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The action of complex conjugation
on a Shimura variety

By J.S. MILNE* and K-y. SHIH*

In the case that a Shimura variety has a real canonical model, complex
conjugation defines an involution of the set of complex points of the variety.
It is necessary to have an explicit description of this involution in order,
for example, to compute the zeta function of the variety. Langlands con-
jectured such a description in [1, p. 417-18] and our purpose is to prove his
conjecture for all Shimura varieties of abelian type. (This class of Shimura
varieties is defined in §1 of this paper; it contains all those whose canonical
model is known, at the time of writing, to exist.)

Recall that a Shimura variety Sh(G, X) is defined by a Q-rational
reductive group G and a family X of homomorphisms C* — G(R) satisfying
certain conditions. Initially Sh(G, X) is defined as a complex variety but is
expected to have a model over a certain number field E(G, X) called the
reflex field. A canonical model for Sh(G, X) is a variety M(G, X) over
E(G, X) satisfying certain conditions sufficient to determine it uniquely.
Assume that E(G, X) is real and that the canonical model exists so that
complex conjugation defines an involution 6 of Sh(G@, X). When the canonical
model is a moduli variety, and so has a direct description, the proof of the
conjecture is straightforward. This is not usually the case, and just as the
construction of the canonical model is intricate in general, so must be the
proof of the conjecture. In particular, it must involve an analogous assertion
for connected Shimura varieties. Such an assertion is proved in Shih [1] for
connected Shimura varieties that are of primitive abelian type C, and this
result is the starting point of our proof of the conjecture for all Shimura
varieties of abelian type. (Since § does not preserve the connected component
the analogous assertion takes on quite a different form from the original; it
becomes rather a statement about the action of a “negative” element of
G@Q).)

To see how our result relates to the zeta function, consider an arbitrary
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variety V over a number field E. For a complex infinite prime »: E< C of
E the Hodge structure on H{(V Qg,,C, Q) defines a representation o’ of C*,
which we can regard as a representation of the Weil group W.. For a real
prime v the involution of H(V®C, Q) induced by complex conjugation
enables one to define a representation of the Weil group Wy. In either case
the factor Z,(V, s) of the zeta function corresponding to v is defined to be
the alternating product of the L-series L(s, p’). Thus in order to compute
the factors at infinity of the zeta function of a Shimura variety one must
compute its cohomology and also the involution induced by complex con-
jugation (in the case of a real prime). The first of these is a problem in
continuous cohomology, and our theorem reduces the second also to a
problem in continuous cohomology when v is the prime corresponding to the
canonical embedding of E(G, X) in C. For the other infinite primes one
needs a second conjecture of Langlands concerning the conjugate of a
Shimura variety, which we prove in another paper [2]. See Langlands
[8, § 7] where the assumption is made that both conjectures are true.

In Section 1 of the paper we review the basic definitions concerning
Shimura varieties and introduce the notion of a Shimura variety of abelian
type. The following section is largely concerned with the statement of a
conjecture (conjecture CM) that describes how any automorphism of C acts
on an abelian variety of CM-type and its points of finite order; it is therefore
a strengthening of the main theorem of complex multiplication. (Conjecture
CM is discussed at greater length in Milne-Shih [2].) We state in Section 3
the conjecture of Langlands (conjecture B) which it is our purpose to prove,
and also begin the proof by finding an explicit description of the action of
6 on the set 7,(Sh(G, X )) of connected components of Sh(G, X). This allows
us in Sections 4 and 5 to formulate a conjecture (conjecture B®) for connected
Shimura varieties and to show it to be equivalent to conjecture B. In
Section 6 we show that conjecture B’ is equivalent to a special case of con-
jecture CM. We begin, in Section 7, by reviewing the proof in Shih [1] of
conjecture B° for Shimura varieties that are primitive of type C. From this
result we are able to deduce the special case of conjecture CM, and hence
also conjecture B° for all Shimura varieties of abelian type. From this,
conjecture B follows. In an appendix we provide a brief, but explicit,
description of the Shimura varieties of primitive abelian type.

We would like to thank P. Deligne for numerous stimulating conversa-
tions.
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Notations and conventions

For Shimura varieties and algebraic groups we generally follow the
notations of Deligne [2]. Thus a reductive algebraic group G is always
connected, with derived group G**, adjoint group G*, and center Z = Z(G).
A central extension is an epimorphism G — G’ whose kernel is contained in
Z(G@), and a covering is a central extension such that G is connected and
the kernel is finite. If G is reductive, then p:@—»G"er is the universal
covering of GU°r,

A superscript + refers to a topological connected component; for
example G(R)* is the identity connected component of G(R) relative to the
real topology, and G(Q)* = G(Q) N GR)*. For G reductive, GR), is the
inverse image of G*(R)* in G(R) and G(Q), = G(Q) N G(R),. In contrast to
Deligne [3], we use the superscript ™ to denote both completions and closures
since we wish to reserve the superseript — for certain negative components.

We write Sh(G, X) for the Shimura variety defined by a pair (G, X)
and Sh(G, G', X*) for the connected Shimura variety defined by a triple
(G, G', X*). The canonical model of Sh(G, X) is denoted by M(G, X).

Vector spaces are finite-dimensional, number fields are of finite degree
over Q (and usually contained in C), and Q is the algebraic closure of Q in C.
If V is a vector space over Q and R is a Q-algebra, we often write V(R) for
VRR.

We write Z = lé_rPZ/mZ, A = Q®i for the ring of finite adéles of Q,
and A =R x A’ for the ring of adéles of Q. For E a number field, A} and A,
denote E®,A’ and E® A. The group of idéles of E is A% and the idele
class group is C, = A}/E*.

If A is an abelian variety, A, = ker(n: A — A), TA = lgn A,, and
V/(A) = Q® TA. Throughout the paper an abelian variety A will be
systematically confused with its isogeny class; thus only V/(A) (not TA),
H,(A, Q) (not H/(A, Z)), and H'(A., Q) (not H'(A., Z,))) are defined, and
Hom (A, B) means Hom (4, B) ® Q.

Complex conjugation is denoted by z + ¢z.

We use [#] to denote an equivalence class containing *; for example, if
2z e X and g € G(A’) then [x, g] denotes the element of Sh(G, X) = G(Q\X X
G(A’)/Z(Q)" containing (x, g). The Hecke operator [z, g]+— [, gg’] is denoted
by J(g").

We normalize the reciprocity isomorphism of class field theory so that
a uniformizing parameter corresponds to the reciprocal of the (arithmetic)
Frobenius element; we thus agree with Deligne [2] and Tate [1], but disagree
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with Langlands [3].

We write S for the Weil restriction of scalars of G,, from C to R. Thus
Sc~ G, X G,, and we associate with any homomorphism & from S into an
algebraic group G over R the cocharacter p, of G that is the restriction of
h to the first factor. For notations on Hodge structures we follow Deligne
[2]; in particular a Q-rational Hodge structure on a vector space V over Q
is a homomorphism A: S — GL (V).

1. Shimura varieties of abelian type

A Shimura variety Sh(G, X) is defined by a pair (G, X), comprising a
reductive group G over Q and a G(R)-conjugacy class X of homomorphisms
S — Gy, that satisfies the following axioms:

(1.1a) The Hodge structure defined on Lie(Gy) by any h e X is of type
{(~1,1), (0, 0), (1, —D)}.

(1.1b) For any k€ X, ad k(%) is a Cartan involution on G¥.

(1.1c) The group G** has no factor defined over Q whose real points
form a compact group.

Then Sh(G, X) has complex points G(Q)\X x G(A')/Z(Q)", where Z is the
center of G and Z(Q)" the closure of Z(Q) in Z(AY).

A connected Shimura variety Sh°(G, G', X*) is defined by a triple
(G, G', X*) comprising an adjoint group G over Q, a covering G’ of G, and
a G(R)*-conjugacy class of homomophisms S — G such that G and the
G(R)-conjugacy class of X containing X+ satisfy (1.1). The topology z(G’)
on G(Q) is that for which the images of the congruence subgroups of G'(Q)
form a fundamental system of neighborhoods of the identity, and
Sh°(G, G’, X *) has complex points liln "X+ where I" runs over the arithmetic
subgroups of G(Q)* that are open relative to the topology z(G’) (Deligne
[2, 2.1.8]).

The relation between the two notions of Shimura variety is as follows:
let (G, X) be as in the first paragraph and let X+ be some connected com-
ponent of X; then X+ can be regarded as a G**(R)*-conjugacy class of maps
S —G% and Sh°(G*?, G**", X*) can be identified with the connected component
of Sh(G, X) that contains the image of X+ x {1}.

We recall that the reflex field E(G, X) of (G, X) is the subfield of C that
is the field of definition of the G(C)-conjugacy class of ,, any h e X, and
that E(G, X ™) is defined to equal E(G, X) if X+ is a connected component
of X (Deligne [2, 2.2.1]).

The following easy lemma will be needed in comparing the Shimura
varieties defined by (G, X) and (G*, G*, X ).
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LEMMA 1.2. Let G, — G be a central extension of reductive groups over
C; let M be a G(C)-conjugacy class of homomorphisms G,, — G and let M, be
a G,(C)-conjugacy class lifting M. Then M, — M is bijective.

