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On the Arithmetic of Abelian Varieties*

J.S. Milne (London)

In §1 we consider the situation: L/K is a finite separable field ex-
tension, A is an abelian variety over L, and A, is the abelian variety over
K obtained from A by restriction of scalars. We study the arithmetic
properties of A, relative to those of 4, and in particular show that the
conjectures of Birch and Swinnerton-Dyer hold for A4 if and only if
they hold for 4.

In § 2 we study certain twisted products of abelian varieties and use
our results to show that the conjectures of Birch and Swinnerton-Dyer
are true for a large class of twisted constant elliptic curves over function
fields.

In §3 we develop a method of handling abelian varieties over a
number field K which are of CM-type but which do not have all their
complex multiplications defined over K. In particular we compute under
quite general conditions the conductors and zeta functions of such
abelian varieties and so verify Serre’s conjecture [12] on the form of
the functional equation. Similar, but less complete, results have been
obtained by Deuring [ 1] for elliptic curves and Shimura [15] for abelian
varieties.

§ 1. The Arithmetic Invariants of the Norm

Let T— S be a morphism of schemes. We recall the definition and
properties of the norm functor Nys (in [19] this is denoted by Ry5 and
called restriction of field of definition, and in [3, Exp. 195] it is denoted
by ;). If X is a T-scheme then N X is uniquely determined as the
S-scheme which represents the functor on S-schemes Z+— X(Z;), where
Z;=Z xgT. There is a T-morphism p: (N5 X)r — X such that any other
T-morphism p': Z — X factors uniquely as p’=pq, with q: Z— Np s X
an S-morphism. N;,s X always exists if X is quasi-projective and T— S
is finite and faithfully flat [3, Exp. 221], and it is obvious from the defi-
nition that Ny, commutes with base change on §. If X is a group scheme
then Ny X acquires a unique group structure such that p is a morphism
of group schemes. If X is smooth over T then it is obvious from the
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functorial definition of smoothness [4, IV] that Ny X is smooth. If X
is an abelian scheme then Np,sX need not be an abelian scheme even
(as Mumford has observed) if T— S corresponds to a finite field ex-
tension L/K. Indeed, if L/K is purely inseparable of degree m and A is an
abelian variety of dimension d over L, then L®yL=R is a local Artin
ring with residue field L and Ng,; A =(NyxA)® L is an extension of 4
by a unipotent group scheme group scheme of dimension (m—1)d
[2. p.263]. However if L/K is separable then Ny 4 is an abelian variety
because, for any Galois extensions K of K containing L, there is an iso-
morphism P: (N g A)g — AZ x --- x Ag" where o, ..., g,, are the distinct
embeddings of L in K over K [19, p. 5], and so (N xA)g is an abelian
variety.

For the remainder of this section L/K will be a finite separable field
extension of degree m, 4 an abelian variety over L of dimension d, K a
Galois extension of K containing L (often equal to a separable algebraic
closure K of K), G=Gal(K/K), H=Gal(K/L), and {5, ...,0,} a set
of left coset representatives for H in G. We will compute the arithmetic
invariants of 4, = N; xA.

(a) Points. 4, (K)=A(L) and so their ranks (if finite) are equal. The
morphism P above induces an isomorphism A, (K)— Z[G] @z A(K)
and this, with K=K, induces canonical isomorphisms

T4~ Z[Gl®z;TA and VA, ~Q[Gl®qum ViA-

In other words, the [-adic representation of G on T, A, (resp. V}A,) is
the induced representation coming from the representation of H on
T, A (resp. VA).

(b) Conductors. Let L be the field of fractions of a complete discrete
valuation ring with finite residue field, and let V be a finite dimensional
vector space over Q, where [ is not equal to the residue characteristic of
L. Take K=K, and let p be an l-adic representation of H on V. p auto-
matically satisfies condition (H,) of [12] and so the exponent of the tame
conductor &(p) (resp. wild conductor &(p), resp. conductor f(p)=
€(p)+6(p)) is defined. See [12] for the details.

