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Introduction: 1In this article we give a detailed description

of Langlands's construction of his Taniyama group. The first
section reviews the definition and properties of the Serre

group, and the following section discusses extensions of Galois
groups by the Serre group. The construction itself is carried
out in the third section, which alsc contains additional material
required for V .

We mention that in [1] Langlands is using the opposite sign
convention for the reciprocity law in class field theory from us
and hence the opposite notion of the Weil group (although his
statement at the bottom of p. 224 is misleading on this point).
Thus, there are many sign differences between his article and
ours.

Notation: Vector spaces are finite-dimensional, number fields
are of finite degree over (@ (and usually contained in € ),
and @ is the algebraic closure of @ in € . For L a number

b(: @ denotes its abelian closure. For the Weil

field, 1?
group, we follow the notations of Tate [2]. 1In particular,
for a topological group T ., I denotes the closure of the

commutator subgroup of T and Fab = I‘/I‘c .
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§1. The Serre group.

Let L CCT be a finite extension of @, let T be the

set of embeddings of L into €@ , and write L for ResL/mGm .
Any p € Gal(Q/Q) defines an element [p] of T , which may
be regarded as a character of L . Then T 1is a basis for

X* (L) . An element o of Gal(Q/@) acts on X* (L) by
U(Xbp[o]) = pr[op] = Zbc_l [p] . The quotient of X by the

Zariski closure of any sufficiently small arithmetic subgroup

has character group X*(L*) n (¥° ® ¥ ) where

YO

{x € X* (L") @ Qlox = x . all ¢ € Gal(@B/@)}

L

Y

{x e X* (L) ® @lcx -x, all ¢ of the form ¢ = oro

(Serre [1, II-31, Cor.l]l). Thus this quotient is independent of
L

the arithmetic subgroup; it is called the Serre group S of
L (or, sometimes, the connected Serre group). One checks easily

that X*(SL) is the subgroup of X*(Lx) of x satisfying

(1.1) (0-1) (1+1) x= 0 = (1+1l)(c-1)x , all o € Gal(@ /@) .

There is a canonical homomorphism h = hL: $ =+ %ﬁ and hence
. L

corresponding homemorphisms Wy Gm > S;{ and W = uL: Gm - SE

They determine the following maps on the character groups:

X*(n) = (zb[p] k¥ (by,b): X*(S") —> x*(8) =z @ Z)
X*(wy) = (Zb [p] +> - by - b))

X*(p) = (pr[p] — by)
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Note that Wy is defined over @ . The pair (SL,uL)

universal: for any (@-rational torus T that is split over

is

L and cocharacter u of T satisfying (1l.1) there is a

L

p
unique Q-rational homomorphism S —*5 7 such that pu oy =

In particular there are no nontrivial automorphisms of (57 ,u")

For CTDOL'D LD Q@ and L' of finite degree over

L)
@ , the norm map induces a homomorphism SL > SL sending
i
hL to hL . The (connected) Serre group S 1is defined to be

the pro-algebraic group 1lim s . There is a canonical
“

and corresponding

IR

homomorphism h = h = lim h': s+ s
can pa

cocharacter u = Vean® Gm - SE . For any L , SL is the

largest quotient of S that splits over L

We review the properties of S that we shall need to use.

(1.2). The topology induced on s® (@) by the embedding
st(g) < SL(me) is the discrete topology:; thus st is

closed in sV(mf) . rThis is a consequence of Chevalley's

theorem, which says that any arithmetic subgroup of the Q-rational

points of a torus is open relative to the adelic topology, because

the subgroup {1} of st(p) is arithmetic.

(1.3). Make Gal(ﬁ/@) act on the group A of locally constant

functions Gal(Q/Q) -+ % by transport of structure: thus

1

{(oA) (p) = A{¢ "p) . The map x*(SL) + A that sends x = pr[p]

to the function P > bp identifies X*(SL) with the subset
AL of A comprising those functions that are constant on

left cosets of Gal(@/L) in Gal(RQ/@®) and satisfy (1.1). On
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passing to the limit over L , we find that X*(S) becomes

identified with the subgroup of A of functions satisfying (1.1).

(1.4). Let @™ be the union of all subfields of @ of CM-type;
it is the largest subfield on which 1 and o commute for all
0 € Gal(R/®) . The condition (1.1) is equivalent to the following

conditions:

(L.1") A is fixed by Gal(@/@°™) and A(10) + (o)
is independent of ¢

L

In particular, for a given L , A AF where F =1 QO is

the maximal CM-subfield of L (or is @) . Since obviously

AE AT , they must be equal: s % gF |

(1.5). (Deligne) Let F be a CM-field with maximal real
subfield Fo - There is an exact commutative diagram (of algebraic

groups)

; —= 5 s /hw (@)

1 —> Ker —> F
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To prove this it suffices to show that the square at bottom-right
commutes, and the top horizontal arrow is injective, but both
of these are easily seen on the character groups. Thus there

is an exact sequence

1 — Fy — FxQ — sF — 1

We can deduce that, for any field k o> @ , there is an injection
Hl(k,SF) —> Br(F0 ® k) where Br denotes the Brauer group.
It follows that, when k is a number field, the Hasse principle
1 F

(k_.,S57) 1is

holds for Hl(k,SF): the map Hl(k,SF)e- ® H v

injective. The remark (1.4) shows that this is also true with-

out assuming F to be a CM-field.

