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REVISED PROGRAM OF THE
SUMMER INSTITUTE IN ALGEBRAIC GEOMETRY

(July 6 - July 31, 1964)
Monday, July 6: REGISTRATION DAY.

I. " THEORY OF SINGULARITIES.

Tuesday, July 7:

10:00 -~ 11:00 a. m. S. Abhyankar. Current status of the
resolution problem.
11:30 ~ 12:30 p. m. H. Hironaka. Equivalences and de~
formations of isolated singularities.
4:30 - 5:30 p.m. O. Zariski. Equisingularity and re-
lated questions of classification of
singularities.

II. CLASSIFICATION OF SURFACES AND MODULL,

i

Wednesday, July 8:

10:00 - 11:00 a.m. K. Kodaira. On the structure of
compact complex analytic surfaces.
11:30 - 12:30 p.m, T. Matsusaka. Deformations and
varieties of moduli.
4:30 - 5:30 p.m, D. Mumford. The boundary points

of moduli schemes.

Thursday, July 9:

10:00 - 11:00 a.m. M. Nagata. Invariants of a group in
an affine ring.

11:30 -~ 12:30 p.m. M. Rosenlicht. Transformation spaces,
quotient spaces, and some classification
problem.

Wednesday, July 15:
4:30 - 5:30 p.m. J. Igusa. On the Siegel modular variety.
I, GROTHENDIECK COHOMOLOGY.

Friday, July 10:
10:00 - 11:00 a.m. M. Artin. Etale cohomology of schemes.



11:30 - 12:30 p.m. J. L. Verdier., A duality theorem
in the etale cohomology of schemes.
4:30 - 5:30 p.m. d. Tate. Etale cohomology over

number fields.
IV. ZETA FUNCTIONS AND ARITHMETIC OF ABELIAN VARIETIES.

Monday, July 13:

10:00 - 11:00 a.m, J. W. S. Cassels. The arithmetic
of elliptic curves and abelian varieties.
11:30 ~ 12:30 p. m, B. M. Dwork. (Title not available)
4:30 - 5:30 p.m B. Shimura. The Zeta-function of an
algebraic variety and automorphic
functions.
Tuesday, July 14:
4:30 ~ 5:30 p.m. J. P. Serre. L-Series of schemes.

Oscar Zariski, Chairman
Organizing Committee
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CURRENT STATUS OF THE RESOLUTION PROBLEM

by

Shreeram S, Abhyankar

81, The problem and its history,

The problem can be stated thus:

Resolution Problem, Given a function field K over a pseudogeometric

Dedekind domain k does there exist a nonsingular projective model of K
over k ?

Before giving the history of the problem let us recall the definitions of

the terms used above,

DEFINITION, By a Dedekind domain we mean a normal (i.e,, integrally
closed in its quotient field) noetherian (integral) domain in which every
nonzero prime ideal is maximal; note that then any field is a Dedekind domain,
A ring (commutative with identity) k is said to be pseudogeometric if k is
noetherian and for every prime ideal P in k we have that the integral
closure of k/P in any finite algebraic extension of the quotient field of
k/P is a finite (k/P)-module, Note that: every field is pseudogeometric;
every Dedekind domain of characteristic zero is pseundogeometric; a Dedekind
domain k is pseudogeometric if and only if the integral closure of k in any

finite algebraic extension of the quotient field of k is a finite k-module,



By an affine ring over a domain k we mean an overdomain of k which is

a finitely generated ring extension of k., A local ring (i.e.,, a noetherian
ring with a unique maximal ideal) R is said to be a spot over a domain k
if R is the quotient ring Ap of an affine ring A over k with respect to a
prime ideal P in A, The significance of the notion of pseudogeometric is
the theorem of Nagata to the effect that if k is a pseudogeometric domain
then every affine ring over k is pseudogeometric and so is every spot over
k. By a function field over a domain k we mean a field K which is a spot
over k, i.e,, K is the quotient field of an affine ring over k, Given a
function field K over a domain k, by a projective model of K over k

we mean a nonempty set V of local domains with quotientfield K suchthat there

exists a finite number of nonzero elements KpreoasX in K such that
m .

Vv = U Vi where Vi is the set of all quotient rings of k[xo/x..... yx_ /x.]
i=0 i m’ i
with respect to the various prime ideals in k[xo/xi. ves) xm/xi] ; V is gaid
to he nonsingular if every element in V is regular,
History, Let K be a function field over a pseudogeometric Dedekind
domain k, let n' be the transcendence degree of K over the quotient field
of k, and let n be the absolute dimension of K over k, i,e,, n = n' if
k isafield, and n = 1 + n' if k is not a field, The Resolution Problem
has been settled affirmatively in the following cases: For n = 1 the solution

is classical, For n = 2 and k = the field of complex numbers, after

several possible solutions by the Italians (notably by Alabanese and Levi)
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the first rigorous solution was given by Walker/ in 1935; Walker's solution
makes use of the local solution (i, e., solution of the local uniformization
problem which is the localized version of the Resolution Problem) for

n = 2 and k = the field of complex numbers given by Jung in 1908 in

the Crelle Journal, When ’.:k is a field of characteristic zero, Zariski gave
2 solution for n = 2 in 1939 - 1942 andfor n = 3 in 1944; in 1940
Zariski also gave a local solution for n arbitrary and k = a field of
characteristic zero, For n =2 and k = a perfect field, Abhyankar gave
a solution in 1956, Finally, in 1964 Hironaka gave a solution for n arbitrary
and k = a field of characteristic zero, All these are publication dates and all
the solutions beginning with Walker's appeared in the Annals of Mathematics,
For n = 2, a rigoroug version of Albanese's proof was given by Artin in
the spring of 1963 whicﬁ works when k is an algebraically closed field of
characteristic different from 2, In November 1963 I gave a solution when
n = 2 and k/P is perfect for every maximal ideal P in k; this proof of
the Arithmetical Case is being published., In the last few months I have
obtained a solution for n = 3 and k = an algebraically closed field

(of any characteristic); to be on the safe side here I should say that this

is a possible solution in the sense that I have

proved several pieces and I roughly see how to put them together but as

yet I did not have the time to write up these peices systematically and to

fit them together, In any case my present investigations have just begun and

they would take a year or more to run their full course, So actually I would



have been happier to give today's talk after a year or so because thenl

could have simply said that this is what I can prove and this is what I cannot,
Presently I can only say what is cooking, The reason why after a lapse of
some eight years I have come back to the resolution problem is twofold,

The primary reason was that the fall of 1963 was the first time after 1955
when I got an opportunity to be in Zariski's neighbourhecodnot a Zariski
neighbourhood); it is a theorem that to resolve singularities it is necessary
to be near Zariski; the resoclution problem consists of proving the sufficiency
of this condition, The secondary reason was that after Hironaka's outstanding
work in characteristic zero, I heard a story from several people to the effect:
""We have heard that you are planning to take over the work on the problem
where Hironaka has left it off'', Although I was definitely not the source of

this rumour, nevertheless it prompted me to work,

82, Embedded resolution

Today 1 shall say nothing about the arithmetical case, Henceforth all
varieties will be defined over an algebraically closed ground field of
characteristic p which may or may not be zero, Having once stated the
problem precisely, henceforth I shall speak quite informally, A common
feature of all the above cited proofs is that to prove resolution for dimension

n one needs a stronger result for dimension less than n which includes at
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least the following:

Embedded Resolution, Given a nonsingular projective algebraic

variety W of dimension n and given a hypersurface H in W, there exists
a composite monoidal transformation q : W' —> W such that the total
transform q-l(H) of H has only normal crossings,

Concerning the definitions of the terms used above I shall say only
this: Given any irreducible subvariety D of an irreducible algebraic
variety W there exists a well defined birational map gq: Wt —> W
~alled the monoidal transformation of W with center D; q is biregular
on W-D; if W and D are nonsingular then so is W' ;if D is a polnt
then g is called the quadratic transformation with center D, If
q * w

_— W, qZ: W2 -—> W ,.,,,:..qt: Wt —_— W is a

1 t-1

sequence of monoidal transformations with nonsingular centers then the

1

resulting birational map -~ q W e > W is called a composite monoidal
transformation, Henceforth all monoidal transformations will be assumed
to have nonsingular centers, A hypersurface H in a nonsingular variety

W is said to have only normal coossings if for every point P of W there
X.30009X_ On W
exist regular parameters Dat P such that H is defined by x

b4 =
oeoe m

© n .
at P for some m S n,
Usually, after Embedded Resolution for n and before Resolution for

n one proves the following:



Dominance (or removal of points of indeterminacy), Given two

nonsingular projective models W and W#% of an n dimensional function
field, there exists a composite monoidal transformation W' —> W such
that W' deminates W*,

Concerning Embedded Resolution I can definitely say that I have a proof

for n = 3 in any characteristic; and this is the major step in the possible

e e T TE

proof of Resolution for n = 3 |whichI spok}a@/& Another dividendof this
result is that I believe one can now prove the birational invariance of the
arithmetic genus for dimension 3., In my proof of Embedded Resolution
for n = 3 I draw heavily from Zariski's proof of the same result in
characteristic zero which he gave in 1944 and also from the simplified

proof of this which Zariski gave in a note in 1962 in the Rendiconti,,, Lincei,

83, Peculiarities of nonzero characteristic

I shall now make various comments as to how the case p # 0 differs
from the case p = 0 and what are the possible ways to make up for this
difference., Let me say explicitly that it is not my purpose to find a proof
which will be essentially new for p = 0, I am only trying to develop an
algorithm or a calculus in p # 0 which will enable us to modify any given

proof (of resolution) for p = 0 so that it will work also for p ;f 0,

(1) Binomial theorem. Algebraically speaking, the basic reason why

the p = 0 proofs(of Zariski and Hironaka) fail for p # 0 is this:



[

Let

Z+)™ = 2P+ 22042

1

zzm'g/‘w vee £ YT,

L}

Then a, £ 0if m # O(p), and a, = 0 if m = 0(p) ., More

1
generally let

m m=1
f(z) = 2 + fIZ 4+ e fm

and

glZ) = (2 +Y) = Z +gIZ + ves t g o
m

Then what is the relationship between the fi and the gj, i, e,, which of the

fi affect a particular gj and how much?

(2) An example of (1) . Let

V: G(Zl....,Z ) = 0

ntl
be an algebroid hypersurface in the n + 1 dimensional local space An+1 .
Let m be the multiplicity of V, Then upon making a linear transformation

and invoking the Weierstrass Preparation Theorem we get

m -1 i
V:iZ 4+ gl(Ylp...,Yn)zm 4 oo *+ gm(Yl,...,Yn) = 0

where gi(O, eees0) = 0, Let g be the product of those g which are non-

zero, Let

H:g(Yl’..Q,Yn) = 0.
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Then H is an hypersurface in the n dimensional local space ‘A"n . Apply
Embedded Resolution to get a composite monoidal transformation

q: B —> An such that q-llH) has only normal crossings, Let

Xla vee ,Xn be suitable parameters at a point P in B, This amounts to
substituting certain power series XiseesX )y veey u (Xihenn, X)

for Yl""’Yn in g(Yl,...,Yn) so that

1
g(ul(xl"..'Xn)"..'un(xl’.."xn)) = g'(Xls....Xn)XT( )...Xral(n)

where g'(0,,4.40) # 0 and a(l),..., a(n) are nonnegative integers,

Then actually

a(i, n)
n

a(i, 1
gi(ul(xl"“'xn)“'"un(xl""’xn” = gi (Xl"“'xn)xl(' )..¢X

for all i for which g # 0, where gi(O,..;..O) # 0 and a(i, j) are

Let V* be

nonnegative integers, q induces q%*: B X A —> An+

1 1°
the proper transform of V by q*.vl « Then at the point (P,0), V#* is given

by
m a(i, 1) a(i,n) ,m-i
* : Z ! L R ] ’ oo 0 ' =
v + Z 8K, s ees X )X x2th ™ z
0<iSm, g #0
For the sake of simplicity let us suppose that a(i, j) = 0 whenever j#¥ 1,
. >~m~“\\_~“_“‘"“—

Let b be the greatest integer such that b : a(i,1)/i for all i for
which g, # 0., Then a(i',1) - bi' < i' for some i'. Make the

. (3 3 - *
composite monoidal transformation givenby : Z = Z X]; o Let V' be
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the proper transform of V¥ under this transformation, Let Q be a point
of V', Then there exists a unique element d in k such that "Z% =dat Q"

Let Z' = Z% o d, Then Xl""’xn’ Z' are parameters at O and at Q

we have
Vi f(Xl,...,Xn, 2ty = 0
where
f(Xl,...,Xn,Z')
=z ™ 4 DR TTRTE S Saa ol LA R S

; 0<i§ m, gi%d

Let ' be the multiplicity of 'V' at Q. Since afi',1) - bi' < i' for some

ity we getthatif d = 0 then m' < m; a reduction! So now suppose that

d # 0. At this point there are various essentially equivalent ways of

arguing provided m # 0{(p) . For instance, following Hironaka, we can make

the initial coordinate transformation Z —> Z . (1 /rn)g1 which will have
m-1}

the effect that the coefficient of Z will be zero, i e,, we will then have

g = 0 and hance

X, p00e9X ,2') = z™ + dmZ‘m“l + terms of degree less than m-1 in 27 ,
1 n
Then m' < m because dm 7' 0., However if m = 0{p) then in the first
place we cannot make the transformation Z —> (1 /m)g1 s+ and in the second

place even if g, Was zero to begin with we still cannot conclude that m' < m
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because now dm = 0, We shall now make several observations,

(3). Peculiarity arises when the multiplicity is divisible by p.

(4) The most primitive case of the above peculiarity is afforded by:
zP . g(Yl,.. .e Yn) = 0, The two dimension case (i,e,, n = 2) of this
was explicitly mentioned by Zariski in his 1950 address and there he pro-
nounced it ""intractable' .

(5) It is not necessary to kill g, completely, i,e., it is enough to
kill the terms of low degree in gy Because then a{l,l) > b and hence

! in £(Z') will be a unit, In any case if we have

again the coefficient of z"
a{l;1) > b then we are all right, In other words, the X -value of g,
should be big enough compared to the Xl -values of the other 8;e If

m = O0(p) then of course g, does not play the dominant role, But it

turns out that even then we would be in a reasonable shape if say
(Xl-value of gi) Z (i/m)(X1 ~-value of gm) for i = lysseym.

It can be shown that if the above inequality fails for some i then Xl must
split in the covering V' —=> (space of Xl,. ..,Xn) s leey, Xl must split
in the field extension given by f(Xl, coe 'Xn' Z') , So one should try to

arrange that X. does not split,

1
(6)e In the general case, i,e,, when one does not assume afi,j) = 0
for j ;1 1, one tries to arrange matters so that for any i ;‘ i* either

* . ] [ ' ] < £ 3
g divides g ©OF 8 divides g i.ed, either af(i,j) = a(i¥*,j) for
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all j or af(i%,j) s ali,j) for all j. This really means that instead of
only applying "Embedded Resolution'' we also invoke '"Dominance'., In
this general case one should accordingly try to arrange that each of the Xj
which occur with a positive exponent does not split in the field extension

given by f,

(7) Instead of killing gy Zariski used differentiation arguments,
But then after all the binomial theorem and differentiation are in essence

one and the same thing,
In 84 and 85 I shall further elucidate observations (5) and (4)

respectively,

34. Nonsglitting

Let W be a nonsingular projective algebraic variety of dimension n-

and let V be the normalization of W in a finite algebraic separable

extension of the function field of W, i,e,, we have a covering map

V —> W, Let D be the branch locus on W, By Embedded Resolution

we can find a composite monoidal transformation q: W' —> W such that
q‘l(D) has only normal crossings, Let h: V! —> W' be the corresponding
covering map and let D' be the branch locus on W', Then D' C q-l(D) .

It can then be shown if p = 0 (or more generally if V! —> W!' ig a tame

covering) then the irreducible components of q—l(D) do not split locally on
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Vi, i,e,, if P' € V' lies above Q' € W! and E is any irreducible
component of q-l(D) at ' then only one locally irreducible component
of h-l(E) passes through P', In other words, if £(Z) = z™ 4 ngm-1 +
+oeotg  is alocal equation of the covering P' —> Q' and Xl’ etos Xn
are parameters at ' such that q‘l(D) c (X1 ooy Xn = () then for

1 = l,.sv», n we have that the valuation at Q' given by Xi does not

oplit in the field extension given by f(Z), Thus what was achieved by
Hironaka by killing g, and by Zariski bytusing differentiation arguments
can also be achieved by simplifying the branch locus, The idea of
simplifying the branch locus to resolve the singularities of V was
actually used by Jung for n = 2 and k = the field of complex numbers,
and it was also proposed by Zariski (1954: Bulletin des Sciences
Mathematiques ) as a possi'ble method of resolutinn of singularities for all

n when p = 0; also Zariski used this idea in his Lincei note cited in

82 . Both of them used this only to have a nice structure for the local

ring of P' and not for the nonsplitting business, However, we thus see
that this Jungian method of simpl{fying the branch locus (i,e., transforming
the discriminant into a monomial times a unit) and the Zariski-Hironaka
method of transforming the coefficients into monomials times units~ are in

essence very closely related, although they may not appear so at first

Sighto
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Actually in 1953, Zariski had suggested to me to study Jung's
method and to see whether it could be used for resolution of singularities
of a surfacein p # 0., At thattime I ended up by showing that in .
p # O : the local Galois group above a simple point of the branch locus
can be unsolvable, and a point lying above a simple point of the branch locus
can be singular, and hence Jung's method cannot be used, The examples
were published in 1955 in the American Journal where it was shown that
they can occur only for nontame coverings., There I also showed that
although the nonsplitting holds for tame coverings, in general it does not,
and I went on to comment that: this '"local splitting of a simple branch
variety by itself' is the real reason behind the pecullarity in p £ 0,
Later on in a 1957 paper in the American Journal I exploited a similar
splitting of a branch point on a curve to get results like the following: every
curve in p # 0 can be projected onto the projective line so as to have only
one branch point , On the other hand, in a series of papers published
in the American Journal in 1959-1960 I used the nonsplitting for tame
coverings to study the tame fundamental group of an algebraic variety,

Now after eight years the circle is completed, Namely, it turned out
that (for a covering of a surface where the covering degree is either not
divisible by p or is a power of p) if we keep applying quadratic trans-

formations, even after the stage when the branch locus has only normal



14,

crossings, then eventually we shall reach a stage when we have
nonsplitting; and what is more important is that we can reach a
stage which is stable, i.e,, when the nonsplitting is not destroyed by
applying more quadratic transformations; needless to remark that the
number of quadratic transformations required to achieve such a stable
nonsplitting stage depends on the given covering. Moreover, in the end
we reach a Jungian situation after all, This realization was forced upon
me by working on the arithmetical case in which no single method seems
to work by itself, The arriving at a stable nonsplitting stage is also the
main novel aspect of my proof of Embedded Resolution for n = 3, i,e,,
for surfaces,

All this leads me to pose the following conjectural supplement to

Embedded Resolution,

Supplement 1 , Let W be a nonsingular projective algebraic variety
of dimension n, let V be the normalization of W in a finite algebraic
separable extension of the function field of W, and let D be the branch
locus on W for the covering V —> W, You may assume that D has
only normal czesaings. Find a composite monoidal transformation
q: W' —> W such that nonsplitting holds for q-l(D) relative to the

corresponding covering V' —> W', Do this in some stable sense,
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It is proposed to use this as an inductive atep in the general

resolution problem,

85, Units cannot be neglected

Let us now consider the primitive case
v: zZP o g(¥0eeen¥ ) = 0,

The nonsplitting business clearly has no bearing on this. By Embedded

Resolution we can achieve

1
g(Yl"...Yn) = g'(Xl'...'Xn)xi( )nooxi(n)

&

where g'(0,...,0) # 0. If at least one of the a(i) is not divisible by p
then we can do something, But if a(i) = O(p) for all i thenupon making a

composite monoidal transformation we get
vy 2P gH X seeesX ) = 0
where
g*(xlo ¢...Xn) = g'(Xlu.-,Xn) - g’(O. eees0)e

So we achieved nothing because the order of g*(Xl, cos ,Xn) may even be
greater than the order of g(Yl. ¢ees Y ). Inother words,in p £ 0 we

cannot neglect the unit g‘(Xl. seey Xn)' A similar situation prevails for

u
v: zP . Y rees¥ ) = 0,
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Thus we are led to another conjectural supplement to Embedded Resolution ;
this one cannot be formulated completely geometrically, i,e,, we cannot
talk of a hypersurface but we must actually deal with a power series,
because we are now not interested in a principal ideal but in a specific

power series,

Supplement 2, Let m = pu where u is a positive integer, Let
g be an element in the power series ring k[[Yl' cves Yn]] such that
g ¢ k[[Y;n, cosd Y:l ]]. Find a composite monoidal transformation
q: B — An » Where An is the local space of Yl' couy Yn » such that at any
P € B there exist suitable parameters Xl’ secy Xn such that upon
considering g as an element in k[[Xl, ess ,Xn]] we have that

a(l)
1

m

g = b + (X 2(a))y mg.

L] Xn

where a(l),...,a(n) are nonnegative integers and h and g* are
elements in k[[Xl,..,,Xn]] such that 0 < (order of g') < m,

Actually this is not entirely satisfactory because it is not a stable
situation, One must ask for a stable situation, Here I shall not pursue
this matter further because things would get too technical,

As such the primitive case may not occur in practice because we can
choose a separating transcendence basis, etc, However, in the separable

case
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-1
ZP + gl(Yls'ooan)zp t eee +gp(Y1,....Yn)

the nonsplitting business will help only to see to it that Byroees gp__1
do not intefere too much, The game is still to be played with gp. In

other words, it is proposed that:
(general case ) = (primitive case) + (nonsplitting) ,

Anyway, this is how I carry out things for surfaces,

§6, Resolution for coverings

I shall conclude by mentioning a more general resolution problem
which is of interest in itself and some form of which may very well be useful
in an inductive set up for the original resolution problem

(1)s Give an intrinsic definition of a Jungian local domain, i.e.,
of a normal local domain which in case of characteristic zero can be projected
onto a regular local domain so that the branch locus has a normal crossing;
(for dimension 2 I have done this in a forthcoming paper),

(2)e Given a function field K and a finite algebraic separable
extension L of K, does there exist a nonsingular model of K whose
normalization in L is Jungian?

(3). Given a function field K and a finite algebraic separable

extension L of K, does there exist a Jungian model of K whose
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normalization in L is nonsingular?
I shall only remark that (3) is nontrivial even when the characteristic

is zero and we require the model of K to be only normal,



EQUIVALENCES AND DEFORMATIONS OF
ISOLATED SINGULARITIES

by H. Hironaka

When I speak of deformations of isolated singular points on algebraic

schemes, the basic setup is as follows:

T: X->Y is a morphism of schemes, Y is a noetherian scheme, T is of

finite type and flat, &: Y —> X is a morphism such that 7-£ = identity, 7

is smooth on X - £(Y), and all the fibres XY =q-1 {y), vy€Y, are reduced

and equidimensional (i.e., all the irreducible components of XY have the

same dimension). Here the word '"smooth' means that if x is any point of
X- €(Y) then (assuming that Y is affine, say Spec(A), without any loss
of generality) 7 is decomposed into an étale morphism from a neighborhood
of x in X to Spec (A[tl yeoss tn]) Land the projection from this spectrum
to Y = Spec(A), where n = the dimension of the fibres of 7. It follows
from the assumptions, that the fibre XY for each y € Y is non- singular,
except for the possible singularity at e(y) € Xy . Thus we have a family of
algebraic schemes with (possible) isolated singular points, { (Xy’ e(y)) 1},
which are parametrized by the points of Y. If Y is a non- singular curve,
then the flatness of 7 means simply that every irreducible component of X
is surjectively mapped to Y. In general, it implies that all the fibres Xy’
y € Y, have the same dimension and that every irreducible component of X
is surjectively mapped to a connected component of Y.

In this basic setup, we do not lose too much by taking "'algebraic



varieties, say, over an algebraically closed field" instead of "schemes''.
However, we need to consider some other 'derived' setups, such as trunca-

tions and completions of the given family, in which "schemes with nilpotent

elements in the structure sheaves! and '"formal schemes" are involved.
Suppose a family (of isolated singularities), (7,X,Y, ¢), is given as
above. Let 1 be the ideal sheaf of the subscheme £(Y) in QX‘ We write

then X(U) for the subscheme of X defined by the ideal sheaf _I_w'l

,» where
V is any non - negative integer. X(O) = ¢(Y) and all the X(v), v 20, have
the same underlying topological space. The structure sheaf of X(V) is
Oy /lvﬂ (restricted to its support). We have a canonical immersion

X(y) = Xy for K>V, and we call the limit space X = lim X, the I-

adic completion of X, The structure sheaf of this "formal scheme'" X is

lim -QX /‘_I_w-l . The morphism 7:X -3 Y (resp. £: Y - X) induces mor-
vV
. A

phisms ﬂ(v): X(v)-é Y and 7: 8> Y (resp. 6(,,): Y— X(v) and

A A

5(v): Y —> X). The "derived' family (n(V) ' X(v’, Y, €4y) (resp.

('ﬁ, )?, Y, £)) will be called the V-th truncation (resp. the completion) of

the given (7,X,Y,s).

In what follows, the main theme is ta compare a family (7,X,Y,¢)
with another (7',X',Y, ') (likewise, their truncations, or their comple-
tions ), where the parameter space Y is the same for all. By abuse of
language, I shall say, for instance, that

Cw) Ty X Yo S)) > (M) Xp)e Yo ey

is a morphism (or an isomorphism) within a neighborhood of a point y € Y,

when (,O(v) is meant to be a morphism (or an isomorphism) from



-1 -1 v e o . :
M) (U) to ﬂ'(v) (U) such that “(V) (p(v)-ﬂ(v), where U is a certain

neighborhood of the point y in Y.

Theorem 1. Let (7,X,Y,e) be afamily of isolated singular points

(in the sense described above). Let y be a point of Y. Then there exists

a pair of integers (t,r), t21 and r 20, which has the following properties

(I) Let V be an integer not less than t, and (m',X',Y,c') any family of

isolated singular points. Suppose dim (Xy) = dim (X'y) and there is given

an isomorphism <P(U) : (‘n-'(v) ’ X'(V) ’ Y » £‘(U) ) —g (ﬂ(v) ’ X(v) s Y ’ S(v) ) within

a neighborhood of y. Then the isomorphism

~
el

(p(u_r): (‘n"(v-r), Xl(l/-r)' Y, g'(U—r)) -— (“(V—r)' X(V—r)’ Y, E(U-r))’ induced by

~ A DA -] n O A cap s
qo(v), extends to an isomorphism ¢: (7', X',Y,&') — (7,X,Y,£) withina

neighborhood of vy,

(I1) I h: Y= Y is any morphism of noetherian schemes and '37 is

any point of Y such that h(;r') =y, then the pair of integers (t,r} has the

.Y

same property as (I) for the family (?17, X,Y,€) obtained from (7,X,Y, <)

by the base extension h, and for the point 37 of ?, where X =X XY?,

In particular, I shall consider the case in which X is an algebraic k-
scheme, with a field k, and Y is a geometric point of X with value in k
(or, a k- rational point). In this case, the theorem asserts, roughly speaking,
that the analytic structure of the isolated singular point Y of X is determinec

+
by dim X and by the structure of the truncated local algebra _C_)_Y /_x;n_; 1 '

where Qg = the local ringof X at Y and my the maximal ideal of

O



Definition 1. For a family of isolated singular points (7,X,Y,€) aad

apoint y of Y, Fcall (t,r) a pair of TR - indices of (m,X, Y, ¢) at the

point vy, if it has the properties (I) and (II) stated in Theorem 1. In parti-

cular, when an algebraic k- scheme X is given with an isolated singular

point y (with valuein k), (t,r) will be called a pair of TR - indices of

(X,v) (or, that of the isolated singular point y of X).

Note that if (t,r) is a pair of TR -indices of (#,X, Y, c) thensois
every pair of integers (t,r) suchthat t 2t and T 2r. It can be proved
that the integer r can be zero only if €(y) is a simple point of Xy .

The theorem has an obvious '""complex - analytic' analogue, in which X

and Y are complex - analytic spaces with holomorphic maps 7 and £. In
the complex - analytic case, one can find a proof of the theorem (for an
isolated singular point Y =y) in HIRONAKA - ROSSI, (3], which is based on
desingularization techniques (HIRONAKA, [2]; especially, Corollar)jr 1, p.
153, § 7, Chap. 0) and infinitesimal calculus due to Grothendieck - Grauert.

In this case, Grauert's normal projection method ([1], Satz 5, p. 359) gives

a stronger conclusion in which the extended isomorphism $ of the theorem

is holomorphic (or, to be precise, 6 is the formalization of a biholomorphic

map from a neighborhood of &!'(y) in X' fo a neighborhood of g(y) in X).
It was then pointed out by M. Artin that the normal projection method provides

an €tale equivalence (which implies a holomorphic one in the complex case)

instead of the formal equivalence é. On the other hand, I found a new proof

of the theorem (which works in the above - stated generality; for instance, in

any characteristic case) and by these means, 1 obtained a theorem of the



following type.

Theorem 2. Let (7,X,Y,e) and (7',X', Y, &') be families of

isolated singular points, and y a point of Y., Suppose there is given an

A ~ A

A
isomorphism fb: ('?r' , e , Y, ') = (#,X,Y,£€) within a neighborhood of

y in Y. Let V be any positive integer. Then, within a neighborhood of

y, there exist etale morphisms X: (%, )h(‘, Y,?) = (7,X,Y,£) and

' (T, XY, Y, €') — (m,X', Y, '), which induce isomorphisms of comple-

~ ~ ~ ~ s ~ ™~ ~
tions, and there exists an isomorphism ¢: (7', X',Y,e') —> (7,X,Y, ¢)

=
which induces the same isomorphism Pw)* (ﬂzv), sz). Y, szv)) ——>

(TT(V), X(v), Y, E(v)) as the given & does.

In this theorem, étale morphisms are meant to be those of finite type.
In my proof, this theorem and the preceding one are proven simultaneously.
It should be interesting to find a direct proof of the second theorem and to look
into the question of v:vhether it is essential or not to assume the smoothness of
T: X—=Y forg_.}l points of X - £(Y). (Note that this smoothness assump-
tion is essential in the first theorem.)

Let us now go back to investigate further the notion of TR - indices of a
family of isolated singular points.

Theorem 3. Let (7,X,Y,e) be afamily of isolated singluar points

and y apointof Y. Let (t,r) be a pair of TR -indices of (7,X,Y, ¢)

at y. Then there exists a neighborhood U of y in Y such that for every

point =z of U, (t,r) is a pair of TR -indices for the isolated singular

points (X,, £(z)), where Xz='ﬂ"1(z)-

The converse of the theorem is far from being true. Namely, let us



introduce the notion of TR - indices of all '"near-by" fibres of a family

(7,X,Y,e) atapoint y of Y. This is any pair of integers (t,T),

t21 and T 20, such that there exists a neighborhood U of y in Y
such that (t,T) is a pair of TR - indices of the fibres (X,,£(z)) forall
z € U. Then the claim is that (t,T) is not in general a pair of TR - indices
of (m,X,Y,e) at y.

The difference between the above two notions of TR -indices for a family,
namely (t,r) and (t,T), can be seen in the following two theorems, the
first of “affirmative nature" and the second of ''negative nature''.

Let us start with a fixed isolated singular point of an algebraic k- scheme
(Xp,xg). Let us then consider various families of isolated singular points
{7, X,Y,&) with center (XO, Xq }; that is to say, there is a specified point
Yo of Y and an isomorphism 60: (}%0' xo) —’25 (}?yo, € (yo)), where 5&0
(resp. ﬁyo) denotes the completion of X, (resp. Xyg) by the powers of the

maximal ideal at X0 {resp. the same at g(yc y).

Theorem 4. Given an isolated singular point (XO, X ), there exists a

pair of integers (T,T) such that if (7,X,Y,2) is any family of isolated

singular points with center ()/EO, xO) = ()A(yO, S(yo)), then there exists a

neighborhood U of yp in Y and (£, T) is a pair of TR -indices for all

fibres (Xy, &(y)) with y € U.

Theorem 5. SuEEose (XO, xo) is an isolated singular point of a com-

plete intersection XO, i.e., there exists a local imbedding of Xo in an affine

N - space so that the local ideal of XO at xgq is generated by (N - dim XO)

elements. Suppose X0 is not a simple point of Xp. Then, for every pair of




integers (t,r), there exists a family of isolated singular points (7,X,Y,s)

A A
with center (Xo,xo)-’E}(Xyo,z(yo)), such that (t,r) is not a pair of TR -

indices of (7, X, Y, ¢) at yg.

Let us remark that if (7,X, Y, &) is a family of isolated singular points
and Xy is a complete intersection at ¢&(y) for some y € Y, then there
exists a neighborhood U of y in Y so that all the fibres X, is a com-
plete intersection at £(z) for all z € U. Infact, X itself is a complete
intersection locally at e{y) in Spec (A Etl veeerty 1) with independent
variables t. (1 $jE N), where y € Spec (A)E Y.

In dealing with complete intersections, there is another point that makes
"deformation theory' simpler than the general case. Namely, let T: X = Y
be any flat morphism of finite type, say with a regular noetherian scheme Y,
and £: Y - X is a section, i.e., a morphism such that m<£ = identity.
Suppose that for every point y € Y, the fibre Xy is reduced and equidimen-
sional and ’8 (y) is an isolated singular point of Xy. Notice that such

(m,X,Y,£) is a "family" of isolated singular points (in the sense of this

paper) under only one additional condition that X - £(Y) is smooth over Y.
This condition means that Xy - £¢(y) is non- singular for all y € Y. Now
the point is that if all the fibres Xy are complete intersections then we can
always modify (m,X,Y, ¢) into another (%7,X,Y,T), satisfying the addi-
tional condition, in such a way that there exists an isomorphism

(F(m.-i(v), Y.E(v)) = (ﬂ(v),X(v), Y, E(U)) where (V,H) for some # is

a pair of TR - indices for all the isolated singular points (Xy, &(y)), vy € Y.

Let us furthermore remark that the existence of (t_,'i") in Theorem 4



suggests that:

The totality of all near-by isolated singularities of a given one is "of

finite type' in sone algebro - geometric sense.

The meaning of such a statement can be made very precise in the case of

complete intersections. Namely, let me introduce the notion of "'quasi - equi-

valent' families. This is as follows. Let (7,X,Y,¢) and (M,X',Y,¢')

be two families of isolated singular points, having the same parameter space
Y. Then I say that they are quasi - equivalent, if there exists an isomorphism
(Tl Xipy» Yo £ly)) = (M), X1, Yo £y ), where (v, B) for some i is

a pair of TR - indices for all the fibres (Xy,c(y)) and (X'y,s'(y)), vy € Y.
Now, I claim that Theorem 4 implies, for instance, that, if (Xo,xo) is a
complete intersection, then there exists a family of isolated singular points
(7%, X*, Y¥,£%) with center (5‘(0, %0 ) =5 (}/E*yo,f*(yo)) which induces
every other family of isolated singular points with i:he same center, ''up to

quasi - equivalences" within some neighborhoods of the center.

Theorem 5, on the other hand, implies that there exists no family of
A
isolated singular points with center (Xo . xo) which induces every other family

of isolated singular points with the same center, "up to formal equivalences"

(or, up to isomorphisms of completions ) within suitable neighborhoods of the

center,

These facts attract me towards the question of finding "reasonable and

{or) sigtnificant restrictions' to be imposed on families involved, which enable

us to construct '"a local universal family up to formal equivalences". For

instance, the question leads me to the notion of "equi - singularity', A theory




of equi - singularity has been dug up by Zariski and is gradually showing up its
clear face in some special cases. But it seems that a full and complete theory
is at present utterly out of sight.

Zariski's theory of equi - singularity is strictly concerned with "hyper-
surfaces'. Here I like to propose a notion of equi - singularity which applies
even to non - hypersurface cases, although the characteristic of the base field
is required to be zero as in Zariski's case.

Definition 2. Let X be an algebraic scheme over a field k of

characteristic zero. Assume that X is reduced and equi- dimensional.

Let Y be anon- singular irreducible subscheme of X. Let y be a point

of Y. Thenlsay that X is equi- singular along Y at the point vy, if

(replacing X, and Y accordingly, by a neighborhood of y) there exists

a morphism : X+~> Y which has the following properties:

i) (7,X,Y,eg) is a family of isolated singular points (in the sense

described at the very beginning), where €: Y—> X denotes the canonical

immersion, and

ii) let 90 be the sheaf of Jacobian ideals of (m7,X,Y,&) (see below)

and J the sheaf of ideals defining Y on X. Take the sheaf of product

ideals, } = ;OJ » on X, and the composition h: X—> X of the birational

blowing - up of X by the ideals } and the normalization of the blown - up

scheme. Let ?:ﬂ_o_}"(‘, the ideal sheaf on }? generated by ?. Then

~~

9_;('/‘9“ is flat over Oy, or, the subscheme Y of X defined by }N is flat

over Y with reference to the morphism moh.

The sheaf of Jacobian ideals of (m,X, Y, c) is defined as follows:
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For each point y € Y, by replacing X by a suitable neighborhood of £(y)
(and accordingly Y), I assume that there exists an imbedding
p: X —> Spec (A[T;,T,,..., Ty)), where Y =Spec (A) and T;
(1 ;S N) are independent variables, such that T = (projection)op and
the ideal of (pe<€)(Y) is generated by Ty1oTosenss Ty Then the sheaf
of Jacobian ideals {, on X is generated by (N - dim Xy) x (N - dim Xy) -
minors of the Jacobian matrix 3(fy,...,f,,)/9(Ty,..., Tyy), where
(£f1,. ...fm) is a base of the ideal of p(X) in A[T]. It is important
that the sheaf | is independent of the choice of imbedding p.

Remark. If the condition i) of Definition 2 is satisfied, then the
condition ii) is equivalent to the following:

%) }vv/';,“‘v+l

is flat over QY for all integers V Z 0.

Moreover, if il__n_u_ Y = 1, then it is equivalent to:

ii**) Every irreducible componenjt of 'l:;-l (6(Y)) is mapped onto a
connected component of Y by moh.

The following theorem suggests the possibility that the totality of all
small families of isolated singular points with a given center can be derived
from a certain universal family so long as they are subject to some equi -

singularity condition,

Theorem 6. Let (Xo, xo) be an isolated singular point. Then there

exists a pair of integers (t,r) such that for every family of isolated singular

points (m7,X,Y, £) with center (f(o,xo)?-‘-()/iyo,c(yo)), (t,r) is a pair

of TR -indices of (7,X,Y,¢) at Yo provided (7,X,Y, ) satisfies the

condition ii) of Definition 2.
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It seems to me that Theorem 6 remains true if one replaces the
condition ii) of Definition 2 by some reasonably weaker condition.
The condition ii) of Definition 2 has some geometric and topological
significances. From now on, this condition will be referred to as
Yicondition (ES)". I take now the case in which the base field k is the com-
plex number field C. In the place of "schemes', I shall take '""complex -
analytic varieties'. Notice that the "condition (ES)" has an obvious analogue
in the complex - analytic case. Let (Xg,, xo) be an isolated singular point,
where XO is now a complex - analytic variety (reduced and equi- dimensional
Suppose we have a local imbedding p: XO - (EN. cN = the complex number
space of dimension N. For simplicity, assume that Pg (xo) = 0, the origin.
Let T, (X,) be the complex tangent space of X, at x € X,, #xg, which
is realized as a linear subspace of ¢N in a natural manner. If
u= (ul.uz, ...,uN) and v = (vl.vz,....vN) are two vectors in CN,
N —
then u-°v denotes the inner product Zi=1 u;*v; . Fora point x € X,
- . N .
let 0x denote the vector in €' which ends at x (and, as always, starts
from the origin). Consider the following real - valued function of
x € Xg - {xg},
-
iv . Ox|
T{py; x) = max ——
v €T (Xq) Iv] lox|

v¥O

where |v| = the length of v = \/zN ) ‘vi|2‘ . Then, Whitney proves:
1=
Theorem 7.
lim T(po;x) =1,

x-> 0
By this theorem, if we set T (po;xo) =1, then T (po;x) becomes a
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continuous function on X,. Suppose there is given a family of isolated
singular points (7,X,Y,£). Then, at least locally, one can find an
imbedding of the form p: X—> Y X cN suchthat 7= (projection)ep and

Let me say that such an imbedding p is permissible,
(pe€)(Y) =Y x 0., Pick one permissible imbedding p. Then, for each

point y€ Y, p induces an imbedding Py Xy = CN (=y X (EN). For this
induced imbedding py, I have a continuous real - valued function T (pY 3% ),
x € Xy. Let us define a real - valued function on X as follows:

T{p;x) =T(Py;x) if x€Xy, y€Y.

I shall call such a function T (p;x) a W -function for the family of isolated

singular points (7, X, Y, e). This function depends upon the choice of

imbedding p. I shall say that the W -function T{p;x) is associated with

the imbedding p. One can prowe that, given a family of isolated singular

points (7, X, Y, ¢), if a W - function associated with a permissible imbedding

is continuous on X, then the same holds for every permissible imbedding.

In view of this fact, we can speak of the continuity of W - function for a given

(7T, X,Y,¢g) without asking if X admits a global imbedding X ->Y X cN
for some N, because X admits a permissible imbedding at least locally
at every point of ¢(Y).

In view of the theorem of Whitney (or, some other reasons), given an
isolated singular point {Xg»%xg) with an imbedding p: Xo—> cN with
Py (xo) = 0, one can find a real number £ >0 suchthatif 0<é& <p, then
X(p is transversal to the sphere in €N with center 0 and with radius €;
this sphere S¢ has real dimension 2N-1. Such a real number p will be

called a permissible radius of (Xg»x9) with p,. Hence W, =X5N5, is
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a manifold of dimension 2n-1, where n =dim XO . If we identify SE with
a standard (2N-1)- sphere S, then the imbedding W, —> S is a differen-
tiable isotopy in terms of the parameter & (0<£Sp). Let us simply write
W for W£ » and the isotopy class (W, S) is the "topology'' of the singular
point (Xo , xo) with imbedding Pg - A family (7,X,Y,£) with a permiss-

ible imbedding p: X —> Y x cN  will be said to be topologically stable if for

every point y of Y, there exists a neighborhood U of ¥ in Y anda
positive real number p suchthat p is a permissible radius of (Xy, &(y))
with the induced imbedding Py : Xy = cN for ann y € U.

I can prove:

Theorem 8. Given a family of isolated singular points (7,X, Y, &)

with a non - singular irreducible Y and with a permissible imbedding

p:X-—)deJN,

(1) the condition(ES) = the continuity of W - function == the tbpolo-

gical stability;

(II) if dim Xy =1 for y € Y, then the continuity of W - function =

the order of singularity 0 (Xy,e(y)) is constant for y € Y. (8(Xy, &(y)=

dimc O /O, where O = the local ring of Xy at g£(y) and 6 = the integral

closure of O in the total rin_g of fractions of O, both beiniviewed as vector

spaces over C.);

(III) if dimXy =1 for y€Y and N=2 (i.e., the case of plane

curves ), there is a complete equivalence of various conditions, namely, the

condition (ES) =>» the continuity of W - function => the topological stability

=> the condition (ES).
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EQUISINGULARITY AND RELATED QUESTIONS OF

CLASSIFICATION OF SINGULARITIES,

by

O. Zariski

81, The elusive idea of equivalent singularities,

Ideally, a complete theory of equivalence of singularities must

give a precise meaning to a statement such as this: '‘the singularity

which a given variety V has at a given point P is ''the same!' as the

singularity which another given variety V! has ata given point P' ",

In addition, the theory must include a number of criteria of equivalence,

whether algebraic or algebro~geometric in nature; or topological, if
we are dealing with the complex domain, Naturally, one will impose
some restrictions on the ground field k, say k will be assumed to be

algebraically closed and even--to begin with-- of characteristic zero.
It goes without saying that the equivalence relation EEE:ﬂwwe are lookk

ing tgfor;is one which is much weaker than strict analytical equivalence

(i.e., isomorphism of the completions of the local rings of P and P'),
Each class of equivalent algebroid singularities will give rise to a

variety of biholomorphic moduli (the quotient space of that class,

modulo analytic equivalence). One should not egpect, however, that the

variety of moduli in this context will be irreducible, or even equidimensional,

Examples to the contrary can already be given in the case of singularities



of algebroid plane curves,
Similarly, if we are in the complex domain, we envisage an
equivalence relation which is much stronger than topological equi-
valence of the two varieties V and V', locallyat P and P' respectively.
Thus, if V is an algebroid plane curve, the only topological invariant
of V is the number of irreducible analytical brancheswhich V has at

the point P, However, if we deal only with normal points, then one can

expect that in this case the relationship between topological equivalence

and algebro-geometric equivalence will be much less casual than in the gener:

case, The only non-trivial result which we have in this connection is

Mumford's theorem that if an algebraic surface is topologically a

manifold at a normal point then that point is a simple point of the surface,
Still with reference to the complex domain, the set-up in regard

to the connection between topological equivalence and the (hypothetical)

algebro-geometric equivalence, changes radically if our varieties V and

V! are embedded varieties, i,e,, are varieties of dimension r, embedded

(locally at P and P! respectively) in affine (r+ 1)-spaces A, A',
and if we look at the complementary spaces A -V, A' = V', Then one

may conjecture that P and P' are equivalent singularities if and only

if the spaces A - V and A' - V! are homeomorphic (locally at P and

P' ). This is only known to be true in the case r = 2,



3.

83, The case of plane algebroid curves,

This classical case, in which everything concerning equivalence is
well-known, is nevertheless a very important case, because it contains
the germ of all possible generalizations, One must, however, have
a second look at this classical case, using a somewhat more sophisticated
approach than the one used by Noether and Enriques in their study of the
composition of singularities, Above all, one must devise in this case a
definition of equivalence which does not presuppose a detailed analysis of
the singularity, for in the higher dimensional case such an analysis is
a hopeless undertaking, Let me give you three such definitions and say
that it can be proved that they are all equivalent (the proofs are not
completely trivial) We assume throughout that the ground field k is
algebraically closed ( of arbitrary characteristic) .

