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Introduction

Let X be a smooth projective variety overC. Hodge conjectured that certain cohomology
classes onX are algebraic. The main result proved in these notes shows that, whenX is an
abelian variety, the classes considered by Hodge have many of the properties of algebraic
classes.
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In more detail, letXan be the complex analytic manifold associated withX, and con-
sider the singular cohomology groupsHn(Xan,Q). The varietyXan being of K̈ahler type
(any projective embedding defines a Kähler structure), its cohomology groupsHn(Xan,C) ∼=
Hn(Xan,Q)⊗ C have canonical decompositions

Hn(Xan,C) =
⊕

p+q=n

Hp,q, Hp,q = Hq(Xan, Ωp
Xan).

The cohomology classcl(Z) ∈ H2p(Xan,C) of an algebraic subvarietyZ of codimension
p in X is rational (i.e., it lies inH2p(Xan,Q)) and is of bidegree(p, p) (i.e., it lies inHp,p).
The Hodge conjecture states that, conversely, every element of

H2p(Xan,Q) ∩Hp,p

is aQ-linear combination of the classes of algebraic subvarieties. Since the conjecture is
unproven, it is convenient to call these rational(p, p)-classesHodge cyclesonX.

Now consider a smooth projective varietyX over a fieldk that is of characteristic zero,
algebraically closed, and small enough to be embeddable inC. The algebraic de Rham
cohomology groupsHn

dR(X/k) have the property that, for any embeddingσ : k ↪→ C, there
are canonical isomorphisms

Hn
dR(X/k)⊗k,σ C

∼=→ Hn
dR(X

an,C) ∼= Hn(Xan,C).

It is natural to say thatt ∈ H2p
dR(X/k) is aHodge cycle onX relative toσ if its image in

H2p(Xan,C) is (2πi)p times a Hodge cycle onX ⊗k,σ C. The arguments in these notes
show that, ifX is an abelian variety, then an element ofH2p

dR(X/k) that is a Hodge cycle
on X relative to one embedding ofk into C is a Hodge cycle relative to all embeddings;
further, for any embedding,(2πi)p times a Hodge cycle inH2p(Xan,C) always lies in the
image ofH2p

dR(X/k).2 Thus the notion of a Hodge cycle on an abelian variety is intrinsic
to the variety: it is a purely algebraic notion. In the case thatk = C the theorem shows
that the image of a Hodge cycle under an automorphism ofC is again a Hodge cycle;
equivalently, the notion of a Hodge cycle on an abelian variety overC does not depend on
the mapX → SpecC. Of course, all this would be obvious if only one knew the Hodge
conjecture.

In fact, a stronger result is proved in which a Hodge cycle is defined to be an element of
Hn

dR(X)×∏
lH

n(Xet,Ql). As the title of the original seminar suggests, the stronger result
has consequences for the algebraicity of the periods of abelian integrals: briefly, it allows
one to prove all arithmetic properties of abelian periods that would follow from knowing
the Hodge conjecture for abelian varieties.3

—————————————————-
In more detail, the main theorem proved in these notes is that any Hodge cycle on

an abelian variety (in characteristic zero) is an absolute Hodge cycle — see§2 for the
definitions and Theorem 2.11 for a precise statement of the result.

The proof is based on the following two principles.
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A. Let t1, . . . , tN be absolute Hodge cycles on a smooth projective varietyX and letG
be the largest algebraic subgroup ofGL(H∗(X,Q)) × GL(Q(1)) fixing the ti; then
every cohomology classt onX fixed byG is an absolute Hodge cycle (see 3.8).

B. If (Xs)s∈S is an algebraic family of smooth projective varieties withS connected and
smooth and(ts)s∈S is a family of rational cycles (i.e., a global section of . . . ) such
thatts is an absolute Hodge cycle for ones, thents is an absolute Hodge cycle for all
s (see 2.12, 2.15).

Every abelian varietyA with a Hodge cyclet is contained in a smooth algebraic family
in which t remains Hodge and which contains an abelian variety of CM-type. Therefore,
Principle B shows that it suffices to prove the main theorem forA an abelian variety of
CM-type (see§6). Fix a CM-fieldE, which we can assume to be Galois overQ, and let
Σ be a set of representatives for theE-isogeny classes overC of abelian varieties with
complex multiplication byE. Principle B is used to construct some absolute Hodge classes
on ⊕A∈ΣA — the principle allows us to replace⊕A by an abelian variety of the form
A0⊗ZOE (see§4). LetG ⊂ GL(⊕A∈ΣH1(A,Q))×GL(Q(1)) be the subgroup fixing the
absolute Hodge cycles just constructed plus some other (obvious) absolute Hodge cycles.
It is shown thatG fixes every Hodge cycle onA, and Principle A therefore completes the
proof (see§5).

On analyzing which properties of absolute Hodge cycles are used in the above proof,
one arrives at a slightly stronger result. Call a rational cohomology classc on a smooth
projective complex varietyX accessibleif it belongs to the smallest family of rational
cohomology classes such that:

(a) the cohomology class of every algebraic cycle is accessible;
(b) the pull-back by a map of varieties of an accessible class is accessible;
(c) if t1, . . . , tN ∈ H∗(X,Q) are accessible, and if a rational classt in someH2p(X,Q)

is fixed by an algebraic subgroupG of Aut(H∗(X,Q)) (automorphisms ofH∗(X,Q)

as a graded algebra) fixing theti, thent is accessible;
(d) PrincipleB holds with “absolute Hodge” replaced by “accessible”.

Sections 4,5,6 of these notes can be interpreted as proving that, whenX is an abelian
variety, every Hodge cycle is accessible.4 Sections 2,3 define the notion of an absolute
Hodge cycle and show that the family of absolute Hodge cycles satisfies (a), (b), (c), and
(d);5 therefore, an accessible class is absolutely Hodge. We have the implications:

Hodge========
abelian varieties⇒ accessible==⇒ absolutely Hodge==

trivial⇒ Hodge.

Only the first implication is restricted to abelian varieties.
The remaining three sections,§1, §7, and§8, serve respectively to review the different

cohomology theories, to give some applications of the main results to the algebraicity of
products of special values of theΓ-function, and to explain the theory of motives that can
be built on absolute Hodge cycles.
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Notations:

We defineC to be the algebraic closure ofR andi ∈ C to be a square root of−1; thusi is
only defined up to sign. A choice ofi determines an orientation ofC as a real manifold —
we take that for which1 ∧ i > 0 — and hence an orientation of every complex manifold.
Complex conjugation onC is denoted byι or by z 7→ z.

Recall that the category of abelian varieties up to isogeny is obtained from the category
of abelian varieties by taking the same class of objects but replacingHom(A,B) with
Hom(A,B)⊗Q. We shall always regard an abelian variety as an object in the category of
abelian varieties up to isogeny: thusHom(A,B) is a vector space overQ.

If (Vα) is a family of rational representations of an algebraic groupG overk andtα,β ∈
Vα, then thesubgroup ofG fixing the tα,β is the algebraic subgroupH of G such that, for
all k-algebrasR,

H(R) = {g ∈ G(R) | g(tα,β ⊗ 1) = tα,β ⊗ 1, all α, β}.

Linear duals are denoted by∨. If X is a variety over a fieldk andσ is a homomorphism
σ : k ↪→ k′, thenσX denotes the varietyX ⊗k,σ k′ (= X ×Spec(k) Spec(k′)).
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1 Review of cohomology

Topological manifolds

Let X be a topological manifold andF a sheaf of abelian groups onX. We set

Hn(X, F ) = Hn(Γ(X, F •))

whereF → F • is any acyclic resolution ofF . This definesHn(X, F ) uniquely up to a
unique isomorphism.

WhenF is the constant sheaf defined by a fieldK, these groups can be identified with
singular cohomology groups as follows. LetS•(X,K) be the complex in whichSn(X, K)

is theK-vector space with basis the singularn-simplices inX and the boundary map sends
a simplex to the (usual) alternating sum of its faces. Set

S•(X, K) = Hom(S•(X, K), K)

with the boundary map for which

(α, σ) 7→ α(σ) : S•(X, K)⊗ S•(X, K) → K

is a morphism of complexes, namely, that defined by

(dα)(σ) = (−1)deg(α)+1α(dσ).

PROPOSITION1.1. There is a canonical isomorphismHn(S•(X, K)) → Hn(X, K).

PROOF. If U is the unit ball, thenH0(S•(U,K)) = K andHn(S•(U,K)) = 0 for n > 0.
Thus,K → S•(U,K) is a resolution of the groupK. LetSn be the sheaf ofX associated
with the presheafV 7→ Sn(V, K). The last remark shows thatK → S• is a resolution of
the sheafK. As eachSn is fine (Warner 1971, 5.32),Hn(X,K) ∼= Hn(Γ(X,S•)). But
the obvious mapS•(X,K) → Γ(X,S•) is surjective with an exact complex as kernel (loc.
cit.), and so

Hn(S•(X,K))
∼=→ Hn(Γ(X,S•)) ∼= Hn(X, K).

Differentiable manifolds

Now assumeX is a differentiable manifold. On replacing “singularn-simplex” by “dif-
ferentiable singularn-simplex” in the above definitions, one obtains complexesS∞• (X, K)

andS•∞(X, K). The same argument shows that there is a canonical isomorphism

Hn
∞(X, K)

df
= Hn(S∞• (X,K))

∼=→ Hn(X,K)

(loc. cit.).
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LetOX∞ be the sheaf ofC∞ real-valued functions onX, let Ωn
X∞ be theOX∞-module

of C∞ differentialn-forms onX, and letΩ•
X∞ be the complex

OX∞
d→ Ω1

X∞
d→ Ω2

X∞
d→ · · · .

The de Rham cohomology groups ofX are defined to be

Hn
dR(X) = Hn(Γ(X, Ω•

X∞)) =
{closedn-forms}
{exactn-forms} .

If U is the unit ball, Poincaré’s lemma shows thatH0
dR(U) = R andHn

dR(U) = 0 for n > 0.
Thus,R → Ω•

X∞ is a resolution of the constant sheafR, and as the sheavesΩn
X∞ are fine

(Warner 1971, 5.28), we haveHn(X,R) ∼= Hn
dR(X).

Forω ∈ Γ(X, Ωn
X∞) andσ ∈ S∞n (X,R), define

〈ω, σ〉 = (−1)
n(n+1)

2

∫

σ

ω ∈ R.

Stokes’s theorem states that
∫

σ
dω =

∫
dσ

ω, and so

〈dω, σ〉+ (−1)n〈ω, dσ〉 = 0.

The pairing〈, 〉 therefore defines a map of complexes

f : Γ(X, Ω•
X∞) → S•∞(X,R).

THEOREM 1.2 (DE RHAM ). The mapHn
dR(X) → Hn

∞(X,R) defined byf is an isomor-
phism for alln.

PROOF. The map is inverse to the map

Hn
∞(X,R)

∼=→ Hn(X,R) ∼= Hn
dR(X)

defined in the previous two paragraphs (Warner 1971, 5.36). (Our signs differ from the
usual signs because the standard sign conventions∫

σ

dω =

∫

dσ

ω,

∫

X×Y

pr∗1ω ∧ pr∗2η =

∫

X

ω ·
∫

Y

η, etc.

violate the sign conventions for complexes.)

A number
∫

σ
ω, σ ∈ Hn(X,Q), is called aperiod of ω. The map in (1.2) identifies

Hn(X,Q) with the space of classes of closed forms whose periods are all rational. Theorem
1.2 can be restated as follows: a closed differential form is exact if all its periods are zero;
there exists a closed differential form having arbitrarily assigned periods on an independent
set of cycles.

REMARK 1.3 (SINGER AND THORPE1967, 6.2). If X is compact, then it has a smooth
triangulationT . DefineS•(X,T, K) andS•(X,T, K) as before, but using only simplices
in T . Then the map

Γ(X, Ω•
X∞) → S•(X, T, K)

defined by the same formulas asf above induces isomorphisms

Hn
dR(X) → Hn(S•(X, T, K)).
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Complex manifolds

Now letX be a complex manifold, and writeΩ•
Xan for the complex

OXan
d→ Ω1

Xan
d→ Ω2

Xan
d→ · · ·

in which Ωn
Xan is the sheaf of holomorphic differentialn-forms. Thus, locally a section of

Ωn
Xan is of the form

ω =
∑

αi1...indzi1 ∧ . . . ∧ dzin

with αi1...in a holomorphic function and thezi complex local coordinates. The complex
form of Poincaŕe’s lemma shows thatC → Ω•

Xan is a resolution of the constant sheafC,
and so there is a canonical isomorphism

Hn(X,C) → Hn(X, Ω•
Xan) (hypercohomology).

If X is a compact K̈ahler manifold, then the spectral sequence

Ep,q
1 = Hq(X, Ωp

Xan) =⇒ Hp+q(X, Ω•
Xan)

degenerates, and so provides a canonical splitting6

Hn(X,C) =
⊕

p+q=n

Hq(X, Ωp
Xan) (the Hodge decomposition)

as Hp,q =df Hq(X, Ωp
Xan) is the complex conjugate ofHq,p relative to the real struc-

ture Hn(X,R) ⊗ C ∼= Hn(X,C) (Weil 1958). The decomposition has the following
explicit description: the complexΩ•

X∞ ⊗ C of sheaves of complex-valued differential
forms on the underlying differentiable manifold is an acyclic resolution ofC, and so
Hn(X,C) = Hn(Γ(X, Ω•

X∞ ⊗ C)); Hodge theory shows that each element of the second
group is represented by a unique harmonicn-form, and the decomposition corresponds to
the decomposition of harmonicn-forms into sums of harmonic(p, q)-forms,p + q = n.7

Complete smooth varieties

Finally, letX be a complete smooth variety over a fieldk of characteristic zero. Ifk = C,
thenX defines a compact complex manifoldXan, and there are therefore groupsHn(Xan,Q),
depending on the mapX → Spec(C), that we shall writeHn

B(X) (hereB abbreviates
Betti). If X is projective, then the choice of a projective embedding determines a Kähler
structure onXan, and hence a Hodge decomposition (which is independent of the choice
of the embedding because it is determined by the Hodge filtration, and the Hodge filtration
depends only onX; see Theorem 1.4 below). In the general case, we refer toDeligne 1968,
5.3, 5.5, for the existence of the decomposition.

For an arbitrary fieldk and an embeddingσ : k ↪→ C, we writeHn
σ (X) for Hn

B(σX)

andHp,q
σ (X) for Hp,q(σX). As ι defines a homeomorphismσXan→ ισXan, it induces an
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isomorphismHn
ισ(X) → Hn

σ (X). Sometimes, whenk is given as a subfield ofC, we write
Hn

B(X) for Hn
B(XC).

Let Ω•
X/k denote the complex in whichΩn

X/k is the sheaf of algebraic differentialn-
forms, and define the (algebraic) de Rham cohomology groupHn

dR(X/k) to beHn(XZar, Ω
•
X/k)

(hypercohomology with respect to the Zariski cohomology). For any homomorphism
σ : k ↪→ k′, there is a canonical isomorphism

Hn
dR(X/k)⊗k,σ k′ → Hn

dR(X ⊗k k′/k′).

The spectral sequence

Ep,q
1 = Hq(XZar, Ω

p
X/k) =⇒ Hp+q(XZar, Ω

•
X/k)

defines a filtration (the Hodge filtration)F pHn
dR(X) onHn

dR(X) which is stable under base
change.

THEOREM 1.4. If k = C, the obvious maps

Xan → XZar, Ω•
Xan ← Ω•

X ,

induce isomorphisms
Hn

dR(X) → Hn
dR(X

an) ∼= Hn(Xan,C)

under whichF pHn
dR(X) corresponds toF pHn(Xan,C) =df

⊕
p′≥p, p′+q′=n

Hp′,q′.

PROOF. The initial terms of the spectral sequences

Ep,q
1 = Hq(XZar, Ω

p
X/k) =⇒ Hp+q(XZar, Ω

•
X/k)

Ep,q
1 = Hq(X, Ωp

Xan) =⇒ Hp+q(X, Ω•
Xan)

are isomorphic — seeSerre 1956for the projective case andGrothendieck 1966for the
general case. The theorem follows from this because, by definition of the Hodge decom-
position, the filtration ofHn

dR(X
an) defined by the above spectral sequence is equal to the

filtration of Hn(Xan,C) defined in the statement of the theorem.

It follows from the theorem and the discussion preceding it that every embedding
σ : k ↪→ C defines an isomorphism

Hn
dR(X)⊗k,σ C

∼=−→ Hn
σ (X)⊗Q C

and, in particular, ak-structure onHn
σ (X) ⊗Q C. Whenk = Q, this structure should be

distinguished from theQ-structure defined byHn
σ (X): the two are related by the periods.

Whenk is algebraically closed, we writeHn(X,Af ), or Hn
et(X), for Hn(Xet, Ẑ) ⊗Z

Q, whereHn(Xet, Ẑ) = lim←−m
Hn(Xet,Z/mZ) (étale cohomology). IfX is connected,
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H0(X,Af ) = Af , the ring of finite ad̀eles forQ, which justifies the first notation. By defi-
nition, Hn

et(X) depends only onX (and not on its structure morphismX → Spec k). The
mapHn

et(X) → Hn
et(X⊗k k′) defined by an inclusionk ↪→ k′ of algebraically closed fields

is an isomorphism (special case of the proper base change theoremArtin, Grothendieck,
and Verdier 1973, XII). The comparison theorem (ibid. XI) shows that, whenk = C, there
is a canonical isomorphismHn

B(X) ⊗ Af → Hn
et(X). It follows thatHn

B(X) ⊗ Af is in-
dependent of the morphismX → SpecC, and that, over any algebraically closed field of
characteristic zero,Hn

et(X) is a freeAf -module.
TheAf -moduleHn(X,Af ) can also be described as the restricted product of the spaces

Hn(X,Ql), l a prime number, with respect to the subspacesHn(X,Zl)/{torsion}.
Next we define the notion of the “Tate twist” in each of the three cohomology theories.

For this we shall define objectsQ(1) and setHn(X)(m) = Hn(X) ⊗ Q(1)⊗m. We want
Q(1) to beH2(P1) (realization of the Tate motive in the cohomology theory), but to avoid
the possibility of introducing sign ambiguities we shall define it directly,

QB(1) = 2πiQ

Qet(1) = Af (1)
df
=

(
lim←− rµr

)⊗Z Q, µr = {ζ ∈ k | ζr = 1}
QdR(1) = k,

and so

Hn
B(X)(m) = Hn

B(X)⊗Q (2πi)mQ = Hn(Xan, (2πi)mQ) (k = C)

Hn
et(X)(m) = Hn

et(X)⊗Af
(Af (1))⊗m =

(
lim←− rH

n(Xet, µ
⊗m
r )

)⊗Z Q (k algebraically closed)

Hn
dR(X)(m) = Hn

dR(X).

These definitions extend in an obvious way to negativem. For example, we setQet(−1) =

HomAf
(Af (1),Af ) and define

Hn
et(X)(−m) = Hn

et(X)⊗Qet(−1)⊗m.

There are canonical isomorphisms

QB(1)⊗Q Af → Qet(1) (k ⊂ C, k algebraically closed)

QB(1)⊗ C→ QdR(1)⊗k C (k ⊂ C)

and hence canonical isomorphisms (the comparison isomorphisms)

Hn
B(X)(m)⊗Q Af → Hn

et(X)(m) (k ⊂ C, k algebraically closed)

Hn
B(X)(m)⊗Q C→ Hn

dR(X)(m)⊗k C (k ⊂ C).

To define the first, note thatexp defines an isomorphism

z 7→ ez : 2πiZ/r2πiZ→ µr.
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After passing to the inverse limit overr and tensoring withQ, we obtain the required
isomorphism2πiAf → Af (1). The second isomorphism is induced by the inclusions

2πiQ ↪→ C←↩ k.

Although the Tate twist for de Rham cohomology is trivial, it should not be ignored. For
example, whenk = C,

Hn
B(X)⊗ C 17→(2πi)m

−−−−−−→
≈

Hn
B(X)(m)⊗ C

y∼=
y∼=

Hn
dR(X) Hn

dR(X)(m)

fails to commute by a factor(2πi)m. Note that whenm is odd the top isomorphism is
defined only up to sign.

In each cohomology theory there is a canonical way of attaching a classcl(Z) in
H2p(X)(p) to an algebraic cycleZ on X of pure codimensionp. Since our cohomol-
ogy groups are without torsion, we can do this using Chern classes (Grothendieck 1958).
Starting with a functorial isomorphismc1 : Pic(X) → H2(X)(1), one uses the splitting
principle to define the Chern polynomial

ct(E) =
∑

cp(E)tp, cp(E) ∈ H2p(X)(p),

of a vector bundleE onX. The mapE 7→ ct(E) is additive, and therefore factors through
the Grothendieck group of the category of vector bundles onX. But, asX is smooth, this
group is the same as the Grothendieck group of the category of coherentOX-modules, and
we can therefore define

cl(Z) =
1

(p− 1)!
cp(OZ)

(loc. cit. 4.3).
In definingc1 for the Betti and́etale theories, we begin with maps

Pic(X) → H2(Xan, 2πiZ)

Pic(X) → H2(Xet, µr)

arising as connecting homomorphisms from the sequences

0 → 2πi → OXan
exp−−→ O×

Xan → 0

0 → µr → O×
X

r−→ O×
X → 0.

For the de Rham theory, we note that thed log map,f 7→ df
f

, defines a map of complexes

0 −−−→ O×
X −−−→ 0 −−−→ · · ·y

ydlog

y
OX

d−−−→ Ω1
X

d−−−→ Ω2
X

d−−−→ · · ·
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and hence a map

Pic(X) ∼= H1(X,O×
X) ∼= H2(X, 0 → O×

X → · · · )
→ H2(X, Ω•

X) = H2
dR(X) = H2

dR(X)(1)

whose negative isc1. It can be checked that the three mapsc1 are compatible with the
comparison isomorphisms (Deligne 1971a, 2.2.5.1), and it follows formally that the mapscl

are also compatible once one has checked that the Gysin maps and multiplicative structures
are compatible with the comparison isomorphisms.

Whenk = C, there is a direct way of defining a classcl(Z) ∈ H2d−2p(X(C),Q) (sin-
gular cohomology,d = dim(X), p = codim(Z)): the choice of ani determines an orien-
tation ofX and of the smooth part ofZ, and there is therefore a topologically defined class
cl(Z) ∈ H2d−2p(X(C),Q). This class has the property that for[ω] ∈ H2d−2p(X∞,R) =

H2d−2p(Γ(X, Ω•
X∞)) represented by the closed formω,

〈cl(Z), [ω]〉 =

∫

Z

ω.

By Poincaŕe duality, cl(Z) corresponds to a classcltop(Z) ∈ H2p
B (X), whose image in

H2p
B (X)(p) under the map induced by1 7→ (2πi)p : Q→ Q(p) is known to beclB(Z). The

above formula becomes ∫

X

cltop(Z) ∪ [w] =

∫

Z

ω.

There are trace maps (d = dim X)

TrB : H2d
B (X)(d)

∼=→ Q

Tret: H2d
et (X)(d)

∼=→ Af

TrdR: H2d
dR(X)(d)

∼=→ k

that are determined by the requirement thatTr(cl(point)) = 1. They are compatible with
the comparison isomorphisms. Whenk = C, TrB andTrdR are equal respectively to the
composites

H2d
B (X)(d)

(2πi)d 7→1−−−−−→
≈

H2d
B (X)

∼=−−−→ H2d(Γ(Ω•
X∞))

[ω]7→∫
X ω−−−−−→ C

H2d
dR(X)(d) H2d

dR(X)
∼=−−−→ H2d(Γ(Ω•

X∞))
[ω]7→ 1

(2πi)d

∫
X ω

−−−−−−−−−→ C

where we have chosen ani and used it to orientateX (the composite maps are obviously
independent of the choice ofi). The formulas of the last paragraph show that

TrdR(cldR(Z) ∪ [ω]) =
1

(2πi)dim Z

∫

Z

ω.

A definition ofTret can be found inMilne 1980, VI 11.
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Applications to periods

We now deduce some consequences concerning periods.

PROPOSITION1.5. LetX be a complete smooth variety over an algebraically closed field
k ⊂ C and letZ be an algebraic cycle onXC of dimensionr. For anyC∞ differential
r-formω onXC whose class[ω] in H2r

dR(XC) lies inH2r
dR(X)

∫

Z

ω ∈ (2πi)rk.

PROOF. We first note thatZ is algebraically equivalent to a cycleZ0 defined overk. In
proving this, we can assumeZ to be prime. There exists a smooth varietyT overk, a sub-
varietyZ ⊂ X×T that is flat overT , and a pointSpecC→ T such thatZ = Z×T SpecC
in X ×T SpecC = XC. We can therefore takeZ0 to beZ ×T Spec k ⊂ X ×T Spec k = X

for any pointSpec k → T . From this it follows thatcldR(Z) = cldR(Z0) ∈ H2r
dR(X)(r) and

TrdR(cldR(Z) ∪ [ω]) ∈ k. But we saw above that
∫

Z
ω = (2πi)r TrdR(cldR(Z) ∪ [ω]).

