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Introduction

In this paper we provide some complements to the paper [Lichtenbaum
(1984)]. which introduced the complexes Z(r) for the étale topology. and to
[Milne (1986a)], which investigated the behaviour near integers of the zeta
functions of projective varieties over finite fields.

Let X be a regular Noetherian scheme, and let r be a nonnegative integer.
In the paper just cited, Lichtenbaum postulates the existence of a complex
Z(r) of étale sheaves on X satisfying certain axioms. These axioms are
reviewed in §1 below. The étale cohomology groups H' (X, Z(r)) are called
the motivic cohomology groups of X. We note that Z(0) = Z and Z(1) =
G, [—1], that a compelling candidate for Z(2) is offered in [Lichtenbaum
(1987a)]. and that various definitions of Z(r) for r > 2 are suggested in
[Bloch (1986)] and [Beilinson, MacPherson, and Schechtman (1987)].

One of Lichtenbaum’s axioms for Z(r) relates its cohomology to the /-adic
étale cohomology groups for / a prime different from the characteristic. In

' This wotk has been partially supported by the National Science Foundation; it was begun
while the author was at MSRI.
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3

§2 we consider an additional axiom, a “p-Kummer sequence”, originally
introduced in [Milne (1986a)], that relates the motivic cohomology groups
to the p-adic cohomology groups, where p is the characteristic of X. We
check that the axiom is consistent with the previous axioms and other
known results. The complexes Z(0) and Z(1) obviously satisfy the axiom,
and a recent theorem of Merkur’ev and Suslin allows it to be verified
for Z(2).

Now assume that X is smooth of finite type over the ring of integers in a
number field or an s-local field, s = 0. One of the axioms for the complexes
Z(r) asserts that there are natural pairings

Z(r) @ Z(r') > Z(r + 1),

and Lichtenbaum conjectures that these lead to nondegenerate pairings on
the cohomology groups. In §3 we prove two results in the direction of this
conjecture.

Next assume that X is a smooth projective variety over a finite field .
Theorems of Grothendieck and Deligne show that the zeta function of X
takes the form

P(X,q7") - Py (X, q7")
Po(X, g7 )Py (X. q7") - - - Py(X, q7")

{(X.s) =

where P.(X, 1) € Z[f] and has reciprocal roots of absolute value ¢”. In
particular, the order g, of the pole of {(X, s) at s = r is the multiplicity of
q" as a reciprocal root of P, (X, t). Let ¢/ , be the dimension of the subspace
of H¥ (X, Q,(r)) generated by algebraic cycles on X, and let ¢, = max ¢/ ,.
It is known that ¢/ < g¢,, and so lim,_,, {(X, s)(1 — ¢*~")% is either a non-
zero rational number or infinity; we denote it by ¢,(r). Define

1(X. L)) =

[T [H X, Z)) " TH (X, Z0)ors IH (X Z())eorors )R

P2, 2r+2

when each of the terms on the right is finite. Here [+] denotes the order of
x, and R is a certain regulator term (see §4, §5). Define

12X, 0,1 = (X, 0p) — (r — Dy(X,Q)) + -+ £+ x(X. Q).
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CoNJECTURE 0.1.2 If ¢, (r) # 0. then y(X. Z(r)) is defined, and

CX(r) = _‘__X(X’ Z(r)) . qZ(X‘('.r).

The condition ¢,(r) # oo is implied by Tate’s conjecture on the existence
of algebraic cycles (see §4). The conjecture was proved for r = 0 and 1 in
[Milne (1986a)]. In §4 we prove that a slightly weakened form of the
conjecture holds whenever a complex Z(r) exists satisfying certain of the
axioms. Note that, for r > dim X, {(X, s) does not have a poleats = r,and
so the conjecture simply states that

AXZ(1)) = (X, r)g™*en,

In §5 we derive various alternative expressions for the regulator term R.

Now suppose that X is of even dimension d = 2r. and let CH' (X)) be the
Chow group of algebraic cycles of codimension r on X modulo rational
equivalence. One of the axioms for Z(r) asserts that there is a cycle class map
CH'(X) » H¥(X, Z(r)). In §6 we show that. whenever there exists a
complex Z(r) satisfying certain conditions and the cycle map
CH'(X) - H¥ (X, Z(r)) is surjective, then Tate’s conjecture implies that

[Br(X)] det (D, - D,)
g OA (X))o I

Py(X.qg7") ~ + (I — g~ ") ass—r.

Here Br'(X) = H**'(X. Z(r)), A"(X) is the image of CH’ (X ) in H¥ (X. Z(r)),
{D,} is a basis for A"(X) modulo torsion, and «,(X) is a certain integer
defined in §6. In the case of a surface, this becomes the main theorem of
[Milne (1975)] (then Z(1) = G,,[— 1], Br(X) is the Brauer group, the cycle
map is the isomorphism CH'(X) — Pic (X),and A'(X) is the Néron-Severi
group of X).

Two of the axioms for Z(r) relate it to the K-sheaves. In §7 we exploit this
relation and some results of [Quillen (1972)] and [Coombes (1987a)] to
obtain further evidence for Conjecture 0.1.

Finally, I note that (happily) most of the hard work required for proving
these results has already been carried out in [Milne (1986a)]. and that previous
results along these lines have been obtained by [Bayer and Neukirch (1978)],

?For X a surface and r = I, this is essentially the conjecture of Artin and Tate [Tate
(1965/66), Conjecture CJ; for a general X and r = 1, it was stated in [Lichtenbaum (1983)];
for a general X and r, the term x(X, Z(r)) was suggested by Lichtenbaum and the term ¢«*-¢-"
by the author.
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[Zarhin (1982)], [Schneider (1982)], and [Lichtenbaum (1983)]. Also I would
like to thank S. Lichtenbaum for many conversations on these questions,
and in particular for alerting me to [Merkur’ev and Suslin (1987)].

Notations and conventions

For M an abelian group, we use the following notations: M, and M"" are
the kernel and cokernel respectively of m: M — M: M is the profinite
completion of M, M = lim M (limit over all integers m); M, is the
torsion subgroup of M, M, = UM,,; My, is the maximum divisible sub-
group of M; and M’ = M/M,,. Because M, is a direct summand of M,
M, K (M")ors = (M,,,,)’- When M is torsion, M’ is also written M,
Finally, TM = lim M,, = Hom (Q/Z, M).
For a map a: M — N of abelian groups, we write

olors *

z(e) = [Ker (2)]/[Coker ()]
when both orders are finite. We define det () as in [Milne (1986a)]; thus

() = [M J/[Nigis] det (),

ors

when all the terms are finite.

When X is a variety over a finite field k, k denotes the algebraic closure
of kand X = X ®, k.

Unless indicated otherwise, all cohomology groups are relative to the étale
topology.

§1. Statement of the axioms

Let X be a regular Noetherian scheme, and let #(X,,) be the category of étale
sheaves on X. In [Lichtenbaum (1984), (1987b)] it is conjectured that there
exist objects Z(r) = Z(r), in the derived category of &(X, ). commuting
with restriction, and satisfying the following axioms.

(A0) Z(0) = Z; Z(1) = G, [—1]; Z(2) is represented by the complex
studied in [Lichtenbaum (1987a)].

(A1) For r # 0, Z(r) is acyclic outside [1, r]; i.e., H'(Z(r)) = 0 unless
Il <i<rorr=0.

(A2),, (Kummer m-sequence). For any integer m that is invertible on X,
there is an exact triangle

Z(r) = Z(r) — pg" — Z[1).
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Note that (A2), implies that there is an exact sequence of cohomology
groups

- — H'(X. Z(r)) — H'(X. Z(r) — H'(X, pg")
— H*Y' (X, Z(r)) — - - - (1.0.1)
(A3) There are natural pairings
Z(r) @ Z(s) —» Z(r + s).
These pairings should be compatible through (A2),, with the natural pairing
BT X R = purts

(A4) There exist natural cycle maps CH'(X) — H¥ (X, Z(r)). These cycle
maps should be compatible through the maps in (1.0.1) with the cycle maps
for the étale topology; they should also be compatible with the product
structure in (A3).

(A5) (Hilbert Theorem 90). Let f: X, — X7, be the morphism of sites
defined by the indentity map. Then R"*' f, Z(r) = 0. In particular. for a field
F, H'*'(F, Z(r)) = 0.

The next two axioms relate the complexes Z(r) to the K-sheaves. Let 4"
and J#, respectively be the sheaves on X, associated with the presheaves.

U KMT(U, 0y) (Milnor K-group)
U— KTI'(U, 0y) (Quillen K-group).

The stalk of 7] at a geometric point ¥ of X is K., and we define F..%, to
be the subsheaf of #; with stalks F} K, O; (ith filtered part for the y-filtration,
see [Soulé (1985)]). Finally, we set gri.f, = F.X,[F*'A,.

(B1) The sheaf R’ f,Z(r) = #;". In particular. for a field F, H'(F. Z(r)) =
KMF.

(B2) The sheaf H'(Z(r)) = gr A, _,; up to torsion involving primes <r.

Note that Axiom B2 implies that there is a spectral sequence

H (X, griAs,_;) = H' (X, Z(r))

(up to torsion involving primes <r).
For a complex 4", we let 1., 4" denote the truncated complex

o> A7 > Ker(d) >0 -
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Thus H(t.,A) = H'(A") for i < r, and H' (1., A") = 0 for i > r. The
functor 7, passes to the derived category.

The next two axioms are more tentative than the above.

(C1) (Gersten sequence). There is an exact sequence (in the derived
category of sheaves on X, ):

0> Z(r) > @ 1, R L1~ D (1, | RLZ(r — 1) )[=1] >

AN=D ()} xe X

Here X, denotes the set of points x of codimension ¢, and 1 denotes the
inclusion map x < X.

(C2) (Purity). Let i: Z = X be a closed immersion of a regular scheme
Z into a regular scheme, and suppose that Z is of codimension ¢ in X at each
point of Z; then

T, RUZ(r) = Z(r — c)[—2c].

REMARK 1.1. (a) There seems to be no standard definition of exactness in a
triangulated category. For the purposes of this paper, we adopt the follow-
ing definition: a sequence

0»>A4-B->C->0

is exact if there is an exact triangle
A—-> B - C - A[l],

and a sequence
0»>A4->B->C—- -

is exact if there exist exact sequences
0->A4A->B->K -0

0K ->C-K -0

(b) The sequence in Axiom C1 gives rise to a map

®Z = H° <X, ) 1*Z> = H' (X, &) I*Z[—r]> - H¥(X, Z(r))

Ne X, NE X, XEX,

factoring through CH'(X); it should be the cycle map in (A4).
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(c) Axiom C1 implies that H'(X, Z(r)) is torsion for i > 2r. This can be
proved by a standard argument using that all Galois cohomology groups
except the zeroth are torsion. Note however that H* (X, Z(r)) will not in
general be torsion; for example, H°(X. Z(0)) = Z and H*(X.Z(1)) =
Pic (X).