If C is an algebroid plane curve, with origin P we denote by mP(C)
the multiplicity of the point P, If Py#sPyreeesp, are the distinct tangents
of C at P (t S mP(C)) » then we denote by CV( V= 1,2,000st) the
union of all irreducible branches of C which are tangent to P, and we

call Cl. CZ" ‘o Ct the tangential components of C ,

Let D be another plane algebroid curve, with some origin Q., We

assume that C and D have the same number h of irreducible branches,
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and we denote by 61 :+ O PARXY) bh the irreducible branches of D,

DEFINITION -, A (1,1) mapping 7 of the set of branches
of D

71’72""’71: of C onto the det of branches 61'62“'"611

is said to be a tangentially stable pairing 7 ¢ C —> D between

the branches of C and those of D, if the following condition is satisfied:

given any two branches Y3 and yj of C , the corresponding branches

ﬂ(‘yi) and 7 (y j) of D_have the same tangent if and only if v; and 75

have the same tangent, -

Assurg\':e that there €xists a tal%entially stable pai4 . m: C —> D
between A the branches of C a.m:l\*nex /aﬁches of D, Then\itis clear{
that é and N\ve the same > ber Nf distinct tangent i’ ines.and that

_,‘ﬂ inducesa (1,1) m \‘R%‘/g of the set {pl.pza . ..p/} of tangent line
C e@to the set ;[ql. i PY .\. .\q'}\of tangent lineé of\i\ We choose our /
e

/' /
1n_/thi/s induce '\x\pppmg, aad we dénote (resp. D ) t}?tan@txal

/

mdexmg s%ase tangent lines in such a’ way that P, and\q»\are red

(rersp., qy). Then\i’t\\

.
component of C (re ot D) associated with
\s\c\lear that for ea’ch 1,200000 t, 7 V(C — Dv of the set N

of branéhgs/ of C onto the set o branches of D (the pairing , is

C and D have on\ne

\

trnnally tané\éstxlly stable, sm,eé bot

tangent line), \ /

~
-

PN



Assume that there exists a tangentially stable pairing 7 : C == D
between the branches of C and the branches of D, Then it is clear
that C and D have the same number t of distinct tangent lines and
that 7 induces a (1,1) mapping of the set {pl.pz.. - .pt} of tangent
lines of C onto the set {ql,qz. veo .qt} of tangent lines of D, We
choose our indexing of these tangent lines in such a way that p, and
q, are paired in this induced mapping, and we denote by CU (resp, Du)
the tangential component of C (resp., D) associated with Py (resp., q, ).
Then it is clear that for each ¥ = 1,2,..., t, 7 induces a (i,1)
mapping m, CV — Dv of the set of branches of Cv onto the set of
branches of DV (the pairing T is trivially tangentially stable, since both
Cu and D, have only one tangent line),

Let 7 and T, be as above (T -tangentially stable), let T bea
locally quadratic taansformation with center at the origin of P of C and
let S be a locally quadratic transformation with center at the origin Q
of D, Let C' = T(C), Cl', = T(Cu) » D! = S(D), D"} = S(Dv) be
the proper transforms, Rtis clear that 7, induces a (1,1) mapping
7!  of the set of branches of C,, onto the set of branches of DY,.

v

Namely, if we assume that the branches of C and D have been so
indexed that ﬂ(yi) = bi. for i = 1,2,..,.,h, then we set

ﬂ'u (7{) = 6; , Where 'y; = T()’i) and 5i’=S(6i) . The pairing
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T, /4 c, —> D}, between the branches of C,, and the branches of
D;) is, however, not necessarily tangentially stable,

An algebroid curve C is regular if its origin P is a simple
pointof C , i,e,, if mP(C) =1, If P is a singular point
(i, e,, if mp(C) > 1), then we can resolve the singularity of C at P
by a finite number of locally quadratic transformations, By a sequence of

successive quadratic transforms of C we mean a sequence

{c,c,cn 1eeey C(i) seee} of algebroid curves C(i) such that
for each i, C‘ ~ is a connected component of the proper transform
of C(i) under a locally quadratic transformation whose center is

the origin of C(i)(C(o) = C), The fact that the singularity of C can

be resolved can then be stated as follows ; there exists an integer N
such that in any sequence of successive quadratic transforms of C ’

the curves C(i) are regular if i 2 N « We denote by ¢ (C) the
smallest integer N with the above property (0(C) = 0 if and only if

C itself is a regular curve) ,

It is clear that if Ci , C’z, seey C; are the connected components
rof the proper quadratic transform T(C) of C, andif o(C) > 0 , then
4 (CL) < 0(C) for v = 1, 2,440, t. Our first definition of equivalence
of algebroid curves proceeds by igduction on o (G) ,

Let T/ C —> D bea pairing between the branches of C and

the branches of D (it is already assumed that C and D have the same



number h eof branches), If C, is regular (whence o(C) = 0), then
C (and therefore also D) has only ene branch, # : C —> D is

uniquely determined, and we say that 7 is an (a)-equivalence if also

D is a regular curve, Assume that for all pairs of algebroid curves

T', A with the same number of branches and such that o({T') < o (C)

it bas already been defined what is to be meant by saying that a pairing
I'—> A Dbetween the branches of I' and the branches of A is an
(a)-equivalence , Then we define an (a)-equivalence between C and D

as follows (we use the notations introduced earlier in this segtion) :

DEFINITION 1, An (a)-equivalence 7; C -—> D is a pairing

T between the branches of C and the branches of D having the following

properties:

1) 7 is tangentially stable,

2) I 6i = n(yi) (i = 1,2,.4,,h), gz_gp__mp(‘yi) = mQ(Gi).
3) The pairing w;: Cl') —— D",( V=1,2,00e, t) is an
(a)-equivalence,

We now proceed to our second definition of equivalence between
algebroid singularities, If T 1is our quadratic transfermation, with

center P then T blows up P into the line x' = 0 of the (x',y')-

plane, We denote this line by £' and we refer to &' as the exceptional

curve of T, If Cv is a tangential component of C and C:} = T(Cu)



is the proper T-transform of Cv s then ¢' contains the origin P"/
of CL o but £' is not a component of Cl'l’ We denote by C'lj‘ the
algebroid curve Cl') U E' and we call Cl'/* the total T-trans-
form of C, ¢ in symbols: C;/* = T {CVB . Weset C'* = T(C)U ¢
and we call C'* the total T-transform of C, Note that mp, (C")*) is
> v
always = 2,
It is known that after a finite number of successive quadratic

transformations one can reach a stage where the total transferm of C

has only ordinary domble points. Mare precisely: there exists an integer

N2Zo (depending on C) with the following property: if {C, C'%,C"x,,,,, c'

is amy sequence of algebroid curves such that for any i we have

clitdly . cli+1) g1+l cli+l)

y where is a connected component of
the preper quadratic transform Tm(C(J’)) of C(l) (T(i) being a quadratic
transformation with center at the erigin P(l) of C(L’ ) and C(i 1) is

@ thenfor 1 2 N the origin P! of cils

the exceptisnal curve of T
is an ordinary desuble poaint of C(i)*. We denote by ¢ #(C) the smallest
integer N having the above property.

It is clsar that 0%(C) = 0 if and only if the erigin P of C is an
ordinary dauble point of C, If C is a regular curve then a strict
interpretation ef our definition of o*(C) weuld require to set g*(C) = 1 ,
However, we agree te set o *#(C) = 0 alseif C is a regular curve (this

could alse have been achieved by a slight change in our genm~ral definitian
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of ~o*(C)). Itis easily seen that o*(C).= 1 if and only if P is an.
ordinary s-fold pointof C and s > 2,
Let C and D have the same number of branches and let

7 : C —> D be a pairing of the branches of C with the branches of

D, If g*#(C) = 0, i,e., if P is either a simple point or an ordinary

double point of C, then we shall say that 7 is a (b)‘peguivalence between
C and D if and only if also o*(D) = 0 » i.e., if and only if the origin
Q of D is a simple point or an ordinary double point of D according as
P is a simple point or an ordinary double point of C . Assume that for
all pairs T, N of algebroid curves, with the same number of
branches, such that o*(I') < ¢*(C), it has already been defined what
is meant by saying that a pairing I' —> /A between the branches of

I' and the branches of' /A isa (b)-equivalence. Then we define a

(b)sequivalence between C and D as follows:

DEFINITION 2, A (b)-equivalence #: C —> D is a pairing

- between the branches of C and the branches of D, having the following

properties:

1) 7 is tangentially stable.

2) The pairings nij : C;/ —_— D;}(u = 1,2,00pst) are

————

(b)-equivalences.

3) f ¢' and E' are the exceptional curves of the quadratic

transformations T and S respectively (having centers at P
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i

and Q), if C;}* CL* u g, D;}* = D;} U E', and if

we extend the pa.iring 17’; to a pairing w;/* : cv;:: —_— D;/* by

setting n;}* ( &) = E', then 171;* is a (b)-equivalence .
Note that conditions 1) and 2) of this definition are identical with the
conditions 1) and 3) of Definition 1 ; condition 2) of Definition 1 has
been deleted and has been replaced in Definition 2 by condition 3), Thus
the equality of the multiplicities of corresponding branches under n is
not explicitly postulated in Definition 2,

We now give a third definition of equivalence of algebroid singularities,

which we shall refer to as formal equivalence, Again we proceed by

induction on ¢ *(C) , where we agree that if oc*{(C) = 0 formal

equivalence coisicides with (b)-equivalence.

DEFINITION 3, Given two algebroid curves C, D shaving the same

number of branches, we say that C and D are formally equivalent

if there exists a tangentially sthble pairing 7: C —> D between the

branches of C and the branches of D such that (in our previous

notations) :

1) C;} and D;} are formally equivalent (v =1,2,...,t)

2) C;}* and DL* are formally equivalent (v = 1,2,...,¢t) «

Note that this definition does not say anything about the nature of the

iri m! s C! D! 'k 3 Cl¥ —> D'* | d .
pairings L v —_— v and L Cu v induced by
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Condition 1) merely requires that there exist, for each v = 1,2,,..,t,
some tangentially stable pairing p;} : C;} _ DL satisfying the
conditions of the above inductive definition; and similarly, condition 2)
requires that there exist a tangentially stable pairing

p!'}* : C:}* —_ D;,* satisfying similar conditions, It is not even
required that p;/* be an extension of p ;}. For this reason,

Definition 3 is the most subtle (and also the weakest) of our three
definitions of equivalence, The fact that these three definitions are all

equivalent to each other is therefore not devoid of interest,

REMARK 1, In the case of characteristic p # 0 the following
example poses the question of whether one should not attempt to look

for a finer definiﬁon of eq?ivalenqe in that cgse:
C:f = yp,+ sz-'.l + ax_zp-ly =0, a # 0;
D: g = yP + x2P*1 . 4 |
It is easily seen that C = D in the sense of the preceding definitions,
However, the module of derivations of the local ring of D is free
(since %—s— = 0), while the corresponding module for C is not

free. Is such a qualitative difference between the two local rings compatible

with.a reasonable definition of equivalence ?
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REMARK 2, Itis possible to generalize the definitions 1 and 2
to the case of a pair of arbitrary local rings of dimension 1, despite
the fact that the numerical character similar to g(C) is not always
available in the abstract case and that therefore the definition cannot be
by induction , (It is known that it may not be possible to resolve a non-

regular local ring of dimension 1 by successive quadratic transformations)

83, Analytic families of algebroid curves; equisingularity in

codimension 1 ,

Instead of attempting to establish an equivalence relation between
two given singularities, one may try a less static and more fruitful

approach, in which one considers an analytic family of singularities;

(1) £({x} {th = o,
where f is a power series in the coordinates {x} = {xl, Kyperes xs+l}
and the parameters {t} = {tl.tz, cee ,tp} » and where we assume that

£( {0} ; {t}) is identically zero, We have here a p -dimensionkl family

of s-dimensional algebroid varieties W embedded in an affine

t s
(s + 1)-space and having a singular point at the origin {x} = 0, Asomne
considers the specialization {t} —_— {0} s one may pose the following

problem:

Establish criteria which will Eve a meanig&to the statement that the
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specialized variety W 0 has the same singularity at the origin as

does the general member W ¢ of the family,

We can interpret equation (1) as defining an (s + p) -dimensional

embedded variety V , in the affine space of the s + o + 1 variables
x and t, This variety V carries the irreducible subvariety M :{x} = 0,
of dimension p (and codimension s), If we denote by P, the general

point ({0}, {th of M andby P_ the special point ({0}, {0}) of M, then

0
Wt is a section of V through Pt s transversal to M, and Wo is a

section of V through PO » also transversal to M, Furthermore Po
is a single point of M, One would not be far off the right track were

one to say that the singularity of .V at the general point Pt of M is

the same as the singularity of V at the special point Po of M if and

only if the transversal sections W ¢ and W_ have equivalent singularities

0

at Pt and P respectively, We could therefore tentatively define

0

equisingularity of an embedded variety V, along an irreducible sub-

variety M of V, at a gimplepoint P, of M, as follows:

0

"DEFINITICN "3, V is equisingular along M, at Po,,,if there

exists a section Wo of V at PO' transversal to M , and a section

Wt of V at the general point Pt of M, also transversal to M, such

that the singularity of Wo at PO is equivalent to the singularity of Wt

at P

= "¢
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The trouble with this ''definition" is that it is no definition at all,
as long as we do not know what we mean by saying that WO and V{t
have equivalent singularities, However, we can begin by testing this
definition in the case in which the codimension s of M is equal to 1, in
which case the trnasversal section are embedded algebroid curves, and
for these we know what we mean by equivalent singularities, One
obtains in this case a very satisfactory result at least in characteristic

zero, via the following:

THEOREM 1. Let f(x,y; {t}) = 0 be an analytic family of plane

algebroid curves Ct' all containing the origin x = y = 0, and defined

over an algebraically closed ground field k of characteristic zero,

Let CO: (%, v; {0}) = 0 be the specialization of Ct for {t} —_—> 0 ,

Assume that f is regular in y, and let Ayf be the y-~discriminant

of £ ( AVt e MIxfth]). Write AYE = £ (x,{thx" , where

N Z 0 and £(x,t) € K[x,{t}] is such that £(0,{th # 0. Then

the following is true:

1) If E’,(O,{G}) # 0, then Ct and C0 are equivalent,

2) Conversely, if Ct = Co and if the line x = 0 is not tangent

to C,, then £(0,{0}) # o,

3) More generally, if C, = C, and if the line x = 0 has the same

intersection multiplicity with Ct and CO’ then £(0, {0}) # 0.
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We now interpret this theorem by looking at f = 0 as the equation
of an algebroid embedded variety V of dimension r = p + 1, where
p 1is, as above, the number of parameters t'i « The r elements
X, tl, tz, e 'tp are parameters of the local ring of V at the point
PO' The equation AYg = 0, iheen £ (x, {t})xN = 0, is an equation of
the critical variety A of the projection of V onto the affine space of
the variables x, tl’ tz,...,tp » To say that €£(0, {0}) # 0 means to
say that /\ is the non-singular hypersurface x = 0 in that space,

Note that /\ is then the projection of our subvariety M of V , of

¥y = 0, One then deduces from

f

codimension 1, defined by x

Theorem 1 the following:

THEOREM 2, If cod M = 1, and M is part of the singular locus

of V, then V is equisingular along M at Po s _if and only if there exist

local parameters X e X000 2 X, of V at_ PO, such that the critical variety

J\ of the projection 7 of V onto the space of these parameters has

a simple point at Pb = ﬂ(Po) « Furthermore, if V is equisingular

along M at PO' and X1 xz, es ey xr are arbitrary transversal local

parameters (by this we mean that the line X = Xy = ees = xr = 0

is not tangent to V at Po), then the corresponding ciritical wariety /\ has

necessarily a simple point at P6 .
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At the Scientific conference at Yeshiva University last October,
I spoke extensively about equisingularity in the case of codimension
8 = 1 and gave a number of other criteria of equisingularity in this
case (always for characteristic zero), A limited number of copies of
my Yeshiva lecture will be made available later on in informal

discussions for those who are interested,

84. Testing a general definition of equisingularity in a special gase,

We maintain the assumption that the ground field k is algebraically
closed and of characteristic zero, We consider again an r dlimensional
algebroid variety V, embedded in an affine (r + 1) ~space, an irreducible
singular subvariety M of V, of codimension s on V, and a simple
along M,

point P, of M, We shall define equisingularity of V at P

0 o’
by inductionon s, If XirXyreeer X, are parameters of the local ring

of V at PO' we consider the projection g of V onto the affine r-space
of the X, » and we denote by Ax the corresponding critical hyper-

surface in that space, Then (M) C Ax’ and # (M) has codimension

8 -1 onA .
X

DEFINITION 3, (Conjectural). V is equisingular at the point

Po along M, if there exist parameters Xpssaeke: such that /\ < is

equisingular at the point w(PO), along (M) .



17,

I have no general theory of equisingularity, based on this inductive
definition, I will discuss this definition in a special, but theoretically
important case,

There is one obvious and uncontestable case of equisingula;’rity. That
is the case in which V, as an algebroid variety, is locally, at PO’ e
direct (analytic) product of M and a transversal section W 0’ at PO .
A'ki4t means that, for a suitable choice of the coordinates X 9X0e000 xr+l;-
in the ambient affine space of V, the equation of V involves only

s + 1 of the coordinates ¥ s s3Y

V: f(xloxzuootoxs+1) =0,
and M is the subvariety X T X, T oees T X 40 0F 0 . The transversal
section WO at P0 (the origin X} ® X, T oaes T X 07 0) is given
by the same equation f = 0, in the space of the s + 1 coordinates

XjpXoreunesX 1o If o and O denote respectively the local ring of

V and W0 at Po. and if, for the sake of clarity, we denote the remaining

coordinates x_, by tiatyieeest (p = r-s) then

]

2" *g3'e0 0 %
O = olleystyecert 1,
and tl’ tz, tees tp are analytically independent over o’ , We sayin

this case that V is analytically equisingular at P0 » along M,

Now, let us assume that the critical variety Ax (in Definition 3)

is analytically equisingular at the point ﬂ(Po), along the variety w(M).
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Our variety V 1is then given by an equation
V: f(xl;XZ""'xs ;tlvtz)o-o:tp.;Y) = 0 (P= r - 8),
where the power series f is regular in y ; the variety M is defined

by X, T Xy T 46 = x_ =y = 0 ; and our assumption is that the

y-discriminant Ayf of f is of the form

(Z) Ayf = ﬁ({x}:{t})a D(xl'xz""’xs) ] 6({0}'{0}) % 0.

Note that in the case of equisingularity in codimension s = 1,
this assumption is automaticaliy satisfied, for in that case we have, by
Theorem 2: Ayf = g,({x},{t}) xlN .

Another, theoretica}ly important case in which this assumption is

satisfied is the one in which the critical variety Ax has along (M)

a normal crossing, Necessarily, we will have along (M) a normal
crossing of s regular hypersurfaces, since codA 7 (M) =Ns -Nl .
That means that Ayf will be of the form (2), witl,: D = X, le 2...xs
N,z 1,

J

Under the above assumption (2), the following algebraic facts can be
established:

Let O be the local ring of V at the point P0 (the origin
{x} = {t} = y = 0), and let 0©° be the local ring of the transversal

section WO: t, = tz T ees = tp = 0 at the same point PO. Thus



19.

(3) O Ml eIyl = Kllfd, {eh Y11/t 183, ¥)

and

o = WifxHilnl = st ¥il/ e v
where

t,{xhv) = £(dx} {0}, ).

Let Ot and ¢' be the integral closure of o and o
respectively. (in the total rings of quotients of these two local rings). Then

(2) There is a natural injectionof ' into (Y', and

(after identification o' < (1 ) it is true that the elements

t)e tz, eaest of 't are analytically independent over ', and ()

b
is the power series ring o"[[tl. tyrees 'tp .

By (a) we have for y a power series expansion of the form

5 = L3N o

where 7 is the element which occurs in (4) . Assumption (2)
imposes, however, additional conditions on the coefficientss ui, uij' tos
of the power series (5), We shall now state these conditions,

Since we have assumed that fO has no multiple factors, the total

quotient ring K' of ¢’( = total quotient ring of ') is a direct sum
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of fields K; = K'ei {(say, i = 1,2,...,h), where 1 = e, + e2+ ese + ey
is the decomposition of 1 into mutually orthogonal idempotents, Each field
Kl' is an algebraic extension of the field Kei » Where K = k{{x}}. We
consider a fixed splitting field F ' of the y-polynomial fo » over K,

and we embed each K; in F' by an isomorphism K1' — Fi which is

an extension of the natural isomorphism Kei —> K, Let F'i ) Fi

be the least Galois extensiom of K which contains Fi « Then F' is the
composition of the h fields Fi (the Fi are splitting fields of the h
irreducible factors of fD ).

Now, let & be any"element of K', Foreach i = 1,2, s0sp h , we
denote by gi'(”. gi'(z) reces g;‘ni) the conjugates, over K of the
element of F i which corresponds to gei in the above embledding
K; — Fi of K; in F ; here ni is the relative degree of Fi over K,
L.et R be the set of elements £ of ¢' which have the following
property : For any i,j = 1,2,...,h andany a = 1,2,....ni ’

B = 1.2.....17j » the quotients

6) (e L By, @ -anB’)

i Jj i

are integral ower k[[{x}]] .

It is easily seen that R is a ring between ¢’ = k[[_{x}]] [n] and o',
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Then we have

(b) A necessary and sufficient condition that the discriminant

AYf  be of the form (2) is that the coefficients L uij' eees Of

the power series (5) belong to R .

If our variety V was normal at Po. then O/ = O s 0= 0O,

ot o’[[tl.tz. . ...tp]] , and we have in this case the trivial situation of
analytical equisingularity of V along M, at P 0 But if V is not normal,
then R will be in general a proper overring of ¢, and if we choose the
coefficients u uij sese in R, but not all in ¢ , then we get a situation
of equisingularity which is not analytical. Thus this procedure gives us an
effective tool for a general construction of an equisingularity phenomenon
of the non-trivial (i.e., non analytic) type.

If we are in the complex domain then (6) and the fact that the coefficient

of the power series (2) are all in R shows that

(a) (8)
(7 lim y =¥
{&¢>o0 ﬂ(a) _ n(B)

= 1,

(@) (o)

where the ya
£0)

are the roots of £ and the n are tte roots of

(G'IB= 1]230003 n = nl +n2+...+ %. G.% B ).
By means of (7) it is possible to extend a proof given by Whitney in the

case of cudimension 1 and show that in the ambient affine (r + l)-sgace
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of V , the variety V can be isotopically deformed into the direct
product of Wo and M., This constitutes a fairly conclusive text
of the correctness of the inductive definition 3 of equisingularity

in this particular case.



On the structure of compact complex analytic surfaces

by K, Xodaira

By a surface we shall mean a compact complex manifold of
complex dimension 2, We fix our notation as follows,

3: a surface

b

y the V - th Betti number of 5,

c, : the V- th Chern class of S,
(O : the sheaf over S of germs of holomorphic functions,
q = dim Hl (S,®) : the irregularity of S,
Pg = dim HZ(S, (®): the geometric genus of S,
Note that CIZ and ¢, are (rational) integezfs.

By a theorem of Grauert [2], any surface is obtained from a
surface containing no exceptional curve (of the first kind) by means of
a finite number of quadris . transformations. Hence, in order to
study the structure of surfaces, it suffices to consider surfaces

containing no exceptional curves, In what follows we assume that all

surfaces under consideration contain no exceptional curves,

DEFINITION 1, By an elliptic surface we shall mean a surface
S with a holomorphic map ¥ of S onto a non-singular algebraic

curve & such that the inverse image ¥ -1 (u) of any general point



u € A is an elliptic curve, We call A the base curve of the elliptic

surface S,

DEFINITION 2, (A, Weil), We call a surface S a K3 surface if

S is a deformation of a non -singular quartic surface in a projective
v e
3. R - DUR T e
space. < e g} 2

e i

MAIN THEOREM, Surfaces (containing no exeptional curves) can

be classified into the following seven classes :

I) the class of algebraic surfaces with pg =03
II) the class of K3 surfaces;
I1I) the class of complex tori {(of complex dimension 2) H

1v) the class of elliptic surfaces with b, =0(2), pg 21, < #0;
\2} the class of algebraic surfaces with pg 21, c:l2 >0,
vI) the class of elliptic surfaces with bl =0(1) , pg 21

VII) the class of surfaces with b1 =q=1, p =0,

g
class b p c c 2 structure
1 g 1 1
I even 0 algebraic
II 0 1 =0 0 K3 surfaces
I 4 1 =0 t] complex tori
v even . #0 0 elliptic
v even + + algebraic
Vi odd + 0 elliptic

vi 1 0 ?



An elliptic surface is a deformation of an algebraic surface if and
only if its first Betti number is even (see [4] ) . Therefore the following

theorem follows from the main theorem.

THEOREM . A surface is a deformation of an algebraic surface
if dnd only if its first Betti number is even.

Remark: The class VII conta.ing n?vanyielliptic surfaces. In fact,
for any preassigned finite abelian gr;;p fA, f\;re find an elliptic surface
of the class VII whose first torsion group is isomorphic to A, We
obtain examples of non-elliptic surfaces of the class VII as follows :
Let € 2 denote the space of two complex variables (zl, zz) and let
U= (EZ - (0,0) , Choose a properly discontinuous group g of analytic
automorphisms without fixed points :of U in an appropriate manner,
Then the quotient surface S = U/g is a non-elliptic surface of the
class VII. Note that S = U/VQ is a deformation of an elliptic surface.
As far as we know there is no example ofﬁgurface which cannot be
deformed into surfaces with non~-constant meromorphic functions,

We shall outline a proof of the main theorem, Let 0’* be the
multiplicative sheaf over S of germs of non-vanishing holomorphic

functions and let Z denote the ring of rational integers., We have the

exact sequence

%
3
(1) oo = H' (5,00 = HY(S, %) —> HE(S, Z) —> H2(S, &)= ...



Each element F of H1 (S, @'*) represents a complex line bundle over
S and c¢(F) = 0¥F is the Chern class of ¥, Let &(F) denote the
sheaf over S of germs of holomorphic sections of F , In the case of
complex line bundles over surfaces, the Riemann-Roch-Hirzebruch
theorem can be formulated as follows :

2
@ ) (10 amB 0 = (P ey rie, P e,), o= elF)
V=20

(see Atiyah and Singer [1] )., This theorem implies the Noether formula

(3) 12(pg-q+l) = ¢t

and the Riemann-foch inequality

(4)  aimH(3, O(F)) + dim HO(S, O(K-F)) 2 G eje)tp, -atl,

where K denotes the canonical bundle of S .

THEOREM 1. Every holomorphic 1-form on a surface is d-elosed,

THEOREM 2, Let ©O)1r Ppreees e, be holomorphic 1 -forms on S,
It Prreces @, are linearly independent, then the d-closed l1-forms
Prroser @ al reensy En are d-cohomologically independent,

Letting {I‘l,..., 1}, ceny I‘b } be a Betti base of 2-cycles
2

on S and denoting by I( I':i, Fk) the intersection multiplicity of 1':]



and 1"k , we define b’ and B~ to be respectively the number of
positive anci negative eigenvalues of the non-singular symmetric matrix
(X( 1’3, I‘k)) s Moreover we denote by h the number of linearly
independent holomorphic 1-forms cn S ; With the aid of Theorems 1
and 2 , we obtain from the Hirzebrucil index theorem and the Noether

formula (3) the equality

2q - b +b+-2pg =1,

1

while we have the inequalities

0

v
N

[v
ny
=2
nv
o

1

2
o
nv
[\
e

Hence we obtain the following

THEOREM 3, If bl is even, then bl

h=q. If b1 is odd, then b1=2q-l, b+=-?-pg and h=q -1,

2q, b+=2pg+1 and

COROLLARY. We have the formula

2 _ ﬁOP +9, if bl is even ,
(5) c,"+8q+b = g
h()pg + 8, if bl is odd .,

Let us consider the case in which bl is even., By the above

results there exist q linearly independent d-clused holomorphic



1 -forms Brr @y0 cues «pq on S, Let {71. coes Vj, cees ‘qu} be
a Betti base of 1-cycles on S and let
@i = f},j‘ﬁv :

Then, by Theorem 2, the vectors

W, = (wlj’ ""ij"“’ w

j J)’ j=112s-~-|2q0

q

are linearly independent with respect to real coefficients and generate
a discontinuous subgroup D of the vector group (Eq of dimension q .

We call & =c%Y9 the Albanese variety attached to S and define

a holomorphic map ® of S into 4 in an obvious manner.

THEOREM 4. If there exist on S two algebraically indepen.dent
meromorphic functions, then S is an algebraic surface, If there
exists on S one and only one algebraically independent meromorphic
function, then S is an elliptic surface (see [3]) .

The following three theorems follow immediately from this

theorem.,

THEOREM 5, If there exists on S a complex line bundle F
such that dim HO(S, O(F))> 2, then S is either an algebraic

surface or an elliptic surface.



THEOREM 6, If pg 2 2, then S is either an algebraic surface

or an elliptic surface ,

THEOREM 7. If h> 3, then S is either an algebraic surface
or an elliptic surface.
Combining the Riemann-Roch inequality (4) with Theorem 5, we

obtain the following two theorems,

THEOREM 8, If there exists on 3 a complex line bundle F

with c(F)2 >0, then S is an algebraic surface,
THEOREM 9, If c:l2 > 0, then S is an algebraic surface,

THEOREM 10, If bl is even and if pg =0, then S is an

algebraic surface.

Proof: Since, by Theorem 3, b+ =1 , there exists an element

c GHZ(S,Z) with cZ >0 . Moreover, since HZ(S,O') vanishes, the
exact sequence (1) shows the existence of a complex line bundle F

over S with c¢(F) = c., Hence, by Theorem 8, S is an algebraic

surface,

LEMMA 1, If pggl, then ¢, "2 0,



THEOREM 11, Assume that there exists on S no meromorphic
function except constants (and that S contains no exceptional curve),
Then the irregularity q of S is not greater than 2. If q=2, then S
is a complex tarus. If q =1, then the first iBetti number b, of S is
equal to 1 and the geometric genus pg of S vanishes., If q = 0, then
the first Chern class <, of S vanishes,

Proof: A) The case in which b, is even. It follows from

1
Theorems 3, 6, 7 and 10 that b1 =29, q=h<2 and Pg =1 . Hence,
by Lemma 1 and Theorem 9, ¢ 2. 0.

1

i) q is equal to either 2 or 0, In fact, if q were equalto 1 ,
then the Albanese variety A would be an elliptic curve and the
meromorphic functions on ¥ would induce non-constant m:eromorphic
functions on S,

ii) If q = 2, then the Albanese variety Jﬁ is a complex torus
and ¢ maps S biholomorphically onto & .

iii) If q = 0, then we have

dim HY(S,6(-K)) + dim H°(S,0(2K)) > 2 .

uv

Hance , in view of Theorem 5, dim HO(S,(?(-K)) =1, while

0
dim H (S, (K)) = pg =1, Consequently K is trivial and < vanishes.



B) The case in which b1 is odd, It follows from Theorems 3, 6,
Tand 9 that b, =2q -1, q=h+1, b+=2pg, hg2, p <1 and

2
c1 0,

i) Suppose’that h =2 . Then there exist on S two linearly

independent holomorphic 1 -forms ‘Pl and tpz and 9, A ®, does not

1

vanish identically, Hence pg =1 and, by Lemma l, cl2 =0, The

formula (5) then proves that b = -6, This is a contradiction.

ii) Suppose that h =1, We take a d-closed holomorphic 1 -form
@ on S and finda l-formm @ of type (1,0) on S such that
do= @A @ and such that ¢+ 0, ¢ and -ﬂ; generate the d-cohomology
group of l-forms on S, We then obtain multi-valued holomorphic

functions w1 and w2 on S such that

dw1 = o, dw2 =0+ W, 0.

The exterior product dwl/\ dwz does not vanish at each point of S.

Hence the space (BZ of the complex variables v, and w, forms the

universal covering surface of S, The covering transformation group

of (EZ over S is generated by the affine transformations

. — Y . i= .
gj wl-—->w1+aj, w, w2+ajwl+ﬁJ, j=1,2,3,4

of which the coefficients satisf{y the conditions that

a, =0,

4 jak-akaj= for j,k=1,2,3,

RicPy o
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where the njk are integers and n23‘34¥ 0. It follows that S is an
elliptic surface, This contradicts the non-existence of meromorphic
functions on S,

iii) Thus we see that h =0 and q=h, =1 . Therefore the Picard

1
variety P = H1 (S,O’)/I-Il (S, Z) is isomorphic to the Lie group C/Z .
Suppose that pg =1 . Then, for each complex line bundle F €0, the

inequality
. 0 . 0,.
dim H (S,,Q(F)) + dim H (3,0(K-F)) 21

holds, It follows that there exist infinitely many irreducible curves on

-

3 . This contradicts the non-existence of meromorphic function on S

(see [3])) , q.e.d,

THEOREM 12, If the irregularity q and the first Chern class
c:1 of S both vanish, then S is a K3 surface.
Proof: Denoting by 0 the sheaf over S of germs of holomorphic

vector fields, we have
. 1 . 2
dim H (S, 8) = 20, dimH (S, 8) = 0.

Hence there exists a complete complex analytic family of small

deformations St of S depending on 20 effective parameters

(t,y t,, «.., t,.) (see Kodaira, Nirenberg and Spencer [5]). We find
1’ 2 20 g

PR : . ~ [ad
FE H ¢ .8

E R Toaond o T A ; P B
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[ - w e e it
! o vt b | R
P | u o

t such that St is a non-algebraic elliptic surface of which the‘singular

, or of type Il (compare(3]). S, isa

fibres are either of type I "

1
fibre preserving deformation of an algebraic elliptic surface B which
possesses a global holomorphic section, B can be described explicitly
as follows : Let lPZ denote a projective plane on which a system of

homogeneous coordinates (c,y,z) is fixed, Take two copies IPZx (130

and ]PZ e (Bl of Prz‘x € and form their union

w=P2x c, u P % c,

by identifying (x,y,z,u) EIPZX (Eo with (xl, Yyo %0 ul) GIPZX (El if

and only if uu, =1, u'x =x, u6yl=y, z, =z . Then B is the

1 1

. subvariety of W defined by an equation of the form

22 - ax> 4 2 “{TB 3 2 ) =0
y z X"+ T xz (u-7,)+ 2 T’T(u-— v) = 0,
v=1 V=

To make explicit the dependence of B on the coefficients

T={( Ty Tys vevs Tgs O)s eees 0)5), wewrite B_ for B, Clearly

8" "1

B'r is a deformation of BO =B Hence S is a

(11-00oloor-o-oo) '
deformation of B0 . Let Q denote a non-singular quartic surface in
a projective 3-space, The irregularity and the first Chern class of Q
both vanish, Hence, by the above result, Q is a deformation of B0

and, consequently, S is a deformation of Q , Thus we see that S is

a K3 surface,
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THEOREM 13, If the canonical buadle K of S is trivial, then
S is a K3 surface, a complex torus, or an elliptic surface of the form
(EZ/G , where G is a properly discontinuous group of affine transformations
without fixed points of the space (Dz of two complex variables z),2,

which leave invariant the 2-form dz. A dz The first Betti number of

1 2°
the elliptic surface (EZ/G is equal to 3,

LEMMA 2, If b, iseven, p >0 and c, = 0, then the
1 g 1

canonical bundle K of S is trivial,

2
LEMMA 3. If Py is positive , c, =0 and ¢, # 0, then S

is an elliptic surface,
Now, with the aid of Lemmas 1, .2, 3, we derive readily from

Theorems 9-13 the main theorem.
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ON DEFORMATIONS AND VARIETIES OF MODULI

T, Matsusaka

81. The notion of polarization is well-known by now, But we
shall start with this definition, Let V be a complete non-singular
algebraic variety and Ga(V) the group of Va-divisors which are
algebraically equivalent to zero. Denote by T(V) the group of torsion
divisors on V and by t(V) the order of T(V)., We consider a set

X_of V-divisors which is defined by the following conditions:
(a) X contains a div'isor x on X which is non-degenerate (ample in
the sense of Grothendieck);
(b) A V-divisor Y isin ) if and only if there is a pair (r,s) of
integers which are relatively prime to the characteristic p and to
t{V) such that rX = sY. mod Ga(X) .
We consider that the set ) defines a structure on V, V, together
with this additional structure, is denoted by V andis called a

polarized variety, We call V the underlying variety of V and _I

the structure set of V . A divisor in I is called a polar divisor

of V,
REMARK, If one wants to deal with a variety over a discrete valuatior
ring, of which V is a generic fibre, it is convenient to take p to be

the characteristic of the residue field,

Basically, we shall follow the terminology and conventions of Weil's
"Foundations of Algebraic Geometry'' ,
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PROPOSITION 1. Let V be a polarized variety, Then there is a
polar divisor Xo with the following properties: (i) A V-divisor Y
is a polar divisor of V if and only if it is algebraically equivalent to
mXo where m is an integer; (ii) A non-degenerate polar divisor on
V is algebraically equivalent to mXo where m is a positive integer,
Moreover, the class of X0 mod Ga(V) is uniquely determined by
these conditions,

Xo is called a basic polar divisor of V . The self-intersection
number of Xo is called the rank or the degree of V, A non-singular
subvariety of a projective space can have a natural polarization such
that a hyperplane section is a polar divisor. We call it a natural

polarization and all such varieties shall be assumed to carry their

natural polarization,
Let U be a complete (proper) abst ract variety over a discrete
valuation ring &', @ the canonical morphism of U onto {J and g

the maximal ideal of ¥, Then 071 (32 ) is called the specialization

of 0.-1 (0) overU, If X isa cycle on a generic fibre a-l (0),
rational over the quotient field k oftr, it defines a U=cycle X
uniquely such that )?. OL—I(O) = X, and that every component of

X n OL"I( g ). which is simple on U is proper. Then X. 071(33‘- ) is

called the specilization of X overt., X . 0.'1( ) is still the specikhlization

of X over a discrete valuation ring which dominates v ,
Let V be a polarized variety, V its underlying variety and k
a field of definition of V. Let U be a discrete valuation ring of k, U

the variety over 0 with. the canonical morphism O whose generic fibre
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is V and W the special fibre a-l(;‘ ) of U, Assume that W is the
underlying variety of a polarized variety W and that a basic polar
divisor XO of V_ specializes to a polar divisor of W over T , Then

we say that W is the specialization of V over ¥ and write

V —> W ref, ¢ .

REMARK, When V —> W ref, O, then rank (V) > rank (W),
When U° contains the rational number field, we have rank (V) = rank (W)
because of Hodge's theorem, On the other hand, when the quotient field
of U is of characteristic p, Nishi constructed an example such that
rank (V) > rank (W) . In his example, W is a suitably polarized
Abelian variety of dimension 2 and one can choose V so that rank (V)
exceeds a given positive integer,

In general, the concept of specialization is not invariantly attached
to isomorphism classes of polarized varieties, However we have the

following result,

PROPOSITION 2, Let V, V', W, W' be four polarized
varieties, k a common field of definitionof V and V', ' a
discrete valuation ring of k and assume that (V, V') —> (W, W') ref, 0 .
When there is an isomorphism f of V to V' defined over k and
when W' is not ruled, the graph of f specializes to the graph of

an isomorphism between W and W' over 1= .
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Let now V and W be two polarized varieties and the _Yl g for 0 < i <

!d = V,, Xm = W, be a finite set of polarized varieties, Assume that
either -Yi and !i+1 are isomorphic to each other, or the one is a

specialization of the other over some discrete valuation ring, Then we

say that W is a defermation. of V, \_/_ is a deformation of W or V and

W are deformations of each other, If rank (Yi) < d for all i, we say
that the deformation is of type d, Denote by T the set of deformations
of a given polarized variety V, Denote alsoby T d the set of deformations

of V oftype d for d > rank (V). In the case of characteristic 0, we

have T =1z Therefore, we shall consider only % d from now on,

d [
We introduce an equivalence relation ~ in X q° We say that U and W
in T q 2re equivalent and write U ~ W ifandonlyif U and W

are isomorphic. The quotient space of E& by this equivalence relation

will be called the space of moduli and denoted by m . Our basic problem

is to find out the structure of this space. One is tempted to say that it is
an algebraic variety, or at least a finite union of such varieties., Further-
more, one is tempted to say that the largest dimension of the maximal
component can be described in terms of numerical invariants of V

(cf. works of Kodaira-Spencer), As it is well-known, these are true

when one deals with curves or polarized Abelain varieties (cf, works of

Baily, Mumford), In general I q can be expressed as a union of countably



many irreducible algebraic families of polarized varieties up to isomorphisms
In order to pursue our problems further, we introduce the concept of a
universal family,

Let g]/ be an algebraic family, i,e. a union of a finite set of irreducible
algebraic families, of non-singular varieties in a projective space such that
(i) A member ofdf‘: is a member of Ed :

(ii) A member of Zd is isomorphic to a member of .

Then we say that jr/ is a universal family of I,. The universal family

of T 4 exists if and only if the following is true,

There is a constant c, depending only on Ed . such that whenever

W is a member of Zd and Y a basic polar divisor of w, mY is ample

(very ample in the sense of Grothendieck) for m > ¢,
Of course, this conjecture is true when V is a curve or a polarized
Abelian variety. When V is a polarized surface, this conjecture is
affirmative and can be deduced from the following theorem,
THEOREM 1, Let V be a non-singular complete surface and X
(2)

a non-degenerate V-divisor, Let (X)}| < e, , X < ¢ and
Py 1 2

lp. (V) | <e Then, there is a constant, depending only on
a g

3
C12C,50Cq such that m¥X is ample for m > «c.
When the dimension of V is higher than 2, nothing is known in

general, Kim showed that if V can be mapped into Albanese variety without

fundamental subvarieties, the subset of T P consisting of polarized



varieties with the same property has a universal family, Assuming
only that V can be mapped into its Albanese variety without decreasing
its dimension, we can show now that T d has a universal family,

A weaker problem than the existence of a universal family, which
seems to be worthwhile to solve nevertheless, is the following, Let X
be an ample polar divisor of V , fl a non-degenerate projective
embedding of V determined by X and 9,4,/1 a maximal algebraic
family of nonesingular prpjective varieties such that each component

2 contains fl(_\_{) . Let /N1  be the quotient space of ﬁl

1
K\‘ . [}
which we get by identifying members of /" 1 which are isomorphic
to each other, Let Xz = mZX , where m, is a positive integer, and
define fz, g"t/z ’ 7;’22 as fl’ ;;7:1 ,7’)/21 « When we continue this

process, we get a sequence of quotient spaces {7’7’11} and morphisms

g L , — '_Y’}’Li 41 ° One can introduce the quotient topology on /¥ :
and g becomes an injection with respect to this topology. Then one can
show that there is an open subset "W\_'i on each 7VLi » Which is every-
where dense in 7”}Li » such that it has a structure of a union of a finite
set of irreducible algebraic varieties, Moreover, g induces on each
‘m_'i a birational morphism such that the closure of the image ismi+1 .

Then, one could ask if there is a constant ¢ such that gi is a bijection

when i > ¢, When the answer to this is affirmative, we shall call



/\J
J"m, for m > ¢, alocal universal family at V.,

Once the question of the existence of a universal family of T a°’ or
at least the existence of a local universal family at V is settled affirmatively,
the study of the space of moduli /L (resp . local space of moduli) can be
reduced to the study of the quotient space of the universal family
{resp, local universal family), But the problem of studying a quotient
space of an algebraic variety with respect to an equivalence relation is
not a trivial problem, For this purpose, we have to analyze our
equivalence relation on a universal family (resp. local universal family)
more closely,

THEOREM 2, Let us assume that a universal family of T d
(resp. local universal family at V) exists, Then there exists a
universal family (resp, local universal family) “# with the following
properties:

(i) 0/57 is a union of a finite set of irreducible maximal algebraic
families dq; in a projective space;

(i) When U isin <&, and W isin & suchthat U ~ W ,
then W isin 7 ;

(iii) - Let Y be a U-divisor which is algebraically equivalent to a
hyperplane section of U and call g (Y) the corresponding invertible

sheaf on U, Then hi(i(Y)) = 0 for i > 0 whenever U € J’/ .
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From now on, we shall consider only those universal families
(resp. local universal families) which satisfy (i), (ii), (iii) of the
above theorem, When that is so, the study of the quotient space of T
can be reduced substantially to those of ZH x In order to do so, we shall

assume that T d does not contain a ruled variety . Let Fi be the

Chow-variety of cﬁi' and denote by 0(x) the orbitof x € F, with
respect to our equivalence relation, Then our equivalence relation satisfies

the following conditiens,

THEOREM 3, (I} The equivalence relation on Fi is a closed
equivalence relation; (II) 0(x) is an irreducible and locally closed

i* ¥

subvariety of Fi ; (III) Let k be a field of definition of F
a point of Fi and .x' a point of Fi such that x —> x!' ref, k,
Identifying O0(x) , O0(x') . with cycles in the ambient projective space,

we have 0(x) —> mO(x') ref, k ,where m is a positive integer,

REMARK, Actually, m can be described in terms of the relative
. /\/
change of groups of automorphisms of members of G{”i s but we are not

going into the detail of this fact,

82, Nagata has constructed an example of a non-singular locally
closed subvariety of a projective space, carrying an equivalence relation

which satisfies (I), (1I), (III) of Theorem 3, such that the quotient space
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is not an algebraic variety, On the other hand, we encounter quite often
an equivalence relation of this type on an algebraic variety in algebraic
geometry, (perhaps omitting the condition that 0(x) is irreducible),
Moreover, even if the quotient space is an algebraic variety and Fi
is non-~singular, it cannot be non-singular in general, Therefore, it
seems to be desirable to have some theory which eliminates these
difficulties, For this reason, we shall introduce the concept of (-
varieties and Q-manifolds, which can be described briefly as follows,
Let V be an algebraic variety defined over a field k and T
a k-closed subset of V X V, When P is a point of V, define I'{P}
by P XV QT = P x P{P}, Assume that (V, T) has the following

Y
P

properties, [ A TS §
(a) Every component I'i of T has the geometric projection V on
0 < Vo ‘7; 2 \(‘(— D

X . i e

each factor of the product V A «:} Lo V‘; N S

() T defines an equivalence relation on v e Ve @ o {jf x g
{c) When P and P arei.points on V such that P' is a specialization
of P over k, f{l\;}; E, uniquely determined specialization of

T {P} over k over the specialization P —> P! ref, k;

(d) When P is a generic point of V over k, every component of
f{P} is separably allgel;fa;ié over k(P),

It can be verified easily, using Theorem 3, that the equivalence

relation on Fi satisfies these four conditions,
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Letl}Y be a quotient spate of V by this equivalence relation and
¢ the canonical map of V on 1 . We makelVfa topological space by
taking the quotient topology and calling it a Q-variety, Let k be a field
of definition of V suchthat I'= 2 I“i is ratinnal over it, k is then
called a field of definition of \ /', When P is a pointof V, ¢(P) is
called a point of 1/, When P' is another point of V such that P' is
a specialization of P over k, we say that ¢(P') is a specialization
of ¢(P) over k, Next, assume that E{P} contains a simple point O
on V andset (Q X V), P= Qx r(Q),I;\(?s) then uniguely determined by
f’{P} » ive., by @(P), Hence we denote it by T"(¢(P)) ., Let T(¢{(P)) =
T a.iXi + T ijj be the reduced expression for I‘(c,o(P)) such that
a, # 0(p) ‘and bj = 0(p) « Denote & 3, X, by T ((p(P))O and
p)) ijj by T (<p(P))p . We call ¢(P) a regular point of |}, anda
p-regular point if T ((p(P))o # 0, If ¢(P) is a p-regular point of
F .I"(P)o has a smallest field K, containing k, over which it is
rational, Denote K by k(p(P)). It can be shown that this field is
also a smallest field, containing k, over which T {¢(P)) is rational,
If ¢(P) is not a p-regular point on 'V, set T {P} = v Zi and
Z =3 Zi « Z has a smallest field K', containing k, over which it

is rational, We denote K' by k(p(P)).
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REMARK, When ¢{(P) is p-regular, we could associate K' over
k by means of the latter method., It can be shown that K' contains k(o (P))
and that the former is a purely inseparable extension of the latter,
Moreover, when V is non-singular and T ((p(P))P = 0 , it can be
shown that K' = k(o(P)).

Using these, the concepts of subvarieties, regular subvarieties,
peregular subvarieties, fields of definitions of these subvarieties and
&imensions can be defined as usual, The same is true with the con-
cept of product. Then a point on the product is p-regular if and only
if each factor is p-regular, Let “xUhe a product of two “-varieties
and ?/a. p~regular subvariety oflff’xex_?‘v/vith the projection {”5' onlf’. - The
index [’Z 'é/ ] can be defined in the usual manner. Whenz;, LP/ and
[’é /U“] = 1, we can define a rational map of L"/intoa/ . We say that
this map is defined at a point * if there is a p-regular point * X n
onl#x/Jsuch that it is a component of ¢ xU'n g . Using these, we can
introduce the concepts of a morphism, a birational correspondence
and an isomorphism,

When?}/consists entirely of p-regular points, we call it a Q-
manifdd, When the’Z}’i are Qemanifolds, finite in number, and the
fji isomorphisms of open subsets of the/U; into the?f}; such that the
graphs of the £ji are closed on the(U'i X?f‘; and that fji o fil/ - fj v,
Then we can glue thezgfi together by means of the fji and get an

abstract Q-manifold, A subvariety of an abstract Q-manifold may not
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be an abstract Q-manifold, A subvariety of a Q-manifold maynot be a

Q-variety. Hence, we define a Q-submanifold of an abstract Q-manifold

by means of an abstract Q -manifold and of an injection map. . It is on
this abstract O-manifold that we have a complete theory of intersection-
multiplicities except for the criterior. of multiplicity 1, when we allow
the multiplicities to be rational numbers,

Thus, we can deal with a D-variety as if it is an abstract algebraic
variety as far as qualitative problems are concerned. In the same way,
we can handle an abstract 2 -manifold as if it is a non-singular abstract
variety whenever quantitative problems are concerned.

Now it would be clear from Theorems 2 and 3 that the space of
moduli (resp. local space of moduli at V_) is a union of a finite set of
Q-varieties as soon as a universal damily (resp. local universal family)
éxists. By Theorem 1 such is the case for polarized surfaces, Moreover,
the varieties of moduli of curves and polarized Abelian varieties of
bounded rank are G-manifolds, the latter part of which generalizes
Satake's result based on the concept of V-manifolds, Thus, our result

c ould be regarded as a basic step in further development of the problems
of moduli, But still at this basic level, there are some interesting

unsettled problems which are implicitly contained in this note,



THE BOUNDARY OF MODULI SCHEMES
by David Mumford

o) . .
1 Discussion

To begin with, what is a variety of moduli ? Start with the set of

all non-singular complete varieties of dimension n and arithmetic genus
p . For each isomorphism class of these, take one point : then try to
put these points together in a variety, There are some more
requirements : a''nearby'' pair of varieties Vl, Vz should correspond
to a ''nearby' pair of points : e, g,

Let X = set of isomorphism classes of V's

U Cgia "open' , if for all families of varieties of the given typs,

varieties of>
-type U occur over an open set in the parameter space.

Another requirement is that for all families

ﬂ:ﬁ/———-—es

suppose you map 3 to P by assigning to each s €5 the class of the
fibre -l(s) : then this map should be algebraic,

The problem, in this raw form, has been modified bit by bit so.as
to make it more plausible :

(I.) Instead of classifying ''bape'' varieties V , one seeks to
classify pairs (V,o@) where 8‘ is a numerical equivalence class of

very ample divisors on V ,



(I) Then break up the set AQ via the Hilbert polynomials of the
divisors in %: viz, for every P, let /g P = isom, classes of (V,%)

such that for all D € ¥
Pln) = X{o (aD}).

Now we are close to a good problem :

for all D € %

for all bases of HO(V, ° V(D) ) you get a canonical immersion

ver, (n = dim H(V, o (D)) 41 )

s.t, hyperplane sections are linearly equivalentto D,

. /g P~ certain set of subvarieties V of IP
10 eo =

certain equivalence relation, especially projective
equivalence -

(III) , Why insist that V be non-singular ? The only reason appears
to be that over @ families of non-singular varieties are locally
differentiably trivial : so one can view them as families of complex
structures on a fixed differentiable maniforld, (or, as in the
Bers~-Ahlfors approach, on a fixed topological manifold) , Algebraically,
there is no point : let's let V be any complete variety at all, maybe even

reducible and assume that &) is a class of Cartier divisors,



To go further, let's stop and ask what problems arise : first we
should take a broad look at the topology which we are getting by
throwing in all varieties - typically it will be very un-separated ; second
we should try to find open subsets UC_§ P such that, in their induced

topology, they are separated, and ''compact' if possible,

[ This means that if U could be given the structure of a moduli
variety, it would turn out complete ; and it also means, directly,
that if (V,2) €U, and we specialize the groundfield, then we

can find a specialization (V,5f ) of (V,J) alsoin U. ]

Thirdly, we will finally have to find out if U can be made into a variety.

