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Introduction

Let X be a smooth projective variety ov€r Hodge conjectured that certain cohomology
classes otX are algebraic. The main result proved in these notes shows that, Xvisean
abelian variety, the classes considered by Hodge have many of the properties of algebraic
classes.
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In more detail, letX?" be the complex analytic manifold associated withand con-
sider the singular cohnomology groupg'(X?2" Q). The varietyX?" being of Kahler type
(any projective embedding defines alider structure), its conomology groufig (X2, C) =
H"(X? Q) ® C have canonical decompositions

HY(X®™ C)= @ HPY, HP = HY(X™ ..).
ptg=n
The cohomology clasd(Z) € H? (X3 C) of an algebraic subvariet§ of codimension
pin X is rational (i.e., it lies ini/??(X2a" Q)) and is of bidegreép, p) (i.e., it lies in H??).
The Hodge conjecture states that, conversely, every element of

H2(X™,Q) N H"

is aQ-linear combination of the classes of algebraic subvarieties. Since the conjecture is
unproven, it is convenient to call these ratiofyalp)-classesHodge cycle®n X.

Now consider a smooth projective varietyover a fieldk that is of characteristic zero,
algebraically closed, and small enough to be embeddabl& iffhe algebraic de Rham
cohomology group#/j-(X/k) have the property that, for any embeddingk — C, there
are canonical isomorphisms

Hio(X/k) @0 C = Hio(X™,C) = H"(X™",C).

It is natural to say that € H 2(X/k) is aHodge cycle onX relative too if its image in
H*(Xa" C) is (2mi)P times a Hodge cycle oX ®;, C. The arguments in these notes
show that, ifX is an abelian variety, then an elementff:( X /k) that is a Hodge cycle
on X relative to one embedding @finto C is a Hodge cycle relative to all embeddings;
further, for any embedding27)? times a Hodge cycle i#7?(X2" C) always lies in the
image of H;2(X/k).2 Thus the notion of a Hodge cycle on an abelian variety is intrinsic
to the variety: it is a purely algebraic notion. In the case that C the theorem shows
that the image of a Hodge cycle under an automorphisr@ @ again a Hodge cycle;
equivalently, the notion of a Hodge cycle on an abelian variety @véoes not depend on
the mapX — SpecC. Of course, all this would be obvious if only one knew the Hodge
conjecture.

In fact, a stronger result is proved in which a Hodge cycle is defined to be an element of
Hio(X) x [[,H™(Xer, Q). As the title of the original seminar suggests, the stronger result
has consequences for the algebraicity of the periods of abelian integrals: briefly, it allows
one to prove all arithmetic properties of abelian periods that would follow from knowing
the Hodge conjecture for abelian varietfes.

In more detail, the main theorem proved in these notes is that any Hodge cycle on
an abelian variety (in characteristic zero) is an absolute Hodge cycle —§2stw the
definitions and Theorem 2.11 for a precise statement of the result.

The proof is based on the following two principles.
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A. Letty,...,ty be absolute Hodge cycles on a smooth projective vadétgnd letGG
be the largest algebraic subgroup@if.( H*(X,Q)) x GL(Q(1)) fixing thet;; then
every cohomology clagson X fixed by G is an absolute Hodge cycle (see 3.8).

B. If (X;)ses is an algebraic family of smooth projective varieties witltonnected and
smooth andt;)scs is a family of rational cycles (i.e., a global section of ...) such
thatt, is an absolute Hodge cycle for ongthent, is an absolute Hodge cycle for all
s (see 2.12, 2.15).

Every abelian varietyl with a Hodge cycle is contained in a smooth algebraic family
in which ¢ remains Hodge and which contains an abelian variety of CM-type. Therefore,
Principle B shows that it suffices to prove the main theoremA@n abelian variety of
CM-type (see;6). Fix a CM-field £, which we can assume to be Galois o@rand let
Y be a set of representatives for theisogeny classes ovél of abelian varieties with
complex multiplication by~. Principle B is used to construct some absolute Hodge classes
on @4 x A — the principle allows us to replace A by an abelian variety of the form
Ay ®z OF (seesd). LetG C GL(DaesH1(A,Q)) x GL(Q(1)) be the subgroup fixing the
absolute Hodge cycles just constructed plus some other (obvious) absolute Hodge cycles.
It is shown that’7 fixes every Hodge cycle oA, and Principle A therefore completes the
proof (seg5).

On analyzing which properties of absolute Hodge cycles are used in the above proof,
one arrives at a slightly stronger result. Call a rational cohomology classa smooth
projective complex varietyX accessibldf it belongs to the smallest family of rational
cohomology classes such that:

(a) the cohomology class of every algebraic cycle is accessible;

(b) the pull-back by a map of varieties of an accessible class is accessible;

(c) if t1,...,ty € H*(X,Q) are accessible, and if a rational class someH? (X, Q)
is fixed by an algebraic subgroapof Aut(H*(X,Q)) (automorphisms of/*( X, Q)
as a graded algebra) fixing the thent is accessible;

(d) Principle B holds with “absolute Hodge” replaced by “accessible”.

Sections 4,5,6 of these notes can be interpreted as proving that, heran abelian

variety, every Hodge cycle is accessibleSections 2,3 define the notion of an absolute

Hodge cycle and show that the family of absolute Hodge cycles satisfies (a), (b), (c), and

(d);® therefore, an accessible class is absolutely Hodge. We have the implications:

abelian varieties . trivial
Hodge————— accessible—> absolutely Hodge—=- Hodge

Only the first implication is restricted to abelian varieties.

The remaining three sectiortgl, §7, andg8, serve respectively to review the different
cohomology theories, to give some applications of the main results to the algebraicity of
products of special values of thiefunction, and to explain the theory of motives that can
be built on absolute Hodge cycles.
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Notations:

We defineC to be the algebraic closure Bfand: € C to be a square root 6f1; thusi is
only defined up to sign. A choice ofdetermines an orientation @f as a real manifold —
we take that for which A i > 0 — and hence an orientation of every complex manifold.
Complex conjugation ot is denoted by or by z — Z.

Recall that the category of abelian varieties up to isogeny is obtained from the category
of abelian varieties by taking the same class of objects but replagimg( A, B) with
Hom(A, B) ® Q. We shall always regard an abelian variety as an object in the category of
abelian varieties up to isogeny: thHsm (A, B) is a vector space ové).

If (V,,) is a family of rational representations of an algebraic gréupver k andt,, s €
Ve, then thesubgroup ofG fixing the ¢, 5 is the algebraic subgroufd of G such that, for
all k-algebrask,

H(R)={g€GR) | gltay®1) =tas @1, alla, B).

Linear duals are denoted by If X is a variety over a field ando is a homomorphism
o: k— k', theno X denotes the varietf ®;, k' (= X Xgpec(r) Spec(k)).
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1 Review of cohomology

Topological manifolds

Let X be atopological manifold anfl a sheaf of abelian groups ofn. We set
H"(X,F)=H"(T'(X, F*))

where ' — F* is any acyclic resolution of'. This definesH™ (X, F') uniquely up to a
unigue isomorphism.

When I is the constant sheaf defined by a fi&ld these groups can be identified with
singular cohomology groups as follows. L&t X, K') be the complex in whicly,, (X, K)
is the K -vector space with basis the singutasimplices inX and the boundary map sends
a simplex to the (usual) alternating sum of its faces. Set

S*(X,K) = Hom(S.(X, K), K)
with the boundary map for which
(a,0) — afo): S*(X,K)® S¢(X,K) > K
is a morphism of complexes, namely, that defined by
(da)(o) = (—1)%8 @+ (dg).
ProPoOSITION1.1 There is a canonical isomorphisfi™(S*(X, K)) — H"(X, K).

PROOF. If U is the unit ball, therH°(S*(U, K)) = K and H"(S*(U, K)) = 0 for n > 0.
Thus, K — S*(U, K) is a resolution of the groufi’. LetS™ be the sheaf oK associated
with the presheaV’ — S"(V, K). The last remark shows thaf — S* is a resolution of
the sheafl. As eachS™ is fine Warner 19715.32), H"(X, K) = H"(I'(X, S*)). But
the obvious map* (X, K) — I'(X, S*) is surjective with an exact complex as kernel (loc.
cit.), and so

H"(5*(X,K)) = H"(I'(X,8°%)) =~ H"(X,K).

Differentiable manifolds

Now assumeX is a differentiable manifold. On replacing “singularsimplex” by “dif-
ferentiable singulan-simplex” in the above definitions, one obtains compleXgs X, K)
andS2 (X, K). The same argument shows that there is a canonical isomorphism

HZL(X,K) € H"(S®(X,K)) = H"(X, K)

(loc. cit.).
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Let Ox~ be the sheaf of'* real-valued functions orX, let Q%... be theO x~-module
of C* differentialn-forms onX, and let2% .. be the complex

d d d
Oxoo = Qoo = Dyo0 = -+ .

The de Rham cohomology groups.&fare defined to be

_ {closedn-forms}
~ {exactn-forms}

If U is the unit ball, Poinca's lemma shows thdf{z(U) = R and Hi5(U) = 0 for n > 0.
Thus,R — Q% is a resolution of the constant shé&fand as the sheavéX; .. are fine
(Warner 19715.28), we have{"(X,R) = Hj(X).

Forw € I'(X, Q%) ando € S:°(X,R), define

(w,o) = (—1)n(n2+1) /w eR.
Stokes’s theorem states thatdw = [, w, and so

(dw,o) + (—1)"(w, do) = 0.
The pairing(, ) therefore defines a map of complexes

[ T(X, Q%) — SL(X,R).

THEOREM 1.2 (DE RHAM). The mapHj(X) — HZ(X,R) defined byf is an isomor-
phism for alln.

Hig(X) = H*(I'(X, Q%))

PrROOF. The map is inverse to the map
HIL(X,R) = H"(X,R) = Hj(X)

defined in the previous two paragraphs (Warner 1971, 5.36). (Our signs differ from the
usual signs because the standard sign conventions

/dw:/ w, / pr{w/\przr]:/w-/n, etc.
o do XxY X Y

violate the sign conventions for complexes.) O

A number [ w, 0 € H,(X,Q), is called aperiod of w. The map in (1.2) identifies
H™(X,Q) with the space of classes of closed forms whose periods are all rational. Theorem
1.2 can be restated as follows: a closed differential form is exact if all its periods are zero;
there exists a closed differential form having arbitrarily assigned periods on an independent
set of cycles.

REMARK 1.3 (SINGER AND THORPE1967, 6.2). If X is compact, then it has a smooth
triangulation?’. DefineS,(X, T, K) andS*(X, T, K) as before, but using only simplices
in T. Then the map

(X, Q%) — S*(X,T, K)
defined by the same formulas Asibove induces isomorphisms

Hin(X) — H"(S*(X,T,K)).
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Complex manifolds

Now let X be a complex manifold, and write$.. for the complex
OXan i QAl)(an i Q?Xan i ttt

in which %, is the sheaf of holomorphic differentiatforms. Thus, locally a section of
Y% is of the form
W = Z ozilmindzil VAN dZin

with «;, ;. @ holomorphic function and the complex local coordinates. The complex
form of Poincaé’s lemma shows thaf — Q%.. is a resolution of the constant sheaf
and so there is a canonical isomorphism

H"(X,C) — H"(X, Q%) (hypercohomology).
If X is a compact Khler manifold, then the spectral sequence
E{Lq = Hq(X> Q.Z;(a”) — Hp+q(Xa Q;(a”)
degenerates, and so provides a canonical spltting

H"(X,C)= @ HYX,%a.) (the Hodge decomposition)
p+g=n

as HP1 =g H1(X,0%..) is the complex conjugate aff?? relative to the real struc-
ture H"(X,R) ® C = H"(X,C) (Weil 195§. The decomposition has the following
explicit description: the complef$.. @ C of sheaves of complex-valued differential
forms on the underlying differentiable manifold is an acyclic resolutiorCofand so
H"(X,C) = H"(I'(X, Q2% ® C)); Hodge theory shows that each element of the second
group is represented by a unique harmomiorm, and the decomposition corresponds to
the decomposition of harmonicforms into sums of harmonig, ¢)-forms,p + ¢ = n.’

Complete smooth varieties

Finally, let X be a complete smooth variety over a fiéldf characteristic zero. It = C,
thenX defines a compact complex manifold", and there are therefore groufig (X", Q),
depending on the may — Spec(C), that we shall writeHg (X) (here B abbreviates
Betti). If X is projective, then the choice of a projective embedding determineshéeK
structure onX?", and hence a Hodge decomposition (which is independent of the choice
of the embedding because it is determined by the Hodge filtration, and the Hodge filtration
depends only otX'; see Theorem 1.4 below). In the general case, we ref@eligne 1963
5.3, 5.5, for the existence of the decomposition.

For an arbitrary field: and an embedding: & — C, we write H}(X) for Hj(c X)
and H24(X) for H??(c X). As. defines a homeomorphismX 2" — (o0 X", it induces an
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isomorphismA % (X) — H?(X). Sometimes, wheh is given as a subfield &, we write
HE(X) for H3(Xc).

Let Q% , denote the complex in whicfy , is the sheaf of algebraic differentiat
forms, and define the (algebraic) de Rham cohomology gffjsp.X /) to beH" (X zar, Q;(/k)
(hypercohomology with respect to the Zariski cohomology). For any homomorphism
o: k — K, there is a canonical isomorphism

Hir(X/k) @p,o k' — Hap(X @ K'/K).
The spectral sequence
Ezlo,q — Hq(XZara Qf‘)’(/k) — Hpﬂ(Xzar, ;(/k)

defines a filtration (the Hodge filtratiod)” Hj5(X') on Hjs(X) which is stable under base
change.

THEOREM1.4. If £k = C, the obvious maps
X — Xzar,  Qxan < Q%,

induce isomorphisms
Hip(X) — Hge(X™") = H"(X™",C)
under whichF? Hjo(X) corresponds td? H" (X3 C) =« @  HY7.

p'>p,p'+q'=n

PrRoOOF. The initial terms of the spectral sequences

EPY = HY Xza, Qg{/k) = H(Xzar, Q)
BEY = HU(X, Q) —> HPI(X, %)

are isomorphic — se8erre 195dor the projective case an@rothendieck 196@or the
general case. The theorem follows from this because, by definition of the Hodge decom-
position, the filtration ofHj;(X?2") defined by the above spectral sequence is equal to the
filtration of H™ (X2, C) defined in the statement of the theorem. O

It follows from the theorem and the discussion preceding it that every embedding
o: k — C defines an isomorphism

Hio(X) @10 C S HY(X) ©g C

and, in particular, &-structure onH?(X) ®¢ C. Whenk = Q, this structure should be
distinguished from th&)-structure defined by/”(X): the two are related by the periods.

A

Whenk is algebraically closed, we writdl" (X, A¢), or H3(X), for H"(Xe, Z) ®z

A

Q, where H"(Xet, Z) = lim H"(Xe, Z/mZ) (etale cohomology). IfX is connected,
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H°(X,A;) = Ay, the ring of finite aéles forQ, which justifies the first notation. By defi-
nition, HZ(X) depends only oX (and not on its structure morphisti — Spec k). The
mapHL(X) — HI(X ®4 k') defined by an inclusioh — £’ of algebraically closed fields
is an isomorphism (special case of the proper base change théotemGrothendieck,
and Verdier 1973XIl). The comparison theorem (ibid. XI) shows that, wher- C, there

is a canonical isomorphistAE(X) ® Ay — HZ(X). It follows that H(X) ® Ay is in-
dependent of the morphisii — Spec C, and that, over any algebraically closed field of
characteristic zerd{(X) is a freeA ;--module.

TheA -moduleH™ (X, A;) can also be described as the restricted product of the spaces
H"(X,Qy), l a prime number, with respect to the subspaldés X, Z,) /{torsion}.

Next we define the notion of the “Tate twist” in each of the three cohomology theories.
For this we shall define object®(1) and setH™(X)(m) = H"(X) ® Q(1)®™. We want
Q(1) to be H%(P!) (realization of the Tate motive in the cohomology theory), but to avoid
the possibility of introducing sign ambiguities we shall define it directly,

Qs(1) = 2miQ
Qu(1) = Ap(1) £ (lim, 1) ©2Q, o ={Cek|C =1}
QdR(l) - ka

and so

Hg(X)(m) = Hg(X) ®q (2m1)"Q = H"(X™, (2m)"Q) (k= C)
HH(X)(m) = Hy(X) @4, (A(1))*" = (lim , H"(Xer, ™)) ®z Q  (k algebraically closed)
Hgr(X)(m) = Hgg(X).

These definitions extend in an obvious way to negativd-or example, we Sé@e(—1) =
Homy , (Af(1),Ay) and define

HG(X)(—m) = Hi(X) @ Qe —1).
There are canonical isomorphisms

Qs(1) ®g Af — Qe(1) (k C C, k algebraically closed
Qp(1) ® C — Qgr(1) ®, C (k C C)

and hence canonical isomorphisntise(comparison isomorphisms

HE(X)(m) ®q Ay — HH(X)(m) (k C C, k algebraically closed
HE(X)(m) ®g C — Hix(X)(m) ®x C (k C C).

To define the first, note thakp defines an isomorphism

z2 v €1 2miLr2miZ — p.



1 REVIEW OF COHOMOLOGY 11

After passing to the inverse limit over and tensoring withQ, we obtain the required
isomorphisnmiAy — Ag(1). The second isomorphism is induced by the inclusions

211Q — C «— k.

Although the Tate twist for de Rham cohomology is trivial, it should not be ignored. For
example, whert = C,

1 (2mi)™

H3(X) © € =% Hy(X)(m) & C

lg lg

Hip(X)  ——=  HERX)(m)

fails to commute by a factof27i)™. Note that whenn is odd the top isomorphism is
defined only up to sign.

In each cohomology theory there is a canonical way of attaching a clé8$ in
H??(X)(p) to an algebraic cycle&Z on X of pure codimensionp. Since our cohomol-
ogy groups are without torsion, we can do this using Chern clagg®shendieck 1958
Starting with a functorial isomorphism : Pic(X) — H?(X)(1), one uses the splitting
principle to define the Chern polynomial

c(B) =Y ep(ENF, () € H(X)(p),

of a vector bundlé” on X. The mapE — ¢, (F) is additive, and therefore factors through
the Grothendieck group of the category of vector bundleXomut, asX is smooth, this
group is the same as the Grothendieck group of the category of cold@temtodules, and

we can therefore define .

(loc. cit. 4.3).
In definingc, for the Betti ancktale theories, we begin with maps
Pic(X) — H*(X™ 27iZ)
Pic(X) — H*(Xey, f1r)
arising as connecting homomorphisms from the sequences

. exp
0— 271 — Oxan — O%an — 0

0 — p, — 0% 5 0% — 0.

For the de Rham theory, we note that theg map, f — %, defines a map of complexes

0 — O 0

Ll

d d 9
QX

Ox—>Q%( d
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and hence a map

Pic(X) = HY(X,0%) 2 H*(X,0 — O% — ---)
— H*(X, Q%) = Hgp(X) = Hig(X)(1)
whose negative is;. It can be checked that the three mapsare compatible with the
comparison isomorphismBegligne 1971a2.2.5.1), and it follows formally that the magls
are also compatible once one has checked that the Gysin maps and multiplicative structures
are compatible with the comparison isomorphisms.

Whenk = C, there is a direct way of defining a clag$Z) € Hyq—2,(X(C), Q) (sin-
gular cohomologyd = dim(X), p = codim(Z)): the choice of ari determines an orien-
tation of X and of the smooth part df, and there is therefore a topologically defined class
cl(Z) € Haq—2,(X(C),Q). This class has the property that fai] € H?*~?*(X>* R) =
H?72r(T(X, Q%)) represented by the closed foum

@2 = [ o

By Poincaé duality, c/(Z) corresponds to a classop(Z) € Hg’(X), whose image in
HZP(X)(p) under the map induced by— (27i)?: Q — Q(p) is known to be:lg(Z). The

above formula becomes
/ cliop(Z) U [w] = / w.
X Z

There are trace mapg & dim X)
Trg: Hz'(X)(d)
Trei: Hat'(X)(d)
Tror: Hng(X)(d)

L L L

Q
Ag
k
that are determined by the requirement tiiafc/(point)) = 1. They are compatible with

the comparison isomorphisms. When= C, Trg andTrgqr are equal respectively to the
composites

HE(X)(d) CL mix) S mers.)) 2
= [W]'—’mfxw
Hgg(X)(d) ES— Hgg(X) — HQd(F(QB(OO)) C

where we have chosen arand used it to orientat& (the composite maps are obviously
independent of the choice df The formulas of the last paragraph show that

Trar(clgr(Z2) U [w]) = m /Zw.

A definition of Tr¢; can be found iiMilne 198Q VI 11.
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Applications to periods
We now deduce some consequences concerning periods.

PrRoOPOSITIONL.5. Let X be a complete smooth variety over an algebraically closed field
k C C and letZ be an algebraic cycle oX of dimension-. For any C'* differential
r-formw on X¢ whose clas$o] in H34(Xc) lies in H34(X)

/Zw € (2mi)"k.

