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Extensions of Abelian Varieties Defined Over
a Finite Field

J. S. MiLNE (London)*

Introduction

Let A and B be abelian varieties over a finite field k, and let 7,4
and T,B be their associated pro-p-groups (see §1 for this notation).
The main theorem of TATE [12] (as completed in [13] for p =characteristic
of k) states that the canonical map

Z,® Hom, (4, B)—Hom(T, A4, T, B)

is an isomorphism for all primes p. This has as consequences that the
rank of Hom,(4,B) as a free Z-module can be computed from the
characteristic polynomials c,(7") and cz(T) of the Frobenius endo-
morphisms of 4 and B [12], Thm. la, and that the p-primary component
. of Ext}(4,B) is finite for all primes p. In this paper we show (Thm. 3)
that the group Ext}(4, B) is itself finite, and give a formula for its order
in terms of the roots of ¢,(7) and cz(T) and the determinant of the
bilinear form
Hom, (A4, B) x Hom, (B, A)—Z

which takes two homomorphisms to the trace of their composite. More-
over, we show (Thm. 2) that Ext,,(A B) is dual to Ext}(B,A) and that
the compact group Z® Hom, (4, B) (Z =lim Z/nZ) is dual to the discrete
group Ext?(4, B). Thus Ext?(4,B) is a divisible group of corank equal
to the rank of Hom, (4, B).

In a second paper we will apply these results to the arithmetic of
constant abelian varieties over function fields. In particular, we will
show that if 4is the Jacobian of a smooth, complete, algebraic curve X
over k, then Ext}(4, B) is isomorphic to the Tate-Safarevié group, II(B),
of B regarded as an abelian variety over the function field of X, and the
resulting formula for the order of LI(B) is that predicted by the conjec-
tures of BIRCH and SWINNERTON-DYER [10], Conj (B).

Our general method of proof in this paper is to reduce a problem
concerning abelian varieties to one concerning p-divisible groups, and
then to use the Dieudonné modules of the p-divisible groups or the
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groups of points in an algebraically closed field to solve the problem.
Section 1 contains preliminary material on p-divisible groups over finite
fields and the structure of their Dieudonné modules. In section 2 we
prove a duality result for extension groups of p-divisible groups from
which we deduce the above dualities for extension groups of abelian
varieties. In the final section we compute the order of Ext}(4, B), the
most difficult steps again being computations involving p-divisible groups.

In this paper, all group schemes are commutative. k is a finite field
with ¢ elements and of degree a over the prime field. k is the algebraic
closure of k, and if X is a scheme over k then X =X ®,k. The Galois
group of k/k is I', and o, is the canonical topological generator of I
If Z is an abelian group,

Z=ker(Z—"-2Z), Z™=coker(Z—"-Z),
Z(p)zm.p"z’ sz=lm‘7"z

and [Z] is the cardinality of Z. | |, and ord,, are the multiplicative and
additive p-adic valuations of Q, normed so that |p|,=1/p and ord,(p)=1.

I would like to express my gratitude to J. TATE for much encouragement and
many useful and stimulating conversations during my work on this paper.

§ 1. Preliminaries on p-Divisible Groups

The Cartier dual of a finite group scheme L over k will be denoted
by LP. If (G,,i,) is a p-divisible group [8, 11], then G'=(GP,;?) is
its dual, and T7,G=(G,,j,) is its associated pro-p-group scheme, where
Jj, is the unique homomorphism G,;;— G, such that i,j,=p. When
p+characteristic of k, then the G, are étale, and hence T,G can be
identified with the I'-module

lim G, (k),

which is a free Z,-module of rank equal to the height of G, and in
particular is a pro-p-group in the usual sense; however, if p=charac-
teristic of k, then T,G must (in general) be considered as a profinite
group scheme over k. Nevertheless we shall throughout the rest of this
paper refer to T,G simply as a pro-p-group (over k) by the analogous
abuse of language which has become standard in the case of the term
“p-divisible group (over k)”. If A is an abelian variety over k, then
A(p)=(4,,i,) is its associated p-divisible group and T,4=T,(4(p))
its associated pro-p-group. A finite group scheme L (and consequently
a p-divisible group) over k can be written uniquely as L=L, . ®L,.®
L..®L,. where L, is the component of L which is étale with connected
Cartier dual, etc. [7], 1.2.
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Let G be a p-divisible group over k and o an endomorphism of G.
We say that ¢ (T) is the characteristic polynomial of « if it satisfies the
conditions:

(a) o (T) is monic, has coefficients in Z,, and is of degree & equal
to the height of G.

(b) If ay, ..., a, are the roots of ¢(T) in some algebraic closure
of Q,, then

1;11 Y (ay)

=|degree Y (a)|,
14

for all polynomials y with coefficients in Z.

