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Introduction
The main result proved in these notes is that any Hodge

cycle on an abelian variety (in characteristic zero) is an

absolute Hodge cycle -- see §2 for definitions and (2.11) for

a precise statement of the result.

The proof is based on the following two principles.
A. Let tl,...,tN be absolute Hodge cycles on a projective
smooth variety X and let G Dbe the largest algebraic sub-
group of GL(H*(X,®)) x GL(Q(1)) £fixing the t; 7 any t on
X fixed by G is an absolute Hodge cycle (see 3.8).
B. If (XS)ses is an algebraic family of projective smooth
varieties with S connected, and tg is a family of rational
cycles (i.e. a global section of ...) such that ts is an

absolute Hodge cycle for one s , then ts is an absolute

Hodge cycle for all s (see 2.12, 2.15).
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Using B and the families of abelian varieties para-
metrized by Shimura varieties, one shows that it suffices to
prove the main result for A an abelian variety of CM-type
(see 86). Fix a CM-field E , which we can assume to be
Galois over @ , and let (Aa) be the family of all abelian
varieties, up to E-isogeny, over € with complex multiplica-
tion by E . Principle B is used to construct some absclute
Hodge cycles on varieties of the form g A - the principle
allows us to replace @ Aa by an abelig;lvariety of the form

A E (see §4). Let G C GL(® Hl(Aa,(D)) x GL(D(l)) be the

o %o
subgroup fixing the absolute Hodge cycles just constructed
plus some other (obvious) absolute Hodge cycles. It is shown
that G fixes every Hodge cycle on an A, and Principle A
therefore completes the proof (see §5).

On analyzing which properties of absolute Hodge cycles
are used in the above proof, one arrives at a slightly stronger
result. Call a rational cohomology class ¢ on a projective

smooth variety X accessible if it belongs to the smallest

family of rational cohomology classes such that:

(a) the cohomology class of any algebraic cycle is
accessible;

(b} the pull-back by a map of varieties of an accessible
class is accessible;

(c) if tireeerty € H* (X,0) are accessible, and if a
rational class t 1in some Hzp(x,m) is fixed by the
algebraic subgroup G of Aut(H*(X,D)) (automorphisms
of H*(X,Q) as a graded algebra) fixing the ¢, ,

i
then t is accessible;
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(d) Principle B , with "absolute Hodge" replaced by
accessible, holds.
Sections 4, 5, 6 of these notes can be interpreted as proving
that, when X is an abelian variety, any Hodge cycle (i.e.,
rational (p,p)-cycle) in HZP(X,m) is accessible. Sections
2,3 define the notion of an absolute Hodge cycle and show that
the family of absolute Hodge cycles satisfies (a), (b), (e),
and (d) ; therefore an accessible class is absolutely Hodge.
We have the implications:
ab. var.
Hodge =—=——=> accessible = absolute Hodge => Hodge .
Only the first implication is restricted to abelian varieties.
The remaining two sections, §1 and §7 , serve respectively
to review the different cohomology theories and to give some
applications of the main result to the algebraicity of certain

oroducts of special values of the TI-function.

Notations: All algebraic varieties are complete and smooth

over fields of characteristic zero unless stated otherwise. (The
reader will lose little if he takes all varieties to be pro-
jective.) € denotes an algebraic closure of IR and i eC a
square root of -1 ; thus i 1is defined only up to sign. A

choice of i determines an orientation of € as a real manifold --
we take that for which 1]ai > 0 -- and hence an orientation of

any complex manifold. Complex conjugation on € is denoted by

1 or by zp z . Recall that the category of abelian varieties

up to isogeny is obtained from the category of abelian

varieties by taking the same class of objects but replacing
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Hom(A,B) by Hom(A,B) ® @ . We shall always regard an abelian
variety as an object in the category of abelian varieties
up to isogeny: thus Hom(A,B) 1is a vector space over (Q .

If (Va) is a family of rational representations of an
algebraic group G over k and ta,B € V4 then the subgroup
of G fixing the t is the algebraic subgroup H of

a,B
G such that, for all k-algebras R, H(R) = {g € G(R)]| g(t

«,8®) =

ta B@ 1, all a,B} . Linear duals are denoted by a superscript
’

v . If X 1is a variety over a field k and ¢ is an
embedding o: k<> k' , then oX denotes X @k . k'

(= X spec(k')) .

xspec(k)

1. Review of cohomology

Let X be a topological manifold and F a sheaf of

abelian groups on X . We define
H'(X,F) = H' (T (X,F"))

where F » F° 1is any acyclic resolution of F ; thus
Hn(X,F) is uniquely defined, up to a unique isomorphism.

When F 1is the constant sheaf defined by a field K ,
these groups can be identified with singular cohomology groups
as follows. Let S.(X,K) be the complex in which Sn(x,K)
is the vector space over K with basis the singular n-simplices
in X and the boundary map sends a simplex to the (usual)
alternating sum of its faces. Set S°(X,K) = Hom(S.(X,K),K)

with the boundary map for which
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(a,0) —a(o): S°(X,K) ® S.(X,K) =K

is a morphism of complexes, namely that defined by (da) (o) =

deg (o) +1

(-1) a(do) .