(IV.) We understand thej last problem better when we realize that,
e.g. via chow coordinates, almost all of U is bound to come out as a
variety, We saw that /Spwas a quotient of a piece 577/— of the chow
variety by an algebraic equivalence relation, Such quotients always

exist birationally, i.e. for a small enough Zariski-open subsets

*
U c@t, [U*/modulo equivalence relation] will be a good variety. 3o

d
the 3" problem is like the first two :

The only problem is to pick the '"boundary' components shrewdly,

- i.9, to decide which nen-generic varietics to allow .



there again, it would prejudice the issue to think that we should necessarily
use all and /or only non-singular varieties. And the choice should be

made by a) checking the topology and b) checking its ''algebraizability'' .,

(V.) A final step in setting up the problem reasonably is to
realize that all the same qasstions Occur equally well for a much more
general class of problems : viz. that of forming quotients of varieties
by algebraic equivalence relations. Only by realizing this can we hope
to find simple enough examples to study first so as to get the right

feeling, Especially, the hard equivalence relations are tne non-compact

one's ; and in the case of moduli, this occurs principally in forming :
#/ { Projective equivalence of V's in IPn}

i.e. in forming an orbit space by PGL (n) .

2° Present State of the Theory

very good (i) analogous problem in classifying vector bundles on a fixed curve
pretty good(ii) moduli of curves (canonically polarized)
half good (iii) moduli of polarized abelian varieties

no good (iv) moduli of surfaces of general type



3°_An Example

Rather than analyze an actual moduli problem, I want to take one
of the simplest non-trivial orbit space problems, in which all the

features of the conjectured results occur |

G = PGL(1l) acting on IF’n s wher’e an = nth symmetric product

of P, i.e. PGL(l) acting on theset of 0-cycles of

degree n ,

(= theory of binary quantics) .

a) jump phenomenon

look at IPZ/PGL(I) . There are 2 orbits : {P+Q [P#Qq}
and {2P} . Therefore, get 2pts, x,y where x is open

but not closed, y is closed but not open :

This occurs in all moduli problems, and one always must
exclude some points to avoid this.

In IPn , exclude the O-cycles
kP + (n-k) Q

whose isotropy group is infinite.

b) further non-.separation

take n = 6
group A group B
/‘A-\

et e ——e. generic cycle,




Let all points in group A come together ; you get in the limit:

Pt a group B
(%) - . ——
3

But suppose, as group A collapses to a, you apply a one-parameter

subgroup Gm CPGL(1) , moving points away from « to § . Then the

following are projectively- equivalent:

A B A B
e e e e and '_@ e Tt

the latter approaches :

group A point 8
(%%) B . A
3

But the O-cycles (¥) and (**) are probably not projectively equivalent.

c) the unitary retraction: to avoid these bad things, define

Kep
n

n
K= Setof O-cycles o P. , such that, putting the P; on the
i=1
Gauss sphere, and embedding the Gauss sphere in IR3 as

x2 + yz + zz = 1 , then the vector sum of the Pi in 1R3 is

(0, 0, 0).



One checks, if x,y 67(, then x,y are equivalent under PGL(l) if and

only if they are equivalent under the maximal compact subgroup

K= 8¢3; R)c PGL(l, €) = G,

But X is compact, therefore K /K is compact and separated, And

_ no point Q occurs in with
K. PGL({1) = { multiplicity > n/2 ; and if Q occurs

with multiplicity n/2 , then
&L= % ran}.

d) stability restriction : K *PGL(l) contains a Zariski-open set

no point Q occurs in ¢Z with }

toc | multiplicity > n/2

Us table

So Ustable/vG has separated topology, and is compact if n is odd. It

is also a variety by virtue of a general theorem of mine.

e) semi-stability : when n is even, things are less clean.

/< showed that there was a natural compactification of Ustabln/G
by adding a single point representing the cycles n/2(Q+Q') . In fact,
there is a complete variety Vn s With point oo and diagram of algebraic

maps:



where

semi~stable

U

Ustable

Uxemi -stable

Us table /G

= {o]

no point Q occurs in FL with
multiplicity > n/2

} .
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Invariants of a group in an affine ring

by

Masayoshi NAGATA

1. When a group G acts on a ring R inducing a group of auto-
morphisms, then we can speak of G-invariants in R . Let us denote the
set of G-invariants in R by IG(R) . Our particular interest lies in the
case where R is a finitely generated commutative ring over a field K
and the action of G on R is such that 1) the automorphisms are

K-isomorphisms and 2) & € K is a finite K-module for every

g €G
f €ER, In this case, let f'l, ooy f'nl be a set of generators of R over
K and choose a linearly independent base £10 eoay £ of g (Eg EG(fi)gK) .
Thgn R = KEfl, cery fn] and the action of F on R is characterized by
the representation of G defined by the module Ei' gfigK o Thus, in
order to observe IG(R) sy We may assume that

(1) G is a matric group contained in GL(n, K), and

(2) R = Kﬁfl y sees fn} and, for every g €G, the automorphism

of R defined by g is induced by the linear transformation

£ >gf £
£ £ .



Under the circumstance, the following results are known :

LEMMA 1,1, IG(R) is finitely generated if every rational
representation of G is completely reducible or if G is a finite group,
hence if G has a normal subgroup N of finite index such that every
rational representation of N is completely reducible,

In the general case, there are some examples of a pair of G and

R such that IG(R) is not finitely generated,

LEMMA 1.2, If G is the smallest algebraic set in GL(n, K)
among those containing G, then G is a group which acts on R

naturally and IG(R) = IE}(R) .

LEMMA 1,3, If K' is a ring containing K , then, under a
natural extension of the actionof G on R QKK' such that every
element of K' is G-invariant, we have IG(R ®KK') = I(R) QKK' .

By virtue of Lemmas 1,2, 1,3 above, we see that, in asking
finite generation of IG(R) , fundamental is the case where G is an
algebraic group with universal domain K, But, such an assumption
does not bring us any simplicity in our treatment, Therefore we shall
not assume that G is an algebraic group, but assume the assumptions

(1) and (2) above,



Furthermore, rational representations of G which we meet in
our treatment are rather special, and therefore it is good enough to
understand by a rational representation of G a representation obtained
in the following manner :

Let R* be the polynomial ring over K in indeterminates

»
xl,.,.,xn . Then G acts on R as defined by

X,\—¢g AXl for each g €G.,
X X
n n

*
Let M and N be G-stable finite K-modules contained in R such
that NC M, M/N defines a rational representation of G, Rational

representations we shall meet with in this paper are those of this type.

2, We call G a reductive group if every rational representation

of G is completely reducible, It is known that

LEMMA. 2,1. If G is an algebraic group, then (i) in the

characteristic zero case, the reductivity is equivalent to the condition

that the radical is a torus and (ii) in the case of characteristic p#0 ,

the reductivity is equivalent to the condition that the connected



component Go of the identity of G is a torus and furthermore the index
(G: G) is prime to p .

Thus the ¢lass of reductive groups is not very small in the
characteristic Zero case, but is very small in the positive characteristic
case, Thus, in view of the known counter -example to the 14-th problem
of Hilbert, the following consequence of Lemma 1i1 is rather satis-
factory in the characteristic zero case and is very unsatisfactory in

the positive characteristic case

LEMMA 2,2, In the characteristic zero case, IG(R) is finitely
generated if the radical of the smallest algebraic group G in GL(n, K)
among those containing G is a torus : in the positive characteristic
case, IG(R) is finitely generated if the connected component of the

identity of G is a torus.

3. Let us denote by P__ from now on the polynomial ring over
m
K in n indeterminates X_ , ¢ee, X
1 m
Let p be a rational representationof G, If p(G) < GL{m, K),

then we define an action of G on Pm by

X\~ P(g) | for every g €G .,




We call G a semi-reductive group if the following is true :

If p is a rational representation of G which defines an action on
Pm (m being such that @(G) € GL(m, K)) such that (i) Ei> ZXiK is

G-stable and (ii) X1 modulo = XiK is G-invariant, then there is

i>2
a polynomial F € Pm which is G-invariant, monic in Xl and of
positive degree in Xl .

Since the action of G preserves the degree of every homogeneous
form, the condition on F above may be replaced by the condition to be
a G-invariant homogeneous form of positive degree which is monic in
X1 .

For algebraic linear groups, it was conjectured by D,Mumford

that if the radical is a torus then the group is semi-reductive. As will
be shown below, this conjecture is equivalent of the following, which we ’
like to call Mumford Conjecture :

Mumford Conjecture. If G is a connected semi-simple algebraic
linear group, then G is semi-reductive,

To the writer's knowledge, Mumford Conjecture has been solved
only in a very special case where characteristicis 2 and G = SL{2, K);

it was done by Mr, Tadao Oda.

The purpose of the present note is to show



MAIN THEOREM. IG(R) is finitely generated if G is semi-
reductive.

Let us indicate here how to prove the equivalence of Murmford
conjecture with the case of an algebraic group whose radical is a torus,

The key lemma is :

LEMMA 3.1. Let N be a normal subgroup of G . If both N and
G/N are semi-reductive, then G is also semi-reductive.

Proof: Let P be a rational representation of G as stated in the
definition of semi-reductivity. Then the restriction @' of 0 on N is
of the same type, whence there is a homogeneous form F € Pm of
positive degree such that F is monic in Xl. ard MN-invariant under

the action of N defined by p'. Congider th: G-modale M= Fg c GFgK .

-

The action of G on M is really an action of G/N . Let M* be

MNE, XP , and let F

* -
i>2 s sosy Fs be a baseof M . Then, since

1
M=FK+ M , since any power of X1 is G-invariant modulo
i>2 Xipm , the semi-reductivity of G/N implies the existence of a

s
homogeneous form F in F, Fl' ceey Fs of positive degzs=s such that
*
(i) it is monic in F and (ii) it is G-invariant, F is a homcgeneous
sas . e
form of positive degree in Xl’ ooy Xm . Since F 8j> 2 % m and

since F is monic in X1 , we see that F is monic in X1 « Thus G

is semi-reductive,



Now the equivalence said above is proved easily by the fact that

finite groups and tori are all semi-reductive.

4. Before proving our main theorem, we like to give a remark on
our formulation of Mumford Conjecture. Mumford's formulation was
stated in projective space., Namely, if P is a rational representation
of G and if Pp(G) S GL(m, K), then an action of G on Pm is
defined, which defines an action of G on the projective space s™”
of dimension m-1 . The condition proposed by Mumford is that if a

m-1 is G-invariant, then there is a G-stable

point P €5
. m=1 .
hypersurface in S which does not go through P .
If this condition is stated in Pm » then, choosing coordinates of
P tobe (1, 0, ..., 0), it can be stated as follows :
If 2i22 X,K is G-stable (hence, X, modulo zizZXiK is

G-semi-invariant) , then there is a G-semi-invariant homogeneous form

F which is monic in X. and of positive degree,

1

PROPOSITION 4,1, If the above condition is satisfied by G, then
G is semi-reductive,

Proof: Let P be as in the definition of semi-reductivity., Then
there is a homogeneous form F as in the above condition. Since X1

is invariant modulo 2i> 2 XiK under the action of G, any power of



X1 is G-invariant modulo the ideal generated by 2i> inK + Therefore
that F is G-semi-invariant implies that F is G-invariant,
The éohverse of Proposition 4;1 is also true, and was proved by

Mr, M. Miyahishi. The proof will be ‘given at the end of this article as

an appendix,

5. A reductive group is obviously a semi-reductive group, hence
our main theorem includes the corresponding result for reductive groups.
As for the proof, that special case is much simpler than the semi-
reductive case, In order to compare these cases, let us begin with
glance at the reductive case.

The following two are key lemmas to prove our main theorem for

reductive groups :

LEMMA 5,1, A, Let ff be a G-homomorphism from R onto

aring R'. If G is reductive, then I_(R') = ] I, (R) .

LEMMA 5.2, A, If G is reductive, then for any hl' ...,hs
in IG(R) , we have ( Ei hi R) ﬂIG(rR) = Zihi(IG(R)) .
Namely, the first lemmma enables us to assume that f1 Yoo 'fn are

algebraically independent. Then the second lemma shows that IG(R)

is a graded Noetherian ring, and we see easily that IG(R) is finitely



generated, by virtue of a well known lemma which will be recalled later.
For semi-reductive groups, we have the following adaptions of the

above lemmas :

LEMMA 5,1, B, With the same notations as above, if G is
semi-reductive, then, for every element x of IG(R') , there is a power
xt of x such that xt €p (IG(R)) . Consequently, IG(R') is integral

over f (IG(R)) in this case,

LEMMA 5,2. B, Assume that G is semi-reductive., Then for
any hl’ ooy hs EIG(R) , every element of ( Ei hiR) ﬂIG(R) is nil-
potent modulo zihi(IG(R)) .

Proof of Lemma 5,1,B: Let y be an element of R such that

Bly) =x . Set M=23€Gng, @=8 -1(0), N=MN@. If x=0,
then the assertion is obvious, and we assume that x# 0, Since x is
G-invariant, we have yg =y € N for every g €G . Therefore,

letting Yo ooes Yin be a linearly independent base of N, we see that,
by virtue of the semi-reductivity of G, there is a G-invariant element
F of K{y, Yo eoes ym) which is monic and of positive degree, say t,
in y, and homogeneous in vy, Yio soes Yo o Then

g (F) = x' € 4 (IG(R)) « This completes the proof of Lemma 5.1.B .
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Proof of Lemma 5.2, B, We shall make use of induction argument
on s without fixing R . Let f be the natural horhomorphism from
R onto R/HlR . Let % be an arbitrary element of ( Zi hiR) ﬂIG()R) '
Then '# (x) is in $i>2mhi) g (R) NG (IG(R)) , whence by induction on
8 , we see that there i:a natural number t such that § (xt) is in
Zi5 28 B)IG(B (R)) . This means that x' = T,h F, with F, €R
and 1 F_ €¢-I(IG(£5 (R)) . By Lemma 5.1,8, there isa
natural number u such that # (Fsu ) €9 (IG(R)) , Then, considering
xtu instead of xt » We may assume that Fs € IG(R) (if s>1), Then
xt - hst G(Eii s-lhiR) ﬂIG(R) , and xt - hst is nilpotent modulo
Ei < s_lhi(IG(R)) » Which implies the assertion, Therefore we have
only to prove the case where s = 1 ., In this case, x = hlx' with x' €R
and :f:' is G-invariant modulo 0: th . Let 0 be the natural
homomorphism R —> R/(0 : h R). Then 0 (x') EIG( g (R)) , whence
there is a natural number t such that ¢ (x't) €g (IG(R)) . Let
z GIG(R) be such that 0 (z) = G(x't) . Then
x' = hltx't = hltz Ehl (IG(R)) « This completes the proof of Lemma
5.2,B,

We recall here the lemma on graded Noetherian ring refered

above :
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LEMMA 5,3, Assume that a ring A is such that (i) it is the
. ij c
direct sum of submodules AO’ Al' veoy An, «ss and (ii) AiAj —Ai+j
for every possible pair (i,j) . If the ideal Zi > lAi has a finite basis,

then A is finitely generated over AO .

6. Let f be the homomorphism from P onto R such that
[ (X,) = £, for every i and let ® be the kernel of §, We shall prove
here the main theorem in the case where @is a homogeneous ideal,
Since Pn is Noetherian, we can use induction argument on the largeness
of @ . Thus we assume that if @is a G-stable homogeneous ideal of

Pn and contains @ properly, then IG(Pn/@) is finitely generated .

LEMMA 6,1, Under the circumstance, if @ is a graded ideal

#0 of R, then IG(R)/(®ﬂIG(R)) is finitely generated,
Proof: By assumption, IG(R@) is integral over IG(R)/@ ﬂIG(R)) .

These two facts show the result,

Therefore, by virtue of Lemma 5, 3, if there is such an ideal @
(not containing 1) as above so that N IG(R) has a finite basis, then we
see the finite generation of IG(R) .

As a particular case, we have the case of an integral domain,
Namely if h is a homogeneous element of IG(R) and if R is an integral
domain, then hR ﬂIG(R) = h(IG(R)) . The same reasoning is applied
if there is a homogeneous element h of positive degree which is not

a zero divisor.



Next we consider the case where R is not an integral domain.
Let h# 0 be a homogeneous element of I;(R) of positive degree. Set
@: O0:hR, If @: 0 , then we finished already, and we assume that @;‘-O .
Then , by Lemma 6.1, both IG(R)/(hR ﬂIG(R)) and IG(R)/@OIG(R))
are finitely generated. Therefore there is a finitely generated subring A
of I,(R) such that I_(R)/(hR AI.(R)) = A/(bR NA) and such that
IG(R)/ (@ﬂIG(R)) = A/@NA), Since IG(R/@) is a finite module over

A/(@NA), there are elements Clr sees € of R such that IG(R/@) is

t
generated by these < modulo a as an A/(@NA)-module. We like to
show that IG(R) is then generated by cih over A, Since A modulo
@ are G-invariant, we see that cih are Ge-invariant, Conversely, let
x be any element of IG(R) . Then there is an element a of A such
that x -a €hR . Let r be such that x - a = hr (r €R) ., Since hr is
G-invariant, we see that r modulo @ is G-invariant, whence there is

an element b of ZAc, suchthat r -b €9. Then hr =hb EA(hcl.....h§t)

this completes the proof, provided that the kernel @ of § is homogeneous,

1. Now we consider the general case. We adapt the notation is § 6
without assuming that (k\ is homogeneous. The induction argument is
also adapted, considering all G-stable ideals of Pn . Then we need a
different proof only in the case where IG(R) is an integral domain (for,

otherwise, take an element h of IG(R) which is a zero-~divisor in
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IG(R) , and adapt the proof just above) . In this case, IG(R) is

integral over IG(Pn)/((E ﬂIG(Pn)) . Since the resultin § 6 includes the
case where k= 0, we see that IG(Pn) is finitely generated, hence the
integral dependence implies that IG(R) is finitely generated., Thus the

proof of the main theorem is completed,



APPENDIX
by Masayoshi Miyanishi

We shall prove here the converse of Proposition 4,1 above.

Assume that a rational representation @ of G is of the form

t o

(o o)
where t is of degree 1 , Let m be the degree of P, Then we
consider a representation 7= tE, E being the unit matrix of degree m .
Then 7 (g) is in the center of GL(m, K) for every g € G, and
therefore p'r'l gives a rational representation of G (not in the restricted
sense above, but in the usual sense) . By the semi-reductivity of G,
there is a homogeneous form F in Pm of positive degree such that it
is monic in x and G-invariant under the action of G defined by

p'r'l . Then F is semi-invariant under the action of G defined by p.

This proves the converse of Proposition 4.1,



TRANSFORMATION SPACES, QUOTIENT SPACES,

AND SOME CLASSIFICATION PROBLEMS,

Maxwell Rosenlicht

For simplicity let us restrict our attention to varieties in the
classical sense. If V is a varietyand R ¢ V x V is an equivalence

relation among the points of V , by a quotient variety is meant a pair

(V/R,p) , where V/R is a varietyand p: V —> V/R is a sur-
jective morphism such that two points of V have the same image under
p if and only if they are R-equivalent and such that, for any v ¢ V,
if f is a rational function on V that is defined at v and is R-
invariant (i.e., constant on Re-equivalence classes) then f is the
composition of a rational function on V/R that is defined at px and the
map p [1, exposé 8], If V/R exists, it clearly satisfies a universal
mapping property for R-invariant morphisms of V and, in particular,
is essentially unique. However V/R need not exist: one necessary
condition for the existence of V/R is that R be a closed subset of
VvV x V.,

In what follows, we consider only the case where V is a trans-

formation space for an algebraic group G and

R={(vglvev,geG}

is the equivalence relation whose equivalence classes are the G-orbits

on V; in this case it is customary to write V/G instead of V/R



(if this exists), If V/G exists, the map p: V —> V/G is auto-
matically separable, for the function field on V/G is the subfield of

the function field on V consisting of all elements left fixed by a group of
automorphisms. In general, the graph of the operationof G on V isa
closed subsetof G x V x V so that R, the projection of this graph
on V x V, is always constructible, The isotropy groups (stability
groups) of the points of V can be obtained by intersectionson G x V x V,
hence have the obvious semicontinuity property that the dimension of the
isotropy subgroup of v € V is constant for v on a certain G-invariant
open subset of V , and greater than this constant on the complementary
closed subset, Any given point of V has an orbit and an isotropy group
the sum of whose dimensions isdim G, so that all orbits on a certain
G-invariant dense open subset of V have the same dimension, and all
other orbits have strictly smaller dimension, If it should happen‘ that all
orbits have the same dimension, then the fact that the closure of an orbit
is also G-invariant would imply that all orbits are closed, However all
orbits may be closed without equidimensionality holding; e.g., if G is
unipotent and V affine, orbits need not have the same dimension but

they are always closed [3] . If R is closed then the equation
v XGv = R N (v x V)

implies that all orbits on a dense open G-invariant subset of V have

constant dimension, with other orbits having larger dimension; thus



if R is closed, in particular if V/G exists, all orbits are closed
and have equal dimension.

If a quotient p: V —> V/G exists, a number of other pleasant
consequences follow without any further assumption [3]., In this case
the map p is open, so that V/G has the expected quotient topology.

If V' €V is open and Geinvariant then the subset V'/G of V/G isa
quotient variety of V', If W is any variety and G operateson V X W
by the rule g(v,w) = (gv,w), then (V x W)/G exists and equals

(V/G) x W, There is not much of a theory on fields of definition, for

if G and V are defined over the field k and if V/G is quasi-
projective { a condition that can be relaxed somewhat), then V/G and

P may both be chosen so as to be defined over k.,

The existence of a quotient V/G turns out to be largely a local
problem, for if V is covered by G-invariant open subsets {Vi} such
that each Vi/G exists, then V/G exists if and only if R is closed,
But the closure of R does not insure the existence of V/G, as an example
of Nagata shows [2] . Good local criteria for the existence of quotients
are much to be desired, The most general result in this direction is due
to Seshadri [8] . The most important case of Seshadri's result is when
V is a principal transformation variety for G, i,e., when R is closed,
all isotropy groups are points, and the map R —> G given by
(v, gv)v2—> g is a morphism, and it says that if V is normal then

each of its points has a G-invariant open neighborhood which has a finite



galois covering which is also a principal space for G and in addition
admits a quotient by G (so that the existence of V/G depends locally on
the existence of quotients for finite groups operating on other varieties),
Seshadri has also shown [9] that if V is a normal principal space for an
abelian variety G then V/G always exists.

As might be expected, the simplest general result on the existence
of quotient varieties is also one of the most useful, It is to the effect that
for any transformation space V for the algebraic group G there exists
a dense G-invariant open subset V' of V such that V'/G exists [6].
The proof consists in first constructing V/G and p birationally, by
means of the G-invariant rational functions on V , and then cutting off
closed subsets that cause trouble, In case R is closed, it is immediate
that there exists a unique maximal G-invariant open sub:set V! of V
such that V'/G exists, If there exist sufficiently many G-automorphisms
of V then V/G will exist, a result which produces a very easy proof
of the existence of coset spaces for subgroups of groups, together with
all the desired structure and rationality properties of these quotients [4] .

There are a number of important results stating that if V is affine
and certain other conditions hold then V/G exists and is also affine. In
such cases the coordinate ring on V/G must consist of all G-invariant
functions in the coordinate ring of V , which gives the starting point of
all the proofs, and practically the whole proof in the case where G is

finite [ 7, pp, 57 - 59] . (If G is finite there is an immediate
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generalization giving the existence of V/G where V is not affine, but
each orbit on it is contained in an affine open subset [ 7] ; an example

of Nagata for G = Z/2Z shows that this result may fail without the last
condition,) The result holds whenever G is a torus and orbits are equi-
dimensional {3] , and also if G is reductive and all orbits are closed,
at least in the case of characteristic zero (Borel, Iwahori, Mumford,
Nagata).

There are interesting problems connected with the classification of
transformation spaces for algebraic groups, even in the special case
where the transformation space is homogeneous or prehomogeneous
(i.e., has a dense homogeneous subset) and the group is connected and
solvable, If V is homogeneous and G is commutative then, fixing a
pointof V, V is simply an algebraic group that is a homomorphic
image of G, while if G is connected, solvable and linear, then V is
isomorphic (as an algebraic set) to a product of affine lines and affine lines
with single points deleted [5] . In the last case, if G and V are defined
over a field k such that G is k-solvable (meaning, roughly, that G has
a composition series over k with all quotient groups isomorphic to the
additive or multiplicative group in one variable), then this product
decomposition of V can be done rationally over k. In the dpecial cace
where dim G = 1 the result, even without the rationality part, leads to
an easy proof that for any quotient variety V —> V/G, where G is

connected, solvable , and linear, there exists a rational cross-section



V/G — V,

The problem of classifying all complete prehomogeneous spaces for
connected unipotent groups derives its main interest from the fact that
if B is a Borel subgroup of a connected linear algebraic group G then
G/B is prehomogeneous for Bu (and furthermore there are only a finite
number of orbits, each isomorphic to an affine space). In the same way
the operation of a maximal torus T of G on G/B leads one to consider
in full generality projective varieties V that are transformation spaces
for a torus T, theorems which enable one to read off a good deal of the
classification theory of linear algebraic groups [1, exposé 10 ff.] . For
example, one can prove easily that the fixed points for T on V are at
least dim V + 1 in number and all of V is left fixed by a subtorus of
T of codimension < dim V , which two facts together almost imply that
a semisimple linear algebraic group is generatéd by its 3-~dimensional

simple subgroups,
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ON THE THEORY OF COMPACTIFICATIONS

Jun-Ichi Igusa

This is the first part of our lecture, '"On the Siegel modular
variety'!, and it contains an outline of a proof of the fact that compactification
of Satake's type 1 have, under certain general conditions, no finite
non-singular coverings locally at the boundary points, This fact was
observed in the case of the compactifications of the Siegel upper-half
plane of genus two [5, cf.7]. However, the proof we had in that case
was too special, Following a suggestion given to us by Zariski, with the
use of our results on "theta-constants' we then examined the compactificatior
of the Siegel upper-half plane of arbitrary genus and found the under-lying
mechanism, which we find convenient to explain using the theory of
"Slegel domains of the third kind'' developed by Pyatetski~-Shapiro [10].
We shall, therefore, start summariziﬁg Pyatetski-Shapiro's results

(making a minor correction) to increase the readability.

1. Let T be a bounded domain, i.,e., a non-empty bounded
connected open subset of 2 complex vector space, or at least (complex)

analytically isomorphic to a bounded domain, and let U, Z be complex

1. This means the compactifications of quotient varieties of bounded
symmetric domains {by certain properly discontinuous groups of analytic
automorphisms) which are obtained by "adding'' quotient varieties of some
boundary components {using Cartan's theorem on the prolongation of normal
analytic spaces [2] ). A most general theory of compactifications
(of Satake's type) has recently been obtained by Baily and Borel,
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vector spaces all three of finite dimensions, Let R be a ''real subspace'' of

Z, i.e., a subspace of Z when Z is considered as a vector space over
R , such that Z splits into a direct sumof R and iR: Z = R+ iR,

R NiR = 0, If z is a vector in Z , it can be written uniquely in the
form Re(z} + ilm(z) with Re(z), Im{z) in R, We shall assume that

a non-empty open convex cone C which contains no entire straight line

is given in R, This means that, with respect to a suitable affine coordinate
system in R, C is contained in the first quadrant, We shall assume that,
for every point t of T, a 'quasi-hermitian form" Lt: UX U —> 2

is given, This means that Lt(u, v) is € -linear in u, R -linear in v and
[u,v] = (1/2(L (w,v) = L lv,u)

is'real", i,e,, R-valued, We then consider the set S of points in the

product Z X U X T with coordinates (z,u,t) satisfying
Im(z) - Re(Lt(u.u)) € C.

We shall impose further conditions, We require first that the mapping

U X T —> R given by (u,t) —> Re(Lt(u, u)) is continuous, This
implies that S is an open subsetof Z X U X T, We then require that S
is analytically isomorphic to a bounded domain, The third condition is more
involved. We consider the set 7/ of analytic mappings b: T —> U such
that the mapping T —> Z defined by t —> Lt(u, b(t)) is also analytic

for every u in U, This implies that the mapping T X T —> Z defined
by (t,t') —> Lt(b(t') +b(t) ) is analytic, At any rate, it is clear that w

forms a vector space over IR ., We require that 2{_ and U have the same
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dimension over BB , As it was shown by Pyatetski-Shapiro, this means that,
if tois an arbitrary point of T , the mapping 7{ —> U defined by
b —> b(to) is an isomorphism over IR , If these conditions are satisfied,

we say that S is a Siegel domain (of the third kind) over T,

Suppose that S is a Siegel domain over T, Then, for (b,a) in

2 X R , the mapping (b,a) : S—> S defined by
(z,u,t) —> (z+ a+ iLt(Zu + blt), b{t)) , u+ bit), t)

is an analytic automorphism of S, These automorphisms of S form a sub-

group G3 of the group G_ of all analytic automorphisms of S. The law of

0
composition in G3 is given by

{b,a){b',a') = (b+ b'g a +a' + ZIbob'])'

We note , here, that the mapping [b,b'] : T —> Z can be identified with an
element of R, because it is analytic and R-valued, hence constant, We also
make the following observation, Consider the fiber over t, say St , of

the fibering S —> T defined by {(z,u,t) —> t , Consider further the

fibering St ——> C defined by (z,u,t) —> Im(z) - Re(Lt(u,u)) . This fiber-
ing has a global cross-section defined by r —> (ir,0,t) and the fiber bundle
St—-> C 1is isomorphic to the product-bundle 03 X C —> C in an obvious

way, Since G3 operates on each fiber as left translations, it is called the

group of translations in S . In the following, we shall assume that the

skew-gsymmetric bilinear form [b,b'] is non-degenerate. It is the same thing

to assume that the center G 4 of C}3 is the subgroup defined by b = 0.,
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This assumption is always satisfied in the applications, Since G 4 is isomorphi
to R as a —> (0,a), it will be identified with R, Then we have an iso-
morphism G3/R ~ U induced from (b,a) —> b, We reeall that, at each

point t, of T, we have an isomorphism U ~ U over R defined by

0

b—> b(to). If © is a subgroup of G_, we shall denote its image in U

3
under the composite mapping simply by ‘O(to) .
We shall also define Gl and Gz. Consider the group of analytic

automorphisms of 5 of the following form
(z,u,t) —> (Az + a(u,t), Bltlu + b(t), g(t)) ]

in which g represents analytic automorphisms of T. They form a sub-
group of GO » and this is Cv1 « As for GZ’ it is the normal subgroup of (’.'31 .
defined by g = id. Itis clear that GO ’ Gl' .+s form a decreasing sequence,

Using a classical terminology in the theory of Fuehsian groups, Gl is called

the group of parabolic transformations in S. A complete description of C.‘:2

will now be given, In general, if L is an arbitrary quasi-hermitian form,
it can be expressed uniquely as a sum of a hermitian form and a symmetric

form. For instance, the hermitian part H of L is given by
H(u,v) = (1/2i}{L({iu,v) -L{u,iv)).

We shall denote the hermitian part of Lt by Ht . This being remarked, if
(z,u,t) —> {Az + afu,t), B(thu + bit), t)

is an arbitrary element of Gz, it decomposes uniquely into a product

(b,a)y of (b,a) and ¥ with ¥ given explicitly as
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(z,u,t) —> (Az - 1AL (u,u) + iLt(B(t)h. B(t)u), Blu)u, t),

in which A, B(t) , b{t) have the same meaning as in the original element of

G We note that hecessary and sufficient conditions for a transformation

2.

like that of ¥ to define an analytic automorphism of S are

(1) A is an element of GL(Z) satisfying AC = C,

(2) B : T —> GL(U) is analytic,

(3) AHt(u, u) = Ht(B(t)u, B(t)u) for all (u,t) in U X T,
Furthermore, elements like ¥ form a subgroup {‘y} of Gz, and it is isomorph.
to the group of pairs (A, B) satisfying the above three conditions. In
Pyatetski-Shapiro, the exact form of ¥ and the crucial condition {3) are
stated incorrectly, At any rate, G 3 is the normal subgroup of GZ defined

by A = id., B = id., and we have a semidirect product decomposition

GZ = G3° {‘y} . Moreover, the law of composition in Gz is described as

(b alV)(b'ea)((bsa)y) ™) = (Bb', Aa' + 4[b, Bb]) .

2. Using the same notations as in the previous section, we shall intro-
duce a Hausflorff topology in the union S§ = S UT sothat S becomes an

open subset of S, We have only to assign neighborhoods to each point of T .
Let t; be a point of T, We take a neighborhood V of tg in T
and a vector r of R . We then consider the subset S(V,r) of S defined by

Im{z) -Re(Lt(u,u)) -r €C, tey

and take the union S {(V,r) = S(V,r) UV as a neighborhood of tO in S.

It is easy to verify that we have a topology in S with the required properties,

We observe that GZ operates on S as a group of homeomorphisms. In



fact we have

(b,a)y.S(V,r) = S(V,Ar),.

It is also immediate to introduce the structure of a normal ringed space in S
which induces on S the given structure of the complex analytic manifold.

Now, every element of G1 gives rise to an analytic automorphism of
T as t —> g(t) . In this way Crl/Crz can be identified with a subgroup of
the group of analytic automorphisms of T, Let T 0 be a subgroup of G 0
which is properly discontinuous on S. We shall agsume that T is "T‘o- rational’
If we put rk = Izo n Gk for kX = 1,2,,.., this means that the quotient spac«
G 3/T 3 is compact and that the quotient group I"l / I'Z is properly discontinuous
on T, Since we do not know whether it is a consequence or not, we shall
assume, in addition, that if we take V sufficiently small and r sufficiently
"large', elements O of TO with the property 0 +S(V,r) ﬂ: S(V,r) £ #
are all contained in 1["l « We know that this assumption is always satisfied
if S is obtained from a bounded symmetric domain and from its boundary
component, This being remarked, we take a point t, of T whichis not
a fized point of I’l /I"2 » and investigate the compactification of the quotient
variety of S by I‘o » Which we shall denote simply by S/'.["0 » around the
image point of to .

In general, let § be a discrete subgroup of G_ such that the quotient

3
space G3/Q~ is compact. It is the same thing to assume that 63/9 has a

finite volume. We note that the bi-invariant measure in G 3 is the product

measure of the ordinary measures in %9{ and R. At any rate, if O is such

a group , then © N R ig discrete in R and the image O(t) of Qin U is



7.

discrete in U for every t both with compact quotient groups, Therefore,
if f is an analytic function in S(V,r) and if it is invariant by & N R, i,e.,

by the operations of §§ N R, it admits a Fourier expansion

fla,wt) = ) 8 (0 elola) .

p
in which p : Z —> € is € -linear and takes integer valueson N R,

Actually, the series is absolutely and uniformly convergent in every compact

subset of S5(V,r), and the coefficients define analytic functionson U X V,
Furthermore, in case f is invariant by §, each Gp satisfies the

functional equation
So(u + b(t)yt) = e(-pla+ iLt(Zu + b(t), b(t))))ep (u, t)

for all (b,a) 'in f}, Therefore, for each t in V, the function

u —> @ (u, i:) is a theta-function (or a"Jacobi function'') on U relative to
(). In garticular B o(u. t) depends only on t. The Fourier expansion of

z —> f(z,u,t) is called the Fourier -Jacobi series of f by

Pyatetski-Shapiro, It is easy to determine the Riemann form of Gp s Mmore
precisely of u —> Gp {u,t) , in the sense of Weil [12] . In fact, it is simply
the hermitian part of the quasi~-hermitian form 2i.(-p (iLt(Zu. v))) . There-
fore the Riemann form of & is 4p(H (u,v)), and its imaginary part is
4p([u,v]) . We note that P 4pf[u, v]) " is

integer valued on 0t} X Q(t) . In fact p takes integer valueson N R
and , with b(t), b'(t) in O(t) , 4[b,b'] isin § N R because of the last
formula in Section 1. On the other hand, since the Riemann form has to be

positive semi-definite, the summation in the Fourier-Jacobi series of £ is

restricted by
p(Hu,u)) > 0
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for all u in U, This in general implies that p is non-negative on C, On
the other hand, if f is bounded in S(V,r) andif p # 0 appears in the
Fourier~Jacobi series of f, then p is positive on C, (The converse is
also true when V is relatively compact with respect to T,) Therefore,
by restricting to bounded functions if necessary, we can assume in the
following that this condition is satisfied.

Going back to the situation we had before, we apply the above consider-
ationto O = I"3 taking as V an open neighborhood of to. Then a formula
at the end of Section 1 shows that, if (b,a)y isin 1"2. A given rise to an
automorphism of the lattice '.lf"‘4 and B(t) gives rise to an automorphism of
the lattice 1"3(1:) « Therefore, if we take an affine coordinate system, for
instance, in R so that 1"4 becomes the lattice of integer points, A will be

represented by an integer matrizx,

3. The general considerations we have made so far will become
exceptionally simple if we assume that
(5) the center G 4 of C}3 is one-dimensional,

It is the same thing to assume that R is one-dimensionalover R or 2

is one -dimensional over € , We note that, if S is obtained from an
irreducible bounded symmetric domain of type I, II, IIl or IV and from its
highest dimensional boundary component, the condition (S) is always

satisfied, A , Borel told us that the same is known also for the two exceptional
cases of dimensions 16 and 27, This being remarked, if (S) is satisfied, we

can identify Z with @€ so that R, C, I‘4 are respectively identified with
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R, R+ » Z , Then the Fourier-Jacobi series will take the following form
@
flz,u,t) = z Gk(u. t)e({kz) .
k=0
Since  Im(H({ a, v)) ' = [uvl isnon-degenerate, we have H(u, n) > 0
for u # 0. Moreover, the conditions (1}, (3) in Section 1 imply that, if
(A, B) comes from an element (b,a)y of I‘z, we have A = 1 and B(t) keeps
Ht invariant, Therefore B(t) gives rise to an automorphism of the polarized

abelain variety ({ e © U/l."3(t) , the polarization being determined by the

Riemann form 4Ht(u. v) . In particular {B(t)} is a finite group (the
structure of which does not depend on t). We shall consider the simplest case
assuming that

(TY we have ‘.l"2 = 1‘3 R
This means precisely that we have { B(t)} = 1, In this case, if wertake

V sufficiently small and r sufficiently large, the quotient space

o= 5 (V,r)/T 3
with the ring of invariant analytic functions on S(V,r) relative to 1"3 » which
is nothing else than the ring of Fourier~Jacobi series, describes the analytic
structure of the compactification of S/ T', around t; in the sense it gives
a neighborhood of the image point of ty in the compactification together with
the ring of analytic functions on it, This is because to is not a fimed point

of I‘l /‘I‘2 . Consider, on the other hand, an open subset W of the product

€ X U X V with coordinates (w,u,t) satisfying

abs{w) < exp(-Zﬂ'(Re(Lt(ua“)) + r)),
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where abs(w) means the absolute value of w., Then (b,a) gives rise to

an analytic automorphism of W as
(woust) —> (ela + iLt(Zu + blt), b{t)))w,u + bit) , t),

and in this way G, operates on W, We observe that I‘4 is precisely the

3

subgroup of G, which operates triviallyon W, and 1"3/17‘4 operates on W

3
properly discontinuously and without fixed points. Hence the quotient variety

M* = WAT/T) = W/T,

is non-singular. We observe that invariant analytic functions in W are
obtained simply by replacing e(z) by w in the Fourier-Jacobi series {of
invariant analytic functions in S(V,r) both relative to I'3) + On the other
hand, we note that the closed subvariety W0 ={0) XU XV of € X U XV s
contained in W, We ghall denote its complement in W by W1 « Then both
W0 and W1 are stable by G3 and we have' W]./I‘3 =Y ¥ - WO/I"3 . More
precisely, the quotient variety W 0/ I, is non-singular and it is the closed
subvariety of the non-singular variety J* definedby w = 0; the
quotient variety W1 /T 3 is the complement of W O/I‘3 in 7%, Similarly
we have S{V,r)/ T, = Y. - V. Now we shall define a mapping

x* —_ x . We take a point of S(V,r) with coordinates (z,u, t) and
associate the point of Wl with the coordinates (e(z),u,t) . This defines

an analytic mapping S(V,r) —> W1 and, by passing to quotient varieties,
it gives rise to an analytic isomorphiam S(V, 1-)/1"3 ~ Wl/'.l"3 . Next we take
a point of W with coordinates (0,u,t) and associate the point t of V. This

defines an analytic mapping W0 —> V and then an analytic mapping
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w 0/1‘3 —> V , which is surjective and proper. In fact, the fiber over an
arbitrary point t of V is the abelian variety (L ¢ = U/I"‘s(t) . At any rate,
if we combine the two mappings WI/I‘3 —> S§(V, r)/I"3 and WO/I"3 —_ V,
we get a continuous mapping ¥ ¥ —> 3[ » which is surjective and proper,
The verification is left as an exercise to the reader, We know that this is an
analytic isomorphism in the open subset Wl/ I'3 « Also the remark we made
before about the analytic structure of J_ around points of V shows that the
mapping is analytic around points of W 0/1"3 . Therefore Y * —> ‘Y isan
analytic mapping or a morphism and the theory of the theta-functions shows
that it is a ""blowing up" of I along V. We have thus obtained the following

result:

THEOREM 1, Let S be a_Siegel domain over T satisfying (S); let

T 0 be a properly discontinuous group of analytic automorphisms of 5 such

that T is l“o-rational. Then, if t

I‘0 satisfies (T'), a neighborhood of the image point of to in the

is not a fixed point of T, /I‘Z and if

0

compactification of S/T o San beBlown up along the image of T to a non-

singular variety so that the fiber over the image point of t near to is the

abelian variety (L e = U/I‘a(t) .
We note that, in case I"0 is not small enough to satisfy (I'), we can

still blow up the image of T so that the fiber over the image point of t is

the generalized Kummer variety U/I‘Z(t) . This process was investigated
by Satake [8] in the case when S is the Siegel ixpper-half plane and I"O is

the Siegel modular group of level 1, At any rate, Theorem 1 is of
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fundamental importance because it gives precisely a link between the theory

of automorphic functions and the theory of theta~functions.

4, We shall show that the said neighborhood of the image point of to
has no finite non-singular coverings. We shall use the same notations
as before,

Let ¢« = dzdudt be the (highest) multiple differential form on the
product Z X U %X T and consider its restriction to S{V,r). Since itis
invariant by I‘3 » We get a multiple differential form, which we shall also
denote by «, on the open subset S(V, r)/I"3 of 3(.. . We observe that <«
is holomorphic at every simple point of _I, . However, since the
(contravariant) image w* of w under the morphism (% —> X
has the expression (1/27i){dw/w)dudt, this is not holomorphic along w = 0,
Now, suppose that 9[ has a finite:non-singular covering /g —-——>j(, .

Then the image w of () under /l/ _—> {JC is holomorphic everywhere in
J% . This depends on the fact that the co-dimension of V in f hence
also the co~-dimension of the inverse image of V in ’% are at least two.
Consequently, if ’% * jis the Oka normalization [6] of the product
gﬁ* X fx,qj s i.e., if’% % is the normalization ofthe graph of the '"mapping"
fg —> i* , the image cO* of (> under the morphism’y*-—» /% is
holomorphic at every simple point of /% * . On the other hand, since w*
is also the image of (J* under the morphism %* —> )Y * and since this
is a covering, it is not holomorphic along the inverse image of w = 0,

This is a contradiction. Therefbre jC has no finite non-singular coverings.
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This type of argument was suggested to us by Zariski in the special
case mentioned in the Introduction, We note that we can arrive at the same
conclusion using either the well-known information about the total transform
of a simple point or a topological mathod. We shall formulate our result in

the following way:

THEOREM 2, Let S be a Siegel domain over T satisfying (S);

let T 0 be a properly discontinuous group of analytic automorphisms of S

such that T is T -rational, Then, if T 0 operates on S without fixed

0
points and contains a subgroup I‘é of finite index satisfying (T'), the

compactification of s/T 0 has no finite non-singular coverings locally at

any image point of T .

In fact, let t be a point of T which is not a fixed point of T, /l"z .

0
Suppose that the compactification of S/'l"0 has a finite non-gingular cove::.'ing
locally at the image point of t, . Since S/I'a is unramified over S/I‘0 .
this covering has to go through the compactification of S/I‘b + In this way
[c£.5], we get a finite non-singular covering of the compactification of S/'I‘b
locally at the image point of to . We know, however, that this is not possible,

Since points like t, form a dense open subset of T, the compactification .’ of

0
s/T 0 bas no finite non-singular coverings at any image pointof T .

We note that, in case S is obtained from a bounded symmetric domain,
the existence of T’b in Theorem 2 can be proved by a method which is

formalized by Selberg [9] . We note also that the idea to derive Theorem 2

from Theorem 1 has been suggested to us by M, Artin. In our original
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formulation, Theorem 2 was stated slightly differently and was proved first
(before Theorem 1) as follows. Instead of the assumption that T 0 contains
a subgroup I‘b of finite index satisfying (T') , we required that I‘o contains
a decreasing sequence of subgroups I‘én) with certain properties, which
is in most cases constructible by Selberg's method, and proved that the
dimensions of the Zariski tangent spaces [13] of the compactifications of
s/T én) along the images of T near t, tend to infinity with n., This again
implies the non-existence of finite non-singular coverings of the compact-
ification of S/T 0 at any image point of T, It seems that this crude method
can be applied even to the case when (S) is not satisfied,

We note finally that, in some cases, we can dispense with the asl'gumption
(T') . For instance, in the case of the compactification of the quotient \'\
variety of the Siegel upper-half plane of genus g bty Splg, Z), say, we can
blow up the compactificaf;ion along the boundary so that fibers over general
points of the boundary become Kummer varieties of dimension g - 1. There~
fore, by a similar argument as before, using (dzdudt:)z instead of dzdudt
in the case g is even, we see that the compactification has no finite non=-
singular coverings locally at any boundary point for g > 3 . The reason
why g = 2 is excluded is that the Kummer variety of dimension one is
exceptional, Actually, in the case g = 2 , we have complete information
since we know the structure of the compactification [4,5] + On the other
hand, if we are just interested in whether the boundary is simple or not,

i.e., general points of the boundary are simple or not, we estimate the

dimension of the Za#iski tangent space of the compactification along the
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boundary. We see easily that this is equal to the number of linearly
independent theta-functicns of order two and of "characteristic' zero for
genus g -1, anditis Zg"1 . Since the co-dimension of the boundary is

g, weget g = Zg-l as a necessary and sufficient condition for the
boundary to be simple [cf, 13] . Hence, as it was observed recently by

U. Christian [3], the boundary is singular, i.e., all boundary points are
singular, for g > 3 while the boundary is simple for g = 2, Atany

rate, it is understood that, if we take a subgroup of Sp(g, R) commensurable
with Sp(g, Z) which operates without fixed points on the Siegel upper-half
plane, we can apply Theorem 2 to this subgroup as '!."0 and we get the

non-existence of finite non-singular coverings forall g > 2,
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ETALE COHOMOLOGY OF SCHEMES

by M. Artin

A topology T consists of a category C and a collection of families
of maps of C. The objects of the category are to be thought of as '"open
sets', and the distinguished families of maps as "coverings'' of one open set
by another. There are a few mild axioms to be put on the situation, such as
that a restriction of a covering is again a covering (see [ 1] for precise
definitions). A sheaf F on a topology is a contravariant functor on C,
€.g-, to abelian groups, having the sheaf property that whenever a family
{Xi —£§> X1} of maps of C is a covering the sequence of abelian groups

T1F (1) TT(F(pry)- F(pxp))

0 — F (X} ——— [] F(x)) > 11, F (X xxX%;)

is exact. Most of sheaf theory goes through in this setting, and in particular
one has cohomology theory.

For the &tale topology on a prescheme X one takes as '"open sets"

the &étale morphisms X'— X. A family of maps {X; - X'} over X is
called a covering if X' ii:t:eoretically the union of the images of the Xi's.
Let us suppose that f: X' —> X isa morphism of preschemes of finite
type over Spec €, € the field of complex numbers. Then f is étale if and
only if the associated map of the underlying complex analytic spaces is a local
isomorphism, i.e., if and only if every point x' of X' has an open neigh-
borhood which is mapped isomorphically onto an open subspace of X. Now
as far as the category of sheaves is concerned, there is no difference between
the usual topology on a topological space and the one obtained by taking as open

sets the local isomorphisms. This is because obviously every covering in the
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latter sense is dominated by one in the forrﬁer sense. Therefore the étale
topology on an algebraic prescheme X over Spec € is a straightforward
algebraic version of the classical topology for analytic spaces. One has a
""continuous map"

€: Xelass > Xgtale®
and the following result holds,
Theorem: Let X be of finite type over Spec € andlet F be a

noetherian torsion sheaf on Xé Then the cohomology maps

tale

HY X4 100 F) — HU(X » E¥F)

class
induced by &£ are isomorphisms for each q.

This theorem in its general form requires resolution of singularities.
The étale cohomology theory does not give the classical answers for a non-
torsion sheaf such as the constant sheaf Z,

In general, most results of a basic sort are known by now, except that
cert;ain facts require resolution of singularities, and the cohomology behaves
perfectly for torsion sheaves prime to the residue characteristics. One has

5

o

for example the specialization theorem. v e
f‘é Fare ff,: q’. Ef" -:?\,sﬁ,. fi é‘) ‘5 ZV(}&AMV" '

Theorem: Let X be a prescheme smooth and préper over a base S. Then
the cohomologies of the geometric fibres Hq(XE- , Z/n) are isomorphic for

n prime to the residue characteristics.

