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Introduction

Let X Dbe a complete, connected, smooth, algebraic
cprve'bver a finite field k, and let K be the function
field of X. . Any abelian variety A over K comes from an
abelian scheme over the complement in X of a finite set S

of closed points of X. Define

1
LS(?) = T_T; PV((NV)"S) (v €ex - 8, v closed)

where Nv is the number of elements in the residue field

k(v) of X at v and ped

PV(T_l) is the characteristic
polynomial of the Frobenius endomorprhism of the fibre Av
relative to k(v). Assume that Ls(s) can be meromorphically

continued over the whole s-plane. Then the first conjecture

of Birch and Swinnerton-Dyer for this situation is

(n) Ls(s) has a zero a£ é_= 1 of order r equal to the rank
of the group A(K) of K-rational points of A,

When A is a constant abelian variety, i.e., is defined
over k, then this conjecture is an immediate consequence of
the results of Tate in [37]; (For the connection, see the

final part of the proof of our Theorem 3,)
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Birch and Swinnerton~Dyér defing another function L¥*(s)
by an infinite product which differs from the above in only

finitely many factors, but which takes account of the

behaviour of A at the points of S, Theifvsecond conjecture
N L :

is :

[1111]aetca;,a > ]

() 1%(s) YRR, JAN(K)

)r

] (s-1 as s f-§ 1,

tors

where [|]|]] is the order of the Tate-Safarevid group of A

over K, At is the dual abelian variety to A, [A(K)tors] is

the order of the torsion part of A(X), (ai)lg_iir are bases

for A(K) and At(K) respectively modulo torsion, and <a;,a >

is the wvalue ol *he ihéron-Tate heighti fuuction at the pair
g P

ai,aj (for more details, discussion, and other references, see

(35 81]).

This conjecture (B) is related to a conjecture of
Artin and Tate for the Biauer group of a surface [35,(c)],
‘and their results [35, Theorem 5,2] imply the following
statement about (B). Let p be the characteristic of X ana
lll(non p) the direct sum oﬁ'the f~-primary cqmponehts of lll

for primes £ # p. Then ||| (non p) is finite and
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E

pv[lll(non p)]tdetv<ai,aj>|

[A(K)tors][At(K)tors]

r
(s=1)" as s —> 1,

ﬁbr some integer v if A is the Jacobian (in particular) of
a complete,'connected, smooth, algebraic curve defined
over k.

Our main result here extends this last statement by
proving that coﬁjecture (B) holds for all constant abelian
varieties A over K, In particular, this shows that there
do exist abe;ian varieties, at least over function fields,
whose Tate-Safarevié gfoup is finite,

Our approacih differs from tnat of Artin and Tate in
that we work directly wifh the conjecture as stated above
and not with the analogue for surfaces;.bThus our results
are noﬁ restricted to Jacqbians. Also we use flat cohomclogy
as distinct from étaie, and so gét information about the
"p-part" of the conjecture. It should be noted however that
both methods make use of the results of Tate [37], i.e.,

essentially the first conjecture,.
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The Tate-$afarevid group of a constant abelian variety
may be interpreted as a certain flat cohomology group,

A) (86, pProp. 3). This group is approached via the

1
r;~(xfl,

cohomology groups Hl(X, Av)’ where Av is the kernel of
multiplication by pv on A, After some preliminaries in B1,
a method of representing such cohomology groupé in terms of
extensions of pro-finite group schemes‘is given in §é. These
extensions, in turn, may be interpreted as extensiohs of
modules over a certain ring (84), and in B5 we use this
interpretatian to éompute the order of some extension
(hence cohomology) groups. In 83, it is chown thac the
Néron-Tate heigui péiring may be interpreted cohomologically
as a cup product, The Appendix contains two duality theorems.
In B6 we use all these ;esults to prove a special case of
‘conjecture (B).

The above remarks are subject to one proviso, viz. that
theorem A2 of the Appendix is, at present, not yet completely
proven, _However, this theorem is used only in §6, and the

reader will have no difficulty verifyingvthat the following



v
statemént has been completely proved. The Tate-éafareyi&
group of any constant abelian variety A over K is finite,
cqnjecﬁure (B) is true for A apart possibly for a power of
the charactexistic of K, and is exactly true in the generic
case when either A or the Jaéobian of X has its maximum
number of points of order p.

I would like to express my gratitude to Professor J. Tate
for his generous encouragemeﬁt and ready assistance during
my work on this thesis. Also I would like to thank

Professor F. Oort for several valuable conversations.



l, Preliminaries

For any prescheme X, X denotes the category of

fl
preschemes locally of finite presentation over X with its
f.p.p.f topology (i.e., that for which a fundamental system
of covérings is formed by surjective families (Ui——a_U)iEI
of flat morphisms, locally of finite presentation) and xet
denotes the same category with its étale topology

[4,Iv 6.3][3,vII]. Unless indicated otherwise, all sheaves
with respect to one of these‘topologies will be sheaves

of abelian gfoups, and all cohomology groups will be with
respect to the f.o.p.f tcpology. Rerall [12, Appendix] that

e

if the sheaf G ou xfl is representable by a smooth group
scheme on X, then the canonical maps Hr(Xet, G) ~—~eaHr(X,G)
are isomorphisms., Thus the computations of the cohomology
of the multiplicative group € with respect to the étale
topology made in [12,2] and [2, Chapter IV] (e.q.,
Hl(Xet,Gm) = Pic(X)) hold.equally for the f.p.p.f topoiogy.
Also [3, VII 4,3], if F is a quasi-coherent O, -module

(in the usual sense of the Zariski topology) then the
functor defined by W(F)(U) = T(U,F@OXOU), U locally of

finite presentation over X, is a sheaf on X and

£1°



HI(X{W(F)) ::HK(XZar’ F), In particular,,}f G, is the

‘s X7
additive group, then H (X,Ga) zﬂH;(Xzar,OX).

We méke the convention that all group schemes are to
 be commutative. If G and H are group schemes over a scheme
X, we distinguish the set of morphisms of X-schemes G to H
from the set of group homomorphisms by denoting the former

as H(G) or MorX(G,H) and the latter as Hom_(G,H).

¥
Let F Dbe a sheaf on Xfl and let P be a sheaf of

sets on which F operates. P is a principal homogeneous

space for F if there exists a covering (Ui —“e'x)iéI ( for

the f.p.p.f topology) such that P restricted to ti.is coverina
is iSumorphic Lo b oéerating»on itself in the usual way.

There then exist sections p, € P(Ui)’ and if we define

-

F( . J = i
fij € ‘Ui Xy Uj) by the equation p; fij p Y where

b

,pi and plj are the images of pi and pj under the maps
associated by F to the projections Ui xX Uj ——~>-Ui and

Ui Xy Uj~—~—e>Uj, then (fij) is a Cech l-cocycle on Xfl with

values in F, In this way, the isomorphism classes of

principal homogeneous spaces  for F are identified with the

.1 1
(

elemenzs of H (xﬂ,F) ~H (x,Fr) [6,1I]. Note that if F

is representable by a scheme affine over X, then P is also



representable [9, VIII 2.1]. SiﬁilarlYif G and H are
group schemes of finite type over X and G is flat and
affinéiover X, then the group Ext%(H,G) formed in the
category of 'sheaves over Xfl can be identified with the
group of equivalence classes of extensions of H by G
formed in the category of group schemes of finite type
over X [26, III.17-7]. This identification cannot be mace
for the higher Exts, If X is not the spectrum of a field,
then Ext;(H,G) is to be interpreted as extensions of
sheaves, whereas if k is a field tﬁen Exti(H,G) is to be
interpreted as extensions of algebraic group schemes over k
(or of pro-algebraic Qi ind-algebraié group schemes if
G and H should be such). There are various ambiguities of
sign depending on whether Ext (-,-) is defined by means of
Yoneda extensions or'injective or projective resolutions
{19, vII 7]. These we disregard because they do not affect
our results.

The Cartier dual of a finite flat group schéme N ‘
(over a noetherian scheme) is denoted by NP, - If G = (Gv’iv)

t

is a p~divisible group [32],[36], then G = (GD

D, . .
v? jv) is its

dﬂa&_andTpG == (Gv’ jv) its associated pro-p-group, where



jv is the unique homomorphism G —~e~Gv such that

v+l

jveiv = p., We define the cohomology of a p~divisible group

and its associatéd pro-p-group by

oy * x r r
H (X,6) = lin H (X,6 ), H (X,7.G) = :p‘.m H (X,6 ) .
-jf% v p v v

Mo s wn(z Z/n%) and mp denote the usual finite group

schemes [26, I.2]. A finite group scheme N (and consequently

a p-divisible group) over a perfect field k can be written
uniquely as N = Nee ® Nec o Nce ® Ncc where Nec is the
component of N which is étale with connected dual, etc.

If A is an abelian variety ther A(p) = (Av’iv) is its
associated p-@iv;sible group and TPA = Tp(A(p)) its
associated pro-p-group. Note thét if the ground field has
characteristic # p then this last notation agrees with the
usual notation [15,VII] (at least up to an equivalence of
categories), but if p is the characteristic theanpA has
sometimes been used to denote what is essentially the étale
part of the TPA of our notation.