(1.6) Let A € X*¥(S) and let TA be the @Q-rational torus
such that X*(T,) is the Gal (/@) -submodule of X*(S) generated
by A . Thus TA is a quotient of S and hcan defines a

homomorphism h: § * TA . For any Q-rational representation of

TA’ Tk <> GL(V), (V,h) 1is a Q-rational Hodge structure with
weight n = -(A(1) +A (1)) and Mumford-Tate group MT(V,h) = TA
(See II). The condition (1l.1') shows that 1 acts as -1

on Rer(A' > A'(L)+xa'{1): X*(T,) > Z); thus (T /vy (8)) (R)
is compact, and (V,h) 1is polarizable (Deligne [1l,2.8]). It
follows easily that S = lim MT(V,h) where the limit is over
the Q@-rational polarizable Hodge structures (V,h) of CM-type.
In other words, 8 1is the group associated with the Tannakian

category of Hodge structures of this type.
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(1.7) (Serre). It is an easy combinatorial exercise to show
that X*(S) 1is generated by functions A such that (o)

is 0 or 1 and Afc) + A{(wo) =1 . If A 1is of this type
S GL(V) of T

then, for any representation T (V,h)

A A
is a Q-rational polarizable Hodge structure of CM-type and
weight -1; it therefore corresponds to an abelian variety. Thus

S = lim MT (A) where the limit is over abelian varieties (over Q)
of CM-type. 1In other words, the Tannakian category of Q-rational
polarizable Hodge structures of CM-type is generated by those

arising from abelian varieties.

(1.8) If L is Galois over @ , then Gal(L/@) acts on
L = ReSL/me and this action induces an action on the quotient
s . Thus there is an action of Gal(@/@) on the @-rational

pro-algebraic group S . It is important to distinguish carefully
between the two natural actions of Gal(Q/@) on S(@) , the

first of which arises from the (algebraic) action of Gal (©/Q0)

on S and the second from the (Galois) action of Gal (Q/R)

on @ . See Langlands [1l, p.220].
2. Extensions of Gal(a/m) by S

By an extension of Gal(Q@/@) by S we shall mean a

projective system

1 —> s¥ —— ' — i —— 1
J,NL'/L j/ l can (L L)
L L ab
1 — 8 —— — cal®/m —— 1

P
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of extensions of Q-rational pro-algebraic groups; the indexing
set is all finite Galois extensions of @ contained in Q@ .
The group Gal(Lab/Q) is to be regarded as a pro-system of
finite constant algebraic groups in the obvious way, and the
action of Gal(Lab/Q) on SL determined by the extension is
to be the algebraic action described in (1.8). On passing

to the limit we obtain an extension
1 — s — 1 — Gal/®) —> 1

We shall always assume there to be a splitting of the extension
over mf , i.e., a compatible family of continuous homomorphic
sections SpL: Gal(Lab/m) +—Ef% mf). In the limit this defines
a continuous homomorphism sp: Gal(D/@) - Ejihf)

Fix an L . The general theory of affine group schemes
(Demazure-Gabriel [1,V.2]) shows that, for some finite quotient

%' of 9 = Gal(Lab/Q) P 3} will be the pull-back of an extension

of g by sk

|
l

J
i

B s
=g <R

Since st splits over L , Hilbert's theorem 90 shows that

1
H (L,SL) = 0 , and so E}(L)—a'%' is surjective. Thus we can
choose a section a': %'-9 E&J, vhich will automatically be a

morphism of algebraic varieties. On pulling back to ¥ , we
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get a section a = al: Gal(Lab/m) +'Ei which is a morphism

of pro-algebraic varieties. The choice of such an a gives

us the following data.

(2.1). A 2-cocycle (&, _ ) for Gal (1L?/p) with values
172

. , L . B -1
in the algebraic group S; ., defined by dT T, = a(Tl)a(Tz)a(rsz) .

1'
(2.2). A family of l-cocycles c(1) € zl(L/Q,SL(L)) , one
for each 1 € Gal(Lab/Q), defined by CO(T)a(T) = ga(t) .

(Gal(L/@) acts on sP(L) through its action on the field L.)

IW m{) defined by

(2.3). A continuous map b: Gal(Lab/Q) + S
b(T)SpL(T) = af{t) .

