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Abstract

Assuming the Hodge conjecture for abelian varieties of CM-type, one obtains a
good category of abelian motives 0\@l and a reduction functor to it from the cat-
egory of CM-motives ovef)?. Consequently, one obtains a morphism of gerbes of
fibre functors with certain properties. We prove unconditionally that there exists a
morphism of gerbes with these properties, and we classify them.
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Introduction

Fix ap-adic prime ofQ?, and denote its residue field By Let CM(Q?) be the category of
motives based on the abelian varieties of CM-type @®rand letMot(F) be the similar
category based on the abelian varieties dvein both cases, the correspondences are to
be the algebraic cycles modulo numerical equivalence. Both are Tanr@kiategories
and, because every abelian variety of CM-type has good reduction, there is an exact tensor
“reduction” functor

R: CM(Q¥) — Mot(F).

From R, we obtain a morphism
RY: Mot(F)¥ — CM(Q¥)Y

of gerbes of fibre functors. The bands bfot(FF)" andCM(Q?)" are commutative, and so
RY is bound by a homomorphism
p: P— S

of commutative affine group schemes o@er

It is known how to construct an explicit homomorphigm P — S of commutative
affine group schemes (Grothendieck, Langlands, Rapoport,...) and to prove that it be-
comes the homomorphism in the last paragraph when the Hodge conjecture is assumed for
abelian varieties of CM-type (this is explainecNhine 1994 §2, §4, under the additional
assumption of the Tate conjecture for abelian varieties over finite fields, but that assumption
is shown to be superfluousMilne 1999.

In this paper, we construct (unconditionally) an explicit morphism

P—S
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of gerbes bound by the homomorphigm P — S in the last paragraph, and we prove
that it becomes the motivic morphism in the first paragraph when the Hodge conjecture is
assumed for abelian varieties of CM-type. Moreover, we classify the morphismsS
bound byp and satisfying certain natural conditions.

Upon choosing an € P(Q¥), we obtain a morphism of groupoids

P(z) — S(x)

such that the map on kernels
P(z)® — S(z)°

is the homomorphism.

We now describe the contents of the paper in more detail.

In §1 we compute some inverse limits. In particular, we show that certain inverse limits
are infinite (see, for exampld..11), and hence can not be ignored as they have been in
previous works.

After some preliminaries on the cohomology of protorg#) we construct and classify
certain “fundamental” cohomology classes;3—4.

In §5, we review part of the theory of gerbes and their classificai®ina(d 1971
Debremaeker 1977

In §6, we prove the existence of gerte$aving the properties expected Mbt(F)",
and we classify them.

Finally, in§7 we prove the existence of morphisms of gerBes S having the proper-
ties expected oflot(F)¥ — CM(Q?¥)V, and we classify them.

In large part, this article is a critical re-examination of the results and progf2ind
(pp118-165) oLanglands and Rapoport 198 particular, we eliminate the confusion
between fpqc cohomology groups and inverse limits of Galois cohomology groups that has
persisted in the literature for fifteen years (elganglands and Rapoport 198Vilne 1994
Reimann 199), which amounted to setting certaljgnls equal to zero. Also we avoid the
confusion between gerbes and groupoids to be fouridamglands and Rapoport 1987
Finally, we are concerned, not just with the existence of the various object, but also with
their classification.

For the convenience of the reader, | have made this article independent of earlier articles
on the topic.

Notations and conventions

The algebraic closure @ in C is denotedQ?. The symbol denotes a fixed finite prime
of Q andoc denotes the real prime.

Complex conjugation oft, or a subfield, is denoted hy A CM-field is a finite exten-
sion £’ of (Q admitting an involutiong # 1 such thap otr = ¢ o p for all homomorphisms
p: E — C. The composite of the CM-subfields @f' is denotedQ®™.

The setN ~ {0}, partially ordered by divisibility, is denoted*. For a finite setS,
Z° = Hom(S,Z).
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For a perfect field: of characteristig, 1V (k) is the ring of Witt vectors with coefficients
in &£ and B(k) is the field of fractions ofi¥/ (k). The automorphism ofV (k) inducing
x — P on the residue field is denoted

For a finite extension of field&™ O %, (G,,) x,x is the torus ovef; obtained fromG,,
over K by restriction of scalars.

Groupoid will always mean affine transitive groupoid schedeligne 1990).

For a group schem@, a rightG-objectX, and a leftG-objectY’, X A® Y denotes the
contracted product ok andY’, that is, the quotient ok’ x Y by the diagonal action aF,

(z,9)g = (9,9 'y). WhenG — H is a homomorphism of group schemeés A\“ H is
the H-object obtained fronX by extension of the structure group. In this last cas4; i§
aG-torsor, thenX A H is also anH -torsor.

The notationX =~ Y means thafX' andY” are isomorphic, an& = Y means thafX
andY are canonically isomorphic (or that a particular isomorphism is given).

Direct and inverse limits are always with respect to directed index sets (partially ordered
set/ such that, for alt, j € I, there exists & € K for whichi < k£ andj < k). Aninverse
system isstrict if its transition maps are surjective.

For class field theory we use the sign convention that the local Artin map sends a prime
element to the Frobenius automorphism (that inducing: z¢ on the residue field); for
Hodge structures we use the convention fi{at acts onl’>? aszPz9.

Philosophy
We adopt the following definitions.

0.1. An element of a set igell-definedby a property, construction, condition, etc.) when
it is uniguely determined (by the property, construction, condition etc.).

0.2 An object of a category iwell-definedvhen itis uniquely determined up to a uniquely
given isomorphism. For example, an object defined by a universal property is well-defined
in this sense. WheX is well-defined in this sense and’ also has the defining property,
then each element of corresponds to a well-defined element'of

0.3. A category isvell-definedvhen it is uniquely determined up to a category-equival&nce
that is itself uniquely determined up to a uniquely given isomorphism. Whenwell-
defined in this sense aridalso has the defining property, then each objeCtodrresponds

to a well-defined object of'.

Advice to the reader

The article has been written in logical order. The reader is advised to begir}§&ii, 7
and refer back to the earlier sections only as needed. Also, the resgésomthe gerbe

1Recall that a category equivalence is a fundiorC — C’ for which there exists a functa: C’ — C
and isomorphismg: id — GF andy: 1 — FG such thatF'¢p = ¢ F (Bucur and Deleanu 1968.6; F'¢
andy I’ are morphism$’ — FGF). Our condition says that f andC’ have the defining property, then there
is a distinguished class of equivalendésC — C’ and a distinguished class of equivalenégs C' — C; if
F: C — C'andF;y: C — (' are both in the distinguished class, then there is given a (unique) isomorphism
F1 — FQ.
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conjecturally attached tvlot(IF) require very little of the rest of the paper.
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1 Some inverse limits.

We compute somims andyglls that are needed in the rest of the paper.

Review of higher inverse limits

For an inverse systerf,,, u,) of abelian groups indexed i, <), lim 4, andligll A,
can be defined to be the kernel and cokernel respectively of

(ovn, ) = (o an =ty (Ang), ) T An —= [T, An- (1)
From the snake lemma, we see that an inverse system of short exact sequences
0= (An) = (Bn) = (Cn) = 0
gives rise to an exact sequence
0—>l1111An—>£i£1Bn—>liLnCn—>liil1An—>liLnIBn—>liinlCn—>0. (2)

In particular,lim is left exact andién1 is right exact.
Recall that an inverse systefd,,, u, ),y IS said to satisfy the condition (ML) if, for
eachn, the decreasing chain i, of the images of thel; for i > n is eventually constant.

PROPOSITIONL.1 The grouplim A, = 0 if
(a) the A,, are compact and the transition maps are continuous, or
(b) the systeniA,),cy satisfies (ML).
PROOF. Standard. O

REMARK 1.2. Consider an inverse systefd,,),cn Of finite groups. If@ A, is infinite,
then it is uncountable. In proving this we may ass@iat the transition maps are sur-
jective. Becaus@iin A,, i1s infinite, the orders of thel,, are unbounded, and the Cantor
diagonalization process can be applied.

REMARK 1.3, We shall frequently make use of the following (obvious) criterion:

lim A,, = 01if, for all n, N; Im(A4,,+; — A,) = 0.
%

2Consider the map

(agy -y, yans1) = (coosan — Upt1(@pa1), ) H0§n§N+1A" — HogngNAn'

Letr = (zn)nen € [[,en An, and letPy be the inverse image f,,)o<n<n in [[o<, < n414n- We have
to show thaﬂi£1PN is nonempty. The projectiofu,,)o<n<n+1 — ant1: Pv — Any1 IS bijective. In
case (a), thé’y are compact, and so this case follows fiBourbaki 19891 §9.6, Proposition 8. In case (b),
(Pn)nNen satisfies (ML). LetQy = N; Im(Py; — Py). Then each)y is nonempty, and@y ) nen is @
strict inverse system. Hendien Qv is (obviously) nonempty. ABm Qn = lim Py, this proves (b).

3As in the preceding footnote.
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PROPOSITIONL.4. If the inverse systeif¥,, )<y fails (ML) and theA,, are countable, then
liLnl A, is uncountable.

PROOF. See, for exampléviiine 2002k 1.1b. O

ExamPLE 1.5 Let (G, ).cny be an inverse system of commutative affine algebraic groups
over Q with surjective transition maps. The inverse systE) (Q)),en Will usually fail
(ML), and soliinl G, (Q) will usually be uncountable. If7,, contains noQ-split torus,
thenG,,(A)/G,(Q) is compact Platonov and Rapinchuk 199%heorem 5.5, p260), and
solim 'G,(A)/G(Q) = 0; thus

@1(}”(@) — yiann(A)
is surjective.

REMARK 1.6. For an arbitrary directed sét the category of inverse systems of abelian
groups indexed by has enough injectives, and so there are right derived funp’idsof

lim (Jensen 197281). Forl = (N, <), they agree with those defined above (ibid. p13).
If J is a cofinal subset of, then@f] A, = @; A,. This is obvious fori = 0 and it
follows for a general by the usual derived-functor argument (cf. ibid. 1.9 and statement
pl2). If (I, <) is a countable directed set, thércontains a cofinal subset isomorphic to
(N, <) or to a finite segment ofN, <). In the first case, the above statements apply to
inverse systems indexed By

EXERCISE1.7. For an abelian groug, let (A, m) denote the inverse system indexed by
NX

e AL A
n mn

Show:
(@) lim(A, m) = 0 = lim' (A, m) if NA = 0 for some integerV;
(b) im(Z, m) = 0, lim"(Z, m) = Z/Z;

(©) im(Q/Z,m) = Ay, ml(Q/Z,m) = 0. [Hint: Regard(Q/Z, m) as the projective
system(Q/mZ, 1), and note tha® /Z = &Q,/Z,.]