Proposition 1.1. There is a canonical isomorphism

B (S* (X,K)) —> H(X,K)

Proof: If U is a unit ball, then HO(S'(U,K)) = K and
H'(s*(U,K)) = 0 for n >0 . Thus K » S"(U,K) is a
resolution of the group K . Let §? be the sheaf on X
associated with the presheaf V'P>Sn(V,K). The last remark
shows that K + 8° 1is a resolution of the sheaf K . As
each s" is fine (Warner [1,5.32]), H'(X,K) = H(T(X,8")) .
But the obvious map S°(X,K) = I'(X,8°) 1is surjective with an

exact complex as kernel (loc. cit.), and so
B (8" (X,K)) —=> ™I (x,87)) = H(X,K) .

Now assume X is a differentiable manifold. On replacing
"singular n-simplex" by "differentiable singular n-simplex" in
the above definitions, one obtains complexes sT(x,K) and
S, (X,K) . The same argument shows there is a canonical iso-
morphism H:(X,K) 2£ Hn(ST(X,K)) 25 5™ (X,K) (loc. cit.).

Let Oxm be the sheaf of C real-valued functions on

X, Q;w the Oxw-module of ¢° differential n-forms on X , and

Qém the complex
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The de Rham cohomology groups of X are defined to be
HOR (X) = Hn(F(X,Q)’(m)) = {closed n-forms} /{exact n-forms} .

If U is the unit ball, Poincare's lemma shows that HgR(U) = R
and HBR(U) =0 for n>0 . Thus R = in is a resolution
of the constant sheaf 1R, and as the sheaves Q;w are fine
(Warner [1,5.28]), we have H' (X,R)= Hp (X) .

For w e T(X,@%,) and o€ S (X,R), define

n(n+l)

2

<w,0 >= (-1) er € R. Stokes's theorem states that

fa dw = fdgw, and so <dw,d >+ (—l)n<m,do>= 0 . The pairing

<, > therefore defines a map of complexes f: P(X,Q'xw) > S (X,R).

Theorem 1.2 (de Rham): The map HSR(X) i H:(X,BU defined by f£

is an isomorphism for all n .

n

Proof: The map is inverse to the map H:(X,IU = H"(X,R) = Hor

(X)
defined in the previous two paragraphs (Warner [1,5.36]). (Our
signs differ from the usual because the standard sign conventions
;dw = Idom Y priw A pryn = g(w f; n etc. violate the
standard sign conventions for complexes.)

A number [ w, 0 € H_(X,@) , is called a period of w .
The map in (1.2) identifies H™(X,Q) with the space of classes
of closed forms whose periods are all rational. Theorem 1.2
can be restated as follows: a closed differential form is exact
if all its periods are zero; there exists a closed differential
form having arbitrarily assigned periods on an independent set

of cycles.
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Remark 1.3 (Singer-Thorpe [1,6.2]). If X 1is compact then it has
a smooth triangulation T . Define S.(X,T,K) and S°(X,T,K)

as before, but using only simplices in T . Then the map
F(X,Qém) + S°(X,T,K), defined by the same formulas as £ above,

induces isomorphisms HER(X) =5 B™(S* (X,T,K)) .

Next assume that X 1is a complex manifold, and write

Q an for the complex
X
O an 4> Qlan <> 92an <> Tt
X X X
in which ﬂnan is the sheaf of holomorphic differential n-forms.
X
(Thus locally a section of Qnan is of the form w =
X
I a, . dz, A...pdz, with o, : a holomorphic function
iye.-i i, i, ij...d)

and the zg local coordinates.) The complex form of Poincaré's

lemma shows that @ Q.an is a resolution of the constant
X

sheaf € , and so there is a canonical isomorphism

N x,c) =» }f](X,Q'an) (hypercohomology) .
X

If X 1is a compact Kdhler manifold, the spectral sequence
P,q9 _ 9P pP+q -
E1 H (Qxan) = W (Qxan)

degenerates, and so provides a canonical splitting 5" (x,¢) =

@ Hq(x,ﬂpan) (the Hodge decomposition); moreover
p+g=n X

uPr4 4f Hq(X,Qpan) is the complex conjugate of HY'P  relative
X

to the real structure HT(X,R)® ¢ => H?(X,C) (Weil [2]).
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The decomposition has the following explicit description:

the complex &' _® @ of sheaves of complex-valued differential
X

forms on the underlying differentiable manifold is an acyclic

resolution of € , and so H“(x,m) = Hn(F(X,Q'mﬁ C)) ; Hodge
X

theory shows that each element of the second group is represented
by a unique harmonic n-form, and the decomposition corresponds
to the decomposition of harmonic n-forms into sums of harmonic
(p,q)-forms, p+ g =n .
Finally, let X be an algebraic variety over a field k .
If k=@ then X defines a compact complex manifold x2n,
and there are therefore groups H“(xa“,m) , depending on the
map X + spec(€) , that we shall write Hg(x) (here B abbreviates

Betti). There exist canonical Hodge decompositions:

apx) = e wP'%x), B”'9 = w¥P . 1f x is projective,
ptg=n .
then the choice of a projective embedding determines a Kdhler

structure on X0 , and hence a Hodge decomposition (which is
independent of the choice of the embedding because it is determined
by the Hodge filtration, and the Hodge filtration depends only
on X ; see l.4). In the general case we refer to Deligne
[1,5.3,5.5] for the existence of the decompositions.

