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Abstract

As an introduction to Shimura varieties, and, in particular, to Deligne’s Bourbaki
and Corvallis talks| (Deligne 1971, 1979), | explain the main ideas and results of the
general theory of Shimura varieties in the context of Shimura curves.

These notes had their origin in a two-hour lecture | gave on September 10, 2002.
They are available at www.jmilne.org/math/. Please send corrections and comments
to me at math@jmilne.org.
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Introduction

Let
Xt ={2eC|S(z) >0}

ThenSL,(R) acts transitively onX

a b _az—H)
c d Z—cz—l—d’

and the subgroup fixingis the compact group

B a b 9 2
o (%) e,

A congruence subgroup of SLy(Z) is any subgroup containing theincipal congruence
subgroup of level,

F(N):{(Z Z)ESLQ(Z)’(ZL Z)z(é (f)modzv}.

Considdf
S\ X+,

Initially, this is a Riemann surface, but when a finite set of points (the “cusps”) is added,
it becomes a compact Riemann surface, which is automaficalhonsingular projective
algebraic curve. Thereforéy is an algebraic cunfg.

The theorem | want to discuss is ttfgthas a canonical modél over a certain number
field Fr. More precisely, there exists a cur¢g over F1- equipped with an isomorphism
(CR)c — Sp satisfying certain natural conditions sufficient to determine it uniquely. So one
thing I'll have to do is tell you how to attach a number fidld to a congruence subgroup.
Later, I'll discuss a similar theorem for curvé$ = I'\ X whereT is again a congruence
subgroup, but in a group different froffLs.

Note that, in general, a variety ov€rwill not have a model over a number field, and
when it does, it will usually have many. For example, an elliptic cutvever C has a
model over a number field if and only if ifsinvariant;j( E) is an algebraic number, and if
Y27 = X3 +aXZ% 4 bZ3 is one model of’ over a number field (meaninga, b € k),
thenY?Z = X3 + ac®? X Z? + bc3 Z3 is a second which is isomorphic to the first only i

tUnfortunately, in his Bourbaki talk, Deligne writes this &S /T". There used to be left-wingers (those
who write the discrete group on the left) and right-wingers. Now there are only left-wingers — the right
wingers either converted or .. ..

2The functorC — C(C) from nonsingular projective curves ovErto compact Riemann surfaces is an
equivalence of categories. For a discussion of this result, see my notes on modular forms, 7.3-7.7.

3The same is not true of *, i.e., it is not possible to realiz&+ (with its complex structure) as a Zariski-
open subset of a nonsingular projectiecurve overC — if you could, the complement oK+ in C/(C)
would be a finite set, and any bounded holomorphic functioX drwould extend to a bounded holomorphic

function onC(C), and so would be constant, bﬁ—; is holomorphic onX* and j—jr; < 1.

This is one reason we work wif\ X ™ rather thanX* — as X ™ is not an algebraic curve, it makes no
sense to talk of it having a model over a number field.
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a square irk. As another example, all the projective curwe§? + bY? 4 cZ% = 0 overQ
become isomorphic t&2 + Y2 + Z2 = 0 overC, but they fall into infinitely many distinct
isomorphism classes ovér.

A problem with the theorem as stated above is that the figldgow asl” shrinks. One
of Deligne’s innovations in his Bourbaki talk was to replace (in a systematic wayjthe
with nonconnected curves which have canonical models@ver

Notations and terminology

| use the language of algebraic varieties as, for example, in my course notes on algebraic
geometry: the affine varieties over a fiéldre the ringed spac&pecm A with A a finitely
generated:-algebra such thatt ® k2 is reduced, and the varieties oveare the ringed
spaces that are finite unions of open affine varieties satisfying a separatedness condition.
Thus, a variety ovek is essentially the same thing as a geometrically reduced separated
scheme of finite type over (not necessarily connected). For a varigtyverk, k[V] =
I'(V, Oy) is the ring of regular functions oW and, wher/ is irreducible k(1) is the field
of rational functions orV'.

For simplicity, throughout the notes “variety” will mean “nonsingular variety’'With
this convention, every connected variety is irreducible.

Throughout,Q? is the algebraic closure @ in C, and. or z — z denotes complex
conjugation orC.

For ak-vector spacd’ and a commutativé-algebraA, | often write 1 (A) for the
A-moduled @, V.

Given an equivalence relation, [*] denotes the equivalence class containing *.

The notationX =~ Y means tha¥ andY are isomorphic, whereas = Y means that
they are canonically isomorphic or that there is a given (or unique) isomorghism.

References
In addition to the references listed at the end, | refer to the following of my course notes.
GT Group Theory FT Fields and Galois Theory.
AG Algebraic Geometry. ANT Algebraic Number Theory
MF  Modular Functions and Modular Form&C  Elliptic Curves.
AV  Abelian Varieties. CFT Class Field Theory.

Prerequisites

| assume some familiarity with the classical theory of elliptic modular curves as, for exam-
ple, in the first four sections of MF.

Acknowledgements

| thank the following for providing corrections and comments for an earlier version of the
notes: Brian Conrad.

4For example, ifi/ is a finite-dimensional vector space over a fieJdhenV ~ V¥ andV = V'V,
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1 Preliminaries

Algebraic varieties and their connected components

A variety V' over a fieldk is said to begeometrically connected V,a is connected, in
which case), is connected for every fiel@ containingk (Hartshorne 1977, Il, Exercise
3.15).

We first examine zero-dimensional varieties. O@gra zero-dimensional variety is
nothing more than a finite set (finite disjoint union of copigy. OverR, a connected
zero-dimensional variety’ is either geometrically connected (e.4%) or geometrically
nonconnected (e.gV; : X2 + 1; subvariety ofA!), in which casé/(C) is a conjugate pair
of complex points. Thus, one sees that to give a zero-dimensional varietiRos¢o give
a finite set with an action akal(C/R).

Similarly, a connected variety over R may be geometrically connected, or it may
decompose ovet into a pair of conjugate varieties. Consider, for example, the following
subvarieties of\?:

L :Y + 1is a geometrically connected line ovRy

L' : Y? +1is connected oveR, but overC it decomposes as the pair of conjugate lines
Y = +u.

Note thatR is algebraically closétin

R[L] = R[X,Y]/(Y +1) = R[X]
but not in
R[] =RX,Y]/(Y?+1) = (R[Y]/(Y?+1)) [X] = C[X].
PROPOSITION1.1. A connected variety over a fieldk is geometrically connected if and
only if k is algebraically closed ik(V).

PrRooOF. This follows from the statement: let be a finitely generatekl-algebra such that
Ais an integral domain and ®,, k% is reduced; thenl ® k2 is an integral domain if and
only if k is algebraically closed il (Zariski and Samuel 1958, IIl 15, Theorem 40).[]

PrROPOSITION1.2. To give a zero-dimensional variety overQ is to give (equivalently)

(a) afinite sett plus, for eache € F, a finite field extensiof(e) of Q, or

(b) afinite setS with a continuoy¥(left) action of & =4 Gal(Q¥/Q)[]

PrROOF. The underlying topological spaééof a zero-dimensional variety’, Oy ) is finite
and discrete, and for eaehe V, I'(e, Oy ) is a finite field extension .

The setS in (b) is V(Q%) with the natural action ofZ. We can recove(V, Oy/) from
S as follows: letV be the set”\ S of orbits endowed with the discrete topology, and, for
e=Ys e X\S, letQ(e) = (Q¥)*: whereX, is the stabilizer ok in X; then, forU C V,

LU, 0v) = [Ley Qo). =

5A field & is algebraically closed in k-algebraA if every a € A algebraic ovek lies ink.

This means that the action factors through the quotieritdfQ? /Q) by an open subgroup (all open
subgroups ofral(Q? /Q) are of finite index, but not all subgroups of finite index are open).

"The cognoscente will recognize this as Grothendieck’s way of expressing Galois theofy. over
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PROPOSITION1.3. Given a varietyl” overQ, there exists amap: V' — 7 fromV to a
zero-dimensional variety such that, for alk € =, the fibreV/, is a geometrically connected
variety overQ(e).

PrROOF. Letr be the zero-dimensional variety whose underlying set is the set of connected
components of overQ and such that, for each=V; € 7, Q(e) is the algebraic closure
of Q in Q(V;). Apply (1.1) to see that the obvious m#p V' — = has the desired property.

O

EXAMPLE 1.4. LetV be a connected variety over(@ and letk be the algebraic closure
of Qin Q(V). The mapf: V — Specm k realizesV’ as a geometrically connected variety
overk. Conversely, for a geometrically connected varigtyy — Specm k over a number
field k£, the composite off with Specm k — Specm Q realizesV as a variety ovef)
(connected, but not geometrically connectet i Q).

EXAMPLE 1.5. Letf: V — = be as in[(1.8). When we regardas a set with an action of

X, then its points are in natural one-to-one correspondence with the connected components
of Vga (equivalentlylc) and itsX-orbits are in natural one-to-one correspondence with the
connected components Bt Lete € 7w and letV’ = f@a}(e) — itis a connected component

of Vga. Let X, be the stabilizer of; thenl” arises from a geometrically connected variety

overQ(e) £ Q.

Easy descent theory

By descent (in these notes), | mean passing from objects@verobjects over). One
of the themes of these notes is that information on objects @v@rence, possessing an
interesting arithmetic) can be obtained from information on objects @G\&ence, involv-
ing only analysis). Easy descent describes the information ©@vezeded to determine a
variety overQQ. Hard descent (s€f3 below) will say which sets of information arise from
varieties oven).

Let A = Aut(C) (automorphisms of® as an abstract field). There are two obvious
automorphisms, namely, the— z andz — 1z (complex conjugation), and the remainder
can be constructed as follows. Recall that a transcendence BdsisC over QQ is an
algebraically independent set such tfiats algebraic ovefQ(B). Transcendence bases
exist (FT 8.13f] and any two have the same cardinality. Choose transcendence/®ases
and C for C over Q; then any bijectionv: B — C defines an isomorphism of fields
o: Q(B) — Q(C), which extends to an automorphism©f(cf. FT 6.5).