Notations from class field theory

For a number field., U(L) is the group of units in the ring of integers 6f I(L) is the
group of fractional ideals, ant{ L) is the group of i@les. For a modulus: of L, C,(L)
is the ray class group, anfd,,(L) is the corresponding ray class field. When= 1, we
omit it from the notation. Thugy'(L) is the usual ideal class group afd L) is the Hilbert
class field.
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For a finite extensiorl./ F' of number fields and moduth of F' andn of L such that
m|Nmy,r(n), there is a commutative diagram

Co(L) —— Gal(Ha(L)/L)
Nmy,,p lff’—’U\Hm(F) (3
Cu(F) — Gal(Hu(F)/F)

(Tate 1967 3.2, p166) The horizontal isomorphisms are defined by the Artin symbols
(= Ha(L)/L) and(—, Hyn(F)/F).

Inverse systems indexed by fields
1.8. Let F be an infinite set of subfields @ such that

(a) each field inF is of finite degree ove;

(b) the composite of any two fields if is again inF.

Then(F, C) is a directed set admitting a cofinal subset isomorphid@\to<). For such a
setF, the norm maps define inverse systeifis ) e 7, (I(F))per, €tC..

EXAMPLE 1.9. (a) The set of all totally real fields i@ of finite degree ovef) satisfies
(1.8a,b). If f € R[X] is monic withdeg( f) distinct real roots, then any monic polynomial
in R[.X] sufficiently close tof will have the same property (because any quadratic factor of
it will have discriminant> 0). From this it is easy to construct many totally real extensions
of Q. For example, Krasner's lemma shows that, for any finite extensiohQ,, there
exists a finite totally real extensidri of Q contained in_ such thaf{#': Q] = [L: Q,] and
F-Q, = L. Also, a standard argument in Galois theory can be modified to show that, for
all n, there exist totally real fields with Galois grodp overQ (Wei 1993 1.6.7).

(b) The set of all CM fields if)? of finite degree ovef) satisfies'1.8a,b). Letd € Z,
d > 0. For any totally real field”, F'[v/—d] is a CM-field, and every CM-field containing
v/—d is of this form. AsF runs over the totally real subfields @®, F[v/—d] runs over a
cofinal set of CM-subfields a2

The inverse system(C'(K))

PROPOSITION1.10. Let F be the set of totally real fields i@? of finite degree ove®.
Thenlim »C(F) = 0

PROOF. The Hilbert class fieldd (F') of a totally real fieldF" is again totally real, and
diagram8) shows that, for any totally real field containingH (F'), the norm mag’'(L) —
C(F)is zero. Therefordjm C(F) = 0 by (1.9). O

PROPOSITION1.11 Let F be the set of CM-fields i@¥ of finite degree ovef). Then
lim »C'(K) is uncountable.
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Let K be a CM-field with largest real subfield, . Letm be a modulus fofk such that
txm = m and the exponent of any finite prime ramifiedAfy K, is even. Them is the
extension tak’ of a unique modulusy, for K, such tha{m,)., = 1. This last condition
implies thatH,,, (K;) N K = K, and so the norm map,,(K) — Cy,, (K) is surjective
(apply B)). DefineC,, (K) by the exact sequence

NmK/K+

0— C(K) —— Cu(K) Cin, (K1) — 0. 4)

LEMMA 1.12 With the above notations, any CM-subfidldof H,(K) containing K is
fixed by the subgroup- C, (K) of Cn(K), i.e.,2- C (K) — Gal(Hn(K)/L).

PROOF. We shall need the general fact:

(*). Let L/F be a finite Galois extension of number fields, and7die a
homomorphisml, — Q2. For any prime ideald of L unramified inL/F,

(7B, 7L/7F) =10 (P,L/F)or*

(equality of Artin symbols). In particular, it./F is abelian,7L = L, and
TF = F, then for any prime ideap of F' unramified inL, (tp,L/F) =
To(p’L/F)OTfl.

Because ,m = m, H,(K) is stable under, and hence is Galois ovét,. The Galois
closure ofL over K, will again be CM, and so we may assumdo be Galois overy, .
Let H be the subgroup af',,(K) fixing L, and consider the diagram

0 — Cn(K) —— Gal(Hn(K)/Ky) — Gal(K/Ky) —— 0
0 —— Cu(K)/H ——  Gal(L/K,) —— Gal(K/K,) — 0

in which we have used the reciprocity map to repléeé(H,,(K)/K) with C,(K). Ac-
cording to (*), the action oGal(K /K, ) = (tx) on Cy,(K) defined by the upper sequence
is the natural action. Becaugeis a CM-field, the action of, on C,,(K)/H defined by
the lower sequence is trivial. The composite of the maps

NmK/K+
Cn(K) Cm+(K+) — Cn(K)
iSc— c-uwe,and sak acts as-1 onC, (K). ThusH D 2C (K). O

For a finite abelian groug, let A(odd) denote the subgroup of elements of odd order
in A. Note that
C(K)(odd) = C™(K)(odd) & C(K4)(odd). (5)

LEMMA 1.13 For any CM-fieldL containingk’, the norm map
C~(L)(odd) — C~(K)(odd)

is surjective.
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PROOF. The norm limitation theoremTate 1967 p202, paragraph 3) and®)(allow us
to assume thak is abelian over'. Therefore, we may suppode C H,,(K) for some
modulusm as above. Moreover, we may suppose thas the largest CM-subfield of
Hy(K). The fieldH,,, (K) - K is CM, and so is contained ih. The fieldH,,, (L) - L
is also CM, and so

(Hu, (Ly) - L) N Hy(K) = L. ©)

Consider the diagram (ct3))

Co(L) —=— Gal(Hn(L)/Hu, (L;) - L)

leL/K lo"_)0'|Hm(K)
O (K) —2 Gal(Ho(K)/Hy, (K.) - K)

m

According to 6), the image ofr — o|H,(K) is Gal(H,(K)/L), and so by 1.12) the
image ofNm x contains2 - C, (K). Therefore Nmyx: Cy (L)(odd) — C, (K)(odd)
O

m

is surjective, which implies the similar statement withoutiitig.

PROOF OFPROPOSITIONL.11 Aslim C(K;) = 0 (1.10, the inverse system of exact
sequenced) gives an isomorphism

lim C~(K) = lim C(K).
— —
Because 0f1.13), for every CM-fieldK, the projection
lim €~ (K) (0dd) — C~ (Ko)(0dd)

is surjective. An irregular primédivides the order o~ (Q[¢;]) (Washington 199,75.16,
p62). Therefore the order of the profinite grolim C~(/)(odd) is divisible by every
irregular prime. Since there are infinitely many irregular primes (ibid. 5.17), this implies
thatlim C~ (/) (odd) is infinite and hence uncountalsie. O

The inverse system( K~ /U (K))
LEMMA 1.14 For any setF satisfying L.&a,b), there is an exact sequence
0 — lim £ F*/U(F) — lim £I(F) — lim zC(F) — liLn}TFX/U(F) — liLn}[(F) — 0.

PROOF. Because the grougs(F) are finite,lim 'C(F) = 0 (1.1), and so this is the exact
sequenced) attached to the inverse system of short exact sequences

0 — F*JU(F) — I(F) — C(F) — 0.

]

4Let hy; be the order of”~ (K) (the relative class number). According to the Brauer-Siegel theorem, as
K ranges over CM number fields of a given degreg,is asymptotic tdog(+/dx /dx ., ) and goes to infinity
with dg (the discriminant of). The Generalized Riemann Hypothesis implies a similar statement for the
exponents of the class groujpio(boutin and Okasaki 2003
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LEMMA 1.15 LetF be the set of totally real fields i@ of finite degree ovef). Then

lim 7 =0 (7
lim #I(F) & lim #(F ©g R)* (8)
lim #F /U(F) =0, ©)
lim - F* /U(F) 2 lim - I(F). (10)

Moreoverlim - F* /U(F) is uncountable.
%

PROOF. The equality 8) follows from the discussion1(S) and the fact that a nonar-
chimedean local field has no universal norms. Equa8)yirqplies (7) because a global
norm is a local norm.

Anideala = p™--- € I(F), m # 0, will not be in the image of

oncelL is so large that none of the residue class degrees of the primesatigesm. It
follows thatlim /(F) = 0 and that(I(F')) re# fails (ML). Thus, (.14 proves ) and that
there is an exact sequence

0 — lim C(F) — lim 'F* JU(F) — lim "I(F) — 0.
— — —

Butlim C(F) = 0 (1.10) and sdim' F*/U(F) = lim' I(F), which is uncountablel(1).
— — —

O
LEMMA 1.16. LetF be the set of CM-subfields @F of finite degree ove®. Then
lim 7 K> =0 (11)
lim FI(K) & lim 7(K @g R)* (12)
lim z K™ /U(K) =0 (13)
and there is an exact sequence
OH@;C(K)HHLD}KX/U([(»—)m‘l}—I(K)—)O. (14)

PrRoOOF. The proofs of11), (12), and (L3) are similar to those of the corresponding equal-
ities in (1.19). In particularlim /(K) = 0, and so/14) follows from1.14 O

The inverse system( K~ /KY)
Let F be the set of CM fields i of finite degree ove®.

LEMMA 1.17. The quotient map
lim K /K — lim L (K /U(K) - K)

is an isomorphism.
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PROOF. The homomorphisnV (K, ) — U(K) has finite cokernel, and so
lim 'U(K) — lim "U(K)
is surjective. Now the statement follows from the diagram

liLnlU(K+)—> thle - liﬂlle/U(KJr) — 0

|

im!U(K) —— lim!K* —— lim!'K*/UK) —— 0
— — —

|

0 —— I 'K /K —— lm KX JU(K) - K

LEMMA 1.18 The quotient map
lim 5I(K) /1K) — lim 51 (K) /T(K)
is an isomorphism.

PROOF. For a number field., let V(L) denote the kernel of(L) — I(L). Letr =

[Ky: Q). ThenV(K,) ~ (R*)" x {compac}andV (K) ~ (C*)" x {compac}, and so
V(K)/V(K,) is compact. Thereforé(iin1 V(K)/V(Ky) = 1 by (1.1a), and the limit of
the exact sequences

0 — V(K)/V(K.) — I(K)/I(K.) — I(K)/I(Ky) = 0
gives the required isomorphism. O
PROPOSITION1.19 There is an exact sequence
0 — lim C(K) — &n}_—KX/Kj: — hén}_-]l(K)/H(KJr) — 0.
PROOF. Lemmasl.15and1.16show that the rows in
0 — @}Kﬁ/U(KJF) — @}I(lﬁ) —— 0

0 —— liin]:C(K) —_— lin}_-KX/U(K) —_— lin;I(K) —— 0

are exact, from which we deduce an exact sequence
0 — lim FC(K) — lim (K JU(K) - K¥) — lim }I(K)/I(K,) — 0.