By [3], VII, § 1, lemma 1, the conditions (a) and (b) determine ¢ (T)
uniquely. If p=characteristic of k, then the characteristic polynomial
of the endomorphism of

T,(G) (k)=lim G, (k)

induced by o satisfies (a) and (b). The existence of ¢(7') when p=
characteristic of k requires the use of the Dieudonné module of G.
Let W, be the ring of infinite Witt vectors over k, and let 4; be the ring
of non-commutative polynomials W, [F, V] with the relations FV=p=
VF, Fc=c°F, cV=Vc’ (ceW;) where ¢ is the unique automorphism
of W, inducing the automorphism x+ x” on k. There is a contravariant
functor L+ D, (L) from the category of finite p-primary group schemes
over k to the category of left 4,-modules of finite length over W,
which is an anti-equivalence of categories [4]; [9], Thm. 8.4; [6], Cor. 3.16.
Moreover, if L is of rank p” over k, then D, (L) is of length v as a W,-
module. From this, it follows that there is an anti-equivalence G+ D, (G)
from the category of p-divisible groups over k to the category of left
A,-modules which are free of finite rank over W,, and the height of G
equals the rank of D,(G) over W,. The endomorphism D,(x) of D;(G)
induced by a commutes with the action of F on D,(G), and it follows
that its characteristic polynomial ¢(T) has coefficients in Z,. Also, if
YyeZ[T], then

|deg ¥ («)|,= | rank (ker ¢ (),
=p~", where v=lengthy, (coker D;(y(x)))
=TT¥(a)l,

where ay, ..., a, are the roots of ¢ (7). Thus ¢(7T) is the characteristic
polynomial of « on G.

5 Inventiones math., Vol. 5
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Now write
VVkI = Qp ®z,, W,
At'c = VVkI ®Wk Ak »
and )
Di(G)= Allc‘®Ak Dy(G).
Note that

AR WF,F']

with the single relation Fc=c’F. Clearly two p-divisible groups G and
H are isogenous over k if and only if Diy(G)~D;(H). Also, an A;-
module M’ which is finite dimensional over W, equals D;(G) for some
p-divisible group G if and only if it contains a W-submodule M, stable
under F and pF~! such that

M,=M®W|‘M’

If F, is the Frobenius endomorphism of G relative to k, then D, (F;,)
acts on D,(G) as F° if p=characteristic of k, and F, acts on T‘,G(E)
as o, if p+characteristic of k. We write ¢(T) for the characteristic
polynomial of F, on G. We will also need the notion of the minimal
polynomial mg(T) of F, on G. This we define to be the monic poly-
nomial of least degree with coefficients in Z, such that mg(F,) is zero
on G. If p=characteristic of k, and

Di/(G)~ Ay A4 A

then Aj mg(F°) is the bound of A4} A in the sense of [2], III, 6.

If G is the p-divisible group associated to an abelian variety A4,
and « is an endomorphism of A, then it is clear from their definitions
that the characteristic polynomial of « on A is equal to the characteristic
polynomial of the endomorphism of G defined by «. In particular, this
shows that ¢ (7)) has coefficients in Z. Also, in this case, mg(Z) cannot
have multiple roots, for A is isogenous to a direct sum @ A4; of simple
abelian varieties, the characteristic polynomial of F; on A4; is a power
of a Q-irreducible polynomial ¢; with ¢;(F,) zero on A4; [12], Thm. 2e,
and mg(T) divides the least common multiple of the ¢;.

We will say that a p-divisible group is indecomposable if it is not
isogenous to a direct sum of two non-zero p-divisible groups.

Theorem 1. Let k be a field with p® elements and let G be a p-divisible
group over k.

(@) G is isogenous to a direct sum of indecomposable p-divisible groups,
and the decomposition is unique up to isogeny.
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(b) Suppose G is indecomposable. Then mg(T) is a power of a Z,-
irreducible polynomial, D;(G) is of the form Ai/A; A, and there exists
an integer e such that

Di(®° G~ A/ Ay m(F7).

(c) Suppose D;(G)=Ai/A; A where
AF)=F"+b,_ F" '+ ... +b,.
Then ord,(by) =n for some n with m=h—nz0,

- b
”(F,V):Fm+bh_1Fln 1+,..+bn+ oo +p_g 'Vn

has coefficients in Wy, and AJAu(F,V) is the module of a p-divisible
group isogenous to G.

(d) If G is indecomposable and

Di(G)~ A/ A A
where
A=F"+4 - +bo+ -+ +b_,F7", ord,(b_,)=n,

then ord,(by) =0 if and only if G or its dual is étale.

©) If aj,a,,... are the roots of cg(T) (resp. mg(T)) then gfay,
glay, ... are the roots of cg:(T) (resp. mg.(T)).

Proof. (a) Apply the Krull-Schmidt Theorem to D;(G).

(b) Follows from [2], III, Thms. 13, 19, 20.

