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Abstract

We prove various characterizations of the period torsor of abelian varieties.
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Introduction

For an abelian varietyl overQ, H'(A(C), C) has twoQ-structures, that provided by sin-
gular cohomology' (A(C), Q) and that provided by de Rham cohomoldy( Azar, Q% n)-
Theperiodsof A are the coefficients of the transition matrix fron@abasis for one struc-

ture to aQQ-basis for the other. It is known (Deligne 1982) that Hodge classesiampose
algebraic relations on the periods, and it is conjectured that these are the only such rela-
tions. Thus, there appears to be no hope of obtaining an explicit description of the periods
themselves, but one may still hope to characterize some of the objects attached to them.
The singular and de Rham cohomologies define fibre functors on the category of motives
based on the abelian varieties ogrand the difference of these functors is measured by
the period torsoP”V. In this paper, we obtain various characterization®®f. Beyond its
intrinsic interest, the period torsor controls the rationality of automorphic vector bundles,
and therefore of holomorphic automorphic forms (see Milne 1988; Milne 1990, Il 4).

*Partially supported by the National Science Foundation.
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The first problem one runs into is thBtV is a torsor for an affine group scher@ever
Q for the flat (more specifically, the f.p.q.c.) topology. Such torsors are classified by the
flat cohomology group?!(Q, G) rather than a more familiar Galois cohomology group.
For an algebraic quotierd,, of G, the two cohomology groups coincide. & we prove
that the canonical map
HY(Q,G) — lim H(Q, G,,)

is surjective, and that the fibre of the map containing the classbi@sor P is
lim (P A G,)(Q)

(nonabelian higher inverse limit). The limits are over the set of algebraic quotignts
of G. We show, moreover, that the full group’(Q, G) can be interpreted as a Galois
cohomology group, but it is Galois cohomology defined using cochains that are continuous
relative to the inverse limit topology dim G, (Q?) (discrete topology on eadH,, (Q)).
It is important to note that these results depend crucially on the fact that the algebraic
quotients of7 form a countable set — | do not even know how to define a nonabelian higher
inverse limit except for countable coefficient sets. The remaindéd akviews results,
more-or-less known, concerning nonabelian higher inverse limits and the classification of
morphisms of torsors.

In §2, we take up the problem of characteriziR§™, the period torsor for the category
of motives based on abelian varieties of (potential) CM-type @erSince, as Deligne
has pointed out, the period torsBf™ attached to the subcategory of Artin motives can be
explicitly described, it is natural rather to consider the “relative” problem of characterizing
the morphismP™ — PA™ of torsors. Objects of this type are classified by the flat co-
homology groupH(Q, ;S) where S is a certain twist of the Serre group. As the Serre
group is commutative, the main resultgdf simplifies to an exact sequence

0 — lim'15,(Q) — H'(Q, ;S) — lim H'(Q. ;S,,) 0.

Blasius (unpublished) showed thiata H(Q, ;S,) satisfies a Hasse principle, and Win-
tenberger (1990) showed thiatn 7'(Q, ;S,) = 0. If lim';S,(Q) were also zero, then

P . PA* would be unique up to an isomorphism inducing the identityd¥i. Alas,

it is not zero — in fact, we show théitm 1:5,(Q) is uncountable. Our proof of this uses

an old theorem of Scholz and Reichardt on the embedding problem for Galois groups of
number fields. It would be interesting to have more informatiofiori 5, (Q).

In §3, we take up the problem of characteriziR§”. Again, it is more natural to con-
sider the relative problem of characterizif§¥ — P“M. Among other results, we prove
that the isomorphism class ¢V — P is uniquely determined by its classes o@r
(l=2,3,5,...,00), about which a great deal is known.

Blasius and Borovoi (1999) study the problem of characterizifgwhere H S AV
is the category of motives based on a certain class of abelian varietieQowdrose
Mumford-Tate groups have simply connected derived group. Their main theorem (ibid.
1.5) states that the isomorphism clas$éf — PM is determined by the Galois cohomol-
ogy class ofP™ overR. Unfortunately, their proof of this is inadequate for two reasons.
First, they make the (false!) assumption that the flat cohomology groups coincide with
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the inverse-limit Galois cohomology groups — this amounts to settin@ﬂs equal to
zero. Second, they misidentify the cohomology class that must be proved trivial for their
theorem to holt It seems unlikely that the statement of their theorem is correct (see 3.26
below), but by combining (1.14) of this paper with their arguments, one obtains the follow-
ing theorem (3.25): the isomorphism classi¥f — P“M is uniquely determined by its
isomorphism class ové. This observation began my work on this paper.

Notations and conventions

“Variety” means geometrically reduced scheme of finite type over a field. Semisimple al-
gebraic groups are connected and “simple” for an algebraic group means “noncommutative
and having no proper closed connected normal subggotih The identity component of
a group schemé' over a field is denoted bg°. For a connected (pro)reductive groGp
over a field,ZG is the centre of, G is the adjoint grougy/ZG of G, G%" is the de-
rived group ofG, andG?® is the largest commutative quotie@iy G%' of G. The universal
covering of a semisimple grouf is denoted? — G.

The algebraic closure @ in C is denoted by)?, and (except ig1l) I' = Gal(Q¥/Q).
We setGal(C/R) = {1,.}. A CM-field is any fieldE algebraic ovefQ admitting a non-
trivial involution cg such that o p = po g forall p: E — C.

All categories of motives will be defined using absolute Hodge classes as the corre-
spondences (Deligne 1982a; Deligne and Milne 1982,

We sometimes use] to denote an equivalence or isomorphism class containifidgne
notationX =~ Y means tha andY are isomorphic, an&@ = Y means tha andY are
canonically isomorphic (or that a particular isomorphism is given).

Iwith their notations, in order to prove their theorem, they would have to sh&@aliaf their paper that
the class of® — PMin H'(Q, (G3g)%®" is trivial (see (1.10) below). Instead, they prove only the weaker
statement that the image of the classih(Q, G3g) is trivial, which, in fact, is all their hypotheses imply,
even when one ignores tﬂj@l terms.
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1 Preliminaries

Inverse limits

For an inverse system of groups indexed by <),
(At Jness = (Ag = -+ = Ay 22 Ay o),

definel@1 A, to be the set of orbits for the left action of the grop, A, on the set

I1, An,

_)
(corypy...) (o) = (o T U (@)Y ).
This is a set, pointed by the orbit df= (1,1, ...). Note that
@An:{aeHA”a-l:l}.
Let (A,)neny — (Bn)nen be an inverse systems of injective homomorphisms. From
0— (An)neN - (Bn)nEN - (Bn/An)nEN — 0
we obtain an exact sequence
1 — lim A, — lim B, — lim(B,/A,) — lim' A,, — lim' B, (1)
— — — — —

of groups and pointed sets. Exactnedsat,,/A,) means that the fibres bfn (B, /A,) —

liinl A,, are the orbits for the natural action @BR on @(Bn//ln). When eachd,, is
normal inB,, so thatC,, =4 B,, /A, is a group, (1) can be extended to an exact sequence

1 — lim A, — lim B, — limC,, — lim' A, — lim' B,, — lim' C,, — 1. (2)
— — — — — —

Exactness alim' A,, means that the fibres dfin' 4, — lim' B, are the orbits for the
— “— —

natural action ofim C,, onlim' 4,,.

Recall that an inverse systeiy,, ),y Of sets (or groups) is said to satisfy the condition
(ML) if, for each m, the decreasing chain iX,, of the images of theX,, for n > m is
eventually constant.

PROPOSITIONL.1. Let (A, u,).en be an inverse system of groups.

(@) If (A, u,) satisfies (ML), thefim' A,, = 0.

(b) If the A, are countable andA,,, u,).cn fails (ML), then@l A,, i1s uncountable.
PROOF. (a) The actioh

(o) (s, ) = (o a2y (Wapg) )

2We usually omit the subscript on transition maps.
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of the groupG y41 =t HOS”SNﬂAn on the setSy =g HOS”SNAH is transitive, and the
projection(a,), — ays1 gives an isomorphism from the stabilizer of anyc Sy onto
Anyr. Letz,y € [[,cn An, and let

Py ={g€ Gy |ga™ =y"}.

wherez?" andy” are the images of andy in Sy. We have to show thaim Py is
nonempty. The observations in the first sentence showttias nonempty and thad v,
acts simply transitively on it. It follows that the inverse systeRy) satisfies (ML). Let
Qn = NIm(Pyy; — Py). Then each) v is nonempty, and@ ) ven iS @an inverse system
with surjective transition maps. Hendén @) is (obviously) nonempty, and any element
of it is an element 0@1 Py.

