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INTRODUCTION

We know that cohomological methods, and especially sheaf theory, are playing an
increasingly important role, not only in the theory of functions of several complex
variables (cf. [5]), but also in classical algebraic geometry (suffice it mention the recent
work of Kodaira-Spencer on the Riemann-Roch theorem). The algebraic nature of these
methods suggested that that they could also be applied to abstract algebraic geometry;
the aim of the present work is to show that this is indeed the case.

The content of the various chapters is as follows:

Chapter I is devoted to the general theory of sheaves. It contains proofs of the
results of this theory that are used in the two other chapters. The various algebraic
operations that can be applied to sheaves are described in §1; we have followed closely
the exposition of Cartan ([2], [5]). In §2 we study coherent sheaves of modules; these
sheaves generalize analytic coherent sheaves (cf. [3], [5]), and enjoy similar properties.
In §3 the cohomology groups of a space X with values in a sheaf ¥ are defined. In the
subsequent applications, X is an algebraic variety, equipped with the Zariski topology,
so it is not a separated! topological space, and the methods used by Leray [10] or Cartan
[3] (based on “partitions of unity” or “fine” sheaves) do not apply; so we have had to
return to the method of Cech and define the cohomology groups H4(X, &) by passing
to the limit over finer and finer open coverings. Another difficulty arising from the
non-separatedness of X regards the “cohomology exact sequence” (cf. n®24 and 25):
we could construct this exact sequence only in particular cases, which are however
sufficient for the purposes we had in mind (cf. n°®24 and 47).

Chapter II starts with the definition of an algebraic variety, analogous to that of Weil
([17], Chapter VII), but including the case of reducible varieties (note that, contrary
to Weil’s usage, we do not reserve the word “variety” only for irreducible varieties);
we define the structure of an algebraic variety by giving the data of a topology (Zariski
topology) and a sub-sheaf of the sheaf of germs of functions (a sheaf of local rings).
An algebraic coherent sheaf on an algebraic variety V is simply a coherent sheaf of
Oy-modules, Oy, being the sheaf of local rings on V; we give various examples in §2.

1i.e. Hausdorff
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The results obtained are in fact similar to related facts concerning Stein manifolds (cf.
[3], [5]): if & is a coherent algebraic sheaf on an affine variety V, then HI1(V, %) = 0 for
all ¢ > 0 and ¥, is generated by HO(V, &) for all x € V. Moreover (§4), F is determined
by HO(V, ¥) considered as a module over the ring of coordinates on V.

Chapter III, concerning projective varieties, contains the results which are essential
for this paper. We start with establishing a correspondence between coherent algebraic
sheaves # on a projective space X = P,(K) and graded S-modules satisfying the condition
(TF) of n° 56 (S denotes the polynomial algebra K[t,, ..., t,]); this correspondence is
bijective if one identifies two S-modules whose homogeneous components differ only in
low degrees (for precise statements, see n°57, 59 and 65). In consequence, every question
concerning ¥ could be translated into a question concerning the associated S-module
M. This way we obtain a method allowing an algebraic determination of H1(X, ¥)
starting from M, which in particular lets us study the properties of H1(X, #(n)) for n
going to +oo (for the definition of #(n), see n° 54); the results obtained are stated in
n%65 and 66. In §4, we relate the groups H1(X, &) to the functors Extg introduced by
Cartan-Eilenberg [6]; this allows us, in §5, to study the behavior of HI(X, F(n)) for n
tending to —oco and give a homological characterization of varieties k times of the first
kind. §6 exposes certain properties of the Euler-Poincaré characteristic of a projective
variety with values in a coherent algebraic sheaf.

Moreover, we show how the general results of this paper can be applied to diverse
particular problems, and notably extend to the abstract case the “duality theorem” of
[15], thus a part of the results of Kodaira-Spencer on the Riemann-Roch theorem; in
these applications, the theorems in n°®66, 75 and 76 play an essential role. We also show
that, if the base field is the field of complex numbers, the theory of coherent algebraic
sheaves is essentially identical to that of coherent analytic sheaves (cf. [4]).

Table of Contents

Introduction 1
I Sheaves 4
§1 Operationsonsheaves . . . . . .. ... ... ... ..., 4
§2 Coherentsheavesof modules . . . ... .. ... ... .......... 11
§3 Cohomology of a space with valuesinasheaf . . . .. ... ... .... 16
§4 Comparison of cohomology groups of different coverings . . . ... .. 23

II Algebraic Varieties - Coherent Algebraic Sheaves on Affine Varieties 27

§1 Algebraicvarieties . . . . . . ... .. ... 27
§2 Coherent algebraicsheaves . . . . . ... ... ... ... ... ..... 34
§3 Coherent algebraic sheaves on affine varieties . . . . . .. ... ... .. 37
§4 Correspondence between modules of finite type and coherent algebraic
sheaves . . . . . . .. 43



TABLE OF CONTENTS 3

IIT Coherent Algebraic Sheaves on Projective Varieties 46
§1 Projectivevarieties . . . . . . ... ... 46
§2 Graded modules and coherent algebraic sheaves on the projective space 49
§3 Cohomology of the projective space with values in a coherent algebraic

sheaf . . . . . L 55
§4 Relations with the functors Extg ...................... 63
§5 Applications to coherent algebraic sheaves . . . .. ... ... ... .. 69
§6  The characteristic function and arithmeticgenus . . . . . ... .. ... 75

Bibliography 80



Chapter I

Sheaves

§1. Operations on sheaves

1. Definition of a sheaf

Let X be a topological space. A sheaf of abelian groups on X (or simply a sheaf) consists
of:

(a) A function x = ¥, giving for all x € X an abelian group ¥,

(b) A topology on the set #, the sum of the sets F,.

If f is an element of ¥, we put 7(f) = x; the mapping 7 is called the projection of F
onto X; the family in & X & consisting of pairs (f, g) such that 7(f) = 7(g) is denoted
by F + F.

Having stated the above definitions, we impose two axioms on the data (a) and (b):

(I) For all f € ¥ there exist open neighbourhoods V of f and U of 7(f) such that
the restriction of 7 to V' is a homeomorphism of V' onto U.

(In other words, 7 is a local homeomorphism).

(I1) The mapping f — —f is a continuous mapping from ¥ to ¥, and the mapping
(f,g) — f + gisacontinuous mapping from ¥ + F to F.

We shall see that, even when X is separated (which we do not assume), ¥ is not

necessarily separated, which is shown by the example of the sheaf of germs of functions
(cf. n® 3).

EXAMPLE (OF A SHEAF). For G an abelian group, set ¥, = G for all x € X; the set ¥
can be identified with the product X X G and, if it is equipped with the product topology
of the topology of X by the discrete topology on G, one obtains a sheaf, called the constant
sheaf isomorphic to G, often identified with G.

2. Sections of a sheaf

Let F be a sheaf on a space X, and let U be a subset of X. By a section of & over U
we mean a continuous mapping s : U — F for which 7os coincides with the identity
on U. We therefore have s(x) € F, for all x € U. The set of sections of F over U is
denoted by I'(U, ¥); axiom (II) implies that I'(U, &) is an abelian group. If U C V, and
if s is a section over V, the restriction of s to U is a section over U; hence we have a
homomorphism p‘é r(V,F)->rU, ).

4



§1. OPERATIONS ON SHEAVES 5

If U is openin X, s(U) is open in F, and if U runs over a base of the topology of X,
then s(U) runs over a base of the topology of F; this is only another wording of axiom
@.

Note also one more consequence of axiom (I): for all f € F, there exists a section s
over an open neighbourhood of x for which s(x) = f, and two sections with this property
coincide on an open neighbourhood of x. In other words, ¥, is an inductive limit of
I'(U, %) for U running over the filtering order of all open neighbourhoods of x.

3. Construction of sheaves

Given for all open U C X an abelian group ¥y and for all pairs of open U C V a
homomorphism ¢5 1 Fy — Fy, satisfying the transitivity condition ¢Zo¢3/ = qbg/
whenever U CV C W.

The collection (¥, ‘6) allows us to define a sheaf # in the following way:

(a) Put F, =lim ¥y (inductive limit of the system of open neighbourhoods of x). If
x belongs to an open subset U, we have a canonical morphism ¢V : ¥, — 7.

(b) Lett € Fy and denote by [t, U] the set of $¥(¢) for x running over U ; we have

[t,U] C & and we give F the topology generated by [¢, U]. Moreover, an element

f € F, has a base of neighbourhoods consisting of the sets [¢, U] for x € U and

HOENS

One checks immediately that the data (a) and (b) satisfy the axioms (I) and (II), in other
words, that F is a sheaf. We say that this is the sheaf defined by the system (¢, q%).

If f € Fy, the mapping x — ¢Y(¢) is a section of F over U ; hence we have a

canonical morphism¢: Fy - I'(U, ).

PROPOSITION 1. The map t: Fy; — I'(U,¥) is injective! if and only if the following
condition holds:

Ifan element t € Fy; is such that there exists an open covering {U;} of U with
¢5_(t) =0foralli, thent = 0.

If t € F satisfies the condition above, we have
Ui .
U) = ¢, Ol,bgi(t) =0 ifxeU,

which means that () = 0. Conversely, suppose that «(t) = 0 with t € F, ; since ¢Y(¢) =
0 for x € U, there exists an open neighbourhood U(x) of x such that ¢g(x)(t) =0, by
the definition of an inductive limit. The sets U(x) form therefore an open covering of U

satisfying the condition stated above.

PROPOSITION 2. Let U be an open subset of X, and lett : Fy, — I'(V,F) be injective for
allopenV C U. Thent : Fy — I'(U, F) is surjective! (and therefore bijective) if and only
if the following condition is satisfied:

For all open coverings {U;} of U, and all systems {t;}, t; € Fy, such that
qbglfnt(ti) = ¢gjnt(tj)forallpairs (i, j), thereexistsat € Fyy with qbgi(t) =t
foralli.

1Recall (cf. [1]) that a function f : E — E’ is injective if f(e;) = f(e,) implies e; = e,, surjective if
f(E) = E’, bijective when it is both injective and surjective. An injective (resp. surjective, bijective) mapping
is called an injection (resp. a surjection, a bijection).
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The condition is necessary: every t; defines a section s; = ((¢;) over U;, and we have
s; = sj over U; N Uj; so there exists a section s over U which coincides with s; over U; for
alli;ift: Fy — I'(U, F) is surjective, there exists t € Fy; such that «(t) = 5. If we put
t = gbgi(t), the section defined by ¢/ over U; does not differ from s;; since «(t; — t]) = 0,
which implies ¢; = tl.’ for « was supposed injective.

The condition is sufficient: if s is a section of # over U, there exists an open covering
{U;} of U and elements ¢; € Fy, such that «(¢;) coincides with the restriction of s to U; it

: U; .
follows that the elements qbgf v (t)and ¢ (¢;) define the same section over U; N U,
i J 3 J

so, by the assumption made on ¢, they are equal. If t € F satisfies qbg_(t) = t;, u(t)
coincides with s over each Uj, so also over S, g.e.d.

PROPOSITION 3. If ¥ is a sheaf of abelian groups on X, the sheaf defined by the system
r(u,s), pg) is canonically isomorphic to F.

This is an immediate result of properties of sections stated in n° 2.

Proposition 3 shows that every sheaf can be defined by an appropriate system
(Fu, qbg). We will see that different systems can define the same sheaf F; however,
if we impose on (¥, ¢>‘6) the conditions of Propositions 1 and 2, we shall have only one
(up to isomorphism) possible system: the one given by (I'(U, ¥), p‘&).

EXAMPLE. Let G be an abelian group and denote by F¢; the set of functions on U with
values in G; define ¢Z . Fy — Fy by restriction of such functions. We thus obtain
a system (¥, ¢I{]), and hence a sheaf ¥, called the sheaf of germs of functions with
values in G. One checks immediately that the system (¥, q%) satisfies the conditions
of Propositions 1 and 2; we thus can identify sections of # over an open U with the
elements of F;.

4. Glueing sheaves

Let F be a sheaf on X, and let U be a subset of X; the set 771(U) C &, with the topology
induced from #, forms a sheaf over U, called a sheaf induced by & on U, end denoted
by #(U) (or just F, when it does not cause confusion).

We see that conversely, we can define a sheaf on X by means of sheaves on open
subsets covering X:

PROPOSITION 4. Let U = {U,};c; be an open covering of X and, foralli € I, let F; be a
sheaf over U;; for all pairs (i, j) let 6;; be an isomorphism from ¥ ;(U; N U;) to F;(U; N U j);
suppose that we have 6;;00 ;. = 6y at each point of U; N U; N Uy for all triples (i, j, k).
Then there exists a sheaf F and for all i an isomorphism »; from F(U,) to F;, such that
6ij = nioanl ateach point of U;NU ;. Moreover,  and n; are determined up to isomorphism
by the preceding conditions.

The uniqueness of {#, 7;} is evident; for the proof of existence, we could define F
as a quotient space of the sum of F;, but we will rather use the methods of n° 3: if U
is an open subset of X, let F¢; be the group whose elements are systems {s; };c; With
sk € F(UNUy, Fi) and s, = Oy j(s;) onUNU;NU ;iU C V, we define ¢‘L/, in an obvious
way. The sheaf defined by the system (¥, qbg) is the sheaf # we look for; moreover, if
U € U, the mapping sending a system {s;.} € Fy to the element s; € I'(U;, F;) is an
isomorphism from ¥, to I'(U, &F;), because of the transitivity condition; we so obtain
an isomorphism 7; : F(U;) — F;, which obviously satisfies the stated condition.
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We say that the sheaf F is obtained by glueing the sheaves F; by means of the
isomorphisms 6;;.

5. Extension and restriction of a sheaf

Let X be a topological space, Y its closed subspace and F a sheaf on X. We say that F is
concentrated on Y, or that it is zero outside of Y if we have ¥, =0 forallx e X - Y.

PROPOSITION 5. If a sheaf F is concentrated on Y, the homomorphism
Py I'(X, %) - I'(Y,F(Y))
is bijective.

If a section of F over X is zero over Y, it is zero everywhere since ¥, = 0ifx ¢ Y,
which shows that p); is injective. Conversely, let s be a section of #(Y) over Y, and
extend s onto X by putting s(x) = 0 for x ¢ Y ; the mapping x — s(x) is obviously
continuous on X — Y ; on the other hand, if x € Y, there exists a section s’ of ¥ over
an open neighbourhood U of x for which s'(x) = s(x); since s is continuous on Y by
assumption, there exists an open neighbourhood V of x, contained in U and such that
s'(y) =s(y)forally € VnY;since ¥, = 0if y ¢ Y, we also have that s'(y) = s(y) for
y €V —(V NnY); hence s and s’ coincide on V, which proves that s is continuous in a
neighbourhood of Y, so it is continuous everywhere. This shows that p)lf is surjective,
which ends the proof.

We shall now prove that the sheaf #(Y') determines the sheaf # uniquely:

PROPOSITION 6. LetY be a closed subspace of X, and let G be a sheafonY. Put ¥, = G,
ifxeY,F,=0ifx €Y, and let F be the sum of the sets F,. Then F admits a unique
structure of a sheaf over X such that ¥(Y) = G.

Let U be an open subset of X; if s is a section of G on U NY, extend s by 0 on
U—-(UnNY);when srunsover I'(UNY,G), we obtain this way a group F; of mappings
from U to F. Proposition 5 then shows that if & is equipped a structure of a sheaf such
that #(Y) = G, we have F; = I'(U, F), which proves the uniqueness of the structure
in question. The existence is proved using the methods of n° 3 applied to #; and the
restriction homomorphisms ¢;, : Fy; > Fy.

We say that a sheaf & is obtained by extension of the sheaf G by 0 outside Y ; we denote
this sheaf by GX or simply G if it does not cause confusion.

6. Sheaves of rings and sheaves of modules

The notion of a sheaf defined in n° 1 is that of a sheaf of abelian groups. 1t is clear
that there exist analogous definitions for all algebraic structures (we could even define
“sheaves of sets”, where #, would not admit an algebraic structure, and we only require
axiom (I)). From now on, we will encounter mainly sheaves of rings and sheaves of
modules:

A sheaf of rings A is a sheaf of abelian groups A,, x € X, where each A, has a
structure of a ring such that the mapping (f, g) — f - g is a continuous mapping from
A + A to A (the notation being that of n° 1). We shall always assume that A, has a unity
element, varying continuously with x.
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If A is a sheaf of rings satisfying the preceding condition, I'(U, .A) is a ring with unity,
and pg : I'(V,A) - I'(U,A) is a homomorphism of rings preserving unity if U C V.
Conversely, given rings Ay with unity and homomorphisms qSE : Ay — Ay preserving
unity and satisfying ¢Zo¢‘v/‘/ = ¢V, the sheaf A defined by the system (A, E) is a sheaf
of rings. For example, if G is a ring with unity, the ring of germs of functions with values
in G (defined in n° 3) is a sheaf of rings.

Let A be a sheaf of rings. A sheaf F is called a sheaf of A-modules if every F, carries
a structure of a left unitary? A,-module, varying “continuously” with x, in the following
sense: if A + F is the subspace of A X F consisting of the pairs (a, f) with 7(a) = 7 (f),
the mapping (a, f) — a - f is a continuous mapping from A + F to &.

If # is a sheaf of A-modules, I'(U, ¥) is a unitary module over I'(U,.A). Conversely,
if A is defined by the system (A, gbg) as above, and let F be a sheaf defined by the
system (F, 9;)), where every F7; is a unitary Ay -module, with 9 (a- ) = ¢,(a)- 9/ (f);
then & is a sheaf of A-modules.

Every sheaf of abelian groups can be considered a sheaf of Z-modules, Z being the
constant sheaf isomorphic to the ring of integers. This will allow us to narrow our study
to sheaves of modules from now on.

7. Subsheaf and quotient sheaf

Let A be a sheaf of rings, & a sheaf of A-modules. For all x € X, let G, be a subset of F,.
We say that G = | G, is a subsheaf of F if:

(a) G, isasub-A,-module of ¥, forall x € X,

(b) Gisan open subset of F.
Condition (b) can be also expressed as:

(b”) If x is a point of X, and if s is a section of & over a neighbourhood of x such that
s(x) € Gy, we have 5(y) € G, for all y close enough to x.

It is clear that, if these conditions are satisfied, G is a sheaf of A-modules.

Let G be a subsheaf of # and put X, = F,/G, for all x € X. Give X = [J X, the
quotient topology of F; we see easily that we also obtain a sheaf of A-modules, called
the quotient sheaf of ¥ by G, and denoted by ¥ /G. We can give another definition, using
the methods of n° 3: if U is an open subset of X, set Xy; = I'(U, ¥)/I'(U, G) and let qb‘[;
a homomorphism obtained by passing to the quotient with p‘{, r(v,F) » ru, %),
the sheaf defined by the system (K, g) coincides with X.

The second definition of K shows that, if s is a section of K over a neighbourhood
of x, there exists a section ¢t of ¥ over a neighbourhood of x such that the class of ¢(y)
mod ), is equal to s(y) for all y close enough to x. Of course, this does not hold globally
in general: if U is an open subset of X we only have an exact sequence

0-IU,9 -1rU, —-IrU,x),

the homomorphism I'(U, ) — I'(U, KX) not being surjective in general (cf. n°® 24).

8. Homomorphisms

Let A be a sheaf of rings, # and G two sheaves of A-modules. An A-homomorphism (or
an A-linear homomorphism, or simply a homomorphism) from ¥ to G is given by, for all
x € X, an A,-homomorphism ¢, : ¥, — G,, such that the mapping ¢ : & — G defined

%i.e. with the unity acting as identity



§1. OPERATIONS ON SHEAVES 9

by the ¢, is continuous. This condition can also be expressed by saying that, if s is a
section of # over U, x — ¢,(s(x)) is a section of G over U (we denote this section by ¢(s),
or ¢os). For example, if G is a subsheaf of #, the injection § — ¥ and the projection
F — ¥ /G both are homomorphisms.

PROPOSITION 7. Let ¢ be a homomorphisms from F to G. For all x € X, let N', be the
kernel of ¢, and let 7, be the image of ¢. Then N" = | J N, is a subsheaf of ¥, T = | I,
is a subsheaf of G, and ¢ defines an isomorphism from F /N onto J.

Since ¢, is an .A,-homomorphism, N, and J, are submodules of # and G respectively,
and ¢, defines an isomorphism of &, /N, with 7. If on the other hand s is a local section
of #, such that s(x) € N, we have ¢os(x) = 0, hence ¢os(y) = 0 for y close enough to
x,s0s5(y) e N s which shows that V' is a subsheaf of #. If ¢ is a local section of G, such
that t(x) € J,, there exists a local section s € F, such that ¢os(x) = t(x), hence ¢os = ¢
in the neighbourhood of x, showing that 7 is a subsheaf of G, isomorphic with F /.

The sheaf V is called the kernel of ¢ and is denoted by Ker(¢); the sheaf 7 is called the
image of ¢ and is denoted by Im(¢); the sheaf G/7 is called the cokernel of ¢ and is denoted
by Coker(¢). A homomorphism ¢ is called injective, or one-to-one, if each ¢, is injective,
or equivalently if Ker(¢) = 0; it is called surjective if each ¢, is surjective, or equivalently
if Coker(¢) = 0; it is called bijective if it is both injective and surjective, and Proposition
7 shows that it is an isomorphism of # and G and that ¢! is a homomorphism. All
the definitions related to homomorphisms of modules translate naturally to sheaves
of modules; for example, a sequence of homomorphisms is called exact if the image of
each homomorphisms coincides with the kernel of the homomorphism following it. If
¢ . F — Gis a homomorphism, the sequences:

0 — Ker(¢) > F - Im(¢) - 0
0 —» Im(¢) -» G — Coker(¢) —» 0

are exact.

If ¢ isahomomorphism from ¥ to G, the mapping s — ¢osisal'(U, A)-homomorphism
from I'(U, F) to I'(U, G). Conversely, if A, ¥, G are defined by the systems (A, E),
Fu, l,bg), (9U,)(5) as in n° 6, and take for every open U C X an Ay-homomorphism
¢u : Fuy — Gy such that x| o0, = o), ; by passing to the inductive limit, the ¢,
define a homomorphism ¢ : ¥ — G.

9. The direct sum of two sheaves

Let A be a sheaf of rings, & and G two sheaves of A-modules; for all x € X, form the
module ¥, @ G,, the direct sum of ¥, and Gy; an element of ¥, @ G, is a pair (f, g) with
feF,andg € G,. Let K be the sum of the sets F, @ G, for x € X ; we can identify K
with the subset of # X G consisting of the pairs (f, g) with 7(f) = 7(g). We give X the
topology induced from F X G and verify immediately that X is a sheaf of A-modules;
we call this sheaf the direct sum of ¥ and G, and denote it by ¥ @ G. A sectionof ¥ @ G
is of the form x — (s(x), t(x)), where s and ¢ are sections of # and G over U; in other
words, I'(U, F @ §) is isomorphic to the direct sum I'(U,F) @ I'(U, 9).

The definition of the direct sum extends by recurrence to a finite number of A-
modules. In particular, a direct sum of p sheaves isomorphic to one sheaf ¥ is denoted
by FP.
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10. The tensor product of two sheaves

Let A be a sheaf of rings, & a sheaf right of A-modules, and G a sheaf of left A-modules.
Forall x € X, put X, = ¥, ® G,, the tensor product being taken over the ring A, (cf.
for example [6], Chapter II, §2); let X be the sum of the sets X, .

PROPOSITION 8. There exists a unique structure of a sheaf on X with the property that if s
and t are sections of F and G over an open subset U, then the mapping x — s(x) @ t(x) €
X, is a section of K over U.

The sheaf X thus defined is called the tensor product (over A) of & and G, and is denoted
by F ® 4 G; if the rings A, are commutative, then it is a sheaf of A-modules.

If X has a structure of a sheaf satisfying the above condition, and if f; and g; are
sections of ¥ and G over an open U C X, the mapping x — Y, 5;(x) ® t;(x) is a section
of X on U. In fact, all h € X, can be expressed in the form h = )] f; ® g;, fi € Fx,
g; € Gy, therefore also the form )’ s5;(x) ® t;(x), where s; and t; are defined in an open
neighbourhood U of x; in result, every section of K can be locally expressed in the
preceding form, which shows the uniqueness of the structure of a sheaf on X.

Now we show the existence. We might assume that A, ¥, G are defined by the
systems (Ay, ¢7), (Fu, ¥, (Gus x7,) as in n° 6. Now set Ky = F; ® Gy, the tensor
product being taken over A;; the homomorphisms 1,05 and )(g define, by passing to
the tensor product, a homomorphism 775 : Ky = Ky; besides, we have lim, .y Ky =
lim, ey Fy ® lim, ey Gy = Ky, the tensor product being taken over A, (for the com-
mutativity of the tensor product with inductive limits, see for example [6], Chapter VI,
Exercise 18). The sheaf defined by the system (X, 775) can be identified with X, and K
is thus given a structure of a sheaf obviously satisfying the imposed condition. Finally, if
the A, are commutative, we can suppose that the A; are also commutative (it suffices to
take for Ay, the ring I'(U, A)), so Ky is a Ay-module, and X is a sheaf of A — modules.

Now let ¢ be an A-homomorphism from F to ¥/ and let ¢ be an A-homomorphism
form G to §'; in that case ¢, ® ¥, is a homomorphism (of abelian groups in general
- of A,-modules, if A, is commutative) and the definition of ¥ ® 4 G shows that the
collection of ¢, ® 1, is a homomorphism from F ® 4 G to ¥’ ® 4, G'; this homomorphism
is denoted by ¢ ® ; if ¢ is the identity, we write ¢ instead of ¢ ® 1.