For an arbitrary k and an embedding o: k= T we
write HO(X) for Hp(oX) and HE'T(x) for EP'Y(ox) . As
defines a homeomorphism ox2? + 1gx27 , it induces an isomorphism
B 00— H(X) .

Let Qi/ be the complex in which Qg/ is the sheaf of

k k
algebraic differential n-forms, and define the (algebraic)
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de Rham cohomology group H (X/k) to be H (XZar'Qx/k)

(hypercohomology relative to the Zariski topology). For

any map o: k <— k' there is a canonical isomorphism

n v = n ' 1
H R(x/k) ®k,0 k' = HDR(X 8, k /k'). The spectral sequence

b9 = mlx ) = mPTI(x

P .
Zar'ﬂx/k Zar’Qx/k)

defines a filtration (the Hodge filtration) FPHSR(X) on

HSR(X) which is stable under base change.

an

Theorem 1l.4. If k = C the obvious maps X *> XZar’Qxan + QX
_ xan
induce an isomorphism HDR(X) AN HDR(X ny = 2" (x3%,c) under
1 '
which FPHDR(X) corresponds to FPH™(x2",€) df e =uP ‘9
p'>p

Proof: The initial terms of the spectral sequences

P/rqd _ 9 P — ptq

Ej' = HU(X,, . /8y) = Hyp™(X)
+

ePrd = p9(x*,0P ) = B9

Xan

are isomorphic. (See Serre [1] for the projective case, and
Grothendieck [2] for the general case.) The theorem follows

from this because, by definition of the Hodge decomposition,

the filtration of HDR(Xan

sequence is equal to the filtration of Hn(xan,c) defined

) defined by the above spectral

in the statement of the theorem.
It follows from the theorem and the discussion preceding
it that any embedding d: k <> € defines an isomorphism

HnR(X) ® C ¥i>H§(X) ®. € and, in particular, a k-structure on

k,o Q



Hg(x) @CD C . When k =@ , this structure should be distinguished

from the @-structure defined by Hg(x): the two are related
by the periods (see below).
When k is algebraically closed we write Hn(X,me) , or
n n A~ n Sn o v n
Het(X)’ for H (Xet,z) 8,0 , where H (xet,zz) = lim H (xet,zz/mz)

mo

£y af, the

(étale cohomology). If X 1s connected, HO(X,]A
ring of finite adeles for @ , which justifies the first

notation. By definition, H__(X) depends only on X (and

n
et
not on the map X + spec k). The map Hgt(x) d H:t(x ® k')
defined by an inclusion of algebraically closed fields k & k'
is an isomorphism (special case of the proper base change
theorem, Artin et.al.[l, XII]). The comparison theorem

(ibid. XI) shows that, when k = € , there is a canonical

£

isomorphism Hg(x) s mt =S HZ (X) . It follows that

t
Hg(x) ] ]Af is independent of the map X + spec T , and that,
over any (algebraically closed) field, Hgt(x) is a free
Bf-module.

i (x,nf

) can also be described as the restricted
product of the spaces Hn(x,mz) , ¥ prime, with respect to the
subspaces Hn(X,ZZQ’) .

Next we define the notion of a "Tate twist" in each of
our three cohomology theories. For this we shall define objects
@(1) , and set H™(X)(m) = B°(x) & @(1)® . We want @(1)
to be HZ(IPl) (realization of the Tate motive in the

cohomology theory) but to avoid the possibility of intro-

ducing sign ambiguities, we shall define it directly:



. _ m _
Q¢ (1) = B (1) S (lim u (kD) 8@, 4, 00 = {z € k|T" = 1)
m
QDR(l) =k ,
and so
Hp (X) (m) = HL(x) & (211)"0 = ¥"(x*", (2r1)™®)  (x = @)

i

n n £ @m _ . n m
Hoy (X) (m) Ho (X) @ ¢ (R"(1)) 7 = (1im H (Xgprbpe (K)7)) €@

n <
r

(k alg. cl.)

n n
HDR(X)(m) HDR(X)

These definitions extend in an obvious way to negative m ;

‘

for example we set met(-l) = Hom . (F;(l)ﬁmf) and define
n

n - . _1,9m
Het(x)(-m) = Het(X) 8 met( 1)

There are canonical isomorphisms

2, (1) 8 nf = Q. (1) (k alg. cl., kC @)

Ry (1) 8y ¢ > @ (1) 8

o k C (kC @)

and hence canonical isomorphisms (the comparison isomorphisms)

£

HR(X) (m) @ BY > Hg, (X) (m)  (k alg. cl., kC @)

Hp(X)(m) 8¢ > HD () (m) 8 C k c @

k
To define the first, we note that exp defines an isomorphism

211 B/m27i @ 2> um(k) ; after passing to the limit over

m, and tensoring with @ , we obtain the required isomorphism

2wi Eﬁ = mﬁ(l) . The second isomorphism is induced by the



20

inclusions 2mwi @ €> @€ <= k . Although the Tate twist

for de Rham cohomology is trivial, it should not be ignored. For

example,
Hg(x) 8 C SN Hg(x)(m) @ € (1w (21i)™; defined up to sign)
= l canon. = l canon.
n = n
HDR(X) —_— HDR(X)(m) (k = )

fails to commute by a factor of (21ri)m .