Now (1.17) and (.18 allow us to replace the last two terms WiﬂgllfKX/Kj and
lim LK) /I(K.). O
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The inverse system K (w)* /K (w)%)

Fix a finite primew of Q¥, and writew, (or justw) for the prime it defines on a subfield

of Q2. For anL that is Galois ove, let D(w;) denote the decomposition group, and let
L(w) = LP™1), For a systeny satisfying (L.€) and whose members are Galois o@gr
we define( L(w ) )LeF to be the inverse system with transition maps

LZU: Lw / X X
(NmL/(w)/L(w))[ } . L (w) — L(w) .
We define the inverse systefS(L(w))) pe 7 (I(L(w))rer, €tc., similarly.

PROPOSITIONL.20. LetF be the set of totally real fields i@ of finite degree and Galois
overQ. Then
lim 5 (C(F(w)) = 0

and the map
lim & F(w)™ /U (F(w)) — lim :1(F (w))
is an isomorphism.
PROOF. Letm bethe exponentdf(F(w)). TheF’in F suchthat” > Fandm|[F) : F,]
form a cofinal subset of > For such anF”’, the map
F! : Fy, /
(N )™ C(F () — O(F(w)

is zero, and sdim £(C(F(w)) = 0 by the criterion1.9). The second statement now
follows from (1.14). O

PROPOSITION1.21 LetF be the set of CM fields i®? of finite degree and Galois over
Q. Then

lim ~C(K (w)) = 0 (15)
and

lim &K (w)* /U (K (w)) 2 lim 11 (K (w)) (16)

hme(w)X/K( w)y = lim z K (w)* /UK (w)) - K (w) (17)

lim FI(K (w)) /I(K (w)+) = lim zI (K (w))/1(K (w)+) (18)

lim b ¢ (w) /K () 2= lim (K (w) /10K (w).). (19)

PROOF. The proof of (L5) is similar to that of/1.20) (cf. 1.Sb), and (L6) then follows from
(1.14. The proofs of 16) and (L7) are similar to those ofl(17) and (.18). For (19), the
horizontal arrows in the commutative diagram

lim LK () /U (K (w);) —— lim LI(K (w),)

| !

lim K (w)* /U (K () —— lim (K (w)).

SLet fy be a monic polynomial if)[X] whose splitting field ig; let L be a finite extension af;,, such
thatm|[L: F,], and writeL ~ Q,[X]/(g(X)) with ¢ monic; choose a moni¢ € Q[X] such thatf is
closew-adically tog and really close to a monic polynomial that splits oRethen, by Krasner’'s lemma, the
splitting field £{ of f, - f will have the required property, as will any field #fi containg#{.
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are isomorphisms by Propositidn20and (L5). Thus,
lim 5 (K (w)* /U (K (w)) - K(w)X) = lim 21 (K (w))/I(K(w)+),

and (1.21b) and .21c) allow us to replace the terms wiln = K (w)* /K (w) andlim 31(K (w))/I(K (w);.).
0

Conclusions

PROPOSITION1.22 Let F be the set of CM fields i@? of finite degree and Galois over
Q. In the diagram,

lim, K (w)* /K (w)} —— lim (K (w))/I(K (w)+
liml K*/KY —"  liml I(K)/I(K™),
Ker(d o ¢) = 0 andKer(d) = lim C(K).

PROOF. The second statement is proved1nl©). Since the top horizontal arrow is an iso-
morphism9), for the first statement, it suffices to show that right vertical map is injective.
Because 0f1.18) and (18), this is equivalent to showing that

lim ' T(K (w))/T(K (w)) — lim ' I(K)/I(K)
is injective. From the exact sequen@} ttached to
0 — I(K(w))/I(K (w)y) — I(K)/I(K) — I(K)/ (I(K) + I(K (w))) — 0
we see that it suffices to show that
lim I(K)/ (I(K) + (K (w))) = 0.

Leta € I(K) represent a nonzero elementld)/ (I(K.) + I(K(w))). For somem,
a ¢ I(Ky)+ I(K(w)) + mI(K). There exists & € F containing/” and such that,
for every primev’ of K’ lying over the same prime df . or K (w) as a primev of K for
which thev-component of: is nonzeron divides the residue class degré@’/v). For
such ak’, a ¢ I(K) + [(K(w)) + Nm I(K').° Thus,lim I(K)/I(K,) - [(K(w)) = 0
by the criterionL.3). O

®Define an equivalence relation on the finite primeskofas follows: v ~ v’ if v|K, = v'|Ky or
v|K(w) = v'|K(w). ThenI(K)/(I(K4)+ I(K(w)) decomposes into a direct sum over the equivalences
classes. To obtain the statement, consider a direct summand for which the compaensmafzero.
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2 The cohomology of protori

Throughout this sectiori; is a field of characteristic zeré? is an algebraic closure @f,
andl’ = Gal(k®/k).

Review of affine group schemes

2.1 Every affine group scheme ovéris the inverse limit of a strict inverse system of
algebraic groupsdiemazure and Gabriel 19701, §3, 7.5, p355).

2.2. An affine group schemé' overk defines a shea®: U — G(U) on (Spec & )gpqe, @and
the functorG — G is fully faithful (ibid. 11, §1, 3.3, p297). WhewV is an affine normal
subgroup scheme df, the quotient sheatf?/N is in the essential image of the functor
(ibid. 111, §3, 7.2, p353).

2.3. Let (G, )qer be an inverse system of affine group schemes byveThe inverse limit

G = lim G, in the category of-schemes (s@-(S) = lim G,(S) for all k-schemes5)

is an affine group scheme, and is the inverse limit in the category of affine group schemes
(ibid. 11, §3, 7.5, p355). Note that' = lim G, 2

2.4. The category of commutative affine group schemes évsmabelian. A sequence

0-A%BLC=0

is exact if and only ifA — B is a closed immersion3 — C'is fully faithful, anda: A —
B is a kernel oft (ibid. 1ll, §3, 7.4, p355). The category is pro-artinian, and so inverse
limits of exact sequences are exact (ibid¥, 2, pp563-5).

2.5. The functorG — G from the category of commutative affine group schemes bver
to the category of sheaves of commutative group&Sprc £ )qqc iS exact (left exactness is
obvious, and right exactness follows fr@h®).

2.6. We say that an affine group scheifiés separabl€ if the set of affine normal sub-
groupsN of G for which G/N algebraic is countable. Suchtais the inverse limit of a
strict inverse system of algebraic groups indexed¥y<) (apply2.1).

Continuous cohomology

Let T be a separable protorus overThen

T(k) = lim Q(k*)

’Recall (Notations) that this means directed inverse system.

8Recall that to form an inverse limit in the category of sheaves, form the inverse limit in the category of
presheaves (this is the obvious object), and then the resulting presheaf is a sheaf and is the inverse limit in the
category of sheaves.

®Compare: a topological space is said to be separable if it has a countable dense subset; a profinite group
G is separable if and only if the set of its open subgroups is countable, in whiclizdagbe limit of a strict
inverse system of finite groups indexed @Y, <).
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where(Q runs over the algebraic quotients®f Endow each grou@ (k%) with the discrete
topology, and endow’ (k') with the inverse limit topology. Defin&l,(k, T') to be therth
cohomology group of the complex

s o)L et (T -

whereC"(T", T) is the group of continuous map¥ — 7'(k®) andd" is the usual bound-
ary map (see, for exampldate 1975 §2). Note that, ifT" = lim T, thenC"™(I',T) =
lim C"(I,T,).

WhenT is a torus,H(k, T) is the usual Galois cohomology group

Hyo(k,T) = H" (D, T(k*)) = lim H" (T pp, T(K))

(limit over the finite Galois extensions of & contained ink®; I'x/, = Gal(K/k)). In this
case, we usually omit the subscript “cts”.

LEMMA 2.7. Let
0—-T —-T—T"—0 (20)

be the limit of a short exact sequence of countable strict inverse systems of tori. Then the
sequence of complexes

0—C*(,T") —C*(I',T) — C*(I', T") = 0 (21)
is exact, and so gives rise to a long exact sequence

S HT

cts

(k,T") — H{

cts

(k,T) — H;

cts

(k,T") — HL (K, T') — - .

cts

PROOF. By assumption,Z0) is the inverse limit of a system

oOo—17., — Ty —T', ——0

n+1 n+1

J/onto lonto J/onto

oO— 7, — T, — 1) — 0

Because the transition maps, , (k%) — T7.(k*) are surjective, the limit of the short exact
sequences
0— T/ (K — T, (k) — T/(k*) — 0

is an exact sequence
0 — T’(kal) N T(kal) N T”(kal) =0

(1.1(b)). To show that21) is exact, it suffices to show that

(a) the topology o’ (k?) is induced from that off"(k?);
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(b) the mapT'(k¥) — T"(k¥) has a continuous section (not necessarily a homomor-
phism).

The topology on an inverse limit is that inherited by it as a subset of the product. Thus
(a) follows from the similar statement for producBolrbaki 1989 | 4.1, Corollary to
Proposition 3, p46). As all the groups in the diagram

Tn(/{?al) N T;(k‘al)
T () —— T, (k%)

are discrete and all the maps surjective, it is possible to successively choose compatible
sections to the magk, (k&) — 7" (k). Their limit is the section required for (b). [

PROPOSITION2.8. LetT be a separable protorus ovéf, and write it as the limitl" =
lim T, of a strict inverse system of tori. For each> 0, there is an exact sequence

0 — lim 'H"'(k, T,,) — Hgo(k,T) — lim H"(k, T,,) — 0.

PrROOF. The mapT,,,(k¥) — T, (k¥) is surjective, and admits a continuous section be-
causeT, (k¥) is discrete. Henc€" (T, T,,,1) — C"(T', T,,) is surjective. Thus, byl(1),

lim'C"(I,T},) = 0,
—

and so we can apply the next lemma to the inverse system of comgleXés, 7,,)).en-
O

LEMMA 2.9. Let (C?),.en be an inverse system of complexes of abelian groups such that
lini C;, = O forall . Then there is a canonical exact sequence

0 — lim L H"(C3) — H'(lim C3) — lim H7(C3) — 0. (22)

PROOF. This is a standard result. [The conditip@i Cr = 0implies that the sequence of
complexes

0 — lm Cf —— [[,C0 % I, —— 0

0 —— lm O —— [[, 0" =% [1,000 —— 0

is exact (the maps — v are as in1)). The associated long exact sequence is
S TLAETNCY) — B (im Cy) — [1,H(C) =5 TLH(Ch) — -
which gives 22).] O
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LEMMA 2.10. For a separable protoru§’, Hy.(k, T) = Hig(k, T).

