ON A THEOREM OF MAZUR AND ROBERTS.

By J. S. MILNE.

The purpose of this paper is to give a short proof of a local flat duality theorem of Mazur and Roberts [3; 9.2], [2; 1.6], and to make some related remarks.

Let R be a complete discrete valuation ring with finite residue field. If N is a flat finite commutative group scheme over R and K is the field of fractions of R, then the flat (f. p. q. f.) cohomology group $H^1(R, N)$ may be regarded as a subgroup of $H^1(K, N \otimes_R K)$ [5; p. 293]. Let \hat{N} be the Cartier dual of N. Then the theorem states:

THEOREM. If K has characteristic zero, then $H^1(R,N)$ is the exact annihilator of $H^1(R,\hat{N})$ in the non-degenerate cup-product pairing [7; II Theorem 2]

$$H^1(K, N \otimes_R K) \times H^1(K, \hat{N} \otimes_R K) \rightarrow H^2(K, G_m) \approx Q/Z.$$

We first prove a duality result for p-divisible groups. The definitions and results in [10; §2] will be freely used.

Let K be as in the theorem and let Γ be the Galois group over K of the algebraic closure \bar{K} of K. If G is a p-divisible group over R, we define $M_G = \bigcup G(R_L)$ where L runs over all finite Galois extensions of K contained in \bar{K} and R_L is the integral closure of R in L. M_G becomes a discrete Γ -module under the obvious action. Multiplication by p^p is surjective on M_G by [10; 2.4 Cor. 1] and has kernel $G_p(\bar{K})$ because the torsion subgroup of $G(R_L)$ may be identified with G(L).

If G is étale then $G(R_L)^{\Gamma} = G(R)$ because in this case, $G(R_L)$ can be identified with G(L); if G is connected then the same equality holds because $G(R_L)$ can be identified with the group of points on the formal group associated to G; the equality for a general G now follows from [10; Prop. 4], and from this it follows that $M_G{}^{\Gamma} = G(R)$.

We shall use A^* to denote the Pontryagin dual of a locally compact abelian group A, and if $\phi: A \to B$ is a homomorphism of abelian groups we write A_{ϕ} and $B^{(\phi)}$ for the kernel and cokernel respectively of ϕ .

Received April 21, 1971.

Lemma. G(R) is canonically isomorphic to $H^1(\Gamma, M_{\widehat{G}})^*$, where G(R) is given the topology induced by that of R and $H^1(\Gamma, M_{\widehat{G}})$ is given the discrete topology, provided that the torsion subgroups of G(R) and $\widehat{G}(R)$ are finite.

(The reader will check easily that the torsion subgroup of G(R) is infinite if and only if G^{et} contains $\mathbf{Q}_p/\mathbf{Z}_p$ as a subgroup, and that the lemma is false for $G = \mathbf{Q}_p/\mathbf{Z}_p$.)

Proof. From the cohomology sequence of

(*)
$$0 \to G_{\nu}(\bar{K}) \to M_G \xrightarrow{p^{\nu}} M_G \to 0$$

we get an exact sequence

$$(**) 0 \to G(R)^{(p^{\nu})} \to H^1(\Gamma, G_{\nu}(\bar{K})) \to H^1(\Gamma, M_G)_{p^{\nu}} \to 0.$$

 $G(R)^{(p^{\nu})}$ maps into the subgroup $H^1(R, G_{\nu})$ of

$$H^1(\Gamma, G_{\nu}(\bar{K})) = H^1(K, G_{\nu} \otimes_R K)$$

because (**) is compatible with the cohomology sequence over R coming from p^{ν} $0 \to G_{\nu} \to G \xrightarrow{p^{\nu}} G \to 0$. Since $H^{1}(R, G_{\nu})$ and $H^{1}(R, \hat{G}_{\nu})$ annihilate each other in the pairing of the theorem ([4; p. 279] or [2; p. 347]) it follows that $G(R)^{(p^{\nu})}$ and $\hat{G}(R)^{(p^{\nu})}$ annihilate each other in the same pairing. Thus the cup-product isomorphisms $H^{1}(\Gamma, G_{\nu}(\bar{K})) \to H^{1}(\Gamma, \hat{G}_{\nu}(\bar{K}))^{*}$ induce injections $G(R)^{(p^{\nu})} \to H^{1}(\Gamma, M_{\hat{G}})_{p^{\nu}}^{*}$ which in the limit give an injection