In each cohomology theory there is a canonical way of
associating a class cl(Z) in HZP(X)(p) with an algebraic
cycle Z on X of pure codimension p . Since our cohomology
groups are without torsion, we can do this using Chern classes
(Grothendieck [1]). Starting with a functorial homomorphism
cl:Pic(X) > HZ(X)(l) , one use the splitting principle to
define the Chern polynomial ct(E) =z cp(E)tp , cp(E) e H2p(x)(p),
of a vector bundle E on X. The map E +— ct(E) is additive,
and therefore factors through the Grothendieck group of the
category of vector bundles on X . But, as X is smooth, this
group is the same as the Grothendieck group of the category of

coherent Ox—modules, and we can therefore define

cl(z) = ﬁ ey (0,)

(loc. cit 4.3).

In defining <y for the Betti and étale theories, we

begin with the maps
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Pic(Xx) — HZ(x2D,21i 7)

Pic(X) — H2(X (X))

et’Hm

arising (as boundary maps) from the sequences

0 — 21iZm — O &XP, o~ — 0
an an
X X
0 — OX _I.“_.) Ox — 0
— -
Hm X X

For the de Rhamtheory, we note that the dlog map , £ +— S&

defines a map of complexes

0o — 0; — 0 — ...
dlog
o Lral 4.2 4,

and hence a map
s 1 % 2 x .
ci: Pic(X) = H'(X,00) = W’ (X,0 » 0f » ...) — H2(x,a})

_ 2 _ 42
* Hpp (X) = Hp (X} (1) .

It can be checked that the three maps c; are compatible

with the comparison isomorphisms and it follows formally

that the maps cl are also compatible. (At least, it does

once one has checked that Gysin maps and multiplicative

structures are compatible with the comparison isomorphisms.)
When k = @ , there is a direct way of defining a class

cl(z) e H (X(C),@ (singular homology; d = dim(X) ,

2d-2p
p = codim(Z)): the choice of an i determines an orientation
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X and of the smooth part of 2Z , and there is therefore a
topologically defined class cl(z) € HZd_zp(X(m),Q) . This class
2d-2p

has the property that for [w] € 12d-2P (® mr) = (T(X,0°))

X
represented by the closed form w ,

<cl(z), [w]> = fzm .

By Poincaré duality, c¢l(2) corresponds to a class

2p . . 2p
cltop(z) e HB (X), whose image in Hy (X) (p) under the map
induced by 1 #+— 2mi: @ — @(1) 1is known to be clB(Z) .
The above formula becomes

IX cltop(Z)U [w] = fzw -

There are trace maps (d = dim X)

Tr_: Hgd(x) (@) = g

B}
2d = £
Tr .t Het(x)(d) — A
2d %
TrDR’ HDR(X)(d) — k
that are determined by the requirement Tr(cl(point)) = 1 ;
they are compatible with the comparison isomorphisms.
When k =@ , TrB and TrDR are equal to the composites
rr: w20 @ 2o 52w — e —c
B B B X
1 — 27i [w] — fxw
2d _ 2d < 24 .
Trpgt Hpp(X)(d) = Hoo(X) —H (r(nxm)) — T
(w] — L fgw
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where we have chosen an i and used it to orientate X . (Note
that the composite maps are obviously independent of the choice

of i.) The formulas in the last paragraph show that

_ 1
(cl.(2) U w] = —=— [0 .

T -
(zﬂi)dlmz Z

Ipr

A definition of Tre can be found in (Milne [1, VI.11l]).

t

We now deduce some consequences concerning periods.

Proposition 1.5. Let X be a variety over an algebraically

closed field k C € and let 2 be an algebraic cycle on X

C
of dimension r . For any C° differential r-form « on
s 2r . . 2r
Xq whose class [w] in HDR(Xm) lies in HDR(X) ,

-

Lo e ()" x .

Proof: We first note that 2 1is algebraically equivalent to
a cycle Zq defined over k . In proving this we can assume
Z to be prime. There exists a smooth (not necessarily complete)

variety T over k , a subvariety Z Cc X x T that is flat

over T , and a point spec € + T such that Z =12 %, spec C
in X *n spec € = Xe - We can therefore take Zy, to be
4 %T spec k CX %T spec k = X for any point spec k » T .
. . _ 2r
From this it follows that chR(Z) = chR(ZO) e HDR(X)(r) and

TrDR(chR(Z) U [w]) € k . But we saw above that &(u =

L\
(27i) Trpp (Clyp(2) U [w]) .

