphic (or that there is a given or unique isomorphism).

1 Preliminaries
For tannakian categories, we use the terminology of Deligne and Milne 1982. In particular,
we write 11 for any identity object of a tannakian category — recall that it is uniquely
determined up to a unique isomorphism. We fix a field k and consider only tannakian
categories with k D End.11/ and only functors of tannakian categories that are k-linear.

Gerbes
1.1 We refer to Giraud 1971, Chapitre IV, for the theory of gerbes. All gerbes will be for

the flat (i.e., fpqc) topology on the category Affk of affine schemes over k. The band (=
lien) of a gerbe G is denoted Bd.G/. A commutative band can be identified with a sheaf of
groups.

1.2 Let ˛WG1 ! G2 be a morphism of gerbes over Affk, and let !0 be an object of G2;k.
Define .!0#G1/ to be the fibred category over Affk whose fibre over S

s
�! Spec k has

as objects the pairs .!; a/ consisting of an object ! of ob.G1;S/ and an isomorphism
aW s�!0 ! ˛.!/ in G2;S ; the morphisms .!; a/! .�; b/ are the isomorphisms 'W! ! �

in G1;S giving rise to a commutative triangle. Thus,

!

�

'

��

s�.!0/

˛.!/
a

66llllllll
s�.!0/

˛.�/
b ((RRRRRRRR

˛.!/

˛.�/

˛.'/

��

˛.�/

G1;SG1;S G2;S

If the map of bands defined by ˛ is an epimorphism, then .!0#G1/ is a gerbe, and the
sequence of bands

1! Bd.!0#G1/! Bd.G1/! Bd.G2/! 1 (1)

is exact (Giraud 1971, IV 2.5.5(i)).

1.3 Recall (Saavedra Rivano 1972, III 2.2.2) that a gerbe is said to be tannakian if its band
is locally defined by an affine group scheme. It is clear from the exact sequence (1) that if
G1 and G2 are tannakian, then so also is .!0#G1/.
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1.4 The fibre functors on a tannakian category T form a gerbe FIB.T/ over Affk (Deligne
1990, 1.13). Each object X of T defines a representation ! 7! !.X/ of FIB.T/, and in this
way we get an equivalence T! Rep.FIB.T// of tannakian categories (Deligne 1989, 5.11;
Saavedra Rivano 1972, III 3.2.3, p200). Every gerbe whose band is tannakian arises in this
way from a tannakian category (Saavedra Rivano 1972, III 2.2.3).

Fundamental groups
1.5 We refer to Deligne 1989, ��5,6, for the theory of algebraic geometry in a tannakian

category T and, in particular, for the fundamental group �.T/ of T. It is the affine group
scheme1 in T such that !.�.T// ' Aut˝.!/ functorially in the fibre functor ! on T. The
group �.T/ acts on each object X of T, and ! transforms this action into the natural action
of Aut˝.!/ on !.X/. The various realizations !.�.T// of �.T/ determine the band of T
(i.e., the band of FIB.T/).

1.6 An exact tensor functor F WT1 ! T2 of tannakian categories defines a homomorphism
�.F /W�.T2/! F.�.T1// (Deligne 1989, 6.4). Moreover:

(a) F induces an equivalence of T1 with a category whose objects are the objects of T2
endowed with an action of F.�.T1// compatible with that of �.T2/ (Deligne 1989,
6.5);

(b) �.F / is flat and surjective if and only if F is fully faithful and every subobject of
F.X/, for X in T1, is isomorphic to the image of a subobject of X (cf. Deligne and
Milne 1982, 2.21);

(c) �.F / is a closed immersion if and only if every object of T2 is a subquotient of an
object in the image of q (ibid.).

