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Introduction

If B is an abelian variety over a field K, then the isomorphism classes
of principal homogeneous spaces for B over K form an abelian group
called the Weil-Chatelet group WC(B/K) of B over K [17, 33]. Assume
that K is a number field or a function field in one variable over a finite
field and let K, denote the completion of K at the prime v of K. Then
the elements of WC (B/K) which, for all primes v of K, are in the kernel
of the canonical map WC(B/K)—>WC(B/K,), form a group called the
Tate-Safarevi¢ group III(B/K) of B over K. It is of great importance
for the arithmetic of B, and in particular for the determination of the
points of B with values in K, to know whether this group is finite (for
an elementary exposition of this in the case where B has dimension 1,
see [4]). It is usually conjectured that in fact II1(B/K) is finite, and
Birch and Swinnerton-Dyer conjecture a relation between its order and
certain other numbers coming from the arithmetic of B (see [3, § 1(B)]
for an early form of the conjecture, and [30, Conj.(B)] for the most
general form). Apparently, when K is a number field, this conjecture
has not been completely proved for a single abelian variety. Our purpose
in this paper is to prove that, when K is a function field of the above:
type, and B is a constant abelian variety over K (i.e. B is defined over
the field of constants of K) then III(B/K) is finite and its order satisfies
the relation conjectured by Birch and Swinnerton-Dyer. This extends
a result of Artin and Tate who, by working with an analogue of the
conjecture involving the Brauer group of a surface, have shown, in the
same situation, that if further B is assumed to be a Jacobian, then the
direct sum of the l-primary components of III(B/K) (I prime and not
equal to the characteristic of K) is finite and has the order predicted
by the conjecture-of Birch and Swinnerton-Dyer [30, Thm.5.2].

To prove the main result (Thm. 3) of this paper, we have to do little
more than reinterprete the main result of our previous paper [18, Thm. 3]
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in the new situation. For this, we use flat cohomology, and we summarize
the main facts needed about flat cohomology in §1. In §2 we prove
a theorem which relates the coverings of a variety to the extensions of
its Albanese variety. The main result is proved in § 3, and §4 contains
some further remarks and corollaries.

Throughout the paper, all group schemes will be commutative. If
G and H are group schemes over a scheme X, then we distinguish the
set of morphisms of X-schemes G to H from the set of group homo-
morphisms G to H by denoting the former as H(G) or Mo (G, H) and
the latter as Homy (G, H). If 4 is an abelian group (or group scheme)
and p is a fixed prime, then we write A, and A" for the kernel and
cokernel respectively of the map

A-">4, and A(p)=lmd,, T,A=limA4,.

If A is an abelian variety then A is its dual abelian variety. We write
Yy or, when it causes no ambiguity, just Y, for X xgY where X and Y
are schemes over S.

It is a pleasure to thank J.Tate, who supervised this work, for many
stimulating conversations and valuable suggestions.

§ 1. Flat Cohomology

For any prescheme X, X, denotes the category of preschemes locally
of finite presentation over X with its f.p.p.f. topology (i.e. that for which
a fundamental system of coverings is formed by surjective families
(U;= U);e; of flat morphisms, locally of finite presentation) and X,
denotes the same category with its étale topology [1], [5, IV, 6.3],
[2, VII]. Unless indicated otherwise, all sheaves with respect to one
of these topologies will be sheaves of abelian groups, and all cohomology
groups will be with respect to the f.p.p.f. topology. Recall [12, App.]
that if the sheaf G on X/, is representable by a smooth group scheme
over X, then the canonical maps H"(X,,, G) » H" (X, G) are isomorphisms.
Thus, the computations of the cohomology of the multiplicative group
G,, with respect to the étale topology made in [1, Chapt.1V] (e.g.
H'(X.,, G,,)~ Pic(X)) hold equally for the f.p.p.f. topology. Also [2,
VII, 4.3], if F is a quasi-coherent Oy-module (in the usual sense with
the Zariski topology), then the functor defined by

W(F)(U)=I'(U,F ®o, Op),
U locally of finite presentation over X, is a sheaf on X;, and

H' (X, W(F))~ H" (X, F).



