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Abstract

The goal of this expository article is to present a proof that is as direct and elementary as pos-
sible of the fundamental theorem of complex multiplication (Shimura, Taniyama, Langlands,
Tate, Deligne et al.).

The article is a revision of part of my manuscript Milne 2006.
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Introduction

A simple abelian variety A over C is said to have complex multiplication if its endomorphism alge-
bra is a field of degree 2 dimA over Q, and a general abelian variety over C is said to have complex
multiplication if each of its simple isogeny factors does. Abelian varieties with complex multipli-
cation correspond to special points in the moduli space of abelian varieties, and their arithmetic
is intimately related to that of the values of modular functions and modular forms at those points.
The fundamental theorem of complex multiplication describes how an automorphism of C (as an
abstract field) acts on the abelian varieties with complex multiplication and their torsion points.

The basic theory of complex multiplication was extended from elliptic curves to abelian varieties
in the 1950s by Shimura, Taniyama, and Weil.1 The first result in the direction of the fundamental
theorem is the formula of Taniyama for the prime-ideal decomposition of an endomorphism of an
abelian variety that becomes the Frobenius map modulo p.2 In their book Shimura and Taniyama
1961, and in various other works, Shimura and Taniyama proved the fundamental theorem for au-
tomorphisms of C fixing the reflex field of the abelian variety. Except for the result of Shih 1976,

�Copyright c
 2006, 2007. J.S. Milne.
1See the articles by Shimura, Taniyama, and Weil in: Proceedings of the International Symposium on Algebraic

Number Theory, Tokyo & Nikko, September, 1955. Science Council of Japan, Tokyo, 1956.
2Ibid. p21 (article of Weil).

1



1 PRELIMINARIES 2

no progress was made on the problem of extending the theorem to all automorphisms of C until the
article Langlands 1979. In that work, Langlands attempted to understand how the automorphisms
of C act on Shimura varieties and their special points, and in doing so he was led to define a cocycle
that conjecturally describes how the automorphisms of C act on abelian varieties with complex mul-
tiplication and their torsion points. Langlands’s cocycle enables one to give a precise conjectural
statement of the fundamental theorem over Q. Tate (1981) gave a more elementary construction
of Langlands’s cocycle and he proved that it did indeed describe the action of Aut.C/ on abelian
varieties of CM-type and their torsion points up to a sequence of signs indexed by the primes of
Q. Finally, Deligne 1982 showed that there exists at most one cocycle describing this action of
Aut.C/ that is consistent with the results of Shimura and Taniyama, and so completed the proof of
the fundamental theorem over Q.

The goal of this article is to present a proof of the fundamental theorem of complex multiplica-
tion that is as direct and elementary as possible.

I assume that the reader is familiar with some of the more elementary parts of the theory of
complex multiplication. See Milne 2006 for more background.

Notations.

“Field” means “commutative field”, and “number field” means “field of finite degree over Q” (not
necessarily contained in C). The ring of integers in a number field k is denoted by Ok , and kal

denotes an algebraic closure of a field k. By C, I mean an algebraic closure of R , and Qal is the
algebraic closure of Q in C. Complex conjugation on C (or a subfield) is denoted by �.

For an abelian group X and integer m, Xm D fx 2 X j mx D 0g.
An étale algebra over a field is a finite product of finite separable field extensions of the field.

When E is an étale Q-algebra and k is a field of characteristic zero, I say that k contains all
conjugates of E when every Q-algebra homomorphism E ! kal maps into k. This means that
there are exactly ŒEWQ� distinct Q-algebra homomorphisms E ! k.

Rings are required to have a 1, homomorphisms of rings are required to map 1 to 1, and 1 is
required to act as the identity map on any module. By a k-algebra (k a field) I mean a ring B
containing k in its centre.

Following Bourbaki TG, I �9.1, I require compact topological spaces to be separated.

1 Preliminaries

CM-algebras; CM-types; reflex norms

A number field E is said to be a CM-field if there exists an automorphism �E ¤ 1 of E such that
� ı �E D � ı � for every embedding � of E into C. Equivalently, E D F Œ

p
a� with F a totally real

number field and a a totally negative element of F . A CM-algebra is a finite product of CM-fields.
For a CM-algebra E the homomorphisms E ! C occur in complex conjugate pairs f'; � ı 'g.

A CM-type on E is a choice of one element from each pair. More formally, it is a subset ˚ of
Hom.E;C/ such that

Hom.E;C/ D ˚ t �˚ (disjoint union).

A CM-pair is a CM-algebra together with a CM-type.
Let .E;˚/ be a CM-pair, and for a 2 E, let Tr˚ .a/ D

P
'2˚ '.a/ 2 C. The reflex field E�

of .E;˚/ is the subfield of C generated by the elements Tr˚ .a/, a 2 E. It can also be described as
the fixed field of f� 2 Gal.Qal=Q/ j �˚ D ˚g.
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Let .E;˚/ be a CM-pair, and let k be a subfield of C. There exists a finitely generated E˝Q k-
module V such that3

Trk.ajV / D Tr˚ .a/ for all a 2 E (1)

if and only if k � E�, in which case V is uniquely determined up to an E ˝Q k-isomorphism. For
example, if k contains all conjugates ofE, then V must be

L
'2˚ k' where k' is a one-dimensional

k-space on which E acts through '.
Now assume that k has finite degree over Q, and let V˚ be an E ˝Q k-module satisfying (1).

An element a of k defines an E-linear map v 7! avWV ! V whose determinant we denote by
detE .ajV˚ /. If a 2 k�, then detE .ajV˚ / 2 E�, and so in this way we get a homomorphism

Nk;˚ W k
�
! E�:

More generally, for any Q-algebra R and a 2 .k ˝Q R/
�, we obtain an element

detE˝QR.ajV˚ ˝Q R/ 2 .E ˝Q R/
�;

and hence a homomorphism

Nk;˚ .R/W .k ˝Q R/
�
! .E ˝Q R/

�

natural in R and independent of the choice of V˚ . It is called the reflex norm. When k D E�, we
drop it from the notation. The following formulas are easy to check (Milne 2006, �1):

Nk;˚ D N˚ ı Nmk=E� ; (2)

(k � C is a finite extension of E�);

N˚ .a/ � �EN˚ .a/ D Nmk˝QR=R.a/, all a 2 .k ˝Q R/
�; (3)

(R is a Q-algebra);
Nk;˚ .a/ D

Y
'2˚

'�1.Nmk='E a/; a 2 k�; (4)

(k � C is a finite extension of E� containing all conjugates of E).
From (4), we see that Nk;˚ maps units in Ok to units in OE when k contains all conjugates

of E. Now (2) shows that this remains true without the condition on k. Therefore, Nk;˚ is well-
defined on principal ideals, and one sees easily that it has a unique extension to all fractional ideals:
if ah D .a/, then Nk;˚ .a/ D Nk;˚ .a/1=h. The formulas (2,3,4) hold for ideals. If a is a fractional
ideal of E� and k is a number field containing all conjugates of E, then (4) applied to the extension
a0 of a to a fractional ideal of k gives

N˚ .a/
ŒkWE��

D

Y
'2˚

'�1.Nmk='E a0/: (5)

Riemann pairs; Riemann forms

A Riemann pair .�; J / is a free Z-module � of finite rank together with a complex structure J on
R˝� (i.e., J is an R-linear endomorphism of � with square �1). A rational Riemann form for a
Riemann pair is an alternating Q-bilinear form  W�Q ��Q ! Q such that

.x; y/ 7!  R.x; Jy/W�R ��R ! R
3To give an E ˝Q k-module structure on a Q-vector space V is the same as to give commuting actions of E and k.

An element a of E defines a k-linear map v 7! avWV ! V whose trace we denote by Trk.ajV /.
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is symmetric and positive definite.
Let .E;˚/ be a CM-pair, and let � be a lattice in E. Then ˚ defines an isomorphism

e ˝ r 7! .'.e/r/'2˚ WE ˝Q R! C˚ ,

and so
�˝Z R ' �˝Z Q˝Q R ' E ˝Q R ' C˚ ;

from which �˝Z R acquires a complex structure J˚ . An ˛ 2 E� defines a Q-bilinear form

.x; y/ 7! TrE=Q.˛x � �Ey/WE �E ! Q;

which is a rational Riemann form if and only if

�E˛ D �˛ and =.'.˛// > 0 for all ' 2 ˚ I (6)

every rational Riemann form is of this form for a unique ˛.
Let F be the product of the largest totally real subfields of the factors of E. Then E D F Œ˛�

with ˛2 2 F , which implies that �E˛ D �˛. The weak approximation theorem shows that ˛ can
be chosen so that =.'˛/ > 0 for all ' 2 ˚ . Thus, there certainly exist ˛s satisfying (6), and so
.�; J˚ / admits a Riemann form.

Let ˛ be one element ofE� satisfying (6). Then the other such elements are exactly those of the
form a˛ with a a totally positive element of F �. In other words, if  is one rational Riemann form,
then the other rational Riemann forms are exactly those of the form a with a a totally positive
element of F �.

Abelian varieties with complex multiplication

Let A be an abelian variety over a field k, and let E be an étale Q-subalgebra of End0.A/ def
D

End.A/˝Q. If k can be embedded in C, then End0.A/ acts faithfully on H1.A.C/;Q/, which has
dimension 2 dimA, and so

ŒEWQ� � 2 dimA: (7)

In general, for ` ¤ char k, End0.A/˝Q Q` acts faithfully on V`A, which again implies (7). When
equality holds we say that A has complex multiplication by E over k. More generally, we say that
.A; i/ is an abelian variety with complex multiplication by E over k if i is an injective homomor-
phism from an étale Q-algebra E of degree 2 dimA into End0.A/ (recall that this requires that i.1/
acts as idA; see Notations).

Classification up to isogeny

1.1 Let A be an abelian variety with complex multiplication, so that End0.A/ contains a CM-
algebra E for which H1.A;Q/ is free E-module of rank 1, and let ˚ be the set of homomorphisms
E ! C occurring in the representation of E on Tgt0.A/, i.e., Tgt0.A/ '

L
'2˚ C' where C' is a

one-dimensional C-vector space on which a 2 E acts as '.a/. Then, because

H1.A;R/ ' Tgt0.A/˚ Tgt0.A/ (8)

˚A is a CM-type on E, and we say that A together with the injective homomorphism i WE !

End0.A/ is of type .E;˚/.
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Let e be a basis vector for H1.A;Q/ as an E-module, and let a be the lattice in E such that
ae D H1.A;Z/. Under the isomorphism (cf. (8))

H1.A;R/ '
M

'2˚
C' ˚

M
'2�˚

C' ;

e ˝ 1 ! .: : : ; e' ; : : : I : : : ; e�ı' ; : : :/

where each e' is a C-basis for C' . The e' determine an isomorphism

Tgt0.A/ '
M

'2˚
C'

e'

' C˚ ;

and hence a commutative square of isomorphisms in which the top arrow is the canonical uniformization:

Tgt0.A/=� ����! A??y ??y
C˚=˚.a/ A˚ :

(9)

PROPOSITION 1.2 The map .A; i/ 7! .E;˚/ gives a bijection from the set of isogeny classes of
pairs .A; i/ to the set of isomorphism classes of CM-pairs.