(c) Define the Newton polygon of a polynomial

A=c, F"+ -+ +co+ - +c_,F"e Wk'[F,F—1]=A,"

to be the lower convex envelope of the set of points (c;, ord,(c;)) in
R xR. For any seQ, define /,(1) to be the length (in the direction of
the x-axis) of the side of the Newton polygon of A which has the slope s,
and define

ord,(4)=min(ord,(c)—si).
Then, for A, ueA;,

LAw=1A)+1,w
ord, (A p)=ord (1) +ord (1) .

The image of 4 under the canonical inclusion 4, — A4j;, consists of those
polynomials A(F, F~') such that ord,(4)=0, ord_;(4)=0.
5%
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Suppose that M’ =A;/A; A, A=F"+-.-+b,, ord,(b,) =n, contains a
W,-submodule M, stable under F and pF~!, and such that M'=
Wi ®w .M. 1, F, F?, ..., F""1 is a basis for M’ over W} so, after multi-
plying M by a power of p, we may assume

P W l+ - + W F"" oMo (W 1+ - + W F'™Y)
some ceZ. Since M is stable under F, there exist polynomials 4;(F)
with deg(4;)<h, ordg(4;)= —c, and pued; such that

i.e.
If some coefficient of A is not an integer, then there exists an s>0 such
that /;(4)+0. Then /(A u)>0. But

I,(FF—2)=0 for s>

Thus ord,(4) =0.

A similar argument using the stability of M under p F~! shows that
ord_;(F™"2)=0.
(d) If ord,(bo)=0, then there exist units

¢
j—(h-1)"

Ugyoue sy Upyy U1y eens Uy
in W4 such that

AF)=(F—uy)...(F=u,)(l—pv, F~)...(l1—pv, F~Y)

(cf. [1], IV, 6, Lemma 10) and so, G splits over k into a product of p-
divisible groups which are étale or have étale duals.

(e) This follows from the statement [6], Prop.3.22:
D\ (G"Y~Homy, (D,(G), W)

as W,-modules, and the endomorphisms induced by the operation of
F? and V* on D,(G") are adjoint to those induced by V* and F* respec-
tively on D, (G).

§ 2. Duality
We write

Ext}(Z,, Z,)(resp., Exty ,(Z,,Z,), Ext} (Z,, Z,), Ext}y, (Z,,Z,))

for the group of equivalence classes of r-fold extensions of Z, by Z,
in the category of algebraic group schemes over k (resp. of finite group
schemes over k killed by p*, of 4,-modules, of 4,-modules killed by p*).
Also, if Z, or Z, is an ind-algebraic group scheme (resp. pro-algebraic
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group scheme) then Ext}(Z,, Z,) denotes the group formed in the cate-
gory of ind-algebraic (resp. pro-algebraic) group schemes over k. Fi-
nally, if G and H are p-divisible groups over k, we write

Ext}(T, G, H)=lim Ext; ,(G,, H,).

Before constructing the pairing for Theorem 2, we will need two
lemmas. If Z is a I-module, then Z" and Z, denote the kernel and co-
kernel respectively of o,—1: Z—Z.

Lemma 1. If K and L are finite group schemes over k, then there is
an exact sequence

0— Homg(K, L) L5 Exti(K, L) L2 Ext}(K, LY —0

where f, is the map defined by base extension k —k, and f, is defined
as follows: let o: K — L; then f(«) is the class of the extension of K by
L over k which, after base extension k — k, becomes

0—»L—>L®K—K—0
with o, acting on the centre term as the matrix
(ak ocak)
0 o/
Proof. 1t is easy to see, using descent, that f, is surjective, and that
f1 is well-defined and injective. Suppose

0L+t SE23K—0

is an extension of K by L which has a section p: K —»E over k. Then
y(p°<—p) =0, so there is a unique a: K — L such that fa=p°—p, and
f1() is the class of the original extension.

Lemma 2. If G is a p-divisible group over k, and L is a finite group
scheme over k with L,,=L, then

Exty(L, G)=0=Ext;(T,G,L)  for r=2.
Proof. The arguments of [7], 11, suffice to show that
Ext;(G,,G,)=0, r=2,
for any perfect field k. Thus Exti(«,, «,) =0 for r=3, and it follows that
Ext, (L, G)=0=Ext;(T,G, L) for r=3.

Let Ext;_,(K, L) be the group of extensions of K by L in the category
of affine algebraic group schemes over k. The canonical map

Ext;_,(K, L)—Ext;(K, L)
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is bijective for r=1, injective for r=2 (cf. [5], VII, Lemma 4.1) and bi-
jective for r=2 and K=L=G,. Hence it is bijective for r=2 and finite
group schemes K and L, and so, from the category anti-equivalence
[6], § 3, we get an injection

Ext? (K, L)— Ext}, (D, (L), Dy (K)).

