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Abstract. For each field k, we define a category of rationally decomposed mixed
motives with Z-coefficients. When k is finite, we show that the category is Tan-
nakian, and we prove formulas relating the behaviour of zeta functions near integers
to certain Ext groups.
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Introduction. For each field k, there is conjecturally a category of mixed isomo-
tives whose full subcategory of semisimple objects is the category M(k;Q) of pure
isomotives. In this paper, we define a Z-category M(k;Z) of motives whose quo-
tient by its subcategory of torsion objects is M(k;Q). Thus, M(k;Z) is the abelian
category of mixed motives over k whose weight filtrations split modulo torsion. As
Grothendieck observed, when k is finite, the weight filtrations always split modulo
torsion, and so, in this case, M(k;Z) is the full category of mixed motives over k.

The category M(k;Z) depends on our choice of M(k;Q). For definiteness, take
M(k;Q) to be the category of isomotives based on the smooth projective varieties
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over k whose Künneth projectors are algebraic — the correspondences are the nu-
merical equivalence classes of algebraic classes. This category is semisimple (Jannsen
1992) and Tannakian (Deligne 1990), and when we assume that numerical equiva-
lence coincides with homological equivalence, it admits canonical l-adic fibre functors
for each l.1 The category M(k;Z) we construct is noetherian, abelian, and, at least
when k is finite and the Tate conjecture holds, Tannakian.

The Ext groups in the full category M(k;Z) seem to be pathological (cf. 9.7),
but those in the subcategory M+(k;Z) of effective motives are of interest. When k is
finite, we show that the Tate conjecture implies relations between these Ext groups
and the behaviour of zeta functions near integers (Theorems 10.1, 10.5). Moreover,
to a smooth projective variety V satisfying a certain degeneration condition on its
crystalline cohomology, we are able to attach “Weil” motivic cohomology groups
H i

mot(V,Z(r)) satisfying the spectral sequence

H i(Γ0, H
j
mot(V̄ ,Z(r)) =⇒ H i+j

mot(V,Z(r)) (1)

posited by Lichtenbaum (2002), and deduce from Theorem 10.5 that

ζ(V, s) ∼ ±χ×(V,Z(r)) · qχ(V,OV ,r) · (1− qr−s)ρ as s → r (2)

(Theorem 10.7). Here Γ0 is the subgroup of Gal(F/Fq) generated by the Frobenius
element (so Γ0

∼= Z), χ×(V,Z(r)) is the alternating product of the orders of the
cohomology groups of a complex

· · · → H i
mot(V,Z(r)) → H i+1

mot(V,Z(r)) → · · ·
arising from (1), χ(V,OV , r) is as in Milne 1986a, and ρ =

∑
(−1)ii·rank H i

mot(V,Z(r)).
The category M(k;Z) is defined in §5 as a full subcategory of the fibre product of

the Q-category M(k;Q) with a certain Ẑ-category of realizations. The construction
requires that we show that the various l-adic fibre functors on M(k;Q) define an
adèlic fibre functor — the proof of this depends crucially on the theorem of Gabber
(1983). In §4, we show that the usual Tate conjecture implies an adèlic version. For
example, for a variety over a finite field, if the l-adic Tate conjecture holds for a single
l, then it holds l-integrally for almost all l.

The category M(Fq;Z) is shown to be Tannakian in §6, and the main results on
Exts and motivic cohomology groups are obtained in §10 after preliminaries in §§7–9.

This article is part of a project whose ultimate goal is to define a triangulated
category of motives with t-structure whose heart is the category M(k;Z) defined
above, and to show that the Tate conjecture for smooth projective varieties implies
the formula (2) for arbitrary varieties over Fq.

We note that our approach to motives is opposite to that of other authors (Hana-
mura 1995, 1999; Levine 1998; Voevodsky 2000) who define a triangulated category
of motives with the goal of putting a t-structure on it whose heart will be the abelian
category of motives. While our approach can be expected to give the full category
of mixed motives only when the ground field is Fq or F, we do expect to obtain the
correct p-structure, as illustrated by (2). Most of the difficulties in the present work
involve the p-part in characteristic p.

1For an alternative choice for M(k;Q) that does not require any unproven conjectures, and
which even satisfies the Tate conjecture, see 5.27.
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Notations. Throughout, p denotes the characteristic exponent of the ground field
(thus, p is the characteristic of the ground field when this is nonzero, and is 1 otherwise),
l denotes a prime number, and ` denotes a prime number 6= p. Note that we allow l = p,
and that there is no restriction on ` when the ground field has characteristic zero.

The l-adic valuations | |l and ordl are normalized so that |l|l = l−1 and ordl(l) = 1.
The expression “for almost all l” means “for all but (possibly) a finite number of l”.

The profinite completion of Z is denoted Ẑ and Af = Q⊗ Ẑ. Thus, Ẑ =
∏
Zl, and we

let Zp =
∏

l 6=p Zl and Ap
f = Q⊗ Zp. When p = 1, Zp = Ẑ and Ap

f = Af .
We use Mm and M (m) respectively to denote the kernel and cokernel of multiplication

by m on M . For a prime l, M(l) =
⋃

Mln is the l-primary component of M , and Mtors =⋃
Mm is the torsion subobject.
For a module M endowed with an action of a group Γ, MΓ (resp. MΓ) is the largest

submodule (resp. quotient module) of a Γ-module M on which Γ acts trivially. For a
module M over a subgroup U of Γ, the induced module IndΓ

U (M) is defined to be the group
of maps ϕ : Γ → M such that ϕ(ux) = uϕ(x) for u ∈ U , x ∈ Γ. The group Γ acts on
IndΓ

U (M) by (gϕ)(x) = ϕ(xg). When Γ and M have topologies (for example, the discrete
topology for M), the maps ϕ are required to be continuous.

Lattice always means full lattice: when R is a ring and V is a free Q⊗R-module of finite
rank, an R-lattice in V is a finitely generated R-submodule Λ of V such that the inclusion
Λ ↪→ V induces an isomorphism Q⊗ Λ → V .

For a field k, kal denotes an algebraic closure of k, ksep a separable (algebraic) closure
of k, and kpf a perfect closure of k (for example, kpf = kp−∞ ⊂ kal).

For a perfect field k of characteristic p, W = W (k) denotes the ring of Witt vectors
with coefficients in k, and B(k) denotes the field of fractions of W (k). The unique lift of
the automorphism x 7→ xp : k → k to W (k) is denoted σ, and A = W [F, σ] is the skew
polynomial ring (polynomials in F with the relation F · a = σ(a) · F , a ∈ W ).

Generally, rings are assumed to be commutative. For a ring R, Mod(R) is the category
of R-modules and Modf(R) the category of finitely presented R-modules, and for a field
k, Vec(k) is the category of finite dimensional k-vector spaces. When S is an R-algebra,
we usually abbreviate M ⊗R S to MS , and for an R-linear category (alias, R-category) M,
we use MS to denote the category with the same objects as M, but with HomMS

(X, Y ) =
HomM(X, Y )S .

For an affine group scheme G over a noetherian ring R, Rep(G; R) denotes the category
of linear representations of G on finitely generated R-modules.

For tensor structures on categories we use the terminology of Deligne and Milne 1982.
Thus a tensor category C is a category together with a bifunctor ⊗ : C×C → C and compat-
ible associativity and commutativity constraints for which there exists an identity object 11.
When C is additive and End(11) is a commutative ring R, we call (C,⊗) a tensor category
over R or a tensor R-category. When R′ is an R-algebra, an R′- fibre functor on an abelian
tensor R-category is a faithful R-linear exact tensor functor C → Mod(R′).

Given functors F : A → C and G : B → C, the fibre product category A ×C B has as
objects the triples (A, B, γ) with A an object of A, B an object of B, and γ : F (A) → G(B)
an isomorphism; the morphisms are the pairs a : A → A′ and b : B → B′ giving rise to a
commutative diagram in C.

A variety V is a geometrically reduced separated scheme of finite type over a field.
The group of algebraic cycles of codimension r on V is denoted Zr(V ), and Zr∼(V ) is
the quotient of Zr(V ) by some adequate relation ∼. We let Z∗(V ) =

⊕
r Zr(V ) and

H∗(V, F ) =
⊕

i H
i(V, F ).
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An equivalence class containing x is denoted [x]. We also use [S] to denote the cardinality
of a finite set S. For a homomorphism f : M → N of abelian groups whose kernel and
cokernel are finite, z(f) is defined to be [Ker(f)]/[Coker(f)].

Isomorphisms are denoted ≈ and canonical isomorphisms ∼=.

Acknowledgements. We thank the referee for his careful reading of the manuscript,
which saved it from many obscurities.

1. The Realization Categories

The categories R away from p. Throughout this subsection, k is a field of
characteristic exponent p, and R is a topological ring, for example, R = Z, Z`, Q`,
Zp, or Ap

f with its natural topology (discrete for Z).

Definition 1.1. (a) For a profinite group Γ, R(Γ; R) is the category of continuous
linear representations of Γ on finitely presented R-modules.

(b) When k is finitely generated over the prime field,

R(k; R) = R(Γ; R), Γ = Gal(ksep/k).

Otherwise,

R(k; R) = lim−→R(k′; R)

where k′ runs over the subfields of k finitely generated over the prime field.

Remark 1.2. In (1.1b), and elsewhere in the paper, we mean the naive direct
limit of categories, not the 2-category direct limit. Specifically, let I be a directed
set, and let d : I → CAT be a functor. Then lim−→ d(i) is the category with

ob(lim−→ d(i)) = lim−→
i

ob(d(i)), ar(lim−→(d(i)) = lim−→
i

(ar(d(i))

and the obvious category structure.
In (1.1b), fix a separable closure ksep of k and, for k′ ⊂ k, let k′sep be the separable

closure of k′ in ksep. If k′ ⊂ k′′, then the functor R(k′; R) →R(k′′; R) simply restricts
the Galois action. With these functors, the family (R(k′; R)) forms a direct system.
Every object of the direct limit category is represented by an object X of R(k′; R)
for some k′. If objects X,Y of R(k; R) are represented by X ′, Y ′ in R(k′; R), then

HomR(k;R)(X,Y ) =
⋃

k′⊂k′′⊂k

HomR(k′′;R)(X
′′, Y ′′)

where X ′′, Y ′′ are the images of X ′, Y ′ in R(k′′; R).

Remark 1.3. Let Γ be a profinite group. Two continuous linear representations
ρ1 and ρ2 of open subgroups U1 and U2 of Γ on an R-module M are said to be related
if they agree on an open subgroup of U1 ∩ U2. This is an equivalence relation, and
an equivalence class will be called a germ of a continuous linear representation of Γ.
A morphism (M, [ρU ]) → (M ′, [ρ′U ′ ]) of germs is an R-linear map α : M → M ′ that
is equivariant for some open subgroup of U ∩ U ′. When k is a separable closure of a
field k0 finitely generated over the prime field, an object of R(k; R) can be identified
with a germ of a continuous linear representation of Gal(k/k0).
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Lemma 1.4. For each object M of R(Γ;Z`), there is an open subgroup U ⊂ Γ
such that M decomposes into the sum of a torsion object and a torsion-free object in
R(U ;Z`). Consequently, when k is separably closed, for each M in R(k;Z`), Mtors is
a direct summand of M .

Proof. Let M = Mtors ⊕ M1 as Z`-modules, and let γ ∈ Γ act on M as the

matrix
(

a(γ) b(γ)
0 c(γ)

)
. The map γ 7→ a(γ) is the homomorphism describing the action of

Γ on Mtors. After replacing Γ with an open subgroup U , we may suppose this action
to be trivial. The map γ 7→ c(γ) defines an action of U on M1, and hence an action
of U on Hom(M1,Mtors), which, again, we may suppose to be trivial. Then γ 7→ b(γ)
is a homomorphism U → Hom(M1,Mtors), and after we replace U with the kernel of
this map, M = Mtors ⊕M1 will be a decomposition of U -modules. ¤

For M in R(Γ;Z`), set M∨ = HomZ`
(M,Z`) with γ ∈ Γ acting according to the

rule (γf)(m) = f(γ−1m). We say M is reflexive if the canonical map M → M∨∨ is
an isomorphism.

Proposition 1.5. (a) An object of R(Γ;Z`) is reflexive if and only if it is torsion-
free.

(b) Every object of R(Γ;Z`) is a quotient of a reflexive object.

Proof. (a) As M∨ is torsion-free, the condition is necessary, and it is obviously
sufficient.

(b) If M decomposes in R(Γ;Z`) into the direct sum of a torsion module Mt with
trivial Γ-action and a torsion-free module M1, then M will be the quotient of Zr

`⊕M1

for some r. According the lemma, there is an open subgroup U of Γ such that M has
such a decomposition in R(U ;Z`), and hence there will be a surjection Zr

`⊕M1 → M
in R(U ;Z`) with M1 free. Now

IndΓ
U(Zr

` ⊕M1) ³ IndΓ
U(M)

ϕ 7→∑
s∈Γ/U sϕ(s−1)−−−−−−−−−−−→ M

realizes M as the quotient of a torsion-free Γ-module. ¤

Remark 1.6. (a) The category R(k;Q`) is denoted Tate(k) in Saavedra 1972,
VI A4.2, A4.3, and its objects are called Tate modules. It is a neutral Tannakian
category over Q`.

(b) The functor M 7→ (M`)` 6=p : R(Γ;Zp) → ∏
` 6=pR(Γ;Zl) is exact, full, and

faithful, with essential image the objects (M`)` 6=p such that dimF`
M`/`M` is bounded.

The categories R at p. An F -isocrystal over a perfect field k is a finite dimen-
sional B(k)-vector space M endowed with a σ-linear bijection FM : M → M . With
the obvious structures, the F -isocrystals over k form a Tannakian category Isoc(k)
over Qp, and the forgetful functor is a B(k)-valued fibre functor (Saavedra 1972, VI
3.2). The identity object is 11 = (B(k), σ), and the Tate object is T = (B(k), p−1 · σ).

An F -isocrystal (M, FM) is effective if FM stabilizes a W (k)-lattice in M . Let
Isoc+(k) denote the full subcategory of Isoc(k) whose objects are the effective F -
isocrystals. Every object of Isoc(k) is of the form X⊗T⊗m with X effective. In other
words, for each (M, FM) in Isoc(k), there exists an m ∈ Z such that pmFM stabilizes
a lattice (Saavedra 1972, VI 3.1.3, 3.2.1).
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An F -crystal2 over a perfect field k is a finitely generated W (k)-module Λ endowed
with a σ-linear map FΛ : Λ → Λ such that the kernel of FΛ is torsion. The F -crystals
over k form an abelian tensor category Crys+(k) over Zp. For an F -crystal (Λ, FΛ),
(Λ, FΛ)Q =df (ΛQ, FΛ ⊗ 1Q) is an F -isocrystal, and the functor

(Λ, FΛ) 7→ (Λ, FΛ)Q : Crys+(k)Q → Isoc(k)

is fully faithful with essential image Isoc+(k).
Let L = (W (k), p · σ) be the Lefschetz F -crystal. The functor

−⊗ L : Crys+(k) → Crys+(k)

is faithful (full and faithful on torsion-free objects). We define Crys (k) to be the
tensor Zp-category obtained from Crys+(k) by inverting L. Thus, the objects of
Crys (k) are pairs (Λ,m) with Λ an F -crystal and m ∈ Z, and

Hom((Λ,m), (Λ′,m′)) = lim−→
N≥m,m′

Hom(Λ⊗ L⊗N−m, Λ′ ⊗ L⊗N−m′
).

The tensor product is defined by

(Λ,m)⊗ (Λ′,m′) = (Λ⊗W (k) Λ′,m + m′). (3)

The Tate object T of Crys(k) is (11, 1).
The functor

Λ 7→ (Λ, 0) : Crys+(k) → Crys(k)

is faithful, and it is full on torsion-free objects. The forgetful functor defines an
equivalence of the full subcategory of Crys(k) of torsion objects with the category of
W (k)-modules of finite length.

Lemma 1.7. For each object Λ of Crys+(k), there is an n such that Λ⊗L⊗n de-
composes into a direct sum of a torsion object and a torsion-free object. Consequently,
for each Λ in Crys(k), Λtors is a direct summand of Λ.

Proof. Let Λ = Λtors ⊕ Λ1 as W (k)-modules, and let FΛ act as ( a b
0 c ). Then

FΛ⊗L⊗n acts as
(

pna pnb
0 pnc

)
. Choose n so that pnΛtors = 0, and then pnb = 0. This

proves the first statement, and the second follows because −⊗L is an equivalence of
categories on Crys(k). ¤

Let X = (Λ,m) and X ′ = (Λ′,m′) be objects of Crys(k). For some N there exists
a σ−1-linear map VΛ : Λ → Λ such that FΛVΛ = pN = VΛFΛ. Let

Hom(X,X ′) = (Hom(Λ, Λ′), N −m + m′)

with (FHom(Λ,Λ′)f)(λ) = FΛ′(f(VΛλ)). This is an object of Crys(k) that is indepen-
dent of the choice of N (up to a canonical isomorphism). Define X∨ = Hom(X, 11)
and say that X is reflexive if the canonical map X → X∨∨ is an isomorphism.

Proposition 1.8. (a) An object of Crys(k) is reflexive if and only if it is torsion-
free.

(b) Every object of Crys(k) is a quotient of a reflexive object.
(c) With the evaluation map (f, x) 7→ f(x) : Hom(X, X ′)⊗X → X ′, Hom(X, X ′)

is the internal Hom of X and X ′ (in the sense of Saavedra 1972, I 3.1.1).

2Some authors use “crystal” to mean free crystal, i.e., an M that is torsion-free (as a W (k)-
module).
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Proof. (a) As X∨ is torsion-free, the condition is necessary, and it is obviously
sufficient.

(b) After (1.7) it suffices to prove this for a torsion F -crystal Λ. Such an Λ is
a quotient M → Λ of a free finitely generated W -module M . Endow M with the
F -crystal structure such that FM = σ. After M → Λ has been tensored with a high
power of L, it will be a morphism of F -crystals.

(c) It is easy to check that this does have the correct universal property. ¤
Remark 1.9. (a) The category Crys+(k) does not have internal Homs. For

example, L∨ = Hom(L, 11) does not exist in Crys+(k).
(b) There is a canonical functor lim−→ Isoc(Fq) → Isoc(F), which is faithful and

essentially surjective (Demazure 1972, p. 85) but not full3 (note that W (F) 6=
lim−→W (Fq)). The category lim−→ Isoc(Fq) is not semisimple, but, according to a theorem
of Manin (Demazure 1972, p85), the category Isoc(F) is semisimple.

(c) Ekedahl 1986, p36, defines a virtual F -crystal to be a triple (M,F, Λ) with
(M, F ) an isocrystal and Λ a W -submodule of M such that B(k) · Λ = M ; a virtual
F -crystal is of finite type if Λ is finitely generated. The functor ((Λ, FΛ),m) 7→
(ΛQ, FΛ⊗p−m, Λ) defines an equivalence of the full subcategory of Crys(k) of torsion-
free objects with the category of virtual F -crystals of finite type.

Definition 1.10. Let k be a field of characteristic p 6= 0. If k is finitely generated
over Fp,

R(k;Qp) = Isoc(kpf), R(k;Zp) = Crys(kpf ).

Otherwise,
R(k;Zp) = lim−→

k′⊂k

R(k′;Zp), R(k;Qp) = lim−→
k′⊂k

R(k′;Qp),

where the limits are over the subfields of k finitely generated over Fp. We define
R+(k;Qp) and R+(k;Zp) = lim−→k′⊂k

Crys+(k′pf) similarly.

Again, the direct limits of categories are meant in the naive sense (1.2).

The categories R in general.

Definition 1.11. For a field k of characteristic p 6= 0,

R(k; Ẑ) = R(k;Zp)×R(k;Zp), R(k;Af ) = R(k;Ap
f )×R(k;Qp)

R+(k; Ẑ) = R(k;Zp)×R+(k;Zp), R+(k;Af ) = R(k;Ap
f )×R+(k;Qp)

For a field of characteristic zero,

R(k; Ẑ) = R(k;Zp), R(k;Af ) = R(k;Ap
f ).

Note that R(k;Af ) ∼= R(k; Ẑ)Q. For notational convenience, we sometimes use
R+(k;Zl) to denote R(k;Zl) when l 6= p.