(n)

If C is an abelian group, then nC and C denote

respectively the kernel and cokernel of multiplication ty



\n

n on C, and, for an rime T C = gim v C and
5 J Y p p.’ p 5 p

¢(p) = the p-primary component of C.
Consider the situation: X is an algebraic scheme
over a finite field k, N an algebraic group scheme over Kk,

and F a sheaf on X We then denote the algebraic closure

£1°

of k by k, the Galois group of k/k by T, X @ X by X,

—~— —

N ®k k Dby ﬁ, and the inverse image of F on §~by F, If

F should be the sheaf cn Xf defined by N then F is the

1

sheaf on Efl_defined by N [3, III 2.4]. T has a canonical

topological generator ok, and for any discrete T'-module M

. T
we define M~ and MF~ by the exact sequence

g, ~1
T
o] > M > M X > M >%\ > 0

Thus if M is torsion, M’ and M equal H°(T,M) and Hl(T,M)

r
respectively. The Leray spectral sequence for the morphism
X — i s

> (spec k)et may be written
r+s

Hr(r: HS(}?:E)):% H (X,F)

and in this form is known as the Hochschild-Serre spectral

sequence for X/X. If F is a torsion sheaf, then the



s,= . . : .
groups H (X, F) are torsion, and since T has cohomological

dimension 1, the spectral sequence reduces to exact sequences

o —s i (T, F)p —> u (x,F) —> H (X, )T — o.



2. Extensions and Cohomology

Let X Dbe a regular, connected, projective algebraic
s;heme over an algebraically closed field k, lét p: X —;e>A
ﬁe the canonical morphism of X into its Albanese variety,
and iet N be an affine algebraic group scheme over k. Aﬁ

exact sequence

(2.1) o > N s, P > A > 0

of algebraic group schemes over k with P —> A flat
defines on Plthe structure of a principal homogeneous space
over A with respect to the group N, The inverse image of.
this underAmiis a prinéipal hoimogenesocus space over X,
Consequently there is a canonical map Bl(N): Exti(A,N)-ﬁ>IfRX}D
which we wish to extend to all Exts and cohomélogy groups.

| There are canonical homomorphigms Exti(A,N) f—e»Ext;(A,N)
given by base extension (equivalently, by taking the inverse
images of the exact sequences as sheaves). Also, there is

a canonical element in HO(X,A), viz. ¢, so the Yoneda pairings



HO(X,A) x Ext;(A,N) — s H(x,N)

| A
T A
. Ext (a,N)
induce homombrphisms BI(N) as in the diagram.

It is easy to see that the two definitions of Bl
coincide. For some flat covering (Ui -e>A)iEI' there
exist sections pi € P(Ui), and the principal homogeneous
space over A definedbby (2.1) corresponds to the Cech

cocycle (nij)’ n.,. € N(U, x

j .
ij i *a Uj)’ Pi” nyy = P e Then

i Tij

(u.

= U, X
iX i A

ad

X -=>X) is a flat covering of X, and the
image of (2.1) under either definition of Bl corresponds

. ]
to the Cech cocycle (nij)’ where nij is the image of n, .

under N(Ui Xa Uj)--—> N(Ui x % Uj X).

Theorem 1. Br(N) is an injection all r,and 81@1) an
isomorphism, for all finite group schemes N over k if and
only if

{a) the Néron-Severi group of X is torsion-free and

A L e
(p) dlmk(H (X,OX)) = dim(a) (= dlmk(Eth(A’ Ga))

[31, VvII 17 and 21]).
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Remarks. 1. It is obvious from their definition that
the Br form a morphism of éonQQCted sequences of functors
vin N, but in fact they are also functorial in X, For this
it suffices to show that the Br are independent of the
choice of the "canbnical" morphism X —> A, or equivalently
that A(k) acts trivially on Ext;(A,N). But it suffices to
show this for Gm and Ga and r = 1 (see the arguments in the
proof below) and these follow from [15,111,83, Proposition 4]
and [28, p. 699].

2. Any.morpﬁism X —> N, where N is a finite group
scheme over k, is constant, thus HO(X,N) ~ N(k) and so is
exact (k being a;géﬁraically closed). Hence Hl(X,N) is a
left exact functor from the catégory of finite group schemes
over k *to abelian grcups, and as‘such must bé strictly
pro-representéble (11, 195, 3.1]. Since

Exti(A,N)(p) = Homk(TpA,N) (2s follows immediately from

Vv
the Ext(-,N) sequences of O >A > A P oA >0, v> 0),
the theorem may be interpreted as giving necessary and
. . . 1 '
sufficient conditions for £(X,-)(p) to be pro-represented

by T A all p.
Y p p
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Proof of Theorem. The canonical map

Exti(A-, cam) —— Hl(A, a;m) = Pic A identifies Ext,i(A, mm)
with .Pic' A, the subgroup of those divisor classes on A
thch are algebraically equivalent to zero.[jl, VII 16].
But o : Hl(A, mm) —~—>H1(x, (Em) identifies Pic® A with the
divisor classes on X which are algebraically equivalent to
zero, and so, by definition of the Neron-Severi group
N.S.(X) of X, coker (g*) = N.S.(X). Thus_Bl(Gm) gives an

exact sequence

0 —> Pic® A ——-—l——> Pic X —> N,5. (X) —> O,

Exti(A, Gm) =0 forr # 1 [2h, IT 14-2] so the exact

sequence O ——éjun }»Gm_ ? :>Gm > 0 gives rise to

an exact, commutative diagram
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o} 0 | )
0 ——-—->'Exti(A,,un) ~——3 Pic® A ———3 Pic® A —> 0

8 (1) 5, (G_) 8, (G ) lse( )

N v

\\4
1l . n . 2
0 —> H (X,n ) ——>Pic X ——> PicX —>H (X,n )

(g ~ ¥

0 —coker (B,) ——>N.5.(x) —2 5 N.s.(X)

N N/ J/

o o o

Thus Br(“n) is injective all r and n, and Blﬁun) is

surjective all n if and only if (a) holds.
Hr(X‘ ¢ ) ~ H (X 0.) and Exti(a, € ) =0 forr #1
’ Ta Zar’ X k¥ Ta

[26, II 14-2], so the exact sequence

(where F is the Frobenius endomorphism of Ga) gives an exact

commutative diagram (2.2)
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L ‘
o— Extk(A,czpn) —_— Ext]];(A,(Ba )—-—-)Exti(A,ma)-—-»Exti(A,a n)—~> 0
p

sl(apn) B, (e ) | 8, (e) Bg(apn)

. * n : .
o—-—->Hl(x,a m) >H1(X,O ) —F—-——>Hl(x,ox)—~—>1~12(x,a n)-—->112(x,ox)
P , p

By [31, vII.19], Bl(G ) is injective, so B (@ _) is injective
» a Trtpn’t
all r and n, and Bl(wp) is surjective if and only if Bl(Ga)
maps surjectively onto Hl(X,OX)n, the subspace of Hl(X,OX)
on which F is nilpotent (see [30, p. 38] for the Jordan
decomposition of Hl(X,Ox)).
The same argument relative to the senmence

0 —> z/pz-——->c:a-l"—F——>ma-———>o

shows that_Br(%Mp%) is injective all r, and Bi(zvb%) is
surjective if and only if Bl(Ga) maps surjectively onto
Hl(X,OX)S, the subspace of Hl(X,OX) on which F is bijective.
But Hl(X,Ox) = Hl(X,Ox)S & Hl(x,ox)n, so we have proved
the necessity of the conditions (a) and (b). Moreover we
have shown that when (a) and (b) hold, Br(N).is an‘injection,

and Bl(N) an isomorphism, for all simplé finite group schemes
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N over k. The theorem now follows by the Standard 5-lemma

argument using induction on the length of N,

Corollary 1. For any abelian variety A over k, and

any finite éroup scheme N over k, the canonical map
1 1 . . .
Ext (A,N) ——= H (A,N) is an isomorphisn.
I.e., any scheme P over A which is a principal
homogeneous space for the group N, can be given a group

structure in such a way that the sequence

o] > N > P > A > 0 1is exact and induces on P
its original N-operation., In particular, if P is reduced‘
and irreducible it is an abelian variety and P —> A an
isogeny. 1In £his form tﬁe»stat@ment was first proved by
Lang and Serre [16] for N étale and by Miyanishi [20] for

N arbitrary.

Coroilary 2, If o: X ->‘Akis as in the theorem, then
o*: Hl(A,N) —-§»H1(X,N) is an.isomorphism for all finite
group schemes N over k if and oﬁly if X satisfies conditions
(a) and (b) of the theorem (cf. [31, VI.21]).

Proof, Combine Corollary 1 with the Theorem, -
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Corollary 3. Let X be a cbmplete, connected, regular
algebraic curve overvan algebraizally closed field k, and
let J:be the Jacobian of X, For any finite group scheme N
.over k,

HO(x,N) = N(k)
Hl(X,N) ~ Hom_ ('er, N)
H2(X,N

~ 1
cc) & Exty ('I‘pJ, N)

H (X, N) = 0, 1> 2.

Proof, The first two isomorphisms have already been
proved, and the third follows for @, from thé diagram (2.2)
using that Hg(x,ox),= 0 for X a curve. For arbitrary N such
that N = Néc it follows by induction on the length, The
triviality of the cohomology groups for r > 2 is an
immediate consequence of H' (X, Gm) =0 for r > 1 [2, 1V]

and H (X, OX) =0 forr> 1,

Remark. Let ¢: X —>A be as in the theorenm, and

let B be a second abelian variety over k. The diagram
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' 1
n°(x,B) > H(X,B)
Cp*
8,(B.)
% . 1
Homk(A,B) > Extk(A,BV)

in which the horizontal arrows are the boundary maps for

the sequence

clearly commutes, The diagram

®g

Homk(A,B)

<

Y“>\\\\§.

Homk(Av,Bv)

1
> Eth(A:BV)

where v is the canonical map and 6A and BB the obviauis
boundaxry maps,may be shown without difficulty to commute.
By combining these two diagrams and passing to the double

limit one gets that the following diagram commutes



1°(x,B)

-~

Y

1
> H (X, 'I‘pB)

"~
~

Homk(A,B)

1
> Hom (T A,T B) =~ Ext. (A, T B) .