(b) If (A,,) fails (ML), then there exists am such that infinitely many of the groups

are distinct. As

| 1
lin Am+i—>liﬂ B;

(2 K3

is surjective (see (2)), it suffices to show tﬂ@l B; is uncountable. This is accomplished
by the next lemma (applied with = A,),). O

LEMMA 1.2. Let--- D A, D A,y1 D --- be a sequence of subgroups of a countable
group A. If infinitely many of thed,, are distinct, theniénl A, is uncountable.

PrROOF. From (1) applied to the inverse systém, — A),cn, we obtain a bijection
A\(lim A/A,,) — lim* A,

As a map of setsd /A, .1 — A/A, isisomorphic to the projection map
AJA, X Ay JAn — AJA,,

and sol<i£1 AJA, ~ ] An/A.+1 (as sets), which is uncountable. O

REMARK 1.3. The above statements apply to inverse systems indexed by any directed set
I containing an infinite countable cofinal set, because sudhvaitl also contain a cofinal
set isomorphic t@N, <).

NOTES. The definition o@iinl for nonabelian groups and the sequence (2) can be found in
Bousfield and Kan 1972, IX2. In the commutative case, statement (a) of Proposition 1.1
is proved in Atiyah 1961 and statement (b) in Gray 1966.

Torsors

Let E be a category with finite fibred products (in particular, a final objgeandowed with
a topology in the sense of Grothendieck (see Bucur and Deleanu 1968, Chapter 2). Thus,
E is a site. By “torsor” we mean “right torsor”.
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1.4. For a sheaf of group$onE, arightA-sheafX, and a leftd-sheafy’, X A1 Y denotes
the contracted product of andY’, i.e., the quotient sheaf of x Y by the diagonal action
of A, (z,y)a = (xa,a 'y). WhenA — B is a homomorphism of sheaves of groups,
X A4 B is the B-sheaf obtained fronX by extension of the structure group. In this last
case, ifX is anA-torsor, thenX A4 B is a B-torsor.

1.5. For anA-torsor P and a leftA-sheafX, define
PX =pPpatX.

When X is a sheaf of groups and acts by group homomorphism8X is a sheaf of
groups. For example, when we létact on itself by inner automorphism’$4 is the inner
form of A defined byP. There is a natural left action éfA on P, which makesP into a
left  A-torsor and induces an isomorphism

PA - Aut(P). 3)

Let P(A) denote the category of-torsors and?' (.S, A) the set of isomorphism classes of
objects inP(A) (pointed by the class of the trivial torsdry).

1.6. Letv: B — C be ahomomorphism of sheaves of group&pand let() be aC'-torsor.
DefineP(B — C; Q) to be the category whose objects aredfmaorphisms of torsor® —

@ and whose morphismdom(P — @, P’ — Q) are theB-morphismsP — P’ giving

a commutative triangle. Leti(S, B — C; Q) denote the set of isomorphism classes in
P(B — C;Q). When@ = C¢, we drop it from the notation; the&H!(S, B — C) is
pointed by the class dBz — C¢. The categorP (B — 0) is canonically equivalent with
the category of3-torsors, and so

HY(S,B —0)= H'(S,B).

Let A = Ker(B — C). ThenA is stable under the action &f on itself by inner automor-
phisms, and for any objeét — @ of P(B — C;Q),

Aut(P — Q)= P AP A.

1.7. Letv: B — C be a surjective homomorphism with kernél To give aB-torsor P
with v P trivialised bye € (vP)(S) amounts to giving thel-torsor f~!(e) wheref is the
map P — v P: the natural functor

P(A—0) —P(B—C)
is an equivalence.

1.8. Letv: B — C' be a homomorphism of sheaves of groupso\ B-torsor P allows
us to twistw:
Py. PR Po, Po L paB O,

Here a local sectioh of B acts onC by ¢ — (vb)c(vb) L. LetQ = vP. Then”C = Q(C.
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1.9. Letv: B — C be a homomorphism of sheaves of group€£oi\ B-torsor P can be
regarded as & B, B)-bitorsor (see (3)). There is a functor

P("B —“C) = P(B — Q) (4)

sendingP?’ — Q"to P’ A"B P — Q' A°B Q. In particular, the neutral object &(” B —

@C) is sent to the objecP — Q of P(B — C; Q). Let P°PP denote the B, © B)-bitorsor
with the same underlying sheaf &sbut with local sections andd’ of B and” B acting as
(b,0')-p=0"1-p-b~'. The functor

P(B—)C;Q)—>P(PB—>QC) (5)

sendingP’ — Q to (P’ — Q) AP P°PPis a quasi-inverse to the functor in (4). Therefore,
both functors are equivalences of categories.

PrROPOSITION1.10. Let
1-A—-B35C—0 (6)

be an exact sequence of sheaves of grougts and letP — () be av-morphism of torsors.
There is a natural bijection

HY(S,PA) — HY(S,B — C;Q)
sending the neutral element &f (S, 7 A) to the elementP — Q] of H'(S, B — C; Q).
PROOF. We can useP to twist the sequence (6):
1-PA-PB Q0 -1, PA=PAPA.
Now combine
HY(S,PA) Y HY(8,7B — 20) Y HY(S, B — C. Q).
[

REMARK 1.11. If in the propositiord is commutative, then the action &f on A factors
through an action of’ on A, and so

PAS PABA=PABOANC A=QaCaZan,

NOTES. The basic definitions 1.4-1.5 are from Giraud 1971. The remaining statements
can be found, or are hinted at, in Deligne 1979a, 2.4.3-2.4.4. See also Breen 1990. (The
main ideas go back to Dedecker and Grothendieck in the 1950s.)
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Cohomology and inverse limits

We now fix an affine schem® and letE be the category of affine schemes o¥ezndowed
with the fpqc topology (that for which the covering families are the finite surjective families
of flat morphisms).

Throughout this subsectiof(z,,, u, ), is an inverse system, indexed @y, <), of flat
affine group schemes of finite type ov€rwith faithfully flat transition maps, and' =
lim G,,. Thus,G is a flat affine group scheme over

PROPOSITIONL.12. The magP] — ([P A% G,.])n>0

H'(S,G) — lim H'(S,G,) (7)

n

is surjective. For aG-torsor P, the fibre of the map containing’] is lilnl G!.(S) where
G' is the inner formP AY G,, of G,,.

PROOF. A classcin lim H(S,G,) is represented by an inverse system

with P, a G, -torsor. The inverse limit of this system ig-atorsor mapping te.
Let P’ and P be G-torsors such thaP! ~ P, for all n, and choose isomorphisms
a,: P, — P,. Consider

/ An+1
Pn+1 n+1
lv, J/U
p %, p
n -

There is a unique isomorphisiy: P, — P, for which the diagram commutes, i.e., such
that

/
bpov' =voa,y.

Let e, be the element ahut(P,) such thak,, o b, = a,; then
€n OV O Upy) = Gy o .

Replacing(ay, ),>o With (¢, 0 a,,),>0 replacese,,),o With (¢, - e, - u'c, 11 )n>0 Whereu' is

the transition map\ut(P,;1) — Aut(P,). Thus, the class ofe,,),>o in lim" Aut(P,) is
independent of the choice of thg. Similarly, it depends only on the isomorphism class of
P’. Therefore, we have a well-defined map from the fibre contaifftigo @11 Aut(P,),

and it is straightforward to check that it is a bijection. Finally, (3) allows us to replace
Aut(P,) with G7,(S). O

COROLLARY 1.13. When the&7,, are commutative, there is an exact sequence
0 — lim' G, (S) — H*(S,G) — lim H(S,G,,) — 0.
— —

PROOF. In this case(+, = G,,. O]
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COROLLARY 1.14. For any countable familyG; ), of flat affine group schemes,

PROOF. This is certainly true for finite families. Thus, we may assume fhigtinfinite,
and equalN. Let A, = [[,,.,Gi. For any[].,G;-torsor P, the projection maps
PA,(S) — PA,_1(S) admit sections, and so are surjective. Therefare ©A,,(S) = 0
(1.1a), and it follows that

1.12

HY(S,G) = lim H'(S, A,) =lim [] H'(S,G;) = [[H'(S,G)).