PROOF. The groupr}ch(k,T) is canonically isomorphic to the group of isomorphism
classes of torsors fdf (Giraud 1971 1l 3.5.4, p169). LetP be such a torsor. Because
T is separable, it is the limit of a strict inverse systém),cn, and correspondingly’

is the inverse limitP = lim P, of the strict inverse systerfi,)nen = (P AT T”)neN'
The setP(k*) = lim P, (k") is nonempty. Choose m € P(k*), and foro € T write
op = p - ax(P) with a,(P) € T(k¥). Theno ~ a,(P) is a cocycle, which is continuous
because its projection to ea€h(k?') is continuous, and its class ik, T') depends only
on the isomorphism class &f. The map

[P] = lag(P)]: Hipgolk, T) — Hgg(k,T)
is easily seen to be injective, and the flat descent theorems show that it is surjective. (See
Milne 2002H) 1.20, for a slightly different proof.) ]

ExAMPLE 2.11 Define the universal coverirg of a torus?’ to be the inverse limit of the
inverse system indexed By*

m
n mn

Then, with the notations ofl(7), there is an exact sequence

0 — lim '(H" " (k, T),m) — H'(k, T) — lim(H" (k,T),m) — 0.
For any torugl’ overQLT(Q) = 0 (e.g.,Milne 1994 3.16)*Y For any torusl’ overQ such
that7'(R) is compact'(A;) = 0 (ibid. 3.21)!

REMARK 2.12 LetT be a separable torus, = lim T, overan algebraically closed field
k. Then the mapg,,.,(k) — T,(k) are surjective, and s@l T.(k) = 0. Moreover,
Hi(k,T,) = 0forallnand alli > 0, and soH(k,T) = 0 for all i > 0.

Adelic cohomology

We now takek = Q, so thatl' = Gal(Q¥/Q). For a finite setS of primes ofQ, A% is
the restricted product of th@; for [ ¢ S, and for a finite number field, A7 = L g A®.
When S is empty, we omit it from the notation.
For a torusl’ overQ, define
HT(Asv T) = hl>n HT(FL/@v T(AED
L

(limit over the finite Galois extensiorns of Q contained irQ).

10An element off(@) is a family (an)n>1, an € T(Q), such thaia,, = (am,)™. In particular,a,, is
infinitely divisible. If T = (G,,) /g, thenT(Q) = L*, andNL*™ = 1. Every torusI’ can be embedded in
a product of tori of the forn{G,,,) . /¢, and so agaim7'(Q)™ = 1.

UFirst, T(Q) is discrete ilT'(A): let k be a finite splitting field fofl’; thenT (k) is discrete inl(A) by
algebraic number theory; now use tHgtQ) = T'(k) N T'(Ag).

The hypothesis implies that(A;)/T(Q) is compact. Therefore, for any choiceBfstructure oril’, the

T

mapT(Z) — T(As)/T(Q) has finite kernel and cokernel. Now use that(Z)" = 1.
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PROPOSITION2.13 LetT be atorus ovefQ. For all » > 1, there is a canonical isomor-
phism
H" (A% T) = @i H™(Q,, 7).

PROOF. Let L/Q be a finite Galois extension. For each pritredf Q, choose a prime of
L lying over it, and sef.! = L,. Then

, df
H (FLZ/@NT(LZ)) =H (FLv/@l’T(Lv))

is independent of the choice ofup to a canonical isomorphism (i.e., it is well-defined).
Moreover,
H"(Tpjq. T(A])) = @gsH(L/Q, T(L'))

(Platonov and Rapinchuk 199Rroposition 6.7, p298). Now pass to the direct limit over
L. 0

COROLLARY 2.14. A short exact sequence
0—-T —-T—-T"—0
of tori gives rise to a long exact sequence
= H'(AST") — H"(AST) — H"(AS T") — H "N (AS T') — - .

PrROOF. Take the direct sum of the cohomology sequences ovépthad apply the propo-
sition. O

For a torusr’, let

T(A%) =lim T'(A7), (limitover L ¢ Q¥ with [L: Q] < o),
L

—

and, for a separable protoriis let
T(A%)=1im Q(A®), (limit over the algebraic quotients @f).

Endow eachQ(A%) with the discrete topology anfi(A®) with the inverse limit topology,
and define
H'(A®,T) = H'(T, T(A%))

where H"(T', T(A®)) is computed using continuous cochains (profinite topologypn
WhenT is a torus, this coincides with the previous definition.

PROPOSITION2.15 LetT be a separable protorus ové&).
(a) There is a canonical homomorphism

HY(Q,T) — H'(A®,T).
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(b) Write T" as the limit of a strict inverse system of tdfi,= lim 7;,. For eachr > 0,
there is a canonical exact sequence

0 — lim'7,,(A®) — HY(A® T) — lim H'(A® T,,) — 0.
— —

PROOF. (a) For each algebraic quotie@ of T, Q(Q¥) — Q(A®) is continuous (both
groups are discrete), and hence the inverse lii@?) — 7'(A*) of these homomorphisms
is continuous.

(b) The mapT,,,,(A%) — T,(A%) is surjective (in factl}, . (A7) — T,(AY) will
be surjective oncé is large enough to splif’), and admits a continuous section because
T,,(A%) is discrete, and so the proof &.€) applies. O

REMARK 2.16. For any finite set5 of primes ofQ,

T(A) = TA%) x T(J[@) © Q)

leS

is a topological group, and so
H' (A, T) = H"(AS.T) x [[,esH'(Q1,T).

REMARK 2.17. LetT = h;n(Tm u,) be a separable pro-torus ov@r It may happen that
eachT,, satisfies the Hasse principle Bltdoes not. In this case, we get a diagram

0 —— linrllTn(Q) — HYQ,T) — liinnHl(Q,Tn) — 0
[ s |
0 — lim!T,(A) —— HYA,T) — lim, HY(A,T,,) —— 0
— P

in which ¢ is injective and
Ker(a) = Ker(b) # 0.

Let (¢,) be an element of[ 7,(Q) that is not in the image of — v on[[ 7,,(Q) butis in
the image ofl —uwon[[7,(A). Then

P = lﬁl (Tn7 Up - tnfl)

is a nontrivialT-torsor under ovef) that becomes trivial ovek.
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3 The cohomology of the Serre and Weil-number protori.

Throughout this sectior)? is the algebraic closure @ in C, I' = Gal(Q¥/Q), andF is
the set of CM-subfield&” of Q?, finite and Galois ove®).

The Serre protorus S.
For K € F, the Serre group” for K is the quotient ofG,,) kg such that

X*(S¥)={f:Tkio— Z| f(o) + f(0) is constan} .

The constant value of(o) + f(c0) is called the weight of . There is an exact sequence

0— (Gm)K+/Q I (Gm)K/Q X Gm — SK — 0 (23)

of tori over@Q corresponding to the exact sequence

0 — X*(SK f—'_’> ZFK/@@Z (f,m)— ZFK+/Q -0
(frwt(f)) [T jo—m ZGGFK+/Q a

of character groups. The maNsn ./, x id induce homomorphisms®” — SX, and the
Serre group is defined to be
S = lim S¥.
(—
f

LEMMA 3.1 For K € F, there are exact sequences

0 — HY(Q,S") — Br(K,) — Br(K) ® Br(Q) — H*Q,5") - 0
0 — H'(A,S®) = @ Br((K,);) — @ Br(K;) ® ® Br(Q) — H*(A,S*) - 0.

(The subscript denotes— ® Q;.)

PROOF. Except for the zero at right, the exactness of the first sequence follows2&m (
and Hilbert’s Theorem 90, but a theorem of Tdlte 1986 | 4.21, p80) shows that

H3(K+, Gm) = @U reaIHg((K—i-)w Gm)7

andH3*(R,G,,) = H'(R,G,,) = 0 (periodicity of the cohomology of finite cyclic groups).
The proof that the second sequence is exact is similar. O

PrROPOSITION3.2. For K € F,

H'(A, S%),
H?*(A, S™).
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PROOF. Apply Lemma3.1and the snake lemma to the diagram,

0 —  Br(Ky) —— @B((Ky) —— @z ——0

l l [

0 —— Br(K) ®Br(Q) —— @ Br(K)) & @ Br(Q) — Q/Z&Q/Z — 0

in which the subscript denotes- ® Q,. For the vertical map at right we have used that

invgoRes = [E: F|-invg

invg oCor = invg
for an extensiorf’ C F; seeSerre 1962XI1 §2, Proposition 1. ]

PROPOSITION3.3. There is a canonical commutative diagram

0— @ —— 5@ —— lm'K;
0 —— A% xlim G555 S(4) —— lim'I(K.)

and a canonical exact sequence
0 — lim £ C(K) — lim -5 (Q) — lim (-5 (A) — 0.
PROOF. From 23), we obtain an inverse system of exact sequences
0— K — K*xQ*— SX(Q) — 0,
and hence an exact sequentelf 1.16),
0— Q% — S(Q) — lim 'K — lim'K* — lim '$¥(Q) — 0. (24)
Similarly, there is an exact sequence

0 — AX Xhmm

(25)
From these sequences, we obtain the commutative diagram and isomorphisms

lim ' (K*/K¥) 2 1im ' $*(Q)
lim ' (I(K)/I(K)) 2 lim ' S¥(A),

and so the exact sequence follows from Propositidi§. O
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The Weil-number protorus P

We now fix ap-adic primew of Q¥, and we writewy (or w) for the prime it induces on a
subfield K of Q2. The completionQ?¥),, of Q¥ atw is algebraically closed? and we let
@2’ denote the algebraic closure@f, in (Q¥),,. Its residue field, which we denoke is an
algebraic closure df,,.

A Weil p”-numberis an algebraic number for which there exists an integet (the
weightof 7) such thalpr - pm = (p")™ for all p: Q[x] — C . LetW(p") be the set of all
Weil p"-numbers iQ?. Itis an abelian group, and fain/, 7 — 7"/™ is a homomorphism
W(p*) — W (p™). Define

W = lim W (p").
There is an action ofial(Q¥/Q) on W, and P is defined to be the protorus ov@rsuch
that
X*(P)=W.
Form € W(p™) and ap-adic primev of a finite number field containing, define

~ordy(m)
sx(v) = ord, (p")

Thens,(v) is well-defined forr € W, i.e., it does not depend on the choice of a represen-
tative of 7.