1.7 For a subgroup2 H � �.T/, we let TH denote the full subcategory of T whose objects
are those on which H acts trivially. It is a tannakian subcategory of T (i.e., it is a strictly
full subcategory closed under the formation of subquotients, direct sums, tensor products,
and duals) and every tannakian subcategory arises in this way from a unique subgroup of
�.T/ (cf. Bertolin 2003, 1.6). The objects of T�.T/ are exactly the trivial objects of T, and
there exists a unique (up to a unique isomorphism) fibre functor


T
WT�.T/ ! Veck,

namely, 
T.X/ D Hom.11;X/:

1.8 For a subgroup H of �.T/ and an object X of T, we let XH denote the largest sub-
object of X on which the action of H is trivial. Thus X D XH if and only if X is in
TH .

1“T-schéma en groupes affines” in Deligne’s terminology.
2Note that every subgroup H of �.T/ is normal. For example, the fundamental group � of the cate-

gory Rep.G/ of representations of the affine group scheme G D Spec.A/ is A regarded as an object of
Ind.Rep.G//. The action of G on A is that defined by inner automorphisms. A subgroup of � is a quotient
A ! B of A (as a bi-algebra) such that the action of G on A defines an action of G on B . Such quotients
correspond to normal subgroups of G.
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1.9 WhenH is contained in the centre of �.T/, then it is an affine group scheme in T�.T/,
and so 
T identifies it with an affine group scheme over k in the usual sense. For example,

T identifies the centre of �.T/ with Aut˝.idT/ (cf. Saavedra Rivano 1972, II 3.3.3.2,
p150).

Morphisms of tannakian categories
1.10 For a group G, a right G-object X , and a left G-object Y , X ^G Y denotes the

contracted product of X and Y , i.e., the quotient of X � Y by the diagonal action of G,
.x; y/g D .xg; g�1y/. When G ! H is a homomorphism of groups, X ^G H is the
H -object obtained from X by extension of the structure group. In this last case, if X is a
G-torsor, then X ^G H is also an H -torsor. See Giraud 1971, III 1.3, 1.4.

1.11 Let T be a tannakian category over k, and assume that the fundamental group � of T
is commutative. A torsor P under � in T defines a tensor equivalence T! T, X 7! P ^�

X , bound by the identity map on Bd.T/, and every such equivalence arises in this way from
a torsor under � (cf. Saavedra Rivano 1972, III 2.3). For any k-algebra R and R-valued
fibre functor ! on T, !.P / is anR-torsor under !.�/ and !.P ^�X/ ' !.P /^!.�/!.X/.

2 Quotients
For any exact tensor functor qWT! T0, the full subcategory Tq of T whose objects become
trivial in T0 is a tannakian subcategory of T (obviously).

We say that an exact tensor functor qWT ! Q of tannakian categories is a quotient
functor if every object of Q is a subquotient of an object in the image of q; equivalently,
if the homomorphism �.q/W�.Q/ ! q.�T/ is a closed immersion (see 1.6(c)). If, in
addition, the homomorphism �.q/ is normal (i.e., its image is a normal subgroup of q.T/),
then we say that q is normal.

EXAMPLE 2.1 Consider the exact tensor functor !f WRep.G/ ! Rep.H/ defined by a
homomorphism f WH ! G of affine group schemes. The objects of Rep.G/!

f

are those
on whichH (equivalently, the intersection of the normal subgroups ofG containing f .H/)
acts trivially. The functor !f is a quotient functor if and only if f is a closed immersion,
in which case it is normal if and only if f .H/ is normal in G.

PROPOSITION 2.2 An exact tensor functor qWT ! Q of tannakian categories is a normal
quotient functor if and only if there exists a subgroupH of �.T/ such that �.q/ induces an
isomorphism �.Q/! q.H/.

PROOF. (H: Because q is exact, q.H/! q.�T/ is a closed immersion. Therefore �.q/
is a closed immersion, and its image is the normal subgroup q.H/ of q.�T/:
H): Because q is a quotient functor, �.q/ is a closed immersion. Let H be the kernel

of the homomorphism �.T/! �.Tq/ defined by the inclusion Tq ,! T. The image of �.q/
is contained in q.H/, and equals it if and only if q is normal. To see this, let G D q�.T/,
and identify T with the category of objects of Q with an action of G compatible with that
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of �.Q/ � G. Then q becomes the forgetful functor, and Tq D T�.Q/. Thus, q.H/ is the
subgroup of G acting trivially on those objects on which �.Q/ acts trivially. It follows that
�.Q/ � q.H/, with equality if and only if �.Q/ is normal in G. 2

In the situation of the proposition, we sometimes call Q a quotient of T byH (cf. Milne
2002, 1.3).

