ABELIAN VARIETIES OVER
FINITE FIELDS'

W. C. WATERHOUSE and J. S. MILNE

I. Classification up to isogeny

1. We begin by fixing a field k, which will eventually be finite but need only be
perfect until further notice. An Abelian variety is a subset of some projective
n-space which

(i) is defined by polynomial equations on the coordinates (with coefficients in
k),
(i) is connected, and
(iii) has a group law which is algebraic (in the sense that the coordinates of the
product of two points are rational functions of the coordinates of the factors).

The first theorem one proves is that Abelian varieties are commutative; this shows
why we insist on connectedness, since otherwise we would be allowing all finite
groups and the geometry would be of no help.

In the classical case k = C the structure of Abelian varieties is fairly well under-
stood: they are all of the form C?/A where A is a certain kind of lattice in C¥.
These lattices (sometimes disguised as homology groups) are basic to the classical
treatment of the subject. They unfortunately disappear in characteristic p > 0,
and part of our job will be developing substitutes for them. Nevertheless, C?/A
is a useful model to keep in mind when considering properties of Abelian varieties.

Let 4 be an Abelian variety of dimension g, for example, and » a nonzero integer.
Multiplication by n is a homomorphism of the group 4 into itself, and in the classi-
cal case it obviously is surjective with finite kernel of cardinality n?. In general
what one proves is that it is surjective (in a reasonable sense, though it need not be
surjective on points with coordinates in k), and that its degree is n?¢. Here the
degree of a map is a number, definable algebraically, which in good cases counts

1Preparation of the part by Waterhouse was supported by the contract NSF GP-9395.
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the number of points with the same image; thus the degree of a homomorphism
is the size of its kernel.

A homomorphism is called an isogeny if it is surjective with finite kernel;
multiplication by » is a leading example. We say A4 and B are isogenous if there is
an isogeny ¢ from A to B; this is reasonable terminology because there is then also
an isogeny from B to A. Indeed, let G = ker ¢. If n is the degree of ¢, then
G C A4, = ker (A A). Hence A = A factors through 4/G = B. The resulting
map y¥: B — A is surjective (since 4 — A is) and has finite kernel (since ¢ is
surjective and y o ¢ has finite kernel).

Honesty compels me to confess that this proof is not so simple as it looks. It
is not obvious that B has the reasonable properties of a quotient 4/G; as we will
see later, it is not even true without a rather fancy definition of ker ¢. But now that
due warning has been given, I intend to ignore most such problems, and I urge
you to do likewise. We therefore know that isogeny is an equivalence relation,
and our main concern will be with the structure of Abelian varieties up to isogeny.
This means formally that we are making multiplication by » invertible; in practice
it means that instead of looking at objects like End 4, we look mainly at objects
like End 4 ®z Q.

THEOREM 1. Let A be an Abelian variety. Then End A is finitely generated and
torsion-free, and End A Rz Q is a semisimple Q-algebra.

Freedom from torsion is simple: if np = 0, then ¢(A) is connected and lies in
the finite set 4,, and so ¢(4) = 0. The rest is not too hard, but we won’t linger
over it, because it is just the first indication of a better result ahead. Semisimple
algebras have an attractive structure: the center is a product of fields, around each
field is a division algebra, and around each division algebra is a matrix algebra.
The hope is to find this reflected in the structure of 4. Note that if ¢: 4 — B is
an isogeny, and ¢: B — A is the map constructed earlier, then a+> p o ao ¢ is
an isomorphism of End 4 X) Q onto End B X Q; thus the structure of the algebra
can at best give structure on A4 up to isogeny.

DEFINITION. An Abelian variety is elementary (or simple) if it has no nontrivial
Abelian subvarieties. (It of course always has finite subgroups.)

If A and B are elementary, then clearly any nonzero homomorphism from 4 to
B is surjective and has a finite kernel, i.e. is an isogeny. In particular, End 4 ® Q
is a division algebra (Schur’s lemma, as usual). We automatically have End (4™) =
M, (End A), the m X m matrices. Thus if A4,,..., 4, are nonisogenous
elementary Abelian varieties, End (JT47) ® Q is the semisimple algebra
IIM... (End 4; @ Q). Our hope is then fulfilled by

THEOREM 2 (POINCARE-WEIL). Every Abelian variety is isogenous to a product
of powers of nonisogenous elementary Abelian varieties.