(—
n 0<i<n i>0

]

REMARK 1.15. LetS = Spec(Q). Although the maps.,,: G,, — G,_; are surjective,
typically the maps+,(Q) — G,_1(Q) will not be. In fact, typically, the inverse sys-
tem (G,,(Q)),, will not satisfy (ML) and soli;n1 G»(Q) will be uncountable (1.1b). For

example, consider a tower of distinct subfield<3f,
QCcFHhC---CF,,CF,C--, [F,:Q] <oc.

There is an inverse systeft,,, u,,) with surjective transition maps for whidfi,, is the
Q-torus obtained fronts,, r, by restriction of scalars and, is the norm map. Then

(Gn(Q>>un<Q))n€N = (an’ Nan/Fn,l)neN,

which fails (ML), and sol(iin1 G (Q) is uncountable.

Comparison with Galois cohomology

We now letS be the spectrum of a fiel, and we leti*(k, —) denoteH (S, —). Choose
a separable closurg®Pof k, and letl’ = Gal(k%*P/k).

PrROPOSITION1.16. For any smooth algebraic groufy overk, there is a canonical iso-
morphism
H'(k,N) — H*T, N(k%).

PROOF. An N-torsor P is represented by an algebraic variety okeand hence acquires
a pointp over some subfield of*°P of finite degree ovek. The formula

p=p-a ®)

defines a continuous crossed homomorphisml® — N (k%¢P) whose cohomology class is
independent of the choice pfand depends only on the isomorphism clas®of hus, we
have a well-defined maf'*(k, N) — H(T', N(k**P)), and it follows from descent theory
that this is an isomorphism. O

3To see this, use that, for a finite extensiBpF of number fields and a finite primeof F, ord, (Nm E*)
is the ideal inZ generated by the residue class degrees of the primedyahg overw.
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1.17. LetN be a smooth algebraic group overand letf: I' — Aut(N)(k*P) be a
continuous crossed homomorphism (discrete topologylat( V) (k%¢P)). The “twist” of
N by f is a smooth algebraic grougV over k such that; N (k°¢P) = N (k>°F) but with
7 € I" acting according to the rule

Txx = f(1)- T2

When we letN act on itself by inner automorphisms, a crossed homomorplfisin —
N (k*P) defines a twis§ NV of N with 7 € I" acting ony N (k5P) by

Txx=f(r) -T2 f(r)7".

1.18. LetG = @(Gn, u,,) be as in the preceding subsection but withnow a smooth al-
gebraic group ovek, and definé/.(T", G) be the cohomology set computed using crossed
homomorphism$&' — G(k°¢P) that are continuous for the profinite topology Brand the
inverse limit topology orG(£°%F) = lim G,,(k**°) (discrete topology o, (£°¢F)). Thus,
giving a continuous crossed homomorphigml’ — G(k%¢P) amounts to giving a compat-
ible family of continuous crossed homomorphisfys I' — G, (k°P).

PROPOSITION1.19. The map
HE(T, G) — lim H'(T, G,,)

sending f] to ([f,.])»>o is surjective. The fibre of the map containiffg equalsl(iln1 Gl (k)
whereG;, = ;G,,.

ProOOF. Each class in h;nH%S, G,) is represented by a familyf,,),~o of crossed ho-
momorphisms, which can be chosen so that; = u,, o f,,. The f,, define a continuous
crossed homomorphisih: ' — G(k5%P) mapping toc.

Let f/ and f be continuous crossed homomorphisms such that f,, for all n, and
chooses,, € G,,(k*%P) in such a way that

fulT) = azt - fulT) - Tan. 9)
Definee,, € G,,(k*P) by the equation
En " Uldpy1 = Qp.
On applyingu to the equation (9).1, we obtain the equation
Fol7) = (uansa) ™ - ful7) - T(uan),

or,
fi(r)=a,'en- fulr)-1e,' - Tay.

On comparing this with (9), we find that

€n = fn(T) cTep - fn(T)ilv
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ie., that
en € (;G)(K*R)" = (;G,) (k).

The element,, can be replaced by, - a,,, wherec,, is any element of ;G,,) (k). When
this is done for each, (e, ),>o is replaced byc, - e, - (uc,+1) " )n>0-Thus, the class dk,,)
in li;nl(fGn)(k) is independent of the choice of thg. Similarly, it depends only on the
cohomology class of’. Therefore, we have a well-defined map from the fibre containing
[f] to ml(fGn)(k;), and it is straightforward to check that this is a bijection. O

PROPOSITION1.20. There is a canonical isomorphism of pointed sets
H'(k,G) — Hy(T, Q).

PROOF. Let P’ be aG-torsor, and let’, = u, . ThenP(k*%) = lim P, (k°%F), which, be-
cause the mapB, . | (k%¢P) — P, (k°¢P) are surjective, is nonempty. Choosg a P (k).
Then the formula
p=p- f(7)

defines a continuous crossed homomorphfsmi' — G/(k°¢P) whose cohomology class is
independent of the choice pfand of the choice of in its isomorphism class. Therefore,
we have a well-defined mafp' (k, G) — H (T, G). Since this map is compatible with the
maps in Propositions 1.12 and 1.19, they, together with (1.16) show that it is a bijecfion.

REMARK 1.21. LetS be the spectrum of a field. The following conditions on an affine
group schemé over S are equivalent:

(a) the set of closed normal subgroup scheifies G such that=/H is of finite type
over S is infinite and countable;

(b) G =lim (G, u,)where(Gy, u,), is aninverse system, indexed @y, <), of affine
algebraic groups ovef with surjective transition maps.

An affine group schemé&' satisfying these conditions will be said to beparable When

G is separable, any inverse system satisfying (b) is cofinal in the inverse system of all
algebraic quotients af’. Therefore, the former can be replaced by the latter, which makes
Proposition 1.19 more canonical.

NOTES. Proposition 1.16 is a standard result. In the commutative case, Proposition 1.19 is
proved in Tate 1976.

Application to periods

Let Mot(Q) denote the category of motives based on all smooth projective varietieQover
Let CM(Q) be the Tannakian subcategoryMbt(Q) generated by the zero-dimensional
varieties overQ and the abelian varieties of CM-type (s§®). Let GMt = Aut®(wp)
and PM°t = Tsom®(wg,wqr), and defineG™ and PM similarly. From the inclusion
CM(Q) C Mot(Q), we obtain a faithfully flat homomorphisgMet — GM,



1 PRELIMINARIES 12

THEOREM 1.22. If the kernel ofGMt — GM is an inverse limit of simply connected
semisimple groups, then the isomorphism clasB\st — PM in p(GMot — GM; ptM)
is uniquely determined by its class over

PROOF. Let G = Ker(GMt — GM). The condition onG implies that it is, in fact, a
product of semisimple groups each of which is simply connected. Moreover, the product is
countable becauddot(Q) is generated as a Tannakian category by a countable set of va-
rieties. According to Proposition 1.10, the isomorphism class@¢’et — GM; pM)

are classified by (Q, G’) whereG’ = PMot AC"™ @. As @' is a form of G, it also is

a countable product of simply connected semisimple groups, and so the proposition fol-
lows from Corollary 1.14 and the theorem of Kneser, Harder, and Chernousov (see 3.6
below). m

REMARK 1.23. (a) The groug:M°t is proreductive becauddot(Q) is semisimple. If
Deligne’s hope (1979b, 0.10) that every Hodge class is an absolute Hodge class is true,
then (GM°t)° is the group attached to the category of motives d¥&r(see Deligne and
Milne 1982, 6.22, 6.23, where the hypothesis was inadvertently omitted); moreover, the
group G in the above proof is the kernel of the canonical homomorphism fiGffrt)°
to the Serre group (ibid. p220), and it is the derived group@fet)°; it is therefore an
inverse limit of semisimple groups.

(b) It is generally hoped that the derived group(6f°t)° is simply connected — see
the question in Serre 1994, 8.1.

(c) Blasius and Borovoi (1999, 1.6) assert that the analogue of their Theorem 1.5 holds
for all motives if the derived group d¢f>"°t)° is simply connected. Theorem 1.22 replaces
this assertion, which is unproven (and seems unlikely to be true).