$$G(R) = \lim_{\leftarrow} G(R)^{(p^{\nu})} \rightarrow (\lim_{\leftarrow} H^{1}(\Gamma, M_{\widehat{G}})_{p^{\nu}})^{*} = H^{1}(\Gamma, M_{\widehat{G}})^{*}.$$

To prove that this map is surjective it suffices to prove that $[G(R)^{(p)}]$ = $[H^1(\Gamma, M_{\hat{G}})_p]$ (where [S] denotes the number of elements in a set S). By [7; II Thm. 5] the Euler-Poincaré characteristic of $\hat{G}_1(\bar{K}), \chi(\hat{G}_1(\bar{K}))$ = $(R: pR)^{-h}$ where h is the height of \hat{G} (or G). From the cohomology sequence of (*) (with $\nu = 1$) we get that

$$\chi(\hat{G}_1(\bar{K})) = \frac{\left[\hat{G}(R)_p\right] \left[H^2(\Gamma, \hat{G}_1(\bar{K}))\right]}{\left[\hat{G}(R)^{(p)}\right] \left[H^1(\Gamma, M_{\hat{G}})_p\right]}.$$

The required equality now follows from: (i) $[H^2(\Gamma, \hat{G}_1(\bar{K}))] = [G(R)_p]$ (see [7; II Thm. 2]); (ii) $[G(R)^{(p)}]/[G(R)_p] = (R:pR)^d$ where d is the dimension of G (the theory of the logarithm [10; 2.4] shows that G(R) is isomorphic to R^d apart from finite groups); (iii) same statement for \hat{G} ; (iv) $d + \hat{d} = h$ [10; Prop. 3].

Proof of the Theorem. In order to be able to apply the lemma, we use Oort's theorem [6] to embed N in an exact sequence

$$(***) 0 \to N \to G \xrightarrow{\phi} H \to 0$$

in which G and H are p-divisible groups over R. (***) induces an exact sequence $0 \to N(\bar{K}) \to M_G \to M_H \to 0$. G (and so H) satisfy the condition of the lemma because, in Oort's construction, $G \otimes_R k = A(p)$ for some abelian variety A over k.

Since $H^1(R,N)$ and $H^1(R,\hat{N})$ annihilate each other in the pairing of the theorem, we have

$$[H^1(R,N)][H^1(R,\hat{N})] \leq [H^1(K,N \otimes_R K)] = [H(R)^{(\phi)}][H^1(\Gamma,M_G)_{\phi}]$$

(where ϕ has also been used to denote the maps induced on the cohomology groups). From the cohomology sequences over R of (***) and its dual, we get that

$$[H^{1}(R,N)] = [H(R)^{(\phi)}][H^{1}(R,G)_{\phi}] \ge [H(R)^{(\phi)}]$$
$$[H^{1}(R,\hat{N})] = [\hat{G}(R)^{(\hat{\phi})}][H^{1}(R,\hat{H})_{\hat{\phi}}] \ge [\hat{G}(R)^{(\hat{\phi})}].$$

From the lemma, $\hat{H}(R) \xrightarrow{\hat{\phi}} \hat{G}(R)$ is dual to the map $H^1(\Gamma, M_G) \xrightarrow{\phi} H^1(\Gamma, M_H)$, and so $[\hat{G}(R)^{(\hat{\phi})}] = [H^1(\Gamma, M_G)_{\phi}]$. It follows now that all these inequalities must actually be equalities, and this proves the theorem.

Remarks. 1. The above lemma is closely related to a duality theorem of Tate [8] and, in fact, our proof of the lemma mimics a proof of Tate's of the theorem (cf. [9]).