(d) When ¢ = 0, Axiom C2 asserts that t_,Z(r) = Z(r), which is part of
Axiom Al. When ¢ > 0, Axiom C2 can be restated in terms of the open
immersion j: U = X, U = X — Z. As for any complex of sheaves on X,
there is an exact triangle (cf. [Milne (1980), p. 242}])

i RIZ(r)y = Z(r)y = Ri,Z(r)y — i, RI'Z(r)x[1]
or
Z(r)y » Ri Z(r)y — i RiZ(r)x[1] » Z(r),[1].
As H™*°(Z(r)) = 0, this triangle remains exact after truncation:
Z(r)y = Terpon RGNy = (e d RUZ(N)[1] > Z(r)y[1].
Therefore, Axiom C2 implies that there is an exact triangle
Z(r)y = T RNy = LL(r — )1 — 2c] = Z(r)x[1] (1.L.1)
Conversely, the existence of such an exact triangle implies Axiom C2.

ExaMpLES 1.2. (a) For r = 0. Axiom CI1 asserts the existence of an iso-
morphism

2= D17,

€ Xy
For r = 1, it asserts the existence of an exact sequence

0 - Gm aad @ I*GHI.K(.\‘) - ®X I*Zh(.\) - 0
XeX;

Ye Xy

Both of these are known (see [Milne (1980), 11.3.7, 11.3.9)).
(b) For r = 0, Axiom C2 asserts that R°/'Z = 0for0 < s < c,c > 0.
For r = 1, it asserts that

{i’G,,,zO. RVG = Z, ifc=1

Ri'G, =0 fors < c, ife > 1.
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(¢) Forr = 1, ¢ = 1, the variant (1.1.1) of Axiom C2 asserts that there
is an exact sequence

0-6G, -6,y i,Z -0

The next proposition summarizes what is known about the axioms when
r< 2.

PrOPOSITION 1.3. (a) The objects Z(0) and Z(1) satisfy the Axioms A, B, and
C1; when X and Z are smooth of finite type over a field of characteristicp = 0,
they satisfy Axiom C2 up to p-torsion.

(b) The object Z(2) satisfies Axioms Al and A3; when X is of finite type over
afield, it satisfies Axiom A2 up to 2-torsion, Axiom AS up to 2- and p-torsion,
and Axiom B2 up to 2-torsion;, when X is the spectrum of a field, it satisfies
Axiom Bl up to p-torsion.

Proof. (a) Except for (C2), the axioms are either obvious or follow from
standard results in étale cohomology (for (C1), this has already been noted
in (1.2a) above). The next lemma is a little stronger than (C2).

LEMMA 1.4. Let i: Z 5 X be as in the statement of Axiom C2, but with X
and Z smooth over a field.

(a) The complex t_, RI'Z = 0 (up to p-torsion); equivalently, 7. =
Tz 1 RiZ (up to p-torsion).

(b) When ¢ = 1, there is a canonical isomorphism Ri'G,, = Z[— 1] (up to
p-torsion); for all ¢ > 1, 1_,._,RI'G,, = 0 (up to p-torsion).

Proof. We shall need to use the purity theorem in étale cohomology.
Recall [Milne (1980), VI.5, VI1.6] that this states that, under the hypotheses
of the lemma, Ri'u®r is canonically isomorphic to u® —<[— 2¢] provided m is
prime to the characteristic of k; equivalently,

JeH® S p®r, R*Tju@r i@, Rjug =0 fors#02c—1

We now prove (a). It is obvious that j, Z = Z, and that R'j, Z is torsion
for s > 0 (cf. 1.1c above). The statement now follows from the exact
sequences

RN R"j*z LN R\»j*Z N R"j*(Z/mZ) _—

m prime to p, and the purity theorem for Z/mZ.
We now prove (b). First assume ¢ = 1. It is obvious that there is an exact
sequence

0 G, = j,Gpy—Zs i Z — 0.
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On comparing this with

0-iiG,-G,~jG,,-> i RiG, >0

m

we see that i'G,, = 0 and R'/'G,, = Z.

m

Fors > I, R"'j,G, > R'i'G,, and so we must show that R'j,G,, = 0

(up to p-torsion) for s > 0. But R'j,G,, is the sheaf associated with the
presheaf

Vi Pic (U xy V)

on X,, and the open immersion U x, V' < V induces a surjection
Pic (V) — Pic (U x, V) (this is obvious from the point of view of Weil
divisors). Any ¢ € Pic (V) becomes trivial on an open affine covering (V;) of
V, and so its image in Pic (U x, V) becomes trivial on the covering
(U x4 V;) of U x, V. Hence R'j,G,, = 0. For s > 1, R’j,G,, is torsion
(because H'(U x, V, G,,) is torsion; see (1.1c)), and so the exact sequence

T R'\j*llm - R'vj*Gm - RSJ*Gm -

and the purity theorem for y, show that R'j, G,, is zero up to p-torsion, all
s> 1.

Finally assume that ¢ > 1. Let z e Z. In some open neighbourhood
X’ of z in X, there will exist sections f, . . . , f. € (X', 0y) that generate
the ideal of Z n X’ and which form part of a regular system of parameters
at each point of X’. In particular, after replacing X by X', we can assume
that i/ factors as i = i, o i, where i, and i, satisfy the conditions of the
lemma but have codimensions 1 and ¢ — 1. From the preceding paragraph
we know that RiiG, = Z[—1] (up to p-torsion). From (a) we know
Teseo(RiGZ[—1]) = 0 (up to p-torsion). Since Riy o Ri; = Ri’, this com-
pletes the proof of (b).

We now verify part (b) of the proposition. Axiom Al is obviously true
from the definition of Z(2) in [Lichtenbaum (1987a)]; Axiom A2 is proved
in [ib., 8.3], Axiom A3 in [ib., 2.5], Axiom AS in [ib., 9.7], Axiom Bl in
[ib., 4.5], and Axiom B2 in [ib., 8.4].

REMARK 1.5. (a) We assumed that X is smooth over a field in (1.3a)
only because we wished to use the form of the purity conjecture for étale
cohomology proved in [Milne (1980)]. Recall [Grothendieck (1977), 1.3.1.4]
that this conjecture states that Ri'w,(r) = p,(r — ¢)[—2¢] whenever
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i: Z — X satisfies the conditions in (C1) and m is invertible on X. For a
list of situations where the conjecture is known, see [Thomason (1984).
p. 398].

(b) Let Z be a closed subscheme of codimension 1 of X. When X has
dimension 1 and its residue fields are perfect, then it is possible to prove that
Ri'G,, = Z[— 1] (including the p-part); see for example [Milne (1986b),
1.7b). In contrast, when X has dimension 2, Ri'G,, # Z[—1]; see (2.4)
below.

m

CoNJECTURE 1.6. [Lichtenbaum (1984), §7] If X is a complete smooth variety
over a finite field, then H' (X, Z(r)) is torsion for i # 2r, and H'(X, Z(r)) is
finitely generated for i # 2r + 1, 2r + 2; therefore H'(X, Z(r)) is finite for
P#2r.2r + 1,2r + 2.

It is also conjectured that H**'(X, Z(r)) is finite, but this is expected
to lie much deeper than the above statements because it implies Tate’s
conjecture; see §4.

§2. An additional axiom: the Kummer p-sequence

Now assume X is a smooth scheme of finite type over a perfect field £ of
characteristic p # 0. Let (W,Qy,),>, be the de Rham-Witt pro-complex of
Bloch-Deligne-Illusie [Illusie (1979)]. As usual, we define v,(r) to be the
additive subsheaf of W, Q), on X, generated by 1 if r = 0 and by the
differentials of the form

a\ffin--ndf £, f.=(f.0 ..., 0). f; a section of ¢y,
if r > 0, and we write
H (X, (Z[p"Z)(r)) = H' ™" (X, v,(r).

H(X,Z,(r)) = lim H = (X, v,(r)).

In view of the philosophy embodied in the above notation (see [Milne
(1982), §7)]). it is natural to adjoin the following axiom to those in the last
section.

(A2), (Kummer p-sequence). For all integers n, there is an exact triangle

Z(r) 5 Z(r) — v, () [—r] — ZO)[1].
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Note that the axiom gives an exact sequence
c— H'(X. Z(r) &5 H' (X, Z(r) — H' 7 (X.v,(r)) — -+~
or
F— H'(X, Z() &> H'(X, Z(r)) — H'(X. Z[p"Z)(r) — - -

We write (A2) for the conjunction of (A2),, with (A2),; it implies that there
exists an exact sequence

S HU(X, Z(r) 2> H (X, 2(r)) — H' (X, (Z/mZ)(r)) — - - -
2.0.1)

where m is now allowed to be any integer and H' (X, (Z/mZ)(r)) is defined
to be

H (X, u@) x H(X, (Z|p"Z)(r)) m = myp", (my, p) = 1.
Write

H(X, Z(r)) = lim H' (X, (Z/mZ)(r))

and

H'(X. (Q/Z)(r) = lim H'(X. (Z|mZ)(r)).

In the remainder of this section, we study the compatibility of (A2),
with the other axioms. Our first result demonstrates its compatibility with
Axiom AO.

PROPOSITION 2.1. Axiom (A2), is satisfied by Z(r) for r < 2, except possibly
whenp = 2 andr = 2.
Proof. Clearly v,(0) is the subsheaf Z/p"Z of W,0,. The exact sequence
0—225 72— Z/p'Z—0

can be written

0 — Z(0) & Z(0) — v,(0) — 0.
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For r = 1, we have to show there is an exact sequence
0—G,5 G, — v,(1)— 0,

but this follows easily from the definition of v, (1) (the map G,, — v, (1) sends

g to dlog (g) £ dg/e).
Recall that the complex C° representing Z(2) is of length two,

C = C'-% (2, and that the kernel and cokernal of d are griA; and
grj)i’2 = A, respectively (up to 2-torsion) (see [Lichtenbaum (1987a), 8.4]).
Thus the statement for r = 2 is a consequence of the next lemma.

LEMMA 2.2. (a) The sheaf gr; A is uniquely divisible by p provided p # 2.
(b) There is an exact sequence

0— o, 2 o, 25y (2) — 0.