PrROOF. We first note that”Z is algebraically equivalent to a cyck, defined overk. In
proving this, we can assunfeto be prime. There exists a smooth variétypverk, a sub-
varietyZ C X x T thatis flat ovefl’, and a poinBpec C — T such thatZ = Z xSpec C
in X x7 Spec C = X¢. We can therefore také, to beZ x Speck C X xr Speck = X
for any pointSpec k — T. From this it follows thatiyr(Z) = clgr(Zy) € H3L(X)(r) and
Trar(clar(Z) U [w]) € k. But we saw above thaf, w = (27i)" Trgr(clar(Z) U [w]). O

We next derive a classical relation between the periods of an elliptic curve. For a com-
plete smooth curv& and an open affine subggt the map

I(U,Q)  {meromorphic diffls, holomorphic ofi }

Hir(X) — Hgg(U) =
ar(X) — Hyr(U) dr (U, Ox) {exact differentials o/ }

is injective with image the set of classes represented by forms whose residues are all zero
(such forms are said to be of the second kind). WhenC, Trqr([a] U [3]), wherea and
( are differentiall-forms of the second kind, can be computed as follows. X.dte the
finite set of points where: or 3 has a pole. For a local parameter a € Y, « can be
written

o= Z a;z'dz with a_; = 0.

—00K1<00

There therefore exists a meromorphic functfotefined neaP such thatif = a. We write
Ja for any such function — it is defined up to a constant. Bsp 5 = 0, Resp([a)3 is
well-defined, and one proves that

Trar([a] U[B]) = > Resp (o) 8.

pPey

Now let X be the elliptic curve
Yy = 4a® — goxz? — g32°.
There is a lattice\ in C and corresponding Weierstrass functiafr) such that

2= (p(2)  9'(2) : 1)
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defines an isomorphis/A — X (C). Let~, andy, be generators of such that the bases
{71, 72} and{1, i} of C have the same orientation. We can regardnd-, as elements of
H,(X,Z), and theny, - v, = 1. The differentialsv = dz/y andn = xdx/y on X pull back

to dz andp(z)dz respectively orC. The first is therefore holomorphic and the second has
a single pole ato = (0 : 1 : 0) on X with residue zero (becausec C maps toco € X
andp(z) = % + a»2? +...). We find that

Tran((i] U [7]) = Reso ( / dz) o(2)d= = Reso(zp(2)dz) = 1.

/ dz g / dzx
. Y v VAT — gox — g3
/ xdr gf / rdx

v Y Vi \/4$3—92$—93

be the periods ab andr. Under the map

Fori=1,2, let

Hir(X) — HY(X,C)

w maps tow;y; + woys, andn maps ton;y; + 274, where{~;,~4} is the basis dual to
{’)/1,’)/2}. ThUS

1 = Trgr([w] U [1])
= Trg((wiv] + ways) U (m; + m273))
= (w1m2 — wam) Tra(v; Us)
1

2—7”-(@1772 - w2771)-

Hence
w1t — waly = 2.

This is theLegendre relation.

The next proposition shows how the existence of algebraic cycles can force algebraic
relations between the periods of abelian integrals. Xebe an abelian variety over a
subfieldk of C. In each of the three cohomology theories,

H'(X) = N'H'(X)
and
H(XxXx-)=H'(X)oH' (X)® -

Letr € G,,(Q) act onQg(1) asv~!. There is then a natural action GfL(H3(X)) x G,,
on H5(X™)(m) for anyr,n, andm. We defineG to be the subgroup diL(HL(X)) x
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G,, fixing all the tensors of the formig(7), Z an algebraic cycle on somg” (see the
Notations).
Consider the comparison isomorphisms

Hig(X) @ C = H'(X™,C) & Hy(X) @ C.

Theperiodsp;; of X are defined by the equations

Q; = E Djia;

where{q;} and{q;} are bases fof jz(X) and Hg(X) over k andQ respectively. The
field k(p;;) generated ovek by thep;; is independent of the bases chosen.

ProPOSITION1.6. With the above definitions, the transcendence degregof) over k
is < dim(G).

PROOF. We can replacé by its algebraic closure ift, and hence assume that each alge-
braic cycle onX¢ is equivalent to an algebraic cycle on (see the proof of 1.5). LeP

be the functor of-algebras whose value dhis the set of isomorphisms: H} ®q R —
Hjr ®x R mappingcls(Z) ® 1to clgr(Z) ® 1 for all algebraic cycles’ on a power ofX .
When R = C, the comparison isomorphism is such,aand soP(C) is not empty. It is
easily seen thab is represented by an algebraic variety that becom@&g-torsor under
the obvious action. The basés;} and{a;} can be used to identify the points &fwith
matrices. The matrixp;;) is a point of P with coordinates irC, and so the proposition is

a consequence of the following well-known lemma. O

LEMMA 1.7. LetAY be the affineV-space ovek, and letz € AY(C). The transcendence
degree ofc(z1, ..., zy) overk is the dimension of the Zariski closure{of}.

REMARK 1.8 If X is an elliptic curve, therim G is 2 or 4 according asX has complex
multiplication or not. Chudnovsky has shown that

tr. deg,k(p;;) = dim G

whenX is an elliptic curve with complex multiplication. Does equality hold for all abelian
varieties?®

One of the main purposes of the seminar was to show that, in the cas¥ tisatn
abelian variety, (1.5) and (1.6) make sense, and remain true, if “algebraic cycle” is replaced
by “Hodge cycle”.
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2 Absolute Hodge cycles; principle B

Definitions (k algebraically closed of finite transcendence degree)

Let k& be an algebraically closed field of finite transcendence degreep\aard letX be a
complete smooth variety ovér Set

HE(X)(m) = Hip(X)(m) x He(X)(m)

— itis a freek x Ay-module. Corresponding to an embeddimgk — C, there are
canonical isomorphisms

Oar: Him(X)(m) @10 C = Hi(oX)(m)
oo Hy(X)(m) = Hg(oX)(m)

whose product we write*. The diagonal embedding
HZ(X)(m) — Hgr(o X)(m) x Hg(oX)(m)
induces an isomorphism
H}(X)(m) @ (C x Ay) = Hi(0X)(m) x Hy(0X)(m)

(product of the comparison isomorphismd). An element € Hﬁp(X)(p) is aHodge
cycle relative tar if
(a) t is rational relative to o, i.e., o*(¢) lies in the rational subspacE?*(X)(p) of
Har(0X)(p) x Hef (0X)(p);
(b) the first component oflies in FOH2(X)(p) =g FP HZA(X).
Equivalent condition:o*(t) lies in H2?(X)(p) and is of bidegre€0,0). If ¢ is a Hodge
cycle relative to every embedding & — C, then it is called ambsolute Hodge cycle.

EXAMPLE 2.1.  (a) For any algebraic cycl& on X, t = (clqr(Z), clet( Z)) is an absolute
Hodge cycle — the Hodge conjecture predicts there are no others. Indeed, for any
o:k — C, o*(t) = clg(Z), and is therefore rational, and it is well-known that
clar(c Z) is of bidegre€p, p) in H2 (o X).
(b) Let X be a complete smooth variety of dimensigrand consider the diagonal C
X x X. Corresponding to the decomposition

H*(X x X)(d) = &Z,H*'7(X) ® H'(X)(d)

we have
(D) = ¥
Ther' are absolute Hodge cycles.
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(c) Suppose tha is given with a projective embedding, and tete H3i(X)(1) x
HZ(X)(1) be the class of a hyperplane section. The hard Lefschetz theorem states
that

v T e HP(X)(p) — H*#(X)(d—p),  2p<d,

is an isomorphism. The classis an absolute Hodge cycle if and onlyyif=27 - z is
an absolute Hodge cycle.

Loosely speaking, any cycle that is constructed from a set of absolute Hodge cycles by
a canonical rational process will again be an absolute Hodge cycle.

QUESTION 2.2 (OPEN). Does there exist a cycle rational for everybut which is not
absolutely Hodge”?

More generally, consider a familyX,, ). 4 of complete smooth varieties over a figid
(as above). Letm(a)) € N, (n(a)) € NW, andm € Z, and write

Tyr = (® H?R@(Xa)) ® <® HSé”(X@V) (m)
To= (® H::@(Xa)) ® (® H&“’(X@V) (m)

Th = Tyr X Tey

T, = ((g) H;”(O‘)(Xa)> ® (@ H;W)(XQ)V) (m) (0: k< C).

a

Then we say that e T} is
— rational relative too if its image inTy ®gxa;,o0,1) C x Ay liesinTy,

— aHodge cycle relative to if it is rational relative too and its first compo-
nent lies inF°, and

— anabsolute Hodge cyclé it is a Hodge cycle relative to every.
Note that, in order for there to exist Hodge cycleqdjn it is necessary that
> om(a) = > n(a) = 2m.
EXAMPLE 2.3. Cup product defines maps
T (p) x T () — T (p + 1),
and hence an element®f ® 7)) ® Ty, which is an absolute Hodge cycle.

QUESTION2.4(OPEN). Lett € FOHIE(X)(p). If oig(t) € H>(X)(o) forallo: k — C,
is t necessarily the first component of an absolute Hodge cycle?
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Basic properties of absolute Hodge cycles

In order to develop the theory of absolute Hodge cycles, we shall need to use the Gauss-
Manin connectionKatz and Oda 19¢&Katz 197( Deligne 1971h Let k, be a field of
characteristic zero and I8tbe a smootli,-scheme (or the spectrum of a finitely generated
field overky). A ko-connectionon a coherent) s-module€ is a homomorphism of sheaves
of abelian groups
V:E€— Qg/ko ®og €

such that

Vi(fe)=df @ e+ fV(e)
for local sectionsf of Og ande of £. The kernel ofV, £V, is the sheaf ohorizontal
sectionsof (£, V). Any ky-connectionV can be extended to a homomorphism of abelian
sheaves,

Vot Qi Bos € = UL @0, £,
w®er—dw®e+ (—1)"wAV(e)

andV is said to bentegrableif V, o V = 0. Moreover,V gives rise to ar¥ s-linear map
D — Vp: Der(S/ky) — Endy, (€)

whereV, is the composite

£S5 QL oy €78 05 @0, € E.
Note thatV(fe) = D(f)e + fVp(e). One checks thaV is integrable if and only if
D — Vpis a Lie algebra homomorphism.
Now consider a proper smooth morphism X — S of smooth varieties, and write
dr(X/S) for R"7.(Q%s). This is a locally free sheaf aDs-modules with a canoni-
cal connectioriV, called theGauss-Manin connectionwhich is integrable. It therefore
defines a Lie algebra homomorphism

Der(S/ky) — Endy, (Hir(X/S)).

If kg — k{ is an inclusion of fields an&’/S" = (X/S) ®x, k;, then the Gauss-Manin
connection or{jz(X’/5") is V ® 1. In the case that, = C, the relative form of Serre’s
GAGA theorem Eerre 195pshows thatHgg(X/S)3" = His(X?2"/ X3 andV gives rise
to a connectioVa" on Hj(X?2"/S"). The relative Poinc&lemma shows that

(R".C) ® Ogmn — Hyr(X*"/ S,
and it is known tha®/2" is the unique connection such that

R"m.C = Hye( X2/ 5™V
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PROPOSITION2.5. Let ky C C have finite transcendence degree o@rand let X be
a complete smooth variety over a fididhat is finitely generated ove¥,. LetV be the
Gauss-Manin connection dijjz(X) relative to the composit® — Spec k — Spec k. If

t € HJx(X) is rational relative to all embeddings @finto C, thent is horizontal forV:

Vit =0.

PrROOF. Choose a reguldr,-algebraA of finite-type and a smooth proper map X, —
Spec A whose generic fibre iX' — Spec k and which is such thatextends to an element
of I'(Spec A, Hir(X/ Spec A). After a base change relative tp — C, we obtain maps

Xg — S — SpecC, S = Spec Ac,

and a global sectiotf =t ® 1 of H{jz(X2"/52"). We have to show thdtv @ 1)t = 0, or
equivalently, that’ is a global section of{"(X&", C) =4 R"n2"C.

An embeddingr: £ — C gives rise to an injectiom — C (i.e., a generic point of
Spec A in the sense of Weil) and hence a pointf S. The hypotheses show that, at each
of these pointst(s) € H*"(X2" Q) C Hx(X2"). Locally onS, Hi(X2"/S2" will be
the sheaf of holomorphic sections of the trivial bunflle C* andH™(X?", C) will be the
sheaf of locally constant sections. Thus, locallys a function

s+ (t1(8), ..., tm(s)): S — S x C™.

Eacht;(s) is a holomorphic function which, by hypothesis, takes real (even rational) values
on a dense subset 6f It is therefore constant. O

REMARK 2.6. In the situation of (2.5), assume thiat Hj(X) is rational relative to one
and horizontal foV. An argument similar to the above then shows thatational relative
to all embeddings that agree withon k.

COROLLARY 2.7. Letk, C k be algebraically closed fields of finite transcendence degree
overQ, and letX be a complete smooth variety ovgr If ¢t € Hg(X}) is rational relative
toall o: k — C, then it is defined ovél, i.e., it is in the image o (X)) — HJ(X).

PROOF. Let £’ be a subfield oft which is finitely generated ovet, and such that €
Hlr(X ®g, k). The hypothesis implies thatt = 0 whereV is the Gauss-Manin connec-
tion for X, — Speck’ — Spec kq. Thus, for anyD € Der(k'/kq), Vp(t) = 0. But Xy
arises from a variety ovet,, and sder(k’/ ko) acts onHr( Xy ) = HJr(X)®y, k' through
k' i.e.,Vp =1® D. Thus the corollary follows from the next well-known lemma. []

LEMMA 2.8. Letk, C k' be as above, and l&ét = V| ®y, k', wherel} is a vector space
overky. If t € V is fixed (i.e., killed) by all derivations @f /k,, thent € V.

Let C%,(X) be the subset of:”(X)(p) of absolute Hodge cycles. It is a finite-
dimensional vector space over
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PROPOSITION2.9. Let k be an algebraically closed field of finite transcendence degree
overQ.
(a) For any smooth complete variely defined over an algebraically closed subfiéld
of k, the canonical map

H'(X)(p) — H'(X5)(p)

induces an isomorphism
Can(X) = CRn(Xi).

(b) Let X, be a smooth complete variety defined over a subfiglf £ whose algebraic
closure isk, and letX = X, ®y, k. ThenGal(k/kq) acts onCx,(X) through a finite
guotient.

PROOF. (a) The map is injective, and a cycle ohis absolutely Hodge if and only if it is
absolutely Hodge oiX;,, and so it remains to show that an absolute Hodge ayoleX,
arises from a cycle oX. But (2.7) shows thaty arises from an element @f35(X)(p),
and H2(X)(p) — HZ(X:)(p) is an isomorphism.

(b) It is obvious that the action dfial(k/ko) on HA(X)(p) x HZ(X)(p) stabilizes
Chy(X). We give three proofs that it factors through a finite quotient.

(i) Note thatC%,(X) — H;%(X) is injective. Clearly,HA(X) = | HA(Xo @ ki)
where thek; run over over the finite extensions kf contained ink. Thus, all elements of
a finite generating set faf%,, (X) lie in H;5(X, ® k;) for somei.

(ii) Note thatC%,(X) — H?(Xe, Qi) (p) is injective for all¢. The subgroupd of
Gal(k/ko) fixing Ch(X) is closed. Thus, the quotient 6fal(k/ko) by H is a profinite
group, which is countable because it is a finite subgrou@lof,(Q) for somem. It fol-
lows™? that it is finite.

(iii) A polarization of X gives a positive definite form afi;,, (X), which is stable under
Gal(k/ko). This shows that the action factors through a finite quotient. O

REMARK 2.10. (a) The above results remain valid for a family of varietiés,),, rather
than a singleX.

(b) Proposition 2.9 would remain true if we had defined an absolute Hodge cycle to be
an element of FOHZ2(X)(p) such that, for alb: k — C, ojg(t) € H*(X).

Definitions (arbitrary k)

Proposition 2.9 allows us to define the notion of an absolute Hodge cycle on any smooth
complete varietyX over a field of characteristic zero. Whénis algebraically closed,

we choose a modeX,/k, of X, over an algebraically closed subfield of & of finite
transcendence degree o@rand we define € H.”(X)(p) to be anabsolute Hodge cycle

if it lies in the subspacél.”(X,)(p) of H.”(X)(p) and is an absolute Hodge cycle there.
The proposition shows that this definition is independent of the choiég afid X,. (This
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definition is forced on us if we want (2.9a) to hold without restriction on the transcendence
degrees of: andk,.) Whenk is not algebraically closed, we choose an algebraic clasure
of it, and define ambsolute Hodge cyclen X to be an absolute Hodge cycle 6h®), k
that is fixed byGal(k/k).

One can show (assuming the axiom of choice) thatig algebraically closed and of
cardinality not greater than that @, then an element of H32(X)(p) x HZ (X)(p) is
an absolute Hodge cycle if it is rational relative to all embeddingé — C andtqr €
FOH(X)(p). If k = C, then the first condition has to be checked only for isomorphisms
of C. Whenk C C, we define aHodge cycleto be a cohomology class that is Hodge

relative to the inclusiot — C.

Statement of the main theorem

MAIN THEOREM2.11 1L et X be an abelian variety over an algebraically closed fig)d
and lett € H;”(X)(p). If t is a Hodge cycle relative to one embeddingk — C, then it
is a Hodge cycle relative to every embedding, i.e., it is an absolute Hodge cycle.

The proof will occupy.§2—6 of the notes.

Principle B

We begin with a result concerning families of varieties parametrized by smooth algebraic
varieties overC. Let7: X — S be a proper smooth map of smooth varieties dvevith
S connected. We set

at(X/S)(m) = im(R"wgys,"™) @z Q.
and
HE(X/S)(m) = Hr(X/S)(m) x He(X/S)(m).

THEOREM 2.12 (PRINCIPLE B). Lett be a global section of{2”(X/S)(p) such that
Vtar = 0. If (tar)s € FOHA(X,)(p) for all s € S andt, is an absolute Hodge cycle
in H;?(X,)(p) for ones, thent, is an absolute Hodge cycle for ail

PROOF. Suppose that, is an absolute Hodge cycle fer= s;, and lets, be a second point
of S. We have to show that, is rational relative to every isomorphissn C — C. On
applyingo, we obtain a morphismr: 0 X — ¢S and a global sectiomt of 37 (X/S)(p).
We know thatr(t),, is rational, and we have to show that),, is rational. Clearlyo
only translates the problem, and so we can omit it.

First consider the componehi of t. By assumptionVtsr = 0, and sdiyr is a global
section of H??( X" C). Since it is rational at one point, it must be rational at every point.
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Next considete. AsHZF (X/S)(p) =4 R*72"Q(p) andH2'(X/S) are local systems,
for any points € S there are isomorphisms

D(S, He (X/S)(p)) = Ha"(X,)(p)™5)
T(S, Het (X/S)(p)) = He
Consider
L(S, HZ (X/S)(p)) — D(S, HL(X/S)(p) ® A= (S, HE(X/S)(p))

HZ(X,)(p)™ ) —— HZ(X,)(p)™ (5 HE(X,) (p)™ &)

N n

®
>

~
I

HE (X)) —  HE(X)p) @Ay = He(X.)(p)

We havety € I'(S,HZ(X/S)(p)) and are told that its image iR’ (X, )(p) lies in
HZP(X,,)(p). On applying the next lemma (with = A andz = 1), we find thatte,
liesinT'(S, HZ(X/S)(p)), and is therefore id3"(X,)(p) for all s. O

LEMMA 2.13 LetWW — V be an inclusion of vector spaces. L£be a third vector space
and letz be a nonzero element gf. EmbedV in V ® Z byv — v ® z. Then

(WeZ)nV =W (insideV @ 2).

PROOF. Choose a basig;);c; for W and extend itto a basis;);,; forV. Anyz € Vo Z
has a unique expression

T=3) 6@z, (2 € Z, finite sum.
If € W& Z,thenz; = 0fori ¢ I,andifz € V, thenz; = 2 for all <. O

REMARK 2.14 The assumption in the theorem thagg), € FOHZE(X,)(p) for all s is
unnecessary: it is implied by the condition tRatyr = 0 (Deligne 1971a4.1.2, Tkeoeme
de la partie fixe}?

We shall need a slight generalization of Theorem 2.12.

THEOREM 2.15 Letn: X — S again be a smooth proper map of smooth varieties over
C with S connected, and le” be a local subsystem @t*’7.Q(p) such thatV, consists

of (0, 0)-cycles for alls and consists of absolute Hodge cycles for at least©orEhenV/
consists of absolute Hodge cycles for all

PROOF. If V' is constant, so that every elementl@fextends to a global section, then this
is a consequence of Theorem 2.12, but the following argument reduces the general case to
that case.
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At each points € S, R?’7,Q(p), has a Hodge structure. Moreovét?’r,Q(p) has a
polarization, i.e., there is a form

Y R7mQ(p) x R7m.Q(p) — Q(-p)
which at each point defines a polarization on the Hodge struéttite.Q(p),. On
R*7.Q(p) N (R*7.C(p))™

the form is symmetric, bilinear, rational, and positive definite. Since the action6f s)
preserves the form, the image of (S, sq) in Aut(V;,) is finite. Thus, after passing to a
finite covering ofS, we can assume that is constant. O

REMARK 2.16. Both Theorem 2.12 and Theorem 2.15 generalize, in an obvious way, to
familiesn,: X, — S.
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3 Mumford-Tate groups; principle A

Characterizing subgroups by their fixed tensors

Let G be a reductive algebraic group over a figldf characteristic zero, and 1€t ), 4 be
a faithful family of finite-dimensional representations okesf GG, so thatG — [[ GL(V,)
is injective. For anyn, n € NV, we can form

T = @,V © @, (V)

which is again a finite-dimensional representatiord-ofFFor any algebraic subgroup of
G, we write H' for the subgroup of~ fixing all tensors that occur in son™™ and are
fixed by H. Clearly, H C H’, and we shall need criteria guaranteeing their equality.

PROPOSITION3.1. The notations are as above.