16
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3. Heights and Cup Products

Throughout this section, X will be a complete,
gbnnected, smooth, algebraic curve over an algebraically

closed field k. For any pair‘of sheaves F and G on X

£1°
there is a spectral sequence [3, V 4,1]
s r+s

HY (X, Ext, (F, G)) == Ext, (r, G).
If N is a finite flat group scheme over X which is
killed by pv, then there are isomorphisms of sheaves

o =~ o = D
ExtX(N, " V) ——> Ext (w, Gm) >N [26,16.1] .

P

Thus tiz edge morphisms of the above spectral sequence give

morphisms € HS(X,ND)--~> Ext; (N, v) which, when
P

-

combin:z” with the Yoneda pairings

S r-+s ‘
HO(X,N) x Bxty (N, u ) ——>H (X, 1 )
. pV p\)

give cup product pairings

r-is
(X, p ).

w" (x,N) x B° (%, N°) ———3> H
. P
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From [2,IV], Hl(X, cem) X Pic X and HQ(X, Gm) = 0, 80

therc exists a canonical isomorphism HQ(X,M v)-ﬁ->zybvz.,
' p
and the cup product defines a pairing
- D \Y)
B (x,N) x B 5 (x,8°) —> z/p 7 .

/

Let A be a projective abelian scheme over X. Then
[26, I 5.3 and III.19] the dual abelian scheme AT of A exists

and there is an exact commutative diagram

— at s At S0

G.1) z\L | | zlﬁ Nlﬁi

1 1 A
0 — HomX(Av,(Rm)————-> ExtX(A,csm)————-> ExtX(A,(Em)--——> o)

0 —> A

< ct

Q

If K is the function field of X, then A(X) may be

identified with AK(K) and At(X) with AE(K), so the global

symbol ( , ) = Z, (, )V (v € X, v closed) of Néron

[22, II 12] defines a pairing

( , ): AX) xa%(X) —> =z .



The exact sequences

define boundary maps

B, : a(x)

It

1o(x, A) —> HY(X, A)

i

5 At(X)

. °(x, at) — ul(x, aF) .
A -V

. t =
a: A =
Since Av.-"_e>HomX( v’ Gm) Hng(Av, ppv), the cup
product defines a pairing ‘

vt H (X,A\J) X Hl(X, At) — H2(X, o .)) o~ Z/p % .
' P

Theorem 2. Let a € A(X) and x € At(X). Then with

the above notations, 6a . 6x = (x.a) (mod p°), i.e., the

diagram
A(X) x A%(x) (.) S 7
) o]
A at
1 1l t v v
rl(x,a)) x BN(x,AY) — s m/pVz

commutes,
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Pcoof, Consider the diaqgrap

az) x a%x) _.(__g.w}mmmﬁ. -

P

o 1
HO(x,8) % Bxtg(8,6) ————s yl(x,c )

(32)

in which the lower pairing is the Yoneda pairing and deg
is the degree map Pic(X) —> .

Let a € A(X) and x € At(x)
B

« There is a commutative

. t 1
diagram A (X) w~>ExtX (a, Gm)

l’ [26,111 18.1]

A

> Hl(A, mm)

and it is easily seen that if y is the image of x in

Hl(A, mm)’ then the value of Lhe Yoneda pairing at the

pair a,x is just a*(y), wherc a%; u'(a, e ) —s ul(x, €.
is the map induced by a: X ——>A, But a*(y) can be
computed using Cartier divisors (see [21, Lectures 9,10]).
Choose a Cartier divisor D whoge image in Hl(A, Gm) is y
and which does not contain X) in its support. (That this is
possible is easily seen by looking at the generic fibre).

% .
Let (f§), £, € T(Ui’KA) be local equations for D, Then




a*(y) has local equations (a*(fi)), a*(fi) € T(anl(Ui),K;),
and so has degree I ordv(a*(fv)) (v € X, closed) where
f; equals some £, such that v € a—l(

U;), and ord = is the

valuation of K (mapping onto %) associated to v. But this,

in another language, is exactly Néron's definition of the

symbol iv(x,a) ([22, 111 2] and [23]). Thus
deg (a*(y)) = £, iv(x,a) = (x,a) [22, III 2 Theorem 3]

and we have shown that diagram (3.2) commutes.

Consider the diagram

. b |
At(X) 8 > Ext,. (A, (Bm)
5 x
(3.3) at |
1 £ €1 1
H (x,8]) > Exty (B ,u )

P

where k is the map which takes the class of an exact

sequence O )>Gm > E > A > 0 to the

class of O ——3>
p

E,, = ker (p¥: E —>E).

E - > A > 0 with
v 2 Ey SRV -




22

Let x € At(X) = HO(X,At). For some flat covering

(v, —> X)

§ there exist x. € At(Ui) such that pvxi

i€r’ i

. . ¢
equals the image of x under the map associated by A to

Ui —> X, .Write xij and xlj for the images of xi and xj
respectively under the maps associated by At to the
projections Uij = Ui xX Uj ~—-e»Ui - and Uij -~—e»Ujf

Then Pv(xlj~xij) 0 so Xj5 = xlj - xij € AS(Uij) and

(xij) is the Cech l-cocycle describing the element & t(x)
' A

I

in Hl(X,AS).

: 1
. 6 -
We now describe €, (x) € Exty (Av,|u v)' v.. =a(x,.)

1] 1]

is an element of Horm,; (pA , & ) = Hom (A Ju ). Define

Ei on Ui to be the trivial exact sequence

o > M > XA —> A > 0.
pV pVY v v

Define a map from the restriction of Ei to Ui to the

J

restriction of E, to U, . by
' J 1]

E,: O —> M —3> M XA > A >0

L ' p\) p\) Vv v
3
01
E.: O ——>p y ———>n _ XA > A >0 .
J p pV v v
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By descent theory [9, VIII 2.1] we get an extension of A,

by y over X, and the class of this extension in
p
Exti (Av,;u v) is €,8(x). It is now elementary to check,
: P
using (3.1), that this class is also ks(x), and consequently
that (3.3) commutes,

Consider the diagram
1
Exty (a, Gm) 5

(3.4) " Bxts (3, 1 )
p
) o]

.
A
Exty (A, 1 .

p

where the boundary maps ® are those defined by the sequences

\Y

0o —>u, —>¢ —L—s g ——o0
p

0 ——> A > A > A ———3>0 ,

If x € Exti (a, Gm) is defined by the sequence

0 —>€_ LN C 5 A —m30

then &, (x) and BA_k(x) are defined by the sequences
m
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0 ——> M — G > E > A > 0

‘and

> A >0

These two séquences may be shown to be equivalent by, for
example, subtracting one from the other and using [19, VII 4,1]
to show that the resulting sequence is equivalent to zero, .
-It follows that (3.4) commutes,

The commutativity of (3.2), (3.3) and (3.4) suifices to
prove the theorem. We write w,z for the value of the Yoneda

pairing at the pair w,z. Let a € A(X) and x € At(x). By

(3.2) | |
A 8, (a.8(x)) = (x,a) (mod p”)
o A
1 O 2 : A v
where H (x,csm) — s H (X, u v) — Z/p % . But, by

) P
the properties of the Yoneda pairing,

5°(x,A) x Ext® (a, ¢ ) s HY (X, )

5} 6
| [t Jfe

Of 2 2
E(x,a) x Ext® (A, p ) ———>H(X, 1)
P : p

commutes, i.e., §; (a.B(x)) = a.8; 8(x). Thus,
m m




H
1]

&= K(a.ﬁG B(x))
m

Ma.5,kB(x)) by (3.4)

A5y (a.8(x))

It

It

Ma.s, € 6At(x)) by (3.3)

AK(SA(a). € SAt(x))

i

NOPLNC

by definition of cup products, and this.éom?letes the

.proof of the theorem,

25
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4, Gerneralities on p-Divisible Groups

in this section we state some general facts about
pLdivisible groups which are needed for the computations
of the next section. Let k be a perfect field éft?
nonzero characteristic., Then [36, Proposition i]‘theré
is a canonical correspondence between connected p-divisible
groups over k and certain commutative formal Lie groups, so
‘the results in [18] may be applied.to p~-divisible groups.

Let G be a p~divisible grouyp over k and ¢ an
endomorphism of G. We say that P(T) is the characteristic
polynomizal of ¢ if it satisfiés the conditions:

(a) P is monic, has coefficients in Z%, and is of
degree h equal to the height of G,

(p) 1f Qygeensd

L are the roots of P in some algebvcic™

closure of Qp, then

h
1] F(ai) . = |degree F(@)|
i=1 P _ B

for all polyncmials F with coefficients in Z,
The uniqueness of P(T) follows from [40, IX, 68], and
its existence from the possibility of representing p-divisible

groups by certain modules,




First assume p # characteristic of k. Let [ be the
Galois group of ﬁhe algebraic closure X of k over k. The
functor M: Ntm-b.N(§) defines an equivalence between the
category of.finite group schemes N over k which are killed
by a power of p and the category of finite p-primary
I'-modules. Moreover, [N(k)] equals the rank of N (i.e.,
the rank of the k-algebra P(N,ON)). From this we deduce an
.equivalence M: G = (Gv,iv)%——-> 1i GQ (k) between the
category of p-divisible groups G ovzr k and the category of
discrete f»modules whose underlying groups are isomorphic{
to & Qp/ﬂ5‘ scwe h (and moreover h ig the height of G).