For a vector spact overQ, A acts onV (C) =4 C ®¢g V' through its action ort:

U(ZZ@@UZ'):EO'ZZ‘(@UZ', O'E.A, ZiE(C, v; € V.

LEMMA 1.6. LetV be a vector space ovép, and letlV be a subspace & @ V. If W
is stable under the action o4, theni/’ NV spansi¥ (and soC ®¢ (W NV) — W is an
isomorphism).

8This requires the Axiom of Choice. Probably, | could rewrite the notes to avoid assuming the Axiom of
Choice, but that would complicate things.
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PROOF. First note thaC4 = Q, i.e., everyz € C ~. Q is moved by an element oA: if =
is transcendental, it is part of a transcendence basi€ fwrer Q, and any permutation of
the transcendence basis extends to an automorphiginiot: is algebraicQ, it is moved
by an automorphism @@, which extends to an automorphism@f

Next note thatC ®g V)4 = V. To see this, choofe basis(e;);; for V, and let
v=>7%R®e € CRqyV.Thenov =) o0z ®e¢,; for o € A, and sov is fixed by.A if and
only if eachz; is fixed.

We now prove the lemma. L&Y’ be a complement dfi” NV in V, so that

V=WnV)eWw.
If W NV doesn't spaiV/, there will exist a nonzera € I in theC-span ofit’. Choose
a basige;);c; for W’, and write
w=7Y ... (ceC).
We may suppose that has been chosen so that the sum has the fewest nonzero coefficients
¢;, and, after scaling, that, = 1 for somei, € I. Foro € A, ow —w € W and
ow—w =73 (0¢ — e
has fewer nonzero coefficients than and socw — w = 0. Since this holds for al,
weWN(VeCA=WnV,which is a contradiction because
CV=CeaWnV)e(CoW.
0

PROPOSITION1.7. Let V' be a variety overQ, and letlV be a closed subvariety 60f.
If W(C) is stable under the action o on V' (C), thenW = W) for a (unique) closed
subvarietylV, of V.

PROOF. Suppose first that is affine, and let/ (W) c C[V] be the ideal of functions
zero onlV. BecausdV is stable underd, so also is/ (W), and sol (V) is spanned by
I(W)NQ[V] (Lemmd 1.5). Therefore, the zero-seti¢fi’) N Q[V] is a closed subvariety
W, of V with the property thatl’ = Wc.

To deduce the general case, coVewith open affines. O]

PROPOSITION1.8. LetV and W be varieties ovefQ, and letf: Vi — W be a regular
map. If f commutes with the actions of on V(C) and W (C), then f arises from a
(unique) regular map/ — W overQ.

PROOF. Apply Propositiod 1.7 to the graph ¢f I'y € (V x W)c. O

COROLLARY 1.9. A varietyV overQ is uniquely determined (up to a unique isomorphism)
by V¢ together with the action aft on V' (C).

PrROOF. AnisomorphismVc — V¢ commuting with the actions ofl arises from a unique
isomorphism// — V", O]

REMARK 1.10. Propositioh 1|8 says that the functor— (¢, A-action is fully faithful.
Later (hard descent theory) we shall determine the essential image of the functor, i.e., the
pairs that arise (up to isomorphism) from varieties a@er

9Axiom of Choice again since we are not assuriingp be finite dimensional.
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Adeles

Let Z = [1,Z¢ (product over the prime numbes3,5,...). As eachZ, is compact,
Tikhonov’s theorem shows thatis a compact topological ring. It equals the inverse limit
lim Z/mZ.

Thering A of finite adklesis defined to be the subring ¢1,Q consisting of families
(ag)e such thatag € Z, for almost alé ThusA; D 7 and consists of the ¢ 11,Q
such thatna € Z for somem. In fact, Ar=Q®z Z. When endowed with the topology

for whichZ is an open subring) ; becomes a locally compact topological ring. A basis of
neighbourhoods df is formed by the setf[U, with U, an open neighbourhood 6fin Z,
for all / and equal t&, for almost all/.
Similarly, for G = G,,, (=4t GL;), SL2, GL, etc., define the topological grop(A )
to be
{(ar) € T[,G(Qy) | a¢ € G(Z,) for almost all¢}

endowed with the topology for which[,G(Z,) is an open subgroup. Itis locally compact.
We embed+(Q) in G(Ay) diagonally,a — (a,a,a,...).
For example(,,(Ay) = A7 (thegroup of finite ictles is the topological group

A7 = {(ar) € []IQ/ | a, € Z/ for almost all’}

endowed with the topology for which* = [1Z; is an open subgroup. A basis for the
neighbourhoods of is formed by the setf[U, with U, an open neighbourhood ofin Z;

for all ¢ and equal t&Z, for almost all/. Note thatA 7 is the group of units im\, but the
topology on it is stronger (has more open subsets) than the subspace tology.

LEMMA 1.11. The fieldQ (embedded diagonally) is densedn.

PrROOF. It suffices to prove the following statement: givenzan 0 and elements, € Q,
for 7 in afinite setS, there exists an € Q such that

la — agle < eforl e S, and
lalp < 1forf ¢ S.

After replacing thei, with ma, for somem € Z (and possibly changingands), we may
suppose that the, lie in Z,. The Chinese remainder theorem states that

Z — T2/ "7

is surjective for all familiegn(¢))wcs, n(¢) > 0. Any a € Z having the same image in
[T1esZ/ " Z as(a,)es for sufficiently largen(¢) will satisfy the requirement. O

THEOREM1.12 (STRONG APPROXIMATION). The groupSL,(Q) is dense irBLy(Af).

10This means “for all but (possibly) finitely many”.
1L et a(n) be the idle whose:!" component is the™ prime and whose other components &reThen
a(n) — 1asn — ooin Ay butnotinA¥.
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PrROOF. For any fieldk, SLy(k) is generated by the subgroups

w={(3 Doer). m={(} 2)oer)

This follows, for example, from the equalities:

1 0 1b)<1 0) (a b>
a”l— a— = 7a7b7£07
( bll)(()l 1 0
1—ba)( 1 0)(1 b><1 0) <a 0)
a-1— a— = ,a,b;«éO.
(0 1 —L 1 0 1 el ] 0 2

In fact, the equalities show that, for any finite set of prinseg [, SL2(Qy) is generated
by its subgroup$],.A(Q,) and] ], s B(Qy).

We now prove the theorem. According to the lemmaA ;) and B(A) are contained
in the closure 061 (Q) (even of A(Q) and B(Q)). Thus, the closure &L, (Q) contains
[Tres SL2(Qr) x[],.51 for every finite sets of primes, and these sets are obviously @se
in SLa(Ay). O]

REMARK 1.13. The strong approximation theorem fails in each of the following cases:
() G,,: the groupQ* is not dense im;
(b) PGLs: the determinant defines surjections

PGLy(Q) — Q*/Q**
PGLy(Ay) — AT /AT

andQ* /Q*2 is not dense irAJf/A;Q.

(c) The algebraic grou@ overQ such that7(Q) is the group of elements of norimin
a quaternion division algebr& over Q for which D ® R is also a division algebra
(hence isomorphic to the usual (Hamiltonian) quaternions). The proof in the case of
SL, fails becausé&-: has no unipotent subgrougls B, but the key reason that strong
approximation fails forG is that G(R) is compact, which force&(Q) to be too
small.

These examples essentially exhaust the counterexamples to strong approximation: the gen-
eral theorem says that(Q) is dense irG(A ;) whenevelG is a simply connected semisim-

ple group overQ without aQ-factor H for which H(RR) is compact (Platonov and Rap-
inchuk 1994, Theorem 7.12, p427).

2 eta = (as) € SL2(Ay) and letU be an open neighbourhood bf After possibly replacind/ with a
smaller open neighbourhood, we may supposelthat [[U,. Let.S be a finite set of primes containing &ll
for whicha, ¢ SLa(Z) or U # SLy(Z¢). Thena - U contains an element ¢f, 4 SLa(Qy) x 1.

Blet (ar), € [z} c Afx and letS be a finite set. IfQ* is dense, there is anc Q* that is close ta,
for £ € S and and-adic unit for¢ ¢ S. But such arz would be aré-adic unit for all4, hence equal tet1,
and so this is not always possible.
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1.14 (CONGRUENCE SUBGROUPS 0BL,(Q)). The open subgroups 8f.,(A ) are those
containing a basic open subgroup:

U =11,Ue, U, open subgroup o8L,(Qy) for all ¢, U, = SL,(Z,) for almost all¢.

(0a)= (o 1)mac)

Ui(n) = SLy(Zy) <= n=0.

For a fixed/, theU,(n) form a basis of neighbourhoods bfn SLy(Qy).
For a positive integel, let

For a prime/ andn > 0, let

Us(n) = { ( .« ) € STa(Zy)

Thus,

K(N) = [T,Us(ordy(N)).
Then theK (V) form a basis of neighbourhoods bfn SL(A ), and

K(N) NSLy(Q) = (),

A

Thus, for any open subgroup of SLy(Z), I' = U N SLy(Q) is a congruence subgroup of
SLy(Z). In fact,I" is dense inJ, and so there is a one-to-one correspondence between the
congruence subgroups 8f.,(Z) and the open subgroup$.»(Z):

I'~U, T =UnSLy(Z), U =closureofl.
We define aongruence subgroup &fL.;(Q) to be any subgroup of the form
K N SLy(Q)

with K a compact open subgroup$it,(A ). A congruence subgroup is commensu@nle
with SLy(Z) and containg’(V) for someN. It is a congruence subgroup $k,(Z) when
it is contained irSLy(Z).

AsIDE 1.15. LetV be a2-dimensional vector space ov@ and letG = SL(V), i.e.,G is
the algebraic group ovép such that, for any-algebrar,

G(R) ={a € Endg(V(R)) | det(a) = 1}.
Choose a latticé in V', and define

G(Ar) = {(ar) € TIG(Qy) | agAy = A, for almost all(’}

14Two subgroupg; andH, of a group are said to mmmensurablié H, N H, has finite index both idf;
and inH. Evidently, if H, and H, are both compact and open, thEa/H, N H, andH>/H; N H, are both
compact and discrete, and 8 and H, are commensurable. In particular, any two compact open subgroups
of SLo (A ) are commensurable, which implies that their intersections $lith( Q) are commensurable.

