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Abstract
This is a TeXed copy of

– Hodge cycles on abelian varieties (the notes of most of the seminar “Périodes
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Introduction

Let X be a smooth projective variety over C. Hodge conjectured that certain cohomology classes
on X are algebraic. The main result proved in these notes shows that, when X is an abelian variety,
the classes considered by Hodge have many of the properties of algebraic classes.

In more detail, let X an be the complex analytic manifold associated with X , and consider the
singular cohomology groups Hn.X an;Q/. The variety X an being of Kähler type (any projective
embedding defines a Kähler structure), its cohomology groups Hn.X an;C/ Š Hn.X an;Q/˝C
have canonical decompositions

Hn.X an;C/D
L

pCqDn

Hp;q; Hp;q DH q.X an;˝
p
X an/.

The cohomology class cl.Z/ 2H 2p.X an;C/ of an algebraic subvariety Z of codimension p in X
is rational (i.e., it lies in H 2p.X an;Q// and is of bidegree .p;p/ (i.e., it lies in Hp;p). The Hodge
conjecture states that, conversely, every element of

H 2p.X an;Q/\Hp;p

is a Q-linear combination of the classes of algebraic subvarieties. Since the conjecture is unproven,
it is convenient to call these rational .p;p/-classes Hodge cycles on X .

Now consider a smooth projective variety X over a field k that is of characteristic zero, alge-
braically closed, and small enough to be embeddable in C. The algebraic de Rham cohomology
groups Hn

dR.X=k/ have the property that, for any embedding � Wk ,! C, there are canonical iso-
morphisms

Hn
dR.X=k/˝k;� C

Š
!Hn

dR.X
an;C/ŠHn.X an;C/:

It is natural to say that t 2H 2p
dR .X=k/ is a Hodge cycle onX relative to � if its image inH 2p.X an;C/

is .2�i/p times a Hodge cycle on X ˝k;� C. The arguments in these notes show that, if X is an
abelian variety, then an element of H 2p

dR .X=k/ that is a Hodge cycle on X relative to one embed-
ding of k into C is a Hodge cycle relative to all embeddings; further, for any embedding, .2�i/p

times a Hodge cycle in H 2p.X an;C/ always lies in the image of H 2p
dR .X=k/.

2 Thus the notion of
a Hodge cycle on an abelian variety is intrinsic to the variety: it is a purely algebraic notion. In the
case that k D C the theorem shows that the image of a Hodge cycle under an automorphism of C
is again a Hodge cycle; equivalently, the notion of a Hodge cycle on an abelian variety over C does
not depend on the map X ! SpecC. Of course, all this would be obvious if only one knew the
Hodge conjecture.



CONTENTS 3

In fact, a stronger result is proved in which a Hodge cycle is defined to be an element of
Hn

dR.X/�
Q
lH

n.Xet;Ql/. As the title of the original seminar suggests, the stronger result has
consequences for the algebraicity of the periods of abelian integrals: briefly, it allows one to prove
all arithmetic properties of abelian periods that would follow from knowing the Hodge conjecture
for abelian varieties.3

—————————————————-
In more detail, the main theorem proved in these notes is that any Hodge cycle on an abelian

variety (in characteristic zero) is an absolute Hodge cycle — see �2 for the definitions and Theorem
2.11 for a precise statement of the result.

The proof is based on the following two principles.

A. Let t1; : : : ; tN be absolute Hodge cycles on a smooth projective varietyX and letG be the largest
algebraic subgroup of GL.H�.X;Q//�GL.Q.1// fixing the ti ; then every cohomology class
t on X fixed by G is an absolute Hodge cycle (see 3.8).

B. If .Xs/s2S is an algebraic family of smooth projective varieties with S connected and smooth
and .ts/s2S is a family of rational cycles (i.e., a global section of . . . ) such that ts is an
absolute Hodge cycle for one s, then ts is an absolute Hodge cycle for all s (see 2.12, 2.15).

Every abelian variety A with a Hodge cycle t is contained in a smooth algebraic family in which
t remains Hodge and which contains an abelian variety of CM-type. Therefore, Principle B shows
that it suffices to prove the main theorem for A an abelian variety of CM-type (see �6). Fix a
CM-field E, which we can assume to be Galois over Q, and let ˙ be a set of representatives for the
E-isogeny classes over C of abelian varieties with complex multiplication byE. Principle B is used
to construct some absolute Hodge classes on ˚A2˙A — the principle allows us to replace ˚A by
an abelian variety of the form A0˝ZOE (see �4). Let G � GL.˚A2˙H1.A;Q//�GL.Q.1// be
the subgroup fixing the absolute Hodge cycles just constructed plus some other (obvious) absolute
Hodge cycles. It is shown thatG fixes every Hodge cycle on A, and Principle A therefore completes
the proof (see �5).

On analyzing which properties of absolute Hodge cycles are used in the above proof, one arrives
at a slightly stronger result. Call a rational cohomology class c on a smooth projective complex
variety X accessible if it belongs to the smallest family of rational cohomology classes such that:

(a) the cohomology class of every algebraic cycle is accessible;

(b) the pull-back by a map of varieties of an accessible class is accessible;

(c) if t1; : : : ; tN 2H�.X;Q/ are accessible, and if a rational class t in some H 2p.X;Q/ is fixed
by an algebraic subgroup G of Aut.H�.X;Q// (automorphisms of H�.X;Q/ as a graded
algebra) fixing the ti , then t is accessible;

(d) Principle B holds with “absolute Hodge” replaced by “accessible”.

Sections 4,5,6 of these notes can be interpreted as proving that, when X is an abelian variety, every
Hodge cycle is accessible.4 Sections 2,3 define the notion of an absolute Hodge cycle and show that
the family of absolute Hodge cycles satisfies (a), (b), (c), and (d);5 therefore, an accessible class is
absolutely Hodge. We have the implications:

Hodge
abelian varieties
HHHHHHHH) accessible HHHH) absolutely Hodge

trivial
HHHH) Hodge.
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Only the first implication is restricted to abelian varieties.
The remaining three sections, �1, �7, and �8, serve respectively to review the different cohomol-

ogy theories, to give some applications of the main results to the algebraicity of products of special
values of the � -function, and to explain the theory of motives that can be built on absolute Hodge
cycles.

Notations:

We define C to be the algebraic closure of R and i 2 C to be a square root of �1; thus i is only
defined up to sign. A choice of i determines an orientation of C as a real manifold — we take that
for which 1^ i > 0 — and hence an orientation of every complex manifold. Complex conjugation
on C is denoted by � or by z 7! z.

Recall that the category of abelian varieties up to isogeny is obtained from the category of
abelian varieties by taking the same class of objects but replacing Hom.A;B/ with Hom.A;B/˝Q.
We shall always regard an abelian variety as an object in the category of abelian varieties up to
isogeny: thus Hom.A;B/ is a vector space over Q.

If .V˛/ is a family of rational representations of an algebraic groupG over k and t˛;ˇ 2 V˛, then
the subgroup of G fixing the t˛;ˇ is the algebraic subgroup H of G such that, for all k-algebras R,

H.R/D fg 2G.R/ j g.t˛;ˇ ˝1/D t˛;ˇ ˝1, all ˛;ˇg.

Linear duals are denoted by _. If X is a variety over a field k and � is a homomorphism � Wk ,! k0,
then �X denotes the variety X˝k;� k0 (DX �Spec.k/ Spec.k0/).
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1 Review of cohomology

Topological manifolds

Let X be a topological manifold and F a sheaf of abelian groups on X . We set

Hn.X;F /DHn.� .X;F �//

where F ! F � is any acyclic resolution of F . This defines Hn.X;F / uniquely up to a unique
isomorphism.

When F is the constant sheaf defined by a field K, these groups can be identified with singular
cohomology groups as follows. Let S�.X;K/ be the complex in which Sn.X;K/ is the K-vector
space with basis the singular n-simplices in X and the boundary map sends a simplex to the (usual)
alternating sum of its faces. Set

S�.X;K/D Hom.S�.X;K/;K/

with the boundary map for which

.˛;�/ 7! ˛.�/WS�.X;K/˝S�.X;K/!K

is a morphism of complexes, namely, that defined by

.d˛/.�/D .�1/deg.˛/C1˛.d�/:

Proposition 1.1. There is a canonical isomorphism Hn.S�.X;K//!Hn.X;K/.

Proof. If U is the unit ball, then H 0.S�.U;K// D K and Hn.S�.U;K// D 0 for n > 0. Thus,
K ! S�.U;K/ is a resolution of the group K. Let Sn be the sheaf of X associated with the
presheaf V 7!Sn.V;K/. The last remark shows thatK!S� is a resolution of the sheafK. As each
Sn is fine (Warner 1971, 5.32), Hn.X;K/ Š Hn.� .X;S�//. But the obvious map S�.X;K/!
� .X;S�/ is surjective with an exact complex as kernel (loc. cit.), and so

Hn.S�.X;K//
Š
!Hn.� .X;S�//ŠHn.X;K/.

Differentiable manifolds

Now assume X is a differentiable manifold. On replacing “singular n-simplex” by “differentiable
singular n-simplex” in the above definitions, one obtains complexes S1� .X;K/ and S�1.X;K/. The
same argument shows that there is a canonical isomorphism

Hn
1.X;K/

df
DHn.S1� .X;K//

Š
!Hn.X;K/

(loc. cit.).
Let OX1 be the sheaf of C1 real-valued functions on X , let ˝nX1 be the OX1-module of

C1 differential n-forms on X , and let ˝�X1 be the complex

OX1
d
!˝1X1

d
!˝2X1

d
! �� � :
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The de Rham cohomology groups of X are defined to be

Hn
dR.X/DH

n.� .X;˝�X1//D
fclosed n-formsg
fexact n-formsg

:

If U is the unit ball, Poincaré’s lemma shows that H 0
dR.U /D R and Hn

dR.U /D 0 for n > 0. Thus,
R!˝�X1 is a resolution of the constant sheaf R, and as the sheaves ˝nX1 are fine (Warner 1971,
5.28), we have Hn.X;R/ŠHn

dR.X/.
For ! 2 � .X;˝nX1/ and � 2 S1n .X;R/, define

h!;�i D .�1/
n.nC1/
2

Z
�

! 2 R.

Stokes’s theorem states that
R
� d! D

R
d� !, and so

hd!;�iC .�1/nh!;d�i D 0.

The pairing h;i therefore defines a map of complexes

f W� .X;˝�X1/! S�1.X;R/.

Theorem 1.2 (de Rham). The map Hn
dR.X/!Hn

1.X;R/ defined by f is an isomorphism for all
n.

Proof. The map is inverse to the map

Hn
1.X;R/

Š
!Hn.X;R/ŠHn

dR.X/

defined in the previous two paragraphs (Warner 1971, 5.36). (Our signs differ from the usual signs
because the standard sign conventionsZ

�

d! D

Z
d�

!;

Z
X�Y

pr�1!^pr
�
2 �D

Z
X

! �

Z
Y

�; etc.

violate the sign conventions for complexes.)

A number
R
� !, � 2Hn.X;Q/, is called a period of !. The map in (1.2) identifies Hn.X;Q/

with the space of classes of closed forms whose periods are all rational. Theorem 1.2 can be re-
stated as follows: a closed differential form is exact if all its periods are zero; there exists a closed
differential form having arbitrarily assigned periods on an independent set of cycles.

Remark 1.3 (Singer and Thorpe 1967, 6.2). If X is compact, then it has a smooth triangulation T .
Define S�.X;T;K/ and S�.X;T;K/ as before, but using only simplices in T . Then the map

� .X;˝�X1/! S�.X;T;K/

defined by the same formulas as f above induces isomorphisms

Hn
dR.X/!Hn.S�.X;T;K//.
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Complex manifolds

Now let X be a complex manifold, and write ˝�X an for the complex

OX an
d
!˝1X an

d
!˝2X an

d
! �� �

in which ˝nX an is the sheaf of holomorphic differential n-forms. Thus, locally a section of ˝nX an is
of the form

! D
X

˛i1:::indzi1 ^ : : :^dzin

with ˛i1:::in a holomorphic function and the zi complex local coordinates. The complex form of
Poincaré’s lemma shows that C! ˝�X an is a resolution of the constant sheaf C, and so there is a
canonical isomorphism

Hn.X;C/!Hn.X;˝�X an/ (hypercohomology).

If X is a compact Kähler manifold, then the spectral sequence

E
p;q
1 DH q.X;˝

p
X an/ H) HpCq.X;˝�X an/

degenerates, and so provides a canonical splitting6

Hn.X;C/D
L

pCqDn

H q.X;˝
p
X an/ (the Hodge decomposition)

asHp;qDdfH
q.X;˝

p
X an/ is the complex conjugate ofH q;p relative to the real structureHn.X;R/˝

C Š Hn.X;C/ (Weil 1958). The decomposition has the following explicit description: the com-
plex ˝�X1 ˝C of sheaves of complex-valued differential forms on the underlying differentiable
manifold is an acyclic resolution of C, and so Hn.X;C/DHn.� .X;˝�X1˝C//; Hodge theory
shows that each element of the second group is represented by a unique harmonic n-form, and
the decomposition corresponds to the decomposition of harmonic n-forms into sums of harmonic
.p;q/-forms, pCq D n.7

Complete smooth varieties

Finally, let X be a complete smooth variety over a field k of characteristic zero. If k D C, then X
defines a compact complex manifold X an, and there are therefore groups Hn.X an;Q/, depending
on the map X! Spec.C/, that we shall writeHn

B .X/ (here B abbreviates Betti). If X is projective,
then the choice of a projective embedding determines a Kähler structure onX an, and hence a Hodge
decomposition (which is independent of the choice of the embedding because it is determined by
the Hodge filtration, and the Hodge filtration depends only on X ; see Theorem 1.4 below). In the
general case, we refer to Deligne 1968, 5.3, 5.5, for the existence of the decomposition.

For an arbitrary field k and an embedding � Wk ,! C, we write Hn
� .X/ for Hn

B .�X/ and
H
p;q
� .X/ for Hp;q.�X/. As � defines a homeomorphism �X an ! ��X an, it induces an isomor-

phism Hn
�� .X/! Hn

� .X/. Sometimes, when k is given as a subfield of C, we write Hn
B .X/ for

Hn
B .XC/.

Let ˝�
X=k

denote the complex in which ˝n
X=k

is the sheaf of algebraic differential n-forms,
and define the (algebraic) de Rham cohomology group Hn

dR.X=k/ to be Hn.XZar;˝
�
X=k

/ (hyper-
cohomology with respect to the Zariski cohomology). For any homomorphism � Wk ,! k0, there is
a canonical isomorphism

Hn
dR.X=k/˝k;� k

0
!Hn

dR.X˝k k
0=k0/:
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The spectral sequence

E
p;q
1 DH q.XZar;˝

p

X=k
/ H) HpCq.XZar;˝

�
X=k/

defines a filtration (the Hodge filtration) F pHn
dR.X/ onHn

dR.X/ which is stable under base change.

Theorem 1.4. If k D C, the obvious maps

Xan
!XZar; ˝�Xan  ˝�X ;

induce isomorphisms
Hn

dR.X/!Hn
dR.X

an/ŠHn.Xan;C/

under which F pHn
dR.X/ corresponds to F pHn.Xan;C/Ddf

L
p0�p, p0Cq0Dn

Hp0;q0 .

Proof. The initial terms of the spectral sequences

E
p;q
1 DH q.XZar;˝

p

X=k
/ H) HpCq.XZar;˝

�
X=k/

E
p;q
1 DH q.X;˝

p
X an/ H) HpCq.X;˝�X an/

are isomorphic — see Serre 1956 for the projective case and Grothendieck 1966 for the general case.
The theorem follows from this because, by definition of the Hodge decomposition, the filtration of
Hn

dR.X
an/ defined by the above spectral sequence is equal to the filtration ofHn.X an;C/ defined in

the statement of the theorem.

It follows from the theorem and the discussion preceding it that every embedding � Wk ,! C
defines an isomorphism

Hn
dR.X/˝k;� C

Š
�!Hn

� .X/˝QC

and, in particular, a k-structure on Hn
� .X/˝Q C. When k D Q, this structure should be distin-

guished from the Q-structure defined by Hn
� .X/: the two are related by the periods.

When k is algebraically closed, we write Hn.X;Af /, or Hn
et.X/, for Hn.Xet; OZ/˝ZQ, where

Hn.Xet; OZ/ D lim
 �m

Hn.Xet;Z=mZ/ (étale cohomology). If X is connected, H 0.X;Af / D Af ,
the ring of finite adèles for Q, which justifies the first notation. By definition, Hn

et.X/ depends
only on X (and not on its structure morphism X ! Speck). The map Hn

et.X/! Hn
et.X ˝k k

0/

defined by an inclusion k ,! k0 of algebraically closed fields is an isomorphism (special case of
the proper base change theorem Artin et al. 1973, XII). The comparison theorem (ibid. XI) shows
that, when k D C, there is a canonical isomorphism Hn

B .X/˝Af ! Hn
et.X/. It follows that

Hn
B .X/˝Af is independent of the morphism X ! SpecC, and that, over any algebraically closed

field of characteristic zero, Hn
et.X/ is a free Af -module.

The Af -module Hn.X;Af / can also be described as the restricted product of the spaces
Hn.X;Ql/, l a prime number, with respect to the subspaces Hn.X;Zl/=ftorsiong.

Next we define the notion of the “Tate twist” in each of the three cohomology theories. For
this we shall define objects Q.1/ and set Hn.X/.m/ D Hn.X/˝Q.1/˝m. We want Q.1/ to be
H 2.P1/ (realization of the Tate motive in the cohomology theory), but to avoid the possibility of
introducing sign ambiguities we shall define it directly,

QB.1/D 2�iQ

Qet.1/D Af .1/
df
D

�
lim
 �

r�r

�
˝ZQ; �r D f� 2 k j �

r
D 1g

QdR.1/D k;
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and so

Hn
B .X/.m/DH

n
B .X/˝Q .2�i/

mQDHn.X an; .2�i/mQ/ .k D C/

Hn
et.X/.m/DH

n
et.X/˝Af .Af .1//

˝m
D

�
lim
 �

rH
n.Xet;�

˝m
r /

�
˝ZQ .k algebraically closed)

Hn
dR.X/.m/DH

n
dR.X/.

These definitions extend in an obvious way to negativem. For example, we setQet.�1/DHomAf .Af .1/;Af /
and define

Hn
et.X/.�m/DH

n
et.X/˝Qet.�1/

˝m:

There are canonical isomorphisms

QB.1/˝QAf !Qet.1/ (k � C, k algebraically closed/

QB.1/˝C!QdR.1/˝k C (k � C)

and hence canonical isomorphisms (the comparison isomorphisms)

Hn
B .X/.m/˝QAf !Hn

et.X/.m/ (k � C, k algebraically closed/

Hn
B .X/.m/˝QC!Hn

dR.X/.m/˝k C (k � C).

To define the first, note that exp defines an isomorphism

z 7! ez W2�iZ=r2�iZ! �r :

After passing to the inverse limit over r and tensoring with Q, we obtain the required isomorphism
2�iAf ! Af .1/. The second isomorphism is induced by the inclusions

2�iQ ,! C - k:

Although the Tate twist for de Rham cohomology is trivial, it should not be ignored. For example,
when k D C,

Hn
B .X/˝C

17!.2�i/m

�������!
�

Hn
B .X/.m/˝C??yŠ ??yŠ

Hn
dR.X/ Hn

dR.X/.m/

fails to commute by a factor .2�i/m. Note that when m is odd the top isomorphism is defined only
up to sign.