Each of the categoriesR(k; R) has a natural tensor structure (see (3) forR(k;Zp))
for which it becomes a tensor category over R.

3For example, let A1 and A2 be ordinary elliptic curves over Fq, and let Λ1 and Λ2 be their
Dieudonné isocrystals. Then Hom(A1, A2)⊗Qp

∼= Hom(Λ1, Λ2) (Tate’s theorem). When we pass to
the limit over increasing q we get an isomorphism Hom(A1/F, A2/F)⊗Qp

∼= Homlim−→ Isoc(Fq)(Λ1, Λ2).
On the other hand, HomIsoc(F)(Λ1, Λ2) ≈ Qp ⊕Qp. Thus, if A1 and A2 have different j-invariants,
Homlim−→ Isoc(Fq)(Λ1,Λ2) = 0 6= HomIsoc(F)(Λ1, Λ2).
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The motivic subcategory of R(k;Q`). LetM(k;Q`) be the strictly full subcat-
egory of R(k;Q`) whose objects are subquotients of a Tate twist of a tensor power of
an `-adic étale cohomology group of a smooth projective variety over k. When k = Fq,
M(k;Q`) includes the category of semisimple representations of Γ = Gal(kal/k) for
which the eigenvalues of the Frobenius generator of Γ are Weil q-numbers, and conjec-
turally equals it: all such representations arise already in the cohomology of abelian
varieties (cf. Milne 1994, 3.7) and the Weil conjectures (proved by Grothendieck
and Deligne) show that the Frobenius eigenvalues of objects in M(k;Q`) are Weil
q-numbers; the semisimplicity is a conjecture. When k is a number field, Conjecture
1 of Fontaine and Mazur (1995) suggests a description of M(k;Q`).

2. Adèlic Cohomology

Modules over Ap
f and lattices. Recall (Notations p3) that Zp =

∏
` 6=p Z` and

Ap
f is the restricted direct product Ap

f =
∏

` 6=p(Q`,Z`).

2.1. Endow (Ap
f )

m with its topology as the restricted direct product of the spaces

Qm
` relative to the subspaces Zm

` . Every Ap
f -linear bijection (Ap

f )
m → (Ap

f )
m is bi-

continuous. This allows us to endow any free Ap
f -module M of finite rank with a

topology by choosing an isomorphism α : M → (Ap
f )

m.

2.2. Let M be a free Ap
f -module of finite rank m, so that M` =df M ⊗Ap

f
Q` is a

Q`-vector space of dimension m for all ` 6= p. A lattice in M is a finitely generated
Zp-submodule Λ such that the inclusion Λ ↪→ M induces an isomorphism ΛAp

f
→ M ;

then Λ` =df Λ⊗ZpZ` is a Z`-lattice in M` for all ` 6= p, and Λ is the free Zp-submodule
spanned by a basis for M . Clearly, every lattice in M is compact and open, and so
any two lattices Λ and Λ′ in M are commensurable, that is, both quotients Λ/Λ ∩ Λ′

and Λ′/Λ ∩ Λ′ are finite (hence, Λ` = Λ′` for almost all `). Let M0 be a Q-structure
on M (i.e., a Q-subspace such that the inclusion M0 ↪→ M induces an isomorphism
M⊗QAp

f → M). There is a canonical one-to-one correspondence between the lattices
Λ in M and the lattices Λ0 in M0, namely,

Λ 7→ Λ ∩M0, Λ0 7→ its closure in M .

2.3. Let (M`) 6̀=p be a family of vector spaces over the fields Q`, all of the same
finite dimension. Two families (Λ`)` 6=p and (Λ′`) 6̀=p of lattices in the M` will be said
to be equivalent if Λ` = Λ′` for almost all `. To give a free Ap

f -module of finite
rank is the same as to give a family (M`)` 6=p together with an equivalence class of
families (Λ`)` 6=p: given a family (M`, Λ`)` 6=p, let M =

∏
(M`, Λ`); given M , choose an

isomorphism M → (Ap
f )

m, and let Λ` be the inverse image of Zm
` . Let M and M ′

be the free Ap
f -modules of finite rank defined by systems (M`, Λ`)` 6=p and (M ′

`, Λ
′
`)` 6=p

respectively. A family of Q`-linear maps α` : M` → M ′
` defines an Ap

f -linear map
α : M → M ′ if and only if α`(Λ`) ⊂ Λ′` for almost all `, in which case α is injective if
and only if α` is injective for all ` and it is surjective if and only if α` is surjective for
all ` and maps Λ` onto Λ′` for almost all `.

2.4. An Ap
f -linear map α : M → M ′ of free Ap

f -modules of finite rank will be said
to be of constant rank if the rank of α` =df α ⊗Ap

f
Q` is independent of `. Then the

kernel, cokernel, image, and co-image of α are again free Ap
f -modules of finite rank.
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Adèlic cohomology (characteristic p 6= 0). Throughout this subsection, all
varieties are smooth and projective over a separably closed field k of characteristic
p 6= 0. For such a variety V , Hr(V,−) denotes an étale cohomology group and Λi

`(V, r)
denotes the image of H i(V,Z`(r)) in H i(V,Q`(r)). Thus,

Λi
`(V, r) ∼= H i(V,Z`(r))/{torsion}.

Proposition 2.5. (a) The torsion subgroup of H i(V,Z`) is finite for all `,
and is zero for almost all `.

(b) Assume V is connected of dimension dV and fix a prime ` 6= p. If the coho-
mology groups Hj(V,Z`) of V are torsion-free for all j, then the pairing

H i(V,Q`)×H2dV −i(V,Q`(dV )) → H2dV (V,Q`(dV )) ∼= Q`

induces a perfect4 pairing on the cohomology groups with coefficients in Z`.
(c) Let W be a second variety over k and fix a prime ` 6= p. If the groups

H i(V,Z`) and Hj(W,Z`) are torsion-free for all i and j, then the Künneth
isomorphism

Hr(V ×W,Q`) ∼=
⊕

i+j=r

H i(V,Q`)⊗Hj(W,Q`)

induces an isomorphism on the groups with coefficients in Z`.

Proof. (a) The finiteness of the torsion subgroup of H i(V,Z`) is a standard
result. That the groups Hr(V,Z`) are torsion-free for almost all ` is a theorem of
Gabber (Gabber 1983).

(b) The pairing on the cohomology groups with coefficients in Z` is the unique
pairing for which the diagrams

H i(V,Z`) × H2dV −i(V,Z`(dV )) −−−→ H2dV (V,Z`(dV )) ∼= Z`y
y

y
H i(V,Z/`mZ)×H2dV −i(V, (Z/`mZ)(dV )) −−−→ H2dV (V, (Z/`mZ)(dV )) ∼= Z/`mZ

commute for all m. The lower pairing is perfect and the vertical maps are the cokernels
of multiplication by `m on H i(V,Z`) and H2dV −i(V,Z`(dV )) because we are assuming
there is no torsion. This implies (even with m = 1) that the discriminant of the top
pairing is an `-adic unit, and so the top pairing is also perfect.5

(c) This is a standard result. ¤

Definition 2.6. For V as above, H i(V,Ap
f (r)) is the restricted direct product of

the spaces H i(V,Q`(r)) with respect to the lattices Λi(V, r). Equivalently,

H i(V,Ap
f (r)) = H i(V,Zp(r))⊗Q

where H i(V,Zp(r)) = lim←−(n,p)=1
H i(V, µ⊗r

n ).

4A bilinear form M×N → R of R-modules is nondegenerate if its left and right kernels are zero,
and perfect if the maps M → HomR(N, R) and N → HomR(M, R) it defines are isomorphisms.

5We thank M. Nori for this proof, which is simpler than our original.
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Remark 2.7. (a) Because the Betti numbers of a smooth projective variety are
independent of `, H i(V,Ap

f ) is a free Ap
f -module of finite rank. A regular map α : V →

W defines an Ap
f -linear map α∗ : H i(W,Ap

f ) → H i(V,Ap
f ).

(b) For a connected V , the proposition implies the following:

the pairings in (b) of the proposition define a perfect pairing

H i(V,Ap
f )×H2dV −i(V,Ap

f (dV )) → H2dV (V,Ap
f (dV )) ∼= Ap

f

of free Ap
f -modules of finite rank.

In other words, Poincaré duality holds for Ap
f -cohomology. This implies that the map

α∗ in (a) has an Ap
f -linear adjoint

α∗ : Hj(V,Ap
f (dV )) → Hj+2dW−2dV (W,Ap

f (dW )), j = 2dV − i.

(c) Part (c) of the theorem implies the following: there is a canonical isomorphism
of free Ap

f -modules of finite rank

Hr(V ×W,Ap
f )
∼=

⊕
i+j=r

H i(V,Ap
f )⊗Hj(W,Ap

f ).

(d) Assume (for simplicity) that V is connected. Let f be an algebraic corre-
spondence of degree r from V to W with rational coefficients, i.e., an element of
ZdV +r(V × W )Q. For all but finitely many `, f will be `-integral, and so its `-adic
cohomology classes define an element cl(f) ∈ H2dV +2r(V ×W,Ap

f (dV +r)). Combining
this remark with (b) and (c), we obtain a map (also denoted f)

x 7→ qW∗(cl(f) ∪ q∗V x) : H i(V,Ap
f (m)) → H i+2r(W,Ap

f (m + r))

for all m. Here qW and qV are the projection morphisms.

Adèlic cohomology (characteristic zero). Let V be a variety (not necessarily
smooth or projective) over an algebraically closed field k of characteristic zero. For
any model V0/k0 of V over an algebraically closed subfield k0 of k and embedding
k0 ↪→ C,

H i(V,Zl) ∼= H i(V0,Zl) ∼= H i(V0(C),Z)Zl
.

The group H i(V0(C),Z) is finitely generated, and so H i(V,Zl) is torsion-free for al-
most all l. The results in the last subsection hold mutatis mutandis for the group
H i(V,Af (r)) defined to be the restricted topological product of the H i(V,Ql) with
respect to the Λi

l(V, r). For any choice of a pair V0/k0, k0 ↪→ C as above,

H i(V,Af ) ∼= H i(V0,Af ) ∼= H i(V0(C),Q)Af
.

3. An Adèlic Tate Conjecture

Throughout this section, V is a smooth projective variety of dimension d over a
field k. For ` 6= char(k), H i(V,Z`(r)) denotes the étale cohomology group. We let k̄
= ksep and V̄ = V/k̄. Finally, Γ = Gal(k̄/k).
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Conjectures on algebraic cycles in `-adic cohomology. The group Zr
`-hom(V )

is the co-image of the cycle class map Zr(V ) → H2r(V̄ ,Z`(r)), and Zr
num(V ) is the

quotient of Zr(V ) by numerical equivalence.
Recall (Tate 1994) that, when k is finitely generated over the prime field, there

are the following conjectures.

Tr(V/k, `): The cycle map Zr
`-hom(V )Q`

→ H2r(V̄ ,Q`(r))
Γ is surjective.

Er(V/k, `): The quotient map Zr
`-hom(V )Q → Zr

num(V )Q is an isomorphism.
Ir(V/k, `): The cycle map Zr

`-hom(V )Q`
→ H2r(V̄ ,Q`(r)) is injective.

Sr(V/k, `): The map H2r(V̄ ,Q`(r))
Γ → H2r(V̄ ,Q`(r))Γ induced by the identity

map is bijective.

An adèlic Tate conjecture.

Lemma 3.1. Assume k is finitely generated over the prime field. If T r(V/k, `),
T d−r(V/k, `), and Sr(V/k, `) hold for almost all `, then the cycle class map

Zr
`-hom(V )Z`

→ H2r(V̄ ,Z`(r))
Γ

is surjective for almost all `.

Proof. According to Tate 1994, 2.9, the conditions imply that Er(V/k, `) and
Ed−r(V/k, `) hold for almost all `.

Note that Er(V/k, `) implies Zr
`-hom(V )/{torsion} ∼= Zr

num(V ), which is finitely
generated (see, for example, Milne 1980, VI 11.7). Therefore, for those ` for which
Er(V/k, `) and Ed−r(V/k, `) hold,

Zr
`-hom(V )/{torsion} × Zd−r

`-hom(V )/{torsion} → Z
is a nondegenerate pairing of finitely generated abelian groups whose discriminant D
is independent of `.

Consider the diagram

Zr
`-hom(V )Z`

× Zd−r
`-hom(V )Z`

•−−−→ Z`y
y ‖

H2r(V̄ ,Z`(r))
Γ×H2d−2r(V̄ ,Z`(d− r))Γ ∪−−−→ Z`.

For those ` for which T r(V/k, `) and T d−r(V/k, `) hold, the vertical arrows have finite
cokernel.

For those ` for which

– the groups H2r(V̄ ,Z`(r)) and H2d−2r(V̄ ,Z`(d− r)) are torsion-free,
– Er(V/k, `) and Ed−r(V/k, `) hold,
– T r(V/k, `) and T d−r(V/k, `) hold, and
– ` does not divide D,

the vertical maps are surjective. Since these conditions hold for almost all primes `,
this proves the lemma. ¤

Theorem 3.2. Let k be as in the lemma. If T r(V/k, `), T d−r(V/k, `), and Sr(V/k, `)
hold for all ` 6= p, then the cycle class map defines a bijection

Zr
num(V )Ap

f
→ H2r(V̄ ,Ap

f (r))
Γ.
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Proof. We have to show that the cycle class map Zr(V ) → H2r(V̄ ,Z`(r)) defines

(a) a bijection Zr
num(V )Q`

→ H2r(V̄ ,Q`(r))
Γ for all ` 6= p, and

(b) a surjection Zr
num(V )Z`

→ Λ2r
` (V̄ , r)Γ for almost all `.

Applying Tate 1994, 2.9, we see that Er(V/k, `), Ir(V/k, `), and T r(V/k, `) hold for
all ` 6= p. This implies (a), and (b) follows from the lemma. ¤

Corollary 3.3. Let V be a (smooth projective) variety over Fq, and let r be an
integer. The following statements are equivalent:

(a) for some prime ` 6= p, dimQ Zr
num(V ) = dimQ`

H2r(V,Q`(r))
Γ;

(b) the order of the pole of the zeta function Z(V, t) of V at t = q−r is equal to
the rank of Zr

num(V );
(c) the cycle class map defines a bijection Zr

num(V )Ap
f
→ H2r(V̄ ,Ap

f (r))
Γ.

Proof. Apply Tate 1994, 2.9, and the theorem. ¤

Counterexamples to an integral Tate conjecture. Assume k is finitely gen-
erated over the prime field, and consider the cycle class map

Zr(V )Z`
→ H2r(V̄ ,Z`(r))

Γ. (4)

If k is infinite, there exist V ’s without a rational zero cycle of degree 1 (for example,
any curve of genus zero without a rational point or any curve6 of genus 1 with index
6= 1) and for such a variety (4) will fail to be surjective for r = d and suitable `.
The argument that Atiyah and Hirzebruch (1962) used to prove that not all torsion
cohomology classes on a complex variety are algebraic (contradicting Hodge’s original
conjecture) also applies over finite fields7 and proves that (4) is not surjective on
torsion classes.

Griffiths and Harris (1985) conjecture that if V is a very general hypersurface8 of
degree d ≥ 6 in P4, then d divides the degree of every curve on V . Kollár has obtained
some results in the direction of this conjecture (see Ballico et al. 1992, p. 135). Thus,
it is known that, if k is an uncountable algebraically closed field and ` > 3 is distinct
from the characteristic of k, then there exist smooth hypersurfaces V ⊂ P4 such that
the cycle class map

Z2(V )Z`
→ H4(V,Z`(2)) ∼= Z`

is not surjective (cf. Schoen 1998, 0.6).
We do not know of an example with k finite for which (4) is not surjective modulo

torsion (however, Schoen 1998, 2.1, gives an example with V singular). For r = 1 and
k finite, one sees from the Kummer sequence that T 1(V/k, `) implies that the map
(4) is surjective.

6For such a curve, even CH1(V̄ )Γ
degree−−−−→ Z fails to be surjective (Lang and Tate 1958).

7For this, one needs to use that the odd-dimensional Steenrod operations with values in
H∗(V̄ ,Z/`Z) vanish on algebraic cycles (Brosnan 2003).

8A statement is said to hold for a very general hypersurface of degree d if it holds for all
hypersurfaces in the complement of countably many proper subvarieties of the space of hypersurfaces
of degree d.
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4. The Adèlic Fibre Functor

Isomotives. Fix a field k of characteristic exponent p, and let S be a class of
smooth projective varieties over k satisfying the following condition:

4.1. S is closed under passage to a connected component and under the formation
of products and disjoint unions, and it contains the zero-dimensional varieties and
the projective spaces.

4.2. Fix an adequate equivalence relation ∼. Recall that, for smooth projective
varieties V and W over k, the group of correspondences of degree i from V to W is

Corri(V, W ) =
⊕

jZ
dim(Vj)+i
∼ (Vj ×W )Q

where the Vj are the equidimensional components of V .

4.3. The category CV0
∼(k) of correspondences based on S, has one object hV for

each V ∈ S, and
HomCV0∼(k)(hV, hW ) = Corr0(V, W )Q.

With the definition
hV ⊗ hW = h(V ×W ) (5)

and the obvious constraints, CV0
∼(k) becomes a tensor category over Q (Saavedra

1972, VI 4.1.1).

4.4. The category of effective isomotives M+
∼(k;Q;S) is the pseudo-abelian hull

of CV0
∼(k). Its objects are pairs (hV, e) with e an idempotent in End(hV ). It is a

pseudo-abelian tensor category over Q.

4.5. In M+
∼(k;Q;S) there is a canonical decomposition

hP1 = 11⊕ L,

and the category of isomotives M∼(k;Q;S) is obtained from M+
∼(k;Q;S) by invert-

ing L (Saavedra 1972, VI 4.1.3.1). Its objects are pairs ((hV, e),m) with (hV, e) an
effective motive and m ∈ Z. We sometimes write h(V, e, m) for ((hV, e),m). Note
that (V, e, m) 7→ h(V, e,m) gives a one-to-one correspondence between the triples
(V ∈ S, e ∈ End(hV ) with e2 = e, m ∈ Z) and the objects of M∼(k;Q;S).

4.6. Let V be a smooth projective variety of dimension n, and let ei
l ∈ H2n−i(V )⊗

H i(V )(n) be the ith Künneth component of the diagonal for the l-adic étale coho-
mology (l 6= p) or the crystalline cohomology (l = p 6= 1). We say that the Künneth
projectors at l are algebraic for V if, for each i, there exists a πi

l ∈Zn(V ×V ) mapping
to ei

l. We note the following.

(a) If the ground field k is finite, then πi
l always exists, and is given by a poly-

nomial P i with rational coefficients in the Frobenius endomorphism which
is independent of l. This follows from knowing the Weil conjectures for the
cohomologies in question (Katz and Messing 1974, Theorem 2).

(b) If the Künneth projectors are algebraic, say, πi
l 7→ ei

l, for several l, then the
numerical equivalence classes of the πi

l are independent of l. In characteristic
zero, this follows from a comparison with Betti cohomology. In nonzero char-
acteristic, V, πi

l , . . . will have a smooth specialization to a system V0, π
i
l0, . . .

over a finite field. Recall that smooth specialization gives isomorphisms on
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the relevant cohomology groups. According to (a), πi
l0 differs from P i by an

algebraic class that is l-homologically (hence, numerically) equivalent to zero.
Therefore, the numerical equivalence class of πi

l0 is independent of l, and it
follows that the same is true of the πi

l (cf. André and Kahn 2002, Proposition
5).

The categoryM∼(k;Q;S) has a naive tensor structure for which it is a pseudo-abelian
rigid tensor category over Q (Saavedra 1972, VI 4.1.3.5), but it can not be Tannakian.
When the Künneth projectors are algebraic for all V in S and (some or) all l, we have
well-defined elements πi ∈ Zdim V

num (V ×V ), which we use to modify the commutativity
constraints in M+

num(k;Q;S) and Mnum(k;Q;S) (see Saavedra 1972, VI 4.2.1.4, for
an explanation of this). With this new tensor structure Mnum(k;Q;S) is Tannakian
if and only if it is abelian.

4.7. If numerical equivalence on Z∗(V )Q coincides with l-adic homological equiv-
alence for all V ∈ S, then the Künneth projectors at l are algebraic for all V ∈ S.
More precisely, the hypothesis for V ×V implies the conclusion for V (Kleiman 1994,
5-1, 4-1(1), 4-1(4)).