Let qWT! Q be an exact tensor functor of tannakian categories. By definition, q maps
Tq into Q�.Q/, and so we acquire a k-valued fibre functor !q def

D 
Q ı .qjTq/ on Tq:

Tq� _

��

qjTq
//

!q

**

Q�.Q/� _

��


Q
// Veck

T
q

// Q.

In particular, Tq is neutral. A fibre functor ! on Q, defines a fibre functor ! ı q on T, and
the (unique) isomorphism 
Q ! !jQ�.Q/ defines an isomorphism a.!/W!q ! .! ı q/jTq.

PROPOSITION 2.3 Let qWT! Q be a normal quotient, and letH be the subgroup of �.T/
such that �.Q/ ' q.H/.

(a) For X; Y in T, there is a canonical functorial isomorphism

HomQ.qX; qY / ' !
q.Hom.X; Y /H /:

(b) The map ! 7! .! ı q; a.!// defines an equivalence of gerbes

r.q/W FIB.Q/! .!q#FIB.T//:

PROOF. (a) From the various definitions and Deligne and Milne 1982,

HomQ.qX; qY / ' HomQ.11;Hom.qX; qY /�.Q// (ibid. 1.6.4)

' HomQ.11; .qHom.X; Y //q.H// (ibid. 1.9)

' HomQ.11; q.Hom.X; Y /H //

' !q.Hom.X; Y /H / (definition of !q).

(b) The functor FIB.T/! FIB.TH / gives rise to an exact sequence

1! Bd.!Q#FIB.T//! Bd.T/! Bd.TH /! 0

(see 1.2). On the other hand, we saw in the proof of (2.2) that H D Ker.�.T/! �.TH //.
On comparing these statements, we seee that the morphism r.q/ of gerbes is bound by an
isomorphism of bands, which implies that it is an equivalence of gerbs (Giraud 1971, IV
2.2.6). 2

PROPOSITION 2.4 Let .Q; q/ be a normal quotient of T. An exact tensor functor q0WT! T0

factors through q if and only Tq
0

� Tq and !q � !q
0

jTq.
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PROOF. The conditions are obviously necessary. For the sufficiency, choose an isomor-
phism bW!q ! !q

0

jTq. A fibre functor ! on T0 then defines a fibre functor ! ı q0 on T and
an isomorphism a.!/jTq ı bW!q ! .! ı q0/jTq. In this way we get a homomorphism

FIB.T0/! .!q#FIB.T// ' FIB.Q/

and we can apply (1.4) to get a functor Q! T0 with the correct properties. 2

THEOREM 2.5 Let T be a tannakian category over k, and let !0 be a k-valued fibre functor
on TH for some subgroup H � �.T/. There exists a quotient .Q; q/ of T by H such that
!q ' !0.

PROOF. The gerbe .!0#FIB.T// is tannakian (see 1.3). From the morphism of gerbes

.!; a/ 7! !W .!0#FIB.T//! FIB.T/;

we obtain a morphism of tannakian categories

Rep.FIB.T//! Rep.!0#FIB.T//

(see 1.4). We define Q to be Rep.!0#FIB.T// and we define q to be the composite of the
above morphism with the equivalence (see 1.4)

T! Rep.FIB.T//.

Since a gerbe and its tannakian category of representations have the same band, an argu-
ment as in the proof of Proposition 2.3 shows that �.q/ maps �.Q/ isomorphically onto
q.H/. A direct calculation shows that !q is canonically isomorphic to !0. 2

We sometimes write T=! for the quotient of T defined by a k-valued fibre functor ! on
a subcategory of T.

EXAMPLE 2.6 Let .T; w;T/ be a Tate triple, and let S be the full subcategory of T of
objects isomorphic to a direct sum of integer tensor powers of the Tate object T. Define !0
to be the fibre functor on S,

X 7! lim
�!
n

Hom.
M
�n�r�n

11.r/; X/:

Then the quotient tannakian category T=!0 is that defined in Deligne and Milne 1982, 5.8.