Proof. (a) Let F = k(X). It follows flrom [Soulé (1985), Thm 5] that, up
to 2-torsion, there is an exact sequence of sheaves on X,

0 - grdty > 18R K F > @ 1,ernk(k(x) - - -

Since gry K, (k(x)) = 0 [ib., Pptn 1], griA; = 1,r2 K, F (up to 2-torsion).
But gr} K, F is the indecomposable part K, F/K} F of K, F, and this group is
shown to be uniquely divisible by p in [Merkur’ev and Suslin (1987), 4.5].
(The absence of p-torsion in K, F/K¥ Fis also proved in [Levine (1987). 4.4].)

(b) This has already been noted in [Milne (1986a), 7.3, and p. 300] (the
exactness at the left is due to [Suslin (1983)], at the middle to [Bloch and
Kato (1986), 2.8], and at the right to several people.)

AxioM Al.Taker > 0;in the presence of (A1), Axiom (A2),can be restated
as follows:

for 1 < i< r — 1, H(Z(r)) is uniquely divisible by p, and
there is an exact sequence

0 — H'(Z(r) > H'(Z(r)) — v,(r) — 0.
On comparing this last sequence with that given by (A2)

ma

0 — ug — H'(Z(r)) — H'(Z(r)) — 0.
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we see that Axiom Al postulates that Z(r) has the minimum possible length
consistent with the existence of the exact sequence (2.0.1).

Write Z(r)™ for Z(r) ®" Z/mZ = (Z(r) = Z(r)). Letm = myp" with m,
prime to p. Then, in the presence of (A1), Axiom A2 asserts that for r > 0,

pg fori =20
H(ZF)™) = <v,(r) fori=r
0 fori # 0, r.

AxioM A3. In the presence of (A2),, one should adjoin to (A3) that the
pairing in that axiom is compatible with the pairing

vll(r) X vn(s) - vll(r + s)
defined by the wedge product. Note that the numberings are consistent:

Z(r)y x L) - Z(r + 5)
! ! l
v.(H)[—=r] x v,($)[—s] = v,(r + s)[—r — s].

AxioM A4. In the presence of (A2),, one should adjoin to (A4) that the cycle
map is compatible with the p-adic cycle map defined in [Milne (1986a), §2].

Axioms AS AND BI1. The two axioms, when combined with (A2),, assert that
there is an exact sequence

K"(F) 25 KM(F) — v,(r) — 0

for any field F of characteristic p # 0. Such an exact sequence is proved in
[Bloch and Kato (1986), 2.8] (it is also shown there that the p-torsion subgroup
in K™(F) is p-divisible). More generally, the three axioms imply that there
is an exact sequence of sheaves on X, .,

AM L M — v, (r) — 0.

This is known for » < 2, and it makes a plausible conjecture in general.

AxioMm B2. In the presence of (B2), (A2), becomes the conjecture: gr] K, is
uniquely divisible by p for r < s < 2r — 1, and there is an exact sequence

0 — grot; L grlH, — v,(r) — 0,
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except possibly when p < r — 1. (Note that gr} #; can be replaced by 4"
in this statement.) This is known for s < 2, and for s = 3, r # 3 (see
Lemma 2.2).

AxioMm Cl. Let 1: x = X be the inclusion of a point of codimension ¢ into
X. Because the functor — ®' Z/p"Z commutes with any functor on the
derived category, (R1, Z(r — ¢))” = Ri (Z(r — ¢)").

Note that for any complex C*, t.(C° ®" Z/p"Z) = (1,,C") Q" Z/p'Z
provided H'*'(C") has no p-torsion. Hence

T eRLZ(r — ") = o, R — o) Q" Z)p'Z (*)

provided R"~“*'1, Z(r — c) has no p-torsion. But (A2), provides us with an
exact sequence

N R"z*vl(r _ C) —_ Rr—<‘+ll*Z(r) AN Rr—c+ll*Z(r) _— e .
Since R™“1,v,(r — ¢) is zero if ¢ > 0, (x) holds when ¢ > 0. When ¢ = 0,
x is a generic point, and Axiom AS5 applied to the extension fields of k(X))
shows that R'*'1 _Z(r) = 0. Therefore () holds for all ¢ > 0.

Consequently, on applying — ®* Z/p"Z to the sequence in (Cl), we

obtain an exact sequence

0 - Z(r)™ - T, @ Rz*(Z(r)(/’"))K(.‘,) — e
xeXp

> @ (t, R (Z(r — ) )—c] > -

xe X,

According to (A2),
T, RULZ(r — ))yy = 1o (R1,(r — Ofr — ¢]),
and the right hand term can be rewritten as
(toRLY,(r — Dr — ] = 1,v,(r — )[r — c].
Therefore the axioms predict the existence of an exact sequence

0- V,,(r) - @ l*vn(r)x(.\‘) - @ I*vn(r - l)l\'(.\) -
x€e Xy xelX|
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Such a sequence was shown to exist in [Milne (1982), 4.3] for r = 2,
conjectured to exist for all r in [Milne (1986a), 2.12], and proven to exist
(even for the Zariski topology) in [Gros and Suwa (1987)].

REMARK 2.3. We have noted in (1.1¢) that Axiom C1 implies that H'(X, Z(r))
is torsion for i > 2r. Therefore, in the presence of this axiom, passage to the
direct limit over all m in the sequence (2.0.1) gives an isomorphism

H'(X. (Q/Z)(r)) = H'*'(X, Z(r))
fori > 2r + 1.

Axiom C2. It is known [Milne (1986a). §2] that R*i'v,(r) = 0 for s # c,
¢ + 1, and that R‘'v,(r) = v,(r — ¢) (if ¥ = ¢). On the other hand,
(C2) states that RV'Z(r) = H* *(Z(r — ¢)) for s < r + ¢. These two
statements are consistent with (A2),, as the following diagram shows

e RVZ) 0o RYPL() LS RFIZG) o RO,
I= I L= = I=
e H TN Z(r —0) > 0> H = (Z(r — o)) L H = (Z(r — ¢)) — v,(r — ¢).

REMARK 2.4. (a) In general R*'i'v, (r) # 0. Therefore
T Ri'v,(r) = v,(r — o)[—c]

would be false without the truncation on the left, and it follows that Axiom
C2 would also be false without the truncation. We shall give an example of
this phenomenon for r = 1 = ¢, which will show that RI'G,, # Z[—1]
even for the inclusion of a smooth divisor into a smooth variety.

Let X = Spec k[S, T] = A} with k algebraically closed of characteristic
p # 0, and let Z = Spec k[S] be the subscheme defined by T = 0. Let A4
be the strictly local ring at the origin o of A;. let X’ = Spec A. and let Z’
be the subscheme of X’ defined by T = 0. Then the exact sequence [Milne
(1976), §1]

1 -1 1
0—v(r)— QX/k.d:O — QX/k -0
gives rise to an exact sequence

Hy (X', Qo) — HL (X' Q) > H2 (X7, v, (1)),
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and HZ.(X’, v,(1)) is the stalk of R*i'v,(1) at 0. The exact sequences
QL/k,:I:O - QL[T“]/A;J:O . Hz"(X/~ Q}Y'/k.dzo) -0
QL/k - QL[T*‘]/k - Hé'(X/» Q;(’/k) -0

allow us to give a more explicit presentation of H2 (X', v,(1)):
Qlgr- gm0 — Qgr-1y/ Qe = H2 (X', v,(1)) = 0.

Nothing essential changes when we pass to the completion of 4. Hence we
may suppose A = k[[S, T]],and welet B = 4/(T) = k[[S]]. A differential
in Q)1 can be written uniquely as a finite sum

1= T Ee Y hart o @4.1)

i=1 i=1

with o, € Q. f, € B, and w € Q. When  is closed, f,,,, is a pth power,
and —io; = dp,,, for (i, p) = 1; moreover

C(V)) _ Z C(OC,,,) + Z ,n+ldT+ C(a))

+1
izl iz0 T’

Consider " = a/T. a # 0, a € Qy,. and suppose C(1) — n = 1’ (mod Q)
for some 1 € Q-1 4= as in (2.4.1). Then B,,,, = p7,, foralli > 0, and
since only finitely many f,’s can be nonzero, this implies that f, € F, and
that 8, = Ofori > 1. Thereforea; = Ofor (i, p) = 1.Now C(a,) = a,and
C(a,) = o; for i > 1. Hence C(a,.) = a, # 0, C(a,;) = o # 0, .. .,
contradicting the finiteness of the sum in (2.4.1).

(b) Let X" and Z’ be as in (a). Then the above calculation shows
that HZ.(X’,v,(1)) # 0, and this implies that H2.(X',G,) # 0 or
H.(X',G,) # 0. In fact H2.(X’, G,,) = 0 because Pic (X') - Pic (X' — Z")
is surjective and Br (X”’) = 0 [Milne (1980), 111.3.11 or IV.1.7].

(c) We have seen that Ri'Z(r) can fail to be isomorphic to Z(r — ¢)[— 2c]
for two distinct reasons: firstly, if ¢ > r, then the Kummer sequence and the
purity theorem in étale cohomology show that Ri'Z(r) # 0 (even when
r = 0); secondly, there are problems with the p-torsion in characteristic p.
The first of these suggests that Z(r) should also be defined for r < 0.

Note that when r > ¢, none of our examples includes the possibility that
Ri'Z(r) = Z(r — c)[— 2c] up to torsion connected with the residue charac-
teristics of X.
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REMARK 2.5. Since the groups H' (X, Z,(r)) map into the crystalline groups,
Axiom A2, provides maps from the motivic cohomology groups into the
crystalline cohomology groups.

REMARK 2.6. Let Z,(r) denote the complex conjectured to exist in [Beilinson
(1982)] (see also [Beilinson (1987)]); thus Z,(r) is an object in D(F(X,,.))
expected to satisfy axioms similar to those of Z(r). In particular, there
should be an exact triangle

Zy(r) = Zy(r) — 1o, Rf 13— Zy(n)][1]

for m invertible on X.
From (A2), we get an exact triangle

Rf,Z(r) 5 Rf,Z(r) — (Rf,v,(")[—1] — Rf,Z(N[1].

If we assume (AS), then this triangle remains exact when we truncate at r.

But 1, (Rfv,(N[—1]) = (toRAV,(N[—r] = fv,(N[—7]. and so the
triangle is

1, RE,Z(r) 25 1 RE,Z(r) — fv,(N[— 1] — 1o, RAZ(MD[1].

