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Abstract. These are my notes for four talks at the Institute for Advanced Study, February
21,23,28, and March 2, 1995. Appearances to the contrary, they are rough notes.

After giving a brief introduction to Shimura varieties, and in particular explaining how to
realize them as moduli varieties, we give a heuristic derivation of a formula for the number
of points on the reduction of a Shimura variety with coordinates in a finite field.
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Introduction

Shimura varieties generalize elliptic modular curves. They have canonical models over
number fields, and the study of their Hasse-Weil zeta functions has guided much re-
search in the theory of automorphic representations. For example, the problem of L-
indistinguishability, now called endoscopy, first manifested itself in the study of Shimura
varieties.

For a smooth projective variety Y over a number field E, the zeta function is defined as
follows: for all but finitely many prime ideals pv, reducing the equations for Y modulo pv
will give a smooth projective variety over the residue field k(v), and one defines

Zv(Y, T ) = exp

( ∞∑
m=1

NmT
m

m

)
, Nm = #Y (k(v)m), [k(v)m : k(v)] = m,

and
ζ(Y, s) =

∏
v good

Zv(Y, q
−s
v )×

∏
v bad

· · · , qv = #k(v).

One should also add Γ-factors for the infinite primes.

By “understanding the zeta function” we mean understanding some regularity in the Nm’s,
but the regularity may be quite complicated. For example, a curve of genus 0 over Q with
a rational point is just P1, and

ζ(P1, s) = ζ(s)ζ(s− 1).

A curve of genus 1 over Q with a rational point is an elliptic curve A, and

ζ(A, s) =
ζ(s)ζ(s− 1)

L(s)

where L(s) is the Mellin transform of a modular form of weight 2, at least if the curve has
no worse than multipicative reduction at 3 and 5. For a Shimura variety, we hope that the
zeta function is expressible in terms of the L-series of automorphic representations.

One can also define the zeta function in terms of the étale cohomology of Y , namely,

Zv(Y, T ) =
P1(T )P3(T ) · · ·

P0(T )P2(T ) · · ·P2 dimY (T )
, Pi(T ) = det(1− Frobv · T |Hi(Yk(v)al ,Q�))

When the variety is not complete, for example, a Zariski open subset of a projective vari-
ety, one can define the zeta function in terms of the intersection cohomology (with middle
perversity) of a good compactification of the variety—in the case of a Shimura variety, one
takes the Baily-Borel compactification. The resulting function depends on the compactified
variety, but there is a part of it that can be regarded as the contribution of the variety itself,
not its boundary, and which can be defined in terms of the numbers Nm as above.

At the conference in Ann Arbor in 1988, Kottwitz began by writing down a conjectural
formula for the number of points on a Shimura variety over a finite field, and then gave a
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heuristic stabilization of the formula (Kottwitz 1990). In these four expository lectures, I
shall review the definition and basic properties of Shimura varieties, especially their inter-
pretation as moduli varieties, and then I shall give a heuristic derivation of the conjecture of
Langlands and Rapoport (1987) on the structure of the points of a Shimura variety modulo
a prime; finally, I shall briefly indicate how one derives the formula in Kottwitz’s talk from
the conjecture of Langlands and Rapoport.

Thus, I’ll ignore the contributions to the zeta function of the boundary, the bad primes,
and the infinite primes.

1. Locally Symmetric Varieties

1.1. Symmetric Hermitian domains. A bounded symmetric domain X is a bounded
open connected subset of Cm, for some m, that is symmetric in the sense that, for each point
x ∈ X there is an automorphism sx of X of order 2 having x as an isolated fixed point. The
simplest examples of bounded symmetric domains are the unit balls:

Bm = {x ∈ Cm | |x| < 1}.

A complex manifold isomorphic to a bounded symmetric domain is called a symmetric
Hermitian domain. The simplest example of a symmetric Hermitian domain is the complex
upper-half-plane H+ = {z ∈ C | �(z) > 0}, which is isomorphic to B1 by the map

z 	→ z − i
z + i

: H+ → B1.

The symmetric Hermitian domains were classified by E. Cartan and Harish-Chandra using
the theory of semisimple groups. Let X+ be a symmetric Hermitian domain. The group
A = Aut(X+) of automorphisms of X+ (as a complex manifold) is a real semisimple Lie
group with trivial centre; moreover, the identity component1 A+ of A acts transitively on
X+, and the stabilizer of any point is a maximal compact subgroup of A+. Thus every
symmetric Hermitian domain can be realized as a quotient

G(R)+/K

where G is a real semisimple algebraic group with trivial centre. However, if G is a real
semisimple algebraic group with maximal compact subgroup K, then G(R)+/K will not
usually be a symmetric Hermitian domain.

Let H be a simple adjoint group over C, and choose a maximal torus T and a simple set
of roots B. Recall that there is a unique (highest) root α̃ =

∑
α∈B n(α)α such that, for any

other root
∑
m(α)α, n(α) ≥ m(α). A node of the Dynkin diagram sα is special if n(α) = 1.

Theorem 1.1. The symmetric Hermitian domains X+ such that Aut(X+)+ is the identity
component of a real form of H are in one-to-one correspondence with the special nodes of
the Dynkin diagram of H.

Given a special node sα0, there exists a unique µ ∈ X∗(T ) such that α0 ◦ µ = 1 and
α ◦ µ = 0 for the other simple roots α. Then G is the real form of H corresponding to the
Cartan involution adµ(−1).

An examination of the tables in (Helgason, 1978, pp477-478) reveals that: every node of
the Dynkin diagram of type An is special; the Dynkin diagrams of type Bn, Cn, and E7

1In general, a + denotes a connected component for the real topology.
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each have a single special node; the Dynkin diagram of type Dn has three special nodes; the
Dynkin diagram of type E6 has two special nodes; the Dynkin diagrams of type E8, F4, and
G2 have no special nodes.

1.2. Locally symmetric varieties. Let X+ be a symmetric Hermitian domain, and let
G be a semisimple algebraic group over Q such that X+ = G(R)+/K with K a maximal
compact subgroup of G(R)+. Recall that a subgroup of G(Q) is said to be arithmetic if
it is commensurable with G(Q) ∩ GLn(Z) for one (hence all) embeddings G ↪→ GLn. A
sufficiently small arithmetic subgroup Γ will be torsion-free—we always assume this is so.
Then S = Γ\X+ will again be a complex manifold, with X+ as universal covering space and
the image of Γ in Aut(X+) as its fundamental group.

Theorem 1.2. The complex manifold S has a canonical structure of an algebraic variety.
With this structure, every holomorphic map V an → S from a complex algebraic variety V
(viewed as an analytic space) to S is a morphism of algebraic varieties.

The first statement is the theorem of Baily and Borel (1966), and the second is proved in
(Borel 1972, 3.10).

The varieties arising as in the theorem are called locally symmetric varieties.

