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Abstract

This is an introduction to the theory of Shimura varieties, or, in other words, to the
arithmetic theory of automorphic functions and holomorphic automorphic forms.
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Introduction

The arithmetic properties of elliptic modular functions and forms were extensively studied
in the 1800s, culminating in the beautiful Kronecker Jugendtraum. Hilbert emphasized the
importance of extending this theory to functions of several variables in the twelfth of his
famous problems at the International Congress in 1900. The first tentative steps in this di-
rection were taken by Hilbert himself and his students Blumenthal and Hecke in their study
of what are now called Hilbert (or Hilbert-Blumenthal) modular varieties. As the theory

of complex functions of several variables matured, other quotients of bounded symmet-
ric domains by arithmetic groups were studied (Siegel, Braun, and others). However, the
modern theory of Shimura varietfesnly really began with the development of the theory

of abelian varieties with complex multiplication by Shimura, Taniyama, and Weil in the
mid-1950s, and with the subsequent proof by Shimura of the existence of canonical mod-
els for certain families of Shimura varieties. In two fundamental articles, Deligne recast
the theory in the language of abstract reductive groups and extended Shimura’s results on
canonical models. Langlands made Shimura varieties a central part of his program, both as
a source of representations of galois groups and as tests for the conjecture that all motivic
L-functions are automorphic. These notes are an introduction to the theory of Shimura
varieties from the point of view of Deligne and Langlands. Because of their brevity, many
proofs have been omitted or only sketched.

Notations and conventions

Unless indicated otherwise, vector spaces are assumed to be finite dimensional and free
Z-modules are assumed to be of finite rank. The linear dual H#o#) of a vector space

(or module)V is denotedV V. For ak-vector spacd’ and ak-algebraR, V(R) denotes

R ®; V (and similarly forZ-modules). By a lattice in aR-vector spacéd’, | mean a full

lattice, i.e., @&-submodule generated by a basis ¥arThe algebraic closure of a fiekdis
denotedk?.

A superscript™ (resp. °) denotes a connected component relative to a real topology
(resp. a zariski topology). For an algebraic group, we take the identity connected compo-
nent. For example(0,)° = SO, (GL,)° = GL,, and GL,(R)" consists of the: x n
matrices with det> 0. For an algebraic group’ overQ, G(Q)* = G(Q) N G(R)*.
Following Bourbaki, | require compact topological spaces to be separated.

Semisimple and reductive groups, whether algebraic or Lie, are required to be con-
nected. A simple algebraic or Lie group is a semisimple group with no connected proper
normal subgroups other than(some authors say almost-simple). For a tafysY™*(7")
denotes the character group®f The inner automorphism defined by an elememnd de-
noted adg). The derived group of a reductive groGpis denotedz% (it is a semisimple
group). For more notations concerning reductive groups,S&eRor a finite extension of
fields L O F of characteristic zero, the torus ovErobtained by restriction of scalars from
G over L is denoteB (G,,)z, .

1The term “Shimura variety” was introduced by Langlands (1976, 1977), although earlier “Shimura
curve” had been used for the varieties of dimension one (lhara 1968).
2Thus,(Gy) 1, F has character grouf*((G,,)r ) = ZHo™E-F*) (free Z-module on HorL, F2) with
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Throughout, | use the notations standard in algebraic geometry, which sometimes con-
flict with those used in other areas. For example&; iindG’ are algebraic groups over a
field k&, then a homomorphist&@ — G’ means a homomorphism defined o¥erf K is
a field containingc, thenGg is the algebraic group ovet obtained by extension of the
base field andr (K) is the group of points ofr with coordinates iniK. If o:k — K is a
homomorphism of fields antl is an algebraic variety (or other algebro-geometric object)
overk, thenoV has its only possible meaning: appiyto the coefficients of the equations
definingV'.

Let 4 and B be sets and let be an equivalence relation oh If there exists a canonical
surjection4 — B whose fibres are the equivalence classes, then | saythkssifies the
elements o4 modulo~ or that it classifies the--classes of elements of.

A functor F: A — B is fully faithful if the maps Hom(a,d’) — Homg(Fa, Fa') are
bijective. The essential image of such a functor is the full subcategd@ydfose objects
are isomorphic to an object of the forffu. Thus, a fully faithful functorF: A — B is an
equivalence if and only if its essential imageBigMac Lane 1998, p93).

References
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at www.jmilne.org/math/).
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the natural action of GaF?/ F)), and its points in arF-algebraR are(G,,)r,;rF(R) = (L ®f R)*.
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1 Hermitian symmetric domains

In this section, | describe the complex manifolds that play the role in higher dimensions of
the complex upper half plane, or, equivalently, the open unit disk:

z— i—_:

{zeClJ(2)>0=Hi =Dy ={zeC||z| < 1}.
P z+1
—i

This is a large topic, and | can do little more than list the definitions and results that we
shall need.

<— Z

Brief review of real manifolds

A manifold M of dimensionn is a separated topological space that is locally isomorphic to an open
subset ofR” and admits a countable basis of open subsets. A homeomorphism from an open subset
of M onto an open subset B is called achart of M.

Smooth manifolds

| use smooth to meafi®. A smooth manifoldis a manifoldd endowed with amooth structure
i.e., a sheatD,, of R-valued functions such th&f\/, O,,) is locally isomorphic tdR” endowed
with its sheaf of smooth functions. For an op€nc M, the f € O (U) are called thesmooth
functionson U. A smooth structure on a manifol can be defined by a family,: U, — R” of

charts such that/ = | ) U, and the maps

Uy © ulgl:uﬂ(Ua NUg) — uq(Uy N Up)

are smooth for all, 8. A continuous mape: M — N of smooth manifolds ismoothif it is a map
of ringed spaces, i.ef; smooth on an opell C N implies / o @ smooth ore~1 (V).

Let (M, Opr) be a smooth manifold, and 161, , be the ring of germs of smooth functions
at p. Thetangent spacel, M to M at p is theR-vector space oR-derivationsX,: Oy, , — R.

If x1,...,x" are local coordinates at, then2r, ..., 52 is a basis fol, M anddx!,...,dx" is
the dual basis.

Let U be an open subset of a smooth manifédfd A smooth vector fieldY on U is a family
of tangent vectorst, € T,(M) indexed byp € U, such that, for any smooth functiofi on an
open subset o/, p — X, f is smooth. Asmoothr-tensor fieldon U is a familyt = (z5)pem
of multilinear mappings,: 7, M x --- x T,M — R (r copies ofT, M) such that, for any smooth
vector fieldsXq,..., X, on an open subset &f, p — t,(X1,..., X;) is a smooth function. A
smooth(r, s)-tensor fieldis a familyz,: (T, M)" x (T, M)¥* — R satisfying a similar condition.
Note that to give a smoottl, 1)-field amounts to giving a family of endomorphisms7, M —
T, M with the property thap — 1,(X,) is a smooth vector field for any smooth vector figfd

A riemannian manifoldis a smooth manifold endowed withi@mannian metrig i.e., a smooth
2-tensor fieldg such that, for allp € M, g, is symmetric and positive definite. In terms of local
coordinatédx!, ..., x" at p,

g =>.gij(pdx' ®@dx’,ie.gp (%, %) =gii(p).

3In this situation, we usually writéx’dx/ for dx’ ® dx/ — see Lee 1997, p24 for an explanation of this.
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A morphism of riemannian manifolds is called mometry

A real Lie group? G is a smooth manifold endowed with a group structure defined by smooth

mapsgi, g2 — g182, 8 g L.

Brief review of hermitian forms

To give a complex vector space amounts to giving a real vector spaocgether with an endo-

morphismJ: V — V such that/? = —1. A hermitian form on (V, J) is anR-bilinear mapping
(1):V x V — C such tha(Ju|v) = i(u|v) and(v|u) = (u|v). When we writ®
(ulv) = @(u,v) — iy (u,v), @u,v), ¥@u,v) €R, 1)
theny andy areR-bilinear, and
@ is symmetric o(Ju, Jv) = ¢p(u,v), (2)
Y is alternating v(Ju, Jv) = ¥ (u,v), 3
W(ua U) = _(p(ua ']U)a gﬁ(ua U) = W(ua JU) (4)

As (ulu) = ¢(u,u), (]) is positive definite if and only it is positive definite. Conversely, i
satisfies[?) (resp.y satisfies[B)), then the formuladd) and ) define a hermitian form:

(lv) = ¢(u,v) +ipu, Jv) (resp.(ulv) =¥ (u, Jv) — iy (u,v)) ()

Complex manifolds

A C-valued function on an open subgébf C” is analyticif it admits a power series expan-
sion in a neighbourhod of each point@t A complex manifoldis a manifoldd/ endowed
with a complex structurei.e., a sheat),, of C-valued functions such thatM, Oy,) is
locally isomorphic toC” with its sheaf of analytic functions. A complex structure on a
manifold M can be defined by a family,: U, — C” of charts such tha/ = | J U, and
the mapsu, o u/gl are analytic for alke, 8. Such a family also make&f into a smooth
manifold denoted/ *°. A continuous maj:: M — N of complex manifolds isinalytic if
it is a map of ringed spaces. emann surfaceis a one-dimensional complex manifold.
A tangent vectomt a pointp of a complex manifold is &-derivationO,,, , — C. The
tangent spaces, M (M as a complex manifold) anti, M*° (M as a smooth manifold)
can be identified. Explicitly, complex local coordinatés. . ., z” at a pointp of M define

real local coordinates!, ..., x", y!,..., y" with z© = x” + iy”. The real and complex
9 9 9 9 9 -

tangent spaces have ba%ég, e G By T By and.r, ..., 5= respectively. Under

the natural identification of the two space$; = 1 ( L —i ay,).

4According to a theorem of Lie, this is equivalent to the usual definition in which “smooth” is replaced by
“real-analytic”.
SFor example, leV = C, so(z|z’) = azZ’ for somea > 0. Then
(x +in)(x" = iy") = a(xx"+ yy') —ia(xy" — yx'),

and so
p=alxx"+yy), ¥ =alxy —yx).
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A C-valued functionf on an open subsét of C” is holomorphicif it is holomorphic
(i.e., differentiable) separately in each variable. As in the one-variable ¢asdyolomor-
phic if and only if it is analytic (Hartog’s theorem, Taylor 2002, 2.2.3), and so we can use
the terms interchangeably.

Recall that &C-valued functionf on U C C is holomorphic if and only if it is smooth
(as a function of two real variables) and satisfies the Cauchy-Riemann condition. This
condition has a geometric interpretation: it requires thgt 7,U — T(,)C be C-linear
forall p € U. It follows that a smooti€-valued functionf onU c C”" is holomorphic if
and only if the map#/f,: T,U — Ty, C areC-linear forallp € U.

An almost-complex structuren a smooth manifold/ is a smooth tensor field/,) e ar,
Jp:Ty,M — T,M, such thal;]p2 = —1 for all p, i.e., it is a smoothly varying family of
complex structures on the tangent spaces. A complex structure on a smooth manifold en-
dows it with an almost-complex structure. In terms of complex local coordinates. , z"
in a neighbourhood of a poirt on a complex manifold and the corresponding real local
coordinatesc!, ..., y", J, acts by

0 d 8|_)_8. ©)

It follows from the last paragraph that the functor from complex manifolds to almost-
complex manifolds is fully faithful: a smooth map M — N of complex manifolds is
holomorphic (analytic) if the mapéx,: T,M — T,,)N areC-linear for allp € M. Not
every almost-complex structure on a smooth manifold arises from a complex structure —
those that do are said to ob@egrable An almost-complex structuré on a smooth man-
ifold is integrable if M can be covered by charts on whidhtakes the formi@) (because
this condition forces the transition maps to be holomorghic).

A hermitian metricon a complex (or almost-complex) manifoM is a riemannian
metric g such that

g(JX,JY)=g(X,Y) for all vector fieldsX, Y. (7)

According to B), for eachp € M, g, is the real part of a unique hermitian forky on

T, M, which explains the name. Bermitian manifold (4/, g) is a complex manifold with

a hermitian metric, or, in other words, it is a riemannian manifold with a complex structure
such that/ acts by isometries.

Hermitian symmetric spaces

A manifold (riemannian, hermitian, ...) is said to bemogeneousf its automorphism

group acts transitively. It isymmetridf, in addition, at some poinp there is an involution

s, (thesymmetry atp) having p as an isolated fixed point. This means thats an auto-

morphism such thadj = 1 and thatp is the only fixed point of, in some neighbourhood
of p.

6See Wolf 1984, 8.7.2.
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For a riemannian manifol@dd/, g), the automorphism group is the groupAs, g) of
isometries. A connected symmetric riemannian manifold is callegnametric spacé
For example R” with the standard metrig, = Y dx’dx’ is a symmetric space — the
translations are isometries, ané-> —x is a symmetry a0.

For a hermitian manifold A/, g), the automorphism group is the grougAs, g) of
holomorphic isometries:

Is(M, g) =Is(M*°, g) N Hol(M) (8)

(intersection inside AytM *°); Hol(M) is the group of automorphisms 8f as a complex
manifold). A connected symmetric hermitian manifold is calledeamitian symmetric
spaced

ExAMPLE 1.1 (a) The complex upper half plart¢; becomes a hermitian symmetric space
when endowed with the metr%. The action

b az +b b
identifies SL(R)/{x1} with the group of holomorphic automorphisms &f. For any

x+iy € Hy, x +iy = (f T;://g) i, and soH; is homogeneous. The isomorphism

z+— —1/zisasymmetry at € H;, and the riemannian metrff%"y is invariant under the
action of Sk (R) and has the hermitian properiy)(

(b) The projective liné®! (C) (= riemann sphere) becomes a hermitian symmetric space
when endowed with the restriction (to the sphere) of the standard metRé.chhe group
of rotations is transitive, and reflection along a geodesic (great circle) through a point is a
symmetry. Both of these transformations leave the metric invariant.

(c) Any quotientC/A of C by a discrete additive subgroup becomes a hermitian
symmetric space when endowed with the standard metric. The group of translations is
transitive, and — —z is a symmetry ao.

Curvature.

Recall that, for a plane curve, the curvature at a ppig 1/ wherer is the radius of the
circle that best approximates the curvepatFor a surface ir3-space, the principal curva-
tures at a poinp are the maximum and minimum of the signed curvatures of the curves
obtained by cutting the surface with planes through a normal(#te sign is positiv&or

’Let (M, g) be a connected riemannian manifold. For eacke M, there is a diffeomorphism on a
neighbourhood op (the geodesic symmetry af) that sends sends(z) to y(—¢) for each geodesig with
y(0) = p. Geometrically, it is reflection along geodesics thropwgiWhen the geodesic symmetryais an
isometry,M is said to bdocally symmetric atp. A symmetrys, at p coincides with the geodesic symmetry
at p (sedl.11below), and converselyM, g) is (globally) symmetric if, for everyp € M, the geodesic
symmetry atp extends to a symmetny, at p.

8Some authors say “globally symmetric riemannian space” for “symmetric space” and “globally symmet-
ric hermitian space” for “hermitian symmetric space.”

9According to my dictionary, “positive” can mean “greater than zero” or “not negative”. | use it only in
the first sense.



12 1 HERMITIAN SYMMETRIC DOMAINS

negative according as the curve bends towards the normal or away). Although the principal
curvatures depend on the embedding of the surfaceRAtaheir product, thesectional
curvature at p, does not (Gauss’s Theorema Egregium) and so it is well-defined for any
two-dimensional riemannian manifold. More generally, for a pgirdn any riemannian
manifold M, one can define theectional curvatureK(p, E) of the submanifold cut out

by the geodesics tangent to a two-dimensional subspaok7, M. Intuitively, positive
curvature means that the geodesics through a point converge, and negative curvature means
that they diverge. The geodesics in the upper half plane are the half-lines and semicir-
cles orthogonal to the real axis. Clearly, they diverge — in fact, this is Pdisc@mous
model of noneuclidean geometry in which there are infinitely many “lines” through a point
parallel to any fixed “line” not containing it. More prosaically, one can compute that the
sectional curvature is-1. The Gauss curvature &f (C) is obviously positive, and that of

C/A is zero.

The three types of hermitian symmetric spaces

The group of isometries of a symmetric spa@dd, g) has a natural structure of a Lie
grou? (Helgason 1978, IV 3.2). For a hermitian symmetric spéatg g), the group
Is(M, g) of holomorphic isometries is closed in the group of isometriecMf°, g) and
so is also a Lie group.

There are three families of hermitian symmetric spaces (ibid, VIII; Wolf 1984, 8.7):

Name example| simply connected? curvature| Is(M, g)*
noncompact type H; yes negative | adjoint, noncompact
compact type P! (C) yes positive | adjoint, compact
euclidean C/A not necessarily zero

A Lie group isadjoint if it is semisimple with trivial centre.

Every hermitian symmetric space, when viewed as hermitian manifold, decomposes
into a productM® x M~ x M~ with M° euclidean, M ~ of noncompact type, angi/ +
of compact type. The euclidean spaces are quotients of a complex@pdgea discrete
subgroup of translations. A hermitian symmetric spadeasiucibleif it is not the product
of two hermitian symmetric spaces of lower dimension. Eachfof and M * is a product
of irreducible hermitian symmetric spaces, each of which has a simple isometry group.

We shall be especially interested in the hermitian symmetric spaces of noncompact type
— they are calledhermitian symmetric domains.

EXAMPLE 1.2 (SIEGEL UPPER HALF SPACE. TheSiegel upper half spacé{(, of degree
g consists of the symmetric complgxx g matrices with positive definite imaginary patrt,
i.e.,

He ={Z=X+iY e M, (C)| X = X', Y > 0}.

Note that the maZ = (z;;) + (z;;);>; identifies, with an open subset @@£@+1/2,
The symplectic group Sp(R) is the group fixing the alternating forp % x;y—i —

10This was proved by E. Cartan, and extended to all riemannian manifolds by Myers and Steenrod.
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i1 X—i Vi
A B\| AC=cC4 A'D—C'B=1I,
Sng(R)_{(c D)‘ D'A—B'C=1, B'D=D'B }

The group Sp, (R) acts transitively orH,; by

A B _
(c D)Z:(AZ+B)(CZ+D) I

The matrix(,(; _(fg) acts as an involution oi,, and has/, as its only fixed point. Thus,

H, is homogeneous and symmetric as a complex manifold, and we shall 8ed) inglow
that, is in fact a hermitian symmetric domain.

Example: Bounded symmetric domains.

A domain D in C" is a nonempty open connected subset. Bymmetricif the group
Hol(D) of holomorphic automorphisms d? (as a complex manifold) acts transitively and
for some point there exists a holomorphic symmetry. For exanfileis a symmetric
domain andD; is a bounded symmetric domain.

THEOREM 1.3. Every bounded domain has a canonical hermitian metric (c&ll¢ide
Bergman(n) metric). Moreover, this metric has negative curvature.

PROOF (SKETCH): Initially, let D be any domain if©”. The holomorphic square-integrable
functions f: D — C form a Hilbert spaced (D) with inner product( f|g) = [, fgdv.
There is a uniqlf@ (Bergman kernel) functiok: D x D — C such that

(a) the functionz — K(z,¢) lies in H(D) for eachg,

(b) K(z,8) = K(¢,z), and

LAfter Stefan Bergmann. When he moved to the United States in 1939, he dropped the second n from his
name.

2When one ignores convergence questions, the proof is easy heta second function satisfying the
three conditions. Then

k(z.0) = / K. 0k, Odo()

=fk(§,t)K(z,l)dv(l)
= K(z,9),

which proves the uniqueness. Let

K(z,0) = Zmem(z) ~em(8).
Then clearlyK(z,{) = K(¢, z), and

f = S lem)em = / K0 /©)dv(®)

(actual equality, not almost-everywhere equality, because the functions are holomorphic).
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©) f(z) = [ K(z,0) f(Q)dv(&) forall f € H(D).
For example, for any complete orthonormal &gt)men in H(D), K(z,8) = )_,em(z) -
en(0) is such a function. D is bounded, then all polynomial functions @hare square-
integrable, and so certainlg(z,z) > 0 for all z. Moreover, logK(z, z)) is smooth and

the equations
2

S 0
h =) hijdz'dz’, h;j(z) = ——10gK(z,z),
dzidz’
define a hermitian metric o, which can be shown to have negative curvature (Helgason
1978, VIII 3.3, 7.1; Krantz 1982, 1.4). O

The Bergman metric, being truly canonical, is invariant under the actiofHoHence,
a bounded symmetric domain becomes a hermitian symmetric domain for the Bergman
metric. Conversely, it is known that every hermitian symmetric domain can be embedded
into someC” as a bounded symmetric domain. Therefore, a hermitian symmetric domain
D has a unique hermitian metric that maps to the Bergman metric under every isomorphism
of D with a bounded symmetric domain. On each irreducible factor, it is a multiple of the
original metric.

EXAMPLE 1.4. LetD, be the set of symmetric complex matrices such Ilgai?tz IS pos-

itive definite. Note thatz;;) — (z;;);s; identifiesD, as a bounded domain i@ €+1/2,

The mapZ +— (Z —ilg)(Z +il;)~" is an isomorphism of{, ontoD,. Therefore D,

is symmetric and-{, has an invariant hermitian metric: they are both hermitian symmetric
domains.

Automorphisms of a hermitian symmetric domain

LEMMA 1.5. Let(M, g) be a symmetric space, and lete M. Then the subgroui’, of
Is(M, g)™* fixing p is compact, and

a-Kyr—>a-pls(M,g)t/K, > M
is an isomorphism of smooth manifolds. In particula¢M, g)™ acts transitively on\/.

PROOF. For any riemannian manifoldV/, g), the compact-open topology make6As, g)

into a locally compact group for which the stabiliz&f, of a point p is compact (Helgason
1978, IV 2.5). The Lie group structure o, g) noted above is the unique such structure
compatible with the compact-open topology (ibid. Il 2.6). An elementary argument (e.g.,
MF 1.2) now shows that (94, g)/K,, — M is a homeomorphism, and it follows that
the mapa +— ap:1s(M,g) — M is open. Write I6M, g) as a finite disjoint union
Is(M,g) = ;1s(M, g)*a; of cosets of I6M, g)*. For any two cosets the open sets
IS(M, g)*a; p and ISM, g)*a; p are either disjoint or equal, but, a4 is connected, they
must all be equal, which shows that g, g)* acts transitively. Now IV, g)t/K, —

M is a homeomorphism, and it follows that it is a diffeomorphism (Helgason 1978, I
4.3a). O
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PROPOSITION1.6. Let (M, g) be a hermitian symmetric domain. The inclusions
IsS(M®,g) D Is(M, g) C Hol(M)

give equalities:
IsS(M®,g)" =1s(M, g)" = Hol(M)™.

Therefore Hol(M)* acts transitively om/, andHol(M)* /K, = M.

PROOF. The first equality is proved in Helgason 1978, VIl 4.3, and the second can be
proved similarly. The rest of the statement follows frdbh®fy. N

Let H be a connected real Lie group. There need not be an algebraic GrouprR
such thd® G(R)* = H. However, if H has a faithful finite-dimensional representation
H — GL(V), then there exists an algebraic gratipc GL(V') such that Li€G) = [b, b]
(insidegl(V)) whereh = Lie(H) (Borel 1991, 7.9). IfH, in addition, is semisimple, then
[6,] = b and so Li€G) = h andG(R)T = H (inside GL(V)). This observation applies
to any connected adjoint Lie group and, in particular, to(A6)*, because the adjoint
representation on the Lie algebra is faithful.

PROPOSITIONL.7. Let(M, g) be a hermitian symmetric domain, andfet Lie(Hol(M)™).
There is a unigue connected algebraic subgréupf GL(h) such that

G(R)" = Hol(M)* (inside GL(h)).
For such aG,
G(R)" = G(R) N Hol(M) (inside GL(b));
thereforeG (R)™ is the stablizer inG (R) of M.

PrROOF. The first statement was proved above, and the second follows from Satake 1980,
8.5. O

ExAaMPLE 1.8 The mapz — z~ ! is an antiholomorphic isometry 6{, and every isom-
etry of H; is either holomorphic or differs from — z~! by a holomorphic isometry. In
this case(G = PGL,, and PGL(R) acts holomorphically o \. R with PGL,(R)™" as the

stabilizer ofH;.

The homomorphismu,: U; — Hol(D)
LetU; = {z € C | |z] = 1} (the circle group).

THEOREM 1.9. Let D be a hermitian symmetric domain. For eaphe D, there exists
a unique homomorphism,: Uy — Hol(D) such thatu,(z) fixes p and acts on7, D as
multiplication by:.

BBFor example, the (topological) fundamental group oh @) is Z, and so Sk(R) has many proper
covering groups (even of finite degree). None of them is algebraic.
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EXAMPLE 1.10 Letp =i € H;y, and leth: C* — SL,(RR) be the homomorphism= a+
ib +— (_¢%). Theni(z) acts on the tangent spa€gH; as multiplication byz/z, because

L (Lth) ) = %. Forz e U, choose a square rogtz € Uy, and seti(z) = h(y/z)
mod =+ 1. Thenu(z) is independent of the choice Qfz becausé:(—1) = —I. Therefore,
u is a well-defined homomorphisii; — PSL,(R) such thatu(z) acts on the tangent

spacel;’H as multiplication byz.

Because of the importance of the theorem, | sketch a proof.

PrRoPOSITION1.11 Let(M, g) be symmetric space. The symmejat p acts as—1 on
T,M, and, for any geodesig with (0) = p, s,(y(t)) = y(—t). Moreover,(M, g) is
(geodesically) complete.

PROOF. Becausej =1, (dsp)* = 1, and sads, acts semisimply off,, M with eigenval-
ues=k1. Recall that for any tangent vectdf at p, there is a unique geodesic/ — M
with (0) = p, y(0) = X. If (ds,)(X) = X, thens, o y is a geodesic sharing these prop-
erties, and s@ is not an isolated fixed point of,. This proves that only-1 occurs as an
eigenvalue. If(ds,)(X) = —X, thens, o y andt — y(—t) are geodesics throughwith
velocity — X, and so are equal. For the final statement, see Boothby 1975, VIl 8.4

By a canonical tensoron a symmetric spacéV/, g), | mean any tensor canonically
derived fromg, and hence fixed by any isometry @¥, g).

PROPOSITION1.12 On a symmetric spadeVf, g) every canonicak-tensor withr odd is
zero. In particular, parallel translation of two-dimensional subspaces does not change the
sectional curvature.

PROOFE Lets be a canonicat-tensor. Then
ty = 1, 0 (dsp) E (—1)"1,,

and sa = 0 if r is odd. For the second statement,¥ebe the riemannian connection, and
let R be the corresponding curvature tensor (Boothby 1975, VII 3.2, 4.4). Ve an
odd tensor, and so is zero. This implies that parallel translati@rdirinensional subspaces
does not change the sectional curvature. ]

PROPOSITION1.13 Let (M, g) and (M’, g’) be riemannian manifolds in which paral-

lel translation of2-dimensional subspaces does not change the sectional curvature. Let
a:T,M — T,M' be a linear isometry such thak'(p, E) = K(p',aE) for every2-
dimensional subspacg C 7, M. Thenexp,(X) > exp, (aX) is an isometry of a neigh-
bourhood ofp onto a neighbourhood gf'.

PrRooOF. This follows from comparing the expansions of the riemann metrics in terms of
normal geodesic coordinates. See Wolf 1984, 2.3.7. O

PrRoPOSITION1.14 If in (I.I3 M and M’ are complete, connected, and simply con-
nected, then there is a unique isometry! — M’ such thai(p) = p’ andda, = a.

PROOF. See Wolf 1984, 2.3.12. [
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| now complete the sketch of the proof of Theorig&. Eachz with |z| = 1 defines an
automorphism of7, D, g,,), and one checks that it preserves sectional curvatures. Accord-
ing to (111 [1.12 [1.19), there exists a unique isometwy(z): D — D such thatdu,(z),
is multiplication byz. It is holomorphic because it i8-linear on the tangent spaces. The
isometryu,(z) o u,(z’) fixes p and acts as multiplication byz’ on 7, D, and so equals

up(zz').

Cartan involutions

Let G be a connected algebraic group o#erand letg — g denote complex conjugation
on G(C). Aninvolution @ of G (as an algebraic group ov&) is said to beCartaniif the

group
GO®R) L{geG(C)|g=0(@) 9)

is compact.

ExAMPLE 1.15 LetG = SL,, and letd =ad(_%}). For(¢5) € SL,(C), we have

0((2a) =(16)-(22)-

Thus,

SLOR) = {(g b) e SLy(C) |d =a,c= —E}
={(_42) e GLy(©) | laf* + |b* = 1} = SU,,

which is compact, being a closed bounded sétinThus6 is a Cartan involution for Si.

THEOREM 1.16. There exists a Cartan involution if and onlydGf is reductive, in which
case any two are conjugate by an element¢R).

PrROOF. See Satake 1980, | 4.3. O]

ExXAMPLE 1.17. Let G be a connected algebraic group oer

(a) The identity map ok is a Cartan involution if and only i&7 (R) is compact.

(b) LetG = GL(V') with V a real vector space. The choice of a basisifatetermines
a transpose operatdf — M’, andM — (M")~!is obviously a Cartan involution. The
theorem says that all Cartan involutions@farise in this way.

(c) Let G — GL(V) be a faithful representation @¥. ThenG is reductive if and
only if G is stable undeg +— g’ for a suitable choice of a basis féf, in which case the
restriction ofg — (g’)~! to G is a Cartan involution; all Cartan involutions 6f arise in
this way from the choice of a basis for (Satake 1980, | 4.4).

(d) Let 6 be an involution ofG. There is a unique real forr&® of G¢ such that
complex conjugation o ®(C) is g — 6(g). Then,G @ (R) satisfies@), and we see that
the Cartan involutions ofr correspond to the compact forms@f.
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PROPOSITION1.18 Let G be a connected algebraic group ovBr If G(R) is compact,
then every finite-dimensional real representationGof— GL(V') carries a G-invariant
positive definite symmetric bilinear form; conversely, if one faithful finite-dimensional real
representation ofr carries such a form, the@ (R) is compact.

PROOF. Let p:G — GL(V) be a real representation 6f. If G(R) is compact, then its
imageH in GL(V) is compact. Let/h be the Haar measure dii, and choose a positive
definite symmetric bilinear forny| ) on V. Then the form

(ulv)/:fH(hulhv)dh

is G-invariant, and it is still symmetric, positive definite, and bilinear. For the converse,
choose an orthonormal basis for the form. Tldg{iR) becomes identified with a closed set
of real matricesd such that4’ - 4 = I, which is bounded. O

REMARK 1.19 The proposition can be restated for complex representations(RRj is
compact then every finite-dimensional complex representatia@n cédirries aG-invariant
positive definite Hermitian form; conversely, if some faithful finite-dimensional complex
representation ofr carries aG-invariant positive definite Hermitian form, th&nis com-
pact. (In this casei (R) is a subgroup of a unitary group instead of an orthogonal group.
For a sesquilinear formp to be G-invariant means that(gu, gv) = ¢(u,v), g € G(C),
u,vev)

Let G be a real algebraic group, and Etbe an element o&'(R) whose square is
central (so that ad is an involution). AC-polarizationon a real representatidn of G is
a G-invariant bilinear formp such that the fornpc,

(u,v) = ¢(u, Cv),
is symmetric and positive definite.

PROPOSITION1.20 If adC is a Cartan involution of7, then every finite-dimensional real
representation o6y carries aC-polarization; conversely, if one faithful finite-dimensional
real representation ofs carries aC-polarization, theradC is a Cartan involution.

PROOF. An R-bilinear form¢ on a real vector spacE defines a sesquilinear forgi on
V(©),
¢ V(C)xV(C)—C, ¢ (u,v)=q¢c(u,v).
Moreover,¢’ is hermitian (and positive definite) if and onlygfis symmetric (and positive
definite).
Let p: G — GL(V) be areal representation 6f. For anyG-invariant bilinear formy
onV, ¢c is G(C)-invariant, and so

¢'(gu,gv) = ¢'(u,v), allgeG(C), u,veV(C). (10)
On replacingy with Cv in this equality, we find that
¢ (gu, C(C'gC)v) = ¢'(u,Cv), allge G(C), u,veV(C), (11)
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which says thap,. is invariant undelG @),

If p is faithful andy is aC-polarization, therp,. is a positive definite hermitian form,
and soG @) (R) is compact.19: adC is a Cartan involution.

Conversely, ifG @) (R) is compact, then every real representaidnr> GL(V) car-
ries aG @) (R)-invariant positive definite symmetric bilinear forn(L.I8. Similar cal-
culations to the above show that-: is aC-polarization onV'. O

Representations ofU,

Let T be a torus over a fielé, and letK be a galois extension &f splitting 7. To give
a representatiop of T on ak-vector spaced/ amount® to giving an X*(T')-grading
V(K) = @, cx+)Vx ONV(K) =ar K ®; V with the property that

o(Vy) =Vsy, alloeGalK/k), xeX*(T).
HereV, is the subspace &t ®x V' on whichT" acts throughy:
p)v=x@)-v, forveV,, teT(K).

If V) # 0, we say thag occursin V.

When we regard/; as a real algebraic torus, its characterszare z", n € Z. Thus,
X*(U,) = Z, and complex conjugation acts dff (U, ) as multiplication by—1. Therefore
a representation df; on a real vector spadé corresponds to a grading(C) = &,z V"
with the property that’ (C)™" = V(C)” (complex conjugate). HerE” is the subspace of
V(C) on whichz acts as”. Note thatV'(C)° = V(C)° and so it is defined oveR, i.e.,
V(C)° = VO(C) for V° the subspac& N V(C)° of V (see AG 14.5). The natural map

VIV = V(©)/@uzoV (O = D,V (O (12)

is an isomorphism. From this discussion, we see that every real representatipmscd
direct sum of representations of the following types:

(@) V = R with U; acting trivially (soV (C) = V?);

(b) V =R2withz = x+iy € Uj(R) actingay —3 ¥)",n > 0 (soV(C) = V'@ V™).

Classification of hermitian symmetric domains in terms of real groups

The representations éf, have the same description whether we regard it as a Lie group or
an algebraic group, and so every homomorphigm— GL(V') of Lie groups is algebraic.
It follows that the homomorphism,: U; — Hol(D)™ = G(R)* (sedl.9[1.7) is algebraic.

THEOREM1.21 Let D be a hermitian symmetric domain, and {etbe the associated real
adjoint algebraic group[l.7). The homomorphism,: U; — G attached to a poinp of D
has the following properties:

YFor a splitT, this simply says thal is diagonalizable: every representatiorfofs a direct sum of one
dimensional representations (Borel 1991, 8.4, 8.5). In the general cagehded representation dfx on
K ® V. A direct computation shows thap = p if and only if 6V, = V, for all x. Now use thatp = p
for all o if and only if p is defined ovek (AG 14.7).
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(a) only the characters, 1, z=! occur in the representation df; on Lie(G)¢ defined
byu,;

(b) ad(u,(—1)) is a Cartan involution;

(c) u,(—1) does not project ta in any simple factor o6 .

Conversely, leG be a real adjoint algebraic group, and let U; — G satisfy (a), (b),
and (c). Then the sdb of conjugates of: by elements off(R)™ has a natural structure of
a hermitian symmetric domain for whigh(R)™ = Hol(D)* andu(—1) is the symmetry
at u (regarded as a point oD).

PROOF(SKETCH): Let D be a hermitian symmetric domain, and ¢etbe the associated
group [L.79). ThenG(R)*/K, = D whereK, is the group fixingp (sedl.6). Forz € Uy,
up(z) acts on theéR-vector space

Lie(G)/Lie(K,) =T,D

as multiplication byz, and it acts on Li€K),) trivially. From this, (a) follows.

The symmetry, at p andu,(—1) both fix p and act as-1 on 7, D (sedl.1]); they are
therefore equall.19). It is known that the symmetry at a point of a symmetric space gives
a Cartan involution ofr if and only if the space has negative curvature (see Helgason 1978,
V 2; the real form ofG defined by asl, is that attached to the compact dual of the symmetric
space). Thus (b) holds.

Finally, if the projection of«(—1) into a simple factor oty were trivial, then that factor
would be compact (by (b); séelZ), andD would have an irreducible factor of compact
type.

For the converse, leb be the set of7 (R)*-conjugates of:. The centralizeiX, of u
in G(R)* is contained in{g € G(C) | g = u(—1) - g - u(—1)~1'}, which, according to
(b), is compact. AK,, is closed, it also is compact. The equalily= (G(R)+/Ku) ‘U
endowsD with the structure of smooth (even real-analytic) manifold. For this structure,
the tangent space tb atu,

T,D = Lie(G)/ Lie(Ky),

which, because of (a), can be identified with the subspace ofl)ieon whichu(z) acts as

z (seell?)). This endowsl, D with aC-vector space structure for whiettz), z € Uy, acts

as multiplication byz. BecauseD is homogeneous, this gives it the structure of an almost-
complex manifold, which can be shown to integrable (Wolf 1984, 8.7.9). The action of
K, on D defines an action of it off,, D. BecauseX, is compact, there is & ,-invariant
positive definite form o7, D (se€l.18), and becausé¢ = u(i) € K,, any such form will

have the hermitian propertif),. Choose one, and use the homogeneityDofo move it

to each tangent space. This will makeinto a hermitian symmetric space, which will be

a hermitian symmetric domain because each simple factor of its automorphism group is a
noncompact semisimple group (because of (b,c)). O

COROLLARY 1.22 There is a natural one-to-one correspondence between isomorphism
classes of pointed hermitian symmetric domains and f@irs:) consisting of a real ad-
joint Lie group and a nontrivial homomorphismU; — G(R) satisfying (a), (b), (c).

ExAMPLE 1.23 Letu: U; — PSL(R) be asin[[.I0. Thenu(—1) = (_9 {) and we saw
in[L.18that adi(—1) is a Cartan involution of S, hence also of PSL
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Classification of hermitian symmetric domains in terms of dynkin dia-
grams

Let G be a simple adjoint group ov&, and letu be a homomorphisriy; — G satisfying
(a) and (b) of Theoredl.21 By base extension, we get an adjoint gratip, which is
simple because it is an inner form of its compact f8frand a cocharacter = uc of G¢
satisfying the following condition:

(*) in the action ofG,, on Lie(G¢) defined by adb u, only the characters
z,1,z7! occur.

PROPOSITION1.24 The map(G,u) — (Gc,uc) defines a bijection between the sets of
isomorphism classes of pairs consisting of
(a) a simple adjoint group oveR and a conjugacy class af: U; — H satisfying
(I.Z23a,b), and

(b) a simple adjoint group ovet and a conjugacy class of cocharacters satisfying (*).

PROOF. Let (G, ) be as in (b), and let — g denote complex conjugation a&(C)
relative to the unique compact real form@f(cf. [L.16). There is a real forn#/ of G such
that complex conjugation o (C) = G(C)isg > u(—=1)-g- u(=1)~1, andu =g u|U;
takes values if{ (R). The pair(H, u) is as in (a), and the mar, u) — (H,u) is inverse
to (H,u) — (Hc,uc) onisomorphism classes. O

Let G be a simple algebraic grodp Choose a maximal tord§in G and a baséx;);c;
for the roots ofG relative to7". Recall, that the nodes of the dynkin diagram(6f, ')
are indexed by . Recall also (Bourbaki 1981, VI 1.8) that there is a uni¢ighest) root
& = Y _n;a; such that, for any other rodt m;«;, n; > m; all i. An q; (or the associated
node) is said to bepecialif n; = 1.

Let M be a conjugacy class of nontrivial cocharacters&satisfying (*). Because all
maximal tori of G are conjugate)M has a representative i, (7') C X,.(G), and because
the Weyl group acts simply transitively on the Weyl chambers (Humphreys 1972, 10.3)
there is a unique representatiudor M such thate;, u) > 0 for all i € 1. The condition
(*) is thaf® (o, u) € {1,0,—1} for all rootsa. Sincep is nontrivial, not all the values
(a, ;1) can be zero, and so this condition implies tk@t ) = 1 for exactly onei € 1,
which must in fact be special (otherwige, ) > 1). Thus, theM satisfying (*) are in
one-to-one correspondence with the special nodes of the dynkin diagram. In conclusion:

THEOREM1.25 The isomorphism classes of irreducible hermitian symmetric domains are
classified by the special nodes on connected dynkin diagrams.