All of the usual properties of the tensor product of two modules transpose to the
tensor product of two sheaves of modules. For example, every exact sequence

Fo>F ->F"->0
gives rise to an exact sequence
FRG->F ®,5-F"®,G5—0.
We have canonical isomorphisms
FRUGIDPR) 2T RGBT ®s5, FRuAxTF,
and (supposing that the A, are commutative, to simplify the notation):

FQRsG=25Q,4F, ?®A(9®AK)1(?®A9)®A-7C-
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11. The sheaf of germs of homomorphisms from one sheaf to another

Let A be a sheaf of rings and ¥ and G two sheaves of .A-modules. If U is an open
subset of X, let K; be the group of homomorphisms from F(U) to G(U) (we also write
“homomorphism from F to G over U” in place of "homomorphism from F(U) to G(U)").
The operation of restricting a homomorphism defines ¢>‘{I : KXy — Xy ; the sheaf defined
by (X, gb{’]) is called the sheaf of germs of homomorphisms from F to G and denoted by
Hom 4(F, G). If A, are commutative, Hom 4(¥, §) is a sheaf of A-modules.

An element of Hom 4(#, G), being a germ of a homomorphism from # to Gin a
neighbourhood of x, defines an .A,-homomorphism from ¥, to G, ; hence a canonical
homomorphism

p: Homy,(#,9), - Homﬂx(?x, G0

But, contrary to what happened with the operations studied up to now, the homomor-
phism p is not a bijection in general ; we will give in n° 14 a sufficient condition for
that.

If¢: ' > Fandyp: G — G are homomorphisms, we define in an obvious way a
homomorphism

Hom 4(¢,%) : Hom 4(F,G) - Hom4(F', G).
Every exact sequence 0 — G — §' — G gives rise to an exact sequence:
0 - Homy(F, G) — Hom 4(F,G") —» Hom 4(F,G").
We also have the canonical isomorphisms: Hom 4(A, §) ~ G,

Homﬂ(?, 91 @ 92) ad Homﬂ(f, 91) @ Homﬂ(f, 92)
Hom 4(F, @ 7, 9) ~ Hom (57, §) © Hom4(F5, 9).

§2. Coherent sheaves of modules

In this paragraph, X denotes a topological space and A a sheaf of rings on X. We
suppose that all the rings A, x € X, are commutative and have a unity element varying
continuously with x. All sheaves considered up to n° 16 are sheaves of A-modules and
all homomorphisms are A-homomorphisms.

12. Definitions

Let F be a sheaf of A-modules, and let sy, ..., Sp be sections of # over an open U C X.

When we map any family f7, ..., f, of elements of A, to the element Z:If fi-si(x)of
¥, we obtain a homomorphism ¢ : AP — F defined over an open subset U (being
precise, ¢ is a homomorphism from A?(U) to F(U), with the notation from n° 4). The
kernel R(sy, ..., s,) of the homomorphism ¢ is a subsheaf of AP, called the sheaf of
relations between the s;; the image of ¢ is a subsheaf of # generated by s;. Conversely,
any homomorphism ¢ : AP — F defines sections sy, ..., s, by the formulas

51(x) = ¢,(1,0,...,0), ..., 5,(x)=¢,(0,...,0,1).

DEFINITION. A sheaf of A-modules ¥ is said to be of finite type if it is locally generated
by a finite number of its sections.
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In another words, for each point x € X, there must exist an open neighbourhood
U of x and a finite number of sections s, ..., s, of # over U such that every element of
Fy,y€Uisa linear combination, with coefficients in Ay, of s;(¥). According to the
preceding statements, this amounts to saying that the restriction of # to U is isomorphic
to a quotient sheaf of a sheaf A”.

PROPOSITION 1. Let ¥ be a sheaf of finite type. If s, ..., s, are sections of &, defined over
a neighbourhood of a point x € X and generating ¥, then they also generate &, for all y
close enough to x.

Because ¥ is of finite type, there is a finite number of sections of # in a neighbourhood
of x, say t4, ..., tgs which generate F y for y close enough to x. Since s j (x) generate ¥,

there exist sections f;; of A in a neighbourhood of x such that ¢;(x) = j:f fij(x)-s;(x);
it follows that, for y close enough to x, we have:

Jj=p
L) = Z fij ) - 5;(),

j=1
which implies that s;(y) generate ¥, g.e.d.

DEFINITION. A sheaf of A-modules ¥ is said to be coherent if
(a) # is of finite type, and

(b) ifsy, ..., s, are sections of & over an open U C X, the sheaf of relations between
the s; is of finite type (over the open set U).

Note the local character of definitions 1 and 2.

PROPOSITION 2. Locally, every coherent sheaf is isomorphic to the cokernel of a homomor-
phism ¢ : A1 - AP.

This is an immediate consequence of the definitions and of the remarks preceding
definition 1.

PROPOSITION 3. Every subsheaf of finite type of a coherent sheaf is coherent.

Indeed, if a sheaf F satisfies condition (b) of definition 2, then any subsheaf of F
satisfies it also.

13.  Main properties of coherent sheaves

B
THEOREM 1. Let0 — F — G — X — 0 be an exact sequence of homomorphisms. If two
of the sheaves F, G, I are coherent, then so is the third.

Suppose that G and X are coherent. Locally, there exists a surjective homomorphism
y: AP — G; let J the kernel of Soy; since X is coherent, J is a sheaf of finite type
(condition (b)); thus y(J) is a sheaf of finite type, thus coherent by Proposition 3; since a
is an isomorphism from F to y(J), it follows that F is also coherent.

Suppose that # and G are coherent. Because G is of finite type, X is also of finite
type, so it remains to prove that X satisfies the condition (b) of definition 2. Let sy, ..., Sp
be a finite number of sections of K in a neighbourhood of a point x € X. The question
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being local, we can assume that there exist sections s{, s S;, of Gsuch that s; = B(slf ).
Let ny, ..., ng be a finite number of sections of # in a neighbourhood of x, generating 7,
for y close enough to x. A family f4, ..., f, of elements of A, belongs to R(sy, ..., sp), if
and only if one can find g, ..., g, € A, such that

i=p J=q
2 firsi=2 g alny) iny.
i=1 j=1

Now the sheaf of relations between the slf and the a(n j) is of finite type, because G is
coherent. The sheaf R(s, ..., s,), the image of the preceding by the canonical projection
from AP*9 to AP is thus of finite type, which shows that XX is coherent.

Suppose that # and X are coherent. The question being local, we may suppose
that F (resp. KX) is generated by a finite number of sections n, ..., ng (resp. s, ..., Sp);
furthermore we might assume that there exist sections slf of Gsuch that s; = ,B(s{ ). Itis
clear that the sections slf and a(n j) generate G, which proves that G is a sheaf of finite
type. Now let ¢4, ..., ¢, be a finite number of sections of G in a neighbourhood of a point
X; since X is coherent, there exist sections f ; orA"(1<i<r,1<j<s),definedin
the neighbourhood of x, which generate the sheaf of relations between the 3(z;). Put
uj = Ziz fj. - t;; since Zz fj. - B(t;) = 0, the u; are contained in a(¥) and, since 7 is
coherent, the sheaf of relations between the u; is generated, in a neighbourhood of x,
by a finite number of sections, say g; (1 < j <s,1<k <1). Isay thgt the Zj:i g - f;'_
generate the sheaf R(ty, ..., t,) in a neighbourhood of x; indeed, if Zi;; fi-ti=00n y,
with f; € A, we have Zi:i fi - B(t;) = 0 and there exist g; € A, with f; = ZJ -1 gj
noting that Ziz fi - t; = 0, one obtains iji g;j - u; = 0, thus making the system g;

a linear combination of the systems gi and showing our assertion. It follows that G
satisfies condition (b), which ends the proof.

COROLLARY. The direct sum of a finite family of coherent sheaves is coherent.

THEOREM 2. Let ¢ be a homomorphism from a coherent sheaf F to a coherent sheaf G.
The kernel, the cokernel and the image of ¢ are also coherent sheaves.

Because F is coherent, Im(¢) is of finite type, thus coherent by Proposition 3. We
apply Theorem 1 to the exact sequences

0 — Ker(¢) > F - Im(¢) - 0
0 - Im(¢) — G — Coker(¢) — 0

seeing that Ker(¢) and Coker(¢) are also coherent.

COROLLARY. Let F and G be two coherent subsheaves of a coherent sheaf K. The sheaves
F + Gand F N G are coherent.

For & + G, this follows from Proposition 3; and for # N G, this is the kernel of
F ->X/S.
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14. Operations on coherent sheaves

We have just seen that a direct sum of a finite number of coherent sheaves is a coherent
sheaf. We now prove analogous results for the functors ® and Hom.

PROPOSITION 4. If F and G are two coherent sheaves, F @ 4 G is a coherent sheaf.

By Proposition 2, ¥ is locally isomorphic to the cokernel of a homomorphism
$: A1 - AP; thus F ® 4 G is locally isomorphic to the cokernel of ¢ : A1 Q4 G —
AP R, G. But A1 ® 4 Gand AP ® 4 G are isomorphic to G7 and GP respectively, which
are coherent (Corollary of Theorem 1). Thus ¥ ® 4 G is coherent (Theorem 2).

PROPOSITION 5. Let F and G be two sheaves, F being coherent. For all x € X, the module
Hom 4(F, 9), is isomorphic to Hom 4 (F, Gy).

Precisely, we prove that the homomorphism
p: Hom,(#,9), » Hom4 (¥, 9),,

defined in n° 11, is bijective. First of all, let 3 : & — G be a homomorphism defined in a
neighbourhood of x, being zero in F,; since ¥ is of finite type, we conclude immediately
that 1 is zero in a neighbourhood of x, which proves that p is injective. We will show
that p is surjective, or in other words, that if ¢ is a A,-homomorphism from ¥, to G,,
there exists a homomorphism ¢ : ¥ — G, defined in a neighbourhood of x and such
that 9, = ¢. Let my, ..., m, be a finite number of sections of & in a neighbourhood of x,
generating F, for all y close enough to x, and let fj. (1<i<p,1<j<q)besectionsof
AP generating R(my, ..., mp) in a neighbourhood of x. There exist local sections of G,
say Ny, ..., Ny, such that n;(x) = ¢(m;(x)). Put p; = Zzlf f; -n;, 1 < j < q;the pjare
local sections of G being zero in x, so in every point of a neighbourhood U of x. It follows
that for y € U, the formula }; f; - m;(y) = 0 with f; € A, implies }; f; - n;(y) = 0; for
any element m = )’ f; - m;(y) € ¥, we thus can put:

i=p
Py(m) =D fi-m() € G

i=1

The collection of ¥y, y € U constitutes a homomorphism ¢ : F — G, defined over U
and such that ¢, = ¢, which ends the proof.

PROPOSITION 6. If F and G are two coherent sheaves, then Hom 4(F, G) is a coherent
sheaf.

The question being local, we might assume, by Proposition 2, that we have an exact
sequence A? - AP — F — 0. From the preceding Proposition it follows that the
sequence:

0 - Hom 4(#,9) —» Hom4(AP, G) —» Hom 4(AY, G)

is exact. Now the sheaf Hom 4(AP, G) is isomorphic to GP, thus is coherent, the same for
Hom 4(A4, G). Theorem 2 then shows that Hom 4(F, G) is coherent.
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15. Coherent sheaves of rings

A sheaf of rings A can be regarded as a sheaf of A-modules; if this sheaf of .A-modules is
coherent, we say that A is a coherent sheaf of rings. Since A is clearly of finite type, this
means that A satisfies condition (b) of Proposition 2. In other words:

DEFINITION. A sheaf A is a coherent sheaf of rings if the sheaf of relations between a
finite number of sections of A over an open subset U is a sheaf of finite type on U.

ExAMPLE. (1) If X is a complex analytic variety, the sheaf of germs of holomorphic
functions on X is a coherent sheaf of rings, by a theorem of K. Oka (cf. [3], statement
XV, or [5], §5).

(2) If X is an algebraic variety, the sheaf of local rings of X is a coherent sheaf of rings
(cf. n® 37, Proposition 1).

When A is a coherent sheaf of rings, we have the following results.

PROPOSITION 7. For a sheaf of A-modules, being coherent is equivalent to being locally
isomorphic to the cokernel of a homomorphism ¢ : A1 — AP.

The necessity is Proposition 2; the sufficiency follows from the coherence of A” and
A? and from Theorem 2.

PROPOSITION 8. A subsheaf of A is coherent if and only if it is of finite type.
This is a special case of Proposition 3.

COROLLARY. The sheaf of relations between a finite number of sections of a coherent sheaf
is coherent.

In fact, this sheaf is of finite type, from the definition of a coherent sheaf.

PROPOSITION 9. Let F be a coherent sheaf of A-modules. For any x € X, let J, be the
ideal in the A, consisting those a € A, suchthata - f = 0forall f € F,. Then the J,
form a coherent sheaf of ideals (called the annihilator of F).

In fact, J, is the kernel of the homomorphism A, — Homy (¥, G); we then apply
Propositions 5 and 6 and Theorem 2.

More generally, the conductor & : G of a coherent sheaf G into its coherent subsheaf
F is a coherent sheaf of ideals (being the annihilator of G/ ).

16. Change of rings

The notions of a sheaf of finite type, and of a coherent sheaf, are dependent on the fixed
sheaf of rings A. When we will consider multiple sheaves of rings, we will say “of finite

type over A”, “A-coherent” to point out that we mean sheaves of A-modules.

THEOREM 3. Let A be a coherent sheaf of rings, J a coherent sheaf of ideals of A. Let F
be a sheaf of A/J-modules. Then F is A/J-coherent if and only if it is A-coherent. In
particular, A/J is a coherent sheaf of rings.
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It is clear that "of finite type over A" is the same as "of finite type over .A/J". For
the other part, if & is A-coherent, and if s,, ..., 5, are sections of # over an open U, the
sheaf of relations between the s; with coefficients in .A, is of finite type over A. It follows
immediately that the sheaf of relations between the s; with coefficients in A /7, is of
finite type over A /7, since it is the image of the preceding by the canonical mapping
AP — (A/T)P. Thus ¥ is A/J-coherent. In particular, since A/J is A-coherent, it is
also A/J-coherent, in other words, .A/J is a coherent sheaf of rings. Conversely, if F is
A /J-coherent, it is locally isomorphic to the cokernel of a homomorphism ¢ : (A/T)? —
(A/T)P and since A/J is A-coherent, F is coherent by Theorem 2.

17. Extension and restriction of a coherent sheaf

Let Y be a closed subspace of a space X. When G is a sheaf over Y, we denote by GX the
a sheaf obtained by extending G by 0 outside Y; it is a sheaf over X (cf. n°® 5). If Aisa
sheaf of rings over Y, AX is a sheaf of rings over X, and if & is a sheaf of A-modules,
then ¥ is a sheaf of AX-modules.

PROPOSITION 10. ¥ is of finite type over A if and only if ¥ is of finite type over AX.

Let U be an open subset of X, and let V = U N Y. Any homomorphism ¢ : AP —» F
over V defines a homomorphism ¢X : (A4X)? — FX over U, and conversely; so ¢ is
surjective if and only if ¢* is. The proposition follows immediately from this.

One shows similarly:

PROPOSITION 11. ¥ is A-coherent if and only if ¥ is AX-coherent.
Hence, on taking F = A:

COROLLARY. A is a coherent sheaf of rings if and only if AX is a coherent sheaf of rings.

§3. Cohomology of a space with values in a sheaf

In this paragraph, X denotes a topological space, separated or not. By a covering of X we
will always mean an open covering.

18. Cochains of a covering

Let U = {U}i¢ be a covering of X. If s = (i, ..., i) is a finite sequence of elements of ,
we put
US - Uio...ip - UiO Nn..N Uip'

Let F be a sheaf of abelian groups on the space X. If p is an integer > 0, we call a
p-cochain of U with values in F a function f assigning to every sequence s = (i, ..., ip)
of p + 1 elements of I a section f; = f io-ip of F over Ui..ip- The p-cochains form an
abelian group, denoted by CP(2, F); it is the product group [ [ I'(Uy, F), the product
being over all sequences s of p + 1 elements of I. The family of CP(U, F), p = 0,1, ... is
denoted by C(U, F). A p-cochain is also called a cochain of degree p.

A p-cochain is said to be alternating if:

@ f igip =0 whenever two of the indices iy, ... , i,, are equal,

M) f ivoiop = Ec f io-d, if o is a permutation of the set {0, ..., p} (¢, denotes the signature
of o).
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The alternating cochains form a subgroup C'P(U, F) of the group CP(U, F); the
family of the C’P(U, F) is denoted by C'(U, F).

19. Simplicial operations

Let S(I) be the simplex with the set I as its set of vertices; an (ordered) simplex of
S(I) is a sequence s = (i, ..., ip) of elements of I; p is called the dimension of s. Let
K() = @:;O K, (I) be the complex defined by S(I): by definition, K ,(I) is the free group
with the set of simplexes of dimension p of S(I) as its base.
If s is a simplex of S(I), we denote by |s| the set of vertices of s.
A mapping h: K,(I) — K,(I) is called a simplicial endomorphism if
(i) his a homomorphism,

(ii) for any simplex s of dimension p of S(I) we have
h(S) = ZS, Cg’ . S,,

with cg, € Z, the sum being over all simplexes s’ of dimension g such that |s'| C [s].

Let h be a simplicial endomorphism, and let f € C9(2, F) be a cochain of degree q.
For any simplex s of dimension p put,

(hf)s = Zc 05 (fo),

where pﬁ’ denotes the restriction homomorphism I'(Uy, ) — I'(Uy, &), which makes
sense because |s’| C |s|. The mapping s = (‘hf), is a p-cochain, denoted by ‘i f. The
mapping f + 'hf is a homomorphism

'h: CIQU,F) - CPQU, F),
and one verifies immediately the formulas:
‘(hy + hy) ="hy +'hy,  '(hohy) ="hyo'hy, '1=1.

Note. In practice, we often neglect to write the restriction homomorphism pg,.

20. Complexes of cochains

We apply the above to the simplicial endomorphism
g9: Kp+1(1) - Kp(I)a
defined by the usual formula:

Jj=p+1

Oigs vy ips) = D3 (=D CUgs e Ejs s ipy1)s

Jj=0

the sign“meaning, as always, that the symbol below it should be omitted.
We thus obtain a homomorphism ‘4 : CP(U, F) — CPF(U, F), which we denote
by d; from its definition, we have that

Jj=p+1

@figipy = Z( Woi(fio i)

weljedpi
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where p; denotes the restriction homomorphism

: (U, ,F) - I'(U; F).

fgeljenipy1”? fgeipy1?

Since dod = 0, we have dod = 0. Thus we find that C(U, F) is equipped with a

coboundary operator making it a complex. The g-th cohomology group of the complex
C(U, F) will be denoted by HI(U, F). We have:

PROPOSITION 1. H(U, F) =I'(X, F).

A 0-cochain is a system (f;);c; With every f; being a section of & over U;. Itisa
cocycle if and only if it satisfies f; — f; = 0 over U; N U}, or in other words, if there is a
section f of # on X coinciding with f; on U; for all i € I. Hence the Proposition.

(Thus H°(U, ¥) is independent of ; of course this is not true for HIQA, F) in
general).

We see immediately that df is alternating if f is alternating; in other words, d
preserves C’(U, F), which forms a subcomplex of C(U, F). The cohomology groups of
C'(U, F) are denoted by H'9(U, F).

PROPOSITION 2. The inclusion of C'(U, F) into C(U, F) defines an isomorphism from
H'9(U, F) onto HI(U, F), for every g > 0.

We equip the set I with a structure of a total order, and let & be a simplicial endo-
morphism of K(I) defined in the following way:

h((iy, ..., iq)) = 0 if any two indices i, ..., ig are equal,

h((g, --- 1)) = €5(ig0 - I5g) if all indices iy, ..., iy are distinct and o is a permutation
of {0, ..., g} for which i;y < iy < ... <ligq-

We verify right away that 4 commutes with Jd and that h(s) = s if dim(s) = 0; it
follows (cf. [7], Chapter VI, §5) that there exists a simplicial endomorphism k, raising
the dimension by one, such that 1 — h = dok + kod. Hence, by passing to C(2L, F),

1—"'h ="'kod + do'k.

But we check immediately that '/ is a projection from C(U, F) onto C' (U, F); since
the preceding formula shows that it is a homotopy operator, the Proposition is proved.
(Compare with [7], Chapter VI, theorem 6.10).

COROLLARY. HI(U, F) = 0 for g > dim(20).

By the definition of dim(2[), we have U; ody = @ for g > dim(20), if the indices i, ...
are distinct; hence C’9(U, F) = 0, which shows that

HIQU, F) = H'IQL F) = 0

> lg

21. Passage from a covering to a finer covering

A covering U = {U,};¢; is said to be finer than the covering 8 = {V;} ¢, if there exists a
mapping 7 : I — Jsuchthat U; c V; foralli € I. If f € C4(B, F), put

(Tf)lo ..... ;o‘(_/](f‘[io...fiq)a

pU denoting the restriction homomorphlsm defined by the inclusion of U; g inVy . iy
The mapping f — tf is a homomorphism from C4(28, F) to CI(U, F), deﬁned for all
q > 0 and commuting with d, thus it defines homomorphisms

™ HI(B,F) - HIQU, F).
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PROPOSITION 3. The homomorphisms t* : HI(®B,F) - HYU,F) depend only on U
and B and not on the chosen mapping t.

Let 7 and 7’ be two mappings from I to J such that U; C V; and U; C V; ; we have
to show that 7% = 7/*,
Let f € CI(B, F); set

h=q—-1
K ig.iyy = Z (=D pu(f T Ty Ty )
h=0
where pj, denotes the restriction homomorphism defined by the inclusion of U; ; in

0-+-lg—1
V‘L’io...fijf’ih...f’iq_l .

We verify by direct computation (cf. [7], Chapter VI, §3) that we have
dkf +kdf =7 f —tf,

which ends the proof of the Proposition.

Thus, if Ul is finer than B, there exists for every integer g > 0 a canonical homomor-
phism from HI(B, F) to HI1(U, F). From now on, this homomorphism will be denoted
by o(U, B).

22.  Cohomology groups of X with values in a sheaf &

The relation “2l is finer than 2B” (which we denote henceforth by 2l < 23) is a relation of
a preorder between coverings of X; moreover, this relation is filtered, since if U = {U;};¢;
and B = {V;};¢; are two coverings, = {U; NV} j)erxs is a covering finer than U and
than .

We say that two coverings U and B are equivalent if we have U < B and B < 2.
Any covering U is equivalent to a covering U’ whose set of indices is a subset of P(X);
in fact, we can take for U’ the set of open subsets of X belonging to the family L. We can
thus speak of the set of classes of coverings with respect to this equivalence relation; this
is an ordered filtered set.

If U < B, we have defined at the end of the preceding n° a well defined homomor-
phism o(U, W) : HI(W, F) - HIU, F), defined for every integer g > 0 and every sheaf
F on X. Itis clear that o(U, U) is the identity and that o(2, B)oc (B, W) = o(U, LW)
if U < B < W. It follows that, if U is equivalent to B, then o(U, W) and o (B, U)
are inverse isomorphisms; in other words, H4(#, U[) depends only on the class of the
covering 1l.

DEFINITION. We call the g-th cohomology group of X with values in a sheaf &, and de-
note by H4(X, &), the inductive limit of groups H4(U, F), where U runs over the filtered
ordering of classes of coverings of X, with respect to the homomorphisms o(21, B).

In other words, an element of H1(X, F) is just a pair (2, x) with x € H1(U, F), and
we identify two such pairs (2, x) and (2, y) whenever there exists a 8 with 28 < 1,
W < BWand o(W, U)(x) = o(BW, B)(y) in HI(WB, F). To every covering U in X is thus
attached a canonical homomorphism o(U) : HY(U,¥F) - HI(X, F).

We will see that HI(X, #) can also be defined by an inductive limit of HI(2, F)
where U runs over a cofinal family of coverings. Thus, if X is quasi-compact (resp.
quasi-paracompact), we can consider only finite (resp. locally finite) coverings.

When g = 0, by Proposition 1 we have:

PROPOSITION 4. H(X, ¥) = I'(X, F).
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23.  Homomorphisms of sheaves

Let ¢ be a homomorphism from a sheaf F to a sheaf G. If U is a covering of X, we can
assign to any f € C1(U, F) an element ¢ f € CI(2U, G) defined by the formula (¢ f); =
#(f). The mapping f — ¢f is a homomorphism from C(U, F) to C(AU, G) commuting
with the coboundary, thus it defines homomorphisms ¢* : HY(U,F) - HI(U, G). We
have ¢*oc(U, B) = (2, B)op*, hence, by passing to the limit, homomorphisms

¢*: HIX,F) - HI(X, 9).

When g = 0, ¢* coincides with the homomorphism from I'(X, F) to I'(X, ) induced
in a natural way by ¢.
In general, the homomorphisms ¢* satisfy usual formal properties:

(p+9P)y =¢"+9*, (po9p)*, 1"=1

In other words, for all ¢ > 0, HI(X, ¥) is a covariant additive functor of . Hence
we gather that if # is the direct sum of two sheaves G; and G,, then HY(X, ¥) is the
direct sum of H4(X, G;) and HY(X, G,).

Suppose that & is a sheaf of A-modules. Any section of A on X defines an endomor-
phism of F, therefore of H1(X, ). It follows that H1(X, &) are modules over the ring
I'x,A.

24. Exact sequence of sheaves: the general case

Let0 — A — B i C — 0 be an exact sequence of sheaves. If 2l is a covering of X, the
sequence

0 CQLA) S cat )L care)

is obviously exact, but the homomorphism  need not be surjective in general. Denote
by Co(U, ©) the image of this homomorphism; it is a subcomplex of C(2l, C) whose
cohomology groups will be denoted by Hg (U, ©). The exact sequence of complexes:

0-CQU,A) - CU,B) - Co(U,C) -0

giving rise to an exact sequence of cohomology:

d
.. > HIQU, B) - HI(U, €) - HIT (U, A) > HIF'(U,B) - ...,

where the coboundary operator d is defined as usual.
Now let U = {U;}icr and B = {V}; be two coverings and let 7 : I — J be such
that U; C V; ; we thus have U < 2. The commutative diagram:

0—— C(B,A) — C(B,B) — C(B,C)

0— CUA) — CU,B) —— CU, 0O)
shows that r maps Cy (B, C) into Cy (2, ©), thus defining the homomorphisms7* : H g (B, C) —

H g (U, ©). Moreover, the homomorphisms 7* are independent of the choice of the map-
ping 7: this follows from the fact that, if f € Cg (B, C),wehave kf € cg‘l(u, ©), with
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the notation of the proof of Proposition 3. We have thus obtained canonical homo-
morphisms o(U, W) : Hg(%, ) —» Hg(u, ©); we can then define Hg(X, ©) to be the
inductive limit of the groups H g o, e).