The Tate-Safarevi¢ Group of a Constant Abelian Variety 93

In particular, if G, is the additive group, then H" (X, G,)~ H" (X ,,,, Oy)
(and we denote this group by H"(X, Ox)).

Let F be a sheaf on X, and let P be a sheaf of sets on which F operates.
P is a principal homogeneous space for F if there exists a covering
(U; > X);; (for the f. p. p.f. topology) such that P restricted to this covering
is isomorphic to F operating on itself in the usual way. There then exist
sections piEP (U), and if we define f;;eF(U;x U) by the equation
p/ fi;=p';, where ps and p'; j are the images of p; and p; under the maps
associated by F to the projections U;xyU;— U; and U, xx U;— Uj, then
(fij) is a Cech 1-cocycle on X, (for the cover (U)) with values in F.In
this way, the isomorphism classes of principal homogeneous spaces for
F can be identified with the elements of H'(X;,, F)~H'(X,F) [6, II].
Note that if F is representable by a scheme affine over X, then P is also
representable [10, VII, 2.1].

If G is a sheaf on X, we write Ext}(G, —) for the right derived
functors of Homy (G, —). Note that if G and H are representable by
group schemes of finite type over X with G flat and affine over X, then
Exty (H, G) may be identified with the group of equivalence classes of
extensions of H by G formed in the category of group schemes of finite
type over X [23, III, 17-7]. Also that if X is the spectrum of a field,
then the condition that G be affine is unnecessary.

Consider the situation: X is a scheme of finite type over a finite
field k, N is a group scheme of finite type over k, and F is a sheaf on
X;;. We then denote the algebraic closure of k by k, the Galois group
ofk/k by I', X ®.k by X, N®,k by N, and the inverse image of F on
X by F. If F should be the sheaf on X, defined by N then F is the sheaf
on X 1 defined by N [2, 111, 2.4]. I has a canonical topological generator
o, and for any discrete I'-module M we define M" and M by the
exact sequence

0->M M2 M M, —0.

Thus, if M is torsion, M" and My equal H°(I", M) and H'(I', M) respec-
tively. The Leray spectral sequence for the morphism X, — (spec k).,
may be written

H'(I', H*(X,F)) = H""5(X,F)

and in this form is known as the Hochschild-Serre spectral sequence
for X/X. If F is a torsion sheaf, then the groups H*(X, F) are torsion,
and since I' has cohomological dimension 1, the spectral sequence
reduces to exact sequences

0—H YX,F),—H"(X,F)-» H(X,F) - 0.
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§ 2. Extensions and Cohomology

Throughout this section k will be a field which is either finite or
algebraically closed and X will be a smooth, (geometrically) connected,
projective scheme of finite type over k. Then there is a “canonical”
k-morphism ¢ of X into its Albanese variety 4 which is unique up to
translation [13, p.296]. Let G be a group scheme of finite type over k.
An element of Exti(4, G) may be represented by an exact sequence of
group schemes of finite type over k,

0-G-oP—154-0

with p faithfully flat. Then P is a principal homogeneous space for G
over A, and the inverse image of this under ¢ is a principal homogeneous
space for G over X. Consequently there is a map B,(G): Exti(4,G)—
H'(X,G) which we wish to extend to all Exts and cohomology groups.

The map X — spec(k) induces a map Ext}(4, G)— Ext%(4,G) and
¢ induces a map Exty(4,G)— H"(X, G)~Ext%(Z, G). We define f,(G)
to be the composite of these two maps. It is easily seen that the two
definitions of $,(G) coincide.

Theorem 1. Let k be an algebraically closed field and let ¢p: X — A
be as above. Then f,(N) is injective for all finite group schemes N over k;
it is surjective, and B,(N) is injective, for all such group schemes if and
only if (a) the Néron-Severi group of X is torsion-free and (b) the dimension
of H'(X,Oy) as a vector space over k equals the dimension of A; when
(a) and (b) are satisfied then [,(B) is an isomorphism for all abelian
varieties B over k.