Let K be a CM field inQ?, finite and Galois ove®. DefinelV X to be the set of ¢ W
having a representative iIf and such that

FE @) £ 5, (v) - [K,: Q) € Z

for all p-adic primes ofi(, and definePX to be the torus ove® such that
X*(PX)y =Wk,
Then
W =1limW¥, P =limP¥.
— —
F F

Let X andY respectively be the sets pfadic primes of' and K. Then (e.g.Milne
2001, A.6), there is an exact sequence

0 —— WK ™=, 72X x7 )= 7 —— 0  (26)
(fvffth(ﬂ)) fly_n(wK)'m'ZvEY’U

wheren(wg) is the local degreék,, : Q,]. Using the fixedp-adic primew, we can
identify X with T'x g/ D(wg) andY with T'x, o/ D(wk, ), in which casel26) becomes
the sequence of character groups of an exact sequence

( Nmi_n’?!;”K) )

12if not, there is a monic irreducible polynomigl of degree> 1 in (Q®),,[X]. After a substitution
X — p™X, we may suppose thagt hasw-integral coefficients. Choose a monjdn Q¥[X] that is close
to f. Then Hensel’'s lemma allows us to refine a rooyah Q2 to a root of f in (Qa')w, contradicting the
irreducibility of f.

(27)

0 —— (Gm)rw)/0 (Gm)rwye X G —— P¥ —— 0.
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Let K/ > K with K’ € F. ThenW® < WX, and there is magX’ — X from
the p-adic primes ofK’ to those of K. If v — v, thens,(v") = s,(v), and sof,(v') =
K| : K,|- f(v). Therefore, the diagram

0 — WK —— ZXx2 —— 7ZY —— 0
N laxid l
0 — WK — 72X %x2 — 72V —— 0
commutes withu equal to[ K, : K, |x the map induced bX’ — X. Therefore,
0 — (Gu)rwi/e — (Gm)rwye X Gn — PX —— 0
[ttt e, [ty i | (29)
0 — Gurwi@ — (Gm)rkwyo X Gn —— P¥ —— 0.
commutes.

LEMMA 3.4. There is an exact sequence

0 — HY(Q, P*) — Br(K(w)+) — Br(K(w)) ® Br(Q) — H*(Q, P*) — 0.
PROOF. Same as that of Lemnfal. O
PROPOSITIONS.5. LetK € F.

(a) If the local degreen(wk ) = [K,,: Q,] is even, then there is an exact sequence

1
0— Hl(Q,PK) — Hl(A, PK) — QZ/Z — 0;

otherwise,
H'(Q P¥) = H'(A, P¥)
(b) The map
H*(Q, P") — H*(A, P%)
is injective.

PROOF. If complex conjugation € D(wg), thenP¥X = G,, and the statement is obvious.
Thus, we may assume# D(w ). Consider the diagram

0 —— Br(K(w)4) e @ Br((K(w)4)) ——— Q/Z — 0

l l le(%},n(wK)x)

0 —— Br(K(w)) ® Br(Q) —— @&;Br(K(w),) ® & Br(Q) — Q/Z&Q/Z —— 0.

Whenn(wg) is odd,(2, n(wg)) is injective and the snake lemma shows that fhatQ, PX) =
H'(A, PX). Whenn(w) is even, the sequence of kernels is

0 — Br(K (w)/ K (w).) — @1 Br(K(w) /(K (w),)))  32/Z — 0,

which class field theory shows to be exact. Again, the snake lemma gives the result.
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PROPOSITION3.6. The canonical map
lim &P (Q) — lim - PX(A)
is an isomorphsim.
PROOF. As in the proof 0f3.3 there are canonical isomorphism
lim ! (K (w)* /K (w)) 2 lim ' P¥(Q)
lim ' (I(K (w) /I(K (w))) = lim ' P* (A)
and so the statement follows from Propositib21 (19). O
LEMMA 3.7. For eachK € F, there exists ark’ € F containing K for which the map
HY(Q, P") — H'(Q, P")
is zero.
PROOF. After possibly enlarging<, we may assume that¢ D(wg). Denote the map

(Kt Kol
NmK’—{w)+/I§(w)+: (Gm) i (w)/@ = (Gm) K (w) /@ Of (28) by b. The kernel oBr(K'(w),) —

Br(K (w)) is killed by 2, and so ifK’ is chosen so that|[K'(w): K (w)], then H?*(b) is
zero on this kernel. TheH '(Q, PX') — H'(Q, P¥) is zero. O

LEMMA 3.8. The groupdim . H'(Q, P¥) andlim’ H'(Q, P*) are both zero.

PROOF. Lemma3.7shows that ' (Q, P¥)) ke admits a cofinal subsystem in which the
transition maps are zero, and so the map (1) is zero. O

LEMMA 3.9. The groupgim . H' (A, P¥) andlim’_ H' (A, P¥) are both zero.

PrROOF. For K sufficiently large, 8.5) shows that/!(Q, PX) = H!(A, PX) and so this
follows from the previous lemma. O

PROPOSITION3.10 There are canonical isomorphisms

lim'P*(Q) = H'(Q, P) (29)

H*(Q, P) = lim H*(Q, P*) (30)

lim'P*(A) =~ H'(A, P) (31)

H*(A, P) = lim H*(A, P¥). (32)

PrROOF. Combine Propositio2.8 with Lemmas3.8 and3.S. ]

REMARK 3.11 Assume ¢ D(wg). The argument in the proof of Lemra7 shows that,
if the local degre¢L,,: K] is even, then all the vertical maps in the diagram

0 —— HI(Q,PL) — HI(A,PL) N %Z/Z —— 0
0 — HYQ,PX) —— HYA,P¥) — %Z/Z — 0
are zero.
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PROPOSITION3.12 There are canonical isomorphisms

PQ) =Q*
P(Ag) = A},

PrRoOF. For K sufficiently large,P* =~ P @ G,, where X*(PX) consists of the Weil
numbers of weight. ThusP = F, @ G,,. For each sufficiently largé’, the projection

Py — Pf factors intoPy - Pf — PX where P is the universal covering oPJ*.
Therefore,P, = lim PE, and P,(Q) = liLnP({((Q), which is0 by (2.11). Similarly,

Po(Ag) = lim PX (A) = 0. 0
The cohomology ofS/P.

Let K € F, and assume¢ D(wg). Letp be the prime ideal it x corresponding tay.

For someh, p" will be principal, say”" = (a). Leta = a*" wheren = (U(K): U(K.)).
Then, forf € X*(SK), f(a) is independent of the choice of and it is a Weilp?/(*/P)-
number of weightwt(f). The mapf — f(a): X*(SX) — WX is a surjective homo-
morphism (e.g.Milne 2001, A.8). Thus, it corresponds to an injective homomorphism
pX: PEK — SK which can also be characterized as the unique homomorphism rendering

0 — (Gwrw)./0 — (Gmn)Kkw)yo X Gm —— P¥ —— 0
lincl. J{incl.xid lpK
0 — Gurkpo — GurexGn —— S —— 0

commutative. For varyingds, the p define a morphism of inverse systems. Therefore, on
passing to the inverse limit, we obtain an injective homomorphist® — S of protori.

PrROPOSITION3.13 The map
HY(Q, S /PX) — H'(A, S¥/P¥)

is injective on the image aff*(Q, S*/PL) for any L O K such that the local degree
[L,: K,|atw is even. Therefore, the map

lim A'(Q, S /P") — lim H' (A, " /P*)
is injective.
PrROOF. Diagram chase in
HYQ,P*) — HY(Q,S%) —— HYQ,8"/P¥) —— H*(Q,P*)
l(%) %«5.2) l injl(&s)
HY(A, P%) —— HYA,SX) —— HYA, S5/PX) —— H?*(A, PK),
using @.11). m
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PROPOSITION3.14 Anelement € H'(A, S* /PK) arises from an element éf' (Q, S* / PK)
if and only if its image ini%(A, PX) under the connecting homomorphism arises from an
element of7?(Q, P¥).

PrROOF. Diagram chase in

HY(Q,8%) —— H'Q,5%/P¥) —— H*(Q,P¥) — H*(Q,S")

gl(g.g) l l m,-l(g.g)

HY(A,S¥) —— H'(A,S¥/PX) — H2(A, PX) —— H*(A, SX).

PrROPOSITION3.15 There is a canonical exact sequence

0 — lim C(K) — H'(Q,S/P) = H'(A,S/P).
F

PROOF. Becausdim H'(Q, S*/P¥) — lim H'(A, S*/P¥) is injective,
Ker(a) = Ker(lim ' (S /P)(Q) = lim ' (S*/ P¥)(A));
cf. (2.17). On comparing23) and 27), we obtain an exact sequence
0 — (Gn) @)@/ (Gm) k) /@ = (Gn)r/o/(Gm)k, @ — S* /P — 0,
which gives rise to an exact commutative diagram

lim' (K (w)* /K (w)])  —= " (K*/KY)  —— lm"(S5/P¥)(@) —— 0

surj.J/(l.B) ld lb

lim" (I(K (w)) /I(K (w)5) —— lim! (I(K)/I(K)) —— Lim'(S¥/P¥)(A) — 0.
The left-hand vertical map is surjective &, and the diagram gives an exact sequence
Ker(d o ¢) % Ker(d) — Ker(b) — 0.

We can now apply Propositich22. O

Notes. Most of the calculations concerning the cohomology6fand PX (but not of S
or P themselves) can be found alreadyLanglands and Rapoport 1987
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4 The fundamental classes

The adelic fundamental class

The Betti fibre functor to identifiesCM(Q¥) with Repg(S). Letweandenote the cochar-
acter ofS such thatwean(a) acts on an object cEM(Q?) of weightm asa™, and letucan
denote the cocharacter 6f,a such that, forf € X*(S%), (f, ucan) = f(i) wherei is the
given inclusionk — Q2.

The local fundamental class ato

LetR., (realization category ak) be the category of paifd/, F') consisting of &-graded
finite-dimensional complex vector spate= &,,czV™ and a semilinear endomorphism
F such thatF? = (—1)™. With the obvious tensor structurB,, becomes a Tannakian
category with fundamental group,, .

Let (V,r) be a real representation of the Serre gréughenw(r) =g 1 © wean defines
aZ-gradation o ® C. Let F' be the map

v = 7(fean(i))v: VR C — V@ C.
Then(V ® C, F) is an object oR.,, and(V,r) — (V ® C, F') defines a tensor functor

£oo: Repp(S) — Reo.