In each cohomology theory there is a canonical way of attaching a class cl.Z/ in H 2p.X/.p/

to an algebraic cycle Z on X of pure codimension p. Since our cohomology groups are without
torsion, we can do this using Chern classes (Grothendieck 1958). Starting with a functorial isomor-
phism c1WPic.X/!H 2.X/.1/, one uses the splitting principle to define the Chern polynomial

ct .E/D
P
cp.E/t

p; cp.E/ 2H
2p.X/.p/;

of a vector bundle E on X . The map E 7! ct .E/ is additive, and therefore factors through the
Grothendieck group of the category of vector bundles on X . But, as X is smooth, this group is the
same as the Grothendieck group of the category of coherent OX -modules, and we can therefore
define

cl.Z/D
1

.p�1/Š
cp.OZ/
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(loc. cit. 4.3).
In defining c1 for the Betti and étale theories, we begin with maps

Pic.X/!H 2.X an;2�iZ/
Pic.X/!H 2.Xet;�r/

arising as connecting homomorphisms from the sequences

0! 2�i !OX an
exp
��!O�X an ! 0

0! �r !O�X
r
�!O�X ! 0:

For the de Rham theory, we note that the d log map, f 7! df
f

, defines a map of complexes

0 ����! O�X ����! 0 ����! �� �??y ??ydlog ??y
OX

d
����! ˝1X

d
����! ˝2X

d
����! �� �

and hence a map

Pic.X/ŠH 1.X;O�X /ŠH
2.X;0!O�X ! �� �/

!H2.X;˝�X /DH
2
dR.X/DH

2
dR.X/.1/

whose negative is c1. It can be checked that the three maps c1 are compatible with the comparison
isomorphisms (Deligne 1971a, 2.2.5.1), and it follows formally that the maps cl are also compatible
once one has checked that the Gysin maps and multiplicative structures are compatible with the
comparison isomorphisms.

When kDC, there is a direct way of defining a class cl.Z/2H2d�2p.X.C/;Q/ (singular coho-
mology, d D dim.X/, pD codim.Z//: the choice of an i determines an orientation of X and of the
smooth part of Z, and there is therefore a topologically defined class cl.Z/ 2H2d�2p.X.C/;Q/.
This class has the property that for Œ!� 2H 2d�2p.X1;R/DH 2d�2p.� .X;˝�X1// represented
by the closed form !,

hcl.Z/; Œ!�i D

Z
Z

!.

By Poincaré duality, cl.Z/ corresponds to a class cltop.Z/2H
2p
B .X/, whose image inH 2p

B .X/.p/

under the map induced by 1 7! .2�i/pWQ! Q.p/ is known to be clB.Z/. The above formula
becomes Z

X

cltop.Z/[ Œw�D

Z
Z

!.

There are trace maps (d D dimX )

TrBWH
2d
B .X/.d/

Š
!Q

TretWH
2d
et .X/.d/

Š
! Af

TrdRWH
2d
dR .X/.d/

Š
! k
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that are determined by the requirement that Tr.cl.point//D 1. They are compatible with the com-
parison isomorphisms. When k D C, TrB and TrdR are equal respectively to the composites

H 2d
B .X/.d/

.2�i/d 7!1
�������!

�
H 2d

B .X/
Š
����! H 2d .� .˝�X1//

Œ!�7!
R
X !

�������! C

H 2d
dR .X/.d/ H 2d

dR .X/
Š
����! H 2d .� .˝�X1//

Œ!�7! 1

.2�i/d

R
X !

�����������! C

where we have chosen an i and used it to orientate X (the composite maps are obviously indepen-
dent of the choice of i ). The formulas of the last paragraph show that

TrdR.cldR.Z/[ Œ!�/D
1

.2�i/dimZ

Z
Z

!:

A definition of Tret can be found in Milne 1980, VI 11.

Applications to periods

We now deduce some consequences concerning periods.

Proposition 1.5. Let X be a complete smooth variety over an algebraically closed field k � C and
let Z be an algebraic cycle on XC of dimension r . For any C1 differential r-form ! on XC whose
class Œ!� in H 2r

dR .XC/ lies in H 2r
dR .X/ Z

Z

! 2 .2�i/rk:

Proof. We first note that Z is algebraically equivalent to a cycle Z0 defined over k. In proving this,
we can assume Z to be prime. There exists a smooth variety T over k, a subvariety Z � X �T
that is flat over T , and a point SpecC! T such that Z D Z �T SpecC in X �T SpecCDXC. We
can therefore take Z0 to be Z�T Speck �X �T Speck DX for any point Speck! T . From this
it follows that cldR.Z/D cldR.Z0/ 2H

2r
dR .X/.r/ and TrdR.cldR.Z/[ Œ!�/ 2 k. But we saw above

that
R
Z ! D .2�i/

r TrdR.cldR.Z/[ Œ!�/.

We next derive a classical relation between the periods of an elliptic curve. For a complete
smooth curve X and an open affine subset U , the map

H 1
dR.X/!H 1

dR.U /D
� .U;˝1X /

d� .U;OX /
D
fmeromorphic diffls, holomorphic on U g

fexact differentials on U g

is injective with image the set of classes represented by forms whose residues are all zero (such
forms are said to be of the second kind). When kDC, TrdR.Œ˛�[ Œˇ�/, where ˛ and ˇ are differential
1-forms of the second kind, can be computed as follows. Let ˙ be the finite set of points where ˛
or ˇ has a pole. For z a local parameter at P 2˙ , ˛ can be written

˛ D
X

�1�i<1

aiz
idz with a�1 D 0:

There therefore exists a meromorphic function f defined near P such that df D ˛. We write
R
˛

for any such function — it is defined up to a constant. As ResP ˇ D 0, ResP .
R
˛/ˇ is well-defined,

and one proves that
TrdR.Œ˛�[ Œˇ�/D

X
P2˙

ResP
�R
˛
�
ˇ.
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Now let X be the elliptic curve

y2z D 4x3�g2xz
2
�g3z

3:

There is a lattice � in C and corresponding Weierstrass function }.z/ such that

z 7! .}.z/ W }0.z/ W 1/

defines an isomorphismC=�!X.C/. Let 
1 and 
2 be generators of� such that the bases f
1;
2g
and f1; ig of C have the same orientation. We can regard 
1 and 
2 as elements of H1.X;Z/,
and then 
1 � 
2 D 1. The differentials ! D dx=y and � D xdx=y on X pull back to dz and
}.z/dz respectively on C. The first is therefore holomorphic and the second has a single pole at
1D .0 W 1 W 0/ onX with residue zero (because 0 2Cmaps to12X and }.z/D 1

z2
Ca2z

2C : : :).
We find that

TrdR.Œ!�[ Œ��/D Res0

�Z
dz

�
}.z/dz D Res0.z}.z/dz/D 1.

For i D 1;2, let Z

i

dx

y

df
D

Z

i

dxp
4x3�g2x�g3

D !iZ

i

xdx

y

df
D

Z

i

xdxp
4x3�g2x�g3

D �i

be the periods of ! and �. Under the map

H 1
dR.X/!H 1.X;C/

! maps to !1
 01C!2

0
2 and � maps to �1
 01C �2


0
2, where f
 01;


0
2g is the basis dual to f
1;
2g.

Thus

1D TrdR.Œ!�[ Œ��/

D TrB..!1

0
1C!2


0
2/[ .�1


0
1C�2


0
2//

D .!1�2�!2�1/TrB.

0
1[


0
2/

D
1

2�i
.!1�2�!2�1/:

Hence
!1�2�!2�1 D 2�i .

This is the Legendre relation.
The next proposition shows how the existence of algebraic cycles can force algebraic relations

between the periods of abelian integrals. Let X be an abelian variety over a subfield k of C. In each
of the three cohomology theories,

H r.X/D
Vr

H 1.X/

and
H 1.X �X � � � �/DH 1.X/˚H 1.X/˚�� �

Let � 2 Gm.Q/ act on QB.1/ as ��1. There is then a natural action of GL.H 1
B .X//�Gm on

H r
B.X

n/.m/ for any r;n; and m. We define G to be the subgroup of GL.H 1
B .X//�Gm fixing all

the tensors of the form clB.Z/, Z an algebraic cycle on some Xn (see the Notations).
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Consider the comparison isomorphisms

H 1
dR.X/˝k C

Š
!H 1.X an;C/

Š
 H 1

B .X/˝QC.

The periods pij of X are defined by the equations

˛i D
X

pj iaj

where f˛ig and faig are bases for H 1
dR.X/ and H 1

B .X/ over k and Q respectively. The field k.pij /
generated over k by the pij is independent of the bases chosen.

Proposition 1.6. With the above definitions, the transcendence degree of k.pij / over k is� dim.G/.

Proof. We can replace k by its algebraic closure inC, and hence assume that each algebraic cycle on
XC is equivalent to an algebraic cycle onX (see the proof of 1.5). Let P be the functor of k-algebras
whose value on R is the set of isomorphisms pWH 1

B ˝QR! H 1
dR˝k R mapping clB.Z/˝ 1 to

cldR.Z/˝1 for all algebraic cyclesZ on a power ofX . WhenRDC, the comparison isomorphism
is such a p, and so P.C/ is not empty. It is easily seen that P is represented by an algebraic variety
that becomes a Gk-torsor under the obvious action. The bases f˛ig and faig can be used to identify
the points of P with matrices. The matrix

�
pij
�

is a point of P with coordinates in C, and so the
proposition is a consequence of the following well-known lemma.

Lemma 1.7. Let AN be the affine N -space over k, and let z 2 AN .C/. The transcendence degree
of k.z1; : : : ; zN / over k is the dimension of the Zariski closure of fzg.

Remark 1.8. If X is an elliptic curve, then dimG is 2 or 4 according as X has complex multiplica-
tion or not. Chudnovsky has shown that

tr. deg.kk.pij /D dimG

when X is an elliptic curve with complex multiplication. Does equality hold for all abelian vari-
eties?8

One of the main purposes of the seminar was to show that, in the case that X is an abelian
variety, (1.5) and (1.6) make sense, and remain true, if “algebraic cycle” is replaced by “Hodge
cycle”.
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2 Absolute Hodge cycles; principle B

Definitions (k algebraically closed of finite transcendence degree)

Let k be an algebraically closed field of finite transcendence degree overQ, and letX be a complete
smooth variety over k. Set

Hn
A.X/.m/DH

n
dR.X/.m/�H

n
et.X/.m/

— it is a free k �Af -module. Corresponding to an embedding � Wk ,! C, there are canonical
isomorphisms

��dRWH
n
dR.X/.m/˝k;� C

Š
!Hn

dR.�X/.m/

��et WH
n
et.X/.m/

Š
!Hn

et.�X/.m/

whose product we write ��. The diagonal embedding

Hn
� .X/.m/ ,!Hn

dR.�X/.m/�H
n
et.�X/.m/

induces an isomorphism

Hn
� .X/.m/˝ .C�Af /

Š
!Hn

dR.�X/.m/�H
n
et.�X/.m/

(product of the comparison isomorphisms, �1). An element t 2 H 2p
A .X/.p/ is a Hodge cycle

relative to � if

(a) t is rational relative to � , i.e., ��.t/ lies in the rational subspaceH 2p
� .X/.p/ ofH 2p

dR .�X/.p/�

H
2p
et .�X/.p/;

(b) the first component of t lies in F 0H 2p
dR .X/.p/Ddf F

pH
2p
dR .X/.

Equivalent condition: ��.t/ lies in H 2p
� .X/.p/ and is of bidegree .0;0/. If t is a Hodge cycle

relative to every embedding � Wk ,! C, then it is called an absolute Hodge cycle.

Example 2.1. (a) For any algebraic cycle Z on X , t D .cldR.Z/;clet.Z// is an absolute Hodge
cycle — the Hodge conjecture predicts there are no others. Indeed, for any � Wk ,!C, ��.t/D
clB.Z/, and is therefore rational, and it is well-known that cldR.�Z/ is of bidegree .p;p/ in
H
2p
dR .�X/.

(b) Let X be a complete smooth variety of dimension d , and consider the diagonal �� X �X .
Corresponding to the decomposition

H 2d .X �X/.d/D˚2diD0H
2d�i .X/˝H i .X/.d/

we have
cl.�/D

P2d
iD0�

i :

The � i are absolute Hodge cycles.
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(c) Suppose that X is given with a projective embedding, and let 
 2H 2
dR.X/.1/�H

2
et.X/.1/ be

the class of a hyperplane section. The hard Lefschetz theorem states that

x 7! 
d�2p �xWH 2p.X/.p/!H 2d�2p.X/.d �p/; 2p � d;

is an isomorphism. The class x is an absolute Hodge cycle if and only if 
d�2p � x is an
absolute Hodge cycle.

Loosely speaking, any cycle that is constructed from a set of absolute Hodge cycles by a canon-
ical rational process will again be an absolute Hodge cycle.

Question 2.2 (Open). Does there exist a cycle rational for every � but which is not absolutely
Hodge?9

More generally, consider a family .X˛/˛2A of complete smooth varieties over a field k (as
above). Let .m.˛// 2 N.A/, .n.˛// 2 N.A/, and m 2 Z, and write

TdR D

 O
˛

H
m.˛/
dR .X˛/

!
˝

 O
˛

H
n.˛/
dR .X˛/

_

!
.m/

Tet D

 O
˛

H
m.˛/
et .X˛/

!
˝

 O
˛

H
n.˛/
et .X˛/

_

!
.m/

TA D TdR�Tet

T� D

 O
˛

Hm.˛/
� .X˛/

!
˝

 O
˛

Hn.˛/
� .X˛/

_

!
.m/ .� Wk ,! C/:

Then we say that t 2 TA is

– rational relative to � if its image in TA˝k�Af ;.�;1/C�Af lies in T� ,

– a Hodge cycle relative to � if it is rational relative to � and its first component lies
in F 0, and

– an absolute Hodge cycle if it is a Hodge cycle relative to every � .

Note that, in order for there to exist Hodge cycles in TA, it is necessary thatP
m.˛/�

P
n.˛/D 2m.

Example 2.3. Cup product defines maps

T
m;n
A .p/�T

m0;n0

A .p0/! T
mCm0;nCn0

A .pCp0/;

and hence an element of T _A ˝T
_
A ˝TA, which is an absolute Hodge cycle.

Question 2.4 (Open). Let t 2 F 0H 2p
dR .X/.p/. If ��dR.t/ 2 H

2p
� .X/.�/ for all � Wk ,! C, is t

necessarily the first component of an absolute Hodge cycle?
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Basic properties of absolute Hodge cycles

In order to develop the theory of absolute Hodge cycles, we shall need to use the Gauss-Manin
connection (Katz and Oda 1968; Katz 1970; Deligne 1971b). Let k0 be a field of characteristic
zero and let S be a smooth k0-scheme (or the spectrum of a finitely generated field over k0). A
k0-connection on a coherent OS -module E is a homomorphism of sheaves of abelian groups

rWE!˝1S=k0˝OS E

such that
r.fe/D df ˝ eCf r.e/

for local sections f of OS and e of E . The kernel of r, Er , is the sheaf of horizontal sections of
.E ;r/. Any k0-connection r can be extended to a homomorphism of abelian sheaves,

rnW˝
n
S=k0
˝OS E!˝nC1

S=k0
˝OS E ;

!˝ e 7! d!˝ eC .�1/n!^r.e/

and r is said to be integrable if r1 ır D 0. Moreover, r gives rise to an OS -linear map

D 7! rDWDer.S=k0/! Endk0.E/

where rD is the composite

E r!˝1S=k0˝OS E
D˝1
! OS ˝OS E Š E :

Note that rD.fe/DD.f /eCf rD.e/. One checks that r is integrable if and only if D 7! rD is
a Lie algebra homomorphism.

Now consider a proper smooth morphism � WX ! S of smooth varieties, and write Hn
dR.X=S/

for Rn��.˝�X=S /. This is a locally free sheaf of OS -modules with a canonical connection r; called
the Gauss-Manin connection, which is integrable. It therefore defines a Lie algebra homomorphism

Der.S=k0/! Endk0.H
n
dR.X=S//:

If k0 ,! k00 is an inclusion of fields and X 0=S 0 D .X=S/˝k0 k
0
0, then the Gauss-Manin connection

on Hn
dR.X

0=S 0/ is r ˝ 1. In the case that k0 D C, the relative form of Serre’s GAGA theorem
(Serre 1956) shows that Hn

dR.X=S/
an Š Hn

dR.X
an=X an/ and r gives rise to a connection ran on

Hn
dR.X

an=S an/. The relative Poincaré lemma shows that

.Rn��C/˝OS an
Š
!Hn

dR.X
an=S an/;

and it is known that ran is the unique connection such that

Rn��C
Š
!Hn

dR.X
an=S an/r

an
.

Proposition 2.5. Let k0 � C have finite transcendence degree over Q, and let X be a complete
smooth variety over a field k that is finitely generated over k0. Letr be the Gauss-Manin connection
on Hn

dR.X/ relative to the composite X ! Speck! Speck0. If t 2Hn
dR.X/ is rational relative to

all embeddings of k into C, then t is horizontal for r: rt D 0.
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Proof. Choose a regular k0-algebra A of finite-type and a smooth proper map � WXA ! SpecA
whose generic fibre isX!Speck and which is such that t extends to an element of � .SpecA;Hn

dR.X=SpecA/.
After a base change relative to k0 ,! C, we obtain maps

XS ! S ! SpecC; S D SpecAC;

and a global section t 0 D t ˝ 1 of Hn
dR.X

an
S =S

an/. We have to show that .r˝ 1/t 0 D 0, or equiva-
lently, that t 0 is a global section of Hn.X an

S ;C/Ddf R
n�an
� C.

An embedding � Wk ,! C gives rise to an injection A ,! C (i.e., a generic point of SpecA in
the sense of Weil) and hence a point s of S . The hypotheses show that, at each of these points,
t .s/ 2 Hn.X an

s ;Q/ � Hn
dR.X

an
s /. Locally on S , Hn

dR.X
an
s =S

an/ will be the sheaf of holomorphic
sections of the trivial bundle S �Cn and Hn.X an;C/ will be the sheaf of locally constant sections.
Thus, locally, t 0 is a function

s 7! .t1.s/; : : : ; tm.s//WS ! S �Cm:

Each ti .s/ is a holomorphic function which, by hypothesis, takes real (even rational) values on a
dense subset of S . It is therefore constant.

Remark 2.6. In the situation of (2.5), assume that t 2 Hn
dR.X/ is rational relative to one � and

horizontal for r. An argument similar to the above then shows that t is rational relative to all
embeddings that agree with � on k0.

Corollary 2.7. Let k0 � k be algebraically closed fields of finite transcendence degree over Q, and
let X be a complete smooth variety over k0. If t 2 Hn

dR.Xk/ is rational relative to all � Wk ,! C,
then it is defined over k0, i.e., it is in the image of Hn

dR.X/!Hn
dR.Xk/.

Proof. Let k0 be a subfield of k which is finitely generated over k0 and such that t 2Hn
dR.X˝k0 k

0/.
The hypothesis implies that rt D 0 where r is the Gauss-Manin connection for Xk0 ! Speck0!
Speck0. Thus, for any D 2 Der.k0=k0/, rD.t/D 0. But Xk0 arises from a variety over k0, and so
Der.k0=k0/ acts on Hn

dR.Xk0/DH
n
dR.X/˝k0 k

0 through k0, i.e., rD D 1˝D. Thus the corollary
follows from the next well-known lemma.

Lemma 2.8. Let k0 � k0 be as above, and let V D V0˝k0 k
0, where V0 is a vector space over k0.

If t 2 V is fixed (i.e., killed) by all derivations of k0=k0, then t 2 V0.

Let CpAH.X/ be the subset of H 2p
A .X/.p/ of absolute Hodge cycles. It is a finite-dimensional

vector space over Q.

Proposition 2.9. Let k be an algebraically closed field of finite transcendence degree over Q.

(a) For any smooth complete variety X defined over an algebraically closed subfield k0 of k, the
canonical map

H
2p
A .X/.p/!H

2p
A .Xk/.p/

induces an isomorphism
C
p
AH.X/! C

p
AH.Xk/.