Remarks. 1. (b) is equivalent to the Picard scheme of X over k
being smooth, which is always the case when k has characteristic 0 [11,
236-16].

2. Any morphism X — N, where N is a finite group scheme over k,
is constant, and so H°(X,N)=N(k), which is an exact functor in N
(k being algebraically closed). Hence H!(X,N) is a left exact functor
from the category of finite group schemes over k to the category of
abelian groups, and as such must be strictly pro-representable [11,
195, Cor. to 3.1]. The Ext,(—, N) sequence of

04,4540

gives an isomorphism Hom,(4,, N)~Exti(4, N), which, in the limit,
reads Hom, (T, 4, N)~Ext;(4,N)(p). Thus the theorem may be inter-
preted as giving necessary and sufficient conditions for H(X, —)(p) to
be pro-represented by T,A4 all p.
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3. The B, form a morphism of connected sequences of functors in G.
Also they are functorial in (X, ¢) in the sense that if

X—24
X5 4
commutes, then so also does

Ext.(4,G)— H' (X, G)

Ext (4, G)— H' (X', G)

Proof of Theorem. The canonical map Exti(4,G,)— H'(4,G,)=
Pic(4) identifies Exti (4, G,,) with Pic®(A4), the group consisting of those
divisor classes on A which are algebraically equivalent to zero [28, VII,
16]. But ¢*: H'(4, G,,) - H'(X, G,,)= Pic(X) identifies Pic®(A4) with the
group of divisor classes on X which are algebraically equivalent to
zero, and so the cokernel of ¢* is NS(X), the Néron-Severi group of X.
Thus §,(G,,) gives an exact sequence

0— Pic®(4) 5 Pic(X) —» NS(X) - 0.
Ext;(4,G,,)=0 for r+1 [23, II, 14-2] so the exact sequence
0—-u,—G,——G,—0
gives rise to an exact commutative diagram

0 0 0

l | |

0— Exti(4,p,) — Pic®(4)—"> Pic®(4)—0
Bi(pn) B1(Gm) Bi(Gm) | B2(pn)

0— H'X,m) — Pic(X)—"> Pic(X) - H(X,n,)

0— coker (B, (#,)) » NS(X) —— NS(X)

|

0 0 0

Hence B, (u,) is injective for all r, and f8,(n,) is surjective for all n if and
only if (a) holds.

This completes the proof of the first two statements of the theorem
when k has characteristic 0 (by [23, II, 6-2]).

Now assume that k has characteristic p+0, and let F: G,— G, be
the Frobenius map of G, (relative to the prime field). Ext,(4,G,)=0
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for r#+1 [23, II, 14-2], and f,(G,): Exti(4,G,)— H (X, Oy) is injective
[28, VII, 19]. If we let a,. denote the kernel of F": G,— G,, then we
get an exact commutative diagram

0— Ext} (A, #,) = Exth(4, G,)— Exty(4, G,) — ExtZ (4, a,,) > 0
Bi(xpn) B1(Go) B1(Go) B2(apn)

0— H'(X,,) — H'(X,0y) — H'(X,0y) — H*(X,a,) — H*(X, Oy)

Thus B,(a,.) is injective all r, and () is surjective for all n, if and
only if the image of f8,(G,) contains H'(X, Oy),, the subspace of H(X, Oy)
on which F is nilpotent (see [27, p.38] for the Jordan decomposition
of HY(X, Oy)).

The same argument relative to the sequence
0-Z/pZ—-G,—G,—0

shows that §,(Z/p Z) is injective all r, and B,(Z/p Z) is surjective if and
only if the image of B,(G,) contains H'(X, Oy),, the subspace of H'(X, Oy)
on which F is bijective.

But H'(X,04)=H'(X,04),®H'(X,0x), and dim,(Exti(4,G,)=
dim(A) [28, VII, 17, 21], so B,(Z/pZ) and B,(«,.) are surjective if and
only if (b) holds. By [23, I1, 6-2], this completes the proof of those parts
of the theorem involving only finite group schemes.