For the remainder of this section, we assume that ∼ is not coarser than `-adic
homological equivalence on Zr(V )Q for any ` 6= p, so that the formula

ω`(h(V, e, m)) = e
(
H∗(V̄ ,Q`(m))

)
, V̄ = Vksep ,

defines a functor ω` : M∼(k;Q;S) → Vec(Q`), and we drop ∼ from the notation.9

The adèlic fibre functor. With the notation of (2.6), define

ωp(hV ) = H∗(V̄ ,Ap
f ).

Because of (2.7d) and our assumption on ∼, a correspondence f of degree 0 from V
to W defines a homomorphism ωp(f) : ωp(hV ) → ωp(hW ), and one sees immediately
from the definitions that ωp(f ◦ g) = ωp(f) ◦ ωp(g). The isomorphisms

ωp(hV ⊗ hW )
(5)
= ωp(h(V ×W ))

2.7c∼= ωp(hV )⊗ ωp(hW )

provide ωp with the structure of a tensor functor CV0(k) → Mod(Ap
f ). It is Q-linear

(in particular, additive).

Theorem 4.8. The functor ωp : CV0(k) → Mod(Ap
f ) extends (essentially uniquely)

to a Q-linear tensor functor ωp : M(k;Q;S) → Mod(Ap
f ). For each ` 6= p, ωp ⊗Ap

f

Q`
∼= ω`.

Proof. As Mod(Ap
f ) is abelian, ωp extends (essentially uniquely) toM+(k;Q;S)

because of the universality of the pseudo-abelian hull. Because ωp(L) = Ap
f (−1) is

invertible in Mod(Ap
f ), ωp has an essentially unique extension from M+(k;Q;S) to

M(k;Q;S). For V ∈ S, ωp(hV ) ⊗Ap
f
Q`

∼= ω`(hV ), and this property is preserved

under each extension. ¤
9The functor ω` commutes with tensor products, but it will not preserve the commutativity

constraints unless these have been modified as in (4.6).
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Remark 4.9. There is the following formula,

ωp(h(V, e,m)) = e(H∗(V̄ ,Ap
f (m)))

where, on the right, e denotes the map defined in (2.7d). For a motive X = h(V, e, m),
define λ`(X) to be the image of

H∗(V̄ ,Z`(m)) → H∗(V̄ ,Q`(m))
e→ H∗(V̄ ,Q`(m)).

Then, ωp(X) is the restricted direct product

ωp(X) =
∏

` 6=p

(ω`(X), λ`(X)).

Proposition 4.10. Let ∼ be numerical equivalence, and assume that it coincides
with `-adic homological equivalence on algebraic cycles with Q-coefficients (` 6= p) for
the varieties in S. Then, for all isomotives X,

(a) ωp(X) is a free Ap
f -module of finite rank;

(b) for all morphisms α of isomotives, ωp(α) has constant rank (see 2.4).

Proof. The hypotheses imply the Künneth projectors are algebraic for ` 6= p
(see 4.7), and when we use them to modify the commutativity constraints (see 4.6),
the resulting category M(k;Q;S) is Tannakian (Jannsen 1992). In any Tannakian
category over a field, there is a good notion of the rank of an object X (defined to
be the trace of the identity map on X; see Saavedra 1972, I 5.1.4), and for any fibre
functor ω with values in the vector spaces over a field and any morphism α : X → Y
in the category

dim(ω(X)) = rank(X)

rank(ω(α)) = rank X − rank Ker(α).

In particular, dim(ω(X)) and rank(ω(α)) are independent of ω. When we apply this
statement to the functors ω`, we obtain the theorem. ¤

The functor ωp : M(k;Q;S) →R(k;Ap
f ).

Theorem 4.11. The functor ω` has a canonical factorization through the forgetful
functor R(k;Q`) → Vec(Q`). Under the hypotheses of 4.10, the functor ωp has a
canonical factorization through the forgetful functor R(k;Ap

f ) → Mod(Ap
f ).

Proof. Let V ∈ S. When k is finitely generated over the prime field, there is a
canonical continuous action of Gal(ksep/k) on H i(V̄ ,Q`(m)), which therefore lies in
R(k;Q`). For any correspondence f ∈ Corrr(V, W ), the map

f : H i(V̄ ,Q`(m)) → H i+r(W̄ ,Q`(m + r))

respects the actions of Gal(ksep/k). Therefore, the functor

ω` : M(k;Q) → Vec(Q`)

has a canonical factorization through the forgetful functor R(k;Q`) → Vec(Q`). The
argument for ωp is similar.

For an arbitrary field k, any triple (V,W, f) consisting of varieties V,W ∈ S and
a correspondence f from V to W will have a model (V1,W1, f1) over some subfield k1

of k finitely generated over the prime field. The image of ω`(f1) : ω`(V1) → ω`(W1)
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under the functor R(k1;Q`) →R(k;Q`) is independent of the choice of k1, V1,W1, f1.
Thus, the statements hold also for k. ¤

5. Categories of (Integral) Motives

We fix a field k of characteristic exponent p, and a class S of smooth projective
varieties over k satisfying the condition (4.1) and such that

(*): for all V in S and all l (including p), numerical equivalence coincides with
l-adic homological equivalence for algebraic cycles with Q-coefficients.

As we noted in (4.7), this condition implies that the Künneth components of the diag-
onal are algebraic, and so we can define M+(k;Q) and M(k;Q) to be the categories
M+

num(k;Q;S) and Mnum(k;Q;S) in (4.6), i.e., with the modified commutativity
constraints. Recall that they are semisimple abelian Q-categories (Jannsen 1992).

Because ωl is a fibre functor on M(k;Q), the map

HomM(k;Q)(X, Y )Ql
→ HomR(k;Ql)(ωl(X), ωl(Y )) (6)

defined by ωl is injective (Deligne 1990, 2.13). It follows that it is also injective when
M and R are replaced by M+ and R+. We say that the l-adic Tate conjecture holds
for M(k;Q) or M+(k;Q) if the corresponding map is an isomorphism for l.

While (*) is conjectured to hold for all smooth projective varieties, it has been
proved for very few varieties (see Kleiman 1994 for a list). In the final subsection
of this section (Variants, p24), we list some alternative categories M+(k;Q) and
M(k;Q) to which our constructions apply, but which require no unproven conjectures.

Our construction of M(k;Z) is suggested by the following simple observation: for
a finitely generated Z-module M , M ∼= MẐ ×MAf

MQ; therefore, any category whose

Hom-sets are finitely generated Z-modules admits a fully faithful functor into the
fibre product of a Ẑ-category with a Q-category over a Af -category.

The category of effective motives M+(k;Z).

Definition 5.1. The category of effective motives M+(k;Z) over k is the full
subcategory of the fibre product category

R+(k; Ẑ)×R+(k;Af ) M+(k;Q)

whose objects (Xf , X0, xf ) are those for which the prime-to-p torsion subgroup of Xf

is finite. An effective motive X = (Xf , X0, xf ) is torsion if X0 = 0.

Thus, an effective motive X over k is a triple (Xf , X0, xf ) consisting of

(a) an object Xf = (Xl)l of R+(k; Ẑ) such that Xl is torsion-free for almost all l,
(b) an effective isomotive X0, and
(c) an isomorphism xf : (Xf )Q → ωf (X0) in R+(k;Af ).

A morphism of effective motives α : X → Y is a pair of morphisms

(αf : Xf → Yf , α0 : X0 → Y0)
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such that
Xf

αf−−−→ Yfyxf

yyf

ωf (X0)
ωf (α0)−−−−→ ωf (Y0)

commutes.
Note that to give (Xf , xf ) amounts to giving an Xl in R(k;Zl) for each l together

with homomorphisms xl : Xl → ωl(X0) that induce isomorphisms Xl → λl(X0) for
almost all l and isomorphisms (Xl)Q → ωl(X0) for all l. We usually regard xf as
a map Xf → ωf (X0) with torsion kernel. We use the notations: Xf = Xp × Xp,
Xp =

∏
l 6=p Xl, xf = xp × xp, αf = αp × αp.

Proposition 5.2. The category M+(k;Z) is abelian. A sequence

X → Y → Z

in M+(k;Z) is exact if and only if the sequences

X0 → Y0 → Z0 and Xf → Yf → Zf

are exact in M+(k;Q) and R+(k; Ẑ) respectively.

Proof. Both statements are true for the fibre product category, and so it suffices
to show that M+(k;Z) is closed under the formation of kernels and cokernels in
the larger category. Any subobject of an object in M+(k;Z) is also in M+(k;Z).
Therefore, M+(k;Z) is closed under the formation of kernels, and, in proving that
the cokernel of α is in M+(k;Z), we may assume that α is injective. Thus, given a
short exact sequence

0 → X
α→ Y → Z → 0

in the fibre product category with X, Y in M+(k;Z), we have to show that Z is in
M+(k;Z). As M+(k;Q) is semisimple, the sequence of M+(k;Q)-components splits.
But ωp is additive, and so

0 → ωp(X0)
ωp(α0)−−−−→ ωp(Y0) → ωp(Z0) → 0

is split-exact, which implies that

0 → λ`(X0) → λ`(Y0) → λ`(Z0) → 0

is split-exact for almost all `. In turn, this implies that

0 → X`
α`→ Y` → Z` → 0

is split-exact for almost all `. Thus, the torsion subgroup of Z` is zero for almost all
` and finite for all `, which shows that Z is in M+(k;Z). ¤

Corollary 5.3. Let X and X ′ be submotives of an effective motive Y , and let
X ∩X ′ = X ×Y X ′. If X0 = Y0, then the cokernel Z of X ∩X ′ → X ′ is torsion.

Proof. Because X 7→ X0 is exact, (X ×Y X ′ → X ′)0
∼= (X0 ×Y0 X ′

0 → X ′
0),

which is an isomorphism if X0 = Y0. ¤
Proposition 5.4. The category M+(k;Z) is noetherian (i.e., its objects are noe-

therian).
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Proof. Let

X(1) ⊂ X(2) ⊂ X(3) ⊂ · · ·
be a sequence of a submotives of an effective motive Y . Eventually, the sequence
X(1)0 ⊂ X(2)0 ⊂ · · · becomes stationary, equal, say, to X(∞)0 ⊂ Y0. Let X(∞)f =
Yf ×ωf (Y0) ωf (X(∞)0). Then X(∞) = (X(∞)f , X(∞)0, ·) is an effective motive, and
X(1) ⊂ X(2) ⊂ · · · is a sequence of submotives of X(∞) such that X(r)0 = X(∞)0

for r ≥ r1, some r1. Now X(∞)/X(r1) is torsion (5.3), and so the sequence X(1) ⊂
X(2) ⊂ · · · becomes stationary. ¤

Lemma 5.5. Given a morphism β : X0 → Y0 of effective isomotives, there exists
an integer m such that mβ is in the image of Hom(X, Y ) → Hom(X0, Y0).

Proof. We have to find an integer m and morphisms αl such that the diagrams

Xl
αl−−−→ Ylyxl

yyl

ωl(X0)
ωl(mβ)−−−−→ ωl(Y0)

commute. Because ωl(β) is the l-component of a homomorphism ωp(X0) → ωp(Y0),
it maps xl(Xl) into yl(Yl) for almost all l, and so there exists an integer m such that
mωl(β) maps xl(Xl) into yl(Yl) for all l. Choose an integer n that kills the torsion in
Yl for all l. Then the map

Xl
xl−→ xlXl

ωl(mnβ)−−−−−→ ylYl = Yl/torsion.

lifts to a map Xl → Yl. ¤
Proposition 5.6. For all X, Y in M+(k;Z), Hom(X, Y ) is a finitely generated

Z-module (modulo p-torsion when k is infinite and p 6= 1).

Proof. As Hom(X,Y ) ⊂ End(X ⊕ Y ), it suffices to show that all endomorphism
rings are finitely generated Z-modules (modulo . . . ). Because ωp is faithful, X 7→ Xf

is faithful. In particular, the map

α 7→ αf : End(X) → End(Xf )

is injective, and so the torsion subgroup of End(X) is contained in that of End(Xf ),
which is finite except possibly for the p-torsion when k is infinite and p 6= 1. The
kernel of the map

α 7→ α0 : End(X) → End(X0)

is obviously torsion, and so it remains to show that its image R is finitely generated
over Z. If β ∈ End(X0) is in R, then ωl(β) stabilizes the lattice xl(Xl) for all l. Thus,
the characteristic polynomial of β has coefficients in Z ⊂ Q. Let α1, . . . , αn be a basis
for End(X0) as a Q-vector space. According to Lemma 5.5, after possibly replacing
each αi with mαi for some integer m, we may suppose that each αi ∈ R. Because
M+(k;Q) is semisimple, End(X0) is a semisimple Q-algebra, and so the trace pairing
α, β 7→ TrEnd(X0)/Q(αβ) is nondegenerate. Therefore, there is a Q-basis β1, . . . , βn for
End(X0) dual to α1, . . . , αn. Now the usual argument shows that

R ⊂ Zβ1 + · · ·+ Zβn.
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Namely, let β ∈ R. Then β can be written uniquely as a linear combination β =∑
bjβj of the βj with coefficients bj ∈ Q, and we have to show that each bj ∈ Z. As

αi and β are in R, so also is β · αi, and so Tr(β · αi) ∈ Z. But

Tr(β · αi) = Tr(
∑

j

bjβjαi) =
∑

j

bj Tr(βjαi) = bi. ¤

Remark 5.7. (a) If Y has no p-torsion (i.e., Yp is torsion-free), then Hom(X,Y )
has no p-torsion and hence is finitely generated over Z.

(b) In nonzero characteristic, the effective motive X with X0 = 0 and Xf = Xp =
k (F acting as zero) has End(X) = k. The same phenomenon occurs with subgroup
schemes of abelian varieties: a supersingular elliptic curve has αp = Spec k[T ]/(T p)
as a subgroup, and End(αp) = k.

Proposition 5.8. The functor X 7→ X0 : M+(F;Z) → M+(F;Q) defines an
equivalence of categories

M+(F;Z)Q →M+(F;Q).

Proof. Because the kernel of

α 7→ α0 : Hom(X, Y ) → Hom(X0, Y0)

is torsion, the map

r ⊗ α 7→ rα0 : Q⊗ Hom(X, Y ) → Hom(X0, Y0)

is injective, and Lemma 5.5 shows that it is surjective. Thus, the functor is faithful
and full. Given an X in M+(k;Q), clearly there exists an Xp in R+(k;Zp) such that
(Xp)Q ≈ ωp(X). Using this, one sees that X 7→ X0 is essentially surjective. ¤

Remark 5.9. The torsion effective motives form a thick subcategory of M+(k;Z)
and Proposition 5.8 shows that the functor

X 7→ X0 : M+(k;Z) →M+(k;Q)

realizes M+(k;Q) as the quotient of M+(k;Z) by its subcategory of torsion objects.

Proposition 5.10. The functor

M+(k;Z)Zl
→R+(k;Zl)

defined by X 7→ Xl is faithful; it is full if and only if the l-adic Tate conjecture holds
for M+(k;Ql).

Proof. We first show that

z ⊗ α 7→ zαl : Zl ⊗Z HomM+(k;Z)(X,Y ) → HomR+(k;Zl)(Xl, Yl)

is injective. The torsion subgroup of Zl⊗HomM+(k;Z)(X,Y ) is equal to the l-primary
component of the torsion subgroup of HomM+(k;Z)(X, Y ), and this maps injectively
to HomR+(k;Zl)(Xl, Yl) (because the functor X 7→ Xf is faithful). Thus, the kernel of
z ⊗ α 7→ zαl is torsion-free. Consider the diagram

Zl ⊗Z Hom(X,Y ) −−−→ HomR+(k;Zl)(Xl, Yl)y
y

Ql ⊗Q Hom(X0, Y0) −−−→ HomR+(k;Ql)(ωl(X0), ωl(Y0)).
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The left vertical arrow is obtained from

Hom(X, Y ) → Hom(X0, Y0)

by tensoring with Zl, and hence has torsion kernel (5.8). The bottom arrow is injective
(6). Hence, the kernel of the top horizontal arrow is torsion, but we have already
shown it to be torsion-free; it is therefore zero.

We next show that the cokernel of z ⊗ α 7→ zαl is torsion-free. Suppose that
β ∈ HomR+(k;Zl)(Xl, Yl) is such that lmβ = zαl for some m ∈ N, α ∈ Hom(X,Y ), and
z ∈ Zl. Because z ⊗ α 7→ zαl is (obviously) surjective on torsion, we may suppose
that z is not divisible by l. Then αl is divisible by lm in Hom(Xl, Yl). For l′ 6= l, lm

is a unit in Zl′ , and so αl′ is also divisible by lm. Now α′, with

α′0 = l−mα0, α′l = z−1β, α′l′ = l−mαl′ for l′ 6= l

is a morphism X → Y such that zα′l = β.
Finally, we assume the l-adic Tate conjecture for M+(k;Q), and we prove that

the cokernel of z ⊗ α 7→ zαl is torsion. For this, it suffices to prove that

Ql ⊗Z Hom(X,Y ) → Q⊗Z HomR+(k;Zl)(Xl, Yl)

is surjective. But this follows from the isomorphisms

Q⊗Z Hom(X, Y )
(5.8)∼= Hom(X0, Y0),

and

Ql ⊗Q Hom(X0, Y0)
Tate∼= HomR+(k;Ql)(ωl(X0), ωl(Y0)) ∼= Q⊗Z HomR+(k;Zl)(Xl, Yl).

¤
Proposition 5.11. The category

M+(k;Z) = lim−→
k′
M+(k′;Z)

where k′ runs over the subfields of k finitely generated over the prime field.

Proof. The statement is true for each of the categoriesM+(k;Q), R+(k; Ẑ), and
R+(k;Af ), and it follows easily for their fibre product and its subcategory M+(k;Z).

¤
The category of motives M(k;Z).

Definition 5.12. The category of motives M(k;Z) is the full subcategory of

R(k; Ẑ)×R(k;Af ) M(k;Q)

whose objects (Xf , X0, xf ) are those for which the prime-to-p torsion subgroup of Xf

is finite.

The results in the previous subsection hold mutandis mutatis for M(k;Z) — in
particular, M(k;Z) is a noetherian abelian category whose quotient by its torsion
subcategory is M(k;Q).

Proposition 5.13. The obvious functor M+(k;Z) → M(k;Z) is faithful, and
it is full on torsion-free objects (on all objects when k has characteristic zero). It
realizes M(k;Z) as the category obtained from M+(k;Z) by inverting L.
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Proof. Straightforward. ¤

Remark 5.14. (a) When k = Q there is a canonical functor from M(k;Z) to the
category of systems of realizations over Q with integer coefficients defined in Deligne
1989, 1.23.

(b) Let k be a subfield of C, and let M(k;Q) be the category based on a class
S satisfying (4.1) but using the “motivated” classes as correspondences (André 1996,
4.2). In this case, our definition of M(k;Z) is equivalent to that of André (ibid. 8.1).

The tensor structures on M+(k;Z) and M(k;Z). Because we have mod-

ified the commutativity constraint, M(k;Q)
ωl→ Rl(k;Ql) and its composite with

M+(k;Q) →M(k;Q) are tensor functors. For two effective motives, X = ((Xl), X0, (xl))
and Y = ((Yl), Y0, (yl)) we define

X ⊗ Y = ((Xl ⊗ Yl), X0 ⊗ Y0, (xl ⊗ yl)).

With this structure, M+(k;Z) and M(k;Z) become abelian tensor Z-categories.
Moreover, it follows from (5.2) that ⊗ is right exact.

Lemma 5.15. The category M(k;Z) has internal Homs.

Proof. The category R(k;Zl) has an internal Homs — for l = p see (1.8)
and for l 6= p this is obvious — and the functors ωl : M(k;Q) → R(k;Zp) pre-
serve internal Homs (Saavedra 1972, I 4.3.1). Let X and Y be motives over k.
The isomorphisms xl : (Xl)Q → ωl(X0) and yl : (Yl)Q → ωl(Y0) define isomorphisms
(xl, yl) : Hom((Xl)Q, (Yl)Q) → ωl(Hom(X0, Y0)), and

Hom(X, Y )
df
= ((Hom(Xl, Yl)l, Hom(X0, Y0), (xl, yl)l)

is an internal Hom for X and Y . ¤

Artin motives. Fix a separable algebraic closure k̄ of k, and let Γ = Gal(k̄/k).
The category of Artin isomotives is the full subcategory MArtin(k;Q) of M+(k;Q)
of objects of the form X = hV with V a variety of dimension 0. For such an X,
define π0(X) = π0(V̄ ) — it is a finite set with a continuous action of Γ. The functor
H : X 7→ Qπ0(X) =df Map(π0(X),Q) defines an equivalence of MArtin(k;Q) with the
category R(Γ;Q) of continuous representations of Γ on finite-dimensional Q-vector
spaces (cf. Deligne and Milne 1982, 6.17). Hence, MArtin(k;Q) is a Tannakian
category.