These satisfy the following relations:

(2.4). d,tl’T2 -co(tl) ‘Tl(co(tz)) = OdTl'TZ 'co(rltz) ,
_ . . -1

(2.5). drl,rz = b(rl) rlb(rz) b(Tsz) :

(2.6). CU(T) = b(T)-l *o(b(t))

for TyrTyeT € Gal(Lab/Q) and o € Gal(L/@) . (We have used the
convention that T € Gal(Lab/Q) acts on SL(L) through its
action on S” , and o € Gal(L/@) acts on st (1) through its
action on the field L.) 1In fact, the first relation is a
consequence of the other two.

Note that b determines (dT . ) and the (cg4(T))

12

and that the image B(1) of b(t) in st(mh/stw) is
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uniquely determined by the extension and spL (independently

of the choice of a)

Proposition 2.7. A mapping b: Gal(Lab/m)-—?SL(:mi)/SL(L)
arises (as above) from an extension of SL by Gal(Lab/Q)

and a splitting if and only if it satisfies the following conditions:

(a) o®(1t)) = Blr), all 1 e cal(t®®/q), o € cal (L/D);

(b) Blrjry) = Blry) ~1,blty) , all 1, 1, € Gal@?®/p) :

£
L

§£ b(rl)-rlb(rz)'b(Tsz)_l is

(c) b 1lifts to a continuous map b: Gal(Lab/Q) > SL(ZB ) such

that the map (1,,7,)— dTl,‘t2
locally constant. Moreover, the extension (together with the

splitting) is determined by b up to isomorphism.

Proof. We shall only show how to construct the extension
from b , the rest being easy. Choose a lifting b of b

as in (€) . The family d; is a 2-cocycle which takes

T

1’72
values in the algebraic group Si . It therefore defines
an extension
1 — s — ' — cae®/m — 1

of pro-algebraic groups over L together with a section

L

a: Gal(Lab/Q) . 3L that is a morphism of pro-varieties.

Define 2} to be the pro-algebraic group scheme over & such

that Eﬁ(ﬁ) =‘$E(ﬁ) with Gal(@/m) acting by the formula:
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o(s+a(t)) = cy (1) + os - a(1), o € Gal(@/@) , s € st @

1 L

t e al@®/m) , c (1) £ b(1)7! - ob(t) € 8 (L) . There is an

exact sequence

1—» s —s 1t — Gal (L3P/Q) —> 1 .

i e SL(]AIf_I)Gal(L/l]l}) - si(mf ,

For each 1 € Gal(L?®/@ , b(1)~
and T} sp(T) 4f b('r)_la(r) is a homomorphism. As b is

continuous, so also is sp .

Corollary 2.8. To define an extension of Gal(®/@) by S
(together with a splitting over ]Af) it suffices to give maps
BY: ca1a®/m » s®(mf)/stw) satisfying the conditions of

(2.7) and such that, whenever L CL' ,

. _L‘ 1 1
Gal(L'2P/m) b 5 sb (]Af.. L

Ys™ (L")

can NL 'L

L
Ga1(1?P/q) —B sL(lAf)/sL(L)c—» sL(mf,)/sL(L')

commutes.

Remark 2.9. Let ,I be an extension of Gal(@/@) by S .
For any T € Gal(@/@) , multiplication in X makes ﬂ_l(T) into
a torsor for S , and sp(t) 1is a point of the torsor with values

in ]Af (i.e. a trivialization of the torsor over E\.f) . 1In

the above we have implictly regarded 'rr—l('r) as a left torsor,

because that is the convention of Langlands [1]. It is however
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both more convenient and more conventional to regard ﬂ_l(T)

as a right S-torsor. With this point of view it is natural to
associate with 2, cocycles (yo(T)) and a map B8 defined as
follows: let L be a finite Galois extension of @ and choose
a section T — aflr) to E} -+ Gal(Lab/Q) that is a morphism

of pro-algebraic varieties; then

ca(t) = aliy,(t), for o € Gal(L/@), T € Gal(x?/@) , and

sp(t)B(t) = a(tr) for T € Gal(Lab/Q)

The following relations hold:

1

Yo (1) = B(T) ~ -0 (B(T)) «

—_ _ _l_ . "
B(TlTZ) =T, B(Tl) B(Tz).
The new objects are related to the old as follows:

-1
Yo (1) = T le (1),

B(t) = 1 b(1)

Define c'(t) and b'(t) by the formulas (2.2) and (2.3) but

with a(t) replaced by the section ThH> a'(t) = a('t_l)_l .
Then
_ i --1i-1
Yo (1) = cp(t ) ,
B(t) = b' (1 HL .
In particular, we see that Y(t) and c(T_l)-l are cohomologous
1,-1

and B (1) = b(t T)
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Example 2.10. In the preceding discussion there is no need
to take the base field to be @ . We shall use this method to

construct for any number field L<Q , a canonical extension

L L, ab
1 > S > (Ew)

5 Ga1(t?®/m) — 1

of pro-algebraic groups over @ , together with a splitting
over :mf . According to (2.7), such an extension corresponds to
a map b: Gal(Lab/L) -> SL(Zmi)/SL(L) satisfying conditions
similar to (a), (b), and (c) of that proposition. In fact
we shall define a map b: Gal(t®®/1) » st(mf/sP@ <
SL( n{)/SL(L) and so (a) will be obvious (and the cocycles
c(T) trivial). Note that Gal(L?P/L) acts trivially on s”
and so (b) requires that b be a homomorphism.