Now let k have any characteristic, and let B be an abelian variety over
k. By [24], Ext;(A4, B)=0 for r=2. Clearly f,(B): Hom,(A4, B)— B(X)
is injective with divisible cokernel, so the exact sequence

0—B,—-»B-25B—0

induces an exact commutative diagram

~ B1(B.)

0— Hom, jA, B)") — Exti (A, B,)— Extl(4, B),— 0

0-» BX)™ - H'(X,B) -~ H'X,B), >0

Since Exti(4, B) is torsion, this shows that B, (B) is always injective, and
is surjective if B,(B,) is surjective all v, i.e. if (a) and (b) hold.

Corollary 1. For any abelian variety A over an algebraically closed field
k, and any finite group scheme N over k, the canonical map Ext}(4, N)—
HY(A,N) is an isomorphism.

Proof. An abelian variety satisfies (a) and (b) and is its own Albanese
variety.
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This corollary may be restated as: any scheme P over 4 which is
a principal homogeneous space for the group scheme N can be given
a group structure in such a way that the sequence 0> N—->P—-4-0
is exact and induces on P its original N-operation. In particular, if P
is reduced and irreducible it is an abelian variety and P— A is an isogeny.
In this form, the statement was first proved by Lang and Serre [16]
for N étale and by Miyanishi [19] for N arbitrary.

Corollary 2. In the situation of the theorem, ¢*: H'(A,N)— H*(X, N)
is an isomorphism for all finite group schemes N over k if and only if X
satisfies (a) and (b) (cf. [28, VI, 20]).

Proof. Combine Cor.1 with the Theorem.

We now consider the case of a finite k, and we use the notation
introduced in §1. If N is a finite group scheme over k then we define
H}(X,N), the group of “geometric” principal homogeneous spaces for
N over X, to be the image of H!(X, N) in H'(X, N). Note that the Hoch-
schild-Serre spectral sequence for X/X gives an exact sequence

0— N (k)y—» H' (X,N)-» H'(X,N) -0

so HXX,N)~H'(X,N)", or again, H)(X,N)~H'(X,N)/H'(T, N (k).
Notice that H}(X,N) is a left exact functor from the category of finite
group schemes over k to the category of abelian groups. We write y;(N)
for the composite of B,(N): Exti(4,N)— H'(X,N) with the surjection
H'(X,N)— H}(X,N).

_ Corollary 3. If ¢: X — A is as in the first paragraph, k is finite, and
X satisfies conditions (a) and (b) of Theorem 1, then

71(N): Exty(4,N)- H)(X,N)

is an isomorphism for all finite group schemes N over k. Moreover, for
any abelian variety B over k, B,(B): Exti(A4, B)— H (X, B) is an isomor-
phism.

Proof. There is a commutative diagram

y1(N) x [ p1(N)

Ext} (A4, N)—- Ext} ],‘{, N)f
HYX,N)—=> H'(X,N)"
The top arrow may be seen to be an isomorphism by observing that
there is a I'-isomorphism
Ext}(4, N)~Homg(T,A,N) and Homg(4,,N) ~Hom,(4,,N).

7a Inventiones math., Vol. 6
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To prove the last statement of the corollary, we observe first that
there is an isomorphism
Y1 EXtIIC(A’B(p))__) l]_l’n) H;(X’ Bv)'
But, in the limit,

0- HY(I', B, (k) > H'(X,B,) > H}(X,B,) -0
reads .
0— H\(I', B(k)(p)) > H'(X, B(p)) > H)(X, B(p)) — 0.

By [28, VI, 4], H\(I', B(k))=0, so H'(X,B(p))~H.(X,B(p)) and the
result follows.

Finally we observe that if K is a function field in one variable with
finite field of constants k, then there exists a smooth, connected, projec-
tive, algebraic curve X over k with function field K, and X is automatic-
ally connected and satisfies conditions (a) and (b) of Thm. 1.

§ 3. The Tate-Safarevi¢ Group

If we combine Cor. 3 of the last section with Thm.3 of [18], we get
the following result.