In fact, Baily and Borel define a canonical map S → S̄ realizing S as an open subvariety
of projective algebraic variety S̄, called the Baily-Borel compactification. If S has no factors
of dimension 1, S̄ can be described as follows: let Ω1 be the sheaf of holomorphic differential
forms, and let ω =

∧dimS Ω1; define A = ⊕n≥0Γ(S, ω
⊗n); it is a finitely generated graded

C-algebra, and so defines a projective algebraic variety S̄ = ProjA; there is a canonical map
S → S̄ = ProjA.

The compactification S ↪→ S̄ is minimal in the sense that for any nonsingular algebraic
variety S ′ containing S as an open subvariety and such that S ′−S has only normal crossings
as singularities, there is a unique morphism S ′ → S̄ whose restriction to S is the identity
map.

Let G be an algebraic group over Q, and let G(Z) = G(Q) ∩GLn(Z) for some embedding
G ↪→ GLn. A subgroup of G(Q) is a congruence subgroup if it contains

Γ(N) =df Ker(G(Z)→ G(Z/NZ))

for some N ≥ 1. More canonically, let Af be the ring of finite adéles, i.e., Af = Ẑ ⊗ Q

where Ẑ = lim←−NZ/NZ; then the congruence subgroups of G(Q) are the subgroups of the
form G(Q) ∩K with K a compact open subgroup in G(Af ).

Notes: For the material in Section 1.1, see (Helgason 1978, Chapter VIII).

2. Shimura Varieties

As everyone knows, the modular curve Γ(1)\H+ parametrizes isomorphism classes of el-
liptic curves over C, but what parametrizes isomorphism classes of elliptic curves with level
N structure, i.e., pairs (A, (Z/NZ)2

≈−→ A[N ])? One might guess Γ(N)\H+, but this can’t
be correct because such pairs have a discrete invariant, namely, the N th root of 1 that is the
image of 1 under the map

Z/NZ = Λ2(Z/NZ)
Λ2α−−→ Λ2A[N ] ≈ µN ,
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and so they don’t form a connected family. The correct answer is that they are parametrized
by a certain Shimura variety, which is a finite disjoint union of locally symmetric varieties.

We write S for C× regarded as a real algebraic group:

S = ResC/R Gm.

Thus SC ≈ Gm × Gm, and we normalize the isomorphism so that, on points, S(R) → S(C)
is z 	→ (z, z̄).

The data needed to define a Shimura variety are a connected reductive group G over Q

and a G(R)-conjugacy class X of homomorphisms S→ GR satisfying the following axioms:

(SV1) for each x ∈ X, the Hodge structure on LieG defined by hx is of type
{(−1, 1), (0, 0), (1,−1)};

(SV2) for each x ∈ X, adh(i) is a Cartan involution on Gad
R ;

(SV3) the adjoint group Gad has no factor defined over Q whose real points form a compact
group; the identity component of the centre Z of G splits over a CM-field (equivalently,
the action of complex conjugation on X∗(Z0) commutes with the action of all other
elements of Gal(Q̄/Q)).

The Shimura variety Sh(G,X) is then the family

ShK(G,X) = G(Q)\X ×G(Af )/K

where K runs through the compact open subgroups of G(Af ). In forming the quotient, we
let G(Q) act on X and G(Af ) on the left, and K act on G(Af ) on the right.

Write Gad
R =

∏
Gi with the Gi simple. For x ∈ X, hx defines by projection a homomor-

phism hi : S → Gi, and the connected component X+ of X containing x is a product,

X+ =
∏
Xi, Xi = Gi(R)+/Ki,

where Ki is the stabilizer in Gi(R)+ of hi. The axioms imply that z 	→ hi(z, 1), if nontrivial,
is the “µ” attached to a special node of the Dynkin diagram of GiC, and hence that Xi is a
symmetric Hermitian domain. Therefore X+ is a symmetric Hermitian domain, and X is a
finite disjoint union of symmetric Hermitian domains.

Let G(Q)+ be the subgroup of G(Q) of elements mapping into the identity component
of Gad(R)+; it is the stabilizer in G(Q) of any connected component X+ of X. The strong
approximation theorem implies that the double coset space

G(Q)+\G(Af )/K

is finite. Choose a set of representatives {g} for this set, and let Γad
g be the image of

Γg = gKg−1 ∩ G(Q)+ in Gad(Q)—Γg is a congruence subgroup of G(Q) and Γad
g is an

arithmetic subgroup of Gad(Q). The map∐
g

Γad
g \X+ → G(Q)\X ×G(Af )/K,

sending [x] ∈ Γad
g \X+ to [x,g] is a homeomorphism. For K sufficiently small, Γad

g will be
torsion free, and so ShK(G,X) is a finite union of locally symmetric varieties. In particular,
it is an algebraic variety.

From now on, we always assume K to be sufficiently small that the groups Γad
g will be

torsion free.
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For varying K, the varieties ShK(G,X) form a projective system, on which the group
G(Af ) acts: an element g of G(Af ) acts by

[x, a] 	→ [x, ag] : ShK(G,X) → Shg−1Kg(G,X).

Because of the second statement in Theorem 1.2, these maps are algebraic.

The inclusion R× ↪→ C× corresponds to an inclusion Gm ↪→ S; for any homomorphism
h : S → G, we let wh = h−1|Gm. Because of (SV1), wh maps into the centre of GR, and hence
is independent of h—we denote it wX , and call it the weight of the Shimura variety. It is
always defined over a totally real number field, and we shall be especially interested in those
Shimura varieties for which it is defined over Q.

2.1. Examples. Let F be a totally real number field, and let B be a central simple algebra
over F of degree 4. Then

B ⊗Q R = B ⊗F (F ⊗Q R) =
∏

σ:F↪→R

B ⊗F,σ R ≈ M2(R)c ×Hd.

Assume c ≥ 1. Let G be the reductive group over Q such that G(Q) = B×. Then

GR ≈ GL2(R)c × (H×)d

and we can define a homomorphism h : S → GR by requiring that the first c components of

h(a+ib) be

(
a −b
b a

)
, and that the remainder are 1. We define X to be the G(R)-conjugacy

class containing h.

If F = Q and B =M2(Q), then G = GL2 and X = H± = C \ R. For K = K(N),

K(N) =df Ker(GL2(Ẑ)→ GL2(Ẑ/NẐ)),

the Shimura variety is the moduli variety for elliptic curves with level N -structure.

If B = M2(F ), then G = GL2,F , and we get the Hilbert modular varieties. The Shimura
variety is a moduli variety for abelian varieties with real multiplication and level structure.

If F = Q and B is division algebra, the Shimura variety is a family of curves, which, in
contrast to the elliptic modular curves, are projective.

If d �= 0, so that factors H occur, then the Shimura variety is not a moduli variety in any
useful sense.

Notes: See (Deligne 1971; 1979).