If X is an abelian scheme over R and G = X(p), then $G(R) = X(K) \otimes \mathbf{Z}_p$ and $H^1(\Gamma, M_G) = H^1(\Gamma, X(\bar{K})) \otimes \mathbf{Q}_p/\mathbf{Z}_p$, and so Tate's theorem for X is equivalent to the lemma for X(p) (all p).

2. The lemma can be used to prove that $H^2(\Gamma, M_G) = 0$ if $\hat{G}(R)_{\text{tors}}$ is finite. $(H^i(\Gamma, M_G) = 0 \text{ for } i > 2 \text{ because } \Gamma \text{ has strict cohomological dimension 2})$. The cohomology sequence of (*) (with $\nu = 1$) gives an exact sequence

$$0 \to H^1(\Gamma, M_G)^{(p)} \to H^2(\Gamma, G_1(\bar{K})) \to H^2(\Gamma, M_G)_p \to 0.$$

If $G(R)_{\text{tors}}$ also is finite, then the lemma implies that $[H^1(\Gamma, M_G)^{(p)}] = [\hat{G}(R)_p]$ and [7; II Thm. 2] implies that $[\hat{G}(R)_p] = [H^2(\Gamma, G_1(\bar{K}))]$. Thus $H^2(\Gamma, M_G)_p = 0$ and this implies that $H^2(\Gamma, M_G) = 0$ because it is a p-torsion group (multiplication by $l \neq p$ is an automorphism of M_G).

If $G = Q_p/\mathbb{Z}_p$ then $H^2(\Gamma, M_G)$ is dual to $\lim_{\leftarrow} \mu_p{}^p(R)$ (loc. cit.) which is zero.

If
$$G = G_m(p) = Q_p/\mathbb{Z}_p$$
 then $H^2(\Gamma, M_G) = Br(K)(p) = Q_p/\mathbb{Z}_p \neq 0$.

3. To complete the proof of all statements of [2; 1.6] one should show that $H^i(R,N) = 0$ for all $i \ge 2$. Probably the most elementary proof of this part of the theorem is that given in [2]. However, it is quite easy to prove that, for any complete noetherian local ring R with finite residue field k, $H^i(R,N) = 0$ for all $i \ge 2$.

Indeed, N may be embedded in an exact sequence $0 \to N \to G_0 \to G_1 \to 0$ in which G_0 and G_1 are smooth group schemes of finite type over R [3;5.1(i)], and [1; 11.7(2)] shows that $H^i(R,G) \xrightarrow{\approx} H^i(k,G \otimes_R k)$ for i > 0 and $G = G_0$ or G_1 . $H^i(k,G \otimes_R k) = 0$ for $i \geq 2$ [7] which shows that $H^i(R,N) = 0$ for $i \geq 3$. If \bar{k} is the algebraic closure of k, then $0 \to N(\bar{k}) \to G_0(\bar{k}) \to G_1(\bar{k}) \to 0$ is exact and $H^2(k,N(\bar{k})) = 0$ which shows that $H^1(k,G_0 \otimes k) \to H^1(k,G_1 \otimes k)$ is surjective. Hence $H^1(R,G_0) \to H^1(R,G_1)$ is surjective, and $H^2(R,N) = 0$.

- 4. The argument in the last paragraph of the theorem shows that $H(R)^{(\phi)} \xrightarrow{\cong} H^1(R,N)$ and $H^1(R,G)_{\phi} = 0$. In particular, if ϕ is multiplication by p^{ν} on G then (a) $G(R)^{(p^{\nu})} \xrightarrow{\cong} H^1(R,G_{\nu})$ and (b) $H^1(R,G)_{p^{\nu}} = 0$.
- (b) implies that $H^1(R,G) = 0$ and remark 3 implies that $H^i(R,G) = 0$ for i > 1.