In general, a subgroup &8fL,(Q) commensurable witBL.(Z) is said to be amrithmetic subgroupNot
all arithmetic subgroups are congruence.
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whereA, = Z, ® A. If A’ is a second lattice i, thenA, = A, for almost all/, and
soG(Ay) is independent of the choice af EndowG (A ) with the obvious topology. A
congruence subgroup @¥(Q) is any subgroup of the forlA” N G(Q) with K" a compact
open subgroup af (A ). The choice of a basis for determines an isomorphisth~ SL;
under which the notions of congruence subgroup coincide. An advantage oféhe ad
approach is that it only requires an algebraic group d@ysd.e., there is no need for a
Z-structure).
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2 Elliptic modular curves over C

We shall define a curvéy overC which is a finite disjoint union of the curveg = I'\ X *
considered in the introduction, and we shall realize it as a moduli variety for elliptic curves
with level structure. In the next section, we shall see that, urflikeSx always has a
canonical model oveQ.

The curve Sp as a double coset space

PROPOSITION2.1. Let X be a compact open subgroupSif,(A ), and let
['= K NSLy(Q)

be the corresponding congruence subgroupbf(Q). The mapz — [z, 1] defines a
bijection
MX' = SLy(Q)\ X x SLa(Af)/K. (2)
Here SL,(Q) acts on bothX* and SLy(Af) on the left, andK acts onSLy(Ay) on the
right:
q-(z,a) k= (qu,qak), q€SLy(Q), ze€ X', aecSly(A;), keK.

When we endowX * with its usual topology anflL,(A ;) with the acklic topology (equiv-
alently, the discrete topology), this becomes a homeomorphism.

PrRoOF. Consider
z e [z,1]: X7 — SLy(Q)\XT x SLa(Ay) /K.
Fory e I' = K N SLy(Q),

(yo,1) = (v, vy -v7") = y(z, 1)y,
and so
[y, 1] = [z, 1].

Thus, the map factors through X .

By definition, [z, 1] = [2/, 1] if and only if there exisyy € SLy(Q) andk € K such
thatz’ = qz, 1 = ¢gk. The second equation implies that= k! € T', and soz] = [2/] in
'\ X*. We have shown that

[z] = [2,1]: T\X " — SLy(Q)\X " x SLa(A;)/K

is injective, and it remains to show that it is surjective. Leta] be an element of the
target space. Becaug€ is open, the strong approximation theorgm (IL.12) shows that
SLQ(Af) = SLQ(Q) - K. Writea = q- k, qc SLQ(Q), k € K. Then

(z,a) = (x,qk) = q(q" 'z, 1)k
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and so

2] > [2,a].

Consider
z—(z,[1])
_—

X+ X+ x (SLy(A)/K)

l l

D\t 7B Sr @)\ X x SLy(Af) /K.

As K is open,SLy(Af)/K is discrete, and so the upper map is a homeomorphisi'of
onto its image, which is open. It follows easily that the lower map is a homeomorphism.
O

ASIDE 2.2. (a) What happens when we pass to the inverse limitlo¥efhere is a map
Xt —limD\X™
b
which is injective becausel’ = {1}. Is the map surjective? The example
7 — limZ/mZ = 7.
b

is not encouraging — it suggedim "\ X" might be some sort of completion &f" rela-
tive to thels. This is correct. In fact, when we pass to the limit on the righfjn (1), we get
the obvious answer, namely,

h&lK SLQ(Q)\X+ X SLQ(Af)/K = SLQ(Q)\X+ X SLQ(Af)

Why the difference? Well, given an inverse systgi);c x of groups acting on an inverse
system(.S;);c; of topological spaces, there is always a canonical map

lim G\ lim S; — lim (G;\S;)

and it is known that, under certain hypotheses, the map is an isomorphism (Bourbaki 1989,
Il §7). The system on the right ia](1) satisfies the hypotheses; that on the left doesn't.

(b) Why replace the single coset space on the left with the more complicated double
coset space on the right? One reason is that it makes transparent the asfig(Aof) on
the inverse systerti’\ X "), and hence, for example, the actionSéf; (A ;) on

lim H'(I\X*, Q).

Another reason will be seen presently — we defihgas a double coset. Double coset
spaces are pervasive in work on the Langlands progfam.

¥Casselman 2001, p220, writes: Tamagawa tells me it might have been Taniyama who first noticed that
one could translate classical automorphic forms to certain function @e gdotients.
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A finiteness statement
LEMMA 2.3. For any compact open subgroup of GLy(Ay),
Q\{£} x A} /det K

is finite and discrete. Heré+} = {4+, —} is a discrete two-element sé}* acts on both
sets on the left, andet K acts onA} on the right.

PrROOF. The map
(r, (we)e) = (sign(r), (rue)e): Q* x [[Z, — {£} x A}
is a topological isomorphism (discrete topology@n) — cf. CFT V 5.9. Therefore,
Q\{£} x A} =27,

which is compact. On the other hantht(K) is open, and sq{+} x AY) /det(K) is
discrete. On combining these statements, we find@at{+} x A7 /det K is compact
and discrete, and is therefore finite. N

REMARK 2.4. From the projection
{£} x AT — A7
we obtain a topological isomorphism
Q\{£} x A} — Q*\A}
and hence a bijection

Q\{£} x A}/det K — Q""\A}/det K.

The curve Sk

Let X be the complex plane with the real axis removed:
X=C~R=X"UX".

ThenGL4y(R) acts transitively onX:

az+0b a b
az) = oy ( e d ) € GLy(R). 2
Note that
> Cx > _ L Cx
S(az) = az+b\ _ (az +b)(cz + d) _ S(adz + bez) _ (ad — be) \S(Z),
cz+d lcz +dJ? lcz 4+ dJ? lcz 4+ d|?

and sax preserves the upper half-plane or interchanges it with the lower half-plane accord-
ing asdet(a) > 0 ordet(a) < 0.
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LEMMA 2.5. Let K be a compact open subgroup@i.,(A). For anya, € GL2(Ay), the
fibre of

[z, a] = [[z], det a]: GLa(Q\X x GLy(Af)/ K — Q \{£} x A7/ det(K)
containing[ X ™, ao] is
SLy(Q)\ (X x SLa(Ay) - ag) /K N SLy(Ay).
PrRoOOF. We shall use the following (obvious) statement:

(*) Let G be agroup, and lef: A — B be a map of7-sets; for eaclh € B,
the fibre of G\A — G\B overG - b is G}\ f~'(b) whereG, stabilizer ofb in
G.

We apply this first to
(z,a) = ([z],deta): X x GLa(Af) — {£} x A}

regarded as a map 6fL»(Q)-sets. Note thatL,(Q) acts on{+} x A ¢ through its quotient
Q*. Forany(+,b) € {+} x A}, the stabilizer of +,b) in GLy(Q) is SL2(Q), and so (*)
shows that the fibre of

overQ* - (4,b) is SLo(Q)\ X' x SLy(Af) - ap Whereqy is any element oLy (A f) with
det(ap) = 0.

Next note thati” acts onQ*\{+} x A} through its quotiendlet(K). For any[+,b] €
Q*\{=£} x A} the stabilizer of+,b] in K is K N SLy(A), and so (*) shows that the fibre
over[+,b] is

SLa(Q)\ (X x SLa(Ay) - ag) /K N SLa(Ay)

with a( as before. O

REMARK 2.6. Of course, the lemma holds withreplaced by—, but we won’t need this
because every fibre of the map contdiRs", a] for somea.

On takingay = 1 in the lemma, we obtain a fibre product diagram:
SLy(Q)\X T x SLa(Ay)/K N SLy(Af) — GLy(Q)\X x GL2(A;)/K
signxdet
{[+ 1} < Q\{=} x A}/ det(K).

Therefore, according t¢ (2.1), the fibre oyer, 1] is the connected curdé\ X+ with I' =
K N SLy(Q). A similar remark applies to all fibres.
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PROPOSITION2.7. Let K be a compact open subgroup®i.,(Ay), and letby, ..., b, be a
set of representatives i} for the orbits inQ~\ A¥. For eachi, choose am; € GLy(A)

with det(a;) = b;, and letl’; = SLy(Q) N a;Ka; '. Thenl; is a congruence subgroup of
SL,(Q), and the maps

define a topological isomorphism
[TTAXT — GLy(Q)\X x GLy(Af)/K. 4)

PROOF. Clearly, SLy(Af) Na;Ka; ' is a compact open subgroup $f,(A;), and so its
intersection withS1,(Q) is a congruence subgroup. We have canonical isomorphisms

T\ X+ SLy(Q)\X* x SLa(A})/SLa(As) N a; Ka;!
L], o, (Q)\X* x SLa(A) - ai/ SLa(Ay) N K
fibre over[+,b,] in Q*\{£} x A%/ det K.
Thus, the statement follows from Lemina]2.3. O

DEFINITION 2.8. For a compact open subgrofipof GL.(Q), Sk is the algebraic curve
overC for which
Sk(C) = GL2(Q\X x GLy(Ay)/K

and [4) is an isomorphism of Riemann surfaces.

Thus, Sk is an algebraic curve ovét such that
(a) the set of connected componentsSgf,

mo(Sk) = Q*\{£} x A7/ det(K)

(b) each connected component%f is a curveS;. for a suitable congruence subgroup

REMARK 2.9. For varyingK, the Sx form a variety (scheme) with a right action of
GL2(Ay) in the sense of Deligne 1979, 2.7.1. This means the following:

(a) the Sk form an inverse system of algebraic curves indexed by the compact open
subgroupdy of GLy(Ay) (if K C K, there is an obvious quotient mag: — Sk);

(b) there is an actiop of GL2(A[) on the systen{Sx ), defined by isomorphisms (of
algebraic curves)k (a): Sk — S;-1x, (ON points,px (a) is [z, d'] — [z, d'al);

(c) for k € K, pi(k) is the identity map; therefore, fak” normal in K, there is an
action of the finite groug</ K’ on Sk; the curveSy is the quotient ofS. by the
action of K/ K.
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REMARK 2.10. When we regard th€x as schemes, the inverse limit of this system in

(2.9) exist%

S = lim Sk.