The special nodes can be read off from the list of dynkin diagrams in, for example,
Helgason 1978, p477. In the following table, we list the number of special nodes for each

type:

Type Ap | By | Cy | Dy | Eg | E7 | Eg | Fs | Gy
n 1 1 3 2 1 0 0 |0

BIf G¢ is not simple, sayGe = Gi x Ga, thenG = Res/r(G1) and any inner form of7 is also the
restriction of scalars of &-group; but such a group can not be compact (look at a subtorus).
16The n with this property are sometimes said torhsuscule(cf. Bourbaki 1981, pp226-227).
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In particular, there are no irreducible hermitian symmetric domains of BgeFs, or G,

and, up to isomorphism, there are exactlyf type E¢ and1 of type E. It should be noted

that not every simple real algebraic group arises as the automorphism group of a hermitian
symmetric domain. For example, Pgarises in this way only for = 2.

NOTES. For introductions to smooth manifolds and riemannian manifolds, see Boothby
1975 and Lee 1997. The ultimate source for hermitian symmetric domains is Helgason
1978, but Wolf 1984 is also very useful, and Borel 1998 gives a succinct treatment close
to that of the pioneers. The present account has been influenced by Deligree&lfl’3
Deligne 1979.
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2 Hodge structures and their classifying spaces

We describe various objects and their parameter spaces. Our goal is a description of hermi-
tian symmetric domains as the parameter spaces for certain special hodge structures.

Reductive groups and tensors

Let G be a reductive group over a fiekdof characteristic zero, and let G — GL(V) be
arepresentation @¥. Thecontragredientor dual p of p is the representation @f on the
dual vector spac® ¥ defined by

(P¥(g)- NH) = f(p(g™")-v), geG, feVveV.

A representation is said to Iself-dualif it is isomorphic to its contragredient.
An r-tensorof V' is a multilinear map

t:Vx---xV —>k (r-copiesofl).
For anr-tensort, the condition

t(gvla--'agvr):(Ub"-avr): a”viEV,

on g defines a closed subgroup of Gt),; of GL(V'). For example, if is a nondegenerate
symmetric bilinear formVV x V' — k, then GL(V), is the orthogonal group. For a sEt
of tensors of¥’, (),.y GL(V); is called thesubgroup ofGL(V) fixing the € T'.

PrRoOPOSITION2.1. For any faithful self-dual representatian — GL(V') of G, there exists
a finite setl" of tensors of” such thatG is the subgroup o&L(V) fixing thet € T'.

PrRoOOF. In Deligne 1982, 3.1, it is shown there exists a possibly infinite7setith this
property, but, becaus@ is noetherian as a topological space (i.e., it has the descending
chain condition on closed subsets), a finite subset will suffice. O

PROPOSITION2.2. Let G be the subgroup d&L (V) fixing the tensors € T. Then
Lie(G) = {g € End(V) | >iti,....gvj,...,v,) =0, alteT, v e V.

PROOF. The Lie algebra of an algebraic group can be defined to be the kernel of
G(k[]) — G(k). Herekle] is the k-algebra withe? = 0. Thus LigG) consists of
the endomorphisms+ ge of V (k[¢]) such that

t((1+ ge)vy, (1 + ge)vy,...) =t(vy,v2,...), alteT,v;eV.

On expanding this and cancelling, we obtain the assertion. O

Flag varieties

Fix a vector spac& of dimensiorw over a fieldk.
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The projective spaceP(1)

The setP(V') of one-dimensional subspacgsof V' has a natural structure of an algebraic
variety: the choice of a basis féf determines a bijectioR(V) — P"~!, and the structure
of an algebraic variety inherited (1) from the bijection is independent of the choice of
the basis.

Grassmann varieties

Let G4(V) be the set ot/-dimensional subspaces &f, some0 < d < n. Fix a basis

for V. The choice of a basis fd#’ then determines d x n matrix A(W) whose rows

are the coordinates of the basis elements. Changing the basis foultiplies 4(17) on

the left by an invertiblel x d matrix. Thus, the family of minors of degrekof A(W)

is well-determined up to multiplication by a nonzero constant, and so determines a point

P(W) in P(a)=1. The mapW — P(W):Gu(V) — Pd)=! identifiesG4(V) with a
closed subvariety ap(a)-! (AG, 5.38). A coordinate-free description of this map is given
by

W ANW:Ga(V) - PN\ V). (13)

Let.S be a subspace d¢f of complementary dimension—d, and letG; (V) s be the set
of W e G4(V)suchthatV NS = {0}. FixaW, € G4(V)s, sothatV = W& S. For any
W e G4(V)g, the projection — W, given by this decomposition is an isomorphism,
and soW is the graph of a homomorphisii, — S

W s < (w,s)eW.
Conversely, the graph of any homomorphigp — S liesinG4(V)s. Thus,
Gd(V)S = Hom(Wo, S) (14)

When we regards;(V)s as an open subvariety éf;(V), this isomorphism identifies it
with the affine spacé\(Hom(W,, S)) defined by the vector space HOWY, S). Thus,
G4(V) is smooth, and the tangent spacéig(V) at Wy,

Twy(Ga(V)) = Hom(Wo, S) = Hom(Wo, V/ Wo). (15)

Flag varieties

The above discussion extends easily to chains of subspacesl +etd,,...,d,) be a
sequence of integers with> d; > --- > d, > 0, and letG4(V') be the set of flags

F: VOVis...oV >0 (16)
with V' a subspace of of dimensiond;. The map

Ga(V) FH_WO’ [1;Ga, (V) C HiP(/\diV)
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realizesGy(V) as a closed subset ¢f;G4, (V) (Humphreys 1978, 1.8), and so it is a
projective variety. The tangent spacedg(V) at the flagF consists of the families of
homomorphisms

Vi V/VI 1<ic<r, (17)

satisfying the compatibility condition
@'V =o' mod VT

ASIDE2.3. Abasisey, ..., e, for V isadapted tahe flagF if it contains a basis,, ... ., ¢;,
for eachV’. Clearly, every flag admits such a basis, and the basis then determines the flag.
Because GLV') acts transitively on the set of bases 10r it acts transitively onG4(V).
For a flagF, the subgroupP (F) stabilizing F' is an algebraic subgroup of GL), and the
map
g~ gFo:GL(V)/P(Fo) — Gu(V)

is an isomorphism of algebraic varieties. Becalg€l) is projective, this shows that
P(Fy) is a parabolic subgroup of GLY).

Hodge structures

Definition

For a real vector spadé, complex conjugation o (C) =4 C ®g V' is defined by
IQU=ZQu.

An R-basisey, . .., ey, for V is also aC-basis forV (C) and) “a;e; = > aje;.
A hodge decompositionf a real vector spacF is a decomposition

vo) = @ v

D.qELXL

such thatV’?-? is the complex conjugate df 7-9. A hodge structurds a real vector space
together with a hodge decomposition. The set of pgirsy) for which V24 +£ 0 is
called thetypeof the hodge structure. For eazzhEBerq:,, VP-4 |s stable under complex
conjugation, and so is defined ovRy i.e., there is a subspadg of V such thatV,(C) =
Dpig=n V77 (see AG 14.5). Thel = P, V,, is called theweight decompositiowf V.
If V =1V,,thenV is said to have weight.

An integral (resp.rational) hodge structures a freeZ-module of finite rank” (resp.
Q-vector space) together with a hodge decompositiori@) such that the weight decom-
position is defined ove.

EXAMPLE 2.4. Let J be a complex structure on a real vector spd¢and defind’~!-° and
V%~1to be thet+i and —i eigenspaces of acting onV (C). ThenV (C) = V1.0 V%1

is a hodge structure of type-1,0), (0, —1), and every real hodge structure of this type
arises from a (unique) complex structure. Thus, to give a rational hodge structure of type
(—=1,0), (0, —1) amounts to giving &-vector spacd’ and a complex structure dn(R),

and to give an integral hodge structure of typd, 0), (0, —1) amounts to giving &-vector
spacel and a latticeA C V (i.e., aZ-submodule generated by &abasis forl).



26 2 HODGE STRUCTURES AND THEIR CLASSIFYING SPACES

EXAMPLE 2.5, Let X be a nonsingular projective algebraic variety oer Then H =
H"(X,Q) has a Hodge structure of weightfor which H?-¢4 ¢ H"(X,C) is canonically
isomorphic toH?(X, 27) (Moisin 2002, 6.1.3).

EXAMPLE 2.6. Let Q(m) be the hodge structure of weigh2m on the vector spac®.
Thus,(Q(m))(C) = Q(m)~™~". DefineZ(m) andR(m) similarly®?

The hodge filtration

Thehodge filtrationassociated with a hodge structure of weigls
F*: -.DF’OF!M' ... FP=@,.,V"*cV(Q).
Note that forp + ¢ = n,

F1= @0, V7 = DoV = B,V

and so o
VPie = FPN F4, (18)

EXAMPLE 2.7. For a hodge structure of tyge-1, 0), (0, —1), the hodge filtration is
(F'>F°>F) =W >V%150).

The obviousR-linear isomorphism¥V — V(C)/F° defines the complex structure df

noted in[2.4).

Hodge structures as representations d

Let S be C* regarded as a torus ovRr It can be identified with the closed subgroup of
GL,(R) of matrices of the forff ( 4, £). ThenS(C) ~ C* x C* with complex conjuga-
tion acting by the rul€zy, z;) = (z2,z7). We fix the isomorphisr§¢: = G,, x G, so that
S(R) — S(C) isz — (z,z), and we define the weight homomorphiamG,, — S so that
Gm(R) —> S(R) isr > r~1: R* — CX.

The characters d¢ are the homomorphismsy, z;) > z{z2, (r,s) € Z x Z. Thus,
X*(S) = Z x Z with complex conjugation acting ag,¢) — (¢, p), and to give a
representation dd on a real vector spacé amounts to giving & x Z-grading of V' (C)
such thatV 74 = V47 for all p,q (see 9. Thus, to give a representation $fon a
real vector spacd’ is the same as to give a hodge structurelan Following Deligne
1979, 1.1.1.1, we normalize the relation as follows: the homomorphisin— GL(V)
corresponds to the hodge structureloisuch that

he(zi,22)v =z Pz, v forv e V74, (19)

1t would be a little more canonical to take the underlying vector spaé@(of) to be (27i)™Q because
this makes certain relations invariant under a change of the choiceaf—1 in C.

18This is the transpose of the matrix of+ i» acting onC relative to the basi$, i, but it gives the correct
action on the tangent space, namelyzjf= 1, then/(z) acts as? (sedL.10).
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In other words,
h(z)v=z"Pz 9% forv e VP41, (20)

Note the minus signs! The associated weight decomposition has
Vi={veV]iwy(r)v=r"}, wp=houw. (22)
Let iy, be the cocharacter of GL') defined by

pn(z) = he(z,1). (22)

Then the elements QF,fV are sums ob € V(C) satisfyingu, (z) v = z7"v for some
r = pP-

To give a hodge structure on(@vector spacd’” amounts to giving a homomorphism
h:S — GL(V(R)) such thatw, is defined ovefQ.

ExAMPLE 2.8. By definition, a complex structure on a real vector space is a homomor-
phismi: C — Endg(V) of R-algebras. Then|C*:C* — GL(V) is a hodge structure of
type(—1,0), (0, —1) whose associated complex structure @&eiis that defined by: 12

EXAMPLE 2.9. The Hodge structuré€)(m) corresponds to the homomorphigmS —
Gmgr, h(z) = (z2)™.

The Weil operator

For a hodge structur@’, /), theR-linear mapC = h(i) is called théWeil operator Note
thatC acts ag?—”? on V 7+ and thatC? = h(—1) acts ag—1)" on V.

ExamMPLE 2.10. If V is of type(—1,0), (0, —1), thenC coincides with the/ of (2.4). The
functor (V, (V=1°, v%=1)) s (V, C) is an equivalence from the category of real hodge
structures of typ€—1, 0), (0, —1) to the category of complex vector spaces.

Hodge structures of weighto.

Let V be a hodge structure of weight ThenV %-° is invariant under complex conjugation,
and soV %0 = V%(C), whereV? = V%9 N ¥ (see AG 14.5). Note that

V% = Ker(V — V(C)/F°). (23)

19This partly explains the signs if[@); see also Deligne 1979, 1.1.6. Following Deligne 1978.12,
and Deligne 1979, 1.1.1.k¢(z1, z2)vP? = zl_pzz_qvp’q has become the standard convention in the theory
of Shimura varieties. When one identifies complex structures on a real vector space with Hodge structures
of type (1,0), (0, 1) (or abelian varieties with hodge structures usig rather thanH,), then it is more
convenient to use the conventidg(zy, z2)v?? = zfzé’vl”q (note the switch). I tried this in the lectures, but
have abandoned it because it causes too much confusion. Following Deligree 297%.1, the convention
he(z1, z2)vP4 = 2P Z4vP4 is commonly used in hodge theory (e.g., Voisin 2002, p147).
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Tensor products of hodge structures

Thetensor product of hodge structureB and W of weightm andn is a hodge structure
of weightm + n:

Vv b2 W» (V ® W)p,q = @r+r’=P,s+s’=qu’s ® V”/»S/‘
In terms of representations 8f

(Vohy) @ W, hw) =(V @ W, hy ® hy).

Morphisms of hodge structures

A morphism of Hodge structures is a linear mdp— W sendingV #:¢ into W?-4 for all
p,q. In other words, it is a morphisitV, hy) — (W, hy) of representations .
Hodge tensors

Let R = Z, Q, or R, and let(V, h) be anR-hodge structure of weight. A multilinear
form¢: V" — R is ahodge tensoif the map

VeVe---@V — R(—nr/2)
it defines is a morphism of hodge structures. In other wardsa hodge tensor if
t(h(z)vy, h(2)va,...) = (22) "%  tg(vy,02,...), @ll z € C, v; € V(R),

or if
Yopi > qi = P i) =0, P e VPR (24)
Note that, for a hodge tensor

t(Cvy,Cuy,...) =t(vy,va,...).
ExAmMPLE 2.11 Let (V, h) be a hodge structure of tyge-1, 0), (0, —1). A bilinear form
t:V x V — Ris ahodge tensor if and onlyif Ju, Jv) = t(u,v) forall u,v € V.

Polarizations

Let (V,h) be a hodge structure of weight A polarization of (V, /) is a hodge tensor
Y:V x V — Rsuch thatyc (u, v) =q ¥ (u, Cv) is symmetric and positive definite. Then
Y Is symmetric or alternating accordingass even or odd, because

w(U> l/l) = W(CU, CZ/I) = WC(CU, u) = WC(M,CU) = W(u, sz) = (—1)n¢(“: U)-

More generally, letV, h) be an R-hodge structure of weight where R is Z or Q. A
polarizationof (V, k) is a bilinear formy: V' x V — R such that/ is a polarization of
(V(R), h).
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EXAMPLE 2.12 Let (V,h) be anR-hodge structure of typé—1,0), (0, —1) with R =
Z, Q, or R, and letJ = h(i). A polarization of(V, &) is an alternating bilinear form
¥:V x V — Rsuch that, fou,v € V(R),
WR(J“, JU) = 1//(“’ U), and
Yr(u, Ju) > 0if u # 0.

(These conditions imply thatg (uz, Jv) is symmetric.)

EXAMPLE 2.13 Let X be a nonsingular projective variety ow@r The choice of an embed-
ding X — PV determines a polarization on the primitive part/f (X, Q) (Voisin 2002,
6.3.2).

Variations of hodge structures

Fix a real vector spac&, and letS be a connected complex manifold. Suppose that,
for eachs € §, we have a hodge structukg on V' of weightn (independent of). Let
Vot =y andFf = Ffv = FV.

The family of hodge structurdgé;) s onV is said to becontinuousif, for fixed p and
g, the subspac®;/"? varies continuously with. This means that the dimensidiip, ¢) of
Vi is constant and the map

s> VPO S — Gap.g(V)

is continuous.
A continuous family of hodge structur€g,’>?), is said to bénolomorphicif the hodge
filtration F;? varies holomorphically witly. This means that the map

st F: S — Gy(V)

is holomorphic. Herel = (..., d(p),...) whered(p) =dim F’V =" _ d(r,q). Then
the differential ofy ats is aC-linear map

@@
dgs: TS — Tra(Ga(V)) C @, Hom(F?, V/FP).
If the image ofdy;, is contained in
@B, Hom(F?, F}~'/FP),

for all s, then the holomorphic family is calledvariation of hodge structures or¥.
Now let 7" be a family of tensors ol including a nondegenerate bilinear forgnand
letd:Z x Z — N be a function such that

d(p,q) = 0 foralmost allp, g;

d(q,p) =d(p,q);
d(p,q) =0unlessp +¢g = n.

DefineS(d, T) to be the set of all hodge structure®n V' such that
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o dimV,>? =d(p,q) forall p,q;
o eachr € T is a hodge tensor far;
o ty is a polarization fot.
ThenS(d, T') acquires a topology as a subspacmp’q)¢0Gd(p,q)(V).

THEOREM2.14 LetS* be a connected component$d, T').
(@) If nonempty,S* has a unique complex structure for whi¢h,) is a holomorphic
family of hodge structures.
(b) With this complex structureS* is a hermitian symmetric domain(iy) is a variation
of hodge structure®
(c) Every irreducible hermitian symmetric domain is of the fa&¥mfor a suitableV’, d,
andT.

PROOF(SKETCH). (a) LetS™ = S(d, T)*. Because the hodge filtration determines the
hodge decomposition (s€&g)), the mapx +— F: S+ £ Gq4(V) is injective. LetG be
the smallest algebraic subgroup of GL) such that

nS)ycG, alhest (25)

(take G to be the intersection of the algebraic subgroups of IGLwith this property),
and leth, € S*. For anyg € G(R)*, gh,g~! € S+, and it can be shown that the map
g g-h,-g7:GR)T — St is surjective:

ST =G®R)* - h,.

The subgrouX, of G(R)* fixing 4, is closed, and s6'(R)* /K, is a smooth (in fact, real
analytic) manifold. Therefore§ ™ acquires the structure of a smooth manifold from

St = (G(R)+/Ka) che = G(R)+/Ko-

. ho .
Letg = Lie(G). FromS — G A g C EndV), we obtain Hodge structures grand
End(V). Clearly,g® = Lie(K,) and soT;,, ST = g/g%. In the diagram,

T, ST= g/g° —— End(V)/End(V)*
@ = @3 = (26)
g(C)/F° —— EndV(C))/F°® =T},Ga(V).

the map from top-left to bottom-right ig/¢);,, which therefore map%;, S+ onto a com-
plex subspace of},Gq4(V). Since this is true for alk, € S*, we see thap identifies
S+ with an almost-complex submanifolg; (7). It can be shown that this almost-complex

20In the preliminary version, | claimed that this was “if and only if”, but, as Fritzridann pointed out to
me, the “only if” is not true. For example, 1&t = R? with the standard alternating form. Then the functions
d(1,0) = d(0,1) = 1 andd(5,0) = d(0,5) = 1 give the same setS(d, T') but only the first is a variation
of hodge structures. Thegiven naturally by the secondlis the fifth power of that given by the firgt, and
u(z) doesn’t act as multiplication by on the tangent space.
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structure is integrable, and so provid&$ with a complex structure for which is holo-
morphic. Clearly, this is the only (almost-)complex structure for which this is true.

(b) See Deligne 1979, 1.1.

(c) Given an irreducible hermitian symmetric dom@choose a faithful self-dual rep-
resentatiorG — GL(V) of the algebraic grougr associated withD (as inll.4). Because
V is self-dual, there is a nondegenerate bilinear fayion V' fixed by G. Apply Theorem
[2.1to find a set of tensor¥ such thatG is the subgroup of GU/) fixing ther € T'. Let

—z/

h, be the composit8 T U, hd GL(V) with u, as in [L.9). Then,A, defines a hodge
structure onV for which ther € T are hodge tensors anglis a polarization. One can
check thatD is naturally identified with the component 8{d, T))* containing this hodge
structuré? O

REMARK 2.15 The mapS* — G4(V) in the proof is an embedding of smooth manifolds
(injective smooth map that is injective on tangent spaces and Svap®mmeomorphically
onto its image). Therefore, if a smooth mé&p— G4(V') factors into

T -5 St — Gy(V),

thena will be smooth. Moreover, if the map — Gq4(V) is defined by a holomorphic
family of hodge structures off, and it factors througlS+, thena will be holomorphic.

AsSIDE 2.16 As we noted in[2.5), for a nonsingular projective variefiy overC, the co-
homology groupH”(V (C), Q) has a natural Hodge structure of weightNow consider

a regular mapr: V. — S of nonsingular varieties whose fibrés (s € S) are nonsingu-

lar projective varieties of constant dimension. The vector sp&fgd/, Q) form a local
system ofQ-vector spaces off, and Griffiths showed that the Hodge structures on them
form a variation of hodge structures in a slightly more general sense than that defined above
(Voisin 2002, Proposition 10.12).

NOTES. TheoreniZ. 14is taken from Deligne 1979.

21Given a painV, (V 7:4), ,, T), defineL to be the sub-Lie-algebra of E(H) fixing thet € T, i.e., such
that

Yot ., 80i,...,v,) =0.
Then L has a hodge structure of weight We say that(V, (V#?9),,,T) is specialif L is of type
(—1,1),(0,0), (1,—1). The family S (d, T)* containing(V, (V?4), 4, T) is a variation of hodge structures
if and only if (H, T') is special.
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3 Locally symmetric varieties

In this section, we study quotients of hermitian symmetric domains by certain discrete
groups.

Quotients of hermitian symmetric domains by discrete groups

PROPOSITION3.1 Let D be a hermitian symmetric domain, and [étbe a discrete sub-
group ofHol(D)™*. If T is torsion free, thed" acts freely onD, and there is a unique
complex structure o'\ D for which the quotient map: D — TI'\ D is a local isomor-
phism. Relative to this structure, a mapfrom I'\ D to a second complex manifold is
holomorphic if and only it o 7 is holomorphic.

PROOF. Let T be a discrete subgroup of H@)*. According to [.5, [1.6), the stabilizer
K, of any pointp € D is compactang — gp:Hol(D)*/K, — D is ahomeomorphism,
and so (MF, 2.5):

(@) foranyp € D,{g €' | gp = p}isfinite;

(b) for any p € D, there exists a neighbourhodd of p such that, forg € T', gU is

disjoint fromU unlessgp = p;
(c) for any pointsp, g € D not in the samé™-orbit, there exist neighbourhoods of p
andV of g suchthagU NV =@ forallg e T.
Assumel is torsion free. Then the group in (a) is trivial, and Baacts freely onD.
Endow I'\ D with the quotient topology. U and V' are as in (c) , themU and =V
are disjoint neighbourhoods afp andzg, and sol'\ D is separated. Lef € '\ D, and
let p € 77 1(¢). If U is as in (b), then the restriction af to U is a homeomorphism
U — nU, and it follows thati"\ D a manifold.
Define aC-valued functionf on an open subsét of I'\ D to be holomorphic iff o 7
is holomorphic ont~!U. The holomorphic functions form a sheaf by D for which  is
a local isomorphism of ringed spaces. Therefore, the sheaf defines a complex structure on
I'\ D for which z is a local isomorphism of complex manifolds.
Finally, letp: T\ D — M be a map such that o 7 is holomorphic, and leff' be a

holomorphic function on an open subdétof M. Then f o ¢ is holomorphic because
f o ¢ o misholomorphic, and s is holomorphic. [

WhenT is torsion free, we often writé® (I") for I'\ D regarded as a complex manifold.
In this case,D is the universal covering space Of(I") and T is the group of covering
transformations; moreover, for any poimtof D, the map

g — [image underr of any path fromp to gp]: T’ — 7 (D(T"), wp)

is an isomorphism (Hatcher 2002, 1.40).

Subgroups of finite covolume

We shall only be interested in quotients Bfby “big” discrete subgroup¥ of Aut(D)*.
This condition is conveniently expressed by saying thab has finite volume. By defini-
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tion, D has a riemannian metrigcand hence a volume eleme®t in local coordinates

= /det(g;; (x))dx' A ... Adx".

Sinceg is invariant under”, so also is2, and so it passes to the quotidntD. The
condition is that/y., , @ < oo.
For example, letD = H; and letl" = PSL,(Z). Then

F={zeH|lz|>1, -1<%Rz<1}

is a fundamental domain fdr and

/ // dxdy / /1/2 dxdy /°° dy
— < oo.
r\D F V3/2J-1)2 V32 V2

On the other hand, the quotient&f; by the group of translations+— z + n, n € Z, has
infinite volume, as does the quotient&f; by the trivial group.

Areal Lie groupG has a left invariant volume element, which is unique up to a positive
constant (cf. Boothby 1975, VI 3.5). A discrete subgrdupf G is said to havdinite
covolumeif I'\G has finite volume. For a torsion free discrete subgrbupf Hol(D)™*,
an application of Fubini’s theorem shows thatHol(D)* has finite volume if and only if
'\ D has finite volume (Witte 2001, Exercise 1.27).

Arithmetic subgroups

Two subgroupsS; andS, of a groupH arecommensurablef S; N S, has finite index in
both S, andS,. For example, two infinite cyclic subgroufs andZb of R are commen-
surable if and only itz/b € Q*. Commensurability is an equivalence relaffén.

Let G be an algebraic group ovép. A subgroupl’ of G(Q) is arithmetic if it is
commensurable witli (Q) N GL,(Z) for some embeddif§ G — GL,. Itis then com-
mensurable witlG (Q) N GL,,/(Z) for every embedding: — GL,, (Borel 1969, 7.13).

PROPOSITION3.2. Let p: G — G’ be a surjective homomorphism of algebraic groups
overQ. If I' ¢ G(Q) is arithmetic, then so also is(I") C G'(Q).

PrROOF. Borel 1969, 8.9, 8.11, or Platonov and Rapinchuk 1994, Theorem 4.1, p204.

An arithmetic subgroup’ of G(Q) is obviously discrete itz (R), but it need not have
finite covolume; for examplel’ = {£1} is an arithmetic subgroup @,,(Q) of infinite
covolume inR*. Thus, ifI" is to have finite covolume, there can be no nonzero homomor-
phismG — G,,. For reductive groups, this condition is also sufficient.

22)f H and H' are subgroups of finite index in a grogh then H N H’ has finite index ind (because
H/H N H — G/H' is injective). It follows that if H; and H; are each commensurable wifi,, then
H; N Hy N Hj has finite index in each off; N H, and H, N H; (and therefore inil; and H3). Hence,
H; N H; has finite index in each off; and H3.

Z3Here, embedding means injective homomorphism.
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THEOREM3.3. Let G be a reductive group ovép, and letl" be an arithmetic subgroup of
G(Q).
(a) The spacd™\ G (R) has finite volume if and only Hom(G, G,,;) = 0 (in particular,
I'\G (R) has finite volume i€ is semisimple$3
(b) The spacd™\G (R) is compact if and only iHom(G, G,,) = 0 and G(Q) contains
no unipotent element (other thap

PROOF. Borel 1969, 13.2, 8.4, or Platonov and Rapinchuk 1994, Theorem 4.13, p213,
Theorem 4.12, p210. [The intuitive reason for the condition in (b) is that the rational
unipotent elements correspond to cusps (at least in the case, @cBhg onH,), and so
no rational unipotent elements means no cusps.] O

EXAMPLE 3.4. Let B be a quaternion algebra ov@rsuch thatB ®g R ~ M»(R), and
let G be the algebraic group ovép such thatG(Q) is the group of elements iB of
norm 1. The choice of an isomorphislB ®y R — M, (R) determines an isomorphism
G(R) — SL,(R), and hence an action &f(R) onH;. LetI" be an arithmetic subgroup
of G(Q).

If B ~ M,(Q), thenG =~ SL,, which is semisimple, and sbB\ SL,(R) (hence also
I'\H;) has finite volume. However, S(Q) contains the unipotent elemefy} 1 ), and so
I'\ SL,(R) is not compact.

If B % M,(Q), itis a division algebra, and s6(Q) contains no unipotent element
= 1 (for otherwise B* would contain a nilpotent element). Therefoié\,G (R) (hence
alsoI'\'H) is compact

Let k be a subfield ofC. An automorphisnw of a k-vector spacé’ is said to beneat
if its eigenvalues irC generate a torsion free subgroup®@f (which implies thaix does
not have finite order). Let’ be an algebraic group ové&r. An elementg € G(Q) is neat
if p(g) is neat for one faithful representatieh<— GL(V), in which casep(g) is neat for
every representatiop of G defined over a subfield @ (apply Waterhouse 1979, 3.5). A
subgroup oG (Q) is neatif all its elements are.

PROPOSITION3.5. Let G be an algebraic group ove®, and letI" be an arithmetic sub-
group of G(Q). Then,I" contains a neat subgroup’ of finite index. Moreover™ can
be defined by congruence conditions (i.e., for some embeddirg GL, and integern,
I"M={gel|g=1modN}).

PROOF. Borel 1969, 17.4. ]
Let H be a connected real Lie group. A subgrdupf H is arithmetic if there exists

an algebraic group overQ and an arithmetic subgrodpy of G (Q) such tha"o NG (R)*
maps ontd” under a surjective homomorphiséR)* — H with compact kernel.

2Recall (cf. the Notations) that Hoi@, G,,) = 0 means that there is no nonzero homomorphism>
Gy, defined ovef.
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PROPOSITION3.6. Let H be a semisimple real Lie group that admits a faithful finite-
dimensional representation. Every arithmetic subgrodupf H is discrete of finite covol-
ume, and it contains a torsion free subgroup of finite index.

PROOF. Leta: G(R)t - H andTy c G(Q) be as in the definition of arithmetic sub-
group. Because Kér) is compactg is proper (Bourbaki 1989, | 10.3) and, in particular,
closed. BecausE, is discrete inG (R), there exists an opelii C G(R)* whose intersec-
tion with Iy is exactly the kernel of y N G(R)* — T'. Nowa(G(R)* \ U) is closed in
H, and its complement intersedisin {1r}. Therefore,I' is discrete inH. It has finite
covolume becausEy\G (R)* maps ontd™\ H and we can apply33a). LetI'; be a neat
subgroup ofl’y of finite index B.5). The image of"; in H has finite index inC", and its
image under any faithful representationfis torsion free. ]

REMARK 3.7. There are many nonarithmetic discrete subgroup ip(BL of finite co-
volume. According to the Riemann mapping theorem, every compact riemann surface of
genusg > 2 is the quotient ofH{; by a discrete subgroup of PG(R)* acting freely on
'H;. Since there are continuous families of such riemann surfaces, this shows that there are
uncountably many discrete cocompact subgroups inf&)+ (therefore also in SL(R)),
but there only countably many arithmetic subgroups.

The following (Fields medal) theorem of Margulis shows that $exceptional in
this regard: letl" be a discrete subgroup of finite covolume in a noncompact simple real
Lie group H; thenT is arithmetic unles¢{ is isogenous to SQ,n) or SU1,n) (see
Witte 2001, 6.21 for a discussion of the theorem). Note that, becaus® pis isogenous
to S((1, 2), the theorem doesn't apply to it.

Brief review of algebraic varieties

Let k& be a field. Anaffine k-algebrais a finitely generated-algebrad such thatd Q; k' is
reduced (i.e., has no nilpotents). Such an algebra is itself reduced, andkwikererfect every
reduced finitely generatdd-algebra is affine.

Let 4 be an affinec-algebra. Define speqm) to be the set of maximal ideals ih endowed
with the topology having as basi(f), D(f) = {m | f ¢ m}, f € A. There is a unique sheaf
of k-algebrag) on specni4) such thatO(D(f)) = Ay forall /. HereAy is the algebra obtained
from A by inverting /. Any ringed space isomorphic to a ringed space of the form

SpecniA) = (specntA), O)

is called araffine varietyoverk. The stalk ain is the local ring4,, and so Spec) is a locally
ringed space.

This all becomes much more familiar whénis algebraically closed. When we writ¢ =
k[X1,...,Xx]/a, the space spedm) becomes identified with the zero setadh k" endowed with
the zariski topology, and becomes identified with the sheafofvalued functions on spedid)
locally defined by polynomials.

A topological spacé” with a sheaf ofk-algebrag) is aprevarietyoverk if there exists a finite
covering(U;) of V by open subsets such thdf;, O|U;) is an affine variety ovek for all i. A
morphism of prevarieties oveék is simply a morphism of ringed spaceskiohlgebras. A prevariety
V overk is separatedf, for all pairs of morphisms ok-prevarietiesy, 8: Z = V, the subset o
on whicha andg agree is closed. Aariety overk is a separated prevariety over



36 3 LOCALLY SYMMETRIC VARIETIES

Alternatively, the varieties over are precisely the ringed spaces obtained from geometrically-
reduced separated schemes of finite type évey deleting the nonclosed points.

A morphism of algebraic varieties is also calledegular map and the elements @?(U) are
called theregular functionson U'.

For the variety approach to algebraic geometry, see AG, and for the scheme approach, see
Hartshorne 1977.

Algebraic varieties versus complex manifolds
The functor from nonsingular algebraic varieties to complex manifolds

For a nonsingular variety” overC, V(C) has a natural structure as a complex manifold.
More precisely:

PrRoOPOSITION3.8. There is a unique functaV, Oy) — (V@ Opan) from nonsingular
varieties ovelC to complex manifolds with the following properties:
(a) as sets,V = V2 every zariski-open subset is open for the complex topology, and
every regular function is holomorphf&;
(b) if V = A", thenV 2@ = C" with its natural structure as a complex manifold;
(c) if : V — W is étale, therp®™: V@" — W2 is a local isomorphism.

PROOF. A regular mapp: V. — W is étale if the mapiy,: T,V — T,W is an isomor-

phism for allp € V. Note that conditions (a,b,c) determine the complex-manifold structure
on any open subvariety @f” and also on any variety that admits a@tale map to an open
subvariety ofA”. Since every nonsingular variety admits a zariski-open covering bylguch
(AG, 4.31), this shows that there exists at most one functor satisfying (a,b,c), and suggests
how to define it. ]

Obviously, a regular map: V- — W is determined by?2™ V@ — W?2" but not every
holomorphic mapl®" — W?a"is regular. For example; — e¢?:C — C is not regular.
Moreover, a complex manifold need not arise from a nonsingular algebraic variety, and
two nonsingular varietieg andW can be isomorphic as complex manifolds without being
isomorphic as algebraic varieties (Shafarevich 1994, VIII 3.2). In other words, the functor
V +— Vais faithful, but it is neither full nor essentially surjective on objects.

REMARK 3.9. The functorV — V2" can be extended to all algebraic varieties once one has
the notion of a “complex manifold with singularities”. This is calledamplex spaceFor
holomorphic functionsfi, ..., f, on a connected open subgétof C”, let V( f1,..., fr)
denote the set of common zeros of tfien U; one endowd/( fi1, ..., f,) with a natural
structure of ringed space, and then defines a complex space to be a ringedsgage

that is locally isomorphic to one of this form (Shafarevich 1994, VIII 1.5).

25These conditions require that the identity mEp— V be a map of ringed spacg¥ 2", Opan) —
(V,Oy). This map is universal.
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Necessary conditions for a complex manifold to be algebraic

3.10. Here are two necessary conditions for a complex manitdldo arise from an alge-
braic variety.
(a) It must be possible to embetll as an open submanifold of a compact complex
manfold M* in such a way that the boundaty* ~. M is a finite union of manifolds
of dimension dimM — 1.
(b) If M is compact, then the field of meromorphic functionsdMmmust have transcen-
dence degree di overC.

The necessity of (a) follows from Hironaka’s theorem on the resolution of singularities,
which shows that every nonsingular variétycan be embedded as an open subvariety of a
complete nonsingular variety* in such a way that the boundaly* ~. V' is a divisor with
normal crossings (seélfl), and the necessity of (b) follows from the fact that, whHéis
complete and nonsingular, the field of meromorphic functiond’8hcoincides with the
field of rational functions orv’ (Shafarevich 1994, VIl 3.1).

Here is one positive result: the functor

{projective nonsingular curves ov€} — {compact riemann surfaces

is an equivalence of categories (see MF, pp88-91, for a discussion of this theorem). Since
the proper zariski-closed subsets of algebraic curves are the finite subsets, we see that for
riemann surfaces the conditidB.10) is also sufficient: a riemann surfagg is algebraic
if and only if it is possible to embegd/ in a compact riemann surfadé* in such a way that
the boundaryM* ~. M is finite. The maximum modulus principle (Cartan 1963, VI 4.4)
shows that a holomorphic function on a connected compact riemann surface is constant.
Therefore, if a connected riemann surfades algebraic, then every bounded holomorphic
function onM is constant. We conclude thaf; does not arise from an algebraic curve,
because the function— g is bounded, holomorphic, and nonconstant.

For any latticeA in C, the Weierstrasg function and its derivative embed/A into
P?(C) (as an elliptic curve). However, for a lattice in C?, the field of meromorphic
functions onC?/A will usually have transcendence degree2, and soC?/A is not an
algebraic varietf® For quotients ofC¢ by a latticeA, condition B.1) is sufficient for
algebraicity (Mumford 1970, p35).

Projective manifolds and varieties

A complex manifold (resp. algebraic variety)psojectiveif it is isomorphic to a closed
submanifold (resp. closed subvariety) of a projective space. The first truly satisfying theo-
rem in the subject is the following:

THEOREM3.11(CHOW 1949). Every projective complex manifold has a unique structure
of a nonsingular projective algebraic variety, and every holomorphic map of projective
complex manifolds is regular for these structures. (Moreover, a similar statement holds for
complex spaces.)

26A complex torusC#8 /A is algebraic if and only if it admits a riemann form (&& below). WhenA is
the lattice inC? generated byl, 0), (i, 0), (0, 1), («, 8) with 8 nonreal,C?/A does not admit a riemann form
(Shafarevich 1994, VIl 1.4).
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PROOF. See Shafarevich 1994, VIl 3.1 (for the manifold case). O

In other words, the functoV’ — V2" is an equivalence from the category of (non-
singular) projective algebraic varieties to the category of projective complex (manifolds)
spaces.

The theorem of Baily and Borel

THEOREM 3.12 (BAILY AND BOREL 1966). Let D(I') = I'\D be the quotient of a
hermitian symmetric domain by a torsion free arithmetic subgrbupf Hol(D)™. Then
D(T") has a canonical realization as a zariski-open subset of a projective algebraic variety
D(I')*. In particular, it has a canonical structure as an algebraic variety.

Recall the proof forD = H;. SetH} = H; UP!(Q) (rational points on the real axis
plus the pointico). ThenI" acts onH}, and the quotienf"\’H} is a compact riemann
surface. One can then show that the modular forms of a sufficiently high weight embed
I'\'H} as a closed submanifold of a projective space. Thy®(] is algebraic, and as
I'\'H; omits only finitely many points of '\’H7, it is automatically a zariski-open subset
of I'\'H}. The proof in the general case is similar, but is much more difficult. Briefly,
D(I')* = T'\D* whereD* is the union ofD with certain “rational boundary components”
endowed with the Satake topology; again, the automorphic forms of a sufficiently high
weight mapl'\ D* isomorphically onto a closed subvariety of a projective space]aid
is a zariski-open subvariety of\ D*.

For the Siegel upper half spaé¢,, the compactificatiort{; was introduced by Sa-
take (1956) in order to give a geometric foundation to certain results of Siegel (1939), for
example, that the space of holomorphic modular formg4gnof a fixed weight is finite
dimensional, and that the meromorphic functionstopn obtained as the quotient of two
modular forms of the same weight form an algebraic function field of transcendence de-
greeg(g + 1)/2 = dimH, overC.

That the quotient™\'; of 1 by an arithmetic group’ has a projective embedding by
modular forms, and hence is a projective variety, was proved in Baily 1958, Cartan 1958,
and Satake and Cartan 1958.

The construction of{; depends on the existence of fundamental domains for the arith-
metic groupl” acting onH,. Weil (1958) used reduction theory to construct fundamental
sets (a notion weaker than fundamental domain) for the domains associated with certain
classical groups (groups of automorphisms of semsipégebras with, or without, in-
volution), and Satake (1960) applied this to construct compactifications of these domains.
Borel and Harish-Chandra developed a reduction theory for general semisimple groups
(Borel and Harish-Chandra 1962; Borel 1962), which then enabled Baily and Borel (1966)
to obtain the above theorem in complete generality.