We next derive a classical relation between the periods
of an elliptic curve. For a complete smooth curve X and an

open affine subset U , the map
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1 1 _ 1
HDR(X] — HDR(U) = F(U,Qx)/dr (U,Ox)

_{meromorphic differentials, holomorphic on U}
{exact differentials}

is injective with image the set of classes represented by
forms whose residues are all zero (such forms are said to be
of the second kind). When k = €, Try,([a] U [B]) , where a
and B are differential 1-forms of the second kind, can be
computed as follows. Let I be the finite set of points

‘where o or B has a pole. For 2z a local parameter at

o .
Pe L, a can be written a =1( } aizl)dz, with a_, = 0.
- i

There therefore exists a meromorphic function a defined near
P such that da = o . We write [a for any such function:
it is defined up to a constant. As Resyf = 0, ResP(fﬁ)B is
well-defined, and one proves that
Tr o ([a]U [B]) = } Res,(fa)B .
DR per P

Now let X be the elliptic curve

yzz = 4x3 - gzxz2 - g323
There is a lattice A in € and corresponding Weierstrass
function (z) such that z r— (¥ (2), »'(2z),1) defines an
isomorphism €/A —— X(C) . Let Yy and Yo be generators
of A such that the bases {y;,v,} and {1,i} of € have
the same orientation. We can regard Y, and Y, as elements

of Hl(x,z) , and then Y1-Yy = 1 . The differentials
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xdx

= & and n = 5 on X pull back to dz and (z)dz

Y
respectively on @€; the first is therefore holomorphic and

w

the second has a single pole at = = (0,1,0) on X with residue

zero (because 0 € T maps to « € X and f$p(z) = j? + a, 2
z

We find that

Trpg (lwl U Inl) = Reso(fdz)?:(z)dz = Res,(z fp(z)dz) =1 .

Let [, dx _ . —Y (i=1,2)
i

Y Yi/_3——_ t
4x —g,%X-9,

xdx

and . i=1,2
J'Yiy n (i=1,2)

= [ —xdx = _
. i
i /i3 _
4x g,%X-94
. 1 2
be the periods of w and n . Under the map HDR(X) + HY(X,T) ,
w maps to lei + szé and n maps to “lYi + nzyé , where

{Yi’Yé} is the basis dual to {Yl ,YZ} . Thus

1= Tryp(lw] U [n]) = Trglluyyy + wyvy) U (nyy] +#n,75))

(wyny —won ) Trg (viU v,)

- (w ) )
2L (W1M2T¥WoMy Y -

Hence Wiy = Wony = 2wi . This is the Legendre relation.

The next proposition shows how the existence of algebraic
cycles can force algebraic relations between the periods of
abelian integrals. Let X be an abelian variety over a subfield
k of @ . Recall that HY(x) = A¥(u'(X) and Hl(xxxx...) =

Hl(X) ® Hl(x) ® ... (any cohomology theory). Let v € mm(m) act

z" +...) .
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on mB(l) as v_l; there is then a natural action of

GL(H%(X)) X Gm on H;(Xn)(m) for any r,n, and m . We define
G to be the subgroup of GL(H%(X)) X Gm fixing all tensors
of the form clB(Z) , % an algebraic cycle on some 7.

(See Notations for a precise description of what this means.)

Consider the canonical isomorphisms

X = 1
¢ = gl Hy(X) e T .

1
HDR(X) ® o

k

The periods pij of X are defined by the equations
a = ) P332y

1 1
where {ai} and {ai} are bases for HDR(X) and HL(X) over
k and (@ respectively. The field k(pij) generated over k

by the pij is independent of the bases chosen.

Proposition 1.6. With the above definitions

tr.degk k(pij) < dim(G) .

Proof: We can replace k by its algebraic closure in C ,

and hence assume that each algebraic cycle on XG is equivalent

to an algebraic cycle on X (see the proof of 1.5). Define P

to be the functor of k-algebras such that an element of P(a)

is an isomorphism p: Hé ®QA = H;R ek A mapping clB(Z) ® 1
to chR(Z) ®@ 1 for all algebraic cycles Z on a power of X .
When A = C , the comparison isomorphism is such a p , and so
P(C) is not empty. It is easily seen that P is represented

by an algebraic variety that becomes a Gk—torsor under the
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the obvious action. The bases {ai} and {ai} can be used to

identify the points of P with matrices. The matrix (p..)

ij
is a point of P with coordinates in € , and so the proposition

is a consequence of the following well-known lemma.

Lemma 1.7. Let ZRN be an affine space over k , and let
z € Dﬂq(m) ; the transcendence degree of k(zl,...,zN) over

k is the dimension of the Zariski closure of {z} .

Remark 1.8. If X is an elliptic curve then dim G is
2 or 4 according as X has complex multiplication or not.
Chudnovsky has shown that tr degk k(pij) = dim (G) when X is
an elliptic curve with complex multiplication. Does equality
hold for all abelian varieties?