If ¢ is an endomorphism of the p-divisible group G, then it
is easy to see that the characteristic polynomial of M(co)

on M(G) has the properties (a) z'd (b) above required for it
to be the characteriétic polyhomial of ¢ on G,

For the rest of thié section, we take p = characteristic
of k. Let W_ Dbe the ring of infinite Witt vectors over k,

k

and let Ak be the ring of non-commutative polynomials

w [F,v] with the relations FV = p = VF, Fa = a’F,

av = va’, a € Wk‘ where 0 is the canonical lifting of the
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Frobenius automorphism {(ox = xp) of k to Wk' There is a
contravariant functor N F——> Dk(N) from the categorv of
those algebraic group schemes over k which are unipotent
or finite ard killed by a power of p to a subcategory of

the category of finitely generated left A -modules, which

k
is an anti-equivalence of categories [24] [33] [18].
Moreover, if N is of finite rank pv over k, then Dk(N) is
‘of length v as a Wk—module. From this we get an anti-
equivalence G h——e>Dk(G) from the category of p-divisible
groups over k to the category of Ak-modules which are free

of finite rank over W and the height of G is eQual to the

3

rank of Dk(G) ovgr W -

If ¢ is an endomorphism of G, then Dk(m) éommuteswith
the action of P on Dk(G) and it follows gasilfithat the
characteristic polynomial of Dk(m) on Dk(G) has coefficients
in Zb and is the characteristic polynomial of ¢o.

Now write W1'< = GIP R Vo A]; = w]'{ ®, 2,, and

P k
D]'{(G) = A]; ®Ak D(G). Note that Al; = W}; [F,Ffl] with the
single relation Fa = aoF. Ciearly two p-divisible groups

G and H are iscgenous over k if and only if DQ(G) = DQ(H),




Assume now that k is finite with pa eleménts. If Fk
is the Frobenius endomorphism of the p-divisible group G
relative to Xk, then Dk(Fk) acts on Dk(G) as F©. We denote
its characteristic polynomial.by cG(T). The minimal

polynomial mG(T) of F. on G may also be defined. It is the

k
monic polynomial of least degree with coefficients in z%
such that mG(Fk) is zero on G, If DQ(G) is isomorphic to
A'/A;A for some left ideal A'\ in A', then A'mG(Fa) is the
bound of A'A in the sense of [13, Chapter 3, §6§.

We say that a p-divisible group is indecoﬁposable if it

cannot be written as a direct sum of two nonzero p-divisible

groups.

Proposition 1. (a) Every p-divisible group G is

isogerncus to a direct sum of indecomposable'p—divisible
groups, and the decomposition is unique up to isogeny.

(r) 1If G is indecomposable then mG(T) is a power
of a Eb;irreducible polynomial, Moreover, there exists an

integer e such that

p' (&%) zA_'/A'mG(Fa) .




(c) Suppose D'(G) = A'/A'?(F) where

m+n m4n-1

p(F) = F + b F + e+ 4+ D and ord (b. ) = én.
; -1 - , ~n p -n
Then Q(F,V) = P bm__lFm—l + oo + —iﬂ v" has coefficients

» d
in Z%, and A/AQ(F,V) .is the module of a p-divisible group

isogenous to G, _ ' -

Proof,  (a) and (b) may.be deduced from the corresponding
theoféms for modules [1%, Chapter 3], and {(c) by an
application Qf Newton's polygon for non-commutative

polynomials,

Remark. If G is the podivisible group associated
to an abelian vériety‘A and ¢ is an endomorphism of A, then
it is clear from their definitioné that the characteristic
pqunomia} of o on A‘ié eéual e tﬁe characteristic
polynomial of the endomoiphisﬁ of G defined by m.‘ In
particular this showé théﬁ cG(T) has coefficients in %z,
but thleact that G comes from an abelian variety places
an even strongef cqndition on mG(T), viz. thgt it has no
multiple roots, A is isogeﬁous'to a direct sum & A, of

simple abelian varieties, The characteristic polynomial'
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of Fk on Ai is a power of a Z-irreducible polyncmial fi,
and £, (Fk) is zero on A, [37, Theorem 2]. mG(T) divides

the least common multiple of the fi’ which has no multiple

roots,
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5., Extensions of p-Divisible Groups

We retain the notations of 84 except that k is no
longer necessarily of characteristic p, although still
finite with g elements and of'deéree a over the prime field.
We refer thé reader to [35, 306-19] for the definition of
quasi-isomorphism of Z%-modules and the elementary
Lemmas z.l, 2.2, z.3, and z.l4,

Assume first that G and H are p-divisible groups

over k and that p # characteristic of k. If F, is the

Frobenius endomorphism of G relative to Xk, then M(Fk) acts

on M(G) as the canonical topological geneiator O of T, lLet

—_ T — } _
£, HcmE(G,H) —_— HomE(G,H)r be the map induced by the

identity map on Hom(G,H). By [35], Lemma z.4, £ is a
quasi-i<omorphism if rkza(HomE(a;ﬁ)r) equals the multiplicity.

of 1 as a root of the characteristic polynomial of ck on

HomE(E}ﬁ). This condition is satisfied if 1 is not a

multiple root of the minimal polynomial of ck on Hom(a,ﬁ),

or again if no multiple root of mG(T) or mH(T) occurs as a
root of the other, When this is so, .

a,

' B
2(¢) = | TT (1-2H TT(1-35)

aiiéBj i'p Ia.%B. i'p

i"73
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where‘al,...,ug and B.,...,8, are the roots of cG(T) and
CH(T) respectively.

The situation is considerably more complicated when we
allow p = characteristic of k.

Proposition 2, Let G and H be p-divisible groups over

the field k, and let al,...,ag and Bl,...,Bh be the roots
of cG(T) and cH(T) respectively. Let f be the map

Exté (E,ﬁ)r-~———e§Ext§ (E}ﬁ)r ~induced by the identity map
Y e —

on EXtE (G,H). Assume that no multiple root of mG(T) or

mH(T) bccurs as a root of the other, Then ff is a quasi-~

isomorphism all r, z(f.) = 1 allr > 2, and

z(f ) . ty .. a,
o dim(G " )dim(H i
(5.1) Z(£) = a (e7) (1) 'T (1 ~'§“)
1 a.#B. j
i ) p _
Remark. It will be shown (Lemma 2) that
r o= z(£,) 1 = =T
Extﬁ (GfH)I, = 0 so 'szlT = z(fo) [Extk_ (6,H)"] p .
If 0 ——> 1! > I >'I" > 0 is an exact sequence

of ind-algebraic group schemes over E, and I' and I" are

p-divisible groups then I is also p-divisible, so there
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corresponds a dual exact sequence

£
O = I“t > I > I‘t ——— (3, This defines an

isomorphism Exti (G,H) =~ Ext; (ﬁt,<6t). But
. k

1 =t =t 1 ,.p -p '
Ext” (H, G7) ®# }Jlim 1lip Ext (H , G cf, [26,I.4-
P )~ i dy mee (), T (ef. [26,1.4-3])
~ lim lig Ext> (¢, H)
-—> ¥ VvV M
vl v
1
~ Ext” (T G, T H)
3 P

(tnis last Ext being computed in the category of pro-algebraic

P

— “I‘ b d —
we could define £ as the map Hom (T G,T KE) ——-—3f8m (T C,T H)..
o & & 'K'( p’pl) > R_(p:pf

Take C = A(p) and H = B(p) to be the p-divisible groups

group schemes over k). Since HomE (G, H) ~ Hom (Tpa; T H)

associated to abelian varieties A and B, By the final
remark ~f §4, G and H satisfy the conditions of proposition 2.
. Thus we get the following statement: if A and B are

abelian varieties over k, then the map

— —.T — — .
f : Hom (T A, T B Hom TA, TB is a
o E(P’P) > E(P’P)T |

, ' . 1 - Y . s
quasi-isomorphism, Ext (TpA, TpB)r is finite, and
K

Qin(a) din(e) TG ‘;i)
d-%Bj i'p

1

z(£_) [Ext; (TPK"Tﬁg)r]lp = |
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where the ai and Bj are the roots of the characteristic

polynomials’of F, on A and B respectively. This is the

k .
form in which the proposition will be used in the'néxt
éection.

If.p 4 characteristic of k, then the proposition
redﬁces to the statement already proved, so for the rest

- of this section we assume p = characteristic of k.

Lemma 1. Let G and H be p~divisible groups over k.

TS

‘Then Ext" (¢, ) = Extl (p (1), D (G))
K Ar ' ¥ X

1
Ext’ (¢, H) = Ext. (D (H), D (G))
T x A. K ¥

Ext (G, H) = 0 for r > 2 all ¢,H, and for r » 1

=1

if either G = O or H = 0,
; cc cc

(Ext:~ (-,-) 1is to be computed ‘n some suitably large
Sy _ ‘ ,

category of topological left A -modules.)

k

i

Proof, The first two isomorphisms are obvious from the

category anti-equivalences of the last section.

If H is etale, then Ext’ (G,H) = O because the category

. k .
of finite étale group schemes over k is. equivalent Lo the

category of finite abelian groups, and a p-divisible grbup'

(in the usual sense) is injective in the category of p-torsion
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1l .
groups. EXtE (G,H) = O for H = H,, by duality.
~ I3 wz r - o = o
Néﬁ assure H = H_ . Let Extg . (-,-) denote the
group of extensions formed in the category of unipotent
group schemes over k. The canonical map Ext% U(L,N)~4>Exﬁ;@}®
is injective for all unipotent L and N by [19, VII Lemma 4.1].