REMARK 1.24. LetG = Ker(GMt — G™M), and letH C G be the intersection of
the kernels of the homomorphisms fraghonto simply connected semisimple algebraic
groups overQ. Let Mot (Q) be the subcategory dflot(Q) of objects on whichH acts
trivially. Then, with the obvious notations, the isomorphism clas®¥ft” — P™ in
P(GMet" _, GM. pCM) is uniquely determined by its class or The preceding remark
indicates that it is reasonable to hope that= 0.
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2 Periods of abelian varieties with complex multiplication

Periods of zero-dimensional varieties

The category of motives based on the zero-dimensional varietie§)oigalenoted\rt(Q)

and is called the category of Artin motives ov@r The Betti fibre functorvg defines

an equivalence ohArt(Q) with the category of continuous representations’an finite-
dimensionalQ-vector spaces (Deligne and Milne 1982, 6.17) from which it follows that
Aut®(wp) is the constant profinite group scherfiewith I'(Q) = I'(Q¥) = I'. The de
Rham fibre functor i X — I'(X, Ox), from which the next statement follows easily.

THEOREM 2.1. Let PA" be the period torsor foArt(Q). ThenPA™ = Spec Q2 with its
natural action ofl", andp”" is the obviousQ?'-point of Spec Q. Thus, the period point
™ has coordinates if)?, and the cocycle corresponding to the p&irA, pAt) is the
crossed homomorphisth— I"'(Q¥), 7+ 7.

Note that the theorem determines the gaif, pA™) uniquely up to a unique isomor-
phism.

Throughout this section, we ugeto denote the (crossed) homomorphism in the theo-
rem.

Notations for tori
For a finiteétaleQ-algebraA, let

/g = Homg.ag(4, Q)
Pajq = Autgaag(A),

and let(G,,) 4/ be the torus ove® obtained fronG,, 4 by restriction of scalars. Thus
(Gm)aj(R) = (A® R)”
for all Q-algebrasR. For an infinite field extensiok’/k,
(Gm)K/k = liLn(Gm)K//@, K' c K, [K/ : Q] < Q.

2.2. There is an equivalende — X*(1') =¢ Hom(T)qa,G,,) from the category of tori
overQ to the category of finitely generated fréemodules endowed with a continuous left
action ofT".

2.3. There is an equivalencé — Y, from the category of finité@tale Q-algebras to
the category of finite sets endowed with a continuous left actidn. ok quasi-inverse is
provided by

5 A(X) € Homp (2, Q).

If X« A, then the decompositiol' = I1.}; of X' into orbits corresponds to the decom-
positionA = [] A(X;) of A into a product of fields. IT" acts transitively o, then the
choice of ane € ¥ determines isomorphisns/T, — X and A(Y) — (Q¥)'. Here
Ie={rel|re=ce}.
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2.4. On combining these equivalences, we see that there is a fully faithful fuicterr>
from the category of finite sets endowed with a continuouslieittion to the category of
tori, for whichT* = (G,,) a(x)/q, X*(T™) = Z[X] (free Z-module onX’ with the natural
left action of["), andT*1"*2 = T*1 x T2,

Abelian varieties with complex multiplication
For an abelian varietyl defined over a subfield of C, theMumford-Tate grouf A is
MT(A) = Aut®(wg|(A/c)®).

where(A,¢)® be the category of motives based di- and the projective spaces. There
is a canonical cocharactgr® of MT(A) that splits the Hodge filtration o/} (A). When
MT(A) is commutative (hence a torus), we say tHais of CM-typé, and we define the
reflex fieldof A to be the field of definition ofi”. It is a CM-subfield ofC.

For subfieldst, K of C with K a CM-field, we defineCM” (k) to be the category of
motives based on

— the abelian varieties of CM-type ovemith reflex field contained ir,
— the projective spaces, and
— the zero-dimensional varieties.

WhenK = Q™ the composite of all CM-subfields @, we omit it from the notation.

The categoryCM(C)

2.5. Let K be a CM-subfield ofC. With the notation of (2.4)(G,,) k0 = T*x/2 and
X*((Gw)r/@) = Z[Xk/gl. The groupSX = Aut®(wp|CM*(C)) is called theSerre
groupfor K. WhenK has finite degree ovép, S¥ is the quotient ofG,,,) ko such that

X*(S¥) = {n € Z[Zk/q] | n + n = constan}.
Thus, there is an exact sequence
0= (Gm)ro — (Gp)kjg X Gy — S¥ — 0 (10)
whereF is the largest totally real subfield &f. We have

S = lim S¥
pam—
KeK

wherek is the set of all CM-subfields df finite and Galois ove®.

2.6. For an abelian varietyt overC, there is a canonical surjectigh— MT(A), which
factors throught™ if and only if A has reflex field contained iy

NOTES. For more on Mumford-Tate groups, see Deligne 1983a,

4Other authors, and this author at other times, sayAhiatpotentially of CM-type.
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The categoryCM(Q?)

2.7. The functor the category of abelian varieties of CM-type up to isogeny@Vep
the similar category ovet is an equivalence. For any CM-subfield of C, the functor
“extension of scalarsCM”(Q®) — CM*(C) is an equivalence of tensor categories.

The period torsor

2.8. LetK be a CM-subfield of®, Galois overQ. ThenI" acts on the terms of the sequence
(20) in such a way that the action on the sequend@-pbints

1 - F* — K*xQ* — S*Q) —1
is the obvious one. Let
GEM = Aut®(w|CME(Q)).

The tensor functors
CM¥(QY) — CM™(Q) — Art(Q) (11)

define homomorphisms
1—- 88 oM 51— 1. (12)

This sequence is exact and the actiod'afn S¥ it defines is that described above (Deligne
1982b, Lemme 1, Lemme 2).

2.9. Let P°K pe the period torsor fo€M* (Q). The second functor in (11) defines a
v-morphismpPM-K . PAT ‘and sinceP”" is known (Theorem 2.1), in order to determine
PMK it suffices to determin@-X — PA" as an object oP(G5"" — I'; PAY). The

first step is to correctly identify the cohomology group classifying the isomorphism classes
of objects in this category.

PROPOSITION2.10. Let f: ' — I'(Q) be as in Theorem 2.1, and lg$”™ be the twist of
SK py f. There is a natural one-to-one correspondence between the set of isomorphism
classes irP(GgM" — I'; PA*) and H(Q, ;S¥) (fpgc cohomology).

PrROOF. Apply Proposition 1.10, Remark 1.11, and Theorem 2.1. ]

In particular, whenk = Q°™, the isomorphism classes of objeéts— PA" are classi-
fied by the group?*(Q, ;S). According to Corollary 1.13, there is an exact sequence

0 — iy rS"(Q) = H'(Q, ;8) — lim,._ H'(Q, ;") — 0.
We shall show:

PROPOSITION2.11. The groupim __ HY(Q, ;S¥) =0, butplnjr(elC SE(Q) is uncount-
able. Therefore,

H'(Q,;S) = lim! __S¥(Q)
and is uncountable.
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TWIStIng (Gm)L/Q
2.12. LetL be afinite extension @@, and letT” = (G,,,) /-

(@) The (left) action ofr € I' on X g, To = 7 o o, corresponds to the natural (left)
action ofl" on X*(T") = Z[ X1, ;o] (see 2.4).

(b) AssumeL C Q¥ and is Galois ovef. Identify Xy o with I';,g. There is then a
natural (left) action of* onT" (as a torus ove®), which defines a (left) action df
on X*(T") = Z[I',jq]. The former gives the obvious actionlbon7'(Q) = L*, and
the latter corresponds to the (left) actionrof ' onT'; g, 70 = 0 o 771,

LEMMA 2.13. For a subfieldZ of Q¥, finite and Galois ove®, let ;I';, ;o denote the twist
of I'yq by f (so thatr € T acts byro = 70 0 o 77! (Serre 1964, 5.3)), and let

B(L) = A(s ')
Then
1(Gn)ra = (Gr)sw)/e-
PrRoOOF. Clearly, ;(G,,)1/q = T/"t/2, which equalsG,) a(r, )/ ]

Note that the orbits of acting onsI'; o are the conjugacy classésin I'; p, and so
(2.3,2.4)
B(L) =TIAC), (Gw)pwye =[1cT°

For anyo € C, A(C) = L#®) whereZ(o) is the centralizer of in 'y, /.