2. We next turn to finding a replacement for the lattices; the idea is to grab
hold of the only small, manageable things in sight. Let 4 be an Abelian variety
of dimension g, and let / be a prime different from char (k). We know that

A;» = ker (4 i A)
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is a finite group of order (/™)??; since it contains exactly /*? elements killed by /,
we must have A ~ (Z/I"Z)*. The A;» form an inverse system under the maps
I™: A — Ap—m, and we fit them together to form the Tare module

T4 = lim A4,

From what we have said about A" it is clear that T)4 ~ (Z;)%, where Z; =
projlim Z/I"Z is the [-adic integers. In the classical case there is a canonical iso-
morphism A ®z Z; ~ T4, and you should think of 774 as capturing the nature
of the lattice “locally at the prime I.” If ¢: A — B is a homomorphism, then
clearly ¢ takes A4;» to B;» and thus defines a map Ty¢: T4 — T;B. This has the
obvious reasonable properties (i.e., 7; is an additive functor).

It is time now to remember that k may not be algebraically closed. If for instance
k is finite, then there are only finitely many points on 4 with coordinates in k, so
there aren’t enough points to make A4;~ as large as it should be. What we do, of
course, is to take A;» consisting of points from the algebraic closure k of k: and
then the statements are correct.

Once we notice this, we also pick up some additional structure. Let o be an
element of ¢ = Gal (k/k). If x € Ay, then ox € A", because being in A, is a
condition defined by polynomials over k. Thus 7;4 is actually a G-module.
Furthermore, since by ‘“homomorphisms” we mean group homomorphisms
given by rational functions over k, the maps T;¢ all commute with the G-action.
Finally, as evidence that 7;4 captures the local structure at / we have

THEOREM 3 (WEIL). The map

Hom (4, B) ®z Z; — Homg (T A4, T;B)
is injective.

PROOF. Let {p;} be a Z-basis of Hom (4, B), and suppose >_¢; X \; goes to 0.
Given n, choose integers b; with b; = \; (mod /"). Then Y b;¢;: A — B has image
in /" Hom (T A4, T;B) and so vanishes on A4;» = ker (/"). This implies that there
is a y: A — B such that 3> byp; = ¢ o /" = "y, and hence all b; = 0 (mod /™).
Thus the \; are in [/"Z; = {0}.

We have here assumed that Hom (A4, B) is finitely generated; with a little further
argument one can use this approach to prove it.

3. Our control over the local structure is now good except at p = char k when
this is nonzero. We can still define 4, to be the kernel of multiplication by p,
but here there aren’t enough points even in k (there are at most p?, and perhaps
only one). To understand what is happening, look at a simpler situation. The
multiplicative group of k has of course an algebraic group law, and ¢: x — x? is
a homomorphism of the group onto itself. Obviously the polynomial map ¢ has
degree p, but you can’t tell this by looking at its kernel in k, since that kernel would
be the pth roots of unity and there aren’t any except unity itself.

To provide sufficiently large kernels for maps like ¢, then, we are forced to
introduce objects that can look like “pth roots of unity in characteristic p”. These
are furnished by the theory of schemes; in a sense it allows us to look for pth roots
of unity in rings that aren’t fields, and there we can find them. After developing
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the technique, one can then prove that 4, is a finite commutative group scheme
of the right rank (p™)%. The A, fit together again in a reasonable way, forming
what is called a p-divisible group (scheme).

At first sight it is probably not clear what has been gained by introducing these
abstract-seeming objects. This will be clarified by the next theorem, for which we
need to introduce a certain ring. Let W be the ring of Witt vectors over k. (If k is
finite with p® elements, then W is the ring of integers in the unramified extension
of Q, with degree a.) Let o be the unique automorphism of W which reduces to
the map x +— x? on the residue field k. Let @ = WI[F, V'] where F and V are
indeterminates subjected to the relations

(1) FV = VF = p, and

(2) Fo = o°’Fand oV = Vo’ fora € W.