It is easily seen to be surjective for L = ap = N by using

the exact sequence 0 -——-> ap > Ga > (Ea >0 and
that 'Exti (mp, Ga) = 0. This suffices to_pfove sufjectivity
for all f?nite L and N, and consequently that

I?Jxvt:-]?(-_~U (L,N) = Ext; (L,N) for all such L and F. The map

2 2 s s .
ExtZ (L,N) —— EXtA-(D§(N)’ DK(L)) is injective, so to

prove that Ext? (G,H) = O we have only to prove that
v .

Bxt-_ (D=(H), D=(G)) = 0. Since Ext’ (G,N) = 0 for all
A-ih k k i‘(‘

finite group schemes N, we may replace H by a p-divisible -
isogenous to it, and so assume the existence of an exact

sequence

0 —>A —> A_ ——>D_(H) —>o0 .
k k

This proves the result.
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We may now prove proposition 2 for the case that

Gcc = 0 or Hcc = O, Note first that cGt(T) = CG(q/T) and

m t(T)_= mG(q/T) so the proposition is true for the pair
"G

. . c e osa s ‘ . t
G,H if and only if it is true for the pair Ht,G . If

G and H are both étale then the proof of the proposition is
as in the case with p # characteristic of k. By duality

the proposition follows for G = G H=H . The remaining

ce’ ce

cases may be checked by very easy calculations,

For the rest of this section we assume that all finite

and p-divisible groups are connected with connected duals.

Lemma 2, For all p-divisiblé;groups G arnd H ove: %,

1 ,— -
ExtE (e, H)r =0 .,

Proof, If M and N are finite group schemes over Kk,

then Extf.(ﬁ, ﬁ)r = 0. This is true for M = up = N because
k
Ext (ap, ap) = k, and it follows in general by induction
- :

on the lengths of M and N,
v 2 = = = 2 - =
If p N = 0, then Ext” (G, N) ——> Ext (Gv, N) so
k k
Exti (5; ﬁ)r = 0, This shows that in proving the lemma we
k

may replace H by a group isogenous to it. In fact we may

assume there is an exact sequence




o] > A > A >, ,Dk (B) —— 0,

This gives, after tensoring with W over W_, an exact
k

k

sequence O > A > A > D _(H)
k Xk k

> 0, and so

0 —> Hom (G, H) ——> D_(G) ——-—->DE(§) —_ Exti(6,§)~——>o.
X X

But D & W @ Dk(G) ~ a9 W (as a TI'-module) so
, : k
DK(G)T = 0, and the lemma follows,

Lemma 3. For finite group schemes L and N over k, there
is a spectral sequence

S - r+s
(T, Ext® (T, §)) =—> Ext, (L, N) .
k .

Proof. Conzcider the diagram of fuuctors

(Ind-Gps) .q . > (T-mdls)

N1

(ab)
where (Ind-Gps) is the category of inductive systems of
finite group schemes (connected with connected duals) over
k, (T-mdls) is the category .of discrete T-modules, (Ab) is

the category of abelian groups,

@(N) = Hom_ (L,N), 8(M) = Mr, and y(N) = Homk(L,N).
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(Ind-Gps) and (T-mdls) both have enough injectives, and we

r+s,Y(N)

claim that the spectral seguenze Rrﬁ(ksa(N))==;Il
exists and is the sequénce above. For this it suffices to
check

(a) B.a =7, i.e., Homi(f,ﬁ)r = Homk(L,N), but this is
clear,

(b) o is left exact and R°a(N) = Ext; (L, N).
N+——> N=N ®kf is exact, so o is left exact., Let I
be the injective envelope of ap. ‘Any other injective in
(Ind-Gps) is a direct sum of copies of I [5] and I = I ® X
is the injective envelope of Eé. Thus - @k X carries an
injective resclution of N to an injective resolution of N,
and (b) follows.

(c) RB(m)

(a) Ry(N)

!

" (T,M).

Ext; (L, N).

(e) o takes injectives to acyclics. o(I) = Hom (L,I)=D (L)
' x k

[18, 84.2] and D_(T) R w_ e,

Dk(L) which is an acyclic
k k¥ "k -

T'~module,

—_ —T L
Lemma 4. Exti (¢, H)" is finite all G, H.
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‘Proof, Hom (G, H) has finite rank over %F“ so

rkZZ (Hom__ (E, ﬁ)r) = rk% (Ho.m__ (E’ 'ﬁ')r) .
P k | | p k :

' = =0T . .. |
Exti (G, N)* is finite for all finite group schemes N
k o .
- over k, so we may replace H by an isogenous p-divisible

group. Thus we may assume there is an exact sequence

0 ——>A ——> A --—-—-->Dk(H) 3> 0,
which gives an exact sequence
1
0 —> Hom.k(G,H) -—-—~—>Dk(G) —_— Dk(G) -——-->Extk(G,H)--——>O.
Since Dk(G) is finitely generzated over %%,

rk,, (Hom(G,H)) = rk
o

- 1
- (Extk (g,H)).

p
Lemma 3 implies the existence of an exact sequence

i ‘ ! 1 ;= =T
0 —> Hom (G, H)T --->Extk(G,H) —> Ext_ (G, H) —- 0,
k - , -k
The first two groups are fihitely generated of the same rank

over Z%, therefore the last group is finite,

Thus we have shown that fr is a quasi-isomorphism for
all r # O. Let f: Hdmk(G,H) -~3>Exti(G,H) be the composite

of the maps
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f

~ — =T S
Hor, (G,H) ——> HomK(G,H) ~—Zs Hom_(G,H) < Extk(G,H)
X

where g‘is the map induced by the spectral sequence of
iemma 3. g'is a quasi-isomorphism and z(g) = z(fl)_l. Thus
we are reduced to proving the following statement for G
and H.’b

(8): If no multiple root of mG(T) or mH(T) occurs as a

root of the other, then f is a quasi-isomorphism and

(5.2) 2(£) = |- dlm(G )dim(H) TT (1 - %i )

al;ée P

Lemma 5. If G!' and H' are g-divisible groups isogenous

to G and H respectively, then (S) is true for the pair

G',H' if and only if it is true for the pair G,H,
Proof, The Exti-(G,—) sequence of the given sequence
0 > N > H! > H > 0 may be broken into exact

sequences

o —> Homk(G,N) -->HonLj<(G,H' ) I-Iomk(G,H)——-§ c,—>0

)

1 1 2
0 —> ¢, —> Extk(G,H') —_— Extk(G_,H)-—-> Extk(G,N)-——> o}

]

1
o >C, > Extk(G,N) >Cy >0 .
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N
—~
H

N
:
~—
it

[Eth(G'N)] rovided the
[Hom(G,N)][Ext2(c,n)]| P
p
orders occurring on the right are finite,

Thus,

If pVN.= O, then the sequence

v
0 —> Hom, (G,N) Ly Hom, (G,N) ———> Hom, (G, ,N)
shows that Homk(G,N) = 0.

The methods of [26,II] suffice to show Ext;(Ga,Ga) = 0
all r > 2 over any perfect field, and from this it follows
that Exti(G,'Ga) = 0, From the sequence

v
k > A

NN L — (
o > A X >p (g ) —>o

we get that Ext}]; (G,G‘:a) = Dk(G)/VDk(G) is finite, and from

| o }GLP }Cﬁa >’(Ea > 0

we get an exact sequence

1 1 1 2
0o —> Extk(G,@Lp) — Extk(G,(Ea) —_ Extk(G,(Ea)—->Extk(C-},czp)-——>O

which shows that the groups Exti(G,ap) and Exti(G,mp) are

finite and hava the same order. The same conclusion follows
with mp replaced by an arbitrary finite N by induction on

the length of N, This shows that z(f) = z(£f'), as should
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be so, because the right hand side of (5.2) is unchanged
when H is replaced by H'.
The rest of the lemma may be proved by a similar

argument, or by duality.

By 84, proposition 1, it now suffices to prove (S)

under the following assumptions on G and H,

- _ a a va_ gy
Dk(G) = A/Ml, A = Pl(F ,V ), T Pl(I‘, T) mG(T)
g = height (G), n, = dim (e), m, = g-n, = dim (Gt)
) _ b (e Ry P22 ay _
Dk(H) = A/A?\Q, A, = P2(}: ,V), T PQ(T, T) = mH(T)
h = height (H), ‘n, = din (), m, = h-n, = dim (Ht)

mG(T) and mH(T) are each powers of a Zgnirredﬁcible

polynomial,

Case 1. mG(T) and mH(T) have no common root,

The sequence

A

o} > B, >R, ————-—-—-> Dk(H)

> 0

wvhere A, denotes the map defined by multiplication by A

2 o
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gives an exact sequence

_ A V
0 —> Homk(G,H)---> A/A?xl ———2——>A/A7\l —— Ext}]c'(G,H)———> o.

But multiplication by A, is injective on A/Akl, so

2
Hom(G,H) = O, and we have only to compute the order of
Extl(G,H).

2 Jaet(m (s%)) |

1
z(£) = |[Ext™(G,H)]| = |@et(1®r,)| =
p 2 1p |det(F 2) |2
. p
where
1 e A,
[} 1 N [}
A /A A ’ ; > A'/A N
n | //)z
FT;\\\\\\\ ////// nh(Fa)
' ' s
A'/A xl
n2 a ’ . n2 nln2
|aget (F ) = Ial ceca | = |q |

aet(my(F%))

o= |TT(ai-aj)[p - |q“2g TT (2 - %i) i

» and the formula is

; : m,n : e,
Thus z(f) = |q 1277 (1 - =)
| P57 1p

verified for this case.
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Case 2, mG(T) aﬁd mH(T) have a root in common, i.e.,
are powers of the same Zkrirredﬁ&ib]e polynomial.v The
éondition that no multiple root of one of mG(T) or mH(T)
is a root of the other implies that mG(T) and mH(T) are
themselves irreducible, and consequently are equal.