Classification up to isomorphism

Let .A; i/ be of CM-type .E;˚/. Let e be anE-basis element ofH1.A;Q/, and setH1.A;Z/ D ae

with a a lattice in E. We saw in (1.1) that e determines an isomorphism

� W .A˚ ; i˚ /! .A; i/; A˚
def
D C˚=˚.a/:

Conversely, every isomorphism C˚=˚.a/! A commuting with the actions of E arises in this way
from an E-basis element of H1.A;Q/, because

E ' H1.A˚ ;Q/
�
' H1.A;Q/:

If e is replaced by ae, a 2 E�, then � is replaced by � ı a�1.
We use this observation to classify triples .A; i;←/ where A is an abelian variety, i WE !

End0.A/ is a homomorphism making H1.A;Q/ into a free module of rank 1 over the CM-algebra
E, and  is a rational Riemann form whose Rosati involution stabilizes i.E/ and induces �E on it.

Let � WC˚=˚.a/! A be the isomorphism defined by some basis element e ofH1.A;Q/. Then
(see p4), there exists a unique element t 2 E� such that  .xe; ye/ D TrE=Q.tx Ny/. The triple
.A; i;←/ is said to be of type .E;˚ I a; t / relative to � (cf. Shimura 1971, Section 5.5 B).

PROPOSITION 1.3 The type .E;˚ I a; t / determines .A; i;  / up to isomorphism. Conversely,
.A; i;  / determines the type up to a change of the following form: if � is replaced by � ı a�1,
a 2 E�, then the type becomes .E;˚ I aa; t=a Na/. The quadruples .E;˚ I a; t / that arise as the type
of some triple are exactly those in which .E;˚/ is a CM-pair, a is a lattice in E, and t is an element
of E� such that �E t D �t and =.'.t// > 0 for all ' 2 ˚ .

PROOF. Routine verification. 2
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Commutants

Let A have complex multiplication by E over k, and let

R D E \ End.A/:

Then R is an order in E, i.e., it is simultaneously a subring and a lattice in E.
Let g D dimA, and let ` be a prime not equal to char k. Then T`A is a Z`-module of rank

2g and V`A is a Q`-vector space of dimension 2g. The action of R on T`A extends to actions of
R`

def
D R˝Z Z` on T`A and of E`

def
D Q` ˝Q E on V`A.

PROPOSITION 1.4 (a) The E`-module V`A is free of rank 1.
(b) We have

R` D E` \ End.T`A/:

PROOF. (a) We have already noted that E` acts faithfully on V`A, and this implies that V`A is free
of rank 1.

(b) Let ˛ be an element of E` such that ˛.T`A/ � T`A. For some m, `m˛ 2 R`, and if ˇ 2 R
is chosen to be very close `-adically to `m˛, then ˇT`A � `mT`A, which means that ˇ vanishes
on A`m . Hence ˇ D `m˛0 for some ˛0 2 End.A/ \ E D R. Now ˛ and ˛0 are close in E`; in
particular, we may suppose ˛ � ˛0 2 R`, and so ˛ 2 R`. 2

COROLLARY 1.5 The commutants of R in EndQ`
.V`A/, EndZ`

.T`A/, End0.A/, and End.A/ are,
respectively, E`, R`, F , and R.

PROOF. Any endomorphism of V`A commuting with R commutes with E`, and therefore lies in
E`, because of (1.4a).

Any endomorphism of T`A commuting with R extends to an endomorphism of V`A preserving
T`A and commuting with R, and so lies in E` \ End.T`A/ D R`.

Let C be the commutant of E in End0.A/. Then E is a subalgebra of C , so ŒEWQ� � ŒC WQ�,
and C ˝Q Q` is contained in the commutant E` of E in End.V`A/, so ŒEWQ� � ŒC WQ�. Thus
E D C .

Finally, the commutant R in End.A/ contains R and is contained in C \ End.A/ D E \

End.A/ D R. 2

COROLLARY 1.6 Let .A; i/ have complex multiplication by E, and let R D i�1.End.A//. Then
any endomorphism of A commuting with i.a/ for all a 2 R is of the form i.b/ for some b 2 R.

PROOF. Apply the preceding corollary to i.E/ � End0.A/: 2

REMARK 1.7 If ` does not divide .OE WR/, then R` is a product of discrete valuation rings, and
T`A is a free R`-module of rank 1, but in general this need not be true (Serre and Tate 1968, p502).
Similarly, TmA

def
D
Q
`jm T`A is a free Rm

def
D
Q
`jmR`-module of rank 1 if m is relatively prime to

.OE WR/.

Let .A; i/ be an abelian variety with complex multiplication by a CM-algebra E over a field k
of characteristic zero. If k contains all conjugates of E, then Tgt0.A/ '

Q
'2˚ k' as an E ˝Q k-

module where ˚ is a set of Q-algebra homomorphisms E ,! k and k' is a one-dimensional
k-vector space on which a 2 E acts as '.a/. For any complex conjugation4 � on k,

˚ t �˚ D Hom.E; k/.
4A complex conjugation on a field k is the involution induced by complex conjugation on C through some embedding

of k into C.
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A subset ˚ of Hom.E; k/ with this property will be called a CM-type on E with values in k. If
k � C, then it can also be regarded as a CM-type on E with values in C.

Extension of the base field

Let k be an algebraically closed subfield of C. For abelian varieties A;B over k, Hom.A;B/ '
Hom.AC; BC/, i.e., the functor from abelian varieties over k to abelian varieties over C is fully
faithful. It is even essentially surjective (hence an equivalence) on abelian varieties with complex
multiplication. See, for example, Milne 2006, Proposition 7.8.

Good reduction

Let R be a discrete valuation ring with field of fractions K and residue field k. An abelian variety
A over K is said to have good reduction if it is the generic fibre of an abelian scheme A over R.
Then the special fibre A0 of A is an abelian variety, and Tgt0.A/ is a free R-module such that

Tgt0.A/˝R K ' Tgt0.A/

Tgt0.A/˝R k ' Tgt0.A0/:

The map
End.A/! End.A/

is an isomorphism, and there is a reduction map

End.A/ ' End.A/! End.A0/. (10)

This is an injective homomorphism. See, for example, Milne 2006, II, �6.
It is a fairly immediate consequence of Néron’s theorem on the existence of minimal models

that an abelian variety with complex multiplication over a number field k acquires good reduction
at all finite primes after finite extension of k (Serre and Tate 1968, Theorem 6; Milne 2006, 7.12).5

The degrees of isogenies

An isogeny ˛WA ! B defines a homomorphism ˛�W k.B/ ! k.A/ of the fields of rational func-
tions, and the degree of ˛ is defined to be Œk.A/W˛�k.B/�.

PROPOSITION 1.8 Let A be an abelian variety with complex multiplication by E, and let R D
End.A/ \E. An element ˛ of R that is not a zero-divisor is an isogeny of degree .RW˛R/.

PROOF. If ˛ is not a zero-divisor, then it is invertible in E ' R˝Z Q, and so it is an isogeny. Let d
be its degree, and choose a prime ` not dividing d � char.k/. Then d is the determinant of ˛ acting
on V`A (e.g., Milne 1986, 12.9). As V`A is free of rank 1 over E`

def
D E ˝Q Q`, this determinant

is equal to NmE`=Q`
.˛/, which equals NmE=Q.˛/. But R is a lattice in E, and so this norm equals

.RW˛R/.6 2

5Néron’s theorem was, of course, not available to Shimura and Taniyama, who proved their results “for almost all p”.
Néron’s theorem allowed later mathematicians to claim to have sharpened the results of Shimura and Taniyama without
actually having done anything.

6In more detail: let e1; : : : ; en be a basis for R as a Z-module, and let ˛ej D
P
i aij ei . For some " 2 V`A,

e1"; : : : ; en" is a Q`-basis for V`A. As ˛ej " D
P
i aij ei", we have that d D det.aij /. But

ˇ̌
det.aij /

ˇ̌
D .R W ˛R/

(standard result, which is obvious, for example, if ˛ is diagonal).
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PROPOSITION 1.9 (SHIMURA AND TANIYAMA 1961, I 2.8, THM 1) Let k be an algebraically closed
field of characteristic p > 0, and let ˛WA ! B be an isogeny of abelian varieties over k. Assume
that ˛�.k.B// � k.A/q for some power q D pm of p, and let d be the dimension of the kernel of
Tgt0.˛/WTgt0.A/! Tgt0.B/; then

deg.˛/ � qd .

We offer two proofs, according to the taste and knowledge of the reader.

Proof of (1.9) in terms of varieties and differentials

LEMMA 1.10 Let L=K be a finitely generated extension of fields of characterstic p > 0 such that
K � Lq for some power q of p. Then

ŒLWK� � qdim˝1
L=K :

PROOF. We use that HomK-linear.˝
1
L=K

; K/ is isomorphic to the space of K-derivations L ! K.
Let x1; : : : ; xn be a minimal set of generators for L over K. Because xqi 2 K, ŒLWK� < qn,
and it remains to prove dim˝1

L=K
� n. For each i , L is a purely inseparable extension of

K.x1; : : : ; xi�1; xiC1; : : : ; xn/ because L � K � Lq . There therefore exists a K-derivation of
Di of L such that Di .xi / ¤ 0 but Di .xj / D 0 for j ¤ i , namely, @

@xi
. The Di are linearly

independent, from which the conclusion follows. 2

PROOF (OF 1.9) In the lemma, take L D k.A/ and K D ˛�.k.B//. Then deg.˛/ D ŒLWK� and
dim˝1

L=K
D dim Ker.Tgt0.˛//, and so the proposition follows. 2

Proof of (1.9) in terms of finite group schemes

The order of a finite group scheme N D SpecR over a field k is dimk R.

LEMMA 1.11 The kernel of an isogeny of abelian varieties is a finite group scheme of order equal
to the degree of the isogeny.

PROOF. Let ˛WA ! B be an isogeny. Then (e.g., Milne 1986, 8.1) ˛�OA is a locally free OB -
module, of rank r say. The fibre of ˛�OA at 0B is the affine ring of Ker.˛/, which therefore is finite
of order r . The fibre of ˛�OA at the generic point of B is k.A/, and so r D Œk.A/W˛�k.B/� D

deg.˛/. 2

PROOF (OF 1.9) The condition on ˛ implies that Ker.˛/ is connected, and therefore its affine ring
is of the form kŒT1; : : : ; Ts�=.T

pr1

1 ; : : : ; T
prs

s / for some family .ri /1�i�s of integers ri � 1 (Wa-
terhouse 1979, 14.4). Let q D pm. Then each ri � m because ˛�.k.B// � k.A/q , and

s D dimk Tgt0.Ker.˛// D dimk Ker.Tgt0.˛// D d:

Therefore,
deg.˛/ D

Ys

iD1
pri � pms D qd :

2
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a-multiplications: first approach

Let A be an abelian variety with complex multiplication by E over a field k, and let R D E \

End.A/. An element of R is an isogeny if and only if it is not a zero-divisor,7 and an ideal a in
R contains an isogeny if and only if it is a lattice in E — we call ideals with this property lattice
ideals. We wish to attach to each lattice ideal a inR an isogeny �aWA! Aa with certain properties.
The shortest definition is to take Aa to be the quotient of A by the finite group scheme

Ker.a/ D
T
a2a Ker.a/:

However, the formation of quotients by finite group schemes in characteristic p is subtle (Mumford
1970, p109-123)8, and was certainly not available to Shimura and Taniyama. In this subsection, we
give an elementary construction.