(a) Every finite-dimensional representation @fis contained in a direct sum of repre-
sentations/"™".

(b) (Chevalley’s Theorem). Every subgrofipof G is the stabilizer of a liné) in some
finite-dimensional representation 6f

(c) If H is reductive, or ifX;(G) — Xy (H) is surjective, therd = H'. (Here X (G)
denotedHom, (G, G,,), so the hypotheses is that evérgharacter of H extends to
a k-character ofG.)

PROOF. (a) LetV be a representation of, and letlV, denote the underlying vector space
of W with G acting trivially (i.e.,gw = w, all g € G, w € W). ThenG x W — W
defines a mapt’ — W, ® k|G| which is G-equivariant YWaterhouse 1979%.5). Since
Wo @ k[G] ~ k[G]¥™W, it suffices to prove (a) for the regular representation. There is a
finite sumV = @V, such thatG — GL(V) is injective (becausé is noetherian). The
map

GL(V) — End(V) x End(V")

identifiesGL(V') (and hencé&) with a closed subvariety dind(V') x End(V") (loc. cit.).
There is therefore a surjection

Sym(End(V)) x SymEnd(V")) — k[G],

whereSym denotes the symmetric algebra, and (a) now follows from the fact that repre-
sentations of reductive groups in characteristic zero are semisimp/B¢dgae and Milne
1982, §2).

(b) Let I be the ideal of regular functions @nthat are zero ot{. Then, in the regular
representation of on k[G], H is the stabilizer offl. There exists a finite-dimensional
subspacé’ of k[(] that isG-stable and contains a generating set/f¢vWaterhouse 1979
3.3). ThenH is the stabilizer of the subspaden V' in V, and henc® of A(I N V) in
AV, whered = dimg (I NV).
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(c) According to (b),H is the stabilizer of a lineD in some representatiovi of G,
which (according to (a)) can be taken to be a direct suffi'of’s.

If H is reductive, the’ = W & D for someH-stablelV andVY = WY & DY. Now
H is the group fixing a generator & @ DV inV @ V'V,

If every k-character off extends to &-character of~, then the one-dimensional rep-
resentation off on D can be regarded as the restrictionHoof a representation afr.
Now H is the group fixing a generator & @ DY in V ® DV. ]

REMARK 3.2. (a) It is clearly necessary to have some conditionfbiin order to have
H' = H. For example, leB be a Borel subgroup of a reductive grotipand letv € V' be
fixed by B. Theng — gv defines a map of algebraic varieti@€s B — 1/, which must be
constant becausg/ B is complete and’ is affine. Thusy is fixed byG, and soB’ = G.

However, the above argument proves the following:Héte the group fixing all ten-
sors fixed byG occurring in any representation 6f (equivalently, any representation oc-
curring as a subquotient of sorfi&*"); thenH = H'.

(b) In fact, in all our applications of (3.1c){ will be the Mumford-Tate group of a
polarizable Hodge structure, and hence will be reductive. However, the Mumford-Tate
groups of mixed Hodge structures (even polarizable) will not in general be reductive, but
will satisfy the second condition in (3.1c) (with = GL).

(c) The theorem of Habousiémazure 1976can be used to show that the second
form of (3.1c) holds whett has nonzero characteristic.

(d) In (3.1c¢) it suffices to require that,(G) — Xi(H) has finite cokernel, i.e., a
nonzero multiple of each-character off extends to &-character of.

Hodge structures

Let V' be a finite-dimensional vector space ow@r A Q-rational Hodge structureof
weightn onV' is a decompositiofc = P, ,_,V?? such that/** is the complex conju-
gate of V%, Such a structure determines a cocharacter

p: G, — GL(Vg)

such that
M(Z)Up’q — Z_pvp’q, /l)p7q E Vp’q'

The complex conjugate(z) of u(z) has the property(z) - v7? = Z~%P4. Sinceu(z) and

u(z) commute, their product determines a homomorphism of real algebraic groups
h: C* — GL(WR), h(z)vP? = z"Pz7 9P,

Conversely, a homomorphism C* — GL(Vg) whose restriction t®R* isr +— =" - idy
defines a Hodge structure of weighon V.



3 MUMFORD-TATE GROUPS; PRINCIPLE A 26

Let F*V = ,., V"7, so that
D PPV S PPy S

is a decreasing (Hodge) filtration 6.
Let Q(1) denote the vector spad@ with the Hodge structure for whick)(1)c =
Q(1)~Y~1. It has weight-2 andh(z) - 1 = 2z - 1. For any integern,

Q(m) = Q(1)*™ = Q(m) ™"
has weight-2m. (Strictly speaking, we should defifg1) = 2miQ. . ..)

REMARK 3.3. The notatiom(z) - v»4 = 2Pz~ %P1 is the negative of that used Deligne
1971k Saavedra Rivano 1972and elsewhere. It is perhaps justified by the following. Let
A be an abelian variety ovél. The exact sequences

0 — Lie(AY)Y — H;(A,C) — Lie(A) — 0
and

0 — F'H'(A,C) — HY(A,C) — Fl/F? — 0

I I
HYW = HO(A, Q) HO' = H'(A,Ox)

are canonically dual. Sindé* (A, C) has a natural Hodge structure of weidtwith (1,0)-
component®(Q'), H,(A, C) has a natural Hodge structure of weight with (—1,0)-
componentlie(A). Thush(z) acts onLie(A), the tangent space té at zero, as multipli-
cation by:.

Mumford-Tate groups

Let V' be aQ-vector space with Hodge structuteof weightn. Form,, ms € N andmg €
Z, T =VemVVem gQ(1)®"s has a Hodge structure of weight, —mz)n —2ms. An
element of]¢. is said to beational of bidegree(p, q) if it liesin T NT?7. We letv € G,,
act onQ(1) asv~!. The action ofGL(V') on V' and the action of5,, on Q(1) define
an action ofGL(V) x G,, onT. The Mumford-Tate groupG of (V, h) is the subgroup
of GL(V) x G, fixing all rational tensors of typé0,0) belonging to anyl". Thus the
projection on the first factor identifieS(Q) with the set ofg € GL(V') for which there
exists av(g) € Q* with the property thayt = v(g)?t for anyt € Vo™ @ VVe™2 of type

(p,p)-

PrRoOPOSITION3.4. The group’ is the smallest algebraic subgroup®f.(V) x G,, defined
overQ for whichu(G,,,) C Ge.
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PROOF. Let H be the intersection of al)-rational subgroups d&L(V) x G,, that, over
C, containu(G,,). For anyt € T, t is of type (0, 0) if and only if it is fixed byu(G,,) or,
equivalently, it is fixed byH. ThusG = H’ in the notation of (3.1), and the next lemma
completes the proof. ]

LEMMA 3.5 With H as above, every)-character of H extends to aQ-character of
GL(V) x Gp,.

PROOF. Letx: H — GL(WW) be a representation of dimension one defined Qere., a
Q-character. The restriction of the representatio@tpis isomorphic taQ(n) for somen.
After tensoringlV with Q(—n), we can assume thato 1 = 1, i.e., u(G,,) acts trivially.
But thenH must act trivially, and the trivial character extends to the trivial charactérl

PROPOSITION3.6. If V' is polarizable, ther( is reductive.

PROOF. Choose ari and writeC' = h(i) (C is often called the Weil operator). For?
VPa, CoyPd = ¢—PTayPd, and soC? acts ag§—1)" onV, wheren = p + ¢ is the weight of
V.

Recall that a polarizatiogy of V' is a morphismy: V' x V. — Q(—n) such that the
real-valued formy)(z, C'y) on Vi is symmetric and positive definite. Under the canonical
isomorphism

Hom(V @ V,Q(-n)) — V¥ ® V¥(~n),

1 corresponds to a tensor of bideg(@e0) (because it is a morphism of Hodge structures)
and therefore is fixed bg'":

b(gro, 1v') = g3 (v,0), all (g1, 92) € G(Q) C GL(V) x Q*,  (v,0)) € V.

Recall that ifH is a real algebraic group amds an involution off ¢, then thereal-form
of H defined by is a real algebraic groufl,, endowed with an isomorphisfdc — (H, ).
under which complex conjugation di, (C) corresponds te o (complex conjugationon
H(C). We are going to use the following criterion: a connected algebraic gkbaperR
is reductive if it has a compact real-forf,. To prove the criterion, it suffices to show that
H, is reductive. On any finite-dimensional representatioof H, there is an ,-invariant
positive definite symmetric form, namely,

(u,v)g = /Ha<hu, hv)dh,

where( , ) is any positive definite symmetric form dn. If I is an H,-stable subspace
of V, then its orthogonal complement is algf -stable. Thus every finite-dimensional
representation of{, is semisimple, and this implies thaf, is reductive Deligne and
Milne 1982, §2).

We shall apply the criterion to the special Mumford-Tate grouplof),

el Ker(G — Gy,).
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Let G' be the smalles-rational subgroup o&:L(V') x G,, such thatG}, containsh(U*),
whereU'(R) = {z € C* | 2z = 1}. ThenG' C G, and in factG! c G°. Since
Gk - h(C*) = Gr andh(U') = Ker(h(C*) — G,,), it follows thatG° = G', and
thereforeG' is connected.

SinceC = h(i) acts asl onQ(1), C' € G°(R). Its squareC? acts ag—1)" on V' and
therefore lies in the centre 61°(R). The inner automorphisadC' of G defined byC'is
therefore an involution. Far, v € V¢, andg € G°(C), we have

¥(u, Cv) = ¢(gu, gCv) = (gu, CC~'gC) = (gu, Cg*v)

whereg* = C~'gC = (adC)(g). Thus, the positive definite form(u,v) =g ¥ (u, Cv)
on V% is invariant under the real-form af® defined byadC, and so this real-form is
compact. O

EXAMPLE 3.7. (Abelian varieties of CM-type). £M-field is a quadratic totally imaginary
extension of a totally real field, and@M-algebrais a finite product of CM-fields. LeE
be a CM-algebra, and letbe the involution ofF such thato = 0. forallo: £ — C.
Let

S = Hom(E,C) = Hom(FE, Q) = specEc.

A CM-typefor E'is a subset’ C S such that
S =XU.X (disjoint union).

To the pair(E, X), there is attached an abelian varietyith A(C) = C*/X(Og) where
Op, the ring of integers i, is embedded i©* by u — (ou),cx. Obviously,E acts on
A. Moreover,H,(A,Q) = FE, and

H(ARC2EREC = C5=C¥qC~
u®1l — (0u)ges

with C* the(—1, 0)-component of{; (A) ® C andC** the (0, —1)-component. Thugy(z)
acts as: onC* and asl onC**.

Let G be the Mumford-Tate group @i, (A). The actions ofi(C*) andE* on H;(A)®
C commute. AsE* is its own commutant irGL(H,(A)), this implies thatu(C*) C
(E ® C)* andG is the smallest algebraic subgroupof x Q* such thatz(C) contains
w(C*). In particular,G is a torus, and can be described by its cocharacter gr@af) =g
Homg (G, G).

Clearly,

Y(G) CY(E*) xY(G,,) = Z° x Z.

Note thaty € Y(G) is equal to)_,_,. e, + e, Where(e,),cs C Z° is the basis dual to
S C X(E*) andey is the element of the last copy ofZ. The following are obvious:
(@) (Z° x Z) /Y (G) is torsion-free;
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(b) e Y(G);
(c) Y(QG) is stable unde€al(Q/Q); thusY (G) is theGal(Q/Q)-module generated by

s
(d) sincep+pu=10nS,

Y (G) C {> nses +noey € Z° x 7| ng + n, = constant.

Let F' be the subalgebra d@f whose elements are fixed by (thus, " is a product of totally
real fields). Then (d) says that

G(Q) € {(z,y) € B x Q| Nmp/p(z) € Q*}.

Principle A

THEOREM 3.8 (PRINCIPLE A). %Let(X,), be a family of varieties ovet, and consider
spacesl’ obtained by tensoring spaces of the fofffi* (X, ), Hz*(X,)", andQ(1). Let
t, € T;,i = 1,...,N (T; of the above type) be absolute Hodge cycles, and:lbt the
subgroup of

I GL(Hg*(Xa)) X G,

ang

fixing thet;. If t belongs to som&' and is fixed by~, then it is an absolute Hodge cycle.
We first need a lemma.

LEMMA 3.9. LetG be an algebraic group ovep, and letP be aG-torsor of isomorphisms
HY — H> where(H?), and (H?), are families ofQ-rational representations afr. Let
T, and T, be like spaces of tensors constructed outigfand H, respectively. The®
defines a maff¢ — T,.

PROOF. Locally for theétale topology o¥pec(Q), points of P define isomorphisms, —
T.. The restriction td’'¢ of such a map is independent of the point. Thusétaje descent
theory, they define a map of vector spaggs— T,. m

PROOF OFTHEOREM 3.8. We remove the identification of the ground field wih Thus,
the ground field is now a fielél equipped with an isomorphism: £k — C. Let7: £k — C
be a second isomorphism. We can assumetthatl thet; all belong to the same spate
The canonical inclusions of cohomology groups

H,(Xo) = Hy(Xa) ® (C x Ay) — H(X,)

induce maps
To-‘—>T®<(C XAf) <—’TT.

We shall regard these maps as inclusions. Thus,

(tl,...7tN7t) CTUCT®(CXAf)7
(tl,...,tN)CTTCT(X)(CXAf).
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Let P be the functor ofQ-algebras such that
P(R)={p: H,® R > H.® R|pmapst; (inT,)tot; (inT,),i=1,...,N}.

The existence of the canonical inclusions mentioned above shows tliatx Ay) is
nonempty, and it is easily seen thais aG-torsor.

On applying the lemma (and its proof) in the above situation, we obtain diap T,
such that

T¢ T,

|

Tg—>T®(CXAf)

commutes. This means thaf’ c 7., and therefore c 7.
It remains to show that the componegt of t in 7' ® C = Tyg lies in F'Tyr. But for a
rationals € Tyg,
s € F'Tyr < sis fixed byu(C*).

Thus,(t;)ar € F° i =1,2,..., N, impliesG D> u(C*), which implies thatqg € F°. [
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4 Construction of some absolute Hodge cycles

Hermitian forms

Recall that a number fiel& is a CM-field if, for each embedding — C, complex
conjugation induces a nontrivial automorphigm— € on E that is independent of the
embedding. The fixed field of the automorphism is then a totally real fiedder whichE
has degree two.
A bi-additive form
p: VXV —-FE

on a vector spack over such a field” is Hermitian if
olev,w) = ep(v,w), ¢(v,w) = ¢(w,v), alee E,v,welV.

For any embedding: F' — R we obtain a Hermitian forna. in the usual sense on the
vector spacd/, = V ®p, R, and we leta, andb, be the dimensions of the maximal
subspaces d¥; on which¢, is positive definite and negative definite respectivelyl ¥
dim V, then¢ defines a Hermitian form op\“V’ that, relative to some basis vector, is of
the form(z,y) — fzy. The elementf is in F, and is independent of the choice of the
basis vector up to multiplication by an elemenfafiz,» £ Itis called thediscriminant

of ¢. Let (vy4,...,vq) be an orthogonal basis fgr, and let¢(v;, v;) = ¢; thena, is the
number ofi for which 7¢; > 0, b, the number of for whichr¢; < 0 andf = [[¢; (mod
Nmpg,p £). If ¢ is nondegenerate, thehe F*/Nm £E*, and

ar +b,=d, sign(rf)=(-1)",allr. (1)

PROPOSITION4.1. Suppose given nonnegative integers b, ),. r—.c and an elemenf €
F*/Nm E* satisfyingll). Then there exists a non-degenerate Hermitian forom an E-
vector space with invariant§:,, b.) and f; moreover,(V, ¢) is unique up to isomorphism.

PrROOF. The result is due thandherr 1936 Today one prefers to regard it as a conse-
guence of the Hasse principle for simply connected semisimple algebraic groups and the
classification of Hermitian forms over local fields. O

COROLLARY 4.2. Assume that the Hermitian spag, ¢) is non-degenerate and let=
dim V. The following conditions are equivalent:

(@) a, = b, for all 7 anddisc(f) = (—=1)¥?;

(b) there is a totally isotropic subspace Bfof dimensioni/2.
PROOF. Let IV be a totally isotropic subspace of of dimensiond/2. The mapv —
¢(—,v): V. — WY induces an antilinear isomorphisi/ W — WVY. Thus, a basis
e1,...,eq2 Of W can be extended to a bagis } of V' such that

Hleiea;) =1, 1<i<d/2
olei,ej) =0, j#i+d/2
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It is now easy to check thdl/, ¢) satisfies (a). ConverselyE?, ¢) where

¢((ai)> (bl>> = Z ai5%+i + G%Jril_)ia

1<i<d/2
is, up to isomorphism, the only Hermitian space satisfying (a), and it also satisfie§(b).

A Hermitian form satisfying the equivalent conditions of the corollary will be said to
besplit (because theAutz(V, ¢) is an F-split algebraic group).
We shall need the following lemma from linear algebra.

LEMMA 4.3. Letk be a field, and let” be a free finitely generated module overé&tale
k-algebrak’ (i.e., k" is a finite product of finite separable field extensiong)of
(@) The map
[ Tryof: Homg (V, k") — Homy(V, k)

is an isomorphism of-vector spaces.
(b) ALV is, inanatural way, a direct summand Af. V.

PROOF. (@) As the pairindlt .: k' x k' — k is nondegenerate, the mgp— Try ), o f
is injective, and it is onto because the two spaces have the same dimensién over
(b) There are obvious maps

AV = AV
NV = NV

whereVY = Homy (V, k') = Homy,(V, k). But® (A"VY) = (A"V)Y, and so the second
map gives rise to a mafy,, vV — AV, which is left inverse to the first.

Alternatively, and more elegantly, descent theory shows that it suffices to prove the
proposition withk’ = k°, S = Homy(k', k). ThenV = @, 4V, and the map in (a)
becomes = (fs) — >_ fs, which is obviously an isomorphism. For (b), note that

/\ZV - ®Zn5:n (®SES ZSVS) - @ses/\zvs = /\Z’V'

Conditions for A% H'(A, Q) to consist of absolute Hodge cycles

Let A be an abelian variety ovér and letv: £ — End(A) be a homomorphism with' a
CM-field (in particular, this means that1) = id4). Letd be the dimension off; (A, Q)
over E, so thatd[F': Q] = 2dim A. WhenH,(A,R) is identified with the tangent space
to A at zero, it acquires a complex structure; we denotéd blye R-linear endomorphism
“multiplication by " of H;(A,R). If h: C* — GL(H'(A,R)) is the homomorphism
determined by the Hodge structure & (A, R), thenh(i) < J under the isomorphism
GL(H'(A,R)) & GL(H(A,R)) determined by7' (A, R) = H (A, R)".
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Corresponding to the decomposition
ez (...,0e-2,...): E®qC = [[,esC, S =Hom(E,C),
there is a decomposition
HE(A)®C = @,.sHs,  (E-linear isomorphism)

such that € E acts on the complex vector spalfg; , asoe. EachHp; , has dimensiod,
and (asE respects the Hodge structure By ( A)) acquires a Hodge structure

H,=Hg ® Hy..
Leta, = dim Hy;", andb, = dim H};; thusa, + b, = d.

PROPOSITION4.4. The subspacé A% HE(A) of H(A, Q) is purely of bidegreéd, ¢) if
and only ifa, = ¢ = b,.

PrROOF. Note thatr/%(A, Q) = \GH' (A, Q), and so (4.3) canonically identifig; L (A)
with a subspace aff¢(A). As in the last line of the proof of (4.3), we have
d 171 ~ Ad 1
(/\EHB> ®C= /\E®(C (HB ® C)

= @O’GS/\dHé,U

~ @,es\"(Hpy, © Hy,)

= @,es\" Hpp @ N7 Hp,.
and\“ Hy° and\* H};. are purely of bidegregu,, 0) and(0, b,) respectively. [

Thus, in this case(/\dEHé(A)) () consists of Hodge cycles, and we would like to

show that it consists of absolute Hodge cycles. In one special case, this is easy.

LEMMA 4.5. Let Ay be an abelian variety of dimensic§1and letA = Ay ®¢ E. Then
ASH'(A,Q)(2) ¢ HY(A,Q)(2) consists of absolute Hodge cyclés.

PROOF. There is a commutative diagram

Hi(Ao)(§) @ E

|

H(Ao)(5) ® E

|

0 B)) (4 — (AborHi(A @ B)) (4) © Hi(Ao® B)(Y)

1R
IR

(A% H3 (4o

®

in which the vertical maps are induced B (4y) ® E — H'(A, ® E). From this, and
similar diagrams corresponding to isomorphismsC — C, one sees that

H{(Ao)($) ® E — Hi(Ay® E)()
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induces an inclusion

Cdi(Ag) ® E — Cy(Ag @ E).
But Cyi(Ag) = Hi(Ap)(£) sinceH{ (Aq)(£) is a one-dimensional space generated by the
class of any point onl,. ]

In order to prove the general result, we need to consider families of abelian varieties
(ultimately, we wish to apply (2.15)), and for this we need to consider polarized abelian
varieties. Apolarizationf on A is determined by a Riemann form, i.e.Qabilinear al-
ternating formy> on H;(A, Q) such that the formz,w) — 9(z, Jw) on H;(A,R) is
symmetric and definite; two Riemann formsandy’ on H;(A, Q) correspond to the same
polarization if and only if there is am € Q* such that)’ = ai. We shall consider only
triples (A, 6, v) in which the Rosati involution defined yinduces complex conjugation
on E. (The Rosati involutiore — ‘e: End(A) — End(A) is determined by the condition

Ylev,w) = Y(v,‘ew), v,w e Hi(A,Q).)