We define the category of Artin motives to be the full subcategory MArtin(k;Z)
of M+(k;Z) of objects X such that X0 is an Artin isomotive and (when p 6= 1) FXp

is bijective.
Recall (Saavedra 1972, VI 3.1.2; Demazure 1972, p. 69) that there is a fully faithful

functor

γ : R(Γ;Zp) → Crys+(kpf) = R+(k;Zp) (7)

whose essential image consists of the crystals with bijective F . Let X be an Artin
motive. When p 6= 1, we choose X ′

p ∈ R(Γ;Zp) so that γ(X ′
p) = Xp, and we let

ω′p(X0) = (X ′
p)Q; otherwise we set X ′

p = 0 = ω′p(X0). Define H(X) so that the right
hand square in the following diagram is cartesian:
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0 −−−→ H(X)tors −−−→ H(X) −−−→ H(X0)y∼=
y

y
0 −−−→ Xp

tors ×X ′
ptors −−−→ Xp ×X ′

p −−−→ ωp(X0)× ω′p(X0)

The diagram is exact and commutative, and H(X) is a finitely generated Z-module
with a continuous action of Γ (discrete topology on H(X)).

Proposition 5.16. The functor H : MArtin(k;Z) →R(Γ;Z) is an equivalence of
tensor categories.

Proof. The functor H : MArtin(k;Q) → R(Γ;Q) defines an equivalence of cate-
gories

R(Γ;Z)×R(Γ;Q) MArtin(k;Q) → R(Γ;Z)×R(Γ;Q) R(Γ;Q) = R(Γ;Z)

and γ defines a full faithful functor

R(Γ;Z)×R(Γ;Q) MArtin(k;Q) →R(k; Ẑ)×R(k;Af ) MArtin(k;Q)

whose essential image is MArtin(k;Z). It is clear that the tensor products correspond.
¤

Rationally decomposed one-motives. Recall that a one-motive is a triple
(G,X, u) with G a semi-abelian variety, X a finitely generated free Z-module on
which Γ acts continuously, and u a Γ-homomorphism X → G(ksep). A one-motive

X
u−→ G is said to be decomposed if u = 0 and the extension

0 → T → G → A → 0 (T a torus, A an abelian variety)

splits, and it is rationally decomposed if it is isogenous to a decomposed one-motive.
Over a finite field, every one-motive is rationally decomposed. The one-motives form
an additive category M1(k) with the decomposed and rationally decomposed one-
motives as additive subcategories Md

1(k) ⊂ Mrd
1 (k) ⊂M1(k).

Choose a quasi-inverse F : R(Γ;Z) →MArtin(k;Z) to the functor H of (5.16) .

Proposition 5.17. For L = (X
0−→ T×A) in Md

1(k), define hL to be the effective
motive F (X) ⊕ h1

ZA ⊕ F (X∗(T )(1)). Then h extends to a functor h : Mrd
1 (k) →

M+(k;Z). (Here h1
ZA denotes h1A endowed with the Z-structure provided by the

maps H1(A,Zl) → H1(A,Ql).)

Proof. Let L = (u : X → G) be a rationally decomposed one-motive, and choose
an isogeny α : L → L′ from L to a decomposed one-motive L′. For definiteness, form
L′ by taking the quotient G/uX and then pushing out the extension 0 → T1 →
G/uX → A1 → 0 by n : T1 → T1 where n is the order of the extension in Ext1(A1, T1).
Then α induces isomorphisms ωp(L) ∼= ωp(L′) and ωp(L) ∼= ωp(L

′). We define hL to
be the isomotive (hL′)0 equipped with the structures

λpL → ωp(L) ∼= ωp(L′) ∼= ωp((hL′)0)

λpL → ωp(L) ∼= ωp(L
′) ∼= ωp((hL′)0).

Then h can be made into a functor in an obvious way. ¤
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Proposition 5.18. The functor h : Mrd
1 (k) →M+(k;Z) is fully faithful (except

possibly when k has characteristic 2 and is not algebraic over F2).

Proof. It suffices to prove this in the case that k is finitely generated over the
prime field, in which case it is a consequence of the following theorem of Tate (1966a),
Zarhin (1975), Faltings (Faltings and Wüstholz 1984), and de Jong (1998): for abelian
varieties A and B over k, the map Homk(A,B)Zl

→ HomR(k;Zl)(TlA, TlB) is bijective
(except possibly when k has characteristic 2 . . . ). ¤

Remark 5.19. Propositions 5.17 and 5.18 show that, for any two rationally de-
composed one-motives L, M , there is an injective homomorphism

Ext1
M1(k)(L,M) → Ext1

M+(k;Z)(hL, hM).

This map will not in general be surjective because an extension of two W [F ]-modules
for which there exist maps V with FV = p = V F need not be similarly endowed. In
fact, the formula Milne 1968, Theorem 3, for the order of the Ext1 of abelian varieties
in the category of abelian varieties differs for the formula for the order computed in
the category of effective motives in Theorem 10.1 below.

The categories M(Fq;Z). Classes S(k) attached to each k ⊂ F are compatible
if

(a) for a finite extension k ⊂ k′, the functor V 7→ V/k′ sends S(k) into S(k′), and
the functor (V → Spec k′) 7→ (V → Spec k′ → Spec k) sends S(k′) into S(k);

(b) for any k ⊂ F, every V ∈ S(k) has a model in S(k0) for some finite k0 ⊂ k.

For a motive X = h(V, e, m) over Fq, the Frobenius endomorphism of V/Fq defines
a canonical Frobenius element πX ∈ End(X). For a motive X over F, each model
X1/Fpn of X defines a pair (π, n) with π equal to πX1 regarded as an endomorphism
of X. Any two pairs (π, n), (π′, n′) arising in this way are equivalent in the sense that
πn′m = π′nm for some integer m > 0. The germ of a Frobenius endomorphism of X
is the equivalence class of pairs containing the pair arising from one (hence, every)
model of X over a finite field.

Proposition 5.20. Assume the Tate conjecture holds for M(F;Q). Then

X 7→ X/F : M(Fpn ;Z) →M(F;Z)

defines an equivalence of M(Fpn ;Z) with the category of pairs (X, π) consisting of a
motive X in M(F;Z) and an endomorphism π of X such that (π, n) represents πX .
A similar statement holds for effective motives.

Proof. Easy consequence of the similar statement for isomotives (Milne 1994,
3.5). ¤

Remarks on the definition of M(k;Z).

5.21. As André notes (1996, 8.1), in view of the counterexamples of Atiyah and
Hirzebruch (1962) to the original Hodge conjecture, it would be “peu judicieux” to
define a category of integral motives by using algebraic cycles with integer coefficients
in Grothendieck’s construction, in other words, with

Hom(11, hV (r)) = Zr
num(V ).

There is also the difficulty of knowing what to replace the pseudo-abelian hull with.
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With our definitions, a smooth projective variety V defines a complex of motives,
rather than a motive (see an article in preparation), but we can make the ad hoc
definition: hZV =

⊕
r hr

ZV where hr
ZV is the isomotive hrV with the Z-structure

provided by the maps Hr(V,Zl) → Hr(V,Ql). If V has torsion-free cohomology, then

Hom(11, hV (r)) = Zr
num(V )Q ∩

∏
lH

2r(V,Zl(r))).

There is a map from Zr
num(V ) to this group, but it will not always be onto (p12).

5.22. J-M. Fontaine has pointed out to us that there is an incompatibility between
our definitions in characteristic 0 and in characteristic p. In the first case, we use
the étale cohomology to define the integral structure at every prime, whereas in
characteristic p we use the crystalline cohomology at the prime p. However, the
crystalline cohomology in characteristic p corresponds to the de Rham cohomology
in characteristic zero, and the integral structures on the de Rham cohomology and
the p-adic étale cohomology do not correspond. For example, in the case of good
reduction, it is known that the isomorphism

BdR ⊗K H∗
dR(X/K) ∼= BdR ⊗Qp H∗(XK̄ ,Qp)

(e.g., Fontaine and Illusie 1993, 3.2.2) does not respect the integral structures. We
do not know how to resolve this problem (or even whether it is resolvable).

Variants. We list some alternative categories M(k;Q) to which our construction
applies.

5.23. Let S consist of the smooth projective varieties over k for which the Künneth
projectors are algebraic. This class satisfies the condition 4.1, includes all abelian
varieties and surfaces, and includes all smooth projective varieties when k is finite. Let
Ml(k;Q) and M(k;Q) be the categories of motives based on S using respectively the
algebraic classes modulo l-adic homomological equivalence and numerical equivalence
as the correspondences. There is a tensor functor

Ml(k) →M(k)

which, according to André and Kahn 2002, has a tensor section sl. Therefore, ωl ◦ sl

is a fibre functor on M(k;Q). Moreover, sl can be chosen so that (ωl ◦ sl)(hV ) =
H∗(V,Ql). If, as seems likely, sl can be chosen10 so that the action of Zdim V

num (V ×V ) ⊂
End(hV ) on (ωl ◦sl)(hV ) preserves the image of H∗(V,Zl) in H∗(V,Ql) for all V with
torsion-free cohomology, then the ωl◦sl for l 6= p are the l-components of an Ap

f -valued

fibre functor on M(k;Q), and we can construct M+(k;Z) and M(k;Z) as above.

5.24. Let S consist of all smooth projective varieties over k. For any V in S, the
Künneth projectors are almost algebraic (in the sense of Tate 1994, p76). Therefore,
the discussion in (5.23) applies to the category M(k;Q) defined using numerical
equivalence classes of almost algebraic classes rather than algebraic classes.

5.25. Recall that a Lefschetz class modulo ∼ on a variety V is an element of the
Q-subalgebra of ⊕Zr

∼(V ) generated by divisor classes. Let S be the smallest class of
varieties over k satisfying (4.1) and including the abelian varieties. Then it is possible
to define a category M(k;Q) of isomotives based on S using the Lefschetz classes

10According to André (email 25.03.02) it does not appear possible to prove this by the methods
of their paper.
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modulo numerical equivalence as correspondences; moreover, M(k;Q) is a semisimple
Tannakian category over Q and there exist canonical functors ωl (Milne 1999, §1).

5.26. For any field k of characteristic zero, define M(k;Q) to be the category of
motives based on some class S satisfying (4.1) and using the absolute Hodge classes
as correspondences (Deligne and Milne 1982, §6).

5.27. It is possible to construct abstractly Tannakian categories endowed with
adèlic and p-adic fibre functors having most of the properties conjectured ofMnum(F;Q)
including the Tate conjecture. For example, let (P, ωp, ωp, ω∞) be a system as in 6.2,
6.3 of Milne 2003. Thus, P is a P -gerbe over Spec(Q) where P is the Weil-number
torus. Then the category of representations of P is a semisimple TannakianQ-category
with fibre functors ωp and ωp, and it can be used to build categories M+(F;Z) and
M(F;Z) . There exist exact tensor functors from the categories in (5.25) to these cat-
egories, and so an abelian variety over F defines objects in M+(F;Z) and M(F;Z) .

6. Tannakian Properties

In Saavedra 1972, Tannakian categories are defined only over a base field. We
adapt his definition (ibid. III 1.1.1) of an ind-Tannakian category to introduce the
notion of a Tannakian category over an arbitrary noetherian ring. Throughout this
section, R is such a ring.

Some linear algebra. Let C be an R-linear category, and let R′ be a commuta-
tive R-algebra. When C has arbitrary direct limits, Saavedra (1972, I 1.5) constructs
an R′-linear category C(R′) by “extension of the base ring”. We adapt his construction
to the case that R′ is a finite R-algebra and C has finite direct limits (for example, C
is abelian).

Thus, let C be an abelian R-linear category. Let R′ be a finite R-algebra, and
define C(R′) to be the category whose objects are pairs (X, iX) comprising an object
X of C and a homomorphism iX : R′ → EndR(X) of R-algebras (Saavedra 1972, II
1.5).

6.1. For any finitely generated R-module M , there is a functor (external tensor
product)

X 7→ M ⊗R X : C → C
and an isomorphism (natural in X and Y )

HomC(M ⊗R X, Y ) → HomR(M, HomC(X,Y )). (8)

For M = Rn, set M ⊗R X = Xn, and extend this definition to an arbitrary M by
choosing a free left resolution of M (cf. Saavedra 1972, II 1.5.1.1).

6.2. The category C(R′) is an abelian R′-linear category. A sequence

(X ′, iX′) → (X, iX) → (X ′′, iX′′)

in C(R′) is exact if and only if

X ′ → X → X ′′
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is exact in C. The functor jR′/R : C → C(R′) sending X to R′⊗R X (with its canonical
R′-structure) is left adjoint to the functor jR′/R : C(R′) → C sending (X, iX) to X
(Saavedra 1972, II 1.5.2). For any X,Y ∈ ob(C),

HomC(R′)(j
R′/RX, jR′/RY ) ∼= HomC(X, Y )⊗R R′, (9)

and so jR′/R realizes CR′ as a full subcategory of C(R′).

6.3. When R′ is a flat R-algebra, the functor jR′/R : C → C(R′) is exact.

6.4. Let C be an abelian tensor category over R such that ⊗ is right exact. The
category C(R′) has a canonical structure of a tensor category over R′ for which jR′/R

and jR′/R are tensor functors; moreover ⊗ on C(R′) is right exact (Saavedra 1972, II
1.5.4). Let D be an abelian tensor category over R′ for which ⊗ is right exact. The
map u 7→ u ◦ jR′/R defines an equivalence of the category of right exact R′-linear
tensor functors C(R′) → D with the category of right exact R-linear tensor functors

C → D. When R′ is a flat R-algebra, u 7→ u ◦ jR′/R carries exact functors to exact
functors. (Ibid. II 1.5.3, 1.5.4.) (But it is not known that u ◦ jR′/R exact implies
u exact, even when R′ is faithfully flat over R, except in the case that k and k′ are
fields, when the proof requires the main theorem of Deligne 1990).

Definitions. Let C be an abelian tensor R-category C. Recall (Saavedra 1972, II
4.3.1) that an object X is a ⊗-generator of C if every object of C is a subquotient of a
direct sum of objects X⊗m. This definition extends easily to families of objects, and
it is clear that C admits a ⊗-generator if it admits a finite family of ⊗-generators.

Definition 6.5. (a) A neutral Tannakian category over R is a tensor cate-
gory over R that is tensor equivalent to Rep(G; R) for some flat affine group
scheme G over R.

(b) An algebraic Tannakian category over R is an abelian tensor category C over
R such that

(i) C has internal Homs (in the sense of Saavedra 1972, I 3.1.1),
(ii) C admits a ⊗-generator,
(iii) for some faithfully flat finite commutative R-algebra R′, C(R′) is a neu-

tral Tannakian category.
(c) A Tannakian category over R is an abelian tensor category C over R that is

a filtered union of algebraic Tannakian categories in which the inclusions are
exact tensor functors.

Let C and R′ be as in (b), and choose an R′-valued fibre functor ω on C(R′). Then

HomC(X, Y )⊗R R′ (9)∼= HomC(R′)(j
R′/RX, jR′/RY ) ⊂ HomR′(ω(X), ω(Y )),

and so HomC(X, Y ) is a finitely generated R-module. Thus, the Homs in any Tan-
nakian category over R are finitely generated R-modules.

Remark 6.6. In the case that R is a field k, we compare our definitions to those
in Saavedra 1972 (corrected by the addition of the condition that End(11) = k — see
Deligne 1990; Deligne and Milne 1982, 3.15).
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(a) A tensor category over k satisfies (6.5a) if and only if it is a neutral Tannakian
category in the sense of Saavedra 1972, III 3.2.1. This follows from a basic theorem
in the theory (e.g., Deligne and Milne 1982, 2.11, 2.19).

(b) A tensor category over k satisfies (6.5b) if and only if it is an algebraic Tan-
nakian category in the sense of Saavedra 1972, III 3.3.1. This follows easily from ibid.
III 3.3 (see also Deligne 1990, 6.20).

(c) A Tannakian category over k in the sense of Saavedra 1972, III 3.2.1, is ob-
viously a filtered union of algebraic Tannakian subcategories, and so satisfies (6.5c).
Conversely, a category satisfying (6.5c) lacks only a fibre functor to be Tannakian in
the sense of Saavedra, but such a functor can be shown to exist using Zorn’s lemma
(or, in characteristic zero, by applying Deligne 1990, 7.1).

A criterion to be a Tannakian category over a Dedekind domain. Let C
be an abelian tensor category over a noetherian ring R. When internal Homs exist
in C, we let X∨ = Hom(X, 11). There is a canonical morphism X → X∨∨, and X is
said to be reflexive when this morphism is an isomorphism.

Now let R be a Dedekind domain. When G is an affine group scheme over R,
an object X of Rep(G; R) is reflexive if and only if its underlying R-module is pro-
jective. Serre (1968, 2.2) proves that every object in Rep(G; R) is a quotient of a
representation of G on a projective R-module. Thus every object in Rep(G; R) is a
quotient of a reflexive object. This property can be used to characterize Tannakian
categories over Dedekind domains.

Proposition 6.7. Let C be an abelian tensor category over a Dedekind domain
R such that

(a) ⊗ is right exact,
(b) internal Homs exist, and
(c) every object of C is a quotient of a reflexive object.

If there exists an R′-valued fibre functor on C(R′) for some Dedekind domain R′ finite
and flat over R, then C is Tannakian.

Proof. Let ω : C(R′) → Mod(R′) be such a fibre functor. To prove that C is
Tannakian, we shall show that the functor Aut⊗(ω) of R′-algebras is representable by
a flat affine group scheme G over R′, and that ω defines an equivalence of R′-tensor
categories C(R′) → Rep(G; R′).

When R′ = R, this is proved in Saavedra 1972, II 4.1. In detail: ibid. II 4.1.1
shows that End⊗(ω) is represented by a flat affine monoid scheme G over R and
that ω defines an equivalence of R-linear tensor categories C → Rep(G; R); but
End⊗(ω) ∼= End⊗(ω0) where ω0 is the restriction of ω to the full subcategory of
reflexive objects; this last category is rigid, and so every endomorphism of ω0 is an
automorphism (ibid. I 5.2.3), which implies that G is a group scheme.

According to (6.2) and (6.4), C(R′) is an abelian tensor category over R′. Thus,
the general case will follow from the neutral case once we show that C(R′) inherits
the property that every object is a quotient of a reflexive object. Let (Y, iY ) be an
object of C(R′), and let q : X → Y express Y as a quotient of a reflexive object. The
composite

jR′/RX
jR′/R(q)−−−−−→ jR′/RY → (Y, iY )
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is again surjective, and jR′/RX is reflexive because X is. ¤

Example 6.8. For ` 6= p, the category R(k;Z`) is Tannakian over Z` (apply 1.5).

Example 6.9. (a) Let k be a finite field, and let ω be the forgetful functor
R(k;Zp) → Mod(W (k)). For (X, iX) inR(k;Zp)(W (k)), there are two actions of W (k)
on ω(X), namely, that coming from the action iX of W (k) on X and that coming
from the action of W (k) on ω, and we define ω′(X, iX) = W (k) ⊗W (k)⊗ZpW (k) ω(X).

Then ω′ is exact. Indeed, W (k) ⊗Zp W (k) is isomorphic to a product of copies of
W (k) indexed by the elements of Gal(k/Fp), and the map W (k) ⊗Zp W (k) → W (k)
corresponds to the projection to the “id”-component. Therefore ω′ is a W (k)-valued
fibre functor on R(k;Zp)(W (k)), and R(k;Zp) is Tannakian (apply 1.8(b)).

(b) When k has nonzero characteristic p and is infinite, then R(k;Zp) is not
Tannakian (at least according to our definition, which may be too strict), because
there exist objects X for which End(X) is not a finitely generated Zp-module.