The tori ;S¥ and ;S¥

LetK € K. Letw: G,, — S¥ be the weight homomorphism, and et = S¥ /w(G,,).
Then
X*(S®Y={n € Z[¥x] | n+wm =1},

and there is an exact sequence
1= (Gum)rjo — (Gu)ig — 5% — 1. (13)

The groupl’ acts on the exact sequence (13), and so we can twist the sequeric® by
obtain an exact sequence

1= ((Gm)rg = (Gm)rjg — pS™ — 1. (14)
LEMMA 2.14.If K contains a quadratic imaginary field, then
£ = (Gm) B/

whereF is the largest totally real subfield df.
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PrROOF. As
Tro =Tro x Tro Tro={1,¢},

for each conjugacy clags in '/, there are exactly two conjugacy classes$'jfyp map-
ping to it, namely,

Ci={(r,1)|reC}, C,={(r,)|TeC}.
Therefore, (14) can be written
1= [[o7¢ = [To(T x T) — ;8% =1
(product over the conjugacy classeding). Since
C=2C,=C, (asI'-sets),

each of the maps B
HCTC - HCTCI> HCTC1 - fSK

is an isomorphism. O
The grouplim,_ H'(Q, ;S¥).

PROPOSITION2.15 (WINTENBERGER 1990, 1.3).If K contains a quadratic imaginary
number field, thed/*(Q, ;S¥) = 0.

PROOF. From the exact sequence
1—>GmﬁfSK—>f5'K—>1 (15)

we see that it suffices to show that (Q, ;S*) = 0, but this follows from Lemma 2.14
and Hilbert’'s Theorem 90. N

COROLLARY 2.16. The grougim _  H'(Q, ;S*) = 0.
PrROOF. The CM-fields satisfying the hypothesis of the proposition are cofinilin [

REMARK 2.17. Wintenberger (1990, p3) shows by example that the proposition is false
without the hypothesis oA'.

The group lim,_ ;S*(Q).
PROPOSITION2.18. The grouﬂ(i_m}(elc £S%(Q) is uncountable.
From (2) applied to the cohomology sequence of (15), we see that
mzelc fSK(Q) = méelc ng(Q)’

and so we compute the second group.
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LEMMA 2.19. Let F be the set of totally real subfields &f that are finite and Ga-
lois over Q. Then the inverse syste(pS™) ek is equivalent with the inverse system

((Gn) B(F)/@) Per- Thus,
lim}  S*(Q) &~ limy_ B(F)*

(on the right, the transition maps are the norm maps).

PROOF. Fix a quadratic imaginary fiel#. The fieldsK € K containingk form a cofi-
nal set. Oncé has been fixed, the isomorphism in Lemma 2.14 becomes canonical. In
particular, it is natural for the norm maps. O

Note that the isomorphism in the lemma depends only on the choice of

EXAMPLE 2.20. IfT'r/q = Gal(F/Q) is commutative B(F') is a product of copies o)
indexed by the elements 0f-/g. Thus,(G.,.) p(r)0 = Gl

EXAMPLE 2.21. LetF = F; - Fr with Fy, B, € FandFy N F, = Q. Then
Gal(F/Q) = Gal(F1/Q) x Gal(F/Q)

and a conjugacy class in Gal(F;/Q) is the image of the conjugacy claésx {1} in
Gal(F'/Q). Therefore,B(F) is a direct factor ofB(F'), and so the norm map

B(F)* — B(F)*
IS surjective.

EXAMPLE 2.22. Fix an odd primé, and writeC) for any cyclic group of ordet. Define
G to be the semi-direct produéf x, @ of N = C; x C; (generators:, b) with Q = C;
(generator) relative to the homomaorphisét C; — Aut(C; x Cj) for which

o(ci) = ( oY ) Jienf(c)(a) = abi,  0(¢)(b) = b.
ThenG has generators, b, ¢, and relations
d=b=cd=1 ab=cac™, [ba]l=1=b,d.

All elements# 1 in G have orde¥, and the centre aff is (b).
The inverse image undét — () of the conjugacy clas&} breaks up intd conjugacy
classes, namely,
{d’c,bd’c,... b talc}, 0<j<Il-—1,

(because'ca = bc). The centralizer ofi’c in G is (b, a’c), which has ordef’.
Let £ be an extension df with Galois group’, and letf, = EV. Then (2.20)

B(E) = FY x B x-x B, R —q,
and the inverse image a}%{c} in B(E) under the norm map is

E(b,c) x E(b,ac) TR E(b,al_lc).
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LEMMA 2.23. The groupli%mj%JTB(F)X IS uncountable.

PROOF. According to Proposition 1.1b, it suffices to show that the inverse sysm) <) pc »
fails (ML). Examples 2.20 and 2.21 show that we shall need to consider nonabelian Galois
groups and nonsplit extensions.

Fix an odd prime numbef, and choose a prime numbgy that splits completely in
Q[v/1]. Thenl|p, — 1, and so there is a surjective homomorphism

(Z/poZ)* — C.

Let F, be the subfield of)[ %/1] fixed by the kernel of one such homomorphism.
To prove thal B(F)*) pc# fails (ML) it suffices to show that, for each € F contain-
ing Fy, there exists ail € F containingF;, and such that

Nmpg)/pr) (B(E)*) 7 Nmpr)/pm)(B(L));
forthenE - L € F, but
Nmpe.r)/BE) (B(E - L)) # Nmpr)/Br) (B(L)*).

Choose a prime, that splits completely ifL.[v/1, \/Po), and construct a cyclic extension
F of Q of degred by choosing a surjective homomaorphis/p,Z)* — C), as before.
ThenF =4 Fy - F} has Galois group

Gal(F/@) = Ol X Cl.
Let G be as in Example 2.22, and consider the extension
1 — (b) - G— (a,c) — 1.

Let
a: G/{b)y — Gal(F/Q)
be the isomorphism sendiago a generator dfal(F,/Q) anda to a generator ofal(F; /Q).
The only primes ramifying irf” arep, andp,, and forp = p, or p;
— [ dividesp — 1 (because both primes split @[v/1]);

— for all primesv of F' dividing p, F), is totally ramified overQ, (p; is to-
tally ramified in F}; p; splits completely infy by construction;p, splits
completely inF; because it becomes &@hpower inF,,, ).

Now an argument of Scholz and Reichardt (see Serre 1992, Theorem 2.1.3) shows that there
exists a Galois extensiabl of Q containingF' for which there is a commutative diagram

G —— G/

Ll

Gal(E/Q) —— Gal(F/Q).
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Note thatF, being Galois of odd degree ov@r, must be totally real.

L/

(0)
F
v N
Fi Ey
N
Q

| claim that the image oB(E)* in FL"* does not contain the image B{L)*. In order
to show this, it suffices to show that the image(Bf £) © Q,,)* in (Fi” © Q,,)* = Q},
does not contain the image @B(L) ® Q,,)*. But, because, splits completely in, the
second image i®, . On the other hang, is totally ramified in each field >’ (because
Eba’e . Fy = F, (p1) = p}---p;in F, andp; splits completely inF,), and so, for each
v|p, B s the (unique) tamely ramified cyclic extension(@f, of degred. Thus, the
image of[[, " in Q,, does not contaift. ; . O

L

Characterizing the period torsor

THEOREM2.24. Let K be a CM-subfield of, Galois overQ.

(@) If [K: Q] < oo and K contains a quadratic imaginary field, thew(GS"* —
I'; PA™) contains exactly one isomorphism class, which is representgetf Yy —
PArt_

(b) If K = Q°™ then P(GEM’K — I'; PA™) contains uncountably many isomorphism
classes.

PROOF. According to Proposition 2.10, the isomorphism classd%(ﬁiigM’K — I'; PAY)
are classified by7*(Q, ;S¥). Therefore, (a) and (b) follow respectively from Proposition
2.15 and Proposition 2.11. O]

REMARK 2.25. In fact, we have shown that the uncountable gl‘go_uQ 1S5 (Q) acts sim-

ply transitively on the set of isomorphism classes of objectB(iF§M — I'; PA™). To
make this explicit, lef{, be a quadratic imaginary field, and let

KoC"'CKnC"'CQcm
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be a sequence of CM-fields with uni@f™. Let S,, = S%» and P™M = PM.K» From an
elements = (s,,)nen Of [T £5,.(Q) we obtain a-morphism of torsors*M(s) — PA™ by
modifying the transition maps iR“M: define

PM(s) = liLn(PnCM, Up O Sp).
neN

Then, the isomorphism class ¢fM(s) — PA™ depends only on the class 6f,) in
lim' ;5,(Q), distinct classes ifim' ;5,(Q) give nonisomorphic objects iR(GE" —
I'; PA), and every object iP(GEM — I'; PA™) is isomorphic toP“M(s) — PA" for
somes € [] 1S,(Q).