Let (G, X) be as in (1.1) with G adjoint and Q-simple; if every R-simple
factor of Gy is of one of the types A4, B, C, D*, D", or E (in the sense of
Deligne [2, 2.3.8]; see also the appendix), then G will be said to be of that
type. When G’ is a covering of G, we say that (G, G') (or (G, G, X)) is of
primitive abelian type if G is of type A, B, C, or D® and G’ is the universal
covering of G, or if G is of type D" and G’ is the double covering described
in Deligne [2, 2.3.8] (see also the appendix).

Notations 1.3. If (G, X) satisfies (1.1) and G is adjoint and Q-simple,
then there are a totally real number field F, and absolutely simple group G*
over F, such that G = Res; ,G’. For any embedding v: F,=R, let
G, = G’ Qy, R, and write I, and I,. for the sets of embeddings for which
G,(R) is compact and noncompact. Let F be a quadratic totally imaginary
extension of F, and let £ = (g,),.;, be a set of embeddings o,: F = C such
that o,|F, = v; we define h; to be the Hodge structure on F' (regarded as a
vector space over Q) such that (FF®eC)™"°, (F®oC)", and (F Q,C)"° are
the direct summands of F ®,C = C*"™"% corresponding to X, ¢X, and
{o: F=C|o|F,eL,}.

PROPOSITION 1.4. Let G be a Q-simple adjoint group and assume that
(G, G, X) is of primitive abelian type. For any pair (F, X) as above there
exists a diagram
(G, X) —(G,, X)) = (CSp(V), S*)
such that G3* = G, Gi" = G', and E(G, X,) = E(G, X)E(F*, hs).
Proof. This is Deligne’s [2, 2.3.10].

Remark 1.5(a). We shall need a supplement to the proposition. Consider
an h in X that is special, and so factors through T where T is a Q-rational
maximal torus in G. The inverse image of T in G, is a Q-rational maximal
torus T, C G,, and h lifts to an &, in X, factoring through 7,. We claim that
E(T, h) = E(T, h) E(F*, hs).

To see this, first note that it is obvious that E(T, h,) D E(T, h) and
E(T,, h) D E(G,, X,). As the proposition shows that E(G,, X,) D E(F*, hs),
we see that E(T,, h) D E(T, h) E(F*, hs). For the reverse inclusion, let ¢ be
an automorphism of Q fixing E(T, k) and E(F*, hs), and let g, g, and g5
be the cocharacters of T, T, and F'* corresponding to k,, kh, and hs. Since
o fixes E(T, h), it fixes E(G, X), and the proposition shows that it fixes
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E(G,, X)); thus oy, is G,(C)-conjugate to g,. But opt = p; that is, op, and g,
map to the same cocharacter of G. Thus (1.2) shows they are equal, and ¢
fixes E(T,, h,).

(b) The vector space V constructed in (1.4) has the structure of a vector
space over F', and so ks can be regarded as a map S — GL (V).

Let (G, X) satisfy (1.1) with G adjoint, and let G’ be a covering of G.
We say that (G, G') or (G, G', X) is of abelian type if there exist pairs
(G,, G)), of primitive abelian type such that G = I1G, and G’ is a quotient of
the covering IIG; of I1G,. If (G, X) satisfies (1.1), we say that G or (G, X)
is of abelian type if (G*, G*") is of this type. Finally, we say that a Shimura
variety Sh°(G, G’, X*) or Sh (G, X) is of abelian type if (G, G') or G is.

Remark 1.6(a). Let (G, G', X) be of primitive abelian type; then the
diagram in (1.4) induces a diagram

Sh'(G, G, X*) — Sh* (G2, Gier, X,*) =— Sh*(Sp(V )™, Sp(V), S*) .
Thus Sh°(G, G', X*) can be regarded (in many different ways) as the para-
meter space for a family of abelian varieties.

(b) Essentially, the Shimura varieties of abelian type are those that
are accessible to study by Shimura’s original methods. They exclude those
for which G** has factors over Q that are of exceptional type or of mixed
type D and, when G* has factors of type D", those for which G*" is too
large. To say that Sh(G, X) is of abelian type means that its connected
component has a covering that is a product of connected Shimura varieties,
each of which carries (non-canonically) a family of abelian varieties.

2. Conjecture CM
We shall need certain properties of the Taniyama group, for which we
refer to Langlands [3; §5, § 6] (or Milne-Shih [1]). The Taniyama group is
a projective system of extensions of Q-rational pro-algebraic groups
1—> S¥ — T -5 Gal(L™/Q) — 1
lNL'/L
1 St T: -~ Gal(L*/Q) — 1
in which L c L’ are finite Galois extensions of Q contained in Q and S* is
the Serre group of L; there is a canonical family of splittings sp*: Gal(L**/Q)—
TZ(AY), wospt = id.
Now fix a large L and drop the superscript on sp. There will exist a

section 7 a(z) to T*(L) — Gal(L*/Q) that is a morphism of pro-algebraic
groups and, after choosing such a section, we can define a continuous map
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B: Gal(L*/Q) — S*(Af) and l-cocycles (v,(r)) for Gal(L/Q) with values in
S*(L) by the formulas:

(2.1a) sp(7) B(r) = a(z), v € Gal (L™/Q) ,

(2.1b) oa(t) = a(t)v,(7), T € Gal(L*/Q), o € Gal(L/Q) .
Note that

(2.1¢) Y.(t) = B(z)™" - 06(7) .

The composite B: Gal (L**/Q) — S*(A%)/S*(L) is independent of the choice of
the section a, and satisfies

(2.1d) B(r,t,) = 77" B(z) - B(z,) .
It is a consequence of the construction of the Taniyama group that
(2.1e) B)y=1.

The Serre group S* and its canonical cocharacter p¢* are universal in
the following sense: for any Q-rational torus 7T split over L and any
cocharacter ¢ of T for which

(2.2) -+ Dpe=0=(+ 1)(c — 1), for all o€ Gal(Q/Q),

there is a unique Q-rational homomorphism o,.: S* — T such that p,o p* = p.
We then write B(z, ), B(z, #), and v,(z, pt) for p/B(z)), p«B(z)), and
P#('Ya(z'))-

More generally, let T be a Q-rational torus split by L and pg a
cocharacter such that

(2.3) AL+oz—DLDpg=0
for some 7 € Gal(Q/Q). Then there need not be a homomorphism p,: S* — T

but it is still possible to define B(z, ¢) € T(AY), B(t, 1) e T(AL)/T(L) T(Q)",
and (v,(z, ¢)) having the properties predicted by the formulas (2.1):

(2.43) 70(‘[7 #) = B(Ty #)_l : GB(T, ﬂ) ’
(2.4b) B(z,ty, 1) = 3 B(z,, 1) - BTy, 1)
Equation (2.3) is always satisfied by = = ¢, and

(2.4c) Bl 1 =1

(see Langlands [3, p. 234], Milne-Shih [1, 3.9]).

Let T be a Q-rational torus and h:S— Ty a homomorphism with
associated cocharacter p¢. For any 7 fixing the field E of definition of g,
(2.3) holds and so B(z, y) is defined. In [2, 2.2.3] Deligne defines a reciprocity
morphism r,(T, h), and the definition of B is such as to make
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Gal(L™/E) -2, T(AL)/T(L) T@Q)"

(2.5)
Gal(E*/E) 72T, 1Ay T@)

commute.
Assume that there exists an embedding

(T, (1)) =— (CSp(V), S*)

where CSp(V) is the group of symplectic similitudes corresponding to some
non-degenerate skew-symmetric form +r on a vector space V over Q, and S*
is the Siegel double space in the sense of Deligne [2, 1.3.1]. (We regard + as
being defined only up to multiplication by a non-zero element of Q.) In a
well-known way (Deligne [1, §4]), Sh(CSp(V), S*) can be identified with a
family @(V, ) of isomorphism classes of triples (A4, ¢, k) in which A is an
abelian variety over C, t is a homogeneous polarization on A, and k is an
isomorphism k: V/(A) = V(A’). An element g of G(A’) acts on a class
[4, t, k] € Q(V, ) as follows: [A, ¢, klg = [4, ¢, g7 k].

The assumption on (T, {k}) implies that ¢ satisfies (2.2). We have
therefore homomorphisms (S* LN N Sp(V)). The inverse image in T* of
a 7 € Gal(L*/Q) is a right S*-torsor *S* corresponding in H'(L/Q, S*) to the
class v(z, ) of (v,(z, #)). The map p defines an action of S* on (V, y) and,
with the notations of Serre [1, 1.5], we define (*V, “4p) = °S X5(V, 4). The
element sp(z) € “S(A’) defines an isomorphism v sp(z) - v: V(AY) S V(A
which we shall again denote by sp(z). Clearly °S x* T = T, and so there is
a canonical embedding T<>CSp(*V). It sends °h, the map S — T with
cocharacter 7y, into the Siegel double space for ("V, “y). Let [A,¢, k] e
@(V, ) and let “k be the composite:

VI A)—— VI(A)— V(A7) 2D par) |

Then [z A4, tt, k] € R(V, ") and we write X. for the map
(4, t, k] —— [z A4, tt, k]: AV, ) — Q(V, ) .
Conjecture CM: the following diagram commutes:

[k, g1 Sh(T, {k}) = Sh(CSp(V), S*) — Q(V, )

~ =~ |X:

[k, 91 Sh(T, {*h}) =— Sh(CSp (‘' V), S*) = ac V, ).