Lemma. Let p, be the representation of G=Gal(K/K) induced by p.
Ther e(p,)=2(p)+(m—1)dim(V),
3(py)=5(p)+(B—m+1)dim (V),
f(p,)=f(p)+p dim (V)
where [ is the exponent of the discriminant of L/K.
Proof. Straightforward using [11, VI Proposition 4].
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When p, is the representation of H defined by ¥} 4, Grothendieck [5]
has shown that &(p,) is independent of [ (different from the residue
characteristic). ¢(p,) is obviously independent of | because it equals
u(A)+24(A) where u(A) and A(A) are the dimensions of the reductive
and unipotent parts of the reduction of A. Thus, there are numbers
e(A), 6(A), f(A) depending only on A4 over L.

Now take L to be a global field i.e. a number field or function field
in one variable over a finite field. In multiplicative notation, the con-
ductor of 4 is the ideal or divisor f(4)=[] p/™ where w runs through

w
the non-archimedean primes of L, L, is the completion of L at w, and

fw)=f(4.,).

Proposition 1. With the above notations, §(A,)=Ny (f(4))di.
where here Ny refers to taking norms of ideals or divisors, and dy
is the discriminant of L over K. In particular, A, has good reduction at v
if and only if v does not divide the discriminant of L over K and A has good
reduction at all primes of L dividings v.

Proof. Immediate from the lemma.

Remark. Let L/K be an extension of local fields with ramification
index e, and let a(A) be the dimension of the part of the reduction of 4
which is an abelian variety.

Then

m
n(A,)=—u(A),

e
A(A*)=%(de—d+l(A)).

Indeed, if e=1 this is obvious by looking at the norm of the Néron
minimal model of A4 (see the next section (c)). If e=m it follows from the
formula e(A4,)=¢(4)+(m—1) 2d and the obvious facts that o(4,)=a(A4),
1(A,)= p(A) (obvious, because p: A, — A is surjective). The general
case follows by transitivity.

If Lis a number field, write d; =|d; q|, and if L is a function field in
one variable over a finite field with q elements, write d, =q*¢~2 where
g is the genus of L. Define N, (f(4))=]] Nw/™ where w runs through

the non-archimedean primes of L and Nw is the number of elements of
the residue field k (w) at w. Finally define ¢ (4)= N, (f(4)) d; 4™ [12,p. 12].

13*
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Corollary c(A4,)=c(A).

Proof. Immediate from the theorem, the formula for the transitivity
of norms, and the Hurwitz genus formula.

(¢) Tamagawa Numbers. L is a global field. Let w be a non-zero
invariant exterior differential form of degree d on A. Define 4,=1 if w
(N w)?

nW
group of points on the connected component of zero of the reduction of
the Néron minimal model of A, if w is non-archimedean. By [19, 2.2.5]
the 4,, form a set of convergence factors for A. We define 7(A) to be the
measure of the adéle group of A relative to the Tamagawa measure
Q=(w,(4,) [19, p. 23].

Let w, be the invariant exterior differential form on A, corresponding
to w as in [19, p. 24].

is archimedean, and 4, = where n,, is the order of A3, ,(k(w)), the

(N U)dim(A,k)
Proposition 2. (a) 1,=[] 4, is equal to ————— for any non-
archimedean prime v of K. wiv My

(b) T(4)=1(4,).

Proof. (a) Let A, be the Néron minimal model of 4 over R, the
completion of the integers of L at w. A,, is quasi-projective and so 4,, .=
Ni. v, A, exists. Clearly 4, ,~ A, ,, the Néron minimal model of 4,,
because it isa smooth group scheme with the correct functorial property.
Moreover the zero component A2 . of 4. is isomorphic to (49), because
(A9), is an open subgroup scheme of 4, with connected fibres.

If R, is unramified over R, then A3, ®g k(1) x Nk (A% Dr, k(W)
Nw! Ny

and so n,=n,, Nw=Nv"™, and , where m'=[R*R_].

nW v
If R, is totally ramified over R, then 4, ®p k(v)~
' AV ®r R, ) where R, - is R,, modulo the m'th power of its
maximal ideal. Thus n,=order of A%(R,, ,,)=Nv"™ ~Y9n because 4%
N Wd N vm'd ) )
is smooth. Nv=Nw and so =———, and this suffices to complete
the proof. it

n
(b) Follows from (a) and [19, 2.3.2].