3. Shimura Varieties as Parameter Spaces for Hodge Structures

So far, we have only defined the Shimura variety as a variety over C. In order to be able
to talk about the zeta function of a Shimura variety, we need a “canonical” model over a
number field. Now it is known that every Shimura variety Sh(G,X) does have a canonical
model over a certain explicit number field E(G,X), but, in general, both the characterization
of the canonical model and its construction are somewhat indirect. In particular, neither
gives a description of its points in fields containing E, much less on the reduction of the
Shimura variety. As a first step toward providing such a description we give a description of
the points of the Shimura variety over C in terms of Hodge structures with tensor and level
structures.
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3.1. Hodge structures. A real Hodge structure is a vector space V over R together with a
homomorphism h : S→ GL(V ). One then gets a decomposition (the Hodge decomposition)

V ⊗ C = ⊕V p,q, V p,q = V q,p, h(z) acts on V p,q as z−pz̄−q ,

and a filtration (the Hodge filtration)

· · · ⊃ F pV ⊃ F p+1V ⊃ · · · , F pV = ⊕p′≥pV p′,q′.

The weight gradation
V = ⊕Vm, Vm = ⊕p+q=mV

p,q,

is that defined by the map wh = h−1|Gm. If V = Vm, then V is said to have weight m.

A rational Hodge structure is a vector space V over Q together with a Hodge structure on
V ⊗ R such that the weight gradation is defined over Q, or, equivalently, such that wh is a
cocharacter of GL(V ) defined over Q.

One similarly defines an integral Hodge structure.

The rational Hodge structure Q(m) has underlying vector space (2πi)mQ with h(z) acting
as (zz̄)m (hence Q(m) is of weight −2m).

A polarization of a rational Hodge structure of weightm is a morphism of Hodge structures
ψ : V × V → Q(−m) such that

(x, y) 	→ (2πi)mψ(x, h(i)y) : V (R)× V (R)→ R

is symmetric and positive-definite.

If Z is a complete smooth variety over C, then Hodge theory provides Hm(Z,Q) with a
canonical polarizable Hodge structure of weight m. An algebraic cycle of codimension m on
Z defines a cohomology class which lies in

H2m(Z,Q) ∩Hm,m,

and the Hodge conjecture predicts that each of these Q-vector spaces is generated by algebraic
classes. More canonically, the algebraic classes are conjectured to generate the space

(H2m(Z,Q)⊗Q(m)) ∩H0,0,

which can also be described as the subspace of H2m(Z,Q(m)) of vectors (whose image in
H2m(Z,Q(m))⊗R is) fixed by h(z) for all z ∈ C×.

From now on, we consider only polarizable rational Hodge structures.

3.2. A reinterpretation of the notion of a level structure. Fix an N . By an elliptic
curve with level N structure, one normally means a pair

(A, α : (Z/NZ)2
≈−→ E[N ]).

We wish to give another interpretation of the set of isomorphism classes of such pairs.

For an elliptic curve (or abelian variety) A over C, we define

TfA = lim←−A[n] =
∏
T�A,

where A[n] is the set of n-torsion points and T�A is the Tate module, and we define

VfA = TfA⊗Z Q.

It is a free Af -module of rank 2 (more generally, 2 dimA if A is an abelian variety).
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The category of abelian varieties up to isogeny over a field k has as objects the abelian
varieties over k, but the morphisms are Hom(A,B)⊗ Q. Note that A 	→ VfA is a functor
on the category of abelian varieties up to isogeny, but A 	→ TfA is not.

I claim that the isomorphism classes of pairs (A, α) as above are in one-to-one corre-
spondence with the isomorphism classes of pairs (B, [η] : (Af )

2 → VfB) where B is an
elliptic curve up to isogeny and [η] is a K(N)-orbit of isomorphisms. Indeed, (B, [η]) will be

isomorphic to a pair (A, [η]) with TfA = η(Ẑ2), and the map

α : (Z/NZ)2 = (Ẑ/NẐ)2
η−→ TfA/NTfA = A[N ]

is independent of the choice of η in [η].

3.3. Shimura varieties as parameter spaces for Hodge structures. Consider a
Shimura variety Sh(G,X) whose weight is defined over Q. Choose a faithful representa-
tion G ↪→ GL(V ). Because G is reductive, there will be a set of tensors t = (ti)i∈I, which
we may take to be finite, such that G can be characterized as the subgroup of GL(V ) fixing
the ti; more precisely, for any Q-algebra R,

G(R) = {α ∈ GL(V (R)) | αti = ti, i ∈ I}, V (R) = R ⊗Q V.

Definition 3.1. Consider triples (W, s, [η]) consisting of a rational Hodge structure W =
(W,h), a family s of Hodge cycles indexed by I , and a K-level structure [η] on W , i.e., a
K-orbit of isomorphisms η : V (Af)→ W (Af), K acting on V (Af). We define HK(G,X) to
be the set of such triples satisfying the following conditions:

(a) there exists an isomorphism of Q-vector spaces β : W → V mapping each si to ti and
sending h to hx, some x ∈ X;

(b) for one (hence every) η representing the level structure, η maps each ti to si.

An isomorphism from one such triple (W, s, [η]) to a second (W ′, s′, [η′]) is an isomorphism
γ :W → W ′ of rational Hodge structures mapping each si to s

′
i and such that [γ ◦ η] = [η′].

Let (W, s, [η]) be an element of HK(G,X). Choose an isomorphism β :W → V satisfying
(3.1a), so that β sends h to hx for some x ∈ X. The composite

V (Af )
η−→ W (Af)

β−→ V (Af), η ∈ [η],

sends each ti to ti, and is therefore multiplication by an element g ∈ G(Af ), well defined up
to multiplication on the right by an element of K (corresponding to a different choice of a
representative η of the level structure). Since any other choice of β is of the form q ◦ β for
some q ∈ G(Q), [x, g] is a well-defined element of G(Q)\X ×G(Af )/K.

Proposition 3.2. The above construction defines a bijection

αK : HK(G,X)/≈→ ShK(G,X)(C).

Proof. Let (W ′, s′, [η′]) be a second system. If

γ : (W ′, s′, [η′])→ (W, s, [η])

is an isomorphism of triples and β : W (Q)→ V (Q) is an isomorphism of vector spaces satis-
fying (3.1a), then β ◦ γ satisfies (3.1a) for (W ′, s′, [η′]), and it follows that (W ′, s′, [η′]) maps
to the same element of ShK(G,X) as (W, s, [η]). Conversely, if (W, s, [η]) and (W ′, s′, [η′])
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map to the same class [x, g], we can choose maps β and β ′ so that the triples map to the
same element of X ×G(Af ); now γ =df β

−1 ◦ β ′ is an isomorphism

(W ′, s′, [η′])→ (W, s, [η]).

Finally, for any (x, g) ∈ X ×G(Af ), ((V, hx), t, [g]) maps to [x, g].