Existence of fibre functors. We refer to Deligne 1989, §6, for the notion of the
fundamental group of a Tannakian category T : it is an affine group scheme π(T ) in
Ind T acting on the objects of T ; each fibre functor ω carries π(T ) to Aut⊗(ω) and
the action of π(T ) on an object X to the action of Aut⊗(ω) to ω(X). The Tannakian
category T is algebraic if and only if π(T ) is algebraic (i.e., has algebraic realizations;
see Saavedra 1972, 3.3). When π(T ) is commutative, it lies in Ind T 0 where T 0 is the
full subcategory of trivial objects. Since Hom(11,−) : T 0 → Vec(k) is an equivalence
of categories, in this case π(T ) can be identified with an affine group scheme in the
usual sense.

Proposition 6.10. Let M be a Tannakian category over Q whose fundamental
group T is an algebraic group of multiplicative type, and let ωp be a Q-linear tensor
functor M → Mod(Ap

f ) such that ω` =df ωp ⊗Ap
f
Q` is a Q`-valued fibre functor

for all ` 6= p. Then there exists a finite field extension L of Q, a fibre functor
ω : M→ Vec(L), and an isomorphism ω ⊗L Ap

f,L → ωp ⊗Ap
f
Ap

f,L of tensor functors

M→ Mod(Ap
f,L).

Proof. The hypotheses imply that ωp(X) is a free Ap
f -module for all X (see the

proof of 4.10).
Assume first that T is split over Q and that there exists a fibre functor ω : M→

Vec(Q). We show in this case that there is an isomorphism ω ⊗Q Ap
f → ωp. We use

ω to identify M with Rep(T ;Q). Let Ξ be a basis for the group X∗(T ) of characters
of T , and let X be the representation X =

⊕
λ∈Ξ Xλ where Xλ is a one-dimensional

representation of T with character λ. Choose a graded lattice Λ in X, i.e., a Z-lattice
such that Λ =

⊕
λ∈Ξ Λ∩Xλ. Likewise, choose a graded lattice Λf in ωp(X). Then

Λ` =df Λf ⊗Ap
f
Z` is a graded lattice in ω`(X). As T is a split torus, H1(Q`, T ) = 0,

and so the theory of Tannakian categories shows that there exists an isomorphism of
fibre functors α` : ω ⊗Q Q` → ω` which is uniquely determined up to an element of
T (Q`). We may choose α` to map Λ ⊗Z Z` onto Λ`. Now the family (α`) defines an
isomorphism ω ⊗Q Ap

f → ωp.
In the general case, there will exist a finite field extension L of Q such that T

splits over L and such that there exists a fibre functor ω : M → Vec(L) (Deligne
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1990, 6.20). Then ω defines a fibre functor M(L) → Vec(L) (Deligne and Milne
1982, 3.11), and the previous argument applied to M(L) proves the general case of
the proposition. ¤

Example 6.11. Let M = Mnum(F;Q;S) be the Tannakian category over Q
defined by some set S of varieties over F satisfying (4.1) and the condition (*) of
§5, and assume that M has a ⊗-generator of the form hV ⊕ Q(1) for some smooth
projective variety V over F. Then the fundamental group of M is of multiplicative
type if V and its powers satisfy the Tate conjecture.

As M is semisimple, the fundamental group is reductive, and so it suffices to show
that it is commutative. We choose a prime ` 6= p and show that G =df ω`(π(M)) ∼=
Aut⊗(ω`) is commutative. Because of our assumption on V , the algebraic cohomology
classes on the powers of V are the Tate classes, and so G is the group of automorphisms
of the Q`-vector space ω`(hV ⊕Q(1)) = (

⊕
r Hr(V,Q`))⊕Q`(1) fixing the Tate classes

on all powers of V . Let π be the Frobenius endomorphism of (
⊕

r Hr(V,Q`))⊕Q`(1)
defined by some model of V over a finite subfield of F. Then the Tate classes on the
powers of V are (by definition) the cohomology classes in H2r(V m,Q`(r)), m, r ∈ N,
fixed by some power of π. Let Gn be the Zariski closure of the subgroup generated
by πn. Then Gn ⊃ Gn′ if n|n′, and the groups Gn become constant for n sufficiently
divisible. According to Deligne 1982, 3.1c, G equals Gn for n sufficiently divisible. In
particular, it is the Zariski closure of a commutative subgroup of GL(ω`(hV ⊕Q(1))),
which implies that it is commutative.

The category M(Fq;Z). Let S be a class of smooth projective varieties over Fq

satisfying (4.1) and the condition (*) in §5, and let M(Fq;Z) be the corresponding
category of motives (5.1). Recall (5.15) that M(Fq;Z) has internal Homs.

Lemma 6.12. (a) An object in M(Fq;Z) is reflexive if and only if it is torsion-free.
(b) Every object X in M(Fq;Z) is a quotient of a reflexive object.

Proof. (a) This is obvious from (1.5a) and (1.8a).
(b) When X is torsion with trivial Γ-action, the proofs of (1.5b) and (1.8b) show

that X is a quotient of direct sum of Lefschetz motives L⊗n. Since X will decompose
into the direct sum of such a torsion motive and a torsion-free motive over a finite
extension Fq′ of Fq (see 1.4 and 1.7), to complete the proof it remains to define
a suitable “norm” map Π : M(Fq′ ;Z) → M(Fq;Z) (cf. the proof of 1.5b), and
for this it suffices to define compatible Π’s for M(Fq′ ;Q) and for the realization

categories. For R(Fq′ ;Z`) (` 6= p), we take Π to be Ind
Gal(F/Fq′ )
Gal(F/Fq) . For an F -crystal

Λ over Fq′ , descent theory shows that ⊕τ∈Gal(Fq′/Fq)τΛ arises from an F -crystal over

Fq. This leads to a functor Π : R(Fq′ ;Zp) → R(Fq;Zp). For a V ∈ S(Fq′), the
composite V → SpecFq′ → SpecFq lies in S(Fq) (by the compatibility condition).
This leads to a functor Π : CV0

num(Fq′) → CV0
num(Fq), which extends to a functor

Π : M(Fq′ ;Q) → M(Fq;Q). That these functors are compatible follows from the
basic properties of étale and crystalline cohomology. ¤

Theorem 6.13. The category M(Fq;Z) is Tannakian provided the varieties in S
satisfy the Tate conjecture.

Proof. We replace S(Fq) with a subset S generated by a finite set of varieties,
and prove that the resulting category M = M(Fq;Z;S) is an algebraic Tannakian
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category. This will follow from Proposition 6.7 once we have shown that M(R) admits
an R-valued fibre functor for some Dedekind domain R finite and flat over Z.

Because of (6.11), we can apply Proposition 6.10 to M(F;Z;S), which shows that
there exists a finite field extension L of Q, a fibre functor ω0 : M(F;Z;S) → Vec(L),
and an isomorphism ξp : L⊗Q ωp → Ap

f ⊗Q ω0. When composed with M(Fq;Z;S) →
M(F;Z;S), ω0 becomes a fibre functor on M; moreover, ξ becomes an isomorphism
of functors on M.

Let ωp be the functor X 7→ Qp ⊗Zp Xp (regarded as a B(Fq)-module). Then ωp

and Qp ⊗Q ω0 are both fibre functors on M, and so become isomorphic over a finite
extension of B(Fq) (Deligne 1990, 1.10, 6.20). Therefore, after possibly extending L,
we may suppose that there exists an isomorphism ξp : L ⊗Q ωp → Qp ⊗Q ω0. Let R

be the integral closure of Z in L and let R̂ be its profinite completion.
For X0 in M(L), there are two actions of L on ω0(X0), namely, that coming from

the action of L on ω0 and that coming from the action of L on X0. Define

ω1(X0) = L⊗L⊗QL ω0(X0).

Then ω1 is an L-valued fibre functor on M(L) (Deligne and Milne 1982, 3.11).
For (X, iX) in M(R), set

ω2(X) = (Xp, ω′(Xp))

where ω′ is the functor defined in (6.9a). Then ω2 is an R̂-valued fibre functor on
M(R), and ξ defines an isomorphism L⊗Q ω2 → Af ⊗Q ω1.

Thus, we have defined an exact tensor functor

X 7→ (ω2(X), ω1(X0), ξ) : M(R) → Modf(R̂)×Modf(Af⊗R) Modf(L).

Its image lies in the full subcategory of triples whose Modf(R̂)-component has finite
torsion, which can be identified with the category Modf(R). It is therefore an R-
valued fibre functor on M(Fq;Z)(R). ¤

Remark 6.14. (a) If Mnum(F;Q;S) has tensor generator of the form hA⊕Q(1)
with A an abelian variety, then its fundamental group is of multiplicative type because
it is contained in the Lefschetz group of A (see Milne 1999, especially §7). Therefore
M(Fq;Z;S) is Tannakian if the connected varieties in S are products of abelian
varieties, projective varieties, and varieties of dimension zero (whether or not they
satisfy the Tate conjecture).

(b) We expect that Proposition 6.10 holds more generally for Tannakian categories
whose fundamental groups are reductive (not necessarily connected). If so, Theorem
6.13 holds without the Tate conjecture condition, and, moreover, M(k;Z[1

p
];S) will

always be Tannakian.

Remark 6.15. If M(k;Q) is as in 5.25 or 5.27 and k is finite, or as in 5.26, then
M(k;Z) is Tannakian. In the first two cases, this can be proved as in Theorem 6.13,
and in the third case, there is a Betti fibre functor on M(k;Z).

Stacks of categories of motives. We refer the reader to Saavedra 1972, I 4.5,
for the notion of tensor fibred category p : M → E . Briefly, it is a fibred category
p : M → E endowed with an E-bifunctor ⊗ : M×E M → M and compatible asso-
ciativity and commutativity constraints for which there exists a cartesian section to
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p giving identity objects in each fibre; thus, for each E in E , the fibre ME is a tensor
category. When E is endowed with a topology (in the sense of Grothendieck) and
p : M → E is a stack, we call it a stack of tensor categories. When the fibres are
abelian categories and the inverse image functors are exact, we call p : M→ E a stack
of abelian tensor categories. Finally, when End(11) = R for each identity object 11 in
each fibre, we call p : M → E a stack of abelian tensor R-categories. In particular,
then each fibre is an abelian tensor R-category.

For a scheme S =
∐

Spec ki, finite and étale over Fq, let M(S;Z) =
∏M(ki;Z).

Theorem 6.16. Let EtFq be the category of all schemes finite and étale over Fq,
and endow EtFq with the étale topology. For k = Fq or F, let M(k;Q) be as in (5.20)
(in particular, we assume the Tate conjecture for M(F;Q)). The categories M(−;Z)
form (in a natural way) the fibres of a stack of abelian tensor Z-categories over EtFq .

Proof. Immediate consequence of Proposition 5.20. ¤

7. Some Spectral Sequences

Abstract spectral sequences. We prove an abstract version of Tate’s spectral
sequence (Milne 1986b, I 0.3). Fix a field k, and let Etk be the category of all schemes
finite and étale over k. Also, fix a noetherian ring R, and let M→ Etk be a stack of
noetherian abelian tensor R-categories over Etk.

7.1. When X and Y are objects of an abelian category A, Extr(X,Y ) denotes
the Yoneda extension group (Mitchell 1965, VII). It agrees with the group defined in
terms of the derived category (Verdier 1996, III 3.2.12). When A is noetherian, the
Yoneda extension group also agrees with that defined using injective resolutions in
the ind-category Ind(A) (Oort 1964, p. 235; see also Huber 1993).

7.2. An object of a tensor category is trivial if it is a quotient of a finite direct
sum of copies of 11, and an object Y of an abelian tensor category is flat if the functor
X 7→ X ⊗ Y is exact. When X and Y are objects of an abelian tensor category over
R, we write

TorR
i (X, Y ) = 0 for all i > 0

to mean Y has a resolution

· · · → Y 1 → Y 0 → Y → 0

by flat objects which remains exact when it has been tensored by X.

7.3. To avoid inessential difficulties, we assume that M/Etk is a split fibred cate-
gory, i.e., that it is equipped with compatible inverse image functors (Giraud 1971, I
1.0.3). According to a theorem of Giraud (1964, §5) every fibred category is equivalent
with a split fibred category. Let k′ be a finite Galois extension of k with Galois group
Γ, and let X 7→ X ′ : M(k) →M(k′) be the inverse image functor. Because M/Etk

is split, to give a k′/k descent datum on an object of M(k′) is to give an action of
Γ. Therefore, X 7→ X ′ defines an equivalence of M(k) with the category M(k′; Γ) of
objects of M(k′) equipped with an action of Γ. Explicitly, for objects X, Y of M(k),
the actions of Γ on X ′ and Y ′ define an action of Γ on HomM(k′)(X

′, Y ′) and

HomM(k)(X, Y ) ∼= HomM(k′)(X
′, Y ′)Γ.
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The functor HomM(k′)(11,−) is an equivalence from the full subcategory of M0(k′) of
trivial objects in M(k′) to Modf(R), and hence from M0(k′; Γ) to Modf(R[Γ]). Let
N 7→ N : Modf(R[Γ]) →M0(k′; Γ) denote a quasi-inverse. Then N ∼= N⊗R11 (exter-
nal tensor product (6.1) inM0(k′), with Γ acting through N) because HomM(k′)(11, N⊗R

11) ∼= N as R[Γ]-modules. The functor

X 7→ N(X)
df
= Hom(11, X ′)

is an equivalence from the full subcategoryM1(k) ofM(k) of objects becoming trivial
in M(k′) to Modf(R[Γ]).

Proposition 7.4. Let k′ be a finite Galois extension of k with Galois group
Γ. With the above notations, for all X,Y, Z in M(k) such that X ′ is trivial and
TorR

i (X,Y ) = 0 for all i > 0, there is a spectral sequence

Extr
R[Γ](N(X), Exts

M(k′)(Y
′, Z ′)) =⇒ Extr+s

M(k)(X ⊗ Y, Z).

After a few preliminaries, we obtain this as the spectral sequence of a composite
of functors.

Lemma 7.5. 11For any X,Y, Z ∈ obM(k) with X ′ trivial, there is a canonical
isomorphism

HomR[Γ](N(X), HomM(k′)(Y
′, Z ′)) ∼= HomM(k)(X ⊗ Y, Z). (10)

Proof. For any finitely generated R-module N , we have an isomorphism (see
6.1)

HomR(N, HomM(k′)(Y
′, Z ′) ∼= HomM(k′)(N ⊗R Y ′, Z ′). (11)

From the definition of the external tensor product ⊗R, it is clear that

(N ⊗R T1)⊗ T2
∼= N ⊗R (T1 ⊗ T2)

for objects T1, T2 of M(k′). Therefore,

N ⊗R Y ′ ∼= N ⊗R (11⊗ Y ′) ∼= (N ⊗R 11)⊗ Y ′.

Let N = N(X). Then N ⊗R 11 ∼= N ∼= X ′, and so (11) becomes

HomR(N(X), HomM(k′)(Y
′, Z ′) ∼= HomM(k′)(X

′ ⊗R Y ′, Z ′).

On taking Γ-invariants, we obtain (10). ¤
In the remainder of the proof, we abbreviate ExtM(k) and ExtIndM(k) to Extk.

Lemma 7.6. If I is an injective object of Ind(M(k)) and Y is a flat object of
M(k), then Homk′(Y, I) is an injective R[Γ]-module.

Proof. Because R[Γ] is left noetherian, it suffices to show that the functor
HomR[Γ](−, Homk′(Y, I)) is exact on finitely generated R[Γ]-modules. In view of (7.3),
we can regard this as a functor on M1(k), and then Lemma 7.5 expresses it as the
composite of two exact functors. ¤

Lemma 7.7. If I is injective in Ind(M(k)), then I ′ is injective in Ind(M(k′)).

11We thank the referee for point out to us that this lemma (hence the proposition) does not
require that the categories have internal Homs.
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Proof. For an object X in M(k′), R[Γ]⊗RX (external tensor product in M(k′))
becomes an object of M(k′; Γ) through the action of Γ on R[Γ]. As M(k; Γ) 'M(k),
R[Γ] ⊗R X can be regarded as an object of M(k). This functor X 7→ R[Γ] ⊗R

X : M(k′) →M(k) is an exact left adjoint to Y 7→ Y ′ : M(k) →M(k′). ¤
Lemma 7.8. Let X, Y be as in (7.4), and let I be an injective object of Ind(M(k)).

Then Extr
R[Γ](N(X), Homk′(Y

′, I ′)) = 0 for r > 0.

Proof. Let Y • → Y be a flat resolution of Y that remains a resolution when
tensored with X, and let I be an injective object of Ind(M(k)). Then I ′ is injective
(see 7.7), and so

Homk′(Y
′, I ′) → Homk′(Y

•′, I ′)
is a resolution of Homk′(Y

′, I ′). In fact (see 7.6) it is an injective resolution of
Homk′(Y

′, I ′), which we shall use to compute the groups Extr
R[Γ](N(X), Homk′(Y

′, I ′)).
Lemma 7.5 shows that HomR[Γ](N(X), Homk′(Y

•′, I ′)) ∼= Homk(X ⊗ Y •, I), which is
exact except at the zeroth position. Therefore, Extr

R[Γ](N(X), Homk′(Y
′, I ′)) = 0 for

r > 0. ¤
We now prove the proposition. Lemma 7.5 shows that Homk(X ⊗ Y,−) is the

composite of the functors Homk′(Y
′,−) and HomR[Γ](N(X),−), and Lemma 7.8 shows

that the first of these sends injective objects to objects that are acyclic for the second
functor. Therefore we obtain the spectral sequence as that attached to the composite
of functors. ¤

Corollary 7.9. Let k̄ be a Galois extension of k (possibly infinite), and let
M(k̄) = lim−→k′

M(k′) where k′ runs over the finite Galois extensions of k in k̄. Denote

the inverse image functor M(k) → M(k̄) by X 7→ X̄, and let Γ = Gal(k̄/k). Let
Y be an object of M(k) that admits a resolution by flat objects. For all Z in M(k),
there is a spectral sequence

Hr(Γ, Exts
M(k̄)(Ȳ , Z̄)) =⇒ Extr+s

M(k)(Y, Z).

Proof. The condition on Y implies that TorR
i (11, Y ) = 0 for all i > 0. When

k̄ is finite over k, the two definitions of M(k̄) coincide, and we obtain the spectral
sequence by taking X = 11 in Proposition 7.4. When k̄ is of infinite degree over k, we
pass to the limit over subfields k′ ⊂ k̄ that are finite and Galois over k. It is clear that
Exts

M(k̄)(Ȳ , Z̄) ∼= lim−→k′
Exts

M(k′)(Y
′, Z ′), for example, for the Yoneda Exts, because our

direct limits of categories are the naive ones (1.2) and the functor M(k′) →M(k′′)
is exact for finite extensions k′′/k′. ¤

Spectral sequences at `. The categories R(Fq;Z`) for varying q form a stack
of noetherian abelian tensor Z`-categories over EtFp , and R(F;Z`) = lim−→R(Fq;Z`).
Moreover, every object of R(Fq;Z`) admits a (short) resolution by flat objects (1.5).
Thus, Corollary 7.9 has the following special case.

Proposition 7.10. Let Γ = Gal(F/Fq), and let M 7→ M̄ denote the functor
R(Fq;Z`) →R(F;Z`). For M,N in R(Fq;Z`), there is a spectral sequence

Hr(Γ, Exts
R(F;Z`)

(M̄, N̄)) =⇒ Extr+s
R(Fq ;Z`)

(M, N). (12)

Denote Exts in Mod(Z`) by ExtZ`
.
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Proposition 7.11. Let Γ = Gal(F/Fq). For M,N in R(Fq;Z`), there is a spectral
sequence

Hr
cts(Γ, Exts

Z`
(M,N)) =⇒ Extr+s

R(Fq ;Z`)
(M,N). (13)

Here Hr
cts is computed using continuous cochains relative to the `-adic topology on

Exts
Z`

(M,N).