(d) Zeta Functions. Lis again a global field. For any non-archimedean
prime w of L we write I, for an inertia group of w and =, for a Frobenius
element of H/I,,. Following [12] we define, for any prime !+ char (k(w)),
a polynomial P,  (T)=det(l —Tx,) where n, is regarded as acting on
(VA =V,(A ®g,, k(w)). Conjectures Cs, Cq, C4 (loc. cit.) are known
to be true in this case. Define
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Cals)
T(4)

I'(s)
m)*s

nd
=[] P u(Nw=5"", h(s)= c,,(s>=c<A)S/2( ) £,(6)

where n=0 if Lis a function field and n=[L:Q] if L is number field.

Proposition 3., (s)={(s), {4 (s)=L4(s) &4, ()=E 4 (s).

Proof. After (b) and (c) it suffices to prove the first statement, and for
this it suffices to show that [[ P, ,,(Nw™%)= P, .(Nv™*). By passing to
the completions, we may assulne that w is the only prime of L lying over
v. If L/K is unramified at v, then (V,4,) )'=Q,[G/H]® (V,A)"™, and G/H
is a finite cyclic group of order m generated by the class of =,. It follows
that P, (T)=P, ,(T™), which gives the required equality. If L/K is
totally ramlfled at v, then (V A4, Yv=(V,A)", n,=mn,, and the result is
obvious.

w?

Remark. Consider any projective smooth scheme V over L and let
V, =N, V. Then it is possible to prove as above that

L (9=0p(s),  cV=cV), & (5)=¢y ().
Indeed, H'(V,, Q) ~Q,[G1®q, H' (V. Q). because
l(17-Qz)®Q,[/1(;n:7‘71/13

where B is the Picard variety of ¥, and Pic®(V,) can be computed as in (e)
below. (Note that V;4=Homg,(H' (4, Q)), Q) so that we have actually
been working with the dual of H!(4,Q,) rather than with H'(4,Q,)
itself. However, this affects nothmg) The first two equalities follow
immediately from the isomorphism as above. The only additional
point for the last equality is to check that the I'-factors agree, but thls
is easy.

(e) Pic®. Let bePic®(4). The element p®*(b°)+--- 4 p°*(b°™) of
Pic®(A, ¢) is fixed under the action of G and so determines an element
b, of Pic®(4,).

Proposition 4. The map b b, is an isomorphism Pic®(4) — Pic® (A,).

Proof. This follows easily from the fact that 4+ Pic®(4)is an additive
functor on the category of abelian varieties over L [8, p.75] and so
commutes with products.

(f) Heights. Lis a global field. We refer to [16, p. 5] for the definition
of the logarithmic height pairing <, ), : Pic®(4)x A(L)— R.

Proposition 5. Let ac A, (K) and be Pic®(A). Then

by, ayg=<b.p(a)y,.
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Proof. Choose K to be finite over K, of degree n say. Then, by using
some obvious functorial properties of the height pairing, one gets that

m

1 1
<b*,a>x=7<b*’a>1€=7 <p7i*(b%), ayg

m
:n‘ <b$ p(a)>K

=<b,p(a))y.

Corollary. Let {a,,...,a,} (resp. {b,,...,b,}) be a basis for A, (K)
(resp. Pic®(A)) modulo torsion. Then {p(ay), ..., p(a,)} (resp. {b,,, ..., b,.})
is a basis for A(L) (resp. Pic®(A,)) modulo torsion, and

det(<b;,. a,->)=det(<bj, p(a)y).

We now apply the above to the conjectures of Birch and Swinnerton-
Dyer. These state that,

(117 |det({b;, ap)l
[A(K)ors] [A" (K)yr]
where the symbols are as defined above or as defined in [16, § 1]. For the

sake of consistency, we must show that (% (s)/L*(s)— 1 as s— 1, but this
is a consequence of the following lemma.

(B—S/D) {5(s)~

(s—1), ass—1,

Lemma. Let M be a connected smooth commutative group scheme over
a finite field k. If P,(T)=det(1—nT) where n is the Frobenius endo-
(M (k)]

morphism regarded as acting on V;M, 1+ char(k), then P,(q~")= 5

where q=[k] and d =dimension of M. q

Proof. If 0— M'— M — M"— 0 is an exact sequence of group schemes
then B, (T)=R;(T)B,(T) and [M(k)]=[M'(kYJ[M"(k)] (because
H'(k, M')=0). It follows that we need only prove the lemma for M
equal to an abelian variety, a unipotent group, or a torus. The first case
is well-known. If M =G_, then P,=1 and [M (k)] =q. The result follows
for any unipotent M because such a group has a composition series
whose quotients are all isomorphic to G, .