Because an inductive limit of exact sequences is an exact sequence (cf. [7], Chapter
VIII, theorem 5.4), we obtain:

PROPOSITION 5. The sequence

B g d 1 a 1
.= HYX,B) — H,(X,C) — HI*'(X,A) — HI"'(X,B) > ...
is exact.

(d denotes the homomorphism obtained by passing to the limit with the homomor-
phisms d : HJ(U, €) - HI*(U, A)).

To be able to apply the preceding Proposition, it is convenient to compare the groups
Hg(X ,€) and H1(X, €). The inclusion of Cy(U, €) in C(U, €) defines the homomor-
phisms Hg(l[, C) —» HI(U, C), hence, by passing to the limit with [, the homomor-
phisms:

q
HI(X,€) - HI(X, ).

PROPOSITION 6. The canonical homomorphism Hg(X ,@) — HI(X,C) is bijective for
q = 0 and injective for q = 1.

We will prove the following lemma:

LEMMA 1. Let B = {V};c; be a covering and let f = (f;) be an element of (B, @).
There exists a covering U = {U,};c; and a mapping t: I — J such that U; C V; and
tf € CoU, C).

For any x € X, take a 7x € J such that x € V_,.. Since f,, is a section of C over V_,,
there exists an open neighbourhood U, of x, contained in V., and a section b, of B over
U, such that (b,) = f,, on U,. The {U,},cx form a covering U of X, and the b, form
a 0-chain b of U with values in B; since 7 f = f(b), we have thattf € Cg(l[, e).

We will now show that H é(X ,C) - H(X, @) is injective. An element of the kernel
of this mapping may be represented by a 1-cocycle z = (z; ;) € C(')(%, ©) such that there
existsan f = (f;) € C%(B, @) with df = z; applying Lemma 1 to f yields a covering 1
such thattf € Cg(l[, ©), which shows that 7z is cohomologous to 0 in Cy (2, ©), thus
its image in H, é(X , @) is 0. This shows that H g(X ,©) —» H°(X, @) is bijective.

COROLLARY 1. We have an exact sequence:
0 - HX,A) - H(X,B) - H'(X,C) - H'(X,A) - H(X,B) - H'(X, ©).
This is an immediate consequence of Propositions 5 and 6.

COROLLARY 2. IfH'(X, A) = 0, then I'(X, B) — I'(X, @) is surjective.
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25. Exact sequence of sheaves: the case of X paracompact

Recall that a space X is said to be paracompact if it is separated and if every covering of X
admits a locally finite finer covering. On paracompact spaces, we can extend Proposition
6 to all values of g (I do not know whether that extension is possible for nonseparated
spaces):

PROPOSITION 7. IfX is paracompact, the canonical homomorphism
Hl(X,€) -» HI(X,0)
is bijective for all ¢ > 0.

This Proposition is an immediate consequence of the following lemma, analogous to
Lemma 1:

LEMMA 2. Let B = {V}c; be a covering, and let f = (fjoqu) be an element of C1(*B, C).
There exists a covering U = {U,};c; and a mapping t: I — J such that U; C V; and
Tf € CA(UL, C).

Since X is paracompact, we might assume that 28 is locally finite. Then there exists a
covering {W;}c; such that W; C V;. For every x € X, choose an open neighbourhood
U, of x such that

(a)If x € V (resp. x € W), then U, C V (resp. U, C W),

L) IfU, NnW; #@,then U, CW,,

©lixeV; . i there exists a section b of B over U, such that 3(b) = f . j, over
U,.

The condition (c) can be satisfied due to the definition of the quotient sheaf and to
the fact that x belongs to a finite number of sets V; Je Having (c) satisfied, it suffices to
restrict U, appropriately to satisfy (a) and (b).

The family {U,},cx forms a covering U; for any x € X, choose 7x € J such that
x € W,,. We now check that 7 f belongs to Cg (U, ©), in other words, that f Txg. T, is
the image by §8 of a section of B over U, N...N Uy, U, N..Nn Uy, is empty, this is
obvious; if not, we have U, NnU,, # @ for0 < k < g, and since U,, C U, , we have
Uy, N Wey, # @, which implies by (b) that U, C V,,, hence x, € Vixy.tx,s We then
apply (c), seeing that there exists a section b of B over U, such that B(b), = f Txg. T,
onU,,soalsoon U, N..N Uy, which ends the proof.

COROLLARY. IfX is paracompact, we have an exact sequence:

ﬁ* d a*
.. = HY(X,B) — HIX,C) - HI"'(X,A) — HI*(X,B) - ..

The map d is defined to be the composite of the inverse of the isomorphism H, g X,e) -
HI(X,e)withd : HI(X,€) -» HIT'(X, A).

The exact sequence mentioned above is called the exact sequence of cohomology
defined by a given exact sequence of sheaves 0 - A — B — C — 0. More generally, it
exists whenever we can show that H g (X, ) - HY(X, C) is bijective (we will see in n° 47
that this is the case when X is an algebraic variety and A is an algebraic coherent sheaf).
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26. Cohomology of a closed subspace

Let & be a sheaf over a space X, and let Y be a subspace of Y. Let #(Y) be the
sheaf induced by # on Y, in the sense of n® 4. If U = {U;};¢; is a covering of X,
the sets Ul.’ = Y n U; form a covering W' of Y; if f; ; , s a section of F over Ui,...ip»
the restriction of f ig..i 1O Ul.’o._.l.q = YNnU,., is a section of #(Y). The operation
of restriction is a homomorphism p: CQU,F) —» CQU',F(Y)), commuting with d,
thus defining p* : HIQU,F) —» HIQU,F(Y)). If U < B, we have U’ < B, and
proo(U, W) = o(U', W' )op*; thus the homomorphisms p* define, by passing to the limit
with U, homomorphisms p* : HY(X,¥) —» HI(Y,F(Y)).

PROPOSITION 8. Assume thatY is closed in X and that & is zero outside Y. Then
lp* : HI(X,7) - HI(Y,F(Y))
is bijective for all ¢ > 0.

The Proposition is implied by the following facts:

(a) Any covering 8 = {W};c; of Y is of the form U’ for some covering Il of X.

Indeed, it suffices to put U; = W; U (X — Y), since Y is closed in X.

(b) For any covering U of X, p: CQU,F) —» CQU',F(Y)) is bijective. ~ Indeed, the
result follows from Proposition 5 of n° 5, applied to Ui,..i, and the sheaf .

We can also express Proposition 8 in the following manner: If G is a sheaf on Y, and
if 6X is the sheaf obtained by extending G by 0 outside Y, we have H1(Y, G) = HY(X, (29}
for all ¢ > 0; in other words, the identification of G with GX is compatible with passing
to cohomology groups.

§4. Comparison of cohomology groups of different
coverings

In this paragraph, X denotes a topological space and ¥ is a sheaf on X. We propose to
give conditions on a covering U of X, under which we have H*(U, ¥) = H"(X, F) for
alln > 0.

27. Double complexes

A double complex (cf. [6], Chapter VI, §4) is a bigraded abelian group

K=@Kp’q, p=>0,9>0,
p.q

equipped with two endomorphisms d’ and d” satisfying the following conditions:

!/ -
d’ maps KP4 to KP+1:4 d,od,,_ 0 "oy
d" KP 1o P+ d'od"” +d"od" =0
maps 0 d"od" = 0.

An element of KP4 is said to be bihomogenous of bidegree (p, q), and of total degree
p + q. The endomorphism d = d’ + d” satisfies dod = 0, and the cohomology groups of
K with respect to this coboundary operator are denoted by H"(K), where n means the
total degree.
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We can treat d’ as a coboundary operator on K; since d’ is compatible with the
bigrading of K, we also obtain cohomology groups, denoted by H f ’q(K ); for d”’, we have
the groups H4(K).

We denote by Kfl the subgroup of K%4 consisting of elements x such that d’(x) = 0,
and by Kj; the direct sum of K?I (@ = 0,1,...). We have an analogous definition of
K = @;0 K?. We note that

0

q _ .q D _ b0
KH_HI (K) and KI _HH (K).

K;; is a subcomplex of K, and the operator d coincides on K;; with the operator d”.

PROPOSITION 1. If HP(K) = 0 for p > 0 and q > 0, the inclusion K;; — K defines a
bijection from H"(K;;) to H*(K), foralln > 0.

(Cf. [4], statement XVII-6, whose proof we shall repeat here).
By replacing K by K /K;;, we are led to prove that ifo’q(K) =0forp>0andq >0,
then H"(K) = 0 for all n > 0. Put

K, = Pkra.

q>h

The groups K, (h = 0,1,...) are subcomplexes embedded in K, and K, /K},,, is iso-
morphic to @;ozo KP' equipped with the coboundary operator d’. We thus have

H"(K},,/Kpi1) = H?’”_h(K) = 0 for any n and h, therefore H"(K}) = H"(K},,1). Since
H"(Kj) = 0if h > n, we deduce, by descending recursion on h, that H"*(K},) = 0 for all

n and h, and since K, is equal to K, the Proposition follows.

28. The double complex defined by two coverings

Let U = {U;}ic; and B = {V}; be two coverings of X. If s is a p-simplex of S(I) and
s’ a g-simplex of S(J), we denote by U the intersection of U;, i € s (cf. n° 18), the
intersection of V;, j € s’, by B the covering of U, formed by {U; NV}, and by Uy,
the covering of Vi formed by {Vy N U;};¢;.

We define a double complex C(U, B; F) = EBp,q CP9(U, B; F) as follows:

CPAU,B; F) = [[T'(Ug nVy, F), the product taken over all pairs (s, s’) where s is
a simplex of dimension p of S(I) and s’ is a simplex of dimension q of S(J).

An element f € CP9(U, B; F) is thus a system (f'; ¢) of sections of F on Ug NV or,
with the notation of n° 18, it is a system

Fioipioriq € TWigiy OV jr T

We can also identify CP4(U, B; F) with HS, CP(Ugy, F); thus, for all s’, we have a
coboundary operator d : CP(Uy,F — CP(Uy, F), giving a homomorphism

dy : CPAU,B; F) — CPHL(U, B; F).
Making the definition of dy; explicit, we obtain:

k=p+1
_ k .
(S ig.iprjomiy = kz D 0k(f iy dydpriomia)
e



§4. COMPARISON OF COHOMOLOGY GROUPS OF DIFFERENT COVERINGS 25

Pk being the restriction homomorphism defined by the inclusion of

U nv,

0wk --ipt1 Jo--dq*

NV, . in U,

fg-..Ip Jo--Jg
We define dyy : CP9(U,B; F) — CPIL(U, B; F) the same way and we have

h=q+1
_ h R
A3 fig...ipsjoigrs = hZ: D*0nfiy. o inmiqrs)”
—0

Itisclear that dyody; = 0, dy0d®B = dyody, dpodyy = 0. Wethusputd’ = dy,d” =
(—1)Pdy, equipping C(U, B; F) with a structure of a double complex. We now apply to
K = C(U, B; F) the definitions from the preceding n° ; the groups or complexes denoted
in the general case by H"(K), Hf’q(K), Hf’q(K), Hfl’q(K), K;, K;; will be denoted by
H"(U,B; F), H(U, B; F), HYUQU, B; F), C;(U, B; F) and C; (U, B; F), respectively.

From the definitions of d’ and d”, we immediately obtain:

PROPOSITION 2. H f AU, B; F) is isomorphic to Hs, HP(Uy, F), the product being taken
over all simplexes of dimension q of S(J). In particular,

CIQU,B; F) = H (U, B; F)
is isomorphic to [T, H'Uy, F) = CU(B, F).

We denote by ("’ the canonical isomorphism: C(B, ) — C (U, B; F). If (Fjo..j) 18
an element of CI(B, F), we thus have

(l"f)io,jo...jq = Pio(fjo...jq),
where p; denotes the restriction homomorphism defined by the inclusion of

in V, .

0--Jg Jo-q*

U,nv;

Obviously, a statement analogous to Proposition 2 holds for H f a7 U, B; F), and we
have an isomorphism ¢/ : CQU, F) - C;(U, B; F).

29. Applications

PROPOSITION 3. Assume that HP(Uy,F) = 0 for every s’ and all p > 0. Then the
homomorphism H"(B, ) — H"(U, B; F), defined by "', is bijective for all n > 0.

This is an immediate consequence of Propositions 1 and 2.
Before stating Proposition 4, we prove a lemma:

LEMMA 1. Let 8 = {W};c; be a covering of a space Y and let F be a sheafon Y. If there
existsani € I such that W; =Y, then HP(28, ) = 0 forall p > 0.

Let B’ be a covering of Y consisting of a single open set Y; we obviously have
B < W, and the assumption made on VW means that W < V. In result (n° 22) we
have HP(2, F) = HP(W',F) = 0if p > 0.

PROPOSITION 4. Suppose that the covering B is finer than the covering U. Then!” : H"(B,F) —
H™(U, B; F) is bijective for alln > 0. Moreover, the homomorphism /o~ : H* U, F) —
H"(B, F) coincides with the homomorphism c(*8, U) defined in n° 21.
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We apply Lemma 1 to 28 = Uy and Y = V, seeing that HP(Uy,F) = 0 for all
p > 0, and then Proposition 3 shows that

/' HY(B,F) - H"(U, B, F)

is bijective for all n > 0.

Let7: J — I be a mapping such that V; C U.;; for the proof of the second part of
the Proposition, we need to observe that if f is an n-cocycle of C(U, F), the cocycles
!(f) and ("’ (z f) are cohomologous in C(U, B; F).

For any integer p, 0 < p < n — 1, define gP € CP""P~1(U, B; F) by the following

formula
p

g-wipsforeen-p-1

4 = pp(fio...ipfjo...rjn_p)a

pp denoting the restriction defined by the inclusion of

Uity VWijgdnepr M Ui i zjotjnpr

We verify by a direct calculation (keeping in mind that f is a cocycle) that we have
d"(g") ="(f),..,d"(gP) = d'(gP™),..d'(g") = (-D"'(f)

hence d(g° —g! + ... + (=1)"1g" 1) = !(¢ f) — /' (f), which shows that ///(z f) and ¢/ (f)
are cohomologous.

PROPOSITION 5. Suppose that B is finer than U and that H1(B;, F) = 0 for all s and
all g > 0. Then the homomorphism o(2B, W) : H"(U, F) - H"(B, F) is bijective for all
n>0.

If we apply Proposition 3, switching the roles of U and B, we see that!’ : H"(B, F) —
H"(U, W; F) is bijective. The Proposition then follows directly from Proposition 4.

THEOREM 1. Let X be a topological space, U = {U,};cr a covering of X, F a sheaf on X.
Assume that there exists a family 8%, a € A of coverings of X satisfying the following
properties:

(a) For any covering 83 of X, there exists an a € A with BF < LB,

(b) HI(BZ, F) = 0 forall a € A, all simplexes s € S(I) and every q > 0,
Then o(U) : H"(U,F) - HY(X, F) is bijective for all n > 0.

Since B* are arbitrarily fine, we can assume that they are finer than 2. In this case,
the homomorphism
o((B*,U): HY'U,F) - H'(B*, F)

is bijective for all n > 0, by Proposition 5. Because B¢ are arbitrarily fine, H"(X, F) is
the inductive limit of H"(8%, F), and the theorem follows.

REMARKS. (1)Itisprobable that Theorem 1 remains valid when we replace the condition
(b) with the following weaker condition: (b") lim, H1(B%, ) = 0 for every simplex s of
S(I) and every g > 0.

(2) Theorem 1 is analogous to a theorem of Leray on acyclic coverings. Cf. [10] and
also [4], statement XVII-7.



Chapter I1

Algebraic Varieties - Coherent
Algebraic Sheaves on Affine
Varieties

From now on, K denotes a commutative algebraically closed field of arbitrary character-
istic.

§1. Algebraic varieties

30. Spaces satisfying condition (A)

Let X be a topological space. The condition (A) is the following:

(A) — Any decreasing sequence of closed subsets of X is stationary.
In other words, if we have F; D F, D F3 D .., F; being closed in X, there exists an
integer n such that F,, = F,, for m > n. Or:

(A’) — The set of closed subsets of X, ordered by inclusion, satisfies the minimality
condition

EXAMPLE. Equip a set X with the topology whose closed subsets are the finite subsets
of X and the whole of X; condition (A) is then satisfied. More generally, any algebraic
variety, equipped with Zariski topology, satisfies (A) (cf. n° 34).

PROPOSITION 1.  (a) If X satisfies (A), then X is quasi-compact,
(b) IfX satisfies (A), then every subspace of X satisfies it also.
(c) If X is a finite union of Y; satisfying (A), then X also satisfies (A).

If F; is a filtering decreasing set of closed subsets of X, and if X satisfies (A’), then
there exists an F; contained in all others; if [ F; = #J, there is therefore an i such that
F; = @, which shows (a).

Let G; D G, D Gz D ... be a decreasing sequence of closed subsets of a subspace
Y of X; if X satisfies (A), there exists an n for which G,, = G, for m > n, hence
G, =YnG, =YnG, =G,, which shows (b).

Let F; D F, D F3 D ... be a decreasing sequence of closed subsets of a space X
satisfying (c); since all Y; satisfy (A), there exists for all i an n; such that F,,,nY; = F, NY;
for m > n;; if n = sup(n;), we then have F,, = F,, for m > n, which shows (c).

27
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A space X is said to be irreducible if it is not a union of two closed subspaces, dis-
tinct from itself; or equivalently, if any two non-empty open subsets have a non-empty
intersection. Any finite family of non-empty open subsets of X then has a non-empty
intersection, and any open subset of X is also irreducible.

PROPOSITION 2. Any space X satisfying the condition (A) is a union of a finite number of
irreducible closed subsets Y;. If we suppose that that Y; is not contained in Y ; for any pair
(i, j), i # j, the set of Y; is uniquely determined by X; the Y; are then called the irreducible
components of X.

The existence of a decomposite X = (] Y; follows immediately from (A). If Z is
another such decomposite of X, we have Y; = | Y; n Z;, and, since Y; is irreducible,
this implies of an index k such that Z; O Y;; interchanging the roles of Y; and Z,, we
conclude similarly that there exists an index i’ for which Y D Z; thus Y; C Z; C Yy,
which by the assumption made on Y; leads to i = i’ and Y; = Z;, hence the uniqueness
of the decomposite.

PROPOSITION 3. Let X be a topological space, union of a finite number of non-empty open
subsets V;. Then X is irreducible if and only if all V; are irreducible and V; and V ; intersect
for all pairs (i, j)

The necessity of these conditions was noted above; we show that they are sufficient.
IfX =Y UZ,whereY and Z are closed, we have V; = (V; nY) U (V; N Z), which shows
that each V; is contained either in Y or in Z. Suppose that Y and Z are distinct from
X; we can then find two indices i, j such that V; is not contained in Y and Vj is not
contained in Z; according to our assumptions on Y;, we then have V; C Zand V; C Y.
SetT =V;—V;nV;; Tisclosedin V; and we have V; = TU(ZNV); as V; is irreducible,
it follows that either T = Vi, which means that V; n V= g,orZn V=V which
means that V; C Z, and in both cases this leads to a contradiction, g.e.d.

31. Locally closed subsets of an affine space

Let r be an integer > 0 and let X = K" be the affine space of dimension r over the
field K. We equip X with the Zariski topology; recall that a subset of X is closed in this
topology if it is the zero set of a family of polynomials P* € K[Xj,...,X,]. Since the
ring of polynomials is Noetherian, X satisfies the condition (A) from the preceding n° .
Moreover, one easily shows that X is an irreducible space.

If x = (x4, ..., X,) is a point of X, we denote by O, the local ring of x; recall that this
is the subring of the field K(X1, ..., X, ) consisting of those fractions R which can be put
in the form R = P/Q, where P and Q are polynomials and Q(x) # 0.

Such a fraction is said to be regular at x; for all points x € X for which Q(x) # 0,
X — P(x)/Q(x) is a continuous function with values in K (K being given the Zariski
topology) which can be identified with R, the field K being infinite. The O,, x € X, thus
form a subsheaf O of the sheaf #(X) of germs of functions on X with values in K (cf. n°
3); the sheaf O is a sheaf of rings.

We will extend the above to locally closed subspaces of X (we call a subset of a space
X locally closed in X if it is an intersection of a open subset with a closed subset of X). Let
Y be such a subspace and let #(Y") be the sheaf of germs of functions on Y with values
in K; if x is a point of Y, the operation of restriction defines a canonical homomorphism

&t FX)y = F(Y)y



§1. ALGEBRAIC VARIETIES 29

The image of O, under ¢, is a subring of #(Y'), which we denote by O, y; the O, y form
a subsheaf Oy of F(Y), which we call the sheaf of local rings of Y. A section of Oy over
an open subset V of Y is thus, by definition, a function f : V' — K which is equal, in the
neighbourhood of any point x € V, to a restriction to V of a rational function regular at
x; such a function is said to be regular on V; it becomes a continuous function when we
equip V with the induced topology and K with the Zariski topology. The set of regular
functions at all points of V' is a ring, the ring I'(V, Oy ); observe also that, if f € I'(V, O,)
and if f(x) # 0 for all x € V, then 1/ f also belongs to I'(V, Oy).
We can characterize the sheaf Oy in another way:

PROPOSITION 4. Let U (resp. F) be an open (resp. closed) subspace of X and letY = UNF.
Let I(F) be the ideal K[X1, ..., X, ] consisting of polynomials vanishing on F. If x is a point
of Y, the kernel of the surjection €, . O, — O,y coincides with the ideal I(F) - O, of O,.

It is clear that each element of I(F) - O, belongs to the kernel of ¢,. Conversely, let
R = P/Q be an element of the kernel, P and Q being two polynomials with Q(x) # 0.
By assumption, there exists an open neighbourhood W of x such that P(y) = 0 for all
y € W N F; let F’ be the complement of W, which is closed in X; since x € F/, there
exists, by the definition of the Zariski topology, a polynomial P; vanishing on F’ and
nonzero at x; the polynomial P - P; belongs to I(F) and we can write R = P - P; /Q - Py,
which shows that R € I(F) - O,.

COROLLARY. Thering O, y is isomorphic to the localization of K[ X1, ..., X, ]/I(F) at the
maximal ideal defined by the point x.

This follows immediately from the construction of the localization a quotient ring
(cf. for example [8], Chap. XV, §5, th. XI).

32.  Regular functions

Let U (resp. V) be a locally closed subspace of K" (resp. K*). A function¢: U — V'is
said to be regular on U (or simply regular) if:

(a) ¢ iscontinuous,

(b) If x € U and f € Oy y then fop € O, y.
Denote the coordinates of the point ¢(x) by ¢;(x), 1 <i < s. We then have:

PROPOSITION 5. Amap ¢ : U — V isregularon U if and only ifthe ¢; : U — K are
regularon U foralli,1 <i <s.

As the coordinate functions are regular on V, the condition is necessary. Conversely,
suppose that we have ¢; € I'(U, Oy ) for each i; if P(X,,...,X) is a polynomial, the
function P(¢y, ..., ¢;) belongs to I'(U, Oy) since I'(U, Oy) as a ring; it follows that it is
a continuous function on U, thus its zero set is closed, which shows the continuity of
¢. If we have x € U and f € Oy(y)y, we can write f locally in the form f = P/Q,
where P and Q are polynomials and Q(¢(x)) # 0. The function fo¢ is then equal to
Pog/Qo¢ in a neighbourhood of x; from what we gave seen, Po¢ and Qo¢ are regular in
a neighbourhood of x. As Qo¢(x) # 0, it follows that fo¢ is regular in a neighbourhood
of x, gq.e.d.

A composite of two regular maps is regular. A bijection¢ : U — Viscalled a biregular
isomorphism (or simply an isomorphism) if ¢ and ¢! are regular; or equivalently, if ¢ is
a homeomorphism from U to V which transforms the sheaf O into the sheaf Oy,.
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33. Products

If r and ' are two nonnegative integers, we identify the affine space K"+ with the
product K" x K"'. The Zariski topology on K"*"" is finer than the product of the Zariski
topologies on K" and K"; it is even strictly finer if » and ' are > 0. In result, if U and U’
are locally closed subspaces of K" and K", U x U’ is a locally closed subspace of K"+
and the sheaf Oy is well defined.

On the other hand, let W be a locally closed subspace of K', ¢t > Oandlet¢ : W - U
and ¢’ : W — U’ be two maps. As an immediate result of Proposition 5 we have:

PROPOSITION 6. A map x — (¢(x), ¢'(x)) is regular from W to U x U’ if and only if ¢
and ¢’ are regular.

As any constant function is regular, the preceding Proposition shows that any section
x > (x, x(’)), x(’) € U’ is a regular function from U to U x U’; on the other hand, the
projections U X U — U and U x U’ — U’ are obviously regular.

Let V and V' be locally closed subspaces of K* and K¥ and let p: U — V and
Y’ : U’ — V' be two mappings. The preceding remarks, together with Proposition 6,
show that we then have (cf. [1], Chap. IV):

PROPOSITION 7. Amap ) X' : U x U’ —» V x V' is regular if and only if {p and ¢’ are
regular.

Hence:

COROLLARY. A map X1’ is a biregular isomorphism if and only if 1 and 3’ are biregular
isomorphisms.

34. Definition of the structure of an algebraic variety

DEFINITION. We call an algebraic variety over K (or simply an algebraic variety) a set X
equipped with:

1° a topology,

2° a subsheaf O, of the sheaf #(X) of germs of functions on X with values in K,
these data being subject to axioms (V A;) and (V A;) stated below.

First note that if X and Y are equipped with two structures of the above type, we
have a notion of isomorphism from X onto Y: it is a homeomorphism from X onto Y
that transforms Oy to Ox. On the other hand, if X’ is an open subset of X, we can equip
X' with the induced topology and the induced sheaf: we have a notion of an induced
structure on an open subset. That being said, we can state the axiom (V A;):

(V A;) — There exists a finite open covering B = {V;};c; of the space X such that each
V', equipped with the structure induced from X, is isomorphic to a locally closed subspace
U, of an affine space, equipped with the sheaf Oy, defined in n°® 31.