(b) Let X0 be a smooth complete variety defined over a subfield k0 of k whose algebraic closure
is k, and let X DX0˝k0 k. Then Gal.k=k0/ acts on CpAH.X/ through a finite quotient.
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Proof. (a) The map is injective, and a cycle on X is absolutely Hodge if and only if it is absolutely
Hodge on Xk , and so it remains to show that an absolute Hodge cycle t on Xk arises from a
cycle on X . But (2.7) shows that tdR arises from an element of H 2p

dR .X/.p/, and H 2p
et .X/.p/!

H
2p
et .Xk/.p/ is an isomorphism.

(b) It is obvious that the action of Gal.k=k0/ onH 2p
dR .X/.p/�H

2p
et .X/.p/ stabilizes CpAH.X/.

We give three proofs that it factors through a finite quotient.
(i) Note that CpAH.X/!H

2p
dR .X/ is injective. Clearly, H 2p

dR .X/D
S
H
2p
dR .X0˝ki / where the

ki run over over the finite extensions of k0 contained in k. Thus, all elements of a finite generating
set for CpAH.X/ lie in H 2p

dR .X0˝ki / for some i .
(ii) Note that CpAH.X/!H 2p.Xet;Q`/.p/ is injective for all `. The subgroupH of Gal.k=k0/

fixing CpAH.X/ is closed. Thus, the quotient of Gal.k=k0/ by H is a profinite group, which is
countable because it is a finite subgroup of GLm.Q/ for some m. It follows10 that it is finite.

(iii) A polarization of X gives a positive definite form on CpAH.X/, which is stable under
Gal.k=k0/. This shows that the action factors through a finite quotient.

Remark 2.10. (a) The above results remain valid for a family of varieties .X˛/˛ rather than a single
X .

(b) Proposition 2.9 would remain true if we had defined an absolute Hodge cycle to be an
element t of F 0H 2p

dR .X/.p/ such that, for all � Wk ,! C; ��dR.t/ 2H
2p
� .X/.

Definitions (arbitrary k)

Proposition 2.9 allows us to define the notion of an absolute Hodge cycle on any smooth complete
variety X over a field of characteristic zero. When k is algebraically closed, we choose a model
X0=k0 of X0 over an algebraically closed subfield k0 of k of finite transcendence degree over Q,
and we define t 2H 2p

A .X/.p/ to be an absolute Hodge cycle if it lies in the subspaceH 2p
A .X0/.p/

of H 2p
A .X/.p/ and is an absolute Hodge cycle there. The proposition shows that this definition is

independent of the choice of k0 and X0. (This definition is forced on us if we want (2.9a) to hold
without restriction on the transcendence degrees of k and k0.) When k is not algebraically closed,
we choose an algebraic closure k of it, and define an absolute Hodge cycle on X to be an absolute
Hodge cycle on X˝k k that is fixed by Gal.k=k/.

One can show (assuming the axiom of choice) that if k is algebraically closed and of cardinality
not greater than that of C, then an element t of H 2p

dR .X/.p/�H
2p
et .X/.p/ is an absolute Hodge

cycle if it is rational relative to all embeddings � Wk ,! C and tdR 2 F
0H

2p
dR .X/.p/. If k D C, then

the first condition has to be checked only for isomorphisms of C. When k � C, we define a Hodge
cycle to be a cohomology class that is Hodge relative to the inclusion k ,! C.

Statement of the main theorem

Main Theorem 2.11. 11Let X be an abelian variety over an algebraically closed field k, and let
t 2H

2p
A .X/.p/. If t is a Hodge cycle relative to one embedding � Wk ,!C, then it is a Hodge cycle

relative to every embedding, i.e., it is an absolute Hodge cycle.

The proof will occupy ��2–6 of the notes.

Principle B

We begin with a result concerning families of varieties parametrized by smooth algebraic varieties
over C. Let � WX ! S be a proper smooth map of smooth varieties over C with S connected. We
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set
Hn

et.X=S/.m/D lim
 �
r

.Rn��et�
˝m
r /˝ZQ:

and
Hn
A.X=S/.m/DHn

dR.X=S/.m/�Hn
et.X=S/.m/.

Theorem 2.12 (Principle B). Let t be a global section of H2p
A .X=S/.p/ such that rtdR D 0. If

.tdR/s 2 F
0H

2p
dR .Xs/.p/ for all s 2 S and ts is an absolute Hodge cycle in H 2p

A .Xs/.p/ for one s,
then ts is an absolute Hodge cycle for all s.

Proof. Suppose that ts is an absolute Hodge cycle for s D s1, and let s2 be a second point of S .
We have to show that ts2 is rational relative to every isomorphism � WC! C. On applying � , we
obtain a morphism �� W�X! �S and a global section �t of H2p

A .X=S/.p/. We know that �.t/�s1
is rational, and we have to show that �.t/�s2 is rational. Clearly, � only translates the problem, and
so we can omit it.

First consider the component tdR of t . By assumption, rtdR D 0, and so tdR is a global section
of H2p.X an;C/. Since it is rational at one point, it must be rational at every point.

Next consider tet. As H2p
B .X=S/.p/ Ddf R

2p�an
� Q.p/ and H2p

et .X=S/ are local systems, for
any point s 2 S there are isomorphisms

� .S;H2p
B .X=S/.p//

Š
!H

2p
B .Xs/.p/

�1.S;s/

� .S;H2p
et .X=S/.p//

Š
!H

2p
et .Xs/.p/

�1.S;s/:

Consider

� .S;H2p
B .X=S/.p// � .S;H2p

B .X=S/.p//˝Af � .S;H2p
et .X=S/.p//

H
2p
B .Xs/.p/

�1.S;s/ H
2p
B .Xs/.p/

�1.S;s/˝Af H
2p
et .Xs/.p/

�1.S;s/

H
2p
B .Xs/.p/ H

2p
B .Xs/.p/˝Af H

2p
et .Xs/.p/

Š Š Š

Š

Š

Š

We have tet 2� .S;H2p
et .X=S/.p// and are told that its image inH 2p

et .Xs1/.p/ lies inH 2p
B .Xs1/.p/.

On applying the next lemma (with Z D A and z D 1), we find that tet lies in � .S;H2p
B .X=S/.p//,

and is therefore in H 2p
B .Xs/.p/ for all s.

Lemma 2.13. Let W ,! V be an inclusion of vector spaces. Let Z be a third vector space and let
z be a nonzero element of Z. Embed V in V ˝Z by v 7! v˝z. Then

.W ˝Z/\V DW (inside V ˝Z).

Proof. Choose a basis .ei /i2I for W and extend it to a basis .ei /ItJ for V . Any x 2 V ˝Z has a
unique expression

x D
P
i2ItJ ei ˝zi ; .zi 2Z, finite sum/:

If x 2W ˝Z, then zi D 0 for i … I , and if x 2 V , then zi D z for all i .
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Remark 2.14. The assumption in the theorem that .tdR/s 2F
0H

2p
dR .Xs/.p/ for all s is unnecessary:

it is implied by the condition that rtdR D 0 (Deligne 1971a, 4.1.2, Théorème de la partie fixe).12

We shall need a slight generalization of Theorem 2.12.

Theorem 2.15. Let � WX ! S again be a smooth proper map of smooth varieties over C with S
connected, and let V be a local subsystem of R2p��Q.p/ such that Vs consists of .0;0/-cycles for
all s and consists of absolute Hodge cycles for at least one s. Then Vs consists of absolute Hodge
cycles for all s.

Proof. If V is constant, so that every element of Vs extends to a global section, then this is a
consequence of Theorem 2.12, but the following argument reduces the general case to that case.

At each point s 2 S , R2p��Q.p/s has a Hodge structure. Moreover, R2p��Q.p/ has a polar-
ization, i.e., there is a form

 WR2p��Q.p/�R2p��Q.p/!Q.�p/

which at each point defines a polarization on the Hodge structure R2p��Q.p/s . On

R2p��Q.p/\ .R2p��C.p//0;0

the form is symmetric, bilinear, rational, and positive definite. Since the action of �1.S;s0/ pre-
serves the form, the image of �1.S;s0/ in Aut.Vs0/ is finite. Thus, after passing to a finite covering
of S , we can assume that V is constant.

Remark 2.16. Both Theorem 2.12 and Theorem 2.15 generalize, in an obvious way, to families
�˛WX˛! S .
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3 Mumford-Tate groups; principle A

Characterizing subgroups by their fixed tensors

Let G be a reductive algebraic group over a field k of characteristic zero, and let .V˛/˛2A be a
faithful family of finite-dimensional representations over k ofG, so thatG!

Q
GL.V˛/ is injective.

For any m; n 2 N.A/, we can form

Tm;n D
N
˛ V
˝m.˛/
˛ ˝

N
˛.V

_
˛ /
˝n.˛/,

which is again a finite-dimensional representation of G. For any algebraic subgroup H of G, we
write H 0 for the subgroup of G fixing all tensors that occur in some Tm;n and are fixed by H .
Clearly, H �H 0, and we shall need criteria guaranteeing their equality.

Proposition 3.1. The notations are as above.

(a) Every finite-dimensional representation of G is contained in a direct sum of representations
Tm;n.

(b) (Chevalley’s Theorem). Every subgroup H of G is the stabilizer of a line D in some finite-
dimensional representation of G.

(c) If H is reductive, or if Xk.G/! Xk.H/ is surjective, then H DH 0. (Here Xk.G/ denotes
Homk.G;Gm/, so the hypotheses is that every k-character of H extends to a k-character of
G.)

Proof. (a) LetW be a representation ofG, and letW0 denote the underlying vector space ofW with
G acting trivially (i.e., gw D w, all g 2G, w 2W ): Then G�W !W defines a map W !W0˝

kŒG� which is G-equivariant (Waterhouse 1979, 3.5). Since W0˝kŒG�� kŒG�dimW , it suffices to
prove (a) for the regular representation. There is a finite sum V D˚V˛ such that G! GL.V / is
injective (because G is noetherian). The map

GL.V /! End.V /�End.V _/

identifies GL.V / (and hence G) with a closed subvariety of End.V /�End.V _/ (loc. cit.). There is
therefore a surjection

Sym.End.V //�Sym.End.V _//! kŒG�;

where Sym denotes the symmetric algebra, and (a) now follows from the fact that representations
of reductive groups in characteristic zero are semisimple (see Deligne and Milne 1982, �2).

(b) Let I be the ideal of regular functions on G that are zero on H . Then, in the regular
representation of G on kŒG�, H is the stabilizer of I . There exists a finite-dimensional subspace V
of kŒG� that is G-stable and contains a generating set for I (Waterhouse 1979, 3.3). Then H is the
stabilizer of the subspace I \V in V , and hence13 of

Vd
.I \V / in

Vd
V , where d D dimk.I \V /.

(c) According to (b), H is the stabilizer of a line D in some representation V of G, which
(according to (a)) can be taken to be a direct sum of Tm;n’s.

IfH is reductive, then V DW ˚D for someH -stableW and V _ DW _˚D_. NowH is the
group fixing a generator of D˝D_ in V ˝V _.

If every k-character ofH extends to a k-character ofG, then the one-dimensional representation
of H on D can be regarded as the restriction to H of a representation of G. Now H is the group
fixing a generator of D˝D_ in V ˝D_.
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Remark 3.2. (a) It is clearly necessary to have some condition on H in order to have H 0 D H .
For example, let B be a Borel subgroup of a reductive group G, and let v 2 V be fixed by B . Then
g 7! gv defines a map of algebraic varieties G=B ! V , which must be constant because G=B is
complete and V is affine. Thus, v is fixed by G, and so B 0 DG.

However, the above argument proves the following: let H 0 be the group fixing all tensors fixed
by G occurring in any representation of G (equivalently, any representation occurring as a subquo-
tient of some Tm;n); then H DH 0.

(b) In fact, in all our applications of (3.1c), H will be the Mumford-Tate group of a polarizable
Hodge structure, and hence will be reductive. However, the Mumford-Tate groups of mixed Hodge
structures (even polarizable) will not in general be reductive, but will satisfy the second condition
in (3.1c) (with G D GL).

(c) The theorem of Haboush (Demazure 1976) can be used to show that the second form of
(3.1c) holds when k has nonzero characteristic.

(d) In (3.1c) it suffices to require that Xk.G/! Xk.H/ has finite cokernel, i.e., a nonzero
multiple of each k-character of H extends to a k-character of G.

Hodge structures

Let V be a finite-dimensional vector space over Q. A Q-rational Hodge structure of weight n on
V is a decomposition VC D

L
pCqDnV

p;q such that V q;p is the complex conjugate of V p;q . Such
a structure determines a cocharacter

�WGm! GL.VC/

such that
�.z/vp;q D z�pvp;q; vp;q 2 V p;q:

The complex conjugate �.z/ of �.z/ has the property �.z/ �vp;q D z�qvp;q . Since �.z/ and �.z/
commute, their product determines a homomorphism of real algebraic groups

hWC�! GL.VR/; h.z/vp;q D z�pz�qvp;q .

Conversely, a homomorphism hWC�! GL.VR/ whose restriction to R� is r 7! r�n � idV defines a
Hodge structure of weight n on V .

Let F pV D
L
p0�p V

p0;q0 , so that

� � � � F pV � F pC1V � �� �

is a decreasing (Hodge) filtration on VC.
Let Q.1/ denote the vector space Q with the Hodge structure for which Q.1/C DQ.1/�1;�1. It

has weight �2 and h.z/ �1D zz �1. For any integer m,

Q.m/ df
DQ.1/˝m DQ.m/�m;�m

has weight �2m. (Strictly speaking, we should define Q.1/D 2�iQ : : :.)

Remark 3.3. The notation h.z/ �vp;q D z�pz�qvp;q is the negative of that used in Deligne 1971b,
Saavedra Rivano 1972, and elsewhere. It is perhaps justified by the following. Let A be an abelian
variety over C. The exact sequences

0! Lie.A_/_!H1.A;C/! Lie.A/! 0
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and

0 ! F 1H 1.A;C/ ! H 1.A;C/ ! F 0=F 1 ! 0

jj jj

H 1;0 DH 0.A;˝1/ H 0;1 DH 1.A;OX /

are canonically dual. Since H 1.A;C/ has a natural Hodge structure of weight 1 with .1;0/-
componentH 0.˝1/,H1.A;C/ has a natural Hodge structure of weight�1with .�1;0/-component
Lie.A/. Thus h.z/ acts on Lie.A/, the tangent space to A at zero, as multiplication by z.

Mumford-Tate groups

Let V be a Q-vector space with Hodge structure h of weight n. For m1;m2 2 N and m3 2 Z,
T D V ˝m1˝V _˝m2˝Q.1/˝m3 has a Hodge structure of weight .m1�m2/n�2m3. An element
of TC is said to be rational of bidegree .p;q/ if it lies in T \T p;q . We let � 2 Gm act on Q.1/ as
��1. The action of GL.V / on V and the action of Gm on Q.1/ define an action of GL.V /�Gm on
T . The Mumford-Tate group G of .V;h/ is the subgroup of GL.V /�Gm fixing all rational tensors
of type .0;0/ belonging to any T . Thus the projection on the first factor identifies G.Q/ with the
set of g 2 GL.V / for which there exists a �.g/ 2 Q� with the property that gt D �.g/pt for any
t 2 V ˝m1˝V _˝m2 of type .p;p/.

Proposition 3.4. The group G is the smallest algebraic subgroup of GL.V /�Gm defined over Q
for which �.Gm/�GC.

Proof. Let H be the intersection of all Q-rational subgroups of GL.V /�Gm that, over C, contain
�.Gm/. For any t 2 T , t is of type .0;0/ if and only if it is fixed by �.Gm/ or, equivalently, it is
fixed by H . Thus G DH 0 in the notation of (3.1), and the next lemma completes the proof.

Lemma 3.5. With H as above, every Q-character of H extends to a Q-character of GL.V /�Gm.

Proof. Let �WH!GL.W / be a representation of dimension one defined overQ, i.e., aQ-character.
The restriction of the representation to Gm is isomorphic to Q.n/ for some n. After tensoring W
with Q.�n/, we can assume that �ı�D 1, i.e., �.Gm/ acts trivially. But thenH must act trivially,
and the trivial character extends to the trivial character.

Proposition 3.6. If V is polarizable, then G is reductive.

Proof. Choose an i and write C D h.i/ (C is often called the Weil operator). For vp;q 2 V p;q ,
Cvp;q D i�pCqvp;q , and so C 2 acts as .�1/n on V , where nD pCq is the weight of V .

Recall that a polarization  of V is a morphism  WV �V ! Q.�n/ such that the real-valued
form  .x;Cy/ on VR is symmetric and positive definite. Under the canonical isomorphism

Hom.V ˝V;Q.�n//! V _˝V _.�n/;

 corresponds to a tensor of bidegree .0;0/ (because it is a morphism of Hodge structures) and
therefore is fixed by G:

 .g1v;g1v
0/D gn2 .v;v

0/, all .g1;g2/ 2G.Q/� GL.V /�Q�; .v;v0/ 2 V:

Recall that if H is a real algebraic group and � is an involution of HC, then the real-form of
H defined by � is a real algebraic group H� endowed with an isomorphism HC! .H� /C under
which complex conjugation on H� .C/ corresponds to � ı .complex conjugation/ on H.C/. We
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are going to use the following criterion: a connected algebraic group H over R is reductive if it
has a compact real-form H� . To prove the criterion, it suffices to show that H� is reductive. On
any finite-dimensional representation V of H , there is an H� -invariant positive definite symmetric
form, namely,

hu;vi0 D

Z
H�

hhu;hvidh;

where h ; i is any positive definite symmetric form on V . If W is an H� -stable subspace of V , then
its orthogonal complement is also H� -stable. Thus every finite-dimensional representation of H�
is semisimple, and this implies that H� is reductive (Deligne and Milne 1982, �2).

We shall apply the criterion to the special Mumford-Tate group of .V;h/,

G0
df
D Ker.G!Gm/.

Let G1 be the smallest Q-rational subgroup of GL.V /�Gm such that G1R contains h.U 1/, where
U 1.R/ D fz 2 C� j zz D 1g. Then G1 � G, and in fact G1 � G0. Since G1R �h.C

�/ D GR and
h.U 1/D Ker.h.C�/!Gm/, it follows that G0 DG1, and therefore G0 is connected.

Since C D h.i/ acts as 1 on Q.1/, C 2G0.R/. Its square C 2 acts as .�1/n on V and therefore
lies in the centre of G0.R/. The inner automorphism adC of GR defined by C is therefore an
involution. For u;v 2 VC, and g 2G0.C/, we have

 .u;Cv/D  .gu;gCv/D  .gu;CC�1gCv/D  .gu;Cg�v/

where g� D C�1gC D .adC/.g/. Thus, the positive definite form �.u;v/Ddf  .u;Cv/ on VR is
invariant under the real-form of G0 defined by adC , and so this real-form is compact.

Example 3.7. (Abelian varieties of CM-type). A CM-field is a quadratic totally imaginary extension
of a totally real field, and a CM-algebra is a finite product of CM-fields. Let E be a CM-algebra,
and let � be the involution of E such that �� D ��E for all � WE! C. Let

S D Hom.E;C/D Hom.E;Q/D specEC:

A CM-type for E is a subset ˙ � S such that

S D˙ t �˙ (disjoint union).

To the pair .E;˙/, there is attached an abelian variety A with A.C/DC˙=˙.OE / where OE , the
ring of integers in E, is embedded in C˙ by u 7! .�u/�2˙ . Obviously, E acts on A. Moreover,
H1.A;Q/ŠE, and

H1.A/˝CŠE˝QC
Š
! CS D C˙ ˚C�˙

u˝1 7! .�u/�2S

with C˙ the .�1;0/-component ofH1.A/˝C and C�˙ the .0;�1/-component. Thus, �.z/ acts as
z on C˙ and as 1 on C�˙ .