We next derive a classical relation between the periods of an elliptic curve. For a com-
plete smooth curveX and an open affine subsetU , the map

H1
dR(X) → H1

dR(U) =
Γ(U, Ω1

X)

dΓ(U,OX)
=
{meromorphic diffls, holomorphic onU}

{exact differentials onU}
is injective with image the set of classes represented by forms whose residues are all zero
(such forms are said to be of the second kind). Whenk = C, TrdR([α] ∪ [β]), whereα and
β are differential1-forms of the second kind, can be computed as follows. LetΣ be the
finite set of points whereα or β has a pole. Forz a local parameter atP ∈ Σ, α can be
written

α =
∑

−∞¿i<∞
aiz

idz with a−1 = 0.

There therefore exists a meromorphic functionf defined nearP such thatdf = α. We write∫
α for any such function — it is defined up to a constant. AsResP β = 0, ResP (

∫
α)β is

well-defined, and one proves that

TrdR([α] ∪ [β]) =
∑
P∈Σ

ResP

(∫
α
)
β.

Now letX be the elliptic curve

y2z = 4x3 − g2xz2 − g3z
3.

There is a latticeΛ in C and corresponding Weierstrass function℘(z) such that

z 7→ (℘(z) : ℘′(z) : 1)
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defines an isomorphismC/Λ → X(C). Letγ1 andγ2 be generators ofΛ such that the bases
{γ1, γ2} and{1, i} of C have the same orientation. We can regardγ1 andγ2 as elements of
H1(X,Z), and thenγ1 ·γ2 = 1. The differentialsω = dx/y andη = xdx/y onX pull back
to dz and℘(z)dz respectively onC. The first is therefore holomorphic and the second has
a single pole at∞ = (0 : 1 : 0) on X with residue zero (because0 ∈ C maps to∞ ∈ X

and℘(z) = 1
z2 + a2z

2 + . . .). We find that

TrdR([ω] ∪ [η]) = Res0

(∫
dz

)
℘(z)dz = Res0(z℘(z)dz) = 1.

For i = 1, 2, let
∫

γi

dx

y
df
=

∫

γi

dx√
4x3 − g2x− g3

= ωi

∫

γi

xdx

y
df
=

∫

γi

xdx√
4x3 − g2x− g3

= ηi

be the periods ofω andη. Under the map

H1
dR(X) → H1(X,C)

ω maps toω1γ
′
1 + ω2γ

′
2 andη maps toη1γ

′
1 + η2γ

′
2, where{γ′1, γ′2} is the basis dual to

{γ1, γ2}. Thus

1 = TrdR([ω] ∪ [η])

= TrB((ω1γ
′
1 + ω2γ

′
2) ∪ (η1γ

′
1 + η2γ

′
2))

= (ω1η2 − ω2η1) TrB(γ′1 ∪ γ′2)

=
1

2πi
(ω1η2 − ω2η1).

Hence
ω1η2 − ω2η1 = 2πi.

This is theLegendre relation.
The next proposition shows how the existence of algebraic cycles can force algebraic

relations between the periods of abelian integrals. LetX be an abelian variety over a
subfieldk of C. In each of the three cohomology theories,

Hr(X) =
∧rH1(X)

and
H1(X ×X × · · · ) = H1(X)⊕H1(X)⊕ · · ·

Let ν ∈ Gm(Q) act onQB(1) asν−1. There is then a natural action ofGL(H1
B(X))×Gm

on Hr
B(Xn)(m) for any r, n, andm. We defineG to be the subgroup ofGL(H1

B(X)) ×
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Gm fixing all the tensors of the formclB(Z), Z an algebraic cycle on someXn (see the
Notations).

Consider the comparison isomorphisms

H1
dR(X)⊗k C

∼=→ H1(Xan,C)
∼=← H1

B(X)⊗Q C.

Theperiodspij of X are defined by the equations

αi =
∑

pjiaj

where{αi} and{ai} are bases forH1
dR(X) andH1

B(X) over k andQ respectively. The
field k(pij) generated overk by thepij is independent of the bases chosen.

PROPOSITION1.6. With the above definitions, the transcendence degree ofk(pij) overk
is≤ dim(G).

PROOF. We can replacek by its algebraic closure inC, and hence assume that each alge-
braic cycle onXC is equivalent to an algebraic cycle onX (see the proof of 1.5). LetP
be the functor ofk-algebras whose value onR is the set of isomorphismsp : H1

B ⊗Q R →
H1

dR⊗k R mappingclB(Z)⊗ 1 to cldR(Z)⊗ 1 for all algebraic cyclesZ on a power ofX.
WhenR = C, the comparison isomorphism is such ap, and soP (C) is not empty. It is
easily seen thatP is represented by an algebraic variety that becomes aGk-torsor under
the obvious action. The bases{αi} and{ai} can be used to identify the points ofP with
matrices. The matrix(pij) is a point ofP with coordinates inC, and so the proposition is
a consequence of the following well-known lemma.

LEMMA 1.7. LetAN be the affineN -space overk, and letz ∈ AN(C). The transcendence
degree ofk(z1, . . . , zN) overk is the dimension of the Zariski closure of{z}.

REMARK 1.8. If X is an elliptic curve, thendim G is 2 or 4 according asX has complex
multiplication or not. Chudnovsky has shown that

tr. deg.kk(pij) = dim G

whenX is an elliptic curve with complex multiplication. Does equality hold for all abelian
varieties?8

One of the main purposes of the seminar was to show that, in the case thatX is an
abelian variety, (1.5) and (1.6) make sense, and remain true, if “algebraic cycle” is replaced
by “Hodge cycle”.
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2 Absolute Hodge cycles; principle B

Definitions (k algebraically closed of finite transcendence degree)

Let k be an algebraically closed field of finite transcendence degree overQ, and letX be a
complete smooth variety overk. Set

Hn
A(X)(m) = Hn

dR(X)(m)×Hn
et(X)(m)

— it is a freek × Af -module. Corresponding to an embeddingσ : k ↪→ C, there are
canonical isomorphisms

σ∗dR: Hn
dR(X)(m)⊗k,σ C

∼=→ Hn
dR(σX)(m)

σ∗et: Hn
et(X)(m)

∼=→ Hn
et(σX)(m)

whose product we writeσ∗. The diagonal embedding

Hn
σ (X)(m) ↪→ Hn

dR(σX)(m)×Hn
et(σX)(m)

induces an isomorphism

Hn
σ (X)(m)⊗ (C× Af )

∼=→ Hn
dR(σX)(m)×Hn

et(σX)(m)

(product of the comparison isomorphisms,§1). An elementt ∈ H2p
A (X)(p) is a Hodge

cycle relative toσ if
(a) t is rational relative to σ, i.e., σ∗(t) lies in the rational subspaceH2p

σ (X)(p) of
H2p

dR(σX)(p)×H2p
et (σX)(p);

(b) the first component oft lies inF 0H2p
dR(X)(p) =df F pH2p

dR(X).
Equivalent condition:σ∗(t) lies in H2p

σ (X)(p) and is of bidegree(0, 0). If t is a Hodge
cycle relative to every embeddingσ : k ↪→ C, then it is called anabsolute Hodge cycle.

EXAMPLE 2.1. (a) For any algebraic cycleZ onX, t = (cldR(Z), clet(Z)) is an absolute
Hodge cycle — the Hodge conjecture predicts there are no others. Indeed, for any
σ : k ↪→ C, σ∗(t) = clB(Z), and is therefore rational, and it is well-known that
cldR(σZ) is of bidegree(p, p) in H2p

dR(σX).
(b) Let X be a complete smooth variety of dimensiond, and consider the diagonal∆ ⊂

X ×X. Corresponding to the decomposition

H2d(X ×X)(d) = ⊕2d
i=0H

2d−i(X)⊗H i(X)(d)

we have
cl(∆) =

∑2d
i=0π

i.

Theπi are absolute Hodge cycles.
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(c) Suppose thatX is given with a projective embedding, and letγ ∈ H2
dR(X)(1) ×

H2
et(X)(1) be the class of a hyperplane section. The hard Lefschetz theorem states

that
x 7→ γd−2p · x : H2p(X)(p) → H2d−2p(X)(d− p), 2p ≤ d,

is an isomorphism. The classx is an absolute Hodge cycle if and only ifγd−2p · x is
an absolute Hodge cycle.

Loosely speaking, any cycle that is constructed from a set of absolute Hodge cycles by
a canonical rational process will again be an absolute Hodge cycle.

QUESTION 2.2 (OPEN). Does there exist a cycle rational for everyσ but which is not
absolutely Hodge?9

More generally, consider a family(Xα)α∈A of complete smooth varieties over a fieldk

(as above). Let(m(α)) ∈ N(A), (n(α)) ∈ N(A), andm ∈ Z, and write

TdR =

(⊗
α

H
m(α)
dR (Xα)

)
⊗

(⊗
α

H
n(α)
dR (Xα)∨

)
(m)

Tet =

(⊗
α

H
m(α)
et (Xα)

)
⊗

(⊗
α

H
n(α)
et (Xα)∨

)
(m)

TA = TdR× Tet

Tσ =

(⊗
α

Hm(α)
σ (Xα)

)
⊗

(⊗
α

Hn(α)
σ (Xα)∨

)
(m) (σ : k ↪→ C).

Then we say thatt ∈ TA is

– rational relative toσ if its image inTA ⊗k×Af ,(σ,1) C× Af lies inTσ,

– a Hodge cycle relative toσ if it is rational relative toσ and its first compo-
nent lies inF 0, and

– anabsolute Hodge cycleif it is a Hodge cycle relative to everyσ.

Note that, in order for there to exist Hodge cycles inTA, it is necessary that
∑

m(α)−∑
n(α) = 2m.

EXAMPLE 2.3. Cup product defines maps

Tm,n
A (p)× Tm′,n′

A (p′) → Tm+m′,n+n′
A (p + p′),

and hence an element ofT∨
A ⊗ T∨

A ⊗ TA, which is an absolute Hodge cycle.

QUESTION2.4(OPEN). Let t ∈ F 0H2p
dR(X)(p). If σ∗dR(t) ∈ H2p

σ (X)(σ) for all σ : k ↪→ C,
is t necessarily the first component of an absolute Hodge cycle?
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Basic properties of absolute Hodge cycles

In order to develop the theory of absolute Hodge cycles, we shall need to use the Gauss-
Manin connection (Katz and Oda 1968; Katz 1970; Deligne 1971b). Let k0 be a field of
characteristic zero and letS be a smoothk0-scheme (or the spectrum of a finitely generated
field overk0). A k0-connectionon a coherentOS-moduleE is a homomorphism of sheaves
of abelian groups

∇ : E → Ω1
S/k0

⊗OS
E

such that
∇(fe) = df ⊗ e + f∇(e)

for local sectionsf of OS ande of E . The kernel of∇, E∇, is the sheaf ofhorizontal
sectionsof (E ,∇). Any k0-connection∇ can be extended to a homomorphism of abelian
sheaves,

∇n : Ωn
S/k0

⊗OS
E → Ωn+1

S/k0
⊗OS

E ,

ω ⊗ e 7→ dω ⊗ e + (−1)nω ∧∇(e)

and∇ is said to beintegrableif ∇1 ◦ ∇ = 0. Moreover,∇ gives rise to anOS-linear map

D 7→ ∇D : Der(S/k0) → Endk0(E)

where∇D is the composite

E ∇→ Ω1
S/k0

⊗OS
E D⊗1→ OS ⊗OS

E ∼= E .

Note that∇D(fe) = D(f)e + f∇D(e). One checks that∇ is integrable if and only if
D 7→ ∇D is a Lie algebra homomorphism.

Now consider a proper smooth morphismπ : X → S of smooth varieties, and write
Hn

dR(X/S) for Rnπ∗(Ω•
X/S). This is a locally free sheaf ofOS-modules with a canoni-

cal connection∇, called theGauss-Manin connection, which is integrable. It therefore
defines a Lie algebra homomorphism

Der(S/k0) → Endk0(Hn
dR(X/S)).

If k0 ↪→ k′0 is an inclusion of fields andX ′/S ′ = (X/S) ⊗k0 k′0, then the Gauss-Manin
connection onHn

dR(X
′/S ′) is∇ ⊗ 1. In the case thatk0 = C, the relative form of Serre’s

GAGA theorem (Serre 1956) shows thatHn
dR(X/S)an ∼= Hn

dR(X
an/Xan) and∇ gives rise

to a connection∇an onHn
dR(X

an/San). The relative Poincaré lemma shows that

(Rnπ∗C)⊗OSan
∼=→ Hn

dR(X
an/San),

and it is known that∇an is the unique connection such that

Rnπ∗C
∼=→ Hn

dR(X
an/San)∇

an
.
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PROPOSITION2.5. Let k0 ⊂ C have finite transcendence degree overQ, and letX be
a complete smooth variety over a fieldk that is finitely generated overk0. Let∇ be the
Gauss-Manin connection onHn

dR(X) relative to the compositeX → Spec k → Spec k0. If
t ∈ Hn

dR(X) is rational relative to all embeddings ofk into C, thent is horizontal for∇:
∇t = 0.

PROOF. Choose a regulark0-algebraA of finite-type and a smooth proper mapπ : XA →
Spec A whose generic fibre isX → Spec k and which is such thatt extends to an element
of Γ(Spec A,Hn

dR(X/ Spec A). After a base change relative tok0 ↪→ C, we obtain maps

XS → S → SpecC, S = Spec AC,

and a global sectiont′ = t ⊗ 1 of Hn
dR(X

an
S /San). We have to show that(∇⊗ 1)t′ = 0, or

equivalently, thatt′ is a global section ofHn(Xan
S ,C) =df Rnπan

∗ C.
An embeddingσ : k ↪→ C gives rise to an injectionA ↪→ C (i.e., a generic point of

Spec A in the sense of Weil) and hence a points of S. The hypotheses show that, at each
of these points,t(s) ∈ Hn(Xan

s ,Q) ⊂ Hn
dR(X

an
s ). Locally onS, Hn

dR(X
an
s /San) will be

the sheaf of holomorphic sections of the trivial bundleS ×Cn andHn(Xan,C) will be the
sheaf of locally constant sections. Thus, locally,t′ is a function

s 7→ (t1(s), . . . , tm(s)) : S → S × Cm.

Eachti(s) is a holomorphic function which, by hypothesis, takes real (even rational) values
on a dense subset ofS. It is therefore constant.

REMARK 2.6. In the situation of (2.5), assume thatt ∈ Hn
dR(X) is rational relative to oneσ

and horizontal for∇. An argument similar to the above then shows thatt is rational relative
to all embeddings that agree withσ onk0.

COROLLARY 2.7. Letk0 ⊂ k be algebraically closed fields of finite transcendence degree
overQ, and letX be a complete smooth variety overk0. If t ∈ Hn

dR(Xk) is rational relative
to all σ : k ↪→ C, then it is defined overk0, i.e., it is in the image ofHn

dR(X) → Hn
dR(Xk).

PROOF. Let k′ be a subfield ofk which is finitely generated overk0 and such thatt ∈
Hn

dR(X ⊗k0 k′). The hypothesis implies that∇t = 0 where∇ is the Gauss-Manin connec-
tion for Xk′ → Spec k′ → Spec k0. Thus, for anyD ∈ Der(k′/k0), ∇D(t) = 0. But Xk′

arises from a variety overk0, and soDer(k′/k0) acts onHn
dR(Xk′) = Hn

dR(X)⊗k0k
′ through

k′, i.e.,∇D = 1⊗D. Thus the corollary follows from the next well-known lemma.

LEMMA 2.8. Let k0 ⊂ k′ be as above, and letV = V0 ⊗k0 k′, whereV0 is a vector space
overk0. If t ∈ V is fixed (i.e., killed) by all derivations ofk′/k0, thent ∈ V0.

Let Cp
AH(X) be the subset ofH2p

A (X)(p) of absolute Hodge cycles. It is a finite-
dimensional vector space overQ.
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PROPOSITION2.9. Let k be an algebraically closed field of finite transcendence degree
overQ.

(a) For any smooth complete varietyX defined over an algebraically closed subfieldk0

of k, the canonical map

H2p
A (X)(p) → H2p

A (Xk)(p)

induces an isomorphism
Cp

AH(X) → Cp
AH(Xk).

(b) LetX0 be a smooth complete variety defined over a subfieldk0 of k whose algebraic
closure isk, and letX = X0⊗k0 k. ThenGal(k/k0) acts onCp

AH(X) through a finite
quotient.

PROOF. (a) The map is injective, and a cycle onX is absolutely Hodge if and only if it is
absolutely Hodge onXk, and so it remains to show that an absolute Hodge cyclet on Xk

arises from a cycle onX. But (2.7) shows thattdR arises from an element ofH2p
dR(X)(p),

andH2p
et (X)(p) → H2p

et (Xk)(p) is an isomorphism.
(b) It is obvious that the action ofGal(k/k0) on H2p

dR(X)(p) × H2p
et (X)(p) stabilizes

Cp
AH(X). We give three proofs that it factors through a finite quotient.

(i) Note thatCp
AH(X) → H2p

dR(X) is injective. Clearly,H2p
dR(X) =

⋃
H2p

dR(X0 ⊗ ki)

where theki run over over the finite extensions ofk0 contained ink. Thus, all elements of
a finite generating set forCp

AH(X) lie in H2p
dR(X0 ⊗ ki) for somei.

(ii) Note thatCp
AH(X) → H2p(Xet,Q`)(p) is injective for all`. The subgroupH of

Gal(k/k0) fixing Cp
AH(X) is closed. Thus, the quotient ofGal(k/k0) by H is a profinite

group, which is countable because it is a finite subgroup ofGLm(Q) for somem. It fol-
lows10 that it is finite.

(iii) A polarization ofX gives a positive definite form onCp
AH(X), which is stable under

Gal(k/k0). This shows that the action factors through a finite quotient.

REMARK 2.10. (a) The above results remain valid for a family of varieties(Xα)α rather
than a singleX.

(b) Proposition 2.9 would remain true if we had defined an absolute Hodge cycle to be
an elementt of F 0H2p

dR(X)(p) such that, for allσ : k ↪→ C, σ∗dR(t) ∈ H2p
σ (X).

Definitions (arbitrary k)

Proposition 2.9 allows us to define the notion of an absolute Hodge cycle on any smooth
complete varietyX over a field of characteristic zero. Whenk is algebraically closed,
we choose a modelX0/k0 of X0 over an algebraically closed subfieldk0 of k of finite
transcendence degree overQ, and we definet ∈ H2p

A (X)(p) to be anabsolute Hodge cycle
if it lies in the subspaceH2p

A (X0)(p) of H2p
A (X)(p) and is an absolute Hodge cycle there.

The proposition shows that this definition is independent of the choice ofk0 andX0. (This
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definition is forced on us if we want (2.9a) to hold without restriction on the transcendence
degrees ofk andk0.) Whenk is not algebraically closed, we choose an algebraic closurek

of it, and define anabsolute Hodge cycleon X to be an absolute Hodge cycle onX ⊗k k

that is fixed byGal(k/k).
One can show (assuming the axiom of choice) that ifk is algebraically closed and of

cardinality not greater than that ofC, then an elementt of H2p
dR(X)(p) × H2p

et (X)(p) is
an absolute Hodge cycle if it is rational relative to all embeddingsσ : k ↪→ C andtdR ∈
F 0H2p

dR(X)(p). If k = C, then the first condition has to be checked only for isomorphisms
of C. Whenk ⊂ C, we define aHodge cycleto be a cohomology class that is Hodge
relative to the inclusionk ↪→ C.

Statement of the main theorem

MAIN THEOREM 2.11. 11LetX be an abelian variety over an algebraically closed fieldk,
and lett ∈ H2p

A (X)(p). If t is a Hodge cycle relative to one embeddingσ : k ↪→ C, then it
is a Hodge cycle relative to every embedding, i.e., it is an absolute Hodge cycle.

The proof will occupy§§2–6 of the notes.

Principle B

We begin with a result concerning families of varieties parametrized by smooth algebraic
varieties overC. Let π : X → S be a proper smooth map of smooth varieties overC with
S connected. We set

Hn
et(X/S)(m) = lim←−

r

(Rnπ∗etµ
⊗m
r )⊗Z Q.

and
Hn
A(X/S)(m) = Hn

dR(X/S)(m)×Hn
et(X/S)(m).

THEOREM 2.12 (PRINCIPLE B). Let t be a global section ofH2p
A (X/S)(p) such that

∇tdR = 0. If (tdR)s ∈ F 0H2p
dR(Xs)(p) for all s ∈ S and ts is an absolute Hodge cycle

in H2p
A (Xs)(p) for ones, thents is an absolute Hodge cycle for alls.

PROOF. Suppose thatts is an absolute Hodge cycle fors = s1, and lets2 be a second point
of S. We have to show thatts2 is rational relative to every isomorphismσ : C → C. On
applyingσ, we obtain a morphismσπ : σX → σS and a global sectionσt ofH2p

A (X/S)(p).
We know thatσ(t)σs1 is rational, and we have to show thatσ(t)σs2 is rational. Clearly,σ
only translates the problem, and so we can omit it.

First consider the componenttdR of t. By assumption,∇tdR = 0, and sotdR is a global
section ofH2p(Xan,C). Since it is rational at one point, it must be rational at every point.
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Next considertet. AsH2p
B (X/S)(p) =df R2pπan

∗ Q(p) andH2p
et (X/S) are local systems,

for any points ∈ S there are isomorphisms

Γ(S,H2p
B (X/S)(p))

∼=→ H2p
B (Xs)(p)π1(S,s)

Γ(S,H2p
et (X/S)(p))

∼=→ H2p
et (Xs)(p)π1(S,s).

Consider

Γ(S,H2p
B (X/S)(p)) ⊂- Γ(S,H2p

B (X/S)(p))⊗ Af
∼=Γ(S,H2p

et (X/S)(p))

H2p
B (Xs)(p)π1(S,s)

∼=
?

⊂ - H2p
B (Xs)(p)π1(S,s) ⊗ Af

∼=
?

∼= H2p
et (Xs)(p)π1(S,s)

∼=
?

H2p
B (Xs)(p)

?

∩

↪→ H2p
B (Xs)(p)⊗ Af

?

∩

∼= H2p
et (Xs)(p)

?

∩

We havetet ∈ Γ(S,H2p
et (X/S)(p)) and are told that its image inH2p

et (Xs1)(p) lies in
H2p

B (Xs1)(p). On applying the next lemma (withZ = A and z = 1), we find thattet

lies inΓ(S,H2p
B (X/S)(p)), and is therefore inH2p

B (Xs)(p) for all s.

LEMMA 2.13. LetW ↪→ V be an inclusion of vector spaces. LetZ be a third vector space
and letz be a nonzero element ofZ. EmbedV in V ⊗ Z byv 7→ v ⊗ z. Then

(W ⊗ Z) ∩ V = W (insideV ⊗ Z).

PROOF. Choose a basis(ei)i∈I for W and extend it to a basis(ei)ItJ for V . Any x ∈ V ⊗Z

has a unique expression

x =
∑

i∈ItJei ⊗ zi, (zi ∈ Z, finite sum).

If x ∈ W ⊗ Z, thenzi = 0 for i /∈ I, and ifx ∈ V , thenzi = z for all i.

REMARK 2.14. The assumption in the theorem that(tdR)s ∈ F 0H2p
dR(Xs)(p) for all s is

unnecessary: it is implied by the condition that∇tdR = 0 (Deligne 1971a, 4.1.2, Th́eor̀eme
de la partie fixe).12

We shall need a slight generalization of Theorem 2.12.

THEOREM 2.15. Let π : X → S again be a smooth proper map of smooth varieties over
C with S connected, and letV be a local subsystem ofR2pπ∗Q(p) such thatVs consists
of (0, 0)-cycles for alls and consists of absolute Hodge cycles for at least ones. ThenVs

consists of absolute Hodge cycles for alls.

PROOF. If V is constant, so that every element ofVs extends to a global section, then this
is a consequence of Theorem 2.12, but the following argument reduces the general case to
that case.
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At each points ∈ S, R2pπ∗Q(p)s has a Hodge structure. Moreover,R2pπ∗Q(p) has a
polarization, i.e., there is a form

ψ : R2pπ∗Q(p)×R2pπ∗Q(p) → Q(−p)

which at each point defines a polarization on the Hodge structureR2pπ∗Q(p)s. On

R2pπ∗Q(p) ∩ (R2pπ∗C(p))0,0

the form is symmetric, bilinear, rational, and positive definite. Since the action ofπ1(S, s0)

preserves the form, the image ofπ1(S, s0) in Aut(Vs0) is finite. Thus, after passing to a
finite covering ofS, we can assume thatV is constant.

REMARK 2.16. Both Theorem 2.12 and Theorem 2.15 generalize, in an obvious way, to
familiesπα : Xα → S.
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3 Mumford-Tate groups; principle A

Characterizing subgroups by their fixed tensors

Let G be a reductive algebraic group over a fieldk of characteristic zero, and let(Vα)α∈A be
a faithful family of finite-dimensional representations overk of G, so thatG → ∏

GL(Vα)

is injective. For anym, n ∈ N(A), we can form

Tm,n =
⊗

αV ⊗m(α)
α ⊗⊗

α(V ∨
α )⊗n(α),

which is again a finite-dimensional representation ofG. For any algebraic subgroupH of
G, we writeH ′ for the subgroup ofG fixing all tensors that occur in someTm,n and are
fixed byH. Clearly,H ⊂ H ′, and we shall need criteria guaranteeing their equality.