To simplify the language, we call an prealgebraic variety a topological space X together
with a sheaf Oy satisfying the axiom (V A;). An isomorphism ¢; : V; — U; is called a
chart of the open subset V;; the condition (V A;) means that it is possible to cover X with
finitely many open subsets possessing charts. Proposition 1 from n° 30 shows that X
satisfies condition (A), thus it is quasi-compact and so are its subspaces.

The topology on X is called the “Zariski topology” and the sheaf Oy is called the
sheaf of local rings of X.
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PROPOSITION 8. Let X be a set covered by a finite family of subsets X ;, j € J. Suppose
that each X j is equipped with a structure of a prealgebraic variety and that the following
conditions are satisfied:

(@) X;nXjisopeninX; foralli,j € J,
(b) the structures induced by X; and X on X; N X coincide for all i, j € J.

Then there exists a unique structure of a prealgebraic variety on X such that X ; are open in
X and such that the structure induced on each X; is the given structure.

The existence and uniqueness of the topology on X and the sheaf Oy are immediate;
it remains to check that this topology and this sheaf satisfy (VV A;), which follows from
the fact that X ; form a finite family and satisfy (V' Ap).

COROLLARY. Let X and X' be two prealgebraic varieties. There exists a structure of a
prealgebraic variety on X x X' satisfying the following condition: If ¢: V — U and
¢’ : V! > U’ are charts (V being open in X and V' being open in X'), then V X V' is open
inXxX'andpx¢': VxV' - UxUisachart.

Cover X by a finite number of open V; having charts ¢; : V; — U; and let (V;., U;., ¢;.)
be an analogous system for X’. The set X x X’ is covered by V; X V;.; equip each V; X V;.
with the structure of a prealgebraic variety induced from U; X U;. by qﬁi‘l X ¢;‘1; the
assumptions (a) and (b) of Proposition 8 are satisfied for this covering of X x X', by the
corollary of Proposition 7. We obtain a structure of a prealgebraic variety on X x X’
which satisfies appropriate conditions.

We can apply the preceding corollary to the particular case X’ = X;s0 X X X has a
structure of a prealgebraic variety, and in particular a topology. We can now state the
axiom (VApp):

(VA[) — The diagonal A of X X X is closed in X X X.

Suppose that X is a prealgebraic variety obtained by the “gluing” procedure of Propo-
sition 8; then the condition (V Ay) is satisfied if and only if X;; = A N X; X X is closed
in X; X X;. Or X;; is the set of (x, x) for x € X; N X;. Suppose that there exist charts
¢: X; —» U;andlet T;; = ¢ X ¢;(X;;); Tyj is the set of (¢;(x), ¢;(x)) for x running over
X; N X ;. The axiom (V Aj;) takes therefore the following form:

(VA;I) — For each pair (i, j), T;; is closed in U; X U;.

In this form we recognize Weil’s axiom (A) (cf. [16], p. 167), except that Weil

considered only irreducible varieties.

EXAMPLE (OF ALGEBRAIC VARIETIES). Any locally closed subspace U of an affine space,
equipped with the induced topology and the sheaf O defined in n® 31 is an algebraic
variety. Any projective variety is an algebraic variety (cf. n°® 51). Any algebraic fibre
space (cf. [17]) whose base and fibre are algebraic varieties is an algebraic variety.

REMARKS. (1) Note the similarity of the condition (VV A;;) with the condition of separat-
edness imposed on topological, differential, and analytic varieties.
(2) Simple examples show that condition (V A;;) is not a consequence of condition (V A;).

35. Regular mappings, induced structures, products

Let X and Y be two algebraic varieties and let ¢ be a function from X to Y. We say that
¢ is regular if:
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(a) ¢ is continuous.

(b)Ifx € X and f € Oy(y)y then fop € O, x.

Asinn° 32, the composite of two regular functions is regular and a bijection ¢ : X —
Y is an isomorphism if and only if ¢ and ¢! are regular functions. Regular functions
form a family of morphisms for the structure of an algebraic variety in the sense of [1],
Chap. IV.

Let X be an algebraic variety and let X’ be a locally closed subspace of X. We equip
X’ with the topology induced from X and the sheaf Oy, induced by Ox (to be precise,
for all x € X’ we define O, x» as the image of O, x under the canonical homomorphism
FX), = FX),). The axiom (V A;) is satisfied: if ¢; : V; — Uj is a system of charts
such that X = | JV;,weset V! =X'nV;, U =¢;(V))and ¢; : V| — Uj is a system of
charts such that X’ = J Vl.' . The axiom (V Aj;) is satisfied as well since the topology of
X’ x X" is induced from X X X (we could also use (VA}I)). We define the structure of an
algebraic variety on X’ which is induced by that of X; we also say that X’ is a subvariety
of X (in Weil [16], the term “subvariety” is reserved for what we call here an irreducible
closed subvariety). If ¢ denotes the inclusion of X’ in X, ¢ is a regular mapping; moreover,
if ¢ is a function from an algebraic variety Y to X’ then ¢ : Y — X’ is regular if and only
ifto : Y — X is regular (which justifies the term “induced structure”, cf. [1], loc. cit.).

If X and X’ are two algebraic varieties, X X X’ is an algebraic variety, called the
product variety; it suffices to check that the axiom (VA}I) is satisfied, in other words,
thatif ¢;: V; - U;and ¢]: V] — U] are systems of charts such that X = JV; and
X' =J V], then the set T;; X Tl.',j, is closed in U; x U; X U}, X V;., (with the notation of
n° 34); this follows immediately from the fact that T';; and Tlf,j, are closed in U; X U and
U, x U;., respectively.

Propositions 6 and 7 are valid without change for arbitrary algebraic varieties.

If $: X — Y is a regular mapping, the graph @ of ¢ is closed in X X Y, because it
is the inverse image of the diagonal Y X Y by ¢ x1: X XY — Y X Y; moreover, the
mapping ¢ : X — @ defined by (x) = (x, $(x)) is an isomorphism: indeed, ¥ is a
regular mapping, and so is ¢! (since it is a restriction of the projection X X Y — X).

36. The field of rational functions on an irreducible variety

We first prove two lemmas of a purely topological nature:

LEMMA 1. Let X be a connected space, G an abelian group and G a constant sheaf on X
isomorphic to G. The canonical mapping G — I'(X, G) is bijective.

An element of I'(X, G) is just a continuous mapping from X to G equipped with
the discrete topology. Since X is connected, any such a mapping is constant, hence the
Lemma.

We call a sheaf & on a space X locally constant if any point x has an open neighbour-
hood U such that #(U) is constant on U.

LEMMA 2. Any locally constant sheaf on an irreducible space is constant.

Let F be a sheaf, X a space and set F = I'(X, F); it suffices to show that the canonical
homomorphism p, : F — ¥, is bijective for all x € X, because we would thus obtain
an isomorphism of the constant sheaf isomorphic to F with the given sheaf F.
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If f € F, the set of points x € X such that f(x) = 0is open (by the general properties
of sheaves) and closed (because ¥ is locally constant); since an irreducible space is
connected, this set is either  or X, which shows that p, is injective.

Now take m € ¥, and let s be a section of F over a neighbourhood U of x such that
s(x) = m; cover X by nonempty open subsets U; such that #(U;) is constant on U;; since
X is irreducible, we have U n U; # @; choose a point x;U N U;; obviously there exists a
section s; of F over U; such that s;(x;) = s(x;), and since the sections s and s; coincide
in x;, they coincide on whole U n U;, since U N U; is irreducible, hence connected;
analogously s; and s; coincide on U; n U, since they coincide on U N U; N U; # @; thus
the sections s; define a unique section s of # over X and we have p,(s) = m, which ends
the proof.

Now let X be an irreducible algebraic variety. If U is a nonempty open subset of X,
set Ay = I'(U, Ox); Ay is an integral domain: indeed, suppose that we have f - g =0, f
and g being regular functions from U to K; if F (resp. G) denotes the set of x € U such
that f(x) = 0 (resp. g(x) = 0), we have U = FUG and F and G are closed in U, because
f and g are continuous; since U is irreducible, it follows that F = U or G = U, which
means exactly that f or g is zero on U. We can therefore form the field of fractions of
Ay, which we denote by Ky;; if U C V, the homomorphism pg : Ay — Ay is injective,
because U is dense in V, and we have a well defined isomorphism qbg of Xy, to Kys; the
system of {K;, ¢>5} defines a sheaf of fields K; then X, is canonically isomorphic with
the field of fractions of O, x.

PROPOSITION 9. For any irreducible algebraic variety X, the sheaf X defined above is a
constant sheaf.

By Lemma 2, it suffices to prove the Proposition when X is a locally closed sub-
variety of the affine space K"; let F be the closure of X in K" and let I(F) be the
ideal in K[X, ..., X, ] of polynomials vanishing on F (or equivalently on X). If we set
A = K[Xy,...,X,]/I(F), the ring A is an integral domain because X is irreducible; let
K(A) be the ring of fractions of A. By corollary of Proposition 4, we can identify O, x with
the localization of A in the maximal ideal defined by x; we thus obtain an isomorphism
of the field K(A) with the field of fractions of O, x and it is easy to check that it defines
an isomorphism of the constant sheaf equal to K(A) with the sheaf &, which shows the
Proposition.

By Lemma 1, the sections of the sheaf X form a field, isomorphic with X, for
all x € X, which we denote by K(X). We call it the field of rational functions on X;
it is an extension of finite type! of the field K, whose transcendence degree over K
is the dimension of X (we extend this definition to reducible varieties by imposing
dim X = SupdimY; if X is a union of closed irreducible varieties Y;). In general, we
identify the field K(X) with the field X, ; since we have O, x C X, we see that we can
view O, x as a subring of K(X) (it is the ring of specialization of the point x in K(X) in
the sense of Weil, [16], p. 77). If U is an open subset of X, I'(U, Ox) is the intersection
in K(X) of the rings O, x for x running over U.

If Y is a subvariety of X, we have dimY < dim X; if furthermore Y is closed and
does not contain any irreducible component of X, we have dim Y < dim X, as shown by
reducing to the case of subvarieties of K" (cf. for example [8], Chap. X, §5, th. II).

li.e. finitely generated
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§2. Coherent algebraic sheaves

37. The sheaf of local rings on an algebraic variety

Return to the notation of n°® 31: let X = K" and let O be the sheaf of local rings of X. We
have:

LEMMA 1. The sheaf O is a coherent sheaf of rings, in the sense of n° 15.

Let x € X, let U be an open neighbourhood of x and let f1, ..., f}, be sections of O
over U, i.e. rational functions regular at each point of U; we must show that the sheaf
of relations between f, ..., f, is a sheaf of finite type over O. Possibly replacing U by a
smaller neighbourhood, we can assume that f; can be written in the form f; = P;/Q
where P; and Q are polynomials and Q does not vanishon U. Letnowy € U and g; € O,

such that sz g:f; is zero in a neighbourhood of y; we can again write g; in the form
g = R;/S where R; and S are polynomials and S does not vanish in y. The relationship
“ZZ}; gifi = 0in a neighbourhood of y” is equiyalent to the relationship “Z;j RP;=0
in a neighbourhood of y”, i.e. equivalent to Zzlf R;P; = 0. As the module of relations
between the polynomials P; is a module of finite type (because the ring of polynomials
is Noetherian), it follows that the sheaf of relations between f; is of finite type.

Let now V be a closed subvariety of X = K"; for any x € X let (V') be the ideal of
O, consisting of elements f € O, whose restriction to V is zero in a neighbourhood of
x (we thus have 7,(V) = O, if x ¢ V). The J,(V) form a subsheaf J(V) of the sheaf O.

LEMMA 2. The sheaf J(V') is a coherent sheaf of O-modules.

Let I(V) be the ideal of K[X}, ..., X, | consisting of polynomials P vanishing on V.
By Proposition 4 from n° 31, (V) is equal to I(V) - O, for all x € V and this formula
remains valid for x ¢ V as shown immediately. The ideal I(V') being generated by a
finite number of elements, it follows that the sheaf J(V) is of finite type, thus coherent
by Lemma 1 and Proposition 8 from n° 15.

We shall now extend Lemma 1 to arbitrary algebraic varieties:

PROPOSITION 1. IfV is an algebraic variety, the sheaf Oy, is a coherent sheaf of ringson V.

The question being local, we can suppose that V' is a closed subvariety of the affine
space K". By Lemma 2, the sheaf J(V) is a coherent sheaf of ideals, thus the sheaf
©/J(V) is a coherent sheaf of rings on X, by Theorem 3 from n° 16. This sheaf of rings is
zero outside V and its restriction to V is just Oy (n° 31); thus the sheaf Oy, is a coherent
sheaf of rings on V (n° 17, corollary of Proposition 11).

REMARK. It is clear that Proposition is valid more generally for any prealgebraic variety.

38. Coherent algebraic sheaves

If V is an algebraic variety whose sheaf of local rings is Oy, we call an algebraic sheaf on
V any sheaf of Oy,-modules, in the sense of n° 6; if # and G are two algebraic sheaves,
we say that ¢ : F — Gis an algebraic homomorphism (or simply a homomorphism) if
it is a Oy -homomorphism; recall that this is equivalent to saying that ¢, : F, — G, is
O, y-linear and that ¢ transforms local sections of 7 into local sections of G.
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If # is an algebraic sheaf on V, the cohomology groups H4(V, #) are modules over
r'(V,Oy), cf. n° 23; in particular, they are vector spaces over K.

An algebraic sheaf F over V is said to be coherent if it is a coherent sheaf of Oy, -
modules, in the sense of n° 12; by Proposition 7 of n° 15 and Proposition 1 above, these
sheaves are characterized by the property of being locally isomorphic to the cokernel of
an algebraic homomorphism ¢ : O?, - OII;.

We shall give some examples of coherent algebraic sheaves (we will see more of them
later, cf. in particular n®48, 57).

39. Sheaf of ideals defined by a closed subvariety

Let W be a closed subvariety of an algebraic variety V. For any x € V, let (W) be the
ideal of O, consisting of elements f whose restriction to W is zero in a neighbourhood
of x; let (W) be the subsheaf of Oy, formed by J,(W). We have the following Proposition,
generalizing Lemma 2:

PROPOSITION 2. The sheaf J(W) is a coherent algebraic sheaf.

The question being local, we can suppose that V' (thus also W) is a closed subvariety
of the affine space K". It follows from Lemma 2, applied to W, that the sheaf of ideals
defined by W in K" is of finite type; this shows that J(W), which is its image under the
canonical homomorphism @ — Oy, is also of finite type, thus is coherent by Proposition
8 of n° 15 and Proposition 1 of n° 37.

Let Oy be the sheaf of local rings of W and let OK, be the sheaf on V obtained by
extending Oy, by 0 outside W (cf. n° 5); this sheaf is canonically isomorphic to Oy /J (W),
in other words, we have an exact sequence:

0—J(W) - Oy - 0Oy, - 0.

Let then F be an algebraic sheaf on W and let " be the sheaf obtained by extending &
by 0 outside W; we can consider " as a sheaf of OQ-modules, thus also as a sheaf of
Oy -modules whose annihilator contains J(W). We have:

PROPOSITION 3. If ¥ is a coherent algebraic sheaf on W, FV is a coherent algebraic sheaf
onV. Conversely, if G is an coherent algebraic sheaf on V whose annihilator contains J(W),
the restriction of G to W is a coherent algebraic sheaf on W.

If F is a coherent algebraic sheaf on W, " is a coherent sheaf of O;—modules (n°
17, Proposition 11), thus a coherent sheaf of @;,-modules (n° 16, Theorem 3). Conversely,
if G is a coherent algebraic sheaf on V whose annihilator contains J(W), G can be
considered as a sheaf of Oy, /J(W)-modules, and is a coherent sheaf (n° 16, Theorem 3);
the restriction of G to W is then a coherent sheaf of Oy,-modules (n° 17, Proposition 11).

So, any coherent algebraic sheaf on W can by identified with an algebraic coherent
sheaf on V' (and this identification does not change cohomology groups, by Proposition
8 of n°® 26). In particular, any coherent algebraic sheaf on an affine (resp. projective)
variety can be considered as a coherent algebraic sheaf on an affine (resp. projective)
space; we will frequently use this possibility later.

REMARK. Let G be a coherent algebraic sheaf on V which is zero outside W; the an-
nihilator of G does not necessarily contain J(W) (in other words, G not always can be
considered as an coherent algebraic sheaf on W); all we can say is that it contains a
power of J(W).
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40. Sheaves of fractional ideals

Let V be an irreducible algebraic variety and let K(V') denote the constant sheaf of
rational functions on V (cf. n° 36); K(V) is an algebraic sheaf which is not coherent if
dim V' > 0. An algebraic subsheaf # of K(V') can be called a “sheaf of fractional ideals”
since each ¥, is a fractional ideal of O, ;.

PROPOSITION 4. An algebraic subsheaf ¥ of K(V') is coherent if and only if it is of finite
type.

The necessity is trivial. To prove the sufficiency, it suffices to prove that K(V') satisfies
condition (b) of definition 2 from n° 12, in other that if f,, ..., f p are rational functions,
the sheaf R(f7, ..., fp) is of finite type. If x is a point of V, we can find functions g; and
h such that f; = g;/h, g; and h being regular in a neighbourhood U of x and & being
nonzero on U; the sheaf R(f7, ..., fp) is then equal to the sheaf R(gy, ..., g,), which is of
finite type, since Oy, is a coherent sheaf of rings.

41. Sheaf associated with the total space of a vector bundle

Let E be an algebraic fibre space with a vector space of dimension r as a fibre and an
algebraic variety V' as a base; by definition, the typical fibre of E is a vector space K"
and the structure group is the linear group GL(r, K) acting on K" in the usual way (for
the definition of an algebraic fibre space, cf. [17]; see also [15], n°® 4 for analytic vector
bundles).

If U is an open subset of V, let S(E); denote the set of regular sections of E on U;
if V' > U, we have the restriction homomorphism qﬁg : 8(E)y — S(E)y ; thus a sheaf
S(E), called the sheaf of germs of sections of E. Since E is a vector bundle, each S(E)y
isaI'(U, Oy)-module and it follows that S(E) is an algebraic sheaf on V. If we identify
locally E with V x K", we have:

PROPOSITION 5. The sheaf S(E) is locally isomorphic to O',; in particular, it is a coherent
algebraic sheaf.

Conversely, it is easily seen that any algebraic sheaf & on V, locally isomorphic to
O}, is isomorphic to a sheaf S(E) where E is determined up to isomorphism (cf. [15] for
the analytic case).

If V is a variety without singularities, we can take for E the vector bundle of p-
covectors tangent to V' (p being a nonnegative integer); let QP be the sheaf corresponding
to 8(E); an element of QF, x € V is just a differential form of degree p on V, regular
in x. If we set h?? = dimg H1(V, QP), we know that in the classical case (and if V is
projective), hP4 is equal to the dimension of harmonic forms of type (p, q) (theorem of
Dolbeault? and, if B, denotes the n-th Betti number of V, we have B, = Zp +q=n hP4.
In the general case, we could take the above formula for the definition of the Betti
numbers of a nonsingular projective variety (we will see in n°® 66 that h?4 are finite). It
is convenient to study their properties, in particular to see if they coincide with those
involved in the Weil conjectures for varieties over finite fields®>. We only mention that
they satisfy the “Poincaré duality” B,, = B,,,_,, when V is an irreducible of dimension
m.

2P. Dolbeault. Sur la cohomologie des variétés analytiques complexes. C. R. Paris, 246, 1953, p. 175-177.
3Bulletin Amer. Math. Soc., 55, 1949, p.507
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The cohomology groups H4(V, S(E)) are also involved in other issues, including the
Riemann-Roch, as well as in the classification of algebraic fibre spaces with base V' and
the affine group x — ax + b as the structural group (cf. [17], §4, where the case when
dim V = 1 is studied).

§3. Coherent algebraic sheaves on affine varieties

42. Affine varieties

An algebraic variety V is said to be affine if it is isomorphic to a closed subvariety of an
affine space. The product of two affine varieties is an affine variety; any closed subvariety
of an affine variety is an affine variety.

An open subset U of an algebraic variety V is said to be affine if, equipped with the
structure of an algebraic variety induced from X, it is an affine variety.

PROPOSITION 1. Let U and V be two open subsets of an algebraic variety X. If U and V
are affine, U NV is affine.

Let A be the diagonal of X X X; by n° 35, the mapping x — (x,x) is a biregular
isomorphism from X onto A; thus the restriction of this map to U NV is a biregular
isomorphism of U NV onto AN U X V. Since U and V are affine varieties, U X V is
also an affine variety; on the other hand, A is closed in X X X by the axiom (V A;;), thus
ANUXxVisclosed in U X V, hence affine, qg.e.d.

(It is easily seen that this Proposition is false for prealgebraic varieties; the axiom
(V App) plays an essential role).

Let us now introduce a notation which will be used thorough the rest of this para-
graph: if V' is an algebraic variety and f is a regular function on V, we denote by V; the
open subset of V' consisting of all points x € V for which f(x) # 0.

PROPOSITION 2. IfV is an affine algebraic variety and f is a regular function on V, the
open subset Vs is affine.

Let W be the subset of V' X K consisting of pairs (x, 1) such that 1 - f(x) = 1; it
is clear that W is closed in V X K, thus it is an affine variety. For all (x,1) € W set
7(x,4) = x; the mapping 7 is a regular mapping from W to V. Conversely, for all
x € Vy, set w(x) = (x,1/f(x)); the mapping w: V;y — W is regular and we have
mow = 1, worr = 1, thus Vi and W are isomorphic, g.e.d.

PROPOSITION 3. Let V be a closed subvariety of K", F be a closed subset of V and let
U =V — F. The open subsets Vp form a base for the topology of U when P runs over the
set of polynomials vanishing on F.

Let U’ = V — F’ be an open subset of U and let x inU’; we must show that there
exists a P for which Vp C U’ and x € V5p; in other words, P has to be zero on F’ and
nonzero in x; the existence of such a polynomial follows simply from the definition of
the topology of K".

THEOREM 1. The open affine subsets of an algebraic variety X form an open base for the
topology of X.

The question being local, we can assume that X is a locally closed subspace of an
affine space K'; in this case, the theorem follows immediately from Propositions 2 and 3.
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COROLLARY. The coverings of X consisting of open affine subsets are arbitrarily fine.

We note that if U = {U,};¢; is such a covering, the Ui,..i, are also open affine subsets,
by Proposition 1.

43. Some preliminary properties of irreducible varieties

Let V be a closed subvariety of K" and let I(V') be the ideal of K[X7, ..., X, ] consisting of
polynomials vanishing on V; let A be the quotient ring K[X}, ..., X, ]/I(V); we have a
canonical homomorphism

t: A->ITV,0y)

that is injective by the definition of I(V).

PROPOSITION 4. IfV isirreducible, 1 : A — I'(V, Oy) is bijective.

(In fact, this holds for any closed subvariety of K", as will be shown in the next n° ).

Let K(V) be the field of fractions of A; by n° 36, we can identify O, with the
localization of A in the maximal ideal m, consisting of polynomials vanishing in x, and
wehaveI'(V,0y) = A = ﬂx o Ox,v (all Oy iy being considered as subrings of K(V)). But
all maximal ideals of A are m,, since K is algebraically closed (Hilbert’s theorem of zeros);
it follows immediately (cf. [8], Chap. XV, §5, th. X) that A = ) v =1T(V,0y),
g.e.d.

xev 0

PROPOSITION 5. Let X be an irreducible algebraic variety, Q a regular function on X and
P a regular function on X. Then, for n sufficiently large, the rational function Q"P is
regular on the whole of X.

By quasi-compactness of X, the question is local; by Theorem 1, we can thus suppose
that X is a closed subvariety of K". The above Proposition shows that then Q is an
element of A = K[X7,...,X,]/(I(X)). The assumption made on P means that for any
point x € X, we can write P = P, /Q, with P, and Q, in A and Q,(x) # 0; if a denotes
the ideal of A generated by all Q,, the variety of zeros of a is contained in the variety
of zeros of Q; by Hilbert’s theorem of zeros, this leads to Q" € a for n sufficiently large,
hence Q" = ), R,.Q, and Q"P = ), R P, with R, € A, which shows that Q"P is regular
on X.

(We could also use the fact that X, is affine if X is and apply Proposition 4 to X,).

PROPOSITION 6. Let X be an irreducible algebraic variety, Q a regular functionon X, F a
coherent algebraic sheaf on X and s a section of F over X whose restriction to X, is zero.
Then for n sufficiently large the section Q"s is zero on the whole of X.

The question being again local, we can assume:

(a) that X is a closed subvariety of K",

(b) that & is isomorphic to a cokernel of a homomorphism ¢ : (9§ - (9;1(,

(c) that s is the image of a section o of (9;1(.

(Indeed, all the above conditions are satisfied locally).

Set A = I'(X, Ox) = K[Xy,...,X,]/I(X). The section o can be identified with a
system of g elements of A. Let on the other hand

t; = $(1,0,...,0),....t, = $(0,...,0,1);
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the t;, 1 < i < p are sections of Og( over X, thus can be identified with systems of g
elements of A. The assumption made on s means that for all x € X, we have o(x) €

qS(OiX), that is, o can be written in the form o = Zi:f fi -t with f; € O, x; or, by
clearing denominators, that there exist Q, € A, Q,(x) # 0 for which Q, -0 = Zizf R;-t;
with R; € A. The reasoning used above shows then that, for n sufficiently large, Q"

belongs to the ideal generated by Q,, hence Q"o(x) € qb((?i ,X) for all x € X, which
means that Q"s is zero on the whole of X.

44. Vanishing of certain cohomology groups

PROPOSITION 7. Let X be an irreducible algebraic variety, Q; a finite family of regular
functions on X that do not vanish simultaneously and U the open covering of X consisting
of Xo, = U;. If F is a coherent algebraic subsheaf of OF, we have HI(U, F) = 0 for all
q > 0.

Possibly replacing U by an equivalent covering, we can assume that none of the
functions Q; vanishes identically, in other words that we have U; # ¢ for all i.