THEOREM 4 (DIEUDONNE-CARTIER-BARSOTTI-ODA). There is a functor from

{ finite commutative group schemes over k of p-power rank}

to
{@-modules of finite length} ;

it is an anti-equivalence of categories. If a group scheme G has rank p, then its
Dieudonné module DG has length s.

It follows readily that p-divisible groups of co-rank 2g (like that coming from
A) correspond to @-modules free of rank 2g over W. We write T, 4 for the module
thus associated with 4. Any homomorphism ¢: 4 — B induces an ®@-module
map Tpe: T,B — TpA, and the same proof as before yields

THEOREM 5. The map
Hom (4, B) Q) Z, — Homg (T},B, T,A)
is injective.

4. In this section I will try to explain some of the ideas that go into the proof
of the basic

THEOREM 6 (TATE). Suppose that k is finite. Then the maps in Theorems 3
and 5 are bijective.

From now on we assume that k is finite with ¢ = p® elements. There is a natural
decomposition

End (4 X B) = End (4) X Hom (4, B) X Hom (B, A) X End (B)

and a corresponding decomposition of End T;(4 X B) = End (714 X T1B);
hence if we have an isomorphism on End (4 X B) we have one on Hom (4, B).
Thus we may restrict ourselves to endomorphism rings.

An argument like that in Theorem 3 shows that if ¢ lands in / (End T;4) then
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¢ = I for some ¢ ; and thus the quotient of End (7;4) by the image is torsion-free.
Hence it will be enough to prove that

(*) E@Q Ql d Endg (VZA)
is bijective, where V4 = T4 ®z, Q: and E is the endomorphism algebra
End (4) ® Q.

Now the left-hand side of (*) has the same dimension for all /, and we know
by Theorem 3 that the map is always injective. We will show that the right-hand
sides all have the same dimension, so that it will then be enough to prove the
isomorphism for a single /. At this point we need the fact that if ¢ € End A4, then
the function n — [degree of (¢ — n)] is a monic polynomial in z of degree 2 dim A4
with integer coefficients. One can prove that it equals the characteristic polynomial
of Tip on T4, and also equals the characteristic polynomial of T,¢ acting W-
linearly on T,A.

We also need to recall that Gal (k/k) is generated (topologically) by x — x7.
This automorphism of course maps 4 (which is defined over k) into itself. But
this map, since it is given simply by polynomials in the coordinates, actually
corresponds to an element w4 in End A. We call 74 the Frobenius endomorphism
of A, and write f4 for its characteristic polynomial. The elements of Endg V4
are now simply the Q,-linear maps on ¥;4 which commute with the specific map
Ty(m4).

Since 74 is in the center of the semisimple algebra E X) Q, it acts semisimply on
V1. Suppose its characteristic polynomial f,4(X) factors as J[[(X — «;) over some
splitting field. Then by standard algebra the dimension of the commutant of
Ti(m4) is the number of ordered pairs (7, j) (including (i, /)) with &; = «;. This is
obviously independent of /. A similar argument (complicated by the presence of
the noncommutative ring @) works at / = p; see Part II.

It still must be shown that the map is bijective for some /. For this purpose one
takes / to be a prime which splits completely in the algebra Q(ar4); this condition
means that f4 splits into linear factors over Q;, and so the action of Ty(r4) is
quite simple. The proof requires a clever use of a finiteness condition, however,
and we will omit it.

I will instead end this section with an unsolved problem: does Theorem 6 hold
when k is a number field? It has been proved (except for some cases) by Serre
when 4 and B are elliptic curves. Here of course the Galois group G is much more
complicated, and the representations of G on the T34 seem to be quite interesting.

5. As a first consequence of Tate’s Theorem we get

THEOREM 7. Let A and B be Abelian varieties over a finite field k. The following
are equivalent:

(1) A and B are isogenous.

(2) V14 and VB are G-isomorphic for some I.