Let A be an abelian variety of CM-type; we shall say that conjecture
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CM holds for A if it holds with T the Mumford-Tate group of A, V =
H,(A, Q), and + a Riemann form for A.

Example 2.6(a). Suppose in the above that v(z, ) is trivial in H(Q, T).
Then B(z, p) lies in T(A’)/T(Q)" and there is an element g(z, y) € T(AY)
representing B(z, ) and an isomorphism a(z): (V, 4) — (°V, ") such that
sp(7)B(z, ) = a(r) (as maps V(AY) — V(A)). When a(r) is used to identify
Q(V, 4) with @V, “a) then X. becomes identified with the map

[4, t, kl—— A, tt, B(z, )" okoT],

i.e., with the composite

RV, ) —— GV, ) B @V, ) .

Thus, in this case, the conjecture asserts that
[k, g] Sh(T, {n})) =— Q(V, ¥)

T

[k, 98(z, 9] Sh(T, {h}) =— Q(V, ¥)
commutes.

(b) Suppose that 7 fixes the reflex field E(T, {h}); then (2.5) shows that
B(z, 1) = rx(T, h)(7)' € T(A")/T(Q)". It follows that v(z, p) is trivial and so,
once ("V, “y) has been identified as in (a) with (V, ), conjecture CM becomes
the statement that the action of r on the image of Sh(T, {r}) in G(V, ¥)
corresponds to the right action of #(z) on Sh(T, {k}), where #(z) € T(A’)
represents 7;(T, h)(z). This is essentially the statement of the main theorem
of complex multiplication to be found, for example, in Deligne [1, 4.19].
Thus the conjecture is a generalization of that theorem.

Example 2.7. Let F, be a totally real number field, let F, and F, be
distinct, totally imaginary, quadratic extensions of F,, and let F' = F F,.
For eachoel d=f Hom (F,, C) choose an extension ¢, of ¢ to F), and an exten-
sion g, of ¢ to F,. Write ¢’ and ¢” for the elements of Hom (¥, C) such that

o =0, on F,, ¢’ =to, on F,
¢ =0,on F,, ¢ =o0,on F,.

Let X, be a subset of Hom (F,, C) and define
S ={d'|locel}U{c"eZ) U{w"|o¢Z}.

Then ¥ is a CM-type for F. The sets of complex embeddings X, X, —
{o,|l0 € Xy}, 2, = {0,|0 ¢ Z,}, and X define Q-rational Hodge structures on the
vector spaces F,, F',, F,, and F, and hence homomorphisms k;: S — (F'; Q R)*
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for j=0, --.. Let g, t, tt, and g = g, 1, be the corresponding cocharacters,
and let E,, E,, and E, be the reflex fields E(F*, h,), E(F, h,), and E(F, h,).
In the following we assume that E, and E, are linearly disjoint over E,. As
E, is totally real, this assumption allows us to consider an automorphism ¢
of C over E, such that

7 =1id on E,

=¢ on kK,.

Note that (¢ + 1)(z — 1)pt, = 0 = (¢ + 1)(z — 1)y, and so (¢ + 1)(z — )¢ = 0.
If we let T' = Resg,oG,, then g, (¢, ¢4, and ¢ can be regarded as elements
of X, (T). Thus, if L is large enough to split T, there are defined
elements B(z, #;) € (T(A])/T(L))***® for j = 0, ---. As gt = g, B(z, 1) =
B(z, 1) B(z, tt,). Since ¢ = id on E, and ¢z = id on E,, (2.5) shows that

B(z, 1) = ry,(c| E®) ' e T(A)/TQ)",

Blez, t) = r5,(cr| E3°) ' e T(A)/TQ)" .
From (2.4b) we know B(z, tt,) = (¢7)'B(¢, ) - Bz, 1), and (2.4c) shows
B, ) = 1. Thus

B(z, tt) = rg,(t| E) " rp,(cr| E3*)~' € T(A)/T(Q)" .

Let A be an abelian variety over C with complex multiplication by F
and of CM-type £. Choose identifications of H,(4, Q) and H,(z A4, Q) with F.
Then V/(A) and V/(z A) are identified with A/ and sp(z): V/(4) —» V/(zA)
is multiplication by an element 3(z, ¢#)~' € (Af)* = T(A’). This B(z, p) lifts
Bz, 1) = 75,(T) 7 rg,(¢r)~. Conjecture CM asserts in this case that the two
maps

V/(A)—— V/(zA),

v4) 2P vz a)

are equal.
This last statement is, apart from notation, Theorem 9 of Shih [1] (see
also § 7 below).

Let A be an abelian variety of CM-type, let T be the Mumford-Tate
group of A, and let h:S — T define the (natural) Hodge structure on
V = H\(A, Q). Choose a Riemann form + for A and let (G, X) be a pair
satisfying (1.1) and such that there are maps

(T, {h}) = (G, X) =— (CSp(V), §*);

for example, we could take (G, X) = (CSp(V), S*). We know Sh(G, X) has
a canonical model M over its reflex field E(G, X), and if we identify Sh(G, X)
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with M. then any automorphism 7 of C fixing E acts on the points of
Sh(G, X). We recall a result from Milne-Shih [2] that relates the action of
such a z on [k, 1] € Sh(G, X) to conjecture CM for A.

Let g be the cocharacter of h. Then p satisfies (2.2), and so (7, f) is
defined.

LEmMMA 2.8. The image of v(z, t) in HY(Q, G) is trivial.

Proof. Langlands [3, p. 230], Milne-Shih [2, 7.2].
There is therefore a v € G(Q) such that v,(z, ¢t) = v='- ov. We define

(2.9) Bi(z, 1) = Bz, v~ e G(AY) .

PRrROPOSITION 2.10. Conjecture CM is true for A and a v fixzing E(G, X)
if and only if
(2.11) 7[h, 1] = [ad v ok, B,(z, )7'] -

Proof. Milne-Shih [2, 7.16].

Remark 2.12. It is shown in Milne-Shih [2, 7] that ad v - *h € X, and that

[ad ve°h, B,(z, 1£)~'] is independent of the choice of 3(z, £) and v. Thus (2.11)
makes sense.

3. Conjecture B and the action of ¢ on 7,(Sh(G, X))

Let (G, X) satisfy (1.1) and assume E(G, X)CR. The adjoint group G* is
aproduct, G**=]];_ G., of Q-simple adjoint groups G,. Each G, can be written
G; = Res;,oG* where G is absolutely simple and the F', are totally real
(Deligne [3, 2.3.4]). For each embedding v: ;<> R we obtain a group G} over
R, and Gi(R) is either compact or has exactly two connected components
(Deligne [3, 1.2.8]). In the latter case we write Gi(R)* (or simply +) for the
component containing 1 and Gi{(R)~ (or simply —) for the other component.
Note that G; @R = [[ Gi. Define:

G*(R)* = {g € G*(R)| g —— + for all ¢ and v with G%(R) non-compact} ,
G*(R)- = {ge G**(R)|g—— — for all < and v with Gi{(R) non-compact} ,
G*(R)* = G*(R)* U G*(R)~ .
Clearly, G*(R)* is a normal subgroup of G*(R), and there is an exact
sequence
1— G*R)" — G*R)t — (£} — 1.
For x = +, — or =+, we define
GQ)* = G*(R)* N GAQ) ;
G(R), = inverse image of G**(R)* in G(R) ;
GQ), = GR), N G(Q) .
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The real approximation theorem shows that there is an exact sequence
1 NN Gad(Q)+ —_— Gud(Q):ﬁ — {i_} —_— 1 .

Remark 3.1. Consider G G —G*. The group G(R) is connected (Borel-
Tits [1, §4]) and so the image of G(R) in G*(R) is G*(R)*. Thus an element
g of G(R) is in G(R), if and only if g = p(§)c for some § € G(R) and ¢ € Z(R),
where Z = Z(G). Define T by the exact sequence

v

1 G G > T >1 .
If G = G then an element g € G(R) is in G(R), if and only if v(g) € v(Z(R)).
Now let h € X be special and ¢ = z,. Choose a Q-rational maximal torus
T in G such that & factors through Ty, and let N be the normalizer of T in
G.

LEMMA 3.2. There exist n € NR) and w e p(G(C)) such that ad(n) o pt=cp
and p(—1) = wn.

Proof. Choose a maximal set of strongly orthogonal noncompact roots
{vy, -+, 7,} of g&* with respect to ti" in the sense of Harish-Chandra, and
use it to define a homomorphism ¢ of SL, to G over R as usual (Ash et al.
[1, III1.2]). We can choose the vi’.s in such a way that {v,, ) =1 for all
i=1, .-, r. Putw= (p0¢)<<_6 2)) Then w e N(C) N p(G(C)). Further-
more,

-1 0
w - (w) = (p°¢)<( 0 _1>> = Qi 7(=1) = (£ — (1),
where v; denotes the coroot of v,. Hence n = wp(—1) € N(R)and it has the
as required properties.