This is a scheme ové?, not(!) of finite type, with a right action o&Ly(A (), and, forkK a
compact open subgroup 6L, (A ),

Sk = S/K

(Deligne 1979, 2.7.1). Thus, the syst¢Ry ) x together with its right action ofsL,(A )
can be recovered frorfi with its right action ofGL2(A ;). Moreover,

S(C) = 1lim Sk (C) = lim G(Q\X x G(A7)/K = G(Q\X x G(Ay).
The first isomorphism follows from the definition of inverse limits,
S(C) £ Hom(SpecC, S) = lim Hom(Spec C, Sx) £ lim Sx(C),
and the second requires Bourbaki 1989, 111 7.2.

REMARK 2.11. The curves?} for I' atorsion-freecongruence subgroup 8f.,(Q) have
the following remarkable property: every holomorphic méap- Sp from a smooth com-
plex algebraic variety” to Sy is a morphism of algebraic varieties (Borel 1972, 3. Nijte
that this is false without the condition thitoe torsion-freesSg, , ~= A' and there are cer-

tainly holomorphic mapa.!(C) — A!(C), i.e.,C — C, that are not regular, for example,

e,

Re-interpretation of X

Let V' be a finite dimensional vector space o#erBy acomplex structuren V' we mean
anR-linear action ofC onV/, i.e., a homomorphism d-algebrag:: C — Endg (V).

PROPOSITION2.12. The following sets are in natural one-to-one correspondence:

(a) the complex structures dn;

(b) the endomorphismg of V' such that/? = —1;

18 et (A;);er be a direct system of commutative rings indexed by a directed, setd letA = lim 4;.
Then, for any schem&,

Hom(X, Spec A) = Hom(A,I'(X, Ox)) = lim Hom(4;,I'(X, Ox)) = lim Hom (X, Spec 4;).

(For the first and third isomorphisms, see Hartshorne [1977, Il, Exercise 2.4; the middle isomorphism is the
definition of direct limit). This shows tha&ipec A is the inverse limit of the inverse systei8ipec A;);cr in

the category of schemes. More generally, inverse limits of schemes in which the transition morphisms are
affine exist, and can be constructed in the obvious way. In our case, the schgmsing noncomplete
curves, are themselves affine.
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(c) the pair§’of subspace§/*, V) of V(C) such thatV* = V~andV(C) = V* @
V'~ (here. denotes complex conjugatiom 1 onC @ V = V(C));

(d) (casedim V' = 2) the nonreal linedV in V(C) passing through) (nonreal means
W #£.W).

PROOF. (a)—(b). Given a complex structure takeJ = h(i). Conversely, giver/, let C
act through the isomorphism+ bi +— a + bJ: C — R[J].

(b)«(c). GivenJ, defineV*+ andV ~ to be the+: and—: eigenspaces df ® J acting
onC ® V. Conversely, givefV ™,V ~), defineJ to be the operator ol (C) that acts as
+ionV*t and—:; onV~. Becausd/* andV~ are complex conjugates of each othér,
commutes with the action of®§and so preservels c V(C).

(c)—(a). The map/ — V(C)/V~ is an isomorphism of real vector spaces, and’so
acquires a complex structure from thatsC)/V .

(c)—(d). The subspac¥~ determines the paifl’*, V' ~), and it can be any nonreal
line whendim V' = 2; welet(V*, V™) < V™. O

2.13. Now takd’ to have dimensiof, and letY” be the set of complex structures @n Let
P! = P (V), the projective space of lines througlin V(C). The map sending a complex
structure(V ", V=) onV to V™ is a bijection fromY” ontoP!(C) ~. P*(R). This bijection
endowsY with the structure of a complex manifold. Note that

C\R= IP’1(<C) ~ IP’l(]R).
The choice of a basis fdr identifiesY with X.

ASIDE 2.14. Observe that the map

Z—1
z+1

Z =

(5)

sends to 0 and the real line onto the unit circle| = 1 (because, it is real, therz — i is
the complex conjugate af-+ 7). Therefore, it map* isomorphically (conformally) onto
the interior of the disk, and it maps isomorphically ontd*(C) ~. {unit circle}.

Elliptic curves over C

Define7 to be the category:

1"The cognoscente will recognize this as a Hodge structure of(type0), (0, —1) on V. Implicitly, we
are using Deligne’s convention (Deligne 1979, 1.3) that) acts onV/?% asz~Pz~ 9.
Bletz e Wt,y € W—. Then

tJ(x +y) = (iz —iy) (definition of J)
= —itx +ivy (¢ is semilinear)
= J(x +wy) (cswitchesW* andW ™).
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OBJECTS: triples (V, J,A) with V' a two-dimensional real vector spacé,a complex
structure orl/, andA a lattice inV;

MoORPHISMS: a morphism(V, J,A) — (V' J', A’) is anR-linear mapa: V' — V' such
thatJ' oa = ao J andaA C A.

Let Ell(C) be the category of elliptic curves ov€r

THEOREM2.15. The functor
(V,J,A)— (V. J)/A: T —EI(C)
is an equivalence of categories.

PrRoOOF. By (V,J)/A we mean the quotient of the one-dimensional complex vector space
(V,J) by the latticeA. Certainly,(V,J,A) — (V,J)/A defines a functor fronT to the
category of compact Riemann surfaces of gehpsovided with a “zero”. That it is fully
faithful (i.e., bijective on arrows) follows from EC 10.3. NdW, J)/A has a unique struc-
ture of a nonsingular algebraic curve of gerugf. footnote 2, pB, or use and ' to
embed(V, J)/A in P?). Thus, we have a fully faithful functof — EIlI(C), and to show

that it is an equivalence of categories, it remains to show that every elliptic curve over
C is isomorphic to a curve of the forifi/, J)/A. In fact, every elliptic curve ove€ is
isomorphic to a curve of the forii/A (EC 10.14). [

REMARK 2.16. We can define a quasi-inverse(ig J,A) — (V,J)/A: T —EII(C) as
follows: the Abel-Jacobi mapping

is an isomorphism (easy case of the Abel-Jacobi thedgrem, Fulton 1995, 20.25). Thus, we
can take\ = H,(F(C),Z) andV = H°(E, Q)Y with its natural complex structure.
Alternatively, becausa is a lattice inH°(E, Q1)Y,

R A= HY(E Q) = Tgty(E). (6)

Thus, we cantakd = H,(E,Z),V = H,(E,R) (= R® A), and.J equal to the complex
structure orl/ defined by the canonical isomorphidm= Tgt,(E).

Let EII°(C) be the catego whose objects are elliptic curves ov@y but whose mor-
phisms are given by
Hom"(E,, Ey) = Hom(E}, E,) ® Q.

Let 7° be the category whose objects are péirs/) with V' a two-dimensionalQ-vector
space and a complex structure ol @ R.

1°This is called the category of “elliptic curves up to isogeny” —|see Mumford 1970, p172. Presumably
the name was suggested by the fact that two elliptic curves are isomorgHic(i8) if and only if they are
isogenous. The name is unfortunate: a bit like referrin@lt¢C) as the category of elliptic curves up to
isomorphism. However, we seem to be stuck with it.
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COROLLARY 2.17. There is an equivalence of categorig$—EIll’(C).

PROOF. Obviously, the functor in[ (2.15) defines an equivalenc&ltf{C) with the cate-
gory obtained fron7” by tensoring thélom’s with Q, but the functor(V, J,A) — (Q ®z
A, J) is an equivalence of this category wiif. ]

The above results are not difficult to prove, but they and their higher dimensional ana-
logues are quite remarkable: they show that the study of elliptic curves and abelian varieties
overC, which are richly interesting objects, is nothing more than linear algebra. Note that
for an automorphisna of C and an elliptic curver, the curves ' makes sense — it is
the elliptic curve obtained by applyingto the coefficients of a polynomial defining—
whereas, applying to an object off has no obvious meaning (except via the equivalence
of 7 with Ell(C)).

NOTATIONS 2.18. For an elliptic curvé’ overC, we let
T¢E = H\(E,2)®Z, V;E=H(FE,Z)® Ay.
If E(C) = (V,J)/A, then
H{(E,Z)= A, H(E,Q)=ZQ®A,

and so R
T/yE=AQZ, ViE=A®Ay.

In particular,T; E is a freeZ-module of rank, andV; E is a freeA ;-module of rank.
Let E[N] denote the subgroup d@f(C) of points killed by N. If E(C) = (V, J)/A,
then
E[N] = tA/A = A/NA,

and so, on passing to the inverse limit, we find that
T}E = lim E[N]
and
Vi(E)=T/E ® Q.

Note thatE +— V; E is a functor on botlEll(C) andEIll°(C), but E — T} E is a functor
only onEll(C).

Elliptic modular curves as parameter spaces ovef

Now fix a two-dimensiona)-vector spacé’, and letG = GL(V), i.e.,G is the algebraic
group overQ such thatz(R) = Autg(V (R)) for anyQ-algebraR. In particular,

G(Af) = Auty, (V(Ag)).

We now defineX to be the set of complex structurdson V(R) (cf. [2.13), and we let
G(Q) act onX by conjugation:

qJ =qoJoq .
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The choice of a basis fdr' identifiesG with GL,, X with the space irC \ R, and the
action of G on X with that in {2), but making such a choice would only confuse things.
For a compact open subgroup of G(Ay), let Sk be the (nonconnected) algebraic
curve ovelC such that
Sk(C) = GAQ\X x G(Af)/K

(sed 2.B).
Consider the sef of pairs(E,n) with £ an elliptic curve overC andn, an A -linear
isomorphism
V(Ay) — Vi(E).

An isomorphism £, ) — (E’,7') is an isomorphisna:: E — E’ in Ell°(C) such that

V(Ay)
N
B Vi(F

Vi (E) —

)

commutes. There is a natural action(®fA ;) on¢&,
ExGAy)—€&, (En),a— (E,noa),

which preserves isomorphism classes; n) ~ (E',7) = (E,noa) ~ (E',n oa).