Theorem 2. Let X be a smooth, geometrically connected, projective
scheme over a finite field k of q elements and assume that X =X ®,k
satisfies conditions (a) and (b) of Thm.1. If B is an abelian variety over k,
then H'(X, B) is finite, and its order [H'(X, B)] satisfies the relation

g0 T (1-5)=[H' (X BY] Idet o, B
a;*bj i

where A is the Albanese variety of X, d(A) and d(B) are the dimensions

of A and B, (4)); <i <244 and (b)) <i < 2a(8) are the roots of the characteristic

polynomials of the Frobenius endomorphisms of A and B relative to k,

(@)1 <i<r and (Bi)i<i<, are bases for Hom, (A, B) and Hom,(B, A), and

(a,-,—ﬁj> is the trace of the endomorphism B;o; of A.

For the remainder of this section we assume that X is the curve
associated to a function field K as in the last paragraph of § 2, and that
A, B, etc. are as in the above theorem. For any prime v of K (equivalently,
any closed point of X) we write K, for the completion of K at v.

Our aim is to relate H'(X,B) to III(B/K) and det{a;, ;> to the
determinant of the Néron-Tate height pairing B(K) x B(K)— R in such
a way as to deduce the special case of the conjecture of Birch and
Swinnerton-Dyer.

Lemma 1. For any abelian scheme % over X, there is an exact sequence
0 H'(X, B) — H'(spec(K), B¢) ~ ®, H'(spec(K.,), By,)
i.e. H\(X,®)=111(%y/K), the Tate-Safarevi¢ group of By over K.
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Proof. Since 4 is by definition smooth, we may work with the étale
topology. Let n: spec(K)— X be the inclusion of the generic point of X.
For any étale morphism U — X,

Morg (Uy, Bx) =~ Mory (Ug, B)~ Moty (U, 8B) [9, 11, 7.3.6]

so the sheaf defined by # on X, is isomorphic to m, %.

By [6, IV, § 3] the principal homogeneous spaces for # over X may
be canonically identified with the principal homogeneous spaces for
By over K which are split by the inverse image (under n) of some étale
cover of X, or equivalently, which have a point in K, all v, where K,
is the field of fractions of the strictly local ring R, of X at v (in an older
terminology, K, is a maximal unramified extension of K at v). Thus
there is an exact sequence

0— H'(X, B)— H'(spec(K), Bx) > ®, H'(spec(K ), Bz,)

(this can also be derived using the Leray spectral sequence of ).

A principal homogeneous space for 4 over K, may be represented
by a projective scheme P over K, [34], [9, IV, 2.7.1], so there exists a
projective scheme P’ over R, such that P~ P ®gz, K,. Let tR, be the
maximal ideal of R,
R,=lim R /t"R,
A

the completion of R,, and K, the field of fractions of R,. From [8,
Cor.2 to Thm. 1] and [9, II, 7.3.8] one sees that the following assertions
are ~e:qui\ialenﬁ: P has a point in K,; P’ has a point in R,; P’ has a point
in R,/t"R,=R,/t"R, for all sufficiently large n; P’ has a point in R,;
P has a point in K,. Thus the sequence above remains exact if K, is
replaced by K.

Finally, the canonical maps H'(spec(K,), #,)— H'(spec(K,), %z )
are injective [7, p.265], so K, in the sequence may be replaced by K,,
and the lemma is proved.

Thus, in Thm.2, H!(X, B) may be replaced by 1II1(B/K) (when X
is a curve).

If v is a prime of K, then we write ord, for the corresponding additive
valuation of K which maps K* onto Z. Let

be the pairing B(K)x B(K)— R which corresponds, as described in
[21, I1, 12] to these valuations. (There is a confusion of signs here which
we may safely disregard.)

7b Inventiones math., Vol. 6
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Let y: Hom, (A, B)— B(K) be the composite of ¢*: Hom, (4, B) —>
B(X) with n*: B(X)— B(K) and similarly (noting that there is an iso-
morphism A= A, which is canonical) let y': Hom, (B, 4)— B(K) be the
composite of

Hom, (B, A)— Hom, (4, B) % B(X)—=> B(K).