The only source for the proof is the original paper, although some simplifications to the
proof are knowr

27For a discussion of later work, see Casselman 1997.



The theorem of Borel 39

REMARK 3.13 (@) The varietyD(I")* is usually very singular. The boundafy(I")* ~
D(T") has codimensior 2, provided PGL is not a quotient of th&-groupG giving rise
tol.

(b) The varietyD(I")* = Proj(ép,,-,4») WhereA, is the vector space of automorphic
forms for then™ power of the canonical automorphy factor (Baily and Borel 1966, 10.11).
It follows that, if PGL is not a quotient of5, then D(I")* = Proj(@,,., H°(D(T), »™))
wherew is the sheaf of algebraic differentials of maximum degreel). Without
the condition onG, there is a similar description d?(I")* in terms of differentials with
logarithmic poles (Brylinski 1983, 4.1.4; Mumford 1977).

(b) When D(T") is compact, Theoreif8.12 follows from the Kodaira embedding the-
orem (Wells 1980, VI 4.1, 1.5). Nadel and Tsuji (1988, 3.1) extended this to th¢Eg
having boundary of dimensioh and Mok and Zhong (1989) give an alternative prove of
Theorem3.12 but without the information on the boundary given by the original proof.

An algebraic varietyD(I") arising as in the theorem is calledacally symmetric va-
riety (or anarithmetic locally symmetric varietyor anarithmetic variety but not yet a
Shimura variety).

The theorem of Borel

THEOREM3.14(BOREL1972).Let D(T") and D(I")* be as in[B.12 — in particular,T" is
torsion free and arithmetic. Let be a nonsingular quasi-projective variety owér Then
every holomorphic mag: V& — D(I")3"is regular.

The key step in Borel's proof is the following result:

LEMMA 3.15 LetD7 be the punctured disk: | 0 < |z| < 1}. Then every holomorphic
mayf2 Dy’ x D5 — D(I') extends to a holomorphic map|™ — D(I')* (of complex
spaces).

The original result of this kind is the big Picard theorem, which, interestingly, was first
proved using elliptic modular functions. Recall that the theorem says that if a function
f has an essential singularity at a pomte C, then on any open disk containing
f takes every complex value except possibly one. Therefore, if a holomorphic function
J on Dy omits two values inC, then it has at worst a pole &t and so extends to a
holomorphic functiorD; — P!(C). This can be restated as follows: every holomorphic
function fromD7 to P! (C) . {3 pointg extends to a holomorphic function frof to the
natural compactificatioR! (C) of P!(C) - {3 pointg. Over the decades, there were various
improvements made to this theorem. For example, Kwack (1969) repRl¢&) . {3
points with a more general class of spaces. Borel (1972) verified that Kwack’s theorem
applies toD(I') ¢ D(I')*, and extended the result to maps from a prodeigt x Dj.

Using the lemma, we can prove the theorem. According Hironaka's (Fields medal)
theorem on the resolution of singularities (Hironaka 1964; see also Bravo et al. 2002), we
can realizel’ as an open subvariety of a projective nonsingular vari€tyin such a way

8Recall thatD; is the open unit disk. The produbX” x Df is obtained fromD|™* by removing the first
r coordinate hyperplanes.
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that V* ~ V is a divisor with normal crossings. This means that, locally for the complex
topology, the inclusiorv < V* is of the formD}" x DS — D **. Therefore, the lemma
shows thatf: V2" — D(I")?" extends to a holomorphic map*®" — D(T")*, which is
regular by Chow's theoren8(1]).

COROLLARY 3.16 The structure of an algebraic variety dn(I") is unique.

PROOF. Let D(I") denotel'\ D with the canonical algebraic structure provided by The-
orem[3.12 and supposd’\D = V2 for a second variety/. Then the identity map
f:va — D(I) is a regular bijective map of nonsingular varieties, and is therefore an
isomorphism (cf. AG 3.19). ]

The proof of the theorem shows that the compactificatinii’) — D(I")* has the
following property: for any compactificatio®(I') — D(I')T with D(I")" < D(I") a
divisor with normal crossings, there is a unique regular (gp)" — D(I")* making

D()f

/

D(T)

N\

D()*

commute. For this reaso®)(I") — D(I")* is often called theninimal compactification.
Other namesstandard Satake-Baily-Bore| Baily-Borel.

AsIDE 3.17. (a) TheorenB.14also holds for singulal’ — in fact, it suffices to show that
f becomes regular when restricted to an open dense $gtwhich we may take to be the
complement of the singular locus.

(b) Theorem3.14 definitely fails without the condition thaf be torsion free. For
example, it is false fof\H; = A! — considerz > ¢*:C — C.

Finiteness of the group of automorphisms ofD(T")

DEFINITION 3.18 A semisimple grougr overQ is said to be otompact typef G(R) is
compact, and it is ohoncompact typéf it does not contain a nonzero normal subgroup of
compact type.

A semisimple group ove is an almost direct product of its minimal connected normal
subgroups, and it will be of noncompact type if and only if none of these subgroups is of
compact type. In particular, a simply connected or adjoint group is of noncompact type if
and only if it has no simple factor of compact type.

We shall need one last result about arithmetic subgroups.

THEOREM 3.19 (BOREL DENSITY THEOREM. Let G be a semisimple group ové) of
noncompact type. Then every arithmetic subgrougf G (Q) is zariski-dense 6.
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PROOF. Borel 1969, 15.12, or Platonov and Rapinchuk 1994, Theorem 4.10, p205]

COROLLARY 3.20 For G as in 3.19, the centralizer of" in G(R) is Z(R), whereZ is
the centre of5 (as an algebraic group oved).

PROOF. The theorem implies that the centralizer bfin G(C) is Z(C), and Z(R) =
Z(C)NG((R). O

THEOREM3.21 Let D(T") be the quotient of a hermitian symmetric domaiy a torsion
free arithmetic groud". ThenD(I") has only finitely many automorphisms.

PrROOF. As T is a torsion free,D is the universal covering space bl D andT is the
group of covering transformations (s€&2p. An automorphism: I'\D — T'\ D lifts to
an automorphisnt: D — D. For anyy € I', aya~! is a covering transformation, and so
lies inT". Conversely, an automorphism &f normalizingI” defines an automorphism of
I'\D. Thus,

Aut('\D) = N/T', N = normalizer ofl" in Aut(D).

The corollary implies that the map adl — Aut(I") is injective, and saV is countable.
Becausd’ is closed in Au¢D), so also isN. Write N as a countable union of its finite
subsets. According to the Baire category theorem (MF 1.3) one of the finite sets must have
an interior point, and this implies that is discrete. Becaudé\ Aut(D) has finite volume
(3:32), this implies that™ has finite index inV.

Alternatively, there is a geometric proof, at least wheis neat. According to Mumford
1977, Proposition 4.2D(T") is then an algebraic variety of logarithmic general type, which
implies that its automorphism group is finite (litaka 1982, 11.12). O

AsSIDE 3.22 In most of this section we have considered only quoti€nt® with I" torsion
free. In particular, we disallowed(1)\H. Typically, if I" has torsion, them\ D will be
singular and some of the above statements will faillfqD.

NoOTES. Borel 1969, Raghunathan 1972, and (eventually) Witte 2001 contain good ex-

positions on discrete subgroups of Lie groups. There is a large literature on the various
compactifications of locally symmetric varieties. For overviews, see Satake 2001 and
Goresky 2003, and for a detailed description of the construction of toroidal compactifica-

tions, which, in contrast to the Baily-Borel compactification, may be smooth and projective,

see Ash et al. 1975.
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4 Connected Shimura varieties

Congruence subgroups

Let G be a reductive algebraic group ow@r Choose an embeddirtg — GL,, and define
['(N)=6(Q) Nn{g €GLy(Z) | g = I, modN}.
For example, ilG = SL,, then
I(N)={(9%)eSL(Z) |ad —bc=1, a,d=1, b,c=0 modN}.

A congruence subgroup o&(Q) is any subgroup containing soni& N) as a subgroup
of finite index. Althoughl (/) depends on the choice the embedding, this definition does
not (seéd.J below).

With this terminology, a subgroup @ (Q) is arithmetic if it is commensurable with
I'(1). The classical congruence subgroup problemdoasks whether every arithmetic
subgroup ofG (Q) is congruence, i.e., contains sofiéN). For split simply connected
groups other than Sl the answer is yes (Matsumoto 1969),2&L, and all nonsimply
connected groups have many noncongruence arithmetic subgroups (for a discussion of the
problem, see Platonov and Rapinchuk 1994, section 9.5). In contrast to arithmetic sub-
groups, the image of a congruence subgroup under an isogeny of algebraic groups need not
be a congruence subgrogh.

Thering of finite adelesis the restricted topological product

Ay =T1(Q¢: Zy)

29That Sly(Z) has noncongruence arithmetic subgroups was first noted in Klein 1880. For a proof that
SL,(Z) has infinitely many subgroups of finite index that are not congruence subgroups see Sury 2003, 3-4.1.
The proof proceeds by showing that the groups occurring as quotients, ¢£5hy congruence subgroups
(especially by principal congruence subgroups) are of a rather special type, and then exploits the known
structure of Sk(Z) as an abstract group to construct many finite quotients not of his type.

30Let G be a semisimple group ové). The arithmetic and | congruence subgroup& ¢®) define topolo-
gies on it, and we denote the corresponding completlonG and G. Because every arithmetic group is
congruence, the identity map @n(Q) gives a surjective homomorphls(ﬁ — G, whose kernelC (G) is
called thecongruence kernel This kernel is trivial if and only if all arithmetic subgroups are congruence.
The modern congruence subgroup problem is to com@€e). For example, the grou@ (SL,) is infinite.

Now let G be simply connected, and I6f = G/N whereN is a nontrivial subgroup o (G). Consider
the diagram:

~

1 —— C(G) G G 1
| IER
| —— (@) G' G 1.

It follows from the strong approximation theoreh 18 thatG = G(Ay), and it follows from [B.2) that the
kernel of7 is N(Q), which is finite. On the other hand, the kernekois N (A /), which is infinite. Because
Ker(w) # N(Q), n: G(Q) — G'(Q) doesn't map congruence subgroups to congruence subgroups, and
becaus€ (G’) contains a subgroup isomorphicAAr)/N(Q), G’ (Q) contains a noncongruence arithmetic
subgroup. See Serre 1967 for more details.
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wheref runs over the finite primes df (that is, we omit the factoR). Thus,A is the
subring of[ [Q, consisting of th&a,) such that, € Z, for almost all¢, and it is endowed
with the topology for whicH [Z, is open and has the product topology.
Let V= SpecmA4 be an affine variety oved). The set of points o¥” with coordinates
in aQ-algebrar is
V(R) = Homgy(4, R).

When we write
A= @[Xl,.. .,Xm]/a = Q[xl,...,xm],
the mapP — (P (x1),..., P(x,)) identifiesV (R) with
{(ai,...,am) € R"| f(ay,...,am) =0, Vf ea}
LetZ[xy,...,Xx;y] be theZ-subalgebra o generated by the;, and let
V(Z¢) = Homy(Z[x1, . .., Xm], Z¢) = V(Q) N Z} (insideQ7").

This set depends on the choice of the generatpfer A4, butif A = Q[y1,..., y,], then
the y;’s can be expressed as polynomials in thevith coefficients inQ, and vice versa.
For somed € Z, the coefficients of these polynomials IieZﬁ[%], and so

Z[%][Xl, cees xm] = Z[%][yla cee J’n] (InSIdeA)
It follows that for{ t d, the y;’s give the same sét (Z,) as thex;’s. Therefore,
V(Ap) =TTV (Qe): V(Zy))

is independent of the choice of generator§¥ot.
For an algebraic grou@ overQ, we define

G(Ar) =TI(G(@Q0): G (Ze)

similarly. For example,
Gm(Ay) = [1(Q: Z)) = Af.

ProPOSITION4.1 For any compact open subgroup of G(Ar), K N G(Q) is a congru-
ence subgroup of (Q), and every congruence subgroup arises in this #ay.

PROOF. Fix an embeddings — GL,. From this we get a surjectid@[GL,] — Q[G] (of
QQ-algebras of regular functions), i.e., a surjection

31ln a more geometric language, tetV — Ag be a closed immersion. The Zariski closigof V' in
A7 is a model ofV flat over Spe@. A different closed immersiofi gives a different flat modelg, but for
somed, the isomorphisn{V,)g = V = (Vp)g on generic fibres extends to an isomorphiggm— Vg over
SpecZ[%]. For the primeg not dividingd, the subgroup#, (Z,) andVg(Z,) of V(Q,) will coincide.

32T0 define a basic compact open subgrddmf G(Ar), one has to impose a congruence condition at
each of a finite set of primes. Théh= G (Q) N K is obtained fromG (Z) by imposing the same congruence
conditions. One can think df as being the congruence subgroup defined by the “congruence condition”
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and henc&)[G] = Q[x11, ..., Xuu, t]. FOr this presentation @@[G],
G(Z¢) = G(Q) NGLy(Ze)  (inside GL,(Qy)).

For an intege?V > 0, let

G(Zy) if (fN

K(N) =T1iKe.  where K‘:{{gec;(zeﬂgzlnmoderq it re = ord ().

ThenK(N) is a compact open subgroupG{A,), and
K(N)NG(Q) =T(N).

It follows that the compact open subgroups®€A,) containing K(N) intersectG(Q)
exactly in the congruence subgroups&(fQ) containingl’ (V). Since every compact open
subgroup ofG(Af) containskK (XN) for someN, this completes the proof. O

REMARK 4.2. There is a topology ok (Q) for which the congruence subgroups form a
fundamental system of neighbourhoods. The proposition shows that this topology coin-
cides with that defined by the diagonal embeddif@) C G (Ay).

EXERCISE 4.3. Show that the image in PGKQ) of a congruence subgroup in SIQ)
need not be congruence.

Connected Shimura data

DEFINITION 4.4. A connected Shimura daturs a pair(G, D) consisting of a semisimple

algebraic grougy overQ and aG24(R)*-conjugacy clas® of homomorphisms: U; —

G4 satisfying the following conditions:

SU1: foru € D, only the characters 1, z~! occur in the representation &f on Lie(G2% ¢
defined byu;

SU2: foru € D, adu(—1) is a Cartan involution o2,

SU3: G¥ has noQ-factor H such thatH (R) is compact.

EXAMPLE 4.5. Letu: U; — PGLy(R) be the homomorphism sending= (a + bi)? to
(_4°%)mod=+1, (cf. 110, and letD be the set of conjugates of this homomorphism, i.e.,
D is the set of homomorphisnig, — PGL,(R) of the form

z=(a+bi)* > A(_¢%)A 7 "mod+l,, A4 e SL(R).
Then(SL,, D) is a Shimura datum (here $ls regarded as a group ov@).

REMARK 4.6. (a) If u:U; — G®(R) satisfies the conditions SU1,2, then so does any
conjugate of it by an element 6f2%R)*. Thus a paiG, u) satisfying SU1,2,3 determines
a connected Shimura datum. Our definition of connected Shimura datum was phrased so
as to avoidD having a distinguished point.

(b) Condition SU3 says tha¥ is of noncompact type3(18. It is fairly harmless
to assume this, because replaciigwith its quotient by a connected normal subgroup
N such thatN(R) is compact changes little. Assuming it allows us to apply the strong
approximation theorem wheg is simply connected (séE168below).



Connected Shimura data 45

LEMMA 4.7. Let H be an adjoint real Lie group, and let U; — H be a homomorphism
satisfying SU1,2. Then the following conditionswoare equivalent:

(@) u(=1)=1;

(b) uistrivial, i.e.,u(z) = 1 forall z;

(c) H is compact.

PrROOF. (a)&(b). If u(—1) = 1, thenu factors through/; 2, U,, and soz*! can not
occur in the representation @f; on Lie(H)c. ThereforeU, acts trivially on Lig H)c,
which implies (b). The converse is trivial.

(a)&(c). We have

H is compact [D(:ﬂi adu(—1) =1 Zgl u(—1)=1. 040

PROPOSITION4.8. To give a connected Shimura datum is the same as to give

o asemisimple algebraic grou@ over@Q of noncompact type,

o a hermitian symmetric domaiP, and

o an action ofG (R)™* on D defined by a surjective homomorphiéihiR)* — Hol(D)*

with compact kernel.

PROOF. Let (G, D) be a connected Shimura datum, anddet D. Decompos&;2? into
a product of its simple factors52? = H, x --- x H,. Correspondinglyy = (u1, ..., u)
whereu; is the projection ofu into H;(R). Thenu; = 1 if H; is compactid.?), and
otherwise there is an irreducible hermitian symmetric dom@jrsuch thatH;(R)* =
Hol(D})* and D; is in natural one-to-one correspondence with the Beof H;(R)*-
conjugates ofs; (seell.2]). The productD’ of the D] is a hermitian symmetric domain
on whichG (R)* acts via a surjective homomorphisthR)*™ — Hol(D)* with compact
kernel. Moreover, there is a natural identification/®f= [ | D; with D =[] D;.
Conversely, le{G, D, G(R)™ — Hol(D)") satisfy the conditions in the proposition.
DecomposeG2? as before, and letl, (resp. H,o) be the product of the compact (resp.
noncompact) factors. The action 6f(R)* on D defines an isomorphisni/,.(R)* =
Hol(D)*, and{u, | p € D} is an Hn(R)"-conjugacy class of homomorphisrb —
Hn(R)* satisfying SU1,2 (sé&.27). Now

{(17 up):Ur — He(R) x Hne(R) | p € D} )
is aG2Y(R)*-conjugacy class of homomorphisiils — G24(R) satisfying SU1,2. [

PROPOSITION4.9. Let (G, D) be a connected Shimura datum, andlebe theG2(R)-
conjugacy class of homomorphis@is—> Gr containingD. ThenD is a connected com-
ponent ofX, and the stabilizer oD in G3(R) is G3(R) ™.

PROOF. The argument in the proof ofL(B) shows thatX is a disjoint union of orbits
G3(R)*h, each of which is both open and closedXn In particular, D is a connected
component ofx".

Let H; (resp. Hyc) be the product of the compact (resp. noncompact) simple factors
of Gg. Then H,.is a connected algebraic group oWrsuch thatH,((R)* = Hol(D),
andG (R)™ acts onD through its quotienf,.(R)*. As H.(R) is connected (Borel 1991,
p277), the last part of the proposition follows froffn). O
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Definition of a connected Shimura variety

Let (G, D) be a connected Shimura datum, and regaras a hermitian symmetric domain
with G(R)* acting on it as in4.8). BecausaG2(R)* — Aut(D)* has compact kernel,
the imagel” of any arithmetic subgroup of G2(Q)™" in Aut(D)* will be arithmetic (this
is the definition B4). The kernel off — T is finite. If I is torsion free, thed = T, and
so the Baily-Borel and Borel theoreniZ12 3.14) apply to

p() L r\p=T\D.
In particular,D(T") is an algebraic variety, and, for amy> I'’, the natural map
D(I) < D(I')
is regular.

DEFINITION 4.10. Theconnected Shimura variet$It (G, D) is the inverse system of lo-
cally symmetric varietieéD(I"))rr whereI” runs over the torsion-free arithmetic subgroups
of G&%Q)* whose inverse image iG(Q)™ is a congruence subgroup.

REMARK 4.11 An elementg of G®(Q)* defines a holomorphic mag: D — D, and
hence a map
'\D — gl'g "\ D.

This is again holomorphi@(J), and hence is reguldB{I4). Therefore the groupa(Q)*
acts on the family SHG, D) (but not on the individuaD(T")’s).

LEMMA 4.12 Write r for the homomorphisid (Q)" — G2(Q)*. The following condi-
tions on an arithmetic subgroup of G2%Q)* are equivalent:

(a) #~1(I") is a congruence subgroup 6f(Q)™*;

(b) #~(T") contains a congruence subgroup®{Q)*;

(c) T contains the image of a congruence subgroup ¢®)*.
Therefore, the varietieB\ D with " a congruence subgroup 6f(Q)* suchm (T') is torsion
free are cofinal in the familgh’ (G, D).

PROOF. (a) = (b). Obvious.
(b) = (c). LetI"” be a congruence subgroup@fQ)* contained inz ~!(I"). Then

I > a@"YT)) > 7).

(c) = (a). LetI” be a congruence subgroup G{Q)* such thatl" > =(I"’), and
consider
' Mo>a la@) oI,

Becauser (I') is arithmetic[B.9), it is of finite index inT", and it follows thatr !z (I"’) is
of finite index inz—1(I"). BecauseZ(Q) - I'" > 7~ !z (I'") and Z(Q) is finite (Z is the
centre ofG), I'' is of finite index inz ~!7 (I"’). Therefore I is of finite index inz ~!(I"),
which proves thatr ! (T") is congruence. O
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REMARK 4.13 The homomorphismr: G(Q)* — G3(Q)* is usually far from surjective.
Therefore rw=!(T") is usually not equal t&", and the familyD(I") with T a congruence
subgroup ofG(Q)™* is usually much smaller than 3@, D).

EXAMPLE 4.14 (a) G = SL,, D = H,. Then SA(G, D) is the family of elliptic modular
curvesI'\'H; with T" a torsion-free arithmetic subgroup of PGR)™* containing the image
of I'(V) for someN .

(b) G = PGL,, D = H;. The same as (a), except that now thare required to be
congruence subgroups of PEIQ) — there arenany fewenf these (sed.d).

(c) Let B be a quaternion algebra over a totally real fi€ldThen

B ®qQ R= Hv:Ff—ﬂRB QF,v R

and eachB ®r , R is isomorphic either to the usual quaterni@h®r to M, (R). Let G be
the semisimple algebraic group ov@rsuch that

G(Q) = Ker(Nm: B* — F*).

Then
G(R) ~ H*! x -+ x H*! x SLy(R) x --- x SLy(R) (27)

where H*! = Ker(Nm: H* — R*). Assume that at least one SIR) occurs (so tha is
of noncompact type), and Ié be a product of copies 6%, one for each copy of SI(R).
The choice of an isomorphisr2]) determines an action @f (R) on D which satisfies the
conditions of .8), and hence defines a connected Shimura datum. In this B&§e,has
dimension equal to the number of copiesMt (R) in the decomposition oB ®¢ R. If
B ~ M,(F), thenG(Q) has unipotent elements, e.g}), ! ) and soD(I") is not compact
(3.3. In this case the varietieB(T") are calledHilbert modular varieties On the other
hand, if B is a division algebraG (Q) has no unipotent elements, and so ") are
compact (as manifolds, hence they are projective as algebraic varieties).

ASIDE 4.15 In the definition of SA(G, D), why do we require the inverse images of the

I''s in G(Q)* to be congruence? The arithmetic properties of the quotients of hermitian
symmetric domains by noncongruence arithmetic subgroups are not well understood even
for D = H; andG = SL,. Also, the congruence subgroups turn up naturally when we
work acklically.

The strong approximation theorem

Recall that a semisimple group is said to be simply connected if any isogeiy — G
with G’ connected is an isomorphism. For example; 8Lsimply connected, but PGlis
not.

THEOREM4.16 (STRONG APPROXIMATION). Let G be an algebraic group ove®. If G
is semisimple, simply connected, and of noncompact typeG@nis dense iz (Ay).

PROOF. Platonov and Rapinchuk 1994, Theorem 7.12, p427. O
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REMARK 4.17. Without the conditions oK, the theorem fails, as the following examples
illustrate:

(@) G,,: the groupQ* is not dense I’ﬁiA;.

(b) PGL,: the determinant defines surjections

PGL(Q) —~ Q*/Q**
PGLy(As) — Af/AF?

andQ*/Q*?* is not dense ik /A x>,
(c) G of compact type: because(Z) is discrete inG (R) (se€3.9), it is finite, and so it
is not dense i (Z), which implies thatz (Q) is not dense iz (Ay).

An adelic description of D(I")

PROPOSITION4.18 Let(G, D) be a connected Shimura datum wighsimply connected.
Let K be a compact open subgroup@fAy), and let

I = KNG(Q)

be the corresponding congruence subgrou¢®). The mapx — [x, 1] defines a bijec-
tion
M\D =GQ\D x G(Ar)/K. (28)

Here G (Q) acts on bothD and G (Ay) on the left, andK acts onG (Af) on the right:
q-(x,a) -k =(gx,qak), qe€GQ), xeD, aeG(As), kekKk.

When we endow) with its usual topology andr (Ar) with the aclic topology (or the
discrete topology), this becomes a homeomorphism.

PROOF. BecauseX is open,G(Ar) = G(Q) - K (strong approximation theorem). There-
fore, every element o (Q)\D x G(Ar)/K is represented by an element of the form
[x,1]. By definition,[x, 1] = [x’, 1] if and only if there exisly € G(Q) andk € K
such thatx’ = ¢x, 1 = gk. The second equation implies that= k~! € T, and so
[x,1] =[x, 1]if and only if x andx’ represent the same elemenfiRD.

Consider

xi—(x,[1])

D 28 D x (G(Ay)/K)

! !

[x]—[x,1]

ND —25 G@Q\D x G(As)/K.

As K is open,G(Ay)/K is discrete, and so the upper map is a homeomorphisihafto
its image, which is open. It follows easily that the lower map is a homeomorphisni]

BLet (ag)e € [1Z) C AF and letS be a finite set. IfQ* is dense, then there exists are Q* that is
close toay for £ € S and ant-adic unit for{ ¢ S. But such am is anf-adic unit for all¢, and so equals1.
This yields a contradiction.



An acklic description ofD(T") 49

What happens when we pass to the inverse limit @/&The obvious map
D — limT'\ D,
<—

is injective because eadh acts freely onD and(\I' = {1}. Is the map surjective? The
example A
7 —\lmZ/mZ =17
H

is not encouraging — it suggests that litgD might be some sort of completion @
relative to thel™’s. This is correct:(i \ D is much larger tharD. In fact, when we pass
to the limit on the right in[28), we get the obvious answer:

PROPOSITION4.19 In the limit,
lim xG(@\D x G(As)/K = G@\D x G(Ay) (29)
(adelic topology onG (Ay)).
Before proving this, we need a lemma.

LEMMA 4.20. Let G be a topological group acting continuously on a topological space
X, and let(G;);<; be a directed family of subgroups 6f The canonical mag’/(\G; —

lim X/G; is injective if theG; are compact, and it is surjective if in addition the orbits of
t‘ﬁeG,- in X are separated.

PrROOF. We shall use that a directed intersection of nonempty compact sets is nonempty,
which has the consequence that a directed inverse limit of nonempty compact sets is nonempty.
Assume that eact; is compact, and let, x’ € X. For each, let

Gi(x,x') ={g € Gi | xg =x"}.

If x andx’ have the same image i(n_liﬁd/Gi, then theG;(x, x’) are all nonempty. Since
each is compact, their intersection is nonempty. For @iy the intersectionxg = x/,
which shows thakt andx’ have the same image i/ () G;.

Now assume that each orbit is separated and hence compact. For;6Ryc; €
I(im X/G;, I(imxiGi is nonempty. Ifx € I(imx,-G,-, thenx - (G; maps to(x; G;)c; - O

PrRoOOF OF4.19 Let (x,a) € D x G(Ay), and letK be a compact open subgroup of
G(Ay). In order to be able to apply the lemma, we have to show that the image of the orbit
(x,a)K in G(Q)\D xG(Ay) is separated fokK sufficiently small. LeT” = G(Q)NaKa™!

— we may assume thatis torsion free[8.5). There exists an open neighbourhdéaf x
suchthag VNV =@ forall g € T ~ {1} (see the proof d8.1). For any(x,b) € (x,a)K,

g(V xaK)N(V x bK) =@ foralfd g ¢ G(Q) ~ {1}, and so the images &f x Ka and

V x Kbin G(Q)\D x G(Ay) separatéx, a) and(x, D). O

34Let g € G(Q), and suppose that(V x aK) N (V x bK) # @. Then
gaK = bK =akK

andsog € G(Q) NaKa~! =T.AsgV NV # @, this implies thaig = 1.
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ASIDE 4.21 (a) Why replace the single coset space on the leff28 (vith the more
complicated double coset space on the right? One reason is that it makes transparent that
(in this case) there is an action 6f(A,) on the inverse systerfl’\ D)r, and hence, for
example, on

H i

lim H*(T\D, Q).

Another reason will be seen presently — we use double cosets to define Shimura varieties.
Double coset spaces are pervasive in work on the Langlands program.

(b) The inverse limit of theD(I") exists as a scheme — it is even locally noetherian and
regular (cf5.30below).

Alternative definition of connected Shimura data

Recall thasS is the real torus such th&(R) = C*. The exact sequence

ri—>r—1 zi—>z/Z

0— R* C* U -0

arises from an exact sequence of tori
w
0—- G, —S—U; —0.

Let H be a semisimple real algebraic group with trivial centre. A homomorphidii —

H defines a homomorphisit S — H by the rulei(z) = u(z/z), andU; will act on

Lie(H)c through the characters 1,z7! if and only if S acts on Li¢H)c through the
characters/z,1,z/z. Conversely, let: be a homomorphisr§ — H for which S acts
on Lie(H)c¢ through the characters/z, 1,z/z. Thenw(G,,) acts trivially on Lig H)c,

which implies that: is trivial on w(G,,) because the adjoint representatidn— Lie(H)

is faithful. Thus,/ arises from a:.

Now let G be a semisimple algebraic group o@rFrom the above remark, we see that
to give aG24(R)*-conjugacy clas® of homomorphisms: U; — G239 satisfying SU1,2
is the same as to give @*(R)*-conjugacy classt* of homomorphismg:: S — G2
satisfying the following conditions:

SV1: for h € X, only the characters/z, 1,Z/z occur in the representation &f on
Lie(G?%¢ defined byh;
SV2: adi(i) is a Cartan involution o672,

DEFINITION 4.22 A connected Shimura daturis a pair(G, X +) consisting of a semisim-
ple algebraic group ove and aG3Y(R) *-conjugacy class of homomorphisisS — G324
satisfying SV1, SV2, and

SV3 G2 has noQ-factor on which the projection df is trivial.

In the presence of the other conditions, SV3 is equivalent to SU34sge Thus,
because of the correspondence> 4, this is essentially the same as Definitid.

Definition 4.4 is more convenient when working with only connected Shimura vari-
eties, while Definitiord.22 is more convenient when working with both connected and
nonconnected Shimura varieties.

NoTES. Connected Shimura varieties were defieadpassanin Deligne 1979, 2.1.8.
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5 Shimura varieties

Connected Shimura varieties are very natural objects, so why do we need anything more
complicated? There are two main reasons. From the perspective of the Langlands program,
we should be working with reductive groups, not semisimple groups. More fundamentally,
the varietiesD(I") making up a connected Shimura variety’&h, D) have models over
number fields, but the models depend a realizatio& ak the derived group of a reductive
group. Moreover, the number field dependslor— asT" shrinks the field grows. For
example, the modular curvE(N)\H; is naturally defined oveQ[¢{y], {n = 27/,
Clearly, for a canonical model we would like all the varieties in the family to be defined
over the same fielgf

How can we do this? Consider the lie+ i = 0. This is naturally defined ovep[i],
notQ. On the other hand, the variel? + 1 = 0 is naturally defined ove®, and overC it
decomposes into a disjoint pair of conjugate ligEs-i)(Y +i) = 0. So we have managed
to get our variety defined ovép at the cost of adding other connected components. It is
always possible to lower the field of definition of a variety by taking the disjoint union of it
with its conjugate88 Shimura varieties give a systematic way of doing this for connected
Shimura varieties.

Notations for reductive groups

Let G be a reductive group ovép, and letG 2% Gape the guotient oy by its centre

Z B \We letG (R).. denote the group of elements@fR) whose image ilG24(R) lies in its

identity componenG24(R)*, and we leG(Q), = G(Q)NG (R);. Forexample, GL(Q).+

consists of the x 2 matrices with rational coefficients having positive determinant.
For a reductive group (resp. for Gl,), there are exact sequences

v det

1 G G T 1 1 SL, GL, G, — 1
1 Z G 29, Ggad 11 G, GL, . pPGL, — 1
1 z' z T 11 [ G 22 Gy —— 1

35| fact, Shimura has an elegant way of describing a canonical model in which the varieties in the family
are defined over different fields, but this doesn’t invalidate my statement. Incidentally, Shimura also requires a
reductive (not a semisimple) group in order to have a canonical model over a number field. For an explanation
of Shimura’s point of view in the language of these notes, see Milne and Shih 1981. See also the footnoted
version of my review of Shimura’s Collected Papers on my website.

36Let V be a connected nonsingular variety over a fieldf characteristic zero. TheW is geometrically
connected (i.e.} ®x k¥ is connected) if and only ik is algebraically closed i (V, Oy). Letky be a
subfield ofk such thafk: ko] < co. ThenV can also be regarded asgvariety (samel’, sameQy but
regarded as a sheaf b§-algebras; note that an affikealgebra is also an affingy-algebra), and

V @, kK =1V @6 k¥

whereo runs through thé,-embeddings ok into k2.

$7There is a natural action @29 on G for which adg) (g € G(k)) acts asx — gxg~!. This explains
why we denote this last map by @d. The adjoint representation AG — Lie(G) defines an isomorphism
of G/Z onto AdG), which explains why we denot/Z by G2 and call it the adjoint group of. Finally,
G itself is called an adjoint group & = G,
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HereT (a torus) is the largest commutative quotientafandZ’ =y Z N G%' (a finite
algebraic group) is the centre 6",

The real points of algebraic groups

PROPOSITIONS.1. For a surjective homomorphisgr G — H of algebraic groups over
R, G(R)* — H(R)™ is surjective.

PROOF. The mapp(R): G(R)* — H(R)* can be regarded as a smooth map of smooth
manifolds. Asg is surjective on the tangent spacesl athe image ofp(R) contains an
open neighbourhood df (Boothby 1975, 11 7.1). This implies that the image itself is open
because it is a group. It is therefore also closed, and this implies that it ed(Rls™. [

xi—>x"

Note thatG(R) — H(R) need not be surjective. For example,, — G,, is
surjective as a map of algebraic groups, but the imade,afR) 5 G (R) is G,,(R)™ or
G, (R) according as: is even or odd. Also SL.— PGL, is surjective, but the image of
SL,(R) — PGL(R) is PGL(R)*.

For a simply connected algebraic groGp G (C) is simply connected as a topological
space, butz (R) need not be. For example, §[R) is not simply connected.

THEOREM 5.2 (CARTAN 1927). For a simply connected grou overR, G(R) is con-
nected.

PROOF. See Platonov and Rapinchuk 1994, Theorem 7.6, p407. O

COROLLARY 5.3. For a reductive grougr overR, G (RR) has only finitely many connected
components (for the real topolod3h.

PrRoOOF. Because offf. 1), an exact sequence of real algebraic groups
l>N—->G —-G—1 (30)
with N C Z(G’) gives rise to an exact sequence
70(G'(R)) — 70(G(R)) = H'(R, N).

Let G be the universal covering group 6f%¢". As G is an almost direct product of =
Z(G) andG", there is an exact sequen@8)(with G’ = Z x G andN finite. Now
o 7o(G(R)) = 0 becaus& is simply connected,
o mo(Z(R)) is finite because& ° has finite index inZ and Z° is a quotient (by a finite
group) of a product of copies @f; andG,,, and
o H'(R, N) is finite becauseV is finite. O

For exampleG4 (R) = (R*)4 has2? connected components, and each of RG)
and GLy (R) has2 connected components.

38This also follows from the theorem of Whitney 1957: for an algebraic vafietwerR, V (R) has only
finitely many connected components (for the real topology) — see Platonov and Rapinchuk 1994, Theorem
3.6, p119.
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THEOREM 5.4 (REAL APPROXIMATION). For any connected algebraic group overQ,
G (Q) is dense inG (R).

PROOF. See Platonov and Rapinchuk 1994, Theorem 7.7, B315. O

Shimura data

DEFINITION 5.5. A Shimura datumis a pair(G, X') consisting of a reductive group over
Q and aG (R)-conjugacy clasx” of homomorphismé: S — Gy satisfying the conditions
SV1, SV2, and SV3 (sedxf).

Note that, in contrast to a connected Shimura datting reductive (not semisimple),
the homomorphisms have targeGy, (not G2%, and X is the full G (R)-conjugacy class
(not a connected component).

EXAMPLE 5.6. Let G = GL, (overQ) and letX be the set of Gi(R)-conjugates of the
homomorphisnh,: S — Glog, ho(a + ib) = (_¢%). Then(G, X) is a Shimura datum.
Note that there is a natural bijection — C . R, namely,z, — i andgh,g~' > gi.
More intrinsically,2 <> z if and only if 2(C*) is the stabilizer ot in GL,(R) and/(z)
acts on the tangent spacezaas multiplication byz /z (rather tharr/z).

PROPOSITIONS.7. Let G be a reductive group oveR. For a homomorphisnk: S —
G, let i be the composite df with G — G2 Let X be a G (R)-conjugacy class of
homomorphism§ — G, and letX be theG24(R)-conjugacy class of homomorphisms
S — G containing the for h € X.
(@) The maph — h: X — X is injective and its image is a union of connected compo-
nents ofX.

(b) Let X* be a connected component %f and letX " be its image inX. If (G, X)

satisfies the axioms SV1-3 ther'®', 7+) satisfies the axioms SV1-3; moreover, the
stabilizer ofX*in G(R) is G(R);. (i.e.,gXtT =X < gec GR),).

PROOF. (a) A homomorphisni: S — G is determined by its projections @ and G2,
because any other homomorphism with the same projections will be of the/ferior
some regular map: S — Z’ ande is trivial becausé is connected and’ is finite. The
elements ofY all have the same projection 10, becausd” is commutative, which proves
thath — h: X — X is injective. For the second part of the statement, useGR&R)*
acts transitively on each connected componen dedl.B andG(R)* — G*(R)* is
surjective.

(b) The first assertion is obvious. In (a) we showed that\') C 7o(X). The stabilizer
in GA(R) of [X ' ]is GA(R)* (seeZ.9), and so its stabilizer i (R) is the inverse image
of GA(R)T in G(R). O

COROLLARY 5.8 Let(G, X) be a Shimura datum, and l&t* be a connected component
of X regarded as aG (R)*-conjugacy class of homomorphisis— G2 (G17). Then
(G, X+) is a connected Shimura datum. In particuldf, is a finite disjoint union of
hermitian symmetric domains.

395ee the endnotes for a proof.
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PROOF. Apply Propositiors.7and Propositiod.8 O

Let (G, X') be a Shimura datum. For evelyS — G(R) in X, S acts on Li€G)c
through the charactergz, 1,z/z. Thus, forr € R* C C*, h(r) acts trivially on LigG)c.
As the adjoint action of7 on Lie(G) factors throughG2® and Ad G — GL(Lie(G))
is injective, this implies that:i(r) € Z(R) where Z is the centre ofG. Thus, 4|G,,
is independent ofi — we denote its reciprocal byy (or simply w) and we callwy
the weight homomorphism For any representatiom Gg — GL(V), p o wy defines a
decomposition o = € V, which is the weight decomposition of the hodge structure
(V,poh)foreveryh € X.

PROPOSITIONS.9. Let (G, X)) be a Shimura datum. Theli has a unique structure of a
complex manifold such that, for every representafory — GL(V), (V,p o h)pex iS
a holomorphic family of hodge structures. For this complex structure, each famjly o
h)nex 1S a variation of hodge structures, and d0is a finite disjoint union of hermitian
symmetric domains.

PROOF. Let p: Gg — GL(V) be a faithful representation @fz. The family of hodge
structureqV, p o h),ex is continuous, and a slight generalization of (a) of Thedgeid
shows thatX’ has a unique structure of a complex manifold for which this family is holo-
morphic. It follows from Waterhouse 1979, 3.5, that the family of hodge structures defined
by every representation is then holomorphic for this complex structure. The condition SV1
implies that(V, p o ), is a variation of hodge structures, and so we can apply (b) of The-
orem2.14 O

Of course, the complex structures defined¥by (5.8 and 6.9 coincide.