Let ‘h be the element of X corresponding to ¢. If n is as in Lemma
3.2, then ad(n)oh = ‘h. Since ‘h and h~' become equal when composed with
Gr — G¥, n belongs to G(R)_ in view of Deligne [3, 1.2.7]. In particular, we
see that G(R), — {+} is surjective, and the real approximation theorem
shows that there is an exact sequence

1—GQ): — G(Q) — {£}—1.

Now suppose that Sh(G, X) has a weakly canonical model over a real
field containing E(G, X). Then ¢ defines an antiholomorphic involution of
Sh(G, X). One of the conjectures of Langlands gives an explicit description
of this involution.

To state this conjecture of Langlands, let # € X be asabove and n € G(R)_
be as in Lemma 3.2. Let K. G(R) be the isotropy subgroup of k. Since
K.. is the centralizer of h(7), and of ‘h(i), we see that n normalizes K..
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Therefore we can define an antiholomorphic automorphism 7 of X by
n(ad gok) = ad(gn) o h.

Conjecture B. (Langlands|[1, p. 418], [2, p. 2.7, Conjecture B], [3, p. 234]).
The involution of Sh(G, X) defined by ¢ is [z, g] — [7(z), g].

Remark 3.3. (a) If B’ = ad(g)oh with g € G(R) then
th = ad(g)opt, and ¢y = c(adgop,) = ad(g)ocpy, = ad(gn) oy .

Thus »(h") = ‘h’. In particular the validity of the conjecture is independent
of the choice of the special point .

(b) Since the two automorphisms of Sh(G, X), [z, gl—¢[x, ¢] and [z, g]—
[n(x), g], are continuous and commute with the Hecke operators they will
be equal if they agree at one point (Deligne 1, 5.2]). Thus, to prove con-
jecture B, it suffices to show that ([h, 1] = [9(k), 1] (=[‘k, 1]) for a single
special h.

(c) Inthe case that the canonical model of Sh(G, X) is a moduli variety
over E(G, X), it is easy to verify conjecture B. Consider for example
Sh(CSp(V), S*) where CSp(V) is the group of symplectic similitudes
corresponding to some non-degenerate skew-symmetric form + on V. We
have already observed that there is a bijection Sh(CSp(V), S*) 5 acv, ¥
where Q(V, +r) consists of certain isomorphism classes of triples (4, ¢, k).
In fact Sh(CSp(V), S*) is the solution of a moduli problem over C. The
moduli problem is defined over Q (=E(G, X)) and so Sh(CSp(V), S*) has a
model M over Q, which the main theorem of complex multiplication shows
to be a canonical model. If we set 7[A, t, k] = [7A, tt, kr'] for z € Aut(C)
and [A4,t, k] € Q(V, ), then this action agrees with the action of z on
Sh(CSp(V), S*) defined by the identification Sh(CSp(V), S*) = M.

Let h e X. Then [k, 1]€ Sh(CSp(V), S*) corresponds to [4, t, k] where
A is the abelian variety defined by the Q-rational Hodge structure (V, h),
t =+, and kis V/(4) = V(AY) L V(AY). Since ¢: (¢A)(C) — A(C) is a homeo-
morphism, it defines an isomorphism f: H, (¢4, Q) =5 H,(A, Q) = V. The
canonical isomorphism H;z(A4) Q¢,.C = H}n(¢A) of de Rham groups preserves
the Hodge filtrations, from which it follows easily that ‘h = foh'o f~* where
h' defines the Hodge structure on H,(¢A, Q). Since ¢ corresponds to ¢t under
f, and the map f&® 1: V/(cA) — V(AY) is ¢, we see that [A, ¢t, k'] corres-
ponds to [k, 1]€ Sh(G, X). Thus ¢[h, 1] = [¢h, 1] which, according to the
above remark, proves conjecture B.

A similar argument proves the conjecture in the case that there is an
embedding (G, X)=>(CSp(V), S*) for then also the canonical model is a
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moduli variety over E(G, X). It is however clear from (b) above and Deligne
[1, 1.15] that if conjecture B is true for Sh(G’, X’) and (G, X) embeds in
(G', X’), then conjecture B is true for Sh(G, X).

Recall (Deligne [3, 2.1.14]) that the action of G(A’) on Sh(G, X) (on the
right) induces an action of G(A’) on 7,(Sh(G, X)) under which 7(Sh(G, X))
becomes a principal homogeneous space for 7,7n(G@) = G(A")/G(Q);. The
image of G(Q)_ in G(A’)/G(Q);  Aut(rm,(Sh(G, X))) is therefore an element
of order 2. On the other hand, if Sh(G, X) has a weakly canonical model
over a real field then ¢ acts on Sh(G, X) and hence on 7,(Sh(G, X)).

ProprosITION 3.4. Assume that Sh(G, X) has a weakly canonical model
over a real field E containing E(G, X). Then for any a € G(Q)_, the image
of a in G(A’) acts on 7,(Sh(G, X)) as ¢.

Proof. According to Deligne [3, 2.6.3], ¢ acts on =,(Sh(G, X)) as
(7eNg/oqx)(€), Where €€ mm(G,z) = T,(A%/E*) maps to ceGal(E*/E), M
denotes the G(C)-conjugacy class of maps u: G, — G, corresponding to X,
Qu: T(Gng) = ©(Gg) and Ngyo: 1(Gg) — 7(G) are the maps defined in Deligne
[3, 2.4], and 7, Ng,4qy is the composite

T (Gong) D ELL), 1 (@) — 7 (G) = wew(G)/TG(R)S) -

The problem is to elucidate these maps.

Assume first that G = G. By definition M is defined over E. For any
kD E, there is a map

Tu: Gu(k) — (G/G) (k)

with the following property (see Deligne [3, 2.4]): let p2€ M be defined over
k' Ok, and denote the composite

Gu(k') 1 Gk — (GIG)(K)
by §.; then §,, = §,. over k'. Consider
kx

AN
RN
N

i N 3 _
1 — G(k)/G(k) — (G/G)(k) — H'k, G) .
We see that the restriction of §, to the kernel (k*), of 0 - §,, factors through
G(k)/G(k). Since (EX), = EX for v a finite prime of E and (EX), = (R*)* for
v a real prime, on forming a restricted product we obtain a map ¢,: (A;)* —

G(AE)/@(AE). On passing to a quotient we obtain the map ¢q, from A%/E* =
(AD(E™)* to G(AR)/G(AR)G(E) = n(Gp).
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Lete=(1, ---, 151, ---, 1, —1) € A%, where the final place corresponds
to the real prime v, of E defined by the given embedding £ <> R. Then e
represents ¢ € ,(A%/E*). We compute g,([¢]) € 7(Gy), where [e] is the image
of ein A}/E*.

For v # v, e, = 1, and §y(e,) is represented by 1€ G(¥Z,). For v = v,
let h € X be special, let ¢ = g, and choose #» and w as in Lemma 3.2. Then
Gy = Gover C. Since u(e,) = p(—1) = wn, t(e,) and » have the same image
in (G/G)(R); thus g,(e,) is defined and can be represented by n e G(E,). We
conclude that (1, .-+, 1;1, .-+, 1, n) € G(A;) represents g,([e]). It follows
that (Ng,oqx)([e]) is represented by £ = (1, - -, 1; n) € G(A), and (7,Ny,oqx)(€)
is represented by the image & of ¢ in T,n(G) = 7,w(G)/7,(G(R)+):

¢ acts on 7,(Sh(G, X)) as & .

Now for ¢ e G(Q)_, let a, = (e, - - -, ;1) € G(A). Then a, ¢~ e GIQ)GR),,
and so the image @, of «, in 7,w(G) is £&. Therefore (7,N,,,qx)(€) is also
represented by &,. To complete the proof of this case, we observe that,
when 7,w(G@) is identified with G(A’)/G(Q);, &, is the image of a € G(Q) C
G(AY).

For the general case, one can repeat the argument with the group
(G/G)(k) replaced by H(G — G) (see Deligne [3, 2.4]).

4. Definition of &: G(Q)*"(relG') — &:(G, G', X *)

Let (G, G', X*) define a connected Shimura variety, as in Section 1.
Recall that E(G, X*) is defined to be E(G, X), where X is the G(R)-conjugacy
class of maps S — Gy containing X*. Assume that E(G, X*) is real. Then
the discussion in Section 3 applies to G = G* and we have groups G(R)*,
GR)-, ---, G(Q)*, and exact sequences

1— GR) — GR)* — (£} — 1,
11— G — GQ)* — {x}—1.
Recall (Deligne [3, 2.5.7]) that for any E c Q that is finite over E(G, X),
there is a canonical extension
1— G(Q)*" (rel G') — &:(G, G', X+) —> Gal (Q/E) — 1.
In the following we assume E C R.