Remark 3.3. A g ∈ G(Af ) defines a map

(W, s, [η]) 	→ (W, s, [η ◦ g]) : HK(G,X)→ Hg−1Kg(G,X).

For varying K’s, the maps αK are compatible with the actions of G(Af ).

Remark 3.4. (a) Consider the constant vector bundle V over X with fibre V (R). When we
endow the fibre over x with the Hodge structure defined by hx, then the Hodge filtrations
vary holomorphically on the base X; moreover, the complex structure on X is the unique
one for which this is true.

(b) If the centre Z of G is such that Z(Q) is discrete in Z(Af), then the family of Hodge
structure overX descends to a family of Hodge structures over Sh(G,X). Axiom (SV1) then
implies that the family is a variation of Hodge structures, i.e., Griffiths transversality holds.

(c) Axiom (SV2) implies that the Hodge structures in HK(G,X) are polarizable.

(d) If we drop the assumption that the weight is defined over Q, then the above Proposition
fails because, although the vector spaces W are defined over Q, their weights are defined
only over a totally real field.

Notes: See (Deligne 1979) and (Milne 1990, II.3).

4. Shimura Varieties as Moduli Varieties for Motives.

4.1. Techniques for obtaining models of varieties over number fields. Suppose we
are given an algebraic variety Y over C. How do we construct a model of it over a number
field E? If we know the equations for Y over C, we can try to find equations for it with
coefficients in E, but even when this is possible, it may not be the most useful description
of the model.

Roughly speaking, if Y is the solution to a moduli problem over C (for example, if it
represents a functor), and the moduli problem (for example, the functor) is defined over the
subfield E of C, then descent theory shows that Y will have a model over E that, in fact,
will be a solution to the moduli problem over E.

4.2. Motivic Hodge structures. Consider a pair (Λ, J) where Λ is a free Z-module of
rank 2 and J is an automorphism of Λ ⊗ R such that J2 = −1. This may not seem to
be a very interesting object until you notice that it is an elliptic curve over C: J defines a
complex structure on Λ⊗R, and the quotient Λ⊗R/Λ has a unique structure as an elliptic
curve. More precisely, A 	→ (H1(A,Z), J) is an equivalence from the category of elliptic
curves over C to the category pairs (Λ, J). It makes sense to speak of an elliptic curve being
defined over a subfield of C, or of the conjugate of an elliptic curve by an automorphism of
C, whereas neither makes sense for an arbitrary rational Hodge structure. Now a pair (Λ, J)
is just an integral Hodge structure of rank 2 and type {(−1, 0), (0,−1)}—take (Λ ⊗ C)−1,0

and (Λ⊗ C)0,−1 to be the +i and −i eigenspaces respectively.
More generally, we have the following theorem.
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Theorem 4.1. The functor A 	→ H1(A,Q) defines an equivalence from the category of
abelian varieties over C up to isogeny to the category of polarizable rational Hodge struc-
tures of type {(−1, 0), (0,−1)}.

Thus, if the Hodge structures in HK(G,X) are of this type, then Sh(G,X) parametrizes
abelian varieties with Hodge cycle and level structure.

Definition 4.2. A Hodge structure is motivic if it is in the smallest subcategory that con-
tains the cohomology groups of all algebraic varieties and is closed under the formation of
tensor products, direct sums, duals, and direct summands. It is abelian-motivic if it is in
the smallest subcategory containing the cohomology groups of abelian varieties and is closed
under the same operations.

4.3. Shimura varieties whose Hodge structures are motivic. For which Shimura
varieties are the Hodge structures in HK(G,X) motivic? A necessary condition is that the
weight be defined over Q, and one hopes that it is also sufficient. Henceforth, we assume the
weight is rational.

The Mumford-Tate group of a rational Hodge structure (V, h) is the smallest algebraic
subgroup H of GL(V ) (in particular, rational over Q) such that HR contains the image of
h. It is connected (because S is connected) and it is reductive (because I’m assuming Hodge
structures to be polarizable). The Mumford-Tate group of an abelian variety A over C is
the Mumford-Tate group of the rational Hodge structure H1(A,Q).

Satake gave a list of the almost-simple groups over Q that arise as the derived group of
the Mumford-Tate group of an abelian variety, or, more generally as follows: it may happen
that an almost-simple group H has finite subgroups N1 and N2 such that N1 ∩ N2 = 1 and
both H/N1 and H/N2 arise as the derived groups of Mumford-Tate groups but not H itself;
such an H is also to be included on the list.

Groups not on Satake’s list: Among the groups arising in the theory of Shimura
varieties, the groups E6, E7, and those of mixed type Dn, n > 4, do not occur on Satake’s
list. Also for certain nonmixed types Dn, the simply connected group is not on Satake’s list.

A simple group over Q is of mixed type Dn if its simple factors over R correspond to
special nodes at opposite ends of the Dynkin diagram.

In order to show a group is on Satake’s list, one has to find a faithful family of represen-
tations (over Q) on symplectic spaces with certain properties. It turns out that the highest
weight of each representation will be a fundamental weight, and hence will correspond to a
node of Dynkin diagram. For groups of type D, it will be a node at the opposite end from
the special node. Since there is no automorphism of the Dynkin diagram switching nodes at
opposite ends of the diagram, there is no symplectic representation defined over Q that over
R gives the correct representations.

Theorem 4.3. The Hodge structures in HK(G,X) are abelian-motivic if and only if Gder

has a finite covering by a product of groups on Satake’s list.

The Shimura varieties satisfying the condition in the theorem are said to be of abelian
type. As was mentioned above, it is hoped that the Hodge structures in HK(G,X) will be
motivic whenever the weight is defined over Q, but this is not known for a single Shimura
variety not of abelian type.
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We can state things more canonically as follows: let GHdg be the pro-reductive group
attached to the Tannakian category of polarizable rational Hodge structures, and let GMot

be the quotient group attached to the Tannakian subcategory of motives (defined using
Hodge cycles). If the weight is defined over Q, each point x of X defines a homomorphism
ρx : GHdg → G: it is the unique homomorphism defined over Q such that ρx◦hHdg = hx. The
“hope” is that each ρx will factor through GMot; the theorem is that ρx will factor through
GMot, and even the quotient group attached to the category of abelian motives, provided
Gder has a finite covering by groups on Satake’s list.

We explain the theorem in more detail. Let A be an abelian variety, and let q be an
endomorphism of H∗(A,Q) =df ⊕rH

r(A,Q) as a rational Hodge structure such that q2 = q;
then

H∗(A,Q) = Ker(q)⊕ Im(q).

For an integer m, we define

H(A, q,m) = Im(q)⊗Q(m).

Then the theorem says that each Hodge structure in the familyHK(G,X) is a sum of Hodge
structures of the form H(A, q,m).