Finally, let M be a torus. P, (T)=det(1 — T &) where 7 is = regarded
as acting on the character group M of M. Then P, (¢~ ')=g~ ¢ det(q— )=
g~ [M (k)] (see [9]).

Theorem 1. (B—S/D) is true for A if and only if it is true for A, .
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Proof. After the above, we know that all corresponding factors,
except the Tate-Safarevi¢ groups, are equal, but it is trivial to show that
LI (A4)~11(A,) using (a).

Corollary. Let Lbe a global field which is of degree m over the rational
number field or a rational function field K,. (B—S/D) is true for all
abelian varieties of dimension <d over Lif it is true for all abelian varieties
of dimension <md over K,.

§ 2. Forms of Products of Abelian Varieties

Throughout this section, K/K will be a Galois extension with Galois
group G, and A4 an abelian variety of dimension d over K. A K/K-form
of A is a pair (A’, ) where A’ is an abelian variety over K and y is an
isomorphism Agz— Ag. Then the map o>y~ Y7: G— Autg(A) is a
l-cocycle for G with values in Autg(A4), and this correspondence sets up
a bijection between the set of isomorphism classes of K/K-forms of A
and the elements of H'(G, Autg(A)) (G acts on Ay through its action on
K, and it acts on Autg(A) by ¢+ ¢*=ado™?).

Let R be a commutative subring of Endy (A4) and let M be an R-module,
with a given isomorphism {/: R" — M, on which G acts (through a finite
quotient if K/K is infinite). Then o+ s(¢)=y ' is a homomorphism
G — GL,(R) which may be regarded as a 1-cocycle for G. If GL,(R) is
regarded as a subgroup of Autg(A") then we define (M ®g A4, ¥ ,) to be the
K/K-form of A" corresponding s. (M, )~ (M ®gA, Yi,) can be extended
to an additive functor; given ¢: M > M', ¢, M@ A — M'®z A is the
homomorphism such that ;' ¢,V , has the same matrix representation
as =" gy,

If K/K is finite, then R[G]®zA is isomorphic to Ng 4.

Proposition 6. (a) If ¢: M — M’ has non-zero determinant dety(¢)
with respect to the bases provided by W and ', then ¢, is an isogeny of
degree |Ny,z(detg ())|*“" where r=rank,(R).

(b) y,induces isomorphisms of G-modules M ®RA(I?)—*> (M®RA)(E),
M@, T,A—2 T,(M @y A). M ®p VA — V(M @, A).

(c) Let K be a global field. Then

(M ®pA)=T(M)** (A",
(M @gA)=c(M)* c(AY"

where {and c are the conductor and absolute conductor of A or the character
of the representation of G on M [11,VI], provided {(M) and {(A) (resp.
c(M) and c(A)) have disjoint supports.

Proof. (a) Let F be the field of fractions of R. Since field extension
does not change degrees or determinants we may assume that K =K.
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Then M, (F) is a simple Q-algebra and so, by [8, p. 179] it suffices to
check that deg ¢, =|Ny,q detg (¢)*“" for p€Z, but this is obvious.

(b) Follows directly from the definition of M ®, A4
(c) Follows from (b) (cf. § 1).

Remark. 1. The first isomorphism in (b) can be used to give a more
invariant definition of M ®, 4

2. It is possible to deduce the zeta function of M ®,A4 from that of
A and the representation of G on M.

Example. Let A be an abelian curve over K. Assume first that j(A4)=0,
1728 and that char(K)#2. Then Autg (4)=Aut(4)={+1} and
H'(Gal(K/K), Auty (4))=K*/K*? by Kummer theory. Let 4, be the
K /K-form of 4 corresponding to de K*. If A has equation

Y2=X3*+aX*+bX+c

then A, has equation dY?’=X’+aX?+bX+c and ¥ is the map
(x, ) (x,/dy). If K=K(}/d), then A,=Z,®,A where Z, is Z with
oeG actmg as 1 or —1 according as ¢ is the identity or not. Thus if K
is a global field and A has good reduction at a prime v then 4, has good
reduction at v if and only if v is unramified in K/K. Moreover

1
Casls)= H (a’/u) Nv‘s)

(up to a finite number of factors) where (d/v) is the quadratic residue
symbol for K.