Elementary Theory:

Case X =Spec k, k afield: Here the situation is very nice. An étale map

X'—= X is just the spectrum of a finite separable k- algebra k', so although

the topology is far from trivial, it is fairly explicitly known. The main
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result is that the category of sheaves on X for the étale topology is equi-
valent with the category of continuous G - modules where G =G (k/x) is
the galoi's group of the separable algebraic closure k of k. Hence the

cohomology is the ordinary galois cohomology developed by Tate [ 5 ],

Kummer Theory: There is a sheaf ((Bm )X whose sections on an X' étale

over X are the units in the structure sheaf I"(X', 6”x|) (one has to check
that this is a sheaf). One has

Hilbert Theorem 90: I-Il (X, (d}m )X) = Pic X is the group of isomorphism

classes of invertible sheaves on X. Hence the cohomology in low dimensions
of ((Bm )x is known, This gives information about cohomology with values
in constant sheaves because of Kummer Theory: One has the nth power map

n 3 - - » -
(G_, Ix — (G )X. Suppose that n is prime to the residue characteristics
of X. Then this map is surjective as a map of sheaves. Infact, if u is a
unit on an X' then the algebra

e’xr[t]/(tn -u)

defines an étale surjective extension of X', hence u is 'locally for the

étale topology" an nth power. One has therefore an exact sequence.

Kummer Theory: 0 — () > (G, )x—n> (G, )X"" 0

where ({4, )X is the sheaf of nth roots of unity. The sheaf (M, )X is

locally (non- canonically) isomorphic to the constant sheaf Z/n.

Case X is an algebraic curve: Let k be a separably algebraically closed

field and X an algebraic curve over Spec k, say reduced and irreducible.
Theorem: HA (X, (Gm)yg) = 0, g>1
P

where ? 0 means that the group is a p-torsion group, p = char k.
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Corollary: Applying Kummer theory, the cohomology of X with values in
(1, )X' (n,p) =1, is given by the exact sequence
0 —> ju, —> T(X, &y )+ => T(X, Oy J* = H (X, u, ) — Pic X
.0 < HE(X, jHy) - Piilt;(

In particular, if X is complete and nonsingular then TI'(X, Ox)* = k¥ is

divisible by n and one finds

HO(X,mn) = (l.ln )k = a cyclic group of order n.
gl (X,mn) = An = group of points of order n on the jacobian A of X
H2(X,/u ) = Z/n = Pic X/n Pic X.

Proof of the theorem: Let i: P—> X be the inclusion of the general point
of X. There is an obvious inclusion (Gm )X —— i* (G )P’ and hence an
exact sequence

00— (Gm)x-—) i*(mm)P—’ D—0
where D is the cokernel. The sheaf D has the property that every
section is zero outside a finite number of points, i.e., D is a ""skyscraper"
sheaf. One can show that therefore HY(X,D)= 0, q > 0. Hence, it
suffices to show

HI(X,ig(Gp)p) = 0, g>0

)P
which can be handled because P = Spec K is the spectrum of the function
field of X. Consider the Leray spectral sequence
. +
HP (X, R4y (G )p) = HPTU(P, (6,),).
Because of Hilbert Theorem 90 and dimension theory for galois cohomology
{Tsen's theorem in particular), HT(P, (G, )P) ? 0, r>0. Thus it

suffices to show that also R%i, (G, ), 3 0 a>0. But RYiy(Gpn)p is

the sheaf associated to the presheaf which attaches to an X'/X the group
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H? (Xl Xx P, (Gm )P) . Here x1 Xx P is the spectrum of a separable exten-
sion of K, i.e., a direct product of function fields of algebraic curves, i.e.,

is similar to P. Hence Hq(Xlx P,(Gm)p) ? 0, q>0, and so

X
qu*(Gm)P ? 0, g>0 as required.

By general nonsense methods, one can reduce most questions in the
study of torsion sheaves to the case of a constant sheaf such as [K,, and so
Kummer theory gives a good hold on dimension 1. The results in this case
are more or less old stuff, similar situations having been studied by Tate

[57, Ogg [ 37 and Safarevit [ 41,

Higher dimension and the proper base change theorem.

The case of varieties of dimension > 1 is much more difficult than that
of dimension 1. In fact, it is far from trivial to calculate the cohomology of
the projective or affine space of ;limension 2. One obvious approach to the
problem of calculating the cohomc;logy of a variety X of dimension n>1
is tomap X to P! by a nonconstant function and to proceed by induction
on n -- the fibres of the map will be of dimension (n-1). This leads to the
general problem of calculating the cohomology of a scheme X with values
in a sheaf F when a proper map f: X —> Y is given. One has of course
the Leray Spectral Sequence

HP(v,R9f,F) = HPYY(X,F)
which '"reduces'" one to the problems of calculating

(a) the cohomology of sheaves on Y and

(b) the higher direct images qu*F.

Now for a proper map f: X—> Y of paracompact spaces, one has the
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result that the stalk of RYf,F at apoint £ of Y is isomorphic to the
cchomology Hq(Xy, F/Xy) of the fibre [2]. This is false for the étale
cohomology of schemes, but is true if one restricts to torsion sheaves:
Theorem (Grothendieck): Let f: X—> Y be a proper map, let F be a
torsion sheaf on X, let y be a geometric point of Y, and let X-y: be the
fibre of X/Y at y. Then the stalk

(R, F)_~ HY (X, F/x-).

y y y

With this result, most questions for complete varieties can be reduced
inductively to the case of dimension 1.

The theorem is obviously of a local nature on Y, and one can, by a
limiting process, suppose that Y is "local" for the étale topology, i.e.,
that Y is the spectrum of a henselian ring with separably closed residue
field and that y is the closed point of Y. Then the stalk of qu*F at

y is just H%(X,F) and so the theorem reads

Same Theorem: With the notation as above, suppose Y is the spectrum of

a hensel ring with separably closed residue field and let X, be the closed
fibre of X/Y. Then the natural map

HY(x,F) — HY(X,, FlXg)
is bijective for all q.

Outline of the proof:

Let's assume that Y is noetherian and X/Y is projective. So one
can suppose X is the projective space IPE;.. By projecting P --> IPn'1
and induction, one reduces to the case of relative dimension § 1 (in fact to
the case X = ]Pil{ if one wants ). The case of relative dimension £1 is the

core of the proof,
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We take the local version above. Now the cohomology group HI(X, F)
is an effaceable functor of F, and it follows that to prove the isomorphism
for each F it suffices to prove bijectivity for q =0 and only surjectivity
for q >0, That is an elementary exercise on morphisms of 0 - functors.
Remember that we are in the case of relative dimension €1, i.e., inthe case
X is an algebraic scheme of dimension €1, This is essentially the case
of an algebraic curve, since nilpotents don't affect the étale topology, and is
well under control. One knows that the cohomology of a torsion sheaf vanishes
for q > 2. Hence surjectivity of the maps is trivial for g >2 and it
remains to prove
bijectivity for q =0
surjectivity for q=1,2.
But one can do even better: If one is willing to vary X as well as the sheaf
one can reduce to the case F = Z/n., This is done by untwisting a sheaf F
with the aid of the followiing

Lemma: Let X be noetherian and F a noetherian torsion sheaf on X.

There is an integer N, a collection of finite morphisms ﬂi: X{ - X,
integers n, i=1l,..., N, and an injection

0—=>F—> []m. (Z/n)).
In fact, with the lemma and induction, one reduces to the case
F = m.,(Z/n;), and replacing X by X; to the case F = Z/n,.
Hence the proof is reduced to showing
HY(X, Z/n) = HY(Xy, Z/n)

bijective if q = 0 and surjective if q=1,2. For q =0, recall that of

course HO(X, Z/n) = (Z/n)c where ¢ is the number of connected
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components of X (assumed finite ). Hence one has really to show that X
connected and nonempty implies X, connected and nonempty. This is an
easy consequence of Hensel's lemmaon Y. For q =2, letus assume n
invertible on Y so that we can replace Z/n by the (noncanonically)
isomorphic sheaf j  and apply Kummer Theory. One finds a diagram

Pic X = HI(X,6_) = H2(X, py,)

b,l, .l. c
Pic X, = H' (X, G ) = HE(Xg, #,) —> 0
m
where d is surjective because X; is an (nonreduced ) algebraic curve.
Hence to show ¢ surjective it suffices to show b:
Pic X —> Pic X,

surjective. Again using Hensel's Lemma and the fact that -dim X, £, it
is easy to show that enough Cartier divisors on X, lift to X.

There remains the problem of g = 1. Now by general arguments,
H! (X, Z/n) classifies étale galois coverings of X with galois group
Z/n. So the problem is to show that every galois covering of 'Xo with
group Z/n is induced by a covering of X. More generally, one has
Theorem (Grothendieck): Let f: X —> Y be proper with Y henselian
and let X5 be the closed fibre of X/Y. Then every finite étale covering
of Xy is induced by a (unique ) étale covering of X.

Unfortunately the proof is difficult.
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A DUALITY THECREM IN THE ETALE COHCMCLOGY

CF SCHEMES

J., L., Verdier

We shall present in this expose,a duality theorem which has been

proved by A, Grothendieck, The formulation of this theorem is the same
as those of the other duality theorems which can be found in nature:
Duality for coherent sheaves [H.S.], duality in the cohomology of
pro-finite groups, Poincaré's duality for topological varieties,... .

To get a duality theorem, we need a theory of cohomology with
compact support (8§ 2) ., Then the duality is defined by the Gysin's
morphism (or trace morphism) (8 3) . In 8 1 , we shall recall the base
changing theorem for the Stale cohomology which is the main instrument

in this question,

8 1, The base changing theorem in the Stale cohomology of schemes,

Let us consider a cartesian square of preschemes:

{ . g' X

X
| | o
s <« g st

and let F be a torsion sheaf on X for the &tale tapology. Let us suppose

(to simplify) that the prescheme S is locally noetherian, The obvious



natural transformation of functors:
e

(lower star = direct image, upper star = inverse image)

yields natural morphisms:

g*RIY (F) ——> R g*(F)

1.1 THEOREM., (Artin-Grothendieck): The above morphisms are
isomorphisms in the two following cases:

1) The morphism f is proper.

2) The torsion of ¥ is prime to the residual characteristics of S,

The morphism g is smooth.

8 2, The direct image functor with proper gupport,

Let £: X —> S5 be a quasi-projective morphism of preschemes
where 8 is locally noetherian, Let i: X —> X' bean S-imersion
of X into a prescheme X' projective on S, For any torsion sheaf
on X (for the étale topology), we shall denote by qu!(F) the sheaf on
S:

R% (F) = RIA (F

where i'(F) is the sheaf on X' obtained by extending F by zero and
where qu‘* is the g-th derived functor of the direct image by the

morphism f': X' —> S,



When § = spec(C) (the field of complex numbers) and X is a
non-singular quasi-projective variety,the qu! are isomorphic to the
cohomology groups with compact support of the corresponding topological
variety., (Comparison theorem),

The sequence RY% ! (0 < q) is a & -functor. It can be shown that
it is in general not a derived functor,

The qu! will be called the § -functor direct image with proper

support. In order to give a sense to this definition we need the

2.1, PROPOSITION; The §-functor R  does not dependon the

!

immersion i into a prescheme projective on S.

Proof: Let i: X —> X' and i' : X —> X" be two S-immersions.
We shall only prove that there exists an isomorphism functorial in F:
R4t (F) ———> RYUL3(F)

Making use of the fibered product, we can suppose that there exists an

S-morphism g: X' —> X' guch that the following diagram is commutative:

i 7/AI g
X / \
N* X
£1
f!l

S

The composition spectral sequence gives:
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Pen 9, G D, |
RY{ *(R g*(1!F))==> R f*Ci.!F)

To determine the sheaf ng *(i' (F)) , we can consider the fibers and
apply the base changing theorem for a proper morphism, It becomes

therefore clear that:
RYG G (F) = 0 q > 0
*1

and that the canonical morphism i'!(F) —_— g*(i !(F)) is an isomorphism,
What remains to be shown i8 that those various isomorphisms are
compatible. This can be done by the same methods.

The properties of the functor qu! are summed up in the following

2.2, PROPOSITION: 1) The functor qu! commutes with the

change of the base.
1)' When f is quasi-finite, R%, = 0 (q # 0). Inparticular

when f is Stale R%, =0 (q # 0) and f! is thefunctor extension

!
by zero,
2) Ve have a spectral sequence of composition,
3) Let Y <—> X be a closed sub-prescheme and U the
complementary open sub-prescheme. Let FU! be the sheaf restricted
" to U and extended by zero on X and FY be the direct image on

X of the restrictionof F on Y,

We get an unrestricted exact sequence:
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qtl

oo —> RY (F ) —> R (F) —> RY (Fy) —> RT £, (Fy ) —> ...

4) Let (Ua —> X) be a separated étale covering of X, For any
simplex ¢ = (al,cxz, ...,ap) we shall denote By Uo the prescheme

U X_Lees XU and by £ the morphism f composed with the

a S S a U
1 o

canenical morphism Uc —> X, Let us denote by F/UO‘ the inverse
image of the sheaf F on UO‘ . For any q > 0 and for any simplicial

application ¢ —> o' , we get a morphism of sheaves on S:

u (F/U_)

R (F/UG)*‘-—’} R
o!

Ug'!
which yields a semi}simplicial complex

;_% 11 R’y oy (F/U XU g _|__|_qu (F/Ua)
- «,B a S B

Let us denote by Hp(qu’LL!’F) the p-th homology sheaf of the above

complex,
If the covering is finite or if the dimension of the fibers of the

morphism f is bounded, we get a spectral sequence:

Efz"q - H (qu?/(_l’

When the fibers of the morphism f are of dimension < d, the above

F) => R*f!(F) .

spectral sequence yields the exact sequence:

@z 1] rR® UB!(F/U xsU )—*__LdefU [(F/U )—> R (F)-

o, B a s a



Proof: The first three assertions are obvious, Let us prove the

fourth one., Let us denote by FUo'l the sheaf restricted to Uo and
extended by zero, The complex of sheaves on X C*(Ua.F) deduced

from the semi-simplicial complex

= 11lF — || F —s F
— 5.8 UO.XSUB! —_— . Ui
s

is acyclic (look at the fibers)., Taking an immersion i : X —> X!
into a projective prescheme over S, we can take a resolution of the
complex i!C*(U, F) by objec;: which are f:k-acyclic (£': Xt —> 85).
The spectral sequence of the double complex obtained by applying the

functor £, yields the expected result,

§ 3. The trace morphism,

In this paragraph, we are mainly interested in the morphisms
f: X —> S5 of preschemes which possess the following property:
(S) £ is a smooth and quasi-projective morphism, The prescheme S is
locally noetherian., The dimension d of the fiber at any point x € X is
independent of the considered point.
The number d will be called the relative dimension of X over S.
The sheaf K, ( n prime to the residual characteristics of S) is

defined by the exact sequence :

(3.0.1) 0 — B, —_— _(_‘:_,m 25 gm —_— 0

(gm denotes the sheaf: multiplicative group)
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The sheaf on X : ui will play the role of a relative orientation sheaf
of X over S and will be denoted by TX/S . The sheaf TX/S is stable
by the change of the base.

Let S = spec{k),kan.algebriacallyclosed field, and X be a complete
connected non-singular curve over S. The exact sequence (3.0.1) vyields

the exact sequence of abelian groups:

0,. 0,., n 0,
(3.0.2.) 0 —> H(X,p) > H (%,G_) —> H (%G ) —>

o (X,p ) —> H'(x,g_) 2> nl(x,g_) —> HA(X, p ) —> 0.

Since the field k is algebraically closed, X is complete, and n prime
to the characteristic of k, the morphism HO(X,—-(_}_m) 2 HO(X,Qm)
is surjective, Since furthermore the group HI(X,gm) is isomorphic to the

Picard's group of X, the sequence (3.0.2) yields two cononical isomorphis:

~

B ) = ()

the points of order n of the jacobian variety of X, and

2. ~
(3.0.3) 1t B Xp) — Z/n
Let us suppose now that X = All{ = spec(k[t]) , (k algebraically closed
field) and let f: X —> S = spec(k) the canonical morphism, The
canonical immersion i : All< — P; (projective space of dimension 1 ove

k) yields the exact sequence of sheaves on Pllc :
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0 —> — gy, —>p, —>0

m
By o
Since B is obviously an acyclic sheaf over PL » We get a

oo
sequence of isomorphisms:

R f!(un) —> H (Pk.un —> H (Pk,pn) > Z/n

X1
Let us denote by:

2 ~
(3.0.4) W, R ) > Z/n

the composed isomorphism, We can now formulate the main proposition
of this paragraph. (From now on, except when explicitly mentioned,

the sheaves considered will be sheaves of E/n -modules ,

3.1. PROPOSITION: It is possible in only one manner to attach to any
morphism f: X —> S satisfying (S), and to any sheaf F on S5, one

morphism (called the trace morphism) :

2d
px,s(F) : RT£ (£%(F) @TX/S) —> F

(d is the relative dimension of X over S) such that:
TRO) PX, S(F) is functorial in F,
TR1) Px,s is compatible with the change of the base.
TR 2) pX, s is compatible with the composition of the morphisms,

TR3) When f is étale, Px s is the canonical morphism yielded by
£>9

the adjunction formula.
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TR4) When S = spec(k), X = All( » F = Z/n, the morphism

(Z_./n) is equal to o (30 0.4).

Px,s k

Furthermore the morphism Px,s possesses the following properties:
(a) When the fibers of the morphisni f are connected and non-empty,

Px,s is an isomorphism,

(b) When S = spec(k) (k algebraically closed field), when X is a
complete, connected, non-singular curve and when F is _2_.’_:/n s the

morphism Px,s is equal to ’lX (3.0, 3).

{(c) The morphisms for different n are compatible.

L Px,s
Let us first elucidate the axiom (TR2), Let f: X —> S and

g: S —> Y be two morphisms of preschemes satisfying (S) .

Let d and d' be the respective relative dimensions. The functor

qu! (resp. ngl) is null for q > 2d(resp.q > 2d'), Therefore the

spectral sequence of compositian yields an isomorphism

24 2d ~ 2(d - 4'
glR f! ——> R( )gf!

R
Furthermore the orientation sheaf TX /Y is canonically isomorphic to
TX/Y & £*(TS/Y) so that we have, for any sheaf F on Y, a natural
isomorphism a that we can include in a diagram :

~ 2a'  _2d \
RZ(d+d')gf!(TX/s®f*g*F) — > R g,R fg(Tx/s@'MTs/Y@g*F”

(3.1.1) RZd'g!(px's)

v Py /s 24! M
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The axiom (TR2) is that the above diagram must be commutative.

Proof of the proposition: Uniqueness: By (TR1l) we are reduced

to the case S = spec(k) where k is an algebraically closed field.
By (TR2), (TR3) and the exact sequence (2.2.1) we are reduced to the

case when X is affine and f of the type:

x £ Ai —> sgpec(k)

where g is étale and éd is the affine space of dimension d over k

k
(Definition of smooth morphism), By (TR3) and (TR2) we are reduced to
the case X = _éﬁ and f: -é;l: —> gpec(k) the canonical morphism.

By induction on d and (TR2) we are reduced to the case f: ﬁll( —> spec(k).
Since the functors Rq£! commute with inductive limits we can suppose that
F = Z/n., The axiom (TR4) completes the proof,

Existence: We shall sketch the main steps of the proof,

1) Suppose that the morphism o, o is constructed when S and
]

X are affine and when f is of the type X —£E > _}_}g > S with g

étale and that it satisfies (TRi), 0 < i < 4. Then, by localization on
we can construct
X (2.2.1) andon S, A it in the general case, The properties
(TRi), 0 < i < 4, can easily be verified,
(2) There exists one and only one functorial isomorphism:
2
R df !(T

24
x /g ® #F) —> RZL(Ty /) QD F

such that the properties (TR1) and (TR2) are satisfied, so that all we
have to do is to construct the morphism p,, S only when F is the
<>y

constant sheaf Z/n.,
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(3) Suppose that the morphism PX, s is constructed in the two
following cases:
(1) The morphism £ is étale and the morphism pX,S possesses
the properties (TR1), (TR2), and (TR3).
(2) The morphism f is the canonical morphism .ﬁg—-——» S
and the morphism Px,s possesses the properties (TR1),(TR4) and the
property:
(TR2)! The morphism Px,s is compatible with the S-automorphisms of

ég induced by the permutations of the indeterminates.
Suppose furthermore that the thus constructed morphisms verify the
following compatibility property:

(C) For any diagram:

x —& 5 5!
g l l h!
]
éi-———l—l——-—b S = gpec(k)

with g and g' étale and h and h' canonical, the two morphisms
2

R —— i i el. . Th
f!(TX/S) > Z/n  obtained by applying (3.1.1) are equal en

we can construct p. s in the general case.
’

Let us prove this assertion, Let f: X £ Ad

. > S bea

morphism with g étale, We shall define by the diagram

Px,s
(3.1.1) . The only point to be shown is that the so constructed morphism
does not depend on the factorization of f. The properties (TRi) can be

easily deduced afterward. To show this independence, we can suppose that

S = spec(k) (algebraically closed field), Let us consider
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d
X —E8 5 A s two factorizations of f. An S-
\L morphism of X into an affine space over
d
£y > =
£s S = spectk) S is determined by d global sections of

OX: ‘nlc‘nzaooo nd. Let (D.l}{/s be the
coherent sheaf of the relative differentials of X on S, The sheaf d}x /s is
locally free of rank d on OX « Let d’h' .e dq d be the differentials
of the sections NyeeeNg- The conditions for the morphism g to be étale

i J,
are that the sections d"?i of U} Uy /s generate the sheaf % /s * Let
1;‘1 voo .17(‘1 be d sections of Q, which determine the morphism g',
-
The question being local on X, we can see easily, through permutations
of the variables and successive substitutions, that we are reduced to the

case ni' = n; e 2 < i < d, That means that the following diagram

is commutative:

-1 S = spec(k).

5 and applying the property (C)

But now looking at the fibers on 2
we are done,

(4) Let us define the morphism Py s for f étale in the obvious way.
14

The properties (TR1), (TR2), (TR3) can easily be verified. For

d
f: -é'S ——> S we shall define Px s by induction on d so that we are
L4
reduced to the case d = 1, Using arguments similar to those used in

the beginning of this paragraph, all that is left for us to do is to define the

morphism Px. s when X = Pé . But in this case the sheafon S :
| 4
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le !(Gm) is canonically isomorphic to the constant sheaf Z and the

construction is easy. The properties (TR1), (TR2)! and (TR4) are --
obvious so that we still have to check the property (C) . This can be done
by classical arguments using the norm.

To achieve the proof, we have to check the properties (a), (b), and (c).
The properties (b) and (c) are obvious. To check the property (c) we are
immediately reduced to the case S = spec(k) (algebraically closed field).
Then we can use the nice neighborhoods of M, Artin and proceed by

induction,

8 4. Formulation of the duality theorem.

In this paragraph the morphism f: X —> S of preschemes with

the property (S) will be fixed once for all, The relative dimension of X

over S is d.

4.1 The derived category: We shall denote by Dn(X) (resp. Dn(X)) the

derived category of the abelian category of sheaves of _Z_/n -modules on X

(resp. S) [H.S5,]. Let us recall briefly what this category is. Dn(X) is
the category of complexes F° of sheaves (the differential is of degree + 1),
up to homotopy in which the morphisms which induce isomorphisms on the
objects of cohomology are inverse,
The category D:(X) (resp. D;(X) » TEsp. D:(X) ) is the full sub-

category of the complexes F° of Dn(X) whose objects (F° )’9’ are null
for 4 < /Q_O(F') (resp. ,2 > /RO(F') » Tesp. ,QO(F') < i and

L < LlEyy.
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The category Dn(X) posseeses a triangulated structure, i.e., for
any morphism F° 25 G we get a triangle that £s unique up to

non-unique isomorphism (the mapping cylinder):

H.
deg(w) = 1 w / \ v (*)
u

F'————— G’

Such triangles are called the distinguished triangles,

A functor Dn(X) _— Dn(S) is exact if it transforms distinguished
triangles into distinguished triangles,

A cohomological functor R from Dn(X) into an abelian category

transforms any distinguished triangle (*) into an infinite exact sequence:

0-0—9 ROF. —> ROG. — ROH. —> RlF. — see

The usual functor ""¢- - mology'' is a cohomological functor with values
in the catego:t'y of sheaves on X,
The functor HomDn(x)(F',.) (resp. HomDn(x)(. » F')) isa
cohomological functor (resp. a contravariant cohomological funcotr).
The group HomD (X)(F *,G") is sometimes called the hyper-Exto group,
The categorynD:(X) is equivalent to the category of complexes of
injective sheaves, bounded below, up to homotopy. A resolution
F* —> G° of a complex F° is a morphism which induces isomorphisms
on the cohomology , i.e., which yields an isomorphism in the categ::zy

L (X).
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To any sheaf F on ¥ we shall associate the following complex of

sheaves on X also denoted by F :

(F)’@ = 0 for L #£ 0

The functor thus defined from the sheaves on X into Dn(X) is fully
faithful, Exact sequences of sheaves on X yeilld functorially distinguished
triangles,

4,2, The exact functor Rf! .

i"> Xt -—f—-—> S be an S-imersion of X into a

Let X
projective prescheme over S, Let F° be a complex of sheaves on X
bounded below and let us take a resolution of i !F * by a complex of
injective sheaves on X', Applying the functor f we get a complex of
sheaves on S and therefore an object of Dn(S) whh;,h we shall denote by
Bf!(F *) . It can be shown that the object R f!(F *) depends functorially on
F* , (it does not depend up to unique isomorphism on the injective
resolution and on the immersion i, prop. 2.1). Furthermore the functor
Rf  can be uniquely factorized through the category D:(X). The functor

!
thus defined will be again denoted by:

+,. +
Rf : D (X) —> D (5) .

The functor Rf  is exact. For any sheaf P on X the cohomoicyy uheaves

!
of the complex :R_:t!(F) are isomorphic to the sheaves qu!(F) , (cf. B 2).
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Since the functor f; is of finite cohomological dimension (2d4), the
functor Rf, can be extended to the categories Dn(X) —> D _(S) (we
can take a resolution of any complex on X' by complexes whose objects are

£y -acyclic) and by restriction to subscategories wields various functors:

Rf, : D_(X) ——> D_(S)

Rf,

b b
: Dn(X) —_— I?“(S)

4, 3 PROPCSITION, 1) Let S —£ 5 Y be another morphism of
prescheme possessing the property (S} . The canonical morphism
B_(gf)l —> Bg[Bf! is an isomorphism,

2) Consider the following cartesian square:

G u X1

X
S L U' Si

-

The canonical morphism of functors:

u'*Rf, ——> Rfju*

is an isomorphism,
The first assertion is obvious , the second one is the base changing theorem

for proper morphism,
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4.4, The twisted inverse ima&e functor,
£
Let G = ... —> Gt 95 ¢ —s gl

oo

a complex of sheaves on S, ‘/e shall denote by ft(G’) the following

complex of sheaves on X :

(fz(c.))f; = f*(ci?_nd) ®TX/S

Liticry = ewaltedy ®id
X/s

d

This functor obviously yields an exact functor also denoted by f! H

!
£ : Dn(S) — Dn(X)

By restriction, this functor yields various functors:

D (S)

> o (x)
n

B+

D (S) —> D;(X)

4.5 PROPOSITION: 1) Let 5 —8—> Y be another morphism of

preschemes with the property (S).

gf.! f!g!

The canonical mozphism

is an isomorphism

2) Consider the following cartesian square:

< L X!

X
fl 0
S

[ ]
< u St

be
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. : ! v, .
lvThe canonical morphism f{' u'%* <—— u#*f is an isomorphism,

Those two assertions are obvious,

4.6 The trace morphism in the derived categories,

Let X -1—> b > S be an S-immersion of X into a

projective prescheme over S, and G be a sheaf on S, Let us take now

a resolution on X' of the complex i'f!(G) :

0 0 ;-2d -2+ .. U W |

; 0 0 .
Let Z be the kernel of the morphism d . We have a resolution

C*(G) = ees 0 —_— I-Zd —_— I‘2d+l -3 see —_ I-l —— Zo—_'> 0-—‘

of i!fI(G) by f,-acyclic objects and therefore the complexon S :
f;k(c*(G)) is canonically isomorphic in Dn(S) to the complex Kf I£!(G) .

But now it is clear that we have a canonical morphism of complexes:

! 2d
REFAG) —— RTL(HG) ®Ty /o)

and using the trace morphism we get a functorial morphism:

> G

!
Try s @ RET(G)

This morphism can easily be extended (by means of Cartan~Eilenberg
resolutions) to any complex of sheaves on S, and yields a morphism of

exact functors,
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4.7 The duality morphism:

Let K* be an object of D:;(X) and H® be an object of Dn(X) . Let
us denote by RHom(H", K'), the following comple;: on X : Take an
injective resolution I° of the complex K' and consider the object of
Dn(X) defined by the complex of sheaves: Hom*(H',I') where Hom
is the homomorphism sheaf. Let us assume now that H° is an object of
D;(X) and let us apply the functor global sectionon X, We get now an
object of D{(Ab) which we shall dencte by : E_Hom(H' 2 K') . The sheaves
of cohomology of RHom (H*,K") are the local hyper-ext, The groups
of cohomology of RHom(H',K") are the global hyper-ext,

In the same way we define Rf *(K') : Take an injective resociution and
apply the direct image functor,

By functoriality of Rf, , for any H' object of D;(X) and K° object

+ .
of Dn(X) » We get a functorial morphism:

Rf RHom(H",K") ——> RHom(Rf (H"),Rf (K"))
which gives, when we apply the functor global section on S, a finctorial
morphism:

RHom(H',K') ——> RHom(Rf (H"),Rf (i "
which yields, taking the cohomology, functorial morphisia of gicups :

Ext®(H',K') —> Ext™(Rf (H'), Rf (K"))

But now using the trace morphism, we obtain morphisms:
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l 2 ! [ ] L] L ]
A x/s ¢ RfRHom(F’,{G') —> RHom(Rf F*, G')

A2 /s RHom(F",£'G') ——> RHom(Rf,F",G’)

3 ! . o
Ax/s : ExtP(F',£G') —> ExtP(Rf,F",G")

for any F° object of D;(X) and G* object of D:(S) .
Let us then formulate the duality theorem:
4.8 THEOREM (A, Grothendieck): The morphisms A; /s (1 = 1,2,3)

are isomorphisms .

REMARK 1: Assume S = spec(k) (algebraically closed field) and X
connected. Let G be the group Z/n and F° = F be a sheafon X,
The duality theorem yields an isomorphism (we shall denote by Hz(x, F)

the groups Rpf!(F) )

P(; ~ 2d-p
Hom(Hc(x, F), E/n) —3  Ext (X, F, TX/S)

Assume furthermore that F jis locally free and of finite type, sing
spectral sequence from local Ext to global Ext we obtain: (' = Hom{F, TX /S”

which can also be formulated in the following way: Th2 cupesrodmgt

Hz(X,F) ® H“'P(x,r') — H‘:‘d;z, T, 7o) —> Z/a

x/5
is a perfect duality, This is one of the classical formulaticns of the theorem

of Poincare,
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REMARK 2: Using localization (associated sheaf) and global section
(spectral sequence from local to global), it is easy to see that if for some
is always an isomorphism, all the

i (i =1,2,3) the morphismA, y

S
JAN

i « :
X/s are isomorphisms,

8 5, Proof of the duality theorem,

We shall sketch the proof of the duality theorem.,

Let us recall first that, the preschemes X and S being locally
noetherian, ‘the categories of sheaves on X and S are locally noetherian.
Let us recall also that a noetherian sheaf G is constructible, i.e., any
point possesses a neighborhood which possesses a finite partition into
locally closed subsets on which the sheaf G is locally constant and of
finite type. In particular any constructible sheaf is locally constant in the
neighborhood of the gene?ic point of any irreducible component. It can
be shown {as a corollary to the base changing theorem for proper morphism)
that the direct images (including the q-th direct images q # 0) ofa
constructible sheaf by a proper morphism are constructible,

Let X -——L9 S be a morphism which possesses the property (S),

F® be an ohject of D;(X) and G’ be an object of D;:(S) . We shall
denote by (i, X,S5,F°,G’) the property: The morphism AN ;/S(F' ,G") is

an isomorphism,
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5.1 LEMMA: The following properties are equivalent:

(i) The duality theorem is true for the morphism f{,

(ii) There exists an i{i = 1,2, 3) and an etale covering (Uj -—> X))
such that , for any quasi-projective étale morphism U —> X

which can be factorized by the above covering and for any constructible

sheaf G on S we have the property (i, X, S, _Z_./nU‘.G) .

5.2 LEMMA: The duality theorem is true when f is étale.

5.3 LEMMA: Let S 2> Y bes morphism with the property (S),

H* an object of D;:(Y) and i be an integer 0 < i < 3. Let us

suppose that two of the properties below hold:

'3 [ ) ! . ™ . . [ ] Ll
(i, X,5,F +g HY) (i, X, Y,F »H') (inSvYaRf'F +H)

Then the third one also holds.

M: The last lemma comes directly from the transitivity property
(4. 3; 4.5; 3,1 (TR2) ). The second one is obvious., Let us prove the first
one, Any object F° of D;(X) admits a resolution P° ——> F' by
a complex of the type : P° = ,,, —> _%/nU' —> Z/n., >0 —> ...
where the Ui and the Uk are ctale over X :md can be factorized by the
covering (Uj —> X ). So that, by spectral sequence argument or by
the way out functor lemma [H, S.] in order to prove the duality theorem,

we are brought back to the case F* = | | _%/nU y » With U, noetherian.
i i
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Since the functors Rt 1 and Ext’ commute with the infinite sum we
are brought back to the case F* = _Z_/nU.! . Again by spectral
sequence argument we can suppose that Clr' = G is one sheaf over S,
But now, since the sheaves _%/nU, and qu!(g/nU. ‘) are noetherian
sheaves, the hyper-ext Ext*(_l'\_’_f!(jg/nu.').G) and E;t*@/nu.',.f"(})
commute with the direct limitof G azlnd therefore we can su;lapose

that G is noetherian, i.e.,, constructible, We thus prove the

implication (ii) ==> (i) . The other implication is obvious.,

5.4 First reduction: Using the three lemmas above and straight

forward arguments we are brought back to the proof of the theorem in the
following case:

(a) The morphism f: X —> S is of relative dimension 1,
X and S are affine noetherian,

(b) The complex F° is the constant sheaf Z/n .

(c) The corr;plex G® is a constructible sheaf.

Thus, by the first reduction, we have to check that the morphism

(5.4.1) AIX/S : Rf,(£'G) —> RHom (Rf,(Z/n),C)

is an isomorphism,

Let ¢ € S be a generic point of an irreducible component of S,
The sheaves G and qu!@/n) are constant on an étale neighborhood
of 5 (they are constructible) , Therefore the cohomology sheaves of

the complex RHom (I_Q_f!@/n), G) are constant on an étale neighborhood
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of n.

5.5 LEMMA: Assume conditions (a), {b), (c) of the reduction 5.4,
Denote by ;; a geometric flber of £, The cohomology sheaves of Bf*(f !G)
are constant on an etale neighborbood of n, The complex Rf,(f !G); is
canonically isomorphic (in Dn(Ab) } to the complex _l}f-;’ *(E-:; G-1—7) .

We shall not prove this lemma. It follows from the ''relative purity
theorem'' [S.G, A, A.], which is one of the consequences of 1,1,

But now, by the lemma 5.5, to see that the morphism (5.4.1) is
an isomorphism on a neighborhood of n, itis enough to look at the fiber
X~

n
algebraically closed field)., Furthermore, to prove that (5.4.1) is an

> ;7. » i.e,, we are reduced to the case S = spec(k) (k an

isomorphism we are reduced, by an easy noetherian induction on the support
of the sheaf G, to the case where the support of G is a closed point of
S, and we are immediately reduced again to the case S = spec(k)
(algebraically closed field).

Let us suppose that S = spec(k), we can embed the curve X into
a complete non-singular curve X' and we are easily reduced to prove the
duality theorem in the case

(a} X —> S is a complete non-singular curve over an algebraically
closed field,

(b)! The complex F* is the constant sheaf Z/n.

(c)' The complex G° is the constant sheaf Z/n,

Thus we have to prove that the morphisms:
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H(X,p ) ~—> Hom(H’(%,Z/n), Z/n) (5.5.1)
H'(X,p ) —> Hom(H'(X,Z/n),2/a) (5.5.2)
HZ(X,pn) —_— Hom(HO(X, Z/n), Z/n) (5.5. 3)

are isomorphisms., This can be seen easily for (5.5.1) and (5.5.3).

For (5.5,2) this follows from the autoduality of the jacobian variety of X,
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ALGEBRAIC COHOMOLCGY CLASSES

J - Tﬂte

The _{ -adic étale cohomology of algebraic varieties is much richer
than the classical cohomology in that Galois groups operate on it, This
opens up a new field of inquiry, even in the classical case, Although theorems
seem scarce, the soil is fertile for conjectures, I ask your indulgence
while 1 discuss some of these, together with some meager evidence, both
computational and philosophical, for them, The main idea is, roughly
speaking, that a cohomology class which is fixed under the Galois group
should be algebraic when the ground field is finitely generated over the prime
field. I have come to this idea by way of its relation to questions of orders
of poles of zeta functions, Most of the signposts along the way became
visible to me during conversations and/or correspondence with M, Artin,

Mumford , and Serre. I thank them heartily for their guidance.

81. The .2 -adic cohomology. Throughout our discussion we shall

consider the situation pictured below, in which k is a field, k an
k

v

N
\ / /N

algebraically closed extension field, G(k/k) the group of automorphisms of &

over k, V anirreducible scheme projective and smooth over k, and
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V = V X K the scheme obtained from V by base extension to k. For each
k
prime number ,2 different from the characteristic of k, we put

i,5. . . i n
(1) HO -0 ®Z£(€-1;n HAV o0 Z/L 72D

where Ve/a denotes the étale topology of V. In the classical case,

tale
k=€ » the comparison theorem of M, Artin allows us to replace "étale"
by "classical" in this formula, The inverse limit is then isomorphic to

B (v

Z
classical’ £ ) and consequently we have

i -—
H (Vclassical'

Hfa V) = H (‘—’classical' Rp) z /) ®(D Z)

In the abstract case there is no good cohomology with rational coefficients, and
it is the groups Hi (v) which play the role which we are accustomed to
attribute to ''cohomology with coefficients in (D2 " . Iunderstand that the
éftale cohomologists have established finite dimensionality, Poincaré duality,
Kunneth formulas, and a Lefschetz fixed point theorem for the groups H/iz .
The proper base change theorem shows that the groups H,lﬁ do not change

if we replace k by a larger algebraically closed field, As Mike Artin said

in his talk, the situation is just like in the good old days,

In one respect the situation is even better, because the Galois group

G(k/k) operates on the groups HZ ). Namely, it operates on the product

V=Y Xk k through the second factor, and hence on the site Vétale; the

point is that the étale topology depends only on V and not on the arrow

V —> Spec k which is used to define the classical topology when k= C,
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There results a homomorphism

(2) Gli/k) —> Auty (Hy (V) ~ GL (b, @ )
. - i
s
(where bi = dim ® Hﬁ = i Betti number). Using the base change theorem
L

one sees that the hdmomorphism (2) induces a topological isomorphism
G(k'/k) - G/ie between the group of a certain Galois extension k'
over k and a certain closed subgroup Gi of @IL (bi. Q,ﬁ ) « Thus the
situation is exactly as described by Serre [4] incase V = A is an abelian
varietyand i = 1, when Hj)/ (K) can be identified with the dual of Serre's
v ) (A). The group Gj: is an _{ -adic Lie group, whose Lie algebra
j} 1 is unchanged if we replace k by an extension of finite type. These
Lie algebras of Serre's raise a host of new problems, even, or perhaps
especially, in the classical case.

For example, let X be a comple:ﬁ: projective nonsingular variety.

Then we can find a field k © € finitely generated over @ , and a2 scheme V

over k suchthat V = V X € ~ X, The Lie algebras
k

i i
j%/a c EndQE(H (X, @) % Q)

which are which are obtained in the manner just discussed are independent of

the choice of k_and V, and depend only on X/€ . Almost nothing is known

about them, cf. Serre [ 4] . Is their dimension and type independent of 4 2
Are they reductive? Serre [5] has shown the answers are affirmative in
case X is a complex torus of dimension 1 whose j invariant is either real,

or not an algebraic integer., The conjecture about algebraic cycles which I
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am going to discuss in 2 moment has the following consequence in the
present situation: Let (€ HZ(X. ®) be the cohomology class of a hyper-
plane section. For x € ngj s let x c«)i = ).i(x)a)i » With )\i(x) € @,ﬁ .
Let 6 € HZi(X, ®). Then (conjecturally) some mulitiple of 6§ is the class
of an algebraic cycle of codimension i if and only if x6 = Ai(x)e for all

2i
/
x G ’Z -

8 2. Cohomology classes of algebraic cgcles. The operation of

G(-l;/ k) on cohomology makes it imperative to keep track of "twisting' by

roots of unity, If G(-l:/k) operates on a vector space H over Q/Z » We

define the twistings of H to be the G(k/k) spaces H(m) = H @Q w ® m

Y

for m € Z , where

(3 = ® i "
) oo, %‘E{ﬂn}

is the one dimensional ,ﬁ -adic vector space on which G(E/k) operates

according to its action on the group p n of ,En-th roots of unity for all n

©lm|

(for m < 0, we put W® moz Hom(w Q@ )s so that H(m)}(n) ~ H(m+n)

forall m,n € Z ), The canonical isomorphisms

i n ; ®m ~ i ®m
H (Yétale' z/ £ z) ® ,fgn —> H (!étale’%gn )
{which are obtained by viewing ’ffnm as Hom(Z/ EnZ, uf;n } show that
if we replace z/,enz by uﬁ?;m in the definiticma (1) of H/IQ—(V), then

we replace H}Q(V) by its m-fold twisting H}Z(V)(m) .
Let 4 = dim V, As Verdier discussed in his talk, the ''orientation

sheaf {(mod ,Qn)" on V is u? s and there is a canonical isomorphism
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~~

2d

) (V)(d)

H

() Py p -

(For practical purposes, ''canonical homomorphism'' means G(E/k) homo-
morphism.) The ,ﬁ -adic Poincare‘duality theorem states then tha the
cup product pairing:

Hy @) @ x B - m — e~ e,

gives a perfect duality of finite dimensional vector. spaces.
Thus, if X is an irreducible subscheme of V of codimension i, we
can attach to X a cohomology class c(X) € HZI(V)(i) which is characterized

by the fact that

pyln U cX)) = p (n|x)

for all n € Hz(d'l)(.\_/)(d-i). Extending ¢ by additivity we obtain in this way

a homomorphism

(5) %i(\?) c 5 Hjéi W) ,

where %I(V) denotes the free abelian group generated by the irreducible

subschemes of codimension i on V. These homomorphisms will carry

intersection product into cup product:
c(X - ¥) = e¢(X) U c(Y)

whenewer X ¢ Y is defined,
Let %; (V) denote the kernel of the homomorphism ¢ in dimension
i ,(that is, the group of algebraic cycles of codimension i on V which are

wy -adically homologically equivalent to sero'') and put
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Q' = 3 m/% h(V) .

One has the following conjectural statements,
(a) %;(V) is independent of b » or perhaps even
(a') %;(V) consgists exactly of the cycles numerically equivalent to zero,

{b) C“LI(V) is finitely generated, and the map

QA ® o <BL w¥iGHa
z XY

is injective,
Statements (a) and (b) are true in characteristic zero, because we
can then imbed k in € and factor the map O through the finitely generated

Z -module H (V + Z), for which

elass
i i=
H/[ V) ~ H (vclassical'

z) ® mj

Io the abstract case, nothing is known for codimensions i > 1, but for i=
all three statements (a), (a') and (b) are true, Let 3 n o % a 3 7

denote the groups of divisors on V which are, respectively,numerically,
algebraically,
Aor linearly equivalent to zero, The map & : % V) — ,E(V)(l) is

obtained by passage to the limit from the composed mapse ,

5
) 1,171 1=
3 - 3 /@ﬁ Z H V010 % m ) B n’ (v'tale Y10 Y

where Sn is the connecting homomorphism in the cohomology sequence
derived from the exact sequence

(6) 0 A"

> p  —> G > G —> 0

ﬁn m m

(see the talk of Mike Artin)., For each n. the kernel of Sn is ﬂnHl(\-fét,(B
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and (a') and (b) now follow because 3 ;/ j é is divisible, and

% ;/ 9 ; is the torsion subgroup of the finitely generated groupé 1/ 9 ; .
From now on, we shall assume (a) and (b) hold in whatever situation

is discussed, Each irreducible subscheme X of V is '"defined" over a

finite extension of k. Thus X is fixed by an open subgroup U of G(ic-/ k),

and the same is true of its class c¢(X). There is a conjectural converse of

this statement, namely:

CONJECTURE 1. If kis finitely generated over the prime field then
the space cf &i(v)) Q‘Eniiggsthose elements of H;,i(%(i) whose stabilizer
is open in G(i/k) s that is, which are annihilatea l;y the corresponding Lie
algebra,

Let @Li(V) denote the subgroup of @i(\-’_) generated by the
algebraic cycles which are defined over k, If an element of Qi(-\.l-) is

fixed by G(E/k) ., then some non-zero multiple of it is in QI(V) o« Thus

conjecture 1 implies

() o« Qe - [H}‘(V)(n]‘}‘k/ Ko,

for finitely generated k, On the other hand, if (7) holds for all (sufficiently
large) finite extensions of k then conjecture 1 is true.
Let now A and B be abelian varieties over k. If we combine the

fundamental isomorphism
~ ~
Homk(A. B) ——> Ker(@l(A X ﬁ) —_ QI(A) X QI(B”

with the Kinneth formula
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H/z(A) ® Hﬁl(é) —_— Ker(HélA xB) —> H}(A) x }hl(ﬁ))

A
we conclude from (7) appliedto V = A X B with i= 1 that

Hom, (4, B) ® 2, G(k/k)

is an isomorphism. Reinterpreting the right hand side in terms of points

> [H)A) @ H) (B

of finite order (via the Kummer sequence (6)) one finds that this last is

equivalent to

~ ()00 w©
(8) Hom, (A,B) ® Z ~— Homy iy, (A(LT)BULN .

where A( ﬁm) denotes the G(‘lz/k)-module of points on A of order ﬁv, all
v, with coefficients in k. In down to earth terms, if a group homomorphism
0: A(S°) —> B( ®) commutes with the operation of the Galois group

for a finitely generated Kk, then for every N there should exist a homo-

morphism of abelian varieties /)()N : A > B such that VJN coincides
. . N
with «@ on the points of order 7.

Mumford has verified (8) in case k is finite and A and B are of
dimension 1, by lifting the Frobenius endomorphism to charactertistic O,
a la Deuring, [1].
Results of Serre [5] show that (8) holds in case k is a number field
with at least one real prime, and A = B is of dimension 1, Of course,
if (8) holds for A and B of dimension 1, then (7) holds with
V= A X B,

I can see no direct logical connection between conjecture 1 and

Hodge's conjecture [ 2] that a rational cohomology class of type (p,p) is

algebraic,i,e., rational combination of classes of algebraic cycles (In case
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of divisors this is a well known theorem of Lefschetz and is even true over
Z). However the two conjectures have an air of compatibility, For example,
Grothendieck remarks that each of the two conjectures imply that the Kiinneth

components c of an algebraic class ¢ on a product V' X V' are

s b

algebraic, a statement which seems unknown even in case of the diagonal on
the product of a surface with itself in the classical case. By the'Kunneth

decomposition"

¢ = Z ca.,b
atb=2i

of a cohomology class ¢ € HEI(V' X V'')(i) we mean its expression as a sum

of classes ¢ € Hzi('{l-‘ X V")(i) such that ¢

is in the image of
a,b n imag

a,b
a = b= 1 . . . . ai
[H/e (V) ®HE(V")](1) . Conjecture 1 implies that if ¢ € c( )Q,'Q
then < b € cf &‘)mﬁ for all a, b. Grothendieck conjectures that the
»

same is true with O instead of 0122 » as would follow from Hodge's conjecture

in the classical case,

8 3. Connections with zeta functions (Finite k), Let ¢: V—> V

be a -I;-morphism. and let (pi y) denote the linear transformation of }fé{;)
]
induced by ¢, Then the algebraic number A((_p) of fixed points of ¢

is given by the Lefschetz formula
2d

i
(9) MA@ = ) 1'Traceto, ).
i=0
It is generally conjectured that

{c) The characteristic polynomial Pi (t) = det(l -cpi Qt) has rational
[ »
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integral coefficients and is independent of /é .
(d) Suppose that there exists an ample W € &/1(\7) such that

©*w = qw for some integer q > 0. Then the endomorphisms

<pi J) are semisimple, and if we weite
L4
bi
- = = » -
(10) det(l - ¢, ot) = Py(t) 'JD; Q ij1:)

i/2

with complex aij » we have ,ai,j’ = q for all j. In characteristic

zero (c) is an immediate consequence of the existence of integral cohomology,

and (d) can be proved by Kahlerian methods {cf. Serre [3]). In

characteristic p , both conjectures have been proved for curves and abelian

varieties by Weil [ 8], When ¢ is the Frobenius morphism, conjecture

(d) is the famous conjecture of Weil [ 9] which started this whole business,
From now on we shall agssume (c) and (d) hold in whatever situation

is discussed, Let k = IF a be the finite field witlfx q elements., For any

scheme X over qu, the Frobenius morphism FX: X —> X is defined

as the identity map on points, together with the map f —> 2 in the structure
sheaf, This Fx acts like identity on the site Xétale’ and therefore induces

identity on the cohomology groups Hl‘xe,tale’ Z/mZ)., On V=V if

we have Fv = Fv X F-l-(- = ¢ X 0, say where ¢: V —=> U is the usual

Frobenious morphism, and where 0 is the canonical ''generator'" of G(k— /Kk) .