It makes sense to talk of an abelian variety being defined over a subfield of C, but what
about Hodge tensors (including q)? The Hodge conjecture would say that the Hodge tensors
are all the classes of algebraic cycles on powers of the abelian variety. The Hodge conjecture
is not known for abelian varieties, but a theorem of Deligne shows that Hodge cycles do
make good sense on abelian varieties over fields of characteristic zero (Deligne 1982). More
precisely, as we explain in the next subsection, one can define a good theory of motives over
such fields.

4.4. Abelian motives in characteristic zero. Let G be an algebraic group over a field k,
or, more generally, a projective limit of such groups. The category Repk(G) of representations
of G on finite-dimensional vector spaces over k is a k-linear abelian category with good
notions of tensor product and duals. Conversely, every category possessing these properties
and also an exact faithful functor ω to Veck preserving the structures can be realized as the
category of representations of a pro-algebraic group G. Such a category is called a neutral
Tannakian category.

For any field k of characteristic zero, it is possible to define a neutral Tannakian category
Mot(k), the category of abelian motives over k. Each triple (A, q,m) as above defines a
motive h(A, q,m) over k, and if we ignore the Artin motives, each motive is a direct sum of
such objects. Once an embedding of k into C has been chosen, one obtains a functor ωB from
Mot(k) to rational Hodge structures extending A 	→ H1(A⊗kC,Q). Also, once an algebraic
closure k̄ of k has been chosen, one obtains a functor ωf from Mot(k) to Af -modules with
a continuous action of Gal(k̄/k) extending

A 	→ VfA, VfA = TfA, TfA = lim←−NA(k̄)[N ].

When k = C, ωf (M) = ωB(M)⊗QAf , and the functor ωB defines an equivalence of Mot(C)
with the category of abelian-motivic Hodge structures.
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4.5. The canonical model. Before explaining how to realize the Shimura variety as a
moduli variety over a number field, we must define the number field that is the “natural”
field of definition for the Shimura variety.

The reflex field. Associated with each h ∈ X, there is a cocharacter

µh : Gm → GC, µh(z) = hC(z, 1),

of GC. The set of cocharacters {µh} lies in a single G(C)-conjugacy class, MX say. Let T
be a maximal torus in G (rational over Q). Since all maximal tori in GC are conjugate,
some element of MX will have image in TC. But T splits over Qal, and so MX has a
representative defined over Qal. If two cocharacters of GQal are G(C)-conjugate, then they
are G(Qal)-conjugate. Hence any two elements of MX that are defined over Qal lie in the
same G(Qal)-conjugacy class, MX(Q

al) say. We may define the reflex field E(G,X) to be
the field of definition of MX(Q

al), i.e., to be the fixed field of the subgroup of Gal(Qal/Q)
stabilizing MX(Q

al).

Definition 4.4. Let k be a field containing E(G,X). Consider triples (M, s, [η]) consisting
of an abelian motive M over k, a family s of Hodge cycles on M indexed by I , and a
K-level structure [η] on M , i.e., a K-orbit of isomorphisms V (Af ) → ωf (M). We define
MK(G,X)(k) to be the set of such triples satisfying the following conditions:

(a) there exists an isomorphism of Q-vector spaces β : ωB(M) → V mapping each si to
ti and sending h to hx, some x ∈ X;

(b) for one (hence every) η representing the level structure, η maps each ti to si; moreover,
[η] is stable under the action of Gal(kal/k).

An isomorphism from one such triple (M, s, [η]) to a second (M ′, s′, [η′]) is an isomorphism
γ :M → M ′ of motives mapping each si to s

′
i and such that [ωf (γ) ◦ η] = [η′].

Remark 4.5. The functor ωB depends on the choice of an embedding of k into C, but if we
choose this to be an E(G,X)-embedding, then the condition (a) and the set MK(G,X) do
not depend on the choice of the embedding.

The functor ωB defines a bijection

MK(G,X)(C)/≈→ HK(G,X)/≈ .
On combining this with the bijection in Proposition 3.2, we obtain a bijection

MK(G,X)(C)/≈→ ShK(G,X)(C).

This can be shown to define ShK(G,X)(C) as a moduli variety, and the moduli problem is de-
fined over E(G,X). Therefore, as was discussed briefly in Section 4.1, this defines ShK(G,X)
as a moduli variety over E(G,X). In particular, this implies the following theorem.

Theorem 4.6. There is a canonical model of ShK(G,X) over E(G,X) and a map

β(k) :MK(G,X)(k)→ ShK(G,X)(k)

for each field k ⊃ E(G,X); the maps β(k) are functorial in k and commute with the action
of G(Af ); each map β(k) defines a map

MK(G,X)(k)/≈→ ShK(G,X)(k),

which is bijective when k is algebraically closed, and is bijective for all fields if Z(Q) is
discrete in Z(Af ). For k = C, the map is that defined above.
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Example 4.7. (a) Let G = GL2 and X = H±. Here the reflex field is Q, and ShK(G,X) is
realized as a moduli variety over Q for elliptic curves with level structures. For example, for
N ≥ 3, ShK(N)(G,X) is defined over Q, and its points in any field (or ring) L containing Q

are the isomorphism classes of pairs (B, [η] : (Af )
2 ≈−→ Vf (B)) discussed in Section 3.2.

(b) Let G = GL2,F with X as above. Again the reflex field is Q, but the moduli problem is
coarse because Z(Q) = F× is not discrete in Z(Af) = (Af ⊗F )×. For any field k containing
Q, MK(G,X)(k) is the set of triples (A, s, [η]) where A is an abelian variety up to isogeny
over k such that End(A) ⊃ F and dimA = [F : Q]. The set s can be taken to be any set of
generators for F .

(c) Let ψ be a nondegenerate skew-symmetric form on a finite-dimensional vector space V
over Q, and let G = GSp(ψ), the group of symplectic similitudes (automorphisms of V fixing
ψ up to a rational number). Let X be the set of Hodge structures of type {(−1, 0), (0,−1)}
on V for which ±2πiψ is a polarization. Then G is the subgroup of GL(V )⊕GLQ(1) fixing
2πiψ. This is the subgroup of GL(V ⊕ Q(1)) commuting with (i.e., fixing) the projections
onto the factors and fixing ψ. Again the reflex field is Q, and for any field containing Q,
MK(G,X)(k) is the set of triples (A, λ, [η]) where A is an abelian variety up to isogeny of
dimension 1

2
dimV and λ is a polarization of A.

(d) Let G = PGL2, and let X be the obvious conjugacy class of homomorphisms S→ GR.
Then G has a natural representation on a three-dimensional vector space, and the motives
are of the form Sym2(A), for A an elliptic curve.

To proceed further, we need to assume that there is a good theory of abelian motives in
characteristic p and a good reduction functor. Thus the next two sections are heuristic: we
make plausible assumptions in order to discover what the description of the points over the
finite fields should be.