REMARK 2.26. There remains the problem of characterizing the isomorphism class of
PM . PAt One may hope that it is uniquely determined by its isomorphism classes in
P((G§M) o, — T, Ppp) for 1= 2,3, 00, i.e,, that the kernel of

Hl(Qva) - HZHl(Ql>fS)

is zero, but the calculations | have made in this direction do not look promising. Note that
#S/r is a countable product of copies@f,,, and soH' (R, ;S) = 0.
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3 Periods of abelian varieties

For a class of abelian varieties over Q, (A)® denotes the category of motives based on
the abelian varieties if, the projective spaces, and the zero-dimensional varieties. Let

G = Aut®(w|(A)%),
Gir = Aut® (warl (A)%),

PA = Tsom®(we, war)-
WhenA = { A}, we write A for A.
3.1. The inclusion of the Artin motives into4)® defines a homomorphism
Gg —T.

This homomorphism is surjective, and its kernel is the identity compoftégi° of G
(Deligne and Milne 1982, 6.23) In particular, for a single abelian variety, there is an
exact sequence

1 — MT(A) - G§ — T — 1.

3.2. For a single abelian variety, there is a unigue homomorphism
S — MT(A)?%

sendinghcan onto (h4)? where, as usuah®: S — MT(A) x is the homomorphism defin-
ing the Hodge structure oA *(A, Q). This homomorphism is surjective, and it factors
throughS¥ if and only if K contains the reflex field fMT(A), h*)2P.

3.3. On combining the last two statements, we see thatig an abelian variety ove)
such thats® — MT(A)%is an isomorphism for somg, then

1 — MT(A)%* - G4 — g™ -1

iS exact.

Some Hasse principles

We first prove an elementary structure theorem.

LEMMA 3.4. Every semisimple groupl over Q such thatH ga is a product of simple
groups is isomorphic to a product of groups of the formH; = Resp, /o IV; with F; a
number field andV; an absolutely simple group ovét.

SWhich applies because of Deligne’s theorem (Deligne 1982a) that all Hodge classes on abelian varieties
are absolutely Hodge.
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PROOF. To give a semisimple group ové is the same as to give a semisimple graiip
over Q? together with a descent datuf, ),cr. Herea, is an isomorphisse H — H,
a, 0 oo, = a,, for all o andr, and there is a continuity condition (namely, there exists
a model(H',a: H). — H) of H over some field:” of finite degree ovef) such that
a, o o = o for all o fixing F).

First consider a paif{, (o ),cr) With H an adjoint group. Writd? = [],_,H; as a
product of simple groups. For eaehe I, there is a permutation (also denotedof /
such that,, is a product of isomorphisms

Oég<i)1 O'Hz‘ — Hoi-

Let.J be anorbitof'in 7, letj € J,andletl’; = {c € ' | 0j = j}. Then(a,(j))oer, is @
descent datum off;, and([ ], ;o5 (7)) . is @ descent datum i, , H;. The first defines
a modelN; of H; over F; =4 Q4, which is absolutely simple, and the second defines a
model M; of [ ], ;H; overQ, which is isomorphic tResr, o N;. Now [\ ;M is a
semisimple group ove® giving rise to(H, (a,)ser) OverQ?.

Next consider a paifH, (a,)ser) With H a productd = [[..,H; of simple groups.
Then (o, ), defines a descent datum??), on H39, and, as above?? is a product of
isomorphismsy24(i): o H3 — H24 Consider

O'HZ' aa—(i)> Ha‘i

a24(i)
oHYM —— H¥
Herea, (7) is the composite

o project
oH; — ocH %% H —— H;.

Because the diagram commutas,and] [, . (i) differ by a map fronv / into the centre
of H, which must be trivial becausef is connected. Thusy, = [],_,;«, (), and the same
argument as in the preceding paragraph completes the proof of the lemma. ]

We define thendex (of connectivitydf a semisimple algebraic groupto be the degree
of the universal coveringl — H. Thus, for an isogeny: H' — H of semisimple groups,

index'H') < index H)

with equality if and only ifa is an isomorphism.
Consider the following condition on a semisimple algebraic grBupverQ:

(*) H jga is @ product of simple groups of indéor 2.

PrROPOSITION3.5. For any semisimple groufy over@Q satisfying (*), the map

-----

is injective.
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PrROOF. According to (3.4),H =~ [] Resg, o N; with eachN; absolutely simple of index
or 2, and

Therefore, the proposition follows from the next two lemmas. ]

LEMMA 3.6. For any simply connected semisimple grabdpover a number field”, the
map
Hl(Fa H) - Hvrea|H1<Fv7H)
is bijective.
PrRoOOF. This is the theorem of Kneser, Harder, and Chernousov — see Platonov and Rap-
inchuk 1994, Theorem 6.6, p286. O

LEMMA 3.7. For any semisimple groufd of index2 over a number field",
HY(F,H) - [[,H'(F,,H) (vrunsover all primes of")
is injective.
PROOF. Platonov and Rapinchuk (1994, Remark p337) note that the map has trivial kernel.

The lemma can now be proved by a twisting argument, because any form of a semisimple
group of index2 again has inde2. O

PROPOSITION3.8. Let H be a semisimple group ové) satisfying (*). If two cohomol-
ogy classes ifH'(Q, H) have the same image i (R, H), then they have the same im-
age inH'(Q, H). In other words,H'(Q, H) — H'(R, H) is injective on the image of
H'\(Q. H) — H'(Q, H).

PROOF. In the diagram

HY(Q,Z) —— HYQ,H) —— HY(Q, H)

l surjective l injective l

H'(R,Z) — H'(R,H) —— H'(R, H),

the rows are exact in the sense that the fibres of the second map are the orbits of the natural
action of the first group on the middle set. The second vertical arrow is injective by (3.6).

A diagram chase will complete the proof once we show that the first vertical arrow is
surjective. In proving this, we may assume (3.4) tHat= Resy/q N with IV an absolutely

simple group of index over a number field”. ThenZ = Resp/q 112, and soH*(Q, Z) —

HY(R, Z) is the mapF* /F*? — (F @ R)*/(F ® R)*?, which is surjective by the weak
approximation theorem. O

REMARK 3.9. The proof of Proposition 3.8 shows that for any central extension
1—-7Z -G —-G—1

of algebraic groups, the md@p' (Q, G) — H'(R, G) is injective on the image dff } (Q, G’)
in H(Q, G) provided
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(@) the mapH!(Q, Z) — H'(R, Z) is surjective;
(b) the mapH!(Q,G") — H'(R,G’) is injective.

PROPOSITION3.10. Let G be connected reductive group ov@rsuch thatG" is simply
connected.

(@) If HY(Q, G®) — T],H(Q;, G®) isinjective, then so also ' (Q, G) — [[,H(Q;, G)
(product overl = 2,3,5,...,00).

(b) If HY(Q,G?®) — H'(R, G?) is injective, then so also iH#'(Q, G) — H'(R,G).

PROOF. (a) See Deligne 1971, 5.12. (Becaus¥'is simply connectedi* (Q;, GY") = 0
for [ # oo (Platonov and Rapinchuk 1994, Theorem 6.4, p284). Using this, we obtain a
commutative diagram with exact rows

Gab(@) N Hl((@, Gder) N Hl(Q,G) N Hl((@, Gab)

! l l |

GR) — GPR) — H'(R,G*) — [[H(Q.G) — [[H(Q,G®).

The image of5(R) in G3(R) contains its identity component, and the real approximation
theorem (Sansuc 1981, 3.5 (iii)) shows th&P(R) maps ontary(G2*(R)). Now a diagram
chase shows that any element#f(Q, G) that is locally zero is zero. To show that two
elements andc’ of H'(Q, G) are equal when they are locally, choose a torsor representing
¢, and twist the groups by it (cf. Serre 1964, |1 5.3).)

(b) Similar, but easier. ]

Characterizing P — P™
Let AV(Q) = (A)® with A the class of all abelian varieties ov@r

THEOREM 3.11. Let A be an abelian variety ove®. If MT(A)%" satisfies (*) anl
MT(A)2 =~ SK for somek, then the isomorphism class % — P“M-X is uniquely
determined by its classes ov@r (I = 2, 3, ..., 00).

PROOF. According to Proposition 1.10, the isomorphism classé @iy — G5 ; PCMK)
are classified by7!(Q, H) whereH is the twist ofKer(G4a — G5™") by the period tor-
sor. But according to (3.3), this kernel MT(A)%", and so the theorem follows from
Proposition 3.5. O

The next result shows that the abelian varieties dyesatisfying the conditions of
Theorem 3.11 are cofinal among all abelian varieties Qvéar the relationA < B if hA
is isomorphic to an object dfB)®.

