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POINTS ON SHIMURA VARIETIES mod p

J. S. MILNE

There is associated to a reductive group G over Q with some additional structure
a Shimura variety S, defined over C. In most cases it is known that S, has a
canonical model Sy defined over a specific number field E. For almost all finite
primes v of E it is possible to reduce Sz modulo the prime and obtain a nonsingular
variety S, over a finite field F,. As is explained in [3], in order to identify the
Hasse-Weil zeta-function of Sy or, more generally, of a locally constant sheaf on
S it is necessary to have a description of (S,(F,), Frob) where S,(F,) is the set

of points of S, with coordinates in the algebraic closure F, of F, and Frob
is the Frobenius map S,(F,) — S,(F,) which takes a point with coordinates
(a1,++, a,) to (a%, --+, a®). To be useful, the description should be directly in terms
of the group G.

Recently [13] Langlands has conjectured such a description of (S,,(Fqu), Frob)
for any Shimura variety S and any sufficiently good prime v. In [12] he has given a
fairly detailed outline of a proof of the conjecture for those Shimura varieties
which can be realized as coarse moduli schemes for problems involving only
abelian varieties, (weak) polarizations, endomorphisms, and points of finite order.
(So G(Q) is of the form Autg(H (4, Q), ¢) where B is a semisimple Q-algebra
containing an order which acts on the abelian variety 4, ¢ is a Riemann form for
A whose Rosati involution on End(4) ® Q stabilizes B, and Auty refers to B-
linear automorphisms g of Hy(4, Q) such that ¢(gu, gv) = ¢(u, u(g)v) with u(g)
lying in some fixed algebra F contained in the centre of B and fixed by the Rosati
involution; there is also a Hasse principle assumption.)

Earlier [8, Conjecture 1] Ihara had made a similar conjecture when S is a Shi-
mura curve and had proved it when G = GL; [9, Chapter 5]. When G = B*, Ba
quaternion division algebra over @, Morita [15] proved Ihara’s conjecture for all
primes p of E (= Q) not dividing the discriminant of B. Both he and Shimura have
obtained partial results for more general quaternion algebras (unpublished). More
recently Ihara has proved his conjecture for all Shimura curves and sufficiently
good primes (announcement in [11]). While Thara bases his proof on the Eichler-
Shimura congruence relations, Morita’s method, as described in [10], appears to be
quite similar to that of Langlands.

In order to give some idea of the techniques Langlands uses in his proof I shall
describe it in the case that G is the multiplicative group of a totally indefinite qua-
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ternion algebra over a totally real number field. In §1 it is shown that S, para-
metrizes, in a natural way, a family of abelian varieties with additional structure.
The following section describes how Artin’s representability criteria may be used
to prove the existence of a variety S, over @ which is a canonical model for S,
and which, when reduced mod p, parametrizes a family of abelian varieties (with
additional structure) in characteristic p. Thus the problem of describing (Sp(Fp)’
Frob) becomes one of describing this family. In §5 the Tate-Honda classification
of isogeny classes of abelian varieties over finite fields is used to determine the
isogeny classes in the family, and in §6 the individual isogeny classes are described.
Since this requires the use of p-divisible groups and their Dieudonné modules,
these are reviewed in §3.

Notation. F is a totally real number field of degree d over Q, B is a quaternion
division algebra over F which is split everywhere at infinity, b — b* is a positive
F-involution on B, and Oyp is a maximal order in B.

G is the group scheme over Z such that G(R) = (O%® ®. R)* for all rings R,
where Ogr is the opposite algebra to Op.

A is the ring of adéles for Q; A =R x A; = R x A% x QF ; 4, = Z; ® 0,
Z; = proj lim Z/mZ; Z; = Z% x Z,

Kis a (sufficiently small) open subgroup of G(Z;). 4is a product of rational prime
numbers such that if p f 4 then p is unramified in F, B is split at all primes of F
dividing p, and K = K?G(Z,) where K? = K [ G(A?).

S¢ = xS¢ is the Shimura variety over C defined by G, K, and the map h: C* —
G(R) defined in §1; thus its points in C are S¢(C) = G(Q)\G(A)/K_ K where K
is the centralizer of 4 in G(R).

If V = V(Z)is a Z-module then V(R) = V ®;, R for any ring R.

1. S; as a moduli scheme. Recall that an abelian variety over a field k is an alge-
braic group over k whose underlying variety is complete (and connected); its group
structure is then commutative and the variety is projective. For example, an abelian
variety of dimension one is an elliptic curve, and may be described by its equation,
which is of the form

Y2Z = X3 + aXZ? + bZ3, a,bek, 4a® + 27b% # 0.

It is impractical to describe abelian varieties of dimension greater than one by
equations, but fortunately over C there is a classical description in terms of lattices
in complex vector spaces. Let V be a lattice in C¢, i.e., V is the subgroup generated
by an R-basis and so V ®, R ~ C¢. Then C¢/V is a compact complex-analytic
manifold which becomes a commutative Lie group under addition. When g = 1
the Weierstrass p-function corresponding to ¥, and its derivative, define an em-
bedding

z (p(2), V'), 1):C/V & PE

of C/V as an algebraic subset of the projective plane. Thus C/V automatically has
the structure of an algebraic variety and so is an abelian variety. This is no longer
true if g > 1 for there may be too few functions on C¢/V to define an embedding
of it into projective space. Since any meromorphic function on C¢/V is a quotient
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of theta functions on C%, Cz/V will be algebraic if and only if there exist enough
theta functions. By definition, a theta function for ¥ is a holomorphic function ¢
on C¢ such that, for ve V, 0(z + v) = 0(z) exp (2zi(L(z, v) + J(v))) where L(z, v)
is a C-linear function of z and J(v) depends only on v. One shows that L(z, v) is
additive in v, and so extends to a function L: C¢ x C¢ — C which is C-linear in
the first variable and R-linear in the second. Set E(z, w) = L(z, w) — L(w, z).

Then

(a) E is R-valued, R-bilinear, and alternating;

(b) E takes integer values on V x V;

(c) the form (z, w) — E(iz, w) is symmetric and positive.

(The symmetry is equivalent to having E(iz, iw) = E(z, w) for all z, w; the positivity
means E(iz, z) = 0 for all z.)

A form satisfying these conditions is called a Riemann form for V and it is known
that there exist enough functions to define a projective embedding of C#/V if and
only if there exists a Riemann form for ¥ which is nondegenerate (and hence such
that E(iz, z) is positive definite). If g = 1 we may always define E(z, w) to be the
ratio of the oriented area of the parallelogram with sides Ow, Oz to that of a funda-
mental parallelogram for the lattice. Since this form always exists, and is unique up
to multiplication by an integer, one rarely bothers to mention it. By contrast, if
g > 1, a nondegenerate Riemann form will not usually exist and when it does, it
will not be unique up to multiplication by an integer. However since C¢/V is com-
pact the algebraic structure on C#/V (but not the projective embedding) defined
by a Riemann form is independent of the form.

Thus, given a lattice in C¢ for which there exists a nondegenerate Riemann form,
we obtain an abelian variety. Conversely, from an abelian variety A of dimension g
we can recover a complex vector space W of dimension g and a lattice ¥V in W
for which there exists a nondegenerate Riemann form. W can be described (accord-
ing to taste) as the Lie algebra Lie(4) of A4, the tangent space ¢4 to A4 at its zero
element, or as the universal covering space of the topological manifold 4(C). The
lattice ¥ can be described as the kernel of the exponential exp: Lie(4) — A(C),
or as the fundamental group of A(C) which, being commutative, is equal to
H(A, Z). We shall always regard the isomorphism W/V = A(C) as arising from
the exact sequence,

0 - Hy(4, Z) - 1, A(C) — 0.

Since H\(4, Z) is a lattice in #4; we have Hi{(4, R) = H|(A,Z) ® R = t,. Thus 4
is determined by H,(4, Z) and the complex vector space structure on Hy(4, R).