3) fa =S5

(4) The zeta functions of A and B are the same.

(5) For each finite extension k' of k, the varieties A and B have the same number
of points over k'.
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PROOF. We obviously have (1) = (2) = (3), and (3) = (2) because a semi-
simple representation is determined by its characteristic polynomial. Suppose
now that Homg (V14, V;B) >~ Hom (4, B) X) Q, contains an isomorphism. We
can approximate it by elements of Hom (4, B) ) Q which, if close enough, will
also be isomorphisms. Multiplying by an integer we obtain a ¢ € Hom (4, B)
inducing an isomorphism V;4 — V;B. If ker ¢ contained any positive-dimen-
sional Abelian variety C, then ¢ would annihilate the subspace ¥;C of V;4; hence
ker ¢ is finite. Similarly ¢(A4) cannot lie in any lower-dimensional subgroup of B,
and ¢ is an isogeny.

By the definition of the zeta function, (4) < (5). To connect these with (3),
consider the map w4 — 1: A — A. The points of its kernel are those fixed by
x — x9, i.e. the points with coordinates in k. After checking that the zeros are all
separated (e.g. by looking on the tangent space), we can conclude that the number
of points of 4 in k is

degree (ra — 1) = fa(1) = JT (1 — a),

where the «; are the roots of f4. Similarly, degree (z% — 1) = [J(1 — «f) gives
the number of points in the extension of degree s, and thus f4 determines the zeta
function. To get the converse, you simply check that the values JJ(1 — of) (in
fact, a finite number of them) are enough to determine the «; and hence f4.

6. We are now ready for the classification up to isogeny. We know from §l
that every Abelian variety is isogenous to a product of elementary ones, so those
are all we need to discuss.

THEOREM 8. Let A be an elementary Abelian variety over the field k with q
elements. Then

1. fa = m’y for some integer e and some irreducible monic polynomial my with
integer coefficients.

2. E = End (4) ® Q is a division algebra whose center is ® = Q(w4).

3. |E: Q| = e%®: Q|, and 2dim 4 = e|®: Q|.

4. Let v be a prime of ®, and || ||, the normalized absolute value. If |4, = ¢,
then i is the invariant of E at v. Explicitly, this is

1 ifvisreal,

0 if v lies over a prime | % p in Q,
ord, (m4) - |®,: Qpl/0rd, (g) if v lies over p.
5. Every embedding of ® in C gives w4 the absolute value q*'2.
all roots of f4 have absolute value q''2.

In other words,

PROOF. We know that E is a division algebra, so its center is a field. That
center is Q(r4) because E (X) Q; is the commutant of T;r4 in Endg, (Vi4). If fa
had two distinct irreducible factors, Q(m4) could not be a field. The second state-
ment in (3) is obvious from (1), and the first statement comes from the dimension
computation in the proof of Theorem 6. The assertion in (5), which we will not
prove, is an equivalent form of Weil’'s Riemann hypothesis for curves over finite
fields. Suppose now we take a prime v. There are only a few cases where a real
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prime exists (cf. §7), and (4) can be verified there directly. If v lies over / £ p, we
look at V;4; by (1) we see that it is a free module of rank e over & X) Q;. Hence
E® Q,, the commutant, is simply the e X e matrices over ® Q) Q;. Thus E
becomes a matrix algebra, i.e. has invariant 0, at all primes of & lying over I. A
similar but messier computation lets us deduce the invariants at p from the struc-
ture of TpA; see Part II.

COROLLARY. A is determined up to isogeny by w4, that is, by my4.

PROOF. Given a root = of my, we can by the above formulas compute the
invariants of E at all primes of Q(x). There is a unique division algebra with
center Q(r) and these invariants; its dimension gives us e and so determines
fa = m%. For computational purposes we may note that e is the least common
denominator of the invariants.

Let us say that an algebraic integer = is a Weil number (for q) if it satisfies state-
ment (5) of Theorem 8. Every Abelian variety gives us a Weil number =4 de-
termined up to conjugacy, and =4 determines A up to isogeny. The classification
theory can now be summed up in

THEOREM 9 (TATE-HONDA). Let k be finite. Then there is a one-to-one corre-
spondence between

{isogeny classes of elementary Abelian varieties over k)
and
{conjugacy classes of Weil numbers for q = card (k)}.