DEFINITION 1.12 Let A be an abelian variety with complex multiplication byE over a field k, and
let a be a lattice ideal in R. A surjective homomorphism �aWA! Aa is an a-multiplication if every
homomorphism aWA ! A with a 2 a factors through �a, and �a is universal for this property, in
the sense that, for every surjective homomorphism �0WA ! A0 with the same property, there is a
homomorphism ˛WA0 ! Aa, necessarily unique, such that ˛ ı �0 D �a:

Aa

9Š
��

A

�a
77 77ppppppppppppp a //

�0
&& &&NNNNNNNNNNNNN A

A0:

9Š

OO
9Š˛

\\

An abelian variety B for which there exists an a-multiplication A! B is called an a-transform of
A.

EXAMPLE 1.13 (a) If a is principal, say, a D .a/, then aWA ! A is an a-multiplication (obvious
from the definition) — this explains the name “a-multiplication”. More generally, if �WA ! A0 is
an a-multiplication, then

A
a
�! A

�
�! A0

is an aa-multiplication for any a 2 E such that aa � R (obvious from the construction in 1.15
below).

(b) Let .E;˚/ be a CM-pair, and let A D C˚=˚.�/ for some lattice � in E. For any lattice
ideal a in R def

D End.A/ \E,

Ker.a/ D fz C ˚.�/ j az 2 ˚.�/ all a 2 ag

D ˚.a�1�/=˚.�/

where a�1 D fa 2 E j aa � Rg. The quotient map C˚=˚.�/ ! C˚=˚.a�1�/ is an a-
multiplication.

7Recall thatE is an étale Q-subalgebra of End0.A/, i.e., a product of fields, sayE D
Q
Ei . ObviouslyE D R˝Z Q,

and R � E. An element ˛ D .˛i / of R is not zero-divisor if and only if each component ˛i of ˛ is nonzero, or,
equivalently, ˛ is an invertible element of E.

8Compare the proof of (1.15) with that of Mumford 1970, III, Theorem 1, p111.
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REMARK 1.14 (a) The universal property shows that an a-multiplication, if it exists, is unique up
to a unique isomorphism.

(b) Let a 2 a be an isogeny; because a factors through �a, the map �a is an isogeny.
(c) The universal property, applied to �aıa for a 2 R, shows that,Aa has complex multiplication

by E over k, and �a is an E-isogeny. Moreover, R � End.Aa/\E, but the inclusion may be strict
unless R D OE .9

(d) If �WA ! B is an a-multiplication, then so also is �k0 WAk0 ! Bk0 for any k0 � k. This
follows from the construction in (1.15) below.

PROPOSITION 1.15 An a-multiplication exists for each lattice ideal a:

PROOF. Choose a set of generators a1; :::; an of a, and define Aa to be the image of

x 7! .a1x; : : :/WA! An: (11)

For any a D
P
i riai 2 a, the diagram

A

a

44

0@ a1

:::
an

1A
// An

. r1; ��� ; rn /
// A

shows that aWA! A factors through �a.
Let �0WA! A0 be a quotient map such that each ai factors through �0, say, ˛i ı �0 D ai . Then

the composite of

A
�0

����! A0

˛D

0@ ˛1

:::
˛n

1A
�������! An

(12)

is x 7! .a1x; : : :/WA! An, which shows that ˛ ı �0 D �a. 2

REMARK 1.16 A surjective homomorphism �WA ! B is an a-multiplication if and only if every
homomorphism aWA ! A defined by an element of a factors through � and one (hence every)
family .ai /1�i�n of generators for a defines an isomorphism of B onto the image of A in An.
Alternatively, a surjective homomorphism �WA! B is an a-multiplication if it maps k.B/ isomor-
phically onto the composite of the fields a�k.A/ for a 2 a — this is the original definition (Shimura
and Taniyama 1961, 7.1).

PROPOSITION 1.17 Let A be an abelian variety with complex multiplication by E over k, and
assume that E \ End.A/ D OE . Let �WA ! B and �0WA ! B 0 be a and a0-multiplications
respectively. There exists an E-isogeny ˛WB ! B 0 such that ˛ ı � D �0 if only if a � a0:

PROOF. If a � a0, then aWA! A factors through �when a 2 a0, and so ˛ exists by the universality
of �0. For the converse, note that there are natural quotient maps AaCa0

! Aa; Aa0

. If there exists
anE-isogeny ˛ such that ˛ ı�a D �a0

, then AaCa0

! Aa is injective, which implies that aCa0 D a

by (1.22) below. 2

COROLLARY 1.18 Let �WA ! B and �0WA ! B 0 be a and a0-multiplications; if there exists an
E-isomorphism ˛WB ! B 0 such that ˛ ı � D �0, then a D a0.

9Over C,A isE-isogenous to an abelian variety with End.A/\E D OE , but every such isogeny is an a-multiplication
for some a (see below).
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PROOF. The existence of ˛ implies that a � a0, and the existence of its inverse implies that a0 � a.2

COROLLARY 1.19 Let a 2 End.A/ \ E. If aWA ! A factors through an a-multiplication, then
a 2 a.

PROOF. The map aWA ! A is an .a/-multiplication, and so if there exists an E-isogeny ˛ such
that ˛ ı �a D a, then a � .a/. 2

REMARK 1.20 Let �WA ! B be an a-multiplication. Let a1; : : : ; an be a basis for a, and let
ai D ˛i ı �. In the diagram

A
� //

a

66B
˛ // An ˛ D

 
˛1

:::
˛n

!
a D

 
a1

:::
an

!
;

˛ maps B isomorphically onto the image of a. For any prime ` different from the characteristic of
k, we get a diagram

T`A
T`� //

T`a

44
T`B

T`˛ // T`A
n

in which T`˛ maps T`B isomorphically onto the image of T`a.

PROPOSITION 1.21 If �WA ! A0 is an a-multiplication, and �0WA0 ! A00 is an a0-multiplication,
then �0 ı � is an a0a-multiplication.

PROOF. Let a D .a1; :::; am/, and let a0 D .a0
1; :::; a

0
m/; then a0a D .: : : ; a0

iaj ; : : :/, and one can
show that A00 is isomorphic to the image of A under x 7! .: : : ; a0

iajx; : : :/ (alternatively, use (1.31)
and (13)). 2

PROPOSITION 1.22 For any a-multiplication �, deg.�/ D .OE W a/ provided a is invertible (locally
free of rank 1).

PROOF. For simplicity, we assume that OE D End.A/ \ E. According to the Chinese remainder
theorem, there exists an a 2 OE such that .a/ D ab with .OE W a/ and .OE W b/ relatively prime.10

Then
deg.�a/ deg.�b/ D deg.�.a// D .OE W .a// D .OE W a/.OE W b/:

The only primes dividing deg.�a/ (resp. deg.�b/) are those dividing .OE W a/ (resp. .OE W b/), and
so we must have deg.�a/ D .OE W a/ and deg.�b/ D .OW b/. 2

COROLLARY 1.23 Let a be an invertible ideal inR. AnE-isogeny �WA! B is an a-multiplication
if and only if deg.�/ D .RW a/ and the maps aWA! A for a 2 a factor through �.

PROOF. We only have to prove the sufficiency of the conditions. According to the definition (1.12),
there exists an E-isogeny ˛WB ! Aa such that ˛ ı � D �a. Then deg.˛/ deg.�/ D deg.�a/, and
so ˛ is an isogeny of degree 1, i.e., an isomorphism. 2

10Take a to be any element of OE satisfying an appropriate congruence condition for each prime ideal p of OE such
that .OE W p/ is not prime to .OE W a/.
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PROPOSITION 1.24 Let E be a CM-algebra, and let A and B be abelian varieties with complex
multiplication by E over C. If A and B are E-isogenous, then there exists a lattice ideal a and an
a-multiplication A! B .

PROOF. Because A and B are E-isogenous, they have the same type ˚ . After choosing E-basis
elements for H1.A;Q/ and H1.B;Q/, we have isomorphisms

C˚=˚.a/! A.C/; C˚=˚.b/! B.C/:

Changing the choice of basis elements changes the ideals by principal ideals, and so we may suppose
that a � b. The quotient map C˚=˚.a/! C˚=˚.b/ is an ab�1-multiplication. 2

PROPOSITION 1.25 Let A be an abelian variety with multiplication by E over a number field k,
and assume that A has good reduction at a prime p of k. The reduction to k0

def
D Ok=p of any

a-multiplication �WA! B is again an a-multiplication.

PROOF. Let a1; : : : ; an be a basis for a, and let ai D ˛i ı �. In the diagram

A
� //

a

66B
˛ // An ˛ D

 
˛1

:::
˛n

!
a D

 
a1

:::
an

!
;

˛ maps B isomorphically onto the image of a. Let A and B be abelian schemes over Op with
general fibre A and B . Then the diagram extends uniquely to a diagram over Op (see (10)), and
reduces to a similar diagram over k0, which proves the proposition. (For an alternative proof, see
1.27.) 2

a-multiplications: second approach

In this subsection, R is a commutative ring.

PROPOSITION 1.26 Let A be a commutative algebraic group A over a field k with an action of R.
For any finitely presented R-module M , the functor

AM .T / D HomR.M;A.T // (T a k-scheme)

is represented by a commutative algebraic group AM over k with an action of R. Moreover,

AM˝RN ' .AM /N : (13)

If M is projective and A is an abelian variety, then AM is an abelian variety (of dimension r dimA

if M is locally free of rank r).

PROOF. If M D Rn, then AM is represented by An. The functor M 7! AM transforms cokernels
to kernels, and so a presentation

Rm ! Rn !M ! 0;

realizes AM as a kernel
0! AM ! An ! Am:

Define AM to be the kernel in the sense of algebraic groups.
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For the second statement, use that there is an isomorphism of functors

HomR.N;HomR.M;A.T /// ' HomR.M ˝R N;A.T //:

For the final statement, if M is projective, it is a direct summand of a free R-module of finite
rank. Thus AM is a direct factor of a product of copies of A, and so is an abelian variety. Assume
that M is of constant rank r . For an algebraic closure Nk of k and a prime ` ¤ char k;

AM . Nk/` D HomR.M;A. Nk/`/

' HomR`
.M`; A. Nk/`/; R`

def
D Z` ˝R; M`

def
D Z` ˝Z M .