A complex structure on a real vector space V(R) defines a homomorphism
h: C* - Autg(V(R)), h(z) = (v — 2zv), and the complex structure is determined by
h. Thus an abelian variety 4 is uniquely determined by the pair (Hy(4, Z), h)
where h: C* — Aut(Hy(4, R)) is defined by the complex structure on Hy(4, R)
= t,. Moreover every pair (V(Z), h) for which there exists a Riemann form arises
from an abelian variety.

Let V(Z) = Hy(A4, Z). A point of finite order on A4 corresponds to an element of
V(R) some multiple of which is in V(Z). More precisely, the group of points of
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finite order on 4 may be identified with V(Q)/V(Z) = V(R)/V(Z). For any integer
m > 0, the group 4,(C) of points of order m is equal to m V(Z)/V(Z) =
V(ZImZ) ~ (Z|mZ)*i™4D, We define T;A to be proj lim,,4,,(C) = V(Z;) and, for
any prime /, T)4 to be proj lim,4,,(C) = V(Z)); thus T;4 = [[,T;4 and T,4
~ Z2imA),

A homomorphism 4 — A’ of abelian varieties induces a C-linear map t, — ¢,
such that H,(A4, Z) is mapped into Hy(4’, Z). Conversely, if A and A’ correspond
respectively to (V, h) and (V’, &") then a map of Z-modules a:¥(Z) — V'(Z) extend-
ing to a C-linear map a ® 1: V(R) - V'(R) (i.e., such that a ® 1 o h(z) = A'(2)
a @ 1 for all z) arises from a map of complex manifolds 4(C) — A'(C) and the
compactness of A(C) and A’(C) implies that the map is algebraic. We write End(A4)
for the ring of endomorphisms of 4 and End°(4) for End(4) ®, Q. Since
End°(A) has a faithful representation on H,(4, @), it is a finite-dimensional Q-
algebra; it is also semisimple, and its possible dimensions and structures are well
understood.

To define a homomorphism i: Oz — End(4) when A corresponds to (V, h)

is the same as to define an action of Op on V such that & maps C* into
Autp,er(V(R)). When such an i is given we say that Oy acts on A provided
i(1) = 1. Such an i induces an injection i: B & End°(A4).
. A nondegenerate Riemann form E for A defines an involution a — o' of
End°(A4) by the rule E(az, w) = E(z, a'w); this is the Rosati involution, which is
known to be positive, i.e., Tr (aa’) > 0 for all « # 0 where Tr denotes the reduced
trace from End°(4) to Q. Suppose Og acts on 4. We say that two Riemann forms
E and E’ on A are F-equivalent if there exist nonzero ¢, ¢’ € O such that E(u, cv)
= E(u, c¢'v) for all u, ve V(Z), and we define a weak polarization of A to be an
F-equivalence class /4 of nondegenerate Riemann forms. Since F is the centre of
B, the Rosati involutions defined by any two elements of such a 4 induce the
same map on i(B). We shall be interested in triples (4, i, A) such that E(i(b)u, v) =
E(u, i(b*)v) for u, ve V(R), b € B, E € A, i.e., we require that the Rosati involutions
defined by A stabilize i(B) and induce the given involution b — b* on B.

We next review some notations concerning B. The main involution b +— b¢ of B is
so defined that under any R-isomorphism B ® r R = M,(R), if b corresponds to
M = (2%) then b¢ corresponds to M* = (¢t); thus b + b* = Trp, p(b) and bb* =
Nmg,(b). The Skolem-Noether theorem shows that there exists a # € B such that
b* = ~1b¢t = tbu~! for all b € B; automatically ¢2 € F and the positivity of b — b*
implies that 2 < 0, i.e., ¢2 has negative image under all embeddings F & R. We
fix an isomorphism B ®, R M,(R) x --- x My(R) such that if b« (M;,---, M,)
then b* « (M}r, ---, ML) where M{* is the transpose of M. Since

(0 =1\, [0 —1
me=(1 7o) M(i o)
¢t maps to an element (¢;(Y 3), -, ¢,(} 3)) with each ¢; € R, and ¢ may be chosen
so that ¢; > 0.
The next lemma implies that if Oy acts on a complex manifold C?2¢/V then there is

a Riemann form E for ¥V whose corresponding Rosati involution induces b — b*
on B and any two such forms are F-equivalent, i.e., that there is a unique weak
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polarization which is compatible with the Og-action and the given involution.

LemMA 1.1. Let V = V(Z) be a free Z-module of rank 4d on which Oy acts. There
is a nondegenerate alternating form ¢ on V(Q) such that:

@) o, vye Zifu, ve V(Z);

) (ut, u) < 0 forallu # 0, ue V(R);

(¢) (bu, v) = J(u, b*v) for all be B and u, v € V(Q);

(d) for any B-automorphism o of V(Q) there exists a y(«) € F* such that $(au, av)
= ¢(u, p(a)v) for all u, ve V(Q). Moreover if ' is a second nondegenerate al-
ternating form on V(Q) satisfying (c) then there exists a ¢ € F* such that ¢(u, cv) =
¢'(u, v) for all u, ve V.

Proor. ¥(Q) has dimension one over B and so, after choosing an appropriate
basis vector, we may identify V(Q) with B and V(Z) with a left ideal in Op.

Define ¢(u, v) = Trp(uvit) = Trpouv*). Then ¢(u, v) = Tr (utv*) =
Tr(vt*u*) = Tr(v(—)u*) = — (v, u), and so ¢ is alternating. (a) is obvious, and
P(ut, u) = Trpout?u*) = Trpe(t?Trg, [(uu*)) < 0 for u # 0, which proves (b)
and that ¢ is nondegenerate. For (c) we note that ¢(bu, v) = Tr(utv*h) =
Tr(ut(b*v)*) = ¢(u, b*v). Finally, any B-automorphism « of V(Q) = B is multi-
plication on the right by an element b € B*. Thus ¢(au, av) = Tr (ubbvt) =
O(u, a)v) with p(a) = Nmp, p(b).

For the last part, consider the Q-linear map v — ¢'(1, v): B - Q. Since Trp,:
B x B — Qis nondegenerate, there is a unique b € B such that ¢'(1, v) = Tr (b#v*)
forall ve B. Then ¢'(u, v) = ¢’ (1, u*v) = Tr (btv*u) = Tr(ubtv*) = Tr(ubv't). We
also have ¢'(1,v) = —¢'(v, 1) = —Tr(vbt) = —Tr (b)) = Tr (bvt) = Tr (btv¥).
Thus b = b¢, which implies that it is in F, and we may take ¢ = b.

For the remainder of this section V(Z) will be O regarded as an Og-module and
¢ will be as in the lemma. For any ring R we may identify G(R) with Auty er(V(R))
since any Oy ® R-endomorphism of V(R) = Og ® R is right multiplication by
an element of O ® R. Define 4 to be the homomorphism C* — G(R) =
Autggr(V(R)) such that A(i) is right multiplication on V(R) = B ® R = My(R)
X ... X My(R) by (%18, -+, (%1 9). Thus K, = {(M;, ---, M,)} with M; of the
form(¢, %), a, be R. The form E = ¢ is a Riemann form for (V(Z), k), e.g.,
iy, iv) = P(uh@@), vh@i)) = ¢(u, Nmg,p(h(i))v) = J(u, v) and ¢(iu, u) =
d(ut| —(—=12)172, u) > 0 for u # 0. Thus (V(Z), h) defines an abelian variety A.
The action of Og on V(Z) induces a map i: Oy — End(A4) and the Rosati involution
defined by the weak polarization /A containing ¢y induces b — b* on B.

Recall that X is an open subgroup of G(Z;). Two isomorphisms ¢;, ¢: T;4 =
V(Z;) are K-equivalent if there is a k € K such that ¢, = k¢,. For example, if K =
K, = Ker(G(Z;) —» G(Z|/mZ)) then to give a K-equivalence class of isomorphisms
TiA - V(Z,)is the same as to give an isomorphism 4,(C) = V(Z|mZ), ie., a
level m structure.