LEMMA 4.6. Let f € E* be such thaif = — f, and lety) be a Riemann form fad. There
exists a unique’-Hermitian form¢ on H, (A, Q) such that)(z, y) = Trg/o(fé(x,y)).

We first need:

SUBLEMMA 4.7. LetV andW be finite-dimensional vector spaces o¥&rand lety): V' x
W — Q be aQ-bilinear form such that)(ev, w) = ¥ (v, ew) for e € E. Then there exists
a uniquek-bilinear form¢ such that) (v, w) = Trg /g ¢(v, w).

PROOF. The condition says that defines aQ-linear maplV @z W — Q. Let ¢ be the
element oflomg (V' ®g W, E) corresponding t@> under the isomorphism (see 4.3(a))

Homp(V @p W, E) = Homg(V @ W, Q).
0

PROOF OFLEMMA 4.6. We apply (4.7) with = H,(A, Q) = W, but with with £’ acting
through complex conjugation oi/’. This gives a sesquilinea#; such thaty(z,y) =

Trgg ¢1(x,y). Letg = f~1¢y, sothat)(z,y) = Trpo(fP(z,y)). Sinces is sesquilinear
it remains to show that(z, y) = ¢(z,y). Asy(z,y) = —(y,z) forall z,y € Hi(A,Q),

Te(fo(z.y)) = = Te(fo(y, x)) = Te(foly, 2)).

On replacinge by ex with e € E, we find that

Te(feg(x,y)) = Tr(fe(y, x)).

On the other hand,
Tr(fed(z,y)) = Tr(fep(z,y)),
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and so
Tr(feg(y, x)) = Tr(feg(z,y)).

As fe is an arbitrary element of, the non-degeneracy of the trace implies that, y) =
¢(y, z). Finally, the uniqueness afis obvious from (4.7). ]

THEOREM4.8. Let A be an abelian variety ovef, and letv: F — End(A) be a homo-
morphism withE' a CM-field. Letd = dimg H'(A, Q). Assume there exists a polarization
6 for A such that:
(a) the Rosati involution of induces complex conjugation diy
(b) there exists a splifz-Hermitian form¢ on H,(A, Q) and anf € E* with f = —f
such that)(x,y) =gt Trg/o(fé(x,y)) is a Riemann form fof.

Then the subspac(e/\%Hl(A, Q)> (4) of H4(A, Q)(£) consists of absolute Hodge cycles.

PROOF. In the course of the proof, we shall see that (b) implies thaatisfies the equiva-
lent statements of (4.4). Thus, the theorem will follow from (2.15), (4.4), and (4.5) once we
have shown that there exists a connected smooth vasietyer C and an abelian scheme
Y over S together with an action of £ onY’/S such that:
(a) forall s € S, (Y;, v,) satisfies the equivalent statements in (4.4);
(b) for somes, € S, Y;, is of the formA, ®y E with e € E acting asd ®e;
(c) for somes; € S, (Y, vs,) = (A, ).
We shall first construct an analytic family of abelian varieties satisfying these condi-
tions, and then pass to the quotient by a discrete group to obtain an algebraic family.
Let H = H,(A, Q) regarded as af-space and chosg v, f, andy as in the statement
of the theorem. We choose= /—1 so thaty(x, h(i)y) is positive definite.
Consider the set of all quadrupléd,, 6,, vy, k1) in which A; is an abelian variety over
C, vy is an action off’ on A4, ¢, is a polarization ofd, andk, is an E-linear isomorphism
H,(A,Q) — H carrying a Riemann form fof; into ¢y for somec € Q*. From such a
quadruple, we obtain a complex structure BfR) (corresponding vig; to the complex
structure onH; (A;,R) = Lie(A;)) such that:
(a) the action ofE' commutes with the complex structure;
(b) v is a Riemann form relative to the complex structure.
Conversely, a complex structure é¢h® R satisfying (a) and (b) determines a quadruple
(A1, 01,v1, k1) with H1(A;,Q) = H (as ank-module),Lie(A;) = H ® R (endowed with
the given complex structure), the polarization with Riemann form, andk; the identity
map. Moreover, two quadruplés!;, 6;, vy, ki) and(As, 02, vo, ko) are isomorphic if and
only if they define the same complex structurefdénLet X be the set of complex structures
on H satisfying (a) and (b). Our first task will be to tudinto an analytic manifold in such
a way that the family of abelian varieties that it parametrizes becomes an analytic family.
A point of X is determined by aik-linear mapJ: H @ R — H ® R, J?> = —1, such
that
(&) Jis E-linear, and
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(0") ¥ (z, Jy) is symmetric and definite.
Note thaty(z, Jy) is symmetric if and only if)(Jz, Jy) = (z,y). Let F be the real
subfield of £/, and fix an isomorphism

E®yR — @,erC, T =Hom(F,R)

suchthaf f ® 1) — (if;) with f. € R, f. > 0. Corresponding to this isomorphism, there
is a decomposition
H ®Q R = @TGTHT

in which eachH. is a complex vector space. Condition)(@nplies thatJ = @©.J,, where
J, is aC-linear isomorphisnf/, — H, such that/? = —1. Let

H,=H '® H-
whereH ™ andH - are the eigenspaces &f with eigenvalues-i and—i respectively. The
compatibility of» andr implies
(Ha @D) ® R i @TET(H’T’ 77b‘r)

with ¢, anR-bilinear alternating form o/, such that

¢T(Zxay) :@/JT(QS,??/), z e C.
The condition
(Jz, Jy) = d(z,y)
implies thatH  is the orthogonal complement &f~ relative toy,: H, = H | H-. We

also have
(Ha ¢) ® R — EB‘I'ET([—ITa ¢7’)

andy.(z,y) = Tre/r(ifro- (2, y)). AS

¢(l‘a y) - Zq— TrC/R(ifT¢T<$7 y))?

we find that

Y(x, Jr) > 0allr <= Trem(ifro-(2r, Ja.)) > 0all ., 7
— Trepm(ior(z,, Ju,)) al x., 7,
¢, is positive definite orfZ;*, and
¢, Is negative definite o/ - .

This shows, in particular, thai = = H-'? and H- = H%! each have dimensiod/2

(cf. 4.4). LetX " and X~ be the sets off € X for which ¢ (x, Jy) is positive definite
and negative definite respectively. Thahis a disjoint unionX = X+ L X~. As J is

determined by its-i eigenspace we see that" can be identified with

{(V:)rer | V> @a maximal subspace @f, such that, > 0onV,}.
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This is an open connected complex submanifold of a product of Grassman manifolds
X* C [ orGrassy(Vr).

Moreover, there is an analytic structure & x V(R) such thatX™ x V(R) — X* is
analytic and the inverse image df¢ X is V(R) with the complex structure provided
by J. On dividingV' (R) by anOg-stable latticé/(Z) in V', we obtain the sought analytic
family B of abelian varieties.

Note thatA is a member of the family. We shall next show that there is also an abelian
variety of the formA, @ E in the family. To do this, we only have to show that there exists
a quadrupld Ay, 0, v, k) of the type discussed above with = Ay ® E. Let Ay be any
abelian variety of dimensiod/2 and define/;: E — End(A, ® E) so thate € E acts on
Hi(Ay®FE) = H,(Ay)®E through its action oiy. A Riemann formy), on A, extends in an
obvious way to a Riemann forgn, on A, that is compatible with the action &f. We define
6, to be the corresponding polarization, anddebe the Hermitian form o/, (A, ® E, Q)
such that)y; = Trg/q(f¢1) (see 4.6). Ifl, C H,(Ay, Q) is a totally isotropic subspace
of H,(Ao, Q) of (maximum) dimensior/2, thenl, ® F is a totally isotropic subspace of
dimensiond/2 over E, which (by 4.2) shows that the Hermitian sp&éf (4o ® £, Q), ¢1)
is split. There is therefore af-linear isomorphisnk;: (H1(Ay ® E,Q),¢1) — (H, ¢)
which carries); = Trgg(f¢1) 1o = Trg,o(f¢1). This completes this part of the proof.

Let n be an integep> 3, and letl” be the set ofD g-isomorphismg;: V(Z) — V (Z)
preserving) and such thatg — 1)V (Z) C nV(Z). Thenl" acts onX " by J s go Jog™!
and (compatibly) or3. On forming the quotients, we obtain a map

MB—I\X*

which is an algebraic family of abelian varieties. In fac{,X " is the moduli variety for
quadrupleg Ay, 01,11, k1) in which Ay, 61, andv, are essentially as before, but néwis a
leveln structure

ki: Ay(C) = Hy(A,Z/nZ) = V(Z) /nV(Z);

the mapX+ — T'\ X' can be interpreted as “regakg modulon”. To prove these facts,
one can use the theorem of Baily and Borel (1966) to showIthat* is algebraic, and a
theorem of BorelBorel 1973 to show that™\ B is algebraic — se§6 where we discuss a
similar question in greater detalil. O

REMARK 4.9. With the notations of the theorem, I&t be aQ-rational algebraic group
such that

G(Q) = {g € GLy(H) | 3v(g) € Q* such that)(gx, gz) = v(g)(x,y), Y,y € H}.

The homomorphisnk: C* — GL(H ® R) defined by the Hodge structure éfi (A, Q)
factors throughGg, and X can be identified with thé/(R)-conjugacy class of the homo-
morphismsC* — Gy containingh. Let K be the compact open subgroup®fA ;) of ¢
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A ~

such thatlg — 1)V(Z) c nV(Z). ThenT'\ X *is a connected component of the Shimura
varietySh (G, X). The general theory shows tHit, (G, X) is a fine moduli scheme (see
Deligne 1971¢c4, orMilne and Shih 1982§2) and so, from this point of view, the only
part of the above proof that is notimmediate is that the connected compors#nt (@, X )
containingA also contains the varietyfy ® F.

REMARK 4.10. It is easy to construct algebraic cycles dg ® E: any Q-linear map
A E — Qdefinesamapl,® F — Ay ® Q = A,, and we can takel(\) to be the image
of the class of a point i#/¢(Ay) — H?(Ay @ E). More generally, we have

Sym™ (Homg.inear( £, Q)) — {algebraic cycles only, ® E}.
If £ = Q, this gives the obvious cycles.

REMARK 4.11 The argument in the proof of (4.8) is similar to, and was suggested by, an
argument of B. Gross (1978).
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5 Completion of the proof for abelian varieties of CM-
type
Abelian varieties of CM-type

The Mumford-Tate, or Hodge group of an abelian varietyl over C is defined to be the
Mumford-Tate group of the rational Hodge structiéifg( A, Q): itis therefore the subgroup
of GL(H,(A,Q)) x G,, fixing all Hodge cycles o4 and its powers (seg3). In the
language of Tannakian categories, the category of rational Hodge structures is Tannakian
with an obvious fibre functor, and the Mumford-Tate group4ofs the group associated
with the Tannakian subcategory generatedhyA, Q) andQ(1).

An abelian varietyA is said to be ofCM-typeif its Mumford-Tate group is commuta-
tive. Since any abelian variety is a productd = J[A, of simple abelian varieties (up
to isogeny) andd is of CM-type if and only if eacd,, is of CM-type (the Mumford-Tate
group of A is contained in the product of the Mumford-Tate groups ofAheand projects
onto each), in understanding this concept we can assuisasimple.

PROPOSITIONS.1. A simple abelian varietyl over C is of CM-type if and only ity =

End A is a commutative field over whidh, (A, Q) has dimension. ThenE is a CM-field,
and the Rosati involution ot = End(A) defined by any polarization oA is complex
conjugation.

PROOF. Let A be an abelian variety such tHaiid (A) contains a fieldZ for which H; (A, Q)
has dimension as ank-vector space. A8(G,,,) commutes witltE @R in End(H; (A, R)),
we have thati(G,,) C (EF®R)* and so the Mumford-Tate group dfis contained in&*.

Conversely, letA be simple and of CM-type, and lgt G,, — GL(H;(A,C)) be de-
fined by the Hodge structure diy (A, C) (see§3). As A is simple,E = End(A) is a field
(possibly noncommutative) of degreedim H, (A, Q) overQ. As for any abelian variety,
End(A) is the subalgebra dind(H,(A, Q)) of elements preserving the Hodge structure
or, equivalently, that commute with(G,,) in GL(H,(A,C)). If G is the Mumford-Tate
group of A, thenG¢ is generated by the groude i (G,,) | o € Aut(C)} (see 3.4).
ThereforeF is the commutant ofr in End(H,(A, Q)). By assumption¢ is a torus, and
so H,(A,C) = @yex(eHy. The commutant ofs therefore containgtale commutative
algebras of ranklim H,(A, Q) over Q. It follows that £ is a commutative field of de-
greedim H, (A, Q) overQ (and that it is generated agjaalgebra byG(Q); in particular,
h(i) € E @ R).

Let ¢ be a Riemann form corresponding to some polarizatiod omhe Rosati involu-
tione — e* onEnd(A) = F is determined by the condition

@Z)(x,ey):@/}(e*x,y), xvyEHl(AvQ)'

It follows from

Y(z,y) = Y(h(i)z, h(i)y)
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that

h(i)"=h(@)™" (= —h(7)).
The Rosati involution therefore is nontrivial diy, and E has degreé over its fixed field
F. There exists an € F'* such that

E:F[\/EL \/E*:—\/E,

anda is uniquely determined up to multiplication by a squaréinif E is identified with
H,(A,R) through the choice of an appropriate basis vector, then

@D(%y) :TI'E/QCY[L'y*7 %?/GE,
(cf. 4.6). The positivity condition og implies that
Trperm(fz®) >0, z#0, € FeR, f=a/h(i),

which implies thatF’ is totally real. Moreover, for every embedding F' — R, we must
haveo(a) < 0, for otherwiseE ®p, R = R x R with (r1,72)* = (r2,71), and the
positivity condition is impossible. Thus,(«) < 0, andx is complex conjugation relative
to any embedding oF into C. This completes the proof. [

Proof of the main theorem for abelian varieties of CM-type

Let (A,) be a finite family of abelian varieties ovér of CM-type. We shall show that
every element of a space

Ty = (Q Hi(Xa)®") @ (QuHi(Xa) e (m)

that is a Hodge cycle (relative ta: C — C) is an absolute Hodge cycle. According
to (3.8) (Principle A), to do this it suffices to show that the following two subgroups of
GL([[H1(Aa, Q)) x G, are equal:

G = group fixing all Hodge cycles;
G = group fixing all absolute Hodge cycles.

ObviouslyG* c GAZ,

After breaking up eacH,, into its simple factors, we can assumgis itself simple. Let
E, be the CM-fieldEnd (A, ) and letE be the smallest Galois extension@fcontaining
all E,; itis again a CM-field. LetB, = A, ®g, E. It suffices to prove the theorem for the
family (B,) (because the Tannakian category generated byitli&,) andQ(1) contains
everyH,(A,); cf. Deligne and Milne 198p

In fact, we consider an even larger family. Fix a CM-field Galois over), and
consider the family(A,) of all abelian varieties with complex multiplication by (so
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H,(A,) has dimension over £) up to E-isogeny. This family is indexed by, the set of
CM-types forE. Thus, ifS = Hom(E, C), then each element & is a setd C S such
thatS = & U P (disjoint union). We often identifp with the characteristic function d,

i.e., we write
lifse®
D(s) = .
(s) { 0if s ¢ .
With each® we associate the isogeny class of abelian varieties containing the abelian
varietyC? /®(O) whereOy, is the ring of integers i’ and

(I)(OE) = {(U€)ge<1> € C(I) ‘ e € OE}

With this new family, we have to show that” = G4, We begin by determining'?
(cf. 3.7). The Hodge structure on eabth( A, Q) is compatible with the action of. This
implies that, as a subgroup Pf; s GL(H1(A4s)) X G,,,, G¥ commutes witH [, £ and
is therefore contained if[£* x G,,. In particular,G* is a torus and can be described by
its group of cocharactefs(G*) =4 Homga(G,,, G*) or its group of characters (G#).
Note that
Y(G") C Y ([1pesE™ % Gp) = Z5%° x Z.

There is a canonical basis fof (E*), namely S, and therefore a canonical basis for
X(JpesE™ x Gy,) which we denoté(z,.4), z9). We denote the dual basis for(] [ £ x
Gn) BY (ys@,90). The elemeny € Y(G™) equalsy_, , ®(s)yss + yo (Se€ 3.7). As
GH is generated by{o/u(G,,) | o € Aut(C)}, Y(GH) is the Gal(Q¥/Q)-submodule of
Y([IE* x G,,) generated by:. (Here,Gal(Q¥/Q) acts onS by os = s o o~!; it acts
onY ([[gesE* % Gy) = Z°%5 x Z through its action orb, oy, = yose; these actions
factor throughGal(E/Q)).

To begin the computation @f“#, we make a list of the tensors we know to be absolute
Hodge cycles on thd,,.

(a2) The endomorphismg& C End(Ag) for each®. (More precisely, we mean the
classesi,(I'.) € Hy(Agp) @ Hy(As), I'. =graph ofe, e € E.)

(b) Let (A, v: E — End(Ag)) correspond teb € S, and leto € Gal(E/Q). Define
o® = {os | s € &}. Thereis an isomorphisms — A, induced by

C(b (cory2(7)se )= (oo y2(0T),000) C(b
C?/B(Op) . Co /D (O)

whose graph is an absolute Hodge cycle. (Alternatively, we could have used the fact that
(Ag,ov: E — End(As)), whereor = v o o1, is of types® to show thatds and A, ¢
are isomorphic.)

(c) Let (®;)1<i<q be a family of elements of and letA = ¢, A; whereA; = Asg,.
ThenE acts onA and H,(A,Q) = &L ,H,(A;,Q) has dimensiorl over E£. Under the
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assumption tha} _.®; =constant (so tha_,®,(s) = d/2, all s € S), we shall apply (4.8)
to construct absolute Hodge cycles 4n
For eachi, there is anF-linear isomorphism

Hi(A;,Q) ®g C — @sesHi(Ai)s

such thats € F acts onH,(A;)s ass(e). From the definitions one sees that

\—1,0 )
Hy(A;)s = { Hd), ", se s

Hl(Ai)O’il, S g @z

s

Thus, with the notations of (4.4),
as=_,P;(s)
be = ,(1 = i) = 3, 8:(05) = s,
The assumption thgt_®; = constant therefore implies that
as =bs=d/2, alls.

For eachi, choose a polarizatio; for A; whose Rosati involution stabilizes, and
let ¢); be the corresponding Riemann form. For any totally positive elemgémtsF (the
maximal totally real subfield of) & = @, f;0; is a polarization forA. Choosev; # 0,
v; € Hi(A;,Q); then{v;} is a basis forl{; (A;, Q) over E. There exist; € E* such that
¢, = —¢ andyy(avy, yu;) = Trg(Goy) forall z,y € E. Thusg;, whereg;(zv;, yv;) =
%a:y, is an £-Hermitian form onf, (A;, Q) such that);(v, w) = Trgg(¢i¢i(v, w)). The
E-Hermitian form onH, (A, Q)

¢(Z$ivi, Zyﬂ)z) = Zifﬁbi(%"wi, yiUi)

has the property that(v,w) =g Trg/o(¢i¢(v, w)) and is the Riemann form @f. The
discriminant ofp is Hifi(%). On the other hand, i € S restricts tor on F', then

sign(rdisc(¢)) = (—1)" = (=1)%2,

Thus,
disc(¢) = (—1)¥*f

for some totally positive element of F'. After replacing onef; with f;/f, we have that
disc(¢) = (—1)d/2, and thatp is split. Hence (4.8) applies.
In summary: letd = @¢_, As, be such thap_,®; = constant; then

(ALH (A Q®) € HY(A,Q))

consists of absolute Hodge cycles.
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SinceG4¥ fixes the absolute Hodge cycles of type @)} C [[oE* x G,,. Itis
therefore a torus, and we have an inclusion

Y(GM) c Y(IIE* x G,,) =Z°° x Z

and a surjection,
X(TIE* x G,,) = Z°%° x 7 — X(GA).

Let W be a space of absolute Hodge cycles. The action of the {dis x G,,, on
W @ C decomposes it into a sumlV,, indexed by they € X([[E* x G,,) of subspaces
W, on which the torus acts through SinceG4# fixes the elements ¥/, the for which
W, # 0 map to zero inX (G*4#).
On applying this remark withl” equal to the space of absolute Hodge cycles described
in (b), we find thatr, ¢ — 7,5, Maps to zero INX (GA7), all o € Gal(E/Q), s € S, and
¢ € S. As Gal(E/Q) acts simply transitively o, this implies that, for a fixed, € S,
X (G4 is generated by the image ¢f, ¢, 70 | ® € S}.
Let d(®) > 0 be integers such thaf d(®)® = d/2 (constant function or$) where
d =>_d(®). Then (c) shows that the subspace

WS @p (A, Q)71 (=d/2) = NpHh (243", Q)(~d/2)

of Hd(@A‘;,@), Q)(—d/2) consists of absolute Hodge cycles. The remark then shows that
> d(®)zs 6 — d/2 maps to zero inX (GA) for all s.
Let
X =X(J[E* xGn)/> Z(2ss 00 — Tsa)

and regard
{J]SO@,[EO | CI) - S}

as a basis foX'. We know that
X(IE* x G,,) — X(GA)

factors throughX, and that therefor® > Y (GA4#) (O Y (G*)) whereY is the submodule
of Y(J[E* x G,,) dual to X.