PROPOSITION 4.1. With the above assumptions and mnotations, there

exists a canonical embedding
e: G(Q)*"(relG') — &x(G, G, X*),
rendering
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1— GQ)*"(rel G) — §4(G, G', X+)—— Gal(Q/E) — 1
G(Q)*"(rel G') /
commutative and such that (we)~'(¢) = G(Q)~"(rel G').
Proof. We first review Deligne’s construction [3, 2.5] of the canonical
extension. Choose a pair (G,, X)) satisfying (1.1) and such that (G}¢, G}, X;*) =
(G, G', X*) for some X;" C X,; it is possible to do this in such a way that

E@G, X,) = E(G, X*); see Deligne [3, 2.5.5]. The canonical extension is de-
fined by the diagram

4.2) 1— GQ)* (rel (") —> 646G, G', X*) —~—— Gal(Q/E) — 1

| L e

1— G(Q)*"(rel G) — %{Q) )+ 50020 GQ)T — Ty (Gy) — 1

in which 74, is the reciprocity law and Z is the center of G,. The calcula-
tion made in the proof of (3.4) shows that

77"—]({1 )——’(;((QQ))A GI(Q)+/7(Q)G(Q)+

(Z;(gl sr@rarzi0 GQ)*
which can be identified with G(Q)*"(rel G'); Deligne [3, 2.1.15.1]. We define ¢
to be the inverse isomorphism.

To see that ¢ is independent of the choice of (G, X,), take another
(G,, X;) with the same properties as (G,, X,). Let G, be the identity com-
ponent of the fiber product G, x;G,, and X, = X, Xy X,. Then (G,, X,) also
has the same properties as (G,, X,). We see easily that, via the projections
G, — G, and G; — G,, (G,, X)), (G,, X)) and (G,, X,) all define the same e.

Remark 4.3. Let the notations be as in the above proof. For simplicity,
put 8 = (G,(A)/Z(Q)")*e, /2 G(Q)*. Note that in the identification

GQ)* (relG') = Zl((QQ))A 61(Q)/Z(Q) + GQ)*,

a € G(Q)* is identified with 1 *@. Therefore, if a € G(Q)~ lifts to a, € G,(Q)_,
then ¢(a) is the element of §(G, G', X *) such that

fle(@) = a,x1e€§ and =n(e(@)) = ¢ Gal(Q/E) .
In general, let v, be an element of G,(Q)~, and let v be its image in G(Q)_.
Then for any a € G(Q)~, ¢(a) is the element of &.(G, G', X*) such that
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fle@) = v*v'aeg and n(e(@) = ce Gal(Q/E) .

Assume (G, G/, X) is of primitive abelian type. Then the pair (G,, X,)
constructed in the proof of Deligne [3, 2.3.10] satisfies the conditions G3* = G,
G =@, (@G, X,)— (G, X) and E(G,, X,) = E(G, X), and so can be chosen
as (G,, X,) in the proof of Proposition 4.1. However, this is not the most
convenient one to use. We shall use a group G, that is larger than G,. Let
the notations be as in (1.3) and (1.4). Recall that V is a vector space over
F and G,c GL(V). We take G, to be the Q-algebraic group generated by
G, and F*. Then (G,, X,) can be used instead of (G,, X,) as our (G,, X,). The
extra properties (G, X,) enjoys, which are established in the proof of
Deligne [3, 2.8.10], are summarized in the following proposition, in which
(G,, X,) is denoted by (G,, X,).

PROPOSITION 4.4. Let the motations and assumptions be as in (1.4).
Then there exists a diagram

(G, X,) — (G, X) — (G, X,) = (CSp(V), S*)
such that G = Gt = G, G = G = @&, E(G, X)) = E@G, X)EF*, hs),
E(G, X)) = E(G, X), G,C Gy, Z(Gy) D F* and X, = {h.hs|h, € X,}.

5. Statement of conjecture B’; equivalence with conjecture B

Let (G, G’, X*) define a connected Shimura variety as in Section 1.
Recall (Deligne [3, 2.7.10]) that a weakly canonical model for Sh’(G, G’, X*)
over ED E(G, X*) is a scheme Sh’(G, G', X+); over Q together with a left
action of &;(G, G', X*) satisfying certain properties.

Let X be the conjugacy class of maps S — G containing X+*. Assume
that E(G, X+*)=E(G, X) is totally real. Fix a special h,€ X, and let n € N(R)
and 7: X — X be as in Section 3. Since n € G(R)~, as was remarked in Section
3, we see that adaon(x) € X* for alla € G(Q)~ and x € X *.

Conjecture B°. Assume that Sh°(G, G’, X*) has a weakly canonical
model over a field EcCR; then for all «€G(Q)-, the element e(a)e
&:(G, G', X*) acts on Sh°(G, G/, X*) = lim T\ X * as follows: [z]— [ad a - 7(z)]
forallze X+. <

Remark 5.1. Suppose «, and «, are both in G(Q)-. Then a* = a,a;' €
G(Q)*. Hence ¢(a,) = e(a)e(a,) and
[ad @, o 7(x)] = [ad a* cad a, o 7(x)] = e(a™)[ad a,°N(x)] .
Thus, conjecture B° holds for all @ € G(Q)~ if and only if it does for one a.

PROPOSITION 5.2. Let (G, X) satisfy (1.1), and assume Sh(G, X) has a
weakly canonical model over some field EC R. Then conjecture B holds for
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Sh(G, X) if and only if conjecture B® holds for Sh°(G*, G, X+).

Proof. The proof is straightforward, but it is convenient first to review
the various group actions on Sh(G, X) and Sh°(G*, G**, X ).

The group G*(Q)*"(rel G**’) acts canonically on Sh°(G*, G**, X*) on the
left. When Sh°(G*¢, G**, X*) is identified with the connected component
Sh°(G, X) of Sh(G, X) containing the image of X+ x 1, then the action of
v e G*(Q)* is the restriction of

[z, 9] —— [z, 9] = [7(2), ad(7)(9)], z € X, g e G(AY) .
By transport of structure, there is also a right action of G**(Q)* on Sh (G, X):
[z, gly = 7' [z, 9], ye G*(Q)*, x€ X, g G(AY) .

The group G(A’) acts on Sh(G, X) on the right, via the Hecke operators.
If yeG*(Q)* is the image of § € G(Q)., then the actions of v and 4 (con-
sidered as an element of G(A’ )) agree. Thus there is a right action of

g = '%((_3){%*6(0)4./2(0) G Q)+
on Sh(G, X):[x, gl(¢'*7) = [v~' (%), ad v~} (gg")].

When @ is made to act on 7,(Sh(G, X)), the stabilizer of the image of
Sh*(G, X) is G*(Q)*"(rel G*"), and 7,(Sh(G, X)) becomes a principal homo-
geneous space for the abelian quotient 7,7w(G) = G(AY)/G(Q); of 8. These
facts are summarized by an exact sequence:

1— GQ)* (relG*) — § — T,w(G) —> 1 .

Now assume Sh(G, X) has a weakly canonical model over a finite exten-
sion E of E(G, X). Then Gal(Q/E) acts on m,(Sh(G, X)) on the left. Since
7,(Sh(G, X)) is a principal homogeneous space for 7,m(G), the action of
Gal(Q/E) is described by a homomorphism »: Gal(Q/E) — %,7(G) such that
o-x = 2-1(0). The map r has an explicit description (Deligne [3, 2.6]), and
there is a commutative diagram

1 — G*(Q)*"(rel G') — §4(G*, G***, X*) —— Gal(Q/E) — 1
H I’ I
1 — G*(Q)*"(rel G**) - 8 — T(G) ——1.
Convert the right action of § on Sh(G, X) to a left action, and consider
the commutative diagram
1 — G=(Q)*+"(rel Geer) —> 6E(Gad, Gder’ X*) T, Gal (Q/E) — 1

e |

1 > G — 8§ X Gal(Q/E) —— Gal(Q/E) — 1.
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The action of &, = &,(G*, G*", X*) on Sh°(G, X) arising, via this diagram,
from the left actions of ¢ and Gal(Q/E) on Sh(G, X), corresponds to the
given action of &, on the weakly canonical model of Sh’(G*¢, G*", X*) over
E.

Now we prove the proposition. Recall that E is assumed to be real.
Fix an element a € G*(Q)~ which lifts to an element a, of G(Q)-. Then
n(e(@)) = ce Gal(Q/E) and f(e(a)) = a,x1 €9, see (4.3). Hence

g(@)lh, 1] = (c[h, 1])T ()™ for heX+.
Since conjecture B holds if and only if

(h, 1] = [1(h), 1] = [ad a, o 7(h), a,] = [ad a o 9(h), 1]T (a,) ,
this shows
conjecture B holds == ¢(a)[k, 1] = [ad ao7(h), 1]
— conjecture B° holds for a.

This completes the proof, in view of (5.1).

6. A relation between conjectures B and CM

We consider the situation of (1.4). Thus (G, G’, X) defines a connected
Shimura variety of primitive abelian type. Write G = Resy ,G* with F,
totally real and G’ absolutely simple, and let I, and I, be as in (1.3). Denote
by F, the totally real number field corresponding to the subgroup of
Gal(Q/Q) that stabilizes I,. We have F; c E(G, X).