THEOREM 1.2. There is a one-one correspondence between the set of points S¢(C) =
G(O\G(A)/K K and the set of isomorphism classes of triples (A, i, ¢) where A is
an abelian variety of dimension 2d, i defines an action of Og on A, and ¢ is a K-
equivalence class of Op-isomorphisms TA = V(Z,).
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REMARK 1.3. (a) We say that two triples (4, i, ¢) and (4, i’, ¢') are isomorphic if
there exists an isomorphism a: 4 — A’ such that o 0 i(b) = i'(b) o a for all b e Op
and ¢’ o (Tya) € ¢ for all ¢’ € §'.

(b) Normally when considering families of abelian varieties parametrized by
Shimura varieties it is necessary to work with quadruples (4, i, A, ¢) with /1 a (weak)
polarization. This is not necessary in our case because, as we observed above, A
always exists uniquely.

PROOF OF 1.2. We first show how to associate to any g € G(4) a triple (4,, i,, ¢,).
If g = 1 wetake (4, i, §) with (4, i) as defined before and ¢ the class of the identity
map T4 = V(Z;) 4 V(Z;). We write a general g asg = 881 8-€G (R), gs¢€
G(4y), and use g, and g; to modify respectively the complex structure on V(R)
and the lattice. Define 4,: C* — G(R) by the formula 4,(z) = g.h(z)g! and define
gV(Z) to be the lattice gV (Z;) N V(Q), the intersection taking place inside V(4;).
Then 4, is to be the abelian variety defined by the pair (g¥, h,). Since Ojp still
acts on gV(Z) we have an obvious map i,: O & End(4). We define ¢,: T4, =
g:V(Zy) = V(Z;) to be multiplication by g7

If g is replaced by gk, with k. e K, then h, is unchanged since K, is the
centralizer of 4 in G(R). If g is replaced by gk, with k; € K then h, and gV(Z) are
unchanged while ¢, is replaced by k7' ¢,, which is K-equivalent to ¢,. If g is
replaced by gg with g e G(Q) then g7': V(R) > V(R) defines an isomorphism
(Agg, +++) = (A4, +-). Thus (4,, --+) depends only on the double coset of g.

Conversely, an isomorphism a: (4,, :-) = (4,, --) is induced by an isomor-
phism V(R) — V(R) which sends gV(Z) isomorphically onto g’'V(Z). In particular
« defines a B-isomorphism g: V(Q) — V(Q). Thus g € G(Q) and so, after replacing
g' by g~1g’ and a by g~ 1a, we may assume that the map V(Q) — V(Q) correspond-
ing to « is the identity. Thus g h(z)gx! = geh(z)gs? for all z, and so gx! g5 € K.
Moreover, gV(Z) = g'V(Z) implies g7* g; € G(Z;), and g7': gV (Z;) > V(Z;) being
K-equivalent to g 1: g'V(Z;) —» V(Z;) implies that g;' g7 € K.

Finally we have to show that every (4, i, ¢) arises from some g. Since B is a divi-
sion algebra there is a B-isomorphism H;(4, Q) = V(Q) which we may use to
identify H; (4, Q) with V(Q). Then H,(4, Z) is a lattice in V(Q) and so is of the
form g,V (Z) for some g; € G(4y). The isomorphism V(R) ~ t, induces a complex
structure on V(R), and we let A': C* — Autyz(V(R)) be the corresponding map.
Since B acts C-linearly on ¢4, » maps into Autgge(V(R)) = G(R). Obviously there
exists a g, € G(R) such that #'(z) = g.h(z)gl. Any ¢ ¢ is of the form v —
gilgst vi g V(Zy) - V(Zy) for some g, € G(Z;). It is now clear that (4, ---) ~
(4,, ---) with g = g.g:81.

REMARK 1.4. (2) A map a: 4 —» A’ of abelian varieties is an isogeny if it is
surjective and has finite kernel; when Ojp acts on 4 and 4’, « is called an Ogp-iso-
geny if it commutes with the two actions. Clearly any isogeny (over C) induces an
isomorphism on the tangent spaces and so A4, is isogenous to 4, only if g, and
g5 define the same double coset in G(Q)\G(R)/K .. On the other hand, the set
End3(4)*\G(4/)/K classifies the triples (4, i, ¢) for which there is an Op-isogeny
A — A;. For example, if g = g, then, after replacing g, by an integral multiple, we
may assume that gV(Z) < V(Z). The identity map V(R) — V(R) now defines an
isogeny 4, — A, with kernel V(Z)/gV(Z) (cf. §6 below).

(b) In the case that F = Q, the theorem may be strengthened. Consider the
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projection V(R) x (G(A)/K.K) — G(A4)/K K. We give G(4)/K_.K its usual complex
structure and the copy of V(R) over gK_K the complex structure defined by A,.
Inside each ¥, we have a lattice gV (Z), and these vary continuously with g. Thus
we may divide out and obtain a map of complex manifolds 5 — G(A)/K_K such
that the fibre over gK_K is the abelian variety 4,. We may now let G(Q) act on
both manifolds and divide out again to obtain an analytic family o/ — Sy of
abelian varieties. Each fibre 4, has the structure defined by (i,, ¢,), and these vary
continuously. In fact o — S is an algebraic family, i.e., o/ is an algebraic variety
and the map is algebraic.

If F # Q the above construction fails because units of F may act on (4,, i,, ¢,)
and so the action of G(Q) on 7 is not free. However we may “rigidify” the situa-
tion as follows: consider quadruples (4, i, ¢, ) where A4, i, and ¢ are as before and
¢ is an injection from the unique weak polarization A to F* such that e(¢’) = ce(¢)
if ¢'(u, v) = ¢(u, cv). The isomorphism classes of quadruples are classified by F* x
S¢(C) which is a disjoint union of copies of S¢(C), one for each element of F*, on
which F* acts by permuting the copies. F* x S, may be regarded as a scheme over
C which is an infinite disjoint union of varieties and the previous process gives an
algebraic family of &/ — F* x S, of abelian varieties with structure.

References. The most elegant elementary and nonelementary treatments of
abelian varieties over C are to be found respectively in [20] and [17, Chapter I].
Families of abelian varieties parametrized by Shimura varieties were extensively
studied by Shimura in the 1960’s (see his Annals papers of that period). They are
also discussed briefly in [4].

2. S as a scheme over Z [4~1]. We shall see shortly that S has a model Sg over Q,
i.e., that there is a scheme Sy over Q whose defining equations, when considered
over C, give S¢. There is no reason to believe that S, will be unique but Shimura
has given conditions which will be satisfied by at most one model; such a model
(when it exists) is said to be canonical. For example, let F’ be a quadratic totally
imaginary extension of F which splits B and let 4, be the abelian variety of dimen-
sion d defined by the lattice Op. ¢ F’ ® R. Then Op. acts on A, and A, is said to
have complex multiplication by F’. Let 4 = Ay x Ag. If we embed F’ in B and
choose a basis {e;, e;} for B over F’ with e), e; € Op, then we get a map B & My(F')
© M,(End°(4,)) = End°(4) sending Oy into End(4). Also we get a map 7,4 =
Op ®0p)® Z; 4,03 ® Z; = V(Z;) (in the notation of §1). The triple
(4, i, ) defines a point of S, and hence a point of S, with complex coordinates.
For S, to be canonical these coordinates must be algebraic over @ and generate a
certain explicitly described class field.