The canonical element uL € X*(SL) is defined over L ,
and so gives rise to a homomorphism of algebraic groups,

L
y ResL/Q(u ) NL/m

L L
. A SN
NR L ReSL/(D SL —=x 5 3

Consider

NR(B): B, —> sT(m)
§] U
x L
NR (L) : L —> ST (D)

The reciprocity morphism (Deligne [2,2.2.3])
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r, = o %0 ca1@®/m) —» stmfy /st

is defined to be the reciprocal of the composite of the

following maps: the reciprocity law isomorphism

Gal(t®/1) > T (RI/LX) . the map T (B/L) + o (sT(m)/sT @)
defined by NR , and the projection ﬂD(SL( m)/sL(m)) + SL(ZRf)/SL(W))-

We define b(1) = rL(r)'l . Tt satisfies (a) and (b) of (2.7).

L

According to (1.2), S7(@) 1is a discrete subgroup of

SL(me), and hence of SL(IR). Thus there is an open subgroup
U of B such that NR: Br > S"(B) is 1 on U AL .

X
If F DL corresvonds to UC EL , then there is a commutative

diagram

1 —> ca1(t®®/F) — ca1@?P/n) —> Gal(F/L) — 1

b/ g —
b , b
v
¥
stinf)y T —5 stenhsm

in which b ': Gal(@®®/F) » s¥(m) is induced by

NR: U/U n L - SL(BU . It is easy to extend b to a
continuous map Gal(Lab/L) + SL(Rf) lifting b: choose a set
s’ of representatives for Gal(F/L) in Gal(Lab/L), choose an
element b(s) € SL(Imf) mapping to b(s) for each s € s,

and define b(sg) = b(s)b(g) for s €S , g e Gal(t?®/F). This
map b satisfies (¢) of (2.7) because, when restricted to

Gal(Lab/F), it is a homomorphism.
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Remark 2.11. The extension constructed in (2.10) is, up to sign,
that defined by Serre [1]. For a sufficiently large modulus -
the group T, = T/E*L of (ib.,p II-8) is the Serre group

L ab

§° , and C = Gal(pm/L) for some I&»C: L . Thus the sequence

(ib.,p II-9) can be written
L
1l —> s _> Sw E— Gal(Lm/L) — 1
On passing to the limit over increasing 44 , this becomes

1 —> s* —> @ —» care?t/my —>1 .

The splitting (over mz) is defined in (ib., 2.3).

§3., The Taniyama group.

We denote the Weil group of a local or global field L
by WL' Let v denote the prime induced on @, or a subfield

L of ®, by the fixed inclusion @ c¢— €, and let L, denote

the closure of L in Ev = €. According to Tate [2] there is
a homomorphism iV: Wm -+ wCD such that the diagrams
v
r ab ¢v =
LV Y WL W@ —_ Gal(Qv/mv)
= v v
lcan liib liv [
r —
C, —=— wib Wa —2 . ca (@/@)

commute for all number fields L contained in Q. The

constructions that follow will be independent of the choice of
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iv' but we shall ignore this question by fixing an iv. If

L@ is a finite Galois extension of @ then iv induces

if c af lo) R
a map from va/mv = wmv/wLv to WL/(D = WQ/WL which makes

X
1 — LV——> WLV/QV —_— Gal(Lv/(Dv) —> 1

l l iV l (3.1)

l —> CLQ W — Gal(L/@ — 1

L/Q
commute.

We note that there is a commutative diagram

l — CL _— WL/Q E— Gal(L/Q) — 1
l | I (3.2)

1 Gal(Lab/L)—> Gal(Lab/(D) — Gal(L/Q) — 1

in which the vertical arrows are surjective.

Let T be a torus over @ ; by analogy with T(L) =
X, (T) 8 L, T(]Af)=x*(T) o mf etc., we shall write T(CL)
for X,(T) @ CL - If pueX,(T) and a belongs to a
u

Q-algebra R (or CL) then we write a for y ® a € T(R).

Fix such a torus T and an element y € X, (T), and let
L@ be a number field splitting T. For each 1 € Gal(Lab/(D)

that satisfies
_1 _
(1 + (T -1y =20 (3.3)

and lifting ¥ of 11 to wL/CD (using the map in (3.2)) we shall

define an element bo(%,p) e T(CL)/T(L:), where L =1L QCD R .

Choose a section © b——)wc to W —— Gal (L/@) such that:

L/Q
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(2.4a) w, = 1;

(3.4b) W EW c W ;
1 L,/Q, L/@

(3.4c¢) for some choice of H containing 1 and such that

Gal(L/®@) = HVH:1 (disjoint union), = W w1 for all g € H.