Let f = (fio.”iq) be a g-cocycle of U with values in . Each fio,"iq is a section of
F over Uy ;. thus can be identified with a system of p regular functions on Ui..ip5
applying Proposition 5to Q = Q ... Ql-q we see that, for n sufficiently large, 8iy..iy =
Qj, - Qiq)” f - is a system of p regular functions on X. Choose an integer n for which
this holds for all systems iy, ..., igs which is possible because there is a finite number
of such systems. Consider the image of 8iy..i, in the coherent sheaf (9§ /F; thisis a
section vanishing on Uiy...ip5 then applying Proposition 6 we see that for m sufficiently
large, the product of this section with (Q; ... Qiq)m is zero on the whole of X. Setting
N = m + n, we see that we have constructed sections hio_”iq of # over X which coincide
with (Q, . Qi )N fiy..i, on Uy -

As the Qf’ do not vanish simultaneously, there exist functions

R, € (X, Ox)

such that ); RiQﬁv = 1. Then for any system i, ..., i;_; set
Kiy. iyt = > Rihiiy..i /(Qiy Qi DV,
i

which makes sense because Q;; ... Qi is nonzero on Uigoodgy-

We have thus defined a cochain k € C971(U, F). 1 claim that f = dk, which will
show the Proposition.

We must check that (dk)io.“,-q =f iy it suffices to show that these two sections
coincide on U = [ U, since they will coincide everywhere, because they are systems of
p rational functions on X and U # 0. Now over U, we can write

Kiy..igy = ZRi QY- Fiig..ip>
i
hence
Jj=q
(dk)yy..i, = 2D R -QN- Fiig.i;..0,
i=0 i

and taking into account that f is a cocycle,
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COROLLARY 1. HY(X,¥) =0forq > 0.

Indeed, Proposition 3 shows that coverings of the type used in Proposition 7 are
arbitrarily fine.

COROLLARY 2. The homomorphism I'(X, O;}) - I'(X, (9§ /F) is surjective.

This follows from Corollary 1 above and from Corollary 2 to Proposition 6 from n°
24.

COROLLARY 3. LetV be a closed subvariety of K" and let
A =KI[X,,...X,]/I(V).
Then the homomorphism 1 : A — I'(V, Oy) is bijective.

We apply Corollary 2 above to X = K", p = 1, F = J(V), the sheaf of ideals defined
by V; we obtain that every element of I'(V, Oy,) is the restriction of a section of O on X,
that is, a polynomial, by Proposition 4 applied to X.

45. Sections of a coherent algebraic sheaf on an affine variety

THEOREM 2. Let F be a coherent algebraic sheaf on an affine variety X. For every x € X,
the O, x-module F, is generated by elements of I'(X, F).

Since X is affine, it can be embedded as a closed subvariety of an affine space K"; by
extending the sheaf # by 0 outside X, we obtain a coherent algebraic sheaf on K" (cf.
n° 39) and we are led to prove the theorem for the new sheaf. In other words, we can
suppose that X = K".

By the definition of a coherent sheaf, there exists a covering of X consisting of
open subsets on which ¥ is isomorphic with a quotient of the sheaf OP. Applying
Proposition 3, we see that there exists a finite number of polynomials Q; that do not vanish
simultaneously and such that on every U; = X, there exists a surjective homomorphism
¢; : OPi — F; we can furthermore assume that none of the polynomials is identically
Zero.

The point x belongs to one Uj, say Uyy; it is clear that &, is generated by sections of
F over Uy; as Q, is invertible in O, it suffices to prove the following lemma:

LEMMA 1. Ifs, is a section of F over U, there exists an integer N and a section s of F over
X such that s = Qg] - 59 over U,

By Proposition 2, U; N Uy is an affine variety, obviously irreducible; by applying
Corollary 2 of Proposition 7 to this variety and to ¢, : OPi — F, we see that there exists
a section o(; of OPi on U; N U, such that ¢;(cy;) = s on U; N Uy; as U; N Uy is the set of
points of U; in which Qg does not vanish, we can apply Proposition 5to X = U;, Q = Q,
and we see that there exists, for n sufficiently large, a section o; of OPi over U; which
coincides with Qg - gy; over U; N Uy; by setting slf = ¢;(o;), we obtain a section of F
over U; that coincides with Q) - s, over U; N U,. The sections slf and s;. coincide on
U; nU; N Uy; applying Proposition 6 to slf — s;., we see that for m sufficiently large we

have Qg'(s! — s}) = 0 on the whole of U; N U;. The Q;" - 5! then define a unique section s

n+m

of F over X, and we have s = Q

the proof of Theorem 2.

So on Uy, which shows the lemma and completes
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COROLLARY 1. The sheaf F is isomorphic to a quotient sheaf of the sheaf (9‘;.

Because 7, is an O, x-module of finite type, it follows from the above theorem that
there exists a finite number of sections of F generating #; by Proposition 1 of n° 12,
these sections generate F, for y sufficiently close to x. The space X being quasi-compact,
we conclude that there exists a finite number of sections s, ..., Sp of F generating &, for
all x € X, which means that ¥ is isomorphic to a quotient sheaf of the sheaf O;

a B
COROLLARY 2. Let A — B — C be an exact sequence of coherent algebraic sheaf on an

affine variety X. The sequence I'(X, A) i I'X,B) i I'(X, @) is also exact.

We can suppose, as in the proof of Theorem 2, that X is an affine space K", thus is
irreducible. Set J = S(a) = Ker(B); everything reduces to seeing that « : I'(X,A) —
I'(X, ) is surjective. Now, by Corollary 1, we can find a surjective homomorphism
¢ O§ — A and, by Corollary 2 to Proposition 7, ao¢ : I'(X, (9;}) - I'(X, g) is surjec-
tive; this is a fortiori the same for o : I'(X, A) - I'(X, J), q.e.d.

46. Cohomology groups of an affine variety with values in a coherent algebraic
sheaf

THEOREM 3. Let X be an affine variety, Q; a finite family of regular functions on X that
do not vanish simultaneously and let U be the open covering of X consisting of X, = U;. If
F is a coherent algebraic sheaf on X, we have H1(U,F) = 0 forall q¢ > 0.

Assume first that X is irreducible. By Corollary 1 to Theorem 2, we can find an exact
sequence
0->R— O§ - F - 0.

The sequence of complexes: 0 - C(U, R) - C(U, O;}) - CU, F) - 0is exact; indeed,
this reduces to saying that every section of & over Ui,..q, is the image of a section of (9§
over Uy, j.» which follows from Corollary 2 to Proposition 7 applied to the irreducible
variety Uiy..iy- This exact sequence gives birth to an exact sequence of cohomology:

. = HIQU, OP) » HIQL, F) — HIHQAULR) - ...,

and as HI(U, (9;}) = HI"'(U,R) = 0 for g > 0 by Proposition 7, we conclude that
HIU,F) =0.

We proceed now to the general case. We can embed X as a closed subvariety of
an affine space K"; by Corollary 3 to Proposition 7, the functions Q; are induced by
polynomials P;; let on the other hand R; be a finite system of generators of the ideal
I(X). The functions P;, R; do not vanish simultaneously on K", thus define an open
covering U’ of K; let #' be the sheaf obtained by extending F by 0 outside X; applying
what we have proven to the space K", the functions P;, R j and the sheaf ¥/, we see that
HIQUW,F") = 0 for g > 0. As we can immediately verify that the complex C(U’, ) is
isomorphic to the complex C(U, F), it follows that HI(U, F) = 0, q.e.d.

COROLLARY 1. IfX is an affine variety and F a coherent algebraic sheaf on X, we have
HY(X,F)=0forallq > 0.

Indeed, the coverings used in the above theorem are arbitrarily fine.
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COROLLARY 2. Let0 - A — B — C — 0 be an exact sequence of sheaves on an affine
variety X. If the sheaf A is coherent algebraic, the homomorphism I'(X,8) —» I'(X, C) is
surjective.

This follows from Corollary 1, by setting g = 1.

47. Coverings of algebraic varieties by open affine subsets

PROPOSITION 8. Let X be an affine variety and let U = {U,};cr be a finite covering of X by
open affine subsets. If F is a coherent algebraic sheaf on X, we have HI(U, F) = 0 for all
q > 0.

By Proposition 3, there exist regular functions P; on X such that the covering 8B =

.....

defined by restrictions of P; to Ui..i,> a8 Uiy i, is an affine variety by Proposition 1, we
can apply Theorem 3 to it and conclude that H q(%io...ip’ F) =0forall g > 0. Applying
then Proposition 5 of n° 29, we see that

HYU,F)=HI(B,F),
and, as HI1(®B, #) = 0 for q > 0 by Theorem 3, the Proposition is proven.

THEOREM 4. Let X be an algebraic variety, ¥ a coherent algebraic sheaf on X and U =
{U,}ier a finite covering of X by open affine subsets. The homomorphismo(U) : H*"(U, F) —
H"(X, %) is bijective for all n > 0.

Consider the family 8¢ of all finite coverings of X by open affine subsets. By the
corollary of Theorem 1, these coverings are arbitrarily fine. On the other hand, for every
system (iy, ... , ,,) the covering %Z)...ip induced by 2% on U; ondp is a covering by open affine
subsets, by Proposition 1; by Proposition 8, we thus have H q(%ff)...ip’ F)=0forg > 0.
The conditions (a) and (b) of Theorem 1, n° 29 are satisfied and the theorem follows.

THEOREM 5. Let X be an algebraic variety and U = {U,};¢; a finite covering of X by open
affine subsets. Let 0 - A — B — C — 0 be an exact sequence of sheaves on X, the sheaf
A being coherent algebraic. The canonical homomorphism Hg Q,e) - HIU, ) (cf n°
24) is bijective for all g > 0.

It obviously suffices to prove that Cy(2U, €) = C(U, C), that is, that every section of €
over Uy, ; is the image of a section of B over Ui..ip» which follows from Corollary 2 of
Theorem 3.

COROLLARY 1. Let X be an algebraic variety and let0 - A - B - C — 0 be an
exact sequence of sheaves on X, the sheaf A being coherent algebraic. The canonical
homomorphism Hl(X, €) — HI(X, €) is bijective for all ¢ > 0.

This is an immediate consequence of Theorems 1 and 5.
COROLLARY 2. We have an exact sequence:

. = HI(X,B) - HI(X,C) - HI* (X, A) - HI''(X,B) > ...
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§4. Correspondence between modules of finite type and
coherent algebraic sheaves

48. Sheaf associated with a module

Let V be an affine variety, O the sheaf of local rings of V; the ring A = I'(V, O), which
will be called the ring of coordinates of V, is an algebra over K which has no nilpotent
elements but 0. If V' is embedded as a closed subvariety of an affine space K", we know
(cf. n°® 44) that A is identified with the quotient algebra of K[X, ..., X, ] by the ideal of
polynomials vanishing on V; it follows that the algebra A is generated by a finite number
of elements.

Conversely, we verify easily that if A is a commutative K-algebra without nilpotent
elements (other that 0) and is generated by a finite number of elements, there exists an
affine variety V such that A is isomorphic to I'(V, O); moreover, V is determined up to
isomorphism by this property (we can identify V with the set of characters of A equipped
with the usual topology).

Let M be an A-module; M defines a constant sheaf on V which we denote again by
M; the same way A defines a constant sheaf, and the sheaf M can be considered as a sheaf
of A-modules. Define A(M) = O ® 4 M, the sheaf O being also considered as a sheaf of
A-modules; it is clear that A(M) is an algebraic sheaf on V. Moreover, if ¢ : M — M’ is
an A-homomorphism, we have a homomorphism A(¢) =1 Q ¢ : AM) — AM’); in
other words, A(M) is a covariant functor of the module M.

PROPOSITION 1. The functor A(M) is exact.

Let M — M’ — M" be an exact sequence of A-modules. We must observe that the
sequence AM) - AM') — A(M") is exact, in other words, that for all x € V the
sequence:

Ox ®AM d Ox ®AM/ - Ox ®AMH

is exact.

Now O, is nothing else that the localization Ag of A, S being the set of those f € A
for which f(x) # 0 (for the definition of localization, cf. [8], [12] or [13]). Proposition 1
is thus a particular case of the following result:

LEMMA 1. Let A be a ring, S a multiplicative system in A not containing 0, Ag the local-
ization of Ain S. IfM — M’ — M" is an exact sequence of A-modules, the sequence
Ag@®a M > Ag @, M' - Ag ® 4 M" is exact.

Denote by My the set of fractions m/s with m € M, s € S, two fractions m /s and
m' /s’ being identified if there exists an s/ € S such that s”(s' - m — s - m’) = 0; it is
easily seen that Mg is an Ag-module and that the mapping
a/s@mea-m/s
is an isomorphism from Ag ® 4 A onto Mg; we are thus led to prove that the sequence
Mg - Mg — MY
is exact, which is obvious.

PROPOSITION 2. A(M) = 0 implies M = 0.
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Let m be an element of M; if A(M) = 0, we have 1 ® m = 0in O, ® 4 M for all
x € V. By the discussion above, 1 ® m = 0 is equivalent to existence of an element
s € A, s(x) # 0such that s - m = 0; the annihilator of m in M is not contained in any
maximal ideal of A, which implies that it is equal to A, so m = 0.

PROPOSITION 3. If M is an A-module of finite type, A(M) is a coherent algebraic sheaf on
V.

Because M is of finite type and since A is Noetherian, M is isomorphic to the cok-
ernel of a homomorphism ¢ : A? - AP and .A(M) is isomorphic to the cokernel of
A(P) : A(AT) —» A(AP). As A(AP) = OP and A(AT?) = 1, it follows that A(M) is
coherent.

49. Module associated with an algebraic sheaf

Let F be an algebraic sheaf on V and let I'(¥) = I'(V,¥); since ¥ is a sheaf of O-
modules, I'(¥F) is equipped with a natural structure of an A-module. Any algebraic
homomorphism ¢ : & — G defines an A-homomorphism I'(¢) : I'(F) - I'(G). If we
have an exact sequence of algebraic sheaves ¥ — G — X, the sequence

I'(F)->TI(9) - I'x)

is exact (n® 45); applying this to an exact sequence O” — F — 0 we see that I'(¥) is an
A-module of finite type if F is coherent.
The functors A(M) and I'(F) are “inverse” to each other:

THEOREM 1. (a) If M is an A-module of finite type, I'(A(M)) is canonically isomorphic to
M.
(b) If F is a coherent algebraic sheaf on V, A(I'(¥)) is canonically isomorphic to F.

First let us show (a). Every element m € M defines a section a(m) of A(M) by the
formula: a(m)(x) =1 Q® m € O, ®,4 M; hence a homomorphism a : M — I'(A(M)).
When M is a free module of finite type, « is bijective (it suffices to see this when M = A,
in which case it is obvious); if M is an arbitrary module of finite type, there exists an
exact sequence L' — L® — M — 0 where L° and L' are free of finite type; the sequence
ALY) - A(L®) - A(M) — 0 is exact, thus also the sequence I'(A(L')) — I'(A(LY)) —
I'(A(M)) — 0. The commutative diagram:

Lt s L0 5 S

L

r(ALY)) — FALY) — TAM) —

shows then that o : M — I'(A(M)) is bijective, which shows (a).

Let now ¥ be an algebraic coherent sheaf on V. If we associate to every s € I'(¥)
an element s(x) € F(X), we obtain an A-homomorphism: I'(¥) — F, which extends
to an O,-homomorphism 8, : O, ®4 I'(F) - F,; we easily verify that the 3, form a
homomorphism of sheaves 8 : A(I'(F)) — F. When F = OP, the homomorphism f is
bijective; it follows by the same reasoning as above that 8 is bijective for every coherent
algebraic sheaf #, which shows (b).
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REMARKS. (1) We could also deduce (b) from (a); cf. n°® 65, proof of Proposition 6.
(2) We will see in Chapter IIT how the above correspondence should be modified
when one studies coherent sheaves on the projective space.

50. Projective modules and vector bundles

Recall ([6], Chap. I, th. 2.2) that an A-module is called projective if it is a direct summand
of a free A-module.

PROPOSITION 4. Let M be an A-module of finite type. Then M is projective if and only if
the O,-module O, ® 4 M is free for every x € V.

If M is projective, O, ® 4 M is O,—projective, thus O,—free since O, is a local ring
(cf. [6], Chap. VIII, th. 6.1°).
Conversely, if all O, ® 4 M are free, we have

dim(M) = Supdim,ey (O, ® 4 M) =0 (cf.[6],Chap.VII,Exer.11),

from which it follows that M is projective ([6], Chap. VI, §2).

Note that if # is a coherent algebraic sheaf on V and if F, is isomorphic to OF, F is
isomorphic to OP in a neighbourhood of x; if this property is satisfied in every x € V,
the sheaf #F is thus locally isomorphic to the sheaf OP, the integer p being constant on
every connected component of V. Applying this to the sheaf A(M), we obtain:

COROLLARY. Let F be a coherent algebraic sheaf on a connected affine variety V. The
three following properties are equivalent:

(D) I'(¥F) is a projective A-module,

(i) & is locally isomorphic to OP,

(iii) & is isomorphic to the sheaf of germs of sections of a vector bundle with base V.

In other words, the mapping E — I'(S(E) (E denoting a vector bundle) gives a
bijective correspondence between classes of vector bundles and classes of projective
A-modules of finite type; in this correspondence, a trivial bundle corresponds to a free
module and conversely.

Note that when V' = K" (in which case A = K[X}, ..., X,]), we do not know if there
exist projective A-modules that are not free, or equivalently, if there exist algebraic vector
bundles with base K" that are not trivial.



Chapter III

Coherent Algebraic Sheaves on
Projective Varieties

§1. Projective varieties

51. Notation

(The notation introduced below will be used without reference throughout the chapter).
Let r be an integer > 0 and let Y = K"+ —{0}; the multiplicative group K* of nonzero
elements of K acts on Y by the formula

Afgy oo s ) = (Afgy oo s ALy).

Two points y and y’ will be called equivalent if there exists 1 € K* such that y’ = 1y;
the quotient space of Y by this equivalence relation will be denoted by P,(K) or simply
X; it is the projective space of dimension r over K; the canonical projection of Y onto X
will be denoted 7.

LetI ={0,1,...,r}; for every i € I, we denote by ¢; the i-th coordinate function on
K'*!, defined by the formula:

ti(Mos - s M) = Hy-

We denote by V; the open subset of K"*! consisting of points whose ¢; is # 0 and by
U; the image of V; by 7; the {U;} form a covering U of X. Ifi € I and j € I, the function
t;/t;is regular on V; and invariant for K*, thus defines a function on U; which we denote
also by t;/t;; for fixed i, the functions ¢;/t;, j # i define a bijection ¢; : U; — K".

We equip K"*! with the structure of an algebraic variety and Y the induced structure.
Likewise, we equip X with the quotient topology from Y: a closed subset of X is thus the
image by 7 of a closed cone in K1, If U is open in X, we define Ay, = I'(x~}(U), Oy);
this is the sheaf of regular functions on 7=1(U). Let A(L’] be the subring of Ay consisting
of elements invariant for K* (that is, homogeneous functions of degree 0). When V' > U,
we have a restriction homomorphism ¢;, : A% — A, and the system (A, ¢},) defines a
sheaf Ox which can be considered as a subsheaf of the sheaf #(X) of germs of functions
on X. Such a function f, defined in a neighbourhood of x belongs to O, x if and only if
it coincides locally with a function of the form P/Q where P and Q are homogeneous
polynomials of the same degree in ¢, ..., t, with Q(y) # 0 for y € 7~1(x) (which we
write for brevity as Q(x) # 0).

PROPOSITION 1. The projective space X = P,(K), equipped with the topology and sheaf
above, is an algebraic variety.

46
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The U;,i € I are openin X and we verify immediately that the bijections ¢; : U; — K"
defined above are biregular isomorphisms, which shows that the axiom (V A;) is satisfied.
To show that (V A;p) is also satisfied, we must observe that the subset of K" X K" consisting
of all pairs (;(x), ¥ (x)) where x € U; N U; is closed, which does not pose difficulties.

In what follows, X will be always equipped with the structure of an algebraic variety
just defined; the sheaf Oy will be simply denoted O. An algebraic variety V is called
projective if it is isomorphic to a closed subvariety of a projective space. The study of
coherent algebraic sheaves on projective varieties can be reduced to the study of coherent
algebraic sheaves on P,(K), cf. n° 39.

52.  Cohomology of subvarieties of the projective space

Let us apply Theorem 4 from n° 47 to the covering U = {U,};¢; defined in the preceding
n° : it is possible since each Uj; is isomorphic to K". We thus obtain:

PROPOSITION 2. If ¥ is a coherent algebraic sheaf on X = P.(K), the homomorphism
o) : HYU,F) » H (X, F) is bijective for all n # 0.

Since U consists of 7 + 1 open subsets, we have (cf. n° 20, corollary to Proposition 2):
COROLLARY. H"(X,F)=0forn >r.
This result can be generalized in the following way:

PROPOSITION 3. Let V be an algebraic variety, isomorphic to a locally closed subvariety
of the projective space X. Let F be an algebraic coherent sheaf on V and let W be the
subvariety of V such that F is zero outside W. We then have H*(V,¥) = 0 forn > dim W.

In particular, taking W = V, we see that we have:
COROLLARY. H(V,F)=0forn > dimV.

Identify V with a locally closed subvariety of X = P,(K); there exists an open subset
U of X such that V is closed in U. We can clearly assume that W is closed in V, so that W
isclosed in U. Let F = X — U. Before proving Proposition 3, we establish two lemmas:

LEMMA 1. Let k = dim W; there exists k + 1 homogeneous polynomials P;(t,, ..., t,) of
degrees > 0, vanishing on F and not vanishing simultaneously on W.

(By abuse of language, we say that a homogeneous polynomial P vanishes in a point
x of P,(K) if it vanishes on 7~1(x)).

We proceed by induction on k, the case when k = —1 being trivial. Choose a point
on each irreducible component of W and let P; be a homogeneous polynomial vanishing
on F, of degree > 0 and nonvanishing in each of these points (the existence of P; follows
from the fact that F is closed, given the definition of the topology of P,(K)). Let W' be
a subvariety of W consisting of points x € W such that P,(x) = 0; by the construction
of P;, no irreducible component of W is contained in W’ and it follows (cf. n° 36)
that dim W’ < k. Applying the induction assumption to W’, we see that there exist k
homogeneous polynomials P,, ..., P;,1 vanishing on F and nonvanishing simultaneously
on W’; it is clear that the polynomials Py, ..., P, satisfy appropriate conditions.

LEMMA 2. Let P(t, ..., t,) be a homogeneous polynomial of degree n > 0. The set Xp of
all points x € X such that P(x) # 0 is an open affine subset of X.
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If we assign to every point y = (g, ..., 4,) € Y the point of the space KN having
for coordinates all monomials ,uz)" . yy", Mg + ... + m, = n, we obtain, by passing to
quotient, a mapping ¢, : X — Py_;(K). It is classical, and also easy to verify, that ¢,, is
a biregular isomorphism of X onto a closed subvariety of PN~1(K) (“Veronese variety”);
now ¢,, transforms the open subset X, onto the locus of points of ¢,,(X) not lying on a
certain hyperplane of Py_;(X); as the complement of any hyperplane is isomorphic to
an affine space, we conclude that X, is isomorphic to a closed subvariety of an affine
space.

We shall now prove Proposition 3. Extend the sheaf # by 0 on U — V; we obtain a
coherent algebraic sheaf on U which we also denote by &, and we know (cf. n° 26) that
H"(U,%) = H"(V,%). Let on the other hand Py, ..., P;,; be homogeneous polynomials
satisfying the conditions of Lemma 1; let Py ,, ..., P, be homogeneous polynomials of
degrees > 0, vanishing on W UF and not vanishing simultaneously in any point of U — W
(to obtain such polynomials, it suffices to take a system of homogeneous coordinates
of the ideal defined by W U F in K[, ..., t,]). Forevery i, 1 <i < h, let V; be the set of
points x € X such that P;(x) # 0; we have V; C U and the assumptions made above
show that 28 = {V} is an open covering of U; moreover, Lemma 2 shows that V; are
open affine subsets, so H'(®B,¥) = H"(U,¥) = H(V,¥) for all n > 0. On the other
hand, if n > k and if the indices iy, ... , i,, are distinct, one of the indices is > k + 1 and
V;,..i, does not meet W; we conclude that the group of alternating cochains C'"(B, F) is
zero if n > k, which shows that H" (23, ) = 0, by Proposition 2 of n° 20.

53.  Cohomology of irreducible algebraic curves

If V is anirreducible algebraic variety of dimension 1, the closed subsets of V distinct from
V are finite subsets. If F is a finite subset of VV and x a point of F, we set V¥ = (V —F)u{x};
the VE, x € F form a finite open covering B of V.

LEMMA 3. The coverings BF of the above type are arbitrarily fine.

Let U = {U;};c; be an open covering of V, which we may assume to be finite since V'
is quasi-compact. We can likewise assume that U; # @ foralli € I. If weset F; = V — U,
F; is also finite, and so is F = Uiel F;. We will show that B < U, which proves the
lemma. Let x € F; there exists an i € I such that x ¢ F;, since the U; cover V; we have
then F — {x} D F;, because F D F;, which means that V£ C U; and shows that BF < 1.

LEMMA 4. Let F be a sheafon V and F a finite subset of V. We have
HY(BF, F)=0
forn > 2.

Set W = V — F; it is clear that foo N..N fon = W if xo, ..., X,, are distinct and if
n > 1. If we put G = I'(W, ¥), it follows that the alternating complex C'(BF, F) is
isomorphic, in dimensions > 1, to C’(S(F), G), S(F) denoting the simplex with F for the
set of vertices. It follows that

H"(BY, ) = H*(S(F),G) = 0forn > 2,

the cohomology of a simplex being trivial.
Lemmas 3 and 4 obviously imply:
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PROPOSITION 4. IfV is an irreducible algebraic curve and F is an arbitrary sheafin V,
we have H*(V,¥) = 0 forn > 2.

REMARK. I do not know whether an analogous result is true for varieties of arbitrary
dimension.