Since Ext}(L,K)=0 all finite K, in proving ExtZ(L,G)=0 we may
replace G by an isogenous p-divisible group. Thus we may assume
(Thm 1a, b) the existence of an exact sequence

0—A,—A,— D, (G)—0.
But this implies that
EXtik (Dk(G)’ D, (L)) =0
and consequently that
Ext?(L, G)=0.

A similar argument shows that
Extz(T,G, L)=0.
We now construct pairings
Extj(T, G, L) xExt; "(L,G)—Q,/Z,

for r=0, 1, where G is a p-divisible group over k and L is a finite group
scheme over k.

Extj(T,G, L)=lim Ext; ,(G,,L), r=0,1,

and
Ext,(L, G)=lim Ext; ,(L,G,), r=0,1

(e.g. if p*L =0 and
0—-G—E—L—0
is exact, then so also is
0—G,—»E,—-L—0,

where E,=ker(p": E— E)), so there are Yoneda pairings
Ext}(T, G, L) x Ext; ~"(L, G) - Ext;(T, G, G)
and it suffices to construct a homomorphism
n: Exty(T,G,G)—Q,/Z,.
Assume first that G is étale. By Lemma 1,

f1: Homg(T, G, G)r——Ext}(T, G, G).
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If
a=(a,)e Homg(T, G, G),
then we write
T(x)eZ/p"Z
for the trace of
o, (k): G,(k)—G,(k),
and
T(@)=(T,())elim Z/p' Z=0Q,/Z,.
Since
T(@™)=T(#),
T defines a map o
Homy(T,G, G)r—Q,/Z,
and we define  to be the composite of this map with fi*.
If G*is étale, then

Ext,(T, G, G)~Ext;(T,G', G"),

so this case reduces to the above.

In constructing # when G=G,. we will use the Dieudonné module
of G. Assume that p=characteristic of k, and let M, and N, be two
A,-modules which are free of finite rank over W,/p’ W,. Any extension
E of N, by M, defining an element of Ext}ik,v(Nv, M) can be written,
as a sequence of W,-modules, as

0—-M,—-M,®N,—N,—0.

E is then described completely by giving a pair (8,«) of W, -semilinear
maps N, — M, such that F and V act on M, @ N, as the matrices

F B Voy
(0 F) and (0 V)'
In this situation, we write E<>(f,y). The following hold.
(P,) (B,y)<>some such E if and only if
BV+Fy=0=yF+VB.

(P,) If E—~(B,y) and E'—(f', y"), then E is equivalent to E’ if and
only if there exists 6: N, —» M, (W,-linear) such that

B—p =F6—-0F
y—y'=Vé—-0oV.

(P3) If E&(B,y), and p: M, — M, is A;-linear, then p, E—(p 8, p 7).
If p: Ny— N, is A,-linear, then p*E«<(f p, y p).
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(Py) If E—(B,) and E'o(f,y), then
E+E o (B+p,y+y).
(P5) Let M and N be A,-modules which are free of finite rank over
Wk’ let Mv:‘M/vay Mv+1=M/pv+1M, Nv:N/va, Nv+1=N/Pv+1N

and leti: M,,, » M, be the map induced by 1: M > M,andj: N,> N, ;,
the map induced by p: N — N. Then

Homy,  (M,,N,) xHomy, _-1(M,,N)—Exty (M,,N,)

! i
Hoka,,(Mw 1 Nyy 1) X Hoka,,-l(Mw 1N+ 1)—’EXtAk_‘,+ (M, 4, Ny i 1)

commutes, where the vertical map is induced by i and j, and the horizontal
maps take (8,7) to the class of E«<>(f,7).

(P¢) Let M and N be as in (Ps) and assume that F and V are nilpotent
on N,. If E is an extension of M, by N, then there exists an a: N, - M,
(W,-linear) such that E«—(—aF, Va).

Proof. For the first two steps of the proof we will not assume that N,
is of the form N/p*N.

First take v=1 and N, =k with F and V acting as zero. Let E«(f,y).
By (P,), B(1) and y(1) are elements of M, such that Fy(1)=0=V(1).
Choose b and ¢ in M mapping to (1) and y(1) under M — M,. Then
there exist ' and ¢’ in M such that

Fc=pc'=FVc, Vb=pb'=VFb'

But F and V are injective on M, hence ¢c=V¢' and b=Fb'. Choose maps
a,6: k- M, such that a(l)=c'—b' (modp) and 5(1)=>5'(modp), then
B=Féband y=Va+ V4.