V(Ay)
/‘
-

Vi(E) —L=

N

L v(E).

Given(E,n) in £, choose an isomorphism
a: Hi(E,Q) — V.

Let J be the complex structure ovi ® R corresponding to the complex structure on
H,(E,R) (seq 2.1p), and let be the composite

V&Ar 5 ViE) S V(A
Thus, from(E, ) and a choice of, we obtain a pair
(J.a) € X x G(Ay).

Whena is replaced by o o, (J, «) is replaced byq.J, ga), and so we have a well-defined
map
£ — GQ\X x G(Ay).



2 ELLIPTIC MODULAR CURVES OVER C 22

PROPOSITION2.19. The map just defined gives a bijection
£/ — GQ\X x G(Ay).
It is compatible with the action k', and therefore induces a bijection
(€/~)/K — 5k(C).

PROOF. Using [2.17), we see that isomorphism classes of fdirs)) are in one-to-one
correspondence with isomorphism classes of triples/, a) wherelV' is a two-dimensional
Q-vector space] is a complex structure o', anda is an isomorphisniy’ (A ) — W (Ay).
But any such triple is isomorphic to one with = V. Thus€/~ is in one-to-one corre-
spondence with the isomorphism classes of p@alrs) where.J is a complex structure on
V anda is an isomorphisnV/ (Ay) — V(Ay), i.e., with isomorphism classes of pairs in
X x G(Ay). Anisomorphism(J, a) — (J',d’) is an isomorphism: V' — V' of Q-vector
spaces carrying to J' anda to a’. Thus, the isomorphism classes of pairs are the orbits of
X x G(Ay) under the action of7(Q) = Aut(V).

It follows from the definitions that the bijection is compatible with the actioniof
Therefore, on passing to the quotient, we obtain a bijection

(E/~)/K — GQ\X x G(A)/K £ Sk(C).
]

REMARK 2.20. LetK be a compact open subgroGf§A ), and letE be an elliptic curve
overC. For anisomorphism: V(A;) — V;E, write [n] x for the K-orbit{noa | a € K}
of n. Define€ to be the set of pairgE, [n]x). With the obvious notion of isomorphism
for objects inf g, there is a commutative diagram of bijections

(/)] K —= (GQ\X x G(Ay)) /K

e b

1:1

Ex/~  —— GQ\ (X xG(Af)/K)

EXAMPLE 2.21. Choose a lattic& in V, and letK (V) be the subgroup of/(A) stabi-
lizing A ® Z (insideV ® A ) and acting as the identity diA ® Z)/N(A ® Z) (=2 A/NA).
Let £ be an elliptic curve. Every isomorphism

v: A/NA — E[N]

lifts to an isomorphism R
V:A®7Z —TvE,

whose orbity - K (V) is independent of the choice of Let
n=rvQ:V&A; - ViE.
Then(E,v) — (E, [n]) gives a bijection
{(B,n)}/m = Exmn/~ -
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WhenV = R?andA = Z2, K(N) is the group in[(1.14), and an isomorphism(Z/NZ)? —
E[N]is alevelV structure on®. The maps

{(E, )} /= — Q'\{£} x A7 /K(N) = (Z/NZ)*

sendq £, v) the composite

Z/NZ = \*(Z/NZ)> /ﬁ A’E[N] 2 un(C) = Z/NZ.

the second isomorphism being defined by #hepairing and the last by>™/N — n
mod N. This last map is a discrete invariant(@, ») — in fact, the only discrete invariant,
for the pairs with the same invariant lie in the connected family.

ASIDE 2.22. Every isomorphism class of tripl€i§; J, A) in 7 is represented by a triple in
which(V,J) =C,andA =Z & Zz, z € X ™.

Elliptic modular curves as moduli varieties overC

In the previous subsection, we showed that there is a one-to-one correspondence between
the C-valued points ofSk and the isomorphism classes of elliptic curves dewith a

level K-structure. This by itself doesn’t determisg: in fact, for any curveC overC,

C(C) has the same cardinality &S In this subsection, we prove an additional property of

the correspondence that does deterntipeuniquely (up to a unique isomorphism).

Definition of a moduli variety

A moduli problem M, ~) overC consists of a contravariant functa from the category
of algebraic varieties ovel to the category of sets, and equivalence relatiorm each of
the setsM (7") that are compatible with morphisms in the sense that

me~m' = o' (m) ~ (M), m,m eM(S), ¢TS5

A point ¢ of a varietyT" with coordinates irC can be regarded as a mapecm C — T,
and so defines a map

m i my £ t'm: M(T) — M(C).

A solution to the moduli probleiis a varietyl” overC together with a bijection:: M(C)/~
— V/(C) with the properties:

(a) For any varietyl’ overC andm € M(T), the mapt — a(m;): T(C) — V(C) is
regular (i.e., defined by a morphism of algebraic varieties);

(b) (Universality)Let Z be a variety ovefC and let3: M(C) — Z(C) be a map such
that, for any paif7’,m) asin (a), the map+— 5(f;): T(C) — Z(C) is regular; then
the map3oa~': V(C) — Z(C) is regular,

A variety V' that occurs as the solution of a moduli problem is call¢doarse) moduli
variety.
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PROPOSITIONZ2.23. Up to a unique isomorphism, there exists at most one solution to a
moduli problem.

PROOF. Suppose there are two solutiofig «) and(V”’, «’). Then because of the univer-
sality of (V,a), o’ oa™t: V(C) — V'(C) is a regular map, and because of the universality
of (V',«’), its inverse is also a regular map. O

Of course, in general there may exist no solution to a moduli problem, and when there
does exist a solution, it may be very difficult to prove it.

The moduli variety(V, «) is fineif there exists a universah, € M(V'), i.e., an object
such that, for all varietie§” over C andm € M(T), there exists a unique regular map
¢: T — V such thatp*my ~ m. ThenV represents the funct@r — M(T")/ ~.

REMARK 2.24. The above definitions can be stated also for the category of complex man-
ifolds: simply replace “algebraic variety” by “complex manifold” and “regular map” by
“holomorphic (or complex analytic) map”. Proposition 2.23 clearly also holds in the con-
text of complex manifolds.

The curve S; as a coarse moduli variety overC

Recall (e.g., EG5) that an elliptic curve over a field is a pair(E, O) consisting of a
complete nonsingular curvg of genusl over k£ and a pointO € E(k). A morphism
(E,0) — (E',0') is a regular mapgy — E’ carryingO to O’H The plane projective
curve

E:Y*Z4+a XYZ+asYZ? = X3+ X?Z + au X 7% + agZ° (7)

with the distinguished poind = (0 : 1 : 0) is an elliptic curve provided it is nonsingular
(equivalently, the discriminamk(ay, as, as, a4, ag) # 0), and every elliptic curve over is
isomorphic to one of this form.

Let T be a variety over a field'. We define arelliptic curve (better,family of elliptic
curveg overT to be a pair consisting of a smooth morphism of algebraic varieties —
T whose fibres are complete nonsingular curves of gérarsl a (zero) sectiom: T — E
to . A morphism(E, p,0) — (E',¢',0') is a regular magy — E’ carryingy ando to
¢ ando’. As for an elliptic curve over a field, one can show that, locally for the Zariski
topology onT', there exist regular functions such thatA (a4, as, as, a4, ag) iS never zero
andE is isomorphic to the subvariety @ x P? defined by the equatioh](7).

For a varietyl’, let £(T) be the set of elliptic curves ovét. On taking~ to be~, we
get a moduli problem. Theg-invariant defines a map

E— j(E): £(C) — AY(C) =C,
and the theory of elliptic curves shows that this map is a bijection.

THEOREM2.25. The pair(A!, j) is a solution to the moduli probleii¢, ~).

20There is a unique group law afi having the distinguished element as zero, and a morphism of elliptic
curves is automatically a homomorphism of groups.
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PROOF. Let E — T be a family of elliptic curves over, whereT' is a variety ovefC. The
mapt — j(E;): T(C) — A'(C) is regular because, locally ah, j(E;) = ¢3/A wherec,
is a polynomial in thei;’s and A is a nowhere-zero polynomial in thg's.

Now let (Z, 3) be a pair as in (b). We have to show that> 3(E;): A'(C) — Z(C),
whereE is an elliptic curve ove€ with j-invarianty, is regular. LetU be the open subset
of A! obtained by removing the poinfsand1728. Then

36 , L

E:YZ+XYZ=X3- " X7° - — —
+ u— 1728 u— 172877

u € U,

is an elliptic curve ovelU with the property that(E£,) = u. Because of the property
possessed by, 3), E/U defines a regular map+— ((E,): U — Z. But this is just the
restriction of the mag — [(E;) to U(k), which is therefore regular, and it follows that
the map is regular on the whole Af . O

The Riemann surfacel'(N)\ X as a moduli space

Fix a2-dimensionalR-vector spacé’, a latticeA C V/, and an integeN. We letX denote
the set of nonreal lines it (C) (seq 2.1B), and we I€( V) be the subgroup dfL(A ® Q)
of elements that preserveand act trivially onA/NA. If N is sufficiently large'(V) is
torsion free.

Let T" be a complex manifold. By Bocal system ofZ-modules of rank, we mean a
sheafH on T that is locally isomorphic to the constant sheaf definedbyor A). Then
Or® H is alocally free sheaf of rartkkon 7', and we letH ~ denote a locally free subsheaf
of rank 1 such that, for alt € T, H, is a nonreal line ind,. Let Hy(7T") denote the set
of triples (H, H—,n) wheren is an isomorphism from the constant sheafiodefined by
A/NA to H/NH. With ~ equal to the obvious notion of isomorphisf,; becomes a
moduli problem on the category of complex manifolds.

Let (H,H ,n) € Hx(C). Choose an isomorphism: H — A. Thenyc(H ™) is non-
real line inV(C) and(H, H~,n) — ~c(H ™) defines a bijectioma: Hy(C) — T'(NV)\ X.