One of the main purposes of the seminar was to show
(1.5) and (1.6) make sense, and remain true. if "algebraic cycle"
is replaced by "Hodge cycle" (in the case the X is an

abelian variety).

2. Absolute Hodge cycles; principle B.

Let k be an algebraically closed field of finite
transcendence degree over @ , and let X be a variety over
. n _ h n L oig s
k . Write an(x)(m) = HDR(X)(m) X Het(x)(m) ; it is a free
k x:mf-module. Corresponding to an embedding o: k<— €

there are canonical isomorphisms

* n = n
OpR: HDR(X) (m) @k,c ¢ - HDR(ox) (m)

czt: Hgt(x)(m) - HZt(Gx)(m)
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whose product we write g* . The diagonal embedding

n n n . . .
HG(X)(m) — HDR(cX)(m) X Het(gx)(m) induces an isomorphism

n £ = n
Hy(X)(m) @ (Ex 1 )y — HDR(GX)(m) x Hzt(cx)(m) (product of the

comparison isomorphisms, §1). An element t € H%f(x)(p) is a

Hodge cycle relative to o , if

(a) t is rational relative to o , i.e., o*(t) lies
in the rational subspace ng(x)(p) of
2p 2p .
Hp (0X) (p) X H_! (0X) (p) &

{b) the first component of t lies in Fngg(X)(p) df

FpHgg(X) .
Under the assumption (a), condition (b) is equivalent to
requiring that the image of t in Hgg(x)(p) is of bidegree
(0,0). If t is a Hodge cycle relative to every embedding

g: k &= € then it is called an absolute Hodge cycle.

Example 2.1 (a) For any algebraic cycle Z on X , t =
(chR(Z),clet(Z)) is an absolute Hodge cycle. (The Hodge
conjecture asserts there are no others.) 1Indeed, for any

gt k & € , o¥(t) = c1,(2) , and is therefore rational,

B
and it is well-known that chR(UZ) is of bidegree (p,p)

. 2p
in HDR(OX) .

(b) Let X be a variety of dimension d , and consider

the diagonal A € X x X . Corresponding to the decomposition

a ) )
w28« x)@ = o 8l e wl(x

i=0

(Kinneth formula)
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2d . .
we have cl(A) = . The 7 are absolute Hodge cycles.
i=0

(c) Suppose that X 1is given with a projective embedding,
and let Yy € HgR(X)(l) x Hzt(x)(l) be the class of a hyperplane

section. The hard Lefschetz theorem shows that

d-2p

12P(x) (p) — H2Y P (x) (d-p), x — y3 2P

is an isomorphism. The class x is an absolute Hodge cycle

d-2p,

if and only if ¥ X is an absolute Hodge cycle.

(d) Loosely speaking, any cycle that is constructed from
a set of absolute Hodge cycles by a canonical rational process

will again be an absolute Hodge cycle.

Open Question 2.2, Does there exist a cycle rational relative

to every 0 but which is not absolutely Hodge?

More generally, consider a family (xa)aeA of varieties
over a field k (as above). Choose (m(a)) GIN(A) , (n(a)) e:m(A),
and m € Z, and write
_ (a) n(a) v
Tor = & H' (Xa)eea Hhr (Xu) (m)
DR
- (a) na) Vv
T = 6, Hop  (X,)08 Ho ol (X)) (m)
Tm = Tpr * Tet
v =6 B (xjee B2 (x )V (m 6: k ¢ ¢
lo; a o o o o a ! : °
Then we say that t @ T is rational relative to ¢ if its image

n
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in T]AG £ (EX]Af is in Td,thatitis
kx®A",(0,1)

a Hodge cycle relative to @ if it is rational relative to

o and its first component lies in F° , and that it is an

absolute Hodge cycle if it is a Hodge cycle relative to

every o
Note that, for there to exist Hodge cycles in Tha it is

necessary that £ m(a) - I n(a) = 2m .

m,n

Example 2.3. Cup-product defines a map T (p) x Ta (p') —
m+m' ,n+n' \ ., mVY .
Ta (p+p') , and hence an element of Tp ¢ Tp @ Ty ?

this element is an absolute Hodge cycle.

Open Question 2.4. Let t € Hgg(x)(p) and suppose that

0.,.2p
t €F HDR

(X) (p) and that, for all o: ke @ , GSR(t) e ng(x)(p).
Do these conditions imbly that t is the first component of an

absolute Hodge cycle?

In order to develop the theory of absolute Hodge cycles,
we shall need to use the Gauss-Manin connection (Katz-Oda [1],
Katz [l], Deligne [2]). Let ko be a field of characteristic
zero and S a smooth ko-scheme (or the spectrum of a
finitely generated field over ko). A ko—connection on a
coherent Os—module S is a homomorphism of sheaves of abelian
group

v: &o—*ﬂé/ko ®OS E

such that
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v(fe) = fv(e) + df ® e

for sections f of Os and e of Ey. The kernel of

v ,av, is the sheaf of horizontal sections of (E,V) . Such

a V can be extended to a homomorphism of abelian sheaves,
n n+l
"t fs/kg @osg s/x, %SE

w®e — de®e+ (-1)PwavVie) ,

and V 1is said to be integrable if Vl o V=0 . Moreover

¥V gives rise to an OS-linear map
D +—+ V_: Der(S/ko) — Endko(g)

v ., ol D1
v, = (§ =0 oeosg e oS@OSE =5 .