\%
gl g
Of course, the last two conditions are trivial if L CIR.

Corresponding to w there is a 2-cocycle (a0 T), defined by

’

_ ab .
LA ad,T L Let 1 € Gal(L" /@) satisfy (3.3) and let
T € WL/Q map to it. Choose c0 . € CL to satisfy wor =

’

c . W , and define
o,T oT
bolE,u) = T c % eTc)/TL).
c€Gal (L/Q) g1
Lemma 3.5. The element bo(?,u) is independent of the choice

of the section w; it is fixed by Gal(L/Q).

Proof. (Langlands {l. p. 221; p. 223].) Suppose ¢ & wy =

e w e
go ' o

defined using this section. It is easy to see that

-1
] ~ i
c g, T = e,r g Co,? for all o € Gal(L/@) .
Therefore
x v - gy, -1 _ou ~
b (T,u)" = (T (eOT ) L } b (T,m) .

c € Gal(L/@ )

We have to show that the product in { } 1is congruent to 1

X
modulo L _ . Consider g € Gal(LV/mv) . Because of (3.4b),

€ CL , is another section. We use ' to denote objects
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we have ey € L: and hence p(eo) e Li for all p € Gal(L/@)

As
a' =e ple) e la
p,0 p" e’ Tpo Tpsog ]
X
and both ap,o and ap’0 belong to L_ , we have ep = epo
XX
(mod L) . Thus
l \ ouy=1 _ou _TT; oty ou
(eor) e, = (e0 ) e
o € Gal(L/D) g
TTe o(1-t hHu
o o
en0(1—r'1)u
no

" neH o€ Gal(Lv/mv)

is congruent modulo L: to

1

T —ﬂ- eT]G(l—T— RN
o y n
neH o€ Gal(lL,/q, .
which is 1 , because in view of (3.3) ,
c(l—T_l)u =0 .

c € Gal(LV/mv)

Next we show that bo(f,u) is fixed by Gal(L/@Q) . We
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have

) = a al ¢ . for all p,o € Gal(L/Q) .

plcy, g p,o 2p,0t Spo, ¥

and hence
~ _ ” -1 poU -~
p(b (T, 1)) = {o (ap,c ap,UT) P b (Fom)

We can write the product in { } as

-1 -1
TT pouy -1 pot Wy _TT po(l-t Tu
s o6 1&g )=§ 3.0
-1
pno(l-1 T)u
_TIT 3, o
n€H o€ Gal(L,/q,)
. X

I . H

n view of (3.4c) we have ap,nc ap:ﬂ {mod L_) for all
n€H and o € Gal(Lv/mv) . Hence the above product is

x
congruent modulo L to

T 17 . eno(-t hu
neH o€ cal(L,/a,) °" '

which is 1 because of (3.3) .
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On tensoring

1 — L5 —s ]Afo — mfx/Lx —s 1
-1 l l l: (3.6a)
1— 1. —> c,k — CL/L: — 1

with X,(T) we obtain an exact commutative diagram

L — mn — ;) — T(mf) /T(L) —> 1

-1 | I (3.6b)
1 — T(,) — T(C)) —> T(C; )/ T(L,) — 1

(The -1 reminds us that the map is the reciprocal of the obvious
inclusion.) We define ©b(T,u) to be the element of T(R{)/T(L)
corresponding to bo(?,u). Lemma 3.5 shows that it lies in
(T(]AE)/T(L))Gal(L/m) and hence gives rise to an element

c(T,u) € Hl(L/Q, T(L)) through the boundary map in the exact

sequence

1> 1@ — m) — (@ /rw) WY gl o).

Lemma 3.7. The cohomology class c(%,u) depends only on the

image of ¥ in Gal(L/Q).
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Proof. Suppose ' and T have the same image in Gal(L/Q):
the ' = uT i , ~, = ~ -
n T ut with u e CL and Co,'r' cx(u)co’T Thus
bo("f,u) is multiplied by no(w) " = NR(w) , where NR 1is the
N
map of algebraic groups L Re—s(u)_) ResL/@ TL —L/—CD> T. Choose

an element U € ]Af' such that W and u represent the same
element in CL/L: . Then NR(U) € T(]Af) has the same image as
NR(u) in T(C)/T(L)), and we see that b(i',u) = NR(W) B(%,u)
where NR(ll) denotes the image of NR(U) in T(]Af)/T((D) c

T(nf)/T(L). Hence c(%,1) = c(¥',u).

Thus we can write c¢(t,u) for c(T,u) where 1 € Gal(Lab/m)

(or even Gal(L/Q)).

Lemma 3.8. Up to multiplication by an element of the closure

(M~ of T(@) in T(]Af), b(%,u) depends only on 1 (and

not T).
Proof. From (3.2) we see that 7T can be multiplied only by
an element u of the identity component of C.. An argument as

L
in the proof of (3.7) shows that multiplying T by u corre-

sponds to multiplying b(%,p) by NR(3), where U is a lifting
of u to ]AIfJ. But U 1is in the closure of A C_(]Alf')x, and

so NR(U) is in the closure of T(Q).