PROPOSITION2.26. If I'(N) is torsion free, the paifI'(N)\ X, «) is a fine moduli space
for Hy.

PROOF. Letm = (H,H ,n) € Hy(T). We have to show that the map
Oom: T = T(N\X, t— a(my),

is holomorphic. Let, € T. Choose an open neighbourhdéaf ¢, over whichH is trivial,
and fix an isomorphisnt/|U ~ Ay (constant local system obi). This isomorphism
identifies each”,” with a nonreal line through the origin iW(C). Since theH, vary
holomorphicallyt — H, : U — X is holomorphic, and so the mdp — X — I'(V)\ X
is holomorphic. [To be continued.] O

The Shimura curve Si as a moduli variety

[Summary.] Define a moduli problea\1, ~) such tha{ M(C), ~) = (€, =).
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THEOREM2.27. The bijectionfy / ~ — Sk(C) in (2.21) is a solution to the moduli prob-
lem.

PrOOF. It follows from Propositiorj 2.26 that it is a solution in the category of complex
manifolds, but ther{ (2.11) implies it is a solution in the category of nonsingular algebraic
varieties. O

3 Canonical models of elliptic modular curves

[To be rewritten.]

Statement of the main theorem

Let ¢, be the primitivem™™-root of onee?™/™, Recall that there is a canonical isomorphism

(Z/mZ)* — Gal(Q(Cn)/Q), [n]Gm = (-

On passing to the inverse limit, we get an isomorphism

Z* — Gal(Q®/Q) (8)

(Kronecker-Weber theorem).
Let £ be an elliptic curve ove€, and letoc be an automorphism d@. DefinecE by

the fibre product diagram
E «— oF

| l

Specm k «—— Specm k
in which the bottom arrow is induced lay If

E:Y?*Z=X3+aXZ?+b7Z5,
therfd
oE:Y?7Z = X? + (0a)X 2% + (ob) Z°,

Apoint P = (x : y : z) on E defines a point P = (ox : oy : 0z) onoE. This carries
0=(0:1:0)onEto0onckE, and so is a homomorphism: E(C) — (cE)(C).

Therefore,o defines an isomorphis@[N| — oE[N] for eachN. On passing to the
limit and tensoring withQ, we obtain an isomorphism: V;(E) — V(o FE). For a level

210bviously,
CIX,Y,Z]/(Y? — X3 —aX —b) —— C[X,Y,Z]/(Y? - X? — gaX — ob)
C -7 . C

is a tensor product diagram.
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structuren: V(A;) — V;E, we defingn: V @ Ay — Vi (oF) to beo o n. Therefore, we
get an action of4 =4 Aut(C) oné,

o(E,n) = (oL, n),

which commutes with the action 6#(A ) and preserves isomorphism classes.
On the other hand, a model 8f; overQ determines an action of on Sk (C).

THEOREM3.1. For each compact open subgroipof G(Ay), there exists a modély of
Sk overQ for which

(£/~)/K <= GQ\X x G(As)/K

is compatible with the action oft on £ and the action ofA on G(Q)\X x G(A;)/K
defined by its identification with's (C).

We discuss the proof in the remainder of this section.

REMARK 3.2. According to Propositign 1.8, the model is uniquely determined by the con-
dition. We shall see later that it is the canonical mode} pf

REMARK 3.3. For compact open subgroup$ C K, the mapSx/(C) — Sk(C) is com-
patible with the action of4.

The Galois action on the set of connected components

Consider
E/x~ — GQN\X xG(Ay)/K A

| !

Q\{£} x Af/det(K)  Gal(Q®/Q).

EXERCISE3.4. LetA act onr through its quotienGal(Q?/Q) = Z* in the obvious way.
Show that the maget in (3) is compatible with the actions of.

REMARK 3.5. The exercise answers one question raised in the introduction, namely, given
a congruence subgroup C SLy(Z), what is the fieldF- that '\ X is defined over?
Choose a compact open subgratipf GLy(A ;) such thatk’ N SLy(Z) =T, letU be the
subgroup ofZ* fixing [+, 1] in Q*\{£} x A7 /det(K), and thenft is the fixed field of

U acting onQ.

(a) Letl’ = I'(N) = SLy(Z) N K(N). Thendet(K (N)) = ...
(b) Letl = I'y(N). Thendet(K) = Z*, and SoFf = Q.

How, exactly, does4 act onSk(C)? Let K = K (1) =Revert to the traditional ap-
proach.

C(H)\XT REEN {elliptic curveg/ ~
: — E()Zc/(z+122).
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Here,E(z) is an elliptic curve ove€ with j-invariantj(E£(z)) = j(z), where the secong
is the holomorphic function

1 .
§(2) = =+ 744 + 196884q + - -, q = >,
q

The j-invariant ofo E(z), is

J(0E(2)) = 0((E(2)).

Thus,0E(z) = E(°z) where?z is any element o * such that

Such a’z exists, becausg defines an isomorphism af(1)\X* — C, but, in general,
there is nothing we can say about it that we haven't already said. Note that, ardeds
or ¢, it isn’t continuous, so we can't expect anything likgj(z)) = j(oz) to hold.

Complex multiplication

Amazingly, whenz € X' is quadratic overQ, we can describe howA4 acts onj(z).
Assume[Q[z] : Q] = 2 and (for simplicity) that that generates the ring of integers in
Q[z]: thenj(z) generates the Hilbert class field @fz], and there is an explicit formula
describing howGal(Q[z]2?/Q[z]) acts onj (z) (see Serre 1967 or M§L2).

We can say more. For a number figld define

At p={(a,) € [IF | a, € O, for aimost allv}

wherewv runs through the finite (i.e., nonarchimedean) primes @nd, for such a prime,
F, is the completion of” andQ,, is the ring of integers iif;,.

Let F' be a quadratic imaginary field with a given embedding"” — C, and letV" be
a one-dimensionat-vector space. We consider tripleg, i, ) with

— FE an elliptic curve ovefC,

— i an isomorphism¥ — End’(E) such that the homomorphis# — C
given byi and the action oEnd(E) onTgt,(E) is p, and

— nanAj p-isomorphismV (A;) — Vi (E).
An isomorphism E,4,7) — (E’,4',7') is an isomorphisn — E’ in EII°(C) compatible

with 7 andn. Given such atripl¢£, i, ), choose ai’-linear isomorphisna: H,(E,Q) —
V,and leta € A7 . be the composite

V@phAip 5 ViE) 25V @p Agp.

The class ofiin £\ A7 . is independent of the choieceand depends only on the isomor-
phism class of £, i, 7).
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LEMMA 3.6. The map(E,i,n) — a gives a bijection from the set of isomorphism classes
of triples to F>\ A% 1.

PROOF. Consider the pair$i¥V,n) with W a one-dimensional-vector space ang an
isomorphismV/(Ay) — W(Ay). On the one hand, the isomorphism classes of these pairs
are obviously classified by\A7 .. On the other hand, the isomorphidii ®q R =

W ®r, C provideslV ®qg R with a complex structure/, and it follows from [(2.17) that
there is an equivalence of categoriég, n) — (E,i,7). O

For any number field”, class field theory provides a continuous surjective homomor-
phism
recp: [[ooFy X A} — Gal(F®/F).

v]joo™ v

SinceGal(F3/F) is totally disconnected, this homomorphism factors throaghwhen
F'is totally imaginary. In fact, whert” = Q or a quadratic imaginary field, it gives an
isomorphisifq

recp: FP\AF p — Gal(F®/F).

Write t(E, 4,7) for the element of ™\ A7 .. defined by a triplé &/, 7, ).

THEOREM3.7. For o € Aut(C/R), the isomorphism class of( ¥, i, ) depends only on
the restriction ofr to F2°, and if 0| F3° = recx(b), then

to(E,i,n)) = t(E,1,n)b
(or perhapst(E, i,m)b~* depending on the sign conventions).

This is one statement of the Main Theorem of Complex Multiplication for elliptic
curves.

AsSIDE 3.8. The signs in Deligne’s Bourbaki talk (Deligne 1971) are correct. Those in his
Corvallis talk (Deligne 1979) are wro@— specifically, delete “inverse” from line 10,
page 269.

22T0 be consistent witfﬂS), | choose the map to send prime elements to Frobenius elament8). This
convention is used iff [7), my notes CFT, and Deligne 1971, but it is the reciprocal of that Uised in Deligne
1979 and most of the work on the Langlands program.

In general, the kernel of the reciprocity map is the closure of the image of the identity component of
]_[vlooF,UX in AX/F*, but the image of this identity component is already closed whenaQ or a quadratic
imaginary field (and only then Artin and Tate 1961, Theorem 3, p90).

23 once wrote to Deligne to point this out, and noted that there were three changes of sign between his
Bourbaki talk and his Corvallis article. He responded: “Mea culpa, mea maxima culpa. My sign is wrong,
and your explanation ... plausible: | could not count to three.” Thus, it appears that the prerequisite for
understanding Shimura varieties is being able to count to two — three would be useful, but not strictly
necessary.
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Special points

RegardX as the complex double plane. A point X is specialif Q(z) has degree over
Q.
RegardX as the set adR-homomorphismé: C — Endg(V ®R). Let F be a quadratic

imaginary field, and choose an actionfobnV, i.e., a homomorphismi — End (V). On
tensoring this wittC we obtain a homomorphisti @ R — Endg(V ® R). The composite
of such an isomorphism with one of the two isomorphigins> F' ® R will be said to be
special

These definitions agree.

A point [z, a] of Shx (C) is specialif = is specidl

DEFINITION 3.9. To be added: define the actionéfon the special points.

THEOREM 3.10. There exists a unique family of modélsy ) of (Shx) overQ such that
the action of4 on the special points is described by (3.9).

PrRoOF. That the family of models in Theorem 3.1 has this property follows from the main
theorem of complex multiplication for elliptic curves (9.2).
The uniqueness follows from the fact that the special points are Zariski dense[]

REMARK 3.11. The proof of the uniqueness is complicated by the fact that, for each special
point [z, a|, we only know how the automorphisms fixid(z) act. However, in this case,
the full group of automorphisms is generated by those fiX@{g) and by., and it is
possible to say also howacts.