Proof. Let R = R(Fq;Z`). When N is finite, (13) will become (12) once we
have shown that the natural map

Extj
R(M, N)) → Extj

Z`
(M,N)

is an isomorphism. When M is finite, this is obvious (with no condition on N),
because it is true for j = 0 and the forgetful functor IndR → Mod(Z`) is exact and
preserves injectives ((1.5b) implies that every injective in IndR is `-divisible). The
Ext(M,−) sequences of

0 → M
`n−→ M → M/`nM → 0 , `nN = 0, (14)

0 → Mtors → M → M/Mtors → 0

allow us to deduce it, first for all torsion-free M , and then for all M .
For M in R and a projective system (Nn)n∈N in RN, there is a canonical isomor-

phism

Hom(M, lim←−Nn) ∼= lim←−Hom(M, Nn). (15)

Let F ((Nn)n) be the common value of the two sides. Then F is a functor RN → Ab
which (15) expresses as a composite in two ways, and it can be shown that this leads
to two spectral sequences

Eij
2 = Exti

R(M, lim←−
jNn) =⇒ Ri+jF ((Nn)n)

Ei,j
2 = lim←−

i Extj
R(M, Nn) =⇒ Ri+jF ((Nn)n)

(cf. Roos 1962; Jensen 1972, 4.3).
When we apply this to the inverse system (N (`n))n, the higher inverse limits in the

E2-terms vanish because the groups Extj
R(M,N (`n)) and N (`n) are finite. Moreover,

lim←−N (`n) ∼= N , and so this shows that

Exti
R(M,N) ∼= lim←−

n

Exti
R(M,N (`n)). (16)

Similarly,

Extj
Z`

(M, N) ∼= lim←−
n

Extj
Z`

(M, N (`n)),

and so (Tate 1976, 2.2)

H i
cts(Γ, Extj

Z`
(M, N)) ∼= lim←−

n

H i
cts(Γ, Extj

Z`
(M,N (`n))).

Therefore, (13) can be obtained by passing to the limit in the spectral sequences

Hr
cts(Γ, Exts

Z`
(M, N (`n))) =⇒ Extr+s

R (M, N (`n)). ¤
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Spectral sequences at p.

Lemma 7.12. For torsion-free objects M, N in R+(F;Zp), Ext2
R+(F;Zp)(M, N) is

torsion-free.

Proof. From the exact sequences

0 → Ext1
R+(M, N)(pn) → Ext1

R+(M, N (pn)) → Ext2
R+(M, N)pn → 0

we obtain a surjection

lim−→
n

Ext1
R+(M,N (pn)) → Ext2

R+(M,N)tors.

LetR+
pn denote the full subcategory ofR+(F;Zp) of objects killed by pn. An argument

using the analogue of the diagram (23), p39, shows that the map

s : Ext1
R+(M, N (pn)) → Ext1

R+
pn

(M (pn), N (pn))

that replaces each term E in a short exact sequence with E(pn) is an isomorphism.
Therefore, it remains to show that

lim−→
n

Ext1
R+

pn
(M (pn), N (pn)) = 0. (17)

We claim (i) that the map

Ext1
Crys+(F)(MW (F), NW (F)) → Ext1

R+
pn

(M (pn), N (pn))

that replaces each term E in a short exact sequence by E(pn) is surjective, and (ii)
that Ext1

Crys+(F)(M, N) is a torsion group. Together, (i) and (ii) imply (17) , because

(i) gives a surjection

Ext1
Crys+(F)(MW (F),MW (F))⊗Qp/Zp → lim−→

n

Ext1
R+

pn
(M (pn), N (pn))

and (ii) implies that the first group is zero.
To prove (i), note that an element of either group splits when regarded as an

extension of W -modules, and is therefore determined by the σ-linear map describing
the action of the Frobenius. Since every σ-linear map M (pn) → N (pn) lifts to a σ-linear
map M → N , (i) is clear. The category Isoc+(kal) is semisimple (see 1.9), which
implies (ii). ¤

Lemma 7.13. When k = F or Fq, every object in R+(k;Zp) is a quotient of a
torsion-free object.

Proof. Suppose that the object M is an extension of objects M ′ and M ′′ each
of which is a quotient of a torsion-free objects, say, N ′ ³ M ′, N ′′ ³ M ′′. Pull back
the original extension by N ′′ → M ′′:

0 −−−→ M ′ −−−→ E −−−→ N ′′ −−−→ 0∥∥∥
y

y
0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

If the class of E in Ext1(N ′′,M ′) is the image of an element of Ext1(N ′′, N ′), then M
also is a quotient of an torsion-free object. The obstruction to this is an element of
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Ext2(N ′′, K) where K is the kernel of N ′ → M ′. Certainly, when k = Fq, this group
will be zero if there exists a resolution

0 → A
·λ−→ A → N ′′ → 0

where A = W [F, σ] (because Exts in R+(Fq;Zp) agree with those in Mod(A) — this
is explained on p44).

It suffices to prove the lemma in the case k = Fq, and, for a given M , an argument
using restriction of scalars (see the proof of 6.12) allows us to replace Fq by a finite
extension. After such an extension, a torsion M will have a composition series whose
quotients are isomorphic to one of (k, σ) or (k, 0). Each of these is a quotient

0 → (W,σ)
p−→ (W,σ) → (k, σ) → 0

0 → (W, pσ)
p−→ (W, pσ) → (k, 0) → 0.

Since (W,σ) ∼= A/A(F − σ) and (W, pσ) ∼= A/A(F − pσ) the above remarks prove
the lemma for M . Let M be an arbitrary object, and let M1 = M/Mtors. The
obstruction to extending the statement from Mtors and M1 to M is a torsion element
of Ext2(M1, K), which by (7.12) becomes zero after a finite extension of Fq. ¤

Proposition 7.14. Let Γ = Gal(F/Fq), and let M 7→ M̄ denote the functor
R+(Fq;Zp) →R+(F;Zp). For M, N in R+(Fq;Zp), there is a spectral sequence

Hr(Γ, Exts
R+(F;Zp)(M̄, N̄)) =⇒ Extr+s

R+(Fq ;Zp)(M,N). (18)

Proof. Lemma 7.13 shows that M has a flat resolution, and so this follows from
Corollary 7.9. ¤

Proposition 7.15. Let Γ = Gal(F/Fq). For M, N in R+(Fq;Zp), there is a
spectral sequence

Hr
cts(Γ, Exts

Crys+(F)(MW (F), NW (F))) =⇒ Extr+s
R+(Fq ;Zp)(M, N). (19)

Here Hr
cts is computed using continuous cochains relative to the p-adic topology on

Exts
W (F)(M,N).

Proof. When N is finite, the same argument as in the proof of Proposition 7.11
shows that (19) coincides with (18). We will obtain the general case by passing to
the inverse limit in

Hr
cts(Γ, Exts

Crys+(F)(MW (F), N
(pn)
W (F))) =⇒ Extr+s

R+(Fq ;Zp)(M,N (pn)).

For the argument in the proof of (7.11) to apply, we must verify the following:

lim←−
n

iN (pn) =

{
N if i = 0
0 otherwise

, N in R+(Fq;Zp),

lim←−
n

i Exts
R+(Fq ;Zp)(M, N (pn)) = 0 for i 6= 0, M, N in R+(Fq;Zp),

lim←−
n

i Exts
Crys+(F)(M,N (pn)) = 0 for i 6= 0, M,N in Crys+(F).

Certainly, N = lim←−N (pn), and lim←−
i N (pn) = 0 for i > 0 because N (pn) is of finite length

over W and we can apply Jensen 1972, 7.2.
The second equality follows from the finiteness of the groups Exts

R+(Fq ;Zp)(M,N (pn)).
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We now prove the third equality. If pa kills the torsion in N , then paN is torsion-
free, and there are exact sequences

0 → Exti(M, paN)(pn) → Exti(M, (paN)(pn)) → Exti+1(M, paN)pn → 0.

For i = 0, Exti(M, paN) is a finitely generated Zp-module and so Exti(M, paN)(pn)

is finite; therefore lim←−
1(Exti(M, paN)(pn)) = 0. For i > 0, Exti(M, paN) is tor-

sion (recall that Crys+(F)Q ' Isoc+(F) is semisimple), and, in fact, killed by a
fixed power of p, and so12 lim←−

1(Exti(M, paN)pn) = 0. The sequence shows that

lim←−
1(Exti(M, (paN)(pn)) = 0, and one can use the exact sequence

0 → Npa → N → paN → 0

to deduce that lim←−
1(Exti(M,N (pn)) = 0. ¤

8. Homological Algebra in the Category of Motives

Throughout this section k = Fq or F, and we assume that the l-adic Tate conjec-
tures hold for M+(k;Q), i.e., that the maps (6), p16, are isomorphisms.

Theorem 8.1. Let X and Y be effective motives in M+(k;Z).

(a) The map (α, β) 7→ α− β,

HomM+(k;Q)(X0, Y0)× HomR+(k;Ẑ)(Xf , Yf ) → HomR+(k;Af )(ωf (X0), ωf (Y0)),

is surjective with kernel HomM+(k;Z)(X, Y ).

(b) For i > 0, Exti
M+(k;Z)(X, Y ) is torsion and the sequence

0 → Exti
M+(k;Z)(X, Y )Zl

→ Exti
R(k;Zl)

(Xl, Yl) → Tl Exti+1
M+(k;Z)(X, Y ) → 0 (20)

is exact (all l); hence,

Exti
M+(k;Z)(X,Y ) ∼= Exti

R+(k;Ẑ)
(Xf , Yf )tors. (21)

(c) If k = F, then Exti
M+(k;Z)(X, Y ) = 0 for all i > 2, and for all i > 1 when X

and Y are torsion-free.

Proof. For any Z-module M of finite rank, the sequence

0 → M → MẐ ×MQ → MAf
→ 0

is exact. We obtain (a) by taking M = Hom(X, Y ) in this sequence and applying
(5.6, 5.8, 5.10).

The remainder of the proof will require several steps.

Exti
M+(k;Z)(X, Y ) is torsion for i > 0: It suffices to prove that Ext1

M+(k;Z)(X,Y )
is torsion. Moreover, we may assume that X and Y are torsion-free. Consider an
exact sequence

0 → Y → E
π→ X → 0

12Recall that an inverse system of abelian groups (An)n∈N is said to satisfy the Mittag-Leffler
condition if, for each n, the decreasing chain in An of the images of the Am for m > n is eventually
constant, and that the higher inverse limits vanish for such a system. In the case i = 0, the condition
obviously holds, and in the case i > 0 the images are eventually zero.

In the text we are implicitly using that for inverse systems indexed by N, only the first higher
inverse limit can be nonzero (Roos 1961).
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inM+(k;Z). BecauseM+(k;Q) is semisimple, there exists a morphism α0 : X0 → E0

such that π0 ◦ α0 = idX0 . For some m ∈ Z, mα0 ∈ HomM+(k;Z)(X,E) (see 5.5). Now
the equation π ◦ (mα0) = m idX implies that the class of the sequence is killed by m.

Write f i(X, Y ) for the natural map

Exti
M+(k;Z)(X, Y )Zl

→ Exti
R+(k;Zl)

(Xl, Yl).

Recall (5.10) that f 0(X, Y ) is an isomorphism.

The maps f i(X,Y ) are isomorphisms when X and Y are torsion. The
functor X 7→ Xf defines an equivalence of the category of torsion effective motives

with the category of torsion objects in R+(k; Ẑ), and so it suffices to prove that
the Exts in the torsion subcategories coincide with the Exts in the full categories.
We do this for M+(k;Z) since R+(k;Zl) is similar. Because M+(k;Z) is noether-
ian, Ind(M+(k;Z)) has enough injectives, and the Exts computed using injective
resolutions coincide with the Yoneda Exts (7.1). It follows from (6.12b) that every
injective object in Ind(M+(k;Z)) is divisible, and so an injective resolution Y → I•

in Ind(M+(k;Z)) gives an injective resolution Y → I•tors in the subcategory of tor-
sion objects. As Hom(X, I•tors)

∼= Hom(X, I•), this proves that the Exts in the two
categories agree.

The maps f i(X, Y ) are isomorphisms when Y is torsion. It suffices to prove
this when X is torsion-free and Y is l-torsion, say lnY = 0. The Ext sequences of

0 → X
ln−→ X → X/lnX → 0

give a diagram

0 −−→ Exti−1
M+(X,Y ) −−→ Exti

M+(X/lnX, Y ) −−→ Exti
M+(X,Y ) −−→ 0yf i−1(X,Y )

y∼=
yf i(X,Y )

0 −−→ Exti−1
R+ (Xl, Yl) −−→ Exti

R+(Xl/l
nXl, Yl) −−→ Exti

R+(Xl, Yl) −−→ 0

from which it follows that f i−1(X, Y ) is injective and f i(X, Y ) is surjective. Since
this holds for all i, f i(X,Y ) is an isomorphism.

The maps f i(X, Y ) are isomorphisms when X is torsion. Similar to the
preceding case.

The sequence (20) is exact. Because f i(X,Y ) is an isomorphism when Y is
torsion, f i(X,Y •) (map of hyper-Exts) is an isomorphism when Y • is a bounded

complex with finite cohomology, for example, when Y • = Y {ln} =df Y
ln−→ Y :

Exti
M+(X, Y {ln}) ∼= Exti

R+(Xl, Y
{ln}
l ).

There are exact sequences

0 → Exti
M+(X,Y )(ln) → Exti

M+(X,Y {ln}) → Exti
M+(X,Y )ln → 0, (22)

and

lim←− Exti
M+(X, Y {ln}) ∼= lim←− Exti

R+(Xl, Y
{ln}
l ) ∼= lim←− Exti

R+(Xl, Y
(ln)
l ) ∼= Exti

R+(Xl, Yl)

(for the third isomorphism, see the proofs of 7.11 and 7.15). Thus, on passing to the
inverse limit in (22), we obtain (20).
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This completes the proof of (b). We now assume that k = F.

Ext2
M+(X, Y ) = 0 if X and Y are torsion-free. For an integer m, let M+

m

(resp. R+
m) denote the subcategory of M+(k;Z) (resp. R+(k; Ẑ)) of objects killed by

m. On passing to the direct limit in the sequence

0 → Ext1
M+(X,Y )(m) → Ext1

M+(X,Y (m)) → Ext2
M+(X,Y )m → 0

and using that Ext1
M+(X,Y ) and Ext2

M+(X, Y ) are torsion, we find that

lim−→
m

Ext1
M+(X, Y (m)) ∼= Ext2

M+(X, Y ).

Consider the diagram

Ext1
M+(X(m), Y (m))

π - Ext1
M+(X,Y (m))

I@
@

@
i

ª¡
¡

¡s

Ext1
M+

m
(X(m), Y (m))

(23)

in which π is the surjection induced by X → X(m), i is the obvious injection, and s
applied to a short exact sequence replaces each motive E in the sequence with E(m).
One checks easily that s ◦ (π ◦ i) = id and (π ◦ i) ◦ s = id, and so s is an isomorphism.
Thus

Ext2
M+(X, Y ) ∼= lim−→

m

Ext1
M+

m
(X(m), Y (m)) ∼= lim−→

m

Ext1
R+

m
(X

(m)
f , Y

(m)
f ).

For l 6= p, Ext1
R+

ln
(X

(ln)
f , Y

(ln)
f ) is obviously zero, and so it remains to show that

lim−→
pn

Ext1
R+

pn
(X(pn)

p , Y (pn)
p ) = 0. (24)

But this is shown in the proof of (7.12).

Exti
M+(X, Y ) = 0 for all i > 2. This follows from (b) and the fact that Exti

R+(k;Zl)
(Xl, Yl) =

0 for i > 2 (for l 6= p, this is obvious, and for l = p it can be proved by the arguments
used to prove the p-case of Theorem 9.1 below). ¤

Remark 8.2. The group Ext1
R+(F;Z`)

(M, N) need not be torsion. Consider, for
example, the extension

0 → Z` → Z` ⊕ Z` → Z` → 0

on which the Frobenius element in Γ = Gal(F/Fp) acts on the middle term as the
matrix ( 1 a

0 1 ) with a a nonzero element of Z`. Multiplying the class of the extension by
m corresponds to multiplying a by m, and so this represents a nontorsion element of
Ext1

R+(Fp;Z`)
(M, N), which remains nontorsion in Ext1

R+(F;Z`)
(M,N). Thus, in general,

Ext1
M+(F;Z)(X,Y )(`) 6≈ Ext1

R(F;Z`)
(X`, Y`).

Similarly, the group Ext1
R+(F;Zp)(M, N) need not be torsion (because the category

R+(F;Zp), in contrast to Isoc+(F), is not semisimple).

Lemma 8.3. Every effective motive over Fq or F is a quotient of a torsion-free
effective motive.
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Proof. It suffices to prove the lemma in the case k = Fq, and, for a given X, an
argument using restriction of scalars allows us to replace Fq by a finite extension (see
the proof of (6.12b)).

After such an extension, a p-torsion object X will have a composition series whose
quotients are isomorphic to one of (k, σ) or (k, 0). But (k, σ) ∼= 11/p11 and (k, 0) ∼=
L/pL, and so the same argument as in the proof of Lemma 7.13 (using (21)) proves
the lemma for X.

Let X be an arbitrary effective motive, and let X1 = X/Xp-tors. For X1, the same
argument as in the proof of (6.12b) proves the lemma. Let Y → Xp-tors be a surjective
map with Y torsion-free, and let K be its kernel. The obstruction to extending the
lemma from X1 and X/Xp-tors to X is a torsion class in Ext2(X1, K) (see the proof
of 7.13), but this vanishes by (20) and (7.12). ¤

Theorem 8.4. Let Γ = Gal(F/Fq). For all motives X and Y over Fq, there is a
spectral sequence:

Hr(Γ, Exts
M+(F;Z)(X/F, Y/F)) =⇒ Extr+s

M+(Fq ;Z)(X, Y ).

Proof. Lemma 8.3 shows that X has a flat resolution. We can not apply Corol-
lary 7.9 directly because M+(Fq;Z) does not have internal Homs, but its proof can
be adapted as in the proof of 7.14. ¤

Examples.

Example 8.5. We apply (8.1) to compute Ext1
M+(F;Z)(Z,Z(r)) (we are writing Z

for 11 and Z(r) for T⊗r).
For r = 0, HomM+(F;Z)(Z,Z(0)) ∼= Z and Exti

M+(F;Z)(Z,Z(0)) = 0 for i = 1, 2..
For r 6= 0, HomM+(F;Z)(Z,Z(r)) = 0, and so

HomM+(F;Z)(Z,Z(r)(m))
∼=→ Ext1

M+(F;Z)(Z,Z(r))m.

For m = pn, the left hand side is zero, and for m = `n it is (Z(`n))(r). Therefore, on
passing to the direct limit over m, we find that

Ext1
M+(F;Z)(Z,Z(r)) ∼=

(⊕

` 6=p

Q`/Z`

)
(r)

where (Q`/Z`)(r) is Q`/Z` with the Frobenius element of Gal(F/Fq) acting as qr.
Moreover, Exti

M+(F,Z)(Z,Z(r)) = 0 for i 6= 0, 2. (Without the +, these statement
holds only modulo p-torsion.)

Example 8.6. We compute Ext1
M+(Fq ,Z)(Z,Z(r)) for r > 0. The spectral sequence

in (8.4) shows that Ext1
M+(Fq ,Z)(Z,Z(r)) and Ext2

M+(Fq ,Z)(Z,Z(r)) are the kernel and
cokernel respectively of

⊕ 6̀=pQ`/Z`
x 7→(qr−1)x−−−−−−→ ⊕` 6=pQ`/Z`.

Therefore Ext1
M+(Fq ;Z)(Z,Z(r)) is cyclic of order qr − 1, and Exti

M+(Fq ;Z)(Z,Z(r)) = 0
for i 6= 0, 2.
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Example 8.7. Let A be an abelian variety over F, and let h1A be the isomotive
h1(A)0 endowed with the Z-structure provided by the maps H1(A,Zl) → H1(A,Ql).
Since Hom(Z, h1A) = 0,

HomM+(F;Z)(Z, (h1A)(m)) ∼= Ext1
M+(F;Z)(Z, h1A)m

for all m, and so

HomM+(F;Z)(Z, h1A⊗Q/Z) ∼= Ext1
M+(F;Z)(Z, h1A).

But

HomM+(F;Z)(Z, h1A⊗Q/Z) ∼= HomR+(F;Ẑ)(Z, (h1A)fQ/(h1A)f ) ∼= A(F).

Thus,
Ext1

M+(F;Z)(Z, h1A) ∼= A(F).

When A is defined over Fq, Gal(F/Fq) acts, and, on taking invariants, we find that

Ext1
M+(Fq ;Z)(Z, h1A) ∼= A(Fq).