Since the best guess for the relation between the two complexes is that
Zy(r) = t., Rf,Z(r). this suggests that we should adjoin to Beilinson’s
axioms the requirement that (when X is smooth of finite type over a perfect
field of characteristic p) there is an exact triangle

Zy(r) L5 Z,(r) — v, (0= — Zs([1].

This is consistent with the remainder of Beilinson’s axioms and the known
results for v, (r).

REMARK 2.7. Axiom A2 asserts that Z(r)" should be isomorphic to u®
when m is invertible on X and to v,(r)[ —r] when X is of characteristicp # 0
and m = p". This leaves open the (most interesting) case where X is of mixed
characteristic. Clearly, Z(r)"” should not then be concentrated in a single
degree. For a smooth proper scheme X over Z,, the most promising
candidate appears to be Rf, ¥, where  is the complex of sheaves for the
syntomic site on X defined in [Fontaine and Messing (1987)] and f is the
morphism X, — X, defined by the identity map. Some recent results

syn
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of Kato and Kurihara lend plausibility to this. If i1 Z < X and
J: U = X are the inclusions of the open and closed fibres of X/Z, into X,
then the exact triangle (1.1.1) suggests there should be an exact triangle

LT = 1 R = v, (r — D[=r] > *Z(r)"[1].

When r < p, Kato and Kurihara have proved a result of this form with
Z(r)"" replaced by Rf, &".

*

§3. Duality

Recall that a 0-local field is a finite field, and an s-local field is a field
complete with respect to a discrete valuation whose residue field is an
(s — 1)-local field. In [Lichtenbaum (1984), §6] it is conjectured that, when
X is a smooth projective variety of dimension d over an s-local field,
then
(3.1a) there is a canonical isomorphism H***2(X, Z(d + s5)) = Q/Z;
(3.1b) the pairings

HY 221X, Z(d + s — r)) x H' (X, Z(r))
- H* (X, Z(d + s)) ~ Q/Z

defined by the products in (A3) are nondegenerate in an appropriate sense.

We prove two results in this direction to illustrate the methods that are
available. Recall that M’ denotes M/M,;, .
THEOREM 3.2. Let X be a projective variety over a finite field k. Assume that
there exist complexes Z(r) on X satisfying Axioms A2 and A3, and that
H**Y (X, Z(d)) and H***(X. Z(d)) are torsion.

(a) There is a canonical isomorphism

H*+(X. Z(d)) = Q/Z,
and the products in (A3) define nondegenerate pairings

HZ‘H'Z_[(X, Zd — r) x Hi(X, Z(r)) — HZ‘HZ(X. Zd)) ~ Q/Z

of finite groups for i # 2r, 2r + 1, 2r + 2.
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(b) If H**“ (X, Z(r)) and H*~-Y(X,Z(d — r)) are torsion and
H**' (X, Z(r),,s and H*=2*Y (X, Z(d — 1)), are finite, then

HY="=\(X, Z(d — 1)) x H"*'(X. Z()) » H***(X, Z(d)) ~ Q/Z

is a nondegenerate pairing of finite groups.
(c) The products in Axiom A3 define nondegenerate pairing of finite groups

HA (X2 = D)y X HY P (X, 20)) > HYZ (X Z)) ~ Q/Z
(d) The pairing
HY =2 +2(X, Z(d — r)) x H*(X, Z(r)) - Q/Z

induces an isomorphism
H* 42X, Z(d — 1)) = Hom, (H (X, Z(r))", Q/Z)

if H*=>=Y(X, Z(d — r)) is torsion and H"*' (X, Z(r))4. = 0.

Proof. We shall use the result (see [Milne (1986a), §1] that. for all m. there
is a canonical isomorphism H**'(X, (Z/mZ)(d)) = m~'Z/Z and a non-
degenerate pairing of finite groups

H**'U(X, ZImZ)(d — 1)) x H'(X. (Z/mZ)(r))
> H(X.(Z/mZ)(d)) ~ m~'Z]Z.
After passage to the limit, this becomes a duality
HX* ' (X, 2(d — 1)) x H(X,(Q/Z)(r)) » H**'(X.(Q/Z)(d)) = Q/Z.

The left group is profinite, and the right group is torsion. The next lemma
allows us to deduce the existence of a nondegenerate pairing

H* =X, Z(d — 1))re X H'(X. (Q/Z)(r)) — QJZ.

LEMMA 3.3. Let N be an abelian group, and let N' El (\mN be its first Ulm
subgroup.

(@) If N™ is finite for all integers m, then N' is divisible; if in addition N is
finite, then N’ is finite and equals N.

(b) Assume N is torsion, and let M be the Pontryagin dual of N (regarding
N as a discrete group). Then the pairing

N x M., — Q/Z
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is nondegenerate, and so the Pontryagin dual of N’ is the closure of M,
in M.

Proof. (a) If N'is not divisible, then there is a prime / and an element
x € N' that is not divisible (in N') by all powers /. Consequently, N/N' will
contain torsion elements of arbitrarily high /-power order. As N/N' contains
no nonzero element that is divisible by m for all m, every finite subset of
(N/N"),. is contained in a finite direct summand of it [Fuchs (1973), 65.1].
Therefore (N/N'),,. )"’ contains subgroups of arbitrarily high order, and so
is infinite. Since

tors

((N/Nl)lors)“) — (N/NI)(]) = N“)

we see that this contradicts our hypothesis.
For the second part of the statement, note that the diagrams

N> N

\1

N(m)

show that the kernel of N — N is N', which we have just shown to equal
Nj.. Therefore N' — N is injective, and it follows that N’ is finite and
N = N.

(b) For each m, the subgroups mN and M,, of N and M are closed and

are exact annihilators. Therefore N' = (\mN is the exact annihilator of
M, = UM,,.

LetI" = Gal (k/k). let o be the Frobenius element of I', and write M" and
M- respectively for the kernel and cokernel of ¢ — 1: M - M.

LEMMA 3.4. There is un exact sequence
0 - H "X, Z(r)) - H (X, Z(r)) » H'(X, Z(r))" - 0.

Proof. So far as I know, the literature does not contain a correct proof
of this, and so I include one here. For each m, the Hochschild—Serre spectral
sequence for X/X gives an exact sequence

0— H "X (Z/mZ)(r)r - H (X, (Z/mZ)(r)) » H (X,(Z/mZ)(r))" - 0.
Because all of the terms in the sequence are finite, it stays exact in the limit,
0 lim '~ (X (Z/mZ)(r)r > H' (X, Z(r)) - lim H'(X,(Z/mZ)(r))" - 0.

and it remains for us to interpret the end terms.
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Write M (m) for H' (X, Z/mZ)(r)). On breaking the sequence
0 - M(m)' - M(m) =5 M(m) - M(m); - 0
in two and passing to the inverse limits, we obtain exact sequences
0 = lim M(m)" - lim M(m) “— lim Q(m) - im® M(m)"  (3.4.1)
0 - lim Q(m) - lim M(m) — lim M(m). — Lim" Q(m) (3.4.2)
with Q(m) = (6 — 1)M(m). There is an exact sequence
0 - U, (k) > M(@m)— D,(k) -0

with U, a connected algebraic perfect group scheme over k and D,, a finite

n

perfect group scheme over k [Milne (1986a), §1]. Therefore M (m)" is finite,
and this implies that lim" M (m)" = 0. Thus (3.4.1) becomes

0 — lim M(m)" — lim M(m) ~= lim Q(m) — 0.
Because ¢ — 1: U, (k) — U, (k) is surjective, there is an exact sequence
0- U, k)—> Qm) > F, >0

with F, is finite. As U, is constant for large m, lim"” U, (k) = 0. and this

implies that lim'"’ Q(m) = 0. Thus (3.4.2) becomes

0 - lim Q(m) — lim M(m) — lim M(m); — 0.
On splicing the two sequences, we obtain a sequence

0 — lim M(m)" - lim M(m) =5 lim M (m) — lim M (m); — 0.
which shows that

H (X, Z(r))"

I

lim H' (X, (Z/mZ)(r)"
and
H'(X.Z(r)y = lim H'(X. (Z/mZ)(").

Since this holds for all /. the second sequence in the proof is the required one.
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In [Milne (1986a). 6.4] it is shown that H' (X, Z(r))" and H' (X, Z(r)); are
finite for i # 2r. Therefore (3.4) shows that H' (X, Z(r)) is finite for i # 2r,
2r + 1.

We now prove the theorem. Because the groups H'(X, (Z/mZ))(r) are
finite, on passing to the inverse and direct limits in the sequences (2.0.1), we
obtain exact sequences

0 - H (X. Z(r)" - H'(X. Z(r)) » TH'*'(X. Z(r)) - 0 (3.4.3)
and

0 - H' (X, Z(r) ® Q/Z - H'(X, (Q/Z)(r)) » H*'(X. Z(r))os > 0
(3.4.4)

As TH'*' is torsion free, the first sequence gives an isomorphism
(H' (X, Z(r) ors = H' (X, 2(1)) ors.» (3.4.5)

and, as H'(X, Z(r)) ® Q/Z is divisible, the second sequence gives an
isomorphism

H'(X, (Q/Z)(r))" = H'* (X, Z(r)),ors- (3.4.6)

When H'(X. Z(r)) is torsion, H' (X, Z(r)) ® Q/Z = 0, and the primes may
be dropped in the last isomorphism. In particular, if H**'(X, Z(d)) is
torsion, then

HLI+2(X‘ Z(d))mrs & H2r/+|(X, (Q/Z)(d)) = Q/Z.

and so this gives us the isomorphism H***(X, Z(d)) = Q/Z required in (a).
Note that the results already proved show that there is a nondegenerate
pairing

(H2 (X Z(d = 1) )ors ¥ H'(X, Z(r)iors — H**2(X. Z(d)) = Q/Z:

also that (2.0.1) shows that H'(X, Z(r))" is finite for all i and m.

Ifi # 2r,2r + 1, then from (3.4.3) and (3.3a) we see that H' (X, Z(r))" is
finite and equals H' (X, Z(r))": in particular, H' (X. Z(r)) = H' (X.Z(r)),.
If i #2r+1,2r +2 sothat 2d + 2 — i # 2(d — r), 2(d — r) + 1,
then the same argument shows that H***~'(X, Z(d — r))" is finite and
equals H***='(X, Z(d — r))*. This completes the proof of (a) of the
theorem.

COMP _ yel §
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For i # 2r, we obtain a duality of finite groups
(H**71(X, Z(d — 1)) x H'(X, Z(")oy = H***(X, Z(d)) = Q/Z,

which proves (c).