REMARK 2.7 Let qWT ! Q be a normal quotient functor. Then T can be recovered from
Q, the homomorphism �.Q/ ! q.�.T//, and the actions of q.�.T// on the objects of Q
(apply 1.6(a)).

REMARK 2.8 A fixed k-valued fibre functor on a tannakian category T determines a Ga-
lois correspondence between the subsets of ob.T/ and the equivalence classes of quotient
functors T! Q.
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EXERCISE 2.9 Use (1.10, 1.11) to express the correspondence between fibre functors on
tannakian subcategories of T and normal quotients of T in the language of 2-categories.

ASIDE 2.10 LetG be the fundamental group �.T/ of a tannakian category T, and letH be
a subgroup ofG. We use the same letter to denote an affine group scheme in T and the band
it defines. Then, under certain hypotheses, for example, if all the groups are commutative,
there will be an exact sequence

� � � ! H 1.k;G/! H 1.k;G=H/! H 2.k;H/! H 2.k;G/! H 2.k;G=H/:

The category T defines a class c.T/ in H 2.k;G/, namely, the G-equivalence class of the
gerbe of fibre functors on T, and the image of c.T/ inH 2.k;G=H/ is the class of TH . Any
quotient of T by H defines a class in H 2.k;H/ mapping to c.T/ in H 2.k;G/. Thus, the
exact sequence suggests that a quotient of T by H will exist if and only if the cohomology
class of TH is neutral, i.e., if and only if TH is neutral as a tannakian category, in which case
the quotients are classified by the elements ofH 1.k;G=H/ (moduloH 1.k;G/). When T is
neutral and we fix a k-valued fibre functor on it, then the elements ofH 1.k;G=H/ classify
the k-valued fibre functors on TH . Thus, the cohomology theory suggests the above results,
and in the next subsection we prove that a little more of this heuristic picture is correct.

The cohomology class of the quotient
For an affine group scheme G over a field k, H r.k;G/ denotes the cohomology group
computed with respect to the flat topology. When G is not commutative, this is defined
only for r D 0; 1; 2 (Giraud 1971).

PROPOSITION 2.11 Let .Q; q/ be a quotient of T by a subgroup H of the centre of �.T/.
Suppose that T is neutral, with k-valued fibre functor !. Let G D Aut˝.!/, and let }.!q/
be the G=!.H/-torsor Hom.!jTH ; !q/. Under the connecting homomorphism

H 1.k;G=H/! H 2.k;H/

the class of }.!q/ in H 1.k;G=H/ maps to the class of Q in H 2.k;H/.

PROOF. Note that H D Bd.Q/, and so the statement makes sense. According to Giraud
1971, IV 4.2.2, the connecting homomorphism sends the class of }.!q/ to the class of the
gerbe of liftings of }.!q/, which can be identified with .!q#FIB.T//. Now Proposition
2.3 shows that the H -equivalence class of .!q#FIB.T// equals that of FIB.Q/ which (by
definition) is the cohomology class of Q. 2

Semisimple normal quotients
Everything can be made more explicit when the categories are semisimple. Throughout
this subsection, k has characteristic zero.

PROPOSITION 2.12 Every normal quotient of a semisimple tannakian category is semisim-
ple.
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PROOF. A tannakian category is semisimple if and only if the identity component of its
fundamental group is pro-reductive (cf. Deligne and Milne 1982, 2.28), and a normal
subgroup of a reductive group is reductive (because its unipotent radical is a characteristic
subgroup). 2

Let T be a semisimple tannakian category over k, and let !0 be a k-valued fibre functor
on a tannakian subcategory S of T: We can construct an explicit quotient T=!0 as follows.
First, let .T=!0/0 be the category with one object X for each object X of T, and with