Let h e X be special, and let T G be a Q-rational torus such that h
factors through Ty. Let F be a quadratic totally imaginary extension of
F, and let X be some family (¢'),., of embeddings ¢': F— C such that
¢'|F, = 0. Denote by hs; the Hodge structure on F defined by X; see (1.3).
We shall assume that (T, h) and (F, £) are such that there exists an
automorphism 7 of C with

id on E(F*, hs),

¢ on E(T,h).
This is the case, for example, if E(F'*, h;) and E(T, h) are linearly disjoint
over Fy;. Using Deligne [1, 6.5], we know that for a given (T, h) there is
always an (F, Z) such that this holds. On the other hand, we can also start
with an (F, Z) and choose a (T, k) such that E(T, h) is linearly disjoint from
E(F*, hs) E(G, X) over E(G, X); see Deligne [1, 5.1]. Then (T, h)and (F, X)
satisfy our assumption if E(G, X) is totally real.

Remark 6.1. If (T, h) and (F, Z) satisfy the assumption, then so do
(T', »') and (F', £), where T’ = adv(T)and b’ = ad v oh with v € G(Q). This
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follows from the fact that E(T’, h') = E(T, h).

We assume now that E(G, X) is totally real. Let (T, k), (F, Z)and ¢
be as above. Consider the diagram

(G’ X) — (G, X)— (CSP(V), Si)

constructed in Deligne [3, 2.3.10]. The information we need concerning
this diagram is collected in Proposition 4.4. Lift (T, k) to (T, h,) C (G,, X))
as in (1.5); then E(T,, h,) = E(T, h) E(F'*, hs). To simplify the notations, we
put E = E(G, X), E, = EG,, X,), E(h) = E(T, h), E(h)= E(T, h,) and
F' = E(F*, hs). Thus we have E, = EF' and E,(h) = E(h)F’'. Fix a com-
ponent X+ of X. We identify Sh’(G, G’, X*) (resp. Sh(G,, X)) with its
canonical model over E (resp. E).

Note that z fixes E,, because it fixes both F'’ and E, E being a totally
real subfield of E(k). Thus we are in the situation of (2.8). Let g, be the
cocharacter of 7, associated to k,, and define v € G,(Q) and B,(z, t.) € G,(A’)
as in (2.9).

PROPOSITION 6.2. Conjecture B° holds for (G, G', X*) if and only if
[k, 1] = [ad v "Ry, Bi(T, )]

First we show that Proposition 6.2 is a consequence of the following
assertion.

PROPOSITION 6.3. Let the notations and assumptions be as above. Then
g(@)[h] = [ad a o n(h)] for all ac G(Q)~ (and for the given h) if and only if
[k, 1] = [ad v o "Ry, BT, )]

In fact, note that the G(Q)*-orbit of [h] is dense in Sh°(G, G, X+).
Therefore conjecture B’ holds for Sh°(G, G’, X+) if and only if e(@)[h'] =
[ad @on(R)] for all @€ G(Q)~ and all [A'] in the G(Q)*-orbit of [h]. Let
veG(Q)*, and consider T’ = ad¥(T) and A’ = adv-h. By Remark 6.1,
Proposition 6.3 also applies to (T', &"). Since (T, k) lifts to (T, h,) C (G,, X)),
(T, n') lifts to (TY, h}), where T/ = adv(T,) and h{ = advy-h,. Moreover,
*h; = advo°h,, and we can take ad v(8,(z, ) as Bi(z, ), where f is the
cocharacter of T, associated to k], and take ad v(v) as the v for (TY, hi).
Therefore, by Proposition 6.3, e(@)[r'] = [ad a - 7(h")] for all @ € G(Q)~ if and
only if
(6.4) ki, 1] = [ad v(v) o R}, B\(T, £)7] .

But we have
tlh!, 1] = z[ad v ok, 1] = z([h,, 1)(v*1))
= (e[, 1)¥+1)
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and
[ad ¥(v) o °hi, Bi(z, )]

= [ad v(v) cad v o *h,, ad ¥(B,(7, £)7)]

= [adycad veh, ad v(Bi(z, t1)7")]

= [ad vorh, Bi(z, ) "|(7*1) .
In other words, (6.4) holds for all A] in the G(Q)*-orbit of A, if and only if
it holds for h,. Putting these observations together, we obtain Proposition
6.2.

It remains to prove Proposition 6.3. Let (G, X,) — (G, X) be as in
Proposition 4.4; thus E(G,, X,)=FE, G,OG,, Z(G,) D F* and X,={x,hs'|x, € X }.
Lift (T, k) to (T,, hy) C(G,, X;). Then T,D T, F'*. Furthermore, using Lemma
1.2, one shows that E(T,, h,) = E(T, k) = E(h) and h, = h,hs'. Therefore h,
factors through T* d T, F*.

Let 7 = B(ct, tt,)~', where p, is the cocharacter of T;* corresponding to
h,, and 5§ = B(z, ts)~!, where p; is the cocharacter of F'* corresponding to £s.
As ¢t fixes E(h), T = rpu (T, hy)(7), and as 7 fixes F'', § = 7,.(F*, h:)(z); see
(2.5). Moreover, as g, = /s, the computation of (2.7) shows B(z, ) =7s.

Let L be a Galois extension of Q that splits 7|, F'* and T,*. Since w,,
is defined over Q, we can define 3(z, t,) € T\ (A%), and choose v and g,(z, t,)
so that Bz, ) = B(z, p)v™"; see (2.9). We have 7e T,*(A")/T*(Q)" and
se F*(AN)/F*(Q)"; let re T*(A’) and s € F'*(A’) be their respective repre-
sentatives. Since B(r, p,)~' = 7S, we can choose 7, s in such a way that
rs = 283(z, p,)" with z € T,*(L). Note that zv' € G,(Q).

(a) Let G, = (Gz(Af)/Zz(Q)A) *03(Q) +/25(Q) G(Q*, where Z, = Z(G,), and
consider the following diagram (Deligne [3, 2.5.3, 2.5.8, 2.5.10]):

e

1— G(Q)*"(relG') — G, Tm(G,) —1

I Ifz Irag,z\'2

1— GQ)*(rel @) — &4(G, G', X*) — Gal(Q/E) — 1
1 » T(Q) — & — Gal(Q/E(h)) — 1.

Since r+1€8, and ¢z € Gal(Q/E) map to the same element in 7,7(G,), they
are both the image of an element )\ = Mh) € &4(G, G', X*). As ¢r lies in
Gal(Q/E(h)) and r+1 lies in

ZT,Z((é)fz *75(Q)/2;(Q) TQ),

where Z, = Z,N T,, the element A(h) lies in &'. Therefore A(h) fixes the
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point [h] € Sh*(G, G', X ).

(b) Now consider e(a) € 65(G, G', X*). As remarked in 4.3, we can use
the diagram in (a) to define the map ¢: G(Q)*"(rel G') - &;. Fix an element
v, of G,(Q)~ and let v be its image in G(Q)_. Since G,(Q) C G,(Q), the image
of e(a) in G, is v,*v~'@; see 4.3. Therefore e(a)\(h) € &; maps to (v,*y~'a)(r*1)
in §, and to ¢(¢cz) = 7 in Gal(Q/E).

Consider the diagram

1— G (rel ') — & — Gal(Q/E) — 1

1— GQ)*" (relG') — &, — Gal(Q/E) — 1
where &; = &5(G, G', X*). Since 7 lies in Gal(Q/E,), e(a)\(h)€ &, arises
from an element ¢,(@, h) € 6. We have ¢,(a, h)[h] = e(@)\h)[h] = e(a)[A].

(c) Observe that (G,, X,) defines a Shimura variety, (G,, X,) — (G, X),
and E(G,, X,)=E(G,, X,)=E,. Thus we have an exact commutative diagram

1— GQ* (el G) — 8§, — Tm(G) —1
If'z [7'02,3'1
1— GQ)*" (relG') — &, — Gal(Q/E,) —> 1.
We show that fg(e,(a, h)) = (v, wy"‘d)(zﬁ(r, 2t * 1),
We have a map
rp(F*, hs): Gal(Q/F") — Tn(F*) = F*(AN)/F*(Q)" ;
composing this map with Z,n(F*) — 7T,n(G,) (resp. F*(AN)/F*(Q)" —9,), we
obtain a map
rp: Gal(Q/F') — Tn(G,)(resp. 7p: Gal(Q/F") — G,) .
Denote the product map of
&p = &; and &;—— Gal(Q/E,) = Gal(Q/F")
by i, and the natural injection of Gal(Q/E,) into Gal(Q/E) x Gal(Q/F") by j.
Then the diagram
s  —> &y x Gal@F) I, g,

| l |-

TGy, xy X TF’

Gal(Q/E,) —— Gal(@/E) x Gal(@/F") X" 7 1(Gy)
is commutative. Since X, = {x.hs|z, € X,}, we have (7g,x, X 7s)0J = T4, x,
and (f, X Fz)o1 = f,. Thus
Filea, b)) = filel@nR)) - rp(T) = (vi* 7 @) (r*1)(s*1)
= (v, * v a)(28(z, )t *1) .
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(d) Next we show that on the canonical model of the Shimura variety
Sh(G,, X)),
[ad a o *h,, 1] fi(e(a, b)) = [adwoh, 5],
where 8, = B.(z, () = B(z, t)v~". In fact, for any 4, € (Gy(A")/Z,(Q)"),
(r*v @)@, % 1) = (7, - (ad ' @)() * 1)1+ 7' a) .
Therefore, for x, € X,
[ada o, 1)(v,*v ' a)(9,*1)
= [adaox, v, (ad v @)(3,)]A * 7' )
= [ad (a'v)cad @ oz, (ad @' ¥)(7,) - 8]

= [ad ((ad a7)(7) o @, (ad @)(7) - ,]
= [, 0]

because (ad a~')(7,) € G,(Q). Especially, in view of (c),
[ad o h, 1] Fye(a, b))

= [ad @ "h,, 1](v,* v @) (28(c, p) " *1)
= [ad a o7k, 1](v,x v @)(zv~' B *1)

= [y, 207" 8]
= [ad (vz~") o "h,, B'] (as z2v' € G,(Q))
= [adveTh, B (as z € Ty (C)) .