A similar argument using that HomM+(F;Z)((h1A)(−1),Z) = 0 shows that

HomM+(F;Z)((h1A)(−1),Q/Z) ∼= Ext1
M+(F;Z)((h1A)(−1),Z).

But

HomM+(F;Z)((h1A)(−1),Q/Z) ∼= HomR+(F;Ẑ)((h1A)f (−1),Q/Z) ∼= A∨(F)

where A∨ is the dual abelian variety. For an abelian variety A over Fq, this becomes

Ext1
M+(Fq ;Z)((h1A)(−1),Z) ∼= A∨(Fq).

Remark 8.8. It is generally conjectured, that for a smooth variety V over a field
F ,

H i
mot(V,Q(r)) ∼= (K2r−iV )

(r)
Q (25)

and
H i

mot(V,Q(r)) ∼= Exti
MM(F ;Q)(11, (hV )(r)); (26)

see, for example, Deligne 1994, 3.7, 3.3. Here Exti
MM(F ;Q)(11, (hV )(r)) is computed in

the conjectural category of mixed isomotives over F and (K2r−iV )
(r)
Q is the subspace

of (K2r−1V )Q on which the Adams operators ψk act as kr.
In particular, for F itself, it is conjectured that

Ext1
MM(F ;Q)(Q,Q(r)) ∼= (K2r−1F )

(r)
Q (27)

For F = Fq or F, the statement (27) is true because the K-groups are torsion and,
under any definition, the category of mixed isomotives will be semisimple, so both
sides are 0.

With Z-coefficients, statement (27) is expected to be false in general, and (25) is
definitely false13. However, Quillen (1972) shows that K2r−1F ≈ ⊕` 6=pQ`/Z` with the
Frobenius automorphism acting as pr and K2r−1Fq = (K2r−1F)Gal(F/Fq), and Hiller

13For a projective smooth variety over a field k,

H3
mot(V,Z(1)) = H2(V,Gm),

which is a nonzero torsion group in general whereas K−1V = 0. See also Bloch and Esnault 1996,
p. 304, which explains why a closely related conjecture should not be true integrally.
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(1981) and Kratzer (1980) show that the Adams operator ψk acts on K2r−1F as
multiplication by kr, and so an integral version of (27) does hold when F = Fq or F:

Ext1
M+(F ;Z)(Z,Z(r)) ≈ (K2r−1F )(r). (28)

The isomorphism (28) can be made canonical: Soulé (1979, IV.2, p. 284) proves
that the Chern class map ci,1 : K2i−1(Fq)Zl

→ H1(Fq,Zl(i)) is an isomorphism if i < l;
later Dwyer and Friedlander (1985) defined a Chern character chi,1 : K2i−1(Fq)Zl

→
H1(Fq,Zl(i)) that is related to the Chern class map by (−1)i−1(i − 1)!chi,1 = ci,1

(Soulé 1999, 3.2.2, p. 267).

9. Extensions and Zeta Functions: Local Case

We use the notations: Γ = Gal(F/Fq), q = pa, W = W (Fq), B = B(Fq),
A = W [F, σ], R` = R(Fq;Z`) =df R(Γ;Z`), R̄` = Mod(Z`), Rp = R+(Fq,Zp) =df

Crys+(Fq), R̄p = Crys+(F).

Statement of the theorem. Let M be an object of Rl. The Frobenius endo-
morphism πM of M is the map induced by the element x 7→ xq of Γ when l 6= p and
by F a when l = p. We denote the characteristic and minimum polynomials of πM

acting on MQl
by mM(t) and PM(t) respectively. They are monic polynomials with

coefficients in Zl (see Demazure 1972, p89, for the case l = p). For M in Rp, let r(M)
denote the rank of M and s(M) the sum of the slopes of M ; thus if

PM(T ) = th + · · ·+ c

then r(M) = h and s(M) = ordp(c)/a (cf. Demazure 1972, p90). For M in R` we
set s(M) = 0.

Let M, N be objects of Rl. From the spectral sequences (7.11, 7.15) we obtain a
map

HomR̄l
(M̄, N̄)Γ → Ext1

Rl
(M,N).

Define

f = f(M, N) : HomRl
(M, N) → Ext1

Rl
(M,N)

to be the composite of this with the obvious map HomRl
(M, N) → HomR̄l

(M̄, N̄)Γ.

Theorem 9.1. If mM(T ) and mN(T ) have no multiple root in common, then z(f)
is defined and satisfies

z(f) · [Ext2
Rl

(M, N)] =

∣∣∣∣∣∣
qs(M)·r(N) ·

∏

ai 6=bj

(
1− bj

ai

)∣∣∣∣∣∣
l

. (29)

where (ai)1≤i≤r(M) and (bj)1≤j≤r(N) are the roots of PM(t) and PN(t) respectively.

Remark 9.2. (a) When l 6= p, the term qs(M)·r(N) = 1.
(b) In the course of the proof, we shall show that Exti

Rl
(M,N) = 0 for i > 2

(without any condition on M and N) and that Ext2
Rl

(M,N) is finite.
(c) When one of M or N is finite, the theorem simply states that the groups

Exti
Rl

(M,N) are finite and the alternating product of their orders is 1.
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(d) Let PM∨⊗N(t) =
∏ (

1− bj

ai
t
)
, and let ρ(M, N) be the rank of HomRl

(M,N).

Then ρ(M, N) is the number of pairs (i, j) with ai = bj, and (29) becomes
the equation

z(f) · [Ext2(M, N)] =

∣∣∣∣qs(M)·r(N) · lim
t→1

PM∨⊗N(t)

(1− t)ρ(M,N)

∣∣∣∣
l

.

(e) When the groups Ker(f), Coker(f), Ext2
Rl

(M,N), Ext3
Rl

(M,N), . . . are finite
and almost all zero, then we say that χ×(M, N) is defined, and we set it equal
to the alternating product of the orders of the groups. Granted (b), Theorem
9.1 is equivalent to the statement: if mM(T ) and mN(T ) have no multiple
root in common, then χ×(M, N) is defined and equals

∣∣∣∣∣∣
qs(M)·r(N) ·

∏

ai 6=bj

(
1− bj

ai

)∣∣∣∣∣∣
l

(30)

(f) Let

0 → N ′ → N → N ′′ → 0

be an exact sequence in Rl. If χ×(M,N ′) and χ×(M,N ′′) are defined, then
so also is χ×(M, N), and

χ×(M, N) = χ×(M, N ′) · χ×(M,N ′′).

Since a similar statement holds for exact sequences in M and the expression
(30) is multiplicative, we see that it suffices to prove Theorem 9.1 for M and
N running through a set of generators for the Grothendieck group K(Rl) of
Rl.

Even more is true: both χ× and the expression in (30) take values in
Q×+, the group of positive rational numbers, which is torsion-free. Therefore,
in order to prove Theorem 9.1, it suffices to verify it for M and N running
through a set of generators for K(Rl)⊗Q.

Proof of Theorem 9.1 in the case l 6= p. From Proposition 7.11, we obtain
an exact sequence and isomorphisms

HomR`
(M, N) ∼= HomZ`

(M, N)Γ

0 → HomZ`
(M,N)Γ

c−→ Ext1
R`

(M,N) → Ext1
Z`

(M, N)Γ → 0

Ext1
Z`

(M,N)Γ
∼= Ext2

Rl
(M, N)

Exti
Rl

(M, N) = 0 for i > 2.

Let f0 be the map

HomZ`
(M,N)Γ → HomZ`

(M, N)Γ

induced by the identity map. Then f = c ◦ f0, and so (see 9.9)

z(f) = z(f0)/[Ext1
Z`

(M, N)Γ]. (31)

Let γ be the generator x 7→ xq of Γ. The family of eigenvalues of γ on HomZ`
(M,N)

is ( bi

aj
)i,j. Because of our hypothesis on mM(t) and mN(t), (9.10) applies, and shows
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that

z(f0) =

∣∣∣∣
∏

ai 6=bj

(
1− bi

aj

)∣∣∣∣
`

.

Because Ext1
Z`

(M,N) is finite,

[Ext1
Z`

(M, N)Γ] = [Ext1
Z`

(M, N)Γ]

and so

[Ext2
Rl

(M,N)] = [Ext1
Z`

(M, N)Γ].

On substituting for z(f0) and [Ext1
Z`

(M, N)Γ] in (31), we obtain (29).

Proof of Theorem 9.1 in the case l = p. An A-module M will be said to
be special if M = A/A · λ for some λ lying in the centre Zp[F

a] of A, in which case
λ = mM(F a) and PM(t) = mM(t)a. We let k denote the A-module with underlying
W -module Fq and with F acting as 0.

Let Rp,f be the full subcategory of Rp of finite objects. Then Exts computed in
Rp,f coincide with those in Rp (see the argument p38) and with those in Pro-Rp,f

(Rp,f is Artinian and so we can apply the opposite of 7.1). There is a canonical
functor Rp →Pro-Rp,f and by using the usual exact sequences (14) one deduces that
Exts in Rp coincide with those in Pro-Rp,f . This allows us to use resolutions by free
finitely generated A-modules to compute Exts in Rp.

The case M or N is finite with F acting invertibly. Because of (7), this case is
essentially the same as the non-p case. From the spectral sequence (7.15), we obtain
exact sequences

0 → Exti−1
R̄p

(MW (F), NW (F))Γ → Exti
Rp

(M,N) → Exti
R̄p

(MW (F), NW (F))
Γ → 0.

In this case, the groups Exti
R̄p

(MW (F), NW (F)) are finite, and it follows immediately

that the alternating product of the orders of the Exti
Rp

(M, N) is 1.
The case of M = k and N finite. We have the following Koszul-type resolution

of k

0 → A
t−→ A⊕ A

s−→ A → k → 0 (32)

where t(α) = (αF, pα) and s(x, y) = px− yF . For any N , the groups Exti(k, N) are
the cohomology groups of the complex

Hom(A, N)
◦s−→ Hom(A⊕ A,N)

◦t−→ Hom(A,N) → 0 → · · · (33)

Therefore, Exti(k, N) = 0 for i > 2, and if N is finite, then

Ext0(k, N) · Ext2(k,N) = Ext1(k, N)

because the groups in (33) are finite.
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The case M = A/Aλ and N = k. The resolution,

0 → A
·λ−→ A → M → 0,

gives an exact sequence

0 → Hom(M,k) → Hom(A, k) → Hom(A, k) → Ext1(M, k) → 0

and equalities Exti(M, k) = 0 (i > 1). As Hom(A, k) ∼= k is finite, this implies that

[Ext0(M, k)] = [Ext1(M, k)].

The case M = k and N = A/Aλ. From (32) and (33), we find that Exti(k, A) = 0
unless i = 2 in which case Ext2(k, A) = k. Now the Ext(k,−)-sequence of

0 → A
·λ−→ A → M → 0

gives an exact sequence

0 → Ext1(k, N) → Ext2(k, A) → Ext2(k, A) → Ext2(k, N) → 0

and equalities Exti(k,N) = 0 (i 6= 1, 2). As Ext2(k,A) is finite, the sequence gives
that

[Ext1(k,N)] = [Ext2(k, N)].

The case M , N special, mM and mN relatively prime. Let

M = A/Aλ1, λ1 = mM(F a)

N = A/Aλ2, λ2 = mN(F a)

with mM(t) and mN(t) relatively prime. From the resolution

0 → A
·λ1−→ A → M → 0

we obtain an exact sequence

0 → Hom(M,N) → N
λ1·−→ N → Ext1(M,N) → 0 → . . . .

As ·λ1 is injective, we see that Exti(M, N) = 0 for i 6= 1, and so

z(f) · [Ext2(M, N)] = z(λ1·) 9.8
= |det(λ1·)|ap .

Here det(λ1·) can be computed as the determinant of mM(F a) acting on the B-vector
space NQ. But PM(t) = mM(t)a, and so

det(mM(F a)|NQ)a =
∏

1≤i≤r(M)
1≤j≤r(N)

(ai − bj).

Thus,

z(f) · [Ext2(M, N)] =
∣∣∣
∏

(ai − bj)
∣∣∣
p

=

∣∣∣∣qs(M)·r(N)
∏ (

1− bj

ai

)∣∣∣∣
p

as required.
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The case M and N are special and equal. We first give an explicit description of
the map

f : Hom(M,N) → Ext1(M,N)

in the case that M = A/A · λ1 and N = A/A · λ2 are special but not necessarily
equal. We use − to denote −⊗W (Fq) W (F), and we let σk be the canonical generator
of Gal(F/Fq). The Ext(−, N) sequence of

0 → A
·λ1→ A → M → 0

is

0 → Hom(M,N) → N
λ1·→ N → Ext1(M,N) → 0

and the Extr(−, N̄) sequence of

0 → Ā
·λ1→ Ā → M̄ → 0

is

0 → Hom(M̄, N̄) → N̄
λ1·→ N̄ → Ext1(M̄, N̄) → 0.

The map f can be described as follows: let u ∈ Hom(M, N) and regard u as an
element of N such that λ1u = 0; then u can be written u = (σk−1)v for some v ∈ N̄ ;
now

(σk − 1)(λ1v) = λ1(σk − 1)v = λ1u = 0,

and so λ1v ∈ N̄Γ = N ; the image of λ1v under N → Ext1(M, N) is f(u).
Now take N = M , so that multiplication by λ = λ1 = λ2 is zero on M . Thus

Hom(M,N) = A/Aλ = Ext1(M, N)

and f is an endomorphism of A/A/λ. Since A/Aλ is torsion-free, z(f) is defined if
and only if

fQ : AQ/AQλ → AQ/AQλ

has nonzero determinant (9.8), in which case

z(f) = | det(f)|ap.
Let u ∈ AQ/AQλ and choose v ∈ ĀQ/ĀQλ such that u = σkv−v. Then σi

kv = iu+v
for all i. Let

λ(F ) = Fma + bma−aF
ma−a + · · ·+ b0 = m(F a).

Then

f(u) = λ(F )v

= muFma + (m− 1)bma−auFma−a + · · ·+ 0 (as vλ = 0)

= uF a d

dF a
(m(F a))

= F a d

dF a
(m(F a))u.

From (9.8) we find that

z(f) =

∣∣∣∣det

(
d

dF a
(m(F a))

)∣∣∣∣
a

p

· |det(F a)|ap .
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But

| det(F a)|ap = |qa·s(N)|p
and

∣∣∣∣det

(
d

dF a
(m(F a))

)∣∣∣∣
a

p

=

∣∣∣∣∣∣
∏

ai 6=bj

(ai − bj)

∣∣∣∣∣∣
p

=

∣∣∣∣∣∣
qs(N)(r(N)−a)

∏

ai 6=bj

(
1− bj

ai

)∣∣∣∣∣∣
p

.

Thus,

z(f) =

∣∣∣∣∣∣
qr(N)·s(N)

∏

ai 6=bj

(
1− bj

ai

)∣∣∣∣∣∣
p

.

As Ext2(M, N) = 0 this proves Theorem 9.1 in this case.
The general case. An isogeny (denoted ∼) of objects in Rp is a homomorphism

whose kernel and cokernel have finite length over W . We say an object in Rp is
indecomposable if it is not isogenous to a direct sum of two nonzero objects.

Lemma 9.3. Every object of Rp is isogenous to a direct sum of indecomposable
objects, and the decomposition is unique up to isogeny.

Proof. Apply the Krull-Schmidt theorem in the category of AQ-modules. ¤

Lemma 9.4. If M in Rp is indecomposable, then MQ ≈ AQ/AQλ for some λ ∈
AQ; moreover, the minimum polynomial mM(t) of the Frobenius endomorphism of
M is a power of a Zp-irreducible polynomial, and there exists an integer e such that
⊕eM ∼ A/A ·mM(t).

Proof. The ring AQ is the skew polynomial ring B[F, σ]. It is therefore a prin-
cipal ideal domain (Jacobson 1943, III 1, p30), and every finitely generated module
over such a ring is isomorphic a direct sum of cyclic modules (ibid. III, Theorem 19,
p44). This proves the first part.

For the second, we use that the two-sided ideals in AQ are precisely those generated
by a polynomial in the centreQp[F

a] of AQ (ibid. III 5, p38). It follows that AQ·m(F a)
is the largest two-sided ideal contained in AQ ·λ, i.e., it is the bound of the ideal AQ ·λ
in the sense of ibid. III 6, p38. Because AQ/AQλ is indecomposable, this implies that
m(t) is a power of a Zp-irreducible polynomial (ibid. III Theorem 13, p40). Finally,
when AQ/AQ · m(F a) is decomposed into a direct sum of indecomposable modules
AQ/AQλ′, each of the ideals AQλ′ has AQ · m(F a) as its bound, and is therefore
isomorphic to M (ibid. III Theorem 20, p45). ¤

Proposition 9.5. Objects of the following types generate K(Rp)Q:

(a) k = (Fq, 0);
(b) (M, FM) with M finite and FM invertible;
(c) M special and mM(t) is a power of an irreducible polynomial.

Proof. For every finite module M , there exists an n such that M = Im(F n) ⊕
Ker(F n) (Fitting’s Lemma). It follows that such an M has a composition series with
quotients of type (a) or (b). The general statement now follows from Lemma 9.4. ¤
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Therefore (see 9.2(f)), it suffices to prove Theorem 9.1 when each of M and N is of
type (a), (b), or (c). Moreover, because of the condition on the minimum polynomials,
in case (c) we can assume that either mM and mN have no common factor or they
are irreducible and equal. This we have done.

Restatement of the theorem for complexes. We sketch a generalization of
Theorem 9.1 to complexes. Let M• and N• be bounded complexes of A-modules such
that H i(M•) lies in Rp for all i. Define

PM•∨⊗N•(t) =
∏

PHi(M•)∨⊗Hj(N•)(t)
(−1)i+j

.

Let f i : Exti(M•, N•) → Exti+1(M•, N•) be the map rendering

Exti(M•, N•)
f i−−−→ Exti+1(M•, N•)y

y
Exti(M̄•, N̄•)Γ ∪θp−−−→ Exti(M̄•, N̄•)Γ

commutative. Here the vertical maps arise from a spectral sequence (cf. 7.15) and
the lower map is cup-product with the canonical generator θp ∈ H1(Γ,W ) (equal to
the map induced by the identity map on Exti(M̄•, N̄•)). Because θ2

p = 0,

Ext•(M•, N•) : · · · → Exti(M•, N•)
f i→ Exti+1(M•, N•) → · · ·

is a complex. Define

χ×(M•, N•) =
∏

[H i(Ext•(M•, N•))](−1)i

when these numbers are finite.

Theorem 9.6. Let M• and N• be bounded complexes of A-modules such that
H i(M•) and H i(N•) are semisimple and finitely generated over W for all i.

(a) The groups Exti(M•, N•) are finitely generated Zp-modules for all i.
(b) The alternating sum

∑
(−1)ri of the ranks of the Exti(M•, N•) is zero.

(c) The order of zero of P (M•∨ ⊗N•, t) at t = 1 is equal to the secondary Euler
characteristic

∑
(−1)i+1 · i · ri.

(d) The groups H i(Ext•(M•, N•)) are finite, and∣∣∣∣qχ(M•,N•) · lim
s→1

PM•∨⊗N•(t)

(1− t)ρ(M•,N•)

∣∣∣∣
l

= χ×(M•, N•)

where χ(M•, N•) =
∑

(−1)i+js(H i(M•)) · r(Hj(N•)).

Proof. Consider first the case that M• and N• are modules M and N regarded
as complexes concentrated in degree 0.

(a) Because M and N are semisimple, m(M, t) and m(N, t) have only simply roots,
and therefore the hypothesis of Theorem 9.1 hold. Hence, the groups Exti(M, N) are
finitely generated Zp-modules for all i, finite for i = 2, and zero for i > 2.

(b) Moreover, f : Hom(M, N) → Ext1(M,N) has finite kernel and cokernel, and
so Hom(M,N) and Ext1(M,N) have the same rank.

(c) In fact, one sees easily that the rank of Hom(M, N) is the number of pairs
(i, j) such that ai = bj (see 9.2d).
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(d) The map f of Theorem 9.1 coincides with f 0, and so (d) is a restatement of
the theorem.

The general case case now follows from the usual induction argument on the
number of nonzero terms in the complexes M• and N• (cf. 9.2f). ¤

There is a similar Theorem for l 6= p, whose formulation and proof we leave to the
reader.