PROPOSITION3.1. The notations are as above.
(a) Every finite-dimensional representation ofG is contained in a direct sum of repre-

sentationsTm,n.
(b) (Chevalley’s Theorem). Every subgroupH of G is the stabilizer of a lineD in some

finite-dimensional representation ofG.
(c) If H is reductive, or ifXk(G) → Xk(H) is surjective, thenH = H ′. (HereXk(G)

denotesHomk(G,Gm), so the hypotheses is that everyk-character ofH extends to
a k-character ofG.)

PROOF. (a) LetW be a representation ofG, and letW0 denote the underlying vector space
of W with G acting trivially (i.e.,gw = w, all g ∈ G, w ∈ W ). ThenG × W → W

defines a mapW → W0 ⊗ k[G] which is G-equivariant (Waterhouse 1979, 3.5). Since
W0 ⊗ k[G] ≈ k[G]dim W , it suffices to prove (a) for the regular representation. There is a
finite sumV = ⊕Vα such thatG → GL(V ) is injective (becauseG is noetherian). The
map

GL(V ) → End(V )× End(V ∨)

identifiesGL(V ) (and henceG) with a closed subvariety ofEnd(V )×End(V ∨) (loc. cit.).
There is therefore a surjection

Sym(End(V ))× Sym(End(V ∨)) → k[G],

whereSym denotes the symmetric algebra, and (a) now follows from the fact that repre-
sentations of reductive groups in characteristic zero are semisimple (seeDeligne and Milne
1982, §2).

(b) Let I be the ideal of regular functions onG that are zero onH. Then, in the regular
representation ofG on k[G], H is the stabilizer ofI. There exists a finite-dimensional
subspaceV of k[G] that isG-stable and contains a generating set forI (Waterhouse 1979,
3.3). ThenH is the stabilizer of the subspaceI ∩ V in V , and hence13 of

∧d(I ∩ V ) in∧d V , whered = dimk(I ∩ V ).
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(c) According to (b),H is the stabilizer of a lineD in some representationV of G,
which (according to (a)) can be taken to be a direct sum ofTm,n’s.

If H is reductive, thenV = W ⊕D for someH-stableW andV ∨ = W∨ ⊕D∨. Now
H is the group fixing a generator ofD ⊗D∨ in V ⊗ V ∨.

If everyk-character ofH extends to ak-character ofG, then the one-dimensional rep-
resentation ofH on D can be regarded as the restriction toH of a representation ofG.
Now H is the group fixing a generator ofD ⊗D∨ in V ⊗D∨.

REMARK 3.2. (a) It is clearly necessary to have some condition onH in order to have
H ′ = H. For example, letB be a Borel subgroup of a reductive groupG, and letv ∈ V be
fixed byB. Theng 7→ gv defines a map of algebraic varietiesG/B → V , which must be
constant becauseG/B is complete andV is affine. Thus,v is fixed byG, and soB′ = G.

However, the above argument proves the following: letH ′ be the group fixing all ten-
sors fixed byG occurring in any representation ofG (equivalently, any representation oc-
curring as a subquotient of someTm,n); thenH = H ′.

(b) In fact, in all our applications of (3.1c),H will be the Mumford-Tate group of a
polarizable Hodge structure, and hence will be reductive. However, the Mumford-Tate
groups of mixed Hodge structures (even polarizable) will not in general be reductive, but
will satisfy the second condition in (3.1c) (withG = GL).

(c) The theorem of Haboush (Demazure 1976) can be used to show that the second
form of (3.1c) holds whenk has nonzero characteristic.

(d) In (3.1c) it suffices to require thatXk(G) → Xk(H) has finite cokernel, i.e., a
nonzero multiple of eachk-character ofH extends to ak-character ofG.

Hodge structures

Let V be a finite-dimensional vector space overQ. A Q-rational Hodge structureof
weightn onV is a decompositionVC =

⊕
p+q=nV

p,q such thatV q,p is the complex conju-
gate ofV p,q. Such a structure determines a cocharacter

µ : Gm → GL(VC)

such that
µ(z)vp,q = z−pvp,q, vp,q ∈ V p,q.

The complex conjugateµ(z) of µ(z) has the propertyµ(z) · vp,q = z−qvp,q. Sinceµ(z) and
µ(z) commute, their product determines a homomorphism of real algebraic groups

h : C× → GL(VR), h(z)vp,q = z−pz−qvp,q.

Conversely, a homomorphismh : C× → GL(VR) whose restriction toR× is r 7→ r−n · idV

defines a Hodge structure of weightn onV .
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Let F pV =
⊕

p′≥pV
p′,q′, so that

· · · ⊃ F pV ⊃ F p+1V ⊃ · · ·

is a decreasing (Hodge) filtration onVC.
Let Q(1) denote the vector spaceQ with the Hodge structure for whichQ(1)C =

Q(1)−1,−1. It has weight−2 andh(z) · 1 = zz · 1. For any integerm,

Q(m)
df
= Q(1)⊗m = Q(m)−m,−m

has weight−2m. (Strictly speaking, we should defineQ(1) = 2πiQ . . ..)

REMARK 3.3. The notationh(z) · vp,q = z−pz−qvp,q is the negative of that used inDeligne
1971b, Saavedra Rivano 1972, and elsewhere. It is perhaps justified by the following. Let
A be an abelian variety overC. The exact sequences

0 → Lie(A∨)∨ → H1(A,C) → Lie(A) → 0

and

0 → F 1H1(A,C) → H1(A,C) → F 1/F 2 → 0

|| ||
H1,0 = H0(A, Ω1) H0,1 = H1(A,OX)

are canonically dual. SinceH1(A,C) has a natural Hodge structure of weight1 with (1, 0)-
componentH0(Ω1), H1(A,C) has a natural Hodge structure of weight−1 with (−1, 0)-
componentLie(A). Thush(z) acts onLie(A), the tangent space toA at zero, as multipli-
cation byz.

Mumford-Tate groups

Let V be aQ-vector space with Hodge structureh of weightn. Form1,m2 ∈ N andm3 ∈
Z, T = V ⊗m1⊗V ∨⊗m2⊗Q(1)⊗m3 has a Hodge structure of weight(m1−m2)n−2m3. An
element ofTC is said to berational of bidegree(p, q) if it lies in T ∩ T p,q. We letν ∈ Gm

act onQ(1) as ν−1. The action ofGL(V ) on V and the action ofGm on Q(1) define
an action ofGL(V ) × Gm on T . TheMumford-Tate groupG of (V, h) is the subgroup
of GL(V ) × Gm fixing all rational tensors of type(0, 0) belonging to anyT . Thus the
projection on the first factor identifiesG(Q) with the set ofg ∈ GL(V ) for which there
exists aν(g) ∈ Q× with the property thatgt = ν(g)pt for anyt ∈ V ⊗m1 ⊗ V ∨⊗m2 of type
(p, p).

PROPOSITION3.4. The groupG is the smallest algebraic subgroup ofGL(V )×Gm defined
overQ for whichµ(Gm) ⊂ GC.
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PROOF. Let H be the intersection of allQ-rational subgroups ofGL(V ) × Gm that, over
C, containµ(Gm). For anyt ∈ T , t is of type(0, 0) if and only if it is fixed byµ(Gm) or,
equivalently, it is fixed byH. ThusG = H ′ in the notation of (3.1), and the next lemma
completes the proof.

LEMMA 3.5. With H as above, everyQ-character ofH extends to aQ-character of
GL(V )×Gm.

PROOF. Let χ : H → GL(W ) be a representation of dimension one defined overQ, i.e., a
Q-character. The restriction of the representation toGm is isomorphic toQ(n) for somen.
After tensoringW with Q(−n), we can assume thatχ ◦ µ = 1, i.e.,µ(Gm) acts trivially.
But thenH must act trivially, and the trivial character extends to the trivial character.

PROPOSITION3.6. If V is polarizable, thenG is reductive.

PROOF. Choose ani and writeC = h(i) (C is often called the Weil operator). Forvp,q ∈
V p,q, Cvp,q = i−p+qvp,q, and soC2 acts as(−1)n on V , wheren = p + q is the weight of
V .

Recall that a polarizationψ of V is a morphismψ : V × V → Q(−n) such that the
real-valued formψ(x, Cy) on VR is symmetric and positive definite. Under the canonical
isomorphism

Hom(V ⊗ V,Q(−n)) → V ∨ ⊗ V ∨(−n),

ψ corresponds to a tensor of bidegree(0, 0) (because it is a morphism of Hodge structures)
and therefore is fixed byG:

ψ(g1v, g1v
′) = gn

2 ψ(v, v′), all (g1, g2) ∈ G(Q) ⊂ GL(V )×Q×, (v, v′) ∈ V.

Recall that ifH is a real algebraic group andσ is an involution ofHC, then thereal-form
of H defined byσ is a real algebraic groupHσ endowed with an isomorphismHC → (Hσ)C
under which complex conjugation onHσ(C) corresponds toσ ◦ (complex conjugation) on
H(C). We are going to use the following criterion: a connected algebraic groupH overR
is reductive if it has a compact real-formHσ. To prove the criterion, it suffices to show that
Hσ is reductive. On any finite-dimensional representationV of H, there is anHσ-invariant
positive definite symmetric form, namely,

〈u, v〉0 =

∫

Hσ

〈hu, hv〉dh,

where〈 , 〉 is any positive definite symmetric form onV . If W is anHσ-stable subspace
of V , then its orthogonal complement is alsoHσ-stable. Thus every finite-dimensional
representation ofHσ is semisimple, and this implies thatHσ is reductive (Deligne and
Milne 1982, §2).

We shall apply the criterion to the special Mumford-Tate group of(V, h),

G0 df
= Ker(G → Gm).
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Let G1 be the smallestQ-rational subgroup ofGL(V )×Gm such thatG1
R containsh(U1),

whereU1(R) = {z ∈ C× | zz = 1}. ThenG1 ⊂ G, and in factG1 ⊂ G0. Since
G1
R · h(C×) = GR and h(U1) = Ker(h(C×) → Gm), it follows that G0 = G1, and

thereforeG0 is connected.
SinceC = h(i) acts as1 onQ(1), C ∈ G0(R). Its squareC2 acts as(−1)n on V and

therefore lies in the centre ofG0(R). The inner automorphismadC of GR defined byC is
therefore an involution. Foru, v ∈ VC, andg ∈ G0(C), we have

ψ(u,Cv) = ψ(gu, gCv) = ψ(gu, CC−1gCv) = ψ(gu, Cg∗v)

whereg∗ = C−1gC = (adC)(g). Thus, the positive definite formφ(u, v) =df ψ(u,Cv)

on VR is invariant under the real-form ofG0 defined byadC, and so this real-form is
compact.

EXAMPLE 3.7. (Abelian varieties of CM-type). ACM-field is a quadratic totally imaginary
extension of a totally real field, and aCM-algebrais a finite product of CM-fields. LetE
be a CM-algebra, and letι be the involution ofE such thatισ = σιE for all σ : E → C.
Let

S = Hom(E,C) = Hom(E,Q) = specEC.

A CM-typefor E is a subsetΣ ⊂ S such that

S = Σ t ιΣ (disjoint union).

To the pair(E, Σ), there is attached an abelian varietyA with A(C) = CΣ/Σ(OE) where
OE, the ring of integers inE, is embedded inCΣ by u 7→ (σu)σ∈Σ. Obviously,E acts on
A. Moreover,H1(A,Q) ∼= E, and

H1(A)⊗ C ∼= E ⊗Q C
∼=→ CS = CΣ ⊕ CιΣ

u⊗ 1 7→ (σu)σ∈S

withCΣ the(−1, 0)-component ofH1(A)⊗C andCιΣ the(0,−1)-component. Thus,µ(z)

acts asz onCΣ and as1 onCιΣ.
LetG be the Mumford-Tate group ofH1(A). The actions ofµ(C×) andE× onH1(A)⊗

C commute. AsE× is its own commutant inGL(H1(A)), this implies thatµ(C×) ⊂
(E ⊗ C)× andG is the smallest algebraic subgroup ofE× × Q× such thatG(C) contains
µ(C×). In particular,G is a torus, and can be described by its cocharacter groupY (G) =df

HomQ(Gm, G).
Clearly,

Y (G) ⊂ Y (E×)× Y (Gm) = ZS × Z.

Note thatµ ∈ Y (G) is equal to
∑

s∈Σ es + e0, where(es)s∈S ⊂ ZS is the basis dual to
S ⊂ X(E×) ande0 is the element1 of the last copy ofZ. The following are obvious:

(a)
(
ZS × Z)

/Y (G) is torsion-free;
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(b) µ ∈ Y (G);
(c) Y (G) is stable underGal(Q/Q); thusY (G) is theGal(Q/Q)-module generated by

µ;
(d) sinceµ + ιµ = 1 onS,

Y (G) ⊂ {∑nses + n0e0 ∈ ZS × Z | ns + nιs = constant}.
Let F be the subalgebra ofE whose elements are fixed byιE (thus,F is a product of totally
real fields). Then (d) says that

G(Q) ⊂ {(x, y) ∈ E× ×Q× | NmE/F (x) ∈ Q×}.

Principle A

THEOREM 3.8 (PRINCIPLE A). 14Let (Xα)α be a family of varieties overC, and consider
spacesT obtained by tensoring spaces of the formHnα

B (Xα), Hnα
B (Xα)∨, andQ(1). Let

ti ∈ Ti, i = 1, . . . , N (Ti of the above type) be absolute Hodge cycles, and letG be the
subgroup of ∏

α,nα

GL(Hnα
B (Xα))×Gm

fixing theti. If t belongs to someT and is fixed byG, then it is an absolute Hodge cycle.

We first need a lemma.

LEMMA 3.9. LetG be an algebraic group overQ, and letP be aG-torsor of isomorphisms
Hα

σ → Hα
τ where(Hα

σ )α and (Hα
τ )α are families ofQ-rational representations ofG. Let

Tσ and Tτ be like spaces of tensors constructed out ofHσ and Hτ respectively. ThenP
defines a mapTG

σ → Tτ .

PROOF. Locally for theétale topology onSpec(Q), points ofP define isomorphismsTσ →
Tτ . The restriction toTG

σ of such a map is independent of the point. Thus, byétale descent
theory, they define a map of vector spacesTG

σ → Tτ .

PROOF OFTHEOREM 3.8. We remove the identification of the ground field withC. Thus,
the ground field is now a fieldk equipped with an isomorphismσ : k → C. Let τ : k → C
be a second isomorphism. We can assume thatt and theti all belong to the same spaceT .
The canonical inclusions of cohomology groups

Hσ(Xα) ↪→ Hσ(Xα)⊗ (C× Af ) ←↩ Hτ (Xα)

induce maps
Tσ ↪→ T ⊗ (C× Af ) ←↩ Tτ .

We shall regard these maps as inclusions. Thus,

(t1, . . . , tN , t) ⊂ Tσ ⊂ T ⊗ (C× Af ),

(t1, . . . , tN) ⊂ Tτ ⊂ T ⊗ (C× Af ).
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Let P be the functor ofQ-algebras such that

P (R) = {p : Hσ ⊗R
≈→ Hτ ⊗R | p mapsti (in Tσ) to ti (in Tτ ), i = 1, . . . , N}.

The existence of the canonical inclusions mentioned above shows thatP (C × Af ) is
nonempty, and it is easily seen thatP is aG-torsor.

On applying the lemma (and its proof) in the above situation, we obtain a mapTG
σ → Tτ

such that
TG

σ
- Tτ

Tσ

?

∩

- T ⊗ (C× Af )
?

∩

commutes. This means thatTG
σ ⊂ Tτ , and thereforet ∈ Tτ .

It remains to show that the componenttdR of t in T ⊗ C = TdR lies inF 0TdR. But for a
rationals ∈ TdR,

s ∈ F 0TdR ⇐⇒ s is fixed byµ(C×).

Thus,(ti)dR ∈ F 0, i = 1, 2, . . . , N , impliesG ⊃ µ(C×), which implies thattdR ∈ F 0.
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4 Construction of some absolute Hodge cycles

Hermitian forms

Recall that a number fieldE is a CM-field if, for each embeddingE ↪→ C, complex
conjugation induces a nontrivial automorphisme 7→ e on E that is independent of the
embedding. The fixed field of the automorphism is then a totally real fieldF over whichE

has degree two.
A bi-additive form

φ : V × V → E

on a vector spaceV over such a fieldE is Hermitian if

φ(ev, w) = eφ(v, w), φ(v, w) = φ(w, v), all e ∈ E, v, w ∈ V .

For any embeddingτ : F ↪→ R we obtain a Hermitian formφτ in the usual sense on the
vector spaceVτ = V ⊗F,τ R, and we letaτ and bτ be the dimensions of the maximal
subspaces ofVτ on whichφτ is positive definite and negative definite respectively. Ifd =

dim V , thenφ defines a Hermitian form on
∧dV that, relative to some basis vector, is of

the form(x, y) 7→ fxy. The elementf is in F , and is independent of the choice of the
basis vector up to multiplication by an element ofNmE/F E×. It is called thediscriminant
of φ. Let (v1, . . . , vd) be an orthogonal basis forφ, and letφ(vi, vj) = ci; thenaτ is the
number ofi for which τci > 0, bτ the number ofi for which τci < 0 andf =

∏
ci (mod

NmE/F E×). If φ is nondegenerate, thenf ∈ F×/ Nm E×, and

aτ + bτ = d, sign(τf) = (−1)bτ , all τ. (1)

PROPOSITION4.1. Suppose given nonnegative integers(aτ , bτ )τ : F ↪→C and an elementf ∈
F×/ Nm E× satisfying (1). Then there exists a non-degenerate Hermitian formφ on anE-
vector space with invariants(aτ , bτ ) andf ; moreover,(V, φ) is unique up to isomorphism.

PROOF. The result is due toLandherr 1936. Today one prefers to regard it as a conse-
quence of the Hasse principle for simply connected semisimple algebraic groups and the
classification of Hermitian forms over local fields.

COROLLARY 4.2. Assume that the Hermitian space(V, φ) is non-degenerate and letd =

dim V . The following conditions are equivalent:
(a) aτ = bτ for all τ anddisc(f) = (−1)d/2;

(b) there is a totally isotropic subspace ofV of dimensiond/2.

PROOF. Let W be a totally isotropic subspace ofV of dimensiond/2. The mapv 7→
φ(−, v) : V → W∨ induces an antilinear isomorphismV/W → W∨. Thus, a basis
e1, . . . , ed/2 of W can be extended to a basis{ei} of V such that

φ(ei, e d
2
+i) = 1, 1 ≤ i ≤ d/2,

φ(ei, ej) = 0, j 6= i± d/2.
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It is now easy to check that(V, φ) satisfies (a). Conversely,(Ed, φ) where

φ((ai), (bi)) =
∑

1≤i≤d/2

aib d
2
+i + a d

2
+ibi,

is, up to isomorphism, the only Hermitian space satisfying (a), and it also satisfies (b).

A Hermitian form satisfying the equivalent conditions of the corollary will be said to
besplit (because thenAutE(V, φ) is anF -split algebraic group).

We shall need the following lemma from linear algebra.

LEMMA 4.3. Let k be a field, and letV be a free finitely generated module over anétale
k-algebrak′ (i.e.,k′ is a finite product of finite separable field extensions ofk).

(a) The map
f 7→ Trk′/k ◦f : Homk′(V, k′) → Homk(V, k)

is an isomorphism ofk-vector spaces.
(b)

∧n
k′V is, in a natural way, a direct summand of

∧n
kV .

PROOF. (a) As the pairingTrk′/k : k′ × k′ → k is nondegenerate, the mapf 7→ Trk′/k ◦f
is injective, and it is onto because the two spaces have the same dimension overk.

(b) There are obvious maps

∧n
kV → ∧n

k′V∧n
kV

∨ → ∧n
k′V

∨

whereV ∨ = Homk′(V, k′) ∼= Homk(V, k). But15 (
∧nV ∨) ∼= (

∧nV )∨, and so the second
map gives rise to a map

∧n
k′V → ∧n

kV , which is left inverse to the first.
Alternatively, and more elegantly, descent theory shows that it suffices to prove the

proposition withk′ = kS, S = Homk(k
′, k). ThenV =

⊕
s∈SVs and the map in (a)

becomesf = (fs) 7→
∑

fs, which is obviously an isomorphism. For (b), note that

∧n
kV =

⊕∑
ns=n

(⊗
s∈S

∧ns

k Vs

) ⊃ ⊕
s∈S

∧n
kVs =

∧n
k′V .

Conditions for
∧d

EH1(A,Q) to consist of absolute Hodge cycles

Let A be an abelian variety overC and letν : E → End(A) be a homomorphism withE a
CM-field (in particular, this means thatv(1) = idA). Let d be the dimension ofH1(A,Q)

overE, so thatd[E : Q] = 2 dim A. WhenH1(A,R) is identified with the tangent space
to A at zero, it acquires a complex structure; we denote byJ theR-linear endomorphism
“multiplication by i” of H1(A,R). If h : C× → GL(H1(A,R)) is the homomorphism
determined by the Hodge structure onH1(A,R), thenh(i) ↔ J under the isomorphism
GL(H1(A,R)) ∼= GL(H1(A,R)) determined byH1(A,R) ∼= H1(A,R)∨.
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Corresponding to the decomposition

e⊗ z 7→ (. . . , σe · z, . . .) : E ⊗Q C
∼=→ ∏

σ∈SC, S = Hom(E,C),

there is a decomposition

H1
B(A)⊗ C ∼=→ ⊕

σ∈SH1
B,σ (E-linear isomorphism)

such thate ∈ E acts on the complex vector spaceH1
B,σ asσe. EachH1

B,σ has dimensiond,
and (asE respects the Hodge structure onH1

B(A)) acquires a Hodge structure

H1
B,σ = H1,0

B,σ ⊕H0,1
B,σ.

Let aσ = dim H1,0
B,σ andbσ = dim H0,1

B,σ; thusaσ + bσ = d.

PROPOSITION4.4. The subspace16
∧d

EH1
B(A) of Hd(A,Q) is purely of bidegree(d

2
, d

2
) if

and only ifaσ = d
2

= bσ.

PROOF. Note thatHd(A,Q) ∼= ∧d
QH1(A,Q), and so (4.3) canonically identifies

∧d
EH1

B(A)

with a subspace ofHd
B(A). As in the last line of the proof of (4.3), we have
(∧d

EH1
B

)
⊗ C ∼= ∧d

E⊗C
(
H1

B ⊗ C
)

∼= ⊕
σ∈S

∧dH1
B,σ

∼= ⊕
σ∈S

∧d(H1,0
B,σ ⊕H0,1

B,σ)

∼= ⊕
σ∈S

∧aσH1,0
B,σ ⊗

∧bσH0,1
B,σ,

and
∧aσH1,0

B,σ and
∧bσH0,1

B,σ are purely of bidegree(aσ, 0) and(0, bσ) respectively.

Thus, in this case,
(∧d

EH1
B(A)

)
(d

2
) consists of Hodge cycles, and we would like to

show that it consists of absolute Hodge cycles. In one special case, this is easy.

LEMMA 4.5. Let A0 be an abelian variety of dimensiond
2

and letA = A0 ⊗Q E. Then∧d
EH1(A,Q)(d

2
) ⊂ Hd(A,Q)(d

2
) consists of absolute Hodge cycles.17

PROOF. There is a commutative diagram

Hd
B(A0)(

d
2
)⊗Q E - Hd

A(A0)(
d
2
)⊗Q E

(∧d
EH1

B(A0 ⊗Q E)
)

(d
2
)

∼=?
-

(∧d
E⊗AH

1
A(A0 ⊗Q E)

)
(d

2
)

∼=?

⊂ Hd
A(A0 ⊗ E)(d

2
)

in which the vertical maps are induced byH1(A0) ⊗ E
∼=→ H1(A0 ⊗ E). From this, and

similar diagrams corresponding to isomorphismsσ : C→ C, one sees that

Hd
A(A0)(

d
2
)⊗ E ↪→ Hd

A(A0 ⊗ E)(d
2
)
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induces an inclusion
Cd

AH(A0)⊗ E ↪→ Cd
AH(A0 ⊗ E).

But Cd
AH(A0) = Hd

B(A0)(
d
2
) sinceHd

B(A0)(
d
2
) is a one-dimensional space generated by the

class of any point onA0.

In order to prove the general result, we need to consider families of abelian varieties
(ultimately, we wish to apply (2.15)), and for this we need to consider polarized abelian
varieties. Apolarization θ on A is determined by a Riemann form, i.e., aQ-bilinear al-
ternating formψ on H1(A,Q) such that the form(z, w) 7→ ψ(z, Jw) on H1(A,R) is
symmetric and definite; two Riemann formsψ andψ′ onH1(A,Q) correspond to the same
polarization if and only if there is ana ∈ Q× such thatψ′ = aψ. We shall consider only
triples (A, θ, v) in which the Rosati involution defined byθ induces complex conjugation
onE. (The Rosati involutione 7→ te : End(A) → End(A) is determined by the condition

ψ(ev, w) = ψ(v, tew), v, w ∈ H1(A,Q).)