Again take v=1, but assume (P;) true for modules of W,-length less
than that of N,. Then N, =Ni @k, where F and V act as matrices

o) o)
00)° 00
some @, : k— N with Fiy =0=V¢. Let E—(f,y) be an extension of
N, by M, where B=(B;, B2), y=(71, 72): Ni®k —> M. By (P,),
B V+Fy,=0, 1y, F+Vp,=0
BiYy+Fy,=0, y,0+Vp,=0
and we seek (6,,9,) and (a,,a,): N{ @k — M, such that
(B1,B2)=—(ay F 0y @) +(F0,—0, F, F3,—6,¢)
(1, 72)=Vay, Vo) +(Vo,—6, V, V6, =5, ).
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By the induction assumption, we can choose ay, 6; to satisfy the first
components of these equations. Thus we may assume f; =—ay F, y; =
Vay, 6, =0. We are left with

(¢ 0+p;) and y,: k—M,
satisfying
Fy,=0, V(x; 9+p5)=0

and seek J,: k — M, such that
ay@+p,=F0,
yo=Va,+Vé,.

But this is the problem solved in the first part of the proof.

We now prove the general case by induction on v. Let E—(f,y) be
an extension of N, of M,. From the induction assumption applied to
M,[p"' M, and N,/p*~! N, we get that there exist o’ and &' such that

p(B+o F+F & —8 F)=0
and
p(y—=Va'+Vé—=6"V)=0

so we may assume to begin with that pf=0=p+y. Then f=jp"'i and y=
Jjy''isome B, y'" where
i: M,—»M|pM and j: N/JpN—N,
are induced by 1 and p*~! respectively. There exist 6" and &'’ such that
B'+o" F+Fé§' —8"F=0

yll__. Va1/+ V(S/’ _6// V:0
and it follows that
B’ +jo iF+Fjo"i—jo"iF=0
Y’ —Vjo'i+Vjé'i—jé"iv=0.
This completes the proof of (Pg).
Let G be a p-divisible group over k such that G=G... (P,_¢) imply
the existence of a homomorphism

h: .lln. Hoka(Dk(Gv)a Dk(Gv))—)EXt;(Tpcy G)
which is surjective, functorial, and such that a=(x,) is in the kernel if

and only if —a,F=Fo6,—6,F, Va,=V5,—6,V some §,, all v. Consider
S, T, (e,) where T, (a,) is the trace of «, as a map of free W, /p* W;-modules,
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and S, is the map
Wlp' Wi—Z|p'Z

induced by the trace of k/F,. The conditions on a, when A(x) =0 imply
that
Tv (d‘,) = Tv (5v) - Tv (5")‘79
and so
Sv Tv(av) = Sv(Tv(av) - Tv(év)d) =0.
Thus
!iﬂ Sv Tv: llnl Hoka(Dk (Gv)’ Dk(Gv)) - Qp/Zp
and 4 induce a well-defined map ‘
n: Exty(T,G,G)—Q,/Z,.

Consequently, we have defined, for all p-divisible groups G over k
and all finite group schemes L, pairings

Ext}(T, G, L) xExt; "(L,G)—Q,/Z,
for r=0, 1. Moreover, if
0—»L—>L—>L"—0

is an exact sequence of finite group schemes, then the pairings are com-
patible, in an obvious sense, with the corresponding long exact sequences
of Ext,(T,G, —) and Ext,(—,G).

Lemma 3. The pairings
Ext,(T,G, L) xExt, "(L,G)—Q,/Z,

defined above are non-degenerate for r=0 and 1.
Proof. Observe that all paired groups are finite. For example, if p”L =0,
there is an exact sequence
0— Hom, (L, G)—Ext;(L, G,)— Ext;(L, G)—0

and Ext!(L,G,) is finite by Lemma 1 and [7], 1I, 14-2.
If we assume L is étale then we may take G to be étale also. The
pairing o o o
Homy(T, G, L) x Homg(L, G)—Hom(T, G, 6)—10,/Z,
is non-degenerate, and induces non-degenerate pairings
Homg(T, G, L) x Homg(L, G)r— Q,/Z,

Homy(T, G, L); xx(L,Hom G)' —Q,/Z,
which, because o
Hom(T, G, L)’ ~Hom,(T,G, L)
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and
Homg(T,)G L) ~Exty(T,G, L), etc.,

may be identified with the pairings of the lemma.

If the dual of L is étale, then the non-degeneracy follows from the
above case.

Now assume L=L,, and G=G,,. If L=a, [7], I, 2-11, and D, (G)~
A /A, A some Ae A, (cf. Thm. 1), then each of the pairings of the lemma
may be identified with the pairings

kxk—F,

which takes two elements of k to the trace of their product, and this is
non-degenerate.

Note that for a p-divisible group G of the above type,
[Exti(a, . G)]=[Hom(x,, G)].

Thus, in proving this equality for an arbitrary p-divisible group H, we
may assume there exists an exact sequence

0—a,—-G—-H—-0

and that the equality holds for G (for any isogeny with kernel L=L__isa
composite of isogenies with kernels «,). But now the equality follows for
H by writing the Ext;(«,, —) sequence of the above short exact sequence,
using Lemma 2, and observing (cf. [7], I, 14-2) that Exti(a,, a,) is a
vector space over k of dimension 1, 2 or 1 according as r=0, 1, or 2.