Notes: See (Deligne and Milne 1982) for the notion of a Tannakian category and of a
motive. Theorem 4.3 is proved in (Milne 1994b).

5. Integral Models

5.1. A criterion for good reduction. When should ShK(G,X) have good reduction at
a prime v of E = E(G,X) lying over p? If p|N then it is known that the moduli variety
ShK(N)(GL2, H

±) of elliptic curves with level N structure does not have good reduction at
p (see, for example, Deligne and Rapoport 1973). Thus we should assume that K contains
a maximal compact subgroup Kp at p; in fact, we may as well assume K = Kp ·Kp where
Kp is a compact open subgroup of G(Ap

f ), A
p
f = (

∏
��=p Z�)⊗Z Q. However, even this is not

sufficient to ensure that ShK(G,X) has good reduction at p: if Sh(G,X) is the Shimura
variety associated with a quaternion algebra over Q, then ShKp·Kp(G,X), Kp maximal, will
have good reduction at p only if p does not divide the discriminant of B. That the following
should be true was suggested in (Langlands, 1976, p411).

Conjecture 5.1. The variety ShK(G,X), K = Kp ·Kp has good reduction at v|p if Kp is a
hyperspecial group of G(Qp).

The algebraic group GQp will have a hyperspecial subgroup if and only if it has a smooth
model Gp over Zp whose reduction modulo p is again a connected reductive group; the
hyperspecial subgroup is then Gp(Zp). In order for G to have a hyperspecial subgroup, it
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is obviously necessary that G be quasi-split over Qp and split over an unramified extension,
and the Bruhat-Tits theory of buildings shows that this condition is also sufficient.

5.2. The points on Shp(G,X). From now on we assume that K = Kp · Kp with Kp

hyperspecial, and we choose a lattice V (Zp) in V (Qp) whose stabilizer is Gp; this means that
for any Zp-algebra R, Gp(R) is the stabilizer of V (R) in V (R)⊗Qp.

Since we shall need to know the points on the Shimura variety with coordinates in nonal-
gebraically closed fields, we shall assume that Z(Q) is discrete in Z(Af). Then we might as
well pass to the limit over smaller and smaller groups Kp, and set

Shp(G,X) = lim←−KpShKp ·Kp(G,X).

An isomorphism η : V (Af) → ωf (M) can be decomposed into a product ηp × ηp where ηp

is an isomorphism V (Ap
f )→ ωpf (M) and ηp is an isomorphism V (Qp) → ωp(M). Here A

p
f is

the ring of finite adèles away from p, i.e., the restricted product of the Q� for < �= p,∞, and
ωpf (M) and ωp(M) are suitable étale realizations of M .

Definition 5.2. Let k be a field containing E(G,X). Consider quadruples (M, s, ηp,Λp)
consisting of an abelian motive M over k, a family s of Hodge cycles indexed by I , an
isomorphism V (Ap

f ) → ωpf (M), and a lattice Λp in ωp(M). We define Mp(G,X)(k) to be
the set of such triples satisfying the following conditions:

(a) there exists an isomorphism of Q-vector spaces β : ωB(M) → V mapping each si to
ti and sending h to hx, some x ∈ X;

(b) the isomorphism ηp maps each ti to si and is invariant under the action of Gal(k̄/k);
(c) Λp is a Zp-lattice in ωp(M), stable under the action of Gal(k̄/k), for which there exists

an isomorphism
V (Qp)→ ωp(M)

mapping each ti onto si and such that V (Zp) maps onto Λp.

There is an obvious notion of an isomorphism from one such quadruple to a second.

The map (M, s, [η]) 	→ (M, s, ηp, ηp(V (Zp)) defines a bijection

lim←−KpMKpKp(G,X)(k) →Mp(G,X)(k).

Hence, for any field k containing E(G,X), there is a canonical bijection

Mp(G,X)(k)/≈ → Shp(k).

5.3. The canonical integral model. Let v be a prime of E lying over p. Then v is
unramified over p, and we let B be the completion of the maximal unramified extension of
Ev. Then B is the field of fractions of the ring of Witt vectors over an algebraic closure F of
the residue field at v. Let Ov be the ring of integers in Ev. We have the diagram:

B −−− W −−− F

| | |
Ev −−− Ov −−− k(v).

We want to understand the points of Shp(G,X) with coordinates in F, but first we need a
model of Shp(G,X) over Ov, and we need to have a description of the points on the model.

Consider SN =ShK(N)(GL2, H
±). Its points over B are isomorphism classes of pairs

(A, α : (Z/NZ)2
≈−→ A[N ])
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where A is an elliptic curve over B and α is a level N -structure on A. If p does not divide
N , then SN has good reduction, and, in fact extends canonically to a smooth curve over W ,
whose points are the pairs (A, α) over B such that A has good reduction. Thus SN (W ) will
be a proper subset of SN (B). But recall that the Néron-Ogg-Shafarevich criterion for good
reduction says that any elliptic curve A over B having all its N -torsion points rational over
B has good reduction. Therefore, when we pass to the limit,

lim←− p-NSN(B) = lim←− p-NSN(W ).

This example suggests that Shp(G,X) should have a model over Ov with the property that

Shp(G,X)(W ) = Shp(G,X)(B).

In fact, an extension of this property can be used to characterize an canonical integral model
over W , namely, it should be a smooth model S of Shp(G,X) over Ov such that

S(Y ) = Shp(G,X)(Y ⊗Ov Ev)

for every regular Ov-scheme Y such that Y ⊗Ov Ev is dense in Y . A theorem of Chai and
Faltings allows one to verify that Siegel modular variety satisfies this condition, at least for
p �= 2.

5.4. The points with coordinates in F. In the following, we assume that a smooth
integral model exists. We expect a commutative diagram:

Mp(W )/≈ 1:1−→ Shp(W ) = Shp(B)
↓ ↓

Mp(F)/≈ 1:1−→ Shp(F)

(5.1)

The vertical arrow at right is onto because Shp(W ) is smooth. Unfortunately, the description
of Mp given in Definition 5.2 does not make sense in characteristic p, because p-adic étale
cohomology is pathological in characteristic p. We need to change the description so that it
is in terms of the de Rham (or crystalline) cohomology.

Let Z be a smooth projective variety over B with good reduction. It has two p-adic
cohomologies:

• the p-adic étale cohomology groups; these are finite-dimensional Qp-vector spaces
with an action of Gal(Bal/B);

• the de Rham cohomology groups; these are finite-dimensional B-vector spaces with
a canonical filtration. Since we are assuming Z reduces to a smooth variety Z0 over
F, the de Rham cohomology of Z will be equal to the crystalline cohomology of Z0,
and hence acquires a p-linear Frobenius operator φ.

The same should be true for our abelian motives. Grothendieck conjectured many years
ago that there should be a canonical way of going from one cohomology theory to the other.
Thanks to the work of Fontaine and others, this is now well understood in the above situation,
but is less well understood on the level of lattices.