For the reasons explained in the introduction we would like to have a scheme S
defined by equations in Z[4~1] which, when regarded over Q, is the canonical
model S, of S¢, and which is such that it is possible to describe explicitly (S(F,),
Frob) for any p t 4. Such an S will define a functor R — S(R) which associates to
any ring R in which 4 is invertible the set of points of S with coordinates in R.
(More generally, it associates to any scheme 7T over spec Z[471] the set S(T') of
maps T — S.) Since the functor determines the scheme uniquely this suggests that
in constructing S we should write down a functor & such that, in particular, #(C)
= S¢(C) = G(Q)\G(A)/K_K and try to prove that it is the points functor of a
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scheme. After §l it is natural to define #(R) to consist of isomorphism classes of
triples (4, i, ¢) where each of the three objects is the analogue over R of the cor-
responding object over C. Thus A is a projective abelian scheme of dimension 2d
over R. Intuitively, 4 can be thought of as an algebraic family of abelian varieties,
each of which is defined over a residue field of R. More precisely it is a projective
smooth group scheme over spec R with geometrically connected fibres. As before i
is to be a homomorphism Oy & End(4) such that i(1) is the identity map. We
assume that 4 has a polarization whose Rosati involution induces b — b* on B.
Two problems arise in defining ¢ which may be best understood if we write ¢: 7,4
—V(Z;)as aproduct [1¢g,: [1 14 — [1 V(Z)) of maps. Firstly, if p is not invertible in
R there will never exist an isomorphism ¢,: T,4 = V(Z,); thus we take ¢, to be a
map defined only over R[p~1]. Secondly, unless R is an algebraically closed field it is
unrealistic to expect there to be an isomorphism ¢,: T;4 — V(Z)) for any /, for this
would imply that all coordinates of all /-power torsion points of 4 are in R. Instead
we assume that K o K,, = Ker(G(Z;) - G(Z|/mZ)) some m, and consider isomor-
phisms ¢: 4,, = V(Z/mZ) defined on some étale covering of R, two such isomor-
" phisms ¢; and ¢, being K-equivalent if ¢, = k¢,, k € K, locally on spec(R), and we
take ¢ to be a K-equivalence class in this new sense. It is necessary to put one extra
‘condition on the triple (4, i, ¢): if the R-algebra R’ is such that O ® R’ ~
My(Or ® R') then the two submodules of ¢,, 5 corresponding to the idempotents
§9) and (§9) should be free Or ® R’-modules of rank 1 locally on spec(R’).
(This condition holds automatically if R = C; for examples where it fails in an
analogous situation in characteristic p, see [18, 1.29].)

Having defined our functor ¥ we now have to see whether it is the points functor
of a scheme. Generally speaking this is a very delicate question but M. Artin has
given an often-manageable set of criteria for a functor to be the points functor of an
algebraic space. An algebraic space is a slightly more general object than a scheme,
but for our purposes it is just as good; it makes good sense to speak of its points
with coordinates in a ring, and the proper and smooth base change theorems in
étale cohomology, which are the theorems, which allow us to compute Hasse-Weil
zeta-functions by reducing modulo a prime; hold for algebraic spaces. (In fact, the
algebraic spaces we get are almost certainly schemes, and this surely could be
proved by using Mumford’s methods [16] instead of Artin’s.)

Consider first the case that F = Q. Then Artin’s criteria may be checked and
show that there is an algebraic space S, proper and smooth over Z [41], such that
S(R) = #(R) for any ring R in which 4 is invertible. In particular S(C) = £(C) =
S¢(C) and S(F,) = F(F ») for any p not dividing 4. The algebraic family o/ — S¢
constructed in 1.4(b) is an element of &(S¢) = S(S¢), and so gives a map Sy — S.
This induces a map S, = S x spec C which is an isomorphism. Moreover it is
known that S is the canonical model.

When F # Q, then a slightly weaker result holds, but one which is just as useful
to us. Since there are nontrival automorphisms of (4, i, ¢) there can be no algebraic
space S with S(R) = S(R) for all R. However, there does exist an algebraic space
S, proper and smooth over Z [471], and a functorial map &(R) — S(R) which is an
isomorphism whenever R is an algebraically closed field. Thus S(C) = £(C) =
S¢(C) as before, and Sy is the canonical model of Sg. To prove these facts one may
“rigidify” the moduli problem as in the second paragraph of 1.4(b), make the
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constructions as in the case F = @, and then form quotients under the left action
by F*, or else work directly with stacks.

Note that in either case, S (F,) = &(F,) has a description in terms of abelian
varieties with additional structure.

References. [1] contains a short introduction to Artin’s techniques for represent-
ing functors by algebraic spaces and [2] a more complete one. In [5] and [18] these
techniques are applied to a situation which is very similar to ours. (In fact, it is
almost identical; see §7 of the Introduction to [5]).) The basic definitions concern-
ing abelian schemes can be found in [16].

3. Finite group schemes, p-divisible groups, and Dieudonné modules. In the remain-
ing sections we shall need to consider the finite subgroup schemes of an abelian
variety and so, in this section, we review some of their properties. We fix a perfect
field k of characteristic p # 0.

Let R be a finite k-algebra (so R is finite-dimensional as a vector space over k)
and let N = spec R. For any k-algebra R’, a point of N in R’ is simply a map of
k-algebras R — R’; thus N(R') = Hom,,,(R, R'). If every N(R’) is given the
structure of a commutative group in such a way that the maps N(R’) — N(R")
induced by maps R’ — R” are homomorphisms, then we call N, together with the
family of group structures, a finite group scheme over k. As for affine algebraic
groups, giving the family of group structures corresponds to giving a comultiplica-
tion map R ™, R ®; R.

ExaMPLE 3.1. (a) Any (commutative) finite group M can be regarded in an ob-
vious way as an algebraic group over k and hence as a finite group scheme. Indeed,
let R be a product of copies of k, one for each element of M, and let N = spec R.
Then N, as a set, is equal to M. The group law on M induces a comultiplication on
R which, in turn, induces compatible group structures on N(R’) for all R'. If R’ has
no idempotents other than 0 and 1, then N(R') = M.

(b) p£p» = spec kK[T])/(T?" — 1). Then p,(R') = {{ € R'|7?" = 1} is a group under
multiplication for any R’, and these group structures make g, into a finite group
scheme. Note that g,(R) = {1} if R has no nilpotents and, in particular, if Ris
an integral domain.

(c) @, = spec k[T]/(T?). Then ay(R') = {ac R'la? = 0}. As (a + b)? = a? + b?
in any k-algebra, a,(R’) is a group under addition, and these group laws make a,
into a finite group scheme. Again a,(R’) has only one element if R’ has no nilpo-
tents.

(d) Z/pZ = spec k[T)/(T? — T). If R’ has no idempotents other than 0 and 1
(e.g., R’ an integral domain) then (Z/pZ) (R') = F,, the prime subfield of R’, which
is a group under addition. This example is a special case of (a), because
kK[T(T? — T) = k[T)YT(T — 1) --- (T — (p — 1)) = k x --- x k (p copies).

The rank or order of a finite group scheme N = spec R is the dimension of Ras a
vector space over k. For example the order of the group scheme defined by M in
3.1(a) is the order of M, while the orders of u,, @, and Z/pZ are p”, p and p
respectively.

A homomorphism from one finite group scheme N; = spec R; to a second N; =
spec R, is a k-algebra homomorphism R; —» R; such that the induced maps
Ni(R') = Ny(R’) are all homomorphisms of commutative groups.
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From now on we consider only finite group schemes of p-power order. The
essential facts are the following.

Facts. 3.2.(a) They form an abelian category. Thus we may form kernels, quo-
tients, etc. exactly as if we were working with a category of modules.

(b) When k is algebraically closed the only simple objects are u,, @,, Z/pZ.

This means that any finite group scheme of p-power order has a composition
series whose quotients are u,, @,, or Z/pZ. There can be no homomorphism from
one simple object to another of a different type.

(c) The category is self-dual, i.e., there is a contravariant functor N +— N (= Car-
tier dual of N) which is an equivalence of the category with itself.

More precisely, for each N there is a pairing N x N - G,, (= GL,) such that,
for any k-algebra R, the pairing induces isomorphisms N(R) ~ Homg(N, G,),
N(R) = Homg(N, G,). For example, (Z/pZ)" = #, and the pairing (Z/pZ)(R)
X pyR) = G,(R)is (n, §) » {*; @, = a, and the pairing @,(R) x a,R) >
G,(R)is (a, b) —» exp(ab) = | + ab + --- + (ab)?"/(p — ).

(d) Hom (Z/pZ, Z|pZ) = Z|pZ, Hom (p,, py) = Z|pZ, Hom (@, a,) = k.

The statement for Z/pZ is obvious, and that for g, follows by Cartier duality.
The map a, — @, corresponding to ce k is (T~ cT): k[T)/(T?) - k[T)/(T?) on
the algebra of @, and (a + ca): @,(R') = a@,(R’) on its points.