LEMMA 4.6. Letf ∈ E× be such thatf = −f , and letψ be a Riemann form forA. There
exists a uniqueE-Hermitian formφ onH1(A,Q) such thatψ(x, y) = TrE/Q(fφ(x, y)).

We first need:

SUBLEMMA 4.7. LetV andW be finite-dimensional vector spaces overE, and letψ : V ×
W → Q be aQ-bilinear form such thatψ(ev, w) = ψ(v, ew) for e ∈ E. Then there exists
a uniqueE-bilinear formφ such thatψ(v, w) = TrE/Q φ(v, w).

PROOF. The condition says thatψ defines aQ-linear mapV ⊗E W → Q. Let φ be the
element ofHomQ(V ⊗E W,E) corresponding toψ under the isomorphism (see 4.3(a))

HomE(V ⊗E W,E) ∼= HomQ(V ⊗E W,Q).

PROOF OFLEMMA 4.6. We apply (4.7) withV = H1(A,Q) = W , but with withE acting
through complex conjugation onW . This gives a sesquilinearφ1 such thatψ(x, y) =

TrE/Q φ1(x, y). Letφ = f−1φ1, so thatψ(x, y) = TrE/Q(fφ(x, y)). Sinceφ is sesquilinear
it remains to show thatφ(x, y) = φ(x, y). As ψ(x, y) = −ψ(y, x) for all x, y ∈ H1(A,Q),

Tr(fφ(x, y)) = −Tr(fφ(y, x)) = Tr(fφ(y, x)).

On replacingx by ex with e ∈ E, we find that

Tr(feφ(x, y)) = Tr(feφ(y, x)).

On the other hand,
Tr(feφ(x, y)) = Tr(feφ(x, y)),
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and so
Tr(feφ(y, x)) = Tr(feφ(x, y)).

As fe is an arbitrary element ofE, the non-degeneracy of the trace implies thatφ(x, y) =

φ(y, x). Finally, the uniqueness ofφ is obvious from (4.7).

THEOREM 4.8. Let A be an abelian variety overC, and letv : E → End(A) be a homo-
morphism withE a CM-field. Letd = dimE H1(A,Q). Assume there exists a polarization
θ for A such that:

(a) the Rosati involution ofθ induces complex conjugation onE;
(b) there exists a splitE-Hermitian formφ on H1(A,Q) and anf ∈ E× with f = −f

such thatψ(x, y) =df TrE/Q(fφ(x, y)) is a Riemann form forθ.

Then the subspace
(∧d

EH1(A,Q)
)

(d
2
) of Hd(A,Q)(d

2
) consists of absolute Hodge cycles.

PROOF. In the course of the proof, we shall see that (b) implies thatA satisfies the equiva-
lent statements of (4.4). Thus, the theorem will follow from (2.15), (4.4), and (4.5) once we
have shown that there exists a connected smooth varietyS overC and an abelian scheme
Y overS together with an actionv of E onY/S such that:

(a) for all s ∈ S, (Ys, vs) satisfies the equivalent statements in (4.4);
(b) for somes0 ∈ S, Ys0 is of the formA0 ⊗Q E with e ∈ E acting asid⊗e;
(c) for somes1 ∈ S, (Ys1 , vs1) = (A, v).

We shall first construct an analytic family of abelian varieties satisfying these condi-
tions, and then pass to the quotient by a discrete group to obtain an algebraic family.

Let H = H1(A,Q) regarded as anE-space and choseθ, ψ, f , andψ as in the statement
of the theorem. We choosei =

√−1 so thatψ(x, h(i)y) is positive definite.
Consider the set of all quadruples(A1, θ1, v1, k1) in whichA1 is an abelian variety over

C, v1 is an action ofE onA1, θ1 is a polarization ofA, andk1 is anE-linear isomorphism
H1(A,Q) → H carrying a Riemann form forθ1 into cψ for somec ∈ Q×. From such a
quadruple, we obtain a complex structure onH(R) (corresponding viak1 to the complex
structure onH1(A1,R) = Lie(A1)) such that:

(a) the action ofE commutes with the complex structure;
(b) ψ is a Riemann form relative to the complex structure.

Conversely, a complex structure onH ⊗ R satisfying (a) and (b) determines a quadruple
(A1, θ1, v1, k1) with H1(A1,Q) = H (as anE-module),Lie(A1) = H ⊗ R (endowed with
the given complex structure),θ1 the polarization with Riemann formψ, andk1 the identity
map. Moreover, two quadruples(A1, θ1, v1, k1) and(A2, θ2, v2, k2) are isomorphic if and
only if they define the same complex structure onH. LetX be the set of complex structures
onH satisfying (a) and (b). Our first task will be to turnX into an analytic manifold in such
a way that the family of abelian varieties that it parametrizes becomes an analytic family.

A point of X is determined by anR-linear mapJ : H ⊗ R → H ⊗ R, J2 = −1, such
that

(a′) J is E-linear, and
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(b′) ψ(x, Jy) is symmetric and definite.
Note thatψ(x, Jy) is symmetric if and only ifψ(Jx, Jy) = ψ(x, y). Let F be the real
subfield ofE, and fix an isomorphism

E ⊗Q R→ ⊕τ∈TC, T = Hom(F,R)

such that(f ⊗ 1) 7→ (ifτ ) with fτ ∈ R, fτ > 0. Corresponding to this isomorphism, there
is a decomposition

H ⊗Q R ∼= ⊕τ∈T Hτ

in which eachHτ is a complex vector space. Condition (a′) implies thatJ = ⊕Jτ , where
Jτ is aC-linear isomorphismHτ → Hτ such thatJ2

τ = −1. Let

Hτ = H+
τ ⊕H−

τ

whereH+
τ andH−

τ are the eigenspaces ofJτ with eigenvalues+i and−i respectively. The
compatibility ofψ andν implies

(H, ψ)⊗ R ≈→ ⊕τ∈T (Hτ , ψτ )

with ψτ anR-bilinear alternating form onHτ such that

ψτ (zx, y) = ψτ (x, zy), z ∈ C.

The condition
ψ(Jx, Jy) = ψ(x, y)

implies thatH+
τ is the orthogonal complement ofH−

τ relative toψτ : Hτ = H+
τ ⊥ H−

τ . We
also have

(H,φ)⊗ R ≈→ ⊕τ∈T (Hτ , φτ )

andψτ (x, y) = TrC/R(ifτφτ (x, y)). As

ψ(x, y) =
∑

τ TrC/R(ifτφτ (x, y)),

we find that

ψ(x, Jx) > 0 all x ⇐⇒ TrC/R(ifτφτ (xτ , Jxτ )) > 0 all xτ , τ

⇐⇒ TrC/R(iφτ (xτ , Jxτ )) all xτ , τ,

⇐⇒
{

φτ is positive definite onH+
τ , and

φτ is negative definite onH−
τ .

This shows, in particular, thatH+
τ = H−1,0

τ andH−
τ = H0,−1

τ each have dimensiond/2

(cf. 4.4). LetX+ andX− be the sets ofJ ∈ X for which ψ(x, Jy) is positive definite
and negative definite respectively. ThenX is a disjoint unionX = X+ t X−. As J is
determined by its+i eigenspace we see thatX+ can be identified with

{(Vτ )τ∈T | Vτ a maximal subspace ofHτ such thatφτ > 0 onVτ}.
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This is an open connected complex submanifold of a product of Grassman manifolds

X+ ⊂ ∏
τ∈T Grassd/2(Vτ ).

Moreover, there is an analytic structure onX+ × V (R) such thatX+ × V (R) → X+ is
analytic and the inverse image ofJ ∈ X+ is V (R) with the complex structure provided
by J . On dividingV (R) by anOE-stable latticeV (Z) in V , we obtain the sought analytic
family B of abelian varieties.

Note thatA is a member of the family. We shall next show that there is also an abelian
variety of the formA0⊗E in the family. To do this, we only have to show that there exists
a quadruple(A1, θ1, ν1, k1) of the type discussed above withA1 = A0 ⊗ E. Let A0 be any
abelian variety of dimensiond/2 and defineν1 : E → End(A0 ⊗ E) so thate ∈ E acts on
H1(A0⊗E) = H1(A0)⊗E through its action onE. A Riemann formψ0 onA0 extends in an
obvious way to a Riemann formψ1 onA1 that is compatible with the action ofE. We define
θ1 to be the corresponding polarization, and letφ1 be the Hermitian form onH1(A0⊗E,Q)

such thatψ1 = TrE/Q(fφ1) (see 4.6). IfI0 ⊂ H1(A0,Q) is a totally isotropic subspace
of H1(A0,Q) of (maximum) dimensiond/2, thenI0 ⊗ E is a totally isotropic subspace of
dimensiond/2 overE, which (by 4.2) shows that the Hermitian space(H1(A0⊗E,Q), φ1)

is split. There is therefore anE-linear isomorphismk1 : (H1(A0 ⊗ E,Q), φ1) → (H, φ)

which carriesψ1 = TrE/Q(fφ1) to ψ = TrE/Q(fφ1). This completes this part of the proof.
Let n be an integer≥ 3, and letΓ be the set ofOE-isomorphismsg : V (Z) → V (Z)

preservingψ and such that(g− 1)V (Z) ⊂ nV (Z). ThenΓ acts onX+ by J 7→ g ◦J ◦ g−1

and (compatibly) onB. On forming the quotients, we obtain a map

Γ\B → Γ\X+

which is an algebraic family of abelian varieties. In fact,Γ\X+ is the moduli variety for
quadruples(A1, θ1, ν1, k1) in whichA1, θ1, andν1 are essentially as before, but nowk1 is a
leveln structure

k1 : An(C) = H1(A,Z/nZ)
≈−→ V (Z)/nV (Z);

the mapX+ → Γ\X+ can be interpreted as “regardk1 modulon”. To prove these facts,
one can use the theorem of Baily and Borel (1966) to show thatΓ\X+ is algebraic, and a
theorem of Borel (Borel 1972) to show thatΓ\B is algebraic — see§6 where we discuss a
similar question in greater detail.

REMARK 4.9. With the notations of the theorem, letG be aQ-rational algebraic group
such that

G(Q) = {g ∈ GL2(H) | ∃ν(g) ∈ Q× such thatψ(gx, gx) = ν(g)ψ(x, y), ∀x, y ∈ H}.

The homomorphismh : C× → GL(H ⊗ R) defined by the Hodge structure onH1(A,Q)

factors throughGR, andX can be identified with theG(R)-conjugacy class of the homo-
morphismsC× → GR containingh. Let K be the compact open subgroup ofG(Af ) of g
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such that(g − 1)V (Ẑ) ⊂ nV (Ẑ). ThenΓ\X+is a connected component of the Shimura
varietyShK(G,X). The general theory shows thatShK(G,X) is a fine moduli scheme (see
Deligne 1971c, §4, or Milne and Shih 1982, §2) and so, from this point of view, the only
part of the above proof that is not immediate is that the connected component ofShK(G,X)

containingA also contains the varietyA0 ⊗ E.

REMARK 4.10. It is easy to construct algebraic cycles onA0 ⊗ E: anyQ-linear map
λ : E → Q defines a mapA0 ⊗E → A0 ⊗Q = A0, and we can takecl(λ) to be the image
of the class of a point inHd(A0) → Hd(A0 ⊗ E). More generally, we have

Sym∗(HomQ-linear(E,Q)) → {algebraic cycles onA0 ⊗ E}.

If E = Qr, this gives the obvious cycles.

REMARK 4.11. The argument in the proof of (4.8) is similar to, and was suggested by, an
argument of B. Gross (1978).
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5 Completion of the proof for abelian varieties of CM-
type

Abelian varieties of CM-type

The Mumford-Tate, or Hodge, group of an abelian varietyA overC is defined to be the
Mumford-Tate group of the rational Hodge structureH1(A,Q): it is therefore the subgroup
of GL(H1(A,Q)) × Gm fixing all Hodge cycles onA and its powers (see§3). In the
language of Tannakian categories, the category of rational Hodge structures is Tannakian
with an obvious fibre functor, and the Mumford-Tate group ofA is the group associated
with the Tannakian subcategory generated byH1(A,Q) andQ(1).

An abelian varietyA is said to be ofCM-typeif its Mumford-Tate group is commuta-
tive. Since any abelian varietyA is a productA =

∏
Aα of simple abelian varieties (up

to isogeny) andA is of CM-type if and only if eachAα is of CM-type (the Mumford-Tate
group ofA is contained in the product of the Mumford-Tate groups of theAα and projects
onto each), in understanding this concept we can assumeA is simple.

PROPOSITION5.1. A simple abelian varietyA overC is of CM-type if and only ifE =

End A is a commutative field over whichH1(A,Q) has dimension1. ThenE is a CM-field,
and the Rosati involution onE = End(A) defined by any polarization ofA is complex
conjugation.

PROOF. LetA be an abelian variety such thatEnd(A) contains a fieldE for whichH1(A,Q)

has dimension1 as anE-vector space. Asµ(Gm) commutes withE⊗R in End(H1(A,R)),
we have thatµ(Gm) ⊂ (E⊗R)× and so the Mumford-Tate group ofA is contained inE×.

Conversely, letA be simple and of CM-type, and letµ : Gm → GL(H1(A,C)) be de-
fined by the Hodge structure onH1(A,C) (see§3). AsA is simple,E = End(A) is a field
(possibly noncommutative) of degree≤ dim H1(A,Q) overQ. As for any abelian variety,
End(A) is the subalgebra ofEnd(H1(A,Q)) of elements preserving the Hodge structure
or, equivalently, that commute withµ(Gm) in GL(H1(A,C)). If G is the Mumford-Tate
group of A, thenGC is generated by the groups{σµ(Gm) | σ ∈ Aut(C)} (see 3.4).
ThereforeE is the commutant ofG in End(H1(A,Q)). By assumption,G is a torus, and
so H1(A,C) = ⊕χ∈X(G)Hχ. The commutant ofG therefore containśetale commutative
algebras of rankdim H1(A,Q) overQ. It follows that E is a commutative field of de-
greedim H1(A,Q) overQ (and that it is generated as aQ-algebra byG(Q); in particular,
h(i) ∈ E ⊗ R).

Let ψ be a Riemann form corresponding to some polarization onA. The Rosati involu-
tion e 7→ e∗ onEnd(A) = E is determined by the condition

ψ(x, ey) = ψ(e∗x, y), x, y ∈ H1(A,Q).

It follows from
ψ(x, y) = ψ(h(i)x, h(i)y)
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that
h(i)∗ = h(i)−1 (= −h(i)).

The Rosati involution therefore is nontrivial onE, andE has degree2 over its fixed field
F . There exists anα ∈ F× such that

E = F [
√

α],
√

α
∗

= −√α,

andα is uniquely determined up to multiplication by a square inF . If E is identified with
H1(A,R) through the choice of an appropriate basis vector, then

ψ(x, y) = TrE/Q αxy∗, x, y ∈ E,

(cf. 4.6). The positivity condition onψ implies that

TrE⊗R/R(fx2) > 0, x 6= 0, x ∈ F ⊗ R, f = α/h(i),

which implies thatF is totally real. Moreover, for every embeddingσ : F ↪→ R, we must
haveσ(α) < 0, for otherwiseE ⊗F,σ R = R × R with (r1, r2)

∗ = (r2, r1), and the
positivity condition is impossible. Thus,σ(α) < 0, and∗ is complex conjugation relative
to any embedding ofE intoC. This completes the proof.

Proof of the main theorem for abelian varieties of CM-type

Let (Aα) be a finite family of abelian varieties overC of CM-type. We shall show that
every element of a space

TA =
(⊗

αH1
A(Xα)⊗mα

)⊗ (⊗
αH1

A(Xα)∨⊗nα
)
(m)

that is a Hodge cycle (relative toid : C → C) is an absolute Hodge cycle. According
to (3.8) (Principle A), to do this it suffices to show that the following two subgroups of
GL(

∏
H1(Aα,Q))×Gm are equal:

GH = group fixing all Hodge cycles;

GAH = group fixing all absolute Hodge cycles.

ObviouslyGH ⊂ GAH .
After breaking up eachAα into its simple factors, we can assumeAα is itself simple. Let

Eα be the CM-fieldEnd(Aα) and letE be the smallest Galois extension ofQ containing
all Eα; it is again a CM-field. LetBα = Aα ⊗Eα E. It suffices to prove the theorem for the
family (Bα) (because the Tannakian category generated by theH1(Bα) andQ(1) contains
everyH1(Aα); cf. Deligne and Milne 1982).

In fact, we consider an even larger family. FixE, a CM-field Galois overQ, and
consider the family(Aα) of all abelian varieties with complex multiplication byE (so
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H1(Aα) has dimension1 overE) up toE-isogeny. This family is indexed byS, the set of
CM-types forE. Thus, ifS = Hom(E,C), then each element ofS is a setΦ ⊂ S such
thatS = Φt ιΦ (disjoint union). We often identifyΦ with the characteristic function ofΦ,
i.e., we write

Φ(s) =

{
1 if s ∈ Φ

0 if s /∈ Φ.

With eachΦ we associate the isogeny class of abelian varieties containing the abelian
varietyCΦ/Φ(OE) whereOE is the ring of integers inE and

Φ(OE) = {(σe)σ∈Φ ∈ CΦ | e ∈ OE}.

With this new family, we have to show thatGH = GAH . We begin by determiningGH

(cf. 3.7). The Hodge structure on eachH1(AΦ,Q) is compatible with the action ofE. This
implies that, as a subgroup of

∏
Φ∈S GL(H1(AΦ))×Gm, GH commutes with

∏
Φ∈SE

× and
is therefore contained in

∏
E× ×Gm. In particular,GH is a torus and can be described by

its group of cocharactersY (GH) =df HomQal(Gm, GH) or its group of charactersX(GH).
Note that

Y (GH) ⊂ Y (
∏

Φ∈SE
× ×Gm) = ZS×S × Z.

There is a canonical basis forX(E×), namelyS, and therefore a canonical basis for
X(

∏
Φ∈SE

××Gm) which we denote((xs,Φ), x0). We denote the dual basis forY (
∏

E××
Gm) by (ys,Φ, y0). The elementµ ∈ Y (GH) equals

∑
s,Φ Φ(s)ys,Φ + y0 (see 3.7). As

GH
C is generated by{σµ(Gm) | σ ∈ Aut(C)}, Y (GH) is the Gal(Qal/Q)-submodule of

Y (
∏

E× × Gm) generated byµ. (Here,Gal(Qal/Q) acts onS by σs = s ◦ σ−1; it acts
on Y (

∏
Φ∈SE

× × Gm) = ZS×S × Z through its action onS, σys,Φ = yσs,Φ; these actions
factor throughGal(E/Q)).

To begin the computation ofGAH , we make a list of the tensors we know to be absolute
Hodge cycles on theAα.

(a) The endomorphismsE ⊂ End(AΦ) for eachΦ. (More precisely, we mean the
classesclA(Γe) ∈ HA(AΦ)⊗HA(AΦ), Γe =graph ofe, e ∈ E.)

(b) Let (AΦ, ν : E ↪→ End(AΦ)) correspond toΦ ∈ S, and letσ ∈ Gal(E/Q). Define
σΦ = {σs | s ∈ Φ}. There is an isomorphismAΦ → AσΦ induced by

CΦ (...,z(τ),...)7→(...,z(στ),...)−−−−−−−−−−−−−−→ CΦ

y
y

CΦ/Φ(OE) −−−→ CσΦ/σΦ(OE)

whose graph is an absolute Hodge cycle. (Alternatively, we could have used the fact that
(AΦ, σν : E → End(AΦ)), whereσν = ν ◦ σ−1, is of typeσΦ to show thatAΦ andAσΦ

are isomorphic.)
(c) Let (Φi)1≤i≤d be a family of elements ofS and letA = ⊕d

i=1Ai whereAi = AΦi
.

ThenE acts onA andH1(A,Q) = ⊕d
i=1H1(Ai,Q) has dimensiond overE. Under the
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assumption that
∑

iΦi =constant (so that
∑

iΦi(s) = d/2, all s ∈ S), we shall apply (4.8)
to construct absolute Hodge cycles onA.

For eachi, there is anE-linear isomorphism

H1(Ai,Q)⊗Q C→ ⊕s∈SH1(Ai)s

such thats ∈ E acts onH1(Ai)s ass(e). From the definitions one sees that

H1(Ai)s =

{
H1(Ai)

−1,0
s , s ∈ Φi,

H1(Ai)
0,−1
s , s /∈ Φi.

Thus, with the notations of (4.4),

as =
∑

iΦi(s)

bs =
∑

i(1− Φi(s)) =
∑

iΦi(ιs) = aιs.

The assumption that
∑

Φi = constant therefore implies that

as = bs = d/2, all s.

For eachi, choose a polarizationθi for Ai whose Rosati involution stabilizesE, and
let ψi be the corresponding Riemann form. For any totally positive elementsfi in F (the
maximal totally real subfield ofE) θ = ⊕ifiθi is a polarization forA. Choosevi 6= 0,
vi ∈ H1(Ai,Q); then{vi} is a basis forH1(Ai,Q) overE. There existζi ∈ E× such that
ζ i = −ζi andψi(xvi, yvi) = TrE/Q(ζixy) for all x, y ∈ E. Thusφi, whereφi(xvi, yvi) =
ζi

ζ1
xy, is anE-Hermitian form onH1(Ai,Q) such thatψi(v, w) = TrE/Q(ζ1φi(v, w)). The

E-Hermitian form onH1(A,Q)

φ(
∑

xivi,
∑

yivi) =
∑

ifiφi(xivi, yivi)

has the property thatψ(v, w) =df TrE/Q(ζ1φ(v, w)) and is the Riemann form ofθ. The
discriminant ofφ is

∏
ifi(

ζi

ζ1
). On the other hand, ifs ∈ S restricts toτ onF , then

sign(τdisc(φ)) = (−1)bs = (−1)d/2.

Thus,
disc(φ) = (−1)d/2f

for some totally positive elementf of F . After replacing onefi with fi/f , we have that
disc(φ) = (−1)d/2, and thatφ is split. Hence (4.8) applies.

In summary: letA = ⊕d
i=1AΦi

be such that
∑

iΦi = constant; then
(∧d

EH1(A,Q)(d
2
)
)
⊂ Hd(A,Q)(d

2
)

consists of absolute Hodge cycles.



5 COMPLETION OF THE PROOF FOR ABELIAN VARIETIES OF CM-TYPE 43

SinceGAH fixes the absolute Hodge cycles of type (a),GAH ⊂ ∏
ΦE× × Gm. It is

therefore a torus, and we have an inclusion

Y (GAH) ⊂ Y (
∏

E× ×Gm) = ZS×S × Z

and a surjection,
X(

∏
E× ×Gm) = ZS×S × Z³ X(GAH).

Let W be a space of absolute Hodge cycles. The action of the torus
∏

E× × Gm on
W ⊗ C decomposes it into a sum⊕Wχ indexed by theχ ∈ X(

∏
E× ×Gm) of subspaces

Wχ on which the torus acts throughχ. SinceGAH fixes the elements ofW , theχ for which
Wχ 6= 0 map to zero inX(GAH).

On applying this remark withW equal to the space of absolute Hodge cycles described
in (b), we find thatxs,Φ − xσs,σΦ maps to zero inX(GAH), all σ ∈ Gal(E/Q), s ∈ S, and
Φ ∈ S. As Gal(E/Q) acts simply transitively onS, this implies that, for a fixeds0 ∈ S,
X(GAH) is generated by the image of{xs0,Φ, x0 | Φ ∈ S}.

Let d(Φ) ≥ 0 be integers such that
∑

d(Φ)Φ = d/2 (constant function onS) where
d =

∑
d(Φ). Then (c) shows that the subspace

W
df
= ⊗EH1(AΦ,Q)⊗Ed(Φ)(−d/2) =

∧d
EH1(⊕A

d(Φ)
Φ ,Q)(−d/2)

of Hd(⊕A
d(Φ)
Φ ,Q)(−d/2) consists of absolute Hodge cycles. The remark then shows that∑

d(Φ)xs,Φ − d/2 maps to zero inX(GAH) for all s.
Let

X = X(
∏

E× ×Gm)/
∑
Z(xσs,σΦ − xs,Φ)

and regard
{xs0,Φ, x0 | Φ ∈ S}

as a basis forX. We know that

X(
∏

E× ×Gm) ³ X(GAH)

factors throughX, and that thereforeY ⊃ Y (GAH) (⊃ Y (GH)) whereY is the submodule
of Y (

∏
E× ×Gm) dual toX.