To finish proving this, one just has to produce lots of Abelian varieties over k.
The idea is to use the classical theory: construct Abelian varieties (with large
endomorphism algebras) defined over a number field or a p-adic field, and reduce
them mod p. A formula of Shimura and Taniyama describes the Weil numbers
we get this way, and a few technical devices then produce enough varieties to give
them all.

7. Let me conclude with a couple of remarks. First, it may not seem easy to
produce algebraic integers = with all conjugates of absolute value ¢'/2. In fact,
however, they can be found quite simply as follows. If = is a Weil number, set
B = 7+ (¢/7). Since # = |r|?/m = g/ in every embedding, 8 is a totally real
algebraic integer, and |8 < 2¢'/? in every embedding. But now conversely, given
any @ satisfying these conditions, the roots of X2 — 8X 4 g = 0 will be Weil
numbers. It is thus easy to write down a 3, compute the root =, and read off
properties of the corresponding isogeny class from Theorem 8. We may note that
w can be real only for 8 = 42¢/2, that is, only in the special cases = = =+q/2.

Finally, Tate’s theorem is from one point of view an existence theorem for
endomorphisms, and in this respect it has a converse. Let k be any field of char-
acteristic p, let 4 be an elementary Abelian variety over k, let E = End 4 Q Q,
and let ® be the center of E. We say that 4 is of CM-type if 2dim 4 =
|E: ®|Y2|®: Q|; this holds for k finite by Theorem 8. Grothendieck has recently
proved that, conversely, any Abelian variety of CM-type is isogenous to a variety
defined over a finite field.
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II. Two Theorems of Tate

We here present proofs of two theorems stated in Part I:

THEOREM 1. Let A and B be Abelian varieties over a finite field k with q = p°
elements. Let T,A and T,B be the associated Dieudonné modules. Then

Homy, (4, B) ® Z, = Homg (T, B, TA).

THEOREM 2. Suppose that A is elementary over k with Weil number w. Let
E = End 4 Q) Q with center & = Q(w), and let v be a prime of ® lying over p.
Then the invariant of E at v is

ord, () . .
ord, (4) [®,: Qp-

Tate announced these results in [13]; the proofs were presented to a seminar
but have never been released to the public. Our proofs are basically the same,
but rely more on [4].

PROOF OF THEOREM 1. We adopt the notation of Part I. In addition we write
L for the fraction field W &)z, Qp, and ¥4 for the L-module Tp4 Q)z, Qp. Then
VpA is actually a module over

LIF, V] = LIF,(1/p)F~'] = L[F, F7'],

or in other words an L[F]-module on which F is a bijection. As in Theorem 6 of
Part I it is enough to prove that

E® Qp — Endyf) (Vp4)

is bijective for all 4, and since injectivity is known it is enough to prove that the
two algebras have the same dimension.

We recall from [4, Chapter 3] the structure of finite indecomposable modules
V over R = L[F]. Such a V has the form R/RX\ for some X in R, and there is a
smallest » for which ¥" ~ R/cR with ¢ in the center of R. The center of R is
Q,[F?], and in fact ¢ = my(F®) with my a power of an irreducible polynomial;
two indecomposables are isomorphic iff they have the same my. One can identify
my as the minimal polynomial for F* as a Q,-linear map on V. Clearly the Q,-
characteristic polynomial for F* on R/my(F®)R is m%, and the L-characteristic
polynomial is m7; the L-charz}_cteristic polynomial on V is m%/".

Write V,4 now as a sum @V where the V; are nonisomorphic indecom-
posables, and say Vi ~ R/m;(F*)R. Let r be the Frobenius endomorphism of 4,
with characteristic polynomial f and minimal polynomial m. Then on V,4 we
know that 7 acts as F* and that f'is its L-characteristic polynomial (cf. [6, p. 66]).
We also know from Part I that m has no repeated roots. Since the Q,-minimal
polynomial of F® on @V is the least common multiple of the m;, and this must
divide m, we see that the m; must all be without repeated roots. They are thus all
irreducible, and being distinct have no roots in common. The characteristic
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polynomial f is J[m™/™, so the formula in Part I shows that the dimension of
Eis
2 (deg my)a®ni/ri.