Note that VD(fe) = D(f)e + fVD(e) . One checks that V is
integrable if and only if D VD is a Lie algebra homomor-
phism.

Now consider a proper smooth morphism w: X > S , and write
g;R(X/S) for ]Rnﬂ*(ﬂi/s) . This is a locally free sheaf of
O.-modules and has a canonical connection V , the Gauss-

S

Manin connection , which is integrable. It therefore defines

a Lie algebra homomorphism Der(S/k,) — End (Hg (X/8))
0 k0 DR

If k., &< k! 1is an inclusion of fields and X'/S' =

0 0
(X/S) @k kb , then the Gauss-Manin connection on HER(X'/S')
0
is ¥V ® 1l . In the case that k0 = € , the relative form of
\ n an _ n an ,.an
Serre's GAGA theorem [l1] shows that §DR(X/S) = EDR(X /S°7)
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and V¥ gives rise to a connection v3"  on ggR(Xan/San).
The relative Poincaré lemma shows that (Rnﬂ* cT) ® oSan N
ggR(xan/San) , and it is known that v@"  is the unique
connection such that
n = n an ,.an, V2"
R 7w, (C) — EDR(X /877) .

Proposition 2.5. Let k0 C € have finite transcendence degree
over @ , let k be a field which is finitely generated over

k0 , let X be a variety over k , and let V be the

Gauss-Manin connection on H,._(X) relative to X + spec k +

n
DR
spec k0 . If te HER(X) is rationzl relative to all

embeddingsof k into € then Vt =0 .

Proof: Choose a regular ko—algebra A of finite type and
a smooth projective map T7: XA + spec A whose generic fibre
is X + spec k and which is such that t extends to an
element of T (spec A, ESR(X/spec A)) . After a base change

relative to ky <= €, we obtain maps

X — S — spec T , S = spec A

S c '

and a global section t' t ®1 of QBR(Xgn/San) . We have

to show that (V ® 1) t' = 0 or equivalently, that t' |is
a global section of gn(xgn,m) af Rnwfn T .

An embedding o: k <—— & gives rise to an injection
A &~ ¢ (i.e. a generic point of spec A in the sense of

Weil) and hence a point s of S . The hypotheses show that, at
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each of these points, t(s) € Hn(x:n'm) C HgR(X:n). Locally

on S , ggR (&:n/san) will be the sheaf of holomorphic sections
of the trivial bundle, S x @ , and g"(xa“,m) the sheaf of
locally constant sections. Thus, locally, t' 1is a function
S+5x " s m— (ty(s),.a. ity (s)) . Each t,(s) is a
holomorphic function which, by hypothesis, takes real " (even

rational) values OnN a dense subset of S . It is therefore con-

stant.

Remark 2.6. In the situation of (2.5), assume that ¢t € HSR(X)
is rational relative to one ¢ and horizontal for V . An
argument similar to the above then shows that t is rational

relative to all embeddings that agree with o on ko .

Corollary 2.7. Let k0 C k be algebraically closed fields
of finite transcendence degree over Q@ , and let X be a

. n . . .
variety over kO' If t e HDR(Xk) is rational relative to
all o: k €«&— ¢ then it is defined over ko , i.e. it

n
DR

(x) — v (x

is in the image of H DR

k) *

Proof: Let k' be a subfield of k which is finitely generated

k') . The hypothesis shows
0 ko

that Vt = 0 , where V 1is the Gauss-Manin connection for

over k and such that t € HBR(X e

xk. + spec k' + spec k Thus, for any D € Der(k'/ko),

0
VD(t) = 0 . But Xk' arises from a variety over kO , and so
. f n R ¢ ' :
the action of Der(k /ko) on HDR(xk,) HDR(X) @ko k is
through k': V. =1 ® D . Thus the corollary follows from the

D

next well-known lemma.
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Lemma 2.8. Let ko C k' be as above, and let V = VO @k k!
0
where V0 is a vector space over kO . If tev is fixed

(i.e. killed) by all derivations of k/kO » then t €V,

Let cgﬁ(x) denote the subset of Hif(x)(p) of absolute

Hodge cycles; it is a finite-dimensional vector space over @ .

Proposition 2.9 (a) Let X be a variety over an algebraically

closed field k let k be an algebraically closed field

0 14
containing ko , and assume that kO and k have finite

transcendence degree over @ . Then the canonical map

HZP(X) (p)  — HIP(X,) (p)

induces an isomorphism
P =, P
CAH(X) CAH(Xk) .

(b) Let k be an algebraically closed field of finite
transcendence degree over @ , and let X, be a variety defined
over a subfield ko of k whose algebraic closure is k; write

- 1%
X = X, @ko k . Then Gal(k/ko) acts on CAH(X) through a

finite quotient.