Hom.T=!0/0.X; Y / D !0.Hom.X; Y /H /

whereH is the subgroup of �.T/ defining S. There is a unique structure of a k-linear tensor
category on .T=!0/0 for which qWT ! .T=!0/0 is a tensor functor. With this structure,
.T=!0/0 is rigid, and we define T=!0 to be its pseudo-abelian hull. Thus, T=!0 has

objects: pairs .X; e/ with X 2 ob.T/ and e an idempotent in End.X/,
morphisms: HomT=!0..X; e/; .Y ; f // D f ı Hom.T=!0/0.X; Y / ı e:

Then .T=!0; q/ is a quotient of T by H , and !q ' !0.
Let ! be a fibre functor on T, and let a be an isomorphism !0 ! !jTH . The pair .!; a/

defines a fibre functor !a on T=!0 whose action on objects is determined by

!a.X/ D !.X/

and whose action on morphisms is determined by

Hom.X; Y / Hom.!a.X/; !a.Y //
!a //_______________Hom.X; Y /

!0.Hom.X; Y /H /

def

!0.Hom.X; Y /H / !.Hom.X; Y /H /
a // !.Hom.X; Y /H / Hom.!.X/; !.Y //!.H/

' // Hom.!.X/; !.Y //!.H/

Hom.!a.X/; !a.Y //

?�

OO

The map .!; a/ 7! !a defines an equivalence .!0#FIB.T//! FIB.T=!0/.
Let H1 � H0 � �.T/, and let !0 and !1 be k-valued fibre functors on TH0 and TH1

respectively. A morphism ˛W!0 ! !1jTH0 defines an exact tensor functor T=!0 ! T=!1
whose action on objects is determined by

X (in TH0) 7! X (in TH1),

and whose action on morphisms is determined by

HomT=!0.X; Y / HomT=!1.X; Y /
//________________HomT=!0.X; Y /

!0.HomT.X; Y /
H0/

def

!0.HomT.X; Y /
H0/ !1.HomT.X; Y /

H0/
˛ // !1.HomT.X; Y /

H0/ !1.HomT.X; Y /
H1//� � // !1.HomT.X; Y /
H1//

HomT=!1.X; Y /

def
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When H1 D H0, this is an isomorphism (!) of tensor categories T=!0 ! T=!1.
Let .Q1; q1/ and .Q2; q2/ be quotients of T byH . For simplicity, assume that � def

D �.T/
is commutative. Then Hom.!q1; !q2/ is �=H -torsor, and we assume that it lifts to a �-
torsor P in T, so P ^� .�=H/ D Hom.!q1; !q2/. Then

T
X 7!P^�X
�������! T

q2
�! Q2

realizes Q2 as a quotient of T by H , and the corresponding fibre functor on TH is P ^�

!q2 ' !q1 . Therefore, there exists a commutative diagram of exact tensor functors

T
X 7!P^�X
�������! T??yq1 ??yq2

Q1 �������! Q2;

which depends on the choice of P lifting Hom.!q1; !q2/ in an obvious way.

3 Polarizations
We refer to Deligne and Milne 1982, 5.12, for the notion of a (graded) polarization on a Tate
triple over R. We write V for the category of Z-graded complex vector spaces endowed with
a semilinear automorphism a such that a2v D .�1/nv if v 2 V n. It has a natural structure
of a Tate triple (ibid. 5.3). The canonical polarization on V is denoted ˘V.

A morphism F W .T1; w1;T1/ ! .T2; w2;T2/ of Tate triples is an exact tensor functor
F WT1 ! T2 preserving the gradations together with an isomorphism F.T1/ ' T2. We
say that such a morphism is compatible with graded polarizations˘1 and˘2 on T1 and T2
(denoted F W˘1 7! ˘2) if

 2 ˘1.X/) F 2 ˘2.FX/,

in which case, for any X homogeneous of weight n, ˘1.X/ consists of the sesquilinear
forms  WX ˝X ! 11.�n/ such that F 2 ˘2.FX/. In particular, given F and˘2, there
exists at most one graded polarization ˘1 on T1 such that F W˘1 7! ˘2.