(e) The inclusion (G,, X,)=>(G,, X,) induces maps Sh(G,, X,)=>Sh(G,, X)),
8, = 8, and 7,1(G,) = T,m(G,) (Deligne [1, 1.15.3]). Note that the composite
&, ﬁn@l — 8, coincides with f,. Since both [ad a°h, 1] and [ad voh,, B[]
are on the canonical model of the Shimura variety Sh(G,, X,), the result (d)
shows

[ad a o7k, 1]fi(e(a, h)) = [advo'h, B .
(f) Finally we observe that zp, = g, - Tt = ¢, - ft< projects to ¢ in
X, (T). Thus (T, *h,) is the lift of (T, (k) to (G,, X,). We also recall that
T (e(a, h)) = 7.
Therefore, for a € G(Q)-,

s(@)[h] = [ad a0 7(h)]

= ¢&(a, )[k] = [ad a°7(h)] (by (b))
==r[h, 1] = [ad @ °"h,, 1]f1(51(a, h)) (by (f))
= r7tlh,, 1] = [advo~h,, B;'] (by (e))

This completes the proof of Proposition 4.3.
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7. Proof of conjecture B°

In this section we prove conjecture B° for (G, G, X*) of primitive
abelian type. For (G, G', X*) of type C, this is done in Shih [1]. We shall
use this result to prove conjecture B® for all other cases. For completeness’
sake, we start with a sketch of the proof for the type C case.

Every (G, G', X*) of type C is obtained in the following fashion. Let
F, be a totally real number field and B a quaternion algebra over F,. We
use ¢ to denote the main involution of B. Denote by I the set of embeddings
of F, into R, by I,. the set of z € I at which B splits, and by I, the comple-
ment of I,,. Let ® be a non-degenerate F-bilinear symmetric form on a
free left B-module A of rank n such that

Dbz, y) = Oz, b°y) for xz,yeA and beB.

Let G, be the similitude group of @, considered as an algebraic group over
F,, and let G,=Res; /,G,. There is a natural way of defining a Gz-conjugacy
class X, of homomorphisms of S into G such that (G, X,) defines a Shimura
variety; see Deligne [1, 6.3]. The reflex field E(G,, X,) is totally real. Let
G = G and G’ = Gi*. Let X," be a component of X,. We can identify X;"
with a G(R)*-conjugacy class X+ of homomorphisms of S into G;. The triple
(G, G', X*) is of type C. The center Z, of G, is Resy /oG,. Thus

1— FF— G(Q) — GQ) —1

is exact. In particular, G(Q)*"(rel G') = G,(Q)+/Z,(Q)".
The first step towards proving conjecture B° is to show that there is
te Z,(A") N G'(AY) such that

(7.1) [ad aon(h)] = e(an)[k] forall aeG(Q)- and he X+,

where A denotes the image of t in G(Q)3/Z,(Q)~ = G(Q)* (rel G’). (Note
that an element ¢ of Z,(A”) is in G'(A’) if and only if t* = 1.) Two essential
ingredients we need in proving the above claim are (i) uniqueness of
canonical models and (ii) a concrete description of the automorphism group
of Sh°(G, G', X*).. For the former, we refer to Deligne [3, 2.7.19], and the
latter, to T. Miyake [1], or to Milne-Shih [3]. The element ¢ is unique modulo
+1.

Let F be a quadratic totally imaginary extension of F,, and consider
the diagram

G, X) — (G, X)) = (CSp(V), S%)

as in (1.4). Let h € X* be special, and let T G be a Q-rational torus such
that h factors through Ty. Lift (T, k) to (T,, k,) C (G,, X,). Consider (F*, hs)
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and an automorphism ¢ of C as in Section 6. Since (T, h,) = (CSp(V), S*),
we have a diagram
[h’ly gl] Sh(le h‘l) = Cf( V’ "lf‘)

-k

[Zhl) gl] Sh(T!’ rhl) = G(r V’ f"/")

as in conjecture CM (see § 2). Using (7.1) and the argument of Section 6, we
can show that the diagram is commutative if the left vertical map is
replaced by [k, g,]+ [k, g.]n. The image of Sh(T, k,) in Q(V, ) is a
family of abelian varieties, which we denote by Q(T,, {h.}, V).

Note that » =1 (i.e., t = 1) if I, is empty, because in this case
E(F*, hs) = Q, so 7 fixes the reflex field of (T, k,) and conjecture CM holds.

To get a more precise statement, we assume that (@,, X)) is constructed
using Shimura’s original method [1] (see also Deligne [1, §6]). Thus V =
A @y, F and we have an exact sequence

1—> Z,— G, X Resy oG, — G,—1
ar—(a,a™").

Note that ¢, when considered as an element of G,(AY), is in the center of
G,(A’). We shall write ¢ = ¢(B, n) to emphasize its dependence on B and n.
We choose (T, ) in the following way: Let Pbe a quadratic totally imaginary
extension of F, that splits B. Then T, = (Resp/,G,)" can be embedded in G,
and there is an s, € X;* that factors through T,x. We let (T, k) be the pro-
jection of (1, h,) to (G, X 7).

With this choice of (G,, X,) and (T, k), T, is simply n copies of Res;z/oGn,
and the abelian varieties (up to isogeny) that appear in the family G(T', {h,}, V)
are n-fold products of an abelian variety with F'P as its field of complex
multiplication. The conjugate of the family under z is described by the map

[k, 9. — [hy, g]N = [fhx, t(B, ’"/)91] .

From this we conclude that ¢(B, ») € (F,® Af)* modulo +1 is independent
of ». Actually it only depends on X = I,,, the set of infinite places where B
splits, and not on B; see Shih [1, Proposition 11].

Thus to a totally real number field £ and a non-empty set X of embeddings
of k& into R, we can associate a well-defined element t(k, ) of (k& A’)*
modulo +1. We remark that the above considerations show that the
statement at the end of Example 2.7 is correct if B(z, tt) is replaced by
t(F,, Z,)B(z, ). Our goal is to prove that t(k, £) = +1 for all £k and X.
This would complete the proof of conjecture B® for (G, G', X*) of type C,
and also the proof of Example 2.7. We noted already that ¢(k, £) = +1 if
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Y = I, the set of all embeddings of k into R.

By considering various families of the form @(T,, {r.}, V) and their
conjugates, we obtain the following relations between t(k, £)’s. For simpli-
city, we shall use ¢ = ¢’ to mean that ¢ is congruent to ¢’ modulo +1. The
fields &k and k, are totally real.

(i) If (k, Z,) is an extension of (k, X), then t(k, X) = t(k,, X,) in (k,Q A)*.

(ii) If v:k —k, is an isomorphism, and X is the pull back of Z, by v,
then t(k, Z,) = v(t(k, 2)) in (k, ® A")*.

(iii) Assume that k is normal over Q, and X, and %, are two disjoint
sets of embeddings of k into R. Then t(k, X)) t(k, Z,) = t(k, Z, U Z,).

These functorial properties are all we need to conclude that t(k, ) = 1
for any kand X. For details, see Shih [1, Theorem 16]. Thus we have shown
that conjecture B° holds for groups of type C, as well as the statement in
Example 2.7.

Now turn to the proof of conjecture B’ in general. For each (G, G', X™*)
of primitive abelian type, we shall take the corresponding (G,, X,) as given
in the appendix. We have E(G, X,) = E(G, X*). In view of Proposition
5.2, we can either prove conjecture B’ for (G, G', X*) or prove conjecture B
for (G,, X,). Recall that only those (G, X,) with E(G, X,) totally real are
under consideration.

(A) This is a trivial case, because (G, X,) is embeddable in some
(CSp(V), S*); see K. Miyake [1] and Remark 3.3(c).

(B, D*) According to Shih [3], in this case (G,, X,) can be embedded in
some (G,, X,) such that (G}%, Gi*, X|") is of type C. Since conjecture B holds
for (G,, X)), it also holds for (G,, X,).