Since ¢ X 0 acts as identity on cohomology groups HE(\?) » we have

! » where o, is the linear transformation of Hie V)
i, L

A
5,07 %,2
induced by the .l;-morphism ¢ X1 , and where oi ¥ is the linear

»
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transformation of H/la (V) produced by the operation of 0 as element
of G(k/K) .

The zeta function of the scheme V (see Serre's talk) is given by
-8 A -8
Pl(q ) see ¢o PZd"l(q )
(11) : (Vo s) = s ~s _s ’
Po(q )Pz(q ) “aee asew PZd(q )

where d = dim V ; and where Pi(t) is the characteristic polynomial of
Frobenius operating on cohomology of dimension i, as in (10) . Formula
(11) results from Lefschetz' formula (9) for _A_ (gpv) and the definition
of L; see Weil [9] . Since the "reciprocal roots" aij of Pi(t) have

i
absolute value qz » the zeros of L{V,s) are on the lines

1 -
Rs = P %..... E-d—zl- » and its poles are on the lines Rs = 0,1,2 ,...d .
The order of the pole at the point s.= i is equal to the number of times
ql’ occurs as a reciprocal root of PZi(t). or what is the same, as an
eigenvalue of (pZi. R By the semisimplicity of ‘pZi, 0 this is the
dimension of the space of x € H21 ('\7) such that ¢©,. )x = qlx s OF

,z 2102,
x = 0, qux « Now 0 operates as q onour twisting space, W ,
4
because © raises ,@ n-1:h roots of unity to the q-th power, Thus for
y € W&)i we have oy = qiy and o(x ®y)= o X @qiy= o in@y.
2,0 21,0

It follows that the dimension we are computing is that of the subspace of all

2i -
z € H I(V)(i) such that 0z = 2z, that is, the dimension of

[Hzi(V)(i)]G(k/k) « If (7) is true we have then
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(12) rank @3(V) = order of pole of L(V,s)ats = i,

assuming, as always, that (a), (b), (c), and (d) hold., Moreover, the
inequality . always holds under those assumptions, and equality in
(12) for all (sufficiently large) finite extensions of k is equivalent to
Conjecture 1,

I have tried to check (12) in case V = Vn. D is the hypersurface

in projective r-space defined by the equation

n
0

+x‘;+...+x“=o

(13) X N

over a large finite field k of characteristic p not dividing n, Weil [9]
has computed the zeta function and hence the order of the pole; it is

the determination of the rank of &i(V) which is difficult, There is only
one non trivial dimension i, namely that for which r = 2i + 1, Ihave
succeeded in the verification of (12) oﬂy in two special cases.,

(1) if pv = «1 (modn) for some VvV, and (II) if p = 1 (mod n),

and r = 3, i = 1, Incase (I) the order of the pole turns out to be

equal to the Betti number b so the problem is to prove that the

2i’
algebraic cohomology classes span Hzé(.\?)(i) .

v
For this we can replace n by its multiple q + 1, where q = p ,

because V{q+ 1, r, p) dominates V(n,r,p) as the map
1
Xj —_—> Xj ' shows. This gives us the advantage that our hyper-

surface

xatl ,oxatl Lo xT o
0 1 r
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has a large group of automorphisms, namely those induced by the group U

of projective transformations

2. X
i >Zaji i

where (a';ji) is 2 matrix in IF 2 which is unitary with respect to the
| - q
conjugation a —» a = al « John Thompson and I proved that the

X

representation of U on I-}gi(_\h is the direct sum of the trivial representation
and an irreducible one, and the required result follows easily from this.
Incidentally, the non-trivial irreducible representation in question, which
is of degree g -12-:3_—11— + seems to be the irreducible representation of
lowest degree > 1 of the group of (r+ 1) X (r + 1) uaitary matrices
(aij) with a’ij € ]F(‘lz » r odd.

In case (II) , the order of the pole turns out to be equal to the rank
of Q_i(\-f) for the surface V in characteristic zero defined by equation
(13) . Since the rank of Q?l can only increase under specialization
(look at the intersection matrix) , equality (12) must hold . The
computation of the rank (Picard number) in characteristic zero is made with
the aid of the Lefschetz theorem; it turns out to be possible to count the
dimension of the space of zational cohomology classes of type {1,1) by
regarding the cohomology as a representation space for the commutative
group of automorphisms of the form Xi — Cixi » where C? =1,

1,1 s and Ho'2 have

0 €£i < r, The pointis that the spaces HZ' 0 . H
no common irreducible constituents, If we assume the Hodge conjecture then

we can treat case II for arbitraryr = 2i+1,
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8 4. Connections with zetas (finitely generated k). Let us turn now

to the case k is finitely generated over the prime field, rather than finite,
We can then construct a projective and smooth morphism f : X ——> Y

of schemes of finite type over Z , with Y regular and X irreducible,
whose general fiber is our given morphism V —> (Spec k). (The case
which has been studied classically is that in which k is an algebraic
number field and Y is an open subset of the spectrum of the ring of
integers of k such that V has ''non-degenerate reduction' at all points
of Y,) For each''closed" point y € Y we let Vy (rather than the
conventional Xy) denote the fiber f-l(y) . and we let k(y) denote the
residue field of y, which is finite with (definition) Ny elements, as Serre
mentioned in his talk. Thus the scheme VY over k(y), and the correspond-
ing '"geometric fiber" V’y over Tc-(—ﬂ » are as discussed in the preceding
section, with q = Ny, Expres}sing the zeta function of the scheme X

as a product of the zetas of the closed fibers we have

(14) e(xX,8) = | L(V,.o) .

VAR 4
y closed

Expressing the zeta functions of the fibers in the form (11) we have then

® (s) Ps) ... P, . (5)
(15) £(X,s) = ———2 2d ,
S{)l(s) cos @Zd_l(s)

where we have put, for 0 i< 2,
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1
(16) o(s) = TT —g—iom—s— .
y closed

The Py i(t) are of fixed degree (see below) with reciprocal roots
’

aij of absolute value (Ny)l/ 2 (recall that we assume conjecture (d) of

8 3). Therefore, by theorem 1 of Serre's talk the product (16) converges
absolutely for Rs > dim Y + -22- « It is conjectured that the §i can
be continued meromorphically in the whole s-plane (cf. Weil [11]), At
present the continuability is known only in very special cases (see Shimura's
talk). From Poincaré duality, we have @ Zd-i(s) = '@i(s -d+ i)

If we replace Y by a non-empty open subscheme in (16), we
divide ? i(ss) by a product which converges for Rg > dim Y + % -1,
It follows that (insofar as ﬁi is extendible there) the zeros and poles
of @ i in the strip

-1 <Rs <dimY + 3

[

dim Y +

depend only on V/k and not on our choice of X/Y . It is therefore natural

to try to relate the orders of the geros and poles of Qi at critical places
in that critical strip to other invariants of the variety V/k. The original

idea in this direction is the following striking

CONJECTURE of Birch and Swinnerton-Dyer: The rank of the group

of k-rational points on the Picard variety of V is equal to the order of

the zero of §1(8) at 8 = dim Y (and of @ {(s) at s =dimX - 1,

2d-1

If kK = @, and V is an elliptic curve of the form yz = x3 - Dx,



16.

D € Z , there is overwhelming numerical evidence for the fact that

_@ l(1) = 0 if and only if the curve has a rational point of infinite order
(cf. Cassel's talk), In case of finite k, the conjecture is trivially true,
amountingto 0 = 0,

I would like now to discuss the following generalization of (12) :

CONJECTURE 2: The rank of @_i(V) is equal to the order of the

pole of §2i(s) atthe point s = dim Y + i (and of @ (s) at

2d-2i
§ = dim X« i, by duality),

Notice that the position of the pole considered here is on the boundary
of the half-plane of convergence of the product, so that conjecture 2 can
be given meaning even without supposing analytic continuation ., In this
respect it is different from the conjecture of B, and S-D ,, which pre-
supposes analytic continuation a distance of il- unit to the left of the line
of convergence, On thé other hand, the two conjectures are intimately
related, at least insofar as the case i = 1 of conjecture 2 is concerned,
This is not surprising, because both of them relate the order of a function
at s = dim X -1 to the rank of a group of divisor classes., For example,
let V. —> W bea morphism of varieties of our type over k, whose
general fiber Vw/k(w) is also of our type, If k is finite, and W and
Vw are curves, then it is easy to see, as I mentioned in Stockholm [1,
that conjecture 2 for V/k is equivalent to the conjecture of B, and S-D.

for VW/ k(w) . In the general situation, the two conjectures, for the three

#
varieties V/k, W/k, and Vw/k(w) are strongly interrelated

*
See remark at the end of the talk,
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Conjecture 2 has heen verified in some special cases. If k isa

number field and V the surface Xg + X;l I;

[10] has computed @2(5) as a Hecke L-series, Itspoleat s = 1

+ Xt;-} X, = 0, then Weil

turns out to be equal to the Picard number of V if k contains the

2n-th roots of unity, The corresponding statement is true for the hyper-

surface Z:; 0 X? = 0, rodd, if Hodge's conjecture is true for it.
Henry Pohlmann has verified conjecture 2 for i = 1 incase V is

an abelian variety of C.M. type in the sense of Shimura-Taniyama [13] .
It is interesting to consider the case k a number field, V = E™ the

product of an elliptic curve E with itself m times over k, For each prime

y where E has non-degenerate reduction, put

% -8 _ -12- -3
LE .o = G-y Je-&w ) :
@ -n79) (4 -N}lr's)
and let |
Ey RULS) , 0 < 8(y) < m

Then we have

.\ M, ,m
(17) @i(s) =TT (Li-Zv(s __;_)>( ALEE

1
0_<_V$_-2-
where
1
(18 Lys) =TT ——— ,and L (s) = T T
y 1-N¥ v (1 -6yNY Mt - '6YNY )

for v > 0.,
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In case E has complex multiplication the Lv(s) are Hecke L-series,
we have rank ai(-\?) = (nia)Z » and conjecture 2 is easily checked for
all i,

Suppose now that E has no complex multiplication, Then one finds

i i— m,2 m, m
(19  rank AYV) = rank (L' (V) = 30 I i) e T
Let <, be the order of Lv(s) at s = 1, Assuming conjecture 2, we
conclude from (17) and (19) that
co=1,c2=-1,andc2v=0 for v>1,

On the other hand, arguing formally from (18) (I have not investigated
the analytical subtleties-~this is all heuristic) one finds for

0

IA

a < b £ 7 that the density of the set of primes y such that
< s b
a < 8(y) < b isgiven by L £(t)dt, where
1
f(t) = = fccosl/t.
” 124
v=0

Assuming f(t) = f(7- t}) we conclude that <, = 0 for Vv odd, and

consequently
1 2 .2
flt) = = (1 - cos 2t) = —sin t

I understand that M, Sato has found this sinzdistribution law experimentally
with machine computations, Conjecture 2 seems to offer an explanation

for it!
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I should say partial explanation, because the assumption £(t) = f(7 - t)
had no justification; it amounts to conjecturing, in this special case, that,
for odd i, the function @ i(s) has no zero and no pole at s = dimY +-i- .
that is, at the real point on its boundary of convergence. Itis tempting to
make that conjecture in general (after all, in odd dimensions there are no
algebraic cycles to create poles), However it is false; over a finite
field with q2 elements it is easy to make varieties (supersingular elliptic
curves for example) for which q is a reciprocal root of P1 « Perhaps
the conjecture is true over number fields. I have no idea what to expect
in general.

Another question I would like to raise concerns algebraic cycles on
abelian varieties. Let A be an abelian variety of dimension n over €.
Is it true that the ring of rational cohomology cla.sse's on A of type (p,p),
0 < p £ n, is generated over @ by those of type: (1,1) ? This
statement implies both the Hodge conjecture for A, and also the fact
that every algebraic cycle is homologically equivalent to a rational linear
combination of intersections of divisors. Mattuck : 1 2], has proved that
(*) holds "in general'. It was by verifying (*) in case of A = ™
(power of an elliptic curve) that I was able to compute the ranks of the
groups Qi(Em) in the example discussed above. In terms of a period
matrix for A, the statement (%) translates into a completely down to
earth question which could be explained to 2 bright freshman and which

should be settled one way or the other,



20.

The last thing I wish to discuss is the relation between conjectures
1 and 2, We have already seen their equivalence (modulo (a), (b), (c), (d))
in case k is finite., For iufinite k, the relation involves Taniyama's
idea of L-series attached to _/-adic representations {cf.[6]).

As Mike Artin explained in his talk, it follows from the theorems of
specialization and base change in Stale cohomology that the cohomology
groups sz('\iy) are independent of y for y € Y, (here the Y, denotes
the locus ¢ # 0 in Y). To make the statement precise, one chooses a
"strict localization By € k of the local ring OY of y on Y, and uges
the residue field of -O_y as the algebraic closure W of k(y). The
decomposition subgroup DY = {0 € G(‘l:/kx GBY = C-D; }  is then mapped
homomorphically onto G(-it—(;-)-/ k(y), the kernel being, by definition, the
inertia subgroup IY of y. As usual, everything is determined up to
conju:gation by y, but actually depends on the choice of ay » which plays
the role of a path from the general geometric point , spec k , tothe

special one, spec -l:(—)-rr . This ""path' determines an isomorphism
(20) 2 (T ) ~ HF)

Ly - ﬁ(
which is compatible with the operation of Dy . In particular, the inertia
group IY operates trivially on Iﬁ(V) forall y € ‘{Z s 8o that in its
action on H/E(-‘;) . G(fc/k) operates through its quotient group, ‘n’l(Y D )s
the fundamental groupof Y p .

For each closed y € Xfe s let OY be the image in ﬂl(Y,Q) of an

inverse image in DY of the canonical generator Ey of G(k(y)/k(y)) .
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{Thus, O‘Y is determined by y up to conjugation, and in case k is a
number field, it is a ""Frobenius substitution' in the classical sense.) The
compatibility of (20) , together with the fact that ‘5;1 operates on

I-/IZ(?) as <pY does (see p. 11), shows that the polynomial Py. i(t) in (16)

is given by

- -1
(21) PY’ i(t:) = det (1 ~ tcy. i, 0 )

where O© i, denotes the endomorphism of HE(V) induced by the operation
At 3

of :Oy . Thus, the function @i is completely determined by the scheme Y,

together with the f -adic representations HIZ(\'I'.) of the fundamental groups

frl(zg) . We are therefore led to the following generalization:
Let Y be a regular irreducible scheme of finite type over Z with

function field k., Suppose for each prime /Z # char k we have a finite

dimensional vector space H 1y over ()] 2/ ojn which "I(Y,Q ) operates

continuously in such a way that the characteristic polynomial
-1
(22) P (t) = det(l -t{o_ "~ |H,)
y( ( ( y ' ,Z)

has coefficients in Z , is independent of 4 for vy € ?Z » and has complex
""'reciprocal roots" of absolute value Nyp » where o 1is a real number

independent of y ., We then say that H = (H J ) is a system of representations

of weight p over Y,

Given such a system, we put
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1
(23) L(Y,H;8) = || = ’
y€¥Y P _(Ny )
yclosed

this product being absolutely convergent for Rs > p+ dim Y, Notice
the analogy between this definition and Artin's definition of Le-functions
(cf. Serre's talk, formula (9)). Comparison of (16), {21), (22), and (23)

shows that
(24) () = LY, H(@ ) ,

is an L-series for the system of representations (HZ(T/’)) of weight 12-
over Y, Twisting a system of representations by m decreases its

weight by m, and translates the corresponding L-function m units:

(25) L{Y,H(m);s) = L(Y,H,s = m).

Thus

B, ls -0 = LILHEAT)0); 8)

belongs to the representation system HZi(V)(i) of weight 0, Conjecture
2 states that the pole of this functionat s = dim Y is of order rank &}(V) .
Conjecture 1 states that rank @,i(V) is equal to the dimension of the sub-
space of HZi(V)(i) which is fixed under ﬂl(Y) . If we assume the ﬂl(Y,Q,)-

modules Hj{(ﬁ) are semisimple (as Serre and Grothendieck believe) then

the equivalence of conjectures 1 and 2 would follow from
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CONJECTURE 3: For some class of representation systems H = (Hﬁ )
of weight 0 over Y, including at least those of the form H = (Hzi(V)(i)),
the order of the pole of 1{(Y,H; s) at s = dim Y is equal to the number
of times the identity representation occurs in H g/ (this being independent
of ).

Of course, conjecture 3 is true for ordinary Artin L-geries (cf.

Theorem 6 of Serre's talk), and for Hecke's L-series. I conclude this talk

with the hope it ig true in far greater generality.

Afterthought 1: On page 1, and hence throughout, it was intended that

V be irreducible. This was not essential, but merely to fix i9eas and

simplify statements,

Afterthouglxt 2: A closer looic at the situation V, W, and Vw
discussed on page 19 leads to the following consideration, Let X be a
regular scheme of finite type over Z whose zeta function {(X,s) can
be meromorphically continued to the point 8 = dim X -1, Let e(X)

be the order of £(X,s) at that point, and put

% ¥
2(X) = rank H(X,07) - rank H'(X,0,) - elX)

If one removes from X a closed irreducible subscheme Z of codimensionl,

then z(X) does not change. Thus, 2(X) is a birational invariant, and
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depends only on the function field of X ., Suppose now f: X —> Y with
general fiber V/k is as discussed at the beginning of 8 4 (so f projective
smooth, Y regular, and v irreducible,) Then it is eary to see that any
two of the following statements imply the third:

(i) the conjecture of Birch and Swinnerton-Dyer for V/k,

(ii) the conjecture 2, for i = 1, for V/k.

(iii) z(X) = z(Y).
Since we have 2z{(X) = 0 if X is the spectrum of a finite field, or of
the ring of integers in an algebraic number field, and since z(X) isa
birational invariant, we can conclude z(X) = 0 for all X if (i) and (ii)

hold for all V, We are thus led to

CONJECTURE 4: If X is a regular scheme of finite type over Z ,
then the order of {(X,s) atthe point s = dim X -1 is equal to

0 * 1 %
rank H (X, QX) -~ rank H (X, QX) .
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ARITHMETIC ON ABELIAN VARIETIES,
ESPECIALLY OF DIMENSION 1.

J. W. S, Cassels

An Abelian Variety of dimension ! defined over a field k is just an
elliptic curve together with a point o on the curve, all defined over k. The
law of addition is that x +~X = 2z, where X,y,2z are points on the curve
(not necessarily defined over k), if the divisor consisting of x and y,
each with multiplicity +1, is linearly equivalent on the curve to z and o.

Every elliptic curve D defined over k determines an Abelian
Variety of dimension 1 (C,0) defined over k which is unique (up to
birational equivalence over k), namely its Jacobian. The usual Jacobian
map of divisors of degree 0 on D into points of C gives D a structure
K of (principal) homogeneous space over (C, o) defined over k. Namely
we define Xty = £, where _}E,E areon D and y is on C to mean that
the divisor consisting of X with r;'lultiplicity +1 and Z with multiplicity -1
is mapped onto y by the Jacobian map. It is readily verified that this does
give a homogeneous space defined over k.

Althqugh D determines its Jacobian (C, ©) umniquely, the Jacobian
map, and so the structure i of homogeneous space, is not unique. Clearly
given such a structure we can define another by making the sum of X and y
tobe X +(-y). Except in the special case when C has complex multipli-
cation by roots of unity defined over k it may be shown that there are in fact

Just the two structures of homogeneous space on . D.
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As we are interested only in things up to birational equivalence defined
over k, ‘Zseay that two homogeneous spaces (D,#) and (D', M') are in the
same class if there is a birational equivalence over k which takes D into
D' and U into M' (in an obvious sense). In characteristic 0 the classes
of homogeneous spaces (for given k and Jacobian (C,0)) can be put into
1.1 correspondence with the elements of a cohomology group Hl (T, (-7;).
where T is the Galois group of the algebraic closure k of k over k
and ? is the group of points on (C,0) defined over k. The right
cohomology group to take here is not the one given by all cocycles but only
by the cocycles which are defined over a finite extension of k, i.e.,

HU(T,T) = lim YT, k)
where K runs through all finite normal extensions of k, ¥ (D,H) is any
homogeneous space the corresponding elemenat of u! (r.a}:) is given by the
cocycle OOL-OL= Oly € 3} (0 €T) where Ol is any point on D defined
over Kk and the subtraction is that given by the structure # of homogeneous
space. The group law on @ gives a group law on H! (I‘,@}) and so a grour
law on the set WC = WC{(C,k) of classes of homogeneous spaces. By
construction WC is a torsion group. This is just the group law defined by
Weil for classes of homogeneous spaces without the benefit of homological
algebra.

Now let K be any overfield of k. Anything which is defined over k
is also defined over K and so there is a natural map

WC (C,k) — WC (C, K)

which is easily seen to be a group homomorphism. When k is an algebraic
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number field and K = k_ is the completion of k with respect to a valuation

v
v we call this map the localization map at v and denote it by j,. The
intersection of the kernels of all the localization maps j, is the Tate -
Safarevid group Ul = W (C,k), which plays an important and still mysteri-
ous role in the arithmetical theory.

I devoted the greater part of my Stockholm Oration to I} and so
propose only to remind you of a few salient points before I go on to the main
topir of this talk. Since it ic a subgroup of WC, the group lf is a torsion
group. Many cases are now known where Lii consiste of more than one
element. However, it is easy to see the W /mll is finite for each positive
integer m. There is a lot of numerical evidence, but no proof, that ul
does not contain any infinitely divisible elements except 0 {and so that the
primary components of LU are all finite groups) and there is indirect
evidence (some of which will be presented below) that LW itself is finite,
Finally, there is a skew - symmetric bilinear form defined on [{! with
values in Q/Z whose kernel consists precisely of the infinitely divisible
elements: so if there ar.:e no infinitely divisible elements, the order of each
primary component of [L] is a square. The order of liJ, if finite, is also
a square.

In my Stockholm Oration I reported rather briefly on some nume rical
work of Birch and Swinnerton - Dyer and on the conjectures they had made
on the basis of it. In the meantime the position has become a little clearer,
the conjectures have been made more precise and the evidence more compelli

}Ggg__c_g_gjﬁtures seem, however, to be as far away as ever. In describing
Proofs of

this work I shall be guided by the logical connections that have since been



nated rather than by a strictly historical order.

The success of the theory of adeles and of Tamagawa measure in the
theory of linear algebraic groups suggests that these concepts be applied to
algebraic groups in general, and, in particular, to Abelian varieties. As
before, I confine attention to dimension 1. Let (C,_c_)_) be an Abelian
variety defined over an algebraic numberfield k, For each valuation v of
k we denote by C?/v the group of points defined over k., endowed with the
v - adic topology. Then %v is compact because C is complete. It is
natural to define an adele to be just an element of the compact group U O)/v
(with the product topology ). There is a natural injection

— [] %
of the group 0O} of points defined over k into the adele group: the points

of the image are the principal adeles. The subgroup of principal adeles is

neither discrete nor closed, in general, which is a contrast with the linear
algebraic group case. Indeed it is so only if 0}/ is finite,

Let w be a differential of the first kind on C defined ovjer k, e.g.
w = y'ldx if C is given by an equation

y¢ = x3 . Ax - B (A, B €k). (1)

As in the linear group case « gives a normalization of the Haar measure
on °}’v is a way to be described. Suppose for simplicity that C is given
by (1) and that w = y"ldx. Then the measure m_(E) of a subset E of

0  is just the integral

R SER
(x.y)“re g lyl, &%

where d¢ is the Haar measure on the additive group k., appropriately



normalized. The normalization is

(i) [ a¥x =1
oy
if v is non-archimedian, where G’V is the set of v - adic units,

(ii) d: is the ordinary Lebesgue measure if k, = é and twice
the ordinary 2 - dimensional Lebesgue measure if k, = g

It is pretty clear that the measure m_ so defined is invariant under
the operation of the group g;v. We shall be primarily concerned with the
measure of the whole group. If C is taken in the form (1) and v is a
non - archimedean valuation such that (1) taken modulo the prime ideal
belonging to v is an elliptic curve over the residue class field, then we
have

N .

my () = (2)
with the above choice of «,, where Nv is the number of points on the
reduced curve and %(v) is the number of elements of the residue class
field. For the remaining finitely many non - archimedean valuations m,, (OXV)
is a rational nurfnber which can, in any individual case, be found after a
trivial, if sometimes tedious, computation; and v for archimedean
mv(O]/v) is readily expressed in terms of the periods of « (in the
classical sense: we are now dealing with R or g) .

The above definition of m,, is not intrinsic, since it depends on the
choice of the differential «w of the first kind. If ' is another such
differential, then ' = Aw for some X € k and so

mi( )= Ial, my( ),

where m", is defined in terms of ' as m, is in terms of ¢« . Hence
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e tric, 03 = T m t0,), (3)
all v
if the product converges, is independent of the choice of (s and so depends
only on C and k. It is the measure of the entire adele group in the

product - measure of the m_ (the Tamagawa measure) (if it exists ).

v

Birch and Swinnerton - Dyer conjecture that it is always possible to
gove a sense to the right hand side of (3) as a positive real number or +oo,
possibly by interpreting the product in some heuristic way (see below).

They then conjecture, further, that

(T “

{#(0p )2

where #(S) denotes the number of elements of a set S. This conjecture
presupposes the conjecture that # (/u) is finite, and the right hand side of
(4) is interpreted as 0 if #(0f) is infinite,

Birch and Swinnerton - Dyer started off by considering the behavior of

the partial products of the product
] Ny (5)
v "good" 4(v)
for certain special curves C, the ground field being the rationals. To them,

as experienced computers, the results were sufficiently promising to call for
further investigation. They then noted that for a ''good" wvaluation v (i.e.,
a non - archimodean valuation with a good reduction) the local zeta - function

is given by :
y < o —  Ey(s) I
V02T L (e NI uente)

14

where s 1-2s
£(s) = 1+ (Ny-7(v)- 1)(7(v)) " +(76(v)) .

fv(l)=nv/7?.(v). (6)



7
A conjecture of Hasse (which is a special case of a later conjecture of Weil)
is that
T:’ L,(8),
which is convergent if the real part of s is large enough, is analytically
continuable over the plane as a meromorphic function. This conjecture

implies, in particular, that

Lisy=_ T1 . f{f.(s)}? (7)

v good
defines a meromorphic function on the whole plane and, after (3), (6), it
is natural to put
-1
T = .
L(1)- '];lad" {m_(G,)]

(v is '"bad" if it isn't good). In the particular case when C has complex
multiplication it was shown by Deuring that Hasse's conjecture is true, and
that in fact L (s) is a Hecke L - function with Gr8ssencharakters, (This
is a special case of later results of Shimura and Taniyama.) Eirch and
Swinnerton - Dyer then mounted an all - out attack on the special case k = 0
and C given by :

v2 = x3 . Dx, De z (8)
(so complex multiplication by i). They managed to find an expression for
L (1) as a finite sum of the type

Z x (A £ (9)

&
where £ is a certain function defined on the curve yz = 4x3. 4x, 2% runs
through the group A of all D -division points on this curve and X is a

character on A. Application of Galois theory to this formula shows that

T is rational and permits an estimate of the denominator. The sum is,
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however, far too loathesome to be evaluated by hand. Eirch and Swinnerton-
Dyer used the machine to evaluate T for a large number of values of D
and also to find 03/. { As 1 explained in my Stockholm Oration there is no
sure - fire algorithm for finding OJ« but experience shows that it can usually
be done.) They found the following experimental facts, both in accordance
with the conjecture (4):

(i) T = 0 if and only if #(0f) = o

(ii) T is always a nonnegative square.
This tallies with (4) because, as I explained, # ( 1 ) must be a perfect
square if it is finite. Further, the actual values of T obtained agree with
what is known about (J. (This is precious little except for the 2- and 3-
components. Some of the values of T suggest that [iJ must contain
elements of order 5 or 7 but no one has yet found a feasible way of actuzlly
exhibiting them because the numerical work would be so difficult.)

Quite recently I have found other evidence for (4) by considering
a pair C,, C, of isogenous curves. F. K. Schmidt showed that two
elliptic curves over a finite field have the sarr'ze number of points defined
over the field. In an obvious notation (2) then implies that

Niv N2y

m,_ ( ) = = = ( )
v o]’lv () ) my, ?Zv

for all except a finite number of v and so that

al ___.____m"(%v) = T(C,/C,) (say) (10)
v my, (QJ’IV)
is well defined. It can be shown that

#{oyzlvloh}#{(%)vz}#{(Lun,,l}
#{?I/VZ%Z}#{(%l)vl}#{(wz)VZ]

T(C,/C,) = (11)



where vyt C1 — C2 vyt CJ2 —> ('J1
is a conjugate pair of isogenies and where, say (LU, )vl denotes the kernel
of the map LJl - L“'Z induced by v,. This formula is proved without
any hypothesis about the finiteness of 9}« and ll: all the terms on the right
hand side are natural numbers. PBut now (3) and (10) imply that we should
have

T(C}/C,) = T(C)T(C,)
and in fact (11) is just what one does get on taking the ratios of the right
hand sides of (4) with C = C2 , C2 and noting that

#lluy), 3 = # Ll fvp L)
by the functorial properties of the bilinear form on LU which I mentioned
at the beginning.

It is worth noting, too, that the factor # (W) in (4) is quite analugous
to a factor which occurs in Ono's formula for the Tamagawa Numbers of tori,
On the other hand the factor # (0})2 seems to me rather surprising as the
results for linear groups are for the Tamagawa measure of the quotient group

(adeles [/ modulo principal adeles)and rather suggest that one should get only
# (0}) . It would be interesting to get a conjecture for all algebraic groups.

There is a second Birch - Swinnerton - Dyer conjecture, this time about
the rank, i.e., the number of generators of infinite order, o‘f the finitely
generated group 0}« { The finite generation of O} is, of course, the
Mordell - Weil theorem.) Their preceding conjecture implies that L (s)
given by (7) has a zero at s =1 if and only if the rank g is not zero.

They conjecture further, that the order of the zero is just g. This
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conjecture has been taken up by Tate, and it is now a special case of a really
grandiose conjecture, but I am not comnpetent to discuss these higher flights
of fancy. One way of checking the conjecture wolld bé to evaldate the
successive derivatives of L(s) at s =1 and compare this with what is
known about 0}', but no one has yet had the fortitude to attempt this. However
recently, Rirch, following up a suggestion of Shimura, has noted that at least
in the special case (8) one can determine the parity of the order of the zero
of L(s) at s=1 from the functionsl equation of the L -function (our
notation is unorthodox, our s=1 corresponds to s=1/2 on the critical
line in a properly chosen notation). On the other hand, a simple argument
using (11) gives the parity of g under the conjecture that LUI » Ll are
finite. And Birch shows by a rather tedious elementary transformation that
the two parities are the same.

This is only a report on work in progress and has the untidyness tvv w22
of such a report. It seems to me that the evidence for the Birch - Swinna i -
Dyer conjectures taken all in all is 6verwhe1ming but it seems likely that

essentially new ideas will be needed to obtain proofs.



SOME REMARKS CONCERNING THE ZETA FUNCTION OF AN

ALGEBRAIC VARIETY OVER A FINITE FIELD,

B. Dwork

Let us begin by considering an elementary application of p-adic
analysis to the theory of the zeta function, How does one know that the
inverse roots and poles are algebraic integers. The theorem is due to
Fatou {Acta Mathematica 19 06 p, 364). Suppose'ﬂ— (1 - ait)/ me - Bjt) =
1 + clt + czi:2 + ... where the ai and Bj are finite in number and
are algebraic numbers while CyoCprees are rational integers. If p is
any prime consider the right hand side when the p-adic value of t is
strictly less than 1, Clearly the series converges and the limit has
p-adic value 1 , Hence neither a.i.l nor Bgl can have p-adic value
strictly less than 1 and thus each a.i and Bj must be an algebraic
integer,

A common phenomenon in p-adic analysis is that if a function g(x) {is
analytic in some region then the function g{x)/ g(xp } has an analytic
continuation to a somewhat larger region, Some examples of this will
be given

(2) Let m be an integer prime to p and consider g(x) = xl/ m

analytic for x close to 1 (g(l1) = 1), then g(x)/g(xp) = x(l-p)/m
which is rational if m divides p -1 and while g{(x) converges only
for |x-1[< 1, g(x)/g(xp) has a continuation to all x # 0. Further-

more when x = x' the ratio gives the mth power residue in the field

of p elements.
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(b) A less trivial example is given by g(x) = (1 + x)l where
m is as above, In this case g(x)/g(xp ) has an analytic continuation
(if m divides p = 1) to a disc properly containing the unit disk |x| <1
from which we must remove the disk | x = 1| < 1, Here ggain the value
of the extension of the ratio at x = <& , x # 1 is precisely the m
power residue of 1 + x.

(c) One of the original observations involved the hypergeometric

[0
-1 i
series F(%, 1 1,)) = z ( ?)2 X] which converges for |X'<1

5 e
: j=0 11 1 1 1
(p # 2) and here the ratio? = F(=, 51 .X)/F('Z‘n 301, 2 has

an analytic continuation to the ''closed' unit disk provided you delete the

disks defined by
(p-1)/2 -1 _
2)2,J
Y 02X
J
j=0.

<1,

(No doubt the region of anélyticity is somewhat larger.) According to an
unpublished theorem of Tate, when )\ = )\q » the value assumed by the
ratio is one of the non-trivial roots of the zeta function of the
reduction of the elliptic curve yz = x(x-l){(x - )) provided the Hasse
invariant is not zero,

{d) The most important example is given by the case g(x) = exp(~x)
where ﬂp-l = -p,., Here g(x)/g(xp) = expl{r(x - x*)) converges for
ord x > -(p-1)/p and the ratio may be viewed as the composition

glx - xF) if |x| < 1 butnotif |x| > 1. In particular

(g(x)/g(xp))p = exp(pr(x - ) = glp(x - %)) may be viewed as the
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composite function for Ixi = 1 and hence when x = x s the ratio

g(x)/ g(xp ) takes on the pth roots of unity as values, In this way an
analytic representation of the additive characters of finite fields is
obtained, Aside from the estimate for domain of convergence the above
remains valid if ¢ is replaced by 7' where |- 1r'| <1,

We now explain briefly how example (c) can be generalized for all
non-gingular hypersurfaces,

Let © be the completion of the algebraic closure of the p-adic
rationals. Let f(x) be a homogeneous polynomial of degree d in
x = (‘xl. oo "xn-i'l) with coefficients in the ring of integers of 2 and
suppose that the reduced hypersurface defined by f =0 mod p is
nonsingular and in general position (i.e., the intersection with each linear

subvariety X, = x = .ee = %X, = 0 is again non-aingular,
Y i2 e
Let x 0 be another indeterminate and let ‘_:L* be the subspace of
1 1 , w ‘
Q[T » e+ » 7 ]] "spanned" by elements of type 1/x" where
ntl
dwo =W t e + Wbl *

in ;f,* such that

Let K be the space of elements , £* ,

Eig* + oy_ xofig* = 0, i =1,2,00eyn%1

9

where Ei = x -8—;;;_ ’ fi Eif and y_ simply means discard all

terms of x ofig * which obviously do not lie in X, *. The dimension of

K is d° {for this it is enough if f is nonsingular in characteristic zero

and in general position in that sense) and each element of K satisfies
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certain growth conditions (here we use the hypothesis in characteristic p).

The zeta function of the reduced hypersurface is determined by the non-

singular endomorphism
exp mx Jf(x7)
a% = y_o o
exp W X Of(x )

of K , where § roaps 1/x into 1/% AW | provided the reduced polynomial
f has coefficients in the field of q elements, The theory may appear to
depend on the lifting f of £ butin fact if f' is another lifting of f to
Qix], theh there exists a natural mapping §&* —> vy _ £*exp (ﬂxo(f - ')
of K onto K' and from this the essential uniqueness of the construction
follows. This mapping can be checked directly but to obtain insight we
suggest the heuristic argument shat D==i= is "emsentially"
exp(-ﬂxof(x)) o Ei o exp (‘n‘xof(x)) and that G * is "essentially"
exp(-'nxof(x)) o @i o exp(:.'rxof(x)) .

A more syst;.amatic examination of this mapping of K onto K!' leads
to the proposed extension of example (c) above, We first consider a
family, f£{x,T), of hypersurfaces of degree d in KisooesX 1y

parametrized by a new indeterminate, I'. As before we construct KT

but here the elements lie in G(I)[[ %— ’ -;l- peves ;L i} Let R(I) be
0 1 ntl

the resultant of Elf(x. ) seces En_‘_lf(x, I) , viewed as polynomials in

Xivee "xn-!-l « We construct a basis of KT of the form

£ * 0 _ 1 Z 1 Gu,w(n
u, T 7 g w w w
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indexed by u running through a suitable indexing set. Here g(l) isa
fixed polynomial and Gu. w(I') € _Q[I'] for all u, w and aside from
the zeros of g(I) ( wkich ahall be ignored in the future) the basis can be
specialized, given series with good growth conditions provided

IRM| =1, |T|<1.

For T close to zero, (we now dedefine KT' as imbedded in 3 *)
we have a natural mapping, Y_o© expﬂxo(f(x.l') - f{x, 0)) of K0 onto KI'
(we suppose R(0) # 0) ; relative to our bases this mapping has
matrix CI‘ which satisfies a system of ordinary linear differential

equations with rational coefficients and we obtain the commutative diagram

K > K
0 !
o % a
; l t
where Cl; =9Y_o exp (7xgf(x7, T°))
exp(n xof(xa 1))
Writing this in matrix form
* -1 *
= a
ar er o CI"

*
and Gy canbe shown to be holomorphic in a disk |[T'| < b wheee b > 1

provided the region |R(T)|< 1 is deleted as well as the isolated zeros

of g(I') in the formula for the basis. If we let K;., denote the elements »
1

£*, of Kr which have the property that no single monomial

X
occurring in £* involves all the variables and if we let K. = KI"/K;’



6.

then the above theory remains
A, Vvalid and the functional equation of the zeta function of the reduced

hypersurface £{x,T) = 0 where T is specialized to say T? = T has
been proved (On the zeta function of a Hypersurfaces II, Annals of Math,
1964) by proving that Ctr JCI‘ is a rational matrix functionof T, J
being a suitable constant nonsingular matrix,

For elliptic curves, Cr is formally the period matrix for integrals
of the second kind while for the case of a variety of dimension 0, say

d

f(xlnxzul") =x + rh(xl. x,) -1 , where h is homogeneous of deg d,

the meaning of Cr (as transformation of RO onto —1-{1..) can be explained

as follows, Classically, let Yyreees ¥y be the zeros of the polynomial
f(Y,l » r) = 0

viewed as holomorphic functions of T for T close to zero such that
Yj —_— WJ as Y > 0 ,w being a primitive dr'h root of unity.
Let P'l": be the Vandemonde matrix
% .
¢ ) h 1,250045d-1
' T
f(Yivln») i - 1.2....'d

then POCT‘ = PI" , wheee f'{y,1,T) = -5%— f(y,1,T) . (multiplication
of d X(d-1) matrix by {(d-1) X {d-1) matrix) .

The interpretation of the matrix of Cl:;.. relative to our basis in
the zero dimensional case should be of some interest, If T is
specialized so that T9 = T and f has coefficients in the field of q

%
elements then 0.1.. should represent the Frobenius operating on the splitting
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field of ‘f-(y.l. T) over the field of q elements, If f has integral
coefficients say in Z , then the construction of the basis of KI._ is
independent of p and it seems possible that if 1"0 is a fixed element of
Z and if for each prime p (excluding primes which divide R(ro). in this
case the discriminant), we specialize T sothat T = I"o mod p , =71,
then the matrices Otp obtained in this way represent in a uniform manner
the Frobenius automorphisms associated with the splitting field of
fly, 1, 1"0) . (it need hardly be mentioned that the theory can be formulated
50 as to avoid the condition TP = T ). The analytic properties of
G-*I. may be of interest in the study of L-series.
An annoying feature of the theory is the requirement tkat f(x) be
nonsingular and in general position . Thus the theory cannot be applied
directly to elliptic curves in Legendre normal forms and more seriously
to the case of genus 2, To overcome this difficulty as well as for
intrinsic interest we propose to extend the theory to the singular case.
The problems are homological. Associated with Df ,..., D*,, Wecan

form the sequence
{n+1) } {(nt+1)
0 —> i* —’>;ﬁ* 1 ——">:£* 1 —_— ene
and form homology spaces HO( i*) = K, H(1 )( o‘ﬁ*), H(Z)(Of,*), etc,

It is also of interest to extend the notion of K by defining

a'n+ 1

a
K(r) = {g* € i* l D{" 1 e Dn_” £®

whenever al+ eesta 1y > r}

and letting K(m) = U K(r) . In the nonsingular case {general position)
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H(J)(i*) = H(j)(K(m)) = 0 for j > 1 while in the general case we can
show that
aima? (£% < o

and is uniformly bounded independently of dimension and the same holds

(1), () (0)

for H' ' (co)y

and of course for H' (K . Furthermore we can show

that if f is defined over Z (more generally over ring of integers

(co0)

of algebraic number field) then the elements of K have good growth

conditions for almost all p. This means that for almost all p,
)

* co
@  operates on K(

and in fact determines the zeta function of the
reduced variety., This is of interest only if f is singular (or not in
general position) in characteristic zero, = We conjecture that in some
formal sense the zeta function of the reduction of f is independentof p
for almost all p if f is defined over Z and it is clear that this is
certainly the case if dim H‘j)(K(m)) is finite for all j.

(nt+ 1)

In any case the dimension of K is finite and the zeta function

ntl) with good

is determined by the action of OL* on the elements of K(
growth conditions,

In conclusion I would like to mention extensions to complete
intersectians and other varieties by Ireland (Doctoral Thesis, Johns
Hopkins 1964), Of particular value in such extensions is a general
unmixedness theorem of W, L, Chow , This theorem is of value in
extablishing growth conditions for XK in the extended situations treated
by Ireland, In these extensions the theory has reached a point equivalent

to Theorem 4.2 of Hypersurfaces I (Pub, No, 12 IHES), and it seems

likely that the verification of the functional equation may be achieved by an

inductive argument.



THE ZETA-FUNCTION OF AN ALGEBRAIC VARIETY
AND AUTOMORPHIC FUNCTIONS

by Goro Shimura

One of our colleagues asked me not to release the ''latest' pictures in
this conference, but to rerun some classical ones. Following his suggestion,
at least in the first half of this lecture, I will tell the old story of what
happened to the zeta - function of an algebraic curve uniformized by modular
functions. Then I'd like to talk about its application to the law of reciprocity
in non - solvable extensions, and indicate briefly soﬁe generalization.

1. Introduction. Let V be an algebraic variety defined over an

algebraic number field k. For every prime ideal J? of k, let V(?)
denote the reduction of V modulo J’D and Ik ( ?) the residue field of k
modulo y . For each ? , we can define the zeta - function 2Z(u;V (f)lk (d’g))
by

Z(0; V(p)/x(p)) = 1, allog Z(u; V(pMk(p))] =)o Nl
where N_  is the number of points on V ( ?) rational over the extension of
k(?) of degree m. The zeta - function of V over k, denoted by
€(s; V/k), is then defined by

L(s; V/k) = HP Z (N(p)™%: Vp)k(p)),

the product being taken over all the prime ideals 13 of k. If we assume

Weil's conjecture to be true for V, then, for all except a finite number of

f’ s Z(u; V(f)/k(?)) can be written in the form
Hj(?l)(u) o o o H(?Zn—l)(u)

I:Ig)(u)' - gl )

F

Z(u;V(?)/k(y)) =
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Here n = dim (V); and H(Pi) (u) is a polynomial, with the constant term 1,
whose roots are algebraic integers of absolute value N (é;)' i/Z_ Moreover

we may expect that the degree of Hf?i) is independent of P for each 1i.

Then it will be meaningful to consider a function

e (s; vrx) = ﬂﬁH‘;’(N(p's).
where the product is taken over all good f's . Now the conjecture of Hasse -

Weil (in the generalized sense) may be stated as follows: For every i,

C(i) (s; V/k) is meromorphically continued on the whole s - plane and

satisfies a functional equation. For example, if V is an abelian variety

(resp. a curve), one has
g (s; v/k) = ]‘[% det [ I-Mf(ﬂf ) N(F)ns],

where ﬂdq is the N(?) -th power endomorphism of V (}3) (resp. the jacobiar
of V(}))), and M13 (ﬂy) is its {- adic representation, Therefore, the
determination of C(l) (s; V/k) is, roughly speaking, the determination of
M€ (v})) as a function of F .

At present, there are two known classes of varieties V for which the
Hasse - Weil conjecture is true:

(I) abelian varieties with sufficiently many complex multiplications;

(II) algebraic curves uniformized by certain automorphic functions
of one variable.

In the case (I), V is an abelian variety of dimension n such that

EndQ(V) is isomorphic to an algebraic number field F of degree 2n .1

1 One may consider a somewhat more general casewhere EndQ(V)
is not necessarily a field. For simplicity, we assume here Endn(V) to
be a field.



It can be shown thét there exists an element u)? in EndQ(V) whose
reduction rmodulo P is ‘r? Moreover, one can determine the prime ideal -
decomposition of (u?) in F, These facts, together with a simple class -
field theoretical consideration, show that F — u}) is essentially a Grlssen-
character of k. From this it follows that C(l) (s; V/k) is a product of 2n
Hecke's L - functions with Grlssen - characters. Detailed accounts of the
theory, and partial or related results can be found in Taniyama {171, Deuring
[1], weil [ 18];a comparatively easy and short description is given also in
(14, ch.1v, 8 18].

Among many factors which make the calculation of ¢ (1) possible in the
case (1), it is most important that 17}? can be lifted up to an element of
Endg ( V) for every ? . Of course we can not expect this in general.
However, in the case (1I), we can show, roughly speaking, that 11'}, + ‘n'?*
belongs to the original EndQ(V) for a certain involution %, This fact
makes it possible to prove the Hasse - Weil conjecture for the curves of (II).
To explain this in detail, we need some preliminaries on automorphic forms
and Hecke operators.

2. Discontinuous groups and automorphic forms on the upper half plane.

Let H be the complex upper half plane, i.e.,
H={zeC| Im(z)>0}.
ab
Every a = (c d) € GLy (R) with det (a) > 0 actson H by

a(z) = (az +b)/(cz +d). H has a measure invariant under this action.

A discrete subgroup T of SL,; (R) is called a Fuchsian group of the first

kind, if H/T is of finite measure. Hereafter we fix sucha T . An element
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a-(ab

c d) of T, other than +1, is called parabolic if z—> (az+b)/(cz+d

has only one fixed point on the whole z - sphere. If that is so, the fixed point
should be a real number or the point at infinity, and is called a cusp of T.
Let s be acuspof I. All the elements of I whichleave s invariant are
parabolic. Together with +1, they form a group which is the product of
{£1} and an infinite cyclic group generated by an element 7 of the form
T =p ((1) i) p'l with an element £ of SLZ(R) such that o (o) = s.
Let H* be the union of H and all the cusps of I. We can introduce 2
complex structure H*/I' so0 that H¥*/I'is a compact Riemann surface. To
be more precise, a base of neighborhoods of s in H¥ is given by
o(lzecClim(z)>r)}) for r>0, and exp[Zﬂip_l(z)] is a local
analytic coordinate around s modulo I'. Therefore H/T is compact if
and only if T has no parabolic elements.

For every a = (: 2

ila,z) = det (a)/? (cz+a) L.

) € GLy (R) with det (a) >0, set

We can verify easily j(a.,z)2 = (d/dz)a(z), and

jlaB,z) = j(a,B(z))j(B,=z).

Let m be an integer, An automorphic form of weight m with respect to

T is a meromorphic function f on H satisfying the following conditions
(Al,2).
(A1) f(a(z))j(a,z)™ = £(z) forevery a €T,
To describe the condition (A2), take acusp s of I and elements T7,p
of GL,(R) as above. If f satisfies (Al), the function f(p(z))j(p, z)m

is invariant under the translation z —>» z+1. Hence there exists a function
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Fs(q). meromorphic in 0 < !q' < 1, such that f(p(z))j(p,z)m= Fs(ezf

Then (A2) is stated as follows:

(A2) Foreverycusp s of I, Fy(q) _i_t_s_meromor;?hicg_g q=0.

An automorphic form of weight 0 is called an automorphic function. If g

is a meromorphic function on the compact Riemann surface H*/T and o
is a natural projection of H* to H¥/T, then go¢ is an automorphic
function with respect to I'; conversely, every automorphic function with
respect to I can be obtained in this way.

An automorphic form f of weight m >0 is called a cusp form if £

is holecmorphic on the whole H, and the following condition is satisfied:

(A3) Foreverycusp s of I, F (q) is holomorphicat q=0.

We denote by S, (T') the set of all cusp forms of weight m with
respect to T. The dimension of S, (T') can be determined easily by means
of the Riemann - Roch theorem for H*/T. In particular, there is a carionical
isomorphism f— o of S, (T) onto the vector space of all the differential
forms of the first kind on H*/T, defined by w <@ = f(z)dz. Therefore the
dimension of S2 (T) .over C is exactly the genus of H*/T,

3. Hecke operators. Let A be the subset of GLZ(R)%. closed

under multiplication, and containing I. Suppose that det (@) >0 for

every O € A, and the following condition is satisfied:

(3.1) For every a €4, the double coset I'al' contains only a finite

number of right and left cosets with respectto I'.