LEMMA 5.2 The submodul& (GH#)+ of X orthogonal toY (G¥) is equal to
(SA(@)y0 — Sao | Sd®) = 4, Td(®) = d
it is generated by the elements

S d(®)zsy 0 — Sxg, Xd(®)P =%, d(P)>0all D.

2
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PROOF. AsY (G*) is theGal(E/Q)-submodule of” generated by:, we see that
r=>d(P)zs0 — Lz € Y(GT)*

if and only if (op,z) = 0 all 0 € Gal(E/Q). Butpy = > ®(s)yse + yo andop =
> ®(8)Yos0 + 2o, @Nd SO(op, x) = > d(®)P(c7'sg) — 4. The first assertion is now
obvious.

As® + 1P =1,z4 4 + 75,0 — o € Y (GT)* and has positive coefficient§®). By
adding enough elements of this form to an arbitrary elemeat Y (G )1 we obtain an
element with coefficientg(®) > 0, which completes the proof of the lemma. N

The lemma shows that(G7)* c Ker(X — X(GAH)) = Y(GAH)*. HenceY (G*) C
Y (GA) and it follows thatG? = G4#; the proof is completé?
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6 Completion of the proof; consequences

Completion of the proof of Theorem 2.11

Let A be an abelian variety ovéf and lett,, « € I, be Hodge cycles odl (relative to

id: C — C). To prove the Main Theorem 2.11, we have to show that th&re absolute
Hodge cycles. Since we know the result for abelian varieties of CM-type, (2.15) shows that
it remains only to prove the following proposition.

PROPOSITIONG.1. There exists a connected smooth algebraic varketyver C and an
abelian scheme: Y — S such that
(a) for somes, € S, Y, = A4;
(b) for somes; € S, Y;, is of CM-type;
(c) thet, extend to elements that are rational and of bidegiee)) everywhere in the
family.

The last condition means the following. Suppose thabelongs to a tensor space
T, = HL(A)®™® g . ; then there is a sectianof (R'7,Q)*™* © ... over the universal
coveringS of S (equivalently, over a finite covering &) such that fors, mapping tos,
ts, = ta, and foralls € S, t; € HL(Y:)®™® @ ... is a Hodge cycle.

PROOF OF6.1 (SKETCH). The parameter variety will be a Shimura variety and (b) will
hold for a dense set of poinis.

We may suppose that one of theis a polarizatiory for A. Let H = H;(A,Q) and
let G be the subgroup o&L(H) x G,, fixing thet,. The Hodge structure oH defines a
homomorphisnfiy: C* — G(R). Let G° = Ker(G — G,,); thenad(h(i)) is a Cartan
involution onGY because the real form 6f2 corresponding to it fixes the positive definite
form ¢ (z, h(i)y) on H ® R wherey is a Riemann form foé. In particular,G is reductive
(see 3.6).

Let

X ={h: C* — G(R) | his conjugate tdr, underG(R)}.

Eachh € X defines a Hodge structure d@h of type {(—1,0), (0, —1)} relative to which
eacht,, is of bidegre€0,0). Let F°(h) = H* ! ¢ H® C. SinceG(R)/K.. = X, where
K, is the centralizer of, there is an obvious real differentiable structure ¥nand
the tangent space t§ at hg, Tgt,, (X) = Lie(Gr)/Lie(K). In fact, X is a Hermitian
symmetric domain. The Grassmannian,

Grassg(H ® C) L {W c H® C | W of dimensiond (= dim A)}
is a complex analytic manifold (even an algebraic variety). The map

¢: X — Grassq(H® C), hw— Fh),
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is a real differentiable map, and is injective (because the Hodge filtration determines the
Hodge decomposition). The map on tangent spaces factors into

Tgt,, (X) = Lie(Gr)/ Lie(K) = End(H ® C)/F°End(H ® C) = Tgty(ny) (Grass)

~
~
A: ective

Lie(Gc)/F°(Lie(Gc))

the maps being induced y(R) — G(C) — GL(H ® C). (The filtrations onLie(G¢)
andEnd(H ® C) are those corresponding to the Hodge structure definég)oyrhus,do
identifiesTgt,,, (X) with a complex subspace dfgt,,,,(Grass), and soX is an almost-
complex (in fact, complex) manifold (s&eligne 1979p1.1, for more details). (There is
an alternative, more group-theoretic, description of the complex structurknseg 1972
2.4,2.5)

To each point of X, we can attach a complex toré8(h)\H ® C/H(Z), whereH (Z)
is some fixed lattice ir{. For example, td, is attached

F*(ho)\H ® C/H(Z) = Tgty(A)/H(Z),

which is an abelian variety representidg From the definition of the complex structure on
X, itis clear that these tori form an analytic famiover X.
Let
I'={yeGQ)|(g-1)H(Z) Cc nH(Z)}

some fixed integen. For a suitably large. > 3, T" will act freely on X, and sol™\ X will
again be a complex manifold. The theorem of Baily and Borel (1966) shows thalf'\ X
is an algebraic variety.

The groupl” acts compatibly o, and on forming the quotients, we obtain a complex
analytic mapr: Y — S withY = I'\B. Fors € S, Y; is a polarized complex torus
(hence an abelian variety) with levelstructure (induced byf,(By,,Z) = H(Z) where
h maps tos). The solution)M,, of the moduli problem for polarized abelian varieties with
level n-structure in the category of algebraic varieties is also a solution in the category of
complex analytic manifolds. There is therefore an analytic mapy — M,, such thaty”
is the pull-back of the universal family al,,. A theorem of Borel (1972, 3.10) shows that
1 is automatically algebraic, from which it follows th&y S is an algebraic family.

For some connected componefitof S, 7—1(5°) — S° will satisfy (a) and (c) of the
proposition. To prove (b) we shall show that, for solne X close toh, Bj, is of CM-type
(cf. Deligne 1971¢5.2).

Recall 5) that an abelian variety is of CM-type if and only if its Mumford-Tate group
is a torus. From this it follows thabB;,, h € X, is of CM-type if and only if. factors
through the real points of a subtorus@fdefined over).

Let 7" be a maximal torus, defined ovigr of the algebraic grouX... (SeeBorel and
Springer 19660or a proof thatl” exists, or apply the argument that follows.) SirgéC*)
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is contained in the centre df ., ho(C*) C T(R). If 7" is any torus inGr containing”’,
thenT” will centralizehg and sol” C K.; T is therefore maximal ifzz. For a general
(regular) elemenk of Lie(T), T is the centralizer oh. Choose &\, € Lie(G) that is close
to A in Lie(GR), and letT; be the centralizer ok, in G. ThenTj is a maximal torus of~
that is defined ove®, and, becauséy is close tdlk, Tyr = gTg~! for someg € G(R).
Now h = ad(g) o ho factors througlog, and soB;, is of CM-type. O

This completes the proof of the main theoré&m.

Consequences of Theorem 2.11

We end this section by giving two immediate consequences.

Let X be a complete smooth variety over a figldind lety € H*(Xe, Q/)(p), £ #
char(k). Tate’s conjecture states thats in theQ,-span of the algebraic classes if there
exists a subfield, of k finitely generated over the prime field, a modgJ of X over kg,
and ay € H* (X, ® ko, Q¢)(p) mapping toy that is fixed byGal (kg / k).

COROLLARY 6.2. Let A be an abelian variety ovef. If Tate’s conjecture is true foA,
then so also is the Hodge conjecture.

PROOF. We first show that, for any complete smooth varigiyover C, Tate’s conjecture
implies that all absolute Hodge cycles anare algebraic. LeX, be a model ofX over
a subfieldk, of C finitely generated ove®. According to Proposition 2.90%,(X) =
Chy(Xo ® ko) and, after we have replacéd by a finite extension(Gal(ko/ko) will act
trivially on C% (X ®@ ko). Let %), (X) denote theR-subspace of’;;(X) spanned by the
algebraic cycles oX. Tate’s conjecture implies that tlig-span ofC%,,(X) is contained
in the Q,-span ofC7,, (X). HenceC} (X) ® Q; = C{y(X) ® Q,, and soCy, (X) =
CRyy(X).

Now let A be an abelian variety ovét, and lett € H?**(A, Q) NHP?. The image’ of
tin H:’(A)(p) is a Hodge cycle relative tal: C — C, and so Theorem 2.11 shows that
t" € Chy(A). ltis therefore in the-span of the algebraic cycles. N

REMARK 6.3. The last result was first proved independentlyHjgtecki-Sapiro 1971and
Deligne (unpublished) by an argument similar to that which concluded the proof of the
main theorem. (Corollary 6.2 is easy to prove for abelian varieties of CM-type; in fact,
Pohimann 196&hows that the two conjectures are equivalent in that case.) We mention
also thaBBorova 1977shows that, for an abelian variel§y over a fieldk, theQ,-subspace

of H?*(Xe, Q¢)(p) generated by cycles that are Hodge relative to an embeddikg— C

is independent of the embedding.

COROLLARY 6.4. ?°Let A be an abelian variety ovef and letG4 be the Mumford-Tate
group of A. Thendim(G“4) > tr. deg, k(p;;) Wherep;; are the periods ofd.

PROOF. Same as that of (1.6). O
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7 Algebraicity of values of thel'-function

The following result generalizes (1.5).

PROPOSITION7.1. Letk be an algebraically closed subfield ©f and letl’ be a complete
smooth variety of dimensianoverk. If o € HZ (V) maps to an absolute Hodge cycle
under

1—(27) ™"

Hy (V) Hy (V)(=r) = HE"*'(V)(n —r) — H" > (Ve)(n - r)

then, for anyO differentialr-formw on Ve whose clasgo] in H2, (V/C) liesin H25 (V/k),
/w € (2mi)"k.

PROOF. Proposition 2.9 shows thatarises from an absolute Hodge cygigon V/k. Let
(70)ar be the component of, in H322"(V/k). Then, as in the proof of (1.5),

/u) = (27)" Trar((70)ar U [w]) € (2m)" Hin(V/k) = (27i)"k.

]

In the most important case of the propositiénwill be the algebraic closur® of Q in
C, and it will then be important to know not only that the period

P(o,w) 4 (2#@)_’"/w
is algebraic, but also in which field it lies in. We begin by describing a general procedure for
finding this field and then illustrate it by an example in whichs a Fermat hypersurface
and the period is a product of values of thdéunction.

Let V. now be a complete smooth variety over a number field C, and letS be a
finite abelian group acting ovi overk. LetV = V ®, Q. Whena: S — C* is a character
of S taking values irk* and H is ak-vector space on which acts, we let

H,={ve H|sv=a(s)vallseS}.

Assume that all Hodge cycles drt are absolutely Hodge and that®" (V(C), C), has
dimensionl and is of bidegreér,r). Then(C%,4(V) ® k), has dimension one ové.
The actions ofS andGal(Q/k) on H%,(V/Q) = H2:(V/k) @, Q commute because the
latter acts through its action d; they therefore also commute @, ;;(V) ® k, which
embeds intd72; (V/Q). It follows thatGal(Q/k) stabilizes(C%(V) ® k), and, as this

has dimension, there is a character: Gal(Q/k) — k* such that

ry=x(r)"Y, TEGa@/k), 7€ (Ciu(V)@k) ..
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PROPOSITION 7.2. With the above assumptions, lete HZ (V) and letw be a C>-
differential2r-form onV (C) whose clas&v] in H3; (V/C) liesin H3x (V/k),; thenP(o, w)
lies in an abelian algebraic extension bfand

7(P(o,w)) = x(7)P(o,w), all 7€ Gal(Q/k).

PROOF. Regardjw] € H35(V/C), = (Ciu(V) @ C),; then|w] = 2y for somez € C,

v € (Chy(V) ® k). Moreover,

211

Plo,w) & (L) / w = 21(o @ (27i) ") € 2k,

where we are regardingas an element of/" (V) (r) @ k = HZ(V)(—r)" @ k. Thus

P(o,w) 'w] € Chn(V) ® k.
As

w] € Hiz(V/Q) = Cau(V) © Q.
this shows thaP(o,w) € Q. Moreover,
7(P(o,w) " [w]) = x(7) " (P(o,w) " w]).

On using that[w] = [w], we deduce that

7 (P(o,w)) = x(7) - P(o,w).

]

REMARK 7.3. (a) Becaus€', (V) injects intoH* (Ve, Q;)(r), x can be calculated from
the action ofGal(Q/k) on H?" (Ve Qp)u(r).

(b) The argument in the proof of the proposition shows that(27i) " € HZ (V)(—r)
and P(o,w) tw] € H3(V/Q) are different manifestations of the same absolute Hodge
cycle.

The Fermat hypersurface

We shall apply (7.2) to the Fermat hypersurface
VioX¢+Xi+ oo+ X4, =0

of degreed and dimensiom, which we shall regard as a variety overt Q(e?m/), As
above, we lel = V ®,, Q, and we shall often drop the the subscriptien

It is known that the motive o¥/ is contained in the category of motives generated by
abelian varieties (see 8.26), and therefore Theorem 2.11 shows that every Hodge cycle on
V is absolutely Hodge (see 8.27).
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Let 11y be the group of'" roots of1 in C, and let
S = o™ g/ (diagonal).
ThenS acts onV//k according to the formula:
(oG )i )= Gy L), al(cLoray: o) e V().
The character group & will be identified with
X(S)={ac (z2/dZ)""* |a=(ag,...,ans1), D.a;=0};
herea € X (S) corresponds to the character
C=(Gor .. ¢ ETTE G

Fora € Z/dZ, we let(a) denote the representative @in Z with 1 < (a) < d, and for
aec X(S)welet(a) =d ' (a;) € N.

If H(V') is a cohomology group on which there is a natural actiort,ofve have a
decomposition

HV)=0H(\V)a, H(\V)a={v|lv=_, (€S}
Let (Z/dZ)* act onX (.S) in the obvious way,

u- (ag,...) = (uag,...),

and let[a] be the orbit ofa. The irreducible representations 8fover Q (and hence the
idempotents of)[S]) are classified by the these orbits, and}§6| = [[ Q[a] whereQ][a] is
a field whose degree ovér is equal to the order da]. The map — ¢*: .S — C induces
an embedding)[a] — k. Any cohomology group decomposes H$V) = ©H (V)
where

H(V)[a} ® C= @a/e[a] (H(V) ® C)a’ :

Calculation of the cohomology

21

PROPOSITION7.4. The dimension off"(V,C),is1ifnoa; = 0 orifall a; = 0 andn is
even; otherwisé{"(V, C), = 0.

PROOF. The map
(zo: 12 .. (zd: 2 L) PP — P!

defines a finite surjective map V' — P" whereP™ (~ P") is the hyperplang_X; = 0.
There is an action of on 7,C, which induces a decompositionC = @ (7.C),. The
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isomorphismi"(V,C) = H"(P",x,C) is compatible with the actions &f, and so gives
rise to isomorphisms
H"(V,C)y — H"(P", (m,C)a).

Clearly (7,C)o = C, and so
H"(P", (m.C)o) = H"(P",C), allr.

Fora # 0, the sheafr..C), is locally constant of dimensioh except over the hyperplanes
H; : X; = 0 corresponding te for which a; # 0, where it is ramified. It follows that

H"(P",(7.C)a) =0, r#n, a#0,

and so(—1)"dim H"(P", (7.C),) is equal to the Euler-Poindarcharacteristic ofr.C),
(a # 0). We have
EP(P", (1.C)a) = EP(P" \ Uy, 20H;, C).

Suppose first that n@; is zero. Then
(o: oot xpy =D @) o (To: o) PP S P

induces
P" U?jolHi S PPN UL H U prt

whereH; denotes the coordinate hyperplanéPint® or P". As
(P WUH; U P" Y)Y u (P! N UH;) =P" \ UH,,

andP" \. UH,;, being topologically isomorphic t@C*)", has Euler-Poincércharacteristic
zero, we see that

EP(P"\U""H;) = —EP(P" '\ U"H;) = ... = (=1)"EP(P°) = (-1)".

If some, but not alla; are zero, therP” \ UH; ~ (C*)" x C* " with » > 1, and so
EP(P* ~ UH;) = 0" x 1" = 0. O

REMARK 7.5. Note that the primitive cohomology 6f,

H"(V, Clpim = P _, H"(V, C)a.

ar

The action ofS on H"(V, C) respects the Hodge decomposition, andB8gV, C), is
purely of bidegreép, q) for somep, ¢ with p + ¢ = n.

PROPOSITION7.6. If noa; = 0, thenH"(V, C), is of bidegredp, q) withp = (a) — 1.
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PROOF. We apply the method d&riffiths 1969 §8. WhenV” is a smooth hypersurface in
P+1, Griffiths shows that the maps in

Hn—&-l(ﬂ]m—&-l? (C) 0 Hrtl (Pn+1 N 74 C) H‘7}+2 (Pn+1’ C) Fnt2 (IP’"+1, (C)

induce an isomorphism
H™ (P NV, C) S H(V) (=1 prim

and that the Hodge filtration ol (1")(—1) has the following explicit interpretation: iden-
tify APV, C) with T(P™T! 0V, Q) [l (P 0V, Q™) and let

O (V) ={w e PP N V,Q""") | w has a pole of ordex ponV};

then the map
R: QY (V) — H"(V,C)

determined by
1
(0, R(w)) = —,/w, alle € H,(V,C),
2m J,
induces an isomorphism
(V) /dsy = FPHY(V)(=Dprim = F" P H™ (V) prim.
(For example, whep = 1, R is the residue map
QUH(V) — FUHY(V) = HO(V, Q).
Let f be the irreducible polynomial definininig. As Q;,;fjl (n + 2) =~ Opn+1 has basis

wo =S (=1 X;dXo A ... ANdX; A ... ANdX,,

any differential formw = Pwy/ f? with P a homogeneous polynomial of degreéeg(f)—
(n 4+ 2) lies inQ2 (V). In particular, wheri” is our Fermat surface,

Xéa())fl . X(an+1>71

_ n+1
a (X¢+ -+ Xg+1)<a>w0
X(“O) ”_X<an+1> dX, CT)Z
=0 ntl <a>2(—1)’—0/\~--/\ A

(X5 + -+ X))

lies inQpt"' (V). For¢e S, (X; = ¢; ' X;, and so{w = ¢~®w. This shows that

H"(V,C)_, C F"" @1 H"(V,C).
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Since(—a) — 1 =n + 1 — (a), we can rewrite this inclusion as
H™(V,C)y C F@-1H™(V,C).

Thus H*(V,C), is of bidegree(p,q) with p > (a) — 1. The complex conjugate of
H"(V,C),is H*(V,C)_,, and is of bidegreég, p). Hence

n—p=q>(—a)—1l=n+1-(a)
and sop < (a) — 1. O

Recall thatd 5 (V )ja) = @arcja) H5(V)ar; thus (7.4) shows that’; (V) has dimension
1 overQ[a] when nog; is zero and otherwise

Hg (V) N Hg(V)prim = 0.

COROLLARY 7.7. Leta be such that na; = 0. ThenHg(V), is purely of typg(3, 5) if
and only if(ua) is independent of.

PROOF. As (a) + (—a) = n + 2, (ua) is constant if and only ifua) = 5 + 1 for all
u € (Z/dZ)*, i.e., ifand only if(a’) = % + 1 for all a’ € [a]. Thus the corollary follows
from the proposition. ]

COROLLARY 7.8. If no a; = 0 and (ua) is constant, ther©%; (V) has dimension one
overQla].

PrRoOF. This follows immediately from (7.7) since all Hodge cyclesdrare absolutely
Hodge (8.27). ]

The action of Gal(Q/k) on the étale conomology

Letp be a prime ideal of not dividingd, and letF, be the residue field gf. Thend|q — 1
and reduction modulp defines an isomorphism, — F; whose inverse we denoteFix
ana = (ao, . .., an1) € X(S) with all a; nonzero, and define a character F* — 14 by

gi(x) = t(x-0/d)ai g £,

As[]e =1, []&i(z;) is well-defined forx = (xg: ... : z,41) € P"(F,), and we define
a Jacobi sum »
J(eo, - venp) = (1) > [leai(w)
xePn(Fq)i=0

where P" is the hyperplané_X; = 0 in P"*!. (As usual, we set;(0) = 0.) Let be a
nontrivial additive charactep: F, — C* and define Gauss sums

9(p,ai, ) = = 3 ei(x)(x)

z€Fy
n+1

g(p,a) = ¢ @ :F[OQ(R ai, ).
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LEMMA 7.9. The Jacobi sund (s, ..., e,41) = ¢ 1g(p, a).

PROOE We have

n+1

¢™g(p,a) = T (— X eilx)v(2))

1=0 z€F,
n+1

1 2 (Tat) o(Sa) x= G

xeFy+? \i=0

2 % (Tatewngs)).

x€PHL(Fg)aeFy \i=0

We can omit the\ from [ ] ¢;(Az;), and so obtain

Q<a>9(P>a) =(=1"Y ((jljol&(%) > 1/}(/\2%))) :

x AEFY
Since

ZH ce) =TT ( 5 ai<x>>) 0,

i=0 \ z€F,

we can replace the sum overe [ by a sum oven € F,. From

Zx\quwO\in) - { 0 if Y ax;#0

we deduce finally that

n+1

q<a>g(Pa a) = (_1)nqzxepn(ﬂ«"q)( [Tei(z:))

=0
=qJ(g0y---,En)-

]

Note that this shows thatp, a) is independent of» and lies ink.
Let ¢ be a prime such thdtt d, p 1 ¢, andd|¢ — 1. ThenQ, contains a primitivel" root
of 1 and so, after choosing an embedding- Q,, we can assumgp,a) € Qy.

PROPOSITION7.10. Let F, € Gal(Q/k)? be a geometric Frobenius elementpof d; for
anyv € H"(Vet, Q¢)a,
Fyo =¢®""g(p, a)v.