It is clear from the description of Ext;(«,, H) given by (the proof of)
(P¢), that the left kernel of

Hom, (T, H, «,) X Exty(«,, H)— Q,/Z,
is zero. Hence

[Hom, (T, H,«,)] < [Ext;(x,, H)]=[Hom,(a,, H)]=[Hom, (T, H',«,)]

all H, so equality holds, and the right kernel is also zero. A similar
argument proves the lemma for r=1 in the case L=a,.

The lemma follows for an arbitrary L by using induction on the length
of L and the compatibility of the pairing with the Ext}(—,G) and
Ext;(T, G, —) sequences.

Theorem 2. For all abelian varieties A and B over k, Exti(4, B) is dual
to Ext}(B, A), and the compact group Z ® Hom, (A4, B) is dual to the dis-
crete group Ext2 (B, A).

Remark. By [7], 11, 12.1, Ext; (4, B) is torsion for r>0, and we prove

below that Ext;(4, B) (p) is finite for all p. In § 3 we prove that Ext}(4, B)
is itself finite.
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Proof. From the Ext} (4, —) sequence of
0—B,—»B->B—0
we get an exact sequence

0— Hom,(4, B)"” —Ext;(4, B,)— ,.Ext;(4, B) —0.
But
Ext;(4, B,)~Hom, (T, 4, B,)
is finite, so
~Exti(4, B)
is finite, and
Ext, (4, B)(p)

is finite if and only if its p-divisible subgroup is zero. On passing to the
projective limit with the sequences

0— Hom, (4, B)”” —Hom,(T, 4, B,)— ,~Ext;(4, B)—0
we get

0—Z,® Hom, (4, B)—Hom,(T, 4, T, B)— T,(Ext;(4, B))—0.
By [12] and [13], the first map of this sequence is surjective, and so
T,(Ext;(4, B))=0,
and the p-divisible subgroup of Ext}(4, B) is zero.
There is an isomorphism
Z,® Hom, (A, By~ Hom,(T,A, T,B).
From the Ext,(—, B) sequence of

0—-A4,—A4 240
we get, using that
Hom,(4,, B)=Hom,(4,, B,),
an exact sequence
0— Hom, (4, B)*” —Hom,(4,, B,)— ,»Ext;(4, B)—0
and, in the limit, an exact sequence

0— Hom,(4, B)®(Q,/Z,)——Hom,(T, A, B(p))— Ext;(4, B)(p)—0.

Thus Ext;(4, B)(p) is isomorphic to the quotient of Hom,(T,4,B(p))
by its p-divisible subgroup. Similar arguments show that Ext; (B, 4)(p)
is isomorphic to the torsion subgroup of

Ext}(T, B, T, A)
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and
Ext? (B, A)(p)~Exty(T, B, A(p)).

Lemma 3 implies the existence of non-degenerate pairings
Hom,(T, 4, T, B) x Ext;(T, B, A(p)) — Q,/Z,
Exty(T, 4, T, B) x Hom,(T, B, A(p)) = Q,/Z,

which, together with the above isomorphisms, imply the theorem.

§ 3. The Order of Ext] (4, B)
We now prove the main result of the paper.

Theorem 3. If A and B are abelian varieties over a finite field k, then

g @4® T (1-55) = [Brti(a, BY] det(Cay. ;)

a;*by J

where d(A) and d(B) are the dimensions of A and B,

(a): <i<2d(A)
and

(bi)l <i<2d(B)

are the roots of the characteristic polynomials of the Frobenius endo-
morphisms of A and B relative to k,

(CHN <isr
and

(ﬁi)1§i§r

are bases for Hom, (A4, B) and Hom, (B, A), and {a;, B;) is the trace of the
endomorphism fB;o; of A.

Proof. We refer the reader to [10], 306-19, for the definition of a
quasi-isomorphism % of Z,-modules, z(h), and for the elementary Lem-
mas z.1, z.2, z.3, and z.4.

Consider the diagram
Z,® Hom, (A4, B)——Hom(Hom, (B, 4), Z,)
~ l =, Hom(Hom,(B, 4) ® Q,/Z,, 0,/Z,)
Hom,(T, 4, T, B)—*Ext;(T, 4, T, B) K
=, Hom(Hom,(T, B, B(p)), Q,/Z,)

Q)

in which the maps are to be described.
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The left hand isomorphism is the canonical map (cf. the proof of
Thm. 2). The map ¢ is induced by the pairing
{,>: Hom,(4, B) x Hom, (B, A)—>Q‘,,/Z,J
defined in the statement of the theorem. The non-degeneracy of the pairing
End; (4 xB) xEnd; (A xB)—Z

induced by the trace (cf. [3], V, § 3) implies the non-degeneracy of <, >
using that

End, (4 x B)=End,(4) x Hom, (4, B) x Hom, (B, A) x End,(B).
Hence (Lemma z.4), ¢ is a quasi-isomorphism and