(e)If0 > N’ > N - N” — 0Ois exact then order(N) = order(N')order(N").

Let 4 be an abelian variety over k. For each n, 4, & Ker(p": 4 — A) is a
finite group scheme of order (p7)2dim) i e., the order is the same as when p #
characteristic(k). The system 4, & Ay & --- is called the p-divisible (or Barsotti-
Tate) group A(p) of A. More generally, a p-divisible group of height h is a system of
finite group schemes and maps N = (N, ‘1, N, %2, N; 3, ...) such that N, has
order p** and i, identifies N,_; with the kernel of (N, " N,). For example
0,/Z, = (Z|pZ - Z|p*Z — ---) andpype = (ptp = pye = ps — -++) are p-divisible
groups of height one. 4(p) is of height 2 dim(4). A homomorphism ¢: N - N’ of
p-divisible groups is a family of maps ¢,: N, - N, commuting with the maps
i, and i,.

Exercise 3.3. (k algebraically closed.) For any abelian variety 4 there are maps
B Ap — A  such that Ker(¢,) = Ker(¢,,) for all sufficiently large n. Deduce
that 4 has £ pdim4 points of order p, and that when equality holds A(p) =
(Q)/Z,)im @ x (prye)dimA_ (Such abelian variety is said to be ordinary.)

Let W = W, be the ring of Witt vectors over k; it is a complete discrete valua-
tion ring of characteristic zero whose maximal ideal is generated by p and which
has residue field k. There is a unique automorphism a — a‘? of W which induces
the pth power map on k. If k'= F, then W is the completion of the ring of integers
in the maximal unramified extension Q%" of @,and a — a‘? is induced by the usual
Frobenius automorphism of Q%* over @,. Let W[F, V] be the ring of noncommuta-
tive polynomials over W in which the relations FV = p = VF and Fa = a'PF,
aV = Va®, hold for all ae W. There is a contravariant functor, N — DN =
Dieudonné module of N, associating to each p-power order finite group scheme a
WI[F, V]-module which is of finite length as a W-module; D defines an antiequiv-
alence of categories. The length of DN as a W-module is equal to the order of N.
Thus manipulations with finite group schemes correspond exactly to manipulations
with modules over the noncommutative ring W[F, V]. Examples:

D(pe,) = WipW = k; Facts as 0, Vacts as 1;
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D(ay) =k; F=0,V = 0;

D(Z/pZ) = k; F=1,V =0.

If N is unipotent and pN = 0, then DN = Lie(NV); the bracket operation on Lie(N)
is zero but it has the structure of a p-Lie-algebra and F acts as the “p-power”
operation and V acts as zero. More generally, if N is unipotent and killed by p»,
then DN = Hom(N, W,) where W, = G, = the additive group and W, = the
Witt vectors of length n regarded as an algebraic group. There are canonical,
nondegenerate, W-bilinear pairings {(,): DN x DN » W ® 0,/Z, such that
{Fm, n) = {m, Vn)® (Vm, n)® = {(m, Fn).

The notion of Dieudonné module can be extended to p-divisible groups. On
applying D to N = (N; - N, — ---) we obtain a sequence of modules and maps
(DN; « DN, « ---), and we define DN = proj lim DN,,. This is a W[F, V]-module
which is free of finite rank equal to height(N) as a W-module.

In classifying p-divisible groups one begins by considering them up to isogeny:
N and N’ are isogenous if there is a surjective homomorphism N — N’ with finite
kernel or, equivalently, if there exists an injective homomorphism DN’ — DN
whose cokernel has finite length over W. If we write W' = W[l/p] = W ®z,0Q,,
W'[F, F1] = W'[F, V] = WI[F, V]1®gz, @, and D'N for DN ®z, @ regarded
as a W'[F]-module, then we see that N and N’ are isogenous if and only if D'N ~
D'N'.

Let .# be the category of W'[F]-modules whose objects occur as D'N for some
p-divisible group N. When k is algebraically closed one knows that .# has exactly
one simple object D* = W'[F]/(Fr — p*) for each rational number 4, 0 < A < 1,
A = s/r, (r, s) = 1. D* has dimension r over W', End(D?%) is the unique division
algebra over Q, of degree r2, and any D € . can be written uniquely as a finite
direct sum D = (D)™ @ --- @ (D*)™ with distinct A;. Then 4;, ---, A, are the slopes
of D and m,r;, where A; = s,/r;, is the multiplicity of A;. We sometimes write (Ds/7)»
as Dsm/rm_Thus Ds/ may now be a multiple of a simple module; it has slope s/r
with multiplicity » and has dimension r over W'.

When k is algebraically closed and N is a p-divisible group over k, the slopes of
D'N are called the slopes of N. Clearly N is uniquely determined up to isogeny by
its slopes and their multiplicities. For example, all p-divisible groups of height
one are isogenous (in fact, isomorphic) to g,. or @,/Z, because D'(gey..) = D! and
D'(Qy/Z,) = DO are the only D? of dimension one over W'. There is only one
simple D2 of dimension two over W’; itis D1/2 = D’(A(p)) where A is a supersingu-
lar elliptic curve (cf. §5).

Let k have algebraic closure k£ # k. Any p-divisible group N over k defines a
p-divisible group N over k and it is known that DN; ~ DN @y, W;. If k = F,
with ¢ = pe then F2: DN — DN is W-linear and so its characteristic polynomial
det(T — Fe|DN) = [IMW(T — q)is defined. The set of slopes of D' Ny is {ord (a;),
ord,(az), ---} where ord, is the valuation of the algebraic closure of W, such that
ord,(q) = 1.

If A is an abelian variety, we write DA for DA(p). When A is defined over F,
the Frobenius endomorphism z: (a;, a, ---) — (ag, af, ---) of 4 induces F2 on DA.
The characteristic polynomial P4(T) of z: A — A in the sense of [17, §19] is
det(T — Fe|DA). Thus the slopes of D’4; can be read off from P4(T).

We can also define profinite group schemes 7T 4 = proj lim4, and T4 =
proj limA,.. If / # char(k) and k is algebraically closed then T;4 can be regarded
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(as before) as a free Z-module of rank 2 dim(A4). We write /4 = T24 x T,A.
Finally we note that to classify p-divisible groups up to isomorphism, it is neces-
sary to classify the (F, V)-stable lattices in the objects of .#.
References. The best introduction to the subject matter of this section is [6].

4. S(F,) as a family of abelian varieties. Fix a prime p not dividing 4. From §2
we know that points of S(F,) correspond to isomorphism classes of triples (4, 7, ¢)
where A is an abelian variety of dimension 2d over F,, i is an action of Oy on 4,
and ¢ is a K?-equivalence class of isomorphisms ¢: T4 — V(Z?) where T44 =
proj limy, 4,(F,). (Recall that ¢,: T,4 — V(Z,) is defined only over the ground
ring with p inverted, and F,[p~!] is the zero ring.) The Oy ® F,-module ¢, satisfies
the following condition:

@.1) the subspaces corresponding to the idempotents (§§) and (§9) in O ® F,
"7~ My(F,) are free Or @ F,-modules of rank 1.

If A is defined by equations Za, T, let A» be the abelian variety over Fp
defined by the equations Xa#,T*. There is a Frobeniusmap F = F,: 4 — AP
which takes a point with coordinates (¢, ---, ¢ ) to (¢4, ---, t£). The map F, is a purely
inseparable isogeny of degree p24, which means that 4, the kernel of F, is a finite
group scheme of order p24 with only one point in any field (so that only a, and
#, occur in any composition series for it). As groups, D(4) = D(A?), but the
identity map DA — DA is (p)-linear, i.e., am — a‘®m for a €e W, m € DA.
The composite DA i, DA® DF4 D4 is a multiplication on the left by Fe
WIF, V] (see [6, p. 63]). Since F, is zero on 2,4, t4 ~ t,, ~ DAp ~ (DAp)* =
dual(Coker(DA £, DA)). Thus (4.1) may be checked on DA/F(DA) instead of ¢,.