We must first give an explicit description of the ﬁapv
] Homk(G,H) -~5»Exti(G,H). The Ex;i(—,pﬁ(a)) sequence of

- X
A2 —_
o] > A >A ——>D (H) —> o0

k k k

may be split'into short exact sequences

(6.3) 0 —>nom_ (G, H) ~—> N >3, M ——>0
k

(6.2) o ——a>ié M— M — Exti (¢, H) —>0

where M

!

Dk(G)' These in turn give an exact, commutative

diagram
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l

—, Hom(a,ﬁ)r — O

ls

{ ll

(o)

— —.T ' - -

0 ——> Hom(G,H) > M > (A M)
M

. A
© 0 ——> Hom(G,H) > M —2 > > Extl(G,H) —30
Lol
0 —3> Extl(é',ﬁ) —_ Extl('é,'ﬁ)r—-> 0
2 v
o o}

The top row comes from the (6.3) and the serpent lemma,
and the third column from (6.4) and the serpent lemma.
The rest of the diagram is filled in with thé obvious maps,
We observe that g is the map given by thne spectral sequence
of Lemma 4,

The map £ may be described as follows: let u € Hom(G,H)
and regard u as an element of M such tpat keu = 0, u may be
written u = (ok—l)v, v € M, Xév € Kéﬁ, but

_ -~ =T
(ok-l)(xgv) = xg(ok-l)v = Au =0, so AV E (xgm) .

Regard Ay

Extl(G,H) is £(u).

v as an element of M, then its image in
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In our case, kg = Al so multiplication by AE is zero

A/Ax1 = Ext(G,H). Since A/Axl is

It

on M, and Hom(G,H)
,éorsion—free, f is a quasi-isomorphism if and only if the

corresponding map A'/A'Al -—Ji->rA'/A'A

1 has nonzero
.
determinant, and then z(f) = Iéet(f)lp.
Let u € A'/A'?\l and choose v € X'/X'%l such that
u = ckv - v. Then o;v = ju + v for all i, Let
a a,a L) mp~a b‘n2 -np a
P2(F , 9/F ) =F " + bm2~aF fooet i - F o m,(F7) .

Then £(u) = P_(F", ¢/F)v

n
ny
w
1
)
N
L d
|a
~
)
o
=
3

Clearly f is a quasi-isomorphism, and

S my (7))
ng—a) a

det(

[
4

a
z(f) = 1< where

det(F

P
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] 1§ f ' [} l’
A'/A Al > A /A xl
- d ‘ a
F2 ara(my(F))
.A'/A'Al
-~ a -
det(Fn2 é) = n1(ng-a)
p p
d a a
act(Ltmg(+))| " = | TT (ap-s,)|
dr p ai;ésj 'p
n, (g-a) %4
= Jat TT -3
‘ ai#Bj j 'p.
- | nlmé a, |
Thus z(f) = |q TT (1 - E—é , which completes the
ai#ﬁj : j |

proof of the proposition.
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6. The Proof of the Conjecture

In this section, X will be a complete, connected,
.smooth, algebraic curve over a finite field k, K will be
the function field of X, and KV the completion of K

corresponding to the closed point v of X,

Proposition 3. For any abelian scheme A over X,

there is an exact sequence

o] -————>H1(X,A) —-—-—>Hl(spec K, AK)——-> @VHl(spec K,s Bg )
' v

i.e., Hl(X,A) =Jil(AK), the Tate-Safarevi¥ group of A. over K.

K
Proof. Since A is smooth, we may werk with the étale

topology. Let m: spec K ——> X be the canonical inclusion

map., For any étale morphism
U — X, MorK(UK,AK) ~Morx(UK,A) ~MorX(U,A) [10,117.3.6]

so the sheaf defined by A on X, is isomorphic to TPy By

t
[6, 1v §3] the principal homogeneous spaces for A over X may
be canonically identified with the principal homogeneous

spaces for AK over K which are split by the inverse image

(under w) of some étale cover of X, or equivalently, which
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have a point in ﬁ; all v, where K; is the field of fractions
of the strictly 1ocai ring ﬁ; of X at v. A principal
homogeneous space for A over ﬁ; may be represented by a
projective scheme P over ﬁ; [41], so there exists a
projecﬁive scheme P' over ﬁ; such that p < p! ®ﬁ ﬁ;. Let
ﬁv be the completion of ﬁ; and ﬁv its field of fractions.
By using [8], one sees that the following are equivalent:

WP has a point in R;; P' has a point in ﬁ;/tnﬁ; = ﬁv/tnﬁv
(tﬁ; = maximal ideal of ﬁ;) for all sufficiently large n;

P' has a point in'ﬁv; P has a point in ﬁv' It follows that

thereis an exact sequence

0 — Hl(X,A) —_ Hl(spec K,AK) —_— @VHl(spec ﬁV,AK ) .
v

The injectibity of the canonical maps
1 Ll A '
H™(spec K, By ) ——> H (spec K s Bg ) [7, p. 265]
v v

shows that the sequence remains exact if ﬁv is replaced by

K .
v




 injection HQ(E;Ev)r ——~§1H?(X,G§) = 0. By corollary 3 to
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Let G be & p~divisible group over.k. The projective
limit of the sequences
| Y= = [ Y= - 'ok-l T = ry= =
0 —H(X,6 ) —> H (X,6 )-———>H (X,6 )—>H (x,6 ) —>0
is a sequence
L Y/ o = \I | b ol ; ak—l .r =\ . f i e
%im(H (x,6.)°) — ® (X,T G) —>H (X,T G)—> %im(H (x,6 )r).
v v o P ' : P B! v

Lemma 6. The maps %im(Hr(fsav)r) --—~»‘-~)>Hr(}?,TpE)r

Y, - . Y e
H (X, TpG)l-\ R tm (m (X’G\))I‘)

induced by the above sequence are isomorphisms.

- Proof, The first isomorphism is 2 counsequence of the

left exactness of the projective limit functor, If r = O,

or'Gcc'='0,'then'the groups Hr(i, Ev) are finite and the
second isomorphism is immediate. If r = 2 and G = Gcc’ then

the Hochschild-Serre spectral sequence for X/X gives an

Theorem 1, and (the dual of) Lemma 2,

Hg(i,T'G') = Ext’ (.3, TG).= 0O
p ¥ P

r p.)r s wh§re J 1is the

Jacobian of X, Thus only the map



1= _ = . 1 = e »
H™ (X, I‘pG)r — %tm (57 (x, Gv)r) with G = G__ remains

to be considered., By duality and the above-mentioned
corollary, this map will be an isomorphism if

HONE (G, H)T —_— v%tﬁ (Homi (Gv’H)P) is an isomorphiem for

all p-divisible groups G and H over k with G = Gcc’ H = Hcc.

The sequence

N >6 —B—>¢ > 0

gives exact sequences
: v
N 4 — — 1, -
0 —>Hom_ (G, H)(p ) ———> Hom (G_,H) —>  Ext_(G,H)—>0
k x Vv p’ K
and
1z 57 5@ 5 3 |
((Ext (GH)) —>(Eon(G,H)'P /) —> Hon(G B —>( ExEE)>0
P : P
A dirczu computationtaking G and H to be p-divisible groups

with D () = A /A (F'-v") ana D (H) = A /a (F" v
k x k k k k

(cf. [18, 1z 84]) shows that Extl(a, H) is killed by some
power of p, and consequently that

( VExtl(E,E))r = Extl(agﬁ)r's 0 for v large. Also we know
p ' :

that Extl(a,ﬁ)r is finite (lemma %) and that Hom (G,H) is




a free Zsrmodule of finite rank. These facts combine. to
show that the projective limit of the above exact seguonce

reduces to the required isomorphism,

Proposition 4, For any abelian variety A over k and
any prime p, ||](AK)(p) is finite,

Proof, From the exact sequences

-

. v .
0 —>A >A B2 52

Y

o

<
v

o

we get exact sequences

(6.1) o0 —>u0x,2) ) —suta) —> | |Il—>0
. . . p

whcse'projective limit,
(6.2) 0 —>u°(x,a) @ m ——> u'(x,22) —> 1 ([[|)—> o
is also exact (because the groups are finite),

The Hochschild-Serre spectral sequence for i/x gives

- exact seguences

(6.3) 0 —>H°(X,3 ) —>u(x,a) —>u(X, 5) —>0

with exact projective limit
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o= . = 1 1=, =T
(6.4) o —H (X, TPA)T —H (X,TPA)——-—> H (X,TPA) —>0
A(E)r = A(k), and A(i)r = 0 [14], so the exact sequence
: 3 ‘ 3 v B
o —> Av(k) —> A(k) £ 5 a(x) —> 0 gives an isomorphism,
v —
A(k)(p ) :5Av(k)r, which in the limit gives
a(x)(p) = %im(Av(f)r) = HO(X, TPX)r . (6.4) may be written
1 l,- -\ T
(6.5) 0 ——> (k) —>H (X,TPA) — H (X, TpA) —3 0,
By [15, IT §2. Theorem 9] there is an exact sequence
(6.6) 0 — a(x) — A(K) —> Hom (J,A) —> 0 .