But M` is free of rank r over R` (because R is semi-local), and so the order of AM . Nk/` is l2r dimA.
Thus AM has dimension r dimA. 2

REMARK 1.27 The proposition (and its proof) applies over an arbitrary base scheme S . Moreover,
the functor A 7! AM commutes with base change (because A 7! AM obviously does). For
example, ifA is an abelian scheme over the ring of integersOk in a local field k andM is projective,
then AM is an abelian scheme over Ok with general fibre .Ak/M .

PROPOSITION 1.28 Let R act on an abelian variety A over a field k. For any finitely presented
R-module M and ` ¤ char k,

T`.A
M / ' HomR`

.M`; T`A/; R`
def
D Z` ˝R; M`

def
D Z` ˝Z M .

PROOF. As in the proof of (1.26),

AM . Nk/`n ' HomR`
.M`; A. Nk/`n/:

Now pass to the inverse limit over n. 2

Let R D EndR.A/. For any R-linear map ˛WM ! R and a 2 A.T /, we get an element

x 7! ˛.x/ � aWM ! A.T /

of AM .T /. In this way, we get a map HomR.M;R/! HomR.A;AM /.

PROPOSITION 1.29 If M is projective, then HomR.M;R/ ' HomR.A;AM /:

PROOF. When M D R, the map is simply R ' EndR.A/. Similarly, when M D Rn, the map is
an isomorphism. In the general case, M ˚N � Rn for some projective module N , and we have a
commutative diagram

HomR.M;R/˚ HomR.N;R/ ����! HomR.A;AM /˚ HomR.A;AN /

o




 o





HomR.Rn; R/

'
����! HomR.A;An/: 2

PROPOSITION 1.30 Let A be an abelian variety over a field k, and let R be a commutative subring
of End.A/ such that R ˝Z Q is a product of fields and ŒRWZ� D 2 dimA. For any invertible ideal
a in R, the map �aWA ! Aa corresponding to the inclusion a ,! A is an isogeny with kernel
Aa

def
D
T
a2a Ker.a/.
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PROOF. The functor M 7! AM sends cokernels to kernels, and so the exact sequence

0! a! R! R=a! 0

gives rise to an exact sequence

0! AR=a ! A
�a

�! Aa:

Clearly AR=a D Aa, and so it remains to show that �a is surjective, but for a prime ` such that
a` D R`, T`.�a/ is an isomorphism, from which this follows. 2

COROLLARY 1.31 Under the hypotheses of the proposition, the homomorphism

�a
WA! Aa

corresponding to the inclusion a ,! R is an a-multiplication.

PROOF. A family of generators .ai /1�i�n for a defines an exact sequence

Rm ! Rn ! a! 0

and hence an exact sequence
0! Aa

! An ! Am:

The composite of
Rn ! a! R

is .ri / 7!
P
riai , and so the composite of

A
�a

�! Aa ,! An

is x 7! .aix/1�i�n. As �a is surjective, it follows that Aa maps onto the image of A in An, and so
�a is an a-multiplication (as shown in the proof of 1.15). 2

REMARK 1.32 Corollary 1.31 fails if a is not invertible. Then Aa need not be connected, A !
.Aa/ı is the a-multiplication, and Aa=.Aa/ı ' Ext1R.R=a; A/ (see Waterhouse 1969, Appendix).

a-multiplications: complements

Let �WA ! B be an a-multiplication, and let a 2 a�1 def
D fa 2 E j aa 2 Rg. Then � ı a 2

Hom.A;B/ (rather than Hom0.A;B/). To see this, choose a basis for a1; : : : ; an for a, and note
that the composite of the ‘homomorphisms’

A
a
�! A

x 7!.:::;aix;:::/
����������! An

is a homomorphism into Aa � An.

PROPOSITION 1.33 Let A have complex multiplication by E over k.
(a) Let �WA! B be an a-multiplication. Then the map

a 7! �a
ı aW a�1

! HomR.A;B/

is an isomorphism. In particular, every R-isogeny A! B is a b-multiplication for some ideal b.
(b) Assume OE D End.A/ \E. For any lattice ideals a � b in OE ,

HomOE
.Aa; Ab/ ' a�1b.
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PROOF. (a) In view of (1.31), the first statement is a special case of (1.29). For the second, recall
(1.13) that �a ı a is an aa-multiplication.

(b) Recall that Ab ' .Aa/a
�1b (see 1.21), and so this follows from (a). 2

In more down-to-earth terms, any two E-isogenies A ! B differ by an E-‘isogeny’ A ! A,
which is an element of E. When � is an a-multiplication, the elements of E such that � ı a is an
isogeny (no quotes) are exactly those in a�1.

PROPOSITION 1.34 Let A have complex multiplication byOE over an algebraically closed field k
of characteristic zero. Then a 7! Aa defines an isomorphism from the ideal class group of OE to
the set of isogeny classes of abelian varieties with complex multiplication by OE over k with the
same CM-type as A.

PROOF. Proposition (1.33) shows that every abelian variety isogenous to A is an a-transform for
some ideal a, and so the map is surjective. As aWA ! A is an .a/-multiplication, principal ideals
ideals map to A. Finally, if Aa is OE -isomorphic to A, then

OE ' HomOE
.A;Aa/ ' a�1;

and so a is principal. 2

PROPOSITION 1.35 Let A and B be abelian varieties with complex multiplication by OE over
a number field k, and assume that they have good reduction at a prime p of k. If A and B are
isogenous, every OE -isogeny �WA0 ! B0 lifts to an a-multiplication �WA ! B for some lattice
ideal a, possibly after a finite extension of k. In particular, � becomes an a-multiplication over a
finite extension of k.

PROOF. Since A and B are isogenous, there is an a-multiplication �WA! B for some lattice ideal
a by (1.24) (after a finite extension of k). According to Proposition 1.25, �0WA0 ! B0 is also an
a-multiplication. Hence the reduction map

HomOE
.A;B/! HomOE

.A0; B0/

is an isomorphism because both are isomorphic to a�1, via � and �0 respectively (1.33). Therefore,
� lifts to an isogeny �0WA! B , which is a b-multiplication (see 1.33). 2
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2 The Shimura-Taniyama formula

The numerical norm of a nonzero integral ideal a in a number field K is Na D .OK W a/. For a
prime ideal p lying over p, Np D pf .p=p/. The map N is multiplicative: Na � Nb D N.ab/:

Let k be a field of characteristic p, let q be a power of p, and let � be the homomorphism
a 7! aqW k ! k. For a variety V over k, we let V .q/ D �V . For example, if V is defined
by polynomials

P
ai1���X

i1
1 � � � , then V .q/ is defined by polynomials

P
a
q
i1���
X
i1
1 � � � . The q-power

Frobenius map is the regular map V ! �V that acts by raising the coordinates of a kal-point of V
to the qth power.

When k D Fq , V .q/ D V and the q-power Frobenius map is a regular map � WV ! V . When
V is an abelian variety, the Frobenius maps are homomorphisms.

THEOREM 2.1 Let A be an abelian variety with complex multiplication by a CM-algebra E over
a number field k. Assume that k contains all conjugates of E and let P be prime ideal of Ok
at which A has good reduction. Assume (i) that .p/ def

D P \ Z is unramified in E and (ii) that
End.A/ \E D OE .

(a) There exists an element � 2 OE inducing the Frobenius endomorphism on the reduction of
A.

(b) The ideal generated by � factors as follows

.�/ D
Y

'2˚
'�1.Nmk='E P/ (14)

where ˚ � Hom.E; k/ is the CM-type of A.

PROOF. Let A0 be the reduction of A to k0
def
D Ok=P, and let

q D jk0j D .Ok WP/ D pf .P=p/:

(a) Recall that the reduction map End.A/ ! End.A0/ is injective. As End.A/ \ E is the
maximal order OE in E, End.A0/ \ E must be also. The (q-power) Frobenius endomorphism �

of A
0

commutes with all endomorphisms of A0, and so it lies in OE by (1.5).
(b) Let A be the abelian scheme over over Ok with fibres A and A0. Then T def

D Tgt0.A/ is a
free Ok-module of rank dimA such that T ˝Ok

k ' Tgt0.A/ and T =PT ' Tgt0.A0/
def
D T0.

Because p is unramified inE, the isomorphismE˝Qk '
Q
� WE!k k� induces an isomorphism

OE ˝Z Ok '
Q
� WE!k O� where O� denotes Ok with the OE -algebra structure provided by � .

Similarly, the isomorphism T '
L
'2˚ k' induces an isomorphism T '

L
'2˚ O' where O' is

the submodule of T on whichOk acts through '. In other words, there exists anOk-basis .e'/'2˚

for T such that ae' D '.a/e' for a 2 OE .
Because � N� D q, the ideal .�/ is divisible only by prime ideals dividing p, say,

.�/ D
Y

vjp
pmv
v ; mv � 0:

For h the class number of E, let

pmvh
v D .
v/; 
v 2 OE ; (15)

and let

˚v D f' 2 ˚ j '
�1.P/ D pvg;

dv D j˚vj :
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The kernel of T0

v
�! T0 is the span of the e' for which '.
v/ 2 P, but '�1.P/ is a prime

ideal of OE and pv is the only prime ideal of OE containing 
v, and so '.
v/ 2 P if and only if
'�1.P/ D pv:

Ker.T0

v
�! T0/ D he' j ' 2 ˚vi:

Since �hWA0 ! A0 factors through 
v, we have that 
�
v k0.A0/ � .�

h/�k0.A0/ D k0.A0/
qh

, and
so Proposition 1.9 shows that

deg.A0

v
�! A0/ � q

hdv :

As
deg.A0


v
�! A0/

.1:8/
D N.
v/

.15/
D N.phmv

v /

we deduce that
N.pmv

v / � qdv : (16)

On taking the product over v, we find that

NmE=Q.�/ � q
P

vjp dv D qg :

But
NmE=Q.�/

.1:8/
D deg.A0

�
�! A0/ D q

g ;

and so the inequalities are all equalities.
Equality in (16) implies that

NmE=Q.p
mv
v / D

�
Nm k=QP

�dv

which equals, Y
'2˚v

Nmk=Q P D
Y

'2˚v

�
NmE=Q.'

�1.Nm k='EP//
�

D NmE=Q

�Y
'2˚v

'�1.Nm k='EP/
�
:

From the definition of ˚v, we see that
Q
'2˚v

'�1.Nm k='EP/ is a power of pv, and so this shows
that

pmv
v D

Y
'2˚v

'�1.Nmk='E P/: (17)

On taking the product over v, we obtain the required formula. 2

COROLLARY 2.2 With the hypotheses of the theorem, for all primes p of E dividing p,

ordp.�/ D
X

'2˚ , '�1.P/Dp
f .P='p/: (18)

Here 'p is the image of p in 'OE � 'E � k.

PROOF. Let p be a p-adic prime ideal of OE , and let ' be a homomorphism E ! k. If p D

'�1.P/, then
ordp.'

�1.Nmk='E P// D ord'p Nmk='E P D f .P='p/;

and otherwise it is zero. Thus, (18) is nothing more than a restatement of (15). 2
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COROLLARY 2.3 With the hypotheses of the theorem, for all primes v of E dividing p,

ordv.�/
ordv.q/

D
j˚ \Hvj

jHvj
(19)

where Hv D f�WE ! k j ��1.P/ D pvg and q D .Ok WP/.