In attempting to translate the Definition 5.2 from étale cohomology to de Rham cohomol-
ogy, I arrived at the following definition.

Definition 5.3. Consider quadruples (M, s, ηp,Λcrys) consisting of an abelian motiveM over
B, a family s of algebraic classes indexed by I , an isomorphism V (Ap

f)→ ωpf (M) and a lattice
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Λcrys in ωdR(M). We defineM′
p(G,X)(B) to be the set of such triples satisfying the following

conditions:

(a) there exists an isomorphism of Q-vector spaces β : ωB(M) → V mapping each si to
ti and sending h to hx, some x ∈ X;

(b) the isomorphism ηp maps each ti to si and is invariant under the action of Gal(k̄/k);
(c) Λcrys is a W -lattice in ωdR(M) that is strongly divisible, i.e., such that∑

p−iφ(F iliΛ) = Λ, and such that there exists an isomorphism

ηcrys : V (B)→ ωdRM

sending each ti to si and mapping F ilt(µ−1
0 ) to the Hodge filtration.

Here µ0 is a cocharacter of GB representingMX and well-adapted for Kp. More precisely,
µ0 ∈ X∗(T ) where T is a maximal B-split torus in GB containing the maximal Qp-split torus
corresponding to appartment containing the hyperspecial point fixed by Kp.

I expect that Fontaine’s theory provides a bijection

Mp(B)↔M′
p(B),

at least if p is not too small relative to the lengths of the filtrations. Furthermore, I expect
that the diagram (5.1) exists withM′

p(F) defined as follows.

Definition 5.4. Consider quadruples (M, s, ηp,Λcrys) consisting of an abelian motiveM over
F, a family s of algebraic cycles indexed by I , an isomorphism V (Ap

f )→ ωpf (M), and a lattice
Λcrys in ωcrys(M). We define M′

p(G,X)(F) to be the set of such quadruples that lift to a
quadruple in M′(G,X)(B).

In particular, we should have a bijection

M′
p(F)/≈→ Shp(F)

commuting with the actions of G(Ap
f ) and the Frobenius automorphisms. Call a pair N =

(M, s) admissible if there exists an ηp and a Λcrys such that (M, s, ηp,Λcrys) ∈ M′
p(F).

Fix an admissible N and define S(N) to be the set of isomorphism classes of quadruples
(M, s, ηp,Λcrys) in M′

p(F) with (M, s) ≈ N . Then

Shp(F) =
∐
N

S(N)

where the disjoint union is over a set of representatives for the isomorphism classes admissible
N ’s. Moreover

S(N) = I(N)\Xp(N)×Xp(N)

where I(N) is the set of automorphisms of N and Xp(N) and Xp(N) are the sets of ηp and
Λcrys such that (N, ηp,Λcrys) ∈ M′

p(F).

Note that Xp(N) is a principal homogeneous space for G(Ap
f )—therefore the choice of

an element of Xp(N) determines a bijection G(Ap
f ) → Xp(N). Similarly, the choice of an

isomorphism β : ωcrys(M)→ V (B) sending each si to ti determines an explicit description of
Xp(N). There will a b ∈ G(B) such that action of the Frobenius φ on ωcrys(M) corresponds to
x 	→ b·σx on V (B). Here σ is the map on V (B) = B⊗QpV by the Frobenius automorphism of
B. Under β, Λcrys will correspond to gV (W ) for some g ∈ G(B) and the map Λcrys 	→ gG(W )
determines a bijection

Xp(N)→ {g ·G(W ) ∈ G(B)/G(W ) | g−1 · b · σg ∈ G(W ) · µ0(p
−1) ·G(W )}.
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In order for this description of Shp(F) to be useful, we need to understand the admissible
pairs N = (M, s). Fortunately, this is possible (conjecturally).

Notes: See (Milne 1992, §2) and (Milne 1994b, §4).

6. Abelian Motives over F

We need a down-to-earth description of the category of abelian motives over a F. It should
be a Tannakian category over Q but with no exact tensor functor to the category of Q-vector
spaces. According to the Tannakian philosophy, such a category should be equivalent to the
category of representations of a groupoid.

A groupoid in sets is a small category in which every morphism has an inverse. Thus it
consists of a set S of objects, a set G of morphisms, maps t, s : G ⇒ S sending each object
to its target and source, and a law of composition

G ×
s, S, t

G → G where G ×
s, S, t

G = {(h, g) ∈ G×G | s(h) = t(g)}.

For example, if S has a single element, then G is just a group. For each a ∈ S,

Ga =df Aut(a) = {g ∈ G | s(g) = a = t(g)}

is a group. If G is transitive, i.e., Hom(a, b) is always nonempty, then these groups are all
isomorphic, but not (quite) canonically so unless they are commutative.

Now consider a morphism of schemes S → S0, for example, SpecQal → SpecQ. An S/S0-
groupoid is a scheme G over S0 together with two S0-morphisms t, s : G ⇒ S and a law of
composition

G ×
s, S, t

G → G

such that, for all S0-schemes T , (S(T ),G(T ), (t, s), ◦) is a groupoid in sets. Thus a groupoid
in schemes generalizes the notion of a group scheme, just as a groupoid in sets generalizes
the notion of group. We shall always assume that our groupoids are transitive, i.e., that the
map (t, s) : G → S ×S0 S is surjective and flat. The kernel G = G∆ =df (t, s)−1(∆) of G is a
group scheme over S, or over S0 when G is commutative.

A group scheme G over S0 defines a “trivial” S/S0-groupoid, GG = G×S0 (S ×S0 S).

A vector space V over Qal defines a Qal/Q-groupoid GV . There is an obvious notion of a
morphism of two groupoids, and a representation of a groupoid is a morphism G → GV .

In general, the Qal/Q-groupoids with a given kernel G are classified by a nonabelian
cohomology group H2(Q, G); when the kernel is commutative, then this becomes a more
usual abelian cohomology group.

Let T be a torus over a field Q. If T is split, then the irreducible representations are
classified by the charactersX∗(T ): the representation corresponding to χ is one-dimensional,
and T acts via χ.

More generally, T will split over Qal, and the irreducible representations are classified
by the orbits of Gal(Qal/Q) in X∗(T ). Given χ, let E(χ) be the subfield of Qal fixed by
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the stabilizer of χ. There is a homomorphism T → ResE(χ)/Q Gm corresponding to the
homomorphism of character groups

ZHom(E(χ),Qal) → X∗(T ),
∑
nσσ 	→

∑
nσσχ.

The representation corresponding to the orbit of χ is the composite of this homomorphism
with the obvious representation of ResE(χ)/Q Gm on E(χ) regarded as a Q-vector space. The
endomorphism algebra of the representation is E(χ).