Consider the diagram

&) 0

N ' %
0 —>a(x)em, ———=>A(k)(p) —> 0
. N 1 A 7 %
(6.7) o —->A(K)®Z&pm~———>H (X,TPA) > Tp(_l_“_) —30

g\ . 1,— ¥ T ’ H
0 —->Hom(J,A)®zp —>H (X,T-PA) —> Tp(_i_U_)-"—> o

hN 7 ~ : N
o ; 0 o}
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where the left hand column comas from (6.6), the middle
column is (6.5), the middle row is (6.3) and the maps and
.éxactness of the béttom row are induced by the fest of the
diagram. By corollary 3 and the final remark in 82, the
map Hom(’_J,Pt) ® Z&p —, Hl(-f,'rpf\_)r may be identified with
the canonical map Homk(J,A)%%pwe,HomE(Tpﬁ, Téi)r which,
by [37] and [38] is surjective. Thus Tp(llL) = 0, i,e.,
the p-divisible part of 11l is zero, and it is known [17]
’that this implies that the p-primary component of l“_ is
finite. |
Remark. The same argument, with k algebraically

closed instead of finite, give:z an exact sequence

0 ——> Hom(J,A) ® '2zp 3, Hom(TpJ,TpA) -—->Tp(ﬂl)———> 0.

Thus, r+r = rkZE(Hom(TpJ,TpA)) where r = rk, (A(x)) and

r, is the corank of the p-divisible part of Il](AK). In
particular, if p # characteristic of k, then r4r = L4ag
where d = dimension of A and g = genus of X, and we recover
the formula of Ogg-Safarevid [25], [27], [29] in this ver

special case,
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Theorem 3. Let A be an abelian variety cver k. The

coniecture (B) holds for A, over K.

Proof, Consider the diagram

A(K) ® z, ;f_.__>Hom(At(K),ch) - Hom(At(K)mp/zp, mp/gp),;‘
h Té* A
nl(Z, Tpx)r——-—-f-)» Y (

_ - e 1, —t, T

where the maps are to be defined,

e is induced by the pairing

( , ) :a®) xa%k) —s =

of B3. Because of the difference in the ncrming of the %

La',a>
log g

symbol used in the Introduction and [35, 81]. By

- absolute values, (a‘',a) =

s Where <  , > is the

[35, lemma z.1] and the nondegeneracy of the height pairing,

e is a quasi-isomorphism and -~

det ——————
log g

[a(K)

P

z(e) =
tors]
1<icr and _(ai)lsﬁg;

respectively, modulo torsion.

where (ai) are bases for A(K) and At(K)
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h is the diagonal map of the lower left square of (6.7).

Sincc.Tp(lLD = 0, h is a quasi-ifomorphism, and

z(h) =

1. 1
TRGITT, = T I,

tors” 'p

The isomorphism of the top row is obvious. After passing

to the inductive limit and replacing A by At, (6.1) and
(6.3) read

0o —> 1°(x,2%) e @ /z —>u'(x,2%(p)) —> ||| (p)—>0
0 —> H(X,A(p)) . —> H'(x, a%(p)) —> B (X,3%(p)) —o0

where Ji| " = [Il (a). But HO(X,E%(p))p = HN(T,A%(X))(p) =0

>/ t t .
and H°(X,A)® @ /Z ~A"(K) ® @ /Z , so there is an exact
(x,%) © 0 /2 % 2%(K) 0 0 /%, 5o ther

sequence
0 —>a’(k) e a/z ———> B (X,a7(p)) —> [|]|" (p) —o0 .

We define g* to be the dual of g, Since |||'(p) is finite,

' 1
g* is a quasi-isomorphism and z(g*) = " .
iLﬂL(P)]'p

f is induced by the identity map on Hl(f,T A)., The cup-

products defined in §3 give a map'




v

o

e
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e = ‘ ‘ = =t
o (X, ) ——> Hon (2'(%, B), z/p"z)

“and cénsequently a map

—_ . —_ -t ——
Hl(X,AV)r _— Hom(Hl(X,AV), za/pV?Z)r ~ Hom(Hl(X,As)r, Z/p %),

The duality theorem in the Appendix shows that the cokernel

of this map is

— — T ~ S —
Hg(x, (Av)cc) ~Extl (TpJ, A )1“ (cor. 3 to Theorem 1) .

Thus, after passing to the projective limit, we get an

exact sequence,

1=  — c l,=- —t T . 1 - =T
0 —>H (X’TpA)I‘ —>Hom(H (X,A (p)), mp/xp)———aactE(TpJ,TpA) ->Q,

From the remark following proposition 2, £ and ¢ are quasi-
isomorphisms and

z(£)z(e) = |« TT (1-22)
E ai#wj ilp

where d = dimension of A, g = genus of X, q = [kx], and

i)l§i£2d and (wi)Lgigeg are the roots of the

characteristic polynomial of the Frobenius endomorphism
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of A and J respectively, relative to k.
Theorem 2 shows that the diagram cdmmutes., Consequently

we have proved the formula,

, a>

det S —

log q p*

ngT.T(l——m,

ai%wj i'p

| ik <p)|

Byvreplacing A by At we get the same forﬁula, exéept with
[]r replaced by U s so [ ()] = []]|(p)]. since this

formulalholds for all primes p, [|]|] is finite and

'8>

<a
(6.6)  q*° T‘T (1 -_—1) = (110 |aet .

L.l

log

o]

It remains to reiate this to the form of the conjecture
stated in the Introductlon. We nse éssentially the notation
ot I35, §l] o ,
Chqose:for eacﬁélosed péint v of X’a ﬁaar,measufe,uv
voq K, su¢h that uv(OV) = 1. Choose a nén—zero'invariant
exterior differential form w of degree d on A»defined over.k.

Then v is "good" for w andrgifor all v, Hence -

1#(s) = 1ul%(s) - WETT,
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lu[ is the measure of the quotient by K of the adele ring
of ¥, relative to the measure = TT u . This is easily
seen to equal qg“l.

By comparing the expression (valid for Re(s) > %)

| N 24
L(s) = TT,TTo0 ¢ T e

- d (4 d -
i=1(y eg g ( eq V)S) _aieg Vg (daJV)s)

with

=TT (—5==)

—2g
| T4=1(1-05t)
(1-t)(1-q t) V9o v

z(x, t) =

we get a rational expression for L{s),

(l-w.a.q—s)
L(s) = T*T TnT .

1= Jl(l—aq )(l-aq

l-s, °*

)
Thus the order of the zero of L(s) at s = 1 is equal to the
number of pairs (i,j) such that al = ;. But by
[37, Theorem la], this last number is equal to r, the rank
of A(K) (as the first conjecture of Birch and Swinnerton-Dyer

predicts). It is now easy to show that

14 L(s) _ ¢“(1log q)F TT (1 - ;l)' .

TN ()T a0)® egfe,
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But [A{K)torsjiz [A(k)] = [At(K)tOrs], so (B) reduces to

the eqguation (6.8), and the procf is complete.

Corollary, Let f: Y —> X be a k-morphism of a
surfaée'Y ogto a curve X for thch conjecture (d) of [35]
holds and which is such that the Jacobian of the generic
fibre of £ is defined over k (for example, f the projection
of X xk'X' Qnto X, where X' is a smooth, complete, connected;

~algebraic curve over k). Then the Bréuer group of Y is
finite and its order is given by the conjecture (C) of [35].
Example (Tate). If El and E2 are two non-isogenous

elliptic curves over a finite field k, then the Brauer group

of E, xZ,. has (nl— 2 elements, where n

1%, = [El(k)] and

Bo 1

n2 = [Ee(k)]. If E is a non-supersingular elliptic curve

over ¥, then the Brauer group of E_xk E has

, 2 ‘ ‘
. (Endk(E): %[Ek]) elements, where F, is the Frobenius

endomorphism of E relative to k.
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Appendix: Duality in Flat Cohomology

Let X bDe a complete,'connectéd, smooth, algebraic

curve over a field k, and let Gm(p) = (j iv) be the

3
pY

é;divisibleigrbup associated to Gm.
Assuﬁe first tﬁat k is algebraically closed. The

- -argument of §3 gives,vin éhe limit, a cup pro&ucﬁ pairing

e ‘

i g L, ; o
H (X,N) x B° (X,N ) ——>H (X, € (p)) = VR

for all finite group schemes N over k which are killed by

some power of p.

Theorew Al: The cup prodﬁct defined above is a perfect

duality of finite abelian groups, for all finite group

schemes N over k which are killed by a power of p, and which

are such that'N = 0;
oL cc

Remark: - This last restriction is necessary. Ho(x,ap) = 0

' for all X, but He(x,ap) - 0 if and only if

1(‘XMVHO ) —;Ee>H1(X J:O\) isksurjective>wi e if'and‘
| X Zar’ x 2 A | .

H
Zar

only if the Jacobian of X has the maximum number of points

of order p [30].
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Proof: If p # characteristic of Xk, thep thé theoreﬁ is
just a very special case of the étale duality theorem éf
Grothendieék [39], so for the rest of the proof we assume
P = characteristic of k,

Observe that, because of the functorial p:opertiés
of the cup product, we have only to prove the theorem for
N equal to one of the simple group schemes;up or‘ZV@E.

For any finite p-primary group scheme N over k,'Cértier
duality gives an isomorphism Exti(%ypvngD)——Eie»Exti(N,m v)

A p

which, in the limit, becomes Exti(%,ND) = Exti(N,Gm(p)).
This isomorphism in fact holds with X replaced by any object
U of Xfl’

sheaf associated to the presheaf

and is functorial in U, so Ext;(N, Gm(p)) is the

U --~a.Exté (%,ND) = Hl(U,ND) .