AsIDE5.10Q Let (G, X) be a Shimura datum. The mapg(X) — mo(X) andG(R)/G(R), —
G(R)/G3(R)* are injective, and the second can be identified with the first once an
h € X has been chosen. In general, the maps will not be surjective uHIE&, Z) = 0.

Shimura varieties

Let (G, X)) be a Shimura datum.

LEMMA 5.11 For any connected componekitt of X, the natural map
GQ+\XT x G(Ay) —> GQ\X x G(Ay)

is a bijection.

PROOF. Because&5(Q) is dense inG (R) (se€b.4) andG (R) acts transitively onY’, every
x € X is of the formgx™ with ¢ € G(Q) andx™ € X*. This shows that the map is
surjective.
Let (x,a) and(x’,a’) be elements o+ x G(Ay). If [x,a] = [x/,a'] in G(Q)\X x
G(Ay), then
x'=¢gx, d =qa, someg e G(Q).

Becauser andx’ are both inXt, ¢ stabilizesY* and so lies irG (R) ;. (sed5.7). Therefore,
[x,a] = [x",a'Tin G(Q)\X x G(Ay). =
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LEMMA 5.12 For any open subgrou of G(Ay), the setG(Q)+\G(Ar)/K is finite.

PROOF. SinceG(Q)L\G(Q) — G¥R)T\G(R) is injective and the second group is
finite 6.9, it suffices to show tha® (Q)\ G (Ay)/ K is finite. Later (TheorerB.17) we shall
show that this follows from the strong approximation theored¥ is simply connected,
and the general case is not much more difficult. O

For K a compact open subgroup of G(Ar), consider the double coset space
She (G, X) = GQ\X x G(Ay)/K
in which G(Q) acts onX andG (Ar) on the left, andk acts onG (Af) on the right:
g(x,a)k = (qx,qak), qeGQ), xeX, aeGy), kek.

LEMMA 5.13 LetC be a set of representatives for the double coset spd@® \G(Ar)/ K,
and letX* be a connected componentXf Then

GQ\X x G(Af)/K = | |,ecT\XT

wherel, is the subgroug Kg~!' N G(Q); of G(Q)4. When we endow with its usual
topology andG (Ar) with its acklic topology (equivalently, the discrete topology), this be-
comes a homeomorphism.

PROOF. It is straightforward to prove that, fgr € C, the map
[X] = [x, g T\X T — G@\XT x G(Af)/K

is injective® and thaiG (Q), \ X x G(A,)/K is the disjoint union of the images of these
maps¥ Thus, the first statement follows frofi.{{]). The second statement can be proved
in the same way as the similar statemenfdri). O

Becausd, is a congruence subgroup 6{Q), its image inG34(Q) is arithmetic[8.2),
and so (by definition) its image in AQY ) is arithmetic. Moreover, wheK is sufficiently
small, ', will be neat for allg € C (apply3.5) and so its image in Agix+)* will also
be neat and hence torsion free. TH&f\ X * is an arithmetic locally symmetric variety,
and Sk (G, X) is finite disjoint of such varieties. Moreover, for an inclusi& ¢ K
of sufficiently small compact open subgroups®fA), the natural map Sh(G, X) —
Shx (G, X) is regular. Thus, when we vay (sufficiently small), we get an inverse system
of algebraic varietiegShy (G, X)) k. There is a natural action 6f(Ar) on the system: for
g € G(Ay), K — g~ ! Kg maps compact open subgroups to compact open subgroups, and

T(g):Shk (G, X) = Shy—1 g, (G, X)
acts on points as
[x,a] = [x,ag]: GQ\X ® G(As)/K — GQ\X x G(As)/g™ Kg.
Note that this is a right actiory (gh) = 7 (h) o 7 (g).

40f [x,g] = [x',g], thenx’ = gx andg = qgk for someq € G(Q); andk € K. From the second
equation, we find thag € Ty, and sdx] = [x’].

et (x,a) € G(Ay). Thena = qgk for someq € G(Q)+, g € C, k € K. Now [x,a] = [ x, gl,
which lies in the image of ¢\ X *. Supposéx, g] = [x',¢'], ¢’,g € C. Thenx’ = ¢gx andg’ = qgk for
someg € G(Q), andk € K. The second equation implies thgt= g, and so the union is disjoint.
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DEFINITION 5.14 TheShimura varietySh(G, X) attached t§2the Shimura datum(G, X)

is the inverse system of varieti€Shx (G, X))x endowed with the action off(As) de-
scribed above. Her& runs through the sufficiently small compact open subgroups of
G(Ay).

Morphisms of Shimura varieties

DEFINITION 5.15 Let (G, X) and(G’, X’) be Shimura data.
(&) A morphism of Shimura dataG, X') — (G’, X’) is a homomorphisn@ — G’ of
algebraic groups sendingj into X”.
(b) A morphism of Shimura varietieSh(G, X) — ShG’, X”) is an inverse system of
regular maps of algebraic varieties compatible with the actio @fy).

THEOREM 5.16 A morphism of Shimura datéG, X) — (G’, X’) defines a morphism
ShG, X) — Sh(G’, X’) of Shimura varieties, which is a closed immersiotrit> G’ is
injective.

PROOF. The first part of the statement is obvious frd&ald), and the second is proved in
Theorem 1.15 of Deligne 19161 O

The structure of a Shimura variety

By the structure of S{GG, X'), | mean the structure of the set of connected components and
the structure of each connected component. This is worked out in general in Deligne 1979,
2.1.16, but the result there is complicated. WI@H' is simply connecte® it is possible
to prove a more pleasant result: the set of connected components is a “zero-dimensional
Shimura variety”, and each connected component is a connected Shimura variety.

Let (G, X) be a Shimura datum. As oibfi Z is the centre of; and 7' the largest

commutative quotient ofr. There are homomorphisn¥ — G "5 T, and we define

TR)" = Im(ZR) — T(R)),
TQ'=T@NT®".

BecauseZ — T is surjectiveT(R)" © T(R)* (sed5.d), and soT (R)t and7(Q)" are of
finite index in7'(R) and T (Q) (se€5.3). For example, foG = GL,, T(Q)' = T(Q)* =
@>0-

THEOREM 5.17. AssumeG%' is simply connected. FoK sufficiently small, the natural
map

GQ\X x G(As)/K — T(QNT(Ar)/v(K)

420r “defined by” or “associated with”, butot “associated to”.

43The Shimura varieties with simply connected derived group are the most important — if one knows
everything about them, then one knows everything about all Shimura varieties (because the remainder are
quotients of them). However, there are naturally occurring Shimura varieties for Viflis not simply
connected, and so we should not ignore them.
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defines an isomorphism
mo(She (G, X)) = T(@QNT (As)/v(K).

Moreover, T(Q)"\T(As)/v(K) is finite, and the connected component duéis canon-
ically isomorphicI"\ X+ for some congruence subgroup of GY%'(Q) containing K N

Gder(@) ]

In Lemmal5.20 below, we show that (G(Q);) ¢ T(Q)'. The “natural map” in the
theorem is

[x,gl—[v(g)]
>

BT
GQ\X x G(&y)/K = GQ+\XT x G(Ay)/K T@MNT (Ay)/v(K).

The theorem gives a diagram

GQ\X x G(As)/K <= T\XT,

T@QNT(Ap)/v(K) ~—[1]

in which 7(Q)"\T(Ay)/v(K) is finite and discrete, the left hand map is continuous and
onto with connected fibres, anth X * is the fibre ovef1].

LEMMA 5.18 Assumez®'is simply connected. The&h(R), = G%'(R) - Z(R).

PROOF. Becausez%" is simply connected7%(R) is connected.2) and soG*'(R) C
G(R),. HenceG(R), D G%'(R) - Z(R). For the converse, we use the exact commutative
diagram:

zi—>(z~!

I — Z/@®) 225 7(R) x GU(R) GR) — H'(R.Z')

| Lioms | |

] — Z(R) — GY%(R) — G¥R) — H'(R,Z).

(z,8)—zg
>

As G% — G¥ s surjective, so also iIF®'(R) — G¥(R)* (seeb.]). Therefore, an
elementg of G(R) lies in G(R).. if and only if its image inG24(R) lifts to G%'(R). Thus,
g2eGR); < g 0in H' (R, Z))
— gliftsto Z(R) x G®(R)
— geZR)-G®(R) O
LEMMA 5.19 Let H be a simply connected semisimple algebraic grélipverQ.

(a) For every finite prime, the grouf/ ! (Q, H) = 0.
(b) The mapH'(Q, H) — [],., H'(Q:, H) is injective (Hasse principle).

PROOF. (a) See Platonov and Rapinchuk 1994, Theorem 6.4, p284.
(b) See ibid., Theorem 6.6, p286. O
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Both statements fail for groups that are not simply connected.

LEMMA 5.20. Assume7%' is simply connected, and leie T(Q). Thent € T(Q) if and
only ifz lifts to an element o/ (Q) ..

ProoFr. Lemmalk.19implies that the vertical arrow at right in the following diagram is
injective#4

I — G*Q) — G@Q) — T(Q — H'(Q,G%)

R e R

| — G*(R) —> GR) — TR) —> H'(R,G%)

Lets € T(Q)*. By definition, the image; of z in T'(R) lifts to an element € Z(R) C
G (R). From the diagram, we see that this implies thamaps to the trivial element in
H'(Q, G%" and so it lifts to an element € G(Q). Now gy -z~ ! >z -tz = 1in T(R),
and sogg € GU'(R) - z € G®'(R) - Z(R) € G(R),. Thereforeg € G(Q)...

Let ¢ be an element of (Q) lifting to an elementz of G(Q). According to5.18
ar = gz for someg € G (R) andz € Z(R). Noway andz map to the same element in
T (R), namely, targ, and sa € T(Q)F O

The lemma allows us to write

T(@MNT(As)/v(K) = v(G(Q\T (Ap)/v(K).
We now study the fibre ovéi] of the map

GQ\XT x G(Ap) K 222 (G@ N\ (Ay)/v(K).

Letg € G(Ay). If [v(g)] = [1]k, thenv(g) = v(q)v(k) someg € G(Q)+ andk € K. It
follows thatv(¢~—'gk~") = 1, thatg~!gk~! € G%®'(A,), and thatg € G(Q) - G*®'(A/) -
K. Hence every element of the fibre oJeéj is represented by an element, a) with
a € G%(Ay). But, according to the strong approximation theor&i®), Gder(Af) =
G%(Q) - (K N G*'(Ar)), and so the fibre ovel] is a quotient ofX *; in particular,
it is connected. More precisely, it equdls X+ whereT is the image ofK N G(Q).
in G3(Q)*. ThisT is an arithmetic subgroup @#2Q)* containing the image of the
congruence subgroufd N G(Q) of GY(Q). Moreover, arbitrarily small such’s arise
in this way. Hence, the inverse system of fibres du¢rindexed by the compact open
subgroupsk of G(Ay)) is equivalent to the inverse system 86", X+) = (I'\ X ).

The study of the fibre ovdr] will be similar once we show that there exists are
G (Ay) mapping tor (so that the fibre is nonempty). This follows from the next lemma.

4“The groupH ' (Q, G%") is defined to be the set of continuous crossed homomorphisni@tad) —
G%'(Q?) modulo the relation which identifies two crossed homomorphisms that differ by a principal crossed
homomorphism. It is a set with a distinguished elemenepresented by any principal crossed homomor-
phism. An element of (Q) lifts to an element of5(Q) if and only if it maps to the distinguished class in
Hl (Q, Gder)_
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LEMMA 5.21 AssumeG%"is simply connected. Then the mapG(As) — T(Ay) is
surjective and sends compact open subgroups to compact open subgroups.

PROOF. We have to show:
(a) the homomorphism: G(Q¢) — T (Qy) is surjective for all finite/;
(b) the homomorphism: G (Z;) — T (Z;) is surjective for almost aH.
(a) For each primé, there is an exact sequence

1 = G%(Qp) = G(Qo) > T(Qp) — H'(Qq, G

and so[6.1%) shows that: G(Qy) — T'(Qy) is surjective.

(b) Extend the homomorphisii — 7' to a homomorphism of group schentes> 7
over Z[%] for some integerV. After N has been enlarged, this map will be a smooth
morphism of group schemes and its kergGéelill have nonsingular connected fibres. On
extending the base ring &y, £ 1 N, we obtain an exact sequence

0> G, — G —> T¢—0

of group schemes ovéf; such that is smooth andg,)r, is nonsingular and connected.
Let P € T¢(Zy), and letY = v=!(P) C G,. We have to show thaf(Z,) is nonempty. By
Lang’s lemma (Springer 1998, 4.4.1%," (F¢, (G))r,) = 0, and so

v:Ge(Fe) — T¢(Fy)

is surjective. Therefor® (IF;) is nonempty. Becausg is smooth ovef,, an argument as
in the proof of Newton’s lemma (e.g., ANT 7.22) now shows that a p@inte Y (IF,) lifts
to a pointQ € Y (Zy). O

It remains to show thal (Q)"\7'(A,)/v(K) is finite. Becausd (Q)' has finite index
in 7(Q), it suffices to prove thal'(Q)\7'(Ar)/v(K) is finite. Butv(K) is open, and so
this follows from the next lemma.

LEMMA 5.22 For any torus7 overQ, T(Q)\T (Ay) is compact.

ProoOF. Consider first the casgé = G,,. Then

R D%~ % « @ord
T(Ap)/T(Z) = Ap /27 = 694 finite Qi /24 ~ :

£ finite

which is the group of fractional ideals @f ThereforeQ* \A}(/ZX is the ideal class group
of Z, which is trivial: AX = Q*-Z*. HenceQ*\A is a quotient ofZ*, which is compact.
For a number field, the same argument using the finiteness of the class numi#ér of
shows thatFX\A;’f is compact. Herd\; = I1 (F) :OX).
An arbitrary torusl” overQ will split over some number field, sa¥y ~ Gf,i,m(T). Then
T(F\T(Ar,z) =~ (FX\A} )%™, which is compact, and"(Q)\T'(Ay) is a closed
subset of it. O

v finite
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REMARK 5.23 One may ask whether the fibre o\Jéf equals
N\XT = G®Q\XT x G*™(A)/K N G®(A), T =KNG*(Q),

rather than quotient of * by some larger group than. This will be true if Z’ satisfies the
Hasse principle for! (for then every element i (Q),. N K with K sufficiently small
will lie in G%"(Q) - Z(Q))# Itis known thatZ’ satisfies the Hasse principle f&f' when
G has no isogeny factors of typé, but not in general otherwise (Milne 1987). This is
one reason why, in the definition of i&%", X +), we include quotient&'\ X+ in which

I is an arithmetic subgroup @24Q)* containing, but not necessarily equal to, the image
of congruence subgroup 6% (Q).

Zero-dimensional Shimura varieties

Let T be atorus ove). According to Deligne’s definition, every homomorphignC* —
T (R) defines a Shimura variety &R, {#}) — in this case the conditions SV1,2,3 are vac-
uous. For any compact opet C T'(Ay),

Shg (T, {h}) = T(Q\{h) x T(Ay)/K = T(Q\T(Ay)/K

(finite discrete set). We should extend this definition a little. Y die a finite set on which
T(R)/T(R)™" acts transitively. Define I, Y) to be the inverse system of finite sets

She (T,Y) = T(Q\Y x T(Ay)/K,

with K running over the compact open subgroupg@f\s). Call such a system zero-
dimensional Shimura variety.

Now let (G, X) be a Shimura datum wit&F%" simply connected, and |16t = G/G%".
LetY = T(R)/T(R)". Becausd'(Q) is dense il (R) (se€5.d), Y = T(Q)/T(Q)" and

T@QNT(Ap)/K = T@Q\Y x T(Ay)/K
Thus, we see that 79" is simply connected, then
JTQ(ShK(G, X)) = Sh,(K)(T, Y).

In other words, the set of connected components of the Shimura variety is a zero-dimensional
Shimura variety (as promised).

Additional axioms

The weight homomorphismy is a homomorphisrts,,, — G overR of algebraic groups

that are defined oveD. It is therefore defined oved?. Some simplifications to the theory

occur when some of the following conditions hold:

SV4 The weight homomorphisray: G,, — Gy is defined ovefQ (we then say thathe
weight is rational).

45See the endnote.
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SV5 The groupZ(Q) is discrete inZ (Ay).
SV6 The torusZ° splits over a CM-field (sedqt) for the notion of a CM-field).

Let G — GL(V) be a representation @ (meaning, of course, @-representation).
Each/ € X defines a Hodge structure #(IR). When SV4 holds, these are rational hodge
structures (@7). It is hoped that these hodge structures all occur in the cohomology of
algebraic varieties and, moreover, that the Shimura variety is a moduli variety for motives
when SV4 holds and a fine moduli variety when additionally SV5 holds. This will be
discussed in more detail later. In TheorBrii6below, we give a criterion for SV5 to hold.

Axiom SV6 makes some statements more natural. For example, when SV6ihads,
defined over a totally real fief.

EXAMPLE 5.24. Let B be a quaternion algebra over a totally real fi€ldand letG be the
algebraic group ove@ with G(Q) = B*. Then,B ®q F =[], B ®F,» R wherev runs
over the embeddings df into R. Thus,

BeoR ~ H x -+ x H x MM®R) x --- x M(@®R)
GR) ~ H* x --- x H* x GLR) x --- x GL(R)
Matib) = 1 1 (gh) e (40)
w(r) = 1 1 r, r1,

Let X be theG (R)-conjugacy class ok. Then(G, X) satisfies SV1 and SV2, and so it
is a Shimura datum iB split$? at at least one real prime @. Let / = Hom(F, Q%) =
Hom(F,R), and let/, be the set ob such thatB ®F , R is split. Thenw is defined over
the subfield ofQ? fixed by the automorphisms @ stabilizing I.. This field is always
totally real, and it equal® if and only if I = I,.

Arithmetic subgroups of tori
Let 7 be a torus ove®, and letT'(Z) be an arithmetic subgroup @f(Q), for example,

T(Z) = Hom(X*(T), Of)®* /@,

where L is some galois splitting field f’. The congruence subgroup problem is known
to have a positive answer for tori (Serre 1964, 3.5), i.e., every subgrolipZ of finite
index contains a congruence subgroup. Thus the topology inducdd@n by that on

T (Ay) has the following descriptionT (Z) is open, and the induced topology 81Z) is
the profinite topology. In particular,

T(Q) is discrete «— T (Z) is discrete<—= T'(Z) is finite.

EXAMPLE 5.25 (a) LetT = G,,. ThenT (Z) = {£1}, and soT'(Q) is discrete inT" (Ay).
This, of course, can be proved direcy.

46In my view, the extra generality obtained by omitting it is spurious, but Deligne disagrees with me.
4"That is, becomes isomorphic i, (R).
48t is easy to write down an open subgroup&qf whose intersection witlQ* is {1}.
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(b) LetT(Q) = {a € Q[v/—11* | Nm(a) = 1}. ThenT (Z) = {*1,++/—1}, and so
T(Q) is discrete.

(c) Let T(Q) = {a € Q[v2]* | Nm(a) = 1}. ThenT(Z) = {£(1 + V2)" | n € Z},
and so neithef’(Z) nor T(Q) is discrete.

THEOREM5.26 LetT be atorus ovefQ, and let7* = 1), Ker(x: T — G,,) (characters
x of T rational overQ). ThenT (Q) is discrete inT' (Ay) if and only if 7¢(R) is compact.

PROOF. According to a theorem of Ono (Serre 1968, pll-39)Z) N T*(Q) is of finite
index inT'(Z), and the quotienT"?(R)/ T (Z) N T*(Q) is compact. Nowl'(Z) N T*(Q) is
an arithmetic subgroup df“(Q), and hence is discrete ifi“(R). It follows that7' (Z) N
T4(Q) is finite if and only if 7¢(IR) is compact. O

For example, inB.25(a), 7% = 1 and so certainlyf"?(R) is compact; in (b)7*(R) =
Uy, which is compact; in (¢)7¢ = T andT(R) = {(a,b) € R x R | ab = 1}, which is
not compact.

REMARK 5.27. AtorusT over a fieldk is said to beanisotropicif there are no characters
x: T — G,, defined overk. A real torus is anisotropic if and only if it is compact. The
torus7¢ =4 (\Ker(x: T — G,,) is the largest anisotropic subtorus Bf Thus £.26)
says that7'(Q) is discrete inT'(Ay) if and only if the largest anisotropic subtorus Bf
remains anisotropic oveR.

Note that SV5 holds if and only ifZ°¢)g is anisotropic.

Let T be a torus that splits over CM-fiell. In this case there is a tordst c T such
that7,;" = (Nix=—y Ker(x: Ty — Gy,). ThenT (Q) is discrete inT'(Ay) if and only if Tt
is split, i.e., if and only if the largest subtorus Bfthat splits overR is already split over

Q.

Passage to the limit.

Let K be a compact open subgroup@fA ), and letZ(Q)~ be the closure oZ(Q) in
Z(Ar). ThenZ(Q)- K = Z(Q)~ - K (in G(Ar)) and

Sh (G, X) =4t G(Q\X x (G(Ay)/K)

~ GQ
= m X x (G(Af)/z(@) - K)
~ GQ _
= ZQ X x(G(Ap)/Z(Q)™ - K).
THEOREMS.28 For any Shimura datuniG, X),
G(Q

lim Shg (G, X) = X x(G(A)/Z(Q)).
K

Z(Q

When SV5 holds,
I(leShK(G, X)=GQ\X x G(Ay).
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PROOF. The first equality can be proved by the same argumerd.d§)( and the second
follows from the first (cf. Deligne 1979, 2.1.10, 2.1.1§). O

REMARK 5.29 PutSx = Shx(G, X). For varyingK, the Sx form a variety (scheme)
with a right action ofG (A ) in the sense of Deligne 1979, 2.7.1. This means the following:
(a) the S form an inverse system of algebraic varieties indexed by the compact open
subgroupsK of G(Ay) (if K C K’, there is an obvious quotient m&fg: — Sk);
(b) there is an actiop of G(Af) on the system(Sk)x defined by isomorphisms (of
algebraic varietiespx (a): Sk — Sg-1k, (On points,pk (a) iS[x,a’] — [x,d a]);
(c) for k € K, pg(k) is the identity map; therefore, fak’ normal in K, there is an
action of the finite grougK /K’ on Sk-; the varietySk is the quotient ofSx- by the
action ofK/K’.

REMARK 5.30. When we regard the G, X') as schemes, the inverse limit of the system
Shg (G, X) exist8%:
S = I(lmShK(G,X).

This is a scheme ovel, not(!) of finite type, but it is locally noetherian and regular (cf.
Milne 1992, 2.4). There is a right action 6f(Ar) on S, and, for K a compact open
subgroup ofG (Ay),

Shg (G, X) = S/K

(Deligne 1979, 2.7.1). Thus, the systéBhx (G, X))k together with its right action of
G (Ay) can be recovered frorfi with its right action ofG (A). Moreover,

S(C) =1im She (G, X)(C) = lim G(@\X x G(As)/K.

49The proof of Theorer.28in Deligne 1979 reads (in its entirety): L'action d4Q)/Z(Q) sur X x
(G(Ay)/Z(Q)™) est propre. Ceci permet le passage limite surk.

Properness implies that the quotientiok (G(Af)/Z(Q)—) by G(Q)/Z (Q) is separated (Bourbaki 1989,
Il 4.2), and hence Lemnid.20applies. Presumably, the acti@proper, but | don’t know a proof that the
guotient is separated even in the easier dAsE). Here’s how the obvious argument goes.

We want to check tha& (Q)\D x G(Ay) is separated. Choose a compact open subgtowbh G (Ay)
such that the (congruence) subgrdup= U N G(Ay) is torsion free[8.6). We have to prove that distinct
points[x,a] and[y,b] of G(Q)\D x G(Ay) are separated by open neighbourhoods. Bec&lU$p) is
dense inG(Ay), we may suppose,b € U. If x andy are not in the sam&-orbit, then there exist open
neighbourhoodd’, of x andV, of y such thatgV, NV, = @ forall g € T (see the proof dB.D). Then
g(VxxUa)N(Vy,xUb) = @forall g € G(Q), and so the images &f, xUa andV, xUb in G(Q)\Dx G (Ay)
separatéx, a] and[y, b]. Whenx and y lie in the samd™-orbit, we may supposg = x. There exists an
open neighbourhool of x suchthagV NV =@ forallg e I' ~ {1},and sog(V x Ua) N (V x Ub) =@
forall g € G(Q) ~ {1} providedha—! € U (but what if it isn't).

S0Let (4;);es be a direct system of commutative rings indexed by a directed,sand let4 = lim A4;.
Then, for any schem#’, -

Hom(X, Specd) = Hom(A4,T'(X,Oyx)) = le Hom(4;,T'(X,O0x)) = I(@ Hom(X, Spec4;).

(For the first and third isomorphisms, see Hartshorne 1977, Il, Exercise 2.4; the middle isomorphism is the
definition of direct limit). This shows that Spekis the inverse limit of the inverse systef@pec4;);cs in

the category of schemes. More generally, inverse limits of schemes in which the transition morphisms are
affine exist, and can be constructed in the obvious way.
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NOTES. Axioms SV1, SV2, SV3, and SV4 are respectively the conditions (2.1.1.1), (2.1.1.2),
(2.1.1.3), and (2.1.1.4) of Deligne 1979. Axiom SV5 is weaker than the condition (2.1.1.5)
ibid., which requires that ddi) be a Cartan involution ofG/w(G,))r, i.e., that Z° /w(G,,) )r

be anisotropic.
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6 The Siegel modular variety

In this section, we study the most important Shimura variety, namely, the Siegel modular
variety.

Dictionary

Let V be anR-vector space. RecalP(d) that to give aC-structureJ on V is the same as
to give a hodge structurve; on V of type(—1, 0), (0, —1). Hereh is the restriction taC*
of the homomorphism

a+bi—a+bJ:C— Enck(V).
For the hodge decompostidh(C) = V10 V1.0,

V—l,O VO,—I
J acts as +i —i
hy(z)acts ag z z

Let ¥ be a nondegeneraf®-bilinear alternating form ori’. A direct calculatiof?
shows that

U (Ju, Jv) = ¥(u,v) < ¥(zu,zv) = |z|*¥(u,v) forall z € C.

Letyy(u,v) = ¥ (u, Jv). Then

v(Ju, Jv) = ¥ (u,v) < v Iis symmetric

and
v (Ju,Jv) =y (u,v)and @13  is a polarization of the
Yy is positive definite hodge structuréV, i y).

Symplectic spaces

Let k be a field of characteristig 2, and let(V, ) be asymplectic spacef dimension
2n overk,i.e.,V is ak-vector space of dimensid@x andy is a nondegenerate alternating
form ¢y. A subspacdV of V is totally isotropicif (W, W) = 0. A symplectic basi®f

SUE y(Ju, Jv) = ¥ (u,v), then

Y ((a + bi)u, (a + bi)v) = Y (au,av) + ¥ (au, biv) + ¥ (biu,av) + ¥ (biu, biv) (biadditivity)
= ¥ (au,av) + Y (aiu, —bv) + ¥ (biu,av) + ¥ (bu, bv) (assumption)
= a*¥ (u,v) + b>y (u,v) (bilinearity).
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V is a basige.;)<i<, Such tha?

V(ei,e_;) =1forl <i <n,
w(e,-,ej):Ofor ]#ﬂ:l

LEMMA 6.1 Let W be a totally isotropic subspace &f. Then any basis of can be
extended to a symplectic basis fgr. In particular, V' has symplectic bases (and two
symplectic spaces of the same dimension are isomorphic).

PROOF. Standar®3 O

Thus, a maximal totally isotropic subspacdotvill have dimensiom:. Such subspaces
are calledagrangians

Let GSAy) be the group osymplectic similitude®f (V, ), i.e., the group of auto-
morphisms ofl” preservingy up to a scalar. Thus

GSpy) (k) = {g € GL(V) | ¥ (gu,gv) = v(g) - ¥ (u,v) Somev(g) € k*}.

Define Spy) by the exact sequence

1 — Sp(¥) — GSAY) - G — 1.

Then GSpy) has derived group ), centreG,,, and adjoint group GSw)/G,, =
Sp(y)/ + 1.
For example, whel has dimensiog, there is only one nondegenerate alternating form
on V' up to scalars, which must therefore be preserved up to scalars by any automorphism,
and so GSp)) = GL, and Sgy) = SL,.
The group Spy) acts simply transitively on the set of symplectic basegedf) and
(fx;) are bases oV, then there is a uniqug € GL,,(k) such thatgey; = f1;, and if
(e+;) and( f1;) are both symplectic, the;p € Sp(vy).

The Shimura datum attached to a symplectic space

Fix a symplectic spacé/, v) overQ, and letG = GSp(y) andS = Sp(y) = G%".
Let J be a complex structure oV (R) such thaty (Ju, Jv) = ¥ (u,v). ThenJ €
S(R), andhy(z) lies in G(R) (and inS(R) if |z| = 1) — see the dictionary. We say that

52Equivalently, such that the matrix ¢f with respect tqe;) has+1 down the second diagonal, and zeros

elsewhere:
1
0 -1
(V(exirex))) o jg = (1/ Og)’ e ( | ) |
% 1

S3Certainly, the second statement is true whes 1. We assume it inductively for spaces of dimension
< 2n — 2. Let W be totally isotropic, and lel’ be a subspace df such thatV = W+ @ W’. Then
WY = v/ Wt = W’ identifiesW’ with the dual ofW. Letey, .. ., en beabasisfoW,andlete_q,...,e_n,
be the dual basis i’. Then(e+;)1<i<m is a symplectic basis fa’ @ W’. By induction(W @ W’)* has
a symplectic basiéet;)m+1<i<n, and thene+;)1<i<» is a symplectic basis for.
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J is positive(resp.negativg if y;(u,v) =4 ¥ (u, Jv) is positive definite (resp. negative
definite).

Let X* (resp. X ) denote the set of positive (resp. negative) complex structures on
V(R), and letY = X u X~. ThenG(R) acts onX according to the rule

(g, J) > gJg™ ",
and the stabilizer ii7 (R) of X+ is
GR)" ={g e GMR) | v(g) > 0}
For a symplectic basi&.;) of V, defineJ by Jey; = e, i.e.,

J J :
ei—e_j+—> —e¢;, 1=<i=<n.
ThenJ? = —1 andJ € X —in fact, (¢;); is an orthonormal basis fa¥;. Conversely,

if J € XT, thenJ has this description relative to any orthonormal basis for the positive
definite formy,;. The map from symplectic bases 6" is equivariant for the actions of
S (R). Therefore,S (R) acts transitively ork *, andG (R) acts transitiveff# on X'

ForJ € X, leth; be the corresponding homomorphi§hi — G (R). Theni,j,-1(z) =
ghy(z)g~!. ThusJ — hj identifiesX with a G(R)-conjugacy class of homomorphisms
h:C* — G(R). We check thatG, X) satisfies the axioms SV1-SV6.

(SV1). Forh e X,letVT =V-10andV- = V%~! sothatV(C) = V* @ V~ with
h(z) acting onV+ andV ~ as multiplication by: andz respectively. Thef

Hom(V (C), V(C)) = Hom(V*, V) Hom(V*, V)@ Hom(V—,VT)dHom(V~, V™)
h(z) acts as 1 z/z Z/z 1

The Lie algebra of5 is the subspace

Lie(G) ={/ € Hom(V., V) [ ¥ (f(u),v) + ¥ (u, f(v)) = 0},

of End(V), and so SV1 holds.

(SV2). We have to show that dds a Cartan involution oiiz%. But, J2 = —1 lies in
the centre ofS(R) and v is a J-polarization forSy in the sense ofl.20), which shows
that ad/ is a Cartan involution fofS.

(SV3). In fact,G%%is Q-simple, andz24(R) is not compact.

(SV4). Forr € R*, wy(r) acts on bothV=1:% andV%~! asv + rv. Thereforewy
is the homomorphisrtr,,g — GL(V (R)) sendingr € R* to multplication byr. This is
defined oven.

(SV5). The centre o is G,,, andQ* is discrete inAf (seeb.29).

(SV6). The centre o is split already ovef).

We often write(G (v), X (v)) for the Shimura datum defined by a symplectic space)),
and(S (y), X (y)*) for the connected Shimura datum.

¥The elemeng: ex; > ex; of G(R) hasv(g) = —1 and it interchange¥ + and X —.
S5Recall that the group GIV) acts on HonmiV/, V) according to the rule

*fw)=a(f(@ ), aeGLYV), feHomV,V), veV.
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EXERCISE 6.2. (a) Show that for any: € X(¥), v(h(z)) = zz. [Hint: for nonzero
vt € VT andv™ € V-, computeyc(h(z)vt, h(z)v™) in two different ways.]
(b) Show that the choice of a symplectic basis foridentifies X+ with H, as an

Sp(v)-set (sed.d).

The Siegel modular variety

Let (G, X) = (G(¥), X(v)) be the Shimura datum defined by a symplectic sgdce))
overQ. TheSiegel modular variety attached 1@/, y) is the Shimura variety Sk, X).

Let V(Ar) = Ay ®q V. ThenG(Ay) is the group ofA,-linear automorphisms of
V (Ar) preservingy up to multiplication by an element df}(.

Let K be a compact open subgroup®fA (), and letH ¢ be the set of triple§ W, &), s, nK)
where

o (W, h) is arational hodge structure of type1,0), (0, —1);

o =s is a polarization fo(W, h);

o nK is a K-orbit of As-linear isomorphismd/(Af) — W(Ay) sendingy to an

Af-multiple of s.

An isomorphism

(W, h),s,nK) — (W', h'),s',n'K)
of triples is an isomorphism: (W, h) — (W', k") of rational hodge structures such that
b(s) = cs’ somec € Q* andbon=n" mod K.
Note that to give an element &fx amounts to giving a symplectic spag#’, s) over
Q, a complex structure ol that is positive or negative far, andnK. The existence

of n implies that dimW = dimV/, and so(W, s) and(V, ) are isomorphic. Choose an
isomorphismu: W — V sendingy to aQ*-multiple of s. Then

ah =g (z+—>aoh(z)o a_l)

liesin X, and
V(Ay) = W(hy) = V(Ay)

lies in G(Ay). Any other isomorphisma’: W — V' sendingys to a multiple ofs differs
from a by an element 06 (Q), say,a’ = ¢q o a with ¢ € G(Q). Replacingz with &’ only
replaceqah, a o n) with (qah, ga o n). Similarly, replacing; with nk replacegah, a o n)
with (ah, a o nk). Therefore, the map

(W.. )= lah,aonlk:Hg — GQ\X x G(Ar)/K
is well-defined.

PROPOSITIONG.3. The setShg (G, X) classifies the triples ifl{x modulo isomorphism.
More precisely, the mapW, ...) — [ah,a o n]kx defines a bijection

Hi /~— G@Q\X x G(As)/K.
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PROOF It is straightforward to check that the map sends isomorphic triples to the same
class and that two triples are isomorphic if they map to the same EfeEke map is onto
becauséh, g] is the image of (V, h), ¥, gK). O

Complex abelian varieties

An abelian variety 4 over a fieldk is a connected projective algebraic variety ower
together with a group structure given by regular maps. A one-dimensional abelian variety
is an elliptic curve. Happily, a theorem, whose origins go back to Riemann, reduces the
study of abelian varieties ovér to multilinear algebra.

Recall that a lattice in a real or complex vector spBads theZ-module generated by an
R-basis forV'. For a latticeA in C"*, makeC” /A into a complex manifold by endowing it
with the quotient structuré A complex torusis a complex manifold isomorphic 6" /A
for some latticeA in C”.

Note thatC” is the universal covering space 8f = C"/A with A as its group of
covering transformations, and (M, 0) = A (Hatcher 2002, 1.40). Therefore, (ib. 2A.1)

H(M,Z) = A (31)

and (Greenberg 1967, 23.14)

HY(M,Z) = Hom(A, Z). (32)
PROPOSITIONG.4. Let M = C"/A. There is a canonical isomorphism

H"(M,7) = Hom(\"A, 7Z),
i.e., H"(M, Z) is canonically isomorphic to the setmfalternating formsA x- - - x A — Z.
PROOF. From [32), we see that
N'HY(M,Z) = N\'Hom(A, Z).

Sincé®
A" Hom(A, Z) = Hom(\" A, Z),

56Suppose: (W, h) =, (W', ') sendss to aQ*-multiple of " and is such that o 5 = ' o k for some
k € K. Choose an isomorphisai: W/ — V sendings’ to aQ*-multiple of ¥, and leta = &’ o b. Then
(ah,aon) = (d'h,a’ on ok).

S’Let (W ...) and(W'...) map to the same class. Choose isomorphigns — W anda’:V — W’
sendingy to multiples ofs ands’. We are given thata/,a o n) = (ga’h,q o @’ o n o k) for someg andk.
After replacinga’ with g o @', we may suppose thét/,a o n) = (a’h,a’ ono k). Thenb =a’ oa~'is an
isomorphism((W, h),...) — (W', }K),...).

8That is, give it the quotient topology and define a functi6ron an open subsdtf of C"/A to be
holomorphic if f o 7 is holomorphic onr ! (U), wherer: C* — C"/A is the quotient map.

59For a freeZ-moduleA of finite rank, the pairing

N'AY x N'A — Z
determined by
(ST A A frsv1 @ -+ @ vn) = del( fi(v))
is nondegenerate (since it is modyidor every p — see Bourbaki 19588).
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we see that it suffices to show that cup-product defines an isomorphism
N'H (M,Z) - H"(M, Z). (33)

Let 7 be the class of topological manifold& whose cohomology groups are fré&e
modules of finite rank and for which the maf&3) are isomorphisms for ali. Certainly,
the circleS! is in 7 (its cohomology groups ar8, Z, 0,...), and the Kinneth formula
(Hatcher 2002, 3.16 et seq.) shows thavif and M, are in7, then so also i94; x M,.
As a topological manifoldC” /A ~ (S1)?*, and soM isin7. O

PROPOSITIONG.5. A linear mapw: C” — C" such thatx(A) c A’ defines a holomorphic
mapC"/A — C" /A’ sending0 to 0, and every holomorphic maf”/A — C" /A’
sending to 0 is of this form (for a unique).

PROOF. The mapC” = C" — C" /A’ is holomorphic, and it factors througt'/A. Be-
causeC/A has the quotient structure, the resulting ni#g A — C" /A’ is holomorphic.
Conversely, letp: C/A — C/A’ be a holomorphic map such that0) = 0. ThenC” and
C" are universal covering spaces®@f/A andC” /A’, and a standard result in topology
(Hatcher 2002, 1.33, 1.34) shows thatifts uniquely to a continuous map: C* — C”
such thatp(0) = 0:

cr L) Cn’

l !

Cr/A —25 ¢ /A

Because the vertical arrows are local isomorphispnis, automatically holomorphic. For
anyw € A, the mapz — ¢(z + w) — ¢(z) is continuous and takes valuesii c C.
BecauseC" is connected and’ is discrete, it must be constant. Therefore, for each
g—g_ is a doubly periodic function, and so defines a holomorphic funcfibppA — C”,
which must be constant (becauSe/A is compact). Writep as ann’-tuple (¢1, . .., @)
of holomorphic functiong; in n variables. Becausg (0) = 0 andg—‘;’; is constant for each
J, the power series expansion @f at 0 is of the form) a;;z;. Now ¢; and) a;;z; are
holomorphic functions o£” that coincide on a neighbourhood @fand so are equal on
the whole ofC”. We have shown that

@(21,...,Zn):(Zalij,...,Zan/ij). O

ASIDE 6.6. The proposition shows that every holomorphic maf”/A — C* /A’ such
thate(0) = 0 is a homomorphism. A similar statement is true for abelian varieties over
any fieldk: a regular map: A — B of abelian varieties such that(0) = 0 is a ho-
momorphism (AG, 5.36). For example, the map sending an element to its inverse is a
homomorphism, which implies that the group law dns commutative. Also, the group

law on an abelian variety is uniquely determined by the zero element.

Let M = C"/A be a complex torus. The isomorphig® A = C” defines a complex
structureJ onR ® A. A riemann formfor M is an alternating formy: A x A — Z such
thatyr(Ju, Jv) = Yr(u,v) andygr(u, Ju) > 0 for u # 0. A complex torusC" /A is said
to bepolarizableif there exists a riemann form.
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THEOREM®6.7. The complex toru€” /A is projective if and only if it is polarizable.