LEMMA 5.2. The submoduleY (GH)⊥ of X orthogonal toY (GH) is equal to

{∑
d(Φ)xs0,Φ − d

2
x0 |

∑
d(Φ)Φ = d

2
,
∑

d(Φ) = d
}

;

it is generated by the elements

∑
d(Φ)xs0,Φ − d

2
x0, Σd(Φ)Φ = d

2
, d(Φ) ≥ 0 all Φ.
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PROOF. As Y (GH) is theGal(E/Q)-submodule ofY generated byµ, we see that

x =
∑

d(Φ)xs0,Φ − d
2
x0 ∈ Y (GH)⊥

if and only if 〈σµ, x〉 = 0 all σ ∈ Gal(E/Q). But µ =
∑

Φ(s)ys,Φ + y0 andσµ =∑
Φ(s)yσs,Φ + x0, and so〈σµ, x〉 =

∑
d(Φ)Φ(σ−1s0) − d

2
. The first assertion is now

obvious.
As Φ + ιΦ = 1, xs0,Φ + xs0,ιΦ − x0 ∈ Y (GH)⊥ and has positive coefficientsd(Φ). By

adding enough elements of this form to an arbitrary elementx ∈ Y (GH)⊥ we obtain an
element with coefficientsd(Φ) ≥ 0, which completes the proof of the lemma.

The lemma shows thatY (GH)⊥ ⊂ Ker(X ³ X(GAH)) = Y (GAH)⊥. HenceY (GH) ⊂
Y (GAH) and it follows thatGH = GAH ; the proof is complete.18
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6 Completion of the proof; consequences

Completion of the proof of Theorem 2.11

Let A be an abelian variety overC and lettα, α ∈ I, be Hodge cycles onA (relative to
id : C → C). To prove the Main Theorem 2.11, we have to show that thetα are absolute
Hodge cycles. Since we know the result for abelian varieties of CM-type, (2.15) shows that
it remains only to prove the following proposition.

PROPOSITION6.1. There exists a connected smooth algebraic varietyS overC and an
abelian schemeπ : Y → S such that

(a) for somes0 ∈ S, Ys0 = A;
(b) for somes1 ∈ S, Ys1 is of CM-type;
(c) the tα extend to elements that are rational and of bidegree(0, 0) everywhere in the

family.

The last condition means the following. Suppose thattα belongs to a tensor space
Tα = H1

B(A)⊗m(α)⊗ . . .; then there is a sectiont of (R1π∗Q)
⊗m(α) ⊗ . . . over the universal

coveringS̃ of S (equivalently, over a finite covering ofS) such that for̃s0 mapping tos0,
ts̃0 = tα, and for alls̃ ∈ S̃, ts̃ ∈ H1

B(Ys̃)
⊗m(α) ⊗ . . . is a Hodge cycle.

PROOF OF6.1 (SKETCH). The parameter varietyS will be a Shimura variety and (b) will
hold for a dense set of pointss1.

We may suppose that one of thetα is a polarizationθ for A. Let H = H1(A,Q) and
let G be the subgroup ofGL(H) × Gm fixing thetα. The Hodge structure onH defines a
homomorphismh0 : C× → G(R). Let G0 = Ker(G → Gm); thenad(h0(i)) is a Cartan
involution onG0

C because the real form ofG0
C corresponding to it fixes the positive definite

form ψ(x, h(i)y) onH ⊗ R whereψ is a Riemann form forθ. In particular,G is reductive
(see 3.6).

Let
X = {h : C× → G(R) | h is conjugate toh0 underG(R)}.

Eachh ∈ X defines a Hodge structure onH of type{(−1, 0), (0,−1)} relative to which
eachtα is of bidegree(0, 0). Let F 0(h) = H0,−1 ⊂ H ⊗C. SinceG(R)/K∞

≈→ X, where
K∞ is the centralizer ofh0, there is an obvious real differentiable structure onX, and
the tangent space toX at h0, Tgth0

(X) = Lie(GR)/ Lie(K∞). In fact,X is a Hermitian
symmetric domain. The Grassmannian,

Grassd(H ⊗ C)
df
= {W ⊂ H ⊗ C | W of dimensiond (= dim A)}

is a complex analytic manifold (even an algebraic variety). The map

φ : X → Grassd(H ⊗ C), h 7→ F 0(h),
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is a real differentiable map, and is injective (because the Hodge filtration determines the
Hodge decomposition). The map on tangent spaces factors into

Tgth0
(X) = Lie(GR)/ Lie(K∞) ⊂- End(H ⊗ C)/F 0 End(H ⊗ C) = Tgtφ(h0)(Grass)

¡
¡

¡
injective

µ

Lie(GC)/F
0(Lie(GC))
?
≈

the maps being induced byG(R) ↪→ G(C) ↪→ GL(H ⊗ C). (The filtrations onLie(GC)

andEnd(H ⊗ C) are those corresponding to the Hodge structure defined byh0). Thus,dφ

identifiesTgth0
(X) with a complex subspace ofTgtφ(h0)(Grass), and soX is an almost-

complex (in fact, complex) manifold (seeDeligne 1979b, 1.1, for more details). (There is
an alternative, more group-theoretic, description of the complex structure; seeKnapp 1972,
2.4, 2.5.)

To each pointh of X, we can attach a complex torusF 0(h)\H⊗C/H(Z), whereH(Z)

is some fixed lattice inH. For example, toh0 is attached

F 0(h0)\H ⊗ C/H(Z) = Tgt0(A)/H(Z),

which is an abelian variety representingA. From the definition of the complex structure on
X, it is clear that these tori form an analytic familyB overX.

Let
Γ = {g ∈ G(Q) | (g − 1)H(Z) ⊂ nH(Z)}

some fixed integern. For a suitably largen ≥ 3, Γ will act freely onX, and soΓ\X will
again be a complex manifold. The theorem of Baily and Borel (1966) shows thatS = Γ\X
is an algebraic variety.

The groupΓ acts compatibly onB, and on forming the quotients, we obtain a complex
analytic mapπ : Y → S with Y = Γ\B. For s ∈ S, Ys is a polarized complex torus
(hence an abelian variety) with leveln structure (induced byH1(Bh,Z)

≈→ H(Z) where
h maps tos). The solutionMn of the moduli problem for polarized abelian varieties with
level n-structure in the category of algebraic varieties is also a solution in the category of
complex analytic manifolds. There is therefore an analytic mapψ : S → Mn such thatY
is the pull-back of the universal family onMn. A theorem of Borel (1972, 3.10) shows that
ψ is automatically algebraic, from which it follows thatY/S is an algebraic family.

For some connected componentS◦ of S, π−1(S◦) → S◦ will satisfy (a) and (c) of the
proposition. To prove (b) we shall show that, for someh ∈ X close toh0, Bh is of CM-type
(cf. Deligne 1971c, 5.2).

Recall (§5) that an abelian variety is of CM-type if and only if its Mumford-Tate group
is a torus. From this it follows thatBh, h ∈ X, is of CM-type if and only ifh factors
through the real points of a subtorus ofG defined overQ.

Let T be a maximal torus, defined overR, of the algebraic groupK∞. (SeeBorel and
Springer 1966for a proof thatT exists, or apply the argument that follows.) Sinceh0(C×)
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is contained in the centre ofK∞, h0(C×) ⊂ T (R). If T ′ is any torus inGR containingT ,
thenT ′ will centralizeh0 and soT ′ ⊂ K∞; T is therefore maximal inGR. For a general
(regular) elementλ of Lie(T ), T is the centralizer ofλ. Choose aλ0 ∈ Lie(G) that is close
to λ in Lie(GR), and letT0 be the centralizer ofλ0 in G. ThenT0 is a maximal torus ofG
that is defined overQ, and, becauseT0R is close toTR, T0R = gTg−1 for someg ∈ G(R).
Now h = ad(g) ◦ h0 factors throughT0R, and soBh is of CM-type.

This completes the proof of the main theorem.19

Consequences of Theorem 2.11

We end this section by giving two immediate consequences.
Let X be a complete smooth variety over a fieldk and letγ ∈ H2p(Xet,Q`)(p), ` 6=

char(k). Tate’s conjecture states thatγ is in theQ`-span of the algebraic classes if there
exists a subfieldk0 of k finitely generated over the prime field, a modelX0 of X overk0,
and aγ ∈ H2p(X0 ⊗ k0,Q`)(p) mapping toγ that is fixed byGal(k0/k0).

COROLLARY 6.2. Let A be an abelian variety overC. If Tate’s conjecture is true forA,
then so also is the Hodge conjecture.

PROOF. We first show that, for any complete smooth varietyX overC, Tate’s conjecture
implies that all absolute Hodge cycles onX are algebraic. LetX0 be a model ofX over
a subfieldk0 of C finitely generated overQ. According to Proposition 2.9,Cp

AH(X) =

Cp
AH(X0 ⊗ k0) and, after we have replacedk0 by a finite extension,Gal(k0/k0) will act

trivially on Cp
AH(X0⊗k0). LetCp

a lg(X) denote theQ-subspace ofCp
AH(X) spanned by the

algebraic cycles onX. Tate’s conjecture implies that theQ`-span ofCp
AH(X) is contained

in theQ`-span ofCp
a lg(X). HenceCp

a lg(X) ⊗ Q` = Cp
AH(X) ⊗ Q`, and soCp

a lg(X) =

Cp
AH(X).

Now letA be an abelian variety overC, and lett ∈ H2p(A,Q) ∩Hp,p. The imaget′ of
t in H2p

A (A)(p) is a Hodge cycle relative toid : C → C, and so Theorem 2.11 shows that
t′ ∈ Cp

AH(A). It is therefore in theQ-span of the algebraic cycles.

REMARK 6.3. The last result was first proved independently byPjateckĭı-Šapiro 1971and
Deligne (unpublished) by an argument similar to that which concluded the proof of the
main theorem. (Corollary 6.2 is easy to prove for abelian varieties of CM-type; in fact,
Pohlmann 1968shows that the two conjectures are equivalent in that case.) We mention
also thatBorovŏı 1977shows that, for an abelian varietyX over a fieldk, theQ`-subspace
of H2p(Xet,Q`)(p) generated by cycles that are Hodge relative to an embeddingσ : k ↪→ C
is independent of the embedding.

COROLLARY 6.4. 20Let A be an abelian variety overC and letGA be the Mumford-Tate
group ofA. Thendim(GA) ≥ tr. degk k(pij) wherepij are the periods ofA.

PROOF. Same as that of (1.6).
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7 Algebraicity of values of theΓ-function

The following result generalizes (1.5).

PROPOSITION7.1. Letk be an algebraically closed subfield ofC, and letV be a complete
smooth variety of dimensionn overk. If σ ∈ HB

2r(V ) maps to an absolute Hodge cycleγ

under

HB
2r(V )

1 7→(2πi)−r

−−−−−−→ HB
2r(V )(−r)

∼=→ H2n−2r
B (V )(n− r) ↪→ H2n−2r

A (VC)(n− r)

then, for anyC∞ differentialr-formω onVC whose class[ω] in H2r
dR(V/C) lies inH2r

dR(V/k),
∫

σ

ω ∈ (2πi)rk.

PROOF. Proposition 2.9 shows thatγ arises from an absolute Hodge cycleγ0 onV/k. Let
(γ0)dR be the component ofγ0 in H2n−2r

dR (V/k). Then, as in the proof of (1.5),
∫

σ

ω = (2πi)r TrdR((γ0)dR∪ [ω]) ∈ (2πi)rH2n
dR(V/k) = (2πi)rk.

In the most important case of the proposition,k will be the algebraic closureQ of Q in
C, and it will then be important to know not only that the period

P (σ, ω)
df
= (2πi)−r

∫

σ

ω

is algebraic, but also in which field it lies in. We begin by describing a general procedure for
finding this field and then illustrate it by an example in whichV is a Fermat hypersurface
and the period is a product of values of theΓ-function.

Let V now be a complete smooth variety over a number fieldk ⊂ C, and letS be a
finite abelian group acting onV overk. LetV = V ⊗kQ. Whenα : S → C× is a character
of S taking values ink× andH is ak-vector space on whichS acts, we let

Hα = {v ∈ H | sv = α(s)v, all s ∈ S}.

Assume that all Hodge cycles onVC are absolutely Hodge and thatH2r(V (C),C)α has
dimension1 and is of bidegree(r, r). Then(Cr

AH(V ) ⊗ k)α has dimension one overk.
The actions ofS andGal(Q/k) on H2r

dR(V /Q) ∼= H2r
dR(V/k) ⊗k Q commute because the

latter acts through its action onQ; they therefore also commute onCr
AH(V ) ⊗ k, which

embeds intoH2r
dR(V /Q). It follows thatGal(Q/k) stabilizes(Cr

AH(V ) ⊗ k)α and, as this
has dimension1, there is a characterχ : Gal(Q/k) → k× such that

τγ = χ(τ)−1γ, τ ∈ Gal(Q/k), γ ∈ (
Cr

AH(V )⊗ k
)

α.
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PROPOSITION 7.2. With the above assumptions, letσ ∈ HB
2r(V ) and let ω be a C∞-

differential2r-form onV (C) whose class[ω] in H2r
dR(V/C) lies inH2r

dR(V/k)α; thenP (σ, ω)

lies in an abelian algebraic extension ofk, and

τ(P (σ, ω)) = χ(τ)P (σ, ω), all τ ∈ Gal(Q/k).

PROOF. Regard[ω] ∈ H2r
dR(V/C)α = (Cr

AH(V ) ⊗ C)α; then [ω] = zγ for somez ∈ C,
γ ∈ (Cr

AH(V )⊗ k)α. Moreover,

P (σ, ω)
df
=

(
1

2πi

)r ∫

σ

ω = zγ(σ ⊗ (2πi)−r) ∈ zk,

where we are regardingγ as an element ofH2r
B (V )(r)⊗ k = HB

2r(V )(−r)∨ ⊗ k. Thus

P (σ, ω)−1[ω] ∈ Cr
AH(V )⊗ k.

As
[ω] ∈ H2r

dR(V /Q) = Cr
AH(V )⊗Q,

this shows thatP (σ, ω) ∈ Q. Moreover,

τ(P (σ, ω)−1[ω]) = χ(τ)−1(P (σ, ω)−1[ω]).

On using thatτ [ω] = [ω], we deduce that

τ (P (σ, ω)) = χ(τ) · P (σ, ω).

REMARK 7.3. (a) BecauseCr
AH(V ) injects intoH2r(V et,Q`)(r), χ can be calculated from

the action ofGal(Q/k) onH2r(V et,Q`)α(r).
(b) The argument in the proof of the proposition shows thatσ⊗ (2πi)−r ∈ HB

2r(V )(−r)

andP (σ, ω)−1[ω] ∈ H2r
dR(V /Q) are different manifestations of the same absolute Hodge

cycle.

The Fermat hypersurface

We shall apply (7.2) to the Fermat hypersurface

V : Xd
0 + Xd

1 + · · ·+ Xd
n+1 = 0

of degreed and dimensionn, which we shall regard as a variety overk
df
= Q(e2πi/d). As

above, we letV = V ⊗k Q, and we shall often drop the the subscript onVC.
It is known that the motive ofV is contained in the category of motives generated by

abelian varieties (see 8.26), and therefore Theorem 2.11 shows that every Hodge cycle on
V is absolutely Hodge (see 8.27).
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Let µd be the group ofdth roots of1 in C, and let

S = ⊕n+1
i=0 µd/(diagonal).

ThenS acts onV/k according to the formula:

(. . . : ζi : . . .)(. . . : xi : . . .) = (. . . : ζixi : . . .), all (. . . : xi : . . .) ∈ V (C).

The character group ofS will be identified with

X(S) = {a ∈ (Z/dZ)n+2 | a = (a0, . . . , an+1),
∑

ai = 0};

herea ∈ X(S) corresponds to the character

ζ = (ζ0 : . . .) 7→ ζa df
=

∏n+1
i=0 ζai

i .

For a ∈ Z/dZ, we let〈a〉 denote the representative ofa in Z with 1 ≤ 〈a〉 ≤ d, and for
a ∈ X(S) we let〈a〉 = d−1

∑〈ai〉 ∈ N.
If H(V ) is a cohomology group on which there is a natural action ofk, we have a

decomposition

H(V ) = ⊕H(V )a, H(V )a = {v | ζv = ζav, ζ ∈ S}.

Let (Z/dZ)× act onX(S) in the obvious way,

u · (a0, . . .) = (ua0, . . .),

and let[a] be the orbit ofa. The irreducible representations ofS overQ (and hence the
idempotents ofQ[S]) are classified by the these orbits, and soQ[S] =

∏
Q[a] whereQ[a] is

a field whose degree overQ is equal to the order of[a]. The mapζ 7→ ζa : S → C induces
an embeddingQ[a] ↪→ k. Any cohomology group decomposes asH(V ) = ⊕H(V )[a]

where
H(V )[a] ⊗ C =

⊕
a′∈[a] (H(V )⊗ C)a′ .

Calculation of the cohomology
21

PROPOSITION7.4. The dimension ofHn(V,C)a is 1 if no ai = 0 or if all ai = 0 andn is
even; otherwiseHn(V,C)a = 0.

PROOF. The map

(x0 : x1 : . . .) 7→ (xd
0 : xd

1 : . . .) : Pn+1 → Pn+1

defines a finite surjective mapπ : V → Pn whereP n (≈ Pn) is the hyperplane
∑

Xi = 0.
There is an action ofS on π∗C, which induces a decompositionπ∗C ∼= ⊕

(π∗C)a. The



7 ALGEBRAICITY OF VALUES OF THEΓ-FUNCTION 51

isomorphismHr(V,C)
∼=→ Hr(P n, π∗C) is compatible with the actions ofS, and so gives

rise to isomorphisms
Hr(V,C)a

∼=→ Hr(P n, (π∗C)a).

Clearly(π∗C)0 = C, and so

Hr(P n, (π∗C)0) ∼= Hr(Pn,C), all r.

Fora 6= 0, the sheaf(π∗C)a is locally constant of dimension1, except over the hyperplanes
Hi : Xi = 0 corresponding toi for whichai 6= 0, where it is ramified. It follows that

Hr(P n, (π∗C)a) = 0, r 6= n, a 6= 0,

and so(−1)n dim Hn(P n, (π∗C)a) is equal to the Euler-Poincaré characteristic of(π∗C)a
(a 6= 0). We have

EP(P n, (π∗C)a) = EP(P n r ∪ai 6=0Hi,C).

Suppose first that noai is zero. Then

(x0 : . . . : xn : −∑
xi) ↔ (x0 : . . . : xn) : P n ≈↔ Pn

induces
P n r ∪n+1

i=0 Hi
≈↔ Pn r ∪n

i=0Hi ∪ P n−1,

whereHi denotes the coordinate hyperplane inPn+1 or Pn. As

(Pn r ∪Hi ∪ P n−1) t (P n−1 r ∪Hi) = Pn r ∪Hi,

andPn r ∪Hi, being topologically isomorphic to(C×)n, has Euler-Poincaré characteristic
zero, we see that

EP(P n r ∪n+1Hi) = −EP(P n−1 r ∪nHi) = . . . = (−1)nEP(P 0) = (−1)n.

If some, but not all,ai are zero, thenP n r ∪Hi ≈ (C×)r × Cn−r with r ≥ 1, and so
EP(P n r ∪Hi) = 0r × 1n−r = 0.

REMARK 7.5. Note that the primitive cohomology ofV ,

Hn(V,C)prim =
⊕

a6=0
Hn(V,C)a.

The action ofS on Hn(V,C) respects the Hodge decomposition, and soHn(V,C)a is
purely of bidegree(p, q) for somep, q with p + q = n.

PROPOSITION7.6. If no ai = 0, thenHn(V,C)a is of bidegree(p, q) with p = 〈a〉 − 1.
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PROOF. We apply the method ofGriffiths 1969, §8. WhenV is a smooth hypersurface in
Pn+1, Griffiths shows that the maps in

Hn+1(Pn+1,C)
0−−−→ Hn+1(Pn+1 r V,C) −−−→ Hn+2

V (Pn+1,C) −−−→ Hn+2(Pn+1,C)y∼=
Hn(V )(−1)

induce an isomorphism

Hn+1(Pn+1 r V,C)
∼=→ Hn(V )(−1)prim

and that the Hodge filtration onHn(V )(−1) has the following explicit interpretation: iden-
tify Hn+1(Pn+1 r V,C) with Γ(Pn+1 r V, Ωn+1)/dΓ(Pn+1 r V, Ωn) and let

Ωn+1
p (V ) = {ω ∈ Γ(Pn+1 r V, Ωn+1) | ω has a pole of order≤ p onV };

then the map
R : Ωn+1

p (V ) → Hn(V,C)

determined by

〈σ,R(ω)〉 =
1

2πi

∫

σ

ω, all σ ∈ Hn(V,C),

induces an isomorphism

Ωn+1
p (V )/dΩn

p−1
≈→ F n−pHn(V )(−1)prim = F n−p+1Hn(V )prim.

(For example, whenp = 1, R is the residue map

Ωn+1
1 (V ) → F nHn(V ) = H0(V, Ωn)).

Let f be the irreducible polynomial defininingV . As Ωn+1
Pn+1(n + 2) ≈ OPn+1 has basis

ω0 =
∑

(−1)iXi dX0 ∧ . . . ∧ d̂Xi ∧ . . . ∧ dXn,

any differential formω = Pω0/f
p with P a homogeneous polynomial of degreep deg(f)−

(n + 2) lies inΩn+1
p (V ). In particular, whenV is our Fermat surface,

ω =
X
〈a0〉−1
0 · · ·X〈an+1〉−1

n+1

(Xd
0 + · · ·+ Xd

n+1)
〈a〉ω0

=
X
〈a0〉
0 · · ·X〈an+1〉

n+1

(Xd
0 + · · ·+ Xd

n+1)
〈a〉

∑
(−1)i dX0

X0

∧ . . . ∧ d̂Xi

Xi

∧ . . .

lies inΩn+1
〈a〉 (V ). Forζ∈ S, ζXi = ζ−1

i Xi, and soζω = ζ−aω. This shows that

Hn(V,C)−a ⊂ F n−〈a〉+1Hn(V,C).
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Since〈−a〉 − 1 = n + 1− 〈a〉, we can rewrite this inclusion as

Hn(V,C)a ⊂ F 〈a〉−1Hn(V,C).

Thus Hn(V,C)a is of bidegree(p, q) with p ≥ 〈a〉 − 1. The complex conjugate of
Hn(V,C)a is Hn(V,C)−a, and is of bidegree(q, p). Hence

n− p = q ≥ 〈−a〉 − 1 = n + 1− 〈a〉
and sop ≤ 〈a〉 − 1.

Recall thatHn
B(V )[a] = ⊕a′∈[a]H

n
B(V )a′; thus (7.4) shows thatHn

B(V )[a] has dimension
1 overQ[a] when noai is zero and otherwise

Hn
B(V )[a] ∩Hn

B(V )prim = 0.

COROLLARY 7.7. Let a be such that noai = 0. ThenHn
B(V )[a] is purely of type(n

2
, n

2
) if

and only if〈ua〉 is independent ofu.

PROOF. As 〈a〉 + 〈−a〉 = n + 2, 〈ua〉 is constant if and only if〈ua〉 = n
2

+ 1 for all
u ∈ (Z/dZ)×, i.e., if and only if〈a′〉 = n

2
+ 1 for all a′ ∈ [a]. Thus the corollary follows

from the proposition.

COROLLARY 7.8. If no ai = 0 and 〈ua〉 is constant, thenCn
AH(V )[a] has dimension one

overQ[a].

PROOF. This follows immediately from (7.7) since all Hodge cycles onV are absolutely
Hodge (8.27).

The action ofGal(Q/k) on the étale cohomology

Let p be a prime ideal ofk not dividingd, and letFq be the residue field ofp. Thend|q− 1

and reduction modulop defines an isomorphismµd → F×d whose inverse we denotet. Fix
ana = (a0, . . . , an+1) ∈ X(S) with all ai nonzero, and define a characterεi : F×q → µd by

εi(x) = t(x(1−q)/d)ai , x 6= 0.

As
∏

εi = 1,
∏

εi(xi) is well-defined forx = (x0 : . . . : xn+1) ∈ Pn+1(Fq), and we define
a Jacobi sum

J(ε0, . . . , εn+1) = (−1)n
∑

x∈P n(Fq)

n+1∏
i=0

εi(xi)

whereP n is the hyperplane
∑

Xi = 0 in Pn+1. (As usual, we setεi(0) = 0.) Let ψ be a
nontrivial additive characterψ : Fq → C× and define Gauss sums

g(p, ai, ψ) = − ∑
x∈Fq

εi(x)ψ(x)

g(p, a) = q−〈a〉
n+1∏
i=0

g(p, ai, ψ).
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LEMMA 7.9. The Jacobi sumJ(ε0, . . . , εn+1) = q〈a〉−1g(p, a).

PROOF. We have

q〈a〉g(p, a) =
n+1∏
i=0

(− ∑
x∈Fq

εi(x)ψ(x))

= (−1)n
∑

x∈Fn+2
q

(
n+1∏
i=0

εi(xi)

)
ψ(

∑
xi), x = (x0, . . .)

= (−1)n
∑

x∈Pn+1(Fq)

∑
λ∈F×q

(
n+1∏
i=0

εi(λxi)ψ(λ
∑

xi)

)
.

We can omit theλ from
∏

εi(λxi), and so obtain

q〈a〉g(p, a) = (−1)n
∑
x

(
(
n+1∏
i=0

εi(xi)
∑

λ∈F×q
ψ(λ

∑
xi))

)
.