The theorem implies the existence of an exact sequence,

$$0 \to H^1(R, G_{\nu}) \to H^1(K, G_{\nu} \otimes_R K) \to H^1(R, \hat{G}_{\nu})^* \to 0$$

which, after (a), may be identified with,

$$0 \to G(R)^{(p^{\nu})} \to H^1(K, G_{\nu} \otimes_R K) \to (\hat{G}(R)^{(p^{\nu})})^* \to 0.$$

After passing to the direct limit with ν one obtains Mazur's duality theorem for p-divisible groups [2; 3.5], viz. that there is an exact sequence

$$0 \to G(R) \otimes \mathbf{Q}_p/\mathbf{Z}_p \to H^1(K, G \otimes_R K) \to \hat{G}(R)^* \to 0.$$

(where $H^1(K, G \otimes_R K)$ is defined to be $\lim H^1(K, G_{\nu} \otimes_R K)$).

- 5. As is explained in [2], by introducing flat cohomology groups "with compact support" it is possible to give a statement of the theorem which is closer to the usual statements of Poincaré duality.
 - 6. One may ask whether the theorem still holds if K has non-zero

characteristic p. That it does is essentially proved in [4]. We show how the theorem may be deduced from Lemma 5 of that paper. (It has also been proved by M. Artin and B. Mazur, unpublished).

STEP 0. We may assume that N has order a power of p.

Proof. If p does not divide the order of N then the theorem reduces to an easy statement about Galois cohomology (cf. [7, II Proposition 19].

STEP 1. There exists a finite extension L/K of degree prime to p such that $N \otimes_R R_L$ has a composition series all of whose quotients are of the form $N_{a,b}$ with $(a,b) = (t^{(p-1)c},0), (0,0), or <math>(0,t^{(p-1)c})$. (Notation as in [4].)

Proof. This is shown in [4; pp. 278-9] except that we do not check that L can be chosen so that $p \nmid [L:K]$. However, this is easy. (To get a composition series for $N \otimes_R L$ whose quotients are only μ_p , α_p , or $\mathbb{Z}/p\mathbb{Z}$ one has to use that a p-group acting on an abelian p-group always has a fixed element.)

Step 2. If L/K is finite of degree prime to p, and the theorem is true for $N \otimes_R R_L$ over R_L , then it is true for N over R.

Proof. Since the Galois group of K is solvable, we may reduce to considering a cyclic Galois extension of prime degree l. Let $\Gamma_l = \operatorname{Gal}(L/K)$ be generated by σ . Γ_l acts on $H^1(R_L, N)$.

LEMMA. The restriction map $r: H^1(R, N) \to H^1(R_L, N)$ is injective with image $H^1(R_L, N)^{\Gamma_L}$.

Proof. The exact sequence

$$0 = H^1(\Gamma_l, N(L)) \to H^1(K, N) \xrightarrow{r} H^1(L, N)^{\Gamma_l} \to H^2(\Gamma_l, N(L)) = 0$$

shows that the corresponding fact for cohomology over the fields is true. Interpret the cohomology groups as Čech cohomology groups and let $x \in H^1(R_L, N)^{\Gamma_l}$ be represented by the 1-cocycle c. As $\sigma x = x$, c = r(c') + b where c' is a 1-cocycle for N over K and b is a 1-coboundary for N over L. As $N(R_L) = N(L)$, b is also a 1-coboundary for N over R_L . Then r(c') = c - b is a 1-cocycle for N over R_L , fixed under Γ_l , and hence c' is a 1-cocycle for N over R. Thus $x \in r(H^1(R, N))$.

Now let \langle , \rangle_K denote the cup-product pairing

$$H^1(K,N) \times H^1(K,\hat{N}) \rightarrow H^2(K,G_m) \approx Q/Z$$

and let \langle , \rangle_L denote the corresponding pairing over L. We will need the formulas,

(i)
$$\langle rx, ry \rangle_L = l \langle x, y \rangle_L \text{ for } x, y \in H^1(K, N);$$

(ii)
$$\langle \sigma x, \sigma y \rangle_L = \langle x, y \rangle_L \text{ for } x, y \in H^1(L, N).$$