PROOF. We show that (18) implies (19) (and conversely) without assuming p to be unramified in
E. Note that

ordv.q/ D f .P=p/ � ordv.p/ D f .P=p/ � e.pv=p/;

and that
jHvj D e.pv=p/ � f .pv=p/.

Therefore, the equality
ordv.�/ D

X
'2˚\Hv

f .P='pv/;

implies that
ordv.�/
ordv.q/

D

X
'2˚\Hv

1

e.pv=p/ � f .pv=p/
D j˚ \Hvj �

1

jHvj

(and conversely). 2

REMARK 2.4 (a) In the statement of Theorem 2.1, k can be replaced by a finite extension of Qp.
(b) The conditions in the statement are unnecessarily strong. For example, the formula holds

without the assumption that p be unramified in E. See Theorem 3.2 below.
(c) When E is a subfield of k, Theorem 2.1 can be stated in terms of the reflex CM-type cf.

Shimura and Taniyama 1961, �13.

APPLICATION 2.5 Let A be an abelian variety with complex multiplication by a CM-algebra E
over a number field k, and let ˚ � Hom.E; k/ be the type of A. Because Tgt0.A/ is an E ˝Q k-
module satisfying (1), k contains the reflex field E� of .E;˚/ and we assume k is Galois over E�.
Let P be a prime ideal ofOk at whichA has good reduction, and let P\OE� D p and p\Z D .p/.
Assume
˘ that p is unramified in E,
˘ that p is unramified in k, and
˘ that End.A/ \E D OE .

Let � be the Frobenius element .P; k=E�/ in Gal.k=E�/.11 As � fixesE�,A and �A have the same
CM-type and so they become isogenous over a finite extension of k. According to (1.35), there exists
an a-multiplication �WA ! �A over a finite extension of k whose reduction �0WA0 ! A

.pf .p=p//
0

is the pf .p=p/-power Frobenius map. Moreover,

�f .P=p/�1� ı � � � ı �� ı � D �

where � is as in the statement of the theorem. Therefore, Theorem 2.1 shows that

af .P=p/ D N˚ .Nmk=E� P/ D N˚ .p
f .P=p// D N˚ .p/

f .P=p/;

and so
a D N˚ .p/: (20)

Notice that, for any m prime to p and such that Am.k/ D Am.C/, the homomorphism � agrees
with � on Am.k/ (because it does on A0;m).

NOTES The proof Theorem 2.1 in this section is essentially the original proof.

11So �.P/ D P and �a � ap
f .P=p/

mod P for all a 2 Ok .
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3 The fundamental theorem over the reflex field.

Preliminaries from algebraic number theory

We review some class field theory (see, for example, Milne CFT, V). Let k be a number field. For
a finite set S of finite primes of k, IS .k/ denotes the group of fractional ideals of k generated by
the prime ideals not in S . Assume k is totally imaginary. Then a modulus for k is just an ideal in
Ok . For such a modulus m, S.m/ denotes the set of finite primes v dividing m, and km;1 denotes
the group of a 2 k� such that

ordv.a � 1/ � ordv.m/

for all finite primes v dividing m. In other words, a lies in km;1 if and only if multiplication by a
preservesOv � kv for all v dividing m and acts as 1 onOv=pordv.m/

v D Ov=m. The ray class group
modulo m is

Cm.k/ D I
S.m/=i.km;1/

where i is the map sending an element to its principal ideal. The reciprocity map is an isomorphism

a 7! .a; Lm=k/WCm.k/! Gal.Lm=k/

where Lm is the ray class field of m.

LEMMA 3.1 Let a be a fractional ideal in E. For any integer m > 0, there exists an a 2 E� such
that aa � OE and .OE W aa/ is prime to m.

PROOF. It suffices to find an a 2 E such that

ordv.a/C ordv.a/ � 0 (21)

for all finite primes v, with equality holding if vjm.
Choose a c 2 a. Then ordv.c�1a/ � 0 for all finite v. For each v such that vjm or ordv.a/ < 0,

choose an av 2 OE such that
ordv.av/C ordv.c�1a/ D 0

(exists by the Chinese remainder theorem). For any a 2 OE sufficiently close to each av (which
exists by the Chinese remainder theorem again), ca satisfies the required condition. 2

The fundamental theorem in terms of ideals

THEOREM 3.2 Let A be an abelian variety over C with complex multiplication by a CM-algebra
E, and let ˚ � Hom.E;C/ be the type of A. Assume that End.A/ \ E D OE . Fix an integer
m > 0, and let � be an automorphism of C fixing E�.

(a) There exists an ideal a.�/ in E and an a.�/-multiplication �WA! �A such that �.x/ D �x
for all x 2 Am; moreover, the class Œa.�/� of a.�/ in Cm.E/ is uniquely determined.

(b) For any sufficiently divisible modulus m for E�, the ideal class Œa.�/� depends only on the
restriction of � to the ray class field Lm of m, and

Œa.�/� D ŒN˚ .b/� if � jLm D .b; Lm=E
�/: (22)

PROOF. Because � fixes E�, the varieties A and �A have the same CM-types and so are E-
isogenous. Therefore, there exists an a-multiplication �WA ! �A for some ideal a � OE (see
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1.24). Recall (1.22) that � has degree .OE W a/. After possibly replacing � with � ı a for some
a 2 a�1, it will have degree prime to m (apply 3.1). Then � maps Am isomorphically onto �Am.

Let Zm D
Q
`jm Z` and Om D OE ˝ Zm. Then TmA

def
D
Q
`jm T`A is a free Om-module of

rank 1 (see 1.7). The maps
x 7! �x

x 7! �x
WTmA! Tm.�A/

are both Om-linear isomorphisms, and so they differ by a homothety by an element ˛ of O�
m:

�.˛x/ D �x; all x 2 TmA:

For any a 2 OE sufficiently close to ˛, � ı a will agree with � on Am. Thus, after replacing � with
� ı a, we will have

�.x/ � �x mod m; all x 2 TmA:

Now � is an a-multiplication for an ideal a D a.�/ that is well-defined up to an element of i.Em;1/.
Let � 0 be a second element of Gal.C=E�/, and let �0WA ! � 0A be an a0-multiplication acting

as � 0 on Am (which implies that it has degree prime to m). Then ��0 is again an a0-multiplication
(obvious from the definition 1.12), and so ��0 ı � is an aa0-multiplication A ! � 0�A (see 1.21)
acting as � 0� on Am. Therefore, the map � 7! a.�/WGal.C=E�/ ! Cm.E/ is a homomorphism,
and so it factors through Gal.k=E�/ for some finite abelian extension k of E�, which we may take
to be the ray class field Lm. Thus, we obtain a well-defined homomorphism

IS.m/.E�/! Cm.E
�/! Cm.E/

sending an ideal a� in IS.m/.E�/ to Œa.�/� where � D .a�; Lm=E
�/. If m is sufficiently divisible,

then N˚ also defines a homomorphism IS.m/.E�/! Cm.E
�/! Cm.E/, and it remains to show

that the two homomorphisms coincide.
According to �1, there exists a field k � C containing the ray class field Lm and finite and

Galois over E� such that A has a model A1 over k with the following properties:
˘ A1 has complex multiplication by E over k and OE D End.A1/ \E,
˘ A has good reduction at all the prime ideals of Ok . and
˘ Am.k/ D Am.C/.

Now (2.5) shows that the two homomorphisms agree on the prime ideals p ofOE� such p is unram-
ified in k and p \ Z is unramified in E. This excludes only finitely many prime ideals of OE� , and
according to Dirichlet’s theorem on primes in arithmetic progressions (e.g., Milne CFT V 2.5), the
classes of these primes exhaust Cm. 2

ASIDE 3.3 Throughout this subsection and the next, C can be replaced by an algebraic closure of
Q.

More preliminaries from algebraic number theory

We let OZ D lim
 �

Z=mZ and Af D OZ˝Q. For a number field k, Af;k D Af ˝Qk is the ring of finite
adèles and Ak D Af;k � .k˝Q R/ is the full ring of adèles. For any adèle a, a1 and af denote its
infinite and finite components. When k is a subfield of C, kab and kal denote respectively the largest
abelian extension of k in C and the algebraic closure of k in C. As usual, complex conjugation is
denoted by �.
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For a number field k, reck WA�
k
! Gal.kab=k/ is the usual reciprocity law and artk is its recip-

rocal: a prime element corresponds to the inverse of the usual Frobenius element. In more detail, if
a 2 A�

f;k
has v-component a prime element av in kv and w-component aw D 1 for w ¤ v, then

artk.a/.x/ � x
1=N.v/ mod pv; x 2 Ok :

When k is totally imaginary, artk.a1af / depends only on af , and we often regard artk as a map
A�
f;k
! Gal.kab=k/. Then

artk WA�
f;k ! Gal.kab=k/

is surjective with kernel the closure of k� (embedded diagonally) in A�
f;k

.

The cyclotomic character is the homomorphism �cycWAut.C/ ! OZ� � A�
f

such that �� D

��cyc.�/ for every root � of 1 in C:

LEMMA 3.4 For any � 2 Gal.Qal=Q/,

artQ.�cyc.�// D � jQab:

PROOF. Exercise (or see Milne 2005 �11 (50)). 2

LEMMA 3.5 LetE be a CM-field. For any s 2 A�
f;E

and automorphism � of C such that artE .s/ D
� jEab,

NmE=Q.s/ 2 �cyc.œ/ �Q>0:

PROOF. By class field theory,
artQ.NmE=Q.s// D � jQab;

which equals artQ.�cyc.�//. Therefore NmE=Q.s/ and �cyc.œ/ differ by an element of the kernel of
artQWA�

f
! Gal.Qab=Q/, which equals A�

f
\ .Q� � R>0/ D Q>0 (embedded diagonally). 2

LEMMA 3.6 For any CM-field E, the kernel of artE WA�
f;E

=E� ! Gal.Eab=E/ is uniquely divis-
ible by all integers, and its elements are fixed by �E .

PROOF. The kernel of artE is E�=E� where E� is the closure of E� in A�
f;E

. It is also equal to
NU=U for any subgroup U of O�

E of finite index. A theorem of Chevalley (see Serre 1964, 3.5, or
Artin and Tate 1961, Chap. 9, �1) shows that A�

f;E
induces the pro-finite topology on U . If we take

U to be contained in the real subfield of E and torsion-free, then it is clear that NU=U is fixed by �E
and, being isomorphic to . OZ=Z/ŒE WQ�=2�1, it is uniquely divisible. 2

LEMMA 3.7 Let E be a CM-field and let ˚ be a CM-type on E. For any s 2 A�
f;E

and automor-
phism � of C such that artE .s/ D � jEab,

N˚ .s/ � �EN˚ .s/ 2 �cyc.�/ �Q>0:

PROOF. According to (3), p3,

N˚ .s/ � �EN˚ .s/ D NmE=Q.s/;

and so we can apply (3.5). 2
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LEMMA 3.8 Let E be a CM-field and ˚ a CM-type on E. There exists a unique homomorphism
Gal.E�ab=E�/! Gal.Eab=E/ rendering

A�
f;E�

N˚
����! A�

f;E??yartE�

??yartE

Gal.E�ab=E�/ ����! Gal.Eab=E/

commutative.

