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ON A THEOREM OF MAZUR AND ROBERTS.

By J. S. MILNE.

The purpose of this paper is to give a short proof of a local flat duality
theorem of Mazur and Roberts [3; 9.2], [2; 1.6], and to make some related
remarks.

Let B be a complete discrete valuation ring with finite residue field.
If N is a flat finite commutative group scheme over B and K is the field of
fractions of R, then the flat (f.p.q.£f.) cohomology group H*(R,N) may be
regarded as a subgroup of H'(K,N®zK) [5; p. 293]. Let N be the
Cartier dual of N. Then the theorem states:

TuroreM. If K has characteristic zero, then H*(R,N) is the exact
annihilator of HI(R,ZV ) in the non-degenerate cup-product pairing [7; II
Theorem 2]

H'(K,N®zK) X H'(K,N®rK) > H*(K,G,) = Q/Z.

We first prove a duality result for p-divisible groups. The definitions
and results in [10; §2] will be freely used.

Let K be as in the theorem and let T' be the Galois group over K of the
algebraic closure K of K. If G is a p-divisible group over R, we define
Me=U G(Rp) where L runs over all finite Galois extensions of K contained
in K and Ry is the integral closure of R in L. Mg becomes a discrete I'-
module under the obvious action. Multiplication by p* is surjective on M¢
by [10; 2.4 Cor. 1] and has kernel G,(K) because the torsion subgroup of
G(Rp) may be identified with G(L).

If @ is étale then G(Rp)T= G(R) because in this case, G(BL) can be
identified with G(L) ; if G is connected then the same equality holds because
G (Ry) can be identified with the group of points on the formal group asso-
ciated to G; the equality for a general G now follows from [10; Prop. 4],
and from this it follows that Ml = G(R).

We shall use 4* to denote the Pontryagin dual of a locally compact
abelian group 4, and if ¢: 4 — B is a homomorphism of abelian groups we
write A¢ and B for the kernel and cokernel respectively of ¢.
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LemMMa. G(R) s canonically isomorphic to H*(T,Mg)*, where G(R)
s giwen the topology induced by that of R and H*(T,Mg) is given the
discrete topology, provided that the torsion subgroups of G(R) and G(R)
are finite.

(The reader will check easily that the torsion subgroup of G(R) is
infinite if and only if G¢* contains Q,/Z, as a subgroup, and that the lemma
is false for G'=Q,/Z,.)

Proof. From the cohomology sequence of

v

*) 0> G (E)>Mg——> Mcg—>0

we get an exact sequence

(**) 0> G(R)®— H (T, G,(E)) > H*(T, Mg),»— 0.

G(R)®) maps into the subgroup H*(R, G,) of
HY(T,G,(K))=H'(K,G,®rK)

because (**) is compatible with the cohomology sequence over R coming from

0—>G,—> e e 0. Since H*(R,G,) and H*(R,(,) annihilate each
other in the pairing of the theorem ([4; p. 279] or [R; p. 347]) it follows
that G(R)®) and @(R)(ﬂ”) annihilate each other in the same pairing. Thus
the cup-product isomorphisms H*(T, G,(K)) — H*(T, C:',,(I_{ ))* induce injec-
tions G(R)@®) — H*(T,M¢g),** which in the limit give an injection

G(R) —=1lim G(R)® — (lim H* (T, Mg),*)* — H*(T, Mg)*.
<« -

To prove that this map is surjective it suffices to prove that [G(R)®]
= [H*(T,Mz),] (where [8] denotes the number of elements in a set §).
By [7; II Thm. 5] the Euler-Poincaré characteristic of G (E), x(G1(&))
= (R: pR)™ where & is the height of G (or &). ZFrom the cohomology
sequence of (*) (with v=1) we get that

_[G@®),) [BX (T, G(R))]

[G(R)®] [H*(T,Ms),]
The required equality now follows from: (i) [H?(T, él(K))] =[G (R),]
(see [7; IT Thm. 2]); (ii) [G(R)®]/[G(R),] = (R: pR)? where d is the
dimension of G (the theory of the logarithm [10; 2.4] shows that G(R) i3
isomorphic to B¢ apart from finite groups) ; (iii) same statement for G; (iv)
d+d—h [10; Prop. 3].

X(G(R)
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Proof of the Theorem. In order to be able to apply the lemma, we use
Oort’s. theorem [6] to embed NV in an exact sequence

¢
(***) 0>N>G@——>H—0

in which G and H are p-divisible groups over R. (***) induces an exact
sequence 0 > N(EK) > M¢—> My—0. G (and so H) satisfy the condition
of the lemma because, in Oort’s construction, G gk = 4 (p) for some abelian
variety A over k.