Assume that H¥*+'(X, Z(r)) is torsion and that H**' (X, Z(r)),. is finite.
Then (3.4.5) shows that the torsion subgroup of H**'(X, Z(r))" is finite,
and so the image of H**'(X, Z(r)) in H**'(X, (Z(r))" is finite. Since it is
also dense, this implies that H**'(X, Z(r))" is finite, and (3.3a) shows that
H¥*'(X, Z(r)) is finite, and therefore equals H**'(X, Z(r)),,,. The same
argument shows that H*~2+!(X, Z(r))" is finite, and therefore equals
H*=¥+Y(X, Z(r))". This proves (b).

Finally, if H*=>+'(X, Z(d — r)) is torsion, then (3.4.4) shows that

HY (X2~ )y % HY7 (XL QIZ) — 1),
and we know that
HY=2+(X, (Q/Z)(r)) = Hom,, (H” (X, Z(r)). Q/Z).

If in addition H**'(X, Z(r)), is zero, then TH**'(X, Z(r)) = 0 and so
HY(X, Z(r)) ~ H¥(X, Z(r))". This completes the proof of (d).

REMARK 3.5. (a) If the condition that H**2(X, Z(d)) is torsion is dropped,
then H***(X, Z(d)) must be replaced by H****(X, Z(d)),,, in the statement
of the theorem. If the condition that H**'(X, Z(d)) is torsion is also
dropped, then the pairing must map into H**'(X, (Q/Z)(d)).

(b) Concerning the various other hypotheses made in the theorem, it
is known that H¥*'(X, Z(r)),, is finite when, for all primes /, 1 is not
a multiple root of the minimal polynomial of the Frobenius element acting
on H*(X, Q,(r)) [Milne (1986a), 6.6]. The Tate conjecture implies that
H (X, Z(r))y, = 0 (see §4 below), and Conjecture 1.6 predicts that the
remaining conditions always hold, and that H* (X, Z(r)) is finitely generated
and H*->+2(X, Z(d — r)) is torsion. When this is so, part (d) of the
theorem shows that

HY¥-+2(X, 7Z(r)) = Hom (H* (X, Z(r)). Q/Z).
(c) Since H'(X, Z(r)) is finite for i # 2r. 2r + 1, (3.4.3) shows that

TH' (X, Z(r))is zero for i # 2r + 1,2r + 2. Hence the divisible subgroups
of H'(X, Z(r)) are in fact uniquely divisible (and presumably zero) for
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i # 2r + 1, 2r + 2. On the other hand, H**?(X, Z(r)),;, is not uniquely
divisible (the last remark predicts it equals Hom (H*~% (X, Z(r)), Z)),
and to prove that H**'(X, Z(r)),, is uniquely divisible requires the Tate
conjecture.

THEOREM 3.6. Let K be an s-local field such that the 1-local field in its inductive
definition has characteristic zero, and let X be a smooth projective variety of
dimension d over K. Assume that there exist complexes Z(r) on X satisfying
Axioms A2 and A3, and that H¥*+'(X, Z(d + s)) and H****(X, Z(d + s))
are torsion. Then there is a canonical isomorphism

H¥+s+2(X, Z(d + s)) = Q/Z,
and the products in (A3) define nondegenerate pairings of groups
HY 20X I 4+ s — D)o X (H' (X, Z(N)iors)"
— H¥++2(X, Z(d + s)) =~ Q/Z

for all i.
Proof. We first need to prove the corresponding result for finite sheaves.

LEMMA 3.7. Let X be as in the theorem, and let m be an integer. Then there
is a canonical isomorphism

HY+s+ Y (X, u®d+s) = m~'Z|Z,
and there are canonical nondegenerate pairings of finite groups
w511 (X, p@ivs=r) x HY(X, ) — HY 00 (X pu§ie) = mo'Z)Z
for all i.
Proof. 1t is proved in [Deninger and Wingberg (1986)] (see also [Milne

(1986b), 1.2.17])) that H**'(K, u®*) = m~'Z/Z and that for any finite
Gal (K/K)-module M,

H*11(K, M*(s — 1)) x H'(K, M(r)) » H**'(K, u8') = m~'Z|Z

m

is a nondegenerate pairing of finite groups. Here M* = Hom (M, Z/mZ) and
M(@r) = M ® u® . A standard argument extends this result from M to a
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bounded-below complex M of modules such that H' (M ") is finite for all /
and is zero for all sufficiently large i; M * is replaced by R Hom (M", Z/mZ)
(cf. [Milne (1980), p. 280]).

Letm: X — Spec K be the structure map. Then the fundamental theorems
in étale cohomology show:

(a) R¥m, u®*+s = y® and R¥m u®+?* = 0 fori > 2d,

by M £ Rn,Z|mZ satisfies the conditions in the last paragraph;

(c) M* = Rn, u®2d].
Therefore

HAXH (X, p@e) = HY(K, pd) = m™'Z[Z,
and. as the group
H' (X, p®) = H(K, R u$) = H(K. M'(r),
it is finite and dual to H**'~/(K, M *(s — r)), which equals

H"'+l_i(K, Rn*u,‘§”+“"[2d]) — H2d+‘y+|7i(X, H%d-{-x—r).

We now prove the theorem. After passing to the limit in (3.7), we obtain
a duality

H*++1-1(X, (Q/Z)(d + s — r)) x H' (X, Z(r))
- HM*++Y(X, (Q/Z)(d + 5)) ~ Q/Z.
Lemma 3.3b shows that this gives a duality
H> (X (QIZ)(d + s — 1) % (H'(X, Z(r)ors)”
> H**+ (X (Q[Z)(d + s)),
and the isomorphisms (3.4.5) and (3.4.6) show that
H* (X (QIZ)(d + s — 1)) = HW V7 (X, Z(d + 5 — 1))iges
(H' (X, (1)) = (H (X, Z(r))iors) ™ »
and

H2d+‘+l(X, (Q/Z)(d + S))ﬁr H2d+x+2(X’ Z(r))
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REeEMARK 3.8. (a) If the 1-local field in the statement of (3.6) has character-
istic p # 0, then the proposition still holds up to p-torsion.

(b) Our results are limited by the fact that we are essentially using only
Axiom A2, which clearly does not allow us to detect uniquely divisible
subgroups in H'(X, Z(r)). Presumably to go further, one will have to
use the Axioms B and results about the cohomology of the K-sheaves. As
Lichtenbaum pointed out to me, there is an air of compatibility between
Bass’s conjecture on the finite generation of the K-groups of finitely
generated Z-algebras and the conjectured finiteness properties of the motivic
cohomology groups.

(c) It is to be hoped that the duality will extend to a pairing between
cohomology groups and Ext groups. Unfortunately the discussion in [Milne
(1986b), pp. 263-266] is based on an earlier form of the purity axiom C2 in
which the truncation is omitted — as we noted in §2, this cannot be correct
- and so is inaccurate. In particular, the Conjecture 7.16 there is unrealistic
if the Ext group is meant to be computed in the category of étale sheaves
on X.

(d) In [Saito (1987)], some of the results of higher dimensional class field
theory are interpreted in the language of motivic cohomology. For example,
if K is an s-local field, then [Kato (1980)] proves that there is a canonical
pairing

H'* (K, (Q/Z)(r)) x K.(K) > H™"'(K, (Q/Z)(d)) = Q/Z,
and the induced homomorphism

H™'(K, (Q/Z)(r)) » Hom (K (K), Q/Z)
is injective. But (see (1.6) and (2.3)), H'*?(K, Z(r)) should be isomorphic to
H™*'(K, (Q/Z)(r)), and (see B1) H*~" (K, Z(s — r)) should equal K K, and
so the pairing should be able to be identified with a pairing

H (X, Z(r)) x H" (K, Z(s — r)) » H'*" (K, Z(s)) ~ Q/Z.
Similar, but more complicated. interpretations are also given in the global
case.

§4. Values of zeta functions

Throughout this section, X will be a smooth projective variety over a finite
field k.
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The homomorphism Gal (k/k) — Z sending the Frobenius element to 1
defines a canonical element of H'(k, Z) = H'(X, Z), and we define

& H¥ (X, Z(r)) » H**' (X, Z(r))

to be the map taking a cohomology class to its cup-product with this
element. The map & is defined to be the composite of the remaining maps
in the diagram

HY (X, Z(r))" = TH***(X, Z(r))
l (3.4.3) T (3.4.3)

HY(X, Z(r)) =  HY*'(X, Z(r)).
Recall (3.2) that H'(X, Z(r)) is finite for i # 2r, 2r + 1. Set

(X Z) = [ [HX, Z)T[H (X Z(1)iors] det (37)7

i#2r

when [H¥ (X, Z(r)),,,) and [H**'(X, Z(r))’] are finite and det (¢") is defined
and nonzero.

The strong form of Tate’s conjecture for an integer r and prime / states
that the dimension g/, of the subspace of H* (X, Q,(r)) generated by algebraic
cycles on X is equal to the order g, of the pole of {(X, s) at s = r.

PROPOSITION 4.1. Let Z(r) be a complex on X satisfying Axioms A2 and A4.
If H" (X, Z(r)) is finitely generated, then the strong form of Tate’s conjecture
holds (for r) and all primes | when it holds for one prime |.

Proof. The condition implies that H* (X, Z(r))* = H¥ (X, Z(r)) ® Z,
and we know that this injects into H* (X, Z(r)). According to (3.4) the kernel
of H¥(X, Z,(r)) » H¥* (X, Z,(r)) is H*'(X, Z,(r))-, which is finite by
[Milne (1986a), 6.4], and so the composite map H¥ (X, Z(r)) ® Q, —
H” (X, Q,(r)) is injective for all /. Let B" be the subspace of H¥ (X, Z(r)) ® Q
generated by algebraic cycles. Then the subspace of H* (X, Q,(r)) generated
by algebraic cycles is isomorphic to B” ® Q,. In particular, its dimension is
independent of /, and the lemma is now obvious.

LEMMA 4.2. Let Z(r) be a complex on X satisfying Axioms A2 and A4, and
assume that H**' (X, Z(r))' is torsion. If the strong form of Tate’s conjecture
holds for all | and a given r, then H* (X, Z(r))o,s and H**' (X, Z(r)) are finite
and det (8") is defined and nonzero; moreover,

det (&) = z(e")™'[H* (X, Z(M)wrJ[H**' (X. Z(r)]™" = det (¢¥).
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Proof. In [Milne (1986a), 8.2], it is shown that the strong form of Tate’s
conjecture for r and / implies than 1 is not a multiple root of the minimal
polynomial of the Frobenius element acting on H* (X, Q,(r)). Therefore
z(¢¥) is defined and H**'(X, Z(r)),.. is finite [ib., 6.6]. Consider

CH'(X)* S HY(X, Z(r)
lc‘ Td
H¥ (X, Z(r)" 2> H¥(X. Z(r)).