Lemma 2. Let aeHom,(A4,B) and feHom,(B,A). Then the trace
o, B> of Bo as an endomorphism of A is equal to (y(x),y'()).

Proof. We may replace k by its algebraic closure since this affects
neither the height nor the trace.

We give all schemes Y over k base points py (the base point of an
abelian variety is its zero, and the base point of X is ¢ ~!(p,)). A divisorial
correspondence on Y x Z is an element de Pic(Y x Z) which is zero on
Yx {p;} and {py} x Z.

Let 6, be the divisorial correspondence on X x A such that

(1x X @)* (8;) =class(4 — X x {px} — {px} x X),

where 4 is the diagonal of X x X, and let n=(1; x f)*(5,), which is a
divisorial correspondence on X x B (cf. [20]). Then Ba: A — A corre-
sponds to the divisorial correspondence (1y xa @)*(y) on X x X, so
[14, VI, § 3, Thm. 6],

<o, By =deg((Ly x & @)* (1) - 4) = deg (ocf ()

where a,: X > X x B is the map defined by 1y and « ¢. But if  is written
as a Cartier divisor, and deg(af(n)) is written as a sum of local terms
Y n,, then it is easily seen that n,=i,(y(a), y'(8)) with i, as in [21, IIL, 2].
But

(@, y(B)=2 in(y(@).v'(B)

v

[21, III, 2, Thm. 3], so the lemma is proved. (Alternatively, one may
use [15, Prop. 4] to relate the trace directly to Tate’s definition of the
height pairing.)

If we combine Thm.2 with Lemmas1 and 2, and observe that y
and y’ are isomorphisms modulo torsion, then we get the following result.

Theorem 3. Let K be a function field in one variable with finite field
of constants k, and let B be a constant abelian variety over K. Then the
Tate-Safarevi¢ group of B over K is finite and its order [111(B/K)] satisfies
the relation

¢ T] (l—ﬁ)=[m<B/K>] et (pr, p)|

ai#b; b;
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where q is the number of elements of k, g is the genus of K/k, d is the
dimension of B, (a;); <i<2, and (b)), <; <4 are the roots of the characteristic
polynomials of the Frobenius endomorphisms of A and B relative to k
(where A is the Jacobian of a smooth, projective model X/k for K),
(P)i<i<r and (P sis, are bases for B(K) and B(K) modulo torsion, and
(,): B(K)x B(K)—R is the height pairing described above.

For the convenience of the reader, we give the formalism which
relates the above theorem to the form of the conjecture of Birch and
Swinnerton-Dyer given in [30, Conj.(B)]. We use essentially the same
notation as in [30, § 1].

Choose for each prime v of K a Haar measure y, on K, such that
U, (R,)=11if R, is the ring of integers of K,. Choose a non-zero invariant
differential form w of degree d on B defined over k. Then v is “good”
for w and u for all v. Hence

L*(s)=|u|* L(s) lul"H

B(N,)"
lul is the measure of the quotient by K of the adéle ring of K, relative

to the measure
w=I1n.
v

This is easily seen to equal g8 1.
Clearly also

B(T)=[](1—b¢="T) and N,=q'=®,

i=1

By comparing the expression (valid for Re(s)>3)

1 1
w1 gty = 1 gt gy
with the known expressions for the zeta function of X,
2g
n (1-a,T) 1
=1 -
201~ gy 1 (=)

we get a rational expression for L(s),

a; 4_,
v by (8
L(s)= .
) l:[ l:[ b q_s)(l =9 jljll:l (l_qu_s)(l_qulis)
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Thus the order of the zero of L(s) at s=1 is equal to the number of pairs
(i, j) such that a;=b;. But by [31, Thm. 1a], this last number is equal to r,
the rank of B(K). It is now easy to show that

L(s) _q“(logq) 4
s=1 (S‘"l)r [B( k)]2 a;*b; (1 )

But [B(K)y]=[B(k)]=[B(K),:], and our height pairing is logg of
the height pairing in [30], so the statement of [30, Conj.(B)] reduces,
in this particular case, to Thm.3.