PROOF. As artE� WA�
f;E� ! Gal.E�ab=E�/ is surjective, the uniqueness is obvious. On the other

hand, N˚ maps E�� into E� and is continuous, and so it maps the closure of E�� into the closure
of E�. 2

PROPOSITION 3.9 Let s; s0 2 A�
f;E� . If artE�.s/ D artE�.s0/, then N˚ .s0/ 2 N˚ .s/ �E

�.

PROOF. Let � be an automorphism of C such that

artE�.s/ D � jE�ab
D artE�.s0/.

Then (see 3.7),
N˚ .s/ � �EN˚ .s/ 2 �cyc.�/ �Q>0 3 N˚ .s0/ � �EN˚ .s

0/.

Let t D N˚ .s=s
0/ 2 A�

f;E
. Then t 2 Ker.artE / by (3.8) and t � �E t 2 Q>0. Lemma 3.6 implies

that the map x 7! x � �Ex is bijective on Ker.artE /=E�; as t � �E t 2 E�, so also does t . 2

The fundamental theorem in terms of idèles

THEOREM 3.10 Let A be an abelian variety over C with complex multiplication by a CM-algebra
E, and let ˚ � Hom.E;C/ be the type of A. Let � be an automorphism of C fixing E�. For
any s 2 A�

f;E� with artE�.s/ D � jE�ab, there exists a unique E-‘isogeny’ �WA ! �A such that
�.N˚ .s/ � x/ D �x for all x 2 Vf A:

REMARK 3.11 (a) It is obvious that � is determined uniquely by the choice of an s such that
rec.s/ D � jE�ab. If s is replaced by s0, then N˚ .s0/ D a � N˚ .s/ with a 2 E� (see 3.9), and �
must be replaced by � � a�1.

(b) The theorem is a statement about the E-‘isogeny’ class of A — if ˇWA ! B is an E-
‘isogeny’, and � satisfies the conditions of the theorem for A, then �ˇ ı � ı ˇ�1 satisfies the
conditions for B . Therefore, in proving the theorem we may assume that End.A/ \E D OE .

(c) Let � as in the theorem, let ˛ be a polarization of A whose Rosati involution induces �E
on E, and let  WVf A � Vf A ! Af .1/ be the Riemann form of �. The condition on the Rosati
involution means that

 .a � x; y/ D  .x; �Ea � y/; x; y 2 Vf A; a 2 Af;E : (23)

Then, for x; y 2 Vf A;

.� /.�x; �y/
def
D �. .x; y// D �cyc.�/ �  .x; y/

because  .x; y/ 2 Af .1/. Thus if � is as in the theorem, then

�cyc.�/ �  .x; y/ D .� /.N˚ .s/�.x/;N˚ .s/�.y//: (24)
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According to (3), p3, N˚ .s/ � �EN˚ .s/ D NE�=Q.s/, and so, on combining (23) and (24), we find
that

.c /.x; y/ D .� /.�x; �y/;

with c D �cyc.�/=NE�=Q.s/ 2 Q>0 (see 3.5).

Let � be an automorphism of C fixing E�. Because � fixes E�, there exists an E-isogeny
�WA! �A. The maps

x 7! �x

x 7! �x
WVf .A/! Vf .�A/

are both Af;E
def
D E ˝ Af -linear isomorphisms. As Vf .A/ is free of rank one over Af;E ,12 they

differ by a homothety by an element �.�/ of A�
f;E

:

�.�.�/x/ D �x; all x 2 Vf .A/: (25)

When the choice of � is changed, �.�/ is changed only by an element of E�, and so we have a
well-defined map

Aut.C=E�/! A�
f;E=E

�: (26)

LEMMA 3.12 For a suitable choice of �, the quotient t D �.�/=N˚ .s/ satisfies the equation t �
�E t D 1 in A�

f;E
.

PROOF. We know that

N˚ .s/ � �EN˚ .s/
.3/
D NmAf;E�=Af

.s/
.3:5/
D �cyc.�/ � a

for some a 2 Q>0.
A calculation as in (3.11c) shows that,

.c /.x; y/ D .� /.�x; �y/; all x; y 2 A�
f;E ; (27)

with c D �cyc.�/= .�.�/ � �E�.�//. Now the discussion on p4 shows that c is a totally positive
element of F . Thus

�.�/ � �E�.�/ D �cyc.�/=c; c 2 F�0: (28)

Let t D �.�/=N˚ .s/. Then
t � �E t D 1=ac 2 F�0: (29)

Being a totally positive element of F , ac is a local norm from E at the infinite primes, and (29)
shows that it is also a local norm at the finite primes. Therefore we can write ac D e � �Ee for some
e 2 E�. Then

te � �E .te/ D 1: 2

The map �WGal.Qal=E�/! A�
f;E

=E� is a homomorphism13, and so it factors through Gal.Qal=E�/ab.
When combined with the Artin map, it gives a homomorphism �0WA�

f;E�=E
�� ! A�

f;E
=E�.

12This is even true when R def
D End.A/ \ E is not the whole of OE because, for all `, V`A is free of rank one over

E`
def
D E ˝Q Q`, and for all ` not dividing .OE WR/, T`A is free of rank one over R`

def
D R˝Z Z` (see 1.7).

13Choose E-isogenies ˛WA! �A and ˛0WA! � 0A0, and let

˛.sx/ D �x

˛0.s0x/ D � 0x:

Then �˛0 ı ˛ is an isogeny A! �� 0A, and

.�˛0
ı ˛/.ss0x/ D .�˛0/.˛.ss0x// D .�˛0/.�.s0x// D �.˛0.s0x// D �� 0x:
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Choose an integer m > 0. For some modulus m, there exist a commutative diagrams

A�
f;E�=E

�� ����! A�
f;E

=E�??yonto

??yonto

Cm.E
�/ ����! Cm.E/

with the top map either N˚ or by �0 and the vertical maps the obvious maps (Milne CFT, V 4.6).
The bottom maps in the two diagrams agree by Theorem 3.2, which implies that t def

D �.�/=N˚ .s/

lies in the common kernel of the maps A�
f;E

=E� ! Cm.E/ for m > 0. But this common kernel is
equal to the kernel of the Artin map A�

f;E
=E� ! Gal.Eab=E/. As t � �E t D 1 (see 3.12), t D 1

(see 3.6).

NOTES The proof in this subsection is that sketched in Milne 2005. Cf. Shimura 1970, 4.3, and Shimura
1971, pp117–121, p129.

The fundamental theorem in terms of uniformizations

Let .A; i WE ,! End0.A// be an abelian variety with complex multiplication over C, and let ˛
be a polarization of .A; i/. Recall (1.1, 1.3) that the choice of a basis element e0 for H0.A;Q/
determines a uniformization � WC˚ ! A.C/, and hence a quadruple .E;˚ I a; t /, called the type of
.A; i; �/ relative to � .

THEOREM 3.13 Let .A; i; �/ be of type .E;˚ I a;t / relative to a uniformization � WC˚ ! A.C/,
and let � be an automorphism of C fixing E�. For any s 2 A�

f;E� such that artE�.s/ D � jE�ab,

there is a unique uniformization � 0WC˚ 0

! .�A/.C/ of �A such that
(a) �.A; i;  / has type .E;˚ If a; t � �cyc.�/=f Nf / where f D N˚ .s/ 2 A�

f;E
I

(b) the diagram

E=a
�0
����! A.C/??yf ??y�

E=f a
� 0

0
����! �A.C/

commutes, where �0.x/ D �..'x/'2˚ / and � 0
0.x/ D �

0..'x/'2˚ 0/:

PROOF. According to Theorem 3.10, there exists an isogeny �WA! �A such that �.N˚ .s/ � x/ D
�x for all x 2 Vf A. Then H1.�/ is an E-linear isomorphism H1.A;Q/ ! H1.�A;Q/, and we
let � 0 be the uniformization defined by the basis element H1.�/.e0/ for H1.�A;Q/. The statement
now follows immediately from Theorem 3.10 and (3.11c). 2
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4 The fundamental theorem over Q

The first three subsections follow Tate 1981 and the last subsection follows Deligne 1981.
We begin by reviewing some notations. We let OZ D lim

 �
Z=mZ and Af D OZ˝Q. For a number

field k, Af;k D Af ˝Q k is the ring of finite adèles and Ak D Af;k � .k ˝Q R/ is the full ring of
adèles. When k is a subfield of C, kab and kal denote respectively the largest abelian extension of k
in C and the algebraic closure of k in C. For a number field k, reck WA�

k
! Gal.kab=k/ is the usual

reciprocity law and artk is its reciprocal. When k is totally imaginary, we also write artk for the
map A�

f;k
! Gal.kab=k/ that it defines. The cyclotomic character � D �cycWAut.C/! OZ� � A�

f

is the homomorphism such that �� D ��.�/ for every root of 1 in C. The composite

artk ı �cyc D Verk=Q; (30)

the Verlagerung map Gal.Qal=Q/ab ! Gal.Qal=k/ab.

Statement of the Theorem

Let A be an abelian variety over C, and letE be a subfield of End.A/˝Q of degree 2 dimA over Q.
The representation of E on the tangent space to A at zero is of the form

L
'2˚ ' with ˚ a subset

of Hom.E;C/. A Riemann form for A is a Q-bilinear skew-symmetric form  on H1.A;Q/ such
that

.x; y/ 7!  .x; iy/WH1.A;R/ �H1.A;R/! R

is symmetric and positive definite. We assume that there exists a Riemann form  compatible with
the action of E in the sense that, for some involution �E of E,

 .ax; y/ D  .x; .�Ea/y/; a 2 E; x; y 2 H1.A;Q/:

Then E is a CM-field, and ˚ is a CM-type on E, i.e., Hom.E;C/ D ˚ [ �˚ (disjoint union).
The pair .A;E ,! End.A/˝ Q/ is said to be of CM-type .E;˚/. For simplicity, we assume that
E \ End.A/ D OE , the full ring of integers in E.

Let C˚ be the set of complex-valued functions on ˚ , and embed E into C˚ through the natural
map a 7! .'.a//'2˚ . There then exist a Z-lattice a in E stable under OE , an element t 2 E�, and
anOE -linear analytic isomorphism � WC˚=˚.a/! A such that  .x; y/ D TrE=Q.tx � �Ey/ where,
in the last equation, we have used � to identify H1.A;Q/ with a˝ Q D E. The variety is said to
be of type .E;˚ I a; t / relative to � . The type determines the triple .A;E ,! End.A/˝Q;  / up to
isomorphism. Conversely, the triple determines the type up to a change of the following form: if �
is replaced by � ı a�1, a 2 E�, then the type becomes .E;˚ I aa; t

a��a
/ (see 1.3).