If j(A)#0 but char(K)=2, then Autg (A)=Autg(4)={+1},
H'(Gal(K/K), Autg (A))=K/p K,and if 4, corresponds to deK and A
has the equation Y2+XY X3+aX2+b then A, has the equation
Y2+ XY=X3+(a+d) X*>+b. If K=K(p~'(d) then A;=7,®,A with
the obvious definition of Z,, and the same results hold as above.

If j(4)=0 or 1728, then Auty (4) has order 4 (j=1728, char+2, 3),
6(j=0, char %2, 3), 12(j=0, char=3) or 24 (j=0, char =2) and there are
many more cases to consider.

Proposition 7. Assume that A is a simple abelian variety (i.e. simple
over K). Let s: G— Auty(A) be a homomorphism whose image is a finite
subgroup contained in the centre R of End(A). Then s(G) is cyclic, of order
m say. Let R;, 0<i<m—1, be R regarded as a G-module by ¢ a=s(c) a
and let A;=R;®gA. Then, if Lis the fixed field of H=Xker(s), there is an
isogeny of degree m™ Ny g A} — Agx A;x -~ x A

m—1-

Proof. Let o, generate G/H and let { =s(g,). Then the homomorphism
¢: R[G/H]— [| R; with matrix ({¥)y<; j<,_, relative to the obvious
bases has determinant
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Example. 1. 1f A, A, are abelian curves as in the example above, then
the proposition shows there is an isogeny Ng, A — A x A, of degree 4.

2. In the situation of the proposition, {,, (s)=Cy, . 4(s)= [1¢4,05)-
i=0

For example, suppose that A has complex multiplication over K by
F=R®,Q and let p_: I, — F* be as defined in [13, p. 513]. Then

Ca (=TT Les 2.0,

m

L) =TT TTLG 210)
i=0 @

where ¢ runs through the embeddings F — C and y; , is the composite

I, 2=, px 189, C*(sinduces, in a canonical way,a map Iy —F —F, ,

and we have used the same letter to denote this map).

Now let K be a global field of non-zero characteristic. An abelian
curve A over K is said to be a twisted constant curve if A ® K is constant
Le, of the form 4, ®,_ K, where k, is the constant field of K. Equivalently,
A is a twisted constant abelian curve if j(A) is in the constant field of K,
or if Endg(A)*Z.

Theorem 2. Let A be a twisted constant abelian curve over K such that
Jj(A)*£0, 1728 and char(K)=2. Then (B—S/D) is true for A.

Proof. Since j(A) belongs to the constant field of K, there is a constant
elliptic curve 4, over K such that j(4,)=j(A) i.e. such that 4 is a K /K-
form of 4, . In fact (see the above examples) there is a quadratic extension
K of K such that 4 is a K/K-form of A,. By Proposition 7, there is an
isogeny of degree 4, Ngx Ag— Ay x A. By [7], (B—S/D) is true for A4,
and Ag, and by Theorem | it is true for NggAg. Since (B—S/D) is
compatible with isogenies of degree prime to the characteristic of K[16]
and with products, the theorem follows.

§ 3. Abelian Varieties with Complex Multiplication
K, K, G, A will be as in § 2. We write End®(4)=End(4)®, Q.

Theorem 3. Let K/K be of finite degree m. Suppose that End%(A4) con-
tains a commutative subalgebra Eg such that [Eg:E,]=m where Ey=
Endg (A) N Eg. Assume that Ey is a field. Then N g Ay is isogenous to A™.

Proof. Let «, ..., o, be elements of ExnEndg(A) which are linearly
independent over R =End(A). Consider the homomorphism v : A} ——
AR —=> (Ngx A)x where ¢ has matrix («')(G={0,,...,0,}) and P
is as defined in § 1 (note that here A% is canonically isomorphic to Ap).
Obviously, y*=y, and so ¢ defines a homomorphism A™— N A.
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Moreover the method of the proof of Proposition 6 may be used to show
that deg(y) =|Ng,z (dgr)|"" Where r=rank, R, S=R[q,, ....a,], and dg
is the discriminant of S over R.