Since
∑

x

n+1∏
i=0

εi(xi) =
n+1∏
i=0

(
∑

x∈Fq

εi(x))

)
= 0,

we can replace the sum overλ ∈ F×q by a sum overλ ∈ Fq. From

∑
λ∈Fq

ψ(λ
∑

xi) =

{
q if

∑
xi = 0

0 if
∑

xi 6= 0

we deduce finally that

q〈a〉g(p, a) = (−1)nq
∑

x∈P n(Fq)(
n+1∏
i=0

εi(xi))

= qJ(ε0, . . . , εn).

Note that this shows thatg(p, a) is independent ofψ and lies ink.
Let ` be a prime such that` - d, p - `, andd|`− 1. ThenQ` contains a primitivedth root

of 1 and so, after choosing an embeddingk ↪→ Q`, we can assumeg(p, a) ∈ Q`.

PROPOSITION7.10. Let Fp ∈ Gal(Q/k)ab be a geometric Frobenius element ofp - d; for
anyv ∈ Hn(V et,Q`)a,

Fpv = q〈a〉−1g(p, a)v.

PROOF. As p - d, V reduces to a smooth varietyVp overFq and the proper-smooth base
change theorem shows that there is an isomorphismHn(V ,Q`) → Hn(V p,Q`) compat-
ible with the action ofS and carrying the action ofFp on Hn(V ,Q`) into the action of
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the Frobenius endomorphismFrob on Hn(V p,Q`). The comparison theorem shows that
Hn(V ,Q`)a has dimension1, and so it remains to compute

Tr(Fp|Hn(V ,Q`)a) = Tr(Frob |Hn(V p,Q`)a).

Let π : Vp → P n be as before. Then

Hn(V p,Q`)a = Hn(P n, (π∗Q`)a),

and the Lefschetz trace formula shows that

(−1)n Tr(Frob |Hn(P n, (π∗Q`)a) =
∑

x∈P n(F)
Tr(Frob |((π∗Q`)a)x) (2)

where((π∗Q`)a)x is the stalk of(π∗Q`)a atx.
Fix anx ∈ P n(Fq) with no xi zero, and lety ∈ Vp(Fq) map tox; thusyd

i = xi all i.

Thenπ−1(x) = {ζy | ζ ∈ S}, and(π∗Q`)x is the vector spaceQπ−1(x)
` .

If φ denotes the arithmetic Frobenius automorphism (i.e., the generatorz 7→ zq of
Gal(Fq/Fq)), then

φ(yi) = yq
i = x

q−1
d

i yi = t(x
q−1

d
i )yi, 0 ≤ i ≤ n− 1,

and so
Frob(y) = ηy whereη = (. . . : t(x

1−q
d

i ) : . . .) ∈ S.

ThusFrob acts on(π∗Q`)x asη, and forv ∈ ((π∗Q`)a)x, we have

Frob(v) = ηv = ηav , ηa =
n+1∏
i=0

εi(xi) ∈ k ⊂ Q`.

Consequently,

Tr(Frob |((π∗Q`)a)x) =
n+1∏
i=0

εi(xi).

If somexi = 0, then both sides are zero ((π∗Q`)a is ramified over the coordinate hyper-
planes), and so, on summing overx and applying (2) and (7.9), we obtain the proposi-
tion.

COROLLARY 7.11. Let a be such that noai is zero and〈ua〉 is constant. Then, for any
v ∈ Hn(V et,Q`)a(

n
2
),

Fpv = g(p, a)v.

PROOF. The hypotheses ona imply that〈a〉 = n
2
+1. Therefore, when we writev = v0⊗1

with v0 ∈ Hn(V et,Q`)a,

Fpv = Fpv0 ⊗ Fp1 = q
n
2 g(p, a)v0 ⊗ q

−n
2 = g(p, a)v.
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Calculation of the periods

Recall that that theΓ-function is defined by

Γ(s) =

∫ ∞

0

e−tts
dt

t
, s > 0,

and satisfies the following equations

Γ(s)Γ(1− s) = π(sin πs)−1

Γ(1 + s) = sΓ(s).

The last equation shows that, fors ∈ Q×, the class ofΓ(s) in C/Q× depends only on the
class ofs in Q/Z. Thus, fora ∈ X(S), we can define

Γ̃(a) = (2πi)−〈a〉
n+1∏
i=0

Γ(ai

d
) ∈ C/Q×.

Let V o denote the open affine subvariety ofV with equation

Y d
1 + · · ·+ Y d

n−1 = −1 (soYi = Xi/X0).

Denote by∆ then-simplex
{
(t1, . . . , tn+1) ∈ Rn+1 | ti ≥ 0,

∑
ti = 1

}

and defineσ0 : ∆ → V o(C) to be

(t1, . . . , tn+1) 7→ (εt
1
d
1 , . . . , εt

1
d
n+1), ε = e2πi/2d = d

√−1, t
1
d
i > 0.

LEMMA 7.12. Leta0, . . . , an+1 be positive integers such that
∑

ai ≡ 0 mod d. Then
∫

σ0(∆)

Y a1
1 · · ·Y an+1

n+1

dY1

Y1

∧ . . . ∧ dYn

Yn

=
1

2πi
(1− ξ−a0)

n+1∏
i=0

Γ
(ai

d

)

whereξ = e2πi/d.

PROOF. Write ω0 for the integrand. Then
∫

σ0(∆)

ω0 =

∫

∆

σ∗0(ω0)

=

∫

∆

(εt
1
d
1 )a1 · · · (εt

1
d
n+1)

an+1d−n dt1
t1
∧ . . . ∧ dtn

tn

= c

∫

∆

tb11 · · · tbn+1

n+1

dt1
t1
∧ . . . ∧ dtn

n

wherebi = ai/d andc = εa1+···+an+1(1
d
)n. On multiplying by

Γ(1− b0) = Γ(1 + b1 + · · ·+ bn+1) =

∫ ∞

0

e−ttb1+···+bn+1dt
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we obtain

Γ(1− b0)

∫

σ0(∆)

ω0 = c

∫ ∞

0

∫

∆

e−ttb1+···+bn+1tb11 · · · tbn+1

n+1

dt1
t1
∧ . . . ∧ dtn

n
∧ dt.

If, on the inner integral, we make the change of variablessi = tti, the integral becomes

c

∫ ∞

0

∫

∆(t)

e−tsb1
1 . . . s

bn+1

n+1

ds1

s1

∧ . . . ∧ dsn

sn

∧ dt

where
∆(t) = {(s1, . . . , sn+1) | si ≥ 0,

∑
si = t}.

We now lett =
∑

si, and we obtain

Γ(1− b0)

∫

σ0(∆)

ω = c

∫ ∞

0

· · ·
∫ ∞

0

e−s1−···−sn+1sb1
1 . . . s

1+bn+1

n+1

ds1

s1

∧ . . . ∧ dsn+1

sn+1

= cΓ(b1)Γ(b2) . . . Γ(bn)Γ(1 + bn+1)

= cbn+1Γ(b1) . . . Γ(bn+1).

The formula recalled above shows that

Γ(1− b0) = π/(sin πb0)Γ(b0),

and so

cΓ(1− b0)
−1 = ε−a0

sin πb0

π
Γ(b0) mod Q×

=
1

π
e−2πib0/2

(
eπib0 − e−πib0

2i

)
Γ(b0)

=
1

2πi
(1− ε−2a0)Γ(b0).

The lemma is now obvious.

The group algebraQ[S] acts on theQ-space of differentiablen-simplices inV (C). For
a ∈ X(S) andξi = (1, . . . , ξ, . . .) (ξ = e2πi/d in theith position), define

σ =
n+1∏
i=0

(1− ξ
i
)−1σ0(∆) ⊂ V o(C)

whereσ0 and∆ are as above.

PROPOSITION7.13. Leta ∈ X(S) be such that noai is zero, and letωo be the differential

Y
a′1
1 . . . Y

a′n+1

n+1

dY1

Y1

∧ . . . ∧ dYn

Yn

onV o, wherea′i represents−ai, anda′i À 0. Then
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(a) ξωo = ξaωo;

(b)
∫

σ
ωo = 1

2πi

n+1∏
i=0

(1− ξai)Γ
(−ai

d

)
.

PROOF. (a) This is obvious since

ζYi =

(
ζi

ζ0

)−1

Yi.

(b)
∫

σ

ωo =

∫

σ0(∆)

n+1∏
i=1

(1− ξi)ω
o

=
n+1∏
i=1

(1− ξai)

∫

σ0(∆)

ωo

=
1

2πi

n+1∏
i=0

(1− ξai)Γ
(ai

d

)
.

REMARK 7.14. From the Gysin sequence

(C ≈) Hn−2(V r V o,C) → Hn(V,C) → Hn(V o,C) → 0

we obtain an isomorphism

Hn(V,C)prim → Hn(V o,C),

which shows that there is an isomorphism

Hn
dR(V/k)prim → Hn

dR(V o/k) = Γ(V o, Ωn)/dΓ(V o, Ωn+1).

The class[ωo] of the differentialωo lies in Hn
dR(V/k)a. Correspondingly, we get aC∞

differentialn-form onV (C) such that
(a) the class[ω] of ω in Hn

dR(V/C) lies inHn
dR(V/k)a, and

(b)
∫

σ
ω = 1

2πi

n+1∏
i=0

(1− ξai)Γ
(−ai

d

)
, whereσ =

n+1∏
i=1

(1− ξi)
−1σ0(∆).

Note that, if we regardV as a variety overQ, then[ω] even lies inHn
dR(V/Q).

The theorem

Recall that fora ∈ X(S), we set

Γ̃(a) = (2πi)−〈a〉
n+1∏
i=0

Γ(ai

d
) (∈ C/Q×)
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and forp a prime ofk not dividingd, we set

g(p, a) = q−〈a〉
n+1∏
i=0

g(p, ai, ψ)

g(p, ai, ψ) = − ∑
x∈Fq

t
(
x

1−q
d

)ai

ψ(x)

whereq is the order of the residue field ofp.

THEOREM7.15. Leta ∈ X(S) have noai = 0 and be such that〈ua〉 = 〈a〉 (= n/2+1)

for all u ∈ (Z/dZ)×.
(a) ThenΓ̃(a) ∈ Q and generates an abelian extension ofk = Q(e

2πi
d ).

(b) If Fp ∈ Gal(Q/k)ab is the geometric Frobenius element atp, then

Fp(Γ̃(a)) = g(p, a)Γ̃(a).

(c) For any τ ∈ Gal(Q/Q), λa(τ)
df
= Γ̃(a)/τ Γ̃(a) lies in k; moreover, for anyu ∈

(Z/dZ)×,

τu(λa(τ)) = λua(τ)

whereτu is the element ofGal(k/Q) defined byu.

PROOF. Chooseσ ∈ HB
n (V ) and ω as in (7.14). Then all the conditions of (7.2) are

fulfilled with α the charactera. Moreover, (7.14) and (7.11) show respectively that

P (σ, ω) = ξ(a)Γ̃(−a), whereξ(a) =
n+1∏
i=0

(1− ξai
i ),

and
χ(Fp) = g(p, a)−1.

As ξ(a) ∈ k, (7.2) shows that̃Γ(−a) generates an abelian algebraic extension ofk and that

FpΓ̃(−a) = g(p, a)−1Γ̃(−a).

It is clear from this equation thatg(p, a) has absolute value1 (in fact, it is a root of1); thus

g(p, a)−1 = g(p, a) = g(p,−a).

This proves (a) and (b) for−a and hence fora.
To prove (c) we have to regardV as a variety overQ. If S is interpreted as an algebraic

group, then its action onV is rational overQ. This means that

τ(ζx) = τ(ζ)τ(x), τ ∈ Gal(Q/Q), ζ ∈ S(Q), x ∈ V (Q)

and implies that

τ(ζγ) = τ(ζ)τ(γ), τ ∈ Gal(Q/Q), ζ ∈ S(Q), γ ∈ Cn
AH(V ).
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ThereforeGal(Q/Q) stabilizesCn
AH(V )[a] and, as this is a one-dimensional vector space

overQ[a], there exists for anyγ ∈ Cn
AH(V )[a] a crossed homomorphismλ : Gal(Q/Q) →

Q[a]× such thatτ(γ) = λ(τ)γ for all τ . On applying the canonical mapCn
AH(V )[a] →(

Cn
AH(V )⊗ k

)
[a]

to this equality, we obtain

τ(γ ⊗ 1) = λ(τ)a(γ ⊗ 1).

We takeγ to be the image ofσ ⊗ (2πi)−n/2 ∈ HB
n (V )(−n

2
) in Cn

AH(V )[a]. Then (cf.
7.3),(γ ⊗ 1)dR = P (σ, ω)−1[ω], if [ω] is as in (7.14). Hence

λ(τ)a =
P (σ, ω)

τP (σ, ω)
= λ−a(τ)

ξ(a)

τξ(a)
.

On comparing

λa(τ) = λ(τ)−a τξ(−a)

ξ(−a)
and

λua(τ) = λ(τ)−ua τξ(−ua)

ξ(−ua)
,

and using that
τ(ξ(−ua)) = τ(τu(ξ(−a))) = τu(τξ(−a)),

one obtains (c) of the theorem.

REMARK 7.16. (a) The first statement of the theorem, thatΓ̃(a) is algebraic, has an ele-
mentary proof; see the appendix by Koblitz and Ogus toDeligne 1979a.22

(b) Part (b) of the theorem has been proved up to sign by Gross and Koblitz (1979, 4.5)
usingp-adic methods.

REMARK 7.17. Let Id be the group of ideals ofk prime tod, and consider the character

a =
∏

pri
i 7→ g(a, a)

df
=

∏
g(pi, a)ri : Id → k×.

Whena satisfies the conditions of the theorem, then this is an algebraic Hecke character
(Weil 1952, 1974; see alsoDeligne 1972, §6) . This means that there exists an idealm

of k (dividing a power ofd) and a homomorphismχalg: k× → k× that is algebraic (i.e.,
defined by a map of tori) and such that, for allx ∈ k× totally positive and≡ 1 mod m,
g((x), a) = χalg(x). There is then a unique character

χa : Gal(Q/k)ab→ k×

such thatχa(Fp) = g(p, a) for all p prime tod. Part (b) of the theorem can be stated as

σ(Γ̃(a)) = χa(σ)Γ̃(a), all σ ∈ Gal(k/k).
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(There is an elegant treatment of algebraic Hecke characters inSerre 1968, Chapter II. Such
a character with conductor dividing a modulusm corresponds to a characterχ of the torus
Sm (loc. cit. p II-17) . The mapχalg is

k×
π→ Tm ↪→ Sm

χ→ k×.

One defines fromχ a characterχ∞ of the id̀ele class group as in (loc. cit., II 2.7).
Weil’s determination ofχalg shows thatχ∞ is of finite order; in particular, it is trivial
on the connected component of the idèle class group, and so gives rise to a character
χa : Gal(Q/k)ab→ k×.)

Restatement of the theorem

For b ∈ d−1Z/Z, we write〈b〉 for the representative ofb in d−1Z with 1
d
≤ 〈b〉 ≤ 1. Let

b =
∑

n(b)δb be an element of the free abelian group generated by the setd−1Z/Z r {0},
and assume that

∑
n(b)〈ub〉 = c is an integer independent ofu ∈ Z/dZ. Define

Γ̃(b) =
1

(2πi)c

∏

b

Γ(〈b〉)n(b).

Let p be a prime ofk, not dividingd, and letFq be the residue field atp. Forψ a non-trivial
additive character ofFq, define

g(p,b) =
1

qc

∏

b

g(p, b, ψ)n(b), whereg(p, b, ψ) = − ∑
x∈Fq

t(xb(1−q))ψ(x).

As in (7.17), p 7→ g(p,b) defines an algebraic Hecke character ofk and a character
χb : Gal(Q/Q) → C× such thatχb(Fp) = g(p,b) for all p - b.

THEOREM 7.18. Assumeb =
∑

n(b)δb satisfies the condition above.
(a) ThenΓ̃(b) ∈ kab, and for allσ ∈ Gal(Q/k)ab,

σΓ̃(b) = χb(σ)Γ̃(b).

(b) For τ ∈ Gal(Q/Q), let λb(τ) = Γ̃(b)/τ Γ̃(b); then λb(τ) ∈ k, and, for anyu ∈
(Z/dZ)×,

τu(λb(τ)) = λub(τ).

PROOF. Suppose first thatn(b) ≥ 0 for all b. Let n + 2 =
∑

n(b), and leta be an(n + 2)-
tuple in which eacha ∈ Z/dZ occurs exactlyna

d
times. Writea = (a0, . . . , an). Then

∑
ai = d(

∑
n(b)b)

= dc mod d

= 0,
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and soa ∈ X(S). Moreover,

〈ua〉 df
=

1

d

∑〈uai〉 =
∑

n(b)〈ub〉 = c

for all u ∈ Z/dZ. Thus〈ua〉 is constant, andc = 〈a〉. We deduce that̃Γ(a) = Γ̃(b),
g(p, a) = g(p,b), andχa = χb. Thus, in this case, (7.18) follows immediately from (7.15)
and (7.17).

Let b be arbitrary. For someN , b + Nb0 has positive coefficients, whereb0 =
∑

δb.
Thus (7.18) is true forb + Nb0. Since

Γ̃(b1 + b2) = Γ̃(b1)Γ̃(b2) mod Q×

and
g(p,b1 + b2) = g(p,b1)g(p,b2)

this completes the proof.

REMARK 7.19. (a) Part (b) of the theorem determinesΓ(ub) (up to multiplication by a
rational number) starting fromΓ(b).

(b) Conjecture 8.11 ofDeligne 1979ais a special case of part (a) of the above theorem.
The more precise form of the conjecture, ibid. 8.13, can be proved by a modification of the
above methods.
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8 Motives for absolute Hodge cycles
23Throughout this section,k will denote a field of characteristic zero with algebraic closure
k and Galois groupΓ = Gal(k/k). All varieties will be projective and smooth, and, for
X a variety (or motive) overk, X denotesX ⊗k k. We continue with the notations of the
previous sections. For example, ifk = C, thenHB(X) denotes the graded vector space
⊕H i

B(X).

Complements on absolute Hodge cycles

For X a variety overk, Cp
AH(X) denotes theQ-vector space of absolute Hodge cycles on

X (see§2). WhenX has pure dimensionn, we write

Morp
AH(X, Y ) = Cn+p

AH (X × Y ).

Then

Morp
AH(X,Y ) ⊂ H2n+2p(X × Y )(p + n)

=
⊕

r+s=2n+2p

Hr(X)⊗Hs(Y )(p + n)

=
⊕

s=r+2p

Hr(X)∨ ⊗Hs(Y )(p)

=
⊕
r

Hom(Hr(X), Hr+2p(Y )(p)).

The next proposition is obvious from this and the definition of an absolute Hodge cycle.

PROPOSITION8.1. An elementf of Morp
AH(X, Y ) gives rise to

(a) for each primè , a homomorphismf` : H`(X) → H`(Y )(p) of graded vector spaces
(meaning thatf` is a family of homomorphismsf r

` : Hr
` (X) → Hr+2p

` (Y )(p));
(b) a homomorphismfdR : HdR(X) → HdR(Y )(p) of graded vector spaces;
(c) for eachσ : k ↪→ C, a homomorphismfσ : Hσ(X) → Hσ(Y )(p) of graded vector

spaces.
These maps satisfy the following conditions

(d) for all γ ∈ Γ and primes̀ , γf` = f`;
(e) fdR is compatible with the Hodge filtrations on each homogeneous factor;
(f) for eachσ : k ↪→ C, the mapsfσ, f`, and fdR correspond under the comparison

isomorphisms (§1).
Conversely, whenk is embeddable inC, a family of mapsf`, fdR as in (a), (b) arises

from anf ∈ Morp
AH(X,Y ) if

– (f`) andfdR satisfy (d) and (e) respectively, and

– for everyσ : k ↪→ C, there exists anfσ such that(f`), fdR, andfσ satisfy
condition (f).



8 MOTIVES FOR ABSOLUTE HODGE CYCLES 64

Moreover,f is unique.

Similarly, aψ ∈ C2n−r
AH (X ×X) gives rise to pairings

ψs : Hs(X)×H2r−s(X) → Q(−r).

PROPOSITION8.2. On every varietyX there exists aψ ∈ C2 dim X−r
AH (X × X) such that,

for everyσ : k ↪→ C,
ψr

σ : Hr
σ(X,R)×Hr

σ(X,R) → R(−r)

is a polarization of real Hodge structures.

PROOF. Let n = dim X. Choose a projective embedding ofX, and letL be a hyperplane
section ofX. Let ` be the class ofL in H2(X)(1), and write` also for the mapH(X) →
H(X)(1) sending a class to its cup-product with`. AssumeX is connected, and define the
primitive cohomologyof X by

Hr(X)prim = Ker(`n−r+1 : Hr(X) → H2n−r+2(X)(n− r + 1)).

The hard Lefschetz theorem states that

`n−r : Hr(X) → H2n−r(X)(n− r)

is an isomorphism forr ≤ n; it implies that

Hr(X) =
⊕

s≥r−n, s≥0

`sHr−2s(X)(−s)prim.

Thus, anyx ∈ Hr(X) can be written uniquelyx =
∑

`s(xs) with xs ∈ Hr−2s(X)(−s)prim .
Define

∗x =
∑

(−1)(r−2s)(r−2s+1)/2`n−r+sxs ∈ H2n−r(X)(n− r).

Thenx 7→ ∗x : Hr(X) → H2n−r(X)(n − r) is a well-defined map for each of the three
cohomology theories,̀-adic, de Rham, and Betti. Proposition 8.1 shows that it is defined
by an absolute Hodge cycle (rather, the mapH(X) → H(X)(n− r) that isx 7→ ∗x onHr

and zero elsewhere is so defined). We takeψr to be

Hr(X)⊗Hr(X)
id⊗∗−−−→ Hr(X)⊗H2n−r(X)(n− r) → H2n(X)(n− r)

Tr→ Q(−r).

Clearly it is defined by an absolute Hodge cycle, and the Hodge-Riemann bilinear rela-
tions (seeWells 1980, 5.3) show that it defines a polarization on the real Hodge structure
Hr

σ(X,R) for eachσ : k ↪→ C.

PROPOSITION8.3. For anyu ∈ Mor0
AH(Y,X), there exists a uniqueu′ ∈ Mor0

AH(X,Y )

such that
ψX(uy, x) = ψY (y, u′x), x ∈ Hr(X), y ∈ Hr(Y )

whereψX andψY are the forms defined in (8.2); moreover,

Tr(u ◦ u′) = Tr(u′ ◦ u) ∈ Q
Tr(u ◦ u′) > 0 if u 6= 0.
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PROOF. The first part is obvious, and the last assertion follows from the fact that theψX

andψY are positive forms for a polarization inHODR (the Tannakian category of real Hodge
structures).

Note that the proposition show thatMor0
AH(X, X) is a semisimpleQ-algebra (see

Deligne and Milne 1982, 4.5).

Construction of the category of motives

Let Vk be the category of (smooth projective, not necessarily connected) varieties over
k. The categoryCVk is defined to have as objects symbolsh(X), one for each object
X ∈ ob(Vk), and as morphisms

Hom(h(X), h(Y )) = Mor0
AH(X, Y ).

There is a map
Hom(Y,X) → Hom(h(X), h(Y ))

sending a homomorphism to the cohomology class of its graph which makesh into a con-
travariant functorVk → CVk.

ClearlyCVk is aQ-linear category, andh(X tY ) = h(X)⊕h(Y ). There is aQ-linear
tensor structure onCVk for which

– h(X)⊗ h(Y ) = h(X × Y ),

– the associativity constraint is induced by(X × Y )× Z → X × (Y × Z),

– the commutativity constraint is induced byY ×X → X × Y , and

– the identity object ish(point).

The false category ofeffective(or positive) motivesṀ+
k is defined to be the pseudo-

abelian (Karoubian) envelope ofCVk. Thus, an object oḟM+
k is a pair(M, p) with M ∈ CVk

andp an idempotent inEnd(M), and

Hom((M, p), (N, q)) = {f : M → N | f ◦ p = q ◦ f/ ∼} (3)

wheref ∼ 0 if f ◦ p = 0 = q ◦ f . The rule

(M, p)⊗ (N, q) = (M ⊗N, p⊗ q)

defines aQ-linear tensor structure oṅM+
k , andM 7→ (M, id) : CVk → Ṁ+

k is a fully faithful
functor which we use to identifyCVk with a subcategory oḟM+

k . With this identification,
(M, p) becomes the image ofp : M → M . The categoryṀ+

k is pseudo-abelian: any
decomposition ofidM into a sum of pairwise orthogonal idempotents

idM = e1 + · · ·+ em
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corresponds to a decomposition

M = M1 ⊕ · · · ⊕Mm

with ei|Mi = idMi
. The functorCVk → Ṁ+

k is universal for functors fromCVk to pseudo-
abelian categories.

For anyX ∈ ob(Vk), the projection mapspr : H(X) → Hr(X) define an element of
Mor0

AH(X, X) = End(h(X)). Corresponding to the decomposition

idh(X) = p0 + p1 + p2 + · · ·

there is a decompostion (iṅM+
k )

h(X) = h0(X) + h1(X) + h2(X) + · · · .

This grading of objects ofCVk extends in an obvious way to objects ofṀ+
k , and the K̈unneth

formulas show that these gradings are compatible with tensor products (and therefore sat-
isfy Deligne and Milne 1982, 5.1a).