Let G be the Mumford-Tate group of H1.A/. The actions of �.C�/ and E� on H1.A/˝C
commute. As E� is its own commutant in GL.H1.A//, this implies that �.C�/� .E˝C/� and G
is the smallest algebraic subgroup of E��Q� such that G.C/ contains �.C�/. In particular, G is
a torus, and can be described by its cocharacter group Y.G/Ddf HomQ.Gm;G/.

Clearly,
Y.G/� Y.E�/�Y.Gm/D ZS �Z.

Note that � 2 Y.G/ is equal to
P
s2˙ esCe0, where .es/s2S � ZS is the basis dual to S �X.E�/

and e0 is the element 1 of the last copy of Z. The following are obvious:
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(a)
�
ZS �Z

�
=Y.G/ is torsion-free;

(b) � 2 Y.G/;

(c) Y.G/ is stable under Gal.Q=Q/; thus Y.G/ is the Gal.Q=Q/-module generated by �;

(d) since �C ��D 1 on S ,

Y.G/� f
P
nsesCn0e0 2 ZS �Z j nsCn�s D constantg.

Let F be the subalgebra of E whose elements are fixed by �E (thus, F is a product of totally real
fields). Then (d) says that

G.Q/� f.x;y/ 2E��Q� j NmE=F .x/ 2Q�g:

Principle A

Theorem 3.8 (Principle A). 14Let .X˛/˛ be a family of varieties over C, and consider spaces T
obtained by tensoring spaces of the formHn˛

B .X˛/,H
n˛
B .X˛/

_, andQ.1/. Let ti 2 Ti , i D 1; : : : ;N
(Ti of the above type) be absolute Hodge cycles, and let G be the subgroup ofQ

˛;n˛

GL.Hn˛
B .X˛//�Gm

fixing the ti . If t belongs to some T and is fixed by G, then it is an absolute Hodge cycle.

We first need a lemma.

Lemma 3.9. Let G be an algebraic group overQ, and let P be a G-torsor of isomorphismsH˛
� !

H˛
� where .H˛

� /˛ and .H˛
� /˛ are families of Q-rational representations of G. Let T� and T� be

like spaces of tensors constructed out of H� and H� respectively. Then P defines a map TG� ! T� .

Proof. Locally for the étale topology on Spec.Q/, points of P define isomorphisms T� ! T� . The
restriction to TG� of such a map is independent of the point. Thus, by étale descent theory, they
define a map of vector spaces TG� ! T� .

PROOF OF THEOREM 3.8. We remove the identification of the ground field with C. Thus, the
ground field is now a field k equipped with an isomorphism � Wk! C. Let � Wk! C be a second
isomorphism. We can assume that t and the ti all belong to the same space T . The canonical
inclusions of cohomology groups

H� .X˛/ ,!H� .X˛/˝ .C�Af / - H� .X˛/

induce maps
T� ,! T ˝ .C�Af / - T� .

We shall regard these maps as inclusions. Thus,

.t1; : : : ; tN ; t /� T� � T ˝ .C�Af /;
.t1; : : : ; tN /� T� � T ˝ .C�Af /.

Let P be the functor of Q-algebras such that

P.R/D fpWH� ˝R
�
!H� ˝R j p maps ti (in T� ) to ti (in T� ), i D 1; : : : ;N g:
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The existence of the canonical inclusions mentioned above shows that P.C�Af / is nonempty, and
it is easily seen that P is a G-torsor.

On applying the lemma (and its proof) in the above situation, we obtain a map TG� ! T� such
that

TG� T�

T� T ˝ .C�Af /

commutes. This means that TG� � T� , and therefore t 2 T� .
It remains to show that the component tdR of t in T ˝CD TdR lies in F 0TdR. But for a rational

s 2 TdR,
s 2 F 0TdR ” s is fixed by �.C�/.

Thus, .ti /dR 2 F
0, i D 1;2; : : : ;N , implies G � �.C�/, which implies that tdR 2 F

0.
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4 Construction of some absolute Hodge cycles

Hermitian forms

Recall that a number field E is a CM-field if, for each embedding E ,! C, complex conjugation
induces a nontrivial automorphism e 7! e on E that is independent of the embedding. The fixed
field of the automorphism is then a totally real field F over which E has degree two.

A bi-additive form
�WV �V !E

on a vector space V over such a field E is Hermitian if

�.ev;w/D e�.v;w/; �.v;w/D �.w;v/; all e 2E, v;w 2 V .

For any embedding � WF ,!R we obtain a Hermitian form �� in the usual sense on the vector space
V� D V ˝F;� R, and we let a� and b� be the dimensions of the maximal subspaces of V� on which
�� is positive definite and negative definite respectively. If d D dimV , then � defines a Hermitian
form on

Vd
V that, relative to some basis vector, is of the form .x;y/ 7! f xy. The element f

is in F , and is independent of the choice of the basis vector up to multiplication by an element of
NmE=F E�. It is called the discriminant of �. Let .v1; : : : ;vd / be an orthogonal basis for �, and let
�.vi ;vj /D ci ; then a� is the number of i for which �ci > 0, b� the number of i for which �ci < 0
and f D

Q
ci (mod NmE=F E�/. If � is nondegenerate, then f 2 F �=NmE�, and

a� Cb� D d; sign.�f /D .�1/b� , all �: (1)

Proposition 4.1. Suppose given nonnegative integers .a� ;b� /� WF ,!C and an element f 2F �=NmE�

satisfying (1). Then there exists a non-degenerate Hermitian form � on an E-vector space with in-
variants .a� ;b� / and f ; moreover, .V;�/ is unique up to isomorphism.

Proof. The result is due to Landherr 1936. Today one prefers to regard it as a consequence of the
Hasse principle for simply connected semisimple algebraic groups and the classification of Hermi-
tian forms over local fields.

Corollary 4.2. Assume that the Hermitian space .V;�/ is non-degenerate and let d D dimV . The
following conditions are equivalent:

(a) a� D b� for all � and disc.f /D .�1/d=2I

(b) there is a totally isotropic subspace of V of dimension d=2.

Proof. Let W be a totally isotropic subspace of V of dimension d=2. The map v 7! �.�;v/WV !

W _ induces an antilinear isomorphism V=W ! W _. Thus, a basis e1; : : : ; ed=2 of W can be
extended to a basis feig of V such that

�.ei ; ed
2
Ci /D 1; 1� i � d=2;

�.ei ; ej /D 0; j ¤ i˙d=2:

It is now easy to check that .V;�/ satisfies (a). Conversely, .Ed ;�/ where

�..ai /; .bi //D
X

1�i�d=2

aib d
2
Ci Cad

2
Cibi ;

is, up to isomorphism, the only Hermitian space satisfying (a), and it also satisfies (b).
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A Hermitian form satisfying the equivalent conditions of the corollary will be said to be split
(because then AutE .V;�/ is an F -split algebraic group).

We shall need the following lemma from linear algebra.

Lemma 4.3. Let k be a field, and let V be a free finitely generated module over an étale k-algebra
k0 (i.e., k0 is a finite product of finite separable field extensions of k).

(a) The map
f 7! Trk0=k ıf WHomk0.V;k

0/! Homk.V;k/

is an isomorphism of k-vector spaces.

(b)
Vn
k0 V is, in a natural way, a direct summand of

Vn
k V .

Proof. (a) As the pairing Trk0=k Wk0�k0! k is nondegenerate, the map f 7! Trk0=k ıf is injective,
and it is onto because the two spaces have the same dimension over k.

(b) There are obvious maps Vn
k V !

Vn
k0 VVn

k V
_!

Vn
k0 V

_

where V _ D Homk0.V;k0/ Š Homk.V;k/. But15 .
Vn

V _/ Š .
Vn

V /_, and so the second map
gives rise to a map

Vn
k0 V !

Vn
k V , which is left inverse to the first.

Alternatively, and more elegantly, descent theory shows that it suffices to prove the proposition
with k0 D kS , S D Homk.k0;k/. Then V D

L
s2S Vs and the map in (a) becomes f D .fs/ 7!P

fs , which is obviously an isomorphism. For (b), note thatVn
k V D

LP
nsDn

�N
s2S

Vns
k
Vs
�
�
L
s2S

Vn
k Vs D

Vn
k0 V .

Conditions for
Vd
EH

1.A;Q/ to consist of absolute Hodge cycles

Let A be an abelian variety over C and let �WE ! End.A/ be a homomorphism with E a CM-
field (in particular, this means that v.1/ D idA). Let d be the dimension of H1.A;Q/ over E,
so that dŒEWQ� D 2dimA. When H1.A;R/ is identified with the tangent space to A at zero, it
acquires a complex structure; we denote by J the R-linear endomorphism “multiplication by i” of
H1.A;R/. If hWC�! GL.H 1.A;R// is the homomorphism determined by the Hodge structure on
H 1.A;R/, then h.i/$ J under the isomorphism GL.H 1.A;R//Š GL.H1.A;R// determined by
H 1.A;R/ŠH1.A;R/_.

Corresponding to the decomposition

e˝z 7! .: : : ;�e � z; : : :/WE˝QC
Š
!
Q
�2S C; S D Hom.E;C/;

there is a decomposition

H 1
B.A/˝C

Š
!
L
�2SH

1
B;� (E-linear isomorphism)

such that e 2E acts on the complex vector spaceH 1
B;� as �e. EachH 1

B;� has dimension d , and (as
E respects the Hodge structure on H 1

B.A/) acquires a Hodge structure

H 1
B;� DH

1;0
B;� ˚H

0;1
B;� :

Let a� D dimH 1;0
B;� and b� D dimH 0;1

B;� ; thus a� Cb� D d .
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Proposition 4.4. The subspace16 Vd
EH

1
B .A/ of Hd .A;Q/ is purely of bidegree .d

2
; d
2
/ if and only

if a� D d
2
D b� .

Proof. Note that Hd .A;Q/Š
Vd
QH

1.A;Q/, and so (4.3) canonically identifies
Vd
EH

1
B .A/ with

a subspace of Hd
B .A/. As in the last line of the proof of (4.3), we have�Vd

EH
1
B

�
˝CŠ

Vd
E˝C

�
H 1

B ˝C
�

Š
L
�2S

Vd
H 1

B;œ

Š
L
�2S

Vd
.H

1;0
B;� ˚H

0;1
B;� /

Š
L
�2S

Va� H
1;0
B;� ˝

Vb� H
0;1
B;� ;

and
Va� H

1;0
B;� and

Vb� H
0;1
B;� are purely of bidegree .a� ;0/ and .0;b� / respectively.

Thus, in this case,
�Vd

EH
1
B .A/

�
.d
2
/ consists of Hodge cycles, and we would like to show that

it consists of absolute Hodge cycles. In one special case, this is easy.

Lemma 4.5. LetA0 be an abelian variety of dimension d
2

and letADA0˝QE. Then
Vd
EH

1.A;Q/.d
2
/�

Hd .A;Q/.d
2
/ consists of absolute Hodge cycles.17

Proof. There is a commutative diagram

Hd
B .A0/.

d
2
/˝QE Hd

A .A0/.
d
2
/˝QE

�Vd
EH

1
B .A0˝QE/

�
.d
2
/

�Vd
E˝AH

1
A.A0˝QE/

�
.d
2
/ � Hd

A .A0˝E/.
d
2
/

Š Š

in which the vertical maps are induced by H 1.A0/˝E
Š
! H 1.A0˝E/. From this, and similar

diagrams corresponding to isomorphisms � WC! C, one sees that

Hd
A .A0/.

d
2
/˝E ,!Hd

A .A0˝E/.
d
2
/

induces an inclusion
C dAH.A0/˝E ,! C dAH.A0˝E/:

But C dAH.A0/DH
d
B .A0/.

d
2
/ since Hd

B .A0/.
d
2
/ is a one-dimensional space generated by the class

of any point on A0.

In order to prove the general result, we need to consider families of abelian varieties (ultimately,
we wish to apply (2.15)), and for this we need to consider polarized abelian varieties. A polarization
� on A is determined by a Riemann form, i.e., a Q-bilinear alternating form  on H1.A;Q/ such
that the form .z;w/ 7!  .z;Jw/ on H1.A;R/ is symmetric and definite; two Riemann forms  
and  0 on H1.A;Q/ correspond to the same polarization if and only if there is an a 2 Q� such
that  0 D a . We shall consider only triples .A;�;v/ in which the Rosati involution defined by �
induces complex conjugation onE. (The Rosati involution e 7! teWEnd.A/!End.A/ is determined
by the condition

 .ev;w/D  .v; tew/; v;w 2H1.A;Q/:/
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Lemma 4.6. Let f 2 E� be such that f D �f , and let  be a Riemann form for A. There exists
a unique E-Hermitian form � on H1.A;Q/ such that  .x;y/D TrE=Q.f �.x;y//.

We first need:

Sublemma 4.7. Let V andW be finite-dimensional vector spaces overE, and let WV �W !Q be
a Q-bilinear form such that  .ev;w/D  .v;ew/ for e 2E. Then there exists a unique E-bilinear
form � such that  .v;w/D TrE=Q�.v;w/.

Proof. The condition says that  defines a Q-linear map V ˝E W ! Q. Let � be the element of
HomQ.V ˝E W;E/ corresponding to  under the isomorphism (see 4.3(a))

HomE .V ˝E W;E/Š HomQ.V ˝E W;Q/.

PROOF OF LEMMA 4.6. We apply (4.7) with V DH1.A;Q/DW , but with with E acting through
complex conjugation on W . This gives a sesquilinear �1 such that  .x;y/D TrE=Q�1.x;y/. Let
� D f �1�1, so that  .x;y/ D TrE=Q.f �.x;y//. Since � is sesquilinear it remains to show that
�.x;y/D �.x;y/. As  .x;y/D� .y;x/ for all x;y 2H1.A;Q/,

Tr.f �.x;y//D�Tr.f �.y;x//D Tr.f �.y;x//:

On replacing x by ex with e 2E, we find that

Tr.fe�.x;y//D Tr.fe�.y;x//:

On the other hand,
Tr.fe�.x;y//D Tr.fe�.x;y//;

and so
Tr.fe�.y;x//D Tr.fe�.x;y//:

As fe is an arbitrary element of E, the non-degeneracy of the trace implies that �.x;y/D �.y;x/.
Finally, the uniqueness of � is obvious from (4.7).

Theorem 4.8. Let A be an abelian variety over C, and let vWE ! End.A/ be a homomorphism
with E a CM-field. Let d D dimEH 1.A;Q/. Assume there exists a polarization � for A such that:

(a) the Rosati involution of � induces complex conjugation on E;

(b) there exists a split E-Hermitian form � onH1.A;Q/ and an f 2E� with f D�f such that
 .x;y/Ddf TrE=Q.f �.x;y// is a Riemann form for � .

Then the subspace
�Vd

EH
1.A;Q/

�
.d
2
/ of Hd .A;Q/.d

2
/ consists of absolute Hodge cycles.

Proof. In the course of the proof, we shall see that (b) implies that A satisfies the equivalent state-
ments of (4.4). Thus, the theorem will follow from (2.15), (4.4), and (4.5) once we have shown that
there exists a connected smooth variety S over C and an abelian scheme Y over S together with an
action v of E on Y=S such that:

(a) for all s 2 S , .Ys;vs/ satisfies the equivalent statements in (4.4);
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(b) for some s0 2 S , Ys0 is of the form A0˝QE with e 2E acting as id˝e;

(c) for some s1 2 S , .Ys1 ;vs1/D .A;v/.

We shall first construct an analytic family of abelian varieties satisfying these conditions, and
then pass to the quotient by a discrete group to obtain an algebraic family.

LetH DH1.A;Q/ regarded as an E-space and chose � ,  , f , and  as in the statement of the
theorem. We choose i D

p
�1 so that  .x;h.i/y/ is positive definite.

Consider the set of all quadruples .A1;�1;v1;k1/ in which A1 is an abelian variety over C, v1 is
an action of E on A1, �1 is a polarization of A, and k1 is an E-linear isomorphism H1.A;Q/!H

carrying a Riemann form for �1 into c for some c 2 Q�. From such a quadruple, we obtain
a complex structure on H.R/ (corresponding via k1 to the complex structure on H1.A1;R/ D
Lie.A1/) such that:

(a) the action of E commutes with the complex structure;

(b)  is a Riemann form relative to the complex structure.

Conversely, a complex structure onH˝R satisfying (a) and (b) determines a quadruple .A1;�1;v1;k1/
withH1.A1;Q/DH (as anE-module), Lie.A1/DH˝R (endowed with the given complex struc-
ture), �1 the polarization with Riemann form  , and k1 the identity map. Moreover, two quadruples
.A1;�1;v1;k1/ and .A2;�2;v2;k2/ are isomorphic if and only if they define the same complex
structure on H . Let X be the set of complex structures on H satisfying (a) and (b). Our first task
will be to turn X into an analytic manifold in such a way that the family of abelian varieties that it
parametrizes becomes an analytic family.

A point of X is determined by an R-linear map J WH ˝R!H ˝R, J 2 D�1, such that

(a0) J is E-linear, and

(b0)  .x;Jy/ is symmetric and definite.

Note that  .x;Jy/ is symmetric if and only if  .Jx;Jy/D  .x;y/. Let F be the real subfield of
E, and fix an isomorphism

E˝QR!˚�2TC; T D Hom.F;R/

such that .f ˝ 1/ 7! .if� / with f� 2 R, f� > 0. Corresponding to this isomorphism, there is a
decomposition

H ˝QRŠ˚�2TH�
in which each H� is a complex vector space. Condition (a0) implies that J D˚J� , where J� is a
C-linear isomorphism H� !H� such that J 2� D�1. Let

H� DH
C
� ˚H

�
�

where HC� and H�� are the eigenspaces of J� with eigenvalues Ci and �i respectively. The com-
patibility of  and � implies

.H; /˝R
�
!˚�2T .H� ; � /

with  � an R-bilinear alternating form on H� such that

 � .zx;y/D  � .x;zy/; z 2 C:
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The condition
 .Jx;Jy/D  .x;y/

implies that HC� is the orthogonal complement of H�� relative to  � : H� DHC� ?H
�
� . We also

have
.H;�/˝R

�
!˚�2T .H� ;�� /

and  � .x;y/D TrC=R.if��� .x;y//. As

 .x;y/D
P
� TrC=R.if��� .x;y//;

we find that

 .x;J x/ > 0 all x ” TrC=R.if��� .x� ;J x� // > 0 all x� ; �

” TrC=R.i�� .x� ;J x� // all x� ; �;

”

�
�� is positive definite on HC� , and
�� is negative definite on H�� .

This shows, in particular, that HC� DH
�1;0
� and H�� DH

0;�1
� each have dimension d=2 (cf. 4.4).

Let XC and X� be the sets of J 2 X for which  .x;Jy/ is positive definite and negative definite
respectively. Then X is a disjoint union X D XCtX�. As J is determined by its Ci eigenspace
we see that XC can be identified with

f.V� /�2T j V� a maximal subspace of H� such that �� > 0 on V�g:

This is an open connected complex submanifold of a product of Grassman manifolds

XC �
Q
�2T Grassd=2.V� /.

Moreover, there is an analytic structure on XC�V.R/ such that XC�V.R/!XC is analytic and
the inverse image of J 2XC is V.R/ with the complex structure provided by J . On dividing V.R/
by an OE -stable lattice V.Z/ in V , we obtain the sought analytic family B of abelian varieties.