Since H*(R,N) and H*(R,N) annihilate each other in the pairing
of the theorem, we have

[H'(R,N)][H(R,N)] = [H*(K,N®r K)] = [H(R)P][H*(T, Me)4]

(where ¢ has also been used to denote the maps induced on the cohomology
groups). From the cohomology sequences over B of (***) and its dual, we
get that

[H'(B,N)] = [H(R)P][H*(E, G)¢] = [H(R)?]

[H*(B,I)] = [G(R)D][H (R, H)3] = [G(R)D].

. é
From the lemma, H(R)——— G(R) is dual to the map H(T,M¢)

¢ N N
——> HY(T, M), and so [G(R)®] = [H*(T,Mg)¢]. It follows now that
all these inequalities must actually be equalities, and this proves the theorem.

Remarks. 1. The above lemma is closely related to a duality theorem
of Tate [8] and, in fact, our proof of the lemma mimics a proof of Tate’s
of the theorem (cf. [9]).

If X is an abelian scheme over R and G — X (p), then G(R) = X(K)® Z,
and H¥(T,Mq¢) =H* (I, X(R))®Q,/Z,, and so Tate’s theorem for X is
equivalent to the lemma for X (p) (all p).

2. The lemma can be used to prove that H*(T,Mg) =0 if @(R)tm
is finite. (H®(T, M¢g) =0 for i > 2 because T has strict cohomological dimen-
sion 2). The cohomology sequence of (*) (with v=1) gives an exact
sequence

0— H (T, M¢)® — H*(T, G4(K)) > H*(T, Mg),— 0.

If G(R)tors also is finite, then the lemma implies that [H*(T, Mg)®]
= [G(R),] and [7; II Thm. 2] implies that [G(R),] — [H*(T, G+(K))].
Thus H?(T,M¢)p, =0 and this implies that H2(T, M¢) =0 because it is a
p-torsion group (multiplication by I54p is an automorphism of Me).
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If G=Q,/Z, then H*(T,M¢) is dual to limw,”(R) (loc. cit.) which
«

is zero.
If G=6Gn(p) =Q;>Z,, then H2(T, M) = Br(K) (p) = Qp/Z, 70.

3. To complete the proof of all statements of [2; 1.6] one should show
that Hi(R,N) =0 for all 1=2. Probably the most elementary proof of
this part of the theorem is that given in [2]. However, it is quite easy to
prove that, for any complete noetherian local ring R with finite residue
field &, Hi(R,N) =0 for all :=2.

Indeed, N may be embedded in an exact sequence 0 > N — Gy—> G, —>0
in which @, and G, are smooth group schemes of finite type over R [3;5.1(i)],
and [1; 11.7(2)] shows that H*(R,G) = Hi(k,GQ®rk) for ¢>0 and
G=G,or G,. Hi(k,G®rk)=0 for i=2 [7] which shows that H*(E, N)
=0 for i=3. If % is the algebraic closure of %k, then 0— N (k) — G, (k)
— G,(k) = 0 is exact and H?(k, N (k)) =0 which shows that H*(k, G,®F)
— H'(k,G,®k) is surjective. Hence H*(R, G,) — H*(R, G,) is surjective,
and H*(R,N)=0.

4. The argument in the last paragraph of the theorem shows that
H(R)®-=» H'(R,N) and H*(R, @)y =0. In particular, if ¢ is multipli-
cation by p” on G then (a) G(R)®) —=>» H'(R,(,) and (b) HY(R, G),”=0.

(b) implies that H*(R, G) =0 and remark 3 implies that H¢(R, @) =0
for + > 1.

The theorem implies the existence of an exact sequence,

0—>H(R,G,) > H (K,G, ®rK)—> H'(R, G)x*—0
which, after (a), may be identified with,
0— G(R)® > H'(K,G,®r K) - (G(R)®)*—0.

After passing to the direct limit with v one obtains Mazur’s duality theorem
for p-divisible groups [2; 3.5], viz. that there is an exact sequence

0— G(R)®Q,/Z,— H'(K,G®rK)— G(R)*—0.
(where H*(K, G ®r K) is defined to be lim H*(K, G, ®rK)).
-

5. As is explained in [2], by introducing flat cohomology groups “with
compact support” it is possible to give a statement of the theorem which is
closer to the usual statements of Poincaré duality.

6. One may ask whether the theorem still holds if K has non-zero
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characteristic p. That it does is essentially proved in [4]. We show how
- the theorem may be deduced from Lemma 5 of that paper. (It has also
been proved by M. Artin and B. Mazur, unpublished).