Let L be the Lefschetz motiveh2(P1). With the notations of§1, H(L) = Q(−1),
whence it follows that

Hom(M,N)
≈→ Hom(M ⊗ L,N ⊗ L)

for any effective motivesM andN . This means thatV 7→ V ⊗L is a fully faithful functor
and allows us to invertL.

DEFINITION 8.4. Thefalse categoryṀk of motivesis defined as follows:
(a) an object ofṀk is a pair(M,m) with M ∈ ob(Ṁ+

k ) andm ∈ Z;
(b) Hom((M,m), (N, n)) = Hom(M ⊗ Lr−m, N ⊗ Lr−n), r ≥ m,n (for differentr,

these groups are canonically isomorphic);
(c) composition of morphisms is induced by that inṀ+

k .
This category of motives isQ-linear and pseudo-abelian and has a tensor structure

(M, m)⊗ (N, n) = (M ⊗N, m + n)

and grading
(M, m)r = M r−2m.

We identifyṀ+
k with a subcategory oḟMk by means toM 7→ (M, 0). TheTate motiveT is

L−1 = (11, 1). We abbreviateM ⊗ T⊗m = (M, m) by M(m).

We shall see shortly thaṫMk is a rigid abelian tensor category, andEnd(11) = Q. It
is not however a Tannakian category because, forX ∈ ob(Vk), rank(h(X)) is the Euler-
Poincaŕe characteristic,

∑
(−1)r dim Hr(X), of X, which is not necessarily positive. To

remedy this we modify the commutativity constraint as follows: let

ψ̇ : M ⊗N
≈→ N ⊗M, ψ̇ = ⊕ψ̇r,s, ψ̇r,s : M r ⊗N s ≈→ N s ⊗M r
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be the commutativity constraint oṅMk; define a new commutativity constraint by

ψ : M ⊗N
≈→ N ⊗M, ψ = ⊕ψr,s, ψr,s = (−1)rsψ̇r,s. (4)

ThenMk, with ψ̇ replaced byψ, is thetrue categoryMk of motives.

PROPOSITION8.5. The categoryMk is a semisimple Tannakian category overQ.

PROOF. As we observed above, Proposition 8.3 implies that the endomorphism rings of
the objects ofMk are semisimple. Because they are also finite dimensional overQ, we may
apply the next lemma.24

LEMMA 8.6. LetC be aQ-linear pseudo-abelian category such that, for all objectsX, Y ,
Hom(X, Y ) is finite dimensional andEnd(X) is semisimple. ThenC is semisimple (and
hence every additive functor fromC to an abelian category is exact).

PROOF. This is Lemma 2 of Jannsen, U., Motives, numerical equivalence, and semi-
simplicity. Invent. Math. 107 (1992), no. 3, 447–452.

The following theorem summarizes what we have essentially have shown aboutMk.

THEOREM 8.7. (a) Letw be the grading onMk; then(Mk, w, T ) is a Tate triple overQ.
(b) There is a contravariant functorh : Vk → Mk; every effective motive is the image

(h(X), p) of an idempotentp ∈ End(h(X)) for someX ∈ ob(Vk); every motive is of the
formM(n) for some effectiveM and somen ∈ Z.

(c) For all varietiesX, Y with X of pure dimensionm,

Cm+s−r
AH (X × Y ) = Hom(h(X)(r), h(Y )(s));

in particular,
Cm

AH(X × Y ) = Hom(h(X), h(Y ));

morphisms of motives can be expressed in terms of absolute Hodge cycles on varieties by
means of (3) and (8.4b).

(d) The constraints onMk have an obvious definition, except that the obvious commu-
tativity constraint has to be modified by (4).

(e) For varietiesX andY ,

h(X t Y ) = h(X)⊕ h(Y )

h(X × Y ) = h(X)⊗ h(Y )

h(X)∨ = h(X)(m) if X is of pure dimensionn.

(f) The fibre functorsH`, HdR, andHσ define fibre functors onMk; these fibre functors
define morphisms of Tate triplesMk → T`, TdR, TB (seeDeligne and Milne 1982, 5.2b); in
particular, H(T ) = Q(1).
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(g) Whenk is embeddable inC, Hom(M,N) is the vector space of families of maps

f` : H
`
(M) → H`(N)

fdR: HdR(M) → HdR(N)

such thatfdR preserves the Hodge filtration,γf` = f` for all γ ∈ Γ, and for anyσ : k ↪→ C
there exists a mapfσ : Hσ(M) → Hσ(N) agreeing withf` andfdR under the comparison
isomorphisms.

(h) The categoryMk is semisimple.
(i) There exists a polarization onMk for whichπ(hr(X)) consists of the forms defined

in (8.2).

Some calculations

According to (8.7g), to define a mapM → N of motives it suffices to give a procedure
for defining a map of cohomology groupsH(M) → H(N) that works (compatibly) for
all three theories: Betti, de Rham, and`-adic. The map will be an isomorphism if its
realization in one theory is an isomorphism.

Let G be a finite group acting on a variety. The group algebraQ[G] acts onh(X), and
we defineh(X)G to be the motive(h(X), p) with p equal to the idempotent

∑
g∈G g

(G : 1)
.

Note thatH(h(X)G) = H(X)G for any of the standard cohomology theories.

PROPOSITION8.8. Assume that the finite groupG acts freely onX, so thatX/G is also
smooth; thenh(X/G) = h(X)G.

PROOF. Since cohomology is functorial, there exists a mapH(X/G) → H(X) whose
image lies inH(X)G = H(h(X)G). The Hochschild-Serre spectral sequence

Hr(G,Hs(X)) ⇒ Hr+s(X/G)

shows that the mapH(X/G) → H(X)G is an isomorphism for, say, thè-adic cohomol-
ogy, becauseHr(G, V ) = 0, r > 0, if V is a vector space over a field of characteristic
zero.

REMARK 8.9. More generally, iff : Y → X is a map of finite (generic) degreen between
connected varieties of the same dimension, then the composite

H(X)
f∗→ H(Y )

f∗→ H(X)

is multiplication byn; there therefore exist maps

h(X) → h(Y ) → h(X)

with compositen, andh(X) is a direct summand ofh(Y ).
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PROPOSITION8.10. Let E be a vector bundle of rankm + 1 over a varietyX, and let
p : P(E) → X be the associated projective bundle; then

h(P(E)) = h(X)⊕ h(X)(−1)⊕ · · · ⊕ h(X)(−m).

PROOF. Let γ be the class inH2(P(E))(1) of the canonical line bundle onP(E), and let
p∗ : H(X) → H(P(E)) be the map induced byp. The map

(c0, . . . , cm) 7→
∑

p∗(ci)γ
i : H(X)⊕ · · · ⊕H(X)(−m) → H(P(E))

has the requisite properties.

PROPOSITION8.11. Let Y be a smooth closed subvariety of codimensionc in the variety
X, and letX ′ be the variety obtained fromX by blowing upY ; then there is an exact
sequence

0 → h(Y )(−c) → h(X)⊕ h(Y ′)(−1) → h(X ′) → 0

whereY ′ is the inverse image ofY .

PROOF. From the Gysin sequences

· · · −−−→ Hr−2c(Y )(−c) −−−→ Hr(X) −−−→ Hr(X r Y ) −−−→ · · ·y
y

∥∥∥
· · · −−−→ Hr−2c(Y ′)(−1) −−−→ Hr(X ′) −−−→ Hr(X ′ r Y ′) −−−→ · · ·

we obtain a long exact sequence

· · · → Hr−2c(Y )(−c) → Hr(X)⊕Hr−2(Y ′)(−1) → Hr(X ′) → · · · .

But Y ′ is a projective bundle overY , and soHr−2c(Y )(−c) → Hr−2(Y ′)(−1) is injective.
Therefore, there are exact sequences

0 → Hr−2c(Y )(−c) → Hr(X)⊕Hr−2(Y ′)(−1) → Hr(X ′) → 0,

which can be rewritten as

0 → H(Y )(−c) → H(X)⊕H(Y ′)(−1) → H(X ′) → 0

We have constructed a sequence of motives, which is exact because the cohomology func-
tors are faithful and exact.

COROLLARY 8.12. With the notations of the proposition,

h(X ′) = h(X)⊕
c−1⊕
r=1

h(Y )(−r).
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PROOF. Proposition 8.10 shows thath(Y ′) =
c−1⊕
r=1

h(Y )(r).

PROPOSITION8.13. If X is an abelian variety, thenh(X) =
∧

(h1(X)).

PROOF. Cup-product defines a map
∧

(H1(X)) → H(X) which, for the Betti cohomol-
ogy, say, is known to be an isomorphism. (SeeMumford 1970, I.1.)

PROPOSITION8.14. If X is a curve with JacobianJ , then

h(X) = 11⊕ h1(J)⊕ L.

PROOF. The mapX → J (well-defined up to translation) defines an isomorphismH1(J) →
H1(X).

PROPOSITION 8.15. Let X be a unirational variety of dimensiond ≤ 3 over an alge-
braically closed field; then

(d = 1) h(X) = 11⊕ L;

(d = 2) h(X) = 11⊕ rL⊕ L2, somer ∈ N;

(d = 3) h(X) = 11⊕ rL⊕ h1(A)(−1)⊕ rL2 ⊕ L3, somer ∈ N,

whereA is an abelian variety.

PROOF. We prove the proposition only ford = 3. According to the resolution theorem of
Abhyankar 1966, there exist maps

P3 u← X ′ v→ X

with v surjective of finite degree andu a composite of blowing-ups. We know

h(P3) = 11⊕ L⊕ L2 ⊕ L3

(special case of (8.10)). When a point is blown up, a motiveL ⊕ L2 is added, and when a
curveY is blown up, a motiveL⊕ h1(Y )(−1)⊕ L2 is added. Therefore,

h(X ′) ∼= 11⊕ sL⊕M(−1)⊕ sL2 ⊕ L3

whereM is a sum of motives of the formh1(Y ), Y a curve. A direct summand of such
anM is of the formh1(A) for A an abelian variety (see 8.21 below). Ash(X) is a direct
summand ofh(X ′) (see 8.9) and Poincaré duality shows that the multiples ofL2 andL3

occurring inh(X) are the same as those ofL and11 respectively, the proof is complete.

PROPOSITION8.16. LetXn
d denote the Fermat hypersurface of dimensionn and degreed:

T d
0 + T d

1 + · · ·+ T d
n+1 = 0.

Then,

hn(Xn
d )⊕ dhn(Pn) = hn(Xn−1

d ×X1
d)µd ⊕ (d− 1)hn−2(Xn−2

d )(−1)

whereµd, the group ofdth roots of1, acts onXn−1
d ×X1

d according to

ζ(t0 : . . . : tn; s0 : s1 : s2) = (t0 : . . . : tn; ζs0 : ζs1 : ζs2)

PROOF. SeeShioda and Katsura 1979, 2.5.
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Artin Motives

Let V0
k be the category of zero-dimensional varieties overk, and letCV0

k be the image of
V0

k in Mk. The Tannakian subcategoryM0
k of Mk generated by the objects ofCV0

k is called
the category of(Emil) Artin motives.

For anyX in ob(V0
k), X(k) is a finite set on whichΓ acts continuously. Thus,QX(k) is a

finite-dimensional continuous representation ofΓ. When we regardΓ, in an obvious way, as
a (constant, pro-finite) affine group scheme overk,QX(k) ∈ RepQ(Γ). ForX,Y ∈ ob(V0

k),

Hom(h(X), h(Y ))
df
= C0

AH(X × Y )

= (QX(k)×Y (k))Γ

= HomΓ

(
QX(k),QY (k)

)
.

Thus,
h(X) 7→ QX(k) : CV0

k → RepQ(Γ)

is fully faithful, and Grothendieck’s formulation of Galois theory shows that it is essentially
surjective. Therefore,CV0

k is abelian andM0
k = CV0

k. We have shown:

PROPOSITION8.17. The category of Artin motivesM0
k = CV0

k. The functorh(X) 7→ QX(k)

defines an equivalence of tensor categoriesM0
k
∼→ RepQ(Γ).

REMARK 8.18. Let M be an Artin motive, and regardM as an object ofRepQ(Γ). Then

Hσ(M) = M (underlying vector space) for anyσ : k ↪→ C;

H`(M) = M ⊗Q Q`, as aΓ-module;

HdR(M) = (M ⊗Q k)Γ.

Note that, ifM = h(X) whereX = Spec(A), then

HdR(M) = (QX(k) ⊗Q k)Γ = (A⊗k k)Γ = A.

REMARK 8.19. The proposition shows thatM0
k is equivalent to the category of sheaves of

finite-dimensionalQ-vector spaces on théetale siteSpec(k)et.

Effective motives of degree1.

A Q-rational Hodge structureis a finite dimensional vector spaceV overQ together with
a real Hodge structure onV ⊗R whose weight decomposition is defined overQ. LetHodQ
be the category ofQ-rational Hodge structures. Apolarization on an objectV of HodQ
is a bilinear pairingψ : V → Q(−n) such thatψ ⊗ R is a polarization on the real Hodge
structureV ⊗ R.

Let Isabk be the category of abelian varieties up to isogeny overk. The following
theorem summarizes part of the theory of abelian varieties.
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THEOREM 8.20(RIEMANN ). The functorH1
B : IsabC → HodQ is fully faithful; the essen-

tial image consists of polarizable Hodge structures of weight1.

Let M+1
k be the pseudo-abelian subcategory ofMk generated by motives of the form

h1(X) for X a geometrically connected curve; according to (8.14),M+1
k can also be de-

scribed as the category generated by motives of the formh1(J) for J a Jacobian.

PROPOSITION8.21. (a) The functorh1 : Isabk → Mk factors throughM+1
k and defines an

equivalence of categories,
Isabk

∼→ M+1
k .

(b) The functorH1 : M+1
C → HodQ is fully faithful; its essential image consists of

polarizable Hodge structures of weight1.

PROOF. Every object ofIsabk is a direct summand of a Jacobian, which shows thath1

factors throughM+1
k . Assume, for simplicity, thatk is algebraically closed. Then, for any

A, B ∈ ob(Isabk),

Hom(B, A) ⊂ Hom(h1(A), h1(B)) ⊂ Hom(Hσ(A), Hσ(B)),

and (8.20) shows thatHom(B,A) = Hom(Hσ(A), Hσ(B)). Thush1 is fully faithful and
(as Isabk is abelian) essentially surjective. This proves (a), and (b) follows from (a) and
(8.20).

The motivic Galois group

Let k be a field that is embeddable inC. For anyσ : k ↪→ C, we defineG(σ) = Aut⊗(Hσ).
Thus,G(σ) is an affine group scheme overQ, andHσ defines an equivalence of categories
Mk

∼→ RepQ(G(σ)). BecauseG(σ) plays the same role forMk asΓ = Gal(k/k) plays for
M0

k, it is called themotivic Galois group.

PROPOSITION8.22. 25(a) The groupG(σ) is a pro-reductive (not necessarily connected)
affine group scheme overQ, and it is connected ifk is algebraically closed and all Hodge
cycles are absolutely Hodge.

(b) Letk ⊂ k′ be algebraically closed fields, letσ′ : k′ ↪→ C, and letσ = σ′|k. The
homomorphismG(σ′) → G(σ) induced byMk → Mk′ is faithfully flat.

PROOF. (a) LetX ∈ ob(Mk), and letCX be the abelian tensor subcategory ofMk generated
by X, X∨, T , andT∨. Let GX = Aut⊗(Hσ|CX). As CX is semisimple (see (8.5)),GX

is a reductive group (Deligne and Milne 1982, 2.23), and soG = lim←−GX is pro-reductive.
If k is algebraically closed and all Hodge cycles are absolutely Hodge, then (cf. 3.4)GX

is the smallest subgroup ofAut(Hσ(X))×Gm such that(GX)C contains the image of the
homomorphismµ : GmC → Aut(Hσ(X,C)) × GmC defined by the Hodge structure on
Hσ(X). As Im(µ) is connected, so also isGX .

(b) According to (2.9),Mk → Mk′ is fully faithful, and so (Deligne and Milne 1982,
2.29) shows thatG(σ′) → G(σ) is faithfully flat.
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Now let k be arbitrary, and fix an embeddingσ : k ↪→ C. The inclusionM0
k → Mk de-

fines a homomorphismπ : G(σ) → Γ becauseΓ = Aut⊗(Hσ|M0
k) (see 8.17), and the func-

tor Mk → Mk defines a homomorphismi : G◦(σ) → G(σ) whereG◦(σ)
df
= Aut⊗(Hσ|Mk).

PROPOSITION8.23. (a) The sequence

1 → G◦(σ)
i→ G(σ)

π→ Γ → 1

is exact.
(b) If all Hodge cycles are absolutely Hodge, then the identity component ofG(σ) is

G◦(σ).
(c) For anyτ ∈ Γ, π−1(τ) = Hom⊗(Hσ, Hστ ), regardingHσ andHτ as functors on

Mk.
(d) For any primè , there is a canonical continuous homomorphismsp` : Γ → G(σ)(Q`)

such thatπ ◦ sp` =id.

PROOF. (a) AsM◦
k → Mk is fully faithful, π is surjective (Deligne and Milne 1982, 2.29).

To show thati is injective, it suffices to show that every motiveh(X), X ∈ Vk, is a
subquotient of a motiveh(X

′
) for someX ′ ∈ Vk; but X has a modelX0 over a finite

extensionk′ of k, and we can takeX ′ = Resk′/k X0. The exactness atG(σ) is a special
case of (c).

(b) This is an immediate consequence of (8.22a) and (a).
(c) LetM, N ∈ ob(Mk). ThenHom(M, N) ∈ ob(RepQ(Γ)), and so we can regard it as

an Artin motive overk. There is a canonical map of motivesHom(M, N) ↪→ Hom(M,N)

giving rise to

Hσ(Hom(M, N)) = Hom(M, N)
Hσ→ Hom(Hσ(M), Hσ(N)) = Hσ(Hom(M, N))

Let τ ∈ Γ; then
Hσ(M) = Hσ(M) = Hτσ(M) = Hτσ(M)

and, forf ∈ Hom(M, N), Hσ(τ) = Hτσ(τf).
Let g ∈ G(R); for anyf : M → N in Mk, there is a commutative diagram

Hσ(M,R)
gM−−−→ Hσ(M,R)yHσ(f)

yHσ(f)

Hσ(N, R)
gN−−−→ Hσ(N,R).

Let τ = π(g), so thatg acts onHom(M, N) ⊂ Hom(M,N) asτ . Then, for anyf : M →
N in Mk

Hσ(M,R)
gM−−−→ Hσ(M,R) Hτσ(M, R)yHσ(f)

yHσ(τ−1f)

yHτσ(f)

Hσ(N, R)
gN−−−→ Hσ(N, R) Hτσ(N, R).
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commutes. The diagram shows thatgM : Hσ(M,R) → Hτσ(M,R) depends only onM as
an object ofMk. We observed in the proof of (a) above thatMk is generated by motives
of the form M , M ∈ Mk. Thus g defines an element ofHom⊗(Hσ, Hτσ)(R), where
Hσ andHτσ are to be regarded as functors onMk. We have defined a mapπ−1(τ) →
Hom⊗(Hσ, Hτσ), and it is easy to see that it is surjective.

(d) After (c), we have to find a canonical element ofHom⊗(H`(σM), H`(τσM)) de-
pending functorially onM ∈ Mk. Extendτ to an automorphismτ of C. For any variety
X overk, there is aτ−1-linear isomorphismσX ← τσX which induces an isomorphism
τ : H`(σX)

≈→ H`(τσX).

The “espoir” (Deligne 1979a, 0.10) that every Hodge cycle is absolutely Hodge has a
particularly elegant formulation in terms of motives.

CONJECTURE8.24. For any algebraically closed fieldk and embeddingσ : k ↪→ C, the
functorHσ : Mk → HodQ is fully faithful.

The functor is obviously faithful. There is no description, not even conjectural, for the
essential image ofHσ.

Motives of abelian varieties

Let Mav
k be the Tannakian subcategory ofMk generated by motives of abelian varieties and

Artin motives. The main theorem (2.11) has the following restatement.

THEOREM 8.25. For any algebraically closed fieldk and embeddingσ : k ↪→ C, the func-
tor Hσ : Mav

k → HodQ is fully faithful.

Therefore, for an algebraically closedk, the groupGav(σ) attached toMav
k andσ : k ↪→

C is a connected pro-reductive group (see 8.22), and, for an arbitraryk, the sequence

1 → Gav(σ)◦ → Gav(σ) → Γ → 1

is exact (see 8.23) (hereGav(σ)◦ is the identity component ofGav(σ)).

PROPOSITION8.26. The motiveh(X) ∈ ob(Mav
k ) if

(a) X is a curve;
(b) X is a unirational variety of dimension≤ 3;
(c) X is a Fermat hypersurface;
(d) X is aK3-surface.

Before proving this, we note the following consequence.

COROLLARY 8.27. Every Hodge cycle on a variety that is a product of abelian varieties,
zero-dimensional varieties, and varieties of type (a), (b), (c), and (d) is absolutely Hodge.
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PROOF OF8.26. Cases (a) and (b) follow immediately from (8.14) and (8.15), and (c)
follows by induction (onn) from (8.16). In fact, one does not need the full strength of
(8.16). There is a rational map

Xr
d × Xs

d
- Xr+s

d

(x0 : . . . : xr+1) , (y0 : . . . : xs+1) 7→ (x0ys+1 : . . . : xrys+1 :εxr+1y0 : . . . : εxr+1ys)

whereε is a primitive2mth root of1. The map is not defined on the subvariety

Y : xr+1 = ys+1 = 0.

On blowing upXr
d ×Xs

d along the nonsingular centreY , one obtains maps

Zr,s
d

@
@

@R

Xr
d ×Xs

d

?
- Xr+s

d .

By induction, we can assume that the motives ofXr
d , Xs

d, andY (= Xr−1
d × Xs−1

d ) are
in Mav

k . Corollary (8.12) now shows thath(Zr,s
d ) ∈ ob(Mav

k ) and (8.9) thath(Xr+s
d ) ∈

ob(Mav
k ).

– For (d), we first note that the proposition is obvious ifX is a Kummer
surface, for thenX = Ã/〈σ〉 whereÃ is an abelian varietyA with its 16

points of order≤ 2 blown up andσ inducesa 7→ −a onA.

Next consider an arbitraryK3-surfaceX, and fix a projective embedding ofX. Then

h(X) = h(P2)⊕ h2(X)prim

and so it suffices to show thath2(X)prim is in Mav
k . We can assumek = C. It is known

(Kuga and Satake 1967; Deligne 1972, 6.5) that there is a smooth connected varietyS over
C and families

f : Y → S

a : A → S

of polarizedK3-surfaces and abelian varieties respectively parametrized byS having the
following properties:

(a) for some0 ∈ S, Y0 =df f−1(0) is X together with its given polarization;
(b) for some1 ∈ S, Y1 is a polarized Kummer surface;
(c) there is an inclusionu : R2f∗Q(1)prim ↪→ End(R1a∗Q) compatible with the Hodge

filtrations.
The mapu0 : H2

B(X)(1)prim ↪→ End(H1(A0,Q)) is therefore defined by a Hodge cycle,
and it remains to show that it is defined by an absolute Hodge cycle. But the initial re-
mark shows thatu1, being a Hodge cycle on a product of Kummer and abelian surfaces, is
absolutely Hodge, and Principle B (2.12) completes the proof.
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Motives of abelian varieties of potential CM-type

An abelian varietyA overk is said to be ofpotential CM-typeif it becomes of CM-type
over an extension ofk. Let A be such an abelian variety defined overQ, and letMT(A)

be the Mumford-Tate group ofAC (see§5). SinceAC is of CM-type,MT(A) is a torus,
and we letL ⊂ C be a finite Galois extension ofQ splitting MT(A). Let MA,L

Q be the
Tannakian subcategory ofMQ generated byA, the Tate motive, and the Artin motives split
by Lab, and letGA be the affine group scheme associated with this Tannakian category and
the fibre functorHB.

PROPOSITION8.28. There is an exact sequence of affine group schemes

1 → MT(A)
i→ GA π→ Gal(Lab/Q) → 1.

PROOF. Let MA
C be the image ofMA,L

Q in MC; thenMT(A) is the affine group scheme
associated withMA

C , and so the above sequence is a subsequence of the sequence in (8.23a).

REMARK 8.29. If we identify MT(A) with a subgroup ofAut(H1
B(A)), then (as in 8.23a)

π−1(τ) becomes identified with theMT(A)-torsor whoseR-points, for anyQ-algebraR,
are theR-linear homomorphismsa : H1(AC, R) → H1(τAC, R) such thata(s) = τs

for all (absolute) Hodge cycles onAQ. We can also identifyMT(A) with a subgroup of
Aut(HB

1 (A)) and then it becomes more natural to identifyπ−1(τ) with the torsor ofR-
linear isomorphismsa∨ : H1(AC, R) → H1(τAC, R) preserving Hodge cycles.

On passing to the inverse limit over allA andL, we obtain an exact sequence

1 → S◦ → S → Gal(Q/Q) → 1

with S◦ andS respectively the connected Serre group and the Serre group. This sequence
plays an important role in Articles III, IV, and V of Deligne et al. 1982.