PrRoOF. See Mumford 1970, Chapter I, (or Murty 1993, 4.1, for the “if” part). Alterna-
tively, one can apply the Kodaira embedding theorem (Voisin 2002, Th. 7.11, 7.2.2).

Thus, by Chow’s theoreniB(11), a polarizable complex torus is a projective algebraic
variety, and holomorphic maps of polarizable complex tori are regular. Conversely, it is
easy to see that the complex manifold associated with an abelian variety is a complex
torus: let Tgg A be the tangent space tbat0; then the exponential map Tg — A(C)
is a surjective homomorphism of Lie groups with kernel a lattdcewhich induces an
isomorphismTgt, 4)/A = A(C) of complex manifolds (Mumford 1970, p2).

For a complex toruds = C"/A, the isomorphisn\ ®z R = C" endowsA ®z R with
a complex structure, and hence endows= H; (M, Z) with an integral hodge structure
of weight—1. Note that a riemann form fa¥/ is nothing but a polarization of the integral
hodge structure\.

THEOREM 6.8 (RIEMANN’S THEOREM). ®The functord — H;(4,Z) is an equivalence
from the categonAvV of abelian varieties ovet to the category of polarizable integral
hodge structures of type-1, 0), (0, —1).

PrROOE We have functors

A— 43" . .
AV — {category of polarizable complex tpri

Mi—H{(M,Z . .
MoBMB {category of polarizable integral hodge structures of tpé, 0), (0, —1)}.

The first is fully faithful by Chow’s theoreni3({1]), and it is essentially surjective by The-
orem[6.7; the second is fully faithful by Propositide.5 and it is obviously essentially
surjective. O

Let AV® be the category whose objects are abelian varieties ©vand whose mor-
phisms are
Hom,,0 (A4, B) = Homy (4, B) ® Q.

COROLLARY 6.9. The functord — H; (4, Q) is an equivalence from the categoxy® to
the category of polarizable rational hodge structures of type, 0), (0, —1).

PROOF. Immediate consequence of the theorem. O

REMARK 6.10. Recall that in the dictionary between complex structufes a real vector
spacel and hodge structures of tyge-1, 0), (0, —1),

V,J)=ZV(©)/ Vv =v(@©)/F°.

Since the hodge structure @fi (4, R) is defined by the isomorphism T@g4) = H;(4,R),
we see that
Tgty(4) = Hi(4,C)/F° (34)

(isomorphism of complex vector spaces).

60In fact, it should be called the “theorem of Riemann, Frobenius, Weierstrass, Rpibefschetz, et al.”
(see Shafarevich 1994, Historical Sketch, 5), but “Riemann’s theorem” is shorter.
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A modular description of the points of the Siegel variety

Let Mg be the set of triple$4, s, nK) in which A is an abelian variety over, s is an

alternating form onf, (A, Q) such thats or —s is a polarization onH;(A4,Q), andn is

an isomorphismV' (Ay) — Vy(Ar) sendingy to a multiple ofs by an element of&;.

An isomorphism from one tripl€A4, s,nK) to a second 4’,s’,n' K) is an isomorphism
A — A’ (as objects irAV®) sendings to a multiple ofs’ by an element of)* andnK to

nK.

THEOREM 6.11 The setShg (G, X) classifies the triple$A, s, nK) in Mg modulo iso-
morphism, i.e., there is a canonical bijectior x /~ — G(Q)\X x G(Ay)/K.

PrROOF. Combine[6.9) with (£.3). N
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7 Shimura varieties of hodge type

In this section, we examine one important generalization of Siegel modular varieties.

DEFINITION 7.1 A Shimura datumG, X) is of hodge typef there exists a symplectic
space(V,vy) over Q and an injective homomorphispmt G — G () carrying X into
X (¥). The Shimura variety Sk, X) is then said to be diodge typeHere(G (), X (¥))
denotes the Shimura datum defined(by ).

The composite op with the character of G (y) is a character ofr, which we again
denote by. LetQ(r) denote the vector spadgwith G acting byrv, i.e.,g-v =v(g)" -v.
For eachi € X, (Q(r), h o v) is a rational hodge structure of typer, —r) (apply6.2a),
and so this notation is consistent with thatZhg).

LEMMA 7.2. There exist multilinear maps. V x --- x V — Q(r;), 1 <i < n, such that
G is the subgroup ofr () fixing they;.

PrOOF. According to Deligne 1982, 3.1, there exist tenspiig V®'i @ VV®si such that
this is true. Buty defines an isomorphisii = VY ® Q(1)), and so

Ve @ VV®si x yVeUits) @ () (r;) = Hom(V 24D Q(ry)). n

Let (G, X)) be of hodge type. Choose an embedding®f X) into (G (), X (v)) for
some symplectic spagé’, y) and multilinear maps, ..., as in the lemma. Lek{x be
the set of tripleg(W, &), (si)o<i<n, nK) in which
(W, h) is arational hodge structure of type 1, 0), (0, —1),
+5¢ IS a polarization fo(W, h),

S1,...,8, are multilinear maps;: W x --- x W — Q(r;), and

nK is a K-orbit of isomorphismd/(As) — W(Ar) sendingyr onto anA}(-muItipIe
of so and each; to s;,

satisfying the following condition:

(¢]

O O O

(*) there exists an isomorphism W — V sendings, to aQ*-multiple of v,
s; tot; eachi > 1, and/s onto an element ok'.

Anisomorphism from one triplélV, .. .) to asecondW’, .. .) is an isomorphisnaW, 1) —
(W', k') of rational hodge structures sendingto aQ*-multiple of s, s; to s; for i > 0,
andnK ton'K.

PROPOSITION7.3. The setShg (G, X)(C) classifies the triples i{x modulo isomor-
phism.

PROOF. Choose an isomorphism W — V as in (*), and consider the pait/,a o n).

By assumptionii € X anda o n is a symplectic similitude ofV (Ay), y) fixing the ¢,

and so(ah,a o n) € X x G(Ay). The isomorphisnu is determined up to composition
with an element of5 (Q) andn is determined up to composition with an elementkaf It
follows that the class ofu/r, a o) in G(Q)\ X x G(Ar)/K is well-defined. The proof that
(W,...) — [ah,a o n]g gives a bijection from the set of isomorphism classes of triples in
Hx onto Sk (G, X)(C) is now routine (cf. the proof d8.3). O
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Letz:V x --- x V — Q(r) (m-copies ofV) be a multilinear form fixed by, i.e.,
such that

t(guy,....gun) =v(g) - t(vy,...,vy), forallvy,...,v, €V, geGQQ).

Forh € X, this equation shows thatdefines a morphism of hodge structu(s 2)®” —
Q(r). On comparing weights, we see that i nonzero, them = 2r.
Now let 4 be an abelian variety ovét, and letV = H;(A4,Q). Then (se&.4)

H™(4,Q) = Hom(A\™V, Q).
We say that € H*" (A4, Q) is ahodge tensor for4 if the corresponding map
Ve — AYV - Q(r)

is a morphism of Hodge structures.

Let (G, X) — (G(¥), X(¢)) andty, ..., t, be as above. Let g be the set of triples
(A, (si)o<i<n, nK) in Which

o A is a complex abelian variety,

o =s¢ is a polarization for the rational hodge structilie(A4, Q),

o s1,...,8, are hodge tensors fot or its powers, and

o nK is a K-orbit of As-linear isomorphismd/(As) — Vy(A) sendingy onto an

A}(-multiple of sog and each; to s;,

satisfying the following condition:

(**) there exists an isomorphism: H;(A4,Q) — V sendings, to a Q*-
multiple of ¢, s; to¢; eachi > 1, andi to an element of(.

An isomorphism from one tripl€A4, (s;);, nK) to a second 4’, (s;), n' K) is an isomor-
phism4 — A’ (as objects ofAv®) sendings, to a multiple ofs;, by an element of)*,
eachs; to s}, andn to n’ modulo K.

THEOREM7.4. The seShk (G, X)(C) classifies the triples itM g modulo isomorphism.
PrRoOOF. Combine Propositiorig.3and6.2 O

The problem with Theorefid.4is that it is difficult to check whether a triple satisfies
the condition (**). In the next section, we show that when the hodge tensors are endomor-
phisms of the abelian variety, then it is sometimes possible to replace (**) by a simpler
trace condition.

REMARK 7.5. When we writed(C) = C8 /A, then (se&.4),
H™(4,Q) = Hom(A\"A, Q)
NowA ® C= T @ T whereT = Tgt,(4). Therefore,

H™(A,C) Z=Hom(A"(A®C),C) =Hom( P A’TNT,C)= G H

p+q=m p+q=m



75

where o
H?% = Hom(A\’T @ \T,C).

This rather ad hoc construction of the Hodge structurd&dh does agree with the usual
construction[2.5) — see Mumford 1970, Chapter I. A hodge tensorbis an element of

H? (A4,Q)N H"" (intersection insidé7*" (4, C)).

The Hodge conjecture predicts that all hodge tensors are the cohomology classes of alge-
braic cycles withQ-coefficients. For = 1, this is known even ovef.. The exponential
sequence

zi—>exp2wiz) .
0-2Z—04 — 0;3—-0

gives a cohomology sequence
H'(A,0%) — H*(A,Z) — H*(A4,0,).

The cohomology groupf ! (4, O%) classifies the divisors oA modulo linear equivalence,
i.e., Pidd) = H'(4, 0%), and the first arrow maps a divisor to its cohomology class. A
class inH?(A,Z) maps to zero ifd?(4,0,4) = H®%? if and only if it maps to zero in its
complex conjugaté?>°. Therefore, we see that

Im(Pic(4)) = H*(A,Z) N H"!.
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8 PEL Shimura varieties

Throughout this sectiork; is a field of characteristic zero. Bilinear forms are always non-
degenerate.

Algebras with involution

By ak-algebral mean a ringB containingk in its centre and finite dimensional over A
k-algebraa is simpleif it contains no two-sided ideals excepand A. For example, every
matrix algebrai,, (D) over a division algebrad is simple, and conversely, Wedderburn’s
theorem says that every simple algebra is of this form (CFT, IV 1.9). Up to isomorphism, a
simplek-algebra has only one simple module (ibid, IV 1.15). For example, up to isomor-
phism, D" is the only simpleM,,(D)-module.

Let B = B; x --- x B, be a product of simpl&-algebras (@emisimpléec-algebra) A
simple B;-moduleM; becomes a simpl8-module when we leB act through the quotient
map B — B;. These are the only simplB-modules, and ever$g-module is a direct sum
of simple modules. AB-moduleM defines &-linear map

b Tre(b|M): B — k
which we call thetrace mapof M.

PROPOSITION8.1 Let B be a semisimplé&-algebra. TwoB-modules are isomorphic if
and only if they have the same trace map.

PROOF. Let By,..., B, be the simple factors oB, and letM; be a simpleB;-module.
Then everyB-module is isomorphic to a direct su®; r; M; with r; M; the direct sum of
r; copies ofM;. We have to show that the trace map determines the multiplicitieBut
fore; = (0,...,0,1,0,...),

l

Tre(ei | _rj M) = ri dimg M; . O

REMARK 8.2 The lemma fails wherk has characteristip, because the trace map is
identically zero orp M.

An involution of a k-algebraB is ak-linear mapb — b*: B — B such that(ab)* =
b*a* andb** = b. Note that theri* = 1 and soc* = c forc € k.

PROPOSITION8.3. Letk be an algebraically closed field, and |eB, ) be a semisimple
k-algebra with involution. TheqB, x) is isomorphic to a product of pairs of the following
types:

(A) My(k) x My(k), (a,b)* = (b',d");

(C) Mu(k), b*=10";

(BD) My(k), b*=J-b"-J7', J=(97).
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PROOF. The decompositiorB = B; x --- x B, of B into a product of simple algebras
B; is unique up to the ordering of the factors (Farb and Dennis 1993, 1.13). Therefore,
permutes the set aB;, and B is a product of semisimple algebras with involution each of
which is either (i) simple or (ii) the product of two simple algebras interchanged by

Let (B, *) be as in (i). ThenB is isomorphic toM, (k) for somen, and the Noether-
Skolem theorem (CFT, 2.10) shows titét = u - b* - u~! for someu € M,(k). Then
b=0b"*=wu ) bu'u")foral b e B, and sau'u! lies in the centré of M, (k).
Denote it byc, so that’ = cu. Thenu = u'’ = c?u, and sac? = 1. Thereforey’ = +u,
andu is either symmetric or skew-symmetric. Relative to a suitable basss/ or J, and
S0 (B, %) is of type (C) or (BD).

Let (B, *) be as in (ii). Then« is an isomorphism of the opposite of the first factor
onto the second. The Noether-Skolem theorem then showg Bha) is isomorphic to
M, (k) x M, (k)°PPwith the involution(a, b) — (b, a). Now use thatt <> a’: M,,(k)°PP =
M, (k) to see that B, %) is of type (A). O

The following is a restatement of the proposition.

PROPOSITION8.4. Let (B, x) andk be as in[B.3). If the only elements of the centre Bf
invariant underx are those ink, then(B, x) is isomorphic to one of the following:

(A) Ende(W) x Enge(W"), (a,b)* = (b',d");

(C) End. (W), b* the transpose df with respect to a symmetric bilinear form a#;
(BD) End. (W), b* the transpose df with respect to an alternating bilinear form di.

Symplectic modules and the associated algebraic groups

Let (B, *) be a semisimplé-algebra with involutiork, and let(V, ) be asymplectic
(B, *)-modulg i.e., aB-moduleV endowed with an alternating-bilinear form: 1 x
V — k such that

v (bu,v) = ¥ (u,b*v) forallb € B,u,v € V. (35)

Let F be the centre oB3, and letF, be the subalgebra of invariants:efn F. Assume
that B and V are free overF” and that for allk-homomorphisme: Fy — k%, (B ®F, .,
k3 ) is of the same type (A), (C), or (BD). This will be the case, for exampld; i a
field. LetG be the subgroup of GIV') such that

G(Q) =1{g e Autg(V) | ¥ (gu, gv) = n(g)y¥ (u,v) someu(g) € k*},

and let
G’ = Ker(u) N Ker(det).

EXAMPLE 8.5. (Type A.) Let F bek x k or a field of degree overk, and letB =
Endr (W) equipped with the involution defined by a hermitian foffi¢: W x W — F.

61There is a unique involution aF fixing k£, which we again denote. To say that is hermitian means
that it is F-linear in one variable and satisfig$w, v) = ¢ (v, w)*.
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Then(B, ) is of type A. LetV, be anF'-vector space, and lgt, be a skew-hermitian form
Vo x Vo — F. The bilinear formy onV = W ®F V, defined by

Y(w v, w ®v) = Trp/u(p(w, w)vo(v,v')) (36)

is alternating and satisfie8Y): (V, ) is a symplectid B, x)-module. LetC = Endg(V)
(the centralizer ofB in Endg(V')). ThenC is stable under the involution defined byy,
and

Gk)={ceC*|cc* ek™} (37)
G'(ky={ceC*|cc*=1, defc)=1}. (38)

In fact,C = Endr(Vy) andx is transposition with respect if,. ThereforeG is the group
of symplectic similitudes ofyy whose multiplier lies ik, and G’ is the special unitary
group ofyr.
Conversely, let B, x) be of type A, and assume
(a) the centreF of B is of degree overk (so F is a field ork x k);
(b) B is isomorphic to a matrix algebra ovér (when F is a field, this just means that
B is simple and split over).

Then | claim that(B, %, V, ) arises as in the last paragraph. To see this)ifebe a
simple B-module — condition (b) implies tha® = Endr (W) and thatx is defined by a
hermitian formgp: W x W — F. As aB-module,V is a direct sum of copies d¥, and so
V =W ®pF V, for someF -vector spacéd,. Choose an element of F \ k whose square
isink. Thenf* =—f, and

Y (,v) =Tre e (fY(v,v))

for a unique hermitian fornv: vV x vV — F (Deligne 1982, 4.6), which has the property
that W (bv,v') = ¥(v,b*v’). The form(v,v’) — fW¥(v,v’) is skew-hermitian, and can
beéf2 written f¥ = ¢ ® Y with ¥ skew-hermitian oiy. Now v, ¢, o are related by
(396).

EXAMPLE 8.6. (Type C.) LetB = End, (W) equipped with the involutios defined by a
symmetric bilinear formp: W x W — k. Let V, be ak-vector space, and let, be an
alternating formVy x Vo — k. The bilinear formy onV = W ® 1, defined by

Y(w@v,w ®v) = ¢w,w)Po(v,v)

is alternating and satisfie8Y). Let C = Endg (V). ThenC is stable under the involution
x defined byy, andG (k) andG’(k) are described by the equatiof) and B§). In fact,
C = End(Vy) andx is transposition with respect t,. ThereforeG = GS(Vy, ¥¢) and
G’ = Sp(Vy, vo). Every system(B, x, V, ) with B simple and split ovek arises in this
way (cf.[8.5).

62probably the easiest way to prove things like this is use the correspondence between involutions on
algebras and (skew-)hermitian forms (up to scalars) — see Knus et al. 1998, | 4.2. The involution-¢i End
defined byy stabilizesC and corresponds to a skew-hermitian formign




Algebras with positive involution 79

PROPOSITIONS8.7. For (B,x*) of type A or C, the grougs is reductive (in particular,
connected), and’ is semisimple and simply connected.

PROOF. It suffices to prove this after extending the scalars to the algebraic closiére of
Then (B, %, V,¥) decomposes into quadruples of the types considered in Exa@fes
and8.6, and so the proposition follows from the calculations made there. O

REMARK 8.8. AssumeB is simple, and letn be thereduced dimensiomf V/,

dimg(V)
m = - 1 -
[B: F]2

In case (A),Ga ~ (SL)!"*® and in case (C)Fga ~ (Sp,) 0@

REMARK 8.9. In case (BD), the grougr is not connected(’ is a special orthogonal
group) although its identity component is reductive.

Algebras with positive involution

Let C be a semisimpl&-algebra with an involutios, and letV be aC-module. In the next
proposition, by dermitian form on V we mean a symmetric bilinear forth: V x V' — R
satisfying BB, Such a form is said to beositive definitef v (v, v) > 0 for all nonzero
velVl.

PROPOSITIONS8.10. Let C be a semisimple algebra ov&. The following conditions on
an involutionx of C are equivalent:

(a) some faithfulC-module admits a positive definite hermitian form;

(b) everyC-module admits a positive definite hermitian form;

(c) Trer(c*c) > 0 for all nonzeroc € C.

PROOF. (a) = (b). Let V be a faithful C-module. Then every’-module is a direct
summand of a direct sum of copies bf(see @6). Hence, ifV carries a positive definite
hermitian form, then so does eveti*module.

(b) = (c). LetV be aC-module with a positive definite hermitian for@), and
choose an orthonormal basig . .., e, for V. Then

Trr(c*c|V) = ;(eilc*ce;) =) ;(ceilce;),

which is> 0 unlessc acts as the zero map dn. On applying this remark withV = C,
we obtain (c).

(c) = (a). The condition (c) is that the hermitian foi@ ¢’) — Tre/r(c*c’) onC is
positive definite. O

DEFINITION 8.11 An involution satisfying the equivalent conditions Bt10) is said to be
positive

63Strictly, a hermitian form should be a formm V x V — C that isC-linear in one of the variables and
satisfiesp(y,x) = ¢(x,y)*. But theny = Trc/ro¢ is a symmetric bilinear form satisfyin@®), and
(V,¢) — (V,v) is an equivalence of categories.
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PROPOSITION8.12 Let B be a semisimpl&-algebra with a positive involution of type
A or C. Let(V,y) be a symplecti€ B, x)-module, and leC be the centralizer oB
in End: (V). Then there exists a homomorphismRealgebrasi: C — C, unique up to
conjugation by an elementof C* with cc* = 1, such that

o h(z) = h(z)* and

o u,v+— ¥(u,h(i)v) is positive definite and symmetric.

PROOF. To give ani satisfying the conditions amounts to giving an elemeii /(i)) of
C such that

JP=—1, v(Ju,Jv)=vw,v), ¥, Jv)>0ifv#£D0. (39)

Suppose first thatB, *) is of type A. Then(B, %, V, ) decomposes into systems arising
as in B.5). Thus, we may supposB = Endg (W), V = W ® V,, etc., as in@.5). We
then have to classify thé € C = End: (V) satisfying B9) with v replaced by/. There
exists a basige;) for V, such that

(Wo(ej,ek))j,k = diag(i,. .. ,i, —I,..., —i), i =+—1.

Define J by J(e;) = —vo(ej,ej)e;. ThenJ satisfies the required conditions, and it is
uniquely determined up to conjugation by an element of the unitary groufy ofThis
proves the result for type A, and type C is similar. (For more details, see Zink 1983,
3.1). O

REMARK 8.13 Let (B, *) and(V,v) be as in the proposition. For a@nsatisfying the
conditions of the proposition, define

t(b) = Tre(b|V/FV), be B.

Then,t is independent of the choice éf and in fact depends only on the isomorphism
class of(V, ) as aB-module. Conversely,V, ¥) is determined up t&-isomorphism by
its dimension and. For example, i = W ®¢ Vo, ¢, ¥, etc. are as in the above proof,
then

Tre(®|V) =71 - Tre(b|W),

andr and dimV,, determine(Vy, ¥) up to isomorphism. Sinc® and¢ are determined
(up to isomorphism) by the requirement titbe a simpleB-module andp be a hermitian
form giving * on B, this proves the claim for type A.

PEL data

Let B be a simpleQ-algebra with a positive involutios (meaning that it becomes positive
on B ®g R), and let(V, v) be a symplecti¢ B, x)-module. Throughout this subsection,
we assume thatB, x) is of type A or C.

PROPOSITION8.14. There is a uniqué& (R)-conjugacy clasg” of homomorphisms: S —
Gr such that eaclh € X defines a complex structure df(R) that is positive or negative
for ¢. The pair(G, X) satisfies the conditions SV1-4.
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PROOF. The first statement is an immediate consequenc@.4B( The composite of:
with G — G (v) lies in X(v), and therefore satisfies SV1, SV2, SV4. /As nontrivial,
SV3 follows from the fact tha@2? is simple. O

DEFINITION 8.15 The Shimura data arising in this way are calkohple PEL data of
type AorC

The simple refers to the fact that (for simplicity), we requido be simple (which
implies thatG2¢ is simple).

REMARK 8.16 Leth € B, and lets, be the tenso(x, y) — v (x,by) of V. An element
g of G () fixest, if and only if it commutes withb. Letby, ..., bs; be a set of generators
for B as aQ-algebra. ThenG, X) is the Shimura datum of hodge type associated with the

system(V, {v, tp,, ..., b, }).

PEL Shimura varieties

THEOREMS8.17. Let(G, X) be asimple PEL datum of type A or C associated Wi, V, )
as in the last subsection, and [Etbe a compact open subgroup®@tAr). ThenShg (G, X)(C)
classifies the isomorphism classes of quadrupies, i, nK) in which

A is a complex abelian variety,

+s is a polarization of the hodge structuié, (4, Q),

i is a homomorphisn® — End(4) ® Q, and

nK is a K-orbit of B ® As-linear isomorphismsy: V(As) — H'Y(4,Q) ® As
sendingy to an A¥-multiple ofs,

satisfying the following condition:

(¢]

O O O

(**) there exists aB-linear isomorphisnu: H;(A,Q) — V sendings to a
Q*-multiple ofyr.

PROOF. In view of the dictionaryb < 1, between endomorphisms and tens@d@),
TheoreniZ.4 shows that Sh(G, X)(C) classifies the quadrupléd, i, ¢, n K) with the ad-
ditional condition that:2 € X', butah defines a complex structure &f(R) that is positive
or negative for/, and sol8.14) shows that:: automatically lies inX. O

Let (G, X)) be the Shimura datum arising frof®, x) and(V, ). Forh € X, we have
atrace map
b+ Tr(b|V(C)/F?): B — C.

Since this map is independent of the choic& af X', we denote it by T¢.

REMARK 8.18 Consider a triple(4, s,i,nK) as in the theorem. The existence of the
isomorphismz in (**) implies that

@) s(bu,v) = s(u,b*v), and

(b) Tr(i(b)|TgtyA) = Trx(b) forallb € B ® C.
The first is obvious, becausg has this property, and the second follows from the
isomorphisms

(BZD a
Toty(4) = Hi(A,C)/F° —> V(C)/F}.
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We now divide the type A in two, depending on whether the reduced dimensiénsof
even or odd.

PrROPOSITION8.19. For types Aeven and C, the condition (**) of Theoi87is implied
by conditions (a) and (b) oB(18).

PROOF. Let W = H;(4,Q). We have to show that there existBalinear isomorphism
a: W — V sendings to aQ*-multiple ofiy,. The existence af shows that¥ has the same
dimension ad/, and so there existsB®q Q¥-isomorphismw: V (Q*) — W(Q?¥) sending
t to aQ®*-multiple of . Foro € Gal(Q?¥/Q) write oo = 0 a, With a, € G(Q). Then
o + a, is a one-cocycle. If its class it (Q, G) is trivial, say,a, = a~' - oa, then
o oa~lis fixed by allo € Gal(Q?¥/Q), and is therefore defined ovér.

Thus, it remains to show that the clasS@f) in H'(Q, G) is trivial. The existence of
n shows that the image of the classfifi (Q;, G) is trivial for all finite primest, and B.13
shows that its image it/ ! (R, G) is trivial, and so the statement follows from the next two
lemmas. O

LEMMA 8.20. Let G be a reductive group with simply connected derived group, and let
T =G/G® If HY(Q,T) - [];—oc H'(Q:, T) is injective, then an element &' (Q, G)
that becomes trivial infd ' (Q;, G) for all / is itself trivial.

PROOF. Because7%is simply connectedi ! (Q;, G%") = 0for/ # oo andH'(Q, G%") —
H'(R, G%" is injective £.19. Using this, we obtain a commutative diagram with exact
rows

rQ — H'(QG*) — H'(QG) —— H'(QT)

l injectivel J{ injectivel

GR) — T(R) — H'(R,G*) — J[[H'(Q;,G) — [[,H Q7).

If an element of H!(Q, G) becomes trivial in allF' (Q;, G), then a diagram chase shows
that it arises from an element of H!(Q, G%") whose image/, in H'(R, G%") maps to
the trivial element inH! (R, G). The image ofG(R) in T(R) containsT (R)* (sedb.]),
and the real approximation theoref4) shows thatl'(Q) - T(R)* = T'(R). Therefore,
there exists a € T(Q) whose image i/ (R, G%") is ¢/_. Thent — ¢’ in H'(Q, G%"),
which shows that is trivial. O

LEMMA 8.21 Let (G, X) be a simple PEL Shimura datum of type Aeven or C, and let
T =G/G*. ThenH'(Q, T) — [],<oc H'(Q:, T) is injective.

NMEg,

PrRoOOF. For G of type Aeven, 7 = Ker(Gn)r — (Gm)r,) x G,. The group
H'(Q,G,,) =0, and the map o/ !'s of the first factor is

FE/NmMF* - [[,Fy/NmFES.

This is injective (CFT, VIII 1.4).
ForG of typeC, T = G,,, and scH!(Q, T) = 0. O
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PEL modular varieties

Let B be a semisimple algebra ov@with a positive involutionk, and let(V, ¥/) be a sym-
plectic (B, x)-module. LetK be a compact open subgroup@tA,). There exists an al-
gebraic varietyM ¢ overC classifying the isomorphism classes of quadrupes, i, nK)
satisfying (a) and (b) ofd 18 (but not necessarily condition (**)), which is called tR&L
modular variety attached t¢B, %, V, ¥). In the simple cases (Aeven) and (C), Proposition
[B.17shows thatMg coincides with Sk (G, X), but in general it is a finite disjoint union
of Shimura varieties.

NOTES. The theory of Shimura varieties of PEL-type is worked out in detail in several
papers of Shimura, for example, Shimura 1963, but in a language somewhat different from
ours. The above account follows Deligne 18,/§5,6. See also Zink 1983 and Kottwitz
1992,§§1-4.
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9 General Shimura varieties

Abelian motives

LetHod(Q) be the category of polarizable rational hodge structures. Itis an abelian subcat-
egory of the category of all rational hodge structures closed under the formation of tensor
products and duals.

Let VV be a variety ove€C whose connected components are abelian varietied; say
L|V; with V; an abelian variety. Rec&8lithat for manifoldsd; and M,

H" (M, uM;,Q)= H (M,Q) ® H (M,Q).
For each connected componéfit of V,
H*(V°,Q) = AH'(V°,Q) = Homg(AHi(V°,Q), Q)

(sedb.4). Therefore H*(V, Q) acquires a polarizable hodge structure from thatll’, Q).
We write H*(V, Q)(m) for the hodge structuré*(V, Q) ® Q(m) (se€2.9).

Let (W, h) be a rational Hodge structure. An endomorphisof (W, &) is anidempo-
tentif e? = e. Then

(W,h) =Im(e) ®Im(1 —e)

(direct sum of rational hodge structures).

An abelian motiveover C is a triple(V, e, m) in which V is a variety overC whose
connected components are abelian varietess, an idempotent in ErdZ*(V,Q)), and
m € 7. For example, led be an abelian variety; then the projection

H*(4,Q) — H'(4,Q) C H*(4,Q)

is an idempotent’, and we denoté4, ¢’, 0) by i/ (A).

Define Hon{(V, e, m), (V',e’,m’)) to be the set of map&/*(V,Q) — H*(V',Q) of
the forme’o foe with f ahomomorphisni*(V,Q) — H*(V’',Q) of degreal = m’'—m.
Moreover, define

(Vieemy@d (V',e!,m)=VuV ,ede',m)
V,eem)@ (V',e!,m)=(V xV',e®e,m+m')
(V,e,m)" = (V,e',d —m)if V is purelyd-dimensional.

For an abelian motiveV, e, m) overC, let H(V,e,m) = eH*(V,Q)(m). Then(V,e,m) —
H(V,e,m) is a functor from the category of abelian motiv&l to Hod(Q) commuting

with @, ®, andY. We say that a rational hodge structureaklianif it is in the essen-
tial image of this functor, i.e., if it is isomorphic t&/(V, e, m) for some abelian motive
(V,e,m). Every abelian hodge structure is polarizable.

64The set of singular simplexes i is the disjoint union of the similar sets fa#; and M,. Therefore,
the complex of singular cochains fof is the direct sum of the similar complexes faf; and M.
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PROPOSITION9.1. Let Hod®(Q) be the full subcategory dfiod(Q) of abelian hodge
structures. TherHod®®(Q) is the smallest strictly full subcategory bibd(Q) contain-
ing H,(A,Q) for each abelian varietyd and closed under the formation of direct sums,
subquotients, duals, and tensor products; moreafe’AM — Hod??(Q) is an equivalence
of categories.

PrRoOOF. Straightforward from the definitions. ]

For a description of the essential imagefdf see Milne 1994, 1.27.

Shimura varieties of abelian type

Recall §6) that a symplectic spadg’, v) over Q defines a connected Shimura datum
(S(¥), X(¥)t) with S(y) = Sp(v) andX (v) ™ the set of complex structures d1(R), v).

DEFINITION 9.2. (a) A connected Shimura datuf#/, X +) with H simple is ofprimitive
abelian typeif there exists a symplectic spa¢®, ) and an injective homomorphism
H — S(y) carryingX ™ into X (y)*.

(b) A connected Shimura datu@#f, X +) is of abelian typef there exist pair§ H;, X;")
of primitive abelian type and an isogefy; H; — H carrying[], X;" into X.

(b) A Shimura datun{G, X) is of abelian typeif (G%', X ) is of abelian type.

(c) The (connected) Shimura variety attached to a (connected) Shimura datum of abelian
type is said to be ohbelian type

PROPOSITION9.3. Let(G, X) be a Shimura datum, and assume

(a) the weightwy is rational SV4 andZ (G)° splits over a CM-field SV6, and

(b) there exists a homomorphismG — G, such that o wy = —2.
If G is of abelian type, the(V, & o p) is an abelian hodge structure for all representations
(V,p) of G and allz € X; conversely, if there exists a faithful representatwof G such
that (V, h o p) is an abelian hodge structure for all then(G, X)) is of abelian type.

PROOE See Milne 1994, 3.12. OJ

Let (G, X) be a Shimura datum of abelian type satisfying (a) and (b) of the proposition,
and letp: G — GL(V) be a faithful representation 6f. Assume that there exists a pairing
¥:V x V — Q such that

@ gy =v(g)"y forallg € G,

(b) v is a polarization of V,h o p) forall h € X.
There exist multilinear maps: V x --- x V. — Q(r;), 1 < i < n, such thatG is the
subgroup of GI(V') whose elements satisfy (a) and fix. . . #, (cf.[Z.2).

THEOREM 9.4. With the above notation§h(G, X)) classifies the isomorphism classes of
triples (A, (si)o<i<n, nK) in which
o A is an abelian motive,
o =s¢ is a polarization for the rational hodge structusé(A4),
o s1,...,8, are tensors for4, and
o nK is a K-orbit of As-linear isomorphisms/(Ay) — Vy(A4) sendingy to anAf-
multiple ofso, and each; to s;,
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satisfying the following condition:

(**) there exists an isomorphisax: H(A) — V sendingsy to a Q*-multiple
of ¥, eachs; to #;, and/ onto an element ok’

PrROOF. With 4 replaced by a hodge structure, this can be proved by an elementary argu-
ment (cfl6.3[7.3), but 0.3 shows that the hodge structures arising are abelian, and so can
be replaced by abelian motivés ). For more details, see Milne 1994, Theorem 3.311

Classification of Shimura varieties of abelian type

Deligne (1979) classifies the connected Shimura data of abelian typgGlLat*) be a
connected Shimura datum with simple. If G2 is of type A, B, or C, thenG, X ™) is

of abelian type. 1iG%is of type & or E;, then(G, X ) is not of abelian type. 1t72is

of type D, (G, X*) may or may not be of abelian type. There are two problems that may
arise.

(a) Let G be the universal covering group 6f2%. There may exist homomorphisms
(G,X*) - (S(¥), X(¥)™) but no injective such homomorphism, i.e., there may be a
nonzero finite algebraic subgroup C G that is in the kernel of all homomorphisms
G — S(y) sendingX ™ into X(y)*. Then(G/N’, X ) is of abelian type for alN’ > N,
but (G, X ) is not of abelian type.

(b) There may not exist a homomorphigim— S(y) at all.

This last problem arises for the following reason. Even whgfiis Q-simple, it may
decompose into a product of simple grotii§I = Gy x --- x G, overR. For each, G; has
a dynkin diagram of the shape shown below:

On—1
Dy(1): o - (n> 4)
(03] (0%) (0770)
(o7
On—1
Dy(n): * © (n>4)
o1 %% Op—2
Op

D, (n—1): Same a9, (n) by with «,,_; andw,, interchanged (rotation about the horizontal
axis).

Nodes marked by squares are specidllfpand nodes marked by stars correspond to
symplectic representations. The number in parenthesis indicates the position of the special
node. As is explained ifil, the projection ofY * to a conjugacy class of homomorphisms
S — G; corresponds to a node marked withlaSinceX * is defined oveR, the nodes can
be chosen independently for eaclOn the other hand, the representatiéizs — S (¥)r
correspond to nodes marked withkaNote that thex has to be at the opposite end of the
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diagram from thel. In order for a family of representatioiigr — S(¢¥)r, 1 <i <r,to
arise from a symplectic representation o{fgthex’s must be all in the same position since
a galois group must permute the dynkin diagrams of@heClearly, this is impossible if
the[’s occur at different ends. (See Deligne 1979, 2.3, for more details.)

Shimura varieties not of abelian type

It is hoped (Deligne 1979, p248) that all Shimura varieties with rational weight classify
isomorphism classes of motives with additional structure, but this is not known for those
not of abelian type. More precisely, from the choice of a rational represeniat@n—
GL(V), we obtain a family of hodge structuréso pr on V indexed byX. When the
weight of (G, X) is defined ovef), it is hoped that these hodge structures always occur (in
a natural way) in the cohomology of algebraic varieties. When the weiglit.af’) is not
defined over) they obviously can not.

Example: simple Shimura varieties of typeA,

Let (G, X)) be the Shimura datum attached t®Babe a quaternion algebra over a totally
real field F, as in £.24). With the notations of that example,

GR) ~ [[,er, I X [Tyes,. GL2(R).

(a) If B= M,(F), then(G, X) is of PEL-type, and Sh(G, X) classifies isomorphism
classes of quadrupléd, i, z, n K) in which A is an abelian variety of dimensioh= [ F: Q]
andi is a homomorphism homomorphismF — End(4) ® Q. These Shimura varieties
are calledHilbert (or Hilbert-Blumenthal) varieties, and whole books have been written
about them.
(b) If B is a division algebra, buf, = @, then(G, X) is again of PEL-type, and
Shx (G, X) classifies isomorphism classes of quadruglési,z,nK) in which 4 is an
abelian variety of dimensio?[ F: Q] andi is a homomorphism: B — End(4) ® Q. In
this case, the varieties are projective. These varieties have also been extensively studied.
(c) If Bisadivision algebraangl. # @, then(G, X) is of abelian type, but the weight is
not defined ovef). OverR, the weight mapuy sends: € R to the element of F @ R)* =
[ 1,:r—gR with component for v € I, and component for v € I,.. LetT be the torus
over Q with 7(Q) = F*. Thenwy:G,, — Tr is defined over the subfield of Q
whose fixed group is the subgroup of G@JQ) stabilizingl, ¢ I. U I,.. On choosing a
rational representation @f, we find that Slg (G, X)) classifies certain isomorphism classes
of hodge structures with additional structure, but the hodge structures are not motivic —
they do not arise in the cohomology of algebraic varieties (they are not rational hodge
structures§?

85Summary: MV=modular variety; SV=shimura variey=rational weight.
{SV of abeliantypg C  {SV}
U U
{PEL SV} C {SVofhodgetype c {SVofabeliantypeQ} c {SV,Q}
U
{PEL MV simple type A,G C {PEL MV}
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10 Complex multiplication: the Shimura-Taniyama for-
mula

Where we are headed

Let V be a variety ovefQ. For anyoc € GalQ¥/Q) and P e V(Q%), the pointoP e
V(Q¥). For example, ifV’ is the subvariety of\” defined by equations

f(X1,...,Xy) =0, feQ[Xi,..., Xl
then
f(ai,...,a,) =0= f(oay,...,0a,) =0

(applyo to the first equality). Therefore, if we have a variétyoverQ? that we suspect is
actually defined ove®, then we should be able to describe an action of G&/Q) on its
pointsV (Q%).

Let £ be a number field contained @ and let AutC/ E') denote the group of automor-
phisms ofC (as an abstract field) fixing the elementsif Then a similar remark applies:
if a variety V overC is defined by equations with coefficients £y then AutC/ E) will
act onV(C). Now, I claim that all Shimura varieties are defined (in a natural way) over
specific number fields, and so | should be able to describe an action of a big subgroup of
Aut(C/Q) on their points. If, for example, the Shimura variety is of hodge type, then there
is a setM g whose elements are abelian varieties plus additional data and a map

(4,...)— P(4,...): Mg — Shg (G, X)(C)

whose fibres are the isomorphism classes\viry. On applyinge € Aut(C/Q) to the
coefficients of the polynomials defining, ..., we get a new tripldo 4, ...) which may
or may not lie inMg. When it does we defin@P(4,...) to be P(cA4,...). Our task
will be to show that, for some specific fielfl, this does give an action of A&/ E) on
Shx (G, X') and that the action does arise from a model of 8h, X) over E.

For example, foi? € I'(1)\'H1, ? P is the point such that(® P) = o (j(P)). If j were
a polynomial with coefficients ifZ. (rather than a power series with coefficientsin we
would havej(oP) = oj(P) with the obvious meaning afP, but this is definitely false (if
o is not complex conjugation, then it is not continuous, nor even measurable).

You may complain that our description of the action of &ltE) on SHG, X)(C)
is not explicit, but | contend that there can not exist a completely explicit description of
the action. What are the elements of AUt E£)? To construct them, we can choose a
transcendence bas® for C over E, choose a permutation of the elementsKfand
extend the resulting automorphism @f B) to its algebraic closur&. But proving the
existence of transcendence bases requires the axiom of choice (e.g., FT, 8.13), and so we
can have no explicit description of, or way of naming, the elements of ), and
hence no completely explicit description of the action is possible.