The functoré,, defines a homomorphism,,: G,, — Sg, which is equal tavcay.
Let RY~ be the full subcategory d®., of objects of weight zero. For any/, F') of
weight zero,
VE={veV|Fv=ny}
is a real form ofV/, and (V, F') — V¥ is a fibre functor orR®~. Its composite with

Repg (S)°™ — REr is a fibre functotw,,, andp(w.) =4 Hom® (wp, wee) iS anS/G,y,-
torsor. We define,, to be the cohomology class pfw.,) A¥%m S/P.

The local fundamental class at.

Let R, (realization category af) be the category of-isocrystals oveF. Thus, an object
of R, is a pair(V, F') consisting of a finite-dimensional vector spdceover B(F) and a
semilinear isomorphisnd’: V' — V. With the obvious tensor structurg, becomes a

Tannakian category with fundamental grabp=¢s Gom.
There is a tensor functor

& CM(QY) — R,
such that, for a CM-abelian variety, idempotent, and integern,
&(h(A,e,m)) = e - Hyy(Ar)(m)

where Ay is the reduction ofd atw. The functor¢, defines a homomorphisny,: G —
Sy, Whose action oK *(S) is f + 3 pu) f(0)/(D(wi): 1).
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Let Rf’ be the full subcategory df, of objects of slop®. For any(V, F') of slope zero,
VE={veV|Fv=u}

is aQ,-form of V, and (V,F) — V¥ is a fibre functor onRY. Its composite with
CM(Q™)E &3 RY is a fibre functor orCM(Q®)%, andgp(w,) =¢ Hom® (wp, w,) is a.5/G-

torsor. We define, to be the cohomology class pfw,) AS/¢ S/ P.
The adelic fundamental class

We definec, € H'(A, S/P) to be the class corresponding(ta ¢,, c,,) under the isomor-
phism 2.16)

H'(A,S/P)= H' (AP} S/P) x H'(Q,,S/P) x H'(R, S/P).

The global fundamental class

THEOREM4.1. There exists @ € H'(Q, S/P) mapping toc, € H'(A,S/P); any two
suchc’s have the same image fii' (Q, S% / PK) for all K; the set of such's is a principal
homogeneous space fiom _ C'(K’) whereF is the set of CM-subfields QF! finite overQ.

LEMMA 4.2. Letdr andd be the images of the classesRff andR% in H*(Q,, P*)
and H?(R, P¥). There exists a unique elementrt(Q, PX) with image

(0,d%,d5) e H*(AlP=} PK) x H?*(Q,, P¥) x H*(R, P¥).

» H'p ) Hoo

PrRoOOF. The uniqueness follows fron8(Eb). The existence is proved lranglands and
Rapoport 1987also,Milne 1994 proof of 3.31). O

PrROPOSITION4.3. Letd, andd., be the images of the classesRyfandR ., in H2(Q,, P)
and H%(R, P). There exists a unique elementrét(Q, P) with image

(0,d,,ds) € H* (AP} P) x H*(Q,, P) x H*(R, P).
PrRoOF. Follows from the lemma, usin@Q) and 32). ]
We first prove three lemmas.

LEMMA 4.4. LetC andQ be Tannakian categories with commutative fundamental groups
G and H. AssumeC is neutral. Let{: C — Q be a tensor functor inducing an injective
homomorphisnii — G. Letw, denote the fibre functor

ct &t B vy,

For any fibre functot on C, the class of the torsdidom® (w, w¢) in H'(k, G/H) maps to
the class of in H?(k, H) under the connecting homomorphism.
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PROOF. For a Tannakian categorly, write TV for the gerbe of fibre functors oh. We are
given a morphisng”: Q¥ — CY bound by the injective homomorphisih — G of com-
mutative affine group schemes. Clea@y is the gerbe of local liftings oHom® (w, we)
(Giraud 19711V 2.5.4.1, p238), and so its class is the imagédofn®(w, w¢) under Gi-
raud’s definition of the connecting homomorphism (ibid. 1V 4.2), which coincides with the
usual connecting homomorphism in the commutative case (ibid. IV 3.4). Finally, the class
of Qin H'(k, H) is defined to be that represented by the géibe N

LEMMA 4.5. The image ofX in H?(A, PX) under the connecting homomorphism arises
from an element of/?(Q, PX).

PROOF. Let df anddX be the images of the classesRff andRL in #*(Q,, P*) and
H?*(R, P¥). According to Lemma.4, we have to prove that the element

(0,d5,d%) e H*(AP=>} PKY x H*(Q,, PX) x H*(R, PX)

) P'p o Poo
arises from an element éf?(Q, P*), but this was shown in Lemn¥aZ. O

LEMMA 4.6. For every CM-subfield< of C, finite and Galois overQ, there exists a unique
k& e HY(Q, S¥/PX) mapping tock € H'(A, S¥/PK) and lifting to some., > K with
[L,: K,]even.

PROOF. Apply4.1,4.5. O

We now prove the theorem. Consider the diagram
0 —— lim'(S%/P*)(Q) —— HYQ,5/P) —— lmHY(Q,S%/P*) —— 0

[ L l

0 —— lLim'(S/PX)(A) —— H'(A,S/P) —— limH'(A,S%/PK) —— 0

J

0.

The groupsS¥ /PX are anisotropic, which explains tieat lower left (L.5). We have to
show that there is a € H'(Q, S/P) mapping toc, € H*(A,S/P). We know @.6) that,
for eachk, there is a unique elemeat € H'(Q, S¥/PX) mapping to the image} of
cy in HY(A, SK/PX) and lifting to somel. > K with [L,: K,] even. Because of the
uniqueness, the® define an element ¢ lim #'(Q, S*/P¥). Choose: € H'(Q, S/P)
to map to(c). A diagram chase using the surjectivityloghows that can be chosen to
map toc, € H'(A, S/P).

Any two c's have the same image fit! (Q, S¥ / PX) because they have the same image
in H1(A, S /PK) and we can apply3(13).

Thata=!(c,) is a principal homogeneous spacelfor C'(K) follows from Proposition
3.15
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Towards an elementary definition of the fundamental classes

Are there elementary descriptions of the fundamental classes? By elementary, we mean
involving only class field theory and the cohomology of affine group schemes. In particular,
an elementary description should not mention abelian varieties, much less motives.

The definition ofc,, given above is elementary in this sense, but the definitios, of
is not. Wintenberger (1991) shows tiféi has the following description: choose a prime
element in K, and leth = Nmy, /5(a) whereB is the maximal unramified extension of
Q, contained ink,,; define

(V)= (V®B(F),z— (1®0)(bx)).

Then¢lt ~ ¢'. This gives an elementary descriptiondf, but the family(c)") xc does
not determine;,: there is an exact sequence

0 — lim'$5(Q,) — H'(Q,, $) — lim H'(Q, 55) — 0,

butliin1 SK(Q,) # 0 because it fails the ML condition.

We shall see later that the Hodge conjecture for CM abelian varieties implies that there
is exactly one distinguished global fundamental class. It seems doubtful that this can be
described elementarily.
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5 Review of gerbes

In this section, we review some definitions and results ftanaud 197 landDebremaeker
1977in the case we need them. Through&us a category with finite fibred products (in
particular, a final object) endowed with a Grothendieck topology. For exampleould
be an affine scheme artothe category of affiné-schemes\ff /.S endowed with the fpgc
topology.

Gerbes bound by a sheaf of commutative groups
Gerbes. Recall that gerbe onS is a stack of groupoidg: G — E such that

(a) there exists a covering map— S for which G;; is nonempty;

(b) every two objects of a fibr&; are locally isomorphic (their inverse images under
some covering map’ — U are isomorphic).

The gerbe is said to beeutralif Gg is nonempty.

Letx be a cartesian section 6§/U — E/U. ThenAut(x) is a sheaf of groups de/U,
which, up to a unique isomorphism, depends only¢t’). Forxz € ob(Gy), this allows
us to definedut(z) = Aut(x) with x any cartesian section such thdt/) = z.

A-gerbes. Let A be a sheaf of commutative groups®nAn A-gerbe onS'is a pair(G, j)
whereG is a gerbe ort andj(z) for x € ob(G) is a natural isomorphism(x) : Aut(z) —
Alp(z). For example, the gerbBORS(A) — E with TORS(A); equal to the category of
A|U-torsors ork /U is a (neutral)A-gerbe onS.

f-morphisms. Let f: A — A’ be a homomorphism of sheaves of commutative groups,
and let(G, j) be anA-gerbe onS and(G’, ;) an A’-gerbe. Anf-morphismfrom (G, j) to
(G',j") is a cartesiart-functor \: G — G’ such that

Aut(z) —— Aut(A\z)

lj lj’
AU L aw
commutes for all/ and allz € Gy. An f-morphism is anf-equivalencef it is an equiv-
alence of categories in the usual sensef. i§ an isomorphism, then evefigmorphism is
an f-equivalence. In particular, eveiy,-morphism is and 4-equivalence (in this context,
we shall writeA-morphism and4-equivalence).
Let G be a trivial A-gerbe onS. The choice of a cartesian sectigrto G — E deter-
mines an equivalence of-gerbesHom(x, —): G — TORS(A). Thus, condition (a) in the
definition of a gerbe implies that eveArgerbe is locally isomorphic tdoRS(A).
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Morphisms of f-morphisms. A morphismm: A; — Ao of two f-morphisms is simply
a morphism oE-functors. With these definitions, thé-gerbes ort' form a2-category.
Having defined these objects, our next task is to classify them.

Classification of A-gerbes. One checks easily that-equivalence is an equivalence rela-
tion. Giraud (1971, IV 3.1.1, p247) definég' (S, A) to be the set ofi-equivalence classes
of A-gerbes, and he then shows that (in the case4hata sheaf otommutativegroups),
H?(S, A) is canonically isomorphic to the usual (derived functor) group (ibid. 1V 3.4.2,
p261).

Classification of f-morphisms and their morphisms. Let f: A — A’ be a homomor-
phism of sheaves of commutative groups, and({&t;j) be anA-gerbe andG', ;') an
A’-gerbe onS. There is and’-gerbeHOM(G, G') on S such thatHOM(G, G'); is the
category whose objects are tlfienorphismsG|U — G'|U and whose morphisms are the
morphisms off-morphisms Giraud 19711V 2.3.2, p218). lIts class i#/*(S, A’) is the
difference of the class di’ and the image by of the class ofs.

5.1. We can read off from this the following statements.

(@) There exists afi-morphismG — G’ if and only if A\ maps the class & in H2(S, A)
to the class o’ in H?(S, A’) (asA’ is commutativeHOM (G, G') is neutral if and
only if its class is zero).

(b) Let A\o: G — G’ be anf-morphism (assumed to exist). For any otlfemorphism
A: G — G, Hom()\g, \) is an A’-torsor, and the functok — Hom(\g, A) is an
equivalence from the category whose objects areftineorphismsG — G’ to the
categoryTORS(A’). In particular, the set of isomorphism classesfahorphisms
G — G’ is a principal homogeneous space fof(S, A').