Corollary. In the situation of the theorem.

(a) A(K)®zQ~(A(K)®,Q)" and so rank (A4 (K))=m rank A(K)
(see also [6]).
Assume also that K is a global field.

(b) CAI_((S) = CA (S)m’ €AE(S) = éA (S)m s
Nk (i(4g) - difx =T(4)™.

(c) (B—S/D)is true for A over K if and only if it is true for Ag over K.
Proof. These all follow from the results in § 1.

Example. Let A be an abelian curve over Q which has complex
multiplication by F. Then the conjecture (B— S/D) is true for 4 over Q if
and only if it is true for A over F.

Remark 1. The theorem has a partial converse. Let K/K be Galois
of degree m and assume that A is simple and that Egz=End%(A) is com-
mutative. If Ng . A is isogenous to A™ then [End}(A):Endg(4)]=m
and the isogeny is formed, as above, by taking elements of Endg(A) which
form a basis for Endg(A) over EndY(A).

Indeed, if : A™ — Ny, Ag is the isogeny, then a=pyg: Ax— Ag
can be written a=(«,, ..., a,) with o;e6 Endg(A4). Since ¥ is an isogeny,
pYg=(a5): Ag— A% is an isogeny, and hence det («5?)#0. This implies
that {«,, ..., a,} is a basis for Eg over Ej.

2. Assume that 4 is simple over K and let E be the centre of Endg_(A).
Let K be the smallest field containing K and such that E CEndg(A)‘
Then K is a finite Galois extension of K and K, K, A, E satisfy the con-
ditions of the theorem.

Indeed, Gal(K,/K) acts on Ec Endgs(A) and has fixed subfield
Ex=EnEnd}(A4). Let H be the subgroup of Gal(K/K) of elements
which act trivially on E. Then K is the fixed field of H, and so [K:K]=
(Gal(K/K):H)=[E:E].

We now apply the theorem to abelian varieties with complex multi-
plication. For the remainder of the paper, we let 4 be an abelian variety
over a number field K which (over C) is of CM-type (F, ®) in the sense
of [14]. We shall assume always that the image of F in End2(A) is stable
under the action of Gal(K /K). This will be true when A is simple over C
(for then F=End2(4)), when F,=FNEnd}(4) is the maximal real
subfield of F (for then F=F, E where E is the centre of End2(A4), and E
is stable under Gal(K,/K)), or, more generally, when A/K satisfies
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the conditions of Theorem 12 of [15]. Let K be  the smallest field con-
taining K such that F < Endg(A). Then G =Gal(K/K) acts on F and has
fixed field Fy=F nEnd3(A4). K, K, A, F satisfy the conditions of the
theorem.

Now let X be the set of embeddings t: F — C. G acts on Z on the right.
If teX we write y, for the Grossen-character y,: Iy — C* defined in [13,
p. 513] (note that we do not require a Grossen-character to take values
in the unit circle).

Lemma. L(s, y,)=L(s, x,,) for all 6eG, teX.

Proof. 1t is easy to see that the homomorphism &: Iy — F* defined
in [13, Theorem 10] commutes with the action of G. Fix a prime v of K.
If 7, is unramified at the primes over v, then the factor of L(s, x,) (resp.
L(s, y,,)) corresponding to primes over v is

1 1
) ey (r“p‘n 1—x.a(fw)Nw-S)

wlv wlv

where i, is the idéle whose component is 1 at primes #+w and a uni-
formizing parameter at w. By definition,

Xl(iw)z te(iw)’
an(iw): to 8(iw)= IS(O' iw) = ts(iaw)'

Since o permutes the primes dividing v, this shows that the two factors
are equal. If y, is ramified at one prime dividing v then it is ramified at all
such primes and both factors are 1.