PROOF. Asp 1 d, V reduces to a smooth variety, overF, and the proper-smooth base
change theorem shows that there is an isomorptirl/, Q,) — H"(V,, Q,) compat-
ible with the action ofS and carrying the action of, on H"(V,Q,) into the action of
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the Frobenius endomorphishrob on H"(V,, Q;). The comparison theorem shows that
H™(V,Qy). has dimension, and so it remains to compute

Te(Fy| H™(V, Qr)a) = Tr(Frob [H"(Vy, Qe)a)-
Letr: V, — P" be as before. Then
H"(Vy, Qe)a = H"(P", (1.Q0)a),
and the Lefschetz trace formula shows that

(—=1)" Tr(Frob |[H"(P", (m.Qy)a) = ;(F) Tr(Frob |(7.Q¢)a)x) (2)
xepPn
where((7.Qy)a)x is the stalk of(7.Qy), atx.
Fix anx € P"(F,) with no z; zero, and leyy € V,(F,) map tox; thusy? = =, all 4.
Thenr1(x) = {Cy | ¢ € S}, and(m.Qy ) is the vector spac®] .
If ¢ denotes the arithmetic Frobenius automorphism (i.e., the generater z¢ of
Gal(F,/F,)), then

and so -
Frob(y) = ny wheren = (... : t(z;* ): ...) € S.

ThusFrob acts on(7.Qy)x asn, and forv € ((7.Qy¢)a)x, We have

n+1

Frob(v) =nv=n*, n*= [[ei(x:) € k C Qq.
i=0

Consequently,
n+1

Tr(Frob |((7.Q¢)a)x) = Zl;[()é?z(xz)

If somex; = 0, then both sides are zeron(Qy), is ramified over the coordinate hyper-
planes), and so, on summing overand applying2) and (7.9), we obtain the proposi-
tion. O

COROLLARY 7.11 Leta be such that na; is zero and(ua) is constant. Then, for any
v e H"(Ve, Qr)a(),
va = g<p7 a)v.

PROOF. The hypotheses animply that(a) = 7 +1. Therefore, when we write = v,®1
with Vo € H”(Vet, Q@)a,

FpU = FpUO @ Fpl = q%g@’a)vo & q%n = g(p,a)v.
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Calculation of the periods

Recall that that thé-function is defined by

['(s) :/ e't—, s>0,
0 t

and satisfies the following equations
[(s)[(1 —s) = w(sinms)™*
['(1+4 s) = sI'(s).

The last equation shows that, ferc Q*, the class of'(s) in C/Q* depends only on the
class ofs in Q/Z. Thus, fora € X (5), we can define

n+1

I'(a) = (2mi)~® 1‘[0 (%) e C/Q*.
Let V° denote the open affine subvarietylofwith equation
Va4 4Y2, =—1 (soY; = X,/X).
Denote byA then-simplex
{(tr,.. . tpy1) R |, >0, St; =1}
and definery: A — V°(C) to be
(t1, .. tpe1) — (etlé, . ,Etéﬂ), e=erm = 1 ti% > 0.

LEMMA 7.12 Letay,...,a, 1 be positive integers such thata; = 0 mod d. Then

dY; dy, 1 ntl o ra;
yo . yenfla A8 o D g e F<_Z>
/00<A> 1 n+1 }/1 Yn 277'@( 5 )Zl;%

where¢ = 2m/4,

PROOF. Write wy for the integrand. Then

/ wo = / oy (wo)
oo(A) A

1 1 dt dt,,

= / (eti)® ... (5t;§+1)a”+1d_"—1 Ao N —

A t1 tn
dt dt,,
:c/tﬁl---ti’fft—l/\...A—
A 1 n

whereb; = a;/d andc = e Fan+1(1)nOn multiplying by

(1 =bp) =T(L4by+ - +byp1) = / e it gy
0
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we obtain

dt dt,,
(1 — bo) / wo = c/ / e bbby -tnﬁft—l Ao A=At
n

If, on the inner integral, we make the change of variables t¢;, the integral becomes
ds ds,
/ / et S A LA R AL
S1 Sn

where
At) ={(s1,-- - 8ng1) | 80 20, > s;i =t}

We now lett = > s;, and we obtain

- 1+bp ds; ds, i1
F(l—bo/ w—c/ / B LU e iy NS il
S1 Sn+t1

= CanrlF(bl) Ce F(anrl)

The formula recalled above shows that

I'(1 —bg) = 7/ (sinmwby)I'(by),

and so
in b
(1 —by) t =g il I (bo) mod Q*
1 omibo,2 ewibo _ e—m’bg
= —e ™ — | T'(b
¢ 2 (bo)
1 —2ag
= 27m(l —¢ )T(bo).
The lemma is now obvious. O

The group algebr®][S] acts on th&)-space of differentiable-simplices inV/(C). For
ac X(S)andg; = (1,...,&,...) (€ = ¥/ in the:™ position), define

o= 7ﬁ:(l — &) tao(A) C VO(C)

whereo, andA are as above.

PROPOSITION7.13 Leta € X(.S) be such that nae; is zero, and let* be the differential

a’ a, 1dY1 dYn

on V', wherea, represents-a;, anda; > 0. Then
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(@) §w" = _aw";
n+1
(0) [, =g [L (1= €)T (=)

PROOF. (@) This is obvious since

(&) 7y
wi-(g)

J= ] 0

= ﬁ(l e [ W
a0 -er ().

277'2@ 0

(b)

REMARK 7.14. From the Gysin sequence
(C~) H"?(V\V°C)— H"(V,C)— H"(V°,C) — 0
we obtain an isomorphism
H"(V,C)prim — H"(V?,C),
which shows that there is an isomorphism
Hin (V/k)pim — Hig(V°/k) = T(V°,Q") /dl(Ve, Q™).

The clasgw?] of the differentialw® lies in Hj;(V/k)a. Correspondingly, we get @>
differentialn-form onV(C) such that

(a) the clasétw] ofw in H}x (V/C) lies in HQR(V/k)a, and

(b) [,w= 2;H( — &) (—%), whereo = H(l—&) a0(A).

Note that, if \Z/;e regard” as a variety ove@, then[ | even lies inHz (V/Q).
The theorem

Recall that fora € X (.5), we set

n+1

[(a) = (2m)" @ IT(%) (e C/QY)

=0
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and forp a prime ofk not dividingd, we set

n+1

g(p,a) =g @ [[()g(p, ai, )

g, 0) = = 2t (+7) v(a)

z€lF,
whereq is the order of the residue field pf

THEOREM7.15 Leta € X(5) have nay; = 0 and be such thafua) = (a) (=n/2+1)
forallu € (Z/dZ)*.

(a) ThenI'(a) € Q and generates an abelian extensiorkof Qe ).

(b) If F, € Gal(Q/k)? is the geometric Frobenius elementathen

Fy(D(a)) = g(p, )L (a).

& T(a)/7T(a) lies in k; moreover, for anyu €

(c) For any 7 € Gal(Q/Q), a(7)
(Z/dz)",
Tu(Aa(T)) = Aua(T)
wherer, is the element ofal(k/Q) defined byu.

PROOF. Chooses € HZ(V) andw as in (7.14). Then all the conditions of (7.2) are
fulfilled with « the charactea. Moreover, (7.14) and (7.11) show respectively that

n+1

P(o,w) = &()T(~a), wheret(a) = [[(1 - &),

=0
and
X(Fp) = g(p,a)~".
Asé&(a) € k, (7.2) shows thal (—a) generates an abelian algebraic extensioharid that

Fl(~a) = g(p,a) 'T(-a).

It is clear from this equation tha{p, a) has absolute valuk(in fact, it is a root ofl); thus

g(paa)_l - g(pva) - g<p7 _a>'

This proves (a) and (b) fora and hence foa.
To prove (c) we have to regatd as a variety ove@). If S is interpreted as an algebraic
group, then its action ol is rational overQ. This means that

T((x) = 7(O7(x), 7€ GalQ/Q), (€S5@Q), xeV(Q
and implies that

T(¢y) =7(O7(y), TEGa(Q/Q), (€S5Q), ve V).
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ThereforeGal(Q/Q) stabilizesC%y (V) and, as this is a one-dimensional vector space
overQJ[a], there exists for any € C%;;(V ) a crossed homomorphism Gal(Q/Q) —
Ql[a]* such thatr(y) = A(7)v for all 7. On applying the canonical ma@} (V). —
(Cag(V) @ k) ) 10 this equality, we obtain

T(Y®1) =AN1)*(y®1).

We takey to be the image of ® (2mi) /2 € HZ(V)(—2) in C%y (V). Then (cf.
7.3),(y® 1)gr = P(o,w) '], if [w]is asin (7.14). Hence

Plow) _ . &@)

AT)* = TP(o,w)

On comparing

and using that

one obtains (c) of the theorem. O

REMARK 7.16. (a) The first statement of the theorem, tlﬁaa) is algebraic, has an ele-
mentary proof; see the appendix by Koblitz and OguBétigne 197922

(b) Part (b) of the theorem has been proved up to sign by Gross and Koblitz (1979, 4.5)
usingp-adic methods.

REMARK 7.17. Let I, be the group of ideals df prime tod, and consider the character

a=[Ip" — g(a,a) L [[g(ps,a)": I — k*.

Whena satisfies the conditions of the theorem, then this is an algebraic Hecke character
(Weil 1952, 1974, see alseligne 197286) . This means that there exists an ideal

of £ (dividing a power ofd) and a homomorphismag: £* — k> that is algebraic (i.e.,
defined by a map of tori) and such that, forale k> totally positive and= 1 mod m,
g((z),a) = xag(x). There is then a unique character

Xa: Gal(Q/k)® — k>
such thaty.(F},) = ¢(p, a) for all p prime tod. Part (b) of the theorem can be stated as

o(T(a)) = xa(0)l(a), allo € Gal(k/k).
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(There is an elegant treatment of algebraic Hecke characi8esie 1968Chapter II. Such
a character with conductor dividing a moduluscorresponds to a charactewof the torus
Sm (loc. cit. p 1I-17) . The mafyagis

S T, Sy 5 kX,

One defines fromy a charactery,, of the ickle class group as in (loc. cit., Il 2.7).
Weil's determination ofya.q shows thaty., is of finite order; in particular, it is trivial

on the connected component of thetliel class group, and so gives rise to a character
Xa: Gal(Q/k)® — k*.)

Restatement of the theorem

Forb € d~'Z/Z, we write (b) for the representative @fin d~'Z with 1 < (b) < 1. Let
b = >"n(b)d, be an element of the free abelian group generated by the S&Y7Z ~. {0},
and assume that n(b)(ub) = cis an integer independent ofc Z/dZ. Define

Letp be a prime of, not dividingd, and letF, be the residue field at For a non-trivial
additive character df,, define

g(p,b) = %Hg(p,b,w)”(b), whereg(p, b, ¢) = — >tz )y (x).
b

z€lFy

As in (7.17),p — g¢g(p,b) defines an algebraic Hecke characterkond a character
Yb: Gal(Q/Q) — C* such thatyy,(F,) = g(p,b) for all p 1 b.

THEOREM7.18 Assumé = > n(b)d, satisfies the condition above.
(a) Thenl'(b) € k2, and for allo € Gal(Q/k)?,

oT(b) = xb(0)T(b).

(b) For 7 € Gal(Q/Q), let \p(7) = I'(b)/7T'(b); then \p(7) € k, and, for anyu €
(Z/dz)",
Tu(Ab (7)) = Aun (7).
PROOF. Suppose first that(b) > 0 for all b. Letn +2 = > "n(b), and leta be an(n + 2)-
tuple in which eachy € Z/dZ occurs exactly:§ times. Writea = (ao, . .., a,). Then

Sa; = d(Xn(b)b)
=dc mod d
=0,
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and soa € X (S). Moreover,

(ua) &

> (uai) = n(b)(ub) = ¢

SHN

for all u € Z/dZ. Thus(ua) is constant, and = (a). We deduce thaF(a) = I'(b),
g(p,a) = g(p,b), andya = x»- Thus, in this case, (7.18) follows immediately from (7.15)
and (7.17).

Let b be arbitrary. For somé&/, b + Nb, has positive coefficients, whelg = > 4.
Thus (7.18) is true fob + Nby. Since

['(b; +by) =T'(b))(by)  mod Q*

and
g(pabl + b2) = g<p7b1)g(p7b2)

this completes the proof. O

REMARK 7.19. (a) Part (b) of the theorem determinBg:b) (up to multiplication by a
rational number) starting frofi(b).

(b) Conjecture 8.11 dbeligne 1979as a special case of part (a) of the above theorem.
The more precise form of the conjecture, ibid. 8.13, can be proved by a modification of the
above methods.
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8 Motives for absolute Hodge cycles

Z3Throughout this sectior; will denote a field of characteristic zero with algebraic closure
k and Galois groufp’ = Gal(k/k). All varieties will be projective and smooth, and, for
X a variety (or motive) ovek, X denotesX ®; k. We continue with the notations of the
previous sections. For exampletif= C, then Hg(X) denotes the graded vector space
DHL(X).

Complements on absolute Hodge cycles

For X a variety overk, C’,;(X) denotes th&)-vector space of absolute Hodge cycles on
X (see§2). WhenX has pure dimension, we write

Morh (X, Y) = CiiP(X x Y).
Then

Morh (X, Y) € H*" (X x Y)(p+n)
= & H(X)oHY)[p+n)

r+s=2n+2p
= @ H'X)" @ H(Y)(p)
s=r+2p

= @Hom(HT(X), H™ 2 (Y)(p)).

The next proposition is obvious from this and the definition of an absolute Hodge cycle.

PROPOSITION8.1. An elemenf of Morh;(X,Y) gives rise to
(a) for each prime/, a homomorphisnf,: H,(X) — H,(Y)(p) of graded vector spaces
(meaning thatf, is a family of homomorphismg : H; (X) — H, ™ (Y)(p));
(b) a homomorphisnfr : Har(X) — Har(Y')(p) of graded vector spaces;
(c) for eacho: k — C, a homomorphisnyf,: H,(X) — H,(Y)(p) of graded vector
spaces.
These maps satisfy the following conditions
(d) forall v € T" and prime¥, v f, = f;
(e) far is compatible with the Hodge filtrations on each homogeneous factor;
() for eacho: k£ — C, the mapsf,, f,, and fqg correspond under the comparison
isomorphisms{l).
Conversely, wher is embeddable if®, a family of mapsf,, fqr as in (a), (b) arises
fromanf € Mork,(X,Y) if

— (f¢) and fqr satisfy (d) and (e) respectively, and

— for everyo: k — C, there exists arf,, such that(f,), far, and f, satisfy
condition (f).



8 MOTIVES FOR ABSOLUTE HODGE CYCLES 64

Moreover,f is unique.
Similarly, ay € C357"(X x X) gives rise to pairings
Y H?(X) x H3(X) — Q(—r).
PROPOSITIONS.2. On every varietyX there exists a) € C34™* (X x X) such that,

foreveryo: k — C,
¢2: H;(Xv ]R) X H;(Xu R) - R(_T)
is a polarization of real Hodge structures.
PROOF. Letn = dim X. Choose a projective embedding.®f and letL be a hyperplane
section ofX. Let/ be the class of. in H%(X)(1), and write/ also for the mapd (X) —
H(X)(1) sending a class to its cup-product withAssumeX is connected, and define the
primitive cohomologyof X by
H™(X)prim = Ker(¢* "1 H'(X) — H*™ " 2(X)(n —r + 1)).
The hard Lefschetz theorem states that
T HY(X) — HP (X)) (n— )
is an isomorphism for < n; it implies that
H'(X) = @ 0 H™ 2 (X) (=5 ) prim-
s>r—m,s>0

Thus, anyr € H"(X) can be written uniquely = > ¢%(z,) with 5 € H" (X )(—$)prim -
Define

Yo — Z(_1)(T—2s)(7'—25+1)/2£n—r+sxs c H2n—T<X)(n i T‘).
Thenz — *z: H"(X) — H?*"(X)(n — r) is a well-defined map for each of the three
cohomology theorieg-adic, de Rham, and Betti. Proposition 8.1 shows that it is defined
by an absolute Hodge cycle (rather, the ntapX) — H(X)(n — r) thatisz — *z on H"
and zero elsewhere is so defined). We takeéo be

H'(X)® H'(X) 2L g(X) @ H " (X)(n — 1) — H™(X)(n — 1) 5 Q(=r).

Clearly it is defined by an absolute Hodge cycle, and the Hodge-Riemann bilinear rela-
tions (sedMVells 198() 5.3) show that it defines a polarization on the real Hodge structure
H(X,R) for eacho: k — C. O

PROPOSITIONS.3. For anyu € MorS (Y, X), there exists a unique’ € MorQy;(X,Y)
such that
Yx(uy,x) =y (y,v'z), ze€ H(X), yeH(Y)
wherey y and)y are the forms defined in (8.2); moreover,
Tr(uou') =Tr(u' ou) € Q
Tr(uow') >0 ifu#0.
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PROOF. The first part is obvious, and the last assertion follows from the fact that the
andyy are positive forms for a polarization HiODy (the Tannakian category of real Hodge
structures). O

Note that the proposition show thaforS;; (X, X) is a semisimpleQ-algebra (see
Deligne and Milne 19824.5).

Construction of the category of motives

Let V, be the category of (smooth projective, not necessarily connected) varieties over
k. The categoryCV is defined to have as objects symbalsX), one for each object
X € ob(Vg), and as morphisms

Hom (h(X), h(Y)) = Mori4(X,Y).

There is a map
Hom(Y, X)) — Hom(h(X),h(Y))

sending a homomorphism to the cohomology class of its graph which nhakés a con-
travariant functov;, — CV;,.

ClearlyCV, is aQ-linear category, antd(X LIY) = h(X) @ h(Y'). There is &Q-linear
tensor structure oV, for which

—hW(X)RWY)=h(X xY),

— the associativity constraintis induced by x Y) x Z — X x (Y x Z),
— the commutativity constraint is induced byx X — X x Y, and

— the identity object igi(point).

The false category oéffective (or positive motivesl\?l,j is defined to be the pseudo-
abelian (Karoubian) envelope 6¥,.. Thus, an object d1;" is a pair(M, p) with M € CV,
andp an idempotent ifind (M), and

Hom((M,p), (N.q)) ={f: M = N | fop=qof/~} 3)
wheref ~ 0if fop=0=gqgo f. Therule
(M,p) ® (N,q) = (M ®N,p®q)

defines aQ-linear tensor structure dii;, andM +— (M, id): CV,, — M; is a fully faithful
functor which we use to identif¢V, with a subcategory o'ffl,c+ With this identification,
(M,p) becomes the image of: M — M. The categoryl\'/l,j is pseudo-abelian: any
decomposition ofd,; into a sum of pairwise orthogonal idempotents

idM:€1+"'+€m
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corresponds to a decomposition
M=M®&- - &M,

with e;| M; = id,,,. The functorCV, — I\'/I,j is universal for functors fromtV, to pseudo-
abelian categories.

For anyX € ob(Vy), the projection mapg”: H(X) — H"(X) define an element of
Mor% (X, X) = End(h(X)). Corresponding to the decomposition

idaor) =p" +p' 7+
there is a decompostion (MZ)
h(X) = h(X) +hH(X) + h3(X) + -

This grading of objects afV,, extends in an obvious way to objects\f , and the Kinneth
formulas show that these gradings are compatible with tensor products (and therefore sat-
isfy Deligne and Milne 19825.1a).

Let L be the Lefschetz motive?(P!). With the notations ofl, H(L) = Q(-1),
whence it follows that

Hom(M, N) = Hom(M ® L, N ® L)

for any effective motived/ and/N. This means that’ — V' ® L is a fully faithful functor
and allows us to invert.

DEFINITION 8.4. Thefalse categonyM),, of motivesis defined as follows:
(a) an object ofM, is a pair(M, m) with M € ob(M;") andm € Z;
(b) Hom((M,m),(N,n)) = Hom(M @ L""™ N ® L"™"), r > m,n (for differentr,
these groups are canonically isomorphic);
(c) composition of morphisms is induced by thaﬂ\'ﬂj.
This category of motives i®-linear and pseudo-abelian and has a tensor structure

(M,m) @ (N,n) = (M & N,m +n)
and grading
(M, m)r _ Mr—2m.

We identifyM;” with a subcategory dfl, by means ta\/ — (M, 0). TheTate motiveT is
L~' = (1,1). We abbreviate/ ® T%™ = (M, m) by M (m).

We shall see shortly tha¥l, is a rigid abelian tensor category, aRdd(1) = Q. It
is not however a Tannakian category becauseXfo ob(Vy), rank(h(X)) is the Euler-
Poincaé characteristicy (—1)" dim H"(X), of X, which is not necessarily positive. To
remedy this we modify the commutativity constraint as follows: let

vV MQNISNQM, =&, ¢ M"@N*SN M
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be the commutativity constraint dvi,,; define a new commutativity constraint by
V:MONSNM, o=y, "=/ (=1 (4)

ThenM,, with ¢ replaced byy, is thetrue categoryM, of motives.

PROPOSITIONS8.5. The categorM, is a semisimple Tannakian category oggr

PROOF. As we observed above, Proposition 8.3 implies that the endomorphism rings of
the objects oM, are semisimple. Because they are also finite dimensional@wee may
apply the next lemm# O

LEMMA 8.6. LetC be aQ-linear pseudo-abelian category such that, for all obje&tsy,
Hom(X,Y) is finite dimensional an@nd(X) is semisimple. Thef is semisimple (and
hence every additive functor froto an abelian category is exact).