Let R(I',A) be the module consisting of all the formal finite sums

ZA <y FO,)\T with ay €4, cy) € C. We can introduce a law of multiplicatior



in R(T,4) as follows. Let 0,B €A, andlet Tal = Uirai and
T'sT = Uj I"Bj be disjoint expressions. Then for every TET with £ € A,
the number of (i,j) such that I‘aig = T'§ is uniquely determined by the
double cosets T'd’, TBY, TET; it is independent of the choice of represen-
tatives {c‘i 3, { Bj },&. cCall this number f(Tal -TBT;TET) and set
(3.2) Tal' - TBT = Zreru(rar-mr; TET)TET,
Extending this to the whole R (Y, &) by linearity, we get an associative
ring.

Every element of R (T,A) operates on Sm (T) in the following way:
Let Tal = ngl Ta; be a disjoint expression. For every f € 5n(T),
define g=f]T_ (Tal) by

g(z) = det (a)m/?"l Zle f(ai(Z))j(ai.Z)m-

It can easily be shown that g € Sm (T). Inview of (3.2), we see that
Tal — Tn (IaT) defines a representation of R (T, 4) by linear transfor-
mations in S_ (T).

Let us now consider a special case where T is SLZ (2), and A is

the set of all integral matrices of size 2 and with positive determinant. It -

can be shown that R (I‘;A) is a commutative integral domain. The represen

a o
0 d

a>0 and a divides d. Forthis o, let T(a,d) denote Toal (as an

tatives for T'\A/T' are given by the matrices of the form a = ( ), where
element of R(I,A)). Then we have

(3.3) T(a,d) T(a',d') = T(aa',dd') if (d,d')=1.

Therefore R(T, A) is generated by the T (p"x, p“) with 2 X2 0 for all

the prime numbers p. Let T (pn) be the sumof all T (p) , pu) such that



A+u@=n, g2 X20. Then we can prove that

T(p) T(p™) = T(p** ) +pT(p,p) T(3™ ') (n>0).
From this it follows that, u being an indeterminate,
(3.4) Yoo T(p™ut=[1-T(p)u+pT(p,pluill.
Now we consider a formal Dirichlet series D (s;T) with coefficients in
R(T,4):

D(s;T) = ZF\A/I(TOLT) det ()% = za!dT(a'd) (ad)”%,

where the sum is extended over all the double cosets Tal' with a €4,
By virtue of (3.3) and (3.4), we get an Euler product:

D(s;T) =TT [1-T(p)p™® +T(p,p)p 257,

Let us define the principal congruence subgroup rN of level N by

(3.5) I‘N={aeSL2(Z)|aslmod(N)},
for every positive integer N. An automorphic form (resp. function) with

respect to rN is usually called a modular form (resp. function) of level

N. Let AN‘ be the set of all matrices a in 4 such that

10
0 d

and let AN* be the set of all & in A such that (det (a),N)=1. Then

o= (1 9%) moa(N), (a,N)=1,
we obtain an isomorphism of R(I’N,AN) onto R(I".AN*) by
(3.6) I"NaI"N--é Tal (aéAN).

. N - -8
Therefore, if we set D (s8) = ZTN\ A/rN(TNO,rN) det () ~, then

D™(s) = Mot - ™ (pip=® + TN (p,p)p! 277,

where TN(p) and TN(p,p) are the elements of R (I’N,AN) correspon-
ding to T (p) and T (p,p) by the isomorphism (3.6), respectively.

Taking the representationin S__ (I'\): Tyalyy —> T (Toly), we
m'" N N™**N my T NN



get a Dirichlet series with matrix coeffieients
N _ Z -5

l1.2s ]‘l

N - N
T (1= Ty ()™ + T (pup)P ,
which converges absolutely for suitably large Re(s). Moreover, Drljl (s)
can be continued holemorphically on the whole complex s - plane and satisfies

a functional equation, If N=1, the functional equation has the following

form: e 3
D_*(s)=D_*(m-s) with D_*(s)=T(s)(27) D, (s).

m
With respect to a suitable basis {fl s oo vy fh} of Sm(rl ), the
Tm(rl arl) can be represented by diagonal matrices simultaneously. At
the cusp © of 1"1, each form ij has a Fourier expansion
© . .
fj(z) - Zn‘:l anéj)ezqunz.
Then one can prove that the diagonal elements of Dr}a( s) are

o . '
=12, 0% = ﬂp“_ ap(J)p-s yp-l-28 -1

In particular, S1 2 (1”1) is one - dimensional and generated by
= b n.24 _\® n _ 2Tz
(3.8) Alz) =qll __,(1-¢")%=) _12,9" q=e“",
In 1916, Ramanujan conjectured the existence of Euler product for 12
- with the coefficients a_ of (3.8) and the inequality | l<2p
z oo - - n 2p - .
n=1 2n0 , for every prime number p. The Euler product was establishec
by Mordell. In [3,4], Hecke completed a general theory of constructing

Dirichlet series with Euler product and functional equation out of modular

forms. The operators Tm(l'b.l') are called Hecke operators. This work

was followed by Petersson who generalized Ramanujan's conjecture in the

following form: "For every prime number p not dividing N, the
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(m-1)/2 ,, 4

characteristic roots of Ti(p) have absolute values £ 2p
the above, Igave a survey of (a part of) Hecke's result. For the formulatio:
of R(T, &) and its generalization, I refer to [ 11, 12, 13 ] and Tamagawa
[15,161].

4. Modular correspondences and their congruence relations.

Let T be a Fuchsian group of the first kind, and V a projective non-
singular curve analytically isomorphic to H*/I. Let & be as in the
beginning of £ 3. Denote by ¢ the natural projection of H* to V. Let
acA, andlet X= {o(z)Xo(a(z))|ze H*}. It can be shown that X is
acurveon VXV, and if Tal = U‘ij‘=l ro,i is a disjoint union, one has
(4.1) X (0(z) x V) = 0(z) x).2 | ola;(2)).

In view of our definition (3.2) of the law of multiplication in R(I',D), we

see that Tal'—> X defines a homomorphism of R (T, 8) into the ring of

algebraic correspondences of V. We call X a modular correspondence
of V.,

Now let us take the group I"N defined by (3.5) as our T. Let VN
be a projective non - singular model for H*/TN, and X:I. YpN be the
modular correspondences of VN obtained from the elements TN(p),

N
T (p,p) of R(T_,8 ), respectively.

N)

for H*/TN can be taken so that Ve X;I:I' YII;

Theorem émodel VN

are defined over Q, and, for _a_l_l_ but a finite number g£ P

N, _ ' N
(Xpp =TT+ T, e (Y0,
'0 N = -lo '

Here ( )p means reduction modulo p, np is the locus of x X %P on
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(V% VN )p’ i,e., the Frobenius correspondence, np' is the transpose of

ﬂ p’ and Z is a certain birational automorphism of VN independent of p

We shall sketch the proof in the following section.

Let Jy be the jacobian variety of Ve and let §p, 'np, £ be the
elements of End ( JN) corresponding to Xp, Yp, Z , From our theorem
it follows easily that
(4.3) (6p)p =Ty + 1, o (M),

(4.4) Ty e (g ), = (E)pt et e (X,

On Jy and { IN )p’ we can find ¢- adic coordinate systems so that

MZ()L) = Mf’“)‘)p) for every X of End (J) defined over Q. Then, u
being an indeterminate, from (4.3) and (4.4) we obtain

(4.5) det[1- M£(Ep)u + M-f(”p) puz] =det(1- Me(ﬂp)u]z.

Let Md(X) be a representation of X € End (Jy) in HI'O(JN). It
is well known that M ? is equivalent to the direct sum of MY and its com-
plex conjugate. Since § p and np are d?ﬁned over €, we may assume
that Md («‘;p) and Md (np) have rational coefficients, so that

det [1-MI(g Ju+ MI(n )pu?] = cet[1- Mg(m,ul.
Now gp (resp. np) corresponds to Xp (resp. Yp), and Xp(resp. ‘Yp)
is obtained from TN(p) (resp. TN(p,p)). As remarked at the end of §2,
S2 (FN) is canonically isomorphic to Hl’o (VN) . Therefore Md (Ep) and
Md(‘np) are essentially the same as Tgx(p) and Tgl(p,p). We get hence

det[1 - Me(ﬂp)p's J=det[1- Tgl(p)p's + le\l(p,p)lal":""s J.

The right hand side is exactly the determinant of the inverse of the p - factor

of the Euler product (3.7) for m = 2. We have thus proved that
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(1) . N -1 -
g (s,VN/Q) is equal to det [DZ (s)] up to a finite number of p-
factors. Therefore the Hasse - Weil conjecture is assured for the curve VN'

Combining (4.3) with Weil's result which asserts that the character-

1/2

istic roots of Mjg(ﬂp) have the absolute value p , we know that the

characteristic roots of TIZ\I (p) have absolute values not greater than Zp1 /2

for almost all p.

5. Proof of the congruence relation. Let gz(wl, “"2)’ g3 ( Wy Wy )

P(x; Wy cuz) be the functions of complex variables Wy, Dy, X with the
condition Im ( < / (.)2) > 0, defined by
By (eprp) = 60) " W™, gy (wy, wy) = 140" W7,
P(x;wy,wp)= %2 +z'[(x -w)"z - w_zj.
where 2' means the sum extended over all the elements w, other than 0,

of the module Zwy + sz. Define functions j(z) and f?b(z) on H by

z = wlw,,
i2) = g, (s w0, 1Ly (w),0,) - 2785 (wy, 0,)° ]
2' 1772 2V 71T T2 3'71 T2 ’
N -1
fab(z) = gz(wl» U3) 83(‘»&11"“’3) P((aul + b‘\’z)/N; C’Jlo UZ)
(2,b€ Z;(a,b) #(0,0) mod (N};}
It is well known that C(j) is the field of all modular functions of level 1.
By a simple calculation, we observe that for every a € 1"1 »
£ (af y) = £ for all b]@i 3y
ab( z)) = ab(z) or a (a,b) a N*
From this it follows that all the f? p and j generate the field of all modular
functions of level N.
Roughly speaking, the modular functions of level N are obtained from

the invariant of elliptic curves and points of finite order on the curves. To

be more precise, for z ¢ H, determine ¥ by j(z)=7%/(Yy - 27) and call
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E(z) the elliptic curve yz = 4x3 -Yx-%Y. Then E(z) has the invariant
j{z). Let hz be the function on E(z) suchthat h,(x,y) = x for
(x,y)€e E(z). Let us fix a point zg such that j(zg) is transcendental
over Q, and set jo5=j(2zg9), Ejg=E(z2g), hy = hzO,

Ky = QUigs ho(t)[t € Ep, Nt =0).

Then the field KN is isomorphic to Q(j.fal\_rb). Moreover, Ky isa
Galois extension of Q(jg), and the Galois group is isomorphic to
GL,(Z/Nz)/{Z1}. Let Ly be the subfield of K, corresponding to the

subgroup {+ (g (1)) l(a,N)=13/{X1}. Then LN(eZ‘”i/N

) = KN’ and
Ly has Q as its constant field, Therefore, if we take a curve VN Wwhose
function - field over Q is Ly then V. is a model for H”‘/l"N and
actually defined over Q.

Now let us consider a disjoint expression

p+l
i=1

1 0

T™(p) = TyoTy = U2} Tyoy with a= (o )

for a prime number p not dividing N, Set z; = Q4 (z), iy = (z;),
E;, = E(z;), hi=hzi for 1$iEp+l. Since det (a;)=p, one canfind an
isogeny )\i of E. to E; whose kernel is of order p. Then the Ker(li)

for 12iSp+1l are exactly all the subgroups of order p of Eg. Inview

N
P

(5 (2q)sfop (2g)) => {(i(z2),foy (2;)) | 1SiSp+1},

of (4.1), the modular correspondence X_ can be described by the mapping

or
(5.1) (Jorhg(t)) = { iz hy(Nt)) | 1€isp+1],

where t € EO' Nt = 0. In this way XN may be connected with the isogenies

p

of elliptic curves.
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In the next place, we extend (p) to a prime divisor P of a suitably
large field containing jO'ji' etc,, sothat P(jy) is transcendental over
Z/pZ. Let ( )P mean reduction modulo P, Since (Eo )P has exactly
p points of order p, we have (Ker()\i))P = {0} for exactly one i, say
i=1. Then (Ker ()‘i))P is of order p for i>1. Hence ()Ll )P is a
purely inseparable isogeny of degree p. It follows easily that (}:'Jl ) p-
(Eq )If, and hence
(5.2) i=igh, hy (A t) =B, (t)P mod P (t€ Ey, Nt=0).
Let p; be anisogeny of E; to E; such that B;X; = p. Then we see that

for i>1, M, is purely inseparable, so that (Ep )P = (Ei )FI’)’

(5.3) jOEjip, ho(M;t)=h;(s)® mod P (s €E , Ns=0).
Substituting A;t for s in (5.3), we get
1
(5.4) jiEjOI/p, hy (X;t) = h (pt) /P mod P (i>1;t€E,g,
Nt =0).

By (5.2) and (5.4), reduction modulo P of (5.1) is
. . . 1 1/p
(t€ Ey, Nt=0).

It can be shown that the operation (jo, h, (t))— (jg.bg(pt)) gives

N
N, _ ' N
(Xy), = ﬂp+ﬂpv(Yp )y

The first relation in our theorem was found by Eichler [ 2] for a

exactly Y: on V... Therefore from (5.5) we obtain

certain field of modular functions with respect to the group
- b -
(5.6) I‘O(N)—{(z d) € SL,(Z) | ¢ =0 mod (N)}.
The result was generalized by [ 10 ], whose method I followed in the above.

The result for ro(N) or any congruence subgroup of 1"1 is derivable
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essentially from the result for TN. However, as we shall see later, it is
convenient to state the result for some particular congruence subgroups such
as I"O (N). For detail I referto [2,10]. Now Igusa [ 6] showed that the
reduction process works well for all primes p not dividing N. This fact
is useful in our later discussion.

6. The unit group of a quaternion algebra. Let ? be an indefinite

quaternion algebra over Q, i.e., an algebra such that § ®'QR is isomor-
phic to the total matrix algebra M, (R ). Let & be a maximal order in

$, i.e., a maximal one among the subrings of § which are finitely generatc
modules over Z. We consider § as a subring of M, (R), and set

T(e) = {a€ o] det(a) = 1},

Ty(e) = {aeT(o) |a=1 mod N },

where N is any positive integer. Then the groups I'(®) and I'N(&).
regarded as subgroups of SL, (R), are Fuchsian groups of the first kind,
¥ $= M; (Q), these are nothing but T} and Ty consideredin 8 3. If
§ is a division algebra, they have compact quotient spaces.

Suppose that N is prime to the discriminant of $. Then the ring
©/Ne may be identified with the matrix ring M, (Z/NZ). Let Op(e) be
the set of elements a in & such that det (a)>0, a ¥ ((1) g) mod No,
Then we can show that R (I'N(o). AN(a)) has the same structure as
R(I'N,AN) of § 3. Taking the representation of R(Iy(¢), AN(ér)) in
Sm(rN(g)), we can construct a Dirichlet series Drlfl(s; §) with a func-

tional equation and an Euler product analogous to (3.7). Furthermore,

H/TN(c?) has a model V(o) defined over Q, provided that N is prime
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to the discriminant of ?; and. t(-l:) (s; V(o) /Q) differs from
det [ Dgl( s; §)7° 1 only by a finite number of p - factors.

This result can be proved as follows. First we define, for every
z € H, a complex torus A, of dimension 2 by
(6.1) A, =c®L,, L =1{a(?)lacel,
1

where an element of ¢ is considered as an element of M, (R). One can
prove that A, has a structure of abelian variety. Furthermore, every
element of © defines an endomorphism of A, in a natural manner.
Endowed with a suitable polarization, the A, form an analytic family
{Az ‘ z € H}] of abelian varieties with the structure of endomorphisms and
polarization, parametrized by the points of H. The moduli of an abelian
variety A, with such a structure are given by the values of automorphic
functions with respect to T'(e) at z. The automorphic functions with
respect to the congruence subgroup I‘N(a) can be obtained from the coor=
dinates of the points of order N on A,, Here again we caxjt connect Hecke
operators (or modular correspondences on H/T‘N(g)) with the isogenies
of A . Using the same idea as in § 5, we obtain congruence relations for
modular correspondences on H/T'N(e-), thoughthe present case involves
more technical difficulties than the case of elliptic modular functions. A
full detail of the theory is givenin [ 12 7.

7. A law of reciprocity in non - solvable extensions. Let us consider

the group I"o (N) of (5.6) for a particular case, N =11, Itis known

{57 that 5, (I"o (11)) is one - dimensional and generated by

eZﬂiz )

-

[a(z)a(11z) 1 1% g T2 (1- %% (1 - R} LY
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Write thi Zoo n d set D{(s) _Soo n"%. By Hecke's theor
rite this as ) _; c q", and se $)=/n=1%n . By y.

we have

1-2s )-1'

(7.1) D(s)=(1-11‘5)‘1ﬂp#11(1-cpp'3+p
D*(s)=D¥*(2-5s) with D*(s)=r(s)(21t)-slls/2D(s).

The field of automorphic functions with respect to To(11) is generated by

j(z) and j(1llz); and Q(j(z),j(11lz)) has a model

(7.2) E:y?=4x> - (4-31/3)x - (2501/27).

Therefore, by virtue of the congruence relation, we know that if o is

the p-th power endomorphism of (E )p, then

- %2 .
(7.3) det[X-Mé(ﬂp)]—X cpX +p
with the n determined by
co o) » 2
(7'4) Zn:l qun=q°ﬂn_-_l(l'qn)z(l'qlln) .

By the result of Igusa mentioned at the end of § 6, the relation (7.3) is
true for all p#11,

Let 4 :be a prime number, and K’e the field generated over Q by
all the coordinates of the points of order ¢ on the elliptic curve E (7.2)
Then K@ is a Galois extension of Q, and every element of the Galois
group G (K(/Q) gives an automorphism of the group of points of order 4
on E. Hence we obtain an isomorphism Sé of G(K{/Q) into
GL,(Z/2Z). Let p be a prime number, other than 11 and ¢. Let P
be a prime ideal in Kg dividing p, and GP a I'robenius automorphism
of Kf over Q for P. By taking suitable ¢ - adic coordinate systems on
E and (E)p » we find S,(0p) = Mf(ﬂp) mod { ¢}, so that

(7.5) det [X - 5,(0p)]=X?-c X +p mod (¢).



17
1t follows, in particular, that SC (G( Ke/Q)) contains an element whose

characteristic polynomial is x2.¢ X t+p. Using this fact, I found that

p
S¢(G(K,/Q)) = GL, (2/€Z) atleastfor 7% ¢S 97,

This fact is interesting, for there was previously no known example
of non - solvable extension for which the law of reciprocity is given explicitly
(in any sense); here are such examples. In fact, we have obtained a Galois
extension K, of Q whose Galois group is isomorphic to GL,(z/€Z),
and of which the law of reciprocity is given by (7.5), where the cp are
coefficients of the Dirichlet series (7.1) with Euler product and functional
equation; they are easily obtained from (7.4) as many as we need! More-
over, we can determine Artin's L - functions of the extension K,/Q for
a fairly large number of characters which are not simple., A more detailed
account of the result will be published elsewhere,

We may expect a result of the same kind for other congruence sub-
groups and also for the Fuchsian group discussed in § 6 (cf. [ 12, pPp. 328 -
329]1). Rut here my emphasis is laid on the explicitness or comprehensi-
bility, and not on generality. It will be an important task to reorganize

and generalize the result from a new view - point.

8. Change of model and extension of basic ficid., In the case of an
abelian variety A with sufficiently many complex multiplications, we can
determine C( 1) (s; Al/k) for almost any field ¢t .« :t3on k of A.
Contrary to this, in the case of the curve H*/TN {ov H?ITI*T(‘E’) ), we have

determined C( 1) {(s; VN/Q) only for a particular wunlel VN over Q. It

is not an easy problem to prove the Hasse - Weil conjecture for an arbitrary
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model V' birationally equivalent to VN’ with an arbitrary algebraic
number field k as the basic field. However, if k is abelian over Q,
a part of this problem may be solved in the following way. For every abelia:
character X of Q, we define a Dirichlet series
DN (s; X; ¢) = 2:;1 A(n)Eyn~°

fo: Dg’l( s; é) = ‘§o=l Bnn's . Then Dg( s; X;$) can be continued holomor-
phically on the whole s - plane and satisfies a functional equation [ 13, Th. 1
It is easy to see that C( 1) (s; V(o) /k) is a product of
det [D?(s ; X é) ]'1 for several 7('5, up to a finite number of p - factors.
A discussion from a somewhat different view - point can be found in Ranga-
chari [ 9], Konno [7].

As an explicit example, the c, being as in (7.1) and (7.4), set
- s
2:1:1 X(n)cnn ’

r(s)(zu)'s(udz)slzn(s; X))

D(s;X)

D* (s; X)
for a primitive character X with the conductor (d). Then one can prove
D¥(s;X) = X(11) W (X)2D*(2-s; X),
where W(X) = 'd'-l/ZZ‘::l X(a)eznia”dl. and X is the complex
conjugate of X , In particular, if ¥(n) = (%) (Kronecker's symbol ),
one has W()()z = X(-1), so that
D*(s;X) = X(-11)D*(2-5s ;X).
Now let E be defined by (7.2), and E' an elliptic curve isomorphi
to E over C but not isomorphic over Q. Since X1 are only automor-
phisms of E, every isomorphism X of E to E' is defined over a

quadratic extension Q(\/-CT) for some d € Q. Here we take as d the
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discriminant of Q(Vd). Then it can be easily verified that C( D (s; E'/Q)
is, up to a finite number of p - factors, equal to D(s; XY 1 with
X{n) = (g— ). Therefore, the Hasse - Weil conjecture for E' over Q is
assured.

9. The zeta-function of a fibre variety. So far only automorphic

forms of weight 2 have been related to the zeta - function of a curve. Now

N(h ) whose zeta - function is

we can construct a certain fibre variety W
expressed by the Dirichlet series Di(s; i) considered in 8 6 for m 2 2.

To construct such a fibre variety, take § and ¢ as in § 6; assume
that § is a division algebra. Let GL2+(R) denote the group of elements
in GL; (R) with positive determinant. For a positive integer h, let F
be the product of h copies of M, (R )}, viewed as a right and left My (R)-
module in a natural manner. The product GL;(R) x F, forms a group
with respect to the law of multiplication:

(E,u)(n,v) = (En,vE'+u)  (£,m€GL (R); u,v € Fy)

where prime means a canonical involution of My (R). We let
GL2+(R) X Fh acton H X Fh by the rule:

(a,u)(z,v) = (a(z),va'+u) (a € GL2+(R); u,v€ Fy; z € H).
Define a2 mapping x, of HxF, onto HX CZh by

xplz,uy, 0 o,uy) = (2, ul(’i"). o ve ,uh(f))

(z € H; u; € M, (R)).

We introduce a complex structure in H X Fh so that x, is a complex

analytic isomorphism. Then every element of GL;(R) X Fp, acts on

H X F,, as a complex analytic automorphism.
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h denote the product of h copies of & . As a subgroup of

Let ¢
GL2+(R) x Fp, TN(e) x oft gives a properly discontinuous group of trans-
formations on H X F),, with a compact quotient. Set

Wt = () xe?) N (1 x Fy).
Assume hereafter that TN(O) has no element of finite order other than
the identity element. Then WN(h) is a compact complex manifold.
Furthermore, one can easily verify that WN(h) is a fibre variety of which
the base is VN = rN(e)\H. and each fibre is the product of h copies of
the abelian variety Az (6.1).

Kuga [ 8] determined completely the cohomology groups of a.certain
class of fibre varieties, which includes WN(h) as a special case, In the
case of WN(h), it turns out that every cohomology group is canonically
isomorphic to a direct sum of Sm(rN(e)) for some m's, He proved
also that WN(h) can be embedded in a projective space.

Let s~ w(s) be a natural projection of H X Fj, to WN(h).
Assume that N is prime to the discriminant of § Let AN(a) be as
in § 6. For simplicity, set T = Ty(o), A= Ay(©). For every
a € A4, set

X(Tal) = {w(s) xw((a,0)s) | s € HxF,}.
We verify easily that X is a subvariety of WN(h) X WN(h), It can be
shown that Ta¥ - X (Tal') defines an isomorphism of R(T, A) into the
ring of correspondences on WN(h), the latter being defined suitably,

One can find two elements ﬂp and Bp of A, for each prime number

P. such that det (ap)=p and p-IBPGT(e). Set
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(h) _ (h) _ .
xp X(rapr), Yp X(r‘spr).

Now we can find a projective model WN(h) so that WN(h), Xp(h). Yp(h)

are all defined over Q, and
on (WN(h) X WN(h))p

for all but a finite number of p. Here ( means reduction modulo p

p
(h)

rfp is the locus of x X xP on (WN xWN(h))p, np* is a certain

correspondence such that ( r'p* )*

npn for n=1,2,.... Combining this congruence relation with the

result of Kuga concerning the cohomology groups of WN(h), mentioned

above, we find

tes: w0y 2 TTER [e(s- (b/2))B(s- (br2)/2y 28 e 20 0)

NPT -
x T1 :20 T ?=o det [Dﬂz (s- (b-i}/2; §)_}§5h,b,‘)( 1)

where F means the equality up to a finite number of p - factors, and the
e(h,b,i) are non- negative integers, depending only on h,b,i. A full
exposition of our result will appear as a collabotration with Kuga,

A formula of this kind was first given empirically by Sato for a

certain fibre variety whose base is H*/I"N and fibres are the product

?

has the same number of fixed points as

+1

of elliptic curves modulo +1., A variety of this kind had been suggested by

Kuga, as the one whibh would describe Ramanujan's function in terms of

Hasse's zeta function.



REFERENCES

1. M. Deuring, Die Zetafunktion einer algebraischen Kurve vom
Geschlechte Eins I, 11, IIl , IV , Nachr, 2kad., Wiss, Gottingen,
(1953) 85 - 94, (1955) 13 - 42, (1956) 37 - 76, {1957) 55 - 80,

2. M, Eichler, Quaternire quadratische Formen und die Riemannsche
Vermutung fiur die Kongruenzzetafunktion, Arch. Math. 5(1954),
355 - 366 .

3. E. Hecke, Uber die Bestimmung Dirichletscher Reihen durch ihre
Funktionalgleichung, Math, Ann., 112 (1936), 664 - 699.

4, . ﬁber die Modulfunktionen und die Dirichletschen Reihen mit
Eulerscher Produktentwicklung I, II , Math, Ann, 114 (1937), 1 - 28,
316 - 351 .,

5. » Analytische Arithmetik der positiven quadratischen Formen

Dansk, Vidensk, Selsk. Math, -fys, Meddel, XVII, 12 (1940), Kobenha

6. J. Igusa, Kroneckerian model of fields of elliptic modular functions,

Amer, J. Math, 81 (1959),561 - 577,

7. S. Konno, On Artin's L-functions of the algebraic curves uniformized
by certain automorphic functions, J. Math, Soc. Japan, 15 (1963),
89 - 100'

8. M, Kuga, Automorphic forms and fibre var!zties, Lecture notes, Chicagc

University, 1964, to appear.

9. S. S, Rangachari, Modulare Korrespondenzen und L-Reihen, J,
Reine u. Angew, Math, 205 (1961), 119 - 155,

10, G. Shimura, Correspondances modulaires et les fonctions [ de

courbes algébriques, J, Math, Soc. Japan 10 (1958}, 1 - 28,

11, » Sur les intégrales attachées aux formes automorphes,

J. Math, Soc, Japan, 11 (1959), 291 - 311,



12,

13.

14,

15,

16,

17,

18,

G, Shimura, On the zeta-functions of the algebraic curves uniformized by

certain automorphic functions, J. Math. Soc. Japan, 13(1961),

275 - 331.

» On Dirichlet series and abelian varieties attached to

automorphic forms, Ann. Math, 76 (1962), 237 - 294.

G. Shimura and Y. Taniyama, Complex multiplication of abelian

varieties and its applications to number theory., Publ, Math, Soc.
Japan, No, 6 , 1961,

T, Tamagawa, On Selberg's trace formula, J, Fac. Sci. Univ. Tokyo,

Sec. I’ VOl. Vm, Part 2’ 363 haad 386.‘

» On the [ -functions of a division algebra, Ann. Math, 77
(1963), 387 - 405,

Y. Taniyama, L~functions of number fields and zeta functions of

abelian varieties, J, Math. Soc., Japan, 9 (1957), 330 - 366,

A, Weil, Jacobi sums as ""Grossencharaktere', Trans., Amer. Math,

Soc. 75 (1952) , 487 -~ 495,



ZETA AND L FUNCTIONS

by Jean-Pierre SERRE

The purpose of this lecture is to give the general properties of zeta
functions and Artin's L functions in the setting of schemes. I will mainly
restrict myself to the formal side of the theory; the connection with £- adic

cohomology and Lefschetz's formula would be better discussed in a seminar.

§ 1. Zeta functions.

1.1. Dimension of schemes.

All schemes considered below are supposed to be of finite type over Z,

Such a scheme X has a well defined dimension, denoted by dim.X. It

is the maximum length n of a chain
Zgc 2, < ... © 2, Zy # Zyyy
of closed irreducible subspaces of X. I X itself is irreducible, with
generic point x, and if k(x) is the corresponding residue field, one has:
(1) dim. X = Kronecker dim. of k(x).
(The Kronecker dimension of a field E is the transcendence degree of E

over the prime field, augmented by 1 if char.E =0.)

1.2. Closed points.

Let X be a scheme and let x € X. The following properties are

equivalent:
(2) {x} is closedin X.

(b) The residue field k(x) is finite.
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The set of closed points of X will be denoted by X; we view it as a discrete
topological space, equipped with the sheaf of fields k(x); we call X the
atomization of X. If x € X, the norm N(x) of x is the number of
elements of k(x).

1.3. Zeta functions.

The zeta function of a scheme X is defined by the eulerian product

(2) t(x,s) = T —— .
x€X l-m

It is easily seen that there are only a finite number of x € X witha given

norm. This is enough to show that the above product is a formal Dirichlet
fo'e}

series X a, /n®, with integral coefficients. In fact, that series converges,
n=1
as the following theorem shows:

THEOREM 1. The product (X, s) converges absolutely for R({s)>dim.X.

(As usual, R(s) denotes the real part of s.)

LEMMA. (a) Let ‘X be a finite union of schemes X;. I theorem 1 is valid

for each of the X;'s, it is valid for X.

(b) ¥ X — Y is a finite morphism, and if theorem 1 is valid for Y,

it is valid for X.

Using this lemma (which is quite elementary ), and induction on dimen-
sion, one reduces theorem 1 to the case X = Spec Af Tl’ o e oy Tn], where

the ring A is either Z or gp In the first case, dim.X = n+1, and the

product (2) gives (after collecting some terms together):

1
X' =
£(X,s) 2] PP

In the second case, dim.X =z n, and {(X,s) = 1/(1-p™"%). In both cases,

=f(s-n).



we have absolute convergence for R (s) > dim.X.

1.4. Analytic continuation of zeta functions.

One conjectures that £ (X, s) can be continued as a meromorphic
function in the entire s - plane; this, at least, has been proved for many
schemes. However, in the general case, one knows only the following much
weaker:

THEOREM 2. €(X,s) can be continued analytically (as a meromorphic

1
function) in the half - plane R(s) > dim.X - 3 .

The singularities of & (X, s) in the strip
. 1 < 3z
dim.X - 3 < R{((s) 2 dim. X
are as follows:

THEOREM 3. Assume X to be irreducible, and let E be the residue field

of its generic point.

. 1
(i) ¥ char.E =0, the only pole of £ (X, s) in R(s)>d1m,X——2-

.ii s =dim.X, and it is a simple pole.

(ii) ¥ char.E=p#0, let q be the highest power of p suchthat E

. . 1
contains the field Fq. The only poles of £ (X, s) in R(s)>dim.X - 3

are the points

27in

s =dim.X +
log q

nég,

and they are simple poles.

COROLLARY 1. For any non empty scheme X, the point s =dim.X is a

pole of £ (X, s ). Its order is equal to the number of irreducible components

of X of dimension equal to dim.X.

COROLLARY 2. The domain of convergence of the Dirichlet series 8(X,s)




is the half plane R(s) > dim.X.

Theorem 2 and Theorem 3 are deeper than Theorem 1. Their proof
uses the "Riemann hypothesis for curves' of Weil [7], combined with the
technique of "fibering by curves" (i.e. maps X —> Y whose fibers are of
dimension 1). One may also deduce them from the estimates of Lang - Weil
[5] and Nisnevid [6].

1.5. Some properties and examples.

£(X,s) depends only on the atomization X of X. In particular, it

does not change by radicial morphism, and one has

(3) E(X g 8) = E(X,8) .

If X is adisjoint union (which may be infinite) of subschemes X,
one has:

E(X,s) = T1L(X;,s) ,

with absolute convergence for R (s } > dim.X. Itis even enough that X be the
disjoint union of the -)'{-i 's, For instance, if f: X—» Y is a morphism, one
may take for X;'s the fibers XY = f'l (y), y€ Y, and one gets:

(4) g(x,s) = T (X, s).

yE€Y y

{This -~ with Y = Spec(Z) -- was the original definition of Hasse - Weil.)
Note that the XY 's are schemes over the finite fields k(y), i.e. they are
'algebraic varieties''.

If X =Spec(A), where A is the ring of integers of a number field
K,C(X,s) coincides with the classical zeta function CK attached to XK.

For A= Z, one gets Riemann's zeta.

I _én(X) is the affine n- space over a scheme X, one has:



g(A"(X),s) = £(X, s-n) .
Similarly:
m=n
E(P*M(X),s) = JT] L(X,s-m) .
= m=0

1.6, Schemes over a finite field.

Let X be a scheme over gq' If xé-)‘(.. the residue field k(x) is a
finite extension of :F;q; let deg (x) be its degree. One has
N(x) = qdeg(x),
and
(5) L(X,s) = Z(X.,q7%),

where Z(X,t) is the power series defined by the product:

(6) Z(x't) XT-% deg(x)

The product (6 ) converges for |tl < q-dim.X .

THEOREM 4 (Dwork). Z(X,t) is a rational function of t.

See [3lfor the proof.

In particular, §(X,s) is meromorphic in the whole plane, and
periodic of period 2mi/log(q).

There is another expression of Z(X,t) which is quite useful:

Let k= :_F_’q, and denote by k, the extension of k with degree n.
Let X, =X(k_) be the set of poiats of X with value in k,/k. Sucha
point P can be viewed as a pair (x,f), with x € -)-(-, and where f is a
k - isomorphism of k(x) into k,. One has:

Ux, = x(x),

where k is the algebraic closure of k.



It is easily seen that the X 's are finite. If we put:
vn = Card (Xn),

one checks immediately that:
©

(7) log. 2 (X,t) = 2 Vntn/n.
n=1
1.7. Frobenius.
We keep the notations of 1.6. Let F:X—> X be the Frobenius
morphism of X into itself (i.e. F is the identity on the topological space
X, and it acts on the sheaf Oy by @+ ©1). If we make F operate on

X (k), the fixed points of the n-th iterate F® of F are the elements of X,

] n
In particular, the number Yn is the number A(F™) of fixed points of F .

This remark, first made by Weil, is the starting point of his interpretation of

v, as atrace, in Lefschetz's style.

§ 2. L functions.

 2.1. Finite groups acting on a scheme.

Let X be a scheme, let G be a finite group, and suppose that G
acts on X on the right; we also assume that the quotient X/G =Y exists
(i.e. X is a union of affine open sets which are stable by G). The atomiza-
tion Y of Y may be identified with X/G. More precisely, let x €X, let
y be its image in Y, and let D(x) be the corresponding decomposition sub
group; one has g € D(x) if and only if g leaves x fixed. There is a
natural epimorphism

D(x) = Gal(k(x)/k(y)).

Its kernel I(x) is called the inertia subgroup corresponding to x; when



I{x)= {1}, the morphism X — Y is étale at x,

Since D(x)/I(x) can be identified with Gal{k(x)/k(y)), it is a cyclic

group, with a canonical generator Fx' called the Frobenius element of x.,

2.2. Artin's definition of L functions.

Let X be a character of G (i.e. 2 linear combination, with coefficients
in Z, of irreducible complex characters). For each y € Y, and for each
integer n, let X(y™) be the mean value of X on the n-th power F:: of the
Frobenius element F,€D(x)/1l(x), where x¢€ X is any lifting of y.

Artin's definition of the L function L(X,X ; s) is the following (cf. [1]):

. o)
(8) loé.L(X.X ;s) = fz__ 2 X(y?) N(y) ™% /n.
yeY n=l
When X is the character of a linear representation g = M(g ), one has:
(9) L(X,X;s) = -

yEY det(1-M(F,)/N(y)®)
where M(F,) is again defined as the mean value of M(g), for g > F,.

Both expressions (8) and (9) cdnverge absolutely when R{s)>dim.X.

2.3. Formal properties of the L functions,

(i) L(x,X) depends on X only through its atomization X.
(ii) L(X, X+X') = L(X, X ).L(X, X').
(iii) If X is the disjoint union of the X;'s, with X; stable by G
for each i, one has
L(x,X;s) = TT L(x,,X; s),
with absolute convergence for R(s) > dim.X.
(iv) Let 7: G— G' be a homomorphism, and let TxzX = X xGG' be

the scheme deduced from X by "extension of the structural group'. Let X!
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be a character of G', and let X' = X' 7 be the corresponding character
of G. One has:

(10) L(X,n*A) = L{m X, X'").

(v) Let 7:G'— G be a homomorphism, and let 7*X denote the
scheme X on which G' operates through 7. Let X' be a character of G,
and let 'n'*)(' be its direct image, which is a character of G (when G' is a
subgroup of G, T, A' is the "Minduced characterof X'). One has:

(11) L(X,TeX') = L{a"X, X').

(vi) Let X = Spec (_iqn), Y = Spec(&), G= Gal(__F_'qnlgq). and X

an irreducible character of G. One has:

1
1-X(F)q®

where F is the Frobenius element of G.

(12) L(X,A;s) =

s

It is not hard to see that properties (i) to ( vi) characterize uniquely the

L functions.
(vii) ¥ X =1 (unit character), L(X,1)={(X/G).
(viii) ¥ X=r (character of the regular representation), one has:
L(X,r)=§(X).
Combining (viii) and (ii), one gets the following formula (which is one of the
main reasons for introducing L functions):

(13) Z(X) = L(x,x)dee (X

XEHr(G)

where Irr(G) denotes the set of irreducible characters of G, and

deg (X) = X(1).
There is an analogous result for §(X/H), when H is a subgroup of G;
one just replaces the regular representation by the permutation representation

of G/H.



2.4. Schemes over a finite field.

Let X be an __F_c1- scheme, and assume that the operations of G are

__I';q- automorphisms of X. The scheme Y = X/G is then also an iq- scheme.

On the set X('fc'), we have two kinds of operators: the Frobenius endo-
morphism F (cf. n°1.7) and the automorphisms defined by the elements of
G; if g€ G, onehas Fog=goF,

¥ we put as usual t = q"s. we can transform L (X, X; s) into a

function _E (X,X; t) of t. An elementary calculation gives:

(o9
(14) log. L(X, X; t) = Zl V(X )% /n,
n=
with:
- 1 ' -1 a
(15) a0 = 5 L e agE®,
g€G

where (G) = Card(G), and A(gF®) is the number of fixed points of gF@?
(acting on X (k)).

{ These formulae could have been used to ii(_a_f_iﬂ_e. the L f{functions; they
make the verification of propezlties (i) to (vi) very easy.)

Remark. It is not yet known that L(X,X; t) is a rational function of t.

However, this is true in the following special cases:

(a) When X is projective and smooth over f.q’ this follows from

{ ~adie cchomelogy (Artin- Grothendieck).
(b) When Artin - Schreier or Kummer theory applies, i.e. when G is

N, or of order m prime to p, with m dividing q-1,

cyclic of order p
This can be proved by Dwork's method; the case G = Z /pZ has been studied

in some detail by Bombieri.
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2.5. Artin- Schreier extensions.

It would be easy -- but too long -- to give various examples of L func-
tions, in particular for an abelian group G. I will limit myself to one such
example:

Let Y be an -_gq' scheme, and let a be a section of the sheaf -Q-Y .

In the affine line Y[TJ], let X be the closed subscheme defined by the
equation

TP - T = a.
If weput G=2/pZ, thegroup G actson X by T +> T+1, and X/G=Y;

we get in this way an étale covering. Let w be a p-th root of unity in C,

and let X be the character of G defined by X(n) = w®, The L function
_I__:(X.X ; t) is given by formula (14); its coefficients vn(X) can be written

here in the following form:

' Tr_ al(y)
(16) Va(X) = Z w O :
yGYn
where Yn= Y(k,), and Tr, is the trace map from kn=£_..qn to ‘_f:p.

The above expression is a typical "exponential sum', If, for instance, we
take for Y the multiplicative group G,y and put a =2y + py'l, we get the

so-called Kloosterman sums. This connection between L functions and

exponential sums was first noticed by Davenport - Hasse [2], and then used
by Weil [8] to give estimates in the 1-dimensional case.

2.6. Analytic continuation of L functions.

Theorems 2 and 3 have analogues for L functions. First:

THEOREM 5. L(X,X; s) can be continued analytically (as a meromorphic

function) in the half - plane R (s ) >dim.X - —2{ .
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The singularities of L{X,X; s) in the critical strip
dim. X - -;-< R(s) € dim. X
can be determined, or rather reduced to the classical case dim.X =1. One
uses the following variant of the "fibering by curves' method:

LEMMA, Let f: X~ X' be a morphism which commutes with the action of

the group G. Assume that all geometric fibers of f are irreducible curves.

Then:

(17) L(X,X;s8) = H(s).L(X',XA;s-1) ,

1
where H(s) is holomorphic and # 0 for R(s)>dim.X - 3.

This lemma gives a reduction process to dimension 1 (and even to
dimension 0 if X is a scheme over a finite field). The result obtained in
this way is a bit involved, and I will just state a special case:

THEOREM 6. Assume that X is irreducible, and that G operates faithfully

on the residue field E of the generic point of X. Let X be a character of

G, and let (X, 1) be the multiplicity of the identity character 1 in X.

The order of L(X,X) at s =dim.X is equalto -<X, 12,

COROLLARY. If X is a non trivial irreducible character, L(X,X) is

holomorphic and # 0 at the point s =dim.X.

v
2.7. Artin- Cebotarev's density theorem.

Let Y be an irreducible scheme of dimension n 2 1. Using the fact

that £(Y,s) has a simple pole at s = n, one gets easily:

‘ I 1
18 S —————— ~ ——ly .
(18) ;Z’G:f N(y)® log s-n for s n

A subset M of Y has a Dirichlet density m if one has:

. A .
(19) (Y;M N(y),g)/log-g--:-;-1 - m for s->n.
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(For Y = Spec( Z ), this is the usual definition of the Dirichlet density
of a set of prime numbers.)

Now let X verify the assumptions of Theorem 6, and let Y = X/G.
Assume that dim.X 2 1, and that G operates freely (i.e. I(x)= {1} for
all x € X). I y € Y, the Frobenius element F, of a corresponding point
x€X isa well defined element of G, and its conjugation class { Fx} = FY

depends only on vy.

THEOREM 7. Let RC G be a subset of G stable by conjugation. The set

YR of elements y € Y suchthat F, © R has Dirichlet density

Yy
Card(R)/Card(G).

This follows by standard arguments from the corollary to Theorem 6.

COROLLARY. ?R is infinite if R# Q.

Remark. A slightly more precise result has been obtained by Lang [4] for
'"geometric' coverinmgs, and also for coverings obtained by extension of the

ground field.
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SEMINAR ON SINGULARITIES 1

The seminar met five times. The speakers were Hironaka (July 14
and July 16), Zariski (July 21 and July 23) and Abhyankar (July 29.)

by

H. Hironaka

51 A theorem of Whltney
Let f= V" Csy C be an imbedding of a complex-analytic variety
V of dimension n ; a variety will be always assumed to be reduced and irreducible.
Suppose V , identified with its image by f , goes through the origin O . If x is
a simple point of V , then T (f) will denote the tangent space of V at x , which

is canonically 1dent1f1ed with a 11near subspace of C , the last being viewed as the

tangent space of C at each point. We have an ordinary inner product in the vector
N N _ . .

space €  , denoted by u-v = i1 WY if u= (uig...,uN) and Vv = (Vi’ ..,VN).

We define the normal vector space, Nx(f) , of V at x as the orthogonal comple-
ment of the tangent space Tx(f) in €N . Let VO =V -sSWMV {O}, where S(V) =

the singular locus of V . Let us consider

ﬁ(fx)_max |V.OX
| 6N<f> v ot

— '
where x € V0 and Ox - the vector joining the origin to x in the vector space €

< ETX(i)> [v|.|6?<|
v#£O0

for x € V0 . We have the equality
2 2
(f; x)” + (’(f 3X) =
Theorem (1.1) (Whitney)

max

<

lim f;x) =0
x —30
or, equivalently,

lim T(;x) =1
x —0
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where x runs through the non-singular part of V , other than the origin.

Proof. First consider the case of dim V = 1. Clearly, we may assume that V is
irreducible. Let t be a uniformizing parameter on the normalization of V at the

point above O. Then the coordinate functions X, = xi(t) (1€i%N) are holomorphic

]
y N .,
l Z: x,(t) (1) ,

- (£ x(t)) = i=1 o
\| 2 Jef \[ 2 e
i=1 ' i=1

let p be the minimum of the orders of xi(t) , which is positive because \/I goes
through O. Let ord(xl(t)) = p , for instance. Then lim ,Xi,(t) = lim Xi(t) for all i
. t —30 x (t) t—30 x/(t)
T(f : = !
so that lim Z(f; x(t) = 1. X =

Next consider the general case. The proof will be reduced to the above case. Let us choos
-t

functions in t . Now, obvious!

a birational blowing-up T Vy —>V such that, V, being the non-singular part of V
outside the origin O , & induces an isomorphism of ﬁgl(VO) to V0 and the holomorphic

map of V_ to the Grassmannian GN,n , X € Vg —Tx(f), extends holomorphically

through ’V/?O . (For instance, let VO beﬁ/the graph of the meromorphic map defined by
the above V0 —-—-)GN’n.) Then let 7zN V—> V be the composition of 7[0 ,mal.nd the;vv
birational blowing-up of the ideal on VO Ngenera.ted by the Xi. ﬁgai/r\lj T .7 (VO) —
V0 , and V0 —?GN’nextends through V . Now, at each point x € V, we can find d
independent holon’l\frphic Azectors which span Tx(f) for all x & V0 -_szl(VO) in a certain
neighborhood of x in V , and moreover there exists an index q such that the ratios
xj/xq are all holomorphic at ;{/ for 1 & j EN. It E/now easy to show that the function
z(f;x) for x < VO extends continuously throug/l\ll V,‘;/ Now, to provi/the theorem,
suppose it were false. Then there exists a point x € V such that z (x) = 0 and the
extended ¥ (f ; x) takes a value £ 1 at /xv Take then an irreducibl/e':v curve through

;’, say l"’ , which is not contained in /\‘7/- VO' We may assume that r' - (;{jc V0 .

Let r' =‘n-(f7) , and g : [l C-—;C'N be the imbedding indﬁced by f . Then, clearly by
the definition, T (g ; x) € 7 ; x) forall x€ r' —{0}. Then Xlﬂ%(g ; X) éx 13.1_2,—6@ ; X)
< 1, which contradicts the above result in the 1-dimensional case. Q.E.D.

We are here particularly interested in the case of isolated singular point,

say 0 VLl (E"N. Then the above theorem shows that the function (O (f ; x) for
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X€EYV =—{0 , Where f:V — CN, extends to a continuous function on V so that
f’(f ; 0) = 0 ; the same for 1(f ; x) with\ < ;0 =1. From nowon, we shall use
the symbols r (f;x) and = (f; x) in this extended sense.

Remark (1, 2) Let (F‘ s o ’Fr) be a base of the ideal of V" in CN
at the origin. Let J 0 be the ideal on V generated by F}l@ (N-n)x(N-n)-minors of the
Jacobian d(F,.. VF_)/ 2>(X1 s»++»X . Then the closure V of the graph of v, —>
G;N‘,n in VX GN,n (cf. The above proof of/’\l;heorem (1.1) ) is the birational blowing-up
of 3/5 with reference to the morphism 7°: VO —> V induced by the projection from
VX G?N‘,II

Remark (1.3) Let ~,9g be a sphere of real dimension 2N-1 in CN
with radius £ > 0 and with center O . Let x be a point of KSEOV . Then the
tangent space Tx(lSE y is naturally identified WiltTh a R-subspace of CN , and it
contains an N-1 dimensional €-subspace of € . Denote this by T; (TS:E) . Then
one can see that T; (&g) is orthogonal to the vector (33?9 and yS‘_:OV is transversal at
x if and only if T)CZ (rfa) does not contain TX(V') (= T; {V)) . Thus we get: ‘SgﬂV is
transversal at x¢& ¢(f; x) > Oé:?s)(f‘; X} < 1. Therefore, by Th. (1.1), there exists
a positive number f) such that ,S?E‘QV is transversal for all £ with 0 g« f.