If Pe S(F ») corresponds to (4, i, @) then, intuitively, we may think of the coor-
dinates (a;, ---, a,) of P as being the coefficients of the equations defining A. Thus
Frob(P) corresponds to (A, i», ¢») where ‘¥ and @ are such that F,
defines a map of triples (4, i, @) — (AP, i®, ).

Finally we observe that there are ‘“Hecke operators” acting. Let g € G(4,) and
suppose that K’ is an open subgroup of G(Z;) such that g~1K'g = K; then x—
xg: G(A) - G(A) induces a map G(Q)\G(A)/K .K' — G(Q)\G(A)/K_K which arises
from a map of varieties J(g): x-S¢ = gS¢. If P corresponds to (4', i, ¢') then
7 (g)P corresponds to (4, i, @) if there is an Op-isogeny a: 4 — A’ such that

Tye
T/A— T A
¢ l ¢
mg
V(Z, f) — V(Z f)

commutes with 7 some positive integer. When we pass to S, only G(4%) continues
to act: if g € G(42) and P € x.S(F,) and 7 (g)P € xS(F,) correspond respectively to
(4',i', ¢') and (4, i, ¢) then there is an isogeny a: 4 — A’ whose kernel has order
prime to p and a commutative diagram

TA},
T2A — T;A'

s 1 P
(Zp) — V(29
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with m a positive integer prime to p. This definition is compatible with that over
C in the sense that both mappings Z(g) come by base change from a mapping
T(8): kS x spec Zy) — kS x spec Z(,, where Z,, = {m/n e Q|(n, p) = 1}. (More
concretely, this means that if (4, i, ¢) in characteristic zero specializes to (4, i, ¢)
in characteristic p then 7 (g)(4, i, ¢) specializes to 7 (g)(4, 1, Z).)

5. The isogeny classes. Fix a prime p not dividing 4 and consider pairs (4, i)
where A is an abelian variety of dimension 2d over F » and i is a homomorphism
B o End°(4) such that i(1) = 1. We write 4 ~ A’ if 4 and A’ are isogenous, and
(4, i) ~ (4’, ") if the pairs are B-isogenous in an obvious sense. .#, denotes the set
of all B-isogeny classes and (4, i) ® Q the class containing (4, ). It will turn out
(last paragraph below) that the map (4, i, §) — (4, i) ® Q: S(F,) — #,is surjec-
tive and so, to describe S(F,), it suffices to describe .#, and the fibres of the map.
The first is done in this section and the second in the next. Note that Frob (and
7 (g)) preserves the fibres.

We first remark that, as in characteristic zero, there is a unique weak polarization
on A inducing the given involution on B, and that it gives an F-equivalence class
of pairings 4, x 4, - G, for all n (cf. [17, §23]). In turn these pairings give an
equivalence class of skew-symmetric pairings ¢;: T4 x T4 - T|G,, ~ Z, with
nonzero discriminant for each / # p, and a similar pairing ¢,: DA x DA > W ;
this last pairing satisfies the conditions ¢ ,(Fm, n) = ¢ ,(m, Vn)?, (Vm, n)® =
¢(m, Fn). All pairings satisfy ¢y(bm, n) = ¢(m, b*n), b € B.

The description of .#, will be based on the following classification of isogeny
classes over a finite field. (Recall that an abelian variety over a field k is simple if
it contains no nonzero, proper abelian subvariety defined over k& and that any
abelian variety is isogenous to a product of simple abelian varieties. If A4 is defined
over F, then 7 = 7, is the Frobenius endomorphism (a;, a, --) ~ (a4, @ ---).)

THEOREM 5.1. (a) Let A be a simple abelian variety over F, and let E = End°(4).
Then E is a division algebra with centre Q[z), w is an algebraic integer with absolute
value q1/% under any embedding Q[n ] & C, and for any prime v of Q[x] the invariant
of E at v is given by

inv(E) = % if v is real,
=0 ifv|l, 1 # p,
_ ord,(7)

= SiG 0] iy

Moreover 2 dim(4) = [Q[z]: Q][E: Q[z]]'/% and e = [E: Q[x]]1/2 is the least
common denominator of the inv,(E). The characteristic polynomial P,(T) of x:
A — A is m(T): where m(T) is the minimal polynomial of z over Q.

(b) The simple abelian varieties A and A’ over F, are isogenous if and only if there
is an isomorphism Q[r 4] 2 Q[x /) such that 4 — 4.

(©) Every algebraic integer m which has absolute value q'/% under any embedding
Q[z] & C arises as the Frobenius endomorphism of a simple abelian variety A, over
F,

(d) For any abelian varieties A and B over F, and any prime I (including | = p)
the canonical map
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Hom(4, B) ® Z, » Hom(A(l), B(l)) = Hom(T}4, T,B)

is an isomorphism. (If | # p then A(l) and B(l) can be regarded as Gal(F,/F,)-
modules.)

ProoF. The first part of (a) (the Riemann hypothesis) is due to Weil, part (c) -
to Honda, and the remainder to Tate; see [17], [21], [7], [22]. [23].

For example, if in (c) we take 7 = p?, ¢ = p2e then we obtain an elliptic curve
Ay such that End°(4,) is a quaternion algebra over Q which is split everywhere
except at p and the real prime. Any such elliptic curve is said to be supersingular.

It follows easily from (a) that if Q[z] has a real prime then either A4 is a super-
singular elliptic curve or becomes isogenous to a product of two such curves over
F,.

qFrom now on we let p factor as (p) = py:--p,, in O, where the p; are distinct
prime ideals, and we let d; be the residue class degree of p; over p; thusd = d,.

PROPOSITION 5.2. Let (A, i) be as above. The centralizer of B in End°(A) is either:

() a quaternion algebra B’ over F which splits except at the infinite primes, the
primes where B is not split, and the p; for which d; is odd, and there does not split; or

(b) a totally imaginary quadratic field extension F' of F which splits B.

In the first case A ~ A® where Ay is a supersingular elliptic curve and in the second
A ~ A3 where Ay is an abelian variety such that F' = End°(4,).

PROOF. Suppose 4 ~ A5 x A, r = 1, where A, is a supersingular elliptic curve
and Hom(4g, 4;) = 0. Then End°(4) ~ M(F) x End°(4,), where E = End°(4),
and B embeds into M,(E). Consider F o M (E); we must have d|2r, but d = 2r
is impossible because F does not split E [19, Theorem 10], and so r = d or 2d. The
Skolem-Noether theorem shows that, when composed with an inner automor-
phism, the map F — M,(E) factors through M,(Q). Thus the centralizer C(F) of
Fin M/(E) is isomorphic to M, , (F) ® E= M,,,(E® F). Let C be the centralizer
of Bin M(E). Then B ®y C ~ C(F) because C(F) and B are central simple alge-
bras over F [19, §8]. It follows that either r/d =1, C=F, and B=EQ® F, or
r/d = 2 and C is a quaternion algebra over F such that, in the Brauer group of F,
[B] + [C] = [E ® F]. The first is impossible because B splits at infinite primes while
E does not; thus the second holds, and this proves that case (a) of the proposition
holds.

Next assume that Hom(4,, A) = 0 when 4, is a supersingular elliptic curve, and
fix a large subfield F, of F, such that 4 and all its endomorphisms are defined over
F,. From considering A/F, we get a Frobenius endomorphism z € End°(4), and the
assumption implies that there is no homomorphism Q[z] — R. Consider

B—B[z—B®y C—E
| ]
F—F[z]—C
| ]
0—0I[x]
where E is End°(4) and C is the centralizer of B in E. Clearly, F[z] = F would

contradict our assumption. On the other hand we must have [ F[z]: F] < 2 and
F[z] = C for otherwise E would contain a commutative subring of dimension
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> 4d = 2 dim(A) over @, which is impossible by 5.1(a). Let F' = C = F[z];itisa
quadratic extension of F and can have no real prime because that would contradict
our assumption. It splits B because, for any finite prime / # p, (T}4) ®z, @, is free
of rank 2 over F; = F' ® Q,, from which it follows that B ® F; ~ My(F;), and we
are assuming that B splits at any infinite prime or prime dividing p. Let e be an
idempotent # 0, 1, in (B ® F’) () End(4). Then 4y = eA is an abelian variety
such that 4 ~ 4, x A,. Since elements of F' commute with e, F' = End°(4).