Thus, for any T € Gal(Lab/Q) satisfying (3.3), there

is a well-defined element b(t,u) € T(]Af')/ T(L) T(@) "
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Example 3.9. For any T and § , b(1,u) is defined; we

show that it is 1. We can take 1 = W If o € H (see 3.4),

1 = = . = 1; o i =
then wgl wcwl W and co’l moreover Wcll
X
= = L = . learl
W W W, wca1,1 o(alll]wc and cm'I o(alll] €L C y
b,(t,m) = 1.
Proposition 3.10. Let h : § » TR be a homomorphism and

=y, be the corresponding cocharacter. Assume that u is
defined over E< L . Then b(t,n) is defined for all T €
Gal(Lab/E) and there is a commutative diagram

Gal (L3P p) RL.n) T(]Afl)/T(L] T(D)"
r_(T,h)

1rest 1 J
E

Gal(®/E) 2 5 o@bH /rn

in which rE(T,h) is the reciprocity morphism (Deligne [2,2.2.3]).

In particular, c{(t,u) is trivial.

Proof. Let 1 € Gal(Lab/E). Then 1 fixes uy, and so (3.3)
is satisfied and Db(t,p) is defined. We may choose the section

w to WL/CD + Gal(L/@) in such a way that wo = T maps to T

in Gal(ra2b/p). Then < =

~ a Let R be a set of repre-
o,T 0,1

sentatives for Gal(L/Q)/Gal(L/E). We have

b, (%,u) T T aP¥
0 pE€R o€ Gal(L/E) PO'T

1]

(since ou = p)

T (TTtea - a catl e

pER g T P,OT pP.0

TT  (pa)P¥ , where a =TT a .
be R g Ot
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To evaluate a, we use the commutative diagram (Tatel[2, W3])

r
E ab
Cg > Wg
Lk
c ——L—> wab
L L

where t 1is the transfer map arising from the inclusion

= - = ~1aC
WLC—> Wg o« Clearly rL(a) = "rL(ao,T) = t(TW_). Thus a

E
ab

is an element of CE that maps to T|E in Gal(Eab/E). Let

a e ]Af represent the same element in CE/E: as a. Then

E
b(t,u) is the image of a under ]Aéx NR, T(lAf)/T(CD)", and

this equals r_(T,h) ('tIEab)_l .

We now apply the above theory to construct the Taniyama

group of a finite Galois extension L of @, L C@. To do so,

we take the torus T to be SL and pu to be the canonical co-

character of SL (see §1). Since SL((D) is closed in SL(JAf)

the above constructions give a map Gal(Lab/(D) —_—

Gal (L/Q)

(SLGAf‘)/SL(L)) which we denote by bD(or Bly.

Proposition 3.11. The map b satisfies the conditions of (2.7)

and so defines an extension

1 — sL — ’VT:" e Gal(Lab/(D) —> 1

together with a continuous splitting over I\f .
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Proof. We have already observed (Lemma 3.5) that b(t) is
fixed by Gal(L/@) for all Tt . To show b satisfies (2.7b),

let T = 147, and lift T, and T, to elements %l and ?2

of wL/m . We take 1112 to be the 1lift of 1 = 1Ty -
Then we have

S.% = %,%, Sor.,% for all o € Gal(L/Q) .

1 1"°2
Hence
bo(r,u) T o (cc,fl) ]]-(corl,?z)
The first factor is bo(fl u) , and the second one is
-1 ’

TT 6T, ~u L. ~ .
o (cc'% 11 , which is Tl(bo(Tz,uD (recall that the action

2
of t; on sV is the ‘algebraic' one, see §1.8). Thus
E(Tlrz) = b(t,) TﬂE(TZ)) . To prove (2.7c), consider the

diagram

ca1(t??/q) —— st@ml) st

{ f

cal(r®P/L) —2 5 sl(mf)

where b is the map defined in (2.10). The diagram commutes
because of (3.10). It is easy to extend b to a continuous
map Gal(Lab/m) > SL(]Af) lifting b (see the proof of 2.10).
Then b satisfies (2.7c) because its restriction to Gal(Lab/F)
is a homomorphism, where F 1is the finite extension of L

defined in the proof of (2.10).
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The extension, together with the splitting, is the Taniyama
group of I . The next lemma implies that the Taniyama groups
for varying L form a projective system: we have an extension

of Gal(@/@®) by S in the sense of §2.

Lemma 3.12. If L'D> L then

o

Gal (L' 22/ q) > SL'(]Af‘.) /st @wn)
rest. N

=L
Gal(1?P/g) —2 sL(JAf) /s L) C— sL(JAIf") /st L)

commutes.

Proof. We discuss the case Gal(L'/L)/ Gal(LQ/mv) = {1} first.