However, all is not lost. Abelian class field theory names the elements ¢E®4AIE),
where E2° is a maximal abelian extension &. Thus, if we suspect that a poift has
coordinates inE?3®, the action of AutC/ E) on it will factor through GalE?®/E), and we
may hope to be able to describe the action of (BytE') explicitly. This the theory of
complex multiplication allows us to do for certain special poifts
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Review of abelian varieties

The theory of abelian varieties is very similar to that of elliptic curves — just repiace
with 4, 1 with g (the dimension of4), and, wheneveFE occurs twice, replace one copy
with the dual4" of A.

Thus, for anyn not divisible by the characteristic of the ground fiéld

A, ~ (Z/mZ)*. (40)
Here A(k?),, consists of the elements df(k?) killed by m. Hence, for! # char(k),
df . al
T A = le A(k*)en
is a freeZ,-module of rank g, and

df
Ve(A) = Te A ®z, Qo
is aQ,-vector space of dimensidg. In characteristic zero, we set

— — i al
TfA = HT@A = |<@ A(k )m,

ViA=Tr®;,Q=]](VeA: T, A) (restricted topological product).

They are, respectively, a fréemodule of ranklg and a freed s-module of rankkg. The
galois group Gdk?'/ k) acts continuously on these modules.

For an endomorphism of an abelian variety, there is a unique monic polynomial
P,(T) with integer coefficients (theharacteristic polynomial otz) such that P,(n)| =
deqga — n) for all n € Z. Moreover, P, is the characteristic polynomial afacting onV; A
(¢ # chaik)).

For an abelian varietyl over a fieldk, the tangent space Tgt4) to 4 at0 is a vector
space ovek of dimensiong. As we noted ir§6, whenk = C, the exponential map defines
a surjective homomorphism Tgt4) — A(C) whose kernel is a lattic& in Tgt,(A4). Thus
AC) = LA/A = A/mA, and

TLA=A®yZy, VIASA®,Qn TyA=A®;L, ViA=A®zA; (41)

An endomorphisnu of A defines aC-linear endomorphisnida), = « of Tgt,(A4) such
thata(A) C A (sed6.B), and P,(T) is the characteristic polynomial afon A.

For abelian varietied, B, Hom(A4, B) is a torsion fre&Z-module of finite rank. We let
AV(k) denote the category of abelian varieties and homomorphismscamed AV (k) the
category with the same objects but with

Homyyo ) (4, B) = Hom’(4, B) = Homay ) (4, B) ® Q.

An isogenyof abelian varieties is a surjective homomorphism with finite kernel. A homo-
morphism of abelian varieties is an isogeny if and only if it becomes an isomorphism in the
categoryAV®. Two abelian varieties are said to m®genousf there is an isogeny from

one to the other — this is an equivalence relation.
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An abelian variety4 over a fieldk is simpleif it contains no nonzero proper abelian
subvariety. Every abelian variety is isogenous to a product of simple abelian varieties. If
and B are simple, then every nonzero homomorphism fedtoe B is an isogeny. It follows
that End (4) is a division algebra whed is simple and a semisimple algebra in general.

NOTES. For a detailed account of abelian varieties over algebraically closed fields, see
Mumford 1970, and for a summary over arbitrary fields, see Milne 1986.

CM fields

A number fieldE is aCM (or complex multiplicatior) field if it is a quadratic totally imag-
inary extension of a totally real field. Leta — a* denote the nontrivial automorphism
of E fixing F. Thenp(a*) = p(a) for everyp: E — C. We have the following picture:

E@uR ~ Cx---xC
| | (42)
F®R ~ Rx---xR

The involutions is positive (in the sense BE11), because we can computesl,r/ Fe r (b*b)
on each factor on the right, where it becomes/fzz) = 2|z|?> > 0. Thus, we are in the
PEL situation considered §8.

Let E be a CM-field with largest real subfieldl. Each embedding of" into R will
extend to two conjugate embeddingsfinto C. A CM-type ® for E is a choice of one
element from each conjugate p&is, ¢}. In other words, it is a subs@ c Hom(E, C)
such that

Hom(E,C) =®u®  (disjoint union,® = {p | ¢ € ®}).

BecauseE is quadratic ovelr, E = F[o] with o a root of a polynomialk'? +aX +b.
On completing the square, we obtain@isuch thatx?> € F*. Thena* = —«. Such an
elementx of E is said to beotally imaginary (its image inC under every embedding is
purely imaginary).

Abelian varieties of CM-type

Let £ be a CM-field of degreeg overQ. Let A be an abelian variety of dimensignover
C, and leti be a homomorphisnt — End’(A4). If

Tr(i(a) | Tgt(A) = 3 cop(a), allacE, (43)
for some CM-typed of E, then(A4,i) is said to be ofCM-type(E, D).

REMARK 10.1 (@) Infact,(4, i) will always be of CM-type for somé. Recall (Y7) that
A(C) = Taty(A)/A with A alattice in Tg§(A4) (SOA ® R = Tgt,(A4)). Moreover,

A®Q=Hi(4,Q)
AR = Hi(A,R),=Tgt(A4)
A®C=H(4,C)= H "o H" " = Tgt,(4) ® Tat,(A).
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Now H(4, Q) is a one-dimensional vector space o¥grand soff;(4,C) = D, Cy
whereC,, denotes d-dimensional vector space with acting throughy. If ¢ occurs in
Tgty(A4), theny occurs inTgt,(4), and so Tgi(4) = P,4C, With & a CM-type forE.

(b) A field E of degree2g overQ acting on a complex abelian varietyof dimension
g need not be be CM unlessis simple.

Let ® be a CM-type onE, and letC® be a direct sum of copies @ indexed by®.
Denote byd again the homomorphis@r — C?, a — (pa)ycs.

PROPOSITION10.2 Theimageb(Of) of Of in C® is a lattice, and the quotiei@® / ®(O k)
is an abelian varietyd¢ of CM-type(E, ®) for the natural homomorphisny: £ —
End’(44). Any other pair(4, i) of CM-type(E, ®) is E-isogenous tAe, is).

PROOE We have

e®@ri—>(...,r-pe,...)

OrR=ZOr®,Q®uR=E ®gR C?,

and so®(Op) is a lattice inC®.

To show that the quotient is an abelian variety, we have to exhibit a riemann@oim (
Let o be a totally imaginary element &. The weak approximation theorem allows us to
choosex so thatd(¢a) > 0 for ¢ € @, and we can multiply it by an integer (M) to make
it an algebraic integer. Define

lﬂ(u, U) = TrE/Q(auv*), u,v e OE

Theny (u,v) € Z. The remaining properties can be checked on the rigld2f Herey
takes the formy = >4V, where

W(p(ua U) = Tr(C/R(a(O “u- E)a Oy = (p(a)a u,v e C.
Because is totally imaginary,
Vo(u,v) = a,(uv —uv) € R,

from which it follows thaty, (u, u) = 0, V¥, (iu,iv) = Y,(u,v), andy,(u,iu) > 0 for
u # 0. Thus,y is a riemann form andl ¢ is an abelian variety.

An elemente € Of acts onC® as muliplication by®(«). This preserve®(Og),
and so defines a homomorphisfhy — End(44). On tensoring this witl), we ob-
tain the homomorphisms. The mapC® — C®/®(Of) defines an isomorphis@i® =
Tgt,(C®) — Tgt,(As) compatible with the actions af. Therefore(Aq, i) is of CM-
type (E, ®).

Finally, let (4,7) be of CM-type(E, ®). The condition[{3) means that Tg(4) is
isomorphic taC® as anE ®y C-module. Therefored (C) is a quotient ofC® by a lattice
A such thatQA is stable under the action @ on C® given by ® (se€6.7 et seq.). This
implies thatQA = ®(E), and soA = ®(A’) whereA’ is a lattice inE. Now, NA' ¢ O
for someN, and we haveE-isogenies

/A K CP/NA « C2/0(OF). 0
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PROPOSITION10.3 Let (A4,i) be an abelian variety of CM-typeFE, ®) over C. Then
(4, i) has a model ove®?, uniquely determined up to isomorphism.

PROOF. Let k C Q be algebraically closed fields of characteristic zero. For an abelian
variety A over k, the torsion points ind(k) are zariski dense, and the map on torsion
points A(k)wrs — A(R)10rs is bijective (seeld()), and so every regular mapo — Wo

(W avariety ovelrk) is fixed by the automorphisms 6f/ k& and is therefore defined over

(AG 14.7; see alsh3.Ibelow). It follows thatd — Agq: AV(k) — AV(L2) is fully faithful.

It remains to show that every abelian varie#, i) of CM-type overC arises from a pair
overQ?. The polynomials definingl andi have coefficients in some subriiyof C that is
finitely generated ove@?. According to the Hilbert Nullstellensatz, a maximal ideabf
R will have residue field)®, and the reduction af4, /) modm is called aspecializatiorof
(4,1). Any specialization(4’,i’) of (4, i) to a pair overQ? with 4’ nonsingular will still
be of CM-type(E, @), and therefore (s€B).2) there exists an isogeny’, i")c — (A4,1).
The kernelH of this isogeny is a subgroup of (C)irs = A'(Q¥)ors, and(A’/H, i) will
be a model of 4, i) overQ?. O

REMARK 10.4 The proposition implies that, in order for an elliptic curdeoverC to be
of CM-type, its j-invariant must be algebraf€.

Let A be an abelian variety of dimensignover a subfieldc of C, and leti: E —
End’(4) be a homomorphism witlE a CM-field of degreg. Then Tog(A) is ak-
vector space of dimensignon which £ actsk-linearly, and, provided is large enough to
contain all conjugates of, it will decompose into one-dimensionatsubspaces indexed
by a subse® of Hom(E, k). When we identify®d with a subset of Horf, C), it becomes
a CM-type, and we again sayl, i) is of CM-type(E, D).

Let 4 be an abelian variety over a number fidd We say that4 hasgood reduction
at’p if it extends to an abelian scheme 0@k, i.€., a smooth proper scheme o
with a group structure. In down-to-earth terms this means the following: embasl a
closed subvariety of some projective spétg for each polynomialP (Xy, ..., X,) in the
homogeneous ideal defining A C P%, multiply P by an element oK so that it (just)
lies in Ok, p[Xo, - - ., X»] and letP denote the reduction d? moduloB; the P’s obtained
in this fashion generate a homogeneaudeal ink[ Xy, ..., X,;] wherek = Ok /B; the
abelian variety4 has good reduction &8 if it is possible to choose the projective embed-
ding of 4 so that the zero set af is an abelian varietyd over k. Then 4 is calledthe
reduction of 4 at B. It can be shown that, up to a canonical isomorphignis indepen-
dent of all choices. Fof # chaik), Vy(4) = V;(A). There is an injective homorphism
End4) — End(4) compatible withV;(4) = V,(A4) (both are reduction maps).

56Consider the curve
E:Y*4(j—1728)XY = X —36(j — 1728)*X — (j — 1728)3
wherej e C is transcendental. Specializidgto Q* amounts to replacing with an algebraic number, say,

j’, in the equation. Sinc& has j-invariant j, and the specialized curv&’ has j-invariant ;’, we see that
E is not isomorphic taE.
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PROPOSITION10.5 Let (4,7) be an abelian variety of CM-typeE, ®) over a number
field K c C, and let®3 be a prime ideal inOg. Then, after possibly replacing by a
finite extensiond will have good reduction &3.

PrROOF. We use the Mron (alias, Ogg-Shafarevich) criterion (Serre and Tate 1968, Theo-
rem1):

an abelian variety over a number fiekd has good reduction &8 if for some
prime{ # char(Og /B), the inertia groud at)3 acts trivially on7Ty A.

In our case,V; A is a free E @y Q¢-module of rankl becauseH;(Ac,Q) is a one-
dimensional vector space ovér and V;A = H;(Ac,Q) ® Q; (see [@)). Therefore,
E ®q Qq is its own centralizer in Eng (V;4) and the representation of Gar'/Q) on
Ve A has image iE ® Qy)*, and, in fact, in a compact subgroup(@ ® Q,)*. But such
a subgroup will have a pré-subgroup of finite index. Sincé has a prop subgroup of
finite index (ANT, 7.5), this shows that image bfis finite. After K has been replaced by
a finite extension, the image éfwill be trivial, and Neron’s criterion applies. m

Abelian varieties over a finite field

LetF be an algebraic closure of the fiélg of p-elements, and |€f, be the subfield oF
with ¢ = p™ elements. An elementof IF lies inF, if and only if a? = a. Recall that, in
characteristiop, (X + Y)? = X? + Y?. Therefore, if (X1, ..., X;) has coefficients in
IF,, then

f(Xla"':Xn)q:f(Xqﬂ--'aan)’ f(ali-"aai’l)q:f(atll,"-aaza aiE]F'
In particular,
flai,...,an) =0 = f(a?,...,ad)=0, a; €F.

ProPOSITION10.6 There is a unique way to attach to every variétyver[F, a regular
mapny: V — V such that

(a) forany regular mapr: V — W,a oy = nyy o

(b) Zan isthe map(ay, ..., a,) — (dai,....a}).

PROOF. For an affine varietyy = SpecnH, definerr, be the map corresponding to the
F,-homomorphisnx — x?: A — A. The rest of the proof is straightforward. [

The maprmy is called the~robenius map ofV/.

THEOREM 10.7 (WEIL 1948). For an abelian variety4 overF,, End’(4) is a finite-
dimensional semisimpl@-algebra withs4 in its centre. For every embeddipgQ[r4] —

C, lp(ma)| = gq2.

PROOF. See, for example, Milne 1986, 19.1. O
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If A is simple,Q[r4] is a field (89), andx,4 is an algebraic integer in it[@8). An
algebraic integerr such thatp(r)| = q% for all embedding®: Q[] — C is called aweil
g-integer (formerly, Weil g-number).

For a Weilg-integerr,

p(r) - p(m) = q = p(x) - p(q/7), all p:Q[x] — C,

and sop(q/m) = p(m). It follows that the fieldp(Q[%]) is stable under complex con-
jugation and that the automorphism@fr] induced by complex conjugation sendso
¢/ and is independent gf. This implies thatQ[x] is a CM-field (the typical case]), or

QL]

LEMMA 10.8 Let 7 and 7’ be Weilg-integers lying in the same fiel. If ord,(7) =
ord,(z’) for all v| p, thenx’ = {x for some root ofl in E.

PROOF. As noted above, there is an automorphisn@pf ] sendingr to ¢/x. Therefore
q/m is also an algebraic integer, and sogrd) = 0 for every finitev { p. Since the same

is true forz’, we find that|z|, = |7’|, for all v. Hencex/x’ is a unit inOg such that
|m/7’|, = 1 for all vjoco. But in the course of proving the unit theorem, one shows that
such a unit has to be root f(ANT, 5.6). ]

The Shimura-Taniyama formula.

LEMMA 10.9 Let (4,i) be an abelian variety of CM-typeFE’, ®) over a number field
k C C having good reduction @B C O to (4,7) overO /B = F,. Then the Frobenius
mapn; of 4 liesin7(E).

PROOF. Letr = m. It suffices to check that lies in7(E) after tensoringf with Q,. As
we saw in the proof off0.5), V, 4 is a freeE ®y Q,-module of ranki. It follows thatV, A
is also a freeE ®g Q,-module of rankl (via 7). Therefore, any endomorphism &f A4
commuting with the action of ® Q, will liein £ ® Q. O

Thus, from(4,i) and a primeld of k at which 4 has good reduction, we get a Weil
g-integern € E.

THEOREM 10.10(SHIMURA-TANIYAMA ). B8In the situation of the lemma, assume that
is galois overQ and contains all conjugates d. Then for all primes of E dividing p,

ordy(7) PN H,|
ord,(q)  |H,l

whereH, = {p: E — k | p~'(B) = p,} and|.S| denotes the order of a sét

(44)

57Let W be a subspace offavector spacé’, and letR be a ring containing. Then RQ; W)nV =W
(intersection insidg’). To see this, note that an elementf V' lies in W if and only if f(v) = 0 for all
f € (V/W)Y, and thatf (v) is zero if and only if it is zero inR.

68The first statement of this result that | know of (in slightly weaker form) is in Weil's conference talk
(Weil 1956, p21), where he writes “[For this] it is enough to determine the prime ideal decomposition of
7..But this has been done by Taniydhigalics in original).
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REMARK 10.11 (a) According to[L0.8), the theorem determinesup to a root ofl. Note
that the formula depends only @i, ®). It is possible to see directly that different pairs
(A4,17) overk of CM-type(E, ®) can give different Frobenius elements, but they will differ
only by a root ofl &2

(b) Letx denote complex conjugation @i ]. Thenzz* = ¢, and so

ord, () + ord,(7*) = ord,(q). (49)

Moreover,
ord,(7*) = ord,« ()

and B
dN Hy« =dN H,.

Therefore,[§4) is consistent withi45):

ordy () | ordy(n*) @ PN Hy| + [®N Hy|  [(PUD) N Hy|
Ordv(Q) ordv(Q) B | H,| B | H,| B

In fact, @4) is the only obvious formula for ogd) consistent withi45), which is probably
a more convincing argument for its validity than the proof sketched below.

1.

The O g-structure of the tangent space

Let R be a Dedekind domain. Any finitely generated torsimodule M can be written
as a direct suréb; R/p;’ with eachp; an ideal inR, and the set of pair;, r;) is uniquely
determined byM. Definé® | M| = [[p}’. For example, foR = Z, M is a finite abelian
group and M |7 is the ideal inZ generated by the order af .

For Dedekind domain® c S with S finite over R, there is a norm homomorphism
sending fractional ideals &§ to fractional ideals ofR (ANT, p58). It is compatible with
norms of elements, and

Nm(R) = p/F», P prime,p = PN R

Clearly,

1S /A r = Nm(20) (46)
since this is true for prime ideals, and both sides are multiplicative.
PrRoOPOSITION10.12 Let 4 be an abelian variety of dimensignoverF,, and leti be a

homomorphism from the ring of integefy: of a field £ of degree2g overQ into End(A4).
Then

| Taty Alo, = (m4).
PrROOF. Omitted (for a scheme-theoretic proof, see Giraud 1968pEme 1). O

59 et 7’ arise from second modéH’,i’). Then(4’,i’) will become E-isogenous tq 4, i) over a finite
extensionk’ of k (se€ll0.9), from which it follows thatz/ = =’/ for f the degree of the residue field
extension.

"OBetter, the first statement shows that #iggroup of the category of finitely generated torsi®mmodules
is canonically isomorphic to the group of fractional idealsyfand so| M | denotes the class @ff in the
K-group.
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Sketch of the proof the Shimura-Taniyama formula

We return to the situation of the Theorél@.1Q After replacingA4 with an isogenous
variety, we may assuméOg) C End(4). By assumption, there exists an abelian scheme
A over Oy 5 with generic fibred and special fibre an abelian varietyy BecauseA is
smooth oveOy 4, the relative tangent space 4f/ Ok o is a freeOy s-moduleT” of rank

g endowed with an action & g such that

T ®Ok.qz k = TgtO(A)’ T ®Ok,q3 Ok,‘ﬁ/m = Tgt()(z)

Therefore,
)" |Taty 4|, = |T ®0,.4 Oky/P), - (47)

For simplicity, assun¥@ that(p) =¢ P N Z is unramified inE. Then the isomorphism
of E-modules
T ®Okm k ~ kcp

induces an isomorphism @? g-modules
T ~ORy (48)

In other words " is a direct sum of copies @y indexed by the elements df, andOg
acts on thes™ copy through the map

Or —> Ok C O.x.

As Ok /P = O,/ (ANT, 3.11), the contribution of the™ copy to(r) in (D) is

0k/Blo, = ¢~ (N ).

Thus,
(1) = [Tyeop™ (NMe/uE ). (49)
It is only an exercise to deriv@d) from (49).

NoOTES. The original formulation of the Shimura-Taniyama theorem is in f@&).( It

is proved in Shimura and Taniyama 1961, 111.13, in the unramified case using spaces of
differentials rather than tangent spaces. The proof sketched above is given in detail in
Giraud 1968, and there is a proof usipgdivisible groups in Tate 196%5. See also
Serre 1968, pll-28.

"This, in fact, is the only case we need, because it suffices for the proof of the main thegféywimich
in turn implies the Shimura-Taniyama formula.
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11 Complex multiplication: the main theorem

Review of class field theory

Classical class field theory classifies the abelian extensions of a numbeEfiekl, the
galois extensiond./E such GalL/E) is commutative. LetE2® be the composite of all
the finite abelian extensions &f inside some fixed algebraic closufs' of E. Then E2®
is an infinite galois extension df.

According to class field theory, there exists a continuous surjective homomorphism (the
reciprocityor Artin map)

recg: Ax — Gal(E®/E)

such that, for every finite extensidnof E contained inE?", recg gives rise to a commu-

tative diagram
recg

E*X\A% — Gal(E?/E)

| Joalr

recr;

EX\A%/NmL; g (AX) % Gal(L/E).

It is determined by the following two properties:
(a) rec/e(u) =1 for everyu = (u,) € A% such that
1) if vis unramified inL, thenu, is a unit,
i) if vis ramified inL, thenu, is sufficiently close td (depending only oil./ E),
and
i) if v is real but becomes complex i, thenu, > 0.
(b) For every primev of E unramified inL, the ickle

a=({1,...,1,7,1,...), mwaprimeelemento®g,,

v

maps to the Frobenius elemédnt L/E) € Gal(L/E).
Recall that if]3 is a prime ideal of. lying overp,, then(v, L/ E) is the automorphism of
L/E fixing 8 and acting as — x©£#) on Oy /6.

To see that there is at most one map satisfying these conditions,def ., and use
the weak approximation theorem to chooseran E* that is close tax, for all primesv
that ramify in L or become complex. Then= aup with u an icele as in (a) ang@ a finite
product of ickles as in (b). Now regg(a) = rec.,g(B), which can be computed using
(b).

Note that, because G/ E) is totally disconnected, the identity componenbf\ A%
is contained in the kernel of rgc In particular, the identity component pf,, . £, is con-
tained in the kernel, and so, whéhis totally imaginary, reg factors throughEX\A}}’f.

For E = Q, the reciprocity map factors through=\{+} x A’, and every element in

this quotient is uniquely represented by an elemerit’ofc Af.Inthis case, we get the
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diagram
rec

7x — GalQ*/Q) == UQItw]

l lrestrict (50)

/N2y EEET Gagiey/)

which commutes with an invers&his can be checked by writing anéilg « in the form
auf as above, but it is more instructive to look at an example zle¢ a prime not dividing
N, and let

11

Ot:p-(l,...,l,p_l,l,,,,)GZ.A;:A}(.
p

Thena € Z* and has imaggp] in Z/NZ, which acts agp, Q[¢x]/Q) onQ[¢{x]. On the
other hand, reg(e) = recy((1,..., p~1,...)), which acts agp, Q[¢{nx]/Q) .

NOTES. For the proofs of the above statements, see Tate 1967 or my notes CFT.

Convention for the (Artin) reciprocity map

It simplifies the formulas in Langlands theory if one replaces the reciprocity map with its
reciprocal. Forx € A%, write

artg (o) = recg (o). (51)
Now, the diagramB0) commutes. In other words,

arty(x(0)) =0, foro e GalQ™®/Q),

wherey is the cyclotomic character G@?*/Q) — 7, which is characterized by

ol =X ¢ arootofl in CX.

The reflex field and norm of a CM-type
Let (E, ®) be a CM-type.

DEFINITION 11.1 Thereflex field E* of (E, ®) is the subfield of)? characterized by any
one of the following equivalef conditions:

(a) o € Gal(Q¥/Q) fixes E* if and only if 6 ® = ®; herec® = {0 o ¢|p € P};

(b) E*isthe field generated ové& by the elementd 40 (a), a € E;

2If ¢ e Gal(Q¥/Q) permutes the's, then clearly it fixes all elements of the forl e (a). Con-
versely, if_,co0(@) = 3 co(0p)(a) foralla € E, then{oglp € &} = & by Dedekind’s theorem on
the independence of characters (FT 5.14). This shows that conditions (a) and (b) define the same field.

If there exists &-vector spacd” as in (c), then clearl contains the field in (b). On the other hand, there
exists a representatidiiz,,;) £/¢ on a vector spac& over the fieldE* in (a) with ® as its set of characters
(D, which extends to an action @f with trace) _, 4 ¢(a).
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(c) E*isthe smallest subfield of Q¥ such that there existskavector spacé” with an
action of E for which

Tre(alV) =3 ,co9(@), allacE.

Let V' be anE*-vector space with an action df such that Tg«(a|V) = > 49(a)
foralla € E. We can regard” as anE™* ®q E-space, or as afi-vector space with & -
linear action ofE*. Thereflex normis the homomorphisf Ne«: (G,n) /0 — (Gm)E/g
such that

Ne+«(a) = detg(a|V), allae E**.
This definition is independent of the choicelobecauséd’ is unique up to an isomorphism
respecting the actions df and E*.

Let (4,7) be an abelian variety of CM-typéE, ®) defined overC. According to
(I11.X) applied to Tg§(A), any field of definition of( 4, /) containsE*.

Statement of the main theorem of complex multiplication

A homomorphismo: k — Q of fields defines a functor' — oV, a — o, “extension of
the base field” from varieties ovérto varieties ovef2. In particular, an abelian variety

overk equipped with a homomorphismE — End’(4) defines a similar pair (4, i) =

(0A,%1) overQ2. Herei: E — End(c A) is defined by

%i(a) = o(i(a)).

Apoint P € A(k) givesapointP € A(2), and sar defines a homomorphisen V¢ (4) —
Vr(0cA) provided thatk and 2 are algebraically closed (otherwise one would have to
choose an extension #fto a homomorphism@ — Q).

THEOREM11.2 Let(A4,i) be an abelian variety of CM-typeE, @) overC, and leto €
Aut(C/E*). Foranys € Aj. , with artg«(s) = o E**, there is a uniqueE-linear
isogenyu: A — oA such thab[(Nq)* (s)-x) =oxforall x € Vy A.

PROOF. Formation of the tangent space commutes with extension of the base field, and so
Taty(04) = Tgt(4) Qc,0 C

as anE ®g C-module. Thereforeio 4, °i) is of CM typeo ®. Sinceo fixes E*, 0 ® = P,
and so there exists afi-linear isogenyr: A — oA (10.2). The map

Vi) S Vo) " v

is E ®q Ar-linear. AsVy(A) is free of rank one oveE ®q Ay = Ag, r, this map must
be multiplication by an element af € A% .. When the choice of is changed, then is
changed only by an element &, and so we have a well-defined map

o — aE*:GalQ¥/E*) — A} ,/E*,

30One can show thakE* is again a CM-field, and that an embeddingfinto Q? defines a CM-type on
E*. The reflex norm is usually defined in terms®f but we will not need it.
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which one checks to be a homomorphism. The map therefore factors through®aE*),
and so, when composed with the reciprocity mag-arit gives a homomorphism

N AL /EY — Ap o/E™.

We have to check thatis the homomorphism defined ¥+, but it can be shown that this
follows from the Shimura-Taniyama formula (Theor8@.10). The uniqueness follows
from the faithfulness of the functot - Vy(A). ]

REMARK 11.3 (@) If s is replaced byus, a € E**, thena must be replaced by o
Nq;*(él)_l.

(b) The theorem is a statement about #iesogeny class ofA4,i) — if B:(A4,i) —
(B, j) is an E-linear isogeny, and satisfies the conditions of the theorem faf, i), then
(0B) o o B! satisfies the conditions f@B, ;).

AsIDE 11.4 What happens ifl{l.2 wheno is not assumed to fix*? This also is known,
thanks to Deligne and Langlands. For a discussion of this, and much else concerning
complex multiplication, see my notes Milne 1979.
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12 Definition of canonical models

We attach to each Shimura datui@, X)) an algebraic number fiel& (G, X), and we
define the canonical model of 8k, X) to be an inverse system of varieties o¥&(G, X)
that is characterized by reciprocity laws at certain special points.

Models of varieties

Let k be a subfield of a fiel@2, and letV be a variety ovef2. A modelof V' overk (or a
k-structureon V') is a varietyV, over k together with an isomorphisgr: Voo — V. We
often omit the majp and regard a model as a varidty overk such thatVpg = V.

Consider an affine variety overC and a subfield of C. An embeddingl’ — Af
defines a model oV over k if the ideal (V') of polynomials zero orV is generated
by polynomials ink[ X1, ..., X;], because thely =4 1(V) N k[X1,..., X,] is a radical
ideal,k[X1, ..., X,]/1o is an affinek-algebra, and’(1o) C A} is amodel of’. Moreover,
every model(1y, ¢) arises in this way because every model of an affine variety is affine.
However, different embeddings in affine space will usually give rise to different models.
For example, the embeddings

(x,») > (x,y/+/2)

b <_| 9
Aé (x,¥) (x,¥) V(X2+Y2—1)

Ag
define theQ-structures

X?4+Y*=1, X*+4+2Y*=1
on the curveX? + Y2 = 1. These are not isomorphic.

Similar remarks apply to projective varieties.

In general, a variety ove€ will not have a model over a number field, and when it
does, it will have many. For example, an elliptic curZeover C has a model over a
number field if and only if itsj-invariant j(E) is an algebraic number, and ¥2Z =
X3 +aXZ?+ bZ3 is one model ofE over a number field (meaninga, b € k), then
Y2Z = X3 +ac’XZ?+ bc*Z? is a second, which is isomorphic to the first only i a
square ink.

The reflex field

For a reductive groupr overQ and a subfield of C, we writeC(k) for the set ofG (k)-
conjugacy classes of cocharactergpfdefined ovek:

C(k) = G(k)\ HOM(G, Gy).

A homomorphismk — k’ induces a mag(k) — C(k’); in particular, Autk’/ k) acts on
C(k’").

LEMMA 12.1 Assumds splits overk, so that it contains a split maximal tords, and let
W be the Wey! groupNg ) (T')/ Cew)(T') of T. Then the map

W\ Hom(G,,, Ty.) — G (k)\ Hom(G,,, G)

is bijective.
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PROOF. As any two maximal split tori are conjugate (Springer 1998, 15.2.6), the map is
surjective. Letu andu’ be cocharacters df that are conjugate by an element®@tk),
say,u = ad(g) o u’ with g € G(k). Then adg)(T) and T are both maximal split

tori in the centralizé? C of u(G,,), which is a connected reductive group (ibid., 15.3.2).
Therefore, there existsae C(k) such that attg)(T) = T. Now cg normalizesT” and
ad(cg) o ' = u, which proves thatt andy” are in the samé/-orbit. O

Let (G, X)) be a Shimura datum. For eaghe X', we have a cocharactgr, of G¢:

1x(2) = hxc(z,1).

A different x € X will give a conjugateu,, and soX defines an element X)) of C(C).
Neither Hom{(G,,,, Tga) nor W changes when we repla¢ewith the algebraic closur@?®
of Q in C, and so the lemma shows thatY) contains au defined overQ? and that the
G (Q¥)-conjugacy class of: is independent of the choice pf. This allows us to regard
c(X) as an element af(Q?).

DEFINITION 12.2 Thereflex (or dual) field E(G, X) is the field of definition ofc(X),
i.e., itis the fixed field of the subgroup of G&*/Q) fixing ¢(X) as an element af(Q?)
(or stabilizinge (X)) as a subset of Ho(ft,,,, Ga)).

Note that the reflex field a subfield &f.

REMARK 12.3 (a) Any subfieldk of Q? splitting G containsE (G, X). This follows from
the lemma, becaus®\ Hom(G,,, T') does not change when we pass fréntio Q2. If
follows that £ (G, X) has finite degree ovép.

(b) If ¢(X) contains au defined ovek, thenk > E(G, X). Conversely, ifG is quasi-
split overk andk > E(G, X), thenc(X) contains gu defined overk (Kottwitz 1984,
1.1.3).

(c) Let(G, X) < (G’, X') be an inclusion of Shimura data. Suppedixesc(X), and
lety € c(X). Thenow = g - - g~ ! for someg € G(Q?), and so, for any’ € G'(Q?),

o(g - (iop) g™ =(0g)i(g) iop-(i(g) " (0g)™" €c(X)).
Henceo fixesc(X’), and we have shown that
E(G,X)D E(G,X').

EXAMPLE 12.4. (a) LetT be a torus ove), and leth be a homomorphisi§ — 7k. Then
E(T,h) is the field of definition ofu,, i.e., the smallest subfield @& over whichu, is
defined.

(b) Let(E, ) be a CM-type, and Ief’ be the torugG,,) £/q, SO thatl' (Q) = E* and

T(R) = (E®R)* = (C?)*, (e®7r) > (p(e) r)yece.

"CertainlyT c C. Lett € T(k®) anda € G,,(k?). Then

1

1 1

gig™ @ =gt-p@)- g =g @ 1g7! = pla) - grg,

andsogTg~! c C.
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Definehe: C* — T(R) to bez — (z,...,z). The corresponding cocharacjes is

C* — T(C) = (C®* x (C?)*

A (z,...,z,1,...,1)

Thereforege = ue if and only if o stabilizes®, and soE (T, hg) is the reflex field of
(E, ®) defined in[{1.D).

(c) If (G, X) is a simple PEL datum of type (A) or (C), thefi(G, X) is the field
generated ove® by {Trx(b) | b € B} (Deligne 197t, 6.1).

(d) Let (G, X) be the Shimura datum attached to a quaternion algBlweaer a totally
real number fieldF, as in Exampl&.24 Thenc(X) is represented by the cocharagter

G(C) ~ GL(C)f x GL,(C)ne
piz = (..., x ((39),...,(39)).

Therefore,E (G, X) is the fixed field of the stabilizer in G&?/Q) of I,. C I. For ex-
ample, if I, consists of a single elemen{so we have a Shimura curve), theiG, X) =
v(F).

(e) WhenG is adjoint, E(G, X) can be described as follows. Choose a maximal torus
T in Gga and a baséw;);<; for the roots. Recall that the nodes of the dynkin diagram
of (G, T) are indexed byl. The galois group Gé&D?/Q) acts onA. Eachc e C(Q?)
contains au: G,, — Gga such thatie;, u) > 0 for all i (cf.[L.25), and the map

¢ (o, 1))ier:C(QY) — NI (copies ofN indexed byI)

is a bijection. ThereforeE (G, X) is the fixed field of the subgroup of G&?/Q) fixing
({oj, ))ier € NI, Itis either totally real or CM (Deligne 1951 p139).

(f) Let (G, X) be a Shimura datum, and 6t— T be the quotient o& by G%". From
(G, X), we get Shimura datéG2%, X% and (T, h) with h = v o h, forall x € X. Then
E(G,X) = E(G¥, X3 . E(T, h) (Deligne 197, 3.8).

(9) It follows from (e) and (f) that if(G, X) satisfies SV6, thetE (G, X) is either a
totally real field or a CM-field.

Special points

DEFINITION 12.5 A point x € X is said to bespecialif there exists atorf8 T c G such
that/,,(C*) c T(R). We then cal(T, x), or (T, h,), aspecial pairin (G, X). When the
weight is rational andZ (G)° splits over a CM-field (i.e., SV4 and SV6 hold), the special
points and special pairs are calléM pointsandCM pairs®

REMARK 12.6 Let T be a maximal torus ofr such that7'(R) fixes x, i.e., such that
adr)oh, = h, forallt € T(R). Becausd} is its own centralizer irGg, this implies that
h(C*) c T(R), and sax is special. Conversely, {fT", x) is special, therT"(R) fixes x.

“Meaning, of course, defined over.
"6Because then the homomorphigm S — T factors through the Serre group, and for any representation
(V,p)of T, (V, pr o hy) is the hodge structure of a CM-motive.
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EXAMPLE 12.7. Let G = GL, and letHf = C \ R. ThenG(R) acts onH{ by

a b _az+b

cd) T czvd
Suppose that € C \ R generates a quadratic imaginary extensionf Q. Using theQ-
basis{1, z} for E, we obtain an embedding — M,(Q), and hence a maximal subtorus

(Gm)E/p C G. As(Gp) E/o(R) fixesz, this shows that is special. Conversely, if Hf
is special, the[z] is a field of degreé overQ.

The homomorphismr,

Let 7' be a torus ovef) and letu be a cocharacter &f defined over a finite extensiafi
of Q. ForQ € T(E), the elemend_  » , qa p(Q) Of T(Q?) is stable under G&D?/Q)
and hence lies i (Q). Letr (T, ) be the homomorphisi(z,,) £, — 7T such that

r(T,w(P)= 3 pu(p), alPekE™ (52)
o0 E—Qd

Let (7, x) C (G, X) be a special pair, and Iét(x) be the field of definition of.,,. We
definer, to be the homomorphism

% r(T,u) project
Afy —> T(Ag) — T(Ag,y). (53)

Leta € A% ), and writea = (acc, dy) € (E(x) Qg R)* x A% then

re(@ =Y plux(ar)).

0 E—Qd

). f?

Definition of a canonical model
For a special pai(T, x) C (G, X), we have homomorphism&J),(53J),
artg: Apu) — Gal(E (x)*/ E(x))

rx:A};(x) — T(Ay).
DEFINITION 12.8 Let (G, X)) be a Shimura datum, and I&t be a compact open subgroup
of G(Ar). A model Mk (G, X) of Shy (G, X) over E(G, X) is canonical if, for every
special paif7, x) C (G, X) anda € G(Ay), [x,a]x has coordinates i& (x)2° and

U[x’ CI]K = [xa Vx(S)Cl]K, (54)

for alf™
o € Gal(E(x)®/E(x))

s c Aé(x) } with artg ) (s) = o.

In other words M (G, X) is canonical if every automorphismof C fixing £ (x) acts on
[x,a]x according to the rulegd) wheres is any ickle such that ag) (s) = o| E (x)2".

if ¢ € G(Q) andgx = x, then[x,qalx = [x,a]k, and so, according td&&f), we should have
[x,r(s)qalg =[x, r<(s)a]g . Following Deligne 1979, 2.2.4, | leave it to the reader to check this.
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REMARK 12.9 Let (T}, x) and(T3, x) be special pairs inG, X) (with the samex). Then

(T} N Ty, x) is also a special pair, and if the condition® holds for one of 7}, N T3, x),

(T1, x), or (T,, x), then it holds for all three. Therefore, in stating the definition, we could
have considered only special paifg, x) with, for example,7” minimal among the tori
such thatTy containgi,(S).

DEFINITION 12.1Q Let (G, X) be a Shimura datum.

(&) A modelof SWG, X)) over a subfieldk of C is an inverse systenM (G, X) =
(Mk (G, X))k of varieties ovek endowed with a right action @ (A ) such thatM (G, X )¢ =
SKG, X) (with its G(Ay) action).

(b) A model M (G, X) of SWG, X) over E(G, X) is canonicalif each Mk (G, X) is
canonical.

Examples: Shimura varieties defined by tori

For a fieldk of characteristic zero, the functdf — V(k?) is an equivalence from the
category of zero-dimensional varieties oketo the category of finite sets endowed with

a continuous action of G@t?/k). Continuous here just means that the action factors
through GalL/ k) for some finite galois extensioh of k contained ink?. In particular,

to give a zero-dimensional variety over an algebraically closed field of characteristic zero
is just to give a finite set. Thus, a zero-dimensional variety @vean be regarded as a
zero-dimensional variety ové}?, and to give a model of over a number fieldz amounts

to giving a continuous action of G&?'/Q) on V (C).

Tori

Let 7" be a torus ove®), and leth be a homomorphist§ — Tk. Then(T, h) is a Shimura
datum, andE =4 E (T, h) is the field of definition ofu;. In this case

Shg (T, h) = T(Q\{h} x T(As)/K

is a finite set (sel6.22), and B4) defines a continuous action of GAF®/ E) on Sh (T, h).
This action defines a model of KT, /) over E, which, by definition, is canonical.

CM-tori

Let (E, ®) be a CM-type, and letT’, hg) be the Shimura pair defined iiZ.4). Then
E(T,he) = E*, andr (T, ue): (Gn) Ex/0 = (Gn) E/q IS the reflex normvVe-.