We don't really need to assuméT(A4)2 = SK — it only makes the statement a little more pleasant.
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PROPOSITION3.12. Let A be an abelian variety ovef). For any sufficiently large CM-
subfieldK of C, there exists an abelian variefy overQ such thatM T (A x B)%" satisfies
(*)and MT(A x B)? =~ K,

This will be proved in the next subsubsection.

THEOREM 3.13. The isomorphism class ¢V — P is uniquely determined by its
classesove®), (I = 2,3, ...,00).

PROOF. According to Proposition 1.10, the isomorphism classe¥(idg" — GSM; P™M)
are classified by7*(Q, H) whereH is the twist of H' = Ker(G& — G§™) by the period
torsor. Proposition 3.12 implies that

H' 2 lim MT(A)%"
%

whereA runs over the abelian varieties satisfying the hypothesis of Theorem 3.11. There-
fore H is a countable product of simple algebraic groups satisfying (*), and so we can apply
Corollary 1.14 and Proposition 3.5. O

Proof of Proposition 3.12

We shall say that an algebraic group over a fieldk of characteristic zero is special
orthogonal groupf there exists vector spadé over £ of dimensionn > 8 and a nonde-
generate quadratic formnon V' such thatd ~ SO(V,q). Such anH is a connected and
simple, and there are isogenies of degtee

H— H — H¥

with H the simply connected covering group Bf(a spinor group). LeZ = ZH. When
nis evenZ (k) ~ Cy x Cy.

3.14. Recall from Deligne 1979a the following statements.

(@) LetA be an abelian variety ovét. EachQ-simple factorH of MT(A)3%is of type
A, B, C, D%, or D¥ (notations as in ibid. 2.3.8).

(b) Let A be an abelian variety ovet, and letG = MT(A). The homomorphism
h:S — G defined by the Hodge structure di*(A, Q) satisfies the following
conditions:

i) the Hodge structure on the Lie algelyaf G defined byAdoh: S — GL(g)
is of type{(lv _1)7 (Oa O)a (_L 1)}1
i) adh(i) is a Cartan involution oi:2%

iil) hgenerates; (i.e., there is no proper closed subgrdifpC G such that(S) C
G'R).
/R

(c) Let H be a simple adjoint group ovéd, and leth: S/G,, — Hr be a homomor-
phism satisfying the conditions (b) i), ii), iii).
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i) If His of typeA, B, C, or D¥, there exists an abelian varietyover C such
that MT(A)%" is simply connected anMT(A), h*)2 ~ (H, 1) (apply ibid.
2.3.10).

i) SupposeH is of type D". ThenH = Resgp/q N for some absolutely simple
group NV over a totally real field”, and we letd’ = Resp/q N whereN' —
N is the double covering oN that is an inner form of a special orthogonal
group (ibid. 2.3.8). Any homomorphistH — MT(A) sendingh to (h#)2d
factors throughf’ (ibid. 1.3.10). There exists an abelian varidtyverC with
MT(A)%" ~ H' and(MT(A), h*)% ~ (H, ) (apply ibid. 2.3.10).

We shall need the following condition on a semisimple grélpverQ:

(**) H is a product of simple groups; a simple factorféf has index if
it is of type D* and indexl otherwise.

DEFINITION 3.15. An abelian variety defined over a subfieldCos maximalif MT(A)de"
satisfies (**).

LEMMA 3.16. A finite product of maximal abelian varieties is maximal.

PROOF. Let A = [[;A; where each4; is maximal. The canonical maplT(A4) —
[IMT(A;) is injective and its composite with any projectippMT(A;) — MT(A;) is sur-
jective (Deligne 1982&3). For a judicious choice of simple factoks of [T MT(A;)%,
the homomorphismIT(A)24 — [T H2 will be an isomorphism. Consider

Then[]H; — MT(A)%" factors througH [ H, where H! is as in (3.14cii) wherf]; is of

type D™ and equals; otherwise. Consider
[1H! - MT(A)%* — [[H..

As[[H! and]] H; have the same index, the composite is an isomorphism, avid'$a )" —
[[H; is an isomorphism. O

REMARK 3.17. LetA and B be abelian varieties such theltT (A x B)39 >~ MT(B), If

B is maximal, then so also id4 x B. This can be proved the same way as Lemma 3.16 —
one only has to observe that, because of the condition on the adjoint groups, iththe
proof can be chosen to be factorsfl' (B)%".

LEMMA 3.18. For any abelian varietyA overC, there exists an abelian variefy overC
such that MT(B), h?)2 ~ (MT(A), h*)3@ and B is maximal.

PROOF. According to (3.14), for each simple factal, 4) of (MT(A), h*)39, there exists
an abelian variety3(H) such that MT(B(H)), h?#))3 ~ (H, h) andMT(B(H))%" is
the coveringH’ of H in (3.14cii) if H is of type D* and is simply connected otherwise.
TakeB = [[B(H). Because eacB(H ) is maximal, so isB (3.16). O
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Recall that, wherd < B, there is a canonical surjectien z: MT(B) — MT(A)
carryingh® to h4.

LEMMA 3.19. An abelian varietyA over C is maximal if and only if, for allB such
that A < B andc®;: MT(B)* — MT(A)*!is an isomorphism¢%y;: MT(B)%" —
MT(A)%" is an isomorphism.

PROOF. Let B’ be as in (3.18), and leB = A x B’. ThenA < B andMT(B)* —
MT(A)3 is an isomorphism, butIT(B)%" — MT(A)%"is an isomorphism only if4 is
maximal. This proves the “if".

Let A be maximal. Then itis clear from (3.14c) that it satisfies the condition. []

LEMMA 3.20. Let A be an abelian variety ovet, and letr be an automorphism df.
ThenA is maximal if and only if-A is maximal.

ProOF. RecallthaMT(A) = Aut®(wg) andMT(TA) = Aut®(w,) wherew, is the fibre
functor onAV(C) sendinghX to H*(7X,Q). Therefore, from the theory of Tannakian
categoriesMT(7A) = PMT(A) whereP = Zsom(ws,w, ).

If A is not maximal, then there exists an abelian variBtysuch thatA < B and
MT(A)2 = MT(B)3 but MT(A)%" 2¢ MT(B)%". ClearlyrB has the same properties
relative tor A, which proves that A is not maximal. O

LEMMA 3.21. Let A; and A, be abelian varieties ove€ such that(MT(A;), h*1)3 ~
(MT(Ay), h42)39, If A; can be defined oved?, then so also canl,.

PrROOE See Blasius and Borovoi 1999, 3.3. O]

LEMMA 3.22. For any CM-subfieldy of C of finite degree ove), there exists an abelian
variety A overC such that the canonical mag”™ — MT(A) is an isomorphism. IfS is
Galois overQ, thenA may be chosen to be defined o@er

PROOF. "First recall that the CM-types oli generateX*(S*): infact, if = 74+ -+7,
is one CM-type on¥, then the CM-types), = 7; + > .7 (i=1,...,9) and¢ = > ur;
form a basis for th&-module X *(S%).

Let B be a simple abelian variety ovér of CM-type (E, ¢). For eachp: E — Q2
andr € Gal(Q°™/Q), definey, (1) = ¢(7~! o p). Then, asp runs over the embeddings
of E into Q¥, 1, runs over d-orbit of CM-types onQ°™. The mapB — {1} defines a
bijection from the set of isogeny classes of simple abelian varieties of CM-typ&dVeer
the set ofl"-orbits of CM-types orfQ°™. A 7 € T fixes the reflex field< of B if and only
if 7¢ = ¢. Eachy, is the extension t@°™ of a primitive CM-type onk’, and the kernel
of S¥ — MT(B) is the intersection of the kernels of thig (see Milne 1999§2). For any
automorphisny of C, o B has reflex fieldr K.