Here ¢ is the product of the /-adic cycle maps,® all primes /. and
c¢: CH'(X) - H*(X, Z(r)) is the cycle map given by Axiom A4. The same
axiom shows that the diagram commutes.

The map b is injective with cokernel TH**' (X, Z(r)) (see 3.4.3). and d is
surjective with kernel H*~'(X, Z(r)); (see 3.4), which is finite [ib.. 6.4].
Tate’s conjecture implies that the cokernel of ¢ is torsion, and so the exact
sequence

Ker (d) —» Coker (b o ¢) - Coker (¢")

shows that TH**'(X, Z(r)) is torsion and hence zero. Consequently
H**Y(X, Z(r))y, has no torsion elements, and (3.3a) shows that
H* ' (X, Z(r),, = HY ' (X. Z(r))" is injective. As H**'(X, Z(r))yy i
finite, (3.4.3) now shows that H**'(X, Z(r)),, is finite. Our assumption
allows us to conclude that H**'(X, Z(r)) is finite, and therefore

H* N (X, Z(r)) = H"'(X.Z(r)" = H""'(X, Z(r))oss-
Now consider the diagram

H¥(X, Z(r)* =5 TH* (X, Z(r)"
l ~ Tsurj
HY (X, Z(r)) = HY'(X, Z(r)).

The isomorphism is the map in (3.4.3); its cokernel is TH**' (X, Z(r)), which
we have just shown to be zero. The second vertical map is also the map in
(3.4.3); its kernel is H**'(X, Z(r))". which we know to be the finite group
H**'(X, Z(r))'. Since the z’s of all the maps except ¢" are defined, z(6") must

3 In the absence of a published proof that the cycle map into the integral group H* (X, Z,(r))
factors through the Chow group, the reader may prefer to take ¢’ to be the map making the
diagram commute. Then Axiom A4 will ensure that ¢ ® Q is the product of the /-adic cycle
maps, which is all that is needed.
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also be defined. and it must equal the product of the z’s of the remaining
maps: z(8") = z(e*)[H* ' (X, Z(r))].
Note that, because TH**2(X, Z(r)) is torsion free,

2(0) = [(HY(X. Z(r)" )ors] det (6) 7",

and both terms on the right are defined and finite. Thus, for the first equality,
it remains to show that the torsion subgroup of H* (X, Z(r)) is unchanged
when the group is completed.

Note that H¥(X.Z(r)),. is finite because H?¥ (X, Z(r))., and
HY”~'(X, Z(r)); are finite. From the maps

H"(X, Z(r)) = H"(X, Z(r)" = H"(X. Z(r)

we see that HY (X, Z(r)),,. is finite. The finiteness of H*~' (X, Z(r)) shows that
H¥(X. Z(r))y, has no torsion elements, and therefore H* (X, Z(r))rs =
H¥(X, Z(r)),,.,. Consequently

HY (X, Z(N)ors = (H"(X.Z()" o = (HY (X, Z(1))iors)" -

This completes the proof of the first equality, and the second follows from
the definitions.

THEOREM 4.3. Let Z(r) be a complex on X satisfying Axioms A2 and A4, and
assume that H¥ (X, Z(r)) is torsion. If the strong form of Tate’s conjecture
holds for r and for all I, then y'(X, Z(r)) is defined, and

X ) ~ 7 (X ZODPFEN( = ™) ass > r.

Proof. After [Milne (1986a), 0.1] it suffices to show that y'(X, Z(r)) is
defined and equals y(X, Z(r)).

First note that for i % 2r, 2r + 1, H(X. Z(r)) is finite, and so, for these
values of i, (3.4.3) gives an isomorphism H'(X, Z(r)) = H'(X, Z(r)).
Lemma 4.2 now shows that y’(X, Z(r)) is defined and that

WX 2oy £ T H G 2012
= 11 O 2OV HY (X Z0)n]
X [H* (X, Z(r))]™" det (")
= y'(X. Z(r)),

which completes the proof.
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COROLLARY 4.4. Assume that there is a complex Z(r) on X satisfying Axiom
A2 and such that H**'(X, Z(r))’ is torsion; then

VXZL)) = (X, g oo

forallr > d.
Proof. Forr > d, 9, = 0 and Tate’s conjecture is obvious. Also the cycle
maps (Axiom A4) play no role.

REMARK 4.5. (a) Define x(X, Z(r)) as in the introduction, taking R =
det (6"). If y'(X, Z(r)) is defined, then (X, Z(r)) is defined if and only if the
groups H' (X, Z(r)) have no uniquely divisible subgroups and H**'(X, Z(r))
has no divisible subgroup, in which case it equals y'(X, Z(r)). Therefore
Conjecture 1.6 and the conjecture that H**'(X, Z(r)) is finite imply that
WX, Z(r) = ' (X, Z(r)).

(b) When r = 0 or 1, stronger results are known (see [Milne (1986a)]).

(¢) When r = 2, we know Axiom A2 but still lack Axiom A4. Note
however, that without any assumptions whatever, we have shown that
¥ (X, Z(2)) = {(X, 2)¢g*** when X is a curve.

(d) Tate’s conjecture is often true for trivial reasons. For example, when
X is a complete intersection of dimension d, then the conjecture is obvious
exccept when d is even and r = d/2.

(e) In the case that X 'is an elliptic surface with base curve Candr = 0, S.
Turner has shown that (4.3) can be written in the form y(X, Z) =
+q+{(C, 2) - u, with u the measure of a certain adéle group. This, as he
points out, can be regarded as an arithmetic analogue of the Gauss-Bonnet
formula.

(f) It would be interesting to consider a generalization of Conjecture 0.1
in which the zeta function is replaced by the L-series of a representation of
the fundamental group of X.

(g) It is clear from the sequence (3.4.3) that Tate’s conjecture for a given
rand /is equivalent to the nullity of the divisible subgroup of H**'(X, Z(r)).
In [Thomason (1985)] it is shown that Tate’s conjecture is equivalent to the
nullity of the divisible subgroup of a certain group defined using K-theory.
It would be interesting to find a direct relation between this group and
H* (X, Z(r)).

§5. Re-interpretation of the regulator term

We show that the term det (6") occurring in the definition of y'(X, Z(r)) can
(conjecturally) be replaced by the discriminant of a pairing between two
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finitely generated Z-modules, as in [Lichtenbaum (1984), §7]. Throughout
the section, X will be a smooth projective variety of dimension d over a finite
field £.

As noted in §3, for all m, there is a trace map

H*(X, (Z)mZ)(d)) = Z/mZ.

We shall need to assume:
(%) there exists a map deg: H*(X, Z(d)) — Z such that

H¥(X, Zd)) — Z
l l
H¥(X. (Z)mZ)(d)) = Z/mZ

commutes for all m.
We define the degree map deg: H*(X, Z(d)) — Z to be the composite
H*(X, Z(d)) - H* (X, Z(d)) — Z.

REMARK 5.1 (a) Obviously, there can be at most one map deg satisfying ().
If we assume Axiom A4, then deg: H*(X, Z(d)) — Z sends the class of a
zero cycle to the degree of the cycle, and this property characterizes deg.

(b) If H**'(X, Z(r))y, = 0, then (3.4.3) gives an isomorphism
H*(X, Z(d))" = H*(X.Z(d)). and it is easy to see by using duality that
H*(X, Z(d)) modulo its torsion subgroup is isomorphic to Z. Therefore,
if H*(X, Z(d)) is finitely generated, it is of rank one. Consequently. there
will be exactly two epimorphisms H*(X. Z(d)) — Z. only one of which will
send the class of a zero cycle to its degree. In [Lichtenbaum (1984)] the
degree map is defined to be (either) one of the maps.

Assume in addition to the above:

(*+) Axiom A3 holds, and the groups H* (X, Z(r)) and H*~* (X, Z(d — r))
are finitely generated.

Then there is a pairing

H¥ (X, Z(r)) x H (X, Z(d — r)) » H*(X, Z(d)) =% Z,

and, following Lichtenbaum [ib., §7], we define the regulator Reg’(X) to be
the discriminant of this pairing when the two groups have the same rank,
i.e., we set Reg' (X) = deg (a;. b;») where {a;} and {b;} are bases for
H* (X, Z(r)) and H*~*(X, Z(d — r)) modulo torsion.
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THEOREM 5.2. Assume there exist complexes Z(r), Z(d — r), and Z(d) satisfy-
ing Axiom A2 and conditions (x) and (xx). If H*=*~Y(X, Z(d — r))g, = O,
HY (X, Z(")" is torsion, and det (8") is defined, then Reg' (X) is defined and
equals +deg (3").

Proof. We first need a lemma.

LEMMA 5.3. In the limit the pairings
H*" (X (Z|mZ)(d — r)) x H**'(X, (Z|mZ)(r))
— H**Y (X, (Z/mZ)(d)) = Z[mL
define a surjective map
H”*"(X. Z(r)) » Hom,,, (H* > (X, Z(d — r)), Z)

whose kernel is the torsion subgroup of H”+'(X, Z(r)).

Proof. Fix an m and choose n such that

(i) the image of H* *' (X, (Z/mnZ)(r)) in H**' (X, (Z/mZ)(r)) is equal to
the image of H¥*'(X, Z(r)), and

(i) the image of H*'~*(X, Z/mnZ)(d — r))in H*'~* (X, (Z/mZ)(d — r))
is equal to the image of H*~¥ (X, Z(d — r)).

Let f € Hom,, (H*~?(X, Z(d — r)). Z), and let f, be the composite of
fwith Z — Z/mZ. Then f, factors through H*~¥ (X, (Z/mnZ)(d — r)). and
so there exists an a,, € H**'(X. (Z/mnZ)(r)) such that f, (x) = {x, a,,» for
all x e H*=*(X, (Z/mnZ)(d — r)). By assumption, a,, lifts to an element
a e H"*'(X, Z(r)), and we have that

f(x) = {x, a) mod m

for all x e H*=(X. Z(d — r)). Since m is arbitrary, this shows that the
image of H**'(X. Z(r)) is dense in Hom,,,,(H*~*(X, Z(d — r)), Z). But
H¥*'(X, Z(r)) is compact, and so this proves the map is surjective. The
kernel obviously contains the torsion subgroup of H**'(X, Z(r)); that it
contains nothing more can be seen by tensoring with Z, and counting ranks.