Note that A is a member of the family. We shall next show that there is also an abelian variety
of the form A0˝E in the family. To do this, we only have to show that there exists a quadruple
.A1;�1;�1;k1/ of the type discussed above with A1 D A0˝E. Let A0 be any abelian variety of
dimension d=2 and define �1WE! End.A0˝E/ so that e 2E acts onH1.A0˝E/DH1.A0/˝E
through its action on E. A Riemann form  0 on A0 extends in an obvious way to a Riemann
form  1 on A1 that is compatible with the action of E. We define �1 to be the corresponding
polarization, and let �1 be the Hermitian form on H1.A0˝E;Q/ such that  1 D TrE=Q.f �1/ (see
4.6). If I0 � H1.A0;Q/ is a totally isotropic subspace of H1.A0;Q/ of (maximum) dimension
d=2, then I0˝E is a totally isotropic subspace of dimension d=2 over E, which (by 4.2) shows
that the Hermitian space .H1.A0˝E;Q/;�1/ is split. There is therefore an E-linear isomorphism
k1W.H1.A0˝E;Q/;�1/! .H;�/ which carries  1 D TrE=Q.f �1/ to  D TrE=Q.f �1/. This
completes this part of the proof.

Let n be an integer � 3, and let � be the set of OE -isomorphisms gWV.Z/! V .Z/ preserving
 and such that .g�1/V .Z/� nV.Z/. Then � acts on XC by J 7! g ıJ ıg�1 and (compatibly)
on B . On forming the quotients, we obtain a map

� nB! � nXC
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which is an algebraic family of abelian varieties. In fact, � nXC is the moduli variety for quadruples
.A1;�1;�1;k1/ in which A1, �1, and �1 are essentially as before, but now k1 is a level n structure

k1WAn.C/DH1.A;Z=nZ/
�
�! V.Z/=nV.Z/I

the map XC! � nXC can be interpreted as “regard k1 modulo n”. To prove these facts, one can
use the theorem of Baily and Borel (1966) to show that � nXC is algebraic, and a theorem of Borel
(Borel 1972) to show that � nB is algebraic — see �6 where we discuss a similar question in greater
detail.

Remark 4.9. With the notations of the theorem, let G be a Q-rational algebraic group such that

G.Q/D fg 2 GL2.H/ j 9�.g/ 2Q� such that  .gx;gx/D �.g/ .x;y/; 8x;y 2H g.

The homomorphism hWC� ! GL.H ˝R/ defined by the Hodge structure on H1.A;Q/ factors
through GR, and X can be identified with the G.R/-conjugacy class of the homomorphisms C�!
GR containing h. Let K be the compact open subgroup of G.Af / of g such that .g� 1/V . OZ/ �
nV. OZ/. Then � nXCis a connected component of the Shimura variety ShK.G;X/. The general
theory shows that ShK.G;X/ is a fine moduli scheme (see Deligne 1971c, �4, or Milne and Shih
1982, �2) and so, from this point of view, the only part of the above proof that is not immediate is
that the connected component of ShK.G;X/ containing A also contains the variety A0˝E.

Remark 4.10. It is easy to construct algebraic cycles on A0˝E: any Q-linear map �WE ! Q
defines a map A0˝E ! A0˝Q D A0 , and we can take cl.�/ to be the image of the class of a
point in Hd .A0/!Hd .A0˝E/. More generally, we have

Sym�.HomQ-linear.E;Q//! falgebraic cycles on A0˝Eg.

If E DQr , this gives the obvious cycles.

Remark 4.11. The argument in the proof of (4.8) is similar to, and was suggested by, an argument
of B. Gross (1978).
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5 Completion of the proof for abelian varieties of CM-type

Abelian varieties of CM-type

The Mumford-Tate, or Hodge, group of an abelian variety A over C is defined to be the Mumford-
Tate group of the rational Hodge structureH1.A;Q/: it is therefore the subgroup of GL.H1.A;Q//�
Gm fixing all Hodge cycles on A and its powers (see �3). In the language of Tannakian cate-
gories, the category of rational Hodge structures is Tannakian with an obvious fibre functor, and
the Mumford-Tate group of A is the group associated with the Tannakian subcategory generated by
H1.A;Q/ and Q.1/.

An abelian variety A is said to be of CM-type if its Mumford-Tate group is commutative. Since
any abelian variety A is a product A D

Q
A˛ of simple abelian varieties (up to isogeny) and A is

of CM-type if and only if each A˛ is of CM-type (the Mumford-Tate group of A is contained in
the product of the Mumford-Tate groups of the A˛ and projects onto each), in understanding this
concept we can assume A is simple.

Proposition 5.1. A simple abelian variety A over C is of CM-type if and only if E D EndA is a
commutative field over which H1.A;Q/ has dimension 1. Then E is a CM-field, and the Rosati
involution on E D End.A/ defined by any polarization of A is complex conjugation.

Proof. Let A be an abelian variety such that End.A/ contains a field E for which H1.A;Q/ has
dimension 1 as an E-vector space. As �.Gm/ commutes with E˝R in End.H1.A;R//, we have
that �.Gm/� .E˝R/� and so the Mumford-Tate group of A is contained in E�.

Conversely, let A be simple and of CM-type, and let �WGm!GL.H1.A;C// be defined by the
Hodge structure on H1.A;C/ (see �3). As A is simple, E D End.A/ is a field (possibly noncom-
mutative) of degree � dimH1.A;Q/ over Q. As for any abelian variety, End.A/ is the subalgebra
of End.H1.A;Q// of elements preserving the Hodge structure or, equivalently, that commute with
�.Gm/ in GL.H1.A;C//. IfG is the Mumford-Tate group ofA, thenGC is generated by the groups
f��.Gm/ j � 2 Aut.C/g (see 3.4). Therefore E is the commutant of G in End.H1.A;Q//. By as-
sumption, G is a torus, and so H1.A;C/D˚�2X.G/H�. The commutant of G therefore contains
étale commutative algebras of rank dimH1.A;Q/ over Q. It follows that E is a commutative field
of degree dimH1.A;Q/ over Q (and that it is generated as a Q-algebra by G.Q/; in particular,
h.i/ 2E˝R).

Let  be a Riemann form corresponding to some polarization on A. The Rosati involution
e 7! e� on End.A/DE is determined by the condition

 .x;ey/D  .e�x;y/; x;y 2H1.A;Q/.

It follows from
 .x;y/D  .h.i/x;h.i/y/

that
h.i/� D h.i/�1 .D�h.i//:

The Rosati involution therefore is nontrivial on E, and E has degree 2 over its fixed field F . There
exists an ˛ 2 F � such that

E D F Œ
p
˛�;

p
˛
�
D�
p
˛;

and ˛ is uniquely determined up to multiplication by a square in F . IfE is identified withH1.A;R/
through the choice of an appropriate basis vector, then

 .x;y/D TrE=Q˛xy
�; x;y 2E;
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(cf. 4.6). The positivity condition on  implies that

TrE˝R=R.f x
2/ > 0; x ¤ 0; x 2 F ˝R; f D ˛=h.i/,

which implies that F is totally real. Moreover, for every embedding � WF ,! R, we must have
�.˛/ < 0, for otherwise E˝F;� RDR�R with .r1; r2/� D .r2; r1/, and the positivity condition is
impossible. Thus, �.˛/ < 0, and � is complex conjugation relative to any embedding of E into C.
This completes the proof.

Proof of the main theorem for abelian varieties of CM-type

Let .A˛/ be a finite family of abelian varieties overC of CM-type. We shall show that every element
of a space

TA D
�N

˛H
1
A.X˛/

˝m˛
�
˝
�N

˛H
1
A.X˛/

_˝n˛
�
.m/

that is a Hodge cycle (relative to idWC! C) is an absolute Hodge cycle. According to (3.8) (Prin-
ciple A), to do this it suffices to show that the following two subgroups of GL.

Q
H1.A˛;Q//�Gm

are equal:

GH D group fixing all Hodge cycles;

GAH D group fixing all absolute Hodge cycles.

Obviously GH �GAH .
After breaking up each A˛ into its simple factors, we can assume A˛ is itself simple. Let E˛ be

the CM-field End.A˛/ and let E be the smallest Galois extension ofQ containing all E˛; it is again
a CM-field. Let B˛ D A˛˝E˛ E. It suffices to prove the theorem for the family .B˛/ (because the
Tannakian category generated by the H1.B˛/ and Q.1/ contains every H1.A˛/; cf. Deligne and
Milne 1982).

In fact, we consider an even larger family. Fix E, a CM-field Galois over Q, and consider the
family .A˛/ of all abelian varieties with complex multiplication by E (so H1.A˛/ has dimension
1 over E) up to E-isogeny. This family is indexed by S, the set of CM-types for E. Thus, if
S D Hom.E;C/, then each element of S is a set ˚ � S such that S D ˚ t �˚ (disjoint union). We
often identify ˚ with the characteristic function of ˚ , i.e., we write

˚.s/D

�
1 if s 2 ˚
0 if s … ˚:

With each ˚ we associate the isogeny class of abelian varieties containing the abelian variety
C˚=˚.OE / where OE is the ring of integers in E and

˚.OE /D f.�e/�2˚ 2 C˚ j e 2OE g:

With this new family, we have to show thatGH DGAH . We begin by determiningGH (cf. 3.7).
The Hodge structure on each H1.A˚ ;Q/ is compatible with the action of E. This implies that, as a
subgroup of

Q
˚2S GL.H1.A˚ //�Gm, GH commutes with

Q
˚2SE

� and is therefore contained
in
Q
E� �Gm. In particular, GH is a torus and can be described by its group of cocharacters

Y.GH /Ddf HomQal.Gm;GH / or its group of characters X.GH /. Note that

Y.GH /� Y.
Q
˚2SE

��Gm/D ZS�S �Z.
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There is a canonical basis for X.E�/, namely S , and therefore a canonical basis for X.
Q
˚2SE

��

Gm/ which we denote ..xs;˚ /;x0/. We denote the dual basis for Y.
Q
E��Gm/ by .ys;˚ ;y0/. The

element�2Y.GH / equals
P
s;˚ ˚.s/ys;˚Cy0 (see 3.7). AsGHC is generated by f��.Gm/ j � 2 Aut.C/g,

Y.GH / is the Gal.Qal=Q/-submodule of Y.
Q
E� �Gm/ generated by �. (Here, Gal.Qal=Q/

acts on S by �s D s ı ��1; it acts on Y.
Q
˚2SE

� �Gm/ D ZS�S �Z through its action on S ,
�ys;˚ D y�s;˚ ; these actions factor through Gal.E=Q/).

To begin the computation of GAH , we make a list of the tensors we know to be absolute Hodge
cycles on the A˛.

(a) The endomorphisms E � End.A˚ / for each ˚ . (More precisely, we mean the classes
clA.�e/ 2HA.A˚ /˝HA.A˚ /, �e Dgraph of e, e 2E.)

(b) Let .A˚ ;�WE ,! End.A˚ // correspond to ˚ 2 S, and let � 2 Gal.E=Q/. Define �˚ D
f�s j s 2 ˚g. There is an isomorphism A˚ ! A�˚ induced by

C˚
.:::;z.�/;:::/7!.:::;z.��/;:::/
������������������! C˚??y ??y

C˚=˚.OE / ������������������! C�˚=�˚.OE /

whose graph is an absolute Hodge cycle. (Alternatively, we could have used the fact that .A˚ ;��WE!
End.A˚ //, where �� D � ı��1, is of type �˚ to show that A˚ and A�˚ are isomorphic.)

(c) Let .˚i /1�i�d be a family of elements of S and let AD˚diD1Ai where Ai D A˚i . Then
E acts on A and H1.A;Q/D˚diD1H1.Ai ;Q/ has dimension d over E. Under the assumption thatP
i ˚i Dconstant (so that

P
i ˚i .s/ D d=2, all s 2 S ), we shall apply (4.8) to construct absolute

Hodge cycles on A.
For each i , there is an E-linear isomorphism

H1.Ai ;Q/˝QC!˚s2SH1.Ai /s

such that s 2E acts on H1.Ai /s as s.e/. From the definitions one sees that

H1.Ai /s D

(
H1.Ai /

�1;0
s ; s 2 ˚i ;

H1.Ai /
0;�1
s ; s … ˚i :

Thus, with the notations of (4.4),

as D
P
i ˚i .s/

bs D
P
i .1�˚i .s//D

P
i ˚i .�s/D a�s:

The assumption that
P
˚i D constant therefore implies that

as D bs D d=2; all s:

For each i , choose a polarization �i for Ai whose Rosati involution stabilizes E, and let  i be
the corresponding Riemann form. For any totally positive elements fi in F (the maximal totally
real subfield of E) � D˚ifi�i is a polarization for A. Choose vi ¤ 0, vi 2H1.Ai ;Q/; then fvig
is a basis for H1.Ai ;Q/ over E. There exist �i 2 E� such that �i D ��i and  i .xvi ;yvi / D
TrE=Q.�ixy/ for all x;y 2 E. Thus �i , where �i .xvi ;yvi / D

�i
�1
xy, is an E-Hermitian form on

H1.Ai ;Q/ such that  i .v;w/D TrE=Q.�1�i .v;w//. The E-Hermitian form on H1.A;Q/

�.
P
xivi ;

P
yivi /D

P
i fi�i .xivi ;yivi /
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has the property that .v;w/Ddf TrE=Q.�1�.v;w// and is the Riemann form of � . The discriminant
of � is

Q
i fi .

�i
�1
/. On the other hand, if s 2 S restricts to � on F , then

sign.�disc.Œ//D .�1/bs D .�1/d=2.

Thus,
disc.Œ/D .�1/d=2f

for some totally positive element f ofF . After replacing one fi with fi=f , we have that disc.Œ/D .�1/d=2,
and that � is split. Hence (4.8) applies.

In summary: let AD˚diD1A˚i be such that
P
i ˚i D constant; then�Vd

EH
1.A;Q/.d

2
/
�
�Hd .A;Q/.d

2
/

consists of absolute Hodge cycles.
Since GAH fixes the absolute Hodge cycles of type (a), GAH �

Q
˚ E
��Gm. It is therefore a

torus, and we have an inclusion

Y.GAH /� Y.
Q
E��Gm/D ZS�S �Z

and a surjection,
X.
Q
E��Gm/D ZS�S �Z�X.GAH /:

Let W be a space of absolute Hodge cycles. The action of the torus
Q
E� �Gm on W ˝C

decomposes it into a sum ˚W� indexed by the � 2 X.
Q
E��Gm/ of subspaces W� on which the

torus acts through �. Since GAH fixes the elements of W , the � for which W� ¤ 0 map to zero in
X.GAH /.

On applying this remark with W equal to the space of absolute Hodge cycles described in (b),
we find that xs;˚ � x�s;�˚ maps to zero in X.GAH /, all � 2 Gal.E=Q/, s 2 S , and ˚ 2 S. As
Gal.E=Q/ acts simply transitively on S , this implies that, for a fixed s0 2 S , X.GAH / is generated
by the image of fxs0;˚ ;x0 j ˚ 2 Sg.

Let d.˚/ � 0 be integers such that
P
d.˚/˚ D d=2 (constant function on S ) where d DP

d.˚/. Then (c) shows that the subspace

W
df
D˝EH1.A˚ ;Q/˝Ed.˚/.�d=2/D

Vd
EH1.˚A

d.˚/
˚ ;Q/.�d=2/

ofHd .˚A
d.˚/
˚ ;Q/.�d=2/ consists of absolute Hodge cycles. The remark then shows that

P
d.˚/xs;˚�

d=2 maps to zero in X.GAH / for all s.
Let

X DX.
Q
E��Gm/=

P
Z.x�s;�˚ �xs;˚ /

and regard
fxs0;˚ ;x0 j ˚ 2 Sg

as a basis for X . We know that

X.
Q
E��Gm/�X.GAH /

factors through X , and that therefore Y � Y.GAH / (� Y.GH /) where Y is the submodule of
Y.
Q
E��Gm/ dual to X .
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Lemma 5.2. The submodule Y.GH /? of X orthogonal to Y.GH / is equal tonP
d.˚/xs0;˚ �

d
2
x0 j

P
d.˚/˚ D d

2
,
P
d.˚/D d

o
I

it is generated by the elementsP
d.˚/xs0;˚ �

d
2
x0; ˙d.˚/˚ D d

2
; d.˚/� 0 all ˚:

Proof. As Y.GH / is the Gal.E=Q/-submodule of Y generated by �, we see that

x D
P
d.˚/xs0;˚ �

d
2
x0 2 Y.G

H /?

if and only if h��;xi D 0 all � 2Gal.E=Q/. But �D
P
˚.s/ys;˚Cy0 and ��D

P
˚.s/y�s;˚C

x0, and so h��;xi D
P
d.˚/˚.��1s0/�

d
2

. The first assertion is now obvious.
As ˚C �˚ D 1, xs0;˚ Cxs0;�˚ �x0 2 Y.G

H /? and has positive coefficients d.˚/. By adding
enough elements of this form to an arbitrary element x 2 Y.GH /? we obtain an element with
coefficients d.˚/� 0, which completes the proof of the lemma.

The lemma shows that Y.GH /?�Ker.X�X.GAH //DY.GAH /?. Hence Y.GH /�Y.GAH /
and it follows that GH DGAH ; the proof is complete.18
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6 Completion of the proof; consequences

Completion of the proof of Theorem 2.11

Let A be an abelian variety over C and let t˛, ˛ 2 I , be Hodge cycles on A (relative to idWC! C).
To prove the Main Theorem 2.11, we have to show that the t˛ are absolute Hodge cycles. Since
we know the result for abelian varieties of CM-type, (2.15) shows that it remains only to prove the
following proposition.

Proposition 6.1. There exists a connected smooth algebraic variety S overC and an abelian scheme
� WY ! S such that

(a) for some s0 2 S , Ys0 D A;

(b) for some s1 2 S , Ys1 is of CM-type;

(c) the t˛ extend to elements that are rational and of bidegree .0;0/ everywhere in the family.

The last condition means the following. Suppose that t˛ belongs to a tensor space T˛ D
H 1

B .A/
˝m.˛/˝ : : :; then there is a section t of

�
R1��Q

�˝m.˛/
˝ : : : over the universal covering

QS of S (equivalently, over a finite covering of S ) such that for Qs0 mapping to s0, tQs0 D t˛, and for
all Qs 2 QS , tQs 2H 1

B .YQs/
˝m.˛/˝ : : : is a Hodge cycle.

PROOF OF 6.1 (SKETCH). The parameter variety S will be a Shimura variety and (b) will hold for
a dense set of points s1.

We may suppose that one of the t˛ is a polarization � for A. Let H DH1.A;Q/ and let G be
the subgroup of GL.H/�Gm fixing the t˛. The Hodge structure on H defines a homomorphism
h0WC�!G.R/. LetG0DKer.G!Gm/; then ad.h0.i// is a Cartan involution onG0C because the
real form of G0C corresponding to it fixes the positive definite form  .x;h.i/y/ on H ˝R where  
is a Riemann form for �. In particular, G is reductive (see 3.6).

Let
X D fhWC�!G.R/ j h is conjugate to h0 under G.R/g.

Each h 2X defines a Hodge structure onH of type f.�1;0/; .0;�1/g relative to which each t˛ is of
bidegree .0;0/. Let F 0.h/DH 0;�1 �H˝C. SinceG.R/=K1

�
!X , whereK1 is the centralizer

of h0, there is an obvious real differentiable structure on X , and the tangent space to X at h0,
Tgth0.X/D Lie.GR/=Lie.K1/. In fact, X is a Hermitian symmetric domain. The Grassmannian,

Grassd .H ˝C/
df
D fW �H ˝C jW of dimension d .D dimA/g

is a complex analytic manifold (even an algebraic variety). The map

�WX ! Grassd .H ˝C/; h 7! F 0.h/;

is a real differentiable map, and is injective (because the Hodge filtration determines the Hodge
decomposition). The map on tangent spaces factors into

Tgth0.X/DLie.GR/=Lie.K1/ End.H ˝C/=F 0End.H ˝C/D Tgt�.h0/.Grass/

Lie.GC/=F 0.Lie.GC//

�
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the maps being induced by G.R/ ,! G.C/ ,! GL.H ˝C/. (The filtrations on Lie.GC/ and
End.H ˝C/ are those corresponding to the Hodge structure defined by h0). Thus, d� identifies
Tgth0.X/ with a complex subspace of Tgt�.h0/.Grass/, and so X is an almost-complex (in fact,
complex) manifold (see Deligne 1979b, 1.1, for more details). (There is an alternative, more group-
theoretic, description of the complex structure; see Knapp 1972, 2.4, 2.5.)