§2. Graded modules and coherent algebraic sheaves on the
projective space

54. The operation F(n)

Let & be an algebraic sheaf on X = P,(K). Let F; = F(U;) be the restriction of F to U;
(cf. n® 51); if n is an arbitrary integer, let 6;(n) be the isomorphism of F;(U; n U;) with
Fi(U; n U;) defined by multiplication by the function t;’ /t"; this makes sense, since
t;/t; is a regular function on U; N U with values in K*. We have 6;(n)o6;,(n) = 0;(n)
at every point of U; N U; N Uy; we can thus apply Proposition 4 of n® 4 and obtain an
algebraic sheaf denoted by #(n), defined by gluing the sheaves F; = F(U;) using the
isomorphisms 6;;(n).

We have the canonical isomorphisms: #(0) ~ &, F(n)(m) ~ F(n + m). Moreovetr,
F(n) is locally isomorphic to &, thus coherent if F is; it also follows that every exact
sequence ¥ — F' — F' of algebraic sheaves gives birth to exact sequences F(n) —
F'(n) - F"(n)foralln € Z.

We can apply the above procedure to the sheaf # = O and so obtain the sheaves
O(n), n € Z. We will give another description of these sheaves: if U is open in X, let
A7, be the subset of A;; = I'(m~!(U), Oy) consisting of regular functions of degree n
(that is, satisfying the identity f(1y) = 1"f(y) for A € K* and y € 7~ 1(U)); the Al
are A%-modules, thus give birth to an algebraic sheaf, which we denote by ©’'(n). An
element of ©@'(n),, x € X can be this identified with a rational function P/Q, P and Q
being homogeneous polynomials such that Q(x) # 0 and deg P — degQ = n.

PROPOSITION 1. The sheaves O(n) and O’ (n) are canonically isomorphic.

By definition, a section of O(n) over an open U C X is a system (f;) of sections of O
over U N U; with f; = (t}“/tlf“) - fjonUnNU;NnUj; the f; can be identified with regular
functions, homogeneous of degree 0 over 7~ Y(U) N7~ 1(U;); set g; = t{'- fi; we then have
g; = g; at every point of 77'(U) n 77'(U;) N 7~'(U;), thus the g; are the restrictions
of a unique regular function on 7~1(U), homogeneous of degree n. Conversely, such a
function g defines a system (f;) by setting f; = g/t". The mapping (f;) — g is thus an
isomorphism of O(n) with ©’(n).

Henceforth, we will often identify O(n) with ©’(n) by means of the above isomor-
phism. We observe that a section of O’(n) over X is just a regular function on Y, ho-
mogeneous of degree n. If we assume that » > 1, such a function is identically zero for
n < 0 and it is a homogeneous polynomial of degree n for n > 0.

PROPOSITION 2. For every algebraic sheaf F, the sheaves ¥ (n) and F ® o O(n) are canon-
ically isomorphic.

Since O(n) is obtained from the O; by gluing with respect to 6;;(n), ¥ ® O(n) is
obtained from F; ® O; by gluing with respect to the isomorphisms 1 ® 6;(n); identifying
F; ® O; with F; we recover the definition of F(n).

Henceforth, we will also identify #(n) with # ® O(n).
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55.  Sections of F(n)

Let us first show a lemma on algebraic varieties, that is quite analogous to Lemma 1 of
n° 45:

LEMMA 1. LetV be an affine variety, Q a regular function on'Vand V, the set of all points
x € V such that Q(x) # 0. Let F be a coherent algebraic sheaf on V and let s be a section
of F over V. Then, for n sufficiently large, there exists a section s’ of ¥ over the whole V
such that s’ = Q"s over V.

Embedding V in an affine space and extending & by 0 outside V, we are brought to
the case where V is an affine space, thus is irreducible. By Corollary 1 to Theorem 2
from n° 45, there exists a surjective homomorphism ¢ : O€ — F; by Proposition 2 of n°
42,V is an open affine subset and thus there exists (n°® 44, Corollary 2 to Proposition
7) a section o of (95 over Vj, such that ¢(c) = s. We can identify o with a system of
p regular functions on V,; applying Proposition 5 of n°® 43 to each of these functions,
we see that there exists a section ¢’ of Of; over V such that ¢/ = Q"o on Vo, provided
that n is sufficiently large. Setting s’ = ¢(¢’), we obtain a section of F over V such that
s’ =Q"son V.

THEOREM 1. Let F be a coherent algebraic sheaf on X = P.(K). There exists an integer
n(F) such that for all n > n(¥F) and all x € X, the O,-module F(n), is generated by
elements of I' (X, ¥ (n)).

By the definition of #(n), a section s of #(n) over X is a system (s;) of sections of F
over U; satisfying the compatibility conditions:

S; = (t;l/t:l) ‘Sj on Ui N Uj’

we say that s; is the i-th component of s.

On the other hand, since U; is isomorphic to K", there exists a finite number of
sections s;" of F over U; which generate F, for all x € U; (n® 45, Corollary 1 to Theorem
2); if for a certain integer n we can find sections s* of #(n) whose i-th component is s,
it is clear that I'(X, #(n)) generates F(n), for all x € U;. Theorem 1 is thus proven if
we prove the following Lemma:

LEMMA 2. Let s; be a section of F over U,. For all n sufficiently large, there exists a section
s of F(n) whose i-th component is equal to s;.

Apply Lemma 1 to the affine variety V' = U}, the function Q = ¢;/¢; and the section
s; restricted to U; N Uj; this is legal, because t; /¢ is a regular function on U; whose zero
set is equal to U i—UuinU;. We conclude that there exists an integer p and a section
s’ of F over U; such that s, = (tf/tf) -s;onU; N Uj; for j = i, we have s/ = s;, which
allows us to write the preceding formula in the form s;. = (tf’ / tf )- slf .

The s;. being defined for every index j (with the same exponent p), consider s;. —
(tlf / tj.) )- S;c; it is a section of & over U; N Uy, whose restriction to U; N U; N Uy is zero; by
applying Proposition 6 of n° 43 we see that for every sufficiently large integer q we have
(tiq/t;.’)(s;. - (ti/tﬁ.’) -5;) = 0o0n U; N Uy; if we then put s; = (t?/t?) -siandn =p+q,
the above formula is written s; = (¢;!/ t;‘) - 8 and the system s = (s;) is a section of F(n)
whose i-th component is equal to s;, g.e.d.
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COROLLARY. Every coherent algebraic sheaf ¥ on X = P,(K) is isomorphic to a quotient
sheaf of a sheaf O(n)P, n and p being suitable integers.

By the above theorem, there exists an integer n such that #(—n), is generated by
I'(X, #(—n)) for every x € X; by the quasi-compactness of X, this is equivalent to saying
that #(—n) is isomorphic to a quotient sheaf of a sheaf OP, p being an appropriate
integer > 0. It follows then that ¥ ~ F(—n)(n) is isomorphic to a quotient sheaf of
O(n)P ~ OP(n).

56. Graded modules

Let S = K[ty, ..., t,] be the algebra of polynomials in ¢, ..., t,. For any integer n > 0,
let S,, be the linear subspace of S consisting of homogeneous polynomials of degree
n; forn < 0, we set S,, = 0. The algebra S is a direct sum of S,, n € Z and we have
S b Sq cS p+g> in other words, S is a graded algebra.

Recall that an S-module M is said to be graded if there is given a decomposite of M
intoadirectsum: M = @nez M, M,, being subgroups of M such that S,-M, C M, for
every couple (p, q) of integers. An element of M,, is said to be homogeneous of degree n; a
submodule N of M is said to be homogeneous if it is a direct sum of N N M,,, in which case

itis a graded S-module. If M and M’ are two graded S-modules, an S-homomorphism

$: M—->M
is said to be homogeneous of degree s if $(M,,) C M, . for every n € Z. A homogeneous
S-homomorphism of degree 0 is simply called a homomorphism.

If M is a graded S-module and n an integer, we denote by M (n) the graded S-module:

M(n) = P M(n), with M(n), = My,
pPEZ

We thus have M(n) = M as S-modules, but a homogeneous element of degree p of M(n)
is homogeneous of degree n + p in M; in other words, M (n) is made from M by lowering
degrees by n units.

We denote by € the class of graded S-modules M such that M,, = 0 for n sufficiently
large. If A - B — C is an exact sequence of homomorphisms of graded S-modules, the
relations A € @, C € C clearly imply B € C; in other words, € is a class in the sense
of [14], Chap. I. Generally, we use the terminology introduced in the aforementioned
article; in particular, a homomorphism ¢ : A — B is called C-injective (resp. C-surjective)
if Ker(¢) € C (resp. if Coker(¢) € C) and C-bijective if it is both C-injective and C-
surjective.

A graded S-module M is said to be of finite type if it is generated by a finite number
of elements; we say that M satisfies the condition (TF) if there exists an integer p such
that the submodule ®n2p M, of M is of finite type; this is the same as saying that M
is C-isomorphic to a module of finite type. The modules satisfying (TF) form a class
containing C.

A graded S-module L is called free (resp. free of finite type) if it admits a base (resp. a
finite base) consisting of homogeneous elements, in other words if it is isomorphic to a
direct sum (resp. to a finite direct sum) of the modules S(#n;).
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57.  The algebraic sheaf associated with a graded S-module

If U is a nonempty subset of X, we denote by S(U) the subset of S = K[, ..., t,] con-
sisting of homogeneous polynomials Q such that Q(x) # 0 for all x € U; S(U) is a
multiplicatively closed subset of S, not containing 0. For U = X, we write S(x) instead
of S{x}).

Let M be a graded S-module. We denote by My; the set of fractions m/Q with m € M,
Q € S(U), m and Q being homogeneous of the same degree; we identify two fractions
m/Q and m’ /Q’ if there exists Q"' € S(U) such that

Q"Q"-m—-Q-m')=0;
it is clear that we have defined an equivalence relation between the pairs (m, Q). For
U = x, we write M, instead of My,;.
Applying this to M = S, we see that Sy, is the ring of rational functions P/Q, P and Q

being homogeneous polynomials of the same degree and Q € S(U); if M is an arbitrary
graded S-module, we can equip M with a structure of an S;-module by imposing:

m/Q+m'/Q = (Q'm+Qm')/QQ’
(P/Q)- (m/Q") =Pm/QQ".

If U c V, we have S(V) C S(U), hence the canonical homomorphisms
¢1 : My — My;

the system (M, E), where U and V run over nonempty open subsets of X, define thus
a sheaf which we denote by A(M); we verify immediately that

lim My = M,

xep U T M
that is, that A(M), = M,. In particular, we have A(S) = O and as the My are Sy-
modules, it follows that A(M) is a sheaf of A(S)-modules, that is, an algebraic sheaf
on X. Any homomorphism ¢ : M — M’ defines in a natural way the S;;-linear homo-
morphisms ¢y, : My — My, thus a homomorphism of sheaves A(¢) : AM) — AM"),
which we frequently denote ¢. We clearly have

Al@+9) =A@+ AW), AQ) =1, Alpop) = A(@)oAp).

The operation .A(M) is thus a covariant additive functor defined on the category of graded
S-modules and with values in the category of algebraic sheaves on X.

(The above definitions are quite analogous to these of §4, from Chap. II; it should be
noted however that Si; is not the localization of S in S(U), but only its homogeneous
component of degree 0.)

58. First properties of the functor A(M)

PROPOSITION 3. The functor A(M) is an exact functor.

Let M — M/ i M"" be an exact sequence of graded S-modules and show that the

sequence M, M . LN M/ is also exact. Let m’ /Q € M/, be an element of the kernel of
B; by the definition of MY, there exist R € S(x) such that RB(m’) = 0; but then there
exists m € M such that a(m) = Rm’ and we have a(m/RQ) = m’'/Q, q.e.d.

(Compare with n° 48, Lemma 1.)
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PROPOSITION 4. If M is a graded S-module and if n is an integer, A(M(n)) is canonically
isomorphic to A(M)(n).

Leti €I, x € U;and m/Q € M(n),, withm € M(n),, Q € S(x), degQ = p. Put:

Nix(m/Q) = m/tiQ € M,

which is valid because m € M, , and t7Q € S(x). We immediately see that7; , : M(n), —
M, is bijective for all x € U; and defines an isomorphism #»; of A(M(n)) to A(M) over
U;. Moreover, we have 77i°77j_1 = 0;j(n) over U; N U;. By the definition of the operation
F(n) and Proposition 4 of n° 4, this shows that . A(M(n)) is isomorphic to A(M)(n).

COROLLARY. A(S(n)) is canonically isomorphic to O(n).

Indeed, it has been said that .A(S) was isomorphic to O.
(It is also clear that A(S(n)) is isomorphic to @’ (n), because O’ (n), consists precisely
of the rational functions P/Q such that degP — degQ = n and Q € S(x).)

PROPOSITION 5. Let M be a graded S-module satisfying the condition (TF). The algebraic
sheaf A(M) is also a coherent sheaf. Moreover A(M) = 0 ifand only if M € C.

IfM € @, forallm € M and x € X there exists Q € S(x) such that Qm = 0; it suffices
to take Q of a sufficiently large degree; we thus have M, = 0, hence A(M) = 0. Let
now M be a graded S-module satisfying the condition (TF); there exists a homogeneous
submodule N of M, of finite type and such that M /N € C; applying the above together
with Proposition 3, we see that A(N) — A(M) is bijective and it thus suffices to prove
that A(N) is coherent. Since N is of finite type, there exists an exact sequence L! —
L° - N — 0 where L° and L' are free modules of finite type. By Proposition 3, the
sequence A(L') — A(L%) - A(N) — 0is exact. But, by the corollary to Proposition 4,
A(L®) and A(L") are isomorphic to finite direct sums of the sheaves O(n;) and are thus
coherent. It follows that A(N) is coherent.

Let finally M be a graded S-module satisfying (TF) and such that A(M) = 0; by the
above considerations, we can suppose that M is of finite type. If m is a homogeneous
element of M, let a,, be the annihilator of m, that is, the set of all polynomials Q € S
such that Q - m = 0; it is clear that a,, is a homogeneous ideal. Moreover, the assumption
M, = 0 for all x € X implies that the variety of zeros of a,, in K"*! is reduced to {0};
Hilbert’s theorem of zeros shows that every homogeneous polynomial of sufficiently
large degree belongs to a,,. Applying this to the finite system of generators of M, we
conclude immediately M, = 0 for p sufficiently large, which completes the proof.

By combining Propositions 3 and 5 we obtain:

PROPOSITION 6. Let M and M’ be two graded S-modules satisfying the condition (TF) and
letp : M — M’ be a homomorphism of M to M’. Then

AlP): AM) - AM")

is injective (resp. surjective, bijective) if and only if ¢ is C-injective (vesp. C-surjective,
C-bijective).
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59. The graded S-module associated with an algebraic sheaf

Let # be an algebraic sheaf on X and set:

r(#) =@ r@), with IF),=IX,F(n).

nez

The group I'(¥) is a graded group; we shall equip it with a structure of an S-module.
Lets € I'(X, #(q)) and let P € S,,;; we can identify P with a section of O(p) (cf. n°® 54),
thus P ® s is a section of O(p)  F(q) = F(q)(p) = F(p+q), using the homomorphisms
from n° 54; we have then defined a section of #(p + gq) which we denote by P - s instead
of P ® s. The mapping (P,s) — P - s equips I'(¥) with a structure of an S-module that is
compatible with the grading.

In order to compare the functors A(M) and I'(¥) we define two canonical homo-
morphisms:

a:M->TAM)) and B: AT(F)) - F.

Definition of a. Let M be a graded S-module and let m € M, be a homogeneous
element of M of degree 0. The element m/1 is a well-defined element of M, that
varies continuously with x € X; thus m defines a section a(m) of A(M). If now m
is homogeneous of degree n, m is homogeneous of degree 0 in M(n), thus defines
a section a(m) of A(M(n)) = A(M)(n) (cf. Proposition 4). This is the definition of
a: M — I'(A(M)) and it is immediate that it is a homomorphism.

Definition of 8. Let F be an algebraic sheaf on X and let s/Q be an element of I'(¥),,
with s € I'(X, #(n)), Q € S,, and Q(x) # 0. The function 1/Q is homogeneous of degree
—n and regular in x, hence a section of O(—n) in a neighbourhood of x; it follows that
1/Q ® s is a section of O(—n) ® F(n) = F in a neighbourhood of x, thus defines an
element of #, which we denote by 5,(s/Q), because it depends only on s/Q. We can
also define 8, by using the components s; of s: if x € U, Bx(s/Q) = (¢]'/Q) - 5;(x). The
collection of the homomorphisms 8, defines a homomorphism g : AI'(F)) - F.

The homomorphisms a and 8 are related by the following Propositions, which are
shown by direct computation:

PROPOSITION 7. Let M be a graded S-module. The composite of the homomorphisms
AM) - AT (AM))) - A(M) is the identity.

(The first homomorphism is defined by a : M — I'(A(M)) and the second is §3,
applied to ¥ = A(M).)

PROPOSITION 8. Let F be an algebraic sheaf on X. The composite of the homomorphisms
I'(F) » I'(AT(F))) —» I['(F) is the identity.

(The first homomorphism is «, applied to M = I'(¥), while the second one is defined
bygB: A(I'(F)) - F.)

We will show in n°® 65 that 8 : A(I'(¥)) — ¥ is bijective if & is coherent and that
a: M — I'(A(M)) is C-bijective if M satisfies the condition (TF).

60. The case of coherent algebraic sheaves

Let us show a preliminary result:

PROPOSITION 9. Let £ be an algebraic sheaf on X, a direct sum of a finite number of the
sheaves O(n;). Then I'(F) satisfies (TF) and 3 . A(I'(L)) — £ is bijective.
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It comes down immediately £ = O(n), then to £ = O. In this case, we know that
I'(O(p)) = S, for p > 0, thus we have S C I'(0O), the quotient belonging to C. It follows
first that I"(O) satisfies (TF), then that A(I"(0)) = .A(S) = O, q.e.d.

(We observe that we have I'(Q) = S if r > 1; on the other hand, if r = 0, I'(OQ) is not
even an S-module of finite type.)

THEOREM 2. For any coherent algebraic sheaf F on X there exists a graded S-module M,
satisfying (TF), such that A(M) is isomorphic to F.

By the corollary to Theorem 1, there exists an exact sequence of algebraic sheaves:

LliLO—w—f—m,

where £! and £° satisfy the assumptions of the above Proposition. Let M be the cokernel
of the homomorphism I'(¢) : I'(£') — I'(£°); by Proposition 9, M satisfies the condition
(TF). Applying the functor A to the exact sequence:

rt) ->r’ - M- o,
we obtain an exact sequence:
A(LY) = AT(L%) - AM) = 0.

Consider the following commutative diagram:

A(LY) — A(LY)) > A(M) >0

Pl

£l s L0 s F s 0

By Proposition 9, the two vertical homomorphisms are bijective. It follows that A(M)
is isomorphic to F, g.e.d.

§3. Cohomology of the projective space with values in a
coherent algebraic sheaf

61. The complexes C,,(M) and C(M)

We preserve the notation of n®51 and 56. In particular, I will denote the interval
{0,1, ..., r} and S will denote the graded algebra K[t,, ..., t,].

Let M be a graded S-module and k and q two integers > 0; we shall define a group
Cz(M ): an element of Cz(M ) is a mapping

(io, ey lq) =4 m(lo e lq>

which associates to every sequence (i, ..., ig) of g + 1 elements of I a homogeneous
element of degree k(q+1) of M, depending in an alternating way on iy, ..., iy. In particular,
we have m(iy ... ig) = 0 if two of the indices iy, ..., i; are equal. We define addition in

CZ(M ) in the obvious way. the same with multiplication by an element 4 € K, and
CZ (M) is a vector space over K.
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g+1

(M) by the formula:

If m is an element of CZ(M ), we definedm € C

j=g+1
(dmXiy .igp1) = D, (—1)ftZ Ml B )
j=0

We verify by a direct calculation that dod = 0; thus, the direct sum Cy (M) =

@g:g Cg(M ), equipped with the coboundary operator d, is a complex, whose g-th coho-
mology group is denoted by H Z (M).
(We note, after [11], another interpretation of the elements of CZ (M): introducer +1

differential symbols dx, ..., dx, and associate to every m € CZ(M ) a “differential form”
of degree q + 1:
Wy, = Z m(iy ... ig)dx; A ... A dxiq.
ip<...<lg

If we put or, = Zi(r) tf‘dxl-, we see that we have:
Wam = A A Wy,

in other words, the coboundary operation is transformed into the exterior multiplication
by the form o).
If h is an integer > k, let pli‘ : CE(M ) — CZ(M ) be the homomorphism defined by
the formula:
pr(m)i ... ig) = (1, -- tiq)h_km(io wedg).

We have pZod = dopZ and pzopi = ,o;{ if k < h <. We can thus define a complex
C(M), the inductive limit of the system (C, (M), pf{‘) for k - +o00. The cohomology
groups of this complex are denoted H7(M). Because cohomology commutes with induc-
tive limits (cf. [6], Chap. V, Prop. 9.3*), we have:

HI(M) = klim H](M).
Every homomorphism ¢ : M — M’ defines a homomorphism
¢: Cr(M) — Cr (M)
by the formula: ¢(m)(iy ... i) = ¢(m(iy ... iy)), hence, by passing to the limit, ¢ : C(M) —
C(M"); moreover, these homomorphisms commute with boundary and thus define the
homomorphisms
¢: Hg(M) - Hq(M') and ¢: HI(M) —» HI(M').

If we have an exact sequence 0 - M — M’ - M"” — 0, we have an exact sequence
of complexes 0 — C (M) — C,(M’') - C,(M") — 0, hence an exact sequence of
cohomology:

~HIM') - H(M") > HY' ) - HY' (M) - .
The same results for C(M) and HY(M).

REMARK. We shall see later (cf. n® 69) that we can express HZ(M ) in terms of Extg.
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62. Calculation of H z(M ) for certain modules M

Let M be a graded S-module and m € M a homogeneous element of degree 0. The
system of (tf‘ -m) is a 0-cocycle of C;, (M), which we denote by a*(m) and identify with its
cohomology class. We obtain in this way a K-linear homomorphism a* : M, — H}(M);
asa” = ploak if h > k, the a* define by passing to the limit a homomorphism a : M, —
HO(M).

Let us introduce two more notation:

If (P, ..., P,) are elements of S, we denote by (Py, ..., P,)M the submodule of M
consisting of the elements Zi:g P; - m; with m; € M; if the P; are homogeneous, this
submodule is homogeneous.

If P is an element of S and N a submodule of M, we denote by N : P the submodule
of M consisting of the elements m € M such that P-m € N; we clearlyhave N: P D N;
if N and P are homogeneous, sois N : P.

Having specified these notation, we have:

PROPOSITION 1. Let M be a graded S-module and k an integer > 0. Assume that for all
i € I we have:
(I IV S el (N )7 8
Then:
@) af: M, — Hg(M) is bijective (if r > 1),

(b) HZ(M) =0for0O<g<r.

(For i = 0, the assumption means that t’o‘ -m = 0 implies m = 0.)

This Proposition is a special case of a result of de Rham [11] (the de Rham’s result
being also valid even if we do not assume that the m(i ... i;) are homogeneous). See also
[6], Chap. VIII, {4 for a particular case, sufficient for our purposes.

We now apply Proposition 1 to the graded S-module S(n):

PROPOSITION 2. Let k be an integer > 0, n an arbitrary integer. Then:

(@)a* : S, — H)(S(n)) is bijective (if r > 1),

(b) Hz(S(n)) =0for0<g<r,

(c)H l’((S(n)) admits a base (over K) consisting of the cohomology classes of the mono-
mials tgo BT With0 < a; < k and Zzg a; =k(r+1)+n.

It is clear that the S-module S(n) satisfies the assumptions of Proposition 1, which
shows () and (b). On the other hand, for every graded S-module M, we have H, (M) =

Myr41y/ (t’g s v » )M, now the monomials

Ao

i=r
(0t 20, 0 =k(r +1) +n,
i=0

form a basis of S(n)y,+1) and those for which atleast «; is > k form a basis of (t’o‘, s tf ISy
hence (c).

It is convenient to write the exponents «; in the form «; = k — §5;. The conditions of
(c) are then written:

i=r
0<B; <k and Zﬁiz—n.
i=0
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The second condition, together with §; > 0, implies 3; < —n —r; if thusk > —n —r,

the condition ; < k is a consequence of the preceding two. Hence:

COROLLARY 1. Fork > —n—r, H ]Z(S(n)) admits a basis formed of the cohomology classes
i

of monomials (t ... tr)k/ltégo tf’ with 3; > 0 and Zizg B = —n.
We also have:
COROLLARY 2. Ifh > k > —n — r, the homomorphism
Py o H(S() — HI(S(n)
is bijective for all g > 0.

For q # r, this follows from the assertions (a) and (b) of Proposition 2. For q = r,
this follows from Corollary 1, given that pf{l transforms

(tg ... ::,)"/tg0 7 into (g .. tr)h/tgo ot

0
We have H1(S(n)) = 0 for 0 < q < r and H"(S(n)) is a vector space of dimension (_ 1)
over K.

COROLLARY 3. The homomorphism « : S, — H°(S(n)) is bijective if r > 1 orif n > 0.
r

The assertion pertaining to « follows from Proposition 2, (a), in the case when r > 1;
itis clear if r = 0 and n > 0. The rest of the Corollary is an obvious consequence of
Corollaries 1 and 2 (seeing that the binomial coefficient () is zero for a < r).

r

63. General properties of HI(M)

PROPOSITION 3. Let M be a graded S-module satisfying the condition (TF). Then:
(a) There exists an integer k(M) such that p,’; : Hz(M ) — HZ(M ) is bijective for h >
k > k(M) and every q.

(b) HY(M) is a vector space of finite dimension over K for all g > 0.

(c) There exists an integer n(M) such that forn > n(M), « : M, — H°(M(n)) is
bijective and that H1(M(n)) is zero for all g > 0.

This immediately comes down to the case that M is of finite type. We say that M is
of dimension < s (s being an integer > 0) if there exists an exact sequence,

0L 5105 Mo,

with the L' free graded S-modules of finite type. By the Hilbert syzygy theorem (cf. [6],
Chap. VIII, th. 6.5), this dimension is always < r + 1.