We now prove the theorem. Note that |Reg’(X)| is the determinant of a
map

HY(X, Z(r))" > Hom (H*~*(X. Z(d — 1)), Z)"
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and that. for any finitely generated abelian group M,

Hom (M, Z)" = Hom,, . (M.Z) = Hom (M. Z).

conts

Consider the diagram

H> (X, Z(r)" 5 Hom (H* (X, Z(d — r)), Z)
I I
TH?*(X. Z(r)) Hom,,,,(H*~(X, Z(d — )", Z)

1= T
HY+\ (X, Z(r)ftorsion = Hom,, (H** (X, Z(d — r)). Z).

conts

The isomorphism at left arises from (3.4.3), and uses that H**'(X. Z(r))"
is torsion; the isomorphism at the centre is that in the lemma; the isomor-
phism at right arises from (3.4.3), and uses that H*~**'(X, Z(r));, = 0. In
the next lemma we shall show that the diagram commutes, and it follows
immediately that +det (") = Reg'(X).

LEMMA 5.4. The above diagram commutes.
Proof. According to [Milne (1986a). 6.5]. ¢ is the composite of the maps

H (X, Z(r)) » H” (X, Z(r)) —» H"(X, Z()r —» H" ' (X, Z(r))

the last of which is given by the Hochschild-Serre spectral sequence.
Therefore, there is a commutative diagram

HY (X, Z(r)" - H"(X, Z(r))
L
TH> **(X. Z(r)) l
1
H* "' (X, Z(r)) < H(X, Z(r)),

and so proving the lemma is equivalent to showing that

HY (X, Z(r)) —  Hom (H**(X, Z(d — r)). Z)
| [

HY (X, Z(r)); Hom,,, (H*~ (X, Z(d — r))", Z)
! T=

H**'(X, Z(r))/torsion = Hom,,,,(H* (X, Z(d — 1)), Z)

conts
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commutes. But the pairings in the duality theorems for X and X with finite
coeflicients are compatible, and so this is equivalent to showing that the
following diagram commutes,

H*(X, Z(r)) » Hom (H* (X, Z(d — 1)), Z)
! T
H¥(X, Z(r)) » Hom,  (H* (X, Z(d — 1)). Z),

conts

in which the map at the right is induced by
HY"(X. Z(d — r)) > H*"(X, 2(d — r)) - H*"*(X,Z(d — r)).

Axiom (A3) and (*) imply that the following diagram commutes,

2d

H'X.Z(r) x H'7XZd-r) - H'XZd) =51
l l ! !
HY (X, (Z/mZ(r)) x H*™" (X,(ZImZ)(d — r)) » H*(X,(Z/mZ)(d)) — Z|mZ,

and this implies that the preceding diagram commutes.

Tate’s conjecture implies that the image of CH' (X ) in H* (X, Z(r)) has the
same rank as H* (X, Z(r)), and therefore it is of finite index. We write (X, r)
for the order of the cokernel of

CH'(X) = H* (X, Z(r))|H” (X, Z(r))ors -
Let N'(X) be the image of CH'(X) in H* (X, Z(r)).
COROLLARY 5.5. Under the hypotheses of (5.2),
det (') = +Reg(X) = zdet(D,-E)-t(X,r)- (X, d —r),

where {D.,} and {E;} are bases for N'(X) and N’""(X) modulo torsion,
provided t(X, r) and t(X, d — r) are finite.
Proof. The second equality is obvious, and the first has just been proved.

REMARK 5.6. (a) It is possible that CH' (X)) —» H* (X, Z(r)) might always be
surjective. This combined with Tate’s conjecture would imply that
CH(X) ® Z — HY (X, Z(r)) is surjective, which constitutes an integral
form of Tate’s conjecture.

(b) Clearly it is more attractive to take the regulator term in the definition
of y(X. Z(r)) to be Reg’ rather than det (6"). However, for the present,
det (8") is the more approachable.
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(c) As the kernel of H*(X, Z(r)) - H*(X. Z(r)) is torsion, N'(X) —
A'(X) is surjective with a torsion kernel. It follows that the groups N"(X)
and N“7(X) in the above corollary can be replaced by 4"(X) and 4/~ (X).

§6. Values of partial zeta functions

In this section, we consider the asymptotic behaviour of P.(X, ¢™") as s
approaches r. We restrict ourselves to the most interesting case where
i = 2r = dim X. Our goal then is to show that, under enough assumptions
on the complexes Z(r), it is possible to state a direct generalization of the
conjecture of Artin and Tate. and to prove that it is implied by Tate's
conjecture. Again X is a smooth projective variety over a finite field.

Recall [Milne (1986a), §2] that H'(X. Z (r)). when regarded as a functor
on the base ring, acquires a natural structure as a perfect affine group scheme
whose identity component is algebraic; as in that reference, we write s'(r)
for the dimension of the identity component. Let P.(X, 1) = I, (1 — a;0)
and

ey = s — Y (r— ord/(a).

ord,(u;;)<r
where ord, is the p-adic valuation such that ord, (¢) = 1.

PROPOSITION 6.1. If i # 2r, then H'(X. Z(r))" and H'(X, Z(r)), are both
finite, and

[H' (X, Z(r);]
TR, Z0)7

el(r)

P(X.q7") =

Proof. This is [ib., 6.4].

LEMMA 6.2. Assume that for all primes [ (including | = p). 1 is not a
multiple root of the minimal polvnomial of the Frobenius element acting on
HY(X. Q,(r)). Then z(¢*) is defined and

[H” (X, Z(r))]

PrXoq) ~ 226 o 7N

q":""’(l — g ) ass > r.

Proof. Combine [ib., 6.3] with [ib., 6.6].
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LEMMA 6.3. If d = 2r, then

! [H (R 200 ] g

[ (X, Z0)e] PV (X Z0)] — [HY (. 20

Proof. This is [ib., Lemma 6.7], except that there a term has been dropped.*
The statement p. 337, line 1, that H> (X, Z(r)),,, finite is incorrect (except for
a surface). In fact it is an extension of a finite group by a unipotent group
of dimension s¥ (r). Therefore, the second line of p. 337 should be

[HY (X, Z())] = [(HY (X, Z())o)rlg™ "

[HY* (X, Z(r)\]g™ 010,
Thus the term ¢ ="' in [ib.. Lemma 6.7]. should be replaced by g~ *'¢)
as in the above statement.

The erroneous Lemma 6.7 of [Milne (1986a)] is used only in the proof of
[ib., (0.2), (0.6)] (not (0.1) or (0.4)). In the definition of «,(X) on p. 299, the
term —s”(r) must be replaced by —2s”(r). The correct definition is as
follows:

w(X) = &) — 250 + Y, (r — ord,(ay,)).

ord, (g, j) <r

PROPOSITION 6.4. Let d = 2r, and assume for all | that 1 is not a multiple root
of the minimal polynomial of the Frobenius element acting on H* (X, Q,(r)).
Then

[T 20) 0] det (@)

Pv, X.. — + Lo -
«X.47) 7 O H (X, Z(r )T

(1 —4¢g7)y ass—r.

Proof. This is [ib., 0.2], except that we have corrected the definition of
o, (X).

REMARK 6.5. When d = 2. o, (X) = x(X, 0y) — 1 + dim Pic Var (X).
(As s*(1) = 0. the calculation for «,(X) in [ib., 6.9] is unchanged; the
calculation of a,(X') is incorrect.)

THEOREM 6.6. Let X be of even dimension d = 2r. Assume that there exists a
complex L(r) satisfying Axioms A2, A3, A4 and conditions (x) and (xx) of §5,

41 am indebted to J.-Y. Etesse for pointing this error out to me.
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and suppose that H**'(X, Z(r)) is torsion. If the strong form of Tate’s
conjecture holds for r and all I, and the cycle map CH'(X) — H*(X. Z(r)) is
surjective, then

-4 [Br(X)] det (D, D))

Py(X.q7) ~ + -
’ G OLA (X )ors]

(1 — ¢ )" ass—or,

where Br (X)) = H**' (X, Z(r)), A'(X ) is the image of CH' (X ) in H* (X. Z(r)).
and {D,} is a basis for A'(X) modulo torsion.

Proof. From (4.2) we know that H**'(X, Z(r)) is finite, and that
det (¢¥) = det (&"). Tate’s conjecture implies that the divisible subgroup of
H¥**'(X, Z(r)) is zero, and so H**'(X, Z(r)) is finite. Thus we can replace
the term det (¢*) in (6.4) with det (6"), and even (see 5.5) with det (D, - D;).
By assumption, the map CH'(X') — H”(X. Z(r))" has dense image. and so
H* (X, Z(r))\,s = A" (X ). Finally, H**'(X. Z(r)) = H**' (X, Z(r)),
because H **(X, Z(r)),,., is finite.

REMARK 6.7. (a) Note that Br'(X) = H*(X. Z(1)) = H*(X, G,,). which is
the cohomological Brauer group of X. This explains our notation: Br (X)
behaves as a higher (cohomological) Brauer group of X.

(b) By definition, A4'(X) is the image of Pic (X) in H*(X. Z(1)). Since
the kernel of Pic (X¥) — H?(X. Z(1)) is precisely its divisible subgroup
PicVar (X), we see that A'(X) is the image of Pic (X) in NS(X) (the group
of divisors X modulo algebraic equivalence). According to the definition (see
[Tate (1965/66), §4]), this is NS(X).

(c) The above remarks, together with (6.5), show that when X is a surface
the statement in (6.6) is precisely the original conjecture of Artin and Tate
[ib., Conjecture C].

(d) The hypotheses in the statement of the theorem can be weakened at
the cost of obtaining a less pleasant formula.

REMARK 6.8. Let {n'} be the Kiinneth components of the diagonal of
X x X.According to [Katz and Messing (1974)] the =’ are algebraic, and so
XL (X, 7')is a (Q-linear) motive. Moreover. {(X', s) = P.(X.q")*". Is
it possible to state a conjecture for the values of {(X". s) purely in terms of
X'? For Z-linear motives, we discuss this in the next section.

§7. Examples; motives

In this section we study Conjecture 0.1 using the axioms relating Z(r) to the
K-sheaves rather than to the sheaves ;2 and v, (r). First recall the calculations
made in [Milne (1986a), §10].
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PROPOSITION 7.1. Let X be a smooth projective variety of dimension d over a
finite field.

(@) {(X, s)g" 9= ~ (X, d — s)g?™ D as s > r.

(b) For r > d, {(X, r) = u+ g"*"" where u is a p-adic unit.