To each point h ofX , we can attach a complex torus F 0.h/nH˝C=H.Z/, whereH.Z/ is some
fixed lattice in H . For example, to h0 is attached

F 0.h0/nH ˝C=H.Z/D Tgt0.A/=H.Z/;

which is an abelian variety representing A. From the definition of the complex structure on X , it is
clear that these tori form an analytic family B over X .

Let
� D fg 2G.Q/ j .g�1/H.Z/� nH.Z/g

some fixed integer n. For a suitably large n � 3, � will act freely on X , and so � nX will again be
a complex manifold. The theorem of Baily and Borel (1966) shows that S D � nX is an algebraic
variety.

The group � acts compatibly on B , and on forming the quotients, we obtain a complex analytic
map � WY ! S with Y D� nB . For s 2 S , Ys is a polarized complex torus (hence an abelian variety)
with level n structure (induced by H1.Bh;Z/

�
!H.Z/ where h maps to s). The solution Mn of the

moduli problem for polarized abelian varieties with level n-structure in the category of algebraic
varieties is also a solution in the category of complex analytic manifolds. There is therefore an
analytic map  WS !Mn such that Y is the pull-back of the universal family on Mn. A theorem
of Borel (1972, 3.10) shows that  is automatically algebraic, from which it follows that Y=S is an
algebraic family.

For some connected component Sı of S , ��1.Sı/! Sı will satisfy (a) and (c) of the proposi-
tion. To prove (b) we shall show that, for some h 2 X close to h0, Bh is of CM-type (cf. Deligne
1971c, 5.2).

Recall (�5) that an abelian variety is of CM-type if and only if its Mumford-Tate group is a
torus. From this it follows that Bh, h 2 X , is of CM-type if and only if h factors through the real
points of a subtorus of G defined over Q.

Let T be a maximal torus, defined over R, of the algebraic group K1. (See Borel and Springer
1966 for a proof that T exists, or apply the argument that follows.) Since h0.C�/ is contained in
the centre of K1, h0.C�/ � T .R/. If T 0 is any torus in GR containing T , then T 0 will centralize
h0 and so T 0 � K1; T is therefore maximal in GR. For a general (regular) element � of Lie.T /,
T is the centralizer of �. Choose a �0 2 Lie.G/ that is close to � in Lie.GR/, and let T0 be the
centralizer of �0 in G. Then T0 is a maximal torus of G that is defined over Q, and, because T0R
is close to TR, T0R D gTg�1 for some g 2G.R/. Now hD ad.g/ıh0 factors through T0R, and so
Bh is of CM-type.

This completes the proof of the main theorem.19

Consequences of Theorem 2.11

We end this section by giving two immediate consequences.
Let X be a complete smooth variety over a field k and let 
 2H 2p.Xet;Q`/.p/, `¤ char.k/.

Tate’s conjecture states that 
 is in theQ`-span of the algebraic classes if there exists a subfield k0 of
k finitely generated over the prime field, a modelX0 ofX over k0, and a 
 2H 2p.X0˝k0;Q`/.p/
mapping to 
 that is fixed by Gal.k0=k0/.
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Corollary 6.2. Let A be an abelian variety over C. If Tate’s conjecture is true for A, then so also
is the Hodge conjecture.

Proof. We first show that, for any complete smooth variety X over C, Tate’s conjecture implies
that all absolute Hodge cycles on X are algebraic. Let X0 be a model of X over a subfield k0 of
C finitely generated over Q. According to Proposition 2.9, CpAH.X/ D C

p
AH.X0˝ k0/ and, after

we have replaced k0 by a finite extension, Gal.k0=k0/ will act trivially on CpAH.X0˝ k0/. Let
C
p
a lg.X/ denote theQ-subspace of CpAH.X/ spanned by the algebraic cycles onX . Tate’s conjecture

implies that theQ`-span ofCpAH.X/ is contained in theQ`-span ofCpa lg.X/. HenceCpa lg.X/˝Q`D
C
p
AH.X/˝Q`, and so Cpa lg.X/D C

p
AH.X/.

Now let A be an abelian variety over C, and let t 2H 2p.A;Q/ \Hp;p. The image t 0 of t in
H
2p
A .A/.p/ is a Hodge cycle relative to idWC! C, and so Theorem 2.11 shows that t 0 2 CpAH.A/.

It is therefore in the Q-span of the algebraic cycles.

Remark 6.3. The last result was first proved independently by Pjateckiı̆-Šapiro 1971 and Deligne
(unpublished) by an argument similar to that which concluded the proof of the main theorem.
(Corollary 6.2 is easy to prove for abelian varieties of CM-type; in fact, Pohlmann 1968 shows
that the two conjectures are equivalent in that case.) We mention also that Borovoı̆ 1977 shows that,
for an abelian variety X over a field k, the Q`-subspace of H 2p.Xet;Q`/.p/ generated by cycles
that are Hodge relative to an embedding � Wk ,! C is independent of the embedding.

Corollary 6.4. 20Let A be an abelian variety over C and let GA be the Mumford-Tate group of A.
Then dim.GA/� tr:degk k.pij / where pij are the periods of A.

Proof. Same as that of (1.6).
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7 Algebraicity of values of the � -function

The following result generalizes (1.5).

Proposition 7.1. Let k be an algebraically closed subfield of C, and let V be a complete smooth
variety of dimension n over k. If � 2HB

2r.V / maps to an absolute Hodge cycle 
 under

HB
2r.V /

17!.2�i/�r

��������!HB
2r.V /.�r/

Š
!H 2n�2r

B .V /.n� r/ ,!H 2n�2r
A .VC/.n� r/

then, for any C1 differential r-form ! on VC whose class Œ!� in H 2r
dR .V=C/ lies in H 2r

dR .V=k/,Z
�

! 2 .2�i/rk.

Proof. Proposition 2.9 shows that 
 arises from an absolute Hodge cycle 
0 on V=k. Let .
0/dR be
the component of 
0 in H 2n�2r

dR .V=k/. Then, as in the proof of (1.5),Z
�

! D .2�i/r TrdR..
0/dR[ Œ!�/ 2 .2�i/
rH 2n

dR .V=k/D .2�i/
rk.

In the most important case of the proposition, k will be the algebraic closure Q of Q in C, and
it will then be important to know not only that the period

P.�;!/
df
D .2�i/�r

Z
�

!

is algebraic, but also in which field it lies in. We begin by describing a general procedure for finding
this field and then illustrate it by an example in which V is a Fermat hypersurface and the period is
a product of values of the � -function.

Let V now be a complete smooth variety over a number field k �C, and let S be a finite abelian
group acting on V over k. Let V D V ˝kQ. When ˛WS ! C� is a character of S taking values in
k� and H is a k-vector space on which S acts, we let

H˛ D fv 2H j sv D ˛.s/v, all s 2 Sg.

Assume that all Hodge cycles on VC are absolutely Hodge and that H 2r.V .C/;C/˛ has dimen-
sion 1 and is of bidegree .r; r/. Then .C rAH.V /˝ k/˛ has dimension one over k. The actions of
S and Gal.Q=k/ on H 2r

dR .V =Q/ Š H
2r
dR .V=k/˝k Q commute because the latter acts through its

action on Q; they therefore also commute on C rAH.V /˝k, which embeds into H 2r
dR .V =Q/. It fol-

lows that Gal.Q=k/ stabilizes .C rAH.V /˝ k/˛ and, as this has dimension 1, there is a character
�WGal.Q=k/! k� such that

�
 D �.�/�1
; � 2 Gal.Q=k/; 
 2
�
C rAH.V /˝k

�
˛:

Proposition 7.2. With the above assumptions, let � 2HB
2r.V / and let ! be a C1-differential 2r-

form on V.C/ whose class Œ!� in H 2r
dR .V=C/ lies in H 2r

dR .V=k/˛; then P.�;!/ lies in an abelian
algebraic extension of k, and

�.P.�;!//D �.�/P.�;!/; all � 2 Gal.Q=k/:
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Proof. Regard Œ!�2H 2r
dR .V=C/˛D .C

r
AH.V /˝C/˛; then Œ!�D z
 for some z 2C, 
 2 .C rAH.V /˝

k/˛. Moreover,

P.�;!/
df
D

�
1

2�i

�r Z
�

! D z
.�˝ .2�i/�r/ 2 zk;

where we are regarding 
 as an element of H 2r
B .V /.r/˝k DHB

2r.V /.�r/
_˝k. Thus

P.�;!/�1Œ!� 2 C rAH.V /˝k.

As
Œ!� 2H 2r

dR .V =Q/D C
r
AH.V /˝Q;

this shows that P.�;!/ 2Q. Moreover,

�.P.�;!/�1Œ!�/D �.�/�1.P.�;!/�1Œ!�/.

On using that �Œ!�D Œ!�, we deduce that

� .P.�;!//D �.�/ �P.�;!/.

Remark 7.3. (a) BecauseC rAH.V / injects intoH 2r.V et;Q`/.r/, � can be calculated from the action
of Gal.Q=k/ on H 2r.V et;Q`/˛.r/.

(b) The argument in the proof of the proposition shows that � ˝ .2�i/�r 2 HB
2r.V /.�r/ and

P.�;!/�1Œ!� 2H 2r
dR .V =Q/ are different manifestations of the same absolute Hodge cycle.

The Fermat hypersurface

We shall apply (7.2) to the Fermat hypersurface

V WXd0 CX
d
1 C�� �CX

d
nC1 D 0

of degree d and dimension n, which we shall regard as a variety over k df
DQ.e2�i=d /. As above, we

let V D V ˝kQ, and we shall often drop the the subscript on VC.
It is known that the motive of V is contained in the category of motives generated by abelian

varieties (see 8.26), and therefore Theorem 2.11 shows that every Hodge cycle on V is absolutely
Hodge (see 8.27).

Let �d be the group of d th roots of 1 in C, and let

S D˚nC1iD0�d=(diagonal).

Then S acts on V=k according to the formula:

.: : : W�i W : : :/.: : : Wxi W : : :/D .: : : W�ixi W : : :/; all .: : : Wxi W : : :/ 2 V.C/.

The character group of S will be identified with

X.S/D fa 2 .Z=dZ/nC2 j aD .a0; : : : ;anC1/;
P
ai D 0gI

here a 2X.S/ corresponds to the character

� D .�0W : : :/ 7! �a df
D
QnC1
iD0 �

ai
i .
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For a 2 Z=dZ, we let hai denote the representative of a in Z with 1 � hai � d , and for a 2 X.S/
we let hai D d�1

P
hai i 2 N.

IfH.V / is a cohomology group on which there is a natural action of k, we have a decomposition

H.V /D˚H.V /a; H.V /a D fv j �v D �
av; � 2 Sg.

Let .Z=dZ/� act on X.S/ in the obvious way,

u � .a0; : : :/D .ua0; : : :/;

and let Œa� be the orbit of a. The irreducible representations of S overQ (and hence the idempotents
ofQŒS�) are classified by the these orbits, and soQŒS�D

Q
QŒa� whereQŒa� is a field whose degree

over Q is equal to the order of Œa�. The map ı 7! ıaWS ! C induces an embedding QŒa� ,! k. Any
cohomology group decomposes as H.V /D˚H.V /Œa� where

H.V /Œa�˝CD
L

a02Œa� .H.V /˝C/a0 .

Calculation of the cohomology
21

Proposition 7.4. The dimension of Hn.V;C/a is 1 if no ai D 0 or if all ai D 0 and n is even;
otherwise Hn.V;C/a D 0.

Proof. The map
.x0Wx1W : : :/ 7! .xd0 Wx

d
1 W : : :/WP

nC1
! PnC1

defines a finite surjective map � WV ! Pn where P n .� Pn/ is the hyperplane
P
Xi D 0. There

is an action of S on ��C, which induces a decomposition ��C Š
L
.��C/a. The isomorphism

H r.V;C/
Š
!H r.P n;��C/ is compatible with the actions of S , and so gives rise to isomorphisms

H r.V;C/a
Š
!H r.P n; .��C/a/:

Clearly .��C/0 D C, and so

H r.P n; .��C/0/ŠH r.Pn;C/; all r:

For a ¤ 0, the sheaf .��C/a is locally constant of dimension 1, except over the hyperplanes Hi W
Xi D 0 corresponding to i for which ai ¤ 0, where it is ramified. It follows that

H r.P n; .��C/a/D 0; r ¤ n; a¤ 0;

and so .�1/n dimHn.P n; .��C/a/ is equal to the Euler-Poincaré characteristic of .��C/a (a¤ 0).
We have

EP.P n; .��C/a/D EP.P nr[ai¤0Hi ;C/.

Suppose first that no ai is zero. Then

.x0W : : : WxnW�
P
xi /$ .x0W : : : Wxn/WP

n �$ Pn

induces
P nr[nC1iD0Hi

�
$ Pnr[niD0Hi [P

n�1;
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where Hi denotes the coordinate hyperplane in PnC1 or Pn. As

.Pnr[Hi [P n�1/t .P n�1r[Hi /D Pnr[Hi ;

and Pnr[Hi , being topologically isomorphic to .C�/n, has Euler-Poincaré characteristic zero, we
see that

EP.P nr[nC1Hi /D�EP.P n�1r[nHi /D : : :D .�1/nEP.P 0/D .�1/n:

If some, but not all, ai are zero, then P nr[Hi � .C�/r �Cn�r with r � 1, and so EP.P nr
[Hi /D 0

r �1n�r D 0:

Remark 7.5. Note that the primitive cohomology of V ,

Hn.V;C/prim D
M

a¤0
Hn.V;C/a.

The action of S onHn.V;C/ respects the Hodge decomposition, and soHn.V;C/a is purely of
bidegree .p;q/ for some p;q with pCq D n.

Proposition 7.6. If no ai D 0, then Hn.V;C/a is of bidegree .p;q/ with p D hai�1.

Proof. We apply the method of Griffiths 1969, �8. When V is a smooth hypersurface in PnC1,
Griffiths shows that the maps in

HnC1.PnC1;C/
0

����! HnC1.PnC1rV;C/ ����! HnC2
V .PnC1;C/ ����! HnC2.PnC1;C/??yŠ
Hn.V /.�1/

induce an isomorphism

HnC1.PnC1rV;C/
Š
!Hn.V /.�1/prim

and that the Hodge filtration on Hn.V /.�1/ has the following explicit interpretation: identify
HnC1.PnC1rV;C/ with � .PnC1rV;˝nC1/=d� .PnC1rV;˝n/ and let

˝nC1p .V /D f! 2 � .PnC1rV;˝nC1/ j ! has a pole of order � p on V gI

then the map
RW˝nC1p .V /!Hn.V;C/

determined by

h�;R.!/i D
1

2�i

Z
�

!; all � 2Hn.V;C/;

induces an isomorphism

˝nC1p .V /=d˝np�1
�
! F n�pHn.V /.�1/prim D F

n�pC1Hn.V /prim.

(For example, when p D 1, R is the residue map

˝nC11 .V /! F nHn.V /DH 0.V;˝n//:
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Let f be the irreducible polynomial definining V . As ˝nC1PnC1.nC2/�OPnC1 has basis

!0 D
P
.�1/iXi dX0^ : : :^ddXi ^ : : :^dXn;

any differential form!DP!0=f
p withP a homogeneous polynomial of degree p deg.f /�.nC2/

lies in ˝nC1p .V /. In particular, when V is our Fermat surface,

! D
X
ha0i�1
0 � � �X

hanC1i�1
nC1

.Xd0 C�� �CX
d
nC1/

hai
!0

D
X
ha0i
0 � � �X

hanC1i
nC1

.Xd0 C�� �CX
d
nC1/

hai

P
.�1/i dX0

X0
^ : : :^

ddXi
Xi
^ : : :

lies in ˝nC1
hai .V /. For �2 S , �Xi D ��1i Xi , and so �! D ��a!. This shows that

Hn.V;C/�a � F
n�haiC1Hn.V;C/:

Since h�ai�1D nC1�hai, we can rewrite this inclusion as

Hn.V;C/a � F hai�1Hn.V;C/.

Thus Hn.V;C/a is of bidegree .p;q/ with p � hai� 1. The complex conjugate of Hn.V;C/a is
Hn.V;C/�a, and is of bidegree .q;p/. Hence

n�p D q � h�ai�1D nC1�hai

and so p � hai�1.

Recall that Hn
B .V /Œa� D˚a02Œa�H

n
B .V /a0 ; thus (7.4) shows that Hn

B .V /Œa� has dimension 1 over
QŒa� when no ai is zero and otherwise

Hn
B .V /Œa�\H

n
B .V /prim D 0.

Corollary 7.7. Let a be such that no ai D 0. Then Hn
B .V /Œa� is purely of type .n

2
; n
2
/ if and only if

huai is independent of u.

Proof. As haiC h�ai D nC 2, huai is constant if and only if huai D n
2
C 1 for all u 2 .Z=dZ/�,

i.e., if and only if ha0i D n
2
C1 for all a0 2 Œa�. Thus the corollary follows from the proposition.

Corollary 7.8. If no ai D 0 and huai is constant, then C nAH.V /Œa� has dimension one over QŒa�:

Proof. This follows immediately from (7.7) since all Hodge cycles on V are absolutely Hodge
(8.27).

The action of Gal.Q=k/ on the étale cohomology

Let p be a prime ideal of k not dividing d , and let Fq be the residue field of p. Then d jq � 1
and reduction modulo p defines an isomorphism �d ! F�

d
whose inverse we denote t . Fix an

aD .a0; : : : ;anC1/ 2X.S/ with all ai nonzero, and define a character "i WF�q ! �d by

"i .x/D t .x
.1�q/=d /ai ; x ¤ 0:
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As
Q
"i D 1,

Q
"i .xi / is well-defined for xD .x0W : : : WxnC1/ 2 PnC1.Fq/, and we define a Jacobi

sum

J."0; : : : ; "nC1/D .�1/
n P

x2Pn.Fq/

nC1Q
iD0

"i .xi /

where P n is the hyperplane
P
Xi D 0 in PnC1. (As usual, we set "i .0/D 0.) Let  be a nontrivial

additive character  WFq! C� and define Gauss sums

g.p;ai ; /D�
P
x2Fq

"i .x/ .x/

g.p;a/D q�hai
nC1Q
iD0

g.p;ai ; /:

Lemma 7.9. The Jacobi sum J."0; : : : ; "nC1/D q
hai�1g.p;a/.

Proof. We have

qhaig.p;a/D
nC1Q
iD0

.�
P
x2Fq

"i .x/ .x//

D .�1/n
P

x2FnC2q

�
nC1Q
iD0

"i .xi /

�
 .
P
xi /; xD .x0; : : :/

D .�1/n
P

x2PnC1.Fq/

P
�2F�q

�
nC1Q
iD0

"i .�xi / .�
P
xi /

�
:

We can omit the � from
Q
"i .�xi /, and so obtain

qhaig.p;a/D .�1/n
P
x

 
.
nC1Q
iD0

"i .xi /
P
�2F�q

 .�
P
xi //

!
:

Since P
x

nC1Q
iD0

"i .xi /D
nC1Q
iD0

 P
x2Fq

"i .x//

!
D 0;

we can replace the sum over � 2 F�q by a sum over � 2 Fq . From

P
�2Fq  .�

P
xi /D

�
q if

P
xi D 0

0 if
P
xi ¤ 0

we deduce finally that

qhaig.p;a/D .�1/nq
P

x2Pn.Fq/

nC1Q
iD0

"i .xi //

D qJ."0; : : : ; "n/.