Final note

The original seminar of Deligne comprised fifteen lectures, given between 29/10/78 and
15/5/79. The first six sections of these notes are based on the first eight lectures of the
seminar, and the seventh section on the last two lectures. The remaining five lectures,
which the writer of these notes was unable to attend, were on the following topics:
6/3/79 review of the proof that Hodge cycles on abelian varieties are absolutely Hodge;

discussion of the expected action of the Frobenius endomorphism on the image of an
absolute Hodge cycle in crystalline cohomology;

13/3/79 definition of the category of motives using absolute Hodge cycles; semisimplicity
of the category; existence of the motivic Galois groupG;

20/3/79 fibre functors in terms of torsors; the motives of Fermat hypersurfaces andK3-
surfaces are contained in the category generated by abelian varieties;
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27/3/79 Artin motives; the exact sequence

1 → G◦ → G
π→ Gal(Q/Q) → 1;

indentification ofG◦ with the Serre group, and description of theG◦-torsorπ−1(τ);
3/4/79 action ofGal(Q/Q) onG◦; study ofG⊗Q Q`; Hasse principle forH1(Q, G◦).

Most of the material in these five lectures is contained section 8 of these notes or in the
remaining articles in Deligne et al. 1982.

The writer of these notes is indebted to P. Deligne and A. Ogus for their criticisms of
the first draft of the notes and to Ogus for his notes on which section seven is largely based.
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No. 376, pp. Lecture Notes in Math., Vol. 180. Berlin: Springer.
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Endnotes (by J.S. Milne)

1. The following changes from the original have been made:

– Numerous minor improvements to the exposition.

– Numerous misprints fixed; major corrections have been noted in these endnotes.

– Part of the general introduction to the volumeDeligne et al. 1982has been placed
at the start of the introduction.

– The original numbering has been retained except that the last section, which was
§6 in Tannakian categories,is now§8 (thus 6.xx in the original has become 8.xx).

– Some changes of notation have been made — the footnoteDR has been replaced by

dR,Af has been replaced byAf , and≈ (isomorphism) has been distinguished from
∼= (canonical isomorphism).

– These endnotes have been added.

2. (p3) This doesn’t follow directly from Theorem 2.11 (see 2.4). However, one obtains a variant
of Theorem 2.11 using the above definitions simply by dropping theétale component everywhere
in the proof (see, for example, 2.10b).

3. (p3) For a description of these consequences, see

Deligne, Pierre, Cycles de Hodge absolus et périodes des intégrales des variét́es ab́eliennes.
Abelian functions and transcendental numbers (Colloq.,École Polytech., Palaiseau,
1979) . Ḿem. Soc. Math. France (N.S.) 1980/81, no. 2, 23–33.

For applications of the results of these notes to the periods of motives attached to Hecke characters,
see

Schappacher, Norbert, Periods of Hecke characters. Lecture Notes in Mathematics,
1301. Springer-Verlag, Berlin, 1988.

4. (p4) Say that a cohomology class inH2p(A,Q)(p) is asplit Weil classif there exists

– a CM-fieldE,

– a homomorphismν : E → End(A), and

– a polarizationθ of A satisfying the conditions (a,b) of (4.8)
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such that the class lies in the subspace
∧2p

E H1(A,Q)(p) of H2p(A,Q)(p).

By assumption, the algebraic classes are accessible. The proof of Theorem 4.8 will show
that all split Weil classes are accessible once we check that the family in the proof contains an
abelian variety for which the Hodge conjecture is true. But, in the proof, we can takeA0 to be any
abelian variety of dimensiond/2, and it is well-known that the Hodge conjecture holds for powers
of an elliptic curve (see p107 of Tate, J. T., Algebraic cycles and poles of zeta functions. 1965
Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) pp. 93–110 Harper & Rowe,
New York). Now the argument in§5 shows that all Hodge classes on abelian varieties of CM-type
are accessible, and Proposition 6.1 shows the same result for all abelian varieties.

5. (p4) Condition (a) is checked in (2.1), (b) is obvious from the definition of absolute Hodge
cycle, (c) is proved in (3.8), and (d) is proved in (2.12).

6. (p8) From the spectral sequence, we get a descending filtrationF p on the groupsHn(X,C)
such that

Hn = (Hn ∩ F p)⊕ (Hn ∩ F q)

for all n, p, q with p + q = n + 1. This implies that

Hn = ⊕Hp,q

with
Hp,q = Hp+q ∩ F p ∩ F q = Hq(X, Ωp).

7. (p8) For a recent account of Hodge theory, see Voisin, C., Hodge Theory and Complex Alge-
braic Geometry, I, Cambridge University Press, 2002.

8. (1.8) Grothendieck conjectured that the only relations between the periods come from algebaic
cycles.

. . . it is believed that if [the elliptic curve] is algebraic (i.e., its coefficientsg2 andg3

are algebraic), thenω2 andω3 are transcendental, and it is believed that ifX has no
complex multiplication, thenω1 andω2 are algebraically independent. This conjecture
extends in an obvious way to the set of periods(ω1, ω2, η1, η2) and can be rephrased
also for curves of any genus, or rather for abelian varieties of dimensiong, involving
4g periods. (Grothendieck 1966, p102).

Also:

For the period matrix itself, Grothendieck has made a very interesting conjecture con-
cerning its relations, and his conjecture applies to a general situation as follows. Let
V be a projective, nonsingular variety defined over the rational numbers. One can
define the cohomology ofV with rational coefficients in two ways. First, by means
of differential forms (de Rham), purely algebraically, thereby obtaining a vector space
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Hdiff (V,Q) overQ. Secondly, one can take the singular cohomologyHsing(V,Q) with
rational coefficients, i.e., the singular cohomology of the complex manifoldVC. Let
us select a basis for each of these vector spaces overQ, and let us tensor these spaces
overC. Then there is a unique (period) matrixΩ with complex coefficients which
transforms one basis into the other. Any algebraic cycle onV or the products ofV
with itself will give rise to a polynomial relation with rational coefficients among the
coefficients of this matrix. Grothendieck’s conjecture is that the ideal generated by
these relations is an ideal of definition for the period matrix. (S. Lang, Introduction to
Transcendental Numbers, Addison-Wesley, 1966, pp42–43; Collected Works, Vol. I,
pp443-444.)

9. (2.2) So far as I know, both (2.2) and (2.4) remain open.

10. (Proof of 2.9.) The Cantor diagonalization argument shows that an infinite profinite group is
uncountable.

11. (2.11) The theorem extends to one-motives (Théor̀eme 2.2.5 of Brylinski, Jean-Luc, “1-motifs”
et formes automorphes. Journées Automorphes (Dijon, 1981), 43–106, Publ. Math. Univ. Paris
VII, 15, Univ. Paris VII, Paris, 1983. MR 85g:11047.)

12. (2.14) By using the full strength of Deligne’s results on cohomology, it is possible to avoid the
use of the Gauss-Manin connection in the proof of Theorem 2.12 (Blasius, Don, Ap-adic property
of Hodge classes on abelian varieties. Motives (Seattle, WA, 1991), 293–308, Proc. Sympos. Pure
Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994, Theorem 3.1).

THEOREM (DELIGNE 1971A). Letπ : X → S be a smooth proper morphism of smooth varieties
overC.

(a) The Leray spectral sequence

Hr(S,Rsπ∗Q) ⇒ Hr+s(X,Q)

degenerates atE2; in particular, the edge morphism

Hn(X,Q) → Γ(S,Rnπ∗Q)

is surjective.
(b) If X is a smooth compactification ofX with X rX a union of smooth divisors with normal

crossings, then the canonical morphism

Hn(X,Q) → Γ(S, Rnπ∗Q)

is surjective.
(c) Let(Rnπ∗Q)0 be the largest constant local subsystem ofRnπ∗Q (so(Rnπ∗Q)0s = Γ(S, Rnπ∗Q)

for all s ∈ S(C)). For eachs ∈ S, (Rnπ∗Q)0s is a Hodge substructure of(Rnπ∗Q)s =
Hn(Xs,Q), and the induced Hodge structure onΓ(S, Rnπ∗Q) is independent ofs.
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In particular, the map
Hn(X,Q) → Hn(Xs,Q)

has image(Rnπ∗Q)0s, and its kernel is independent ofs.

THEOREM. Letπ : X → S be a smooth proper morphism of complex varieties withS smooth and
connected. Letγ ∈ Γ(S, R2nπ∗Q(n)).

(a) If γs is a Hodge cycle for ones ∈ S(C), then it is a Hodge cycle for everys ∈ S(C);
(b) If γs is an absolute Hodge cycle for ones ∈ S(C), then it is an absolute Hodge class for

everys ∈ S(C).

PROOF. (Blasius 1994, 3.1.) According to Deligne’s theorem, fors, t ∈ S(C), there is a commuta-
tive diagram:

H2n(Xs)(n)

¡
¡

¡injective µ

H2n(X)(n)
onto- Γ(S, R2nπ∗Q(n))

@
@

@injective R
H2n(Xt)(n)

Let γ ∈ Γ(S, R2nπ∗Q(n)). It is immediate from (c) of Deligne’s theorem that ifγs is a Hodge
cycle, then so also isγt.

Identify H(X) ⊗ A with HA(X). Let σ be an automorphism ofC. If γs is a Hodge cycle on
Xs relative toσ, then there is aγσ

s ∈ H2n(σXs)(n) such thatγσ
s ⊗ 1 = σ(γs ⊗ 1) in H2n

A (σXs).
Sinceσ(γs ⊗ 1) is in the image of

H2n(σX)(n)⊗ A→ H2n(σXs)(n)⊗ A,

γσ
s is in the image of

H2n(σX)(n) → H2n(σXs)(n)

(apply 2.13) — let̃γσ ∈ H2n(σX)(n) map toγσ
s . Becauseγs andγt have a common pre-image in

Γ(S,R2nπ∗Q(n)), σ(γs⊗ 1) andσ(γt⊗ 1) have a common pre-image inΓ(σS,R2nπ∗Q(n))⊗A.
Therefore (see the diagram),γ̃σ ⊗ 1 maps toσ(γt⊗ 1) in H2n(σXt)⊗A, and soγt⊗ 1 is a Hodge
cycle relative toσ.

13. (Proof of 3.1) LetW = I ∩ V andD =
∧d W . Let g ∈ GL(V ). If gW = W, then certainly

(
∧dg)(D) ⊂ D. For the converse, choose a basise1, . . . , en for V such thate1, . . . , em is a basis

for W ∩ gW , e1, . . . , em, . . . , ed is a basis forW , ande1, . . . , em, ed+1, . . . , e2d−m is a basis for
gW . Then

(
∧dg)(e1 ∧ · · · ∧ ed) = c · e1 ∧ · · · ∧ em ∧ ed+1 ∧ · · · ∧ e2d−m, somec ∈ k×,

and so, if(
∧dg)(D) = D, thenm = d, andgW = W .



ENDNOTES (BY J.S. MILNE) 84

14. (3.8) The motivic significance of Principle A is the following: by the usual method (e.g., Saave-
dra 1972, VI 4.1) we can define a category of motives using the absolute Hodge classes as corre-
spondences; this will be a pseudo-abelian rigid tensor category, and it will be Tannakian if and only
if Principle A holds for all the varieties on which the category is based.

15. (Proof of 4.3.) The pairing ∧nV ∨ ×∧nV → k

is determined by
(f1 ∧ · · · ∧ fn, v1 ⊗ · · · ⊗ vn) = det(〈fi|vj〉)

— see Bourbaki, N., Alǵebre Multilinéaire, Hermann, 1958,§8.

16. (4.4) LetE be a CM-field, and letν : E → End(A) be a homomorphism. The pair(A, ν) is
said to be ofWeil typeif Tgt0(A) is a freeE ⊗Q C-module. The proposition shows the following:

If (A, ν) is of Weil type, then the subspace
∧d

EH1(A,Q) of Hd(A,Q) consists of
Hodge classes.

WhenE is quadratic overQ, these Hodge classes were studied by Weil (Abelian varieties and the
Hodge ring, 1977c in Collected Papers, Vol. III, Springer-Verlag, pp421–429), and for this reason
are calledWeil classes.

A polarizationof an abelian variety(A, ν) of Weil type is a polarizationλ of A whose Rosati
involution stabilizesE and induces complex conjugation on it.

The special Mumford-Tate group of a general polarized abelian variety(A, ν, λ) of
Weil type isSU(φ) whereφ is theE-Hermitian form onH1(A,Q) defined by the
polarization.
If the special Mumford-Tate group of(A, ν) equalsSU(φ), then theQ-algebra of
Hodge cycles is generated by the divisor classes and the Weil classes (but not by the
divisor classes alone).

WhenE is quadratic overQ, these statements are proved in Weil (ibid.), but the same argument
works in general.

For more on Weil classes, see

Moonen, B. J. J.; Zarhin, Yu. G. Weil classes on abelian varieties. J. Reine Angew. Math. 496
(1998), 83–92. MR99a:14010

Zarhin, Yu. G. and Moonen, B. J. J., Weil classes and Rosati involutions on complex abelian
varieties. Recent progress in algebra (Taejon/Seoul, 1997), 229–236, Contemp. Math., 224, Amer.
Math. Soc., Providence, RI, 1999. MR2000a:14008
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In a small number of cases, the Weil classes are known to be algebraic even when they are not
contained in theQ-algebra generated by the divisor classes:

Schoen, Chad, Hodge classes on self-products of a variety with an automorphism. Compositio
Math. 65 (1988), no. 1, 3–32; MR 89c:14013. Addendum, ibid., 114 (1998), no. 3, 329–336; MR
99m:14021.

van Geemen, Bert, An introduction to the Hodge conjecture for abelian varieties. Algebraic
cycles and Hodge theory (Torino, 1993), 233–252, Lecture Notes in Math., 1594, Springer, Berlin,
1994. MR 96d:14010.

17. (4.5) For example, letE be the subfield ofQ generated by
√−n and letσ be the given em-

bedding ofE into Q. Let
√−n ∈ E act onA = A2

0 as
(

0 −n
1 0

)
, and letV = H1(A0,Q). Then,

V ⊗ E ∼= Vσ ⊕ Vσ, and(∧d
E(V ⊗E)

) ∼= ∧d
E(Vσ ⊕ Vσ) ∼= ∧d

EVσ ⊕
∧d

EVσ.

Let e1, . . . , ed be a basis forV = H1(A0,Q) (first copy ofA0), and letf1, . . . , fd be the same basis
for the second copy. The elementsei +

√−nfi form a basis forVσ, and so
(
e1 +

√−nf1

) ∧ (
e2 +

√−nf2

) ∧ . . .

is anE-basis for
∧d

EH1(A,Q) (note1 ∧ e2 ∧ . . .). Whend = 2, the elements

e1 ∧ e2 − nf1 ∧ f2,
√−n(e1 ⊗ f2 + e2 ⊗ f1)

form aQ-basis for
∧2

EH1(A,Q), and the Weil classes are represented by the algebraic cycles
(0 × A0) − n(A0 × 0) and the(1, 1)-components of the diagonal. (See Murty, V. Kumar, Hodge
and Weil classes on abelian varieties. The arithmetic and geometry of algebraic cycles (Banff, AB,
1998), 83–115, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000.)
In particular (pace Blasius 1994, p305),

∧d
EH1(A,Q)(d

2) is not theE-subspace ofHd(A,Q)(d
2)

spanned by the class of the cycleA
[E : Q]−1
0 × {0} ⊂ A

[E : Q]
0 . It seems not to be known whether, in

the situation of the lemma,
∧d

EH1(A,Q)(d
2) always consists of algebraic classes.

18. (p44) The proof shows that the group fixing the divisor classes and the split Weil classes is
GH . By similar methods, Yves André (Une remarquèa propos des cycles de Hodge de type CM.
Séminaire de Th́eorie des Nombres, Paris, 1989–90, 1–7, Progr. Math., 102, Birkhäuser Boston,
Boston, MA, 1992, MR 98f:14005.) proves the following: LetA be a complex abelian variety of
CM-type. Then there exist abelian varietiesBJ of CM-type and homomorphismsA → BJ such
that every Hodge cycle onA is a linear combination of the inverse images of split Weil classes on
theBJ .

19. (p47) We discuss some simplifications and applications of the proof of Theorem 2.11.

A criterion for a family of Hodge classes to contain all Hodge classes

THEOREM. Suppose that for each abelian varietyA overC we have aQ-subspaceC(A) of the
Hodge classes onA. Assume:
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(a) C(A) contains all algebraic classes onA;
(b) pull-back by a homomorphismα : A → B mapsC(B) into C(A);
(c) let π : A → S be an abelian scheme over a connected smooth varietyS overC, and let

t ∈ Γ(S, R2pπ∗Q(p)); if ts is a Hodge cycle for alls and lies inC(As) for ones, then it lies
in C(As) for all s.

ThenC(A) contains all the Hodge classes onA.

PROOF. The proof of Theorem 4.8 shows thatC(A) contains all split Weil classes onA (see end-
note 4), and then André’s improvement of§5 (see endnote 18) proves the theorem for all abelian
varieties of CM-type. Now Proposition 6.1 completes the proof.

Algebraic classes

In Steenbrink (Steenbrink, J. H. M., Some remarks about the Hodge conjecture. Hodge theory
(Sant Cugat, 1985), 165–175, Lecture Notes in Math., 1246, Springer, Berlin, 1987) we find the
following:

[Grothendieck (1966), footnote 13] stated a conjecture which is weaker than the Hodge
(p, p) conjecture:
(VHC) Suppose thatf : X → S is a smooth projective morphism withS connected,
smooth. Suppose thatλ ∈ H0(S, R2pf∗QX) is of type(p, p) everywhere, and for
somes0 ∈ S, λ(s0) is the cohomology class of an algebraic cycle of codimensionp

onXs0 . Thenλ(s) is an algebraic cycle class for alls ∈ S.
This “variational Hodge conjecture” . . . .

In fact, Grothendieck (1966, footnote 13) asks whether the following statement is true:

(VHCo) LetS be a connected reduced scheme of characteristic zero, and letπ : X →
S be a proper smooth morphism; then a sectionz of R2pπ∗(Ω•X/S) is algebraic on
every fibre if and only if it is horizontal for the canonical integral connection and is
algebraic ononefibre.

THEOREM. If the variational Hodge conjecture (either statement (VHC) or (VHCo)) is true for
abelian varieties, then so also is the Hodge conjecture.

PROOF. Assume (VHC), and letC(A) be theQ-span of the classes of algebraic cycles onA. Then
the preceding theorem immediately shows thatC(A) contains all Hodge classes onA.

The proof that (VHCo) implies the Hodge conjecture is similar, but requires the remark (see
endnote 2) that all of§§2–6 still applies when théetale component is omitted.
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Although, we didn’t need Principle A for the last theorem, it should be noted that it does hold
for the algebraic classes on abelian varieties (those in theQ-subspace ofH2p(A,Q(p)) spanned by
the classes of algebraic cycles). This is a consequence of the following three results (cf. endnote
14):

– numerical equivalence coincides with homological equivalence on complex abelian
varieties (Lieberman, David I., Numerical and homological equivalence of alge-
braic cycles on Hodge manifolds. Amer. J. Math. 90 1968 366–374, MR37 #5898);

– the category of motives defined using algebraic cycles modulo numerical equiva-
lence is an abelian category (even semisimple) (Jannsen, Uwe, Motives, numerical
equivalence, and semi-simplicity. Invent. Math. 107 (1992), no. 3, 447–452.);

– every abelian tensor category over a field of characteristic zero whose objects
have finite dimension is Tannakian (Théor̀eme 7.1 of Deligne, P., Catégories tan-
nakiennes. The Grothendieck Festschrift, Vol. II, 111–195, Progr. Math., 87,
Birkhäuser Boston, Boston, MA, 1990).

de Rham-Hodge classes (Blasius)

For a complete smooth varietyX overQal and an embeddingσ : Q → Qp, there is a natural
isomorphism

I : H2r
et (σX,Qp)(r)⊗Qp BdR → H2r

dR(σX)(r)⊗Qp
BdR

(Faltings, Tsuji) compatible with cycle maps. Call an absolute Hodge classγ onX de Rhamif, for
all σ, I(σγp ⊗ 1) = σγdR⊗ 1. The following is proved in Blasius 1994.

THEOREM. Every absolute Hodge class on an abelian variety overQal is de Rham.

PROOF. The functor from abelian varieties overQal to abelian varieties overC is fully faithful and
the essential image contains the abelian varieties of CM-type. Using this, one sees by the same
arguments as above, that the theorem follows from the next result.

THEOREM (BLASIUS 1994, 3.1).Let π : X → S be a smooth proper morphism of smooth va-
rieties overQ ⊂ C with S connected, and letγ ∈ Γ(SC, R2nπC∗Q(n)). If γs ∈ H2n

B (Xs)(n) is
absolutely Hodge and de Rham for ones ∈ S(Q), then it is absolutely Hodge and de Rham for
everys.

PROOF. Let s, t ∈ S(Q) and assumeγs is absolutely Hodge and de Rham. We know (see endnote
12) thatγt is absolutely Hodge, and we have to prove it is de Rham.
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Let σ : Q ↪→ Qp be an embedding. For a smooth compactificationX of X (as in endnote 12)
overQ, we have a commutative diagram

H2n
et (σX,Qp)(n)⊗BdR

I−−−−→ H2n
dR(σX)(n)⊗BdRy

y
H2n

et (σXs,Qp)(n)⊗BdR
I−−−−→ H2n

dR(σXs)(n)⊗BdR.

There exists̃γ ∈ H2n
B (X)(n) mapping toγ (see the diagram in endnote 12). Letγ̃p andγ̃dR be the

images of̃γ in H2n
et (σX,Qp)(n) andH2n

dR(σX)(n). Becauseγs is de Rham,I(γ̃p⊗ 1) differs from
γ̃dR⊗ 1 by an element of

(
Ker(H2n

dR(σX)(n) → H2n
dR(σXs)(n)

)⊗BdR.

But this kernel is independent ofs, and soγt is also de Rham.

Motivated classes (Abdulali, Andŕe)

Recall that Grothendieck’s Lefschetz standard conjecture says that theQ-space of algebraic classes
on a smooth algebraic variety is invariant under the Hodge∗-operator. Abdulali (Algebraic cycles
in families of abelian varieties. Canad. J. Math. 46 (1994), no. 6, 1121–1134) shows that if theQ-
spaces of algebraic cycles in theL2-cohomology of Kuga fibre varieties (not necessarily compact)
are invariant under the Hodge∗-operator, then the Hodge conjecture is true for all abelian varieties.

André (Pour une th́eorie inconditionnelle des motifs, Inst. HautesÉtudes Sci. Publ. Math. No.
83 (1996), 5–49) proves a more precise result: every Hodge class on an abelian varietyA is a sum
of classes of the formp∗(α ∪ ∗Lβ) in which α andβ are algebraic classes on a product ofA with
an abelian variety and certain total spaces of compact pencils of abelian varieties.

In outline, the proofs are similar to that of Theorem 2.11.

20. (6.4) Since Theorem 2.11 is true for one-motives (see endnote 11), so also is the corollary. This
raises the question of whetherdim(GA) = tr. degk k(pij) for all one-motives. For a discussion
of the question, and its implications, see Bertolin, C., Périodes de 1-motifs et transcendance. J.
Number Theory 97 (2002), no. 2, 204–221.

21. (7.4) There are similar calculations in

Ogus, A., Griffiths transversality in crystalline cohomology. Ann. of Math. (2)
108 (1978), no. 2, 395–419, MR 80d:14012 (§3),

Ran, Ziv Cycles on Fermat hypersurfaces. Compositio Math. 42 (1980/81), no. 1,
121–142, MR 82d:14005,

and, in a more general setting,
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Aoki, Noboru, A note on complete intersections of Fermat type. Comment. Math.
Univ. St. Paul. 35 (1986), no. 2, 231–245, MR 88f:14044.

22. (7.16) For an elementary proof thatQ(ζd, Γ̃(a)) is Galois overQ, see

Das, Pinaki, Algebraic gamma monomials and double coverings of cyclotomic
fields. Trans. Amer. Math. Soc. 352 (2000), no. 8, 3557–3594, MR 2000m:11107.

23. (p63) See also:

Panchishkin, A. A. Motives for absolute Hodge cycles. Motives (Seattle, WA,
1991), 461–483, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Provi-
dence, RI, 1994, MR 95f:14017.

24. (Proof of 8.5.) The original followed Saavedra 1972 in deducing Proposition 8.5 from the
following statement:

LetC be aQ-linear pseudo-abelian category, and letω : C → VecQ be a faithfulQ-
linear functor. If every indecomposable object ofC is simple, thenC is a semisimple
abelian category andω is exact.

As Jannsen (1992, p451) points out, this statement is false.

25. (8.22) In the original, the hypothesis in 8.22 (a) and 8.23 (b) that all Hodge cycles are abso-
lutely Hodge (for the varieties concerned) was omitted. In (b) it was claimed that ifk has infinite
transcendence degree overQ, thenG(σ′) → G(σ) is an isomorphism. This is obviously false — the
motive defined by an elliptic curveE overk′ will arise from a motive overk if and only if j(E) ∈ k.