(c) Let A\, X2: G — G be two f-morphisms. If they are isomorphic, then the set of
isomorphisms\; — X, is a principal homogeneous space f6t(S, A') =4 A'(S).

EXERCISES.2. LetS = Speck with k a field, and lelG — Aff/.S be a gerbe bound by a
separable torus. Let = Spec k%, and leta, b be the projection mapS xS — S. Show
that Gz is nonempty, and that for any € ob Gg, a*z andb*z are isomorphic. [Hint: use
2.12]

Gerbes bound by a sheaf of commutative crossed module

Commutative crossed modules. Recall that acrossed modules a pair of groupsA, B)
together with an action oB on A and a homomorphism: A — B respecting this ac-

tion. It is said to becommutativef A and B are both commutative and the action of

B on A is trivial. Thus, a commutative crossed module is nothing more than a homo-
morphism of commutative groups. Similarly, a sheaf of commutative crossed modules is
simply a homomorphism: A — B of sheaves of commutative groups. A homomorphism
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(f,0): (A,B,p) — (A", B, p) of sheaves of commutative crossed modules is a pair of
homomorphisms giving a commutative square

AL

I
¢ /
B — F,

that is, it is a morphism of complexes.

(A, B)-gerbes. Letp: A — B be a sheaf of commutative crossed modules. Following
Debremaeker 197 #ve define anA, B)-gerbe to be a tripl€G, 1, j) with (G, j) an A-
gerb andu a p-morphismA — TORS(B). For example, TORS(A) 2 TorS(B) is an

(A, B)-gerbe.

(f,¢)-morphisms. Let (f,¢): (A,B) — (A’,B’) be a homomorphism of sheaves of
commutative crossed modules. L&, ., j) be an(A, B)-gerbe onS and (G, /, j') an
(A’, B')-gerbe. An(f, ¢)-morphismfrom (G, p, j) to (G, 1/, j') is a pair(\, i) where\ is

an f-morphism(G, j) — (G, j') andi is an isomorphism of functors

itg.op=p oX:G— TORYDB).

When(f, ¢) = (id4,idp), we speak of afA, B)-morphism(\,i): (G, i, j) — (G, 1/, 7).

Morphisms of (f, ¢)-morphisms. Let (\,4;) and(\y, i) be(f, ¢)-morphims. Amor-
phismm: (A1,i1) — (Ag,72) is @ morphism of£-functorsm: A\; — )\, satisfying the fol-
lowing condition: on applying/ to m, we obtain morphism of functogs - m: y/ o Ay —
1 o Ag; the composite of this withy is required to equak,

(' -m)oiy =is.

With these definitions, theA, B)-gerbes ovel form a2-category.
Again, we wish to classify these objects.

Classification of (A, B)-gerbes. An (A, B)-morphism is an A, B)-equivalence if\ is
an equivalence of categories. Aga{®, B)-equivalence is an equivalence relation, and
Debremaeker defined?(S, A — B) to be the set of equivalence classes. The forgetful
functor (G, i, ) — (G, 7) defines a mapi?(S, A — B) — H?(S, A).

Becaused — B is sheaf ofcommutativecrossed modules/?(S, A — B) is in fact
canonically isomorphic to the usual hypercohomology group of the complex B.

Classification of the (f, ¢)-morphisms. Let p: A — B be a sheaf of commutative
crossed modules. Define dd, B)-torsor to be a pair(P, p) with P an A-torsor andp
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anS-point of p, P. A morphism(P, p) — (P’,p’) is a morphismP — P’ of A-torsors car-
rying p to p’. DefineH'(S, A — B) to be the set of isomorphism classeg éf B)-torsors
(cf. Deligne 19792.4.3;Milne 2002h §1).

Now consider a homomorphistif, ¢): (A, B) — (A’, B'). Let(G, u, j) be an(A, B)-
gerbe overS and(G', i/, ') an(A’, B')-gerbe. Assume that there exists(gn¢)-morphism
(Xo,i0): (G, p,7) — (G, 1/, 7). As we noted above, the map— P(\) =4 Hom(\g, )
is an equivalence from the category pimorphisms(G, j) — (G, ;') to the category of
A’-torsors. From we get a poinp(i) € (p,P)(S), and(\, i) — (P(\),p(i)) defines an
equivalence from the category of, ¢)-morphism(G, i, 7) — (G, i/, 5/) to the category of
(A, B)-torsors. In particular, we see that the set ofp)-morphismgG, p, j) — (G, 1/, j')
is a principal homogeneous space fot(S, A — B).

Classification of the morphisms of{ f, ¢)-morphisms. Let(\,41), (A, i2): (G, u,j) —
(G, 1, 7") be two(f, »)-morphisms. If they are isomorphic, then the set of isomorphisms
(A1,41) — (g, 42) is @ principal homogeneous space for

H°(S, A — B) =g Ker(A(S) — B(9)).

Gerbes bound by an injective commutative crossed module

Consider an exact sequence
0-ALBLC—0

of sheaves of commutative groups.

The group H?*(k, A — B). ForanyC-torsorP, there is a gerbk(P) whose fibreK(P)y;
overU is the category whose objects are péips \) with ) a B-torsor and\ a p-morphism
) — P. This has a natural structure of angerbe, and the forgetful functo€), \) — Q@
endows it with the structure of g, B)-gerbe Debremaeker 19737
Conversely, letG, u, j) be an(A, B)-gerbe. For any objeat € ob(Gy), o.u(z) is a
C-torsor overJ endowed with a canonical descent datum, which givéstarsor overs.
These correspondences define inverse isomorphisms

H*(k,A — B) = H'(k,C).

Thegroup H'(k, A — B). Forany point € C(k), o *(c) is anA-torsor withp, (o (c)) =
B. In particular,p.(c71(c)) has a canonical point (the identity 8%, and sar—!(c) has the
structure of an A, B)-torsor.

Conversely, let{ P, p) be an(A, B)-torsor. For any poing of P in some covering of,
q — pis an element oB whose image it lies in C'(k).

These correspondences define inverse isomorphisms

H'(k, A — B) = C(k).

The group H°(k, A — B). By definition,
H(k, A — B) = Ker(A(k) — B(k)) = 0.
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6 The motivic gerbe

Grothendieck’s construction gives a rigid pseudo-abelian tensor catelgo(¥) of abelian
motives overl based on the abelian varieties o®and using the numerical equivalence
classes of algebraic cycles as correspondences (see, for ex8amledra Rivano 19791
4.1). In fact,Mot(F) is Tannakiandannsen 1992 When one assumes the Tate conjecture
for abelian varieties, the fundamental grouphdét(F) becomes identified witl® (e.qg.,
Milne 1994, and when one assumes Grothendieck’s Hodge standard conjedut(&,)
acquires a canonical polarization (e 8aavedra Rivano 197¥1 4.4).

Thus, when we assume these two conjectuvks(F) is a Tannakiar@)-category with
fundamental group the Weil-number protorBsanAfc-valued fibre functow? (etale co-
homology), an exact tensor functoy: Mot(F) — R, (crystalline cohomology), and an
exact tensor functap., : Mot(F) — R, (from the polarization — seBeligne and Milne
1982, 5.20). Note that, is uniquely defined up to isomorphism, wheredsandw, are
uniquely defined up to a unique isomorphism.

Let P = Mot(FF)" be the gerbe of fibre functors dviot(IF). It is a P-gerbe endowed
with an objectw? =g W} in Par and morphismsu,: Ry — P(p) andw..: RY, — P(c0)
(defined byw, andw.), whereP(p) =4 P/ Spec(Q,) andP(oco) = P/ Spec(R).

REMARK 6.1. Assume the Tate conjecture for all smooth projective varietiesloead the
Hodge standard conjecture for all abelian varieties @&eflhen the category of motives
based on all smooth projective varieties is equivalent with the subcategory based on the
abelian varietiesNlilne 1994). Therefore, under these assumptions the category of all
motives ovelf has a systeniP, w?, w,, w,) attached to it witP again aP-gerbe.

The (pseudo)motivic gerbe

6.2. We now drop all assumptions, and consider the existence and uniqueness of systems
(P, w?, wy, we) With

P a P-gerbe oveBpec(Q),

w? an object ofP AT
— wj, anx,-morphismR’ — P(p),
— Weo @NTs-MorphismRY, — P(o0).
Herex, andz, are the homomorphisnts — 5y, andG,, — S)r described irg4.

THEOREM 6.3. There exists a syste(R, w?, wy, w.,) as inl6.2. If (P',w?, w, wl ) is a
second such system, then there exists@quivalence\: P — P’ such that\(w?) ~ w”,
Ao wy, R Wy, Ao we R w,. ANy two such\’s are isomorphic by an isomorphism that is
unique up to a nonzero rational number.
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PROOF. We shall apply the results reviewed§s without further reference.

The P-equivalence classes éf-gerbesP are classified by7?(Q, P). The condition
that there exists a?” is thatP/A’} is neutral or, equivalently, that the classRmaps to
zero inH?(AY, P); the condition that there existag, is that the class & (p) in H*(Q,, P)
is the image of the class & underz,: H*(Q,,G) — H?*(Q,, P); the condition that
there exist aw,, is that the class oP(oo) in H?(R, P) is the image of the class &,
underz.,: H*(R,G,,) — H?*(R, P). Propositiord.2 shows that there is a unique class in
H?(Q, P) with these properties. Thus, there existB-@erbeP for which there exist?,
wy, We as iN6.2and if P’ is a second such gerbe, then there exigtsraorphismP — P'.

Now consider two system@, w?, w,, we,) and (P, w?”, w),w.,). The isomorphism
classes ofP-morphismsP — P’ form a principal homogeneous space fét(Q, P). On
the other hand, the isomorphism classes of triples w,, w,) for P (or P’) form a prin-
ciple homogeneous space féf' (A, P). Since the map7'(Q, P) — H'(A, P) is an
isomorphism8.6, 3.10), there exists &-morphism\: P — P’ carrying the isomorphism
class of(w”, w,, w) into that of (w”, w;,, w, ), and it is unique up to isomorphism. Xf
and )\, are isomorphicd?-morphismsP — P’, then the set of isomorphisms — X, is a
principal homogeneous space 8B(Q), which equal€)* (3.12). O

REMARK 6.4. When we replac®lot(F) with its subcategorilot, (IF) of motives of weight
0, we obtain similar results, except that its gefyds a Py-gerbe. Theorerf.3 holds with
the only change being that now any twis are uniquely isomorphic (becaugg(Q) = 0).