Note that this shows that g.p;a/ is independent of  and lies in k.
Let ` be a prime such that ` - d , p - `, and d j`� 1. Then Q` contains a primitive d th root of 1

and so, after choosing an embedding k ,!Q`, we can assume g.p;a/ 2Q`.
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Proposition 7.10. Let Fp 2 Gal.Q=k/ab be a geometric Frobenius element of p - d ; for any v 2
Hn.V et;Q`/a,

Fpv D q
hai�1g.p;a/v.

Proof. As p - d , V reduces to a smooth variety Vp over Fq and the proper-smooth base change
theorem shows that there is an isomorphismHn.V ;Q`/!Hn.V p;Q`/ compatible with the action
of S and carrying the action of Fp on Hn.V ;Q`/ into the action of the Frobenius endomorphism
Frob on Hn.V p;Q`/. The comparison theorem shows that Hn.V ;Q`/a has dimension 1, and so it
remains to compute

Tr.FpjH
n.V ;Q`/a/D Tr.Frob jHn.V p;Q`/a/:

Let � WVp! P n be as before. Then

Hn.V p;Q`/a DHn.P n; .��Q`/a/,

and the Lefschetz trace formula shows that

.�1/nTr.Frob jHn.P n; .��Q`/a/D
P

x2Pn.F/
Tr.Frob j..��Q`/a/x/ (2)

where ..��Q`/a/x is the stalk of .��Q`/a at x.
Fix an x 2 P n.Fq/ with no xi zero, and let y 2 Vp.Fq/ map to x; thus ydi D xi all i . Then

��1.x/D f�y j � 2 Sg, and .��Q`/x is the vector space Q�
�1.x/
`

.
If � denotes the arithmetic Frobenius automorphism (i.e., the generator z 7! zq of Gal.Fq=Fq/),

then
�.yi /D y

q
i D x

q�1
d

i yi D t .x
q�1
d

i /yi ; 0� i � n�1;

and so
Frob.y/D �y where �D .: : : W t .x

1�q
d

i /W : : :/ 2 S:

Thus Frob acts on .��Q`/x as �, and for v 2 ..��Q`/a/x, we have

Frob.v/D �v D �av ; �a
D

nC1Q
iD0

"i .xi / 2 k �Q`.

Consequently,

Tr.Frob j..��Q`/a/x/D
nC1Q
iD0

"i .xi /.

If some xi D 0, then both sides are zero (.��Q`/a is ramified over the coordinate hyperplanes), and
so, on summing over x and applying (2) and (7.9), we obtain the proposition.

Corollary 7.11. Let a be such that no ai is zero and huai is constant. Then, for any v 2Hn.V et;Q`/a.n2 /,

Fpv D g.p;a/v:

Proof. The hypotheses on a imply that hai D n
2
C 1. Therefore, when we write v D v0˝ 1 with

v0 2H
n.V et;Q`/a,

Fpv D Fpv0˝Fp1D q
n
2 g.p;a/v0˝q

�n
2 D g.p;a/v.
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Calculation of the periods

Recall that that the � -function is defined by

� .s/D

Z 1
0

e�t ts
dt

t
; s > 0;

and satisfies the following equations

� .s/� .1� s/D �.sin�s/�1

� .1C s/D s� .s/:

The last equation shows that, for s 2Q�, the class of � .s/ in C=Q� depends only on the class of s
in Q=Z. Thus, for a 2X.S/, we can define

Q� .a/D .2�i/�hai
nC1Q
iD0

� .ai
d
/ 2 C=Q�:

Let V o denote the open affine subvariety of V with equation

Y d1 C�� �CY
d
n�1 D�1 (so Yi DXi=X0).

Denote by � the n-simplex˚
.t1; : : : ; tnC1/ 2 RnC1 j ti � 0;

P
ti D 1

	
and define �0W�! V o.C/ to be

.t1; : : : ; tnC1/ 7! ."t
1
d

1 ; : : : ; "t
1
d

nC1/; "D e2�i=2d D
d
p
�1; t

1
d

i > 0:

Lemma 7.12. Let a0; : : : ;anC1 be positive integers such that
P
ai � 0 mod d . ThenZ

�0.�/

Y
a1
1 � � �Y

anC1
nC1

dY1

Y1
^ : : :^

dYn

Yn
D

1

2�i
.1� ��a0/

nC1Q
iD0

�
�
ai
d

�
where � D e2�i=d .

Proof. Write !0 for the integrand. ThenZ
�0.�/

!0 D

Z
�

��0 .!0/

D

Z
�

."t
1
d

1 /
a1 � � �."t

1
d

nC1/
anC1d�n

dt1

t1
^ : : :^

dtn

tn

D c

Z
�

t
b1
1 � � � t

bnC1
nC1

dt1

t1
^ : : :^

dtn

n

where bi D ai=d and c D "a1C���CanC1. 1
d
/n. On multiplying by

� .1�b0/D � .1Cb1C�� �CbnC1/D

Z 1
0

e�t tb1C���CbnC1dt

we obtain

� .1�b0/

Z
�0.�/

!0 D c

Z 1
0

Z
�

e�t tb1C���CbnC1 t
b1
1 � � � t

bnC1
nC1

dt1

t1
^ : : :^

dtn

n
^dt .
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If, on the inner integral, we make the change of variables si D t ti , the integral becomes

c

Z 1
0

Z
�.t/

e�ts
b1
1 : : : s

bnC1
nC1

ds1

s1
^ : : :^

dsn

sn
^dt

where
�.t/D f.s1; : : : ; snC1/ j si � 0;

P
si D tg.

We now let t D
P
si , and we obtain

� .1�b0/

Z
�0.�/

! D c

Z 1
0

� � �

Z 1
0

e�s1�����snC1s
b1
1 : : : s

1CbnC1
nC1

ds1

s1
^ : : :^

dsnC1

snC1

D c� .b1/� .b2/ : : :� .bn/� .1CbnC1/

D cbnC1� .b1/ : : :� .bnC1/.

The formula recalled above shows that

� .1�b0/D �=.sin�b0/� .b0/,

and so

c� .1�b0/
�1
D "�a0

sin�b0
�

� .b0/ modQ�

D
1

�
e�2�ib0=2

 
e�ib0 � e��ib0

2i

!
� .b0/

D
1

2�i
.1� "�2a0/� .b0/:

The lemma is now obvious.

The group algebraQŒS� acts on theQ-space of differentiable n-simplices in V.C/. For a2X.S/
and ¸i D .1; : : : ; �; : : :/ (� D e2�i=d in the i th position), define

� D
nC1Q
iD0

.1� ¸
i
/�1�0.�/� V

o.C/

where �0 and � are as above.

Proposition 7.13. Let a 2X.S/ be such that no ai is zero, and let !o be the differential

Y
a01
1 : : :Y

a0
nC1

nC1

dY1

Y1
^ : : :^

dYn

Yn

on V o, where a0i represents �ai , and a0i � 0. Then

(a) ¸!o D ¸a!o;

(b)
R
� !

o D
1
2�i

nC1Q
iD0

.1� �ai /�
�
�ai
d

�
.
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Proof. (a) This is obvious since

�Yi D

�
�i

�0

��1
Yi :

(b) Z
�

!o D

Z
�0.�/

nC1Q
iD1

.1� �i /!
o

D

nC1Q
iD1

.1� �ai /
R
�0.�/

!o

D
1

2�i

nC1Q
iD0

.1� �ai /�
�
ai
d

�
.

Remark 7.14. From the Gysin sequence

.C�/ Hn�2.V rV o;C/!Hn.V;C/!Hn.V o;C/! 0

we obtain an isomorphism
Hn.V;C/prim!Hn.V o;C/,

which shows that there is an isomorphism

Hn
dR.V=k/prim !Hn

dR.V
o=k/D � .V o;˝n/=d� .V o;˝nC1/:

The class Œ!o� of the differential !o lies in Hn
dR.V=k/a. Correspondingly, we get a C1 differential

n-form on V.C/ such that

(a) the class Œ!� of ! in Hn
dR.V=C/ lies in Hn

dR.V=k/a, and

(b)
R
� ! D

1
2�i

nC1Q
iD0

.1� �ai /�
�
�
ai
d

�
, where � D

nC1Q
iD1

.1� ¸i /�1�0.�/.

Note that, if we regard V as a variety over Q, then Œ!� even lies in Hn
dR.V=Q/.

The theorem

Recall that for a 2X.S/, we set

Q� .a/D .2�i/�hai
nC1Q
iD0

� .ai
d
/ .2 C=Q�/

and for p a prime of k not dividing d , we set

g.p;a/D q�hai
nC1Q
iD0

g.p;ai ; /

g.p;ai ; /D�
P
x2Fq

t
�
x
1�q
d

�ai
 .x/

where q is the order of the residue field of p.
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Theorem 7.15. Let a 2 X.S/ have no ai D 0 and be such that huai D hai .D n=2C 1/ for all
u 2 .Z=dZ/�.

(a) Then Q� .a/ 2Q and generates an abelian extension of k DQ.e 2�id /:

(b) If Fp 2 Gal.Q=k/ab is the geometric Frobenius element at p, then

Fp. Q� .a//D g.p;a/ Q� .a/:

(c) For any � 2 Gal.Q=Q/, �a.�/
df
D Q� .a/=� Q� .a/ lies in k; moreover, for any u 2 .Z=dZ/�;

�u.�a.�//D �ua.�/

where �u is the element of Gal.k=Q/ defined by u.

Proof. Choose � 2HB
n .V / and ! as in (7.14). Then all the conditions of (7.2) are fulfilled with ˛

the character a. Moreover, (7.14) and (7.11) show respectively that

P.�;!/D �.a/ Q� .�a/; where �.a/D
nC1Y
iD0

.1� �
ai
i /;

and
�.Fp/D g.p;a/�1.

As �.a/ 2 k, (7.2) shows that Q� .�a/ generates an abelian algebraic extension of k and that

Fp
Q� .�a/D g.p;a/�1 Q� .�a/:

It is clear from this equation that g.p;a/ has absolute value 1 (in fact, it is a root of 1); thus

g.p;a/�1 D g.p;a/D g.p;�a/.

This proves (a) and (b) for �a and hence for a.
To prove (c) we have to regard V as a variety over Q. If S is interpreted as an algebraic group,

then its action on V is rational over Q. This means that

�.�x/D �.�/�.x/; � 2 Gal.Q=Q/; � 2 S.Q/; x 2 V.Q/

and implies that

�.�
/D �.�/�.
/; � 2 Gal.Q=Q/; � 2 S.Q/; 
 2 C nAH.V /.

Therefore Gal.Q=Q/ stabilizes C nAH.V /Œa� and, as this is a one-dimensional vector space over QŒa�,
there exists for any 
 2 C nAH.V /Œa� a crossed homomorphism �WGal.Q=Q/ ! QŒa�� such that
�.
/ D �.�/
 for all � . On applying the canonical map C nAH.V /Œa� !

�
C nAH.V /˝k

�
Œa� to this

equality, we obtain
�.
˝1/D �.�/a.
˝1/:

We take 
 to be the image of � ˝ .2�i/�n=2 2 HB
n .V /.�

n
2
/ in C nAH.V /Œa�. Then (cf. 7.3),

.
˝1/dR D P.�;!/
�1Œ!�, if Œ!� is as in (7.14). Hence

�.�/a D
P.�;!/

�P.�;!/
D ��a.�/

�.a/
��.a/

.
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On comparing

�a.�/D �.�/
�a ��.�a/
�.�a/

and

�ua.�/D �.�/
�ua ��.�ua/

�.�ua/
,

and using that
�.�.�ua//D �.�u.�.�a///D �u.��.�a//;

one obtains (c) of the theorem.

Remark 7.16. (a) The first statement of the theorem, that Q� .a/ is algebraic, has an elementary
proof; see the appendix by Koblitz and Ogus to Deligne 1979a.22

(b) Part (b) of the theorem has been proved up to sign by Gross and Koblitz (1979, 4.5) using
p-adic methods.

Remark 7.17. Let Id be the group of ideals of k prime to d , and consider the character

aD
Q

prii 7! g.a;a/ df
D
Q
g.pi ;a/ri WId ! k�:

When a satisfies the conditions of the theorem, then this is an algebraic Hecke character (Weil 1952,
1974; see also Deligne 1972, �6) . This means that there exists an ideal m of k (dividing a power
of d ) and a homomorphism �algWk

�! k� that is algebraic (i.e., defined by a map of tori) and such
that, for all x 2 k� totally positive and � 1 mod m, g..x/;a/ D �alg.x/. There is then a unique
character

�aWGal.Q=k/ab
! k�

such that �a.Fp/D g.p;a/ for all p prime to d . Part (b) of the theorem can be stated as

�. Q� .a//D �a.�/ Q� .a/, all � 2 Gal.k=k/:

(There is an elegant treatment of algebraic Hecke characters in Serre 1968, Chapter II. Such a
character with conductor dividing a modulus m corresponds to a character � of the torus Sm (loc.
cit. p II-17) . The map �alg is

k�
�
! Tm ,! Sm

�
! k�.

One defines from � a character �1 of the idèle class group as in (loc. cit., II 2.7). Weil’s determi-
nation of �alg shows that �1 is of finite order; in particular, it is trivial on the connected component
of the idèle class group, and so gives rise to a character �aWGal.Q=k/ab! k�:/

Restatement of the theorem

For b 2 d�1Z=Z, we write hbi for the representative of b in d�1Z with 1
d
� hbi � 1. Let b DP

n.b/ıb be an element of the free abelian group generated by the set d�1Z=Zr f0g, and assume
that

P
n.b/hubi D c is an integer independent of u 2 Z=dZ. Define

Q� .b/D
1

.2�i/c

Y
b

� .hbi/n.b/.
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Let p be a prime of k, not dividing d , and let Fq be the residue field at p. For  a non-trivial additive
character of Fq , define

g.p;b/D
1

qc

Y
b

g.p;b; /n.b/, where g.p;b; /D�
P
x2Fq

t .xb.1�q// .x/.

As in (7.17), p 7! g.p;b/ defines an algebraic Hecke character of k and a character �bWGal.Q=Q/!
C� such that �b.Fp/D g.p;b/ for all p - b.

Theorem 7.18. Assume bD
P
n.b/ıb satisfies the condition above.

(a) Then Q� .b/ 2 kab, and for all � 2 Gal.Q=k/ab;

� Q� .b/D �b.�/ Q� .b/:

(b) For � 2 Gal.Q=Q/, let �b.�/D Q� .b/=� Q� .b/; then �b.�/ 2 k, and, for any u 2 .Z=dZ/�,

�u.�b.�//D �ub.�/.

Proof. Suppose first that n.b/ � 0 for all b. Let nC 2D
P
n.b/, and let a be an .nC 2/-tuple in

which each a 2 Z=dZ occurs exactly n a
d

times. Write aD .a0; : : : ;an/. ThenP
ai D d.

P
n.b/b/

D dc mod d

D 0;

and so a 2X.S/. Moreover,

huai df
D
1

d

P
huai i D

P
n.b/hubi D c

for all u 2 Z=dZ. Thus huai is constant, and c D hai. We deduce that Q� .a/ D Q� .b/, g.p;a/ D
g.p;b/, and �a D �b. Thus, in this case, (7.18) follows immediately from (7.15) and (7.17).

Let b be arbitrary. For some N , bCNb0 has positive coefficients, where b0 D
P
ıb . Thus

(7.18) is true for bCNb0. Since

Q� .b1Cb2/D Q� .b1/ Q� .b2/ modQ�

and
g.p;b1Cb2/D g.p;b1/g.p;b2/

this completes the proof.

Remark 7.19. (a) Part (b) of the theorem determines � .ub/ (up to multiplication by a rational
number) starting from � .b/.

(b) Conjecture 8.11 of Deligne 1979a is a special case of part (a) of the above theorem. The more
precise form of the conjecture, ibid. 8.13, can be proved by a modification of the above methods.
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Final note

The original seminar of Deligne comprised fifteen lectures, given between 29/10/78 and 15/5/79.
The first six sections of these notes are based on the first eight lectures of the seminar, and the
seventh section on the last two lectures. The remaining five lectures, which the writer of these notes
was unable to attend, were on the following topics:

6/3/79 review of the proof that Hodge cycles on abelian varieties are absolutely Hodge; discussion
of the expected action of the Frobenius endomorphism on the image of an absolute Hodge
cycle in crystalline cohomology;

13/3/79 definition of the category of motives using absolute Hodge cycles; semisimplicity of the
category; existence of the motivic Galois group G;

20/3/79 fibre functors in terms of torsors; the motives of Fermat hypersurfaces andK3-surfaces are
contained in the category generated by abelian varieties;

27/3/79 Artin motives; the exact sequence

1!Gı!G
�
! Gal.Q=Q/! 1;

indentification of Gı with the Serre group, and description of the Gı-torsor ��1.�/;

3/4/79 action of Gal.Q=Q/ on Gı; study of G˝QQ`; Hasse principle for H 1.Q;Gı/.

Most of the material in these five lectures is contained in the remaining articles of Deligne et al.
1982 (especially IV).

The writer of these notes is indebted to P. Deligne and A. Ogus for their criticisms of the first
draft of the notes and to Ogus for his notes on which section seven is largely based.
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WEIL, A. 1952. Jacobi sums as “Grössencharaktere”. Trans. Amer. Math. Soc. 73:487–495.
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Endnotes (by J.S. Milne)

1. The following changes from the original have been made:

– Numerous minor improvements to the exposition.

– Numerous misprints fixed; major corrections have been noted in these endnotes.

– Part of the general introduction to the volume Deligne et al. 1982 has been placed at the
start of the introduction.

– The original numbering has been retained except that the last section, which was �6 in
Tannakian categories, is now �8 (thus 6.xx in the original has become 8.xx).

– Some changes of notation have been made — the footnote DR has been replaced by dR, Af
has been replaced by Af , and� (isomorphism) has been distinguished fromŠ (canonical
isomorphism).

– These endnotes have been added.

2. (p3) This doesn’t follow directly from Theorem 2.11 (see 2.4). However, one obtains a variant of Theo-
rem 2.11 using the above definitions simply by dropping the étale component everywhere in the proof (see,
for example, 2.10b).

3. (p3) For a description of these consequences, see

Deligne, Pierre, Cycles de Hodge absolus et périodes des intégrales des variétés abéliennes.
Abelian functions and transcendental numbers (Colloq., École Polytech., Palaiseau, 1979) .
Mém. Soc. Math. France (N.S.) 1980/81, no. 2, 23–33.

For applications of the results of these notes to the periods of motives attached to Hecke characters, see

Schappacher, Norbert, Periods of Hecke characters. Lecture Notes in Mathematics, 1301.
Springer-Verlag, Berlin, 1988.

4. (p4) Say that a cohomology class in H 2p.A;Q/.p/ is a split Weil class if there exists

– a CM-field E,

– a homomorphism �WE! End.A/, and

– a polarization � of A satisfying the conditions (a,b) of (4.8)

such that the class lies in the subspace
V2p
E H 1.A;Q/.p/ of H 2p.A;Q/.p/.

By assumption, the algebraic classes are accessible. The proof of Theorem 4.8 will show that all split
Weil classes are accessible once we check that the family in the proof contains an abelian variety for which
the Hodge conjecture is true. But, in the proof, we can take A0 to be any abelian variety of dimension d=2,
and it is well-known that the Hodge conjecture holds for powers of an elliptic curve (see p107 of Tate, J. T.,
Algebraic cycles and poles of zeta functions. 1965 Arithmetical Algebraic Geometry (Proc. Conf. Purdue
Univ., 1963) pp. 93–110 Harper & Rowe, New York). Now the argument in �5 shows that all Hodge classes
on abelian varieties of CM-type are accessible, and Proposition 6.1 shows the same result for all abelian
varieties.
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5. (p4) Condition (a) is checked in (2.1), (b) is obvious from the definition of absolute Hodge cycle, (c) is
proved in (3.8), and (d) is proved in (2.12).