Let K be a compact open subgroup®BfAr). The Shimura variety SNT', h¢) clas-
sifies isomorphism classes of tripled, i, nK) in which (4,7) is an abelian variety over
C of CM-type (E, ®) andn is an E ® Ar-linear isomorphismV (Ar) — Vr(A4). An
isomorphism(4,i,nK) — (A4’,i’,n'K) is an E-linear isomorphismd — A4’ in AV’(C)
sendingn K to n’ K. To see this, leV be a one-dimensional-vector space. The action
of E onV realizesT as a subtorus of GIV). If (A4,i) is of CM-type(E, ®), then there
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exists anE-homomorphisnu: H;(A,Q) — V carryinghy to he (se€l0.2. Now the
isomorphisri

V(Ar) 5 Vp(A) = V(Ay)

is E ® As-linear, and hence is multiplication by an elemgntf (E ® As)* = TE(Ay).
The map(4,i,n) — [g] gives the bijection.

In (10.3 and its proof, we showed that the functot, i) — (Ac, ic) defines an equiv-
alence from the category of abelian varieties 0@éf of CM-type (E, ®) to the similar
category ovelC (the abelian varieties are to be regarded as objects/®f. Therefore,
She (T %, he) classifies isomorphism classes of triples i, nK) where(4, i) is now an
abelian variety ove®?® of CM-type (E, ®).

The group GalQ?/ E*) acts on the seé 1 x of such triples: let4,i,n) € Mg, foro e
Gal(Q¥/E*), defines (4, i, nK) to be the triple(o 4, °i,°nK) wheren is the composite

V(Ay) -5 Vi(A) -5 Vi(oA); (55)

because fixes E*, (04, 01) is again of CM-type E, D).
The group GalQ?/E*) acts on SR(T £, he) by the rule[B4):

olgl = [rhe(5)glk, artg-(s) = o|E™.

PROPOSITION12.11 The map(4,i,n) — [aon]x: Mg — Shk(TE, he) commutes with
the actions of3al(Q?/E*).

PROOF. Let(4,i,n) € Mg map toaon]g for an appropriate isomorphism H; (A, Q) —
V, and letoc e Gal(Q¥/E*). According to the main theorem of complex multiplica-
tion (11.2, there exists an isomorphismt A — oA such thata(Ne+«(s) - x) = ox
for x € Vr(A), wheres € Ag- is such that ag«(s) = o|E*. Theno(4,i,n) —

[a o Hy(x)~! o0 on]g. But

Vf(oz)=1 00 = No+(5) = rpe (5),
and so

[ao Hi(a)™ o0 onlx =[rnge(s) - (@on)lk
as required. O
NoOTES. Our definitions coincide with those of Deligne 1979, except that we have corrected

a sign error there (it is necessary to delatesérsé in ibid. 2.2.3, p269, line 10, and in
2.6.3, p284, line 21).

8We are using thaty(4) = Hi(4,Q) ®q Ay — see D).
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13 Uniqueness of canonical models

In this section, | sketch a proof that a Shimura variety has at most one canonical model (up
to a unique isomorphism).

Extension of the base field

PrRoOPOSITION13.1 Letk be a subfield of an algebraically closed figkof characteristic
zero. IfV and W are varieties ovek, then a regular mag’a — Wgo commuting with the
actions ofAut(2/k) on V(2) and W(2) arises from a unique regular map — W. In
other words, the functor

V — Vg + action of Aut(2/k) on V(R2)

is fully faithful.

PROOF. See AG 14.7. [The first step is to show that &%) — [ which requires
Zorn's lemma in general.] m

COROLLARY 13.2 A variety V over k is uniquely determined (up to a unique isomor-
phism) byVg and the action oAut(2/k) on V (2).

Uniqueness of canonical models
Let (G, X)) be a Shimura datum.
LEMMA 13.3 There exists a special point ik.

PROOF(SKETCH). Let x € X, and letT be a maximal torus iGg containing/, (C).
ThenT is the centralizer of any regular elemeénbf Lie(T). If Ay € Lie(G) is chosen
sufficiently close taok, then the centralize¥, of Ay in G will be a maximal torus inG
(Borel 1991, 18.1, 18.2), arif, will become conjugaf@to T overR:

~1 someg € G(R).

Tor = gTg
NOW /14 (S) =qt ghg ™ (S) C Tor, and sogx is special. O

LEMMA 13.4(KEY LEMMA). For any finite extensiold. of £(G, X) in C, there exists a
special pointxy such thatE (x) is linearly disjoint fromL.

PROOF. See Deligne 1971, 5.1. [The basic idea is the same as that of the pro@i3of
above, but requires the Hilbert irreducibility theorem.] ]

If G = GL,, the lemma just says that, for any finite extensioof Q in C, there exists
a quadratic imaginary extensidnoverQ linearly disjoint fromL. This is obvious — for
example, takeE = Q[/— p] for any primep unramified inL.

®Any element sufficiently close to a regular element will also be regular, which implieggtiata maxi-
mal torus. Not all maximal tori irG,g are conjugate — rather, they fall into several connected components,
from which the second statement can be deduced.



108 13 UNIQUENESS OF CANONICAL MODELS

LEMMA 13.5 Foranyx € X, {[x,a]x | a € G(Ay)} is dense irBhg (G, X) (in the zariski
topology).
PrROOF. Write

Shg (G, X)(C) = GQ\X x (G(Ay)/K)

and note that the real approximation theor&l)implies thatG (Q)x is dense inX for
the complex topology, and, a fortiori, the zariski topology. O

Letg € G(As), and letK and K’ be compact open subgroups such tidb ¢~ ! Kg.
Then the mafy (g)

[x,alk — [x,aglk: Shk (C) — Shg/(C)
is well-defined.

THEOREM 13.6 If Shy (G, X)) and Shg: (G, X') have canonical models ovdi (G, X),
then7 (g) is defined oveE (G, X).

PrRooF. After (13.)), it suffices to show that (7 (g)) = 7 (g) for all automorphismsg of

C fixing E(G, X). Letxo € X be special. TheE (xy) D E(G, X) (sedl2.3), and we
first show thatr (7 (g)) = 7 (g) for thoseo’s fixing E(xo). Choose am € A% such that
art(s) = o|E(x0)®. Fora € G(Ay),

T(g)
[xo, alk l—g> [x0,aglk

[Xo0. o (9)alk T-52 [xo, 7y (8)aglx:

commutes. Thus] (g) ando (7 (g)) agree or{[xo,a] | a € G(Ay)}, and hence on all of
Shg by LemmdIl3.5 We have shown that(7 (g)) = 7 (g) for all o fixing the reflex field
of any special point, but LemnfiE8.4shows that these’s generate AWtC/ E (G, X)). [

THEOREM13.7. (a) A canonical model dbhg (G, X) (if it exists) is unique up to a unique
isomorphism.

(b) If, for all compact open subgrougs of G(Ar), Shg (G, X') has a canonical model,
then so also doeSh(G, X)), and it is unique up to a unique isomorphism.

PROOF. (a) TakeK = K’ andg = 1in (13.9.
(b) Obvious from[{3.6). O

In more detail, let Mg (G, X), ¢) and(Mg (G, X), ¢’) be canonical models of SRG, X)
over E(G, X'). Then the composite

/—1

Mk (G, X)c = She(G, X) “— My (G, X)c
is fixed by all automorphisms @} fixing £ (G, X), and is therefore defined ovén G, X).

REMARK 13.8 In fact, one can prove more. Let (G, X)) — (G’, X’) be a morphism of
Shimura data, and suppose(6h X)) and SKRG’, X’) have canonical model® (G, X)) and
M(G’, X'). Then the morphism S§h): SWG, X) — SKG’, X”) is defined oveE (G, X) -
E(G, X).
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The galois action on the connected components

A canonical model for Sp(G, X) will define an action of AW{C/E (G, X)) on the set
mo(Shg (G, X)). In the case thaf %" is simply connected, we saw §l that

mo(Shg (G, X)) = T(Q\Y x T'(Ay)/v(K)

wherev: G — T is the quotient ofz by G%"andY is the quotient of'(R) by the image
T(R)" of Z(R) in T(R). Leth = v o h, foranyx € X. Thenu,, is certainly defined over
E(G, X). Therefore, it defines a homomorphism

r=r(T,un):Agpe.x) — T(Ag).

The action ofc € Aut(C/E(G, X)) on mo(Shg (G, X)) can be described as follows: let
s € AE(G’X) be such that agig, x)(s) = o|E(G, X)%, and letr(s) = (r(8)oo,7(8)f) €
T(R) x T(Ar); then

oly,alk =[r(s$)eoy,r(s)s -alg, forally € Y, ae T(Ay). (56)

When we useH6) to define the notion a canonical model of a zero-dimensional Shimura
variety, we can say that, of the canonical model of S G, X)) is the canonical model of
SWT,Y).

If o fixes a speciaky mapping toy, then &6) follows from (&4), and a slight improve-
ment of [L3.4 shows that such’s generate AWtC/E (G, X)).

NOTES. The proof of uniqueness follows Deligne 1%/ %3, except that | am more un-
scrupulous in my use of the Zorn’s lemma.
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14 Existence of canonical models

Canonical models are known to exist for all Shimura varieties. In this section, | explain
some of the ideas that go into the proof.

Descent of the base field

Let & be a subfield of an algebraically closed fi€kdof characteristic zero, and let =
Aut(2/k). In (I3.]) we observed that the functor

{varieties ovek } — {varietiesV over2 + action of A on V' (£2)},

is fully faithful. In this subsection, we find conditions on a pg@if, -) that ensure that it is
in the essential image of the functor, i.e., that it arises from a variety/avévfe begin by
listing two necessary conditions.

The regularity condition

Obviously, the action should recognize that' (2) is not just a set, but rather the set of
points of an algebraic variety. Recall that, tore A, oV is obtained fromV” by applying

o to the coefficients of the polynomials definifg ando P € (ocV')(R2) is obtained from
P € V(Q2) by applyingo to the coordinates af.

DEFINITION 14.1 An action- of A on V() is regular if the map
oP+—o-P:(aV)(Q2) - V(Q)
is a regular isomorphism for ail.

A priori, this is only a map of sets. The condition requires that it be induced by a regular
map f,:oV — V. If (V,-) arises from a variety ove¥, thenoV = V andoP = o - P,
and so the condition is clearly necessary.

REMARK 14.2 (a) When regular, the mapg, are automatically isomorphisms provided
V is nonsingular.

(b) The mapsf,; satisfy the cocycle conditio, oo f; = f,.. Conversely, every family
(f5)sea Of regular isomorphisms satisfying the cocycle condition arises from an action of
A satisfying the regularity condition. Such familiég;),4 are calleddescent dataand
normally one expresses descent theory in terms of them rather than actidns of

The continuity condition

DEFINITION 14.3 An action- of A on V(£2) is continuousif there exists a subfield of
Q finitely generated ovet and a modeV, of V' over L such that the action of AR /L)
on V(R2) defined byV, is -.

More precisely, the condition requires that there exist a mdgky) of V over L such
thatp(cP) = o - (P) for all P € V,(2) ando € Aut(C/L). Clearly this condition is
necessary.
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PROPOSITION14.4 A regular action- of A on V(2) is continuous if there exist points
Pi,..., P, € V(R2) such that
(a) the only automorphism df fixing everyP; is the identity map;
(b) there exists a subfielfl of 2 finitely generated ovet such thato - P, = P; for all
o fixing L.

PROOF. Let (Vp, ¢) be a model of” over a subfield of 2 finitely generated ovek.
After possibly enlargind., we may assume that"'(P;) € Vo(L) and thatr - P; = P; for
all o fixing L (because of (b)). For suchma f,, andg o (c¢)~! are regular mapsV — V
sendingo P; to P; for eachi, and so they are equal (because of (a)). Hence

¢(0P) = fo((09)(0P)) = fo(0(9(P))) =0 -¢(P)

forall P € V5(£2), and so the action of AU€/L) on V(2) defined by(Vy, ¢) is -. O

A sufficient condition for descent

THEOREM14.5 If V is quasiprojective andis regular and continuous, theiV, -) arises
from a variety overk.

PROOF. This is a restatement of the results of Weil 18%6ee Milne 1999, 1.1). O

COROLLARY 14.6 The pair(V,-) arises from a variety ovek if
(a) V is quasiprojective,
(b) - is regular, and
(c) there exists point®y, ..., P, in V() satisfying the conditions (a) and (b) &4.4).

PrROOF. Immediate from{4.5 and [[4.6). O

For an elementary proof of the corollary, not using the results of Weil 4986 AG
14.27.

Review of local systems and families of abelian varieties

Let S be a topological manifold. Aocal system ofZ-modules onS is a sheafF on S that
is locally isomorphic to the constant she&Zf (n € N).

Let F be a local system of.-modules onS, and leto € S. There is an action of
71(S,0) on F, that can be described as follows: jet[0, 1] — S be a loop ab; because
[0, 1] is simply connected, there is an isomorphism freif¥ to the constant sheaf de-
fined by a groupM say; when we choose such an isomorphism, we obtain isomorphisms
(y*F); - M foralli € [0, 1], now (y*F); = F,; andy(0) = o = y(1), and so we get
two isomorphisms, — M ; these isomorphisms differ by an automorphisnFgf which
depends only the homotopy class)of

PROPOSITION14.7. If S is connected, thei — (F,, p,) defines an equivalence from the
category of local systems Gfmodules or§ to the category of finitely generatégdmodules
endowed with an action of; (S, 0).
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PROOF. This is well known; cf. Deligne 1970, | 1. O

Let F be a local system df-modules onS. Letw: S — S be the universal covering
space ofS, and choose a pointe S. We can identifiyr* F with the constant sheaf defined
by Fr). Suppose that we have a hodge structuren F; ® R for everys € S. We say
that F, together with the hodge structures, isaiation of integral hodge structures on
S if s = hy(s (hodge structure o, ® R) is a variation of hodge structures éh A
polarization of a variation of hodge structuré#’, (/,)) is a pairingy: F x F — Z such
thaty, is a polarization of Fy, &) for everys.

Let V be a nonsingular algebraic variety ov&rA family of abelian varieties oveV is
aregular mapf: A — V of nonsingular varieties plus a regular multiplicatidrnx ,, 4 —

A overV such that the fibres of are abelian varieties of constant dimension (in a different
languageA is an abelian scheme ové).

THEOREM14.8 LetV be anonsingular variety ovél. There is an equivalencet, f) —
(R! f,Z)V from the category of families of abelian varieties ovérto the category of
polarizable integral variations of hodge structures of type, 0), (0,—1) on S.

This is a generalization of Riemann'’s theoré® — see Deligne 197, 4.4.3.

The Siegel modular variety

Let (V,¢) be a symplectic space ov€, and let(G, X) = (GSpv), X(¥)) be the as-
sociated Shimura datun§g). We also denote $g) by S. We abbreviate Sh(G, X) to
Shg.

The reflex field

Consider the set of paifd., L’) of complementary lagrangians In(C):
VIC=Le® L', L,L totallyisotropic. (57)

Every symplectic basis for' (C) defines such a pair, and the every such pair arises from a
symplectic basis. Therefor;(C) (evenS(C)) acts transitively on the set of paifg, L)

of complementary lagrangians. For such a pairugt, .y be the homomorphisr&,, —
GL(V) such thatu(z) acts asz on L and asl on L’. Then,u ., 1) takes values irGc,

and ag L, L) runs through the set of pairs of complementary lagrangiaWS@), 1t(z, 1

runs throughe (X)) (notation as on[pd]). SinceV itself has symplectic bases, there exist
pairs of complementary lagrangianshn For such a pain (., . is defined ovef), and so
c(X) has a representative defined o@rThis shows that the reflex fiel# (G, X) = Q.

The special points

Let K be a compact open subgroup®@fA,), and, as ir§6, let Mg be the set of triples
(4,s,nK) in which 4 is an abelian variety oveC, s is an alternating form o, (4, Q)
such thatts is a polarization, ang is an isomorphisn¥’ (Af) — V¢(A4) sendingy to a
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multiple of s. Recall .11 that there is a natural maptx — Shx (C) whose fibres are
the isomorphism classes.

In this subsubsection we answer the question: which triples, nK) correspond to
points[x, a] with x special?

DEFINITION 14.9 A CM-algebrais a finite product of CM-fields. An abelian variety
overC is CM if there exists a CM-algebr& and a homomorphisntE — End’(4) such
that H;(A4, Q) is a freeE-module of rankl.

Let E — End’(4) be as in the definition, and leE be a product of CM-fields
Eq, ..., E,. ThenA isisogenous to a product of abelian varietigsx - - - x A4,, with A4;
of CM-type (E;, ®;) for somed;.

Recall that, for an abelian variety over C, there is a homomorphisthy: C* —
GL(H; (4,R)) describing the natural complex structure Bp(4, R) (see$6)El

PROPOSITION14.1Q An abelian variety4 overC is CM if and only if there exists a torus
T c GL(H (A,Q)) such thati4(C*) c T (R).

PROOF. See Mumford 196%2, or Deligne 1982§3. O

COROLLARY 14.11 If (4,s,nK) — [x,a]x under Mg — Shx(G, X), then 4 is of
CM-type if and only ifx is special.

ProoF. Recallthatif(4, s, nK) — [x,a]k, then there exists an isomorphidi (4, Q) —
V sending/i4 to . Thus, the statement follows from the proposition. O

A criterion to be canonical

We now define an action of A(F) on Mg. Let(4,s,nK) € Mg. Thens € H*(4,Q)

is a hodge tensor, and therefore equfl3] for somer € Q* and divisorD on A (sed/l.5).
We let°s = r[o D]. The condition thatts be positive definite is equivalent to an algebro-
geometric condition oD (Mumford 1970, pp29-30) which is preserveddyTherefore,

+ %s is a polarization forH; (A4, Q). We defines (A, s, nK) to be(cA4,%s,°nK) with 7n

as in B5).

PROPOSITION14.12 Suppose thaShy has a modeMk overQ for which the map
MK —> MK ((C)
commutes with the actions Alit(C). ThenM is canonical.

PROOF. For a special poinfx, a]x corresponding to an abelian varietywith complex

multiplication by a fieldE, the condition[®4) is an immediate consequence of the main

theorem of complex multiplication (cfl2.1]). For more general special points, it also

follows from the main theorem of complex multiplication, but not quite so immediately.
O

80lf 4(C) = C#/A, then
Hi(A,Z) = A, Hi(4,Q=A®Q, Hi(4,R)=ARR=CE.
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Outline of the proof of the existence of a canonical model

Since the action of AYC) on Mg preserves the isomorphism classes, from the map
Mg — Shg(C), we get an action of AYC) on Shy(C). If this action satisfies the
conditions of hypotheses of Corolldid.§ then Sk (G, X') has a model ove®, which
Propositiorll4.12will show to be canonical.

Condition (a) of (14.6. We know that Sk (G, X) is quasi-projective from3. 12).
Condition (b) of (14.6). We have to show that the map

0P > o - P:0 Shg(C) 2% Shg(C)

is regular. It suffices to do this foK small, because iK' > K, then S/ (G, X) is a
quotient of S (G, X).

Recall B.17) thatmo(Shy) = Q>0\Af /v(K). Lete € Q-0\AF/v(K), and let Sk
be the corresponding connected component gf.Sfihen S = I,\X* wherel’, =
G (Q) N K, for some conjugat&, of K (seeb.17,5.23

Let (4,s,nK) € Mg and choose an isomorphismH,(A4,Q) — V sendings to a
multiple of . Then the image ofA4, s, nK) in Q>0\AF/V(K) is represented by(a o n)
wherea o n: V(Ar) — V(Ay) is to be regarded as an elementfA ). Write M?% for
the set of triples with (a o n) € ¢. Define’H% similarly.

The mapMg — Q-0\AF/v(K) is equivariant for the action of AUt) when we let
Aut(C) act onQ-o\AF /v(K) through the cyclotomic character, i.e.,

o] = [x(0)a] wherex (o) € Z*, {X9 = ¢, ¢ aroot of .

Write X +(T',) for I',\ Xt regarded as an algebraic variety, andoléX *(T'y)) be the
algebraic variety obtained frotki *(T";) by change of base field: C — C. Consider the
diagram:

Xt <& U

! !

X*(Toe) <22 o (X*(I)
ME <= My
The mapo sends(4,...) too(4,...), and the mapf, is the map of setsP > o - P.
The two maps are compatible. The mAp— o (X *(T,)) is the universal covering space
of the complex manifoldo (X *(T;)))2".

Fix a lattice A in V that is stable under the action bf. From the action of’, on A,
we get a local system &-modulesM on X+ (T',) (sedl4.?), which, in fact, is a polarized
integral variation of hodge structurds. According to Theoreni4.8 this variation of
hodge structures arises from a polarized family of abelian varigties — X *(I'y). As f
is a regular map of algebraic varieties, we can ajpty it, and obtain a polarized family
of abelian varieties f:0. 4 — o(XT(T,)). Then(R!'(cf),Z) is a polarized integral
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hodge structure oa(X ™ (I';)). On pulling this back td/ and tensoring witl, we obtain
a variation of polarized rational hodge structures over the spaeehose underlying local
system can identified with the constant sheaf defined bWhen this identification is done
correctly, eachy € U defines a complex structure dnthat is positive fony, i.e., a point
x of X+, and the map — x makes the diagram commute. Nd&15 shows that — x

is holomorphic. It follows thaf, is holomorphic, and Borel's theoreii.[4) shows that it
is regular.

Condition (c) of (14.6 For anyx € X, the set{[x,alx | a € G(As)} has the property
that only the identity automorphism of ghG, X) fixes its elements (s€E.5). But, there
are only finitely many automorphisms of gfG, X) (se€3.2]), and so a finite sequence
of points[x, a4],...,[x,a,] will have this property. When we chooseto be special, the
main theorem of complex multiplicatiod1.2) tells us thato - [x,a;] = [x,a;] for all o
fixing some fixed finite extension df (x), and so condition (c) holds for these points.

Simple PEL Shimura varieties of type A or C

The proof is similar to the Siegel case. Herg$t, X) classifies quadruplesd, i, s, nK)
satisfying certain conditions. One checks that ifixes the reflex fieldE (G, X), then
o(A,i,s,nK) liesinthe family again (sé€2.7). Again the special points correspond to CM
abelian varieties, and the Shimura-Taniyama theorem shows thag, (6SIX) has a model
Mg over E(G, X) for which the action of AUtC/ E(G, X)) on Mg (C) = Shg (G, X)(C)
agrees with its action on the quadruples, then it is canonical.

Shimura varieties of hodge type

In this case, Sh(G, X) classifies isomorphism classes of triples (s;)o<i<n, 1K) Where
thes; are hodge tensors. A proof similar to that in the Siegel case will apply once we have
defined’s for s a hodge tensor on an abelian variety.

If the Hodge conjecture is true, thens the cohomology class of some algebraic cycle
Z on A (i.e., formalQ-linear combination of integral subvarieties 4j. Then we could
define’s to be the cohomology class oZ onoA. Unfortunately, a proof of the Hodge
conjecture seems remote, even for abelian varieties. Deligne succeeded in d&fining
without the Hodge conjecture. It is important to note that there is no natural map between
H"(A,Q) and H" (6 A, Q) (unlesso is continuous, and hence is the identity or complex
conjugation). However, there is a natural isomorphisnii”(A4,As) — H"(0A, Ay)
coming from the identification

H"(A,Ar) = Hom(AA, Ar) = Hom(A(A ® Ar), Ar) = Hom(AVr A, Ay)
(or, equivalently, from identifying?” (4, As) with étale cohomology).

THEOREM 14.13 Lets be a hodge tensor on an abelian varietyoverC, and lets,, be
the image ofy the As-cohomology. For any automorphissnof C, there exists a hodge
tensor’s onoA (necessarily unique) such théfts),, = o (s4,).
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PROOF. This is the main theorem of Deligne 1982. [Interestingly, the theory of locally
symmetric varieties is used in the proof.] O

As an alternative to using Deligne’s theorem, one can apply the following result (note,
however, that the above approach has the advantage of giving a description of the points of
the canonical model with coordinates in any field containing the reflex field).

PROPOSITION14.14 Let(G, X) — (G', X’) be aninclusion of Shimura data;$(G’, X”)
has canonical model, so also ddsl(G, X).

PROOF. This follows easily fron.16 O

Shimura varieties of abelian type

Deligne (1979, 2.7.10) defines the notion of a canonical model adreectedShimura
variety SK(G, X). This is an inverse system of connected varieties @#endowed with
the action of a large group (a mixture of a galois group and &ti@agroup). A key result
is the following.

THEOREM14.15 Let (G, X) be a Shimura datum and l&* be a connected component
of X. ThenSh(G, X) has a canonical model if and only$it*(G%', X *) has a canonical
model.

PROOF. See Deligne 1979, 2.7.13. O

Thus, for example, ifG;, X;) and(G,, X,) are Shimura data such th@@ ", X;) ~
(G5, X;), and one of SKG, X;) or SH(G,, X») has a canonical model, then they both
do.

The next result is more obvious (ibid. 2.7.11).

PROPOSITION14.16 (a) Let (G, X;) (1 < i < m) be connected Shimura data. If
each connected Shimura varie8f°(G;, X;) has a canonical modeM °(G;, X;), then
[1;M°(G;, X;) is a canonical model fo8H ([ [;G:, [ [, X3)-

(b) Let(Gy, X1) — (G,, X,) be an isogeny of connected Shimura dat&Hi(G,, X7)
has a canonical model, then so also d&5(G,, X>).

More precisely, in case (b) of the theorem,@8€(Q) andG34(Q); be the completions
of G3(Q)* for the topologies defined by the images of congruence subgroupg@®)*
andG,(Q)* respectively; then the canonical model for8#,, X;) is the quotient of the
canonical model for SHG», X») by the kernel olG24(Q)} — G*(Q)].

We can now prove the existence of canonical models for all Shimura varieties of abelian
type. For a connected Shimura variety of primitive type, the existence follows ftdrih%
and the existence of canonical models for Shimura varieties of hodge type (see above).
Now (14.16 proves the existence for all connected Shimura varieties of abelian type, and
(1419 proves the existence for all Shimura varieties of abelian type.

REMARK 14.17 The above proof is only an existence proof: it gives little information
about the canonical model. For the Shimura varieties it treats, Thé@dran be used to
construct canonical models and give a description of the points of the canonical model in
any field containing the reflex field.



General Shimura varieties 117

General Shimura varieties

There is an approach that proves the existence of canonical models for all Shimura varieties,
and is largely independent of that discussed above except that it assumes the &listence
canonical models for Shimura varieties of type (and it usesI4.15 and [[4.19).

The essential idea is the following. L&F, X)) be a connected Shimura datum wih
the group ovef) obtained from a simple groufl over a totally real fieldF by restriction
of scalars.

Assume first that? splits over a CM-field of degre2over F. Then there exist many
homomorphismsH; — H from groups of typed; into H. From this, we get many
inclusions

SK (G, X;) — S (G, X)

where G; is the restriction of scalars aff;. From this, and the existence of canonical
models for the SHG;, X;), itis possible to prove the existence of the canonical model for
SK (G, X).

In the general case, there will be a totally real fiéldcontainingF and such thaH g
splits over a CM-field of degrezover F. Let G, be the restriction of scalars éfz.. Then
there is an inclusionG, X') — (G, X,) of connected Shimura data, and the existence of a
canonical model for SKG,, X, ) implies the existence of a canonical model fof @h X)
(cf.[14.19.

For the details, see Borovoi 1984, 1987 and Milne 1983.

Final remark: rigidity

One might expect that if one modified the conditi&d) for example, by replacing, (s)

with r,(s)~1, then one would arrive at a modified notion of canonical model, and the same
theorems would hold. This is not true: the conditibd)(is theonly one for which canon-

ical models can exist. In fact, iff is adjoint, then the Shimura variety @h X') has no
automorphisms commuting with the action@tA ) (Milne 1983, 2.7), from which it fol-

lows that the canonical model is tbaly model of SKG, X) over E(G, X), and we know

that for the canonical model the reciprocity law at the special points is givdsdy (

NOTES. The concept of a canonical model characterized by reciprocity laws at special
points is due to Shimura, and the existence of such models was proved for major families
by Shimura, Miyake, and Shih. Shimura recognized that to have a canonical model it is
necessary to have a reductive group, but for him the semisimple group was paramount:
in our language, given a connected Shimura datémY '), he asked for Shimura datum

(G, X) suchtha(G%", X*) = (H,Y) and SKG, X) has a canonical model (see his talk at

the 1970 International Congress Shimura 1971). In his Bourbaki report on Shimura’s work
(1971b), Deligne placed the emphasis on reductive groups, thereby enlarging the scope of
the field.

81|n fact, the approach assumes a stronger statement for Shimura varieties 4f typgenely, Langlands’s
conjugation conjecture, and it proves Langlands’s conjecture for all Shimura varieties.
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15 Abelian varieties over finite fields

For each Shimura datufé, X)), we now have a canonical model@&h X') of the Shimura
variety over its reflex fieldZ (G, X). In order, for example, to understand the zeta function

of the Shimura variety or the galois representations occurring in its conomology, we need
to understand the points on the canonical model when we reduce it modulo a prime of
E(G, X). After everything we have discussed, it would be natural to do this in terms
of abelian varieties (or motives) over the finite field plus additional structure. However,
such a description will not be immediately useful — what we want is something more
combinatorial, which can be plugged into the trace formula. The idea of Langlands and
Rapoport (1987) is to give an elementary definition of a category of “fake” abelian varieties
(better, abelian motives) over the algebraic closure of a finite field that looks just like the
true category, and to describe the points in terms of it. In this section, | explain how to
define such a category.

Semisimple categories

An object of an abelian categony is simpleif it has no proper nonzero subobjects. Let
F be a field. By anF-category | mean an additive category in which the Hom-sets
Hom(x, y) are finite dimensionaF -vector spaces and compositionAsbilinear. An F-
categoryM is said to besemisimpldf it is abelian and every object is a direct sum (neces-
sarily finite) of simple objects.

If e is simple, then a nonzero morphigm- e is an isomorphism. Therefore, Ed is
a division algebra oveF. Moreover, Endre) = M, (Ende)). Herere denotes the direct
sum ofr copies ofe. If ¢’ is a second simple object, then eitlrer ¢’ or Hom(e, ¢’) = 0.
Therefore, ifx = ) rie; (r; > 0) andy = ) s;e; (s; > 0) are two objects oM expressed
as sums of copies of simple objeetswith e; % ¢; fori # j, then

Hom(x, y) = [[My,.r,(End(e;)).

Thus, the categori is described up to equivalence by:
(a) the setX (M) of isomorphism classes of simple objectavin
(b) for eacho € X, the isomorphism clag®,] of the endomorphism algebi@, of a
representative aof .
We call (¥ (M), ([Ds])sexmy) thenumerical invariantsof M.

Division algebras; the Brauer group

We shall need to understand what the set of isomorphism classes of division algebras over
a field F look like.

Recall the definitions: by ai-algebrga we mean a ringd containingF in its centre
and finite dimensional ag-vector space; iff' equals the centre o, then 4 is called a
central F-algebra; aivision algebrais an algebra in which every nonzero element has an
inverse; anF-algebra4 is simpleif it contains no two-sided ideals other tharand 4.
By a theorem of Wedderburn, the simplealgebras are the matrix algebras over division
F-algebras.
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EXAMPLE 15.1 (a) If F is algebraically closed or finite, tH&hevery central division
algebra is isomorphic t@'.
(b) Every central division algebra ovét is isomorphic either t&R or to the (usual)
guaternion algebra:

H=C®Cj, j*=-1, jzj7'l=z (ze€C).

(c) Let F be ap-adic field (finite extension of),), and letr be a prime element of
OpF. Let L be an unramified extension field éf of degreen, and leto denote the
Frobenius generator of Gdl/ F) — o acts asx — x? on the residue field. For
eachi, 1 <i < n, define

Dipn=L®La® ---®La""', d"=n', aza'=o0(z) (zel).

ThenD; , is a central simple algebra ovér, which is a division algebra if and only
if gcd(i,n) = 1. Every central division algebra oveét is isomorphic toD; , for
exactly one relatively prime pait, n) (CFT, IV 4.2).

If B and B’ are central simpld’-algebras, then so also # ®r B’ (CFT, 2.8). IfD
and D’ are central division algebras, then Wedderburn’s theorem show®tlggt D’ ~
M, (D") for somer and some central division algebfd’ well-defined up to isomorphism,
and so we can set

[D][D'] = [D"].

This law of composition is obviously, arjd’] is an identity element. LeD°PP denote the
opposite algebra t® (the same algebra but with the multiplication reverset®s°PP —
(ba)°PP). Then (CFT, IV 2.9)

D ®F D°° = Endp.jineal D) ~ M, (F),

and so[D][D°PP] = [F]. Therefore, the isomorphism classes of central division algebras
over F' (equivalently, the isomorphism classes of central simple algebrasfovirm a
group, called thé&rauer groupof F.

ExAmMPLE 15.2 (@) The Brauer group of an algebraically closed field or a finite field is
zero.

(b) The Brauer groufR has order two: BiR) = 1Z/Z.

(c) Forap-adicfieldF, the mag D, ;] — % mod Z is an isomorphism BiF') = Q/Z.

(d) For a number fieldF and a primev, write inv, for the canonical homomorphism
Br(F,) — Q/Z given by (a,b,c) (so invis an isomorphism except whens real or
complex, in which case it has imaé@/Z or 0). For a central simple algeb# over
F,[B ®F F,] = 0 for almost allv, and the sequence

0 —— Br(F) 22 oprry 2 7z — o

is exact.

82)f F is algebraically closed, then each element of a central division algebraFogenerates a field of
finite degree oveF, and so lies inF. For the proof in the finite case, see CFT, IV 4.1.
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Statement (d) is shown in the course of proving the main theorem of class field theory
by the cohomological approach (CFT, VIII 2.2). It says that to give a division algebra over
F (up to isomorphism) is the same as to give a faniily € @, fniQ/Z D DB, rean Z/Z
such that) i, = 0.

The key tool in computing Brauer groups is an isomorphism

Br(F) = H*(F,Gn) < H*(GalF?¥/F), F>) £ lim H2(Gal(L/F), L*).

The last limit is over the fielddé. ¢ F? of finite degree and galois ov&y. This isomor-
phism can be most elegantly defined as follows. Debe a central simple division of
degree:? over F, and assun¥é that D contains a subfield of degree: over F and galois
over F. Then each8 € D normalizingL defines an element — BxB~! of Gal(L/F),
and the Noether-Skolem theorem (CFT, IV 2.10) shows that every element @f Ga)
arises in this way. Becaudeis its own centralizer (ibid., 3.4), the sequence

1> L*—> N(L)— GalL/F)—1
is exact. For each € Gal(L/F), choose an, € N(L) mapping tao, and let
Sg * St = dog,t * Sot, da,r e L*.

Then (d,,;) is a2-cocycle whose cohomology class is independent of the choice of the
family (sy). Its class inH?(Gal(L/F), L*) c H*(F,G,,) is the cohomology class of
[D].

EXAMPLE 15.3 Let L be the completion o))" (equal to the field of fractions of the ring of
Witt vectors with coefficients ifif), and leto be the automorphism df inducingx +— x?

on its residue field. Amsocrystalis a finite dimensional.-vector spacd’ equipped with
ao-linear isomorphisn¥: vV — V. The categorysoc of isocrystals is a semisimplg,-
linear category with¥ (Isoc) = Q, and the endomorphism algebra of a representative of
the isomorphism class is a division algebra ove®, with invariantA. If L > 0, A = r/s,
gedr,s) = 1,5 > 0, then E* can be taken to bQ, /(T” — p*)) ®q, L, and if» < 0, E*

can be taken to be the dual 8f*. See Demazure 1972, Chap. IV.

Abelian varieties

Recall (f89) that Av°(k) is the category whose objects are the abelian varieties /over
but whose homs are HdY4, B) = Hom(4, B) ® Q. It follows from results of Weil that
AV (k) is a semisimpl&-category with the simple abelian varieties (s88)@s its simple
objects. Amazingly, wheh is finite, we know its numerical invariants.

Abelian varieties overF,, g = p"

Recall that a Weig-integer is an algebraic integer such that, for every embeddi@fyr] —
C lpm| = q%. Two Weil g-integersr andxz’ areconjugateif there exists an isomorphism
Q[rn] — Q[r'] sendingr to =’.

83This will always be true whet¥ is a p-adic or number field, but is not true (or, at least, no known to be
true) for other fields. In the general case, it becomes true Bfteas been replaced by, (D) for somer.
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THEOREM 15.4(HONDA-TATE). The mapA4 +— n4 defines a bijection fronX' (AV(F,))
to the set of conjugacy classes of Weihtegers. For any simplet, the centre ofD =g
End’(A4) is F = Q[n4], and for a primev of F,

% if v is real
inv, (D) = § SREA[F,:Q,] if vlp |
0 otherwise.

Moreover2dim A = [D: F]% - [F:Q].

In fact, Q[] can only have a real prime it = /p”. Let Wi(g) be the set of Weil
g-integers inQ? ¢ C. Then the theorem gives a bijection

T(AVO(F,)) — T\Wi(g), T =GalQ¥/Q).

NOTES. Except for the statement that every arises from a4, the theorem is due to
Tate. That every Weij-integer arises from an abelian variety was proved (Ughd0 by
Honda. See Tate 1969 for a discussion of the theorem.

Abelian varieties overF

We shall need a similar result for an algebraic clostif IF,.
If 7 is a Weil p"-integer, thent™ is a Weil p™"-integer, and so we have a homomor-
phismr — z™: Wi(p") — Wi (p"™). Define

_ i n
Wi _I|_m)W1(p )-

If = € W, is represented by, € Wi(p"), thenz)' € W;(p™™) also represents, and
Q[m,] D Q[n)"]. DefineQ{r} to be the field of smallest degree ov@rgenerated by a
representative of .

Every abelian variety ovef has a model defined over a finite field, and if two abelian
varieties over afinite field become isomorphic o¥ethen they are isomorphic already over
a finite field. Let4 be an abelian variety ovéf,. When we regardi as an abelian variety
overF, =, then the Frobenius map is raised to t&-power (obV|oust)JrAF . =Ty

Let 4 be an abelian variety defined oVErand let4, be a model of4 overIF The

above remarks show thaf(v) =g O;fdi(;‘;)) is independent of the choice ofy,. More-
over, for anyp: Q[r4,] — Q?, theT"-orbit of the elementr, of W; represented by,

depends only o

THEOREM 15.5 The map4 — TI'w, defines a bijectior® (AV(F)) — T'\W;. For any
simple4, the centre ofD =4 End’(4) is isomorphic toF = Q{x4}, and for any primev
of F,

% if v is real
ian(D) = SA(U) ’ [Fv:(@p] if v|p
0 otherwise.

ProoOE This follows from the Honda-Tate theorem and the above discussion. O]
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Our goal in the remainder of this section is to give an elementary construction of a
semisimpleQ-category that contains, in a natural way, a category of “fake abelian varieties
overF” with the same numerical invariants a9°(F).

For the remainder of this sectidn s a field of characteristic zero.

Tori and their representations

Let T be a torus ovelr split by a galois extensiod./ F with galois groupl’. As we
noted on A9, to give a representation of 7' on an F-vector spacd’ amounts to giving
an X*(T)-gradingV (L) = @XGX*(T)VX of V(L) with the property thatV, = V,, for

alloc e "'andy € X*(T). In this, L/ F can be an infinite galois extension.