Proof. See [ib., 10.2, 10.4].

When combined with the Conjecture, (a) and (b) respectively predict that
(X, Z(r)) = x(X, Z(d — r)) and, when r > d, [x(X, Z(r))|, = 1. The first
equality is also predicted by the conjectured duality between the groups
H'(X. Z(r)) and H~"(X, Z(d — r)), and the second by Axiom B2 and the
conjecture that %, ... ,. #,,_, should be uniquely divisible by p when
r>d.

Finite fields

When d = 0, we use the calculation [Quillen (1972)] of the K-groups of a
finite field and its algebraic closure to verify Conjecture 0.1 up to small
primes.

THEOREM 7.2. Let X = Spec k, k a finite field. If Z(r) is a complex on X,
satisfying Axioms Al and B2, then

{(k.s) ~ x(X, Z(0)) - g*¢0(1 — ¢™*)™" ass — 0,
and
Uk, r) = u- (X, Z(r)) - g2 forr > 0,

where u is a rational number involving only primes | < r.

Proof. For r = 0, Axiom B2 implies that Z(r) is quasi-isomorphic to Z.
Therefore the first assertion is easy to verify, and in fact is a very special case
of [Milne (1986a). 0.4a]. Henceforth, we assume that » > 0.

The zeta function of k is 1/(1 — ¢~*); therefore

{k.r) = q'/(¢ — 1)

for r # 0.
The term x(X, O, r) = r-dim H°(X, O)) = r.
From [Quillen (1972)] we find that

Kz,.k = 0, K2,7|k— = (Q/Z)non-p‘
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and that Frob acts on K, _ k as ¢". An easy calculation now shows that
H'(k. #,,_,) has order ¢ — 1, and H'(k, A#5,_,) = 0 fori > 0. Thus

(kor) = q/g = 1) = g (X, A5 ).

and it remains to relate y(X. A5,_,) to x(X, Z(r)). Note that Axiom B2
implies that

1(X,Z(r) = x(X,grido,_ )" x(X.griAs, ) - - x(X, gryAs,)*!

up to factors involving primes <r.

Consider gr.j,Kz,._,-E. According to [Soulé (1985), p. 493]), the sth Adams
operator Y acts on gr,K,,_;k as 5. But (see [Kratzer (1970), 7.2]), y" acts on
K, _.k as s’ for all k. Therefore (s — s')gr,#5,_; = 0, and so gr,#5,—; = 0
fori # 1 and gr,.#,,_, = X, _, (up to torsion involving primes <r). The
result is now obvious.

Motives

Let V' (k) be the category of smooth projective varieties over k, and let M (k)
be the category of motives over k constructed using the integral Chow
theory (see for example [Soulé (1984), §1]); thus M (k) is a Z-linear category.
We write h: V (k) — M (k) for the functor taking a variety to its associ-
ated motive, and we write L for the Lefschetz motive. Thus A(P') = 1 + L,
and M @ L = M(—1).

We now assume that the definition of the motivic cohomology groups extends
to Z-linear motives, and that the resulting groups have the expected proper-
ties. For example, we should have H'(M ® L. Z(r)) = H ~>(M, Z(r — 1)).

The conjecture in the introduction has a natural extension to motives.
Define y(M. Z(r)) as in the case of a variety, taking the regulator to be the
determinant of the map

8 H¥ (M, Z(r)) —» THY**(M, Z(r)),

considered in §4. Let g, be the order of the pole of {(M, s) at s = r, and
define y(M. O, r) as for varieties. The definition of y(X, O, r) extends to
motives.

CONIJECTURE 7.3. For any motive M over a finite field, y(M, Z(r)) is defined
and

(M, 5) ~ & 2(M. Zr)g™ (1= ¢ ass > r.
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Note that (M ® L,s) = {(M,s — 1), x(M ® L, Z(r)) = x(M, Z(r — 1)),
andy (M ® L, O, r) = x(M, O, r — 1), and so Conjecture 7.3 is true for M
if and only if it is true for M ® L.

Motives of weight zero

Let ¢: Gal (k/k) — Aut (M) be a representation (always assumed to be
continuous) of Gal (k/k) on a free Z-module M of finite rank. Write £ for
the k-algebra Hom (M, k). Then Spec k™ is a finite disjoint union of copies
of Spec k on which Gal (k/k) acts through its action on k and M, and so
Z2M(r) £ I'(Spec (kM), Z(r)) is an object in the derived category of Gal (k/k)-
modules. Define

Hi(o, Z(r)) = H'(Gal (k/k), Z"(r)).
From Axiom B2 we obtain a spectral sequence
H'(Gal (k/k), gr,K,,_; k) = H'"/ (0. Z(r)).

Following [Coombes (1987a)], we define a continuous pure motive of
weight 0 to be a motive M such that

(@) H'(M, Q,) = O fori # 0,1 # p;

(b) the -natural map End (M) — End (H°(M, Q,)) is injective on
Z[Frob), | # p:

(c) the representation of Gal (k/k) on H' (M, Q,) arises from a represen-
tation ¢ of Gal (k/k) on a Z-module of finite rank, and g is independent of /.

(d) Frob has finite order.

PROPOSITION 7.4. Let M be a continuous pure motive of weight 0, and let ¢ be
the associated integral representation. Under the above assumptions,
H' (M, Z(r)) = H'(o, Z(r)) up to torsion by primes | < r and by p.

Proof. In [Coombes (1987a), 2.7] it is shown that K (M) ~ K,(g). and so
this follows from the spectral sequences relating the motivic cohomology to
the K-cohomology.

REMARK 7.5. If M is split by an extension of degree prime to p, then the
proposition also holds for the p-torsion.

Rational surfaces, projective bundles, and blow-ups

PROPOSITION 7.6. Under the above assumptions, the following hold.
(a) If X is a rational surface, then

{k,s) ~u- (X, Z) g7 (1 — ¢7") ass > r
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where u is a rational number divisible only by primes <r and by p: if the
representation of Gal (k/k) on NS(X) becomes trivial after an extension of
degree prime to p, then u is a p-adic unit.

(b) Let Y = P(&) for some locally free sheaf & on X if (0.1) is true for X,
then it is true for Y.

(c) Let Y be the blow up of X along a smooth subvariety Z; if (0.1) is true
for X and Z, then it is true for Z.

Proof. Use (7.2) and (7.4), plus the decompositions:

(@) h(X) =1+ M ® L + L*. M acontinuous pure motive of weight 0;

®)AY) = h(X) + h(X)(=1) + -+ + i(X)(—m);

(©) h(Y) = h(X) + @2, h(Z)(—7).

COROLLARY 7.7. Conjecture 0.1 is true for P" up to small torsion.
REMARK 7.8. (a) By using [Coombes (1987b), §3] one can prove a similar

result to (a) for Enriques surfaces.
(b) Quillen has conjectured that for an affine curve U over a finite field k.

K, ,®Z, H:(Us Z,(r)

K,_, ® Z, H'(U, Z,(r)).

I

As is explained in [Coombes (1987a)], this conjecture implies that
C(X7 r) = X(XZur’ ‘%7'71 )7IZ(XZ:|r’ ‘Z’/‘Zr‘fl)

for r > 1 up to a power of p. I do not see how to pass from there to the
conjecture

X)) = y(X, Z(r))
= 2(Xa. griHs,_ )" (X grids, 2) - (X, gri )™
up to a power of p. By looking at the actions of the Adams operators on
the sheaves gr/..f;,_; one can see that the terms gr.#’,_,,i > 2, only contri-
bute powers of small primes, but this leaves the problem of passing from the

étale cohomology groups to the Zariski cohomology groups. It has been
suggested that

TR = Zg(r) = f,Z(r)
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(see 2.6). If this is so, then

1 (X, Z(r))

X(XZur ’ Rf*Z(r))

Z(XZ‘AI"‘ Z('.)|XZ;Ar) . X(XZur’ I>I-R/.*Z(r))

where 7., Rf Z(r) is the mapping cone of t, Rf Z(r) — Rf Z(r). Perhaps
the contribution of x(Xy,,. 1., Rf,Z(r)) is small.

§8. Corrections to |[Milne (1986a)|

Apart from that noted in §6 above, there are the following minor errors in
[Milne (1986a)].

p. 298: in the statement of SS(X, r, /). the group should be H* (X, Q,(r)).

p. 299: B, = dimy, H'(X. Q)).

p. 301: in the statement of Theorem 0.4a, the last term should be
(I =g

p. 310: A step has been dropped from the proof of Proposition 1.15. The
degeneracy of the spectral sequence shows only that

Iiclrys(X/W) ® Q X @ . HF\F(X’ WQIX) ® QI"

SHr=i

The action of F on the left corresponds to p'F on H'(X, WQy) ® Q,. We
need to look at

P'F—p H(X, WQy) ® Q, » H'(X, WQ,) ® Q,.

As we note on p. 311, 1 — p’/Fis an automorphism of WQ' for all j > 1.
and so the terms with r > 1 contribute nothing to the kernel or cokernel. If
r < t, then we need to consider

I — p'F H'(X, W) ® Q, —» H'(X. W) ® Q,.

but H'(X, WQ})/torsion is a free Z,-submodule of finite rank stable under
F, and therefore it is obvious that 1 — p'~" F defines an automorphism of it.
Therefore the only term that contributes to either the kernel or cokernel is
H (X, WQ,) ® Q,, and so the rest of the proof applies as before.

p. 324: The alternative proof of the equality s*(1) = d*(0) presented in
(3.4), while essentially correct, is a little too slick.

p- 339: In the first exact sequence, an underline has been omitted.



Motivic cohomology 101

Note (added March, 1988). In a recent preprint (New results on weight-two
motivic cohomology), S. Lichtenbaum makes important improvements to
his earlier results on Z(2). In particular he proves (up to 2-torsion):

(i) Axiom C1 (the Gersten sequence) for Z(2) when X is a regular scheme
over a field;

(ii) Axiom C2 (purity) for Z(2) under the same condition on X.
These two results allow him to show that there exist cycle maps CH*(X) —
H*(X. Z(2)) compatible with the cycle maps into H*(X, Z,(2)) for all /
(including ! = p). Thus Theorem 4.3 of this paper now shows that if
(X, Z(2)) is defined. then

(X, 2) ~ ((Z, Z2)g" " (1 — g°7')™ " ass > 2,

(up to 2-torsion) when X is a smooth projective variety over a finite field.
Moreover. (X, Z(2)) is defined whenever the groups H'(X, Z(2)) have no
uniquely divisible subgroups and Br*(X) (d:r H’ (X, Z(2))) is finite.
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