6. (p8) From the spectral sequence, we get a descending filtration F p on the groups Hn.X;C/ such that

Hn
D .Hn

\F p/˚ .Hn
\F q/

for all n;p;q with pCq D nC1. This implies that

Hn
D˚Hp;q

with
Hp;q

DHpCq
\F p\F q DH q.X;˝p/:

7. (p8) For a recent account of Hodge theory, see Voisin, C., Hodge Theory and Complex Algebraic Geom-
etry, I, Cambridge University Press, 2002.

8. (1.8) Grothendieck conjectured that the only relations between the periods come from algebaic cycles.

. . . it is believed that if [the elliptic curve] is algebraic (i.e., its coefficients g2 and g3 are alge-
braic), then !2 and !3 are transcendental, and it is believed that if X has no complex multi-
plication, then !1 and !2 are algebraically independent. This conjecture extends in an obvious
way to the set of periods .!1;!2;�1;�2/ and can be rephrased also for curves of any genus, or
rather for abelian varieties of dimension g, involving 4g periods. (Grothendieck 1966, p102).

Also:

For the period matrix itself, Grothendieck has made a very interesting conjecture concerning
its relations, and his conjecture applies to a general situation as follows. Let V be a projective,
nonsingular variety defined over the rational numbers. One can define the cohomology of V
with rational coefficients in two ways. First, by means of differential forms (de Rham), purely
algebraically, thereby obtaining a vector space Hdiff.V;Q/ over Q. Secondly, one can take the
singular cohomologyHsing.V;Q/ with rational coefficients, i.e., the singular cohomology of the
complex manifold VC. Let us select a basis for each of these vector spaces over Q, and let us
tensor these spaces over C. Then there is a unique (period) matrix ˝ with complex coefficients
which transforms one basis into the other. Any algebraic cycle on V or the products of V with
itself will give rise to a polynomial relation with rational coefficients among the coefficients
of this matrix. Grothendieck’s conjecture is that the ideal generated by these relations is an
ideal of definition for the period matrix. (S. Lang, Introduction to Transcendental Numbers,
Addison-Wesley, 1966, pp42–43; Collected Works, Vol. I, pp443-444.)

9. (2.2) So far as I know, both (2.2) and (2.4) remain open.

10. (Proof of 2.9.) The Cantor diagonalization argument shows that an infinite profinite group is uncountable.

11. (2.11) The theorem extends to one-motives (Théorème 2.2.5 of Brylinski, Jean-Luc, “1-motifs” et formes
automorphes. Journées Automorphes (Dijon, 1981), 43–106, Publ. Math. Univ. Paris VII, 15, Univ. Paris
VII, Paris, 1983. MR 85g:11047.)

12. (2.14) By using the full strength of Deligne’s results on cohomology, it is possible to avoid the use of the
Gauss-Manin connection in the proof of Theorem 2.12 (Blasius, Don, A p-adic property of Hodge classes on
abelian varieties. Motives (Seattle, WA, 1991), 293–308, Proc. Sympos. Pure Math., 55, Part 2, Amer. Math.
Soc., Providence, RI, 1994, Theorem 3.1).

Theorem (Deligne 1971a). Let � WX ! S be a smooth proper morphism of smooth varieties over C.
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(a) The Leray spectral sequence
H r .S;Rs��Q/)H rCs.X;Q/

degenerates at E2; in particular, the edge morphism

Hn.X;Q/! � .S;Rn��Q/

is surjective.

(b) If X is a smooth compactification of X with XrX a union of smooth divisors with normal crossings,
then the canonical morphism

Hn.X;Q/! � .S;Rn��Q/

is surjective.

(c) Let .Rn��Q/0 be the largest constant local subsystem of Rn��Q (so .Rn��Q/0s D � .S;Rn��Q/ for
all s 2 S.C/). For each s 2 S , .Rn��Q/0s is a Hodge substructure of .Rn��Q/s DHn.Xs;Q/, and
the induced Hodge structure on � .S;Rn��Q/ is independent of s.

In particular, the map
Hn.X;Q/!Hn.Xs;Q/

has image .Rn��Q/0s , and its kernel is independent of s.

Theorem. Let � WX ! S be a smooth proper morphism of complex varieties with S smooth and connected.
Let 
 2 � .S;R2n��Q.n//.

(a) If 
s is a Hodge cycle for one s 2 S.C/, then it is a Hodge cycle for every s 2 S.C/;

(b) If 
s is an absolute Hodge cycle for one s 2 S.C/, then it is an absolute Hodge class for every
s 2 S.C/.

Proof. (Blasius 1994, 3.1.) According to Deligne’s theorem, for s; t 2 S.C/, there is a commutative diagram:

H 2n.Xs/.n/

H 2n.X/.n/ � .S;R2n��Q.n//

H 2n.Xt /.n/

onto

injec
tive

injective

Let 
 2 � .S;R2n��Q.n//. It is immediate from (c) of Deligne’s theorem that if 
s is a Hodge cycle, then so
also is 
t .

Identify H.X/˝A with HA.X/. Let � be an automorphism of C. If 
s is a Hodge cycle on Xs relative
to � , then there is a 
�s 2H

2n.�Xs/.n/ such that 
�s ˝ 1D �.
s˝ 1/ in H 2n
A .�Xs/. Since �.
s˝ 1/ is in

the image of
H 2n.�X/.n/˝A!H 2n.�Xs/.n/˝A;


�s is in the image of
H 2n.�X/.n/!H 2n.�Xs/.n/

(apply 2.13) — let Q
� 2H 2n.�X/.n/map to 
�s . Because 
s and 
t have a common pre-image in � .S;R2n��Q.n//,
�.
s˝1/ and �.
t˝1/ have a common pre-image in � .�S;R2n��Q.n//˝A. Therefore (see the diagram),
Q
� ˝1 maps to �.
t ˝1/ in H 2n.�Xt /˝A, and so 
t ˝1 is a Hodge cycle relative to � .
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13. (Proof of 3.1) LetW D I \V andDD
Vd

W . Let g 2GL.V /. If gW DW; then certainly .
Vd

g/.D/�

D. For the converse, choose a basis e1; : : : ; en for V such that e1; : : : ; em is a basis forW \gW , e1; : : : ; em; : : : ; ed
is a basis for W , and e1; : : : ; em; edC1; : : : ; e2d�m is a basis for gW . Then

.
Vd

g/.e1^� � �^ ed /D c � e1^� � �^ em^ edC1^� � �^ e2d�m; some c 2 k�;

and so, if .
Vd

g/.D/DD, then mD d , and gW DW .

14. (3.8) The motivic significance of Principle A is the following: by the usual method (e.g., Saavedra 1972,
VI 4.1) we can define a category of motives using the absolute Hodge classes as correspondences; this will
be a pseudo-abelian rigid tensor category, and it will be Tannakian if and only if Principle A holds for all the
varieties on which the category is based.

15. (Proof of 4.3.) The pairing Vn
V _�

Vn
V ! k

is determined by
.f1^� � �^fn;v1˝�� �˝vn/D det.hfi jvj i/

— see Bourbaki, N., Algébre Multilinéaire, Hermann, 1958, �8.

16. (4.4) Let E be a CM-field, and let �WE! End.A/ be a homomorphism. The pair .A;�/ is said to be of
Weil type if Tgt0.A/ is a free E˝QC-module. The proposition shows the following:

If .A;�/ is of Weil type, then the subspace
Vd
EH

1.A;Q/ of Hd .A;Q/ consists of Hodge
classes.

When E is quadratic over Q, these Hodge classes were studied by Weil (Abelian varieties and the Hodge
ring, 1977c in Collected Papers, Vol. III, Springer-Verlag, pp421–429), and for this reason are called Weil
classes.

A polarization of an abelian variety .A;�/ of Weil type is a polarization � of A whose Rosati involution
stabilizes E and induces complex conjugation on it.

The special Mumford-Tate group of a general polarized abelian variety .A;�;�/ of Weil type is
SU.�/ where � is the E-Hermitian form on H 1.A;Q/ defined by the polarization.
If the special Mumford-Tate group of .A;�/ equals SU.�/, then the Q-algebra of Hodge cycles
is generated by the divisor classes and the Weil classes (but not by the divisor classes alone).

When E is quadratic over Q, these statements are proved in Weil (ibid.), but the same argument works in
general.

For more on Weil classes, see

Moonen, B. J. J.; Zarhin, Yu. G. Weil classes on abelian varieties. J. Reine Angew. Math. 496 (1998),
83–92. MR99a:14010

Zarhin, Yu. G. and Moonen, B. J. J., Weil classes and Rosati involutions on complex abelian varieties.
Recent progress in algebra (Taejon/Seoul, 1997), 229–236, Contemp. Math., 224, Amer. Math. Soc., Provi-
dence, RI, 1999. MR2000a:14008

In a small number of cases, the Weil classes are known to be algebraic even when they are not contained
in the Q-algebra generated by the divisor classes:

Schoen, Chad, Hodge classes on self-products of a variety with an automorphism. Compositio Math. 65
(1988), no. 1, 3–32; MR 89c:14013. Addendum, ibid., 114 (1998), no. 3, 329–336; MR 99m:14021.
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van Geemen, Bert, An introduction to the Hodge conjecture for abelian varieties. Algebraic cycles
and Hodge theory (Torino, 1993), 233–252, Lecture Notes in Math., 1594, Springer, Berlin, 1994. MR
96d:14010.

17. (4.5) For example, let E be the subfield of Q generated by
p
�n and let � be the given embedding of E

into Q. Let
p
�n 2E act on AD A20 as

�
0 �n
1 0

�
, and let V DH 1.A0;Q/. Then, V ˝E Š V� ˚V� , and�Vd
E .V ˝E/

�
Š
Vd
E

(V� ˚V� /Š
Vd
E V� ˚

Vd
E V� :Let e1; : : : ; ed be a basis for V DH 1.A0;Q/ (first copy of A0), and let

f1; : : : ;fd be the same basis for the second copy. The elements ei C
p
�nfi form a basis for V� , and so�

e1C
p
�nf1

�
^
�
e2C
p
�nf2

�
^ : : :

is an E-basis for
Vd
EH

1.A;Q/ (not e1^ e2^ : : :). When d D 2, the elements

e1^ e2�nf1^f2;
p
�n.e1˝f2C e2˝f1/

form a Q-basis for
V2
EH

1.A;Q/, and the Weil classes are represented by the algebraic cycles .0�A0/�
n.A0 � 0/ and the .1;1/-components of the diagonal. (See Murty, V. Kumar, Hodge and Weil classes on
abelian varieties. The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 83–115, NATO Sci.
Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000.) In particular (pace Blasius 1994, p305),Vd
EH

1.A;Q/.d
2
/ is not theE-subspace ofHd .A;Q/.d

2
/ spanned by the class of the cycle AŒE WQ��10 �f0g �

A
ŒE WQ�
0 . It seems not to be known whether, in the situation of the lemma,

Vd
EH

1.A;Q/.d
2
/ always consists

of algebraic classes.

18. (p44) The proof shows that the group fixing the divisor classes and the split Weil classes isGH . By simi-
lar methods, Yves André (Une remarque à propos des cycles de Hodge de type CM. Séminaire de Théorie des
Nombres, Paris, 1989–90, 1–7, Progr. Math., 102, Birkhäuser Boston, Boston, MA, 1992, MR 98f:14005.)
proves the following: Let A be a complex abelian variety of CM-type. Then there exist abelian varieties BJ
of CM-type and homomorphisms A! BJ such that every Hodge cycle on A is a linear combination of the
inverse images of split Weil classes on the BJ .

19. (p47) We discuss some simplifications and applications of the proof of Theorem 2.11.

A criterion for a family of Hodge classes to contain all Hodge classes

Theorem. Suppose that for each abelian variety A over C we have aQ-subspace C.A/ of the Hodge classes
on A. Assume:

(a) C.A/ contains all algebraic classes on A;

(b) pull-back by a homomorphism ˛WA! B maps C.B/ into C.A/;

(c) let � WA!S be an abelian scheme over a connected smooth variety S overC, and let t 2� .S;R2p��Q.p//;
if ts is a Hodge cycle for all s and lies in C.As/ for one s, then it lies in C.As/ for all s.

Then C.A/ contains all the Hodge classes on A.

Proof. The proof of Theorem 4.8 shows that C.A/ contains all split Weil classes on A (see endnote 4), and
then André’s improvement of �5 (see endnote 18) proves the theorem for all abelian varieties of CM-type.
Now Proposition 6.1 completes the proof.
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Algebraic classes

In Steenbrink (Steenbrink, J. H. M., Some remarks about the Hodge conjecture. Hodge theory (Sant Cugat,
1985), 165–175, Lecture Notes in Math., 1246, Springer, Berlin, 1987) we find the following:

[Grothendieck (1966), footnote 13] stated a conjecture which is weaker than the Hodge .p;p/
conjecture:
(VHC) Suppose that f WX ! S is a smooth projective morphism with S connected, smooth.
Suppose that � 2H 0.S;R2pf�QX / is of type .p;p/ everywhere, and for some s0 2 S , �.s0/ is
the cohomology class of an algebraic cycle of codimension p onXs0 . Then �.s/ is an algebraic
cycle class for all s 2 S .
This “variational Hodge conjecture” . . . .

In fact, Grothendieck (1966, footnote 13) asks whether the following statement is true:

(VHCo) Let S be a connected reduced scheme of characteristic zero, and let � WX ! S be a
proper smooth morphism; then a section z of R2p��.˝�X=S / is algebraic on every fibre if and
only if it is horizontal for the canonical integral connection and is algebraic on one fibre.

Theorem. If the variational Hodge conjecture (either statement (VHC) or (VHCo)) is true for abelian vari-
eties, then so also is the Hodge conjecture.

Proof. Assume (VHC), and let C.A/ be theQ-span of the classes of algebraic cycles on A. Then the preced-
ing theorem immediately shows that C.A/ contains all Hodge classes on A.

The proof that (VHCo) implies the Hodge conjecture is similar, but requires the remark (see endnote 2)
that all of ��2–6 still applies when the étale component is omitted.

Although, we didn’t need Principle A for the last theorem, it should be noted that it does hold for the
algebraic classes on abelian varieties (those in the Q-subspace of H 2p.A;Q.p// spanned by the classes of
algebraic cycles). This is a consequence of the following three results (cf. endnote 14):

– numerical equivalence coincides with homological equivalence on complex abelian vari-
eties (Lieberman, David I., Numerical and homological equivalence of algebraic cycles on
Hodge manifolds. Amer. J. Math. 90 1968 366–374, MR37 #5898);

– the category of motives defined using algebraic cycles modulo numerical equivalence is an
abelian category (even semisimple) (Jannsen, Uwe, Motives, numerical equivalence, and
semi-simplicity. Invent. Math. 107 (1992), no. 3, 447–452.);

– every abelian tensor category over a field of characteristic zero whose objects have fi-
nite dimension is Tannakian (Théorème 7.1 of Deligne, P., Catégories tannakiennes. The
Grothendieck Festschrift, Vol. II, 111–195, Progr. Math., 87, Birkhäuser Boston, Boston,
MA, 1990).

de Rham-Hodge classes (Blasius)

For a complete smooth variety X over Qal and an embedding � WQ!Qp , there is a natural isomorphism

I WH 2r
et .�X;Qp/.r/˝Qp BdR!H 2r

dR .�X/.r/˝Qp BdR

(Faltings, Tsuji) compatible with cycle maps. Call an absolute Hodge class 
 on X de Rham if, for all � ,
I.�
p˝1/D �
dR˝1. The following is proved in Blasius 1994.
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Theorem. Every absolute Hodge class on an abelian variety over Qal is de Rham.

Proof. The functor from abelian varieties overQal to abelian varieties overC is fully faithful and the essential
image contains the abelian varieties of CM-type. Using this, one sees by the same arguments as above, that
the theorem follows from the next result.

Theorem (Blasius 1994, 3.1). Let � WX ! S be a smooth proper morphism of smooth varieties over Q� C
with S connected, and let 
 2 � .SC;R2n�C�Q.n//. If 
s 2H 2n

B .Xs/.n/ is absolutely Hodge and de Rham
for one s 2 S.Q/, then it is absolutely Hodge and de Rham for every s.

Proof. Let s; t 2 S.Q/ and assume 
s is absolutely Hodge and de Rham. We know (see endnote 12) that 
t
is absolutely Hodge, and we have to prove it is de Rham.

Let � WQ ,!Qp be an embedding. For a smooth compactification X of X (as in endnote 12) over Q, we
have a commutative diagram

H 2n
et .�X;Qp/.n/˝BdR

I
�����! H 2n

dR .�X/.n/˝BdR??y ??y
H 2n

et .�Xs;Qp/.n/˝BdR
I

�����! H 2n
dR .�Xs/.n/˝BdR:

There exists Q
 2H 2n
B .X/.n/ mapping to 
 (see the diagram in endnote 12). Let Q
p and Q
dR be the images

of Q
 in H 2n
et .�X;Qp/.n/ and H 2n

dR .�X/.n/. Because 
s is de Rham, I. Q
p˝ 1/ differs from Q
dR˝ 1 by an
element of �

Ker.H 2n
dR .�X/.n/!H 2n

dR .�Xs/.n/
�
˝BdR.

But this kernel is independent of s, and so 
t is also de Rham.

Motivated classes (Abdulali, André)

Recall that Grothendieck’s Lefschetz standard conjecture says that the Q-space of algebraic classes on a
smooth algebraic variety is invariant under the Hodge �-operator. Abdulali (Algebraic cycles in families of
abelian varieties. Canad. J. Math. 46 (1994), no. 6, 1121–1134) shows that if the Q-spaces of algebraic
cycles in the L2-cohomology of Kuga fibre varieties (not necessarily compact) are invariant under the Hodge
�-operator, then the Hodge conjecture is true for all abelian varieties.

André (Pour une théorie inconditionnelle des motifs, Inst. Hautes Études Sci. Publ. Math. No. 83
(1996), 5–49) proves a more precise result: every Hodge class on an abelian variety A is a sum of classes of
the form p�.˛[�Lˇ/ in which ˛ and ˇ are algebraic classes on a product of A with an abelian variety and
certain total spaces of compact pencils of abelian varieties.

In outline, the proofs are similar to that of Theorem 2.11.

20. (6.4) Since Theorem 2.11 is true for one-motives (see endnote 11), so also is the corollary. This raises
the question of whether dim.GA/D tr:degk k.pij / for all one-motives. For a discussion of the question, and
its implications, see Bertolin, C., Périodes de 1-motifs et transcendance. J. Number Theory 97 (2002), no. 2,
204–221.

21. (7.4) There are similar calculations in

Ogus, A., Griffiths transversality in crystalline cohomology. Ann. of Math. (2) 108 (1978),
no. 2, 395–419, MR 80d:14012 (�3),
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Ran, Ziv Cycles on Fermat hypersurfaces. Compositio Math. 42 (1980/81), no. 1, 121–142,
MR 82d:14005,

and, in a more general setting,

Aoki, Noboru, A note on complete intersections of Fermat type. Comment. Math. Univ.
St. Paul. 35 (1986), no. 2, 231–245, MR 88f:14044.

22. (7.16) For an elementary proof that Q.�d ; Q� .a// is Galois over Q, see

Das, Pinaki, Algebraic gamma monomials and double coverings of cyclotomic fields. Trans.
Amer. Math. Soc. 352 (2000), no. 8, 3557–3594, MR 2000m:11107.
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