Let � 2 Aut.C/. Then E ,! End0.A/ induces a map E ,! End0.�A/, so that �A also has
complex multiplication byE. The form  is associated with a divisorD onA, and we let � be the
Riemann form for �A associated with �D. It has the following characterization: after multiplying 
with a nonzero rational number, we can assume that it takes integral values onH1.A;Z/; define  m
to be the pairingAm�Am ! �m, .x; y/ 7! exp.2�i � .x;y/

m
/; then .� /m.�x; �y/ D �. m.x; y//

for all m.
In the next section we shall define for each CM-type .E;˚/ a map f˚ WAut.C/ ! A�

f;E
=E�

such that
f˚ .�/ � �f˚ .�/ D �cyc.�/E

�; all � 2 Aut.C/:

We can now state the fundamental theorem of complex multiplication.
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THEOREM 4.1 Suppose A has type .E;˚ I a; t / relative to the uniformization � WC˚=a ! A. Let
� 2 Aut.C/, and let f 2 A�

f;E
lie in f˚ .�/.

(a) The variety �A has type

.E; �˚ If a;
t�cyc.�/

f � �f
/

relative some uniformization � 0.
(b) It is possible to choose � 0 so that

Af;E ����! Af;E=a˝ OZ ' E=a
�

����! Ators??yf ??y�
Af;E ����! Af;E=.f a˝ OZ/ ' E=f a

� 0

����! �Ators

commutes, where Ators denotes the torsion subgroup of A (and then � 0 is uniquely deter-
mined),

We now restate the theorem in a more canonical form. Let

TA
def
D lim
 �

Am.C/ ' lim
 �
. 1
m
H1.A;Z/=H1.A;Z// ' H1.A; OZ/

(limit over all positive integers m), and let

Vf A
def
D TA˝Z Q ' H1.A;Q/˝Q Af :

Then  gives rise to a pairing

 f D lim
 �

 mWVf A � Vf A! Af .1/

where Af .1/ D .lim
 �

�m.C//˝Q.

THEOREM 4.2 Let A have type .E;˚/; let � 2 Aut.C/, and let f 2 f˚ .�/.
(a) �A is of type .E; �˚/;
(b) there is an E-linear isomorphism ˛WH1.A;Q/! H1.�A;Q/ such that

i)  .�cyc.�/

f ��f
x; y/ D .� /.˛x; ˛y/; x; y 2 H1.A;Q/;

ii) the14 diagram

Vf .A/
f

//

�
$$JJJJJJJJJ
Vf .A/

˛˝1

��

Vf .�A/

commutes.

LEMMA 4.3 The statements (4.1) and (4.2) are equivalent.

14Note that both f 2 A�
f;E

and the E-linear isomorphism ˛ are uniquely determined up to multiplication by an
element of E�. Changing the choice of one changes that of the other by the same factor.
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PROOF. Let � and � 0 be as in (4.1), and let �1WE
�
�! H1.A;Q/ and � 0

1WE
�
�! H1.�A;Q/ be the

E-linear isomorphisms induced by � and � 0. Let � D �cyc.�/=f � �f — it is an element of E�.
Then

 .�1.x/; �1.y// D TrE=Q.tx � �y/

.� /.� 0
1.x/; �

0
1.y// D TrE=Q.t�x � �y/

and
Af;E

�1
����! Vf .A/??yf ??y�

Af;E
� 0

1
����! Vf .�A/

commutes. Let ˛ D � 0
1 ı �

�1
1 ; then

.� /.˛x; ˛y/ D TrE=Q.t��
�1
1 .x/ � ���1

1 .y// D  .�x; y/

and (on Vf .A/),
� D � 0

1 ı f ı �
�1
1 D �

0
1 ı �

�1
1 ı f D ˛ ı f:

Conversely, let ˛ be as in (4.2) and choose � 0
1 so that ˛ D � 0

1 ı �
�1
1 . The argument can be reversed

to deduce (4.1). 2

Definition of f˚.�/

Let .E;˚/ be a CM-pair with E a field. In (3.9) we saw that N˚ gives a well-defined homomor-
phism Aut.C=E�/ ! A�

f;E
=E�. In this subsection, we extend this to a homomorphism on the

whole of Aut.C/.
Choose an embedding E ,! C; and extend it to an embedding i WEab ,! C. Choose elements

w� 2 Aut.C/, one for each � 2 Hom.E;C/, such that

w� ı i jE D �; w�� D �w�:

For example, choose w� for � 2 ˚ (or any other CM-type) to satisfy the first equation, and then
definew� for the remaining � by the second equation. For any � 2 Aut.C/,w�1

�� �w�ıi jE D w
�1
�� ı

��jE D i . Thus i�1 ıw�1
�� �w� ı i 2 Gal.Eab=E/, and we can define F˚ W Aut.C/! Gal.Eab=E/

by
F˚ .�/ D

Y
'2˚

i�1 ı w�1
�'�w' ı i:

LEMMA 4.4 The element F˚ is independent of the choice of fw�g.

PROOF. Any other choice is of the formw0
� D w�h�, h� 2 Aut.C=iE/. Thus F˚ .�/ is changed by

i�1 ı .
Q
'2˚ h

�1
�'h'/ ı i . The conditions on w and w0 imply that h�� D h�, and it follows that the

inside product is 1 because � permutes the unordered pairs f'; �'g and so
Q
'2˚ h' D

Q
'2˚ h�' .2

LEMMA 4.5 The element F˚ is independent of the choice of i (and E ,! C).

PROOF. Any other choice is of the form i 0 D � ı i , � 2 Aut.C/. Take w0
� D w� ı �

�1, and then

F 0
˚ .�/ D

Y
i 0�1 ı .�w�1

�' �w'�
�1/ ı i 0 D F˚ .�/: 2
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Thus we can suppose E � C and ignore i ; then

F˚ .�/ D
Y
'2˚

w�1
�'�w' mod Aut.C=Eab/

where the w� are elements of Aut.C/ such that

w�jE D �; w�� D �w�:

PROPOSITION 4.6 For any � 2 Aut.C/, there is a unique f˚ .�/ 2 A�
f;E

=E� such that
(a) artE .f˚ .�// D F˚ .�/;
(b) f˚ .�/ � �f˚ .�/ D �.�/E

�, � D �cyc.

PROOF. Since artE is surjective, there is an f 2 A�
f;E

=E� such that artE .f / D F˚ .�/. We have

artE .f � �f / D artE .f / � artE .�f /

D artE .f / � �artE .f /��1

D F˚ .�/ � F�˚ .�/

D VerE=Q.�/;

where VerE=QWGal.Qal=Q/ab ! Gal.Qal=E/ab is the transfer (Verlagerung) map. As VerE=Q DartEı
�, it follows that f � �f D �.�/E� modulo Ker.artE /. Lemma 3.6 shows that 1C � acts bijectively
on Ker.artE /, and so there is a unique a 2 Ker.artE / such that a � �a D .f � �f =�.�//E�; we must
take f˚ .�/ D f=a. 2

REMARK 4.7 The above definition of f˚ .�/ is due to Tate. The original definition, due to Lang-
lands, was more direct but used the Weil group (Langlands 1979, �5).

PROPOSITION 4.8 The maps f˚ WAut.C/! A�
f;E

=E� have the following properties:
(a) f˚ .��/ D f�˚ .�/ � f˚ .�/;
(b) f˚.��1jE/.�/ D �f˚ .�/ if �E D E;
(c) f˚ .�/ D 1.

PROOF. Let f D f�˚ .�/ � f˚ .�/. Then

artE .f / D F�˚ .�/ � F˚ .�/ D
Y
'2˚

w�1
��' � �w�' � w

�1
�' � �w' D F˚ .��/

and f � �f D �.�/�.�/E� D �.��/E�. Thus f satisfies the conditions that determine f˚ .��/.
This proves (a), and (b) and (c) can be proved similarly. 2

Let E� be the reflex field for .E;˚/, so that Aut.C=E�/ D f� 2 Aut.C/ j �˚ D ˚g. Then
˚ Aut.C=E/ def

D
S
'2˚ ' � Aut.C=E/ is stable under the left action of Aut.C=E�/, and we write

Aut.C=E/˚�1
D

[
 � Aut.C=E�/ .disjoint union/:

The set 	 D f jE�g is a CM-type for E�, and .E�; 	/ is the reflex of .E;˚/. The map a 7!Q
 2	  .a/WE

� ! C factors through E and defines a morphism of algebraic tori N˚ WT E
�

!

T E . The fundamental theorem of complex multiplication over the reflex field states the following:
let � 2 Aut.C=E�/, and let a 2 A�

f;E�=E
�� be such that artE�.a/ D � ; then (4.1) is true after f

has been replaced by N˚ .a/ (see Theorem 3.10; also Shimura 1971, Theorem 5.15; the sign dif-
ferences result from different conventions for the reciprocity law and the actions of Galois groups).
The next result shows that this is in agreement with (4.1).
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PROPOSITION 4.9 For any � 2 Aut.C=E�/ and a 2 A�
f;E�=E

�� such that artE�.a/ D � jE�ab,
N˚ .a/ 2 f˚ .�/.

PROOF. Partition˚ into orbits,˚ D [j˚j , for the left action of Aut.C=E�/. Then Aut.C=E/˚�1 DS
j Aut.C=E/˚�1

j , and

Aut.C=E/˚�1
j D Aut.C=E/.��1

j Aut.C=E�// D .HomE .Lj ;C/ ı ��1
j /Aut.C=E�/

where �j is any element of Aut.C/ such that �j jE 2 ˚j and Lj D .��1
j E�/E. Thus N˚ .a/ DQ

bj , with bj D NmLj =E .�
�1
j .a//. Let

Fj .�/ D
Y
'2˚j

w�1
�'�w' .mod Aut.C=Eab//:

We begin by showing that Fj .�/ D artE .bj /. The basic properties of Artin’s reciprocity law show
that

A�
f;E

injective
�����! A�

f;�Lj

��1
j

����! A�
f;Lj

NmLj =K

������! A�
f;K??yartE

??yart�Lj

??yartLj artK

??y
Gal.Eab=E/

V�j Lj =E

������! �j Gal.Lab
j =Lj /�

�1
j

ad��1
j

����! Gal.Lab
j =Lj /

restriction
������! Gal.Kab=K/

commutes. Therefore artE .bj / is the image of artE�.a/ by the three maps in the bottom row
of the diagram. Consider ft' j t' D w'�

�1
j ; ' 2 ˚j g; this is a set of coset representatives

for �j Aut.C=Lj /��1
j in Aut.C=E�/, and so Fj .�/ D

Q
'2˚j

��1
j t�1�' �t'�j D ��1

j V.�/�j

mod Aut.C=Eab/.
Thus artE .N˚ .a// D

Q
artE .bj / D

Q
Fj .�/ D F˚ .�/. As N˚ .a/ � �N˚ .a/ 2 �cyc.�/E

�

(see 3.7), this shows that N˚ .a/ 2 f˚ .�/. 2

Proof of Theorem 4.2 up to a sequence of signs

The variety �A has type .E; �˚/ because �˚ describes the action of E on the tangent space to �A
at zero. Choose any E-linear isomorphism ˛WH1.A;Q/! H1.�A;Q/. Then

Vf .A/
�
! Vf .�A/

.˛˝1/�1

! Vf .A/

is an Af;E -linear isomorphism, and hence is multiplication by some g 2 A�
f;E

; thus

.˛ ˝ 1/ ı g D �:

LEMMA 4.10 For this g, we have

.˛ /.
�.�/

g � �g
x; y/ D .� /.x; y/; all x; y 2 Vf .�A/:

PROOF. By definition,

.� /.�x; �y/ D �. .x; y// x; y 2 Vf .A/

.˛ /.˛x; ˛y/ D  .x; y/ x; y 2 Vf .A/:
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On replacing x and y by gx and gy in the second inequality, we find that

.˛ /.�x; �y/ D  .gx; gy/ D  ..g � �g/x; y/:

As �. .x; y// D �.�/ .x; y/ D  .�.�/x; y/, the lemma is now obvious. 2

REMARK 4.11 (a) On replacing x and y with ˛x and ˛y in (4.10), we obtain the formula

 .
�.�/

g � �g
x; y/ D .� /.˛x; ˛y/:

(b) On taking x; y 2 H1.A;Q/ in (4.10), we can deduce that �cyc.�/=g � �g 2 E
�; therefore

g � �g � �cyc.�/ modulo E�.