Choose a finite set aB’s with reflex field contained i such that the corresponding
Y’s generateSX, and letA be their product. The canonical m&d — MT(A) is then
an isomorphism. According to (2.7), we may takkéo be defined over a subfieldof C
of finite degree ove) . Then, if K is Galois overQ, A, =g Res; g A has reflex field
contained ink’, and the canonical mag* — MT(A,) is an isomorphism. N

For slightly weaker results, see Milne 1990, | 4.6; Wei 1994, 1.5.1; Borovoi and Blasius 1999, 3.5.
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PROOF OFPROPOSITION3.12. LetA be an abelian variety oveép. ChooseB as
in (3.18). After (3.21), we may assunieis defined over a number fielel. ThenB, =
HJGZF/QO'B is defined over). Let K be any CM-subfield of? containing the reflex

field of (MT(A x B,), h**P+)a and finite and Galois ovep, and choos€ as in (3.22).
Consider the abelian variety x B, x C. Itis defined ovefQ, and (3.20, 3.16, 3.17) show
that it is maximal. By assumption, the reflex field @ T(A x B, x C), hA*B-x)abjg
containedk’, and so the canonical homomorphism- MT(A x B, x C)2factors through
SK. ButMT(A x B, x C) surjects ontdT(C) = S, and saSX = MT(A x B, x C)®.
This completes the proof of Proposition 3.12.

Characterizing P"* — P™

THEOREM 3.23. Let A be an abelian variety ove®. If MT(A)%" is simply connected
andMT(A)2 =~ S¥ for somek, then the isomorphism class Bf* — P“M-X is uniquely
determined by its class ov&.

PrROOF. According to Proposition 1.10 and (3.3), the isomorphism class&gdf; —
GSME, pCMK) are classified byl ! (Q, H), whereH is the twist ofM'T(A)%" by the period
torsor. Therefordd is simply connected, and so this follows from the theorem of Kneser,
Harder, and Chernousov (3.6). O

Let H denote the class of abelian varieti¢over Q such thatMT(A)2 has no factor
of type D™. Note that, because of (3.14cii), any abelian variety for whER(A)%" is
simply connected lies ift{. The next result shows that the abelian varieties satisfying the
conditions of (3.23) are cofinal among all abelian varietie&in

PROPOSITION3.24 (BLASIUS AND BOROVOI11999, 3.2).Let A be an abelian variety in
‘H. For any sufficiently large CM-field(, there exists an abelian variety over Q such
that MT (A x B)® =~ SK andMT(A x B)%"is simply connected

PROOF. WhenA is inH, the proof of Proposition 3.12 can be modified to show thatn
be chosen in such a way thdfT' (A x B)%is simply connected — in fact, this significantly
simplifies the proof. ]

THEOREM 3.25. The isomorphism class d?”* — PM is uniquely determined by its
isomorphism class oveR.

PrROOFE Similar to that of Theorem 3.13. O]

REMARK 3.26. The main theorem of Blasius and Borovoi 1999 (Theorem 1.5) states that
the isomorphism class a?” — P™ is determined by the cohomology class®¥ in
lim _ H'(R,Gg). Theorem 3.25 states that the isomorphism clasg’6f— P is

determined by its class i (R, (G}£)°%"). There are maps
H'(R, (GiR)™™) — lim H'(R, (Ggp)*®) — lim H'(R, (Ggr)°) — lim H'(R, Gip).
AeH AeH AeH
The first is an isomorphism (1.14) and the third is injective (Blasius and Borovoi 1999, 4.4).
If the second were injective, their theorem would follow from (3.25), but | see no reason
to expect this (the kernel of the second map is a quotientS¢R), which is a countable
product of copies oR*).
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Characterizing P& — P*M in terms of a lifting property

Let A be an variety ovef) such thatMT(A) = S¥ for some CM-fieldK. Recall that
MT(A)%" = Ker(GA — GSM™). We say thatP? — PMX has thdlifting property if
there exists a surjective homomorphiém— G{such that the kernel @8 — GSM" is the
universal covering group &fT(A)%and P4 lifts to G.

THEOREM 3.27. Let A be an abelian variety ove® such thatMT(A)%" satisfies (*) and
SK =~ MT(A)? for some CM-subfieldd of C. Up to isomorphism, there exists at most
one objectP — PMX in p(G4 — GEMK; PCMK) sych that

(a) P — P*MX has the lifting property, and
(b) (P — PEMK), ~ (PA — PEMKY,
PROOF. Apply Proposition 3.8 ta7 = MT(A)%", O

The notion of a lifting property extends in an obvious fashion to infinite sets of abelian
varieties.

THEOREM3.28. Up to isomorphism, there exists at most one objeet PMin P(G4Y —
G§M; PM) such that

(@) P — P*M has the lifting property, and
(b) (P — P™M)p ~ (P — PM)g,
PROOF. Similar to the proof of Theorem 3.13. ]

REMARK 3.29. Deligne’s hope that all Shimura varieties with rational weight are mod-
uli varieties for motives (Deligne 1979a, p248) implies tFdY — PM has the lifting
property overC. It would be interesting to prove this unconditionally.

Characterizing PAY — PA"

THEOREM 3.30. Let A be an abelian variety ove such thatMT(A)%® = S¥ for some
CM-subfieldK of C.

(@) If MT(A)%" is simply connected, then the isomorphism clas$6f — PA™ is
uniquely determined by its class over

(b) If MT(A)%" satisfies (*), then, up to isomorphism, there exists at most one object
P — PA%in P(G4 — I'; PA™) having the lifting property and isomorphic & —
PA" overR.

PROOF. (a) According to Proposition 1.10, the isomorphism classé @i — I'; PA™)
are classified by7'(Q, G), whereG is the twist of

MT(A4) ¥ Ker(G — IN)

by the period torsor. TheG® = ;S¥, and sa’ satisfies the hypotheses of (3.10b).
(b) In this case(7 satisfies the hypotheses of (3.9). O
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REMARK 3.31. For any abelian variety overQ, the mapGgr(R) — ;I'(R) is surjective
(Blasius and Borovoi 1999, 4.4), and so

H'(R, (Ggr)*) — H'(R, Ggr)

is injective. Therefore, fo® — PA™ in P(G§ — I'; PA"), the isomorphism class of
P — P~ overR is determined by the isomorphism classiobverR.

THEOREM3.32. (a) There are uncountably many isomorphism class€s@ff — I"; PA™)
that become isomorphic t8”* — PA™ overR.

(b) If there exists one objeét — PA™in P(GgY — I'; PA™) having the lifting property
and isomorphic taPA — PA™ gverRR, then there are uncountably many.

PROOF. (a) According to Proposition 1.10, the isomorphism classéX @ — I'; PA™)
are classified by7'(Q, (G1%)°), where(Gl%)° is the twist of

(G)° = Ker(GY — 1)
by the period torsor. For ad € H with MT(A4)2" = S| consider
0 — (GgR)™™(Q) — (GgR)"(Q) — ;S™(Q) — H'(Q, (G&R)™).
BecausdG’%)°%" is a countable product of algebraic groups,
lim' (GgR)™*(Q) = 0 = lim" H'(Q, (Gga)**®)

(by 1.14). Therefore,

lim' (GR)°(Q) = lim' ;S™(Q),
which is uncountable (2.18). Similarly,

lim' (Gge)(R) = lim* 5™ (R),

which is zero becausyegﬁqi is a product of copies dF,,,. In view of Proposition 1.12, this
completes the proof.
(b) Similar. O

REMARK 3.33. | expect that there are uncountably many distinct isomorphism classes in
P(GEY — I'; PA™) that become equal to the classifY — PA™ over every fieldQ.

Characterizing PA

THEOREM 3.34. Let A be an abelian variety ove such thatMT(A)% =~ S¥ for some
CM-field K.

(@) If MT(A)%" is simply connected, then, up to isomorphigi,is the onlyG4-torsor
P such that

) PAGE I~ PAt and
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i) Pz~ P,

(b) If MT(A)%" satisfies (*), then, up to isomorphism, there exists at mostightorsor
P such that

|) P/\GI? I =~ PArt,

i) there exists a surjective homomorphismG’ — G3 such thatu": G’der —
(Gg)%" is the universal covering group ¢€:4)%" and P = u P’ for someG’-
torsor, and

i) P~ Pj.

PROOF. (a) Let P satisfy the conditions (i) and (ii), and choose a morphBm- PA™,
Then Theorem 3.30 and Remark 3.31 show tfiat—- PA™) ~ (P4 — PAT),
(b) Similar to (a). ]

Other fields

Hasse principles are known to hold for some fields other than number fields. For example,
Scheiderer (1996) proves a Hasse principle for the Galois cohomology groups of connected
linear algebraic groups over perfect fields with virtual cohomological dimensibnHow-

ever, if the fieldk is not countable, the affine group schetiattached to the category of
abelian motives ovek will not be a countable inverse limit of algebraic groups. In partic-
ular, the relation of the flat cohomology group @fto the Galois cohomology groups of

its algebraic quotients is unknown, and ga¢eFlicker 2001) such results do not imply
Hasse principles for period torsors.
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