Why R+(Fq;Zp) rather than R(Fq;Zp)?

9.7. Write R+ and R for R+(Fq;Zp) and R(Fq;Zp) respectively. Even the torsion
subgroup of Ext1

R(M, N) can be infinite. Suppose, for example, that M and N are
torsion-free, and consider the diagram

0 −→ HomR+(M,N)(pn) −→ HomR+(M, N (pn)) −→ Ext1
R+(M, N)pn −→ 0y∼=

y
y

0 −→ HomR(M, N)(pn) −→ HomR(M, N (pn)) −→ Ext1
R(M,N)pn −→ 0.

Since [HomR(M,N (pn))] = (qn)r(M)r(N) is unbounded, whereas [HomR+(M,N (pn))]
is bounded if HomR+(M,N) = 0, we see that Ext1

R(M, N)(p) is frequently infinite.
From a different perspective, it follows from Theorem 9.1 that Ext1

R+(M, N) grows
when M and N are replaced by M(1) and N(1) because s(M(1)) > s(M), but the
functor M 7→ M(1) is an equivalence on the category R(Fq;Zp).

Appendix: Lemmas on abelian groups. Recall that, for a homomorphism

f : M → N of abelian groups, we define z(f) = [Ker(f)]
[Coker(f)]

when both the top and

bottom are finite. There are the following elementary statements (Tate 1966b, §5).
We let W = W (Fq), q = pa.

9.8. Let M and N be finitely generated Z-modules (resp. W -modules) of the same
rank and let (xi) and (yi) be bases for M and N respectively modulo torsion. Suppose
f(xi) ≡

∑
aijyj modulo torsion. Then z(f) is defined if and only if det(aij) 6= 0, in

which case

z(f) =
[Mtors]

| det(aij)|[Ntors]

(resp.

z(f) =
[Mtors]| det(aij)|ap

[Ntors]
).

Note that, when M = N , det(aij) is the determinant of fQ : MQ → MQ.

9.9. Consider maps f : M → N and g : N → P . If any two of the three numbers
z(f), z(g), z(g ◦ f) are defined, then so is the third, and

z(g ◦ f) = z(g) · z(f).

9.10. Let Γ = Ẑ, and let γ be its canonical topological generator. Let M be a Γ
-module that is finitely generated as a Z-module, and let f : MΓ → MΓ be the map



50 JAMES S. MILNE AND NIRANJAN RAMACHANDRAN

induced by the identity map on M . Then z(f) is defined if and only if the minimum
polynomial of γ on MQ does not have 1 as a multiple root, in which case

z(f)

∣∣∣∣∣
∏

ai 6=1

(1− ai)

∣∣∣∣∣ = 1

where a1, a2, . . . is the family of eigenvalues of γ acting on MQ.

10. Extensions and Zeta Functions: Global Case

In this section, M(F;Q) will be one of the following categories:

(a) the categoryMnum(F;Q;S) where S consists of all smooth projective varieties
over F and we assume that the Tate conjecture holds for all V ∈ S;

(b) the category M(F;Q) defined in (5.27).

In fact, if the category in (a) exists and the Hodge conjecture holds for complex
abelian varieties of CM-type, then these categories are essentially the same: the re-
duction functor CM(Qal) →Mnum(F;Q;S) defines a fibre functor ω on CM(Qal)P ,
and the quotient of CM(Qal) corresponding to ω is canonically equivalent with
Mnum(F;Q;S).

The main theorem for extensions.

Theorem 10.1. For all effective motives X and Y in M+(Fq;Z), the groups
Ext1(X, Y ) and Ext2(X, Y )cotors are finite, and

qχ(X,Y )·ζ(X∨⊗Y, s) ∼ ± [Ext1(X,Y )] ·D(X, Y )

[Hom(X,Y )tors] · [Ext2(X, Y )cotors]
·(1−q−s)ρ(X,Y ) as s → 0

where χ(X, Y ) = s(Xp)r(Yp) (notations as on p42), D = D(X, Y ) is the discriminant
of the pairing

Hom(Y,X)× Hom(X,Y )
◦−→ End(Y )

trace−−→ Z, (34)

and ρ(X,Y ) is the rank of Hom(X,Y ).

Remark 10.2. Let X and Y be effective motives over Fq.

(a) Because M+(Fq;Q) is a semisimple category, End(X0 × Y0) is a semisimple
ring. As it is also finite dimensional over Q, the trace pairing

End(X0 × Y0)× End(X0 × Y0) → Q

is nondegenerate: D(X, Y ) 6= 0.
(b) Below we prove that [Ext2(X, Y )cotors] = [Hom(Y, X)tors] . This makes the

formula more symmetric — note that D(X, Y ) = D(Y,X).
(c) When we replace X by X(r) or Y by Y (r) (r ∈ N) in Theorem 10.1, we

obtain a description of the behaviour of ζ(X∨ ⊗ Y, s) near −r or +r.
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Proof of Theorem 10.1 with z(ε) for D(X,Y ). Recall (8.1) that for all l, there is
an exact sequence

0 → Ext1
M+(Fq ;Z)(X, Y )Zl

cl−→ Ext1
R+(Fq ;Zl)

(Xl, Yl) → Tl Ext2
M+(Fq ;Zl)

(X, Y ) → 0.

Define
ε = (εl)l : HomM+(Fq ;Z)(X,Y )Ẑ → T Ext2

M+(Fq ;Z)(X, Y )

to be the map making

HomM+(Fq ;Z)(X, Y )Zl

εl−→ Tl Ext2
M+(Fq ;Z)(X,Y )y∼=

xcl

HomR+(Fq ;Zl)(Xl, Yl)
fl−→ Ext1

R+(Fq ;Zl)
(Xl, Yl)

commute. Here fl = f(Xl, Yl) is the map defined on p42. According to 9.9 and 9.1

z(εl) = z(cl) · z(fl) =
[Ext1(X,Y )(l)]

[Ext2(Xl, Yl)]
·
∣∣∣∣∣∣
qs(Xl)·r(Yl) ·

∏

ai 6=bj

(
1− bj

ai

)∣∣∣∣∣∣
l

. (35)

The ai, bj are algebraic numbers independent of l. Because Exti(Xl, Yl) = 0 for i ≥ 3,
(8.1b) shows that Exti(X, Y ) = 0 for i ≥ 3, and it follows (from 8.1b again) that

Ext2(X, Y )cotors(l) ∼= Ext2(Xl, Yl).

On multiplying the equations (35) for the different l and applying the product formula,
we find that

qχ(X,Y ) ·
∏

ai 6=bj

(
1− bj

ai

)
· z(ε) = ± [Ext1(X, Y )]

[Ext2(X, Y )cotors]
.

This will become Theorem 10.1 once we have shown that

z(ε) = ± [Hom(X, Y )tors]

D(X, Y )
.

Comparison of z(ε) with D(X, Y ). Let N be a finitely generated torsion-free dis-
crete Γ-module, and let N∨ = Hom(N,Z). The pairing

NΓ ×H2(Γ, N∨) → H2(Γ,Z) ∼= Q/Z
realizes the compact group (NΓ)Ẑ as the Pontryagin dual of the discrete group
H2(Γ, N∨) (e.g., Milne 1986b, I 1.10). There is therefore a canonical isomorphism

Hom(NΓ, Ẑ) → Hom(Q/Z, H2(Γ, N∨)) df
= TH2(Γ, N∨).

Suppose we are also given a nondegenerate pairing

ψ : N ×M → Z
where M is a discrete Γ-module such that Mtors is killed by some integer and M/Mtors

is finitely generated. This defines a map M → N∨ with torsion kernel and cokernel,
which induces isomorphisms H2(Γ,M) → H2(Γ, N∨) and TH2(Γ,M) → TH2(Γ, N∨).
Hence, there is a canonical isomorphism

Hom(NΓ, Ẑ) → TH2(Γ,M).
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When combined with the map

MΓ → Hom(NΓ,Z)

defined by ψ, this gives a homomorphism

ε(ψ) : (MΓ)Ẑ → TH2(Γ,M).

Note that z(ε(ψ)) is defined if and only if MΓ
tors is finite and the restriction ψΓ to a

pairing NΓ ×MΓ → Z is nondegenerate, in which case

z(ε(ψ)) = ± [MΓ
tors]

det(ψΓ)
.

When we apply this remark to the pairing

Hom(Ȳ , X̄)/{torsion} × Hom(X̄, Ȳ ) → Q,

we obtain a homomorphism

ε : Hom(X, Y )Ẑ → TH2(Γ, Hom(X,Y )),

and

z(ε) = ± [Hom(X, Y )tors]

D(X, Y )
.

Since ε coincides with the map defined in the preceding subsubsection, this completes
the proof of Theorem 10.1.

Comparison of Hom(Y,X)tors with Ext2(X, Y )cotors. In this subsection, we
prove that

[Hom(Y, X)tors] = [Ext2(X, Y )cotors].

It follows from Theorem 8.1 that

Hom(Y,X)(l) ∼= Hom(Yl, Xl)tors, Ext2(X, Y )cotors(l) ∼= Ext2(Xl, Yl)cotors,

and so it suffices to show that, for M and N in R+(Fq;Zl),

[Hom(N,M)tors] = [Ext2(M, N)cotors].

Because Ext3 = 0 in R+(Fq;Zl), Ext2(M/Mtors, N) is divisible and

Ext2(M, N)cotors
∼= Ext2(Mtors, N).

As Hom(N,Mtors) ∼= Hom(N,M)tors, this shows that it suffices to prove that

[Hom(N, M)] = [Ext2(M, N)] (36)

when M is torsion. In fact, we shall show that

Hom(N,M) ∼= Ext2(M,N)∗ (37)

when N is torsion-free and M is torsion. Here ∗ denotes Hom(−,Q/Z). This implies
(36) because an arbitrary N has a resolution by torsion-free objects (1.4b, 7.10).

Define

Exti(M,N ⊗Q/Z) = lim−→
n

Exti(M, N (ln)).

Then

Ext1(M,N ⊗Q/Z) ∼= Ext2(M, N)
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and so we have to show that

Hom(N,M) ∼= Ext1(M,N ⊗Q/Z)∗ (38)

(M torsion, N torsion-free).
Proof of (38) in the case l 6= p. We let M̄ and N̄ denote M and N regarded as

Zl-modules. There is a perfect pairing of finite Zl-modules

Hom(N̄ , M̄)×Hom(M̄, N̄⊗Q/Z)
◦→ Hom(N̄ , N̄⊗Q/Z) ∼= End(N̄)⊗Q/Z Tr⊗1−−−→ Q/Z.

This gives a perfect pairing of Γ-cohomology groups

Hom(N̄ , M̄)Γ × Hom(M̄, N̄ ⊗Q/Z)Γ → Q/Z,

which can be identified with (38).
Proof of (38) in the case l = p. If F acts as an isomorphism on M , this can be

proved as in the case l 6= p. Thus, we may assume that F act nilpotently on M , which
therefore has a composition series whose quotients are isomorphic to k =df (Fq, 0).

Let Rpn be the subcategory of R+(Fq;Zp) of objects killed by pn. An argument
using an analogue of the diagram (23), p39), shows that

Ext1
R+(Fq ;Zp)(N, N (pn)) ∼= Ext1

Rpn (N (pn), N (pn)) (39)

Any extension of N (pn) by N (pn) inRpn splits as an extension of W/pnW -modules, and
therefore is described by a σ-linear endomorphism α of N (pn). The trace of α acting
on N (pn) is an element of W/pnW , and the trace of this element is a well-defined
element of Zp/p

nZp. Thus, we have a homomorphism

Ext1
Rpn (N (pn), N (pn)) → Zp/p

nZp
∼= p−nZp/Zp.

On applying (39) and passing to the direct limit, we obtain a homomorphism

t : Ext1(N,N ⊗Q/Z) → Q/Z.

We claim that the pairings

Exti(N, M)× Ext1−i(M, N ⊗Q/Z) → Ext1(N, N ⊗Q/Z)
t→ Q/Z (40)

are perfect for i ≥ 0. When N = A/A · λ and M = k, this can be proved directly:
either both groups are zero, or the pairing is the trace pairing

Fq × Fq → Fp.

Consider an exact sequence

0 → N ′ → N → k → 0.

If the pairings (40) are perfect for N , k, and i ≥ 0, then the diagram

0 −→ Hom(k, k) −→ Hom(N, k) −→ Hom(N ′, k) −→ · · ·y∼=
y∼=

y
y∼=

0 −→ Ext2(k, k)∗ −→ Ext1(k, N ⊗Q/Z)∗ −→ Ext1(k, N ′ ⊗Q/Z)∗ −→ · · ·
shows that they are perfect for N ′, k, and i ≥ 0 (note that (24) shows that Exti(k, k)
equals k, k⊕ k, k respectively for i = 0, 1, 2). A similar argument applies when N/N ′

is a finite module on which F acts invertibly. Since an arbitrary torsion-free N can
be realized as a submodule of a direct sum of cyclic modules (9.3), this proves that
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the pairings (40) are perfect when M = k. An induction argument on the length of
M extends this to an arbitrary torsion M . The case i = 0 completes the proof of
(38).

The main theorem for Weil extensions. Let Γ0 be the subgroup of Γ gener-
ated by the Frobenius element (so Γ0

∼= Z). Inspired by Lichtenbaum 2002, we define
“Weil” extension groups satisfying an analogue of the spectral sequence (1).

As we noted in 5.20, to give a motive over Fq amounts to giving a motive X over
F together with an endomorphism π of X that represents its Frobenius germ. The
π can be considered a descent datum on X, and the condition on it a continuity
requirement. We now define the category of Weil motives over Fq, M(Fq;Z)W to be
the category of pairs (X, π) consisting of a motive X over F and an endomorphism
π (“noncontinuous descent datum”). Equivalently, M(Fq;Z)W is the category of
motives over F with a Z-action. It contains M(Fq;Z) as a full subcategory.

Similarly, we define the category M+(Fq;Z)W of effective Weil motives. For ef-
fective motives X and Y over Fq, let

Exti(X, Y )0 = Exti
M+(Fq ;Z)W

(X,Y ).

Proposition 10.3. For effective motives X, Y over Fq, there is a spectral sequence

H i(Γ0, Extj
M+(F;Z)(X̄, Ȳ )) =⇒ Exti+j(X, Y )0

Proof. The proof of Theorem 8.4 can be adapted to the present situation. ¤
Lemma 10.4. The groups Exti(X,Y )0 are finitely generated for all i, torsion for

i ≥ 2, and zero for i ≥ 3.

Proof. The groups Extj
M+(F;Z)(X̄, Ȳ ) have composition series whose quotients

are finitely generated Z-modules or F with its natural Γ0-action. Moreover, they are
torsion for i ≥ 1 and zero for i ≥ 2. Thus the statement follows from 10.3. ¤

Let f : Hom(M, N)0 → Ext1(M,N)0 be the map rendering

Hom(M, N)0
f−−−→ Ext1(M,N)0y

x
HomM+(F;Z)(M̄, N̄)Γ0 −−−→ HomM+(F;Z)(M̄, N̄)Γ0

commutative. Here the vertical maps arise from a spectral sequence (10.3) and the
lower map is induced by the identity map on Hom(M̄, N̄) (equal to cup-product with
the canonical generator of H1(Γ0,Z) ∼= Z).

Theorem 10.5. For effective motives X and Y over Fq, z(f) is defined and

qχ(X,Y ) · ζ(X∨ ⊗ Y, s) ∼ ±z(f) · [Ext2(X, Y )0] · (1− q−s)ρ(X,Y ) as s → 0.

(Notations as in 10.1.)

Proof. If either X or Y is finite, then the spectral sequence 10.3 coincides with
8.4 and so

Exti(X,Y ) ∼= Exti(X, Y )0.
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Now the same argument as in §8 proves that, for arbitrary X, Y , there are exact
sequences

0 → Exti(X,Y )0 ⊗ Zl → Exti(Xl, Yl) → Tl Exti+1(X, Y )0 → 0.

Lemma 10.4 shows that Exti+1(X, Y )0 has no l-divisible elements, and so these se-
quences reduce to isomorphisms

Exti(X,Y )0 ⊗ Zl
∼= Exti(Xl, Yl).

The spectral sequence (10.3) is compatible with the spectral sequences (7.11) and
(7.15), and so the diagrams

Hom(X,Y )0 ⊗ Zl
f⊗1−−→ Ext1(X, Y )0 ⊗ Zly∼=

y∼=
Hom(Xl, Yl)

fl−→ Ext1(Xl, Yl)

commute. Here fl is the map in Theorem 9.1. Therefore, Theorem 10.5 follows from
Theorem 9.1 and the product formula. ¤

Remark 10.6. The advantage of statement 10.5 over 10.1 is that it has a natural
extension to complexes of motives — see the sequel to this paper. Compare also
Theorem 9.6.

Motivic cohomology. Let V be a smooth projective variety14 over Fq. In con-
trast to the pure case, V should define, not a mixed motive, but rather a complex
which will not (in general) decompose when there is torsion, the torsion at p be-
ing particularly complicated. Nevertheless, for an r ≥ 0 such that the truncated
de Rham-Witt cohomology groups H i(V,WΩ≤r−1) are finitely generated over W , we
make the ad hoc definition: hiV (r) is the isomotive hi

0V (r) endowed with the Z-
structure provided by the maps H i(V,Zl(r)) → H i(V,Ql(r)) (étale cohomology for
l 6= p and crystalline cohomology l = p). Define the (Weil) motivic cohomology
groups by15

Hj
mot(V,Z(r)) = ⊕i Exti(11, hj−iV (r))0. (41)

Let

H•
mot(V,Z(r)) = · · · → Hj

mot(V,Z(r))
fj−→ Hj+1

mot (V,Z(r)) → · · ·
14If the category M(F;Q) at the start of this section is taken to be as in 5.27 (case (b)), then

V must be taken to be an abelian variety.
15According to Deligne 1994, 3.2.1, the motivic cohomology groups (Q-coefficients) should be

the final term of a spectral sequence

Eij
2 = Exti(11, hj(V )) =⇒ Hi+j

mot(V,Q(r)).

Over Fq it is natural to expect this also with Z-coefficients and (following Lichtenbaum’s ideas)
replace the Exts with the Weil Exts:

Eij
2 = Exti(11, hj(V ))0 =⇒ Hi+j

mot(V,Z(r)).

If this spectral sequence degenerates, then we arrive at (41). In a sequel to this paper, we plan to
take a less ad hoc approach.
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be the complex with

Hj
mot(V, Z(r)) Ext0(11, hj(V )(r))0 ⊕Ext1(11, hj−1(V )(r))0⊕Ext2(11, hj−2(V )(r))0

= @
@

@
f
R

@
@

@
f
R

Hj+1
mot (V, Z(r))

f j

?

Ext0(11, hj+1(V )(r))0⊕ Ext1(11, hj(V )(r))0 ⊕Ext2(11, hj−1(V )(r))0

The maps f at right are as in Theorem 10.5.

Theorem 10.7. Let V be a smooth projective variety over Fq, and let r ≥ 0 be
such that the groups H i(V,WΩ≤r−1) are finitely generated over W .

(a) The groups H i
mot(V,Z(r)) are finitely generated abelian groups.

(b) The alternating sum
∑

(−1)iri of the ranks ri of the groups H i
mot(V,Z(r)) is

zero.
(c) The order of the zero of ζ(V, s) at s = r is equal to the secondary Euler

characteristic ρ(V, r) =df

∑
(−1)iiri.

(d) The cohomology groups of the complex (H•
mot(V,Z(r)), f) are finite, and the

alternating product of their orders χ×(V,Z(r)) satisfies

ζ(V, s) ∼ ±χ×(V,Z(r)) · qχ(V,O,r) · (1− qr−s)ρ as s → r

where

χ(V,O, r) =
∑

0≤i≤r
0≤j≤dim V

(−1)i+j(r − i) · dimFq Hj(X, Ωi).

Proof. Immediate consequence of Theorem 10.5 and Milne 1986a, 4.1 (the con-
dition on the de Rham-Witt groups implies that the numbers di(r− 1) in the second
reference are zero). ¤

Remark 10.8. When r = 0, the condition on the de Rham-Witt groups is satisfied
vacuously, and the groups H i

mot(V,Z(0)) coincide with the Weil-étale groups H i
W (V,Z)

of Lichtenbaum 2002. Thus, in this case the theorem coincides with the smooth
projective case of ibid., Theorem 8.2.
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