5 2. Continuity of W-=function.

et (#,X,Y, &) be afamily of isolated singular points of complex-

analytic varieties. (cf. My note on "Equivalences and Deformations of Isolated Singular

Points'".) This means that X, Y are reduced complex-analytic spaces; 7 and € arve
holomorphic maps such that we€ = identity ; ¢ is flat; all the fibres Xy’ vy&€Y, are
reduced and equidimensional; finally, X is locally isomorphic to a domain in Yx Cmf

at every point of X -£(Y), where n = dim Xy" Suppose we have a permissible imbedding
[: XSG YX c™. Namely, f is an irnbedding such that #z = (projection)ef and € (Y) =

Y x 0. Then we define ¥ (f ; xj and lo(’f ;X) on X . (cf. The above cited note.} Assume:

Y is non-singular irreducible.

I shall prove:
Theorem (2.1) The condition (ES) on the permissible imbedding f: X &Y x €

implies the continuity of = (f ; x ).
Proof: Recall Definition 2 of the note cited above. We have an ideal sheaf
J’ on X , which is the productlo‘% , whereJ is the ideal sheaf of £(Y) on X and %
is the ideal sheaf generated by the (N-n)x(N-nj-minors of the Jacobian of the defining
v
equations of X in Y x CN with respect to the coordinate functions on GJN . Let h: X >

X be the birational blowing-up of 2’ “followed by the normalization. Let }be the ideal
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sheaf on X genera’ced by 2’ and Y the complex subspace of X defined by 3’ The
flatness of Y —> Y (which is the condition (ES)) implies that every 1rreduc1ble com-
ponent of Y is mapped onto Y. This 1mp11es that for every point y of Y, h (X ) is
equal to the closure of h (X "E(f) ) in X Now Iclaim: =z(f;x) on X - g(Y)

” 1 €(Y) ) extends contmuously through X ,and the extension is zero at every point
of X - h (X -E()) = ([(Y) ) . Note the second assertion follows the first, by
what we have proven above and by Whitney's theorem. The first assertion, on the other
hand, is a consequence of the facts that: (i) /0 G"’ is invertible as QX’"— modules; and
(ii) 2’09"" is invertible, so that the natural map X - €(Y) — Yx GN,n (cf. Remark
(1, 2) ) 1s holomorphlcally extended to X —y YX GN , where X -£(Y) is identified

with X - h (C(Y)) Q.E.D.
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SEMINAR ON SINGULARITIES,II

by

O. Zariski

1

Fowes an(x, t) , where the ai(xg t) are holomorphic function at x =t = 0

(and f has no multiple factors,)Assume that £{0,0,t) = 0 and that the y-discrimi-
nant of f is of the form £(x,t) xq, a=0, £(0,0) £ 0 (this means that the surface

f = 0 is equisingular at the origin, along the line x = y = 0 ; see Zariski's lecture

"Equisingularity etc.").

Fix § >0 such that the power series a.(x,t) are convergent and that

g(x,t) £ 0 forall (x,t) such that Ix[( 8, ltl(é.

Notations:

A : the affine 3-space of the variables x,y, t.

V : the set of poinls (x,y,t) of the surface f = 0 such that {x[ < 6,
L)<

EO: ((x,y) | lx|<6 ) y~arbitrary} .

T :the disc |tl<§.

1V0: the section of V with the plane t = 0 .

The full details of Whitney's proof of the following theorem were given:

Theorem. There existsghomeomorphism\-i/ of E;x T into A such that:
1) W (VyxT) = V.
2) Forany x,y) ¢ E, and t €T, we have Y ((x,y)Xt) = x,8(x,y,1),t) ,
where ¢ is some continuous function on E o* T
3) The function ¢ has the following properties:
3a) g(x,y.9) = y.
3b) 4 is analyticin t.
3c) ¢ is real analyticin x,y,t, except perhaps 1) at the points where
x =0 and 2) at the points of VX 0.

The construction of the function ¢ (x,y,t) .
A) One first constructs (and this is the easy part) a function ;61 on V0 xT

which will play the role of the restriction of ¢ to V. XT . Let ¥;x5t) be the n distinct
solutions of f(x,y,t) = 0 (0 ¥ |x[< S, It}((&) and let

(1) /71(X) yi(xao) .
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For any point (gi] ,0) of V0 rjf(xs"’)SO) = 0, x ¢ 0), one and only one of the n
(holomorphic) functions yi(x,t) has the property that yi(x’?t) —_— ’7 as (x'.t) —>
(x,0). H yi(x,t) is that function, we set

(2) ﬁl(Xy”?at) 2 ¥t i x L0

161(0,0,1:) =0.
B) We now extend gSl to a function ¢ on EOX T. If Vs Vgo--s¥y
are complex numbers and y # Vs all i, set
1 S M
}1-: _ s -(Y9y.~;"'5ySY):__—_m ¢
i ly y.ll iv1? 72 n Z‘v n)u‘
j=1 !

The )/i are real-valued, non-negative, real analytic functions, defined outside the
n planes y = A If for a given i we have Vs £y, forall j£i then the Vl is
] J
also defined and continuous at (yls Yooeows Yo yj) (all j) and ))i(yl, Yoo--es¥ps yj) =

i
: For O)é'x|<‘éset

6, (5,y) = Y7 (). Py ), ¥)

where the "71(x) are defined in (1) . Then define the function ¢(x,y,t) as follows:

n
$ (3.0 =y +Z'.,l Gy [yen -7,0]

(3) if x,y) 2 (0, 0).
g (0,0,t)

1]
(o]

Then ¢ is defined and continuous on EOX T and has the properties 3a), 3b) and 3c)
stated in the theorem. The proof that the mapping \I/ of E 0X T into A defined by

\l/((x,y)xt) = (X,6 (x,y,t) , t) is a homeomorphism depends on showing that if g is

sufficiently small then

(4) 4 x,¥',t) ¢ ¢ (x,y.t) forall x,y,y',t such that ,xl(&
ltl((g and y £y’ .
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The proof of (4) is based on two facts.

Bl) By elementary calculus one shows that if b19 bzy e oo bn are

complex numbers and if

’bi-b.,
(el

/- v ] . s /s

then
L
(5)’21 T A A R RPN AR B ERFIIY RO )
From (5) and (3) it follows that if the absolute values of the

(6) Ay -A Ly
WRCIRWACY

where Ai(Xﬁ) - yi(x,t) - ‘”71(x)& are bounded in the region 0 }{ |x|< 8, |t |<c§s say if

(7) [ Ay -Ajxt |

¢ (@l i,j, ifj),
l”]i(x) - 7i(x) l \l(

then

(8) g (x,y',t) - p(x,y,t) -1| £ 4m-1),
y' -y .
for all x,y, y',t such that |x|<<§ , |t|<(§s y % y' .

B2) To say that the (7) are valid for some )/ is the same as saying that
the quotients (6) are integral functions of x and t . This is in fact the case and is a
consequence of our assumption that the discriminant of f is of the indicated form ¢ (x,t) x1 ,
£(0,0) £ 0. Then it follows that these quotients have value zero at x =t = 0 . Therefore
if § is sufficiently small then, in (7) , we can assume X<475L41) , and then (4) follows
from (8) .

§ 4. We consider now, more generally, an algebroid hypersurface
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(1) f(xl,xzﬁ..,gxsg y, ) =0
in the complex affine (s + 2)-space A of the variables X1 Xgs ooy X v,t. We

assume that f is a monic polynomial in y , of degree n , with coefficients which

e X t , convergent in the region ‘xl <é a=1,2,...,

are power series in Xl’XZ"

t I<c( If D(xl,xz, ooy X t) is the y-discriminant of f and = denotes the
projection (xl,x2, e X Vs t) - (Xl EITERREE t) of the hypersurface (1) onto the
affine (s + 1)-space A' of the variables Xy o Xgae oy Xg, t , then the hypersurface

A:D:O

in A' is the critical variety of the mapping 7 .

In the case s = 1 we have assumed ( ﬁS) that /\ is the line X = 0.
In that case, a neighborhood of A in A isa topological (and even analytical) direct
product E 'x T , where E ' istheline t = 0 and T is the disc ,t|45 with A
being the f1bre O0xT . We shall now make a similar assumption on A in the general

case, as follows:

Notations:
/\ : the set of points (xl, giers Xo t) of the critical variety D = 0
such that |x |<(S G=1,2,...,8), |t<

{(X1 XZ""’XS)I Ixi|< (S}.
T : the disc ]t|<

A O' . the section of /\ with the space t = 0 .
We make the following ''direct product' assumption:

There exists a homeomorph1sm\|/ of E 'x T into A' such that:

1 W' (AyxT) =A .

1] 1] 7
2) \V ((xl,xz,..., b )x t) = (x s Xg'yeens X, t) , where the x,' are
some functions of Xy oXg s o X t.
3) W' ((K]:%g,eees X)X 0) = (X1,Kg, 000 X, 0).

4) The fibres Fx =V ( (x) x T ) are analytic (isomorphicto T),

5) f Py= (x)x 0 ¢ A and if Al,Az,...,Ah
irreducible components of A at PO’ then FX lies on each of Aj'

¥ P- (x)xt is any point of on T , let m denote the number of

distinct roots of f&l’ . ’;{s’ v, 'f) , and let nlgnz, RS . be the mmltiplicities of these

are the analytically
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roots (n :Zn ) . The integers m, nJ are functions of P. From the "direct product"
assumption follows that locally at P, the fundamental group of A' - /\ is the same as the
fundamental group of A" —A , where A" is the hyperplane t =t and A— is the
section of /\ with that hype rptlane Using this and an appropriate Galois theory argument,
it is possible to prove the following:

Lemma. The functions m(P), nl(P)_., oo ’nm(P)(P) are constant along each
fibre FX (provided { is sufficiently smallj. .

This lemma shows that the inverse image (FX) of each fibre FX is the

union of m(P) (P ¢ FX) non-~intersecting analytic fibres, isomorphic to FX . Thus the

fibration F can be lifted to the hypersurface V:f = 0, and this yields a homeomorphism
k}/l of V XT onto V (V = section of V with t = 0) such that if (xl,x29 e X, 7 ,0)

1 l ]
EV then \V (xM)xt) = (x TR ¢ (x1 2’“'"XS’(73 t), t}y ., where (Xl,X

R
xs' t) =W ' ( (x)x t) and ¢1 (x,‘? t) = yl(x' 9, yl(x t) being that root of f(x,y,t) = 0
which approaches 2 as t — 0 .
If we now wish to use Whitney's method for the purpose of extending wl to a
OxT into A (where E, = {(Xl,xz, e ,xs,y)J Iin ¢d,i=1,2,... .8,

d sufficiently small), then it is necessary to assume that all the quotients

homeomorphism of E

y; (1) - yyx,0) N
yi(xa O) - y_] (Xa 0)
are integral functions of XKy e n s X, t. This is easily seen to be equivalent to assuming
that the y-discriminant D of f is of the form ¢ (xl,xz, e X t) DO (xlf,ng oo ,xs)
with £(0,0,...,0) # 0.
This is precisely the assumption of "analytical equisingularity' of the critical
variety made in §< 4 of Zariski's lecture "Equisingularity etc.". This proves the final state-

ment made at the very end of that lecture.

The algebraic (or algebroid) structure of V in this particular case requires

further study.



NONSPLITTING
by

S. Abhyaunkar

Purdue University

Definition 1. Let R be a positive dimensional regular local domain with
quotient field K. Let M be the maximal ideal in R. We get a real discrete valuation
of K by taking the value of x/y tobe a-b where x and y are any nonzero
elements in R and a and b are the greatest integers such that x eM? and v € Mb,
This valuation is denoted by ordR(

Notation. Henceforth R will denote a two dimensional regular local domain
with quotient field K such that R is of characteristic p # 0 and the residue field of
R is algebraically closed.

In the second paragraph on page 13 of my taltk "Current status of the
resolution problem" I stated a result concerning 'local nonsplitting". The main part of the
proof of that result is the proof of the following theorem which is a special case of that
result.

THEOREM. Let L be a Galois extension of K of degree p andlet v

be a real nondiscrete valuation of K dominating R such that v has only one extension

to L. Let Rn be the n‘t,h quadratic transform of R along v. Then there exists a

positive integer m such that for 21l n 2 m we have that ordRr, has only one extension

to L.

In turn, the proof of the above theorem follows from the following three
lemmas.

Definition 2. Given a monic polynomial f{Z) in an indeterminate Z with
coefficients in K and given a basis (x, y) of the maximal ideal in R, we shall say that
f(Z) is of [R, x, y]-type (u, v, a, b, c) provided

§z) = 2P - Ox%P 1z + BPF

where: u, v, a, b, are nonnegative integers; D isa unitin R; F is a nonzero element
in R; c¢= ordR/xR h(F) where h: R —» R/xR is the natural epimorphism; u=0, a< p,
bep,c€1; if a=0 then b+ ¢ % 0(p); if ¢ =1 then b=0; if b# 0 then v # 0.
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Definition 3. Giver a monic polynomial f(Z) in Z with coefficients
in K we shall say that f(Z) is R-typical if there exists a basis (x,y) of the
maximal ideal in R and there exist nonnegative integers u, v, a, b, ¢, such that
f(Z) is of [R, x, yl-type (u, v, &, b, ¢).

Definition 4. Given a Galois extension L of K we shall say that L
is nice relative to R if there exists a primitive element z of L over K such
that the minimal monic polynomiai of z over K is R-typical.

Definition 5. Given monic polynomials f(Z) and g{Z) of degree p
in Z with coefficients in R we shall say that g(Z) is an R-translate of f(Z) if
there exist elements r and s in R suchthat r # 0 and g(Z) = r P f(rZ + s).

LXEMMA 1. Let L be aGalois extension of K of degree p and let

v be a real nondiscrete valuation of K dominating R such that v has only one
th

extension to L. Let Rn be the n'? guadratic transform of R along v. Then there

exists a positive integer m such that L is nice relative to Rm"
LEMMA 2, Let I be a nlois extension of K such that L is nice

relative to R. Then ordR has only one extension to L.
LEMMA 3. (Stability). Let f(Z) be a monic polynomial of degree p
in Z with coefficients in R such that f(Z) is R-typical. Then given any quadratic

transform S of R there exists an S-translate g(Z) of f(Z) such that g(Z). is
S-typical.

The proofs of Lemmas 2 and 3 are quite easy. The proof of Lemma 1

is algorithmic.



FURTHER COMMENTS ON BOUNDARY POINTS
by

David B. Mumford

In these notes, I shall describe some joint work of A. Mayer and myself
as well as some related results, summarizing further comments made in my lecture
and a 2nd lecture by Mayer. During the institute, lectures were also given by H. Rauch
and L. Ehrenpreis discussing various aspects of the Torelli and Teichmiiller covering
spaces of the moduli scheme for curves of genus g (cf. the notes of Ehrenpreis). The
ground field will be assumed to be the complex numbers in our discussion. One word of
apology: the full proofs of many of our results have not been written down, so strictly
speaking, much of what follows should be taken as conjectures not theorems.

§1. Compact moduli spaces for vector bundles over curves.

This theory has been worked out by Seshadri, Narasimhan, and myself.
Iet E be avector bundle of rank r over a curve C .
Definitions:
i) E is regular if the only endomorphisms of E are multiples of the
identity.
ii) E is ﬁa_b}g if, for all sub-bundles IF CE, deg [c 1(mﬂ<:“—:nm%(%)L
sdeg [c 1(]E)] ,

iii) IE is semi-stable if, for all sub-bundles FFC E, degc 1(]I?‘)] <
rank (IF) , -
rank (IE) deg [_c 1(E)] ’

iv) E is retractable if it is a direct sum of stable bundles.

If deglc (]E)] = 0, E is retractable if and only if JE admits a hermitian
structure with curvature form 0 .

To obtain a modulus space for vector bundles with given rank and deg(cl),
first one must throw out irregular bundles since they give rise to jump phenomenon, i.e.,
constant families of bundles, which suddenly jump to another bundle (cf. my lecture notes,
""Curves on an algebraic surface', lecture 7,§'4). In the remaining class of bundles, the
topology is still un-separated; but in the set of retractable bundles the topology is both
compact and separated, since this set of bundles is isomorphic to the set of unitary repre-
sentations of TC 1 of the base curve (for deg [51(]E )] = 0; otherwise the argument can be

modified). This set turns out to contain the open set of stable bundles, and to be contained
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in the open set of semi-stable bundles (it is not open itself). One finds that the stable
bundles are classified by the points of a non-gingular variety V7, and that V™ is an
open subset of a compact variety V°. The set of points of V- is isomorphic to the
(non-algebraic) set of retractable bundles, and there is even a natural map from the
set of all semi-stable bundles to F, but non-isomorphic bundles no longer correspond

to distinct points:

regular

N
-~ stable — points of
bundles ~

bundles

re tractable pomts of
bundles

semi —stable f /

)

bundles

§2. Compact moduli spaces for abelian varieties: Satake
CAAANN

Let VI'1 denote the moduli scheme for principally polarized abelian

varieties of dimension n . That is,

— .
v, = ?n/ r; (as analytic space)

where f?/ is the Siegel upper }-plane of type n, and r is the modular group acting
on 497 V‘ has even a canonical structure of algebralc variety over ® , due to its
1nterpretat10n as a moduli schemea*, V'I'1 carries a canonical class of ample invertible

sheaves £L(i) defined for all sufficiently large i, and such that
Z(1) @ L(j) =<T( +1j)

when this makes sense. Therefore one has the graded ring

D M)
1-‘10

which is known to be isomorphic to the ring of modular forms on "7 with respect to
r’ , if n22,
n

*cf. Baily's work, or my "Geometric Invariant Theory",
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The Satake compactification of V~ is then the open immersion:
n

V;1 C Proj (Rn) = V;x*'
It turns out that there is a canonical isomorphism of Vr'l* - V:l and V;_’{ , so that
set-theoretically:
Vit = WU Vg Vo Uviuvy -
(V(‘) is a single point) . This amazing equation suggests that this compact variety,
which is defined only as a kind of "minimal model", should have an interpretation as
a moduli space. In fact, consider all commutative group schemes X connected and
of finite type over € .
Definition: X is stable if X is an abelian variety,
X is semi-stable if X is an extension of an abelian variety
by multiplicative groups (Gm)r
X is retractable if X is the product of an abelian variety by
multiplicative groups.
Exactly as before, A. Mayer and I have proven:

Stable X with "~ Jpoints of

polarlz ation V'

retract able X pomts of
with pol arization

semi- stable X
with polarization

Explanations
1° A polarizatior. of X may be taken to mean a divisor D on X,

determined up to algebraic equivalence, such that if

T :X—)XO
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is the projection of X onto its abelian part, and if D = 7,‘*(D0) (recall that Pic(X)
= Pic(XO) ), then D

is ample on XO and

n
. 0 i
(DO ) = nO,

n0 = d1mX0 .

0

2° A family of these objects is a morphism
I.%X— 8§
with the structure of group scheme (i.e., a "multiplication" m: X x X —> X, etc.) and

a family of Cartier divisors £ on X determined up to algebraic equivalence, and re-

placements

0

D = D+ fx(g)
for any Cartier divisors 6 on S, and inducing a polarization of each fibre f_l(s) . With
this definition, stable and semi-stable X's form open sets, but retractable X's do not.
3° The meaning of the arrows in the diagram is this: let f: X — S be a
family of semi-stable objects where S is a normal algebrarm variety. Map S to V’n*
by assigning to each s € S the point of VY;O corresponding, in the classical way, to the
abelian part of f_l(s) . (n0 = dim of this abelian part). Then this is a morphism.

This last result is proven by reducing ®o the case where S is a curve. Then
one passes to the corresponding analytic set-up, and replaces S by a disc {z l lzl< 13
where all fibres of f are diffeomorphic except for f-l(O) . Next one introduces the
invariant and vanishing cycles on the general fibre, so as to put the period matrix
_()_ ij(z) of the abelian part of f_l(z) in a normalized form. One then computes (using

very helpful tricks of Kodaira):

i
I
) s!o
QL .. - - 1 s P
ij{z) = 5o e 0 o
1
I )
A@) | B(z)



-5-

where S is integral, positive definite and symmetric, and is obtained from the
monodromy substitution for the cycle [z l = 1; where A, B, C are holomorphic in
z at z = 0; and where C(0) is the period matrix of the abelian part of f—l(O).
This implies that '()‘ij(z) — C(0) in Satake's topology, when z —> 0 .

3. Compact moduli spaces for curves

Let Mg denote the moduli scheme for curves of genus g . Let

6. M —-V
g g
be the morphism which assigns to a curve its jacobian variety with its theta-polariza-
tion. From the work of Baily, Matsusaka, and Hoyt, it is known that @ 1is an
isomorphism of M_  with a locally closed subvariety of V_ , which we also denote
M’ e
g

This breaks up into two pieces

The simplest approach to compactifying Mg' is to use its closure Mg* in V'é* .

1
M = (M*NV )-M
g (g g) g’

M" - M* - (M*A V).
g - '8 Mg™ N V)

Matsusaka and Hoyt showed that Mg‘ is exactly the set of products of lower dimensional

jacobian varieties. We have proven that Mg" = Mg*—l , So that
M* - M M'UM UM, ([J-me——ee M
g g VMg v g-1 v g-1 v UM,

(MO = V‘B is a single point).

The proof is based on two lemmas, and on the results of §2:

Iemma A: Iet C be acurve and let f:X — C be a family of curves of
arithmetic genus g [i.e. , I 1is proper and flat and its fibres f—l(P) are connected
curves of arithmetic genus g] . Let P0 € C and assume that f-l(P) is non-singular

if P4 PO. Then there exists a diagram:

X 1
f,i\ﬂ\x
Cr. b1
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where 1) C' is acurve and w7 is a finite morphism totally ramified over
-1
. M -
Py: let Pl =7 (P,
2) f' is afamily of curves over C',

3) X' - f'_l P ') is just the induced family of curves over C' - P!, i.e.
o) ¥ 0
€' - P XX = X -f"l(pov) ,

4) f'—l(PO') is reduced and has only ordinary double points.

lemma B: Let C be a curve and let
f:x —>C

be a family of curves of arithmetic genus g such that each curve f—l(P) is reduced
and has only ordinary double points. Then the set of generalized jacobian varieties of
the curves f_l(P) forms a family of polarized semi-stable group varieties over C .
These lemmas give the inclusion Mg” C Mg* directly; Lemma B and an
easy construction of some actual families give the converse Mg" ) Mg* .
Unfortunately, Mg* is not a reasonable moduli space for curves: for

example, let a point of Mg' correspond to

AX A

where A1 is an elliptic curve, and A is the jacobian of a curve C of genus g-1 .

g-1

let x€ A1 and y € C be any points. Then Alx A is the generalized jacobian

g-1
variety of the curve:

with an ordinary double point. In other wards, the jacobian is independent of which y is
chosen: i.e., Torelli's theorem is false for reducible curves. It is clearly necessary
to blow up Mg’ . This phenomenon is closely related to the fact, discovered by Bers and

Ehrenpreis that the generic point of Mg’ is not only singular on Mg* : it is not even
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""almost non-singular' ( = "Jungian'' = " V-manifold"). In fact, Lemma A suggests
Definition:
A curve C of arithmetic genus g is stable if C is reduced and
connected, has only ordinary double points, and has only a finite group

of automorphisms.

It appears that the set of all stable curvesis open and compact and is
naturally 1somorphlc to the set cf points of a compact analytlc space with almost non-
singular points: M * . Itis #ill unknown whether Mg* is a projective algebraic
variety, although it is a Q-variety. There is a proper holomorphic map

ﬁ X 5 M ¥
g g
which is an isomorphism over the open subset M . One of the remarkable features of

this case is that there are no semi-stable but not stable curves.

§ 4. Compact moduli spaces for abelian varieties: blown up

The precedmg construction suggests the possibility of blowing up V'*
so as to obtain a V‘* which corresponds to a moduh problem with a larger set of
stable objects. We would like the stable points of V'* to correspond to polarized
compactifications of commutative group schemes X . One approach is to compactify
the generalized jacobian varieties of curves C . S8ay C is irreducible and reduced:

let J be the generalized jacobian of C . Then one has an isomorphism.

points of} -~ [ invertible sheaves L on C} .
J 1 such that X (L) = X(QC)

We can prove that there is a projective scheme J* containing J as an open subset,

and on which J acts, plus a natural isomorphism

' r
points of; 2 4 invertible sheaves L on C
J such that (L) = X(gc)

N .
{ points of} = {rank 1, torsion-free sheaves '57 on C}

J* such that X@) = X©¢)
Using this, we find an interesting V'z"< , in which only one point is still mysterious: that

is the point which is the image under © of the curve of genus 2 depicted below:



SEMINAR ON IETALE COHOMOLOGY OF NUMBER FIELDS

by

Michael Artin & Jean-Louis Verdier

1.)
Notation (1.1) k = a number field.
A = integers in k
X = Spec A
UcX a nonempty Zariski-open subset.

The etale cohomology of U with values in the multiplicative group Gm can be
described by class field theory as follows:
Denote by
i: Spec k—U

the map. One has the usual exact sequence

(1.2) 0 —)(@m)U —_ 1*(Gm)k —> D —>0
where
D= @ (Z)
x closed X
in U
is the sheaf of Cartier divisors on U . Now by local class field theory,
(1.3) R, & = 0, ¢>0, e,

Hq(U,i*Gm) =~ HY%Spec k, € ) , al g

Taking into account the vanishing of certain groups, the exact cohomology sequence

of (1.2) yields the exact sequences

(1.4) — & (U) > k¥ ——>§9 (Z) —> Pic U —>0,

o—->H2(U,Gm) —> Br k —’5-—)3 (2/z) ——>H3(U,d}m)___)(_)
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where Br k = H2(Spec Kk, G ) and Q/Z = quk(x),Z). The map ¢ is

the one given by class field theory.

Corollary (1.5): ¥ k is totally imaginary then

e

A* , 4 = 05
q Pic X, q = 1,
H (X’Gm) 40 , 94 = 2,

®/Z , q = 3.

Theorem (1.6): Suppose p £ 2 orthat k is totally imaginary. Then cde = 3
andcde:ZifU,é X

2.)

In this section we denote by f: X—>8pec Z a scheme of finite type.

Because of "Artin-Schreier'" theory, one can show that for a scheme Y of characteristic P
(2.1) cde £cdge Y + 1 (p = char Y)

where cdge Y = sup[q[Hq(Y,F)-,!O for some quasi-coherent sheaf F on Y]} . Using

this and dimension theory for fields, one obtains

Theorem (2.2): cde < 2 dim X + 1 if p £ 2
The rest of this section is devoted to 2-cchomology.

Notation (2. 3): X space of closed points of X & IR with the real

f¢4) Z
topology
= X(€)/G , where X(C) is the space of points of X
with values in € , with the usual topology, and where
G = ZE/2 operates by complex conjugation.
X(IR) = reallocus of X , whichis a closed subspace of Xoo
X = the topological space whose underlying set is X u XOO

with the topology whose open sets are pairs (X . U)
where X' is a Zariski open setin X, and U is an

7
open subset of X .
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Actually, we will work with the following étale topology on X: The category of open
sets are pairs (f:X'—>X , U} consisting of a morphism of schemes f and an

open subset U of X'00 having the following properties:

(a) f is étale.
(b) In the map g: U‘%X(OO induced by f
g(uy € X(Ry=>u ¢ X'(R)

A map (_fl . Ul) —-—)(f2 ) UZ)

and such that under the induced map ;X"l 00_—) X”2 o U1 is carried into U2
A family of maps with range (f,U} is a covering iff (X', U) is the um"on of the images.
For this topology. there are morphisms X, __J_) ¢ and

X ————} X where X00 is taken with the topology of local isomorphisms. The

is a map XH-%X'Z commuting with the structure maps

map j is formally an open immersion and i is its closed complement. The derived
functors qu*F for asheaf F on X are 2-torsion sheaves concentrated on the

et
real locus X(R) , g0

Theorem (2.4): Let X = Spec A be the ring of integers in a number field, and set
(Gm)i = j*(Gm)X . Then

[(Ax s d4 = 0,

Hq()'(o)} . PicX, q = 1,
“m 0 s 9 = 2,
QR/ZE N q = 3,

0 s g > 3

(Slight variations in dimensions 0,1 could be obtained by insisting that a unit of G be

positive at a real prime.) The above is an easy consequence of the followmg theorem

Theorem (Tate): Let k be a number field and F a sheaf on Spec k . Then

HYSpec k, F)-—-')Hq(Spec(kEz R), F p)

is surjective, =2, and bijective, gq>2 . Here F R denotes the induced sheaf.
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Theorem (2.5): Iet F be a sheafon X whose restriction to X is a noetherian
torsion sheaf. Then Hq(f-CBF) = 0 for g>»2dim X + 1 .

Corollary (2.6): (a) HYX,F) ——>p9x ® R, Fp) for q>2dim X+ 1,

(b) cd,X< &P cd,X £ 2dimX+1<> X(R) - 4.

(c) for afield K of finite type, cde = o iff K is a real
field .

(Part (c) is also an easy consequence of a a general result of Serre. )

3)

We use the notations of section 1. Let F° be a complex of sheaves
over X whose cohomology is bounded (i.e., Hq(F°) = 0 for q sufficiently
large) and such that Hq(F") is a noetherian torsion sheaf for all ¢

We denote by Hq(X,F’) the hypercohomelogy of X into F° and by
}_-.f.x=tq(X;F° , Gm) the global h;per-Ext on X . Forany q those groups are finite
commutative groups and for q sufficiently large they are equal to zero.

For any prime integer p and for any finite commutative group M we

denote by Mp the p-primary component of M .

Theorem (3.1): The Yoneda product

’ . 3-q o ... , 3v ~ -
)y HIXF) xExt” 4 (GF CGinlp——> B X.Cppy 2250 /2

p
is a perfect duality for p,{z . M k is atotally imaginary field, the pairing (*)2 is
also a perfect duality.

Let now U be an open subscheme of X and F' a complex of sheaves
on U satisfying the same conditions as in the beginning of the section. The complex
F"U will be the complex of sheaves on X obtained by extending the complex F° by
zero. We define H (U F°) (hypercohomology with compact support on U ) by the
equality:

q . q .
2(3 ((UsF ) = g (XsF U)n

Similarly, given any complex G° of sheaves on U (whose cohomology is
bounded), we define the groups Eﬁ% (U;F* , G*) (Hyper-Ext with compact support)
in the following way: First we take an injective resolution I{G') of G° (i.e., a
morphism of complexes P G'~—>I(G") into a complex whose objects are injective



-5-

sheaves which induces an isomorphism on the sheaves of cohomology j. Then we define
the complex of sheaves on U : Rhom (F',I(G')) to be the single complex of sheaves
on U of sheaf homomorphism of F° into I{G’). Then we define QS__@E(U;F“ .G’} by
the equality:

Extd (U;F',G) = HIX, Rhom(F" X(G"))y).
When the complex. G° is the single sheaf Gm . the complex Rhom
(F’ SI(Gm)) will be denoted by D(F’).

As an immediate corollary of the theorem 3.1 , we obtain:

Corollary 3.2: The Yoneda product

q . B=Q iy e
HE (U F) X Ext™ U L6 ),

3 ~
—> H(U,G_) "5 Q /Z
=c m’p p’p

is a perfect duality for any prime p different from 2 . If k is totally iinaginaryg it
is also a perfect duality for p = 2 .
Let us denote by AA. the canonical morphism of complexes

/\: F'— DDEF)) .

Theorem 3.3: When the torsion of the cohomology sheaves of F° is prime to the

residual characteristics of U , the morphism A\ induces an isomorphism on the
sheaves of cohomology.

As an immediate corollary of the theorem 3.3, we obtain:

Corollary 3.4: The Yoneda product

. ‘13- . 3
1Y w,F Ext” % (U,F: ~
1 ( p X Bxt” 7 ( ,,.Gm)p — H (U.G ) = Q,/ L.,

is a perfect duality for any complex F° whose torsion of cohomology sheaves is
prime to the residual characteristics of U and for any prime p different from

2 . Asusual, when k is a totally imaginary field, the restriction p /\[ 2 can be
omitted. .



ELLIPTIC CURVES AND FORMAL GROUPS

Lubin, Serre, Tate

1. Serre discussed his results on the action of Galois groups on the
points of finite order on elliptic curves over number fields and local fields [4] . The
local results in case of non-degenerate reduction can be obtained by methods to be
discussed in this seminar.

2. Lubin discussed results from [ 2] on the endomorphism rings of for-
mal Lie groups on one parameter over ;—adic integer rings. If A is a commutative
ring with identity, a one-parameter formal Lie group over A is a power series
F(x,y) € A[[x,y]] such that

1. F({x,y) =x+y mod deg 2
2. F(Fix.y), z}=¥8{x, F(y, z))
3. F(x,y)=F(y, x)

If F and G are two such formal groups an A-homomorphism of F
into G is a power series f(x) € A[[x]] such that f has no constant term and
f(F(x,y)) = G(fx, fy) .

The set of all such homomorphisms is called HomA (F, G) and is an
abelian group under the addition (f +g) (x) = G(fx, gx) ; the group EndA (F) = HomA
(F,F)isaring. If f€ EndA(F) , we denote by c¢ (f)its first-degree coefficient.

Proposition. If A is an integral domain of characteristic zero, and F
a formal group over A, the map ‘
c: End A (F) » A
is an injective ring-homomorphism..

In the case we are interested in, where A is a #-adic integer ring,

i.e., a complete rank-one valuation ring of characteristic zero, with residue class
field of characteristic p> 0, ¢ (EndA (F)) is closed in A so that the endomor-
phism ring always contains %p , the p-adic integers.

______Propositiolp. I F is a formal Lie group defined over the gi‘&? inte-
ger ring 4, and F*, th_e formal group defined over k =//§g by reducing all the
coefficients of F Ig)_d_u_l_c_)f, is such that F* is not k-isomorphic to the additive
formal group x +y, then Ean(F) is i}njected into Endk( F*) by the reduction

map f~ f*.

We know that over the algebraic closure K of k, Endk(F*) is isomor-
phic to the unique maximal order in the central division algebra Dh of rank h2 and
invariant 1/h over Qp. Here h is the height of F* as defined by Lazard [ 1] .
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Thus since End‘g (F) is a commutative subring of EndK(F*) , its fraction field must
be isomorphic to a subfield of Dh and so the degree of this field over Qp must di-
vide h.

A consequence of this is that if F is defined over &, there is a finite
extension 4 ' of & such that for any larger 4 ", End/é "(F) =End 4 '(F). We call
this En% i ( F'). the absolute endomorphism ring of F, and denote it End(F).

If F is defined over a #-adic integer ring & , the height of F is de-
fined to be the height of F*, the formal group defined over k =/4 /éf'

If F is of height h «cc ~verd , F is full if

1. End(F) is integrally closed in its fraction field K.
2. [K: mp] =h.

It turns out that for every local field K there is a full formal group
whose endomorphism ring is the ring of integers K.

3. Lubin discussed results from [3], and some other conjectures
about points of finite order on forral groups.

If F is a formal group of height h <o defined over 4, and Cis the
ring of integers in any complete extension £ of L = the fraction field of & , and if ,ZO
is the maximal ideal of 6 , then,z) can be made into a group by means of

:q+fB=F(a,L). Clearly the only elements of this group of finite order are of
order pn for some n: if we call [,\]F the endomorphism of F corresponding to
the p-adic integer A, then assuming that we have « G;p such that [ m] F @) =0
for p 4 m; since [-111—1]F € Endf‘;{F), f(i.%;l.}Foﬁ%mji,F)(ay =0 andso & =0.

Now since F is of height h, the endomorphism [p] F is a power series
whose first unit coefficient is in degree ph. Thus the first unit coefficient of [p"] F(x)
is in degree prh. And a Weierstrass preparation type argument shows that [pr] F(X) =
P(x)e U(x) where P(x) is a monic polynomial of degree prh such that all coeffi-
cients of degree less than prh are ing, and where U(x) is a power series with unit
constant term. Thus in a sufficiently large G , there are exactly prh elements 4 € ,P
such that [ pr]F(d) =0.

We can form the ""Tate group' of F:

T (F) =11.111 Tpn( F) where T n( F) is the group of all & in the algebraic
T p
closure of 1. such that [pn]I F () = 0 ; the projective limit is taken with respect to the
m—n] - T
F m . {m>n).
p p

Then T(F) is a free Zp -module of rank h. It is also an En% (F) -module.
Let us assume that ¢ (End(F))C # so that K, the fraction-field of ¢ (End(F)), isa

maps [p
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subfield of L. Call K the field gotten by adjoining to L all roots of | pn ] F (all n) .
Then G = 7 (,C/L) has a faithful representation G e End% (T(F)) = GL(h, Zp)
D (

C GL (h, Qp) but also the action of G on T (F) commutes with End(F) so

. ~ _h . _

T(F)QSZ Qp is an End (F) @Z Q,p = K-module of rank s =7 where r is the Zp rank
p p

of End (F). One may ask whether G is open in GL(s, K), or, at any rate, whether

the commuting algebra of G in End(T(F)) & Glp is reduced to K. We have no indi-
cation of the truth or falsity of this, except in the case s =1, where it is true, and
can be used to give an explicit reciprocity law in local class field theory in the follow-
ing way:

As mentioned before. for each finite extension K of Qp, with ring of
integers &, there is a full formal group F defined over 4 whose absolute endomor-
phism ring is isomorphic to 4. Then T (F) is a free 4 -module of rank 1 and so
G = g’ (,C/K) ¢ GL(1, &) =4 *. A simple counting argument shows that in fact
this map is onto. The field £ is a totally ramified abelian extension of K and in fact
a maximal such, and the action of £ * on L given by the above isomorphism turns
out to be the inverse of that furnished by the reciprocity law of local class-field theory:
specifically, if [p"] («) =0 for some n, and u € 8%,

(u, £/K) () = [0 T, (@) .

By patching this together with the Frobenius mapping on the maximal unramified exten-
sion of K, we get an explicit reciprocity formula for the maximal abelian extension of
K. '

4. Lubin discussed unpublished results of Lubin-Tate on moduli of formal
groups. Let {) be a formal group of height h «® defined over the residue class field
k ://ﬁ( . Sucha § is k-isomorphic to one satisfying i)(.xg y) =x +y (mod deg ph) .
and we will assume this condition satisfied for the sake of convenience. Let t =
(tlg cos s th—l) be a family of h~1 independent transcendentals. By methods of
Lazard [ 1] it is easy to construct a formal group I (tl s e s th—l) (X, y) with coeffi-
cients in the polynomial ring A’[tl, cer sty g 1 such that

(i) T*(0, ... ,0)(x,y) =§(x,y) _
(@) T, ....0, t, ..oty )(x,y) =x+y +t.C . (x,y) (moddegp +1).
p
Choose sucha I. Let A be a local & -algebra with maximal ideal M. If we specialize
the ti to elements di € M, we obtain a group law T(a) (x, y) defined over A which

reduces mod Mto §, i.e. suchthat § = (I'(€))*. (Here we are identifying k = //ae:g



with its canonical image in A/M) .

Theorem: Suppose A is separated and complete for the M-adic topo-

logy. Let F be a formal group over A suchthat § = F*. Then there exist
di €M, 1<i<h-1, and an A-isomorphism (f): F =2 T'(a) such that ¢* = iden-

tity. Moreover, the point & = (4’1, coendy 1) and ¢ are unigue.
In other words, the functor which associates with each complete local

A -algebra A the set of isomorphism classes of formal groups F over A reduc-
ing to <} mod M (allowable isomorphisms being those A-isomorphisms reducing to
identity mod M) is representable by the "universal" group law I'(t) over the alge-
bra £ | [tl, . ,th_ll J . As usual, there results an operation of Aut (} on

< [ [t]], whose study should be interesting. In case h =2 we have used it to con-
struct an elliptic curve E over <~ whose formal group has complex multiplication.
although E does not.

5. Tate discussed a mixed group-sheaf cohomology. Let S bea
ground scheme, X a group scherae over S, and B a commutative group scheme
over S. Suppose X operates on B in an evident sense. Let % be an open cover-
ing of X. With the aid of the group law X x X —s X, one can associate with & a
certain open cover (p) of XP =X % Xx... =X (p times), for each p. One
can then define a double complex C°*(%¢, X, B) in which an element of cP %iga
family of morphisms from the intersections of (g+l) open sets in the covering
% (p) into B. The differentiation CP’ a9 cP- q+l is as in the éech sheaf coho-
inologyg while the differentiation cP* % - ¢ ptl. q is defined by formulas as in
standard inhomogeneous complex in the ordinary cohomology of groups. Passing to
the associated single complex and cohomology we get groups H" (. X, B). For
example, H2(2(, X, B) describes the group-scheme extensions of X by B which,
as fiber spaces, are trivial on the covering %¢. Passing to the limit over % , we
get groups Hn(X, B). ,

6. Tate discussed results of Serre-Tate on the raising of abelian varie-
ties from characteristic p, the main idea being t}ﬁat to raise A is equivalent to rais-
ing consistently the finite subschemes Ker( A B A) for all n. Let R be an Arti-
nian local ring with residue field k = R/e«. Let I be an ideal in.4« such that
<« 1=0. Put R'=R/I. We wish to "raise! things from R' to R.

(i) Raising homomorphisms of groups. Let B be a group scheme

smooth over R, and let X be a group scheme flat over R. Assume X and B are

commutative for simplicity. Let

B'=BRR', X'-X @R §=B§ k, etc.
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Let t (%/) be the tangent space to the origin on B. The tensor _product t (’ﬁ) ®1 is
a finite dimensional vector space over k. Let W (t (Aﬁ) ® 1) denote the correspond-
ing group scheme over k, isomorphic to the direct product of (dim ’ﬁ)(dimkl)
copies of the additive group (an
Theorem. There is an exact sequence
0 — Hom (X, W(t(B) 1)) — Hom,(X, B} — Hom (x",B") L EwuB er).

Here the Homs are group homomorphisms. The H2 is that defined in the preceding

section, and the image of 6 is contained in the symmetric part of H2, and hence can
be viewed as in Extl(i, W) . The theorem is proved by means of an exact sequence
of complexes as in §5

0>C™(%, X, W) »C°°(%, X.B) » C"(%, X', B') » 0,
where 2% is an affine open covering of X. The exactness follows from the fact that
on an affine set, a morphism X' -» B' can be raisedto X - B.

Of course the interesting point is the § : the obstruction to raising a
homomorphism of commutative groups lies in Ext (?59 W). A geometric descrip-
tion of that extension could certainly be given (and might enable one to avoid the mixed
group-sheaf cohomology of §5). It would also be interesting to examine the relations
between this and the group extensions given by Greenberg's functor (assuming k per-
fect); if 1=m, it seems that Greenberg's extension is obtained from the other by a
suitable power of Frobenius.

(ii) Lifting abelian varieties. Suppose now that k is of characteristic

p # 0. The main theorem can be formulated by saying that there is an equivalence of
categories C1 - 02 , Where:

(Cl} is the category of abelian schemes over R.

(Cz) is the category of pairs (@ , X}, where § is an abelian scheme

over Kk, and where X is a raisingto R of @* . For this to make sense, we must

say what A* is if A is an abelisn scheme over R (or k):
* = 1 = n,
A nlgnoo A n° where Apn Ker (p7: A — A).

Of course the kernel A n is taken as a group scheme (finite and flat over R (or k)).

p
Concerning A* one considers it as an ind-object; the notion of a raising to R of i)*

is therefore equivalent to that of a sequence of raisings of the q; n to group schemes

Xn flat over R, together with injactions Xn — Xn+ raising the canonical inclusions

1
i) n C@ nsl In what follows we shall pretend that A* (or c}*) is a true group scheme -
p p

it is clear that that will not lead to serious worries.



-6-

The functor C1 —» 02 is clear; it associates with each abelian scheme
A over R the pair (A, A*) where A is the reduction of A(mod m), which is
an abelian variety over k. Clearly, A* is a raising of (X) * ., The marvellous
thing is that it is an equivalence of categories! In other words, if one knows the re-
duction A of an abelian scheme A, all that is lacking to determire A is a raising
of the ind~group scheme A , which is quite aun innocent thing (see below) .

The proof of the theorem which was sketched in the seminar used the
exact sequence of (i) above togerher with known facts about the existence of rais-
ings of abelian schemes. However, with better foundations, the theorem should re-
sult formally from:

Lemma. Qpe has Extj'@y ) Ext' (§*, G, ) forall i.

(In fact, these groups are zero for i #1, and for i =1, they are
k-vector spaces of dimension dim A, ) The lemma would result from the fact that
$ / §* is uniquely divisible by p. hence all its Exts with G, are zero,

7. Serre discussed applications of the preceding.

(iii) The case where ¢ has no point of order p. In this case one-ean identify $*

with the formal group attached to q> . Thus, to raise @ is the same as to raise its
formal group. In case dim <} =1 ({x an elliptic curve with Hasse inv. =0) the

raising of the formal group has been discussed by Lubin in section 4 above.

(iv) The case where «I) has the maximum number of points of order p. [ This is
the case which Serre has treated previously (unpublished) by the method of Green-
berg. The present theory gives new proofs, more satisfying in certain respects. ]
We suppose k perfect (this seems essential, and not only due to our natural taste
for Galois theory). Let n =dim §. The hypothesis made on ¢ amounts to saying
that (}p is the direct sum of an étale k-group of order p" and an infinitesimal
k-group of "order" pno The first isa (Z/p Z))n twisted by Galois, and the second
a ( w-p)ntwisted analogously. More generally one has a canonical decomposition:
b =93, +1y
Now it is clear that i’gt has a unique lifting to R (Hensel). It is the same (for
example by Cartier duality or by the results of Dieudonné) for i)?n . One sees there-

fore immediately that there is a canonical way to raise ﬁ)* , namely the direct sum of

the raisings of é’lkn and izt , and there results, by the general theory a canonical

raising of the abelian variety ‘ﬂ» It is easy to see that one even obtains in this way a

functor from the category of the ¢ to the category Cl , a functor which is inverse to
the reduction functor (N.B. this iaverse is defined only on the 1) having the maximum
number of points of order p.). If one passes to the limit over R, one finds a priori

a formal abelian scheme raising Q canonically, but Mumford explained to us how,
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using the canonicalness, one can prove that it is in reality an abelian scheme.
Before discussing the canonical raisings in more detail, let us say a word
about the other raisings. We suppose for simplicity that k is algebraically closed.

It is almost evident that each lifting of Q* , call it A*, is an extension.

0 - A*¥ 9 A¥ A% - 0
m et

where A*In and Agt are the canonical raisings of @"I‘n and ta . To suppose k
algebraically closed allows us to identify these latter groups with the groups
(Gm-formal)n, and (Qp/ Zp)n , these groups being taken over R in the obvious
sense. It is then an exercise to show that an R-extension of ﬂlp/Zp by (Bm-formal
is characterized by an element of the group R’i = 1+mi, the multiplicative group of
elements of R congruent to 1 modulo the maximal ideal n1.

Passing to the limit over R, one sees that this result continues to hold
if one is over a complete noetherian local ring R with residue field k. Of course
one is no longer sure that one has true abelian schemes, but in any case, one has for-
mal schemes. Therefore one can say that the formal variety of moduli has as its
points the systems of n2 Einseinheiten; it has moreover a canonical group structure.

The abelian schemes, or formal schemes, whose moduli (in the preced-

ing sense) are of finite order deserve the name quasi-canonical. In case R is a

discrete valuation ring, such a scheme is isogenous to a canonical scheme; the sit-
uation is not clear in the general case.

Continuing to assume R a discrete valuation ring of characteristic zero,
there is a simple characterization of the quasi-canonical schemes: there are those for
which the module Vp = Tp a (Dp splits as a module over the p-adic Lie algebra of the
Galois group. In this way one arrives at a justification of theorem 1, page 9, of [41].

8. Serre discussed the canonical raising of elliptic curves. The problem
considered is the following. Let k be perfect, and let E be an elliptic curve with in-
variant j € k and with Hasse invariant # 0 (i.e., having the maximum number of
points of order p); by the preceding discussion, there is a canonical lifting of E to

the ring W (k) of Witt vectors. The j of that lifting is therefore a function
8 : k - Ker(Hasse) — W (k)

How does one calculate 8 ?

Let s be the Frobenius automorphism of W(k), given by (xo 2 Xpo e )
— (xg, xrl), ...). Let Tp (j» ") be the classical equation relating the modular invar-
iants of two elliptic curves having an isogeny of degree between themselves, an equation

with coefficients in Z, symmetric in j, j"'.
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Theorem (i) Let-A € k - Ker (Hasse), and let x =6 (A) € W (k). Qne

(*). Tp(x, s(x)) =0, and x = A (mod p)

(iil) If A€ k-TF 9 the system (*) has a unique solution.
p
(Combining (i) and (ii) one sees therefore that (*) characterizes x =9 ),

provided that A 7 IF ,).
P

To prove (i) one aprplies the functor 'canonical raising’ to the Frobenius
isogeny: E - E (p). The canonical raising of E (p) is obtained from that of E by
applying the automorphism s. Its modular invariant s(x) is therefore related to the
invariant x of the raising of E by the equation Tp (x,s8(x)) =0, hence (i). The
assertion (ii) is proved in a standard way by successive approximations. The hypo-

thesis A ¢ IF 9 intervenes in order to be sure that a certain partial derivative of Tp

p
does ‘not vanish.