SteEP 0. We may assume that N has order a power of p.

Proof. If p does not d1v1de the order of N then the theorem reduces to
an easy statement, about Galois cohomology (cf. [7, I1 Proposition 19].

"StEP 1. There exists a finite extension L/K of degree prime to p such
that N Qg Rr has a composition series all of whose quotients are of the form
Nep with (a,b) = (¢@9e,0), (0,0), or (0,t@Ve), (Notation as in [4].)

_~ Proof. This is shown in [4; pp. 278-9] except that we do not check that
L can be chosen so that p{ [L: K]. However, this is easy. (To get a
composition series for N ®g L whose quotients are-only- i, &,, or-Z/pZ one
has to use that a‘ p-group actmg on an abelian p-group always has a ﬁxed
element.)-

STEP 2. If L/K s finite of degree prime to p, and the theorem is tri;é
for N Qg Ry, over By, then it 1s true for N over R. :

: '_ Proof. Since the Galois group of K is solvable, we may Ar.eduéen to
considering a cyclic Galois extension of prime degree I. Let I'y= Gal(L/K)
be generated by o. Ty acts on H*(Rr, N).

Lemma. The restriction map r: H*(B,N) — H*(Rr,N) 1s mjectwe with
image H* (R, N)Ts.

Proof. The exact sequence
r

0= H* (T, N(L)) = H' (K, N) ——> H* (L, N)T1— H*(T, N (L)) — 0 -

shows that the corresponding fact for cohomology over the fields is true.
Interpret the cohomology groups as Cech cohomology groups and let
z € H*(Rg, N)T: be represented by the 1-cocycle ¢. As sx=z, c=7(c) + b
where ¢’ is a 1-cocyle for N over K and b is a 1-coboundary for N over L.
As N(RL)=N(L), b is also a 1l-coboundary for N over Rr. Then
r(¢’) =c—2>b is a l-cocycle for N over Ry, fixed under I, and hence ¢
is a 1-cocycle for N over B. Thus z€r(H*(R,N)).
Now let < , >k denote the cup-product pairing

HY(K,N) X H' (K,N)—> H*(K,Gy») =~ Q/Z

and let ¢ , > denote the corresponding pairing over L. We will need the
formulas,
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(i) (re, Ty>l:=l<z1 YL for z,y € H* (K)N) 5
(11) {02, 0y>r=<T, Y L for z,y¢€ HI(L’N)'

Let yo,€ H*(K,N) be such that <z,y,>x—0 for all z€ H*(R,N). For any

A 1-1 -1
z € HY(Ry, N), one has lz =z, + (0 — 1)z, where z, = X o'z and z, = X io'z.
i=0 i=1
0%y =1,, and so it may be written 2, =r(2";). Thus,

Ty, TYopr = K2y, Yopr =0,

(0 —1)To, 1Yo>L = T2, 07 1Yo>1, — {T2, TYo>r. =0,
and

K&, 10> = @1, Yo + (0 —1) T2, 190> = 0.

It follows that <z,ry,>r =0 for all z€ H*(RL,N), that ry,€ H* (R, N),
and that y,€ H*(R,N).

Step 3. Hi(R,N) =0 for :=2.
Proof. This is proved in remark 3 above.

To complete the proof, replace K by an extension fleld as in Step 1,
and prove by induction on the order of N making use of [4, Lemma 5] and
Step 3. This induction argument is written out in [4, p. 283].

7. Once one has remark 4, it is possible to give a proof of the Euler
characteristic formula of Mazur and Roberts [3; 8.1] based on the methods
of Tate [10; §2].

Indeed, consider the sequence (***) and let @ and Q" be the modules
of formal differentials of the formal Lie groups associated to G and H. Let
(0i)1sis¢ and () 1sis¢ be bases of Q@ and Q' consisting of translation-invariant
differentials, and let § = w; A+ - “Awg and ¢ = 0,/ A+ - “Aoy. If dp(§) —ab
then the same argument as that in the proof of Lemma 1 and Proposition 2
of [10, §2] shows that the discriminant ideal of N over R is generated by
a? where ¢ is the rank of N. On the other hand, the theory of the logarithm
mapping shows that [H(R)@®]/[G(R)s] = (B: bR) where b is the deter-
minant of ¢(¢): tq(K) — tg(K) with respect to the dual bases of (w;) and
(wi’) (cf. the second definition of log, [10; p. 169]). Obviously b =a.
Since G(R)¢ = H°(R,N) and H(R)@® = H*(R, N), this proves the formula.

This proof is essentially the first proof in [3] except that there it has
been made more clementary.
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