Theorem 4. With the above notations,

La®= T[] Lis. x)-

1€X/G

Proof. Write
1

and L(S, X)v = 1_[ WS—

wlv

1
Q(S)Em

(or 1) for the factors of {,(s) and L(s, ) corresponding to v.
Let m=[K:K]. Then

Cals)e =Cngyna(S)e (Theorem 3)
=[]l (Proposition 3)
w|e
=[T1Ls. x). ([143, [13])
tel
= [T (L(s. )™

teX|G
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Both (,(s), and [] L(s, %), are functions of the form [[—————
1e3/G l—a;Nv

and it is easy to see from this that the above equation implies that
CA(s)r: l_[ L(S’ Xt)v'
1eX/G

Remark. 1. If we regard the y, as characters of the Weil group % of
K [18] then it is possible to define induced characters X5 ON %g. Moreover
(loc cit.) L(s, x,)=L(s, x:). T(x,)=T(x) dg;x- Thus, our results may be
stated as follows: let A/K satisfy the conditions as above. Then, if [F: Fy]
=m, there are 2d/m (quasi-) characters y;: ¥, — C* such that {,(s)=

[T L(s. 2. F(4) =1 (2.

2. If for a Grossen-character y of K, L(s, y) is multiplied by appro-
priate factors corresponding to the conductor of y and to the infinite
primes of I?, then the function A(s, y) obtained satisfies the functional
equation A(2—s,7)=wA(s,x) with |w|=1 (assuming that x(i)=y,(i)
lil* where ¥, is a Grossen-character which takes its values in the unit

circle). Moreover, one checks that & AE(s)=l_[ A(s, x,) (up to a trivial
teX

constant). Thus A/K satisfies Serre’s conjecture [12, C,], & 4x(2—35)=
wé,(s), withw=1.

After the above theorems, this result may be extended to 4/K. In
fact, one finds easily that &, (s)= [] A(s, z,), from which it follows that
teX/G
£ 2—s)=w & (s), with w=+1. (w= 41 because w(y)=w(¥)"!, and so

if L(s, x)=L(s, ¥) then w(y)=w(x)=+1.)

3. Theorem 4 (and the following discussion) is closely related to a
result of Shimura [15, Thm. 12]. However, his conditions are apparently
more complicated and he does not compute the factors of {,(s) (and
f(4)) corresponding to bad primes.

Perhaps it is worth clarifying the behaviour of A at bad primes. If
A has complex multiplication defined over K then, for any prime v of K,
A either has good reduction or totally unipotent reduction at v [13,
p. 504] i.e. in the notation of § 1 either o, (4)=d (and ¢,(A4)=0) or A,(4)=d
(and ¢,(4)= 2d). If, on the other hand, 4, K, K are as above, and [K:K]
=m>1 then |

a,-(A)=n—1 Y fwlv) o, (Ag),

wlv

B, (A)=0,

, 1
Al,(A)=E Y fwlv)(de(w|v)—d+4,,(A4))
wlv _
(see § 1) where e(w|v) is the ramification index of w over v (in K/K) and
f(w]v) is the residue class degree. Shimura [15, p. 536] gives an example
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where dim(4)=3, K=Q, K=Q({+¢~',}/=11) with { a primitive 7th
root of 1, m=6, and A has good reduction at the unique prime w of K
dividing v="7. Then f(w|v)=2 (with v=7), and so a,(A)=1, 1,(4)=2,
and ¢,(4)=4. Thus A has bad reduction at 7 but the factor of {,(s)
corresponding to 7 is = 1.

We give two final applications of Theorem 3.

Theorem 5. Let A/K, G, K be as in the discussion preceding the lemma
above.

(@) For all primes I, Endg(A)® Q,— End,(V,A) is an isomorphism,
where H=Gal(K /K).

(b) Conjecture 2 of [17, p. 104] is true for A and i=1 i.e. the rank of
the Néron-Severi group of A is equal to the order of the pole of the 2-part
of the zeta function of A at s=2.

Proof. (a) follows from the results in [14] if 4 has all of its complex
multiplications defined over K. Write Hy=Gal(K/K)cH and A, =
NgxA. Then M, (Endg(4))~Endg(4,)~Endg(4,)°. But, Endg(4,)®
Q,~Endy (Q,[H]®gq,u, Yi(Ag)) as G-modules, and M,,(Endy(V,4)) =
Endy (Q,[H]®gq,u, Vi(Ag))°. (b) is proved in [10] when 4 has all of its
complex multiplications defined over K, and the general case may be
deduced similarly to the above.
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