Just:for fun, here is a numerical example: for p=2, A=1, the canoni-

cal raising 6 (A) is equal to —3353.
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FAMILY OF ABE LIAN VARIETIES AND NUMBER THEORY

PART 1

by
Michio Kuga

fl. Let G be a connected real semi-simple Lie group, . and K be a
maximal compact subgroup of G ; sothat X = G/K is a symmetric space. Further-
more, we assume -that X has a G- invariant complex structure. Denote by 1/: G—X
the naturai mapping. Let F be a &iscrete subgroup of G containing no finite subgroup
except (1} , and such that r\ G is compact. Then U =7\ X = [\G/K isa
projective non-singular algebraic variety. Let P : G—>GL(N,R) be a representation
of G, such that P () € SLN,Z) for all b’er . Then for every rer , the
matrix rf (Y ) induces an automorphism IS (y) of the torus F = Rn/Zn, Let us

operate on the product space X> F by the rule: XX F D (X, upm____
Y xw = (yY®), ﬁ(}ﬁl u) & XXF (for y” &[). This operation is properly
discontinuous, with no fixed point for 4 1,and V = F\(XX F} is a compact manifold.

make

It is easy to find the projection map 7 of V onto U which makes the following diagram

commutative: ' the natural map = p
V< XxF 3 (x,u)
the natural map = p
U< X 5 4

_This construction shows that V lz} U is a fibre bundle over U such that: (1) the typical
fibre is the torus, F; (2) the structure group is P; (3) the action off-v on F is P;
(4) it is associated with the universal covering X By U,

Let us assume furthermore, that there exists a non-singular integral
alternating NX N matrix B such that tp(g) B p@® = B forall g& G. This means
that P is ahpmomorphism of G into the symplectic group Sp(B) = {m € GL(N,R);
tm Bm=B } (~ Sp(N/2,R) ) of B. For such a matrix B we can find a positive
definite real symmetric matrix S suchthat: (5} B § 'B = -s, (6) 'd P (T) 8+58 dP(T) =
0 forall TEF, (1) dp(z) 8 - Sdpiz) - 0 forall 2 € {e;wheref’} = the Lie
algebra of G, ; = the Lie algebra of K, ”} = X + ﬁ is the Cartan decomposition. The

condition (6) implies that P sends K into the maximal compact subgroup Sp(B) A O(S)
— { m & Sp(B) ; tm Sm = S} of Sp(B). So the 1["ep:r"esentat:ionL.S'O induces a mapping
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T of X = G/K into Sp(B) / Sp(B) ™ O(S) ; the latter is a2 symmetric domain
holomorphically isomorphic to the Siegel upper half space H(N/ 2), This mapping T
is called an Eichler mapping. Satake determined all the representations which induce
holomorphic Eichler mappings.

Let us fix such B and 8. For apoint x of X, put J(x) = =7«:‘>(g)S_1
B p © L, where x = V(g), g & G. We see easily that: (8) J(x) is a well-defined
matrix valued function on X; (9) J(Jx) = P (J/j J(x) F ()/)“1 for )/é [ (10)
J(x)2 = -1. Hence, for a fixed x, J(x) defines a complex structure on R /Z =
F. Moreover this complex torus (F, J(x} ) is an abelian variety. By assigning the
complex structure J(x) to every fibre xxF of the product XX F, we get a family
of abelian varieties (F, J(x) )} x € X {. The natural mapping p: XX F —3 V
transfers the complex structure J(x) of x x F to a complex structure JQ of a fibre
FQ = U -1 Q) of V, where p(x) = Q. The equation (9) shows that this induced
complex structure of FQ is independent of the choice d the point x such that p(x) =
Q. Therefore each fibre FQ of V has a structure of abelian variety. Furthermore
if the Eichler mapping ? is holomorphic, then we can show that the total space V has a
good complex structure J compatible with every JQ and with the complex structure of
U, andthat V is a projective algebraic variety.

This result combined with Satake's list of holomorphic Eichler mappings
gives us a rough classification of family of abelian varieties of our type. One important
consequence is the existence of suich a family over a symmetric domain attached to an
orthogonal group.

5 2. The fibre variety WN(h) defined in 9/9 of Shimura‘’s talk "The zeta-
function of an algebraic variety..." (quoted hereafter as [ZF]) is an example of our V.
In this case G = SL,(R), X = the upper half plane, [~ ;gf‘ N(O) (et [ZFUJG] ).
Here I'd like to discuss some corollaries of the formula given in the last page of [ ZF} .

Let 5{ be a field of algebraic functions of one variable, over a finite
field Y( , and let){ ' be an unramified Galois extension of A . Denote by l}/’ the Galois
group. lLet R be a representation ofdz by N x N matrices with entries in a field
P. For a prime divisor ; of i’/ N, let f; denote the degree of § over Y . Take
an extension d@of F to E Deno1e by 6/ 50 the Frobenius automorphism of g_; . Then the
polynomial det(l - R(@'go) u f ) is independent of the extension (ﬁ ; it depends only on

5’/ . Now put
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W g g, R ow =] detd =R<.,63;)ufr>>“1.

This is a formal power series in the variable u with coefficients in P

The fibre variety W (1) =—74;-> VN has a model which is defined
over Q ; and for almost all p the reduction, W)a( 1 of W (1) modulo
# has also a structure of fibre variety over VN , whose fibres are abelian varieties
—~ —~

AX of dimension 2. Take a generlc point x of VN over the prime field )¢ , and
consider the fibre 'AX of Wf( ) ..at x . For a prime number ,/ %'7’ the
coordinates of /( ~th division pomts of A generate a Galois extension f (A /F )
over‘%‘ M (x) . The Galois group% off ' U£( /Q'ﬁ overf has an/(’ adic
representation M p* of size 4. Moreover in th1s case, M{* is equivalent to a
direct sum (1% 921;) where ,é( is a representation of % by 2x 2 / adic
matrices. Take a symmetric tensor representation EE——-?:E of degree n of

GL¢, de)° Then, we have, n .

N

L, @ (n>0),

(1) L(Ag'/)gs DIEG,O/;‘% ;U)o
& N
Hy (ow / (1-u) (1-pu) (n=0),
where HmN P, u) = det( 1-T (P)u +p T (pp)u ) (cf. {ZF] ).
From this equality (1 } we can deduce the following results. The normal
subgroup [— ,( of I—N(O) defines a covering Riemann surfaee (0‘)\ X of
FN(G)\X . This algebraic curve r_ N () . X has also a model defmed over Q
Consider the Jacobian variety J (O", N¢) of it, defined over Q, and consider the
algebraic number field Q( J (¢, Nf) , /ﬂ ) generated over Q by all the coordinates
of all the ,(—th division points of J (O, N} ) . This is a Galois extension over Q
For a rational prime p, denote by f the degree of a prime divisor g) of p in
Q(J (O, Nf) ,ZQ) . Then, for almost a]l primes p suchthat pz 1 mod /

(2) fp = Some power of/[( = 1 orf, or /(2 oes)
N 2d;,4
(/ - H. o (@, u) s (1-u) 2 n+2 mod/(g
~ 7 for n = 0, 2, 4, ..... / -1, where
d_ = the dimension of the space of holomorphic l— (©, N) - automorphic forms of

m -



weight m

Our method canrot be applied for r‘g SL(2, Z), because we assumed
that r’ \'X is compact. But we may conjecture that the same result (2) holds also

for SL(2, Z). I we assume this, we can deduce the following relations for the
(03]
Ramanujan's function 7" (p), where xT7 | L (1-x n ) 24 :i -z (n) <"
n =
. n=1

p=1 (3 implies TP = 2 (3),
() p =1 (5)  implies 7= = 2 (5),
) p =1 (7) implies 7 ® = 2 ),
(?) p =

1 (23) , and p is a product of two principal ideals in Q( |~=23 )s
then T(p) = 2 (23).

(??) The set {p rational prime number I ps 1 (j) , (D)= a (/)f
has a definite Ts¢hebotarev's density.

The first 3 of these relations are classical. The classical congruence relation
1- T(p) + p11 Z 0 (691) cannot be obtained in this way.
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PART 1I

by

Goro Shimura

{‘ 1. Field of moduli of a polarized abelian variety.
A

We always take C as the universal domain. Iet S be an algebra
over Q with identity element. We consider a structu,ref = (A, C , ©) formed
by an abelian variety A, apo].arizationca of A, and an isomorphism l9 of §
into EndQ(A)., For a finite set {tl’ cees tr } of points on A, we consider a
structure £ = (e t) =G0t t). et s @, o
t,'s...,t.") be another structure with the same S. We say thaty and Q * are
isomorphic if there exists an isomorphism ) of A to A' which sends C to Ct
and such that X &a) = ©a) A (a€S). At = t' (i=1,...,1). o is said to be
defined over a field k if A is defined over k as abelian variety, C contains a
divisor rational over k, the elements of ©(S)/)End(A) are defined over k, and
the t, are rational over k. If k is such afield and O is an isomorphism of
k to another field k*, then we get naturally a structure QO_: (AO: Co-g eo? tl_o:

. stro—)., One can prove that there exists a subfield kO of C with the following

p r6pe rty:

(1.1) Let O be an automorphism of C. Thenf and 37 are
isomorphic if and only if - O~ is the identity mapping on ko'

Such a k, 1is uniquely determired by, ,,Q and is called the field of moduli of 9.

g 2. Analytic families of polarized abelian varieties.
/ ,
According to Albert, all the division algebras over Q with positive

involutions are classified into the following four types:
(Type 1) a totally real algebraic number field F
(Type 1I) a totally indefinite quaternion algebra over F
(Type III) a totally definite quaternion algebra over F

(Type 1IV) a division algebra with an involution of the 2nd kind
over F, whose center is a totally imaginary
quadratic extension of F

Let S be an algebra.belonging to these types and let p be a positive

involution of 8§ .. Let jﬁ_ be a representation of S8 by complex matrices of size n.
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Thend = (A, C , ) is said to be of type (S, § W if: (i) dim(A) = n; (ii)
the representatlon of @) (a €S) by a complex coordinate system of A is equivalent
to @ ; (iii) the involution of En Q(A) determined by Ccommdes with 6 (@) — O(a )
on O() . Sucha y does not exist unless the following condition is satisfied:
(2.1) The direct sum of § and its complex conjugate § is

equivalent to a rational representation of S .

Let f: A, C , 9) be of type (S, §S ny. and let Cn/D be a complex torus isomorphic

to A . We see that Q-D has naturally a structure of a left S-module of rank m where

m = 2n/ [S : Q]. Put W = S™ and take an S-isomorphism f of W to QD . Put

L = f—l(D) . Let Y be the basic polar divisor in C’s and let E(x, y) be the Riemann

form determined by Y . Then there exists an anti-hermitian form T(x, y) on W such

that E(f(x), f(y)) = tr /Q(T(x v)) . The structure (W, T, L} is uniquely determined

byfup to isomorphisms. We say that fls of type (S, $ pm, T, L) . If S isof

(Type I, II, ) , T can be arbitrary. Suppose that S belongs to (Type IV) . Put
[F Ql Let 7' . e ,’(‘g/ be inequivalent absolutely irreducible representations of

S whose restmctlons to F are distinct. Let 1, be the multiplicity of in § .

Then T must satisfy:

(2.2) For each v/ , the complex hermitian matrix \l -1  (T) has

exactly ry) negative characteristic roots.

Let uy,...,u € W. We say that Q = (f(tlga”ﬁt ) isoftype (S, ¢, p; T, L;{ui)g)
if t f(u) mod D for the above 1 .
Put M = L+E _IZu1 and
G(T) = {B ¢ End(W) | TxB, yB) = Tx, y)},
(T, L) {B € G(T) | LB = L}
(T ML) = {B e [ (T, L) | M1 - By L}
X = G(T)R/ (maximal compact subgroup).

Then X is a bounded symmetric domain, and F(Ta M/L) is a properly discontinuous
group operating on X .
Theorem 1. If Q satisfies (2.1) and T satisfies (2.2), then fora

given (S, é, u; T, L; {1 ) , there exists an analytic famllyz {Q zZ € X}
with the following properties:

(1) Every member ‘Qz is of type (S, ﬁ, n, T, L; {u& ) .
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(2) Every .. of type (S, @_, u; T, L; U, ) is isomorphic to a
member QZ.

3) o?z and @  are isomorphic if and only if there exists an

element B of (T, M/L) suchthat B(z) = w.
Theorem 2, There exist meromorphic functions fl’ oo ,f/z » Bpseees 8y

on X with the following properties:
(1) C(fl, “e ,f/\) is the field of all automorphic functions on X with

respect to [ (T, M/L).

(2) Q(f(2),....f) (2)) is the field of moduli of §  if all the f,

zZ — 1

and gj are holomorphic at z.
(3) ¥ k isthe algebraic closure of Q in Q(fl, ...,fx), then

k(fl, ...,f4) and C are linearly disjoint over k.
3. Field of definition for X/ r and fibre varieties of Kuga’s type.
Assume that the following conditions are satisfied:

(3.1) For a generic memberog . = (Azg Cz’ Gz;,,)of Z, one has OZ(S) =
End (AZ).

(3.2) '—' (T, M/L) has no element of finite order other than the identity element.

(3.3) x/[ (T, M/L) is compact.

Let 'o be a representation of G(T::)R into GL(WR)., Then all the
assumptions in f 1 of Part I are satisfied by this @ ; for reader®s convenience, we give

a list of corresponding symbols:

n [

Part I. G X p R" gz B
Part II: G(T)y, X P o1 te(T) [T, M/Z)

Let U =X/ [T, M/L) andlet V be the fibre variety constructed
in Part I out of these data, of which the base is U and each fibre is.the product of h
copies of Az9 where h is a fixed positive integer. Let 7 be the natural projection
of V to U. (The above list is for the case h = 1.)

Theorem 3, ILet k beasin (3) of Th.2. Suppose that (3.1), (3.2)

and (3.3) are satisfied. Then there exist projective non-singular models for u, v,»,

which are defined over k.. .
§Z4. The field k as a class-field.
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Let k be the algebraic number field determined by (3) of Th.2.

Theorem 4. Let S be of (Type I, I.) Let 77 be a maximal order
in 8§, and 6} an integral two-sided - -ideal, Suppose that ﬁ/ LCL and M =
@L L. Let a be a positive integer such that WZ = aZ. Then k = Q(eZ'n/a).

For the algebra of (Type IIl), one may conjecture that k is a

cyclotomic field.

Theorem 5. Let & be an imaginary quadratic extension of a totally
real algebraic number field F . Put S* = Q(tr( § x))lx es). let O be the
ring of integers in S, and Dp an integral ideal in F. Suppose that OL &L, M =
% L Then, for suitabley chosen T and L, the field k can be determined as

follows:

(Case 1) If E is equivalent to __@9 then S* = Q, and k = Q(e
where a is the positive integer such that 0Lz = az,

(Case 2) I § is not equivalent to @ , then S* is a totally
imaginary quadratic extension of a totally real algebraic number field F*¥, and k

27ri/a) ,

is the class-field over S* corresponding to the following ideal group H in 8*:

”i _
{;6 l Az1 'E = V), V¥ = 1, N(’E)E y=1 mod*@[, for

H =
an elemen: y of S , if m iseven;
2\% ), 7 @
H = = . = N y = 1 mod* for
{’tl-r—,-’r: (%) v, ¥ = N(®),
an element y of S } . i m is odd.
Here O“l, <. 07 are isomorphisms of S* into C whose restrictions to F* are

distinct; the v ) are certain integers determined by § and @ mod* means the

multiplicative congruence.

We can actually determine k for any T and L; however, the expression for
corresponding H is rather complicated in the general case.
Sﬂ 5. Bottom fields.
Let U be a projective variety. Suppose that there exists a subfield B

of C with the following property:

(6.1) Let O be an automorphism of C. Then U is birationally equivalent

to U? if and only if O is the identity mapping on B.
o I and only i 1S the on
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Such a field B is uniquely determined by U , if it exists. We call B the bottom
field for U . If U is defined over an algebraic number field, then the bottom field
for U exists. If U is a curve, the bottom field for U exists and coincides with
the field of moduli of the canonicslly polarized jacobian variety of U .

Let F be a totally real algebraic number field of degree g , and D
a quaternion algebra over F . Then we may identify D @QR with MZ(R)X 0o K
MZ(R) X} KX ...XK, where K is the division ring of real quaternions. Iet t
be the number of copies of Mz(R) . We assume that 0 € t < g . Let T be a maximal
order in D and (J, an integral ideal in F . Put

,_(O';(%) ={xeCi|xx7/«=19x'—:—l mod@b@},

where 2 is the canonical involution of D . Projecting ,_ (0;01) to the partial -

product MZ(R)t » We may consicer it as a discontinuous group operating on Xt =

(Zl’”” Zt) €Ct I Im(zl) >0,..., Im(zt)> O}.
Let Po1’ " Pt be the infinite prime spots of F where D is
unramified, and 1etJ31 e e ’?s be the prime ideals of F where D is ramified. ILet

I(D/F) be the subgroup of the ideal-group of F , generated by the following three kinds
of ideals: (1) the principal ideals (a) such that a is totally positive; (ii) the squares
of all ideals in F ; (iii) the prime ideals 7?19 e ,I}S; . .

Let F* be the field generated over Q - by the elementszi 1 x7 for all

x¢g F, where o’is oo ,oz are the isomorphisms of F into R corresponding to

Po1° Pt

Theorem 6. Suppose that: (i) there is no automorphism of F, other

than the identity mapping, which leaves invariant Po1o oo Pt 71 sees ’}s as a

whole; (ii) for every maximal order O, the group ™ [~ (0°:@,) has no element of finite
order other then t1. Then the composite of F* and the bottom field for Xt/r (07;01)

is the class-field over F* corresponding to the ideal-group

fﬁ’W i T € 1w/pf,

where '(/1, cees Tu are certain isomorphisms of F* into R, determined by F

and 0'1,...,(;.




REPORT ON THE COMMUTATIVE ALGEBRA SEMINAR

by
Pierre Samuel

An informal Seminar on Commutative Algebra met on Tuesdays and
Thursdays at 1:30 P.M. There were talks by P. Samuel (Paris), M. Auslander
(Brandeis), S. Lichtenbaum (Harvard), H. Schlessinger (Harvard), Dock Sang Rim
(Brandeis) and N. Greenleaf (Harvard). We are going to give a summary of these talks.

§1. Flat Modules (P. Samuel)

Very recently a young French mathematician, Daniel Lazard, has proved
the following theorem:
Theorem - Let A be any ring (commutative or not) and M a flat A- module. Then
M is adirect limit of free A -modules of finite rank (with respect to a filtering ordered
set of indices).

The converse ("every direct limit of free modules is flat") is well known.

The theorem was known to H. Bass in the case of a local ring A . A Russian published
in the Doklady a proof that contained mistakes, but these mistakes can be corrected.
Lazard's proof (published in a Comptes Rendus note in June or July, 1964) is independent
and runs as follows:

Lemma - Let P be a finitely presented A -module, M aflat A -module, and u:

P-— M a homomorphism. Then there exists a free module F of finite rank and

homomorphisms P —X—> F % M suchthat u = wov .

Proof: We have an exact sequence F1 N FO J—)=-> P —» 0 with Fl’ F0 free of

finite rank; set ¢ =ueb & Hom(FO,M) = F_*@M let F1 be a free module such that

F' —> Fo* —5 F * is exact. Then F' Q;)M =-“’i>FO* ®M is exact since ‘M is flat.
Since coa =0, c istheimage by ¢ of an element d of F'®M; there exists
a free submodule F'" of finite rank of F' suchthat d € F"®M . Set F = (F')*, so
that F" = F*; then d may be viewed as an element of F*®M = Hom(F ,M), and is the
w were looking for. The transpose e of F* ——-;FO* is a homomorphism of F0 into
F such that eoa =0, thus gives v: P —»F . Q.E.D.
Remark: The lemma proves iramediately that a finitely presented flat module P is pro-
jective: take M = P, u = identity.

One then represents the given flat module M as the direct limit of a large
direct system (Pf . éﬁﬁ) of finitely presented modules: writing 0 — R —» A(M’(Z) —_—

M —> 0, the indices o are pairs (I,S) where I is a finite subset of MxZ and S a
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finitely generated submodule of AI NR, P, is AI/85 P, — M the obvious map,
and the order relation (I,S) £ (I',8*) means I€I' and SCS8'. For each q , 12<~> M
factors through a free module Ey of finite rank: 1?,(=-> Fy —>M (by the lemma).
Now, the direct system (R . ;ziog ﬂ) being large enough, there exists éi,( such that
13{ W %—-—) M is isomorphic to By —> E, —> M. In other words the free EBy's are
cofinal in the system, and M is their limit. This proves Lazard's theorem.
Many applications can be given. For example, if M is a flat module

over a commutative ring A , then the tensor algebra T(M) , the exterior algebra A\ (M)
and the symmetric algebra S(M) are flat A-modules. In particular, if A .is an integr:
domain, S(M) is torsion-free, whence is also an integral domain(setting T set of non
ZETO elements of A, 5 5 (M) =——>T A(M) is injective, and we have T~ SA(M) =

-1 A(T M) polynomlal ring over the quotient field T A of A = integral domain).

§2. Reflexive modules and factorial rings. (P. Samuel)

The proofs may be found in P. Samuel, ""Modules reflexifs et anneaux
factoriels', Bull. Soc. Math. France, 1964 (see also Seminaire Dubreil, 1963-64).

Here A denotes a local noetherian Macaulay ring. For an A-module
M, d[y_(M) (or dle(M) ) denotes the "depth' of M, i.e., the number of elements of a
maximal M-sequence . Let g be an integer » 0 . Then the following two statements
are equivalent: ,
(P ) Every A-sequence with q'4q elements is an M-sequence.
(P’q) For every p e Spec (A) , we have dpa (M) 2 inf(q, dfa, (A ) = inf(q,h(p) )

If M has finite homological dlmensmn these statements are equivalent to:

(Pa) Forevery P € Spec(A), we have hdA (M ) £ sup(0,h(p) - q)
M. Auslander noticed that (P ) 1s implied by:
(P"') There exists an exact sequence 0 —>3 M ——%«F =—-§F —_ - = Fq where the

F 's are free modules of finite rank.

Accordmg to H. Bass, the converse (P ) @(P”') istrue if A is a Gorenstein ring,
not otherwise.

If A is a domain, (P“l) means that M is torsion-free. If A is an
integrally closed domain, (PZ) means that M is reflexive (i.e., that M —p M** is
hp) = M ) I A
is regular (P (A)) means that M is free. Thus the module—propertles (P ) seem

bijective, or, equivalent by, that M is torsion—free and that M =

to correspond to ring-properties. This is corroborated by the following facts, about the

symmetric algebra S(M) :n@ 0 Sn(M) of a module M over A :
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1) S(M) is a domain iff A is a domain and each Sn(M) is torsion free over A (i.e.,

has property (Pl) ). N
2) S(M) is factorial iff A is factorial and each S (M) is reflexive over A (i.e.,

_Ila_sﬂpropertz (P2)). .
3) S(M) is regular iff A is regular and each S (M) is a projective A-module (i.e.,

has property (Pdim(A)) if A islocal) (notice that, if M is projective, each
Sn(M) is also projective).
Finally we give some examples in the case of a module M of homological

dimension one, i.e., defined by n generators X and s €n linearly independent

relations Zl aJ X.=0. Let ot be the ideal generated by the sxs minors of the matrix
(ay;)-
a) M has property (Pq) iff ot is not contained in any prime ideal of
height q of A .
b) If s =1 (only one relatmn) and if M has property (P ), then all the
symmetric powers S (M) (k 2 0) have property (P ). Thus if A is
factorial, A [Xl’ . X] / (; a.x, ) is factorial 1ff the ideal %A a,
is not contained in any prime 1deal of height 2.
¢) In general the symmetric powers of a reflexive module are not reflexive.,
Take for A a regular local ring of dimension 3. Let (a,b,c,) bea’
system of generators of its maximal ideal. Consider the linearly independen‘
vectors u = (a,b,0,¢,0), vz (0,a,b,0,c) in A5., The module M = A° /
(Au + Av) is reflexive by a ). However SZ(M) has homological dimension
2, whence is not reflexive (by (P'Ci) )

3. Power series over integrally closed domains. (P. Samuel).

It is well known and easy to prove that, if A is completely integrally closed
domain (e.g. a noetherian integrally closed domain), then A [X] and A[[X]] also are. On
the other hand, if A is an integrally closed domain, so is the polynomial ring A [X] (this is
not so easy to prove). However there exist integrally closed domains A such that the power
series ring A [[X]] is not integrally closed.

In fact take for A an integrally closed domain in which there exist a non-unit a
and a non-zero element b such that b ¢ ?o) Aa" (e.g. a valuation ring of height >2 ). One

n=1

constructs by induction on the coefficients a power series u(x) = Ugtu xt. .ty xn+ . such the

XuX) )2 + aXuX) + X = 0
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2m+1

(au0+1 =0, u(2)+au, =0, 2uu.+zau, =0, etc.) . We have a u € A. The series

0’1 2 -
Xu(X) is integral over A[[X]J belongs to its quotient field (since bXu(X) € A [[X]J
and is notin A [[X]] (since u, = -—)

A. Seidenberg po1nted out the following somewhat simpler example (in

which A is %s above, aénd is supposed to contain Q ): the series J a2+x - a\J 1 +§ =
1l x 1 X<
a (1+2a 8 ;2 16 aT ........ )

§ 4. Modules over unramified regular local rings. (M. Auslander)

Let R be an unramified (e.g. equicharacteristic) regular local ring, and
A,B two finitely generated R-modules. M. Auslander proved:
Theorem - If Tori(A,B) = 0, then Tor].(A., B) =0 forany j >1i.

One conjectures that the theorem is true for any local ring R , provided
the modules A and B have finite homological dimensions. We are going to give various
applications of this theorem. Henceforth R denotes an unramified regular local ring, and
all modules are finitely generated.

a) Suppose that A®B is 4 0 (i.e. A ¥ 0 and B # 0) andis torsion free;
then A and B are torsion-free, we have Tori(A, B) = 0 for any
i>0, and hd(A) + hd(B) < dim R . Consequently, if the n-fold tensor
product A® e ®A (n = dim R) is torsion-free, then A is free.
Also, if A* 4 0 , and if either A®A®A* or AQA*®A* is torsion free,
then A is free. Notice that A is free iff AOA* is reflexive.

b) If hdA - hdA* , if A®A* is torsion-free, and if Ap is free for every
prime ideal p # m (m: maximal ideal of R ), then A is free or has
homological dimension n -1 (if n =dimR is odd). For n odd, the
"kernel-image' in the mid%ile term of a free resolution of <A/m has the
above properties. These '""middle modules' have probably many other
properties,

c) Consider a free (or flat) complex --- —ﬁ'Xi -—>Xi+d—-% Xi+2d —_— ——,

a module C , and the "universal-coefficient~map'':

g : Hq(X) ®C — Hq(X@C)
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If Zq denotes the cokernel of Xq _>Xq+d , the cokernel of ¢ is
Torl(Zq, C) and its kernel is Torz(Zq,C) . The theorem shows that,
if ¢ is onto, then it is an isomorphism. For example, if M*®A —
Hom(M,A) is onto, then it is an isomorphism. One gets also relations
between Ext and Tor , and examples of modules M for which every
M-sequence is an R-sequence.
d) Given two R-modules A,A1 , we write [A]: [AI] (resp. [A] £ {Al})
if hdrp(Ap) = (resp. £) hdrp(Alp) for every prime ideal p of A .
One shows that Supp (Tori(A,B) ) is the set of all v € Spec(A) for
which there exists p € Spec(A), pc o such that hdRp (Ap) + hdRp (_Bp)
> ‘dim(Rp) + i. The relations between Ext and Tor quoted
in c) showthat, if A 40 and Extl"(M,A) = 0, then Ext! (M,B) = 0
for [B] £ [A] ; 1in particular Ext[L(M,R) =0, Asa consequencé,
ExtdA,A) = 0 iff hd(A){ q, and Extl(A,A) = 0 iff A is free:
(More details may be found in M. Auslander, Illinois Journal, and Proc. Int,,
Congress of Stockholm).
§ 5. Modules of differentials: (S. Lichtenbaum and M, Schlessinger)

Given two commutative rings A,B and a ring homomorphism A — B, we
denote by N B/A the B-module of A-differentials of B ; let us recall that it: is a B-module,
together with an A-dérivation d: B —7\'/213 /A which are "universal'" for the A-derivations
of B into B-modules. Its elements are sometimes called the '"K#hler differentials" of B
Modules of differentials have also been studied recently by Nakai, Suzuki, Berger, Kunz and
Jouanolou.

If A—» B —>C is adiagram in the category of rings , then we have the wej|

known exact sequence.

M COs e n —>Lo/n —gsp > O

Let M be aC-module. Then (11) - (1) ®M and (1) = Hom( (1),M) are exact sequencgs
We are going to define functors Ti(B/A, M) and Tl(B/A,M) (i =0, 1, 2) which permit to
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extend (1') and (1") to exact sequences with nine terms. If C = B/I, it is easily
seen that I/I2 may be added at the left of (1) . In Grothendieck-Dieudonné EGA IV ,
(1) is extended to a six-terms exact sequence.

a) Definition of the functors (for A —> B)

Let P be a polynomial ring over A and 1 an ideal in P such that
0 —>1 —>P —>»B —>»0 isexact. Represent I as a factor module of a free P-module
F,say 0—>U-—F €51 -—30, and define ¢ : FO,F —F by g(xey) = e(x)y -
e(y) x . Set U0 = Im(g) ; we have 1UC Uo < IFn U . The "cotangent complex!
L (B/A, P, F) is

U -
/U, —> FO, B = F/IF —->/2P/A ® B

(the last arrow is the composition F/1p — I/If fl—)/ZP /A ® B) . By the usual technique
one proves that, up to homotopies, the complex L (B/A, P, F) is independent of P and
F . We denote it by L (B/A) and define T,(B/A, M) = H,(L(B/A) ® M) and T'(B/A, M)

H (HomB(L(B/A), M) for every B—module M . Classical results show that To(B/A, M
.ﬂB/AGM and T (B/A M) = Homg (2 B/a> M) = Der, (B, M) .

b) Vanishing properues

We have ’Tl(B/A, M) = 0 for every B-module M iff B is formally
smooth over A (i.e. evéry homornorphism B —> C/J where J2 = 0 maybe lifted to
B — C) ; this implies TI(B/A M) = 0 forevery M. If A is noetherian and if B
is an A-algebra of finite type then the following properties are equivalent: a) T (B/A M)
= 0 forevery M; Tl(B/A, M) = 0 forevery M ;c) B is formally smooth over A;

d) B is smoothover A (i.e. B is flatover A and its flbers are absolutely non-
singular); e) /L B/A is projective and Tl(B/A B)y-0;f) T (B/A B/m) = 0 for every
maximal ideal m of B; g) TI(B/A B/m) = 0 for every maximal ideal m of B.

Again, if A is noetherian and if B is an A-algebra of finite type the following
are equivalent: a) TZ(B/A, M) = 0 forevery B-module M;b) T 2(B/A, M) = 0 for every
B-module M ; c¢) B is locally a complete intersection over A (i.e. if B is represented
as a quotient of a polynomial ring P over A by P J—) B —>0, then, for every p € Spec
(B), BP is a quotient of P, "1(P) by a regular sequence) :

¥ K—L is aﬁmm then T (L/K M) - 2(L/K M) = 0 for evely
L-module M; the relations T (L/K, M) =0 forall M and Tl(L/K, M) =0 forall M
are both equivalent with the separability of L over K. f A and B are domains, A ¢ B,
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if B is locally a complete intersection over A , and if the quotient field extension is

separable then:

a) T (B/A, B) = 0 iff TB/A, M) = Ext], (Ap/p: M) forevery M;
b) Tl(B/A, B) is a torsion module iff Tl(B/A, B) = ExtlB (/ZB/A’ B)

c) The nine-term exact sequence.

Iet A — B —> C be a diagram of rings. Given cotangent complexes
I(B/A, P, F) and L(C/B,Q, G) there exist a cotangent complex L(C/A,R, H) such
that

O — I(B/A, P, F) e &—> L(C/A,R, H — L(C/B,Q, G) — 0
is "almost exact''. As usual this gives an exact sequence:

Ty(B/A,M) = Ty(C/A, M) = Ty(C/BM) = T (B/A,M) —>T,(C/A,M) - —

Ty(C/B, M) = 0

where M is any C-module. Similarly for the functors Ti .

As an application, let A be a noetherian local ring, and I,J two ideals
of A suchthat IcJ;set K =9/1,B=%4/1,C =4/j = B/K . It j 1is generated by
an A-sequence and K by a B-sequence, then 1 is generated by an A-sequence. This
is proved by writing the exact sequence for Ti(*, C): herethe T O-—terms are 0,
TZ(C/B’ C) = 0 by the hypothesis on K , and the Tlnterms give:

. i .2 2 .
0 —1/i1 —i/i* —K/K® 50
by hypothesis 1/ jz and K/K2 are free C-modules of ranks dim A-dimC and dimB-dim C;

whence, by Nakayama, 1 is generated by dimA ~dimB elements, whence by an A-sequence.

: § 6. Cotangent complexes and deformations (S. Lichtenbaum and M. Schlessingey

The notations are as in § 5. The construction of cotangent complexes commutes
with localization: Hence, given a prescheme X over a prescheme S and a sheaf § of

Ok

coherent and if the usual finiteness conditions for X —s 8§ are satisfied.

-modules over X , we get sheaves TI(X/Sf,E) (i =1,2,3,); they are coherent if § is

a) Ring extensions

Let B be a (commutative) A-algebra and M an A-module; an extension of
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B by M is an exact sequence () —3 M Js E-—B —>0, where E — B is an
algebra-homomorphism and where j(M)2= 0 . The isomorphism classes of such extensions

correspond bijectively to the elements of Tl(B/A, M)

b) Deformations

Let B be aflat A-algebra; let us write A as A = Al/J where j is an
ideal of square 0 (j2 = 0) . An infinitesimal deformation of B/A over Al is an Al-
flat algebra B such that Bl/jBl ~ B. let Def(B/A, Al) be the set of isomorphism
classes of such deformations. ILet I = joaAB and consider the exact sequence (coming from

Al —5A —5B)

tie/a, ) — THB/AL, 1) — THA/AL, 1) 25 TPB/A, 1)

In Tl(A/A I) - Hom (I I), we have the identity 1 . Then =) we have Def(B/A, Al)
£ @ iff 3(1) =0 ﬂ) If d(1) = 0, then Def(B/A, Al ) 1is a principal homogeneous
space over the group T (B/A I)
{)*) If B is formally smooth over A, Def(B/A, Al) has just one element.

Now let X be a scheme over an algebraically closed field k ; we set
T . Ti(X/k, ‘O/X)' I X is reduced, then T = ]_EJLtIQ-X(_/Z_X, 0X) . Let b be the
category of finite dimensional local k-algebras. For A € b, we denote by F(A) the
set of isomorﬁhism classes of flat schemes Y —> A such that Y@A k =X. Let k [5]

be the algebra of dual numbers. over k (gZ = 0). Then we have the exact sequence:
0—A=-0xTY >8B- Fe[e]) —’x,th - b — Bx, 1Y) - -

(Notice that HO(X,Tl) is the sheaf of germs of deformations). One proves that, if A and

B are finite dimeﬁsional over k (e.g. if X is proper over k), then there exists a com-
plete local ring R with residue field k and a formal prescheme X over R (the "universal
deformation'" of X — k) such that:

(1) Hom(R,A) — F(A) is surjective for all A € b.

(2) Hom(R,k[E] ) —> F(k[e]) is bijective.

If R is chosen minimal, then R and X are unique up to a non-canonical isomorphism.

The tangent space to R is B .



c) Rigid singularities

Let X be a scheme over an algebraically closed field k , and P an
isolated singular point of X . We say that P is rigid if Ti) = 0. Then, if X =
Spec O, , X has only trivial deformations, and the local ring R (see b)) is k.

For example, if X is the cone of an X IPm on Segre's imbedding
and if P is its vertex, then P is rigid for n 21 and m 2 2 . This has been
proved by Grauert and Kerner (Math. Am.) by analytic methods. An algebraic proof
has been given in the lecture, basec on the following lemma:
Lemma - O, and T3 have depths > 3, then P is rigid. .
p.= Ext (TP, O’P) has
depth -2 1 (usual game with resolutions) ; on the other hand T, is a torsion-module

p
since P is an isolated singularity. Hence T]I? = 0 and P is rigid.

In fact, from the hypotheses in the lemma one deduces that T

This being so, one checks that the vertex P verifies the hypotheses in
the lemma.
d) Links with the Khhler different and Riemann-Roch formula.

Let X be a closed subscheme of a projective space IP over a scheme
Y,and z:X —>IP ;let I be the sheaf of maximal ideals on X . Suppose that X
is locally a complete intersection over Y . Consider the Grothendieck-group of UX -

modules, and, in this group, the element

Ex/y =[ZMP/Y] - [1/12]
b

This is the class of the K#hler -different of X/Y . With X — Y —> Z, we have the

transitivity formula
Cx/y = T (Bysp) + E&/Y)

The Chern-class KX/Y = cl( €X/Y) in Pic (X) is interesting; it gives
the good canonical class for a curve over a non-perfect field.

The Riemann-Roch formula

fy (chx . T(X)) = T(Y)ch(f x)

gives here:
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£, (T(€;:1/Y) chx) = ch(f,x)

§ 7. Generalized Koszul complexes. (Dock Sang Rim)

This is a report on an article by D. Buchsbaum and Dock Sang Rim (Trans.

A.M.S. 1964). Analogous results have been given in an article of Northcott-Eagon.

Let Xij (1€i£m, 1£j<£n, m2n) be independent variables, and In
the ideal generated by the fXp -minors of the matrix (Xij) in Z[ (Xij) ] = S. (rx— n) .
The aim is to write a free acyclic resolution of the S-module S/1 I For n=p =1

this is done by the classical Koszul complex
0— R8> ... — R s sTss —58/(X ... ., X_) =30

More generally we have a commutative ring R and a linear map
f: R"=> R" (m 2 n) , described by & matrix (Xij ) . We consider /\!Lf: /\q-%m—> /\Pi{n
( n“ n) and have to extend it (on the left) to a free acyclic complex. This is an analogue
of the bar-construction. First terms:

s T +8
i . == gn-p. /\(Rn)* ® /\/ Rmil N /\ﬂ'Rm__% /\’LRH

We get a complex K = K( no b) of length m -n+ 1 (reducing to the Koszul complex
for n = 1). This may be generalized to a linear map f: P —>Q where P and Q are
projective modules of constant ranks m, n (m ¥n ). n

Iet E be an A-module. let I(f) = Ann (coker/\ f). Then:
Th.1 (1) The I(f)- depth d of E is the smallest q such that Hq(K,E) £0

l:z) Hd(K,E) = Extd (cokerK f, E)

Corollary - K is acyclic iff either the I(f) - depthof R is m -n+1, or f is onto.

This gives informations about the projective varieties defined by the
vanishing of the (nx n) minors of an (mXxn) - matrix (m 3n)
Th. 2 - I H.(K,E) = 0, then HJ.(K,E) =0 forevery jdi.

This affords evidence toward M. Auslander®s conjecture quoted in §4,
Th.3 -~ I R is a Macaulay ring and if the I(f) -depthof R is m -n+1, then coker
/\ﬁ'f is unmixed. '

This generalizes a well known theorem of Macaulay.
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Finally let E be an R-module such that (coker f) ® E has finite length.
Let 'S]. (f) be the extension of f to the j-th symmetric powers. Then the length
€(coker Sj(f) ® E) is finite, and is a polynomial Pf(j, E) for j large. Its degree is
n-1+dim E andis £m. Its leading coefficient depends only on coker f and E.

Th. 4 -~ The integer (E:}L) —g;x-g— (Py(t,E) ) is the Euler-Poincaré characteristic
X(H, (K,E))
Thus, if n -1+ dimE = m , this Euler-Poincaré characteristic may be viewed as a
multiplicity.

_§ 8. A weak form of Artin's conjecture. (N. Greenleaf)

This is a report on an unpublished paper of Ax and Kochen. Artin con-

jectured that any p-adic field K is C i.e. that every homogeneous polynomial

29
over K , with degree d and ns d2 variables, has a non-trivial zeroin K . Lang
proved that a power-series field in one variable over a finite field is 02 . The theorem
proved by Ax and Kochen is weaker than Artin's conjecture:

Theorem - Iet d and n be integers such that n> d'2 . There exists a finite set of

primes PO = PO(d, n) such that, for every prime /7‘+PO and every homogeneous

polynomial F(xl, oo ,xn) of degree d over Q/z,ﬂ F(xl, oo ,xn) has a non-trivial zero
in Q,l .

Remark - N. Greenleaf proved a result which is stronger in some respects: given a
homogeneous polynomial F over @Q , with degree d and n>d variables (not dz'),
F has a non-trivial zero in Qr,, for almost all primes M-

The proof of the theorem is highly transfinite. Let P . be the set of all
primes and A the ring ;;_:rp Q/l’. For x = (x/q,) € A, we set N(x) :f,@e P ’
Xp $ 0f . I oo is an ideal $ 4, the family (N(x) )y ¢ o, 18 afilter over P, which
determines ov completely; this filter is an yltrafilter U iff ov is maximal. Now con-
sider A! “/I;TP ]Ffl-( (X)) , anon-trivial ultrafilter U over P and the corresponding
maximal ideals m in A and m' in A'. One proves that the residue fields A/m and
A'/m' are isomorphic E)oth are fields with valuations; both residue fields are isomorphic
to (:IL—GTP F,) / m , where m is the maximal ideal of TFTP Fp. corresponding to the
ultrafilter U ; they have characteristic 0 ; the fields are maximally complete | . Hency, by
Lang's theorem, every polynomial of degree d in n variables over A/m has a non-trivial
zZero.

Remark - The authors use here the continuum hypothesis, but logicians

have proved that it is harmless.
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Suppose the theorem is false. Then the set 1 of all X P , for which
there exists a homogeneous polynomial F/,_(X) of degree d in n variables over
Q p with only the trivial zero, is infinite. For /€ I let F/L (X) be such a polynomial;
for g 4: I set Fq(X) =0. Then (F/y,(X) )ﬂe p may be viewed as a polynomial F(X)
over A (since the polynomials F’z (X) have the same degree; bounded degrees would
do). Let U be a non-trivial ultrafilter containing I, and m the corresponding
maximal ideal. The reduced polynomial F (X) over A/m has a non-trivial zero
(X) . We lift (x) to an element (x) = %y, .5%,) of A" say (%) = (X/‘)/)LE p With
(%4) in Q,”;. We have F(x) = (Fp(x,) Joep € ™ thustheset j ofall’z€P such
that F/L (x/,_) =0 belongsto U . One of the compopents, say x; =(x1 ,/,7) of x is

ref

notin m ; thus N(x,) € U , whence P - N(x,) €U . Since U is afilter,” 1njn (P-N(x,)

is non-empty; let o be one of its elements. We have (xﬁ_) # 0 (since Xy ﬂ_#O ),
Fo(Xp) =0 (since p€j), and Fp (%) +0 (since p€1) . Contradiction.



P
BABY SEMINAR ON ETALE COHOMOLOGY
by

R. Hartshorne

In the baby seminar on étale cohomology, Steve Kleiman gave three
lectures on the first two chapters of Mike Artin's notes ["Grothendieck Topologies',
Harvard 1962]. He defined a topology, discussed presheaves, and proved Kan's
theorem on the existence of the adjoint fp to the '"direct image' functor P . He
then defined sheaves and proved useful properties of the categoryof sheaves (e.g.
the existence of enough injectives). He defined cohomology and discussed the Leray
spectral sequence.

Dan Quillen gave two lectures on the étale cohomology of sheaves over
Spec k, a field. He showed the connection with the cohomology of profinite groups,

and proved the theorem that if K/k is a finitely generated field extension, then
cdp(K) < cdp(k) + tr.d. (K/k),

where p is prime to the characteristic of k, and cdp denotes the cohomological

dimension for p-torsion sheaves.



REPORT ON THE WOODS HOLE FIXED POINT THEOREM SEMINAR
by

M. Atiyah and R. Bott

1) Introduction

This seminar was devoted to the discussion of a beautiful extension of the
Lefschetz fixed point theorem which was proposed to the conference by Shimura. Shimura
also noted that for curves this extension was a consequence of a result of Eichler.

Through the considerzble advertising abilities of the authors a large number
of the participants of the conference were drawn into the consideration of this formula and
as a consequence of this intervention, especially that of Verdier, Mumford and Hartshorne,
it was found that in the algebraic case the Shimura formula was correct and followed along
more or less classical lines from the Grothendieck version of Serre duality.

The formula in question is the following one. Suppose that X 1is a non-
singular projective algebraic variety over an algebraically closed field k, and that f:X —2 X
is a morphism of X into itself. Suppose further that E is'a vector bundle over X, and
that f admits a lifting @4 to E - that is,a vector bundle map ¢: f—l(E) —3 E. Sucha
lifting then defines in a natural way an endomorphism (f, d)* of the cohomology vector-

spaces H*(XE), of X with coefficients in the locally free sheaf E of germs of sections

of E, andwe may therefore form the '""Lef schetz number" of this endomorphism:

(1.1 X5, 6, B) = 37 ()% trace {(f, 6% | MUK E)]
a

Suppose next that f is nondegenerate in the sense that the graph of f

intersects the diagonal transversally in X X X. This implies that at each fixed point
p. of {, the differential dfp: Xp —3 Xp has no eigenvalue equal to 1, so that
det(1l - dfp) # 0.

Finally note that at a fixed point p, the lifting 4 determines an
endomorphism dp of Ep = E; (p) and so has a well deftermined trace.

With this understood the Shimura conjecture which we now propose to call

the Woods Hole Fixed Point Theorem, is given by the relation:

(1.2) X, 6, E) =3 trace ¢p/ det (1- dfp)
P

where p runs over the fixed points of f .



2) Some examples
(2.1) As a first application of (1.2) we derive the usual Lefschetz formula

for f when X is defined over the complex number field €. For this purpose let T*

be the cotangent bundle of X, and let AT+ pe its qth exterior power. The gth exterior
power of the differential of f then defines a natural lifting, A%df: 71 A9T*) —> 9T+

of f sothat (1.2) is applicable and yields the identity:

(2.2) X, X 9df, 19T*) = 5 trace (33 df ) / det (1 -df ).
p

One now takes the alternating sum with respect to q. By virtue of the identity
(2.3) S (-1 trace A%df = det (1 - df).

The right-hand side then counts the number of fixed points of f, each with multiplicity
+ 1, as indeed they should be counted in this nondegenerate and orientation.preserving situation.
The left hand side:becomes Z‘(-l')q trace { f* | Hq(X ; C)} by virtue of the Dolboux
isomorphisms. In short (2.2) implies the usual Lefschetz formula.

(2.4) Let P be projective n-space over K, with homogeneous
coordinates (xO, ....... y X ). Let f: P —>P be the linear map, which sends
X, into Aixi -,,\i;é 0, ,\i #Aj if i#j.

The fixed points of f then correspond to the coordinate axes and are
represented by P, = O, ....., 1, ..., 0; 1=0, ...., n wherethe 1 occurs at the
kth place. Now det (1 - dfp) is easily computed to be

T (1—)«]./)1{),

j#k

Thus for instance, if we take the trivial bundle for E, andlift f to E by means of

the constant section, then (1.2) takes the form:

14} n
1= - Ak

0 ;gé:k()k )

o=
f

which is a well-known interpolation formula.
If one takes for E the k power of the Hyperplane bundle, then
may be lifted to E, in such a manner that the actionof (f, g) on F(P; E) = H*(P;E)
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is precisely the action induiced on the polynomials of degree K in K[x ...... R Xn]
by the substitution X, —A L X
The formula (1. 2) applied to this situation simultaneously for all k then

yields the identity of formal power series in t:

An
- __1 = ) k ¢ ..._].'_... 0

ik k

This partial fraction expansioof the left-hand side is useful in the
discussion of the characters of the irreducible representations of the full linear group,
and indeed if one follows this lead, then (1.2) is seen to imply the formula of Herman Weyl
for the character of an irreducible representation of a semi-simple Lie group in a most
natural manner.

Our last example deals with the case when X is defined over a finite field
of characteristic p. One may then use the Frobenius endomorphism for f (which is
always nondegenerate!), and using the constant lifting of f to the structure sheaf,

Ox = 1, one concludes directly from (1.2) that if X is '""regular' in the sense that
H (IX,OX) =0; for i > 0, then X must have at least one rational point.

3) Remarks

It is not difficult to propose generalizations of (1.2). One hay drop the non-
degeneracy assumption on f, or remove the nonsingularity hypothesis on X; the vector
bundle E may by replaced by a coherent sheaf, and finally— alas —with all this generality
one may seek a statement relative to any proper morphism, rather then the projection onto
a point.

The first step already leads to an interesting framework of ideas, and should
shed new light on the problem of Riemann-Roch which corresponds to a highly degenerate fome
namely the identity.

For a possible singular X one would at least hope to find a weak version of
(1.2) , i.e., that ?((f, g, E) = 0 if f has no fixed points. A straightforward proof of
this fact, that is, one not involving duality, would be highly desirable.

The authors® main personal concern was an extension of (1.2) along different
lines. We consider an elliptic complex

Eg: 0 >§0d>§_1de———>0

w
of C vector bundles Ei over a compact c® manifold X, with differential operators
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d: -Eii > _E_1 + subject to d2 = 0, and the ellipticity condition that the associated
symbol sequence :

_qgl_____,g) >E1 __L____o—dfg)>;.,, E — 0

0 —>E m

0
should be exact for every nonzero cotangent vector.

Under this hypothesis the complex I’ (£) formed by the @ ~-sections,
T (Ei) of E.1 with differential operator I (d), has finite-dimensional homology and a
formula which specialized to (1.2) when £ isthe d resolution of E can be found.

Details of this, and other developments will appear elsewhere.
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