ReMARK 5.3. In case (b) of 5.2, 4, is isogenous to a power of a simple abelian
variety, Ay ~ Aj, because the centre of E = End°(4) is a subfield of the field F'.

It follows that, for any pair (4, i) as above, 4 is isogenous to a power of a simple
abelian variety and hence End°(4) is a central simple algebra over the field Q[z].
Let (4, i) and (A4', i) be such that there exists an isogeny a: 4 — A’. The Skolem-
Noether theorem shows that the map B _%, End°(4) %, End°(4’), where ay(y)
= aya~l, differs from i’: B — End°(4’) by an inner automorphism (y — By81)
of End°(4’). Thus P« is a B-isogeny A — A’, and we have shown that 4 ~ 4’ im-
plies(4, i) ~ (4’, i").

We now consider in more detail the situation in 5.2(b). Letp;, .-+, 9,0 < t < m,
be the primes of F dividing p which split in F’ and write p; = q,q; fori < ¢. Since
Or N End(4,) and Z, both act on 4y(p), their tensor product does, and the splitting
F®Q, ~ F, x .- x F, induces an isogeny Ao(p) ~ Ag(p;) x -+ x Ay(p,) and
an isomorphism D'Ay~ D'Ay(p;) X --- x D'Ay(p,). Clearly Ay(p;) has height
2d; and so D'(Ay(p;)) has dimension 2d; over W'. Since ¢, (am, n) = ¢ (m, an) for
a € F the decomposition of D’4, is orthogonal for ¢,, and ¢, restricts to a non-
degenerate form on each D’(A(p;)). This implies that the set of slopes {2;, Az, ---} of
D’(Ay(p;)) is invariant under A — 1 — A.

Fixani < t. As F,, = F,, x Fq: acts on D'Ay(p,), Ao(p;) splits further: Ay(p,)
~ Ao(a;) x Ao(az), D' Ao(p;) ~ D'(Ao(a;)) x D'(Aola7). Since F, = End’(A(q;)) has
degree d; = height(A4y(a;)) over Q,, A(q,) is isogenous to a power of a simple
p-divisible group: we may write D’A(q,) = D*/4 0 < k; < d;. Correspondingly,
D'A(q;) = Drye; withk; + ki = d,.

Fix an i > t. The [F,;: Q,] = 2d; = height Ay(p;) and so, as above, Ay(p;) is
isogenous to a power of a simple p-divisible group and we may write DAy(p;) =
Ds/r. Since sfr = 1 — s/r we must have s/r = d;/2d;. We write k; = d;/2.

Note that for some i, 1 < i < m, we must have k; # d,/2 for otherwise all slopes
of A(p) would equal 4. Then (see §3 and 5.1(a)) |z/q!/?| = 1 for all primes v of
Q[z] and so some power of it would equal one. On replacing F, by a larger finite
field we would have © = ¢'/2, and this would imply that 4 is isogenous to a power
of a supersingular elliptic curve, i.e., we would be in case (a). This means that
t = 1—atleast one prime p; splits in F'.

THEOREM 5.4. .7, contains one element for each pair (F', (k;)1z;<,) Where F' isa
totally imaginary quadratic extension of F which splits B and is such that at least one
p; splits in it; if p; splits in F' then k; is an integer with 0 < k; < d; and otherwise
k; = d;|2; for at least one i, k; # d; — k;. When p; splits in F' we regard k; and k;
as being associated to q; and q;, and we do not distinguish between two pairs (F', (k;))
and (F', (k;)) which are conjugate over F. There is one additional ‘‘supersingular”
element.
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For example, if F = Q then there is the supersingular isogeny class and one
class for each quadratic imaginary number field F’ which splits B and in which p
splits. If p splits completely in F then there is the supersingular class and one class
for each totally imaginary quadratic extension F’ of F of the right type and choice
of one out of each pair of primes dividing a p; which splits in F’; one family of
choices is not distinguished from the opposite family.

PROOF OF 5.4. We first construct an isogeny class (4, i) ® Q corresponding to
(F', (ky, -+, k,,)). As before we letp;, 1 < i < ¢, be the primes dividing p which
split in F'. Consider the ideal in O,

a= ql(f/dl)kl q'l(f/dl)k; .. qt(_{_/ldtﬂ)kx«l-l . qs’{/dm)km

where f = 2d, --- d,,. For some h, o* is principal, say a* = (z). If we write a — a
for the nontrivial F~automorphism of F’ then z7 € F and

(z7) = (afar ... af)* N O = pf* ... pfF = (p7%).

Thus z7 = upf* with u a unit in Op. If u is a square in F then we may replace z by
#/ul/? and obtain an equation z7 = g with ¢ = pfA. If u is not a square then we
replace 7 by #2/u and obtain a similar equation with ¢ = p?/t. Note that the condi-
tion k; # k; for some i implies that = ¢ F and hence that F' = F[z]. Under any
embedding F’ & C, F maps into R. Thus complex conjugation on C induces a — a
on F'. In particular 7 is the complex conjugate of the complex number z and so
% = qimplies that |z| = q1/2

Let A, be the abelian variety corresponding, as in 5.1(c) to =, and let E =
End°(4,). For any prime v of Q[x]

inv,(E) =0 if vfp,
= (k;/d)[Qlx],: @,] ifvIpand gy,
= (ki/d)[QIx),: @p] if v|p and gilv.

Let e, be the denominator of inv,(E) (when it is expressed in its lowest terms) and
let e be the least common multiple of the e,. Then 2 dim(4,) = re where r =
[Q[z]: @]. Clearly e,|[F,: Q[x],] for any q|v, v|p, which implies (by class field
theory) that F’ splits E and (trivially) that e divides [F': Q[z]] = 2d/r. As
[Myy,,(E): Qx]] = (2d[re)%? = [F': Q[x]]? F' embeds into My, ,(E) [19,
Theorem 10). Let 4, = A2¥re. The characteristic polynomial P, (T) of = on 4, is
¢,(T)e where ¢ (T) is the minimal polynomial of z € Q[z] over @ (5.1(a)). Thus
P4(T) is c,(T)%/r which equals the characteristic polynomial of z € F’ over Q.
Corresponding to the splitting F, = F, x F x «--, we have Ayo(p) ~ Ag(qy) X
Ao(a) x -+ and Py(T) = Pl(T)Pl(T) where P(T) (resp P; (T)) is the char-
acteristic polynomial of the image z; of z in F,, (resp. x; of z in Fy )over 0,
Thus (see §3) A(q;) has slopes equal to ord (z;) = ( fhld)k;[fh = kd; and A(g;) has
slopes equal to ki/d;. Thus A = A, x Ao, regarded as an abelian variety over F,,
and the map i induced by B & M,(F’) represent an isogeny class corresponding to
(F,’ (kla ) km))

(A%, i), where A, is a supersingular elliptic curve, represents the supersingular
class.



POINTS ON SHIMURA VARIETIES mod p 181

Obviously if (4, i) ~ (4’, i’) then both represent the supersingular class or
correspond to the same pair (F, (ky, *++, k,))-

It remains to show that if (4, i) and (4, i") both correspond to (F’, (ky, ..., k,,))
then (4, i) ~ (4',i"). By considering 4 and A’ to be defined over some finite subfield
of F, we get elements 7 = 74 € F' and 7' = n4 € F'. The assumption implies that
ord,(z) = ord,(z") for all q| p, q a prime of F’, and 5.1(a) then shows that |z/z'|, = 1
for all primes of F’. Thus z and #’ differ by a root of 1 and so, after extending the
finite field, we may take them to be equal. It follows that 4 and 4’, being isogenous
to powers of the same abelian variety 4,, are themselves isogenous, and 5.3 com-
pletes the proof.

The proof that any class in ., is represented by an element of S(F,) requires the
following lemma.

LEMMA 5.5. Let T = T A be such that T;A|T is finite; then there exists an isogeny
a: A" — A such that T o maps T A’ isomorphically onto T.