Let T D .T; w;T/ be an algebraic Tate triple over R such that w.�1/ ¤ 1. Given
a graded polarization ˘ on T, there exists a morphism of Tate triples �˘ WT ! V (well
defined up to isomorphism) such that �˘ W˘ 7! ˘V (Deligne and Milne 1982, 5.20). Let
!˘ be the composite

Tw.Gm/
�˘
! Vw.Gm/


V

! VecRI

it is a fibre functor on Tw.Gm/.

A criterion for the existence of a polarization

PROPOSITION 3.1 Let T D .T; w;T/ be an algebraic Tate triple over R such thatw.�1/ ¤
1, and let �WT ! V be a morphism of Tate triples. There exists a graded polarization ˘
on T (necessarily unique) such that �W˘ 7! ˘V if and only if the real algebraic group
Aut˝.
V ı �jTw.Gm// is anisotropic.
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PROOF. Let G D Aut˝.
V ı �jTw.Gm//. Assume˘ exists. The restriction of˘ to Tw.Gm/

is a symmetric polarization, which the fibre functor 
Vı� maps to the canonical polarization
on VecR. This implies that G is anisotropic (Deligne 1972, 2.6).

For the converse, letX be an object of weight n in T.C/. A sesquilinear form  W �.X/˝

�.X/ ! 11.�n/ arises from a sesquilinear form on X if and only if it is fixed by G.
Because G is anisotropic, there exists a  2 ˘V.�.X// fixed by G (ibid., 2.6), and we
define ˘.X/ to consist of all sesquilinear forms � on X such that �.�/ 2 ˘V.�.X//. It is
now straightforward to check that X 7! ˘.X/ is a polarization on T. 2

COROLLARY 3.2 Let F W .T1; w1;T1/ ! .T2; w2;T2/ be a morphism of Tate triples, and
let ˘2 be a graded polarization on T2. There exists a graded polarization ˘1 on T1 such
that F W˘1 7! ˘2 if and only if the real algebraic group Aut˝.
V ı �˘2 ı F jT

w.Gm/
1 / is

anisotropic.

Polarizations on quotients

The next proposition gives a criterion for a polarization on a Tate triple to pass to a quotient
Tate triple.

PROPOSITION 3.3 Let TD .T; w;T/ be an algebraic Tate triple over R such thatw.�1/ ¤
1. Let .Q;q/ be a quotient of T byH � �.T/, and let !q be the corresponding fibre functor
on TH . Assume H � w.Gm/, so that Q inherits a Tate triple structure from that on T, and
that Q is semisimple. Given a graded polarization˘ on T, there exists a graded polarization
˘ 0 on Q such that qW˘ 7! ˘ 0 if and only if !q � !˘ jTH .

PROOF. ): Let ˘ 0 be such a polarization on Q, and consider the functors

T
q
! Q

�˘ 0

! V; �˘ 0 W˘ 0 7! ˘V:

Both �˘ 0 ı q and �˘ are compatible with ˘ and ˘V and with the Tate triple structures on
T and V, and so �˘ 0 ı q � �˘ (Deligne and Milne 1982, 5.20). On restricting everything
to Tw.Gm/ and composing with 
V ; we get an isomorphism !˘ 0 ı .qjTw.Gm// � !˘ . Now
restrict this to TH , and note that�

!˘ 0 ı .qjTw.Gm//
�
jTH D .!˘ 0jQ�.Q// ı .qjTH / ' !q

because !˘ 0jQ�.Q/ ' 
Q.
(: The choice of an isomorphism !q ! !˘ jTH determines an exact tensor functor

T=!q ! T=!˘ .

As the quotients T=!q and T=!˘ are tensor equivalent respectively to Q and V, this shows
that there is an exact tensor functor �WQ! V such that � ı q � �˘ . Evidently Aut˝.
V ı

�jQw.Gm// is isomorphic to a subgroup of Aut˝.
V ı �˘ jTw.Gm//. Since the latter is
anisotropic, so also is the former (Deligne 1972, 2.5). Hence � defines a graded polar-
ization ˘ 0 on Q (Proposition 3.1), and clearly qW˘ 7! ˘ 0. 2
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