Corollary. Let Y be the product of two smooth, projective, connected,
algebraic curves X, and X, over a finite field k. Then the Brauer group
of Y is finite and its order satisfies the relation conjectured in [30, (C)].

Proof. By [30, (d)] we know that the corollary is equivalent to Thm. 3
with B equal to the Jacobian of the generic fibre of the projection
X, %, X, > X,

In special cases this gives the order of the Brauer group of X, x, X,
very explicitly. For example, if X; and X, are non-isogenous elliptic
curves with n, and n, k-rational points respectively, then the Brauer
group of X, x, X, has (n,—n,)* elements; if X;,=X=X, is a non-
supersingular elliptic curve, then the Brauer group of X, x, X, has
(End, (X):Z[F.J)* elements, where F, is the Frobenius endomorphism
of X relative to k.

§ 4. Further Remarks and Corollaries

(1) Let X, K, A, and B be as in Thm. 3, but now suppose that k is
algebraically closed. It is easy to derive an exact sequence

0— Hom, (A, B)® Z, —» Hom,(T, A, T, B) - T, (Exti(4, B)) » 0

and we have seen (Thm.1) that Exti(4, B)~ H'(X, B). The argument of
Lemma 1 implies that H*(X, B)~ I11(B/K), so there is an exact sequence

0 - Hom, (4, B)® Z,— Hom, (T, 4, T, B) - T,,(LLL(B/K)) - 0.

Thus r+1,=rank, (Hom,(T,4,T, B)) where r=rankz(B(K)) and 7, is
the corank of the p-divisible part of III(B/K). In particular, if p# charac-
teristic of k, then r+r,=4dg where d is the dimension of B and g the
genus of X. Thus we recover the formula of Ogg-Safarevi¢ [22], [26],
[25, Thm.3(ii)] in this special case, but when p=-characteristic of k
rank, (Hom,(T, A, T, B)) +4dg. This suggests that there should be some
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more general formula for the corank of the p-divisible part of II1(B/K),
holding for all B, and valid for all primes p.

(2) Thm.3 implies that the Tate-Safarevi¢ group of any abelian
variety B over a function field K (in one variable over a finite field),
which becomes constant after a finite Galois extension L/K, is finite.
Indeed, even H'(Gal(L/K), B(L)) is finite because, by the Mordell-Weil
theorem, B(L) is finitely generated.

(3) In the situation of Thm.3, we have III(B/K)~Ext.(4, B) and
111 (B/K)~ Ext (A4, B) which, by the autoduality of the category of abelian
varieties over k, is isomorphic to Ext} (B, 4). But by [ 18, Thm. 2], Ext} (4, B)
is dual to Ext}(B, A) so, for constant abelian varieties, I11(B/K) is dual
to LI (B/K). This extends the duality of Cassels-Tate [29, Thm.3.2] to
all p-primary components of I11(B/K) and 111 (B/K) (when B is constant).

(4) Let X be a smooth, projective, geometrically connected, algebraic
curve over a finite field k. Grothendieck and Verdier [32] have shown
that if the characteristic of k does not divide n, then the cup product
defines a duality

H' (X, p)x H37"(X, u,) - H* (X, G,)~ Q/Z.

By combining Cor.4 to Thm.1 with [18, Lemma 3] and with a result
from the author’s thesis, one gets that there is a duality

H'(X,N)x H3>""(X,N) > Q/Z

for all finite group schemes N over k (where N’ denotes the Cartier
dual of N). (But when N =a, it is not clear how to interpret our pairing
in cohomological terms.) We would expect in fact that the cup product
will define a duality

H'(X,N)x H3""(X,N')> H3(X, G,)~Q/Z

for all quasi-finite flat group schemes N over X.

It should be noted however that the expected analogue of this duality
when k is algebraically closed, viz

H'(X,N)x H*""(X,N')-» H*(X, G,,(p))~Q,/Z,
(N p-primary) is false in general. For H°(X, a,)=0 whereas
H?*(X,a,)=coker(F: H'(X,0x)— H'(X, 0y))

is zero if and only if the Jacobian of X has its maximum number of
points of order p.
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