(D") We use Proposition 6.2 here. Let the notations be as in case (D")
of the appendix. Let

&, 0
q~ K . (e:€ B)
0 'e,,
be a diagonalization of q. Then for each i, P, = F(¢;) is a CM-field, and
T, = II._,Resp oG, can be embedded in G,. Denote Res; oG, simply by T¢"
soT,=T® x .-+ x T™. Let X;* be a connected component of X,. We can
embed T, in G, in such a way that some h, e X, factors through T,z. Let
h?: S — T be the 1** factor of h,, and let £ = E(T{", h{"). Then E(T,, h,)
is the composite of £V, ... E™,

Put G = G, G = G¢*" and let X* be the G(R)*-conjugacy class of

homomorphisms of S into Gy induced by X,*. Let (T, h) be the image of
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(Ty, ko) in (G, X*). We have E(T, h) = E(T,, h,), which is the composite of
EW ... E™,
Let F be a quadratic totally imaginary extension of F), and let £ and
hs be as in (1.4). Consider the usual diagram
G, X) — (G, X)) = (CSp(V), §%).
As in the type C case, we can choose G, so that there is an exact sequence
1 — Res; /oGn — Gy X Resp oG, — G, — 1
ar— (a, a™")
and take A ®; F as V. Let (T, h,) be the lift of (T, ) to (G,, X,). Then
T, = HLIT}“, where T{” = Reszp,/oGn.. We choose (T, h,) and (F'*, hs) in
such a way that there exists an automorphism z of C which induces the
identity map on E(F', hs), and the complex conjugation on E(T, h); see
Section 6.

The inclusion (7, k,) =>(CSp(V), S*) identifies the Shimura variety
Sh(T,, k,) with a family Q(T,, {h,}, V) of abelian varieties. We show that
conjecture CM holds for (T, 4,) and 7. In view of Propositions 2.10 and 6.2,
this would prove that conjecture B° holds for (G, G', X ).

Members of @(T,, {k,}, V) are (isogenous to) products A4, x --- X 4,,
where A, is an abelian variety with complex multiplication by FP,. Since
Sh(T,, h,) is the product of Sh(T{", h"),7 =1, ---, n, we only have to prove
that conjecture CM holds for r and each individual (T®, h{"). As E® =
E(T§, h{") is a CM-subfield 'of E(T, h),  acts as ¢ on E‘“. Therefore con-
jecture CM for (T, h{") and t is equivalent to the statement of Example
2.7. As we have established this statement while proving conjecture B° for
groups of type C, the proof of conjecture B° for groups of type D" is now
completed.

Let (G, X) be of abelian type. By definition (see §1), there exist
(G,, Gi, X}*), of primitive abelian type such that G** = [] G,, G*** is a quotient
of T[] G}, and X+~ J] X;* for a suitable component X+ of X. Assume E(G, X)
is totally real. Then E(G*, X*) and all E(G,, X;") are totally real. As con-
jecture B° holds for Sh°(G,, G, X!) for each %, it holds for Sh*(G*¢, G**, X ).
Therefore conjecture B holds for Sh(G, X) in view of Proposition 5.2.

THEOREM 7.2. Conjecture B holds for all Sh(G, X) of abelian type (such
that E(G, X) is totally real).
Appendix

We give a list of classical reductive groups G, such that (G, X,) defines
a Shimura variety for a suitable X,, and such that (G3%, Gi*") is of primitive
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abelian type. Every (G, G, X*) of primitive abelian type is of the form
(G2, Goer, X;*) with some (G,, X,) from the following list. These (G,, X,) all
have the property E(G, X,) = E(G*, X;").

In the following, F, is a totally real number field, and I is the set of all
embeddings of F,into R. We use z to denote the complex conjugate of z € C.

(A) Let K be a quadratic totally imaginary extension of F),, and A a
central simple algebra over K, together with an involution o of the second
kind. Then {x € A*|zxz° € F*} defines a reductive group G, over F,. We put
G, = Resp,G,. The center of G, is Resy (G,

For non-negative integers » and s, we put

I. 0
Ir,s=( ’ ) ’
0 —1I,

GU(r, s) = {g€GL,,(C)|gl,.'g = v(9)I.,, v(g) e R*}.
Then for each v € I, there are non-negative integers r, and s, such that
G,(R) = [I,GU(r, s,) .

Let I,, ={vel|r,-s,+ 0} and let I, be the complement of I,. Define
h,:S =C*—GU(r, s,) by

and

(zI” 0 ) if vel
if v

h(z) =4\ 0 zI, "
1 if vel,,

and define h,: S — G,(R) to be the product of 4,’s. Let X, be the G,(R)-con-
jugacy class of h,. Then (G, X,) defines a Shimura variety. For any con-
nected component X" of X,, (G}%, Gi°", X,;*) is of type A.

The reflex field E(G,, X,) is either Q or a CM-field. The former case
happens if and only if , = s, for all v € I. In this case the map 7 defined in
Section 3 takes h, to h; = J] h!, where

Fo) e
y T=7r,=s8,, 1LY ne

nz =i\ 0 2L s
1, if vel,.

(B) Let » = 3 be an odd integer and ¢ a quadratic form on an n-dimen-
sional vector space over F, such that the signature of ¢ at a veIis (n, 0),
0, »), (n — 2,2) or (2, n — 2). The special Clifford group of ¢ defines a
reductive group G, over F,. We put G, = Res, ,,G,.. The center of G, is
Reszy oG-

We refer to Shih [3] for the description of X, such that (G,, X,) defines




COMPLEX CONJUGATION ON A SHIMURA VARIETY 597

a Shimura variety. The reflex field E(G,, X,) is totally real. The derived
group G is the spin group of ¢q. (G}, Gi*", X;") is of type B for any con-
nected component X;* of X,.

(C) G, is the similitude group of a hermitian form over a quaternion
algebra whose center is F'; see Section 7.

(D®*) There are two cases:

(1) Same as type B, except n = 4 is even.

(2) Let B be a totally indefinite quaternion algebra over F, and denote
by o the main involution of B. Let q be a g-antihermitian form on a left
free B-module of rank n = 2. At each z € I, q defines a quadratic form on a
2n-dimensional real vector space. We assume that its signature is (2n, 0),
0, 2n), 2n — 2, 2) or (2, 2n — 2). Let G, be the algebraic group over F,
defined by the special Clifford group of g, and let G, = Res; ,,G,. We define
X, as in Shih [3]. Then (G,, X,) defines a Shimura variety and (G3%, G¢*) is
of type D*.

In both cases E(G,, X,) is totally real, and the center of G, is Res; 2.,
where Z, is an extension of ¢, by G, over F.

(D" Let B be a quaternion algebra over F, with main involution o.
Let ¢ be a g-anti-hermitian form on a free left B-module A of rank n = 4.
Let I,. be the set of z € I where B does not split, and let I, be the comple-
ment of I,,. As usual, we assume I, is non-empty; let » be its cardinality.
We assume also that at every = € I, the real quadratic form defined by ¢ is
definite. Let G, be the algebraic group over Q such that

G(Q) = {g € GL4(A)|gq'g” = v(g)q, v(9) e F* and N(g) = v(¢9)"},

where N denotes the reduced norm from Endi(A) to F,. Then G,(R) is
isomorphic to the product of » copies of GO*(2n), where

A B I, 0 I, 0
GO*(2n) = Jg = (—B A>GGL%(C)|Q<O __,)‘E = v(g)(o _I) ,

v(g) e R* and det(g) = v(g)"} .

Define h,: S = C* — G,(R) = (GO*(2n))" so that each component of h, is given
by
(zI,, 0 )
2 —
0 zI,
and define X, to be the G,(R)-conjugacy class of h,. Then (G, X,) defines a
Shimura variety. The center of G, is Res; oG,
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The reflex field FE(G, X,) is either a CM-field or a totally real field,
depending on whether » is odd or even. Let h: S = C* — G(R) = (GO*(2n))’
be a homomorphism such that each component of & is given by

zI, 0
0 zIn) '
Then h{ belongs to X, if and only if n is even. In this case the map 7 defined
in Section 3 takes h, to h,. )

When n = 4, we also allow G, of the “mixed type”. We let I, be the set
of ¢ € I such that Bsplits at  and the quadratic form over R determined by
q at 7 is definite. Denote the complement of I, by I,,. Let s (resp. ) be the
number of 7 € I, at which B splits (resp. does not split). We assume » > 0.
If B splits at a z € I,,., we assume that the signature of the real quadratic
form determined by ¢ at z is (6, 2) or (2, 6). Then

G«(R) = (GO*(8)) x (GO(S, 2)*),

—

where

( I, 0 b ‘I, 0
GO, 2)* = {geGLs(R)|g<0 _Iz>g—v(g)(0 —Iz)'

v(g)eR* and detg > 0} .

We define h,: S — G,(R): the homomorphism into the component GO*(8) is
defined as before and the homomorphism into the component GO(6, 2)* is

given by
|z |* I, 0
zr—»( 0 Re 2? Imzz).

—Imz®* Rez?
Let X, be the G,(R)-conjugacy class of k,. Then (G, X,) defines a Shimura
variety.
The reflex field E(G,, X,) is totally real. Let h{ be the image of h, under
the map 7 of Section 3. Then the component of kj corresponding to the

factor GO*(8) is
(ZL 0 >
2 — ,
0 =zlI
and to the factor GO(6, 2)*, it is

|z "I, 0
Z2— 0 Re 2? —Imz*).

Im 2* Re 2?

UNIVERSITY OF MICHIGAN, ANN ARBOR
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