The pseudomotivic groupoid

Let v, be the forgetful B(F)-valued fibre functor on the Tannakian categ&y and let
6, = Aut®(1,). Itis aQ?/Q,-groupoid with kernel¢>* = G. The fibre functor,
is an object of the gerbgR)zr), and®, can also be described as the groupoid)pt
automorphisms of this object (in the sens®aligne 1990 3.4).

Let v, be the forgetfulC-valued fibre functor on the Tannakian categ8ry, and let
B = Aut®(rv,). It is a C/R-groupoid with kernel$y = Gmyc. The fibre functor
Vs IS an object of the gerb&RY )¢, and &, can also be described as the groupoid of
R-automorphisms of this object.

Forl # p, oo, let &, be the trivial Q¥ /Q;-groupoid.

Let (P, w?, w,,ws) be as inl6.2). Then, becausél’(Q¥ P) = 0 fori > 0 (2.12),
there exists am € ob(Pga), and any two such objects are isomorphic. et Spec Q
andS = Spec Q?. Let}3 be theS/S-groupoid of automorphisms af. for any S x 5 S-
scheme(b,a): T — S xg S, PB(T) is the set of isomorphisme'z — b*z. It admits
a section oveSpec(Q? @y Q¥), and its kernel3® = P. Forl # p, oo, w? defines a
homomorphisnt;: &, — P(I) wheresB(l) is the Q' /Q;-groupoid obtained fron3 by
base change. Moreover, defines a homomorphisgy: &, — B(p) andw,, defines a
homomorphisnt,,: B, — PB(0).

PROPOSITIONG.5.  (a) The systen(}s, ((;);) satisfies the following conditions:

I) (‘BA, pAvCvo> = (P7 xpaxoo)§



6 THE MOTIVIC GERBE 38

i) the morphismsg; for [ # p, oo are induced by a section g overSpec(A_fc ®ar
A7) whereA? is the image of the ma@ ®q A} — [, .. Q.

(b) Let(*', ((;)) be the system attachedtbe ob(Py,.) fora second quadrupleP’, w”’, w;,, wi,).
The choice of &-equivalence\: P — P’ as in Theoren®.3and of an isomorphism
A(x) — 2’ determine an isomorphism: 8 — 3’ such that, for alll, ¢; is isomor-
phic toa o (;, and any twax’s arising in this way are isomorphic.

PROOF. Straightforward consequence of Theoréré O

DEFINITION 6.6. Any system(*B3, (¢,);) arising from a systeniP, w”, w,, w) as in 6.2)
and an object € FPya will be called apseudomotivic groupoid

Notes. InMilne 1992, 3.27, a pseudomotivic groupoid is defined to be any sy$®ni(;))
satisfying condition/6.5a(i)). Theorem 3.28 (ibid.) then states: there exists a pseudomo-
tivic groupoid (B, (¢;)); if (P’,(¢])) is a second pseudomotivic groupoid, then there is an
isomorphismx: P — P’ such that] ~ a o (;, anda is uniquely determined up to isomor-
phism. Only a brief indication of proof is given, and the theorem is credited to Langlands
and Rapoport (1987). A sketch of a proof is giveiMiine 1994 3.31.

As Reimann points out (1997, p120), | should have included the cond®i&a((i))
in the definition of the pseudomotivic groupoid (because it is needed for the statement of
the conjecture of Langlands and Rapoport concerning Shimura varieties). Moreover, the
argument sketched Wliine 1994 (based on that ihanglands and Rapoport 1983hows
only that there exists an isomorphisafor which ¢/ is algebraically isomorphic ta o ¢
(i.e., becomes isomorphic when projected to any algebraic quotient).

However, there is a more serious criticism of the four articles just cited (and others),
namely, in each articlél‘(k, P) is taken to bdim H(k, PX) instead of the fpgc group
H'(k, P) which is, in fact, the group that classifies the various obj&ciEhis amounts to
ignoring the termsk(iil1 H=(k, P¥), which are not all zero. Thus, some of the proofs in
these papers are inadequate.

The papers cited above all work with groupotdd-ere, | have preferred to work with
gerbes because their attachment to Tannakian categories is canonical (the groupoid of a
Tannakian category depends on the choice of a fibre functor), are more directly related to
nonabelian cohomology, and are, in some respects, easier to work with.

131nMilne 1994 footnote p441, | correctly note that the gerbes are classified by the fpgc groip P),
but then claim that this group equaim H?(k, PK), giving as a referencaavedra Rivano 19781 3.1. In
fact, Saavedra proves results only for algebraic groups. | don’t know why | thought the results held for affine
group schemes, except perhaps | confused the (true) statement that cohomology commutes with products
with the (false) statement that it commutes with inverse limits.

14This is obscured ihanglands and Rapoport 198Y the authors’ calling their groupoids gerbes.
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7 The motivic morphism of gerbes

Assume the Hodge conjecture for complex abelian varieties of CM-type. This implies the
Tate conjecture and the Hodge standard conjecture for abelian varieties over finite fields
(Milne 1999 Milne 200J). Hence we get a category of abelian motilst(IF) with fibre
functors as in the last section. Moreover, the categdvi{Q?) of CM-motives overQ?,
defined using Deligne’s Hodge classes, coincides with that defined using algebraic cycles
modulo numerical equivalence. Thus, we get a reduction funigtotM(Q¥) — Mot(IF)

(exact tensor functor dp-categories), and hence a morphism of gerbes of fibre functors

RY: Mot(F)" — CM(Q¥)V.

It follows from Shimura-Taniyama theory that this ig-anorphism, wherep: P — S'is
the homomorphism defined §3, [26.
The Betti fibre functotwz on CM(Q¥) defines arf-equivalence of gerbes

w = Hom(wg,w): CM(Q¥)Y — Torg(S).

On composingR"” with this, we obtain g-morphismu: Mot(F)¥ — Tors(S), i.e., a
(P, S)-gerbe. For all # p, oo, p(w;) is a trivial Sg,-torsor. Moreover, the composites of
w, andw,, with 1 are isomorphic to the functogg and¢(y,, whereg, and¢,, are as irg4.

The (pseudo)motivic morphism of gerbes

7.1. We now drop all assumptions, and consider the existence and uniqueness of systems
(P, p, WP, wy, weo ) With

(P, ) a(P,S)-gerbe,

wP an object ofP AP such thafu(w?) is a trivial SA? -torsor;
— wj, anx,-morphismR — P(p) such tha: o w, =~ &
— Weo @NTs-mMorphismRY, — P(oo) such thaj o w,, ~ 2.

THEOREM 7.2. The set of P, S)-equivalence classes 6P, S)-gerbes(P, 1) that can be
completed to a systef, u, w?, w,, w) as in (7.1) is al@fC(K)-principal homoge-
neous space, whefE is the set of CM-subfields @ of finite degree ove®; in particular,
it is uncountable1.11).

PROOF. We shall apply the results reviewed §B without further reference. TheP, S)-
gerbegP, ) are classified by7?(Q, P % S) = H'(Q, S/P). The condition that there ex-
ists aw? with p(w?) neutral is tha{P, 1) becomes equivalent with the triviéP, S)-gerbe
ToRSP) & Torg(S) overA”, i.e., that the class ofP, 1) maps to zero il ' (A%, S/ P).

The condition that there existsg with pow, ~ & is that the class ofP, ;1) overQ, is the
local fundamental class,. The condition that there exists@, with p o w., =~ £ is that

the class of P, 1) overR is the local fundamental class,. Theorend.1 shows that there
exists such a class iff'(Q, S/P), and that the set of them is a principal homogeneous
space undelim C(K). This completes the proof. O
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REMARK 7.3. If (P, ) and(P’, i) are(P, S)-gerbes that can be completed to systems as
in (7.3), then, for allK € F, (P, u*) and(P'%, /) are( P, S¥)-equivalent P¥, SK)-
gerbes. The pointis that any two fundamental classes have the same inBEd®irt* / PX)
4.2).

REMARK 7.4. Let (P, i/, w”, w), w. ) be a second system asirl. Then, even ifP, ;1)
and(P’, u') are(P, S)-equivalent, there may not be(#&, S)-equivalencé\,i): (P, u) —
(P", ') such that\(w?) ~ w”, A ow, ~ w,, A ow, ~ w,,. The pointis that the
set of isomorphism classes @P, S)-equivalencesP, ) — (P, /) (if nonempty) is a
principle homogeneous space undsy P)(Q), while the set of isomorphism classes of
triples (w?, w,, w.,) satisfying {.1) for (P, u) is a principal homogeneous space under
(S/P)(A), and(S/P)(Q) — (S/P)(A) is not surjectivé®.

REMARK 7.5. Let (P, i, wP, wy,, ws) be as in7.1. On choosing an objeat € Pga and an
isomorphism ofu(z) with the trivial torsor, we obtain a morphism of groupoifis— &
with (P — &5)» = (P 2 S). FollowingPfau 1993we define the quasimotivic groupoid
to be’B x g, B WhereT = liLn(Gm)L/Q (limit over all subfieldsL of Q¥ of finite degree
overQ).

REMARK 7.6. To state the conjecture of Langlands and Rapoj@mng@lands and Rapoport
1987 p169) for Shimura varietieSh(G, X) with rational weight and=%" simply con-
nected, only the pseudomotivic groupoid is needed. For Shimura varieties with rational
weight andG" not necessarily simply connected, one né&tlse morphisnty — &g
(Milne 1992). For arbitrary Shimura varieties, one needs a quasimotivic groupoid.

REMARK 7.7. André (2003) has shown that motivated classes (in the seifsedsé 1996

reduce modulav to motivated classes. Assume the following conjectidyedfe 1996:

the intersection number of any two motivated classes of complementary dimension on a
smooth projective variety ovér is a rational number. Then the argumentdvbline 1999
andMilne 2002ashow that the Tate conjecture and the Hodge standard conjecture hold for
abelian varieties oveF with “algebraic class” replaced with “motivated clas$”.Thus,

under the assumption of Angls conjecture, there exists a Tannakian category of abelian
motivesMot () overF (defined using motivated correspondences) and a reduction functor
CM(Q¥) — Mot(F). From this, we obtain aell-definedsystem(P, i, w?, w,, w.,) as in

7.1

5Consider the commutative diagra@é,'3.10,/3.12)

0 Qx S(@Q) —— (S/P)(Q) —— HYQ,P)
0 AX S(A) —— (S/P)(A) —— H'(A,P)

and use that the mafQ) — S(A) is far from surjective.

16Reimann (1997) overlooks this: in his Conjecture B3.7 it is necessary to requiréfigte simply
connnected.

"The Hodge standard conjecture then holds for algebraic classes on abelian varieties in prime character-
istic!
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