Let R be a set of representatives for the coset space
Gal(L'/L)\Gal(L'/@)/Gal(L;/Q,)

We choose R such that 1 € R . For elements £ in

Gal(L'/L) U R U Gal(L!/®,) , choose w‘g e wL,/m lifting £ ;

we choose wi =1 and for op € Gal(L&/QV) , choose wb to

be in W, /@, - Write an element o of Gal(L'/@) uniquely
v

as o = Cnp with ¢ € Gal(L'/L) , n € R and p € Gal(L;/mv) ,

and put
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Then ¢ B w' is a section of W,, + Gal(L'/Q) satisfyin
/0 ying

¢} L
(3.4). We choose a section o b w, of WL/Q + Gal(L/@) as
follows: for o € Gal(L/Q) , ¢ extends to a unique np in

Gal(L'/@) with n € R and p € Gal(Lé/mV) ; we take w, to

be the i £ 'o= 'wt i .
image o wno wpowy inowp o

Let T be an element of Gal(L'3P/Q) . we 1lift T|L’
to T' in WL'/Q , and let T be the image of T' in

w Suppose ¢ € Gal(L/@) 1lifts to np € Gal(L'/Q) and

L/Q °
oT € Gal(L/@) 1lifts to n'p' € Gal(L'/®@) . Then

with d4d' e w

L'/L<: WL'/Q . This shows that under the homomorphism
3 ' _ ab
WL'/m - WL/m , the image d of 4 belongs to WL/L = W and
is the image of cc(%) under the isomorphism 1r; : CL + Wib .

On the other hand, for ¢ € Gal(L'/L), there is a unique

t' € Gal(L'/L) such that zZnpt = g'n'p' . By definition

w! w!' w' ' = ¢ p(?') w

w', w! .
T n p zn ' p!

z' 'n p

It follows that

p(T') w

L
z ®zn z (3.13)
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R . . . ab -~ ab
This is an eguation in wL'/L . Let t W= (WL‘/L)
Wg? (WL,/L,)ab be the transfer homomorphism arising from
wL‘/L"* WL'/L . We have an exact sequence

l——)cL' — W —_— Gal(L'/L) —— 1

!

WLI/Ll

L'/L

and [ » wc

shows that t(d) =r

is a section of wL'/L + Gal(L'/L) ; thus (3.13)

! (7')) . si
L ( C—le_—];;al(L'/L) ene" ) nee

rr

L ab
Cpw ——————> WL
Tt
I ab

L W

S
CL L

commutes (Tate [2, §1, W3]) and rL(ca(f)) =4 , co(f) regarded

as an element of CL' is ]—T cc (') . Now under
r € Gal(L'/L) ne

NL'/L : X*(SL ) - X*(SL) , Znps maps to ou for all

¢z € Gal(L'/L) . Therefore

b (T',u) = T_T ch

N 1
o (TP ec v o X, (V)
z,n,p

p

maps to
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TT dTe,. G N™ec,, © x,(sH
ne ¢ °MP L
np>o

But

=iy OH _TT =y OH _ ~ L
IE (Ucmp(r ot o= ’U| (c ()" = b (T, u) € C & X, (s7)
np+o

Hence the diagram in the Lemma commutes.

Now suppose Gal(L'/L) N Gal(L'v/mv) # {1} . This happens
only if L, = R . Thus in this case X*(SL) = Z and the
Galois group acts on it trivially. Let o ~ W be an arbitrary

section of W + Gal(L/@) , not necessarily satisfying (3.4).

L/Q
Define c¢_€ C by wi=c_w . Then ]_chu =-TTcu ec
a g o o o

L g o 0T L

is independent of the choice of the section o » L for

. . M . . .
in replacing L by ey Wi € e CL ' IJ. c, 1is multiplied

by the factor AII_(eOeOT_l)u, which is 1. 1In particular,

b (T,u) =]J'CGOH . Similarly, let p b w's be an arbitrary

section of WL'/Q + Gal(L'/@Q) , and define cé [ CL , by
L= ' L] . 3 f 1y PH 3 L C 3
wp T C,h Wit Then the image o pl(cp) in S is

independent of the choice of p » wé ; in particular, it is

o)

the image of bo(?,u) . For our purpose, we choose o & W

and p ~ wp as follows. Let R be a set of representatives
for the coset space Gal(L'/L)\Gal(L’/m) . Fix wé [ WL'/Q
projecting to & for each & in Gal(L'/L) J R . For
p € Gal(L'/Q) , write p = igfn with ¢ € Gal(L'/L) and

n € R , then put wé = wé wa. For o € Gal(L/@) , let n be
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the unique element of R extending ¢ , and let W be the

As before, we have c¢_ =

image of wa in WL/CD . g
]_r c!
‘ zn
r € Gal(L'/L) if n € R maps to ¢ in Gal(L/@) . It

follows that the image of bo(?',u) is bo(T.u) .