We prove the Proposition by induction on the dimension of M. Ifitis 0, M is free of
finite type, i.e. a direct sum of modules S(»;) and the Proposition follows from Corollaries
2 and 3 and Proposition 2. Assume that M is of dimension < s and let N be the kernel
of L - M. The graded S-module N is of dimension < s — 1 and we have an exact
sequence:

0->N->L'>M—o0.
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By the induction assumption, the Proposition is true for N and L°. Applying the five
lemma ([7], Chap. I, Lemme 4.3) to the commutative diagram:

H!(N) — HI(L®) — H}(M) — HIT'(N) —— BT (1Y)

N N

H(N) — H(L% — HI(M) — HIY'(\) — BT (@),

where h > k > Sup(k(N), k(L?), we obtain (a), thus also (b), because the Hg(M ) are of
finite dimension over K. On the other hand, the exact sequence

HI(L(n)) —» HI(M(n)) —» HI*'(N(n))

shows that H9(M(n)) = 0 for n > Sup(n(L°), n(N)). Finally, consider the commutative
diagram:

0 > N, > L, > M, > 0

S N SR

0 —— H°(N(n)) —— H°(L°(n)) —— H°(M(n)) —— H'(N(n));

for n > n(N), we have H(N(n)) = 0; we deduce that a : M,, —» H°(M(n)) is bijective
for n > Sup(n(L®), n(N)), which completes the proof of the Proposition.

64. Comparison of the groups H1(M) and H4(X, A(M))

Let M be a graded S-module and let A(M) be the algebraic sheaf on X = P,.(K) defined
by M by the procedure of n° 57. We will now compare C(M) with C’(U, A(M)), the
complex of alternating cochains of the covering U = {U;};c; with values in the sheaf
AM).

Letm € CZ (M) and let (i, ... , ig) be a sequence of g +1 elements of I. The polynomial
(L, - tiq)k belongs obviously to S(Ul-o._.iq), with the notation of n°® 57. It follows that
miy ... ig) / (&, - tiq)k belongs to M, where U = Ui..ip» thus defines a section of A(M)
over Uj, ;.. When (i, ... , i) varies, the system consisting of this sections is an alternating
cochain of U with values in A(M), which we denote by ¢, (m). We immediately see that
1, commutes with d and that ¢, = ¢, opZ if h > k. By passing to the inductive limit, the ¢
thus define a homomorphism ¢ : C(M) — C'(U, A(M)), commuting with d.

PROPOSITION 4. If M satisfies the condition (TF), t : C(M) — C'(U, A(M)) is bijective.

If M € @, we have M,, = 0 for n > ngy, so C,(M) = 0 for k > ny and C(M) = 0. As
every S-module satisfying (TF) is C-isomorphic to a module of finite type, this shows that
we can restrict ourselves to the case when M is of finite type. We can then find an exact
sequence L! — L° - M — 0, where L! and L° are free of finite type. By Propositions 3
and 5 from n° 58, the sequence

ALY - ALY - AM) - 0
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is an exact sequence of coherent algebraic sheaves; as the Ui,..., are affine open subsets,
the sequence
C'QAULALY) - C'(U, AL — C'(U,AM)) — 0

is exact (cf. n°® 45, Corollary 2 to Theorem 2). The commutative diagram

cL) —— ) —— (M) —— 0

S S S

c’'U,ALY)) —— (U, AL") —— C"(U, AM)) —— 0

then shows that if the Proposition is true for the module L' and LY, so it is for M. We are
thus reduced to the special case of a free module of finite type, then, by the decomposite
into direct summands, to the case when M = S(n).

In this case, we have A(S(n)) = O(n); a section f io-ndg of O(n) over Ui,..., is, by the
sole definition of this sheaf, a regular function on V; n...N Vi, and homogeneous of
degreen. AsV; n..N Vi, as the set of points of K"*! where the function tiy - i, is # 0,
there exists an integer k such that

Figuiy = Plig e ig) /(g o ;)5

P(iy ... ig) being a homogeneous polynomial of degree n + k(g + 1), that is, of degree
k(q + 1) in S(n). Thus, every alternating cochain f € C’(U, O(n)) defines a system
P(iy ... ig) that is an element of Cy(S(n)); hence a homomorphism

v: C'(U, O(n)) —» C(S(n)).

As we verify immediately that cov = 1 and vot = 1, it follows that ¢ is bijective, which
completes the proof.

COROLLARY. ( defines an isomorphism of H1(M) with H4(X, A(M)) for all g > 0.

Indeed, we know that H'9(U, . A(M)) = HI(U, A(M)) (n° 20, Proposition 2) and that
HIU, AM)) = HI(X,A(M)) (n° 52, Proposition 2, which applies because .A(M) is
coherent).

REMARK. It is easy to see thatt: C(M) — C'(U, A(M)) is injective even when M does
not satisfy the condition (TF).

65. Applications

PROPOSITION 5. If M is a graded S-module satisfying the condition (TF), the homomor-
phisma : M — I'(A(M)), defined in n° 59, is C-bijective.

We must observe that ¢ : M,, - I'(X, A(M(n))) is bijective for n sufficiently large.
Then, by Proposition 4, I'(X, A(M(n))) is identified with H°(M(n)); the Proposition
follows thus from Proposition 3, (c), given the fact that the homomorphism « is trans-
formed by the above identification to a homomorphism defined at the beginning of n°
62, also denoted by «.
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PROPOSITION 6. Let F be a coherent algebraic sheaf on X. The graded S-module I'(F)
satisfies the condition (TF) and the homomorphism 3 : A(I'(F)) — F defined in n° 59 is
bijective.

By Theorem 2 of n° 60, we can assume that ¥ = A(M), where M is a module
satisfying (TF). By the above Proposition, « : M — I'(A(M)) is C-bijective; as M
satisfies (TF), it follows that I'(A(M)) satisfies it also. Applying Proposition 6 from n°

58, we see that o : A(M) — A(I'(A(M))) is bijective. Since the composite A(M) 5

A (AM))) i A(M) is the identity (n° 59, Proposition 7), it follows that 3 is bijective,
g.e.d.

PROPOSITION 7. Let ¥ be a coherent algebraic sheafon X. The groups H1(X, F) are vector
spaces of finite dimension over K for all ¢ > 0 and we have H4(X, ¥ (n)) = 0 forq > 0 and
n sufficiently large.

We can assume, as above, that & = A(M) where M is a module satisfying (TF). The
Proposition then follows from Proposition 3 and the corollary to Proposition 4.

PROPOSITION 8. We have H1(X,O(n)) = 0 for0 < q < r and H' (X, O(n)) is a vector
space of dimension (_”_1) over K, admitting a base consisting of the cohomology classes of
r

the alternating cocycles of U

1=r
forr =1/t .t with §,>0 and > pi=-n.
i=0
We have O(n) = A(S(n)), hence H1(X, O(n)) = H(S(n)), by the corollary to Propo-
sition 4; the Proposition follows immediately from this and from the corollaries of
Proposition 2.
We note that in particular H"(X, O(—r — 1)) is a vector space of dimension 1 over K,
with a base consisting of the cohomology class of the cocycle fy; , =1/t ... ;.

66. Coherent algebraic sheaves on projective varieties

Let V be a closed subvariety of the projective space X = P,(K) and let F be a coherent
algebraic sheaf on V. By extending F by 0 outside V, we obtain a coherent algebraic
sheaf on X (cf. n° 39) denoted FX; we know that H1(X, ¥X) = H4(V, ¥). The results of
the preceding n° thus apply to the groups H4(V, F). We obtain immediately (given n°
52):

THEOREM 1. The groups H4(V, F) are vector spaces of finite dimension over K, zero for
q>dimV.

In particular, for g = 0 we have:
COROLLARY. I'(V, %) is a vector space of finite dimension over K.

(It is natural to conjecture that the above theorem holds for all complete varieties, in
the sense of Weil [16].)

Let U] = U; nV; the U! form an open covering U’ of V. If # is an algebraic sheaf
onV,let ; = F(U!) and let 6;;(n) be the isomorphism of F;(U; N U;.) to (U] N U;.)
defined by multiplication by (¢;/t;)". We denote by F(n) the sheaf obtained by gluing the
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F; with respect to ;;(n). The operation F(n) has the same properties as the operation
defined in n° 54 and generalizes it; in particular, #(n) is canonically isomorphic to
F Q Op(n).

We have 7% (n) = #(n)X. Applying then Theorem 1 of n° 55, together with Proposi-
tion 7 from n° 65, we obtain:

THEOREM 2. Let F be a coherent algebraic sheaf on V. There exists an integer m(F) such
that we have, for all n > m(F):

(a) Forall x € V, the O, yy-module F (n), is generated by the elements of I'(V, ¥ (n)),
(b) HY(V,%F(n)) =0forallq > 0.

REMARK. It is essential to observe that the sheaf #(n) does not depend solely on & and
n, but also on the embedding of V into the projective space X. More precisely, let P be
the principal bundle 7~!(V) with the structural group K*; with n an integer, we make
K* act on K by the formula:

A,u)—»A""u if 2€K* and uek.

Let E" = P Xg- K be the fibre space associated with P and the fibre K, equipped with
the above action; let S(E™) be the sheaf of germs of sections of E” (cf. n® 41). Taking into
account the fact that ¢; /¢; form a system of transition maps of P, we verify immediately
that S(E™) is canonically isomorphic to Oy (n)). The formula F(n) = F ® Oy(n) =
F ® S(E") shows then that the operation ¥ — F(n) depends only on the class of
the principal bundle P defined by the embedding V' — X. In particular, if V' is normal,
F(n) depends only on the class of linear equivalence of hyperplane sections of V' in the
considered embedding (cf. [17]).

67. A complement

If M isa graded S-module satisfying (TF), we denote by M % the graded S-module I'(A(M)).
We have seen in n° 65 that « : M — M? is C-bijective. We shall now give conditions for
a to be bijective.

PROPOSITION 9. The map o : M — M% is bijective if and only if the following conditions
are satisfied:

(1) If m € M issuch thatt;-m =0 foralli € I, thenm = 0,

(ii) If elements m; € M, homogeneous of the same degree, satisfy t; - m; = t; - m; = 0 for
every couple (i, j), there exists an m € M such that m; = t; - m.

Let us show that the conditions (i) and (ii) are satisfied by M % which will prove
the necessity. For (i), we can assume that m is homogeneous, that is, it is a section
of A(M(n)); in this case, the condition ¢; - m = 0 implies that m is zero on U;, and
since this occurs for all i € I, we have m = 0. For (ii), let n be the degree of m;; we
thus have m; € I'(A(M(n))); as 1/t; is a section of O(—1) over U;, m;/t; is a section of
A(M(n — 1)) over U; and the condition ¢; - m; — t; - m; shows that these various sections
are the restrictions of a unique section m of A(M(n — 1)) over X; it remains to compare
the sections t; - m and m;; to show that they coincide on U ;, it suffices to observe that
tj(t; - m —m;) = 0 on Uj;, which follows from the formula ¢; - m; = t; - m; and the
definition of m.
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We will now show that (i) implies that « is injective. For n sufficiently large, we
know thata : M,, — ME, is bijective and we can thus proceed by descending induction
on n. If a(m) = 0 with m € M,,, we have t;a(m) = a(t; - m) = 0 and the induction
assumption, applicable since ¢; - m € M,,,, shows that m = 0. Finally, let us show that
(i) and (ii) imply that « is surjective. We can, as before, proceed by descending induction
onn. Ifm" e M 5, the induction assumption shows that there exist m; € M,,,; such that
a(m;) = t; - m'; we have a(t; - m; —t; - m;) = 0, hence t; - m; — t; - mj = 0, because
a is injective. The condition (ii) then implies that there exists an m € M,, such that
t; -m = m;; we have t;(m’ — a(m)) = 0, which shows that m’ = a(m) and completes the
proof.

REMARKS. (1) The proof shows that the condition (i) is necessary and sufficient for o to
be injective.

(2) We can express (i) and (ii) as: the homomorphism a!: M, — Hg(M (n)) is
bijective for all n € Z. Besides, Proposition 4 shows that we can identify M% with the
S-module P, zH %(M(n)) and it would be easy to provide a purely algebraic proof of
Proposition 9 (without using the sheaf A(M)).

§4. Relations with the functors Ext{

68. The functors Ext}

We keep the notation of n° 56. If M and N are two graded S-modules, we denote by
Homg(M, N),, the group of homogeneous S-homomorphisms of degree n from M to N,
and by Homg(M, N) the graded group (P, _, Homg(M, N),; it is a graded S-module;
when M is of finite type it coincides with the S-module of all S-homomorphisms from
M to N.

The derived functors (cf. [6], Chapter V) of the functor Homg(M, N) are the functors
Extg(M ,N),q =0,1,.... Let us briefly recall their definition: !

One chooses a “resolution” of M, that is, an exact sequence:

o LI 5195 S 105 M0,

where the L9 are free graded S-modules and the maps are homomorphisms (that is, as
usual, homogeneous S-homomorphisms of degree 0). If we set C? = Homg(L4, N), the
homomorphism LI*t! — L9 defines by transposition a homomorphism d : C4 — C9*!
satisfying dod = 0; therefore C = @qzo C1 is endowed with a structure of a complex,

and the g-th cohomology group of C is just, by definition, equal to Extg(M ,N); one
shows that it does not depend on the chosen resolution. As the C? are graded S-modules
and since d : C? — C9*! is homogeneous of degree 0, the Extg(M ,N) are S-modules
graded by the subspaces Extg(M ,N),); the Extg(M ,N) are the cohomology groups of
the complex formed by the Homg(L9, N),,), i.e., are the derived functors of the functor
Homg(M, N),,).

Recall the main properties of Extg:

"When M is not of finite type, the Extg(M ,N) defined above can differ from the Extg(M ,N) defined
in [6]: this is due to the fact that Homgy(M, N) does not have the same meaning in both cases. However,
all the proofs of [6] are valid without change in the case considered here: this is seen either directly or by
applying Appendix of [6].



64 CHAPTERIIl. COHERENT ALGEBRAIC SHEAVES ON PROJECTIVE VARIETIES

Extg(M, N) = Homg(M, N); Extg(M, N) = 0for g > r + 1if M is of finite type
(due to the Hilbert syzygy theorem, cf. [6], Chapter VIII, theorem 6.5); Extg(M ,N)is
an S-module of finite type if M and N are both of finite type (because we can choose a
resolution with the LY of finite type); for all n € Z we have the canonical isomorphisms:

Ext{(M(n), N) ~ Ext{(M,N(—n)) ~ Ext{(M, N)(—n).
The exact sequences:

0-N->N -S>N'">0
0O-M-M->M'->0

give rise to exact sequences:

. = Exti(M,N) - Ext}(M,N") - Ext}(M,N") - ExtI"'(M,N) - ...
. = Exti(M",N) - Ext](M’, M) — Ext{(M,N) - Ext{"'(M",N) — ...

69. Interpretation of H}(M) in terms of Ext{

Let M be a graded S-module and let k be an integer > 0. Set:

Bl(M) = @D HIM(n)),

nezZ

with the notation of n° 61.

We obtain in this way a graded group, isomorphic to the g-th cohomology group
of the complex P, , Ci(M(n)); this complex can be given a structure of an S-module,
compatible with the grading by setting

(P-m)ig - ig) = P-miy---ig), if P € S, and miy -+ ig) € C(M(n));

as the coboundary operator is a homogeneous S-homomorphism of degree 0, it follows
that the Bz(M ) are themselves graded S-modules.
We put
— 1 q —
BI(M) = lim BI(M) = P zHIM(»)).

nez

The B4(M) are graded S-modules. For ¢ = 0 we have

B(M) = P HO(M(n)),

nezZ

and we recognize the module denoted by M" in n° 67 (when M satisfies the condition
(TF)). For each n € Z, we have defined in n° 62 a linear map « : M,, — H°(M(n)); we
verify immediately that the sum of these maps defines a homomorphism, which we
denote also by «, from M to B°(M).

PROPOSITION 1. Let k be an integer > 0 and let J; be the ideal (t¥, ..., t¥) of S. For every
graded S-module M, the graded S-modules B}(M) and Extg(Jy., M) are isomorphic.
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Let LZ, q = 0,...,r be the free graded S-module with a base consisting of the elements
(i -+ 1), 0 < iy < Iy < ... <ig < rofdegree k(q + 1); we define an operator d : LZH —
LZ and an operator € : Lg — J; by the formulas:

Jj=q+1 . A
d(eip -+ iq+1>) = Z (—1)”5 “e(ip - ij iq+1>,
j=0
g(e(i)) = tlk.

LEMMA 1. The sequence of homomorphisms:
0oL L1 L1055 S0
k k ee k k
is an exact sequence.

For k = 1, this result is well known (cf. [6], Chapter VIII, §4); the general case is
shown in the same way (or reduced to it); we can also use the theorem shown in [11].
Proposition 1 follows immediately from the Lemma, if we observe that the complex

formed by the Homg(L?, M) and the transposition of d is just the complex @n <z Ck(M(n)).

COROLLARY 1. HZ(M ) is isomorphic to Extg(l 1o M)o.

Indeed, these groups are the degree 0 components of the graded groups BZ(M ) and
Extd(J, M).

COROLLARY 2. HY(M) is isomorphic to limy,_, o, Extg(Jk, M),.

We easily see that the homomorphism pli‘ : Hz(M ) —> HZ(M ) from n° 61 is trans-
formed by the isomorphism from Corollary 1 to a homomorphism from

Ext{(Jy, M), to Ext3(J,, M),

induced by the inclusion J,, — J; hence the Corollary 2.

Remark. Let M be a graded S-module of finite type; M defines (cf. n® 48) a coherent
algebraic sheaf #/ on K'*!, thus on Y = K"*! — {0} and we can verify that H4(Y, ') is
isomorphic to B4(M).

70. Definition of the functors T9(M)

Let us first define the notion of a dual module to a graded S-module. Let M be a graded
S-module; for all n € Z, M,, is a vector space over K, whose dual vector space we denote
by (M,,)’. Set
M*=@@M;, with M;=(M_,).
nez

We give M™ the structure of an S-module compatible with the grading; for all P € S, the
mapping m — P - mis a K-linear map from M_,,_, to M_,, so defines by transposition a
K-linear map from (M_,)" = My to (M_,_,)" = M ; this defines the structure of an
S-module on M*. We could also define M* as Homg(M, K), denoting by K the S-graded
module S/(t, ..., t,).

The graded S-module M* is called the module dual to M; we have M** = M if every
M, is of finite dimension over K, which holds if M = I'(¥),  being a coherent algebraic
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sheaf on X, or if M is of finite type. Every homomorphism ¢ : M — N defines by
transposition a homomorphism from N* to M*. If the sequence M — N — P is exact, so
is the sequence P* — N* — M*; in other words, M* is a contravariant and exact functor
of the module M. When I is a homogeneous ideal of S, the dual of S/I is exactly the
“inverse system” of I, in the sense of Macaulay (cf. [9], n° 25).

Let now M be a graded S-module and g an integer > 0. In the preceding n° , we have
defined the graded S-module B4(M); the module dual to B4(M) will be denoted by TI(M).
We thus have, by definition:

TIM) = P TIMD,,  with  TIM), = (HIM(-n)).
nez
Every homomorphism ¢ : M — N defines a homomorphism from BY(M) to B4(N),
thus a homomorphism from T2(N) to T4(M); thus the T4(M) are contravariant functors
of M (we shall see in n° 72 that they can expressed very simply in terms of Extg). Every
exact sequence:
0-M->N->P->0

gives rise to an exact sequence:

..B4(M) = B4(N) —» BY(P) - BI*\(M) — ...,
thus, by transposition, an exact sequence:

L TIHY(M) - T9(P) - TY(N) - TI(M) — ...

The homomorphism a : M — B°(M) defines by transposition a homomorphism
at: TO(M) - M*.
Since B4(M) = 0 for g > r, we have T9(M) = 0 for q > r.

71. Determination of T"(M).

(In this n°® , and in the following, we assume that we have r > 1; the case r = 0 leads to
somehow different, and trivial, statements).

We denote by Q the graded S-module S(—r — 1); this is a free module, with a base
consisting of an element of degree r + 1. We have seen in n° 62 that H"(Q) = H, (Q) for
k sufficiently large, and that H, (Q) admits a base over K consisting of a single element
(to ... t;)¥/ty ... t,; the image in H"(Q) of this element will be denoted by &; € is thus a
basis of H"(Q).

We will now define a scalar product (h, ¢) between elements h € B"(M)_, and
¢ € Homg(M, Q),, M being an arbitrary graded S-module. The element ¢ can be
identified with an element of Homg(M(—n), Q),, that is, with a homomorphism from
M(—n) to Q; it thus defines, by passing to cohomology groups, a homomorphism from
H"(M(—n)) = B"(M)_, to H"(Q), which we also denote by ¢. The image of h under this
homomorphism is thus a scalar multiple of £, and we define (h, ¢) by the formula:

¢(h) = (h, $)¢.

For every ¢ € Homg(M, Q),,, the function h — (h, ¢) is a linear form on B"(M)_,,,
thus can be identified with an element v(¢) of the dual of B"(M)_,,, which is T"(M),,.
We have thus defined a homogeneous mapping of degree 0

v: Homg(M, Q) —» T"(M),
and the formula (P - h, ¢) = (h, P - ¢) shows that v is an S-homomorphism.
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PROPOSITION 2. The homomorphism v : Homg(M, Q) — T"(M) is bijective.

We shall first prove the Proposition when M is a free module. If M is a direct sum of
homogeneous submodules M, we have:

Homg(M, Q), = [ [ Homg(M#, @), and T"(M), = [[ T"(M%),.

a

So, if the proposition holds for the M, it holds for M, and this reduces the case of free
modules to the particular case of a free module with a single generator, that is, to the
case when M = S(m). We can identify Homg(M, Q),, with Homg(S, S(n — m — r — 1)),,
that is, with the vector space of homogeneous polynomials of degree n — m —r — 1.
Thus Homg(M, Q), has for a base the family of monomials ¢}° ...t}" with y; > 0 and

Z:g ¥i =n—m—r —1. On the other hand, we have seen in n° 62 that H, (S(m — n))

has for a base (if k is large enough) the family of monomials (t, ... t,)</ tg" tf " with
B; > 0and Zi:g B; = n — m. By setting 5; = ylf + 1, we can write these monomials in

the form (¢ ... tr)"_l/tg0 .t with y! > 0and Zi:g y! = n—m—r — 1. Comparing the
definition of (h, ¢), we observe that the scalar product

1% g
(I Ly I AN 7L 1A

is always zero, unless y; = ylf for all i, in which case it is equal to 1. This means that v

! !
transforms the basis of ¢° ... " to the dual basis of (£ ... £,)*"'/£;° ... tI", thus is bijective,
which shows the Proposition in the case when M is free.
Let us now pass to the general case. We choose an exact sequence

'S5 M->0

where L° and L! are free. Consider the following commutative diagram

0 —— Homg(M, Q) —— Homg(L?, Q) —— Homg (L', Q)

0 —— T" (M) ———— > T'(LY) ——— T"(LY).
The first row of this diagram is an exact sequence, by the general properties of the functor
Homyg; the second is also exact, because it is dual to the sequence
B'(LY) = B"(L°) - B"(M) - 0,

which is exact by the cohomology exact sequence of B and the fact that B"*'(M) = 0
for any M. On the other hand, the two vertical homomorphisms

v: Homg(L%, Q) —» T"(L°) and v: Homg(L!, Q) — T"(L')
are bijective, as we have just seen. It follows that
v: Homg(M, Q) —» T"(M)

is also bijective, which completes the proof.
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72.  Determination of T4(M).

We shall now prove the following theorem, which generalizes Proposition 2:

THEOREM 1. Let M be a graded S-module. For q # r, the graded S-modules T"~4(M) and
Extg(M , Q) are isomorphic. Moreover, we have an exact sequence:

0 r 0 a * r+1
- Exty(M, Q) - T°(M) — M* - Exty' (M, Q) — 0.

We will use the axiomatic characterization of derived functors given in [6], Chap.
IT1, §5. For this, we first define new functors E4(M) in the following manner:

Forq #r,r+1, EI(M) =T""9(M),
Forg=r, E"(M) = Ker(a™),
Forg=r+1, E"™(M) = Coker(a*).

The E9(M) are additive functors of M, enjoying the following properties:
(i) E°(M) is isomorphic to Homg(M, Q).
This follows from Proposition 2.
(ii) If L is free, E4(L) = 0 for g > 0.
It suffices to verify this for L = S(n), in which case it follows from n°® 62.
(iii) To every exact sequence 0 - M — N — P — 0 there is associated a sequence of
coboundary operators d? : E9(M) — E*'(P) and the sequence:

d4
..E94(P) - E4(N) - E4(M) — E9*1(P) — ...

is exact.

The definition of d4 is obvious if g # r — 1, r: this is the homomorphism from T"~4(M)
to T"~971(P) defined in n° 70. For ¢ = r — 1 or r, we use the following commutative
diagram:

T (M) —— T°(P) —— T°(N) —— T°(M) —— 0

0 > P* > N* > M* > 0.

This diagram shows immediately that the image of T(M) is contained in the kernel
of a* : T°(P) — P*, which is just E"(P). This defines d"~! : E"~}(M) — E"(P).

To define d” : Ker(T°(M) — M*) — Coker(T°(P) — P*), we use the process from
[6], Chap. III, Lemma 3.3: if x € Ker(T°(M) — M*), there exists y € P* and z € T°(N)
such that x is the image of z and that y and z have the same image in N*; we then set
d'(x) =y.

The exactness of the sequence

dd
.. » E9(P) - E4(N) - E9(M) — E9*Y(P) — ...
follows from the exactness of the sequence

LT 9P) - T 9N) - T 9(M) - T""Y(P) — ...
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and from [6], loc. cit.

(iv) The isomorphism from (i) and the operators d4 from (iii) are “natural”
This follows immediately from the definitions.

As the properties (i) to (iv) characterize the derived functors of the functor Homg(M, Q),
we have E1(M) ~ Extg(M , Q), which proves the Theorem.

COROLLARY 1. IfM satisfies (TF), H1(M) is isomorphic to the vector space dual to Extg_q (M, Q)
forallg > 1.

In fact, we know that H4(M) is a vector space of finite dimension, whose dual is
isomorphic to Extg_q(M , Q).