In the general case, an extension of the main theorem of complex multiplication (due
to Langlands and Delig allows one to say how all automorphisms act on the special
points.

Hard descent

Deligne bases his proof of the existence of canonical models on Mumford 1965. One
shouldn’t do this. Mumford proved the existence of moduli schemes for polarized abelian
varieties with levelN-structure oveSpec Z[+]. This is a very difficult theorem, and is
much more than one needs. Moreover, there are Shimura varieties to which Mumford’s
theorem can’t be applied. Instead, one should use descent eory.

Recall that “easy descent” gives us a fully faithful functor from varieties @yeo
varieties ovefC + an action of4 on their points. “Hard descent” will describe the essential
image of the functor, i.e., it gives necessary and sufficient conditions for a pair to arise from
a variety overQ.

From now on, all varieties are quasi-projective.

24In this case, the special points are also CM.

25See Deligne’s articl¢/otifs et groupes de Taniyamia Hodge Cycles, Motives, and Shimura Varieties,
SLN 900, 1982. Also, my note&belian varieties with complex multiplication (for pedestriarasjailable on
my website.

26Als0, so far as | know, Shimura and his students never used Mumford’s results.
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Consider a paifV, x) wherel’ is a variety overC andx is an action of4 on V'(C),
which | write
(0,P)—oxP: AxV(C)— V(C).

I'll say that (V, x) is effectiveif there exists a variety, over Q and an isomorphism
f: Voc — V carrying the natural action oft on 14(C) into . Such a pair(V, f) will
be called anodelof (V, ) overQ. Recall that easy descent shows that, when it exists, the
model is unique up to a unique isomorphism.
Consider the following two conditions on a péir, ).
Regularity condition: The map

oP—oxP:(cV)(C)— V(C)

is regular. (A priori, this is only a map of sets. The condition requires that it be induced by
a regular map (morphisny),: ¢V — V)

Continuity condition: There exists a subfielfl of C finitely generated ovef) and a
model (Vq, f) of (V, ) overL, i.e.,V, is a variety overl and f: Voc — V' is an isomor-
phism carrying the natural action éfut(C/L) on V,(C) into .

THEOREM3.12. A pair (V, x) is effective if and only if it satisfies the regularity and conti-
nuity conditions.

PROOF = If (V,*) has a mode{l}, ¢) overQ, then

fo = f © (Uf)il;

and so(V, ) satisfies the regularity condition. It obviously satisfies the continuity condi-
tion.
«=: At the moment, alas, one has to appeal to Weil 1956. O

The next result replaces the continuity condition with another condition that is often
easier to check.

CoOROLLARY 3.13. A pair (V, x) is effective if it satisfies the regularity condition and there
exists a finite subset of IV (C) such that

(a) any automorphism df” fixing theP € X is the identity;

(b) for some fieldL finitely generated ove®, o x P = Pforall P € Y and allo €
Aut(C/L).

PROOF. See Milne 1999. ]

2I\arshavsky has transcribed part of Weil's paper into the language of schemes (Appendix to his paper
ArXive NT 9909142). Sometime, I'll explain how to derive the theorem from Grothendieck’s faithfully flat
descent (which is quite elementary).
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EXERCISE 3.14. Assume the existence of a good theory of Jacobians@yveand use
(3.13) to deduce the existence of a good theory over any subfi€ld @fint: use that any
automorphism of a polarized abelian variety fixing the points of oddsithe identityﬁ

AsSIDE3.15. Itis easy to construct examples of actions of automorphism groups that fail the
regularity condition, the continuity condition, or both. However, in practice, any naturally
arising action (for example, one arising from a moduli problem) will satisfy the conditions,
although this has to be proved in each case.

Existence of canonical models

Of course, it is easy to prove the existence of canonical models of elliptic modular curves
by ad hoc methods. Thus, what follows should be considered as an introduction to the
general case.

Note that it suffices to prove the existence of the canonical modgdior K suffi-
ciently small: if K’ containsK as a normal subgroup, théfx- is the quotient of5 by the
action of the finite groug’ /K. Thus, we can tak& = K (N) for N large. (Implicitly
therefore, we are choosing a lattiten 17.)

The regularity condition

This is immediate from Theorem 2]27.

The continuity condition

Apply Corollary[3.18 withX equal to a set of special points — $ee Milne 1999.

Definition of “canonical”

There are three different ways of characterizing the family of models we have constructed.

(A) The moduli criterion

The modelC of Shy satisfies the condition in Theorém 3.1.

(B) The analytic criterion

Since we knowrg, to characterize thé€'y it suffices to characterize their geometrically
connected components, i.e., the modglsover F- of the curved™\ X .

A holomorphic functionf on X is a modular form of weightk if and only if f(dz)*
is invariant under the action @f, and hence definestadifferentialw onT\ X *. The curve
Cr/Fr has the following property, which determines itk-aifferentialw = f(dz)* arises
from ak-differential onC’ if and only the Fourier coefficients gflie Fr.

8Niranjan Ramachandran has pointed out that Coroflary| 3.13 can be used to show that certain abelian
varieties attached by Murre to varieties (maximal algebraic quotients of intermediate Jacobians) are defined
over the same subfield @f as the variety.
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(C) Special points
The modelC' of Shy satisfies the condition in Theorém 3.10.

Which definition is best?

According to Deligne’s approach, in defining a Shimura variety one begins with an abstract
reductive grougs and additional dat&. In order to realize the Shimura variety ovéas

a moduli variety (when this is possible) it is necessary to choose a faithful representation
of G. Thus, Definition A is not really intrinsic (you have to make a choice, and then show
that it is independent of the choice). More significantly, many Shimura varieties are not
moduli varieties, not even conjecturally, and so Definition A doesn’t apply to such Shimura
varieties.

Definition B has a similar problem: if the Shimura variety is compact (see below), there
are no cusps, and hence no Fourier expansions. Hence Definition B doesn’t apply to such
Shimura varieties. Moreover, when the boundary components are not points (they will in
general be lower dimensional Shimura varieties), the Fourier series become Fourier-Jacobi
series whose coefficients are functions, not complex numbers, and so this criterion becomes
complicated to state.

The correct, general definition, is C. Moreover, when either A or B apply, they will
coincide with C. For A, this is essentially the Shimura-Taniyama Thearem (Deligné 1971,
4.19). For B, it is the theory of canonical models of automorphic vector bundleg4see
below, or Milne 1990, Chapter lll, for the general case).

AsSIDE 3.16. Historically, Definition B seemed the natural definition. In his acceptance
of the Steele prize (Shimura 1996) Shimura recounts that Siegel initially reacted with dis-
belief to his statement that he could prove the existence of canonical models for certain
compact modular curves, presumably because of the lack of Fourier expansions. On the
other hand, to algebraic geometers, Definition A is the most natural. Deligne once told
me that initially he was very surprised that Shimura could prove the existence of canonical
models for nonmodular curves.

4  Automorphic vector bundles

[To be added.]
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5 Quaternionic Shimura curves

[To be completed.]

The elliptic modular curves are the simplest Shimura varieties, and for that reason pro-
vide a good introduction to the general theory. However, in some respects theoare
simple, and so may lead to false expectations about the general case. In this section, we
examine the other Shimura curves.

Quaternion algebras

(CFT Chapter IV, especially 5.1)
Let F' be a field of characteristic zero. The matrix algebfa(F') has the following
properties:

(a) itis central, i.e.F is the centre of3;
(b) itis simple, i.e., it has no two-sided ideals;

(c) it has dimensiod as anf'-vector space.

Any F'-algebra with these three properties is callegiaternion algebra
Fora,b € F*, let B = B,, be theF-algebra with basi§1, 1, j, £} and multiplication
given by

Qza,f:b,ijzk:—ﬁ-

1
Then B is a quaternion algebra, and every quaternion algebra is of this form for&dme
Let B be a quaternion algebra ovEr According to a theorem of Wedderburn, eitlier
is a division algebra or it is isomorphic t,( F") (in which caseB is said to be split). For
B = B,,, the second case occurs exactly when the quadraticifiofm a X? — bY 2+ abZ>
has a nontrivial zero i
For F' algebraically closed, every quaternion algebra is split.
For F = R, every quaternion algebra is isomorphici(R) or the usual (Hamilto-
nian) quaternion algebr&_; _;.
For F' = Q, or afinite extension of),, there are again exactly two isomorphism classes
of quaternion algebras.
Finally, let F' be a number field. For a quaternion algebraver ', let d(B) be the set
of primeswv of F' such thatF, ® B is a division algebra. Then

— d(B) is a finite set with an even number of elements;
— B~ B'ifand only if d(B) = d(B’);

— every set containing a finite even number of primeg @ of the formd(B)
for some quaternion algebra over

For F' = Q, this statement has a fairly elementary proof, but for an arbitrary number field,
the proof requires class field theory.
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Quaternionic modular curves

Let B be a quaternion division algebra ov@rsplit at infinity. Thus,B is aQ-algebra such
that

B % M (Q)
but
Let G be the algebraic group ové€r such that7(R) = (B ®q R)* for all Q-algebrask.
Then,G(R) ~ GL. r and the choice of such an isomorphism determines an actiGii®f
on X. For any compact open subgrofpin G(Ay), we define

Sk = GIQ\X x G(Af)/E,

as before. This is a finite union ebmpactRiemann surfaces. More precisely, (&t be
the subgroup of7 such that

G1(Q) = Ker(B* 221 ).

Thenl' =4 KNG'(Q) is a discrete subgrou@’ (Q), I'\ X ™ is a compact Riemann surface,
andSk is a finite union of copies df\ X ™ (Shimura 1971, Proposition 9.2).

Let B°PP be the opposite quaternion algebra. TIRfS? = B as an abelian group, but
multiplication is reversedu®PPb°PP = (ba)°PP. Let V' be B regarded as &-vector space.
Left multiplication maked/ into a left B-module, and right multiplication makes it into a
right B-module or, what is the same thing, a I&t*"-module. These actions identify
and B°PP with commuting subalgebras éfndgy (V). In fact, by counting dimensions, one
sees that each is the centralizer of the other.