Proposition 3.14. Let T be a torus over @ , let u € X,(T) ,

and let t be an automorphism of € . Assume (3.3) holds,
so that c(t,u) € Hl(L/Q , T(L)) is defined for L a suffi-
ciently larger number field. The image of c(t,u) in
Hl(Lv/mv,T(Lv)) is represented by u(-l)/r_lu(—l) €

Ker(l + v : T(T) -+ T(T)) .

Proof. The image of c(t,u) in Hl(m/nz , T(C)) is the cup-
product of the local fundamental class in Hz(m/nz , ©) with

the element of H'l(c/na ;, X,(T)) represented by (1 - r_l

PATI
(See Langlands [1, p. 225]). Thus the proposition is a conse-

quence of the following easy lemma.

Lemma 3.15. For any torus T over IR , the map H_l(m/ﬂl,x*(T))
- Hl(E/Kl,T) induced by cupping with the fundamental class in
HZ(E/HI,EX) sends the class represented by x € X,(T) to the

class represented by x(-1) .

Remark 3.16. Thus c(t,u) has the following property: For
any finite prime p of @ and extension of p to L , c(T,p)

has image 1 in Hl(L%/mp , T(Lg)) , and the image of c(1,u)
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in Hl(m/nz, T(C)) is represented by (1-<"t

When T = SL , (2.5) shows that this property determines

) w(-1)

c(t,u) uniquely. On the other hand, it is not difficult to
construct directly a cohomology class having the property.

Consider the exact commutative diagram

1 1 1
H™ (L/@,T(L)) —> 99 H (Lg/mp,T(L%)) — H7(L/Q,T(C))

%/Q Xy (T)) — H (L/Q,X*(T))

in which the vertical maps are the Tate-Nakayama isomorphisms

(Tate [1]). For a finite group G and G-module M, H_l(G,M) =

(Ker N : M > M)/Z(o-1)M . Thus (3.3) shows that (-t Yy

defines an element a_ € H_l(m/na, X, (T)) , and we let

p
a _  the element just defined. Note that the image of o in

-1 .
a = (ap) e @p H (Lq/mp,x*(T)) with o =0 for p # < and

Hl(G/Bl,T(w)) is represented by (1—T_l)u(—l) . The image of
a in H_l(L/Q,X*(T)) is represented by (1—1—1)u , and is
therefore zero. It follows that the image of a in e H (L, f
T(Lq)) arises from an element of Hl(L/m,T(L)), and thlS is the
class sought.

The next property of the Taniyama group will be needed in
showing that the zeta function of an abelian variety of potential

CM- type is the L-series of a representation of the Weil group.

’
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Proposition 3.17. For any finite Galois extension L of @

that is not totally real, there is a homomorphism ¢:WL/Q > E}(m)
making
"L/0
kﬁ////// l
1—st@ - Mo —— Gal (L3P /) ——— 1
commute. If ¢' is a second such homomorphism then $' = ¢°a
with o a l-cocycle for WL/m with values in SL(E) .
Proof. We have to show that the 2-cocycle (dT ) defining

172
the extension (see 2.1) becomes trivial when inflated to
2 L .
H (WL/Q’ §7(€)) . Choose a section ¢ r w, to WL/Q >
Gal(L/@) as in (3.4) and a map b : Gal(L?/m)> s"(mf)

lifting the map b defined above and satisfying (2.7¢). For

. b
ew a i
w L/Q mapping to T e Gal(L /@) define co,w e CL by
the condition w w = cC w and set
o7 o,w OT
L
b_(w) = || ¥ e sv(c) .
° o € Gal(L/@) ¥ L

A calculation as in the proof of (3.11) shows that bo(wlwz) =
bo(wl) . Tl(bo(wzv , where 71, as the image of Wy in

Gal(Lab/Q) . Choose a mapping b : W

L c
L/0 + S (]AL) making



259

b &t (]A.L) and Wy o — 5 ga1 (13%/@)

\ i;:)————)%S(JJ/A)

s(c)

-1 . .

commute. Then b(wl) . le(wz) . b(wlwz) lies in

SL(L) < SL(]AL) , and projects onto d in SL(]Af) .

T1rTy L
It is therefore equal to dT o " Let v be an infinite
17°2

prime of L such that L =€, and let bv(w) € SL(LV) =
SL(E) be the component of bi(w) at v . Then ww bv(w)

is a l-cochain whose coboundary is (d )
TyrT2

Remark 3.18. In V we shall need to use the following
notations. For any @-rational torus T , split by L , and
cocharacter u satisfying (3.3) relative to 1t € Gal(Lab/Q)

we have defined an element b(r,u) € TCmi)/T(L) (@~ . It

-1 -1

o) and y(t,u)

is natural also to define B(t,u) = b(r
-1 -1

(c.f. 2.9). If u satisfies the stronger

cl{t ~,u)

condition (1.1) then there is a unique homomorphism

L s’ » T such that P, ° uL =y , and we have B(t,u) =

pu(B(r)) and vy(t,u) = pu(Y(T))
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