COROLLARY 2. If M satisfies (TF), the T4(M) are graded S-modules of finite type for g > 1,
and T°(M) satisfies (TF).

We can replace M by a module of finite type without changing the BY(M), thus
T9(M). The Extg *(M, Q) are then S-modules of finite type, and we have M* € €, hence
the Corollary.

§5. Applications to coherent algebraic sheaves

73.  Relations between functors Ext} and Ext},

Let M and N be two graded S-modules. If x is a point of X = P,(K), we have defined
in n° 57 the O,-modules M, and N, ; we will find relation between Ext?_,) (M,,N,)and
graded S-module Ext(M, N).

PROPOSITION 1. Suppose that M is of finite type. Then:
(a) The sheaf A(Homg(M, N)) is isomorphic to the sheaf Hom«(A(M), A(N)).
(b) Forallx € X, the O,-module Extg(M, N), isisomorphic to the O,.-module Ext??x (M,,N,).

First define a homomorphism ¢, : Homg(M,N), — Homg (M, N,). An element
of first module is a fraction ¢ /P, with ¢ € Homg(M, N),,, P € S(x), P is homogeneous
of degree n; if m/P’ is an element of M., (m)/PP’ is an element of N, which does not
depend on ¢/P and m/P’, and the function m/P’ — @(m)/PP’ is a homomorphism
ix(¢/P): M, — N,; this defines ¢,. After Proposition 5 of n° 14, Homy (M,, N,) can
be identified with:

Homeo(AM), ANN))s;

this identification transforms ¢, into:
Ly : A(Homg(M, N)), — Homo(AM), A(N))y,
and we easily verify that the family of ¢, is a homomorphism
t: A(Homg(M,N)) - Home(AM), A(N)).

When M is a free module of finite type, ¢, is a bijection. Indeed, it suffices to regard
M = S(n), for which it is obvious.
If now M is any graded S-module of finite type, choose a resolution of M:

o LI 5195 SO S M0
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where L9 are free of finite type, and consider a complex C formed by Homg(L4, N).
The cohomology groups of C are Extg(M ,N); or else if we denote by B4 and Z? the
submodules of C? formed respectively by the coboundaries and cocycles, we have the
exact sequences:

0—> 29— C1—- Bi*! >0

and

0 — BY - Z9 - Ext{(M,N) — 0.
As the functor A(M) is exact, the sequences

0—>Z§3—>c§3—>B§“—>o

and

0— Bl - Z] - Ext{(M,N)s - 0
are also exact.

But after preceding consideration C is isomorphic to Homg_ (LI, N,); the Ext?g (M,N),

are isomorphic to cohomology groups of a complex formed by the Hom_ (LI,N,) and,
because the LI are clearly O,-free, we get back the definition of Ext?g (M,,N,), which

shows (b). For g = 0 preceding considerations show that ¢, is bijection, so ¢ is an
isomorphism, so (a) holds.

74. Vanishing of cohomology groups H1(X, ¥ (—n)) forn - +o0

THEOREM 1. Let F be a coherent algebraic sheaf on X and let q be an integer > 0. The
following conditions are equivalent:

(a) HY(X, F(—n)) = 0 for n large enough.
(b) Extgxq(?x, O,) =0forall x € X.

After Theorem 2 of n° 60, we can suppose that ¥ = A(M), where M is a graded
S-module of finite type, and by the n° 64 H1(X, ¥ (—n)) is isomorphic to HI(M(—n)) =
Bi(m)_,, so condition (a) is equivalent to

T9(M), =0
for n large enough, that is to say T9(M) € C. After Theorem 1 of n°® 72 and the fact that

M™ € € as M is of finite type, this last condition is equivalent to Ext;_q(M ,Q) € C;as
Ext, 1(M, Q) is a S-module of finite type,

Ext, {(M,Q) € €

is equivalent to Ext, (M, Q), = 0 for all x € X, by Proposition 5 of n° 58. Finally the
Proposition 1 shows that Extg_q(M , Q) = Extgxq(M +» Q) and as M, is isomorphism
to F, and Q, is isomorphic to O(—r — 1),, so to O,, this completes the proof.

For announcing Theorem 2, we will need the notion of dimension of an O,-module.
Recall ([6], Chap VI) that O,-module of finite type P is of dimension < p if there is an
exact sequence of @-modules:

O0—-L,—>L, y—..=>L—>P—0,

where each L, is free (this definition is equivalent to [6], because all projective O,-
modules of finite type are free (cf [6], Chap VIII, Th. 6.1.").

All O,-modules of finite type are of dimension < r, by Hilbert’s syzygy theorem. (cf.
[6], Chap VIII, Th. 6.2").
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LEMMA 1. Let P be an O,-module of finite type and let p be an integer > 0. The following
two conditions are equivalent:

(i) P is of dimension < p.
(ii) Extg (P, O0,) =0 forallm > p.

Itis clear that (i) implies (ii). We will show that (ii) implies (i) by induction decreasing
on p. For p > r the lemma is trivial, because (i) is always true. Now pass from p + 1 to
p; let N be any O,-module of finite type. We can find an exact sequence 0 - R — L —
N — 0, where L is free of finite type (because O, is Noetherian). The exact sequence:

Extg::l(P,L) > Extg:I(P, N) - Extg:rz(P,R)

shows that ExtgH(P,N) = 0, so we have Extg”(P,L) = 0 by condition (ii), and

Ext(’;”(P,R) = 0asdimP < p + 1 by the induction hypothesis. As this property
characterizes the modules of finite dimension < p, the lemma is proved.
By combining Lemma with Theorem 1 we obtain:

THEOREM 2. Let ¥ be a coherent algebraic sheaf on X, and let p be an integer > 0. The
following two conditions are equivalent:

(i) HY(X,F(—n)) = 0 for all n large enough and 0 < q < p.
(ii) Forall x € X the O-module ¥ is of dimension < r — p.

75. Nonsingular varieties

The following results play essential role in extension of the ‘duality theorem’ [15] to an
arbitrary case.

THEOREM 3. LetV be a nonsingular subvariety of projective space P.(K). Suppose that all
irreducible components of V have the same dimension p. Let F be a coherent algebraic sheaf
onV, such that forall x € V, ¥, is a free module over O, ;. Thenwe have H1(V, ¥ (—n)) =
0 for all n large enough and 0 < g < p.

After Theorem 2, it remains to show that O, ;, considered as O,-module is of dimen-
sion < r—p. Denote by g, (V) the kernel of the canonical homomorphisme : O, = O, y;
since the point x is simple over V, we know (cf. [18], th 1) that this ideal is generated by
r — p elements f, ..., f,_p, and the theorem of Cohen-Macaulay (cf. [13], p. 53, prop 2)
shows that we have

(fioeo i)t fi= (1,0 fim) for 1<i<r-—p.

Denote by L, a free O,-module which admits a base of elements e < i;...i; > correspond-
ing to sequence (iy, ..., iq) such that

1< <bL<..<ig<r-p;
for g = 0, take L, = O, and define:

q
d(e(iy...ig)) = D (=1 fi jeliy, ..dju..dg)

J=1

d(edi)) = fi
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After [6], Chap. VIII, prop 4.3, the sequence

d d d €
O0->L_p—>L_p 1> ..o Li— Oy >0

is exact, which shows that dimy (O, ) <r — p, QED.
COROLLARY. We have H4(V, Oy (—n)) = 0 for n large enough and 0 < q < p.

Remark. The above proof applies more generally whenever the ideal g,(V) admits a
system of r — p generators, that is, if the variety V' is a local complete intersection at all
points.

76. Normal Varieties

LEMMA 2. Let M be a O, module of finite type and let f be a noninvertible element of
O,, such that the relation fm = 0 impliesm = 0 if m € M. Then the dimension of the
O,-module M / f M is equal to the dimension of M increased by one.

By assumption, we have an exact sequence 0 - M SMoM /fM — 0, where a is
multiplication by f. If N is a O,-module of finite type, we have an exact sequence:

.= Extd (M,N) S Ext! (M,N) — Ext?"' (M/fM,N) - Ext? (M,N) > ...

Denote by p the dimension of M. By taking g = p + 1 in the preceding exact
sequence, we see that Extg”(M /fM,N) = 0, which (by [6], Chap. VI, 2) implies that
dim(M/fM) < p+1. On the other hand, since dim M = p we can choose N such that
Extgx (M, N) # 0; by taking g = p in the above exact sequence, we see that

ExtgH(M /fM,N) can be identified with cokernel of

Ext? (M,N) = Ext’ (M,N)

as the last homomorphism is nothing else that multiplication by f and that f isn’t
invertible in the local ring O,. If follows from [6], Chap. VIII, prop. 5.1’ that this
cokernel is # 0, which shows that dimM/fM > p + 1 and finishes the proof.

We will now show a result, that is related with 'the Enriques-Severi lemma’ of Zariski
[19]:

THEOREM 4. LetV be an irreducible, normal subvariety of dimension > 2, of projective
space P.(K). Let F be a coherent algebraic sheaf on V, such that forall x € V, & is a free
module over O, . Then we have H'(V, ¥ (—n)) = 0 for n large enough.

After Theorem 2, it remains to show that O, , considered as O,-module is of dimen-
sion < r — 2. First choose an element f € O, such that f(x) = 0 and that the image of
fin O,y is not zero; this is possible because dim V' > 0. As V is irreducible, O, y, is an
integral ring (domain), and we can apply Lemma 2 to the pair (O, f); we then have:

dim OX,V = dim OX,V/(f) - 1, with (f) = f@x’v.

As O, y is an integrally closed ring, all prime ideals p* of the principal ideal (f) are
minimal (cf. [12] p.136, or [9], n°® 37), and none of them is equal to the maximal ideal
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m of O,y (if not we would have dimV < 1). So we can find an element g € m, not
belonging to any of p*; this element g is not divisible by 0 in the quotient ring O,y /(f);
we denote by g, a representation of g in O,. We see that we can apply Lemma to the pair
Oxv/(f),8); we then have:

dim Ox,V/(f) = dim Ox,V/(f’ g-1L

But by Hilbert’s syzygy theorem, we have dim O, /(f,g) <r,sodim O, , <r—1
and dim O,y <r —2 QED.

COROLLARY. We have HY(V, Oy, (—n)) = 0 for n large enough.

REMARKS. (1) The reasoning made before is classic in theory of syzygies. Cf. W. Grob-
ner, Moderne Algebraische Geometrie, 152.6 and 153.1.

(2) If the dimension of V' is > 2, we can have dim O, ,, = r — 2. This is in particular
the case when V is a cone which hyperplane section W is a normal and irregular
projective variety (i.e., H' (W, Oy,) # 0).

77.  Homological characterization of varieties k-times of first kind

Let M be a graded S-module of finite type. We show by a reasoning identical to that of
Lemma 1:

LEMMA 3. dim < k if and only ifExtg(M, S)=0forq>k.

As M is graded. we have Ext{(M, Q) = Ext{(M,S)(—r — 1), so the previous con-
dition is equivalent to Extg(M ,Q) = 0for g > k. Given Theorem 1 of n° 72, we conclude:

PROPOSITION 2.  (a) Fordim M < r it is necessary and sufficient that M,, — H°(M(n))
is injective for alln € Z.

(b) Ifk is aninteger > 1, fordim M < r — k it is necessary and sufficient that & : M,, —
HO(M(n)) is bijective for all n € Z, and that HI(M(n)) = 0 for 0 < q < k and all
ne<z.

Let V be a closed subvariety of P,(K), and let I(V') be an ideal if homogeneous
polynomials, which are zero on V.

Denote S(V) = S/I(V), this is a graded S-module whose associated sheaf is O;,. We
say” that V is a variety “k-times of first kind” of P,(K) if the dimension of S-module
S(V)is < r—k. Itis obvious that a : S(V),, = H°(V, Oy,(n)) is injective for alln € Z, so
all varieties are O-times of first kind. Using preceding propositionto M = S(V'), we obtain:

PROPOSITION 3. Let k be an integer > 1. For a subvariety V to be a k-times of first kind, it
is necessary and sufficient that the following conditions are satisfied for alln € Z:

(i) a: S(V), — H(V, Oy(n)) is bijective.
(ii) HY(V,0y(n)) =0for0 < g < k.

2Cf. P. Dubreil, Sur la dimension des idéaux de polynomes, J . Math. Pures App., 15, 1936, p. 271-283.
See also W . Grobner, hloderne Algebraische Geometrie, §5.
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(The condition (i) can also be expressed by saying that linear series cut on V by forms
of degree n is complete, which is well known.)
By comparing with Theorem 2 (or by direct reasoning), we obtain:

COROLLARY. If'V is k-times of first kind, we have H1(V, Oy,) = 0 for 0 < q < k and, for
all x € V, the dimension of O,-module O, is <r — k.

If m is an integer > 1, denote by ¢,, the embedding of P,(K) into a projective space
of convenient dimension, given by the monomials of degree m (cf. [8], Chap. XVI, 6, or
n° 52, proof of Lemma 2). So the preceding corollary admits following converse:

PROPOSITION 4. Let k be an integer > 1, and let V be a connected and closed subvariety of
P.(K). Suppose that H1(V, Oy,) = 0 for 0 < g < k, and that for all x € V the dimension
of Ox-module O,y is <r —k.

Then for all m large enough, ¢,,(V) is a subvariety k-times of first kind.

Because V is connected, we have HO(V, 9y,) = K. So, if V is irreducible, it’s evident
(if not, H(V, Oy,) contains a polynomial algebra and is not of finite dimension over K);
if V is reducible, all elements f € H(V, O},) induce a constant on each of irreducible
components of V, and this constants are the same, because of connectivity of V.

By the fact that dim O, ;, < r — 1, the algebraic dimension of each of irreducible

components of V is at least equal to 1. So it follows that
H(V,0y(-n)) =0

for all n > 0 (because if f € H'(V, Oy (—n)) and f # 0, the f*g with g € S(V), form a
vector subspace of H(V, Oy,) of dimension > 1).

That being said, denote by V,,, the subvariety ¢,,(V); we obviously have:
0y, (n) = Oy (nm).

For m large enough the following conditions are satisfied:

@ a : S(V),m, = H(V, Oy (nm)) is bijective for all n > 1.

This follows from Proposition 5 of n° 65.

(b) HY(V,Oy(mn)) =0for0 < g < kand foralln > 1.

This follows from Proposition of n°® 65.

(c) HY(V,Oy(nm)) =0for0 < g < kand foralln < —1.

This follows from Theorem 2 of n° 74, and hypothesis made on O, y .

On the other hand, we have H°(V, Oy, = K, H(V, Oy (nm)) = O foralln < —1,
and H1(V, Oy) = 0 for 0 < q < k, by the hypothesis. It follows that V,, satisfies all the
hypothesis of Proposition 3, QED.

COROLLARY. Let k be an integer > 1, and let V be a projective variety without singularities,
of dimension > k. For V being birationally isomorphic to a subvariety k-times of first kind
of a convenient projective space, it is necessary and sufficient that V is connected and that
HYV,0,)=0for0< g <k

The necessity is evident, by Proposition 3. To show sufficiency, it suffices to remark
that O,y is of dimension < r — k (cf. n° 75) and to apply the previous proposition.
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78. Complete intersections

A subvariety V of dimension p of projective space P,(K) is a complete intersection if the
ideal I(V') of polynomials zero at V admits a system of r — p generators P, ..., P,_p; in this
case, all irreducible components of V' have the dimension p, by the theorem of Macaulay
(cf. [9], n® 17). It is known, that this variety is p-times of first kind, which implies that
H1(V,0Oy(n)) = 0for 0 < g < p, as we have just seen. We will determine H?(V, Oy (n))
as a function of degree m,, ..., m,_ p of homogeneous polynomials Py, ..., P,_,.

Let S(V)) = S/I(V) be a ring of projective coordinates of V. By theorem 1 of n° 72 all
it is left, is to determine the S-module Extg *(S(V), Q). We have a resolution, analogous
to that of n° 75: we take L9 the graded free S-module, admitting for a base the elements
e(iy, ..., Iy), corresponding to sequences (iy, ..., ig) such that 1 <i; < i, <..<ig<r—p
and of degree ijl m;; for L° we take S. We set:

q
d(e(iy, ..., ig)) = Z(—1)ipije<il..fj...iq>

j=1

The sequence 0 — L"P i i L% — S(V) — 0is exact ([6], Chap. VIII, Prop. 4.3).
It follows that the Extg (S(V), Q) are the cohomology groups of the complex formed by the
Homg(L4, Q); but we can identify an element of Homg(L?, Q), with a system f iy, ...ig),
where the f(iy, ..., i;) are homogeneous polynomials of degree m; +... + m; +n—r—1
after this identification is made, the operator of coboundary is given by usual formula:

q
(Adf Nirwiqra) = D=1V Py flirewdjeniqia)-

j=1

The theorem of Macaulay implies that we are in conditions of [11], and we obtain
that Extg(S(V), Q) = 0for g # r— p. On the other hand, Extg_p (S(V), Q),, is isomorphic
to a vector subspace of S(V') formed by homogeneous elements of degree N + n, where
N =Y _"m; —r — 1. Using Theorem 1 of n°® 72 we obtain:

PROPOSITION 5. LetV be a complete intersection, defined by the homogeneous polynomials

Py, ..., P,_, of degrees my, ..., m,_,.

(a) The functiona : S(V), = H(V, Oy (n)) is bijective for all n € Z.

(b) HI(V,0Oy(n))=0for0<q < pandalln € Z.

(©) H‘i(lg, Oy (n)) is isomorphic to a dual vector space to H(V, Oy, (N — n)), with N =
Do mi—r—1

We see that in particular HP(V, Oy/) is zero if N < 0.

§6. The characteristic function and arithmetic genus

79. Euler-Poincaré characteristic

Let V be a projective variety and F a coherent algebraic sheafon V. Let

KV, F) = dimg HI(V, F).
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We have seen (n° 66, Theorem 1) that the h4(V, F) are finite for all integer q and
zero for ¢ > dim V. So we can define an integer y(V,¥) by:

x(V.F) = Y (=1 h(V, F).
q=0

This is the Euler-Poincaré characteristic of V with coefficient in F.
LEMMA 1. Let0 — L; — .. — L, — 0 be an exact sequence, with L; being finite

dimensional vector spaces over K, and homomorphisms L; — L;,; being K-linear. Then
we have:

P
> (1) dimg L, = o.
g=1
We proceed by induction on p. The lemma is evident if p < 3. If L; _, is the kernel

1
of Lp_1 - Lp, we have two exact sequences:

0—>L1—>...—>L;_1—>0

!/
0 —>Lp_1 —-L,,—>L,—0.

Applying induction hypothesis to each sequence, we see that Zlq) : (=1)?dim L, +

(=1)P~1dim L;J—l =0, and

. ’ . . —
dim Lp_1 — dim L, + dim L,=0,

which proves the lemma.

PROPOSITION 1. Let0 — A — B — € — 0 be an exact sequence of coherent algebraic
sheaves on a projective variety V, with homomorphisms A — B and B — C being K-linear.
Then we have:

x(V,B)=x(V,A)+ x(V,C).

By Corollary 2 of Theorem 5 of n°® 47, we have an exact sequence of cohomology:
.. > HY(V,B) - HY(V,C) - HI*\(V,A) - HI*Y(V,B) - ...
Applying Lemma to this exact sequence of vector spaces we obtain the Proposition.

PROPOSITION 2. Let 0 — F; — ... > F, — 0 be an exact sequence of coherent algebraic
sheaves on a projective variety V, with homomorphisms &; — F; ., being algebraic. Then
we have:

p
2. (DI x (v, F) =0.
g=1

We proceed by induction on p. The proposition is a particular case of Proposition 1
if p < 3. If we define & ; _, to be the kernel of #,_; — ¥, the sheaf # 1,? _, is coherent
algebraic because F,_; — ¥, is an algebraic homomorphism. So we can applicate the
induction hypothesis to two exact sequences

O—>5—"1—>...—>fr'“;_1—>0
!/
O—>3—"p_1—>.’7-'p_1—>5",

and the Proposition follows.
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80. Relation with characteristic function of a graded S-module

Let F be a coherent algebraic sheaf on the space P,.(K). We write y(F) instead of
x(P.(K),F). We have:

PROPOSITION 3. y(F(n))is a polynomial of n of degree < r.

By Theorem 2 of n° 60, there exists a graded S-module M of finite type, such that
A(M) is isomorphic to F. Applying the Hilbert’s syzygy theorem to M we obtain an
exact sequence of graded S-modules:

0-L*" 5 . 5105 M0,

where L1 are free of finite type. Applying the functor A to this sequence, we obtain an
exact sequence of sheaves:

0L s 505 F 50,

where each £9 is isomorphic to a finite direct sum of shaves O(#n;). The proposition 2
implies that y(F(n)) is equal to an alternating sum of y(£°(n)), which brings us to case
of the sheaf O(n;). Now it follows from n° 62 that we have y(O(n)) = (”:“r), which is a

polynomial on n of the degree < r. This implies the Proposition.

PROPOSITION 4. Let M be a graded S-module satisfying condition (TF), and let ¥ = A(M).
For all n large enough, we have y(¥F(n)) = dimg M,,.

We know (by n° 65) that for n large enough, the homomorphism a : M,, —» H°(X, F(n))
is bijective, and H4(X, #(n)) = 0 for g > 0. So we have:

x(F () = h°(X, F (n)) = dimg M,,.

We use a well known fact, that dimg M, is a polynomial of n for n large enough. This
polynomial, which we denote by P,, is called the characteristic function of M. For all
n € Z we have Py (n) = y(F(n)), and in particular for n = 0, we see that the constant
term of Py, is equal to y(F).

Apply this to M = S/I(V), I(V) being a homogeneous ideal of S of polynomials
which are zero on a closed subvariety V of P,(K). The constant term of Py, is called in this
case the arithmetic genus of V (cf. [19]). Since on the other hand we have A(M) = Oy,
we obtain:

PROPOSITION 5. The arithmetic genus of a projective variety V is equal to

XV, 0p) = ¥, (1) dimg HY(V, Oy).
q=0
Remarks.
(1) The preceding Proposition makes evident the fact, that the arithmetic genus is indepen-
dent of an embedding of V into a projective space, since it’s true for H1(V, O).
(2) The virtual arithmetic genus (defined by Zariski in [19]) can also be reduced to Euler-
Poincare characteristic. We return to this question later, by Riemann-Roch theorem.

(3) For the reason of convenience, we have adopted the definition of arithmetic genus
different from the classical one (cf. [19]). If all irreducible components of V have the
same dimension p, two definitions are related by the following formula: y(V, Oy) =

L+ (=1 pa(V).
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81. The degree of the characteristic function

If # is a coherent algebraic sheaf on an algebraic variety V', we call the support of F,
and denote by Supp(¥F), the set of points x € V such that F, # 0. By the fact that & is
a sheaf of finite type, this set is closed. If we have &, = 0, the zero section generates &,
then also &, for y in neighbourhood of x (n° 12, Proposition 1), which means that the
complement of Supp(F) is open.

Let M be a graded S-module of finite type, and let ¥ = A(M) be a sheaf defined by
M on P,(K) = X. We can determine Supp(¥) from M in the following manner:

Let0 = ﬂa M be a decomposite of 0 as an intersection of homogeneous primary
submodules M* of M. M“ correspond to homogeneous primary ideals p* (cf. [12], Chap.
IV). We suppose that this decomposite is ’the shortest possible’, i.e. that non of M* is
contained in an intersection of others. For all x € X, each p defines a primary ideal p%
of a local ring O,, and we have p§ = O if and only if x is not an element of a variety
V% defined by an ideal p*. We have also 0 = ﬂa M¢ in M,, and we verify easily that
we thereby obtain a primary decomposite of 0 in M,.. The M¢ correspond to primary
ideals p%; if x ¢ V¥, we have M% = M,, and if we restrict ourself to consider M¥ such
that x € V%, we obtain ’the shortest possible decomposite’ (cf. [12], Chap IV, th 4.). We
conclude that M,, # 0 if and only if x is an element of V%, thus Supp(¥) = Ua Ve

PROPOSITION 6. If ¥ is a coherent algebraic sheaf on P,(K), the degree of x(F (n)) is equal
to the dimension of Supp(F).

We proceed by induction on r. The case r = 0 is trivial. We can suppose that
F = A(M), where M is a graded S-module of finite type. Using notation introduced
below, we have to show that y(#(n)) is an polynomial of degree g = Sup dim V<.

Let ¢ be a linear homogeneous form, which do not appear in any of proper prime
ideals p®. Such a form exists because the field K is infinite. Let E be a hyperplane of X
with equation ¢ = 0. Consider the exact sequence:

0> 0O(-1)—> O — O = 0,

where O — O is a restriction homomorphism, while O(—1) — O is a homomorphism
f — tf. Applying tensor product with F, we obtain an exact sequence:

On U;, we can identify #(—1) with #, and this identification transforms the homo-
morphism F(—1) — F defined above to the multiplication by ¢ /t;. Because t was chosen
outside p%, t/t; don’t belong to any prime ideal of M,, = ¥ if x € U;, and the preceding
homomorphism is injective (cf. [12], p. 122, th. 7, b")). So we have an exact sequence:

0->F(-1)—>F—->Fp—0,
from which, for all n € Z the exact sequence:
0->Fmn—-1)-> Fn) - Fx(n) - 0.
Applying Proposition 1, we see that:

xX(FM) — x(F(n - 1)) = x(Fp(n)).
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But the sheaf # is a coherent sheaf of Og-modules, which means that it is a coherent
algebraic sheaf on E, which is a projective space of dimension r — 1. Moreover ¥, p = 0
means that the endomorphism of #, defined by multiplication by ¢ /¢; is surjective, which
leads to F,, = 0 (cf. [6], Chap VIII, prop 5.1°). It follows that Supp(Fx) = E N Supp(F),
and because E does not contain any of varieties V¢, if follows by a known fact, that the
dimension of Supp(F) is equal to g — 1. By the induction hypothesis y(Fx(n)) is a
polynomial of degree g — 1. As this difference is prime to the function y(&(n)), the latter
is a polynomial of degree q.

REMARKS. (1) Proposition 6 was well known for ¥ = O/, J being a coherent sheaf of
ideals. Cf. [9] n°® 24.

(2) The above proof does not use Proposition 3 and shows it once again.
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