The only choice involved in the definition of g is that of ˛, and ˛ is determined up to multipli-
cation by an element of E�. Thus the class of g in A�

f;E
=E� depends only on A and � . In fact, it

depends only on .E;˚/ and � , because any other abelian variety of type .E;˚/ is isogenous to A
and leads to the same class gE�. We define g˚ .�/ D gE� 2 A�

f;E
=E�.

PROPOSITION 4.12 The maps g˚ W Aut.C/! A�
f;E

=E� have the following properties:
(a) g˚ .��/ D g�˚ .�/ � g˚ .�/;
(b) g˚.��1jE/.�/ D �g˚ .�/ if �E D E;
(c) g˚ .�/ D 1;
(d) g˚ .�/ � �g˚ .�/ D �cyc.�/E

�.

PROOF. (a) Choose E-linear isomorphisms ˛WH1.A;Q/ ! H1.�A;Q/ and ˇWH1.�A;Q/ !
H1.��A;Q/, and let g D .˛ ˝ 1/�1 ı � and g� D .ˇ ˝ 1/�1 ı � so that g and g� represent
g˚ .�/ and g�˚ .�/ respectively. Then

.ˇ˛/˝ 1 ı .g�g/ D .ˇ ˝ 1/ ı g� ı .˛ ˝ 1/ ı g D ��;

which shows that g�g represents g˚ .��/.

(b) If .A;E ,! End.A/ ˝ Q/ has type .E;˚/, then .A;E
��1

! E ! End.A/ ˝ Q/ has type
.E;˚��1/. The formula in (b) can be proved by transport of structure.

(c) Complex conjugation �WA! �A is a homeomorphism (relative to the complex topology) and
so induces anE-linear isomorphism �1WH1.A;Q/! H1.A;Q/. The map �1˝1WVf .A/! Vf .�A/

is � again, and so on taking ˛ D �1, we find that g D 1.
(d) This was proved in (4.11d). 2

Theorem (4.2) (hence also 4.1) becomes true if f˚ is replaced by g˚ . Our task is to show that
f˚ D g˚ . To this end we set

e˚ .�/ D g˚ .�/=f˚ .�/ 2 A�
f;E=E

�: (31)

PROPOSITION 4.13 The maps e˚ W Aut.C/! A�
f;E

=E� have the following properties:
(a) e˚ .��/ D e�˚ .�/ � e˚ .�/;
(b) e˚.��1jE/.�/ D �e˚ .�/ if �E D E;
(c) e˚ .�/ D 1;
(d) e˚ .�/ � �Ee˚ .�/ D 1;
(e) e˚ .�/ D 1 if �˚ D ˚ .
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PROOF. Statements (a), (b), and (c) follow from (a), (b), and (c) of (4.8) and (4.12), and (d) follows
from (4.6b) and (4.12d). The condition �˚ D ˚ in (e) means that � fixes the reflex field of .E;˚/
and, as we observed in the preceding subsection, the fundamental theorem is known to hold in that
case, which means that f˚ .�/ D g˚ .�/. 2

PROPOSITION 4.14 Let F be the largest totally real subfield of E; then e˚ .�/ 2 A�
f;F

=F � and
e˚ .�/

2 D 1; moreover, e˚ .�/ depends only on the effect of � on E�, and is 1 if � jE� D id.

PROOF. Recall that � fixesE� if and only if �˚ D ˚ , in which case (4.13e) shows that e˚ .�/ D 1.
Replacing � by ��1� in (a), we find that e˚ .�/ D e˚ .�/ if �˚ D �˚ , i.e., e˚ .�/ depends only on
the restriction of � to the reflex field of .E;˚/. From (b) with � D �, we find using �˚ D ˚�E that
e�˚ .�/ D �e˚ .�/. Putting � D � in (a) and using (c) we find that e˚ .��/ D �e˚ .�/; putting � D �

in (a) and using (c) we find that e˚ .��/ D e˚ .�/. Since �� and �� have the same effect on E�, we
conclude e˚ .�/ D �e˚ .�/. Thus e˚ .�/ 2 .A�

f;E
=E�/h�Ei, which equals A�

f;F
=F � by Hilbert’s

Theorem 90.15 Finally, (d) shows that e˚ .�/2 D 1. 2

COROLLARY 4.15 Part (a) of (4.1) is true; part (b) of (4.1) becomes true when f is replaced by ef
with e 2 A�

f;F
, e2 D 1.

PROOF. Let e 2 e˚ .�/. Then e2 2 F � and, since an element of F � that is a square locally at all
finite primes is a square (Milne CFT VIII 1.1), we can correct e to achieve e2 D 1. Now (4.1) is
true with f replaced by ef , but e (being a unit) does not affect part (a) of (4.1). 2

It remains to show that:

for all CM-fields E and CM-types ˚ on E, e˚ D 1: (32)

Completion of the proof

As above, let .E;˚/ be a CM pair, and let e˚ .�/ D g˚ .�/=f˚ .�/ be the associated element of
A�
f;E

=E�. Then, as in (4.14, 4.15),

e˚ .�/ 2 �2.Af;F /=�2.F /; � 2 Aut.C/:

Let
e 2 �2.Af;F /, e D .ev/v, ev D ˙1, v a finite prime of F

be a representative for e˚ .�/. We have to show that the ev’s are all�1 or allC1. For this, it suffices,
to show that for, for any prime numbers `1 and `2, the image of e˚ .�/ in �2.F`1

� F`2
/=�2.F / is

trivial. Here F` D F ˝Q Q`.
In addition to the properties (a–e) of (4.13), we need:

(f) let E 0 be a CM-field containing E, and let ˚ 0 be the extension of ˚ to E 0; then for any
� 2 Aut.C/,

e˚ .�/ D e˚ 0 .�/ (in A�
f;E 0=E

0�). (33)

15The cohomology sequence of the sequence of Gal.E=F /-modules

1! E�
! A�

f;E ! A�
f;E=E

�
! 1

is
1! F�

! A�
f;F ! .A�

f;E=E
�/Gal.E=F /

! H1.Gal.E=F /;E�/ D 0
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To prove this, one notes that the same formula holds for each of f˚ and g˚ : if A is of type .E;˚/
then A0 def

D A˝E E
0 is of type .E 0; ˚ 0/. Here A0 D AM with M D HomE -linear.E

0; E/ (cf. 1.26).
Note that (f) shows that e˚ 0 D 1 H) e˚ D 1, and so it suffices (32) for E Galois over Q (and

contained in C).
We also need:

(g) denote by Œ˚� the characteristic function of ˚ � Hom.E;C/; thenX
i
ni Œ˚i � D 0 H)

Y
i
e˚i

.�/ni D 1 for all � 2 Aut.C/:

This is a consequence of Deligne’s theorem that all Hodge classes on abelian varieties are absolutely
Hodge, which tells us that the results on abelian varieties with complex multiplication proved above
extend to CM-motives. The CM-motives are classified by infinity types rather than CM-types, and
(g) just says that the e attached to the trivial CM-motive is 1. This will be explained in the next
chapter.

We make (d) (of 4.13) and (g) more explicit. Recall that an infinity type on E is a function
�WHom.E;C/! Z that can be written as a finite sum of CM-types (see �4). Now (g) allows us to
define e� by linearity for � an infinity type on E. Moreover,

e2� D e
2
� D 0;

so that e� depends only on the reduction modulo 2 of �, which can be regarded as a function

N�WHom.E;C/! Z=2Z;

such that either (weight 0)
N�.'/C N�.�'/ D 0 for all ' (34)

or (weight 1)
N�.'/C N�.�'/ D 1 for all '.

We now prove that e N� D 1 if N� is of weight 0. The condition (34) means that N�.'/ D N�.�'/, and
so N� arises from a function qWHom.F;C/! Z=2Z:

N�.'/ D q.'jF /:

We write eq D e N�. When E is a subfield of C Galois over Q, (b) implies that there exists an
e.�/ 2 �2.Af;F /=�2.F / such that16

eq.�/ D
Y

'WF!C
'�1.e.�//q.'/, � 2 Aut.C/:

Write e.�/ D eF .�/ to denote the dependence of e on F . It follows from (f), that for any totally
real field F 0 containing F ,

eF .�/ D NmF 0=F e
F 0

.�/:

16For each 'WF ! C, choose an extension (also denoted ') of ' to E. Then

N� D
X

'0WE!C
N�.'0/'0

D

X
'WF!C

q.'/.' C �'/

and so
eq.�/

def
D e N�.�/ D

Y
'
e.1C�/'.�/

q.'/
D

Y
'
'�1.e1C�.�//

q.'/

— we can take e.�/ D e1C�.�/.
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There exists a totally real field F 0, quadratic over F , and such that all primes of F dividing `1 or
`2 remain prime in F 0. The norm maps �2.F2;`/ ! �2.F1;` / are zero for ` D `1; `2, and so
eF .�/ projects to zero in �2.F`1

/��2.F`2
/=�2.F /. Therefore eq.�/ projects to zero in �2.F`1

�

F`2
/=�2.F /. This being true for every pair .`1; `2/, we have eq D 1.
We now complete the proof of (32). We know that e N� depends only on the weight of N�, and so,

for ˚ a CM-type, e˚ .�/ depends only on � . In calculating e˚ .�/, we may take E D Q.
p
�1P/

and ˚ to be one of the two CM-types on QŒ
p
�1�. We know (see 4.14) that e˚ .�/ depends only on

� jE� D QŒ
p
�1�. But e˚ .1/ D 1 D e˚ .�/ by (4.13c).

ASIDE 4.16 Throughout, should allow E to be a CM-algebra. Should restate Theorem 4.2 with
C replaced by Qal; then replace C with Qal throughout the proof (so � is an automorphism of Qal

rather than C).
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