But this sheaf is zero [2, II 2.5], so Exti(N, mm(p)) = 0,

Consequently, the edge morphisms -

S, D s : . : o
€ : H (x,N) f~—e>ExtX(N, Gm(p)) of the spectral sequence

HY (X, Ext;(N, ¢ _(p))) = Ext’ TS

% (N, Gm(p)) are isomorphisms

for s = 0 and 1, and are injections for s = 2,
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If N = My and ¥ = 0, or N = Z/p% and r = 2, the
. . o : 2 ,

theorem is obvious, for H (X,;up) = 0 and H (X, Zp®) = ©
(because 1-F is surjective on Hl(X, OX) [so, p. 38]).

Take N'= Z/p%Z and r = O, Since
Ext (%, € (p)) = H'(X, 6 (p)) = Pic(x)(p) is p-divisible,
the map Exti(%yp%g Gm(p)) «-e>Ext§(Z, Gm(p)) induced by
any non-zexro map & —> %Vp% is injective, This shows

that the Yoneda pairing
o 2 2
H (X, %/pz) x Ext (%Z/pZ, G (p)) —>H (X, ¢ (p))

is a perfect duality. The same result follows for the cup
product pairing, usingAthat
€yt HQ(X, mp) —— Exti(zgﬁﬁz, Gm(p)) is injective and
(1°(x, z/pm)] = p = [8°(x, 1)l

A very similar argumenﬁ proves the case N =;up and’
r= 2,

Take N =1up and r = 1, It is proved in [30, B2] that
the two groups Hl(x, ZVbzﬁ.= ker(l;F: Hl(X,OX)-e»Hl(X,OX))
and Hl(X, up) = pPic X are dual, and we show that the cup

product gives essentially the same pairing.
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Let x € Hl(x, ZVp%),Iand let P be a principal
homogeneous space fof Z/p% over X wvhose cohomology class
is x, The?e is a finite Galois covering m: X' —>X,
éroup G say; such that P becomes trivial on X' (e.g.,.take
X' to be the scheme representing P). Let p € P(X')., @G
”6perates on X' so it operates on P(X'), and the equation
op= p a(o) (o € G, a(o) € z/p=m) defines a homomorphism
a: G —> Z/pZ, Moreover, x is the image of o under the
map Hom(G, Z/pz) = Hl(G, % /%) —4——>Hl(x, %Z/pZ) given by
the Hochschiid—Sefre spectral sequence of X'/X [3, vIII 8],
(6, 3.7.6].

Let Py and By 5e the projections X' Xy X! ::::::;IX'.
The Cech l-cocycle corresponding to x is (n),

n € (zz/pzz)(x'xxx'), where p’_{(y)n = pZ(y). By [3, VIII 9.1],
to give a sheaf F on X is the same as to give a sheaf F' on
X' together with an isomorpbism pIF' —_— pZF'
(satisfying certain conditiqns). In these terms, the image
of x under the map Hl(X, Z/p%.) —~—e»Ext;(mp,pp) may be

described as the class of the sequence

E: O -~ i > > O where
"'—))“'p —3 (| pxup)t /al >
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E' = (¢ o ! > —> 0) and
( B S S TH > M, —> ) an

®: PIE' —> p;E' is

(o] > > X : o)
. > ll-ip > nup .MP " ”»lp >
I ey
o1 ‘
0 ~N N ¢ x N N o .
/lU-p /Pp iUp /!Hp >

There is a unique isomorphism JloEG Xé ~5Le>X' XX X!

(Xé = X') such that p.d restricted to X; is the identity

map, and peq'restricted to Xé is the automorphism of X'

*

1
> (pzq)*E'. In

induced by o, Thus, to give an isomorphism w: p.E' —~ﬁ>p§E'

is to give an isomorphism ¢': (P1Q)*E'

the above case, o' is determined by the following operation

of G on E': G operates on the ju_ through its operation on
¢ no
X', and 0 € G operates onfupXup via the matrices(O o

where yn = oy, i.e., n_-= a(o).
The cohomology sequence of E is

1l
(

1 Y 1 6 2 B
H X,:up) ——>H (X,(fupnup)t) —— H (X,lup) —> H (X,;up)

~ and the composite of & with the injection

2. . 1 2
H(X, ) —> B (X, 6, (p)) is the map H (%1 )—> H2(%,6_(p))
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“taking an element of Hl(Xgup)v to its,cup ?roduct with x,
Thus;»fc prove the pairing is a duality, we have only to
ghow‘that 6 is non—zero,.or equivalently, that Y is not
sur jective. But the Hochschild-Serre spectral seguence
for’X'/ngives a commutative diagram

. A N ) L
H (X, wp) > E X, (b)) ——> & (%, 1)

R

l,... G 1 G ' 1 G
H (X0 )T ———> (X, wox )T —Y— i (xe, )

Hl(X',Jurxu') ~ Pic(X') X Pié(X') and ¢ € G operates byk
: PP . D P : :

o(u,v) = (ou + a(o)cv; ov). Suppose v € pPic(X') is in
the image of v', 'Theh v is fixed under G, and there exist
elements u € pPié(X’) and 0 € ¢ such that cu-u = v. We
shall show that this condition is not satisfied by all
v € pPic(X')G ~ pPic(X),"and consequently that v’is not
surjective. e

Let Q be the.sheafrof differentials on X, and K

the function field of X. Then the cup product pairings

' 1 | 0, g o
<,>: H (XZar’ OX) X H (XZar’ QX) —>H (XZar’ QX) ~k
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[31, 1T 10] are perfect dualities of finite dimensional
vector spaces over k., Moreover tie map
. . o . ‘
e pPlc(X) ——> H (XZar’ Qx) which takes the class of the
divisor D, pD = (£), f € K, to the logarithmic differential
%; s gives an isomorphism of pPic(X) onto Ho(XZar’ QX)C;
the subset of HO(X, s qx)'of those elements which are

Zax

fixed under the Cartier operator C [30, §ll]. The pairing

< , > induces a perfect duality

1l : F o c
H (xZar’ Ox) X H (XZar’ QX) E n%"
1l F 1 . A
and H (XZar’ OX) = H (X, %/p™). Similar statcments h.ld
for X',

Now let v € Pic (X), and suppose there exists

u € pPic(X') and ¢ € G such that ou~-u = v, Choose

&

u_,v, € Pic(X') such that pu = u and pv_ = v, and choose

divisors Do and D; on X' which are in u and'vé respectively.
Then D = pD_ € u and D' #'pD; € v, and

) . .
p(Do + D - oD, ) = (D' + D -~ oD) = (e), some e € K', i.e.,

6'(vo+uo-ouo) = %?. Write N for both norm maps XK' —>K

and Pic(X') —> Pic(X). Then N(D'4D~oD) = pD' = (Ne)



69

d Ne -
Ne °

so e(v) =

. 7 "Q d 3 N
<x, 6(v)> = <x, 9~1\~“‘-> <m*x, —~§> [31, III 2,3%]

i

Ne

= 0

for X' was chosen so that m¥x = O, But we know from the
previous paragraph that there exists a v € pPic(X) such
that <x, ©(v)> 4 0, and this v cannot therefore belong to
the image of v. This completes the préof of this case of
the theorem,

Finaily, take N = Z/pZ and r = 1. It is not difficult
to'shpw that the pairing is nondegenerate in this case if
and only if it is nondegenerate in the previous case. For
exanmple, let x € Hl(X,;up), let y € Hl(X, Z/pZ), let

1, . 1 1
- s
x' € E_hx(%/b3,|up) map to x under Eth(ZVb%ANp) f—e>ExtX(ZJpp),

&1et y' € Exti(%/ng %/p%Z) map to y similarly (and assume y'
chosen so that it is split by a flat covering of X), let x"
be the image of x in Exti(ZVbZ;up) under the map given by
thé spectral sequence, and let y" be the image of y in

.Exti(mp,lup) similarly. Then the image of (x',y") in
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2, | : . .
,Extx(z/p%,jup) under the obvious Yoneda pairing is the
Cartier dual of the image of (y',x") under a second Yoneda
péiring. Thus one of these images is zero if and only if

the other is, and this may be used to proverwhat is needed.

Cdrbllary:v Let Wn be the sheaf of Witt vectors of length n

—— e

_ ' ‘ 1
on X, . Then the subgroup of elements of H (XZar’ Wn)

which are fixed under F® is canonically dual to nPic(X).

Now take k to be a finite field._'It may be shown by
class field theory, or by using the computations over k and
the Hochschild-Serre spectral sequence of X/X, that

HB(X, Gm) ®a@/z [12,2]. Consequently, the spectral sequence

r+s

" (X, Ext®(N, € )) =>Ext’ (N, G_)
and the Yoneda pairihg
’ ,V N ) N - — - . ‘
H (X,N) x EXtS(,,I_",,,Gm) — B 5 (x, G )

- may be used to define a cup product pairing
r -~ D, - e forn
H(x, §) x B0 (x,8°) —> ©(x, ¢ ) = ¢/z

for all finite group schemes N over k.



e

- Theorem A2: The cup product defined above is a perfect

duality of finite abelian groups, for all finite group

sbhemes N over Xk,

Proof: For group schemes N such that Ncc = 0, the theorem
- is an immediate consequence of theorem Al and the
Hochschild-Serre spectral sequence for X/X (at least,
assuming that the two cup products are compatible). The
only cases left to be proved are N = ap and ¥ = 1 and 2.
It is not difficult to construct a pairing of the two

1 1
groups H (x,ap) = ker(F: H (X

1
Zar’ ox) —>E (XZar’ Ox)) .

2 1l !
and HV(X,ap) = cokexr(F: H (Xz . OX) ——— (XZar’ Ox))

ar
which is analogous to the cup product of [34, Th. 2] ana

which may be shown, using [1, Ch. 6], to be well-defined and
non-degenerate. However, we have not yet proven this pai.ing

to be the cup product, and so the proof of Theorem A2 is

incomplete at this point,
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