But the endomorphisms of Vi = R/m;(F®)R are just multiplications by ele-
ments of R/my(F®)R, which gives Q,-dimension a? deg m;. Hence End (V) has
dimension (n?/r?)a? deg m;, and

dim End V,4 = 3 dim End (V7)) = Y, (n?/r})a® deg m;.

PROOF OF THEOREM 2. Suppose the prime v corresponds to the irreducible
factor m; of m over Q,. Then &, is generated over Q, by a root = of m;. We
note that ¥; is a simple R-module, since any indecomposable submodule would
correspond to a divisor of m;. Hence R/m;(F*)R is a simple algebra. Clearly it
can be written as LX) ®,[F] with F* = 7 in &, and F(a ® ¢) = (¢’ Q @)F,
where ¢ is the Frobenius automorphism of L over Q,; the center is &,.

Let f, be the residue degree of ®,, and set g = (f,, a), so that g = |La®,: Q|
and a/g = |L®,: ®,|. Let D be the algebra L&,[F’], where (F')*"? = = € &, and
F'(ag) = («°’¢)F’. We define a map from L ) ®,[F] into the g X g matrices
over D by sending

. 0

a® e xe

0 oy

01 0: 0
0 01 0
Fr
0 00: 1
FF00-* 0

It is easy to check that this is a ®,-algebra homomorphism. Since L &) ®,[F] is
simple, the map is injective; by dimension counting it is an isomorphism. Hence
L ® @,[F] has the same invariant as D.

Now D is in the standard form for a central simple algebra: L®, is the unramified
extension of degree a/g, and F’ acts on it as a generator of the Galois group.
Explicitly, it raises to the gth power on the residue field of &,; the Frobenius of
L, over &, raises to the f,th power and so is the (f,/g)th power of our generator.
Then it is well known (from explicit computation of the cocycle) that the invariant
of Dis (f,/g) ord, /(a/g). If e, is the ramification index of &, over Q,, we have
eyfy = |®,: Qp| and ord, g = a- ord, p = ae,, so the number can also be written
(ord, w/ord, q) * |®,: Qyl-

This is the invariant of D, and hence of R/m(F*)R. The ring Endg(R/m; (F*)R)
is the opposite ring, and so has the negative of that invariant; since it is End (V;?),
both End (V;) and End (V%) have this negative invariant. But End (V") is the
part of End (V,A4) sitting over &,, and so it gives the invariant at v. The map
from E X Q, to End (V,A) is an anti-isomorphism, however, so the sign reverses
again and gives us the invariant we want for F at v.
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III. Further Topics

A. ENDOMORPHISM RINGS AND ISOMORPHISM CLASSES. In studying Abelian varie-
ties over a finite field k, what we would like best is a description of the isomorphism
classes; since we know a classification up to isogeny, we can restrict to a fixed
isogeny class. One invariant obviously associated with 4 is the ring End (4), and
as a first step we can ask which orders in the algebra E occur (up to isomorphism)
as endomorphism rings. For any particular F one can answer this question by
computation, constructing the spaces V;4 (and V,4) and considering lattices in
them. The problem is to formulate reasonable general theorems. One such
involves a nice type of variety which we now define.

THEOREM. Let A be an elementary Abelian variety over k. The following are
equivalent:

(1) ma + (g/m4) is a prime to p,

(2) A, contains p3™4 points over k.

Such varieties are called ordinary. For them E is commutative and not changed
by extending k.

THEOREM. Let 7 be the Weil number of an elementary isogeny class, and E the
endomorphism algebra. Then any endomorphism ring is an order containing = and
q/w. The converse holds if the class is ordinary, or if k = Z/pZ and = # £p'!2.
The converse does not hold in general, even when E is commutative and not changed
by extending k.