For a groupoid T with kernel a torus T , the irreducible representations are again
parametrized by the orbits of Gal(Qal/Q) in X∗(T ), but now the representation has as en-
domorphism algebra a division algebra with centre E(χ); moreover, the class of the division
algebra in the Brauer group of E(χ) is the image of the class of T under the homomorphism

H2(k, T )→ H2(k,ResE(χ)/k Gm) = H
2(E(χ),Gm) = Br(E(χ)).

What should the groupoid attached to the category of abelian motives over F be? Each
abelian variety defines an abelian motive, and hence a representation of the groupoid. Thus,
we seek a groupoid that contains among its represenations, one representation for each
simple abelian variety over F, and whose category of representations is generated by such
representations.

Fortunately, Tate and Honda have classified the isogeny classes of simple abelian varieties
over a finite field. Let A be a simple abelian variety over Fq. Weil showed that Frobenius

endomorphism π of A is an algebraic integer with the property that |ρπ| = q
1
2 for every

ρ : Q[π] ↪→ C. Call such a π a Weil q-integer. To each simple abelian variety over Fq we can
attach the set of conjugates of π in Qal (algebraic closure of Q in C), and the theorem of
Honda and Tate says that the map A 	→ {π} gives a bijection from the set of isogeny classes
of abelian varieties and to the set of Galois orbits of Weil q-integers. Moreover, EndA⊗Q

is a central division algebra over Q[π] whose invariant iv at a prime v of Q[π] is determined
by the rule,

||π||v = qiv

where || · ||v denotes normalized valuation.

Let W (q) be the subgroup of Qal× generated by the Weil q-integers—its elements will be
called There is a map π 	→ πN :W (q)→ W (qN), and we let

W (p∞) = lim−→NW (pN ).

An element π of W (p∞) is represented by a Weil pn-number πn for some n, and πn and
πm represent the same element of W (p∞) if and only if πmN

n = πnNm for some N . Define
Q{π} = Q[πn] where πn is chosen so that [Q[πn] : Q] is as small as possible. With the same
πn, let δ(π) be the element of Br(Q{π}) whose invariant iv satisfies

||πn||v = (pn)iv .

The theorem of Honda and Tate then gives a bijection from the set of isogeny classes of
abelian varieties over F and to the set of Galois orbits in W (p∞) represented by a Weil pn-
integer for some n; moreover the endomorphism algebra of the abelian variety corresponding
to π is a central division algebra over Q{π} with invariant δ(π).

It is now evident that the groupoid P we seek should have kernel a pro-torus P with
X∗(P ) = W (p∞); moreover, the class δ of P in H2(Q, P ) should map to δ(π) under the map
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H2(Q, P ) → Br(Q{π}) defined by π. Happily2, such a groupoid does exist, and, in fact, is
uniquely determined up to a (nonunique) isomorphism by these conditions.

Conjecturally, the category of abelian motives over F is equivalent to the category of
representations φ of P, and the category of pairs N = (M, s), motives with tensors, should
be equivalent to the category of morphisms φ : P → GG. Now, it is possible to attach to
each such morphism φ a set

S(φ) = I(φ)\Xp(φ)×Xp(φ),

and the conjecture of Langlands and Rapoport takes the form

Shp(F) =
∐
φ

S(φ)

where3 the disjoint union is over the set of isomorphism classes of “admissible” morphisms
φ : P→ GG. The set I(φ) is the automorphism group of φ, Xp(φ) is a principal homogenous
space for G(Ap

f ), and Xp(φ) has a description similar to that of Xp(N).

In order to have a completely down-to-earth conjecture, it remains to characterize the
“admissible” homomorphisms, namely, those that conjecturally correspond to the admissible
pairs N = (M, s).

A point x ∈ X is special if the image of hx is contained in TR for some rational torus
T ⊂ G. Langlands and Rapoport (1987) attach to such an x a special homomorphism
φx : P → GG. Every special homomorphism should be admissible. On the other hand,
it is possible to give a necessary condition that φ be admissible, namely, a local condition
for each prime < (including p and ∞) and the condition that P → GG → GGab be special.
Happily, the two conditions, one sufficient and the other necessary, are equivalent when Gder

is simply connected. Thus, in this case, one can take either condition as the definition. When
Gder is not connected, it is known that one must define a morphism to be admissible if it is
isomorphic to a special homomorphism.

Notes: This section motivates the conjecture (Langlands and Rapoport 1987, p169). See
also (Milne 1992, §3,4) and (Milne 1994a).

7. The Formula for the Number of Points in a Finite Field

The Shimura variety Shp has no points in a finite field, because the objects it parametrizes
have infinite level structure—for example, there is no elliptic curve defined over a finite field
and having its N -torsion points rational over the field for all N prime to p. To obtain a
meaningful result, we must put the Kp back in, and look at

ShK(G,X) = Shp(G,X)/Kp, K = Kp ·Kp.

Assume

• the weight is defined over Q;
• Z(Q) is discrete in Z(Af), Z = Z(G);
• Gder is simply connected.

2Otherwise the Tate conjecture would fail for abelian varieties over finite fields!
3More precisely, the conjecture says that there exists a one-to-one correspondence between the two sides,

and the correspondence can be chosen to respect the actions of G(Ap
f) and the Frobenius automorphism.
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Then it is possible to derive from the conjecture of Langlands and Rapoport a formula of
the following shape:

Card ShK(Fq) =
∑

(γ0;γ,δ)

c(γ0) · I(γ0; γ, δ).

The sum is over a set of representatives for triples (γ0; γ, δ) satisfying a certain cohomological
condition,

c(γ0) = Card(Ker(Ker1(Q, I0)→ H1(Q, G)))

measures the failure of a Hasse principle, and

I(γ0; γ, δ) = vol(I(Q)\I(Af)) ·Oγ(f
p) · TOδ(φr)

is the product of a volume with an orbital integral and a twisted orbital integral. The triples
(γ0; γ, δ) are of the following form:

• γ0 is a semisimple element of G(Q) that is elliptic in G(R);
• γ = (γ(<))��=p,∞ is an element of G(Ap

f ) such that, for all <, γ(<) becomes conjugate

to γ0 in G(Qal
� );

• δ is an element of G(B(Fq)) such that

N δ =df δ · σδ · . . . · σn−1δ, n = [Fq : Fp]

becomes conjugate to γ0 in G(Qal
p ).

Moreover Iγ0 is the centralizer of γ0 in G; I is a certain inner form of I0 defined by local
conditions involving the γ(<) and δ.

Variants of the formula occur in the writings of Langlands, but it is stated most definitively
in (Kottwitz 1990, §3). Historically, the form of the formula was suggested, not by studying
the points on the Shimura variety, but by examining what one needs to prove that the zeta
function takes the form conjectured by Langlands. The passage from the formula to the zeta
function is now a problem in representation theory.

Notes: The derivation of the formula for the cardinality of ShK(Fq) from the conjecture
of Langlands and Rapoport is carried out in (Milne 1992, §4,5).
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