PROPOSITION15.6. LetI” = Gal(F&/F). The category of representatioRep(7’) of T

on F-vector spaces is semisimple. The set of isomorphism classes of simple objects is in
natural one-to-one correspondence with the orbitE @icting onX™*(7'), i.e., X (Rep(T)) =
C\X*(T). If Vr, is a simple object corresponding 10y, thendim(Vr,) is the order of
I'y,and

EndV,) ~ F(x)

where F(x) is the fixed field of the subgrodp(x) of I" fixing .
PROOF. Follows easily from the preceding discussion. O

REMARK 15.7. Let x € X*(T), and letI'(x) and F(x) be as in the proposition. Then
Hom(F(x), F&) = T/ T (), and soX*((G) rp/r) = ZY/T®. The map

S oo > Y ngoy: ZV T . x*(T)

defines a homorphism
T — (Gw)Fx)/F- (58)

From this, we get a homomorphism of cohomology groups
H*(F,T) — H*(F,(Gm)F/F)-

But Shapiro’s lemma (CFT, Il 1.11) shows thBP(F, (Gu) riyr) = H*(F(x),Gm),
which is the Brauer group aF (x). On composing these maps, we get a homomorphism

H?*(F,T) — Br(F(x)). (59)

The proposition gives a natural construction of a semisimple catégovith X' (M) =
I'\N, whereN is any finitely generated-module equipped with a continuous action of
I". However, the simple objects have commutative endomorphism algebras. To go further,
we need to look at new type of structure.
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Affine extensions

Let L/F be a Galois extension of fields with Galois grolipand letG be an algebraic
group overF. In the following, we consider only extensions

l1->G(L)—> E—->T—>1
in which the action of” on G (L) defined by the extension is the natural action, i.e.,
if e, > 0, thene,ge;! =0g (e, € E,0 €T, g € T(F¥)).

For example, there is always thplit extensionEg =4 G(L) x T.

An extensionk is affine if its pull-back to some open subgroup Bfis split. Equiva-
lently, if for the o in some open subgroup of, there exise, — o such that,, = eye;.
We sometimes call such an an L/ F-affine extension wittkernel G.

Consider an extension

1>T—>FE—->T-—>1

with 77 commutative. IfE is affine, then it is possible to choose thgs so that the2-
cocycled:T" x I' - T (L) defined by

al
€5€r = ldg €567, da,r € T(F )

is continuous. Thus, in this cagedefines a clasal/(E) € H*(F,T).
A homomorphismof affine extensions is a commutative diagram

| —— Gy(L) E; r 1
| o
| —— Ga(L) E, r 1

such that the restriction of the homomorphigno G, (L) is defined by a homomorphism
of algebraic groups (ovek). A morphism¢ — ¢’ of homomorphisms; — E, is an
element ofg of G,(L) such that ae) o ¢ = ¢/, i.e., such that

g-pe)-g ' =¢'(e), alleecE;.

For a vector spacl over F, let Ey be the split affine extension defined by the algebraic
group GL(V). A representatiorof an affine extensio® is a homomorphisnk — Ey.

REMARK 15.8 To give a representation df; on Ey is the same as to give a represen-
tation of G on V. More precisely, the functdRep(G) — Rep(E) is an equivalence of
categories. The proof of this uses that (F, GL(V)) = 1.

PROPOSITION15.9 Let E be an L/ F-affine extension whose kernel is a torfissplit
by L. The categonRep(E) is a semisimpleF-category withX' (Rep(E)) = I'\X*(T).
Let Vr, be a simple representation @ corresponding td"y € I'\X*(T"). Then,D =
End(Vr,) has centreF(x), and its class inBr(F(x)) is the image ot/(E) under the
homomorphisnig9).



124 15 ABELIAN VARIETIES OVER FINITE FIELDS

PROOF. Omitted (but it is not difficult). O

We shall also need to consider affine extensions in which the kernel is allowed to be a
protorus, i.e., the limit of an inverse system of tori. Hoe= lim 7;, X*(T') = |I_m> X*(Ty),
andT — X™*(T) defines an equivalence from the category of protori to the category of
free Z-modules with a continuous action bf Here continuous means that every element
of the module is fixed by an open subgroupltf Let L = F&. By anaffine extension
with kernel T, we mean an exact sequence

1> T(F > E—->T—>1

whose push-out
1> Ti(FYY > E,>T —> 1

by T(F?) — T;(F¥)is an affine extension in the previous sense. A representation of such
an extension is defined exactly as before.

REMARK 15.1Q Let c

L L

r T

F F’
be a diagram of fields in which’/ F’ is Galois with groug™'. From anL / F-affine exten-
sion

C

1->G(L)—> E—>T—>1
with kernelG we obtain anl’/ F’-affine extension
1-GL)Y—> E -T'"—>1

with kernel Gg: by pulling back bye — o|L:T’" — T and pushing out byy'(L) —
G(L").

ExXAMPLE 15.11 Let Q;” be a maximal unramified extension @f,, and letL, be the
subfield ofQ," of degreen over Q,. LetT, = Gal(L,/Q,), let D, be the division
algebra in[{5.X), and let

1> L— NL;)—>T,—1
be the corresponding extension. H&fe€L ;) is the normalizer of ) in D ,:
N(L;) = LlOgign—lL;(ai'

This is anL,/Q,-affine extension with kernek,,. On pulling back byl — TI', and
pushing out byL — Q)™ we obtain aQ,™ /Q,-affine extensionD, with kernelG,,.
From a representation d#, we obtain a vector spadé overQ," equipped with a-linear
map F (the image of 1, a) is (F, 0)). On tensoring this with the completian of Q'", we
obtain an isocrystal that can be expressed as a sufit efwith A € %Z.



The affine extensiof} 125

Note that there is a canonical section¥¢L *) — T',, namelyo’ — @', which defines
a canonical section t®,, — T.
There is a homomorphism,,,, — D, whose restriction to the kernel is multiplication
by m. The inverse limit of this system is@,"/Q,-affine extensionD with kernelG =g
lim G,,. Note thatX*(G) = lim 1Z/Z = Q. There is a natural functor froRep(D) to
the category of isocrystals,Which is faithful and essentially surjective on objects but not
full. We call D the Dieudonre affine extension

The affine extensiond

Let W(p") be the subgroup dd®> generated by, (p™), and letW = Il_)m W(p"). Then

W is a freeZ-module of infinite rank with a continuous action Bf= Gal(Q?¥/Q). For
7 € W, we defineQ{x} to be the smallest field generated by a representatiwe tfr is
represented by, € W(p") and|p(m,)| = (p")™?, we say thatr has weightn and we
write
ordy, (1,)
Sz (V) = ———.
ord,(q)

THEOREM 15.12 Let P be the protorus ove® with X*(P) = W. Then there exists an
affine extension

1> PQYH > P->T -1

such that
(@) X(Rep(P)) = I'\W;
(b) form € W, let D() = End(Vr,) whereVr,, is a representation corresponding to
I'm; then D(r) is isomorphic to the division algebr® with centreQ{x} and the

invariants
(3w if v is real
invy(D) = 4 sz (v) - [Q{m}: Qp] if vlp
0 otherwise.

Moreover, 3 is unique up to isomorphism.
PROOF. Letc¢(;r) denote the class in BQ{x}) of the division algebra in (b). To prove

the result, we have to show that there exists a unique cla&8 (), P) mapping toc(x)
in Br(Q{=}) for all r:

(512
¢ (c(m): HXQ, P) = [Trgeryw BrQim)).
This is an exercise in galois cohomology, which, happily, is easier than it looks. [

We call a representation @8 a fake motiveoverF, and afake abelian varietyf its
simple summands correspond#ce '\ W;. Note that the category of fake abelian varieties
is a semisimplé-category with the same numerical invariantsS(F).
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The local form 3; of B

Let/ be a prime ofQ, and choose a prime; of Q¥ dividing /. Let Q?' be the algebraic
closure ofQ; in the completion o2 atw;. ThenI'; =4 Gal(@?'/@,) is a closed subgroup
of I' =¢ GalQ¥/Q), and we have a diagram

Qal - Q?I
r T, (60)
Q— Q.

From3 we obtain a@?‘/@;-aﬁine extensiof3(/) by pulling back byl; — T" and pushing
out by P(Q%) — P(Q%) (cf.[15.10.

The Q,-space attached to a fake motive

Letf # p, oo be a prime ofQ.

PROPOSITION15.13 There exists a continuous homomorphignrmaking

W]
[z
I — P@Q}) — BU) — I —— 1

commute.

PROOF. To prove this, we have to show that the cohomology clag§s of 22(Q, P) maps
to zero inH?(Qy, P), but this is not difficult. O

Fix a homomorphisni,: ', — P(¢) as in the diagram. Leb:B — Ep be a fake
motive. Fromp, we get a homomorphism

p(): B(L) — GLV(QF)) x I'c.

Foro € Ty, let (p({) o {y)(0) = (es,0). Because, is a homomorphism, the automor-
phismse, of V(Q?) satisfy

ey 00€; =€y, O0,T €1y,
and so
0-V=c¢ey(00)
is an action of"y, on V(Q?'), which one can check to be continuous. Therefore (AG, 14.13),

Vi(p) =gt V(QZ')W Is aQg-structure onV(@i}'). In this way, we get a functgs — V;(p)
from the category of fake motives ovErto vector spaces ové,.

The{, can be chosen in such a way that the spa¢és) contain lattices\¢(p) that are
well-defined for almost al # p, which makes it possible to define

VE(0) = Tesp.co(Ve(0): Ae(p)).

It is a free module oveA}’ =dt [ 11,00 (Qe: Ze)-
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The isocrystal of a fake motive

Choose a primev, of Q dividing p, and letQ," and@;' denote the subfields of the com-
pletion of Q¥ atw,. ThenT, =4 Gal(Q%/Q,) is a closed subgroup df =4 GalQ*/Q)
andl')" = Gal(Q,"/Q,) is a quotient ofl",,.

PROPOSITION15.14 (a) The affine extensicR(p) arises by pull-back and push-out from
a Q,"/Q,-affine extensiof3(p)"".

(b) There is a homomorphism @£/ Q,-extensiond) — PB(p)"" whose restriction to
the kernelsG — Pg,, corresponds to the map on characters—> s, (w,): W — Q.

PrROOF. (a) This follows from the fact that the image of the cohomology clas3 o
H?(T,, P(Q%)) arises from a cohomology class Hi*(I'y", P(Qy").
(b) This follows from the fact that the homomorphisi?(Q,,G) — H?*(Q,, Py,)

sends the cohomology class bfto that of3(p)"". O
In summary:
Il — Gu(@QY) — D r," 1
I — P@Q") — P(p)" run I
I — P@) — P Iy 1

A fake motivep: 3 — E gives rise to a representationi p), which arises from a
representation a3 (p)"" (cf. the argument in the preceding subsubsection). On composing
this with the homomorphisn® — B(p)'", we obtain a representation &f, which gives
rise to an isocrystaD(p) as in [5.173).

Abelian varieties of CM-type and fake abelian varieties

We saw in [[0.5 that an abelian variety of CM-type ov&? defines an abelian variety
overF. Does it also define a fake abelian variety? The answer is yes.

PROPOSITION15.15 Let T be a torus ovefQ split by a CM-field, and letx be a cochar-
acter of T such thatu + (i is defined ovef) (here: is complex conjugation). Then there
is a homomorphism, well defined up to isomorphism,

¢M:‘I§ —> ET.
PROOF Omitted. O

Let 4 be an abelian variety of CM-typeE, ®) overQ?, and letT = (G,,) g/q- Then
® defines a cocharacterg of 7' (se€l2.4(b)), which obviously satisfies the conditions of
the proposition. Hence we obtain a homomorphisr3 — Er. LetV = H;(4,Q).
From¢ and the representatignof 7" on V' we obtain a fake abelian variety ¢ such that
Vi(pop) = Hi(A,Qy) (obvious) andD(p) is isomorphic to the Dieudo@module of the
reduction of4 (restatement of the Shimura-Taniyama formula).
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AsIDE 15.16 The category of fake abelian varieties has similar properties/f¢F). By
using theQ,-spaces and the isocrystals attached to a fake abelian variety, it is possible to
define aZ-linear category with properties similar v (FF) 24

NOTES. The affine extensiof8 is defined in Langlands and Rapoport 19843, where

it is called “die pseudomotivische Galoisgruppe”. There an affine extension is called a
Galoisgerbe although, rather than a gerbe, it can more accurately be described as a concrete
realizations of a groupoid. See also Milne 1992. In the above, | have ignored uniqueness
guestions, which can be difficult (see Milne 2003).

84Abelian varieties over finite fields have applications to coding theory and cryptography. Perhaps false
abelian varieties, being more elementary, also have such applications.
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16 The good reduction of Shimura varieties

We now write Six (G, X), or just Sk, for the canonical model of the Shimura variety over
its reflex field.

The points of the Shimura variety with coordinates in the algebraic clo-
sure of the rational numbers

When we have a description of the points of the Shimura variety@weiterms of abelian
varieties or motives plus additional data, then the same description hold§&veFor
example, for the Siegel modular variety attached to a symplectic paag), Shy (Q¥)
classifies the isomorphism classes of triplels s, nK) in which A4 is an abelian variety
defined overQ?, s is an element of N&1) ® Q containing aQ*-multiple of an ample
divisor, andy is a K-orbit of isomorphisms/(As) — V¢(A4) sendingy to anAjf-muItiple
of the pairing defined by. Here N§A) is the Neron-Severi group oft (divisor classes
modulo algebraic equivalence).

On the other hand, | do not know a description 0k$0%) when, for examplez2 has
factors of typeEs or E; or mixed typeD. In these cases, the proof of the existence of a
canonical model is quite indirect.

The points of the Shimura variety with coordinates in the reflex field

Over E = E(G, X) the following additional problem arises. Ldtbe an abelian variety
overQ?. Suppose we know that4 is isomorphic to4 for all o € Gal(Q?/E). Does this
imply that 4 is defined ovelE? Choose an isomorphisify: 04 — A for eacho fixing E.

A necessary condition that th& arise from a model ovek is that they satisfy the cocycle
condition: f, o o f; = f.. Of course, if the cocycle condition fails for one choice of the
f5'S, we can try another, but there is an obstruction to obtaining a cocycle which lies in the
cohomology sef/?(Gal(Q¥/E), Aut(A)).

Certainly, this obstruction would vanish if Awt) were trivial. One may hope that the
automorphism group of an abelian variety (or motive) plus data in the family classified by
Shx (G, X) is trivial, at least wherK is small. This is so when condition SV5 holds, but
not otherwise.

In the Siegel case, the centre @fis G,, and so SV5 holds. Therefore, providédis
sufficiently small, for any field. containingE (G, X)), Shx (L) classifies triplegA4, s, nK)
satisfying the same conditions as wheén= Q2. Here 4 an abelian variety over,

s € NS(4) ® Q, andp is an isomorphisn¥’ (Ay) — V,(A) such that)K is stable under
the action of GalL?/L).

In the Hilbert casel4.14), the centre oG is (G,,)r/q for F a totally real field and
SV5 fails: F* is not discrete in&;’f because every nonempty open subgroup&p]‘
will contain infinitely many units. In this case, one has a description @f(%h whenL is
algebraically closed, but otherwise all one can say is thai(Bh = Shg (L*)GalL"/L),
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Hyperspecial subgroups

The modular curvd’y(N)\'H; is defined ovefQ, and it has good reduction at the primes
not dividing the levelV and bad reduction at the others. Before explaining what is known
in general, we need to introduce the notion of a hyperspecial subgroup.

DEFINITION 16.1 Let G be a reductive group oved (over Q, will do). A subgroup
K c G(Q,) is hyperspecialf there exists a flat group schergeoverZ, such that
o Gg, = G (i.e.,G extendsG t0 Z,);
o Gr, is a connected reductive group (necessarily of the same dimens@beasause
of flatness);
o G(Z,) =K.

EXAMPLE 16.2 Let G = GSV,y). Let A be a lattice inV'(Q,), and letK, be the
stabilizer of A. ThenK, is hyperspecial if the restriction af to A x A takes values in
Z, and is perfect (i.e., induces an isomorphidm- A"; equivalently, induces a nonde-
generate pairing\/pA x A/pA — F,). In this casegy, is again a group of symplectic
similitudes oveif, (at least ifp # 2).

ExXAMPLE 16.3 Inthe PEL-case, in order for there to exist a hyperspecial group, the alge-
bra B must be unramified above, i.e., B ®q Q, must be a product of matrix algebras over
unramified extensions @,. When this condition holds, the description of the hyperspecial
groups is similar to that in the Siegel case.

There exists a hyperspecial subgrouri(Q),) if and only if G is unramified overQ,,
i.e., quasisplit ove@, and split over an unramified extension.

For the remainder of this section we fix a hyperspecial subgr&ypc G(Q,), and
we writeSh, (G, X) for the family of varietieShg» . x, (G, X) with K7 running over the
compact open subgroups 6f(A ;). The groupG (A7) acts on the familgh, (G, X).

The good reduction of Shimura varieties

Roughly speaking, there are two reasons a Shimura variety may have bad reduction at a
prime dividing p: the reductive group itself may be ramified@aor p may divide the level.

For example, the Shimura curve defined by a quaternion algelmeer Q will have bad
reduction at a prime» dividing the discriminant o8, and (as we noted abovE)(N)\'H;

has bad reduction at a prime dividing. The existence of a hyperspecial subgratip
forcesG to be unramified ap, and by considering only the varieties Six, (G, X) we

avoid the second problem.

THEOREM 16.4 Let Sh,(G, X) be the inverse system of varieties o¥&(G, X) defined
by a Shimura datuniG, X') of abelian type and a hyperspecial subgrokp C G(Q)).

Then, except possibly for some small set of primdspending only onG, X), Sh,(G, X)

has canonical good reduction at every primef E£(G, X) dividing p, .

REMARK 16.5 Let E, be the completion of atp, let @p be the ring of integers ik,
and letk (p) be the residue field,/p.
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(a) By Sh,(G, X) having good reductiop, we mean that the inverse system

(Shkrk, (G, X))k», K? C G(A}) compact openk,, fixed,

extends to an inverse system of flat sche®igs= (Sk») over(’A)p whose reduction modulo
p is an inverse system of varieti@]Kpr(G, X))kr overk(p) such that, fork? > K'?
sufficiently small,

Sh[(p K, < Sh](/p[(p

is an étale map of smooth varieties. We require also that the actioﬁ(ﬁf}’) on Sh,
extends to an action asi,.

(b) A variety overE, may not have good reduction to a smooth variety dugr) —
this can already be seen for elliptic curves — and, when it does it will generally have good
reduction to many different smooth varieties, none of which is obviously the best. For
example, given one good reduction, one can obtain another by blowing up a point in its
closed fibre. By S)(G, X)) having canonicalgood reduction ap, | mean that, for any
formally smooth schem& over,,

Homy, (T',lim Sk») = Homg, (T, lim Shgr, ). (61)
K»r Kk»

A smooth scheme is formally smooth, and an inverse limit of sch&tads over a smooth
scheme is formally smooth. A(s_lipr is formally smooth ove@p, (61 characterizes it
uniquely up to a unique isomorphism (by the Yoneda lemma).

(c) In the Siegel case, Theoréhb.4was proved by Mumford (his Fields medal theo-
rem; Mumford 1965). In this case, ti¥%& » and§1Kpr are moduli schemes. The PEL-case
can be considered folklore in that several authors have deduced it from the Siegel case and
published sketches of proof, the most convincing of which is in Kottwitz 1992. In this
casesS, (G, X) is the zariski closure of SIiG, X) in S,(G(¥), X(v)) (cf.5.16), anditis
a moduli scheme. The hodge c&seas proved by Vasiu (1999) except for a small set of
primes. In this case$, (G, X) is the normalization of the zariski closure of %, X) in
S,(G(¥), X(¥)). The case of abelian type follows easily from the hodge case.

(d) That Sh should have good reduction whe), is hyperspecial was conjectured in
Langlands 1976, p411. That there should be a canonical model characterized by a condition
like that in (b) was conjectured in Milne 1992.

Definition of the Langlands-Rapoport set
Let (G, X') be a Shimura datum for which SV4,5,6 hold, and let

Shy(C) = Sh(C)/K,, = lim She, &, (G, X)(C).
Kp

850ver the reflex field, Shimura varieties of Hodge type are no more difficult than Shimura varieties of
PEL-type, but when one reduces modulo a prime they become much more difficult for two reasons: general
tensors are more difficult to work with than endomorphisms, and little is known about Hodge tensors in
characteristigp.
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Forx € X, let I(x) be the subgrouw (Q) fixing x, and let
S(x) = IN\X?(x) x Xp(x), XP(x)=G(A]), X,(x)=G(@Qp)/Kp.
One sees easily that there is a canonical bijection of sets@x(lﬁ}’i)-action

LIS (x) = Shy(C)

where the left hand side is the disjoint union over a set of representativés(f@r X .
This decomposition has a modular interpretation. For example, in the case of a Shimura
variety of hodge type, the sét(x) classifies the family of isomorphism classes of triples
(A4, (s;),nK) with (4, (s;)) isomorphic to a fixed pair.
Langlands and Rapoport (1987, 5e) conjecture 8g(F) has a similar description ex-
cept that now the left hand side runs over a set of isomorphism classes of homomorphisms
¢:P — Eg. Recall that an isomorphism from ogeto a second’ is an elemeng of
G (Q¥) such that

$'(p)=g-¢(p)-g~', alpeP.

Such ag should be thought of as a “pre fake abelian motive with tensors”. Specifically,
if we fix a faithful representatioly — GL(V') and tensors; for V such thatG is the
subgroup of GI(V) fixing thet;, then eachp gives a representaticp — GL(V(Q¥)) x T

(i.e., a fake abelian motive) plus tensors.

Definition of the set.S(¢)

We now fix a homomorphismp: 3 — Es and define a se$(¢) equipped with a right
action ofG(A;’) and a commuting Frobenius operator

Definition of the group 1(¢). The groupi(¢) is defined to be the group of automor-
phisms of¢,

I(¢) ={g € G(Q™) | adg) o ¢ = ¢}.

Note that ifp: G — GL(V) is a faithful representation a¥, thenp o ¢ is a fake motive
and/(¢) C Aut(p o ¢) (here we have abbreviatedx 1 to p).

Definition of X?(¢). Let{ be aprime# p, co. We choose a primey, of Q2 dividing ¢,
and defineQ?' andI', C T" as on {28
Regardl’; as ar@j}'/@raﬁine extension with trivial kernel, and writg for the homo-
morphism
o (1,0):T; — Eg(l), Eg()=G(QY) xTy.

From ¢ we get a homomorphisi(£): B(¢) — Eg(£), and, on composing this with
the homomorphisng,: Ty — B(¢) provided by[[5.13, we get a second homomorphism
F( — Eg(f)

Define

Xo(¢) = Isom(&g, §g 0 ¢ (£)).
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Clearly, Aut&é,) = G(Qy) acts onX;(¢) on the right, and (¢) acts on the left. 1£X;(¢)
is nonempty, then the first action mak&g(¢) into a principal homogeneous space for

G(Qy).
Note that ifp: G — GL(V) is a faithful representation @¥, then

Xe(¢) C 1som(V(Qy), Ve(p 0 ¢)). (62)

By choosing the, judiciously (cf. [f26), we obtain compact open subspaces of the
X¢(¢), and we can defing’?(¢) to be the restricted product of t& (¢). If nonempty, it
is a principal homogeneous space GJ(rA}’).

Definition of X,(¢). We choose a primey, of Q? dividing p, and we use the notations
of @127 We letL denote the completion @,", and we letO, denote the ring of integers
in L (itis the ring of Witt vectors with coefficients if). We lete Frobenius automorphism
of @,"or L that acts as > x” on the residue field.

From¢ and [[5.19, we have homomorphisms

D — P(p) 1 G@) 6 T

For somex, the composite factors throudh,. There is a canonical elementd), mapping
to o, and we let(b, o) denote its image i (Q,") x I',". The imageb(¢) of b in G(L)
is well-defined up tar-conjugacy, i.e., ib(¢)’ also arises in this way, then(¢) = g=! -

b(¢)-og.

Note that if p: G — GL(V) is a faithful representation a¥, then D(¢ o p) is V(L)
with F acting asv — b(¢)ov.

Recall {02 that we have a well-define@(Q¥)-conjugacy class(X) of cocharacters
of Gga. We can transfer this to conjugacy class of cocharacters@f which contains
an elemeniu defined overQ)" (seell2.3 G splits overQ," because we are assuming it
contains a hyperspecial group). Let

G =G(OL) - n(p) - G(OL).

Here we are writinds (Or) for G(Or) with G as in the definition of hyperspecial.
Define

Xp(¢) ={g € G(L)/G(OL) | g7" - b(¢) - g € Cp}.
There is a natural action di(¢) on this set.

Definition of the Frobenius elementd. Forg € X,(¢), define

®(g) = b(p) - ab(¢)----- 0" 'b(¢) - o™"g

wherem = [E,: Q,].

The setS(¢). Let

S(¢) = 1(@\XP () x Xp(9).
Since(¢) acts on bothX?(¢) and X, (¢), this makes sense. The groGp(AjZ) acts on
S (¢) through its action orX 7 (¢) and® acts through its action o, (¢).
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The admissibility condition

The homomorphismég: 8 — E¢ contributing to the Langlands-Rapoport set must satisfy
an admissibility condition at each prime plus one global condition.

The condition atco. Let E, be the extension
1l >C* = Epo > Too > 1, Ty =GalC/R) = (1)

associated with the quaternion algebfaand regard it as an affine extension with kernel
Gm. Note thatE,, = C*uC>*jandjzj~! =Z.
From the diagram@0) with / = oo, we obtain aC/R-affine extension
1 - P(C) - P(oo) > I'o — 1.
LEMMA 16.6 There is a homomorphisf,: E. — JB(co) whose restriction to the ker-
nels,G,, — Pc, corresponds to the map on characters—> wt ().

PROOF. This follows from the fact that the homomorphigi#? (s, G,) — H*(Too, Pr)
sends the cohomology class Bf, to that ofJ3(c0). O

LEMMA 16.7. Foranyx € X, the formulas
Ec(2) = (wx(2),1), &) = (ux(=D7",0)
define a homomorphisii,, — JB(c0). Replacingy with a different point, replaces the
homomorphism with an isomorphic homomorphism.
PROOF. Easy exercise. O

Write &y for the isomorphism class of homomorphisms definedliid). Then the
admissibility condition ato is thatly, o ¢(00) € &x.

The condition at ¢ # p. The admissibility condition at # p is that the setY;(¢) be
nonempty, i.e., thal, o ¢ (£) be isomorphic td,.

The condition at p. The condition afp is that the sef,,(¢) be nonempty.

The global condition. Letv:G — T be the quotient o& by its derived group. FronY
we get a conjugacy class of cocharacter&gf and hence a well defined cocharagienf
T. Under our hypotheses @i, X), u satisfies the conditions diL§.15, and so defines a
homomorphisng,: 8 — Er. The global condition is that o ¢ be isomorphic t@p,,.

The Langlands-Rapoport set

The Langlands-Rapoport set
LR(G.X) =] | S
where the disjoint union is over a set of representatives for the isomorphism classes of

admissible homomorphisi: 8 — E¢. There are commuting actions Gf(Aj,’) and of
the Frobenius operatdr on LR(G, X).
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The conjecture of Langlands and Rapoport

CONJECTURE16.8(LANGLANDS AND RAPOPORT1987). Let (G, X)) be a Shimura da-
tum satisfying SV4,5,6 and such tig*" is simply connected, and l&t, be a hyperspecial
subgroup ofG(Q,). Letp be a prime ofE(G, X) dividing p, and assume th&bh, has
canonical good reduction gt. Then there is a bijection of sets

LR(G, X) — Sh,(G, X)(F) (63)
compatible with the action@(A}’) and the Frobenius elements.

REMARK 16.9 (a) The conditions SV5 and SV6 are not in the original conjecture — |
included them to simplify the statement of the conjecture.

(b) There is also a conjecture in which one does not require SV4, but this requires that
B be replaced by a more complicated affine exterfigh

(c) The conjecture as originally stated is definitely wrong without the assumption that
G is simply connected. However, when one replaces the “admissible homomorphisms”
in the statement with another notion, that of “special homomorphisms”, one obtains a state-
ment that should be true for all Shimura varieties. In fact, it is known that the statement
with G%" simply connected then implies the general statement (see Milne §992y the
details and a more precise statement).

(d) It is possible to state, and prove, a conjecture simildL&8j for zero-dimensional
Shimura varieties. The mag, X) — (7,Y) (see [&0) defines a map of the associated
Langlands-Rapoport sets, and we should add to the conjecture that

LR(G,X) —— Sh,(G, X)(F)

| !

LR(T,Y) —> Shy(T,Y)(F)

commutes.

86This is done in the original paper of Langlands and Rapoport, but their definitionissirong. For a
correct definition, see Pfau 1996.
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17 A formula for the number of points

A reader of the last two sections may be sceptical of the value of a descriptiof®8ke (
even if proved. In this section we briefly explain how it leads to a very explicit, and useful,
formula for the number of points on the reduction of a Shimura variety with values in a
finite field.

Throughout,(G, X) is a Shimura datum satisfying SV4,5,6 afg is a hyperspecial
subgroup of7(Q,). We assume thag " simply connected and that S, X) has canon-
ical good reduction at a primg p of the reflex fieldE = E(G, X). Other notations are as
in the last section; for examplé,, is the subfield ofQ," of degree: overQ, and L is the
completion ofQ)". We fix a fieldF, > k(p) D Fp, ¢ = p".

Triples

We consider triplesyo; v, §) where
o ¥ Is a semisimple element @i (Q) that is contained in an elliptic torus ok (i.e.,
a torus that is anisotropic modulo the centre&sai),
o ¥ = (Y())e£p,00 IS an element oG(A}’) such that, for alt, y (£) becomes conjugate
to yo in G(Q}),
o §is anelement o0& (L,) such that

NoZs.06.... 0" 16,

becomes conjugate t@ in G(Q%).

Two triples (yo; v, 8) and(yy; y’,8") are said to bequivalent (yo; v,8) ~ (vg:v',8'), if
Yo is conjugate tg/y in G(Q), y(¢) is conjugate tg/'(£) in G(Q¢) for eachl # p, oo, and
d is o-conjugate ta’ in G(L,).

Given such a tripl€yy; v, §), we set:

o Iy = Gy, the centralizer ofy in G; itis connected and reductive;

o I = the inner form of/yx such that/,,/Z(G) is anisotropic;

o I, =the centralizer of (£) in Gq,;

o I, =the inner form ofGg, such thatl,,(Q,) = {x € G(L,) | x~'-§-ox = §}.
We need to assume that the triple satisfies the following condition:

(*) there exists an inner forni of 7, such that/q, is isomorphic to/, for
all £ (including p andoo).

Because/ andy, are stably conjugate, there exists an isomorphigm(),@? — Iy ga,

well-defined up to an inner automorphism &f over@j". Choose a systertV, a, (j;))
consisting of aQ-group/, an inner twistingz: I, — I (isomorphism ovef)?), and iso-
morphismsj,: Iy, — I, overQy for all £, unramified for almost all, such thatj, oa anda,

differ by an inner automorphism — our assumption (*) guarantees the existence of such a
system. Moreover, any other such system is isomorphic to one of thg foen( j,oadiy))
where(hy) € 139A).
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Let dx denote the Haar measure Gi(A}’) giving measure 1 t&”?. Choose a Haar
measureli? on I(A}’) that gives rational measure to compact open subgroupisﬁﬁ),
and use the isomorphisnys to transport it to a measure ofﬁ(A}’)y (the centralizer of
y in G(Aj’,’)). The resulting measure does not changéji is modified by an element
of 129(A). Write dx for the quotient ofdx by di”. Let f be an element of the Hecke
algebraH of locally constantK-bi-invariantQ-valued functions orG(A,), and assume
that /' = f7 - f, wheref? is a function orG(A}’) and f, is the characteristic function of
K, in G(Q,) divided by the measure df,. Define

0,7 = [ F7Gyx) d¥
G \G(AP)

Let dy denote the Haar measure Gi(L,) giving measurd to G(Or,). Choose a
Haar measuréi, on I(Q,) that gives rational measure to the compact open subgroups, and
usej, to transport the measure 19(Q,). Again the resulting measure does not change
if j, is modified by an element af*4(Q,). Write dy for the quotient ofdy by di,.
Proceeding as orfl83 we choose a cocharactein ¢ (X)) well-adapted to the hyperspecial
subgroupkK, and defined oveL,, and we lety be the characteristic function of the coset
G(Or,) - u(p) - G(OL,). Define

TOs() = / o(y"'80(1)dT
I(@Qp\G(Lp)

Sincel /Z(G) is anisotropic oveR, and since we are assuming SV%(Q) is a discrete
subgroup ofI(Aj’?), and we can define the volume BfQ)\7(Af). Itis a rational number
because of our assumption @’ anddi,. Finally, define

I(y0;7,8) = 1(y0: v, ) (f*,r) = VOl(I(Q\I(Af)) - Oy (f*) - TOs(¢r).
The integrall (yy; v, §) is independent of the choices made, and

(Yo:7,8) ~ (vg: V', 8") = I(yo;v,8) = I(yg: v, 6").

The triple attached to an admissible pair(¢, )

An admissible pair(¢, yo) is an admissible homomorphispnd — Eg and ay € 14(Q)
such thatyyx = ®"x for somex € X,(¢). Herer = [k(p):F,]. An isomorphism
(¢, v0) — (@', ;) of admissible pairs is an isomorphisfn— ¢’ sendingy to y’, i.e., it
isag € G(Q%) such that

adg)o¢p =¢', adg)(y) =7

Let (T,x) C (G, X) be a special pair. Because of our assumptiong®nX), the
cocharacteu, of T satisfies the conditions oflb.15 and so defines a homomorphism
¢x:B — Er. Langlands and Rapoport (1987, 5.23) show that every admissible pair is
isomorphic to a paifg, y) with ¢ = ¢, andy € T (Q). For such a paifp, y), b(¢) is
represented by &€ G (L,) which is well-defined up to conjugacy.

Let y be the image ofy In G(Ajﬁ). Then the triple(yo; v, §) satisfies the conditions
in the last subsection. A triple arising in this way from an admissible pair will be called
effective.



138 17 A FORMULA FOR THE NUMBER OF POINTS

The formula

For a triple(yy . . .), the kernel of
H'(Q, 1)) > H'(Q.G) ® [1,H' (Qi, Io)
is finite — we denote its order by(yp).

THEOREM17.1 Let(G, X) be a Shimura datum satisfying the hypothese@@H. If that
conjecture is true, then

#Sh(Fy) = Y c(vo) - I(yo: 7.5) (64)

(vo;v,6)

where the sum is over a set of representatives for the effective triples.

PROOE See Milne 1992, 6.13. O

NoTEs. Early versions off§4) can be found in papers of Langlands, but the first precise
general statement of such a formula is in Kottwitz 1990. There Kottwitz attaches a coho-

mological invariantx(yy; y, 8) to a triple (yo; v, 8), and conjectures that the formuladj
holds if the sum is taken over a set of representatives for the triplesawethl (ibid. §3).
Milne (1992, 7.9) proves that, among triples contributing to the sum, 1 if and only if

the triple is effective, and so the conjecture of Langlands and Rapoport implies Kottwitz’s
conjecturéd? On the other hand, Kottwitz (1992) proves his conjecture for Shimura vari-
eties of simple PEL type A or C unconditionally (without however proving the conjecture

of Langlands and Rapoport for these varieties).

87At least in the case that the weight is rational — Kottwitz does not make this assumption.
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18 Endnotes

Proof of Theorem[5.4 (footnote[39)

First Proof: A torus T over a fieldk is said to bequasisplitif it is a product of tori
of the form Reg,x G,,. For such a torug§’, Shapiro’s lemma and Hilbert's Theorem 90
imply that H! (k, T') = 0, and the weak approximation theorem in algebraic number theory
implies that real approximation holds.

Let T be a torus ovef), and let F be a finite galois extension &f splitting 7' with
galois groug”. From anx € X, (T) fixed by A c I', we get a homomorphis@[I'/A] —
X«(T), [y]— yx. On applying this observation to enougls, we get an exact sequence

0> My —> My —> X (T)—> 0 (¥

of I'-modules withM a finite direct sum of modules of the forAjI"/A] (varying A) and
MP — X,.(T)” surjective for all subgroupa of T'. It follows from the cohomology
sequence of (*) that ' (A, M,) = 0 for all subgroupsA of I'. The sequence (*) is the
cocharacter sequence of an exact sequence of tori

0—)T2—>T1—>T—>O (**)
with 7' quasisplit. The cohomology sequence of (**) is an exact sequence
T'(R) - T(R) - H'(C/R, T).

But
H'(C/R, T>) = Hrp{1), M2) = H'((1), M) =0

where: denotes complex conjugation (the first isomorphism is Tate-Nakayama, and the
second is the periodicity of the cohomology of cyclic groups). TherefGré®) maps onto
T (R), and so the real approximation theorem Tofollows from that forT}.

Let S be a group of multiplicative type oved (i.e., S is commutative ands® is a
torus). ThenX*(S) is a quotient of a direct sum of modules of the fa#iji"/A] (as in the
preceding paragraph), and correspondingly there is an exact sequence

0—->S—->T1—-1T,—>0
with 77 quasisplit. From the diagram

(Q — TNQ — H(@QS) — 0

l o

T(® 2P0 LR — HIR.S) —— 0
we see thaf/ 1 (Q, S) — H'(R, S) is surjective.
Finally, let G be a reductive group with centté. Choose a surjectio — Z° with
T a quasisplit torus (cf. (**) above). A6 = GY'Z° (almost direct product), there is an
exact sequence
l1-S—->GxT—-G—1
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with G’ the simply connected covering group®fe" andS a group of multiplicative type.
The real approximation theorem holds #Gf because it is unirational (Borel 1991,18.2)
andG’(R) is connected. From the diagram

GQQxTQ — GQ — H'(@QS) — H(QG)

ldense J, Jvonto J'injective

+
G'R) x T(R) Y GR) — H'R,S) — H'(R,G")
we see that the real approximation theorem hold€;f¢the injectivity of the arrow at right
is the Hasse principle fa&’, Platonov and Rapinchuk 1994, Theorem 6.6, p286).

Second Proof (from a letter of G. Prasad, Sept 1, 1987)‘To prove thatG(Q) is
dense inG(R), what you need is a result of H. Matsumoto, which is reproved in Borel-
Tits “Groupes eductifs”, Publ. Math. IHES no 27, as &beme 14.4, according to which
given a maximalR-split torusS of G, S(R) meets every connected componentiR).
Now we observe that there is a maximal toffuslefined overQ which contains a maximal
R-split torus of G: To prove this, we will make use of the fact that the closuré&r¢f))
containsG (R)*. Take a maximal torug defined ovelR and containing a maxima@-split
torus of G. In T(R)*, leti/ be the set ofegular elements/ is open in7 (R). Now let
U = UgeG(R)gL{g—l; thenU is an open subset @ (R)* (to see this, consider the map
G(R) x U — G(R) defined by(g, x) — gxg~!; itis everywhere regular). Hence, there
existst € U N G(Q). Ast is regular, the identity component of the centralizer of G
is a torus defined ove), and as has a conjugate ity, it is obvious thatl" contains a
conjugate of the maximak-split in 7. This proves that there is a maximal torus defined
over@Q which contains a maximaR-split torus ofG.”

Proof of the claim in

PROPOSITION Let (G, X) be a Shimura datum witliz%" simply connected, and as-
sume thatZ' =4 Z N GY" satisfies the Hasse principle fa#', i.e., H' (Q,Z') —
[Ti23....00H'(Qi, Z') is injective. Then, for any sufficiently small compact open sub-
group K of G(Ay),

G(@Q+NKCZ(@Q - G*Q).

PrROOF. (Cf. the proof 0f5.2Q) Consider the diagram:
I — Z/(Q — Z(@Q xG*(Q — G(Q — H'(Q. 2

| | | |

I — Z/(Q) — G*(Q) — Q) — H'(Q.2Z).

Let g € G(Q)4. By definition, the image of in G2(R) lies in its identity compo-
nent, and so lifts to an element 61 (R). Therefore, the image af in H'(R, Z’) is
zero. The isogenyZ x G% — G extends to a homomorphism over Sy, which
will be an étale isogeny over Spé&td—'] for somed. For any{ not dividing d, the
map Z(Z¢) x G%(Z,) — G(Z) is surjective, and so, if € G(Z,), then it maps to
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zero in H'(Qqg, Z'). For the remaining, the mapZ(Z;) x G%(Zy) — G(Z¢) will
have open image&,. Therefore, ifg € [],,G(Z¢) x [];4 K¢, then it maps to zero in
[T, (Q1, Z'). Because of the Hasse principle, this implies thahaps to zero in
H'(Q, Z"), and therefore lies itZ (Q) - GU'(Q). O
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