PrRoOOF. This is Lemma 2 of Jannsen, U., Motives, numerical equivalence, and semi-
simplicity. Invent. Math. 107 (1992), no. 3, 447-452. O

The following theorem summarizes what we have essentially have shownpout

THEOREMS8.7. (a) Letw be the grading oMy; then (M, w, T') is a Tate triple overQ.

(b) There is a contravariant functdr: V,, — My; every effective motive is the image
(h(X),p) of an idempotenp € End(h(X)) for someX € ob(V}); every motive is of the
form M (n) for some effectivé/ and some: € Z.

(c) For all varieties X, Y with X of pure dimensiom,

CRi " "(X x Y) = Hom(A(X)(r), h(Y)(s));

in particular,
Ciu(X xY) = Hom(h(X), h(Y));

morphisms of motives can be expressed in terms of absolute Hodge cycles on varieties by
means of3) and (8.4b).

(d) The constraints oM, have an obvious definition, except that the obvious commu-
tativity constraint has to be modified ) (

(e) For varietiesX andY’,

(X UY)=hX)®h)
X xY)=hX)®h(Y)
h(X)Y = h(X)(m) if X is of pure dimension.
(f) The fibre functorgd,, Hqr, and H, define fibre functors oM,; these fibre functors

define morphisms of Tate tripl&&. — T,, Tqr, T (Se€eDeligne and Milne 19825.2b); in
particular, H(T") = Q(1).
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(9) Whenk is embeddable i, Hom(M, N) is the vector space of families of maps

fer H,(M) — Hy(N)
dei HdR(M) — HdR(N)

such thatfyr preserves the Hodge filtrationf, = f, forall v € I', and foranyo: k — C
there exists a mag,: H,(M) — H,(N) agreeing withf, and f4r under the comparison
isomorphisms.

(h) The category, is semisimple.

(i) There exists a polarization o, for which7(h" (X)) consists of the forms defined
in (8.2).

Some calculations

According to (8.7g), to define a mag — N of motives it suffices to give a procedure
for defining a map of cohomology grougé(M) — H(N) that works (compatibly) for
all three theories: Betti, de Rham, asféhdic. The map will be an isomorphism if its
realization in one theory is an isomorphism.

Let G be a finite group acting on a variety. The group algeb&| acts onk(X ), and
we defineh(X)¢ to be the motiveh(X), p) with p equal to the idempotent

deGg
(G:1)°

Note thatH (h(X)%) = H(X)¢ for any of the standard cohomology theories.

PROPOSITION8.8. Assume that the finite grou@ acts freely onX, so thatX /G is also
smooth; therh(X/G) = h(X)°.

PROOF. Since cohomology is functorial, there exists a nfédpX/G) — H(X) whose
image lies inH (X)¢ = H(h(X)%). The Hochschild-Serre spectral sequence

H'(G,H*(X)) = H"(X/G)

shows that the ma@/ (X/G) — H(X)“ is an isomorphism for, say, thieadic cohomol-
ogy, becausd{"(G,V) = 0, r > 0, if VV is a vector space over a field of characteristic
zero. ]

REMARK 8.9. More generally, iff: Y — X is a map of finite (generic) degrecbetween
connected varieties of the same dimension, then the composite

HX) L B L H(X)
is multiplication byn; there therefore exist maps
h(X) — h(Y) — h(X)

with compositen, andh(X) is a direct summand df(Y").
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PROPOSITION8.10. Let E be a vector bundle of rank: + 1 over a variety.X, and let
p: P(E) — X be the associated projective bundle; then

h(P(E)) =h(X)Dh(X)(-=1) D - dh(X)(—m).

PROOF. Let~ be the class iff?(P(E))(1) of the canonical line bundle di(E), and let
p*: H(X) — H(P(FE)) be the map induced by The map

(oo em) = D Py’ HX) @ -+ @ H(X)(=m) — H(P(E))
has the requisite properties. ]

PROPOSITION8.11 LetY be a smooth closed subvariety of codimensiamthe variety
X, and let X’ be the variety obtained frolX by blowing upY’; then there is an exact
sequence

0— h(Y)(—c) = h(X)®h(Y)(-1) = h(X") =0

whereY” is the inverse image df.
PrROOF. From the Gysin sequences

- —— H72(Y)(—¢) —— H"(X) —— H(X\Y) — --.

| | |

- —— H72(Y')(-1) —— H"(X') —— H'(X'\Y') —— --.

we obtain a long exact sequence
= H2(Y) (=) = H'(X) @ H2(Y')(-1) — H'(X') — -

But Y is a projective bundle ovér, and soH"2(Y)(—c) — H"2(Y"')(—1) is injective.
Therefore, there are exact sequences

0— H *Y)(—c) - H'(X)® H *Y')(~1) — H(X') — 0,
which can be rewritten as
0—-HY)(—c) = HX)®HY")(-1) - HX')—0

We have constructed a sequence of motives, which is exact because the cohomology func-
tors are faithful and exact. O

COROLLARY 8.12 With the notations of the proposition,

h(X") =h(X)® CE_'éh(Y)(—r).
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c—1
PROOF. Proposition 8.10 shows thatY”’) = @h(Y)(r). N
r=1

PROPOSITION8.13 If X is an abelian variety, theh(X) = A(R'(X)).

PROOF. Cup-product defines a maf(H'(X)) — H(X) which, for the Betti cohomol-
ogy, say, is known to be an isomorphism. (B&@mnford 1970 1.1.) O

PROPOSITION8.14 If X is a curve with Jacobiad, then
MX)=1ah'(J)s L.

PROOF. The mapX — J (well-defined up to translation) defines an isomorphighi./) —
HY(X). O
PROPOSITION8.15 Let X be a unirational variety of dimensio#h < 3 over an alge-
braically closed field; then

(d=1) h(X)=1aL;

(d=2) h(X)=1@rLe L? somer € N;

(d=3) hX)=1@rLaeh'(A)(-1)erLl*® L* somer €N,
whereA is an abelian variety.

PROOF. We prove the proposition only fat = 3. According to the resolution theorem of
Abhyankar 1966there exist maps

PEX L X
with v surjective of finite degree anda composite of blowing-ups. We know
MP)=1aLol*aL?
(special case of (8.10)). When a point is blown up, a mofive L? is added, and when a
curveY is blown up, a motivel @ h!(Y)(—1) & L? is added. Therefore,
h(X)21@sLo M(-1)®sL>® L?
where M is a sum of motives of the forrh*(Y'), Y a curve. A direct summand of such
an M is of the formh!(A) for A an abelian variety (see 8.21 below). A&X) is a direct

summand ofi(X’) (see 8.9) and Poindaduality shows that the multiples &f and L3
occurring inh(X) are the same as thoselofind1 respectively, the proof is complete[]

PrRoOPOSITION8.16 Let X denote the Fermat hypersurface of dimensicand degreel:
T¢+T8+ -+ T2, =0.
Then,
B(XE) @ dh"(B") = B(X 0 x XY @ (d — 1A (X2)(-1)
wherey,, the group ofi™ roots of1, acts onX} ' x X} according to
Cltor -t tuis0: 512 82) = (fo: ...t tniCS0: (510 Cs)
PROOF. SeeShioda and Katsura 1979.5. [
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Artin Motives

Let V! be the category of zero-dimensional varieties dveand letCV) be the image of
VY in M. The Tannakian subcatego of M, generated by the objects 6% is called
the category ofEmil) Artin motives.

For anyX in ob(VY), X (k) is a finite set on whicl acts continuously. Thu®*® is a
finite-dimensional continuous representatiom’of¥When we regard, in an obvious way, as
a (constant, pro-finite) affine group scheme ae®@X® € Repy(I'). ForX,Y € ob(V9),

Hom(h(X),h(Y)) L CY4(X x Y)
(QX(E)XY(E))F

= Homp (QX(E), QY@> .

Thus, ~

h(X) — Q¥®: CV] — Repg(I)
is fully faithful, and Grothendieck’s formulation of Galois theory shows that it is essentially
surjective. Therefore( V! is abelian and? = CV). We have shown:

PROPOSITIONS.17. The category of Artin motived? = CVY. The functor(X) — QX®
defines an equivalence of tensor categohgs— Repg(T').

REMARK 8.18 Let M be an Artin motive, and regatd as an object oRepq (I'). Then

H,(M) = M (underlying vector space) for amy: £ — C;
Hy(M) = M @q Q, as al-module;

Har(M) = (M ®q k)".
Note that, ifM = h(X) whereX = Spec(A), then
Her(M) = (Q*® @ B)F = (A@, B)F = A.

REMARK 8.19. The proposition shows that? is equivalent to the category of sheaves of
finite-dimensional)-vector spaces on thetale siteSpec(k)et.

Effective motives of degred.

A Q-rational Hodge structureis a finite dimensional vector spateoverQ together with
areal Hodge structure dn® R whose weight decomposition is defined o@erLet Hodg
be the category of-rational Hodge structures. polarizationon an objectl” of Hodg
is a bilinear pairing): V' — Q(—n) such that) ® R is a polarization on the real Hodge
structureV ® R.

Let Isab, be the category of abelian varieties up to isogeny dverThe following
theorem summarizes part of the theory of abelian varieties.
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THEOREM 8.20(RIEMANN). The functorH} : Isabc — Hodg is fully faithful; the essen-
tial image consists of polarizable Hodge structures of weight

Let M;! be the pseudo-abelian subcategoryMof generated by motives of the form
h'(X) for X a geometrically connected curve; according to (8. My, can also be de-
scribed as the category generated by motives of the fdih) for J a Jacobian.

PROPOSITION8.21 (a) The functorh!: Isab, — M,, factors throughMi* and defines an
equivalence of categories,
Isab, = Mt

(b) The functorH!: M{' — Hodyg is fully faithful; its essential image consists of
polarizable Hodge structures of weight

PROOF. Every object oflsab,, is a direct summand of a Jacobian, which shows tHat
factors throughiM'. Assume, for simplicity, that is algebraically closed. Then, for any
A, B € ob(lsaby),

Hom(B, A) € Hom(h'(A), h'(B)) € Hom(H,(A), Hy(B)),

and (8.20) shows thalom (B, A) = Hom(H,(A), H,(B)). Thush! is fully faithful and
(aslsaby is abelian) essentially surjective. This proves (a), and (b) follows from (a) and
(8.20). O

The motivic Galois group

Let k be a field that is embeddable@ For anys: k — C, we defineG(o) = Aut®(H,).
Thus,G(0) is an affine group scheme ov@r andH,, defines an equivalence of categories
M; = Repg(G(0)). Becauses(o) plays the same role fov, asI' = Gal(k/k) plays for
M?, it is called themotivic Galois group.

PROPOSITION8.22 25(a) The groupG(o) is a pro-reductive (not necessarily connected)
affine group scheme ovér, and it is connected it is algebraically closed and all Hodge
cycles are absolutely Hodge.

(b) Letk C k' be algebraically closed fields, let: k' — C, and letoc = ¢’|k. The
homomorphisnt7(¢’) — G(o) induced byM, — M. is faithfully flat.

PROOF. (a)LetX € ob(M), and letCx be the abelian tensor subcategoryvbfgenerated
by X, XV, T, andT". LetGx = Aut®(H,|Cx). As Cx is semisimple (see (8.5)) x
is a reductive groupieligne and Milne 19822.23), and s@: = lim G is pro-reductive.
If k& is algebraically closed and all Hodge cycles are absolutely Hodge, then (ciG3.4)
is the smallest subgroup éfut(H,(X)) x G,, such tha{ Gx)c contains the image of the
homomorphismu: G,,c — Aut(H,(X,C)) x G,,c defined by the Hodge structure on
H,(X). AsIm(u) is connected, so also (sx.

(b) According to (2.9)M; — M, is fully faithful, and so Deligne and Milne 1982
2.29) shows that(0’) — G(o) is faithfully flat. N
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Now letk be arbitrary, and fix an embedding & <— C. The inclusionM? — M), de-
fines a homomorphism: G(o) — I" becausé = Aut®(H,|M?) (see 8.17), and the func-

tor My, — My defines a homomorphisin G°(c) — G(o) whereG°(o) 4 Aut®(H,|Mz).
PROPOSITION8.23 (a) The sequence

1—>G°(0)1>G(0)1>F—>1

is exact.

(b) If all Hodge cycles are absolutely Hodge, then the identity compone®itof is
G°(0).

(c) Foranyr € I, 77 %(r) = Hom®(H,, H,,), regarding H, and H, as functors on
M.

(d) For any primé/, there is a canonical continuous homomorphigm I' — G(0)(Qy)
such thatr o sp, =id.

PROOF. (a) AsM; — My is fully faithful, 7 is surjective Deligne and Milne 19822.29).
To show thati is injective, it suffices to show that every motivgX ), X € Vy, is a
subquotient of a motivéL(Y') for someX’ € Vi; but X has a modelX, over a finite
extensionk’ of k, and we can take&(’ = Resy//, Xo. The exactness &t(o) is a special
case of (c).

(b) This is an immediate consequence of (8.22a) and (a).

(c) LetM, N € ob(My). ThenHom (M, N) € ob(Repg(T')), and so we can regard it as
an Artin motive ovelk. There is a canonical map of motivEsm (M, N) — Hom(M, N)
giving rise to

H,(Hom(M, N)) = Hom(M, N) Hy Hom(H,(M), Hy(N)) = H,(Hom(M, N))
Let7 € I'; then
HO'(M) = HU(M) = HTO'(M) = HTU(M)

and, forf € Hom(M, N), H,(7) = H.o(7f).
Letg € G(R); forany f: M — N in My, there is a commutative diagram

H,(M,R) > H,(M,R)
lHo(f) lHo(f)
H,(N,R) —*~ H,(N,R).

Let 7 = 7(g), so thaty acts onHom(M, N) C Hom(M, N) as7. Then, for anyf: M —
N in ME
H,(M,R) - H,(M,R) —— H,,(M,R)
lHo(f) lHa(Tflf) le(f)
H,(N,R) - H,(N,R) —— H.,(N,R).
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commutes. The diagram shows that: H,(M, R) — H,,(M, R) depends only od/ as
an object ofM;.. We observed in the proof of (a) above tih&} is generated by motives
of the form M, M € M,. Thusg defines an element dfiom®(H,, H..,)(R), where
H, and H,, are to be regarded as functors bly. We have defined a map!(7) —
Hom®(H,, H.,), and it is easy to see that it is surjective.

(d) After (c), we have to find a canonical elementtefm®(H, (o M), H,(to M)) de-
pending functorially oM/ € M. Extendr to an automorphisrit of C. For any variety
X overk, there is a~'-linear isomorphisny X «— 70X which induces an isomorphism
7 Hy(oX) S Hy(roX). O

The “espoir” Deligne 1979a0.10) that every Hodge cycle is absolutely Hodge has a
particularly elegant formulation in terms of motives.

CONJECTURES8.24. For any algebraically closed fiel# and embedding : £ — C, the
functor H,: M, — Hodg is fully faithful.

The functor is obviously faithful. There is no description, not even conjectural, for the
essential image aff,,.

Motives of abelian varieties

Let M2¥ be the Tannakian subcategoryMf generated by motives of abelian varieties and
Artin motives. The main theorem (2.11) has the following restatement.

THEOREM8.25 For any algebraically closed field and embedding : £ — C, the func-
tor H,: M — Hodg is fully faithful.

Therefore, for an algebraically closédthe groupG®/(o) attached tavM¥¥ ando: k& —
C is a connected pro-reductive group (see 8.22), and, for an arbityéing sequence

1—-G¥o) - G¥o)—-T—1
is exact (see 8.23) (hete®(0)° is the identity component @&®(o)).

PROPOSITION8.26. The motiveh(X) € ob(MYY) if
(a) X isacurve;
(b) X is a unirational variety of dimensioq 3;
(c) X is a Fermat hypersurface;
(d) X is a K3-surface.

Before proving this, we note the following consequence.

COROLLARY 8.27. Every Hodge cycle on a variety that is a product of abelian varieties,
zero-dimensional varieties, and varieties of type (a), (b), (c), and (d) is absolutely Hodge.
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PROOF 0F8.26. Cases (a) and (b) follow immediately from (8.14) and (8.15), and (c)
follows by induction (onn) from (8.16). In fact, one does not need the full strength of
(8.16). There is a rational map

r s r+s
Xd X Xd """""" > Xd

(oot mpg1), Woier i Tsy1) — (ToYst1t - @ Tplsi1 €T 1Yo - - - & ETpi1Ys)

wheres is a primitive2m!™ root of 1. The map is not defined on the subvariety
Y21 =9yse1 = 0.

On blowing upX x X along the nonsingular centté, one obtains maps

zy”

r s r4s
XdXXd "’Xd .

By induction, we can assume that the motives\df X3, andY (= X' x X57') are
in M2, Corollary (8.12) now shows thadt(Z,*) € ob(M) and (8.9) thati(X"*) €
ob(M%Y).

— For (d), we first note that the proposition is obviousXifis a Kummer
surface, for thenX = A/(c) whereA is an abelian varietyl with its 16
points of order< 2 blown up andr inducesa — —a on A.

Next consider an arbitrari 3-surfaceX, and fix a projective embedding of. Then
h(X) = h(P*) ® h*(X) prim

and so it suffices to show that(X)pim is in M. We can assumé = C. It is known
(Kuga and Satake 196Deligne 19726.5) that there is a smooth connected vartetyer
C and families

f:Yy—_5§
a: A— S

of polarized K 3-surfaces and abelian varieties respectively parametrizeti iigving the
following properties:

(a) for some0 € S, Yy =¢ f~1(0) is X together with its given polarization;

(b) for somel € S, Y7 is a polarized Kummer surface;

(c) there is an inclusiom: R?f.Q(1)pim — End(R'a.Q) compatible with the Hodge

filtrations.

The mapug: H3(X)(1)pim — End(H'(Ay, Q)) is therefore defined by a Hodge cycle,
and it remains to show that it is defined by an absolute Hodge cycle. But the initial re-
mark shows that,;, being a Hodge cycle on a product of Kummer and abelian surfaces, is
absolutely Hodge, and Principle B (2.12) completes the proof. O
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Motives of abelian varieties of potential CM-type

An abelian varietyA overk is said to be opotential CM-typeif it becomes of CM-type

over an extension of. Let A be such an abelian variety defined o@rand letMT(A)

be the Mumford-Tate group ol (see§5). SinceAc is of CM-type,MT(A) is a torus,

and we letL C C be a finite Galois extension @ splitting MT(A). Let MS’L be the
Tannakian subcategory dfg generated by, the Tate motive, and the Artin motives split

by L2, and letG“ be the affine group scheme associated with this Tannakian category and
the fibre functoriz.

PROPOSITION8.28 There is an exact sequence of affine group schemes
1 — MT(A) 5 G* 5 Gal(L®/Q) — 1.

PROOF. Let M2 be the image OMS’L in Mc; thenMT(A) is the affine group scheme
associated witv2, and so the above sequence is a subsequence of the sequence in (8.23a).
O

REMARK 8.29. If we identify MT(A) with a subgroup of\ut(HL(A)), then (as in 8.23a)
7~ 1(r) becomes identified with the[T(A)-torsor whoseR-points, for anyQ-algebrar,
are theR-linear homomorphisma: H'(Ac, R) — H'(7tAc, R) such thata(s) = s
for all (absolute) Hodge cycles aft;. We can also identifMT(A) with a subgroup of
Aut(HE(A)) and then it becomes more natural to identify! () with the torsor ofR-
linear isomorphisms": H;(Ac, R) — Hi(7Ac, R) preserving Hodge cycles.

On passing to the inverse limit over alland L, we obtain an exact sequence

1—8°— S — Gal(Q/Q) — 1

with S° and.S respectively the connected Serre group and the Serre group. This sequence
plays an important role in Articles Ill, IV, and V of Deligne et al. 1982.

Final note

The original seminar of Deligne comprised fifteen lectures, given between 29/10/78 and
15/5/79. The first six sections of these notes are based on the first eight lectures of the
seminar, and the seventh section on the last two lectures. The remaining five lectures,
which the writer of these notes was unable to attend, were on the following topics:

6/3/79 review of the proof that Hodge cycles on abelian varieties are absolutely Hodge;
discussion of the expected action of the Frobenius endomorphism on the image of an
absolute Hodge cycle in crystalline cohomology;

13/3/79 definition of the category of motives using absolute Hodge cycles; semisimplicity
of the category; existence of the motivic Galois grakip

20/3/79 fibre functors in terms of torsors; the motives of Fermat hypersurfaceg(@nd
surfaces are contained in the category generated by abelian varieties;
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27/3/79 Artin motives; the exact sequence
1 -G — G5 Gal(Q/Q) — 1;

indentification ofG° with the Serre group, and description of tié-torsorm—!(7);
3/4/79 action of Gal(Q/Q) on G°; study of G ®q Q; Hasse principle fol/ ' (Q, G°).
Most of the material in these five lectures is contained section 8 of these notes or in the
remaining articles in Deligne et al. 1982.
The writer of these notes is indebted to P. Deligne and A. Ogus for their criticisms of
the first draft of the notes and to Ogus for his notes on which section seven is largely based.
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Endnotes (by J.S. Milne)

1. The following changes from the original have been made:

— Numerous minor improvements to the exposition.
— Numerous misprints fixed; major corrections have been noted in these endnotes.

— Part of the general introduction to the volufeligne et al. 198%as been placed
at the start of the introduction.

— The original numbering has been retained except that the last section, which was
86 in Tannakian categoriesis now§8 (thus 6.xx in the original has become 8.xx).