Proor. The finiteness of T;4/T means that, for all n > 0, the cokernel N of
T/nT - T;A/nT;A is independent of n. Thus there is a map 4, = T;A/nT;A ¢,
N. Define A4’ to be the cokernel of a — (¢(a),a): 4, > N x A,anda: 4’ - A to
be (b, a) - na; then (T;a)(T;4') = T.

Let (4, i) represent a class in £, and let O’ = B | End(4); it is an order in B.
Regard (4, i) as being defined over a large finite field F,; then End(4) ® Z, ~
Endp (T,4) and O’ ® Z, = (B ® Z)) () Endg(T;4). For almost all /, 0’ ® Z,
will equal Oy ® Z, and we take T, = T,4; for the remaining / we may choose
a T, of finite index in T;4 which is stable under Op, i.e., such that Endg(77) N
(B® Z) = 05 ® Z,. Note that D(T,/pT,) = M is a W[F, V]-module of finite
length over W. We may choose T, such that M/FM satisfies (4.1). Let 4’ correspond
to T = [[,T, as in the lemma. Then A4’ together with the obvious i and some ¢ lies
in S(F,) and represents (4, i) ® Q.

6. An isogeny class. It remains to describe the set Z = Z(4, i, ¢,) of elements
(4, i, ') of S(F,) such that (4’,i’) is isogenous to a given pair (4, i). An
Op-isogeny A’ *, A determines an injective map Tja: TyA' — T;4 whose image
A satisfies the following conditions:

(a) Ais Og-stable.

(b) T;A/A is a finite group scheme. (More precisely, Coker(A/nA — T;A[nTA)
= Coker(4, - A4,) = Ker(4’%, A)forn> 0.)

(c) D(A/pA)|FD(A[pA) satisfies (4.1). (For Al[pA = A}, and so D(A/pA)/FD(A[pA)
= DA|F(DA).)

Consider all subobjects A of T;A4 satisfying (a), (b), (c). Any such 4 may be
written 4 = A? x A, with A? a Z%-lattice in T24 (in the usual sense of modules
over Z%) and A, = T,A. We let Y be the set of pairs (4, @) with A as above and
# a K-equivalence class of isomorphisms A? = V(Z?). Since (4, ¢) is determined
by a pair (42, ), A,), we may write Y = Y? x Y,

By 5.5, every (A, @) € Y arises from a triple (4', i’, ¢') € S(F,) equipped with
an isogeny a; A’ — A. Thus we have a surjective map ¥ —» Z < S(Fp).

For n a positive integer we set n(4, ¢) = (nA, ng), and we define ¥ ® Q to be
the set of pairs (y, n) with y € Y and n € Z,, where (y, n) and (3’, n") are identi-
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fied if 'y = ny’. Then we write Y ® Q@ = (Y? ® Q) x (¥, ® Q) where Y? ® Q
may be identified with the set of Op-stable lattices A in (T;4) ® @ equipped with
a K-equivalence class of isomorphisms A = T, 4.

There is an action of H(Q) = Endp,(4)* on Y ® Q: for a € H(Q) we choose a
positive integer m such that mq is an isogeny of 4 and define a(4, ¢, n) = (T((ma),
¢T (ma)1, mn).

LEMMA 6.1. The map Y — Z described above induces a bijection HQ)\Y @ QO =
Z.

PROOF. (4, ¢, n) and (A, ¢', ') map to the same element of S(F,) if and only if
there exist Og-isogenies

P

and an Og-isomorphism ¢y: T4’ — V(Z;) such that
n(T)TA', ¢(Ts)) = (4, ¢) and n'(Tja)TiA', o(Tsa)) = (A, §).
Then o’a~! makes sense as an element of End°(4) and a’a~(4, ¢, n) = (A', ¢', n').

LEMMA 6.2. The map G(4%) —» Y? ® Q, g — (8(T;A), ¢p4g™!), induces a bijection
GADK ~ Y? ® Q.

PRrOOF. Obvious.

LEMMA 6.3. There is a one-one correspondence between Y, ® Q and the set X of
WI[F, V]-submodules M of D'A which are free of rank 4d over W, Og-stable, and
such that M|FM satisfies (4.1).

PROOF. p: A4 — A induces maps i,: A/p*A & Alpr*1A which define a p-divisible
group A(p) = (A/p"A, i,). The exact sequence 0 - A — T,A - N — 0 (¥ finite)
gives rise to 0 - N — A(p) —» A(p) — 0. On applying D we get

0 » DA - DA(p) - DN - 0.

Since DN is torsion, we may identify D’ A(p) with D'A4. To (A, n) € Y? we associate
n~1(DA(p)) € X.

THEOREM 6.4. With the above notations,
Z(4, i, §) ~ H(Q)\G(4%) x X[K?.

Frob acts by sending M € X to FM; the Hecke operator 7 (g), g € G(A%), “acts” by
multiplication on the right on G(A%).

Proor. This simply summarizes the above.

It remains to give a more explicit description of X. Note that, corresponding
to the splitting D'A ~ D'A(p;) x --- x D'A(p,,), we have X =~ X; x -+ x X,,.
It is convenient to write G{Z,) = Aut,,(A(p;) and G(Q,) = Endy,(A(p)* =
End,,(D’'A(p;))*. In the simplest cases G{Q,) acts transitively on the lattices M
c D’ A(p;) which belong to X;, and in this case X; ~ G{(Q,)/GA(Z,). (To say that
G/(Q,) acts transitively means that each 4'(p,) is isomorphic to A(p;) and not
merely isogenous; cf. [6, p. 93].)
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EXAMPLES 6.5. (a) F = Q, F' is a quadratic extension of @, (p) = qq’ in F’, and
(4, i, ¢) is in the isogeny class corresponding to (F”, (0)).

Then A(p) ~ (Q,/Zy)? x (pp.)?> With Op ® Z, = My(Z,) acting in the
obvious way on each factor. Thus G(Z,) = {(§9) la, b € Z3} and G(Q,) =
{9 la, b e Q}}. In this case X = G(Q,)/G(Z,). Frob acts as (§ ).

(b) As above, except (4, i, ¢) corresponds to (', (1)).

Then A(p) ~ (pp..)? x (@/Z,)? (i.e., in the splitting F, = F, x F,,, F, now
corresponds to the g,., factor). G(Z,), G(Qp) and X are as before but Frob acts as
*?.

() F = Q, (4, i, ¢) is in the supersingular class.

Then D'A(p) ~ D'/% x D'/2 and End(D/%) = B,, the unique division quater-
nion algebra over Q,. B acts through the embedding

B® Q, ~ MyQ,) &% My(B)).

Thus G(Q,), the centralizer of B® Q, in My(B}), is (B;)*. Moreover G(Z, ») may be
taken to be O* where O is the maximal order in Bj. In this case X ~ G(Q,)/G(Z,).
Frob acts as multiplication by @, a generator of the maximal ideal of O.

(d) F arbitrary, p splits completely in F, (p) = p; - ps, (4, i, ¢) corresponds to
(F,’ (kls ) kd))'

Then X ~ X; x --- x X, where X; is as in case (a) if p; splits in F’ and k; = 0,
as in case (b) if p, splits and k; = 1, and as in case (c) otherwise.

(e) The general case. For a statement of the result, see [14]. (This case is treated
in detail in: J. Milne, Etude d’une classe d'isogenie, Séminaire sur les groupes
réductifs et les formes automorphes, Université Paris VII (1977-1978).)

Added in proof (November 1978). The outline of a proof in [12] of the conjec-
ture for those Shimura varieties which are moduli varieties is less complete than
appeared at the time of the conference. The above proof (completed in the report
referred to in 6.5(e)) for the case of the multiplicative group of a quaternion
algebra differs a little from the outline in that it depends more heavily on the
Honda-Tate classification of isogeny classes of abelian varieties over finite fields.
The complete seminar referred to in 6.5(¢), which redoes in greater detail much
of the material in this article and [3], will be published in the series Publications
Mathématiques de 1I’Université Paris 7.
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