Z(t)= | det((“i ’ ﬁ/)) lp .
The map h* is the dual of the map 4 in the proof of Thm. 2, and so

z(h*)=z(h)~ ' =|[Exty(4, B)(P)], "
The map
g,: Homy(T, 4, T, B)— Exty(T, A, T,B)

is as defined in Lemma 4 below for all p-divisible groups. From the
remarks preceding Thm. 1, 4(p) and B(p) satisfy the conditions of
Lemma 4, and so

PRI 11 (1__21)

ai*by J

z(g)=

p

It follows from Lemma 5 below that the diagram commutes, and hence
that z(¢) =z(g,)z(h*) i.e.

gl a® H (1_%)
J

ai¥by

= |[Exti(4, B)]|, | det(<oy, B;)) |,

Since this holds for all primes p, the formula of the theorem is proved.
Lemma 4. Let G and H be p-divisible groups over k. Let
g: Hom, (G, H)—Ext;(G, H)
be the composite of the inclusion
Hom, (G, H)— Homg(G, H),
the surjection o o
Homy(G, H)— Homg(G, H),

and
!i_ll'_l_ mfu,v: Homi((_;, H)[‘_)EXt;(Ga H)
v B
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where
fuv: Homg(G,, H)r—Exti(G,, H,)
is the f, of Lemma 1. Similarly, let
g:: Hom(T, G, T,H)—Ext,(T,G, T, H)
be the composite of

Hom, (T, G, T, H)— Homg(T, G, T, H)— Hom(T, G, T, H),
and

lim lim f, ,.
" v

Then, if no multiple root of mg(T) or my(T) occurs as a root of the other,
g and g, are quasi-isomorphisms and

PRICLICY 11 (l_gi_)

a;¥b; Jj

where d(G) and d(H") are the dimensions of G and H', and

=z(g,)

p

z(g)=

(a), <i<h(G)
and

(bi)lgigh(H)

are the roots of c¢g(T') and cy(T) (h(G) and h(H) are the heights of G
and H).

Proof. It follows easily from Theorem le and the existence of a
commutative diagram

Hom, (G, Hy~xHom,(T,H', T, G")
g 41
Ext;(G, H)~Exty(T, H', T, G')

that the formula for z(g) holds if and only if the formula for z(g,) holds.
Assume first that G and H are étale. Then

Homy(T, G, T, H)r— Extj(T, G, T, H)
is an isomorphism, and z(g) =z(e) where e is the map
Hom(T, G, T, H)" — Hom(T, G, T, H)r
induced by the identity map of
Homy(T, G, T, H).
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The characteristic polynomials of o, acting on 7,,G and T, H are c(T)
and cgx(T). It follows, by taking

A=Homy(T,G, T, H)
and 0 =0,—1 in [10], Lemma z.4, that

(-

a;i*b; i

z(e)= I (1 —Z—)
ai*bj Jj
All other cases of the lemma follow by similarly elementary arguments
except the case G=G,., H=H,_, so, for the remainder of the proof we
work only with this case.

We show first that, if H is isogenous to H’, then the lemma is true
for H if and only if it is true for H’. We may assume the isogeny to be
of the form

i P p

0—a,—H —H—0.

The Ext;(G, —) sequence of this sequence may be broken into exact
sequences,

0—Hom, (G, «,) »Homy(G, H') — Hom, (G, H) —— C;, ——0
13’ J'g
0—— C, — Extj(G,H") — Ext;(G,H) —Ext;(G,a,)—0
0—C,— Ext;(G, a,)—C;—0
(Ext2(G, H) =0 because Ext?(G,, H)=0 all v, by Lemma 2). Thus

2(g") _| [Exti(G, ,)]
z2(g)  |[Hom(G, a)][Ext7 (G, x,)]|,
provided the orders occurring on the right are finite. It is easily seen that
Hom, (G, a,)=0.
From the sequence

0—’Ak—V"Ak—’Dk(Ga)—’O
we get that

Ext,(G, G,)~ Ext}, (Di(G,), Di(G))~ Dy (G)/V Dy (G)

is finite (indeed, its length as a W,-module is equal to the dimension of
G"). From Exty(G,, G,) =0, r=2, we get that Ext?(G,G,) =0, and hence
from

0—a,—G,—G,—0
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we get an exact sequence
0— Ext,z(G, a,)— Ext,(G, G,)— Ext}(G, G,)— Ext,f (G,a,)—0.

This shows that Ext;(G,«,) and Ext? (G, «,) are finite, and have the same
order. Consequently, z(g) =z(g’), as should be so, because cy (T) =cg.(T)
and d(H")=d(H'".

A similar argument shows that, in proving the lemma, we may replace
G by a isogenous group. Thus (Thm. 1), it suffices to prove the lemma
under the following assumptions on G and H.