Let $y_0 \in H^1(K, \hat{N})$ be such that $\langle x, y_0 \rangle_K = 0$ for all $x \in H^1(R, N)$. For any $x \in H^1(R_L, \hat{N})$, one has $lx = x_1 + (\sigma - 1)x_2$ where $x_1 = \sum_{i=0}^{l-1} \sigma^i x$ and $x_2 = \sum_{i=1}^{l-1} i\sigma^i x$. $\sigma x_1 = x_1$, and so it may be written $x_1 = r(x'_1)$. Thus,

$$\begin{split} \langle x_1, ry_0 \rangle_L &= l \langle x_1', y_0 \rangle_K = 0, \\ \langle (\sigma-1) x_2, ry_0 \rangle_L &= \langle x_2, \sigma^{-1} ry_0 \rangle_L - \langle x_2, ry_0 \rangle_L = 0, \end{split}$$

and

$$l\langle x, ry_0 \rangle = \langle x_1, ry_0 \rangle + \langle (\sigma - 1)x_2, ry_0 \rangle = 0.$$

It follows that $\langle x, ry_0 \rangle_L = 0$ for all $x \in H^1(R_L, N)$, that $ry_0 \in H^1(R_L, N)$, and that $y_0 \in H^1(R, N)$.

STEP 3.
$$H^i(R, N) = 0$$
 for $i \ge 2$.

Proof. This is proved in remark 3 above.

To complete the proof, replace K by an extension field as in Step 1, and prove by induction on the order of N making use of [4, Lemma 5] and Step 3. This induction argument is written out in [4, p. 283].

7. Once one has remark 4, it is possible to give a proof of the Euler characteristic formula of Mazur and Roberts [3; 8.1] based on the methods of Tate [10; § 2].

Indeed, consider the sequence (***) and let Ω and Ω' be the modules of formal differentials of the formal Lie groups associated to G and H. Let $(\omega_i)_{1 \le i \le d}$ and $(\omega_i')_{1 \le i \le d}$ be bases of Ω and Ω' consisting of translation-invariant differentials, and let $\theta = \omega_1 \wedge \cdots \wedge \omega_d$ and $\theta' = \omega_1' \wedge \cdots \wedge \omega_d'$. If $d\phi(\theta') = a\theta$ then the same argument as that in the proof of Lemma 1 and Proposition 2 of $[10, \S 2]$ shows that the discriminant ideal of N over R is generated by α^g where g is the rank of N. On the other hand, the theory of the logarithm mapping shows that $[H(R)^{(\phi)}]/[G(R)_{\phi}] = (R:bR)$ where b is the determinant of $t(\phi): t_G(K) \to t_H(K)$ with respect to the dual bases of (ω_i) and (ω_i') (cf. the second definition of log, [10; p. 169]). Obviously b = a. Since $G(R)_{\phi} = H^o(R, N)$ and $H(R)^{(\phi)} \approx H^1(R, N)$, this proves the formula.

This proof is essentially the first proof in [3] except that there it has been made more elementary.

University of Michigan.

REFERENCES.

- [1] A. Grothendieck, Le groupe de Brauer III, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam; Masson, Paris, 1968.
- [2] B. Mazur, "Local flat duality," American Journal of Mathematics, vol. 92 (1970)., pp. 343-361.
- [3] B. Mazur and L. Roberts, "Local Euler characteristics," Invent. Math., vol. 9 (1970), pp. 201-234.
- [4] J. Milne, "Weil-Châtelet groups over local fields," Ann. Sci. Ecole Norm. Sup. (4), vol. 3 (1970), pp. 273-284.
- [5] ———, "Elements of order p in the Tate-Šafarevič group," Bull. L. M. S., vol. 2 (1970), pp. 293-296.
- [6] F. Oort, Embeddings of finite group schemes into abelian schemes, Advanced Science Seminar in Algebraic Geometry, Bowdoin College (1967), mimeo.
- [7] J. P. Serre, Cohomologie galoisienne (Lecture Notes in Math., No. 5, Berlin-Heidelberg, New York, Springer, 1964).
- [8] J. Tate, W. C.-groups over P-adic fields (Séminaire Bourbaki, 1957-58, exposé 156).
- [9] _____, Duality theorems in Galois cohomology over number fields (Proc. Intern. Congress Math. Stockholm, 1962, pp. 288-295).
- [10] ———, "p-divisible groups" (Proceedings Conference on Local Fields, Springer-Verlag, 1967).