Let A be the set of triple$A, i, 1) with A an abelian variety of dimensidhover C,

i @ homomorphism of)-algebrasB — End(A4) ® Q, andn is a B ® A s-isomorphism
V(Af) — V¢(A). Anisomorphism(A,i,n) — (A',7,n') is an isomorphismd — A’ in
the category of abelian varieties up to isogeny commuting wéthdz. The groupG(Ay)
acts onA through its action oV (A ).

[Define the mapd — G(Q)\X x G(Ay).]

PrRoPOSITIONS.1. The map just defined gives a bijection
A/x~— G(Q)\X x G(Ay).
It is compatible with the action k', and therefore induces a bijection
(A/=) /K — GQ\X x G(Ay)/K.
PrROOF. The proof is similar to that of Propositipn 2]19. O

THEOREM5.2. For each compact open subgroépof G(A ), there exists a modél'x of
Sk overQ for which

(A/=)/K <= GQ\X x G(Ay)/K

is compatible with the action oft on A and the action of4 on G(Q)\X x G(Ay)/K
defined by its identification with'x (C).
Etc.

REMARK 5.3. In this case'x has ndR-points, hence n@-points (explain).
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Quaternionic nonmodular curves

Next let F' be a totally real field of degree 1 and letB be a quaternion algebra over

that is split at exactly one infinite prime &f, i.e., B ®5,, R ~ M,(R) for one embedding

p1: F'— R,andB®g,R ~ Hfor the remaining embeddings. L&tbe the algebraic group
overQ such thatz(R) = (B ®q R)* for all Q-algebrask. Then,G(R) ~ GLyg xH* x

.-+, and we letX be the conjugacy class of homomorphisinthat project onto the usual
class on the first factor, and onto the trivial map on the other factors. For any compact open
K in G(Ay), we define

Sk(G, X) = GQ\X x G(Ay)/K,

as before. Again, this is a finite union of complete algebraic curves, but this timeat &
moduli variety. Nevertheless, it does have a canonical model (@vather thar) now).
The idea of the proof is as follows. L€é! be a quadratic imaginary extension @f
and letL = @ - F — it is a CM-field with largest real subfield. Let 1" andW be one-
dimensional vector spaces ovBrandL. ThenG x (G,,).q acts onl’ @ W throught the
quotientG”:
1 — (Gn)rig — G % (Gp)rjg — G — 0.

Then

R®qV X ,. r_rV,,
R 0%y (v QF W) = @p: F—>R‘/p 0%y Wp-

The space/ ®p,, R has dimensiont and B ®r,, R ~ My(R) acts on it. The set of
complex structures oW ®,, R commuting with the action ob ®r,,, R can be identified
with X. Let J act onWW,, as the identity and oi/,, p # pi, as an element of squarel in
L ®p,R. Then eacly € X defines a complex structure on

R®q (VerW)=2V(R)@rsr W(R)

as follows: letJy act onlV,, as the identity and ofi/,, p # p;, as an element of square
—1lin L®p, R, letJy actonl¥, as.J and onl¥, as the identity; thedy o = Jy @ Jy .
Let X' (2 X) be the set of such complex structures. Ti6/, X') is a moduli variety,
and so has a canonical model over its reflex fieldMoreover, there is a canonical map

01 S(G, X) x S(T, {h}) — S(G", X").

Endow S(7', {h}) with the obvious action ofd. If S(7,{h}) had a pointP fixed by A,
then
x,P— ¢(z,P): S(G,X) — S(G', X")

would realizeS(G, X) as a closed subvariety 6f(G’, X') stable underd. According to
(1.7), it would then have a modél= F - @, which, because of our definitions, satisfies the
condition on the special points to be canonical. Buivas any quadratic imaginary field,
so this can be shown to imply th&8{G, X’) has a model oveF satisfying the condition.
Unfortunately, it is not that simpleS (7, {h}) does not have a poin® fixed by A.
Nevertheless, essentially this argument can be made to work (DeligngtB)71,
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6 Remarks on the general case

In the general theory, the complex upper half plaied the open unit disk) is replaced by

a bounded symmetric domain, i.e., with an open bounded subsetf a spaceC™ that is
symmetric in the sense that, for eacte X, there exists an automorphissp of X+ of

order2 havingz as an isolated fixed point. E. Cartan (and Harish Chandra) classified the
bounded symmetric domains in terms of semisimple real groups. Deligne showed that they
could be reinterpreted as parameter spaces for certain special Hodge structures. [Mention
the Borel embedding and Deligne’s interpretation of it as the map sending a Hodge structure
to the associated Hodge filtration.]

Deligne’s axioms

Let G = GL(V) for V some two-dimensiondD-vector space. Reca|l (2.13) that we saw
that we could identifyX = C ~ R with the set of homomorphism8 — Endg(V).
According to the Noether-Skolem theorem (CFT, Theorem 2.10), these homomorphisms
form a single conjugacy class. By restriction, we get a conjugacy class of homomorphisms
C* — G(R). These homomorphisms become homomorphisms of real algebraic groups
when we realiz&* as the points of the algebraic group

S & SpecniR[X, Y, T]/((X? + Y2)T — 1).

We now take as our initial data, an abstract algebraic g@upver Q for which there
exists an isomorphisn ~ GL, plus a conjugacy clasy of homomorphisms of real
algebraic group® — Ggr. We define the Shimura variety purely in terms of the pair
(G, X). Choosing an isomorphisi — GL(V) realizes the Shimura variety as a moduli
variety.

In Deligne’s approach, to define a Shimura variety one needs a pair (a Shimura datum)
(G, X) whereG is a connected reductive group ov@rand X is conjugacy cla of
homomorphism$ — Gy satisfying certain axioms. From one perspective, the axioms
ensure thatX acquires a natural structure as a finite disjoint union of bounded symmetric
domains. From another perspective, they ensure that attached to any represéhtation
GL(V) of G, there is a variation of Hodge structures 8rof a special type.

The axioms also imply that the restriction of arto G,, C S is independent of..
Thus, we have a well-defined homomorphism: G,, — Gg, called theweight homo-
morphisnﬂ Note that it is a homomorphism, defined owerof algebraic groups defined
overQ. It makes sense to ask whether it is defined @yeFor example, for elliptic modu-
lar curves or quaternionic modular curves it is defined @yewhereas for nonquaternionic
modular curves it isn’t. Conjecturally, the Shimura variety is a moduli variety (in general
for motives) whenwy is defined overQ, and it is not a moduli variety whemy is not
defined oven.

290f course,X is determined by a single € X. In his Bourbaki talk, Deligne started with @nrather
than X. Thus, the Shimura varieties of his Bourbaki talk have a distinguished foitit He corrected this
in his Corvallis article — Shimura varieties should not come with a distinguished point.

30According to the conventions pf Deligne 1978y is the inverse oh|G,,,.



6 REMARKS ON THE GENERAL CASE 38

Rough classification of Shimura varieties

PEL type: These are moduli varieties for polarized abelian varieties with endomorphism
and level structure.

Hodge type: These are moduli varieties for polarized abelian varieties with Hodge class
and level structure. (Hodge classes in the sense of Deligne 1982).

Hodge type includes PEL type, since endomorphisms of abelian varieties are Hodge classes.
In both these cases,x is defined ovef.

Abelian type: Initially, these are defined in terms of the classification of semisimple groups
overR. For the Shimura variet§h(G, X) to be of abelian type, the grou mod-
ulo its centre can’t have arfp-simple factors that become of tyg®, £, or certain
mixed typesD overR.

Not of abelian type: The rest.

Abelian type includes Hodge type. For Shimura varieties of abelian type, the weight
homomorphism may, or may not, be defined o@erEach of the classes

{PEL type C {Hodge typé C {abelian typé

is muchlarger than its predecessor.

Main results on the existence of canonical models (post Shimura)

Here, ignoring the earlier work of Shimura and his stuc@ﬁs a brief summary of work
the existence of canonical models.

1971: Deligne gave an axiomatic definition of Shimura varieties and canonical models,
and proved that canonical models (if they exist) are unique (Bourbaki talk, Deligne
1971).

1971: Deligne proved the existence of canonical models of Shimura varieties of PEL and
Hodge typ (with hindsight, since Deligne’s theory of Hodge classes didn’t exist in
1971). He also proved the existence of canonical models of some associated Shimura
varieties whose weight is not defined o¥gby a method that he later caI@Tmal-
adroite” (Bourbaki talk, Deligne 1971).

1979 Deligne proved the existence of canonical models for all Shimura varieties of abelian
type (he deduced his general result from the case of Hodge type by a different, more
adroit, method than in his Bourbaki talk) (Deligne 1979)

3which, of course, was fundamental to the later work.

32Essentially by the method sketched above, except he used Mumford’s GIT rather than Weil's descent
theory.

33Corvallis talk p250.
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1983 Borovoi and Milne|(Milne 1983) proved the existence canonical models for all Shimura
varieties, including those not of abelian type, by a method that is somewhat indepen-
dent of preceding methods (it assumes only the existence of canonical models of
Shimura varieties defined by groups of type).

1994 | proved that all Shimura varieties of abelian type with rational weight are moduli
varieties for abeliamotives Hence, the canonical models of such Shimura varieties
can be shown to exist by the method sketched in the body of this talk. In a clearly ret-
rograde step, | deduced the existence of canonical models for the remaining Shimura
varieties of abelian type by Deligne’s maladroit method (Milne 1994). The advantage
of this approach is that it realizes many more canonical models as moduli varieties
— it is much more than just an existence proof.

With the current technology, handling Shimura varieties of abelian type and their canon-
ical models is not much more difficult than handling Shimura varieties of PEL type. How-
ever, the situation is very different when one looks at the varieties mgoduigart from
Vasiu's big theorem| (Vasiu 1999), not much is known here except for Shimura varieties
of PEL type. Fortunately, the representation theorists have so far been able to find all the
Galois representations they need in the cohomology of Shimura varieties of PEL type (see,
for example, the proofs of the Langlands local conjecture by Harris and Taylor and by
Henniart).
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