There is a reasonable classification theory for elementary Abelian varieties over
Z/pZ, and a neat treatment of ordinary varieties has appeared in [1]. In general,
however, the computation of the isomorphism classes seems to become quite
unpleasant. Simplifications can be introduced by adding assumptions on End 4,
leading to results like the

THEOREM. Let E be the algebra of an elementary isogeny class. Assume E is
commutative, and let R be the ring of integers in E. Then the set of varieties in the
class withEnd A = R has the ideal class group of R acting freely on it. Two varieties
are in the same orbit iff there is a separable isogeny between them, and one can give
a formula for the number of orbits.

The proof relies on passing from an ideal of End A4 to a variety isogenous to A4;
this process has interesting properties more generally. Details can be found in [17].

B. RELATION TO THE CONJECTURES OF BIRCH AND SWINNERTON-DYER. Tate’s
theorem (see I,§4) gives, in particular, the rank of the free abelian group
Homy, (4, B) in terms of the characteristic polynomials f4(X) and fg(X) of the
Frobenius endomorphisms of 4 and B. It is possible to give similarly explicit
descriptions of the higher extension groups of 4 and B, these groups being formed
in the abelian category of all group schemes of finite type over k.
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THEOREM 1, Let A and B be abelian varieties over the finite field k.

(a) Homy (4, B) is a free abelian group of rank equal to r(f4, f8), the number
of ordered pairs (i, j) such that o; = B; where ay, ..., asy 4, are the roots of
fa(X)and B4, . .., Bogs) the roots of fp(X).

(b) Ext} (4, B) is finite, and its order [Ext}, (A, B)] is given by

qg(A)g(B) H (1 — a;/B;) = [Exté (4, B)|D|,

a;#B;
where D is the discriminant of the nondegenerate pairing
Hom;y, (4, B) X Homy (B, 4) — Z

which takes two homomorphisms to the trace of their composite (as an endomorphism
of A or B, indifferently).

(c) Exti (A, B) is a divisible group of corank equal to r(f., f5).

(d) Ext,(4,B) = 0,i> 2.

(a) is Tate’s theorem (I, Theorem 6). (b) and (c) may be restated in terms of
p-divisible group schemes and proved using their associated Galois modules of
points (p # char (k)) or Dieudonné modules (p = char (k)) [6]. (d) follows from
a much more general theorem on the vanishing of higher extension groups in
categories of commutative group schemes over perfect fields [8].

Now let K be a function field in one variable over k. An abelian variety 4 over
k can also be regarded as a ‘““‘constant” abelian variety over K, and for any abelian
variety over a global field there are the conjectures of Birch and Swinnerton-Dyer.
For the constant abelian variety A4, these take on an especially simple form. In
fact, with the notations of [12, §1], S is empty and a;,, = of*®"’ where, as before,
the «; are the roots of f4(X). By comparing

L(s) = HH

1
_ deg(v)N —s = H H 1 — ( —S)deg(v)

with the known expressions for the zeta function of K

2K 1) = = H Py = U

(1 — Tdtt,<v)

(J = Jacobian of the curve X associated to K/k) and with a little juggling, one
reduces the conjectures to

(A) The rank of the group of K-rational points of A, A(K), is r(fs, fa).

(B) The order of the Tate-Safarevié group JII of 4 over K is given by

o) 1H ‘<1 — ;%) = (111D

where the 7v; are the roots of f;(X) and D’ is the discriminant of the canonical
height pairing on the K-rational points of 4 and its dual (suitably normalized).
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THEOREM 2. In this special situation, conjectures (A) and (B) are true.

(A) is due to Tate and follows directly from Theorem 1(a) by the obvious
identification A(K) = Homy, (J, 4) (modulo torsion). (B) follows from Theorem
1(b) by identifying D’ with D (with J for 4, and 4 for B) and [I] with Ext} (J, A).
IIT can be interpreted as the first étale cohomology group of 4 over X, and the
machinery of étale and flat cohomology used to reduce the identification to the
statement, well known in the classical case, that a finite covering of X comes from
an isogeny of its Jacobian J [7].
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