— Some changes of notation have been made — the foopdias been replaced by
4r, A has been replaced By,, and~ (isomorphism) has been distinguished from
2 (canonical isomorphism).

— These endnotes have been added.
2. (p3) This doesn't follow directly from Theorem 2.11 (see 2.4). However, one obtains a variant

of Theorem 2.11 using the above definitions simply by droppingethle component everywhere
in the proof (see, for example, 2.10b).

3. (p3) For a description of these consequences, see
Deligne, Pierre, Cycles de Hodge absolusastques des ifgrales des vagies aleliennes.

Abelian functions and transcendental numbers (CollEggle Polytech., Palaiseau,
1979) . Mem. Soc. Math. France (N.S.) 1980/81, no. 2, 23-33.

For applications of the results of these notes to the periods of motives attached to Hecke characters,
see

Schappacher, Norbert, Periods of Hecke characters. Lecture Notes in Mathematics,
1301. Springer-Verlag, Berlin, 1988.

4. (p4) Say that a cohomology classft? (A, Q)(p) is asplit Weil classif there exists

— aCM-fieldE,
— ahomomorphisnyv: E — End(A), and

— a polarizatiory of A satisfying the conditions (a,b) of (4.8)
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such that the class lies in the subspAG8H' (A, Q)(p) of H?(A,Q)(p).

By assumption, the algebraic classes are accessible. The proof of Theorem 4.8 will show
that all split Weil classes are accessible once we check that the family in the proof contains an
abelian variety for which the Hodge conjecture is true. But, in the proof, we cadigk® be any
abelian variety of dimensiod/2, and it is well-known that the Hodge conjecture holds for powers
of an elliptic curve (see p107 of Tate, J. T., Algebraic cycles and poles of zeta functions. 1965
Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) pp. 93-110 Harper & Rowe,
New York). Now the argument if5 shows that all Hodge classes on abelian varieties of CM-type
are accessible, and Proposition 6.1 shows the same result for all abelian varieties.

5. (p4) Condition (a) is checked in (2.1), (b) is obvious from the definition of absolute Hodge
cycle, (c) is proved in (3.8), and (d) is proved in (2.12).

6. (p8) From the spectral sequence, we get a descending filtr&tian the groupgi™ (X, C)
such that
H" = (H"NFP)® (H" N F9)
for all n, p, ¢ with p + ¢ = n + 1. This implies that
H" = @HP

with
HP = HPTI N FP N F9 = HI(X,0P).

7. (p8) For a recent account of Hodge theory, see Voisin, C., Hodge Theory and Complex Alge-
braic Geometry, |, Cambridge University Press, 2002.

8. (1.8) Grothendieck conjectured that the only relations between the periods come from algebaic
cycles.

...itis believed that if [the elliptic curve] is algebraic (i.e., its coefficieptand g3

are algebraic), thew, andws are transcendental, and it is believed thaXithas no
complex multiplication, thew; andws are algebraically independent. This conjecture
extends in an obvious way to the set of peridds, w2, 71, 72) and can be rephrased
also for curves of any genus, or rather for abelian varieties of dimegsionolving

4g periods. (Grothendieck 19660102).

Also:

For the period matrix itself, Grothendieck has made a very interesting conjecture con-
cerning its relations, and his conjecture applies to a general situation as follows. Let
V be a projective, nonsingular variety defined over the rational numbers. One can
define the cohomology of with rational coefficients in two ways. First, by means

of differential forms (de Rham), purely algebraically, thereby obtaining a vector space
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Hyitr (V, Q) overQ. Secondly, one can take the singular conomolBgygy(V, Q) with
rational coefficients, i.e., the singular conomology of the complex manifeldLet

us select a basis for each of these vector spaces(vend let us tensor these spaces
over C. Then there is a unique (period) mattixwith complex coefficients which
transforms one basis into the other. Any algebraic cyclé’aor the products ot/

with itself will give rise to a polynomial relation with rational coefficients among the
coefficients of this matrix. Grothendieck’s conjecture is that the ideal generated by
these relations is an ideal of definition for the period matrix. (S. Lang, Introduction to
Transcendental Numbers, Addison-Wesley, 1966, pp42—-43; Collected Works, Vol. 1,
pp443-444.))

9. (2.2) So far as | know, both (2.2) and (2.4) remain open.

10. (Proof of 2.9.) The Cantor diagonalization argument shows that an infinite profinite group is
uncountable.

11. (2.11) The theorem extends to one-motives@itme 2.2.5 of Brylinski, Jean-Luc]“motifs”
et formes automorphes. Joées Automorphes (Dijon, 1981), 43—106, Publ. Math. Univ. Paris
VIl, 15, Univ. Paris VII, Paris, 1983. MR 85¢g:11047.)

12. (2.14) By using the full strength of Deligne’s results on cohomology, it is possible to avoid the
use of the Gauss-Manin connection in the proof of Theorem 2.12 (Blasius, Demadic property

of Hodge classes on abelian varieties. Motives (Seattle, WA, 1991), 293—-308, Proc. Sympos. Pure
Math., 55, Part 2, Amer. Math. Soc., Providence, RIl, 1994, Theorem 3.1).

THEOREM (DELIGNE 1971A). Letnw : X — S be a smooth proper morphism of smooth varieties
overC.

(a) The Leray spectral sequence
H'(S,R°m,Q) = H""(X,Q)
degenerates ak»; in particular, the edge morphism
H"(X,Q) — I'(S, R"m.Q)

is surjective.
(b) If X is a smooth compactification 6f with X ~. X a union of smooth divisors with normal
crossings, then the canonical morphism

H"(X,Q) — I'(S, R"7.Q)

is surjective.

(c) Let(R"r.Q)" be the largest constant local subsysten®bfr,Q (so(R"m.Q)? = I'(S, R"1.Q)
for all s € S(C)). For eachs € S, (R"7.Q)? is a Hodge substructure ¢fR"r,.Q)s =
H"(X,,Q), and the induced Hodge structure 8BS, R"7.Q) is independent of.
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In particular, the map
H"(X,Q) — H"(X,,Q)

has image(R"w*@)S, and its kernel is independent af

THEOREM. Letw: X — S be a smooth proper morphism of complex varieties Wigmooth and
connected. Ley € T'(S, R?"1,.Q(n)).

(@) If v, is a Hodge cycle for one € S(C), then it is a Hodge cycle for evegye S(C);
(b) If 44 is an absolute Hodge cycle for orec S(C), then it is an absolute Hodge class for
everys € S(C).

PROOF. (Blasius 1994, 3.1.) According to Deligne’s theorem,dor € S(C), there is a commuta-

tive diagram:
H*"(X)(n)

injeCV
onto

H?"(X)(n) — (S, R*"m.Q(n))

H*"(X¢)(n)

Lety € I'(S, R?"m.Q(n)). Itis immediate from (c) of Deligne’s theorem thatyif is a Hodge
cycle, then so also is;.

Identify H(X) ® A with Hy(X). Leto be an automorphism df. If ~, is a Hodge cycle on
X relative too, then there is 87 € H*"(0X;)(n) suchthaty? ® 1 = o(y, ® 1) in H2"(0 X5).
Sinceo(vs ® 1) is in the image of

H*™(0X)(n) @ A — H™(0X,)(n) ® A,

~Z is in the image of
H2n(UY)(n) — HZTL(O'XS)(R)

(apply 2.13) — lety® € H>"(0X)(n) map toy?. Becausey, andy; have a common pre-image in
(S, R*"1.Q(n)), o(ys ® 1) ando(y; ® 1) have a common pre-image (oS, R?"7,.Q(n)) ® A.
Therefore (see the diagram), ® 1 maps too(y; ® 1) in H?" (0 X;) ® A, and soy; ® 1 is a Hodge
cycle relative tas. O

13. (Proof of 3.1) LetV = INV andD = A\’ W. Letg € GL(V). If gW = W, then certainly

(/\dg)(D) C D. For the converse, choose a basis. . ., ¢, for V such thaty, ..., e, is a basis
for WngW,eq,...,em,...,eqis abasis folV, andey,...,em, €441, - .., €2q—m IS @ basis for
gW. Then

(/\dg)(el/\~--/\ed):c~61/\---/\em/\edH/\-~~/\eQd,m, somec € k™,

and so, if(\%g)(D) = D, thenm = d, andgW = W,
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14. (3.8) The motivic significance of Principle A is the following: by the usual method (e.g., Saave-
dra 1972, VI 4.1) we can define a category of motives using the absolute Hodge classes as corre-
spondences; this will be a pseudo-abelian rigid tensor category, and it will be Tannakian if and only
if Principle A holds for all the varieties on which the category is based.

15. (Proof of 4.3.) The pairing
NVYx NV — k
is determined by
(fin-Afa,v1 @ @) = det({filv)))
— see Bourbaki, N., Algbre Multilinéaire, Hermann, 19588.

16. (4.4) LetE be a CM-field, and let: E — End(A) be a homomorphism. The pdid, v) is
said to be of\Veil typeif Tgt,(A) is a freeE ®g C-module. The proposition shows the following:

If (A,v) is of Weil type, then the subspa@%HI(A, Q) of H%(A, Q) consists of
Hodge classes.

When E is quadratic ovef), these Hodge classes were studied by Weil (Abelian varieties and the
Hodge ring, 1977c in Collected Papers, Vol. lll, Springer-Verlag, pp421-429), and for this reason
are called\Veil classes

A polarizationof an abelian variety A, v) of Weil type is a polarizatior\ of A whose Rosati
involution stabilizesF and induces complex conjugation on it.

The special Mumford-Tate group of a general polarized abelian vafiety, \) of

Weil type isSU(¢) where¢ is the E-Hermitian form onH!(A, Q) defined by the
polarization.

If the special Mumford-Tate group df4, v) equalsSU(¢), then theQ-algebra of
Hodge cycles is generated by the divisor classes and the Weil classes (but not by the
divisor classes alone).

When FE is quadratic ovefQ, these statements are proved in Weil (ibid.), but the same argument
works in general.
For more on Weil classes, see

Moonen, B. J. J.; Zarhin, Yu. G. Weil classes on abelian varieties. J. Reine Angew. Math. 496
(1998), 83-92. MR99a:14010

Zarhin, Yu. G. and Moonen, B. J. J., Weil classes and Rosati involutions on complex abelian
varieties. Recent progress in algebra (Taejon/Seoul, 1997), 229-236, Contemp. Math., 224, Amer.
Math. Soc., Providence, RI, 1999. MR2000a:14008
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In a small number of cases, the Weil classes are known to be algebraic even when they are not
contained in thé&)-algebra generated by the divisor classes:

Schoen, Chad, Hodge classes on self-products of a variety with an automorphism. Compositio
Math. 65 (1988), no. 1, 3—-32; MR 89c¢:14013. Addendum, ibid., 114 (1998), no. 3, 329-336; MR
99m:14021.

van Geemen, Bert, An introduction to the Hodge conjecture for abelian varieties. Algebraic
cycles and Hodge theory (Torino, 1993), 233—-252, Lecture Notes in Math., 1594, Springer, Berlin,
1994. MR 96d:14010.

17. (4.5) For example, le be the subfield of) generated by/—n and leto be the given em-
bedding ofE into Q. Let\/—n € E actonA = A3 as(!{ "), and letV = H'(A4,,Q). Then,
VeeE=2V,d Vs and

(ALY © B)) = NGV @ Vo) = ABV, © Ap Vo

Letey,...,eq be abasis foi/ = H!(Ag, Q) (first copy ofAp), and letfy, . .., f; be the same basis
for the second copy. The elemenist /—n f; form a basis foll/,, and so

(61 + v —nfl) VAN (62 + —’I’Lfg) VANPIS
is an E-basis for/\‘]f;Hl(A, Q) (note; Aea A...). Whend = 2, the elements
et Nea —nfiAfa, V-nle1® fo+e2® f1)

form a Q-basis for/\%Hl(A,@), and the Weil classes are represented by the algebraic cycles
(0 x Ag) — n(Ag x 0) and the(1, 1)-components of the diagonal. (See Murty, V. Kumar, Hodge
and Weil classes on abelian varieties. The arithmetic and geometry of algebraic cycles (Banff, AB,
1998), 83—115, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000.)
In particular (pace Blasius 1994, p30%)y, /' (A, Q)(2) is not the E-subspace off*(A, Q) (%)
spanned by the class of the cy(zléE: -1y {0} C A([)E: ¥ It seems not to be known whether, in

the situation of the Iemma(\ffEHI(A, Q)(%) always consists of algebraic classes.

18. (p44) The proof shows that the group fixing the divisor classes and the split Weil classes is
GH . By similar methods, Yves Anér(Une remarqué propos des cycles de Hodge de type CM.
Séminaire de Thorie des Nombres, Paris, 1989-90, 1-7, Progr. Math., 102, &igdr Boston,
Boston, MA, 1992, MR 98f:14005.) proves the following: Létbe a complex abelian variety of
CM-type. Then there exist abelian varietiBs of CM-type and homomorphismé — B such

that every Hodge cycle oA is a linear combination of the inverse images of split Weil classes on
theBJ.

19. (p47) We discuss some simplifications and applications of the proof of Theorem 2.11.

A criterion for a family of Hodge classes to contain all Hodge classes

THEOREM. Suppose that for each abelian varietyover C we have aQ-subspace”(A) of the
Hodge classes oA. Assume:
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(a) C(A) contains all algebraic classes off;

(b) pull-back by a homomorphism: A — B mapsC(B) into C'(A);

(c) letw: A — S be an abelian scheme over a connected smooth vafiatyer C, and let
t € T(S, R?*m,.Q(p)); if t is a Hodge cycle for alk and lies inC/(Ay) for ones, then it lies
in C'(As) for all s.

ThenC'(A) contains all the Hodge classes én

PrRoOOF. The proof of Theorem 4.8 shows th@f A) contains all split Weil classes of (see end-
note 4), and then Anéis improvement of5 (see endnote 18) proves the theorem for all abelian
varieties of CM-type. Now Proposition 6.1 completes the proof. O

Algebraic classes

In Steenbrink (Steenbrink, J. H. M., Some remarks about the Hodge conjecture. Hodge theory
(Sant Cugat, 1985), 165-175, Lecture Notes in Math., 1246, Springer, Berlin, 1987) we find the
following:

[Grothendieck (1966), footnote 13] stated a conjecture which is weaker than the Hodge
(p, p) conjecture:

(VHC) Suppose thaf: X — S is a smooth projective morphism withconnected,
smooth. Suppose that € HY(S, R? f,Qx) is of type(p,p) everywhere, and for
somesy € S, A(sp) is the cohomology class of an algebraic cycle of codimengion

on X;,. Then\(s) is an algebraic cycle class for afl € S.

This “variational Hodge conjecture” . ...

In fact, Grothendieck (1966, footnote 13) asks whether the following statement is true:

(VHCo) Let S be a connected reduced scheme of characteristic zero, and }et—

S be a proper smooth morphism; then a sectioof Rzpw*(Qg(/S) is algebraic on
every fibre if and only if it is horizontal for the canonical integral connection and is
algebraic oronefibre.

THEOREM. If the variational Hodge conjecture (either statement (VHC) or (VHCO0)) is true for
abelian varieties, then so also is the Hodge conjecture.

ProoF. Assume (VHC), and lef’( A) be theQ-span of the classes of algebraic cyclesbrThen
the preceding theorem immediately shows tfiatl) contains all Hodge classes an

The proof that (VHCo) implies the Hodge conjecture is similar, but requires the remark (see
endnote 2) that all 0§§2—6 still applies when théetale component is omitted. O
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Although, we didn’t need Principle A for the last theorem, it should be noted that it does hold
for the algebraic classes on abelian varieties (those ifdteabspace of/??(A, Q(p)) spanned by
the classes of algebraic cycles). This is a consequence of the following three results (cf. endnote
14):

— numerical equivalence coincides with homological equivalence on complex abelian
varieties (Lieberman, David I., Numerical and homological equivalence of alge-
braic cycles on Hodge manifolds. Amer. J. Math. 90 1968 366—374, MR37 #5898);

— the category of motives defined using algebraic cycles modulo numerical equiva-
lence is an abelian category (even semisimple) (Jannsen, Uwe, Motives, numerical
equivalence, and semi-simplicity. Invent. Math. 107 (1992), no. 3, 447-452.);

— every abelian tensor category over a field of characteristic zero whose objects
have finite dimension is Tannakian @teme 7.1 of Deligne, P., Cagories tan-
nakiennes. The Grothendieck Festschrift, Vol. I, 111-195, Progr. Math., 87,
Birkhauser Boston, Boston, MA, 1990).

de Rham-Hodge classes (Blasius)

For a complete smooth variet{¥ over Q¥ and an embedding: Q — Q,, there is a natural
isomorphism
I: Hy (0X,Qy)(r) ®q, Bar — Hgh(oX)(r) ®g, Bir

(Faltings, Tsuji) compatible with cycle maps. Call an absolute Hodge ¢lassX de Rhamif, for
allo, I(oy, ® 1) = oygr ® 1. The following is proved in Blasius 1994.

THEOREM. Every absolute Hodge class on an abelian variety @&ris de Rham.

ProoF. The functor from abelian varieties ov@a' to abelian varieties ovet is fully faithful and
the essential image contains the abelian varieties of CM-type. Using this, one sees by the same
arguments as above, that the theorem follows from the next result. O

THEOREM (BLASIUS 1994, 3.1).Letw: X — S be a smooth proper morphism of smooth va-
rieties overQ C C with S connected, and let € T'(Sc, R*"rc.Q(n)). If vs € HE'(Xs)(n) is

absolutely Hodge and de Rham for one= S(Q), then it is absolutely Hodge and de Rham for
everys.

PROOF. Lets,t € S(Q) and assume; is absolutely Hodge and de Rham. We know (see endnote
12) that; is absolutely Hodge, and we have to prove it is de Rham.
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Leto: Q — Q, be an embedding. For a smooth compactificafionf X (as in endnote 12)
overQ, we have a commutative diagram

—_— I —_
Hg'(0X,Qp)(n) ® Bir —— Hip(0X)(n) ® Bor

l !

H2(0X,,Q,)(n) ® Bir —— H2%(0X,)(n) ® Byr.

There existsy € H%'(X)(n) mapping toy (see the diagram in endnote 12). bgtandvqr be the
images ofy in H&(0 X, Q,)(n) and H3% (0 X )(n). Becausey is de Rham/ (7, ® 1) differs from
7dr ® 1 by an element of

(Ker(H3a(0X)(n) — Hit(0Xs)(n)) ® Bgr.

But this kernel is independent ef and soy; is also de Rham. O

Motivated classes (Abdulali, Andi€)

Recall that Grothendieck’s Lefschetz standard conjecture says th@tspace of algebraic classes
on a smooth algebraic variety is invariant under the Hodggerator. Abdulali (Algebraic cycles

in families of abelian varieties. Canad. J. Math. 46 (1994), no. 6, 1121-1134) shows thapif the
spaces of algebraic cycles in tihg-cohomology of Kuga fibre varieties (not necessarily compact)
are invariant under the Hodgeoperator, then the Hodge conjecture is true for all abelian varieties.

André (Pour une teorie inconditionnelle des moatifs, Inst. Haufésides Sci. Publ. Math. No.
83 (1996), 5-49) proves a more precise result: every Hodge class on an abelianAasietgum
of classes of the form..(« U x13) in which o and 3 are algebraic classes on a productdofvith
an abelian variety and certain total spaces of compact pencils of abelian varieties.

In outline, the proofs are similar to that of Theorem 2.11.

20. (6.4) Since Theorem 2.11 is true for one-motives (see endnote 11), so also is the corollary. This
raises the question of whethéim(G4) = tr.deg, k(p;;) for all one-motives. For a discussion

of the question, and its implications, see Bertolin, Geri®des de 1-motifs et transcendance. J.
Number Theory 97 (2002), no. 2, 204-221.

21. (7.4) There are similar calculations in
Ogus, A., Griffiths transversality in crystalline cohomology. Ann. of Math. (2)
108 (1978), no. 2, 395-419, MR 80d:14033),

Ran, Ziv Cycles on Fermat hypersurfaces. Compositio Math. 42 (1980/81), no. 1,
121-142, MR 82d:14005,

and, in a more general setting,
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Aoki, Noboru, A note on complete intersections of Fermat type. Comment. Math.
Univ. St. Paul. 35 (1986), no. 2, 231-245, MR 88f:14044.

22. (7.16) For an elementary proof tf@t¢,, I'(a)) is Galois overQ, see

Das, Pinaki, Algebraic gamma monomials and double coverings of cyclotomic
fields. Trans. Amer. Math. Soc. 352 (2000), no. 8, 3557-3594, MR 2000m:11107.

23. (p63) See also:

Panchishkin, A. A. Motives for absolute Hodge cycles. Motives (Seattle, WA,
1991), 461-483, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Provi-
dence, RI, 1994, MR 95f:14017.

24. (Proof of 8.5.) The original followed Saavedra 1972 in deducing Proposition 8.5 from the
following statement:

Let C be aQ-linear pseudo-abelian category, anddetC — Vecg be a faithfulQ-
linear functor. If every indecomposable object@is simple, ther( is a semisimple
abelian category and is exact.

As Jannsen (1992, p451) points out, this statement is false.

25. (8.22) In the original, the hypothesis in 8.22 (a) and 8.23 (b) that all Hodge cycles are abso-
lutely Hodge (for the varieties concerned) was omitted. In (b) it was claimed thatak infinite
transcendence degree o@rthenG(o’) — G(o) is anisomorphism. This is obviously false —the
motive defined by an elliptic curv® overk’ will arise from a motive ovet: if and only if j(E) € k.