D(G) = A A A1, Ay=p (F, VY,  T"u (T, q/T)=mg(T)
hy=h(G), ny=d(G), my=h—n;=d(G'),
Di(H)=A/Ax2y, Ay=p(F, V), T"Z/uﬂz(Ts q/T)=my(T)
hy=h(H), ny,=d(H), my=h,—n,=d(H).

mg(T) and my(T) are each powers of a Z -irreducible polynomial.
Case 1. mg(T) and my(T) have no common root. The sequence
0— A, —25 4,— D, (H)—0
where 4, denotes the map defined by multiplication by 4,, gives an exact
sequence
0—Hom, (G, H)— A,/ A, A, 22 A, /A, A, — Ext}(G, H)—0.

But multiplication by A, is injective on A4,/4,1,, so Hom, (G, H) =0, and
we have only to compute the order of Ext}(G, H).

=(6)=| Bxti(G. 1] = |det(1 @ 1 = 1%

where
A;c/Al,c 4 _I%HA;/AL Ay
‘\F"Z mp(Fa)
AilAx A4
|[det(F™)|p=lay ... a;, ;> =19""1,,
a a n2 hy ai
|det(my (F)[5=|T1(a;—by]|,=|q"" 1‘[(1—7) .
J p
Thus
nym2 ai
z(N=[omT1 (1= 5| .
J p

and the formula is verified for this case.

6 Inventiones math., Vol. 5
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Case 2. mg(T) and my (T) have a root in common, i.e. they are powers
of the same Z-irreduciple polynomial. The condition that no multiple
root of one of mg(T) or my(T) is a root of the other implies that mg(T)
and mg(T) are themselves irreducible, and consequently are equal.

We must first give an explicit description of the map
g: Hom,(G, H)—Ext;(G, H).

Write M =D,(G) and M =D;(G), so M~ W;®w M [6], 3.16. The
Exty(—, M) sequence of

0—>Ak—.—}i+Ak—)Dk(H)—)0
is
0—Hom, (G, H)—M 25 M —Ext} (G, H)—0
and the

Ext} (— ;M)
sequence of
0— Ag—22 A;— Dy (H)—0
is
0— Homy(G, H)— M 225> M — Ext}(G, H)—0.

The map g may be described as follows: let ueHom,(G,H) and
regard u as an element of M such that 4,u=0. u may be written u =
(6,—1)v, ve M. 2,ve M, but

(G, =D (Ayv)=Ay(0,—1)v=A,u=0, so lveM =M.
The image of 1, v under M — Ext}(G, H) is f (u).
In our case, A, =4,, so multiplication by 4, is zero on M, and

Hom, (G, H)=A/A A, =Ext,(G, H).

Since A/A A, is torsion-free, g is a quasi-isomorphism if and only if the
corresponding map
g: Ay Ai Ay — A Ai Ay

has non-zero determinant, and then
z(g)=|det(g) .

Let ueAi/A;4; and choose veA;/A; A, such that u=0g,v—v. Then
olv=iu+uvforall i. Let

A(F,pF~Y)=F"+b, _ F™ 4 ... +b_, F " =F " mu(F.
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Then
gu)=24,(F,pF ™ )v
=myu F™+(my—a) by, uF™ "+ . (asvi,
=uF* (F™" my(F%)

dF“

=Fom dtlif"“ (my(F))u.

Clearly g is a quasi-isomorphism, and

det ( d
dF*®

),

YT
where
Al Ay, )-1 —'—‘—’AA/Ak Ay
g O (i (F))
Al Ax 24
But
|det(F™~ ) [s=|g"""?],
and
det( d )))a=|n(a,—b)|
dFa » aith; J7\p
POIOE (1___)
ﬂil;[b] b.l p
Thus
nymy ai
2=l 11 (1-5)|
a;*bj i’ |lp

which completes the proof of the lemma.
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=0)

To complete the proof of Theorem 3, we have only to show that the
diagram (*) commutes. This reduces easily to the following lemma.

Lemma S. If G is a p-divisible group over k, then

Homk(G‘qu)
&Z .
Z
gl T

Eth, v(Gv H Gv)

6*
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commutes, where T, is the trace map (see § 2), g is the composite of

Homk (Gv s Gv) i Homk (év s év)l“

with f, (see Lemma 1), and n, is as in § 2.

Proof. It G or its dual is étale, then this is immediate from the defini-

tion of #,. Thus we may assume G=G,.. Let M,=D,(G,), let

yEHomAk(Mv’ Mv)

and choose feHomy(M,, M,) such that f— B =y. Then g(y) is the
class of the extension E«<(—aF, Va) where —aF=Ff—fF and Va=
VB—pBV. From this,

10.

11

nv(g(Y)): Sv Tv(a)= Sv(Tv(ﬂ)_ Tv(ﬁ)a): Tv(ﬁ)_ 'Tv(ﬂ)ak = Tv(y) .
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