Proof (a) The map is injective, and a cycle on X is absolutely
Hodge if and only if it is absolutely Hodge on X and so

the only non-obvious step is to show that an absolute Hodge

cycle t on Xk arises from a cycle on X . But (2.8)

shows that tor arises from an element of Hgg(x)(p) , and
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2p 2p . . .
Het(X)(p) -> Het(Xk](p) is an isomorphism .

(b) It is obvious that the action of Gal(k/ko) on
2p 2p cqs P .
HDR(X)(p) x Het(x)(p) stabilizes CAH(X) . We give three

proofs that it factors through a finite quotient.

: P 2p s 3o .
(i) Note that CAH(X) - HDR(X) is injective. Clearly
2p _ 2p s
Hip (X) = U Hop(X, ® k;) , where the k; run through the finite
extensions of k0 contained in k , and hence all elements

. P . . 2p .
of a basis for CAH(X) lie in HDR(X0 ® ki) for some i .

(ii)  Note that B (X) » HZP(Xet,(Dz)(p) is injective for
any £ . The subgroup H of Gal(k/ko) fixing an(x) is
closed. Thus Gal(k/ko)/H is a profinite group, which is
countable since it is a subgroup of GLm(Q) for some m .

It follows that it is finite.

(iii) A polarization on X gives a positive definite
form on CAH(X) , which is stable under Gal(k/ko). This shows

that the action factors through a finite quotient.

Remark 2.10 (a) All of the above is still valid if we work
with a family of varieties (Xa) rather than a single X .
(b) Proposition (2.9) would remain true if we had defined
an absolute Hodge cycle to be an element t of Fngg(x)(p)

such that, for all g¢g: k <— € (t) € HiP(X)-

' OpR
Proposition (2.9) allows us to define the notion of an

absolute Hodge cycle on any (complete smooth) variety X over

a field k (of characteristic zero). If k is algebraically

closed then we choose an algebraically closed subfield ko

that is of finite transcendence degree over @ and such that
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X has a model XO over ko ; then t € H;f(x)(p) is an

absolute Hodge cycle if it lies in the subspace H%f(xo(pn and is

an absolute Hodge cycle there. The proposition shows that this
definition is independent of the choice of k, and X, . (This
definition is forced on us if we want (2.9a) to hold without
restriction on the transcendence degrees of k and k0 JDoOIf

k is not algebraically closed we choose an algebraic closure

k of k and define an absolute Hodge cycle on X to be an

absolute Hodge cycle on X ®  k that is fixed by Gal (k/k) .

One can show that if k 1is algebraically closed and of
cardinality not greater than that of @ , then t € Hgg(x)(p) x

HiE(X)(p) is an absolute Hodge cycle if it is rational

relative to all embeddings o¢: k €= € and R € FOHSE(X)(p).

ta
If k =€ then the first condition has to be checked only
for isomorphisms ¢ . (Provided the axiom of choice is assumed!)

When k = € we define a Hodge cycle to be a cycle that is

Hodge relative to ¢ = id: € & €

Main Theorem 2.11. If X 1is an abelian variety over an
algebraically closed field k , and t 1is a Hodge cycle on
X relative to one embedding o: k ©&— € , then it is an

absolute Hodge cycle.

The proof will occupy most of the rest of these notes.

We begin with a result concerning families of varieties

parametrized by smooth (not necessarily complete) algebraic
varieties over € . Let S be such a parameter variety and

let m: X + S be a smooth proper map. We write gzt(x)(r) for

. n_et 8&r
lim(R Ty Hp ) 8,5, @ .
m
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Theorem 2.12 (Principle B). Let t be a global section of

2p 2p _ .
EDR(X/S)(p) X Eet(X)(P) such that VtDR = 0 and (tDR)S e
2
FouP(x ) (p) for all s €5 . If t_ € H.P(X)(p) is an absolute

Hodge cycle for one s , it is an absolute Hodge cycle for

all s .

Proof: Suppose that ty is an absolute Hodge cycle for

and let s be a second point of S ., We have to show

1’ 2

that tg is rational relative to an isomorphism g: [ IO I
2
On applying o we obtain a map oX + ¢S and a global section

2p 2p
ot of EDR(UX/OS)(p) X Eet(ox)(p) . We know that O(t)o(sl)

is rational and have to show o(t) is rational. Clearly

c(sz)
0 only translates the problem, and so we can omit it.

First consider the component tDR of t . By assumption

tor = 0 , and so thr is a global section of gzP(xaH,m) . Since

it is rational at one point, it must be rational at every point.

v

Next consider t . As gﬁp(x) af RZPninm and EéE(X)

et

are local systems (i.e. are locally constant) , for any point
s of S there are isomorphisms

~ m,(S,s)
rs, 2P x) () — BEP(x) () and

m,(S,s)
2p = 2p 1
rs,H2 () (p)) S+ HIP(x) (p)

Consider,
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r(s, 8220 () < r(s,82Px (0)) © BF = (5,822 (p))
'" 2 T T
HZBP(XS) (p ! e— HBP(XS) (p) temf - Hii’(xs) (» !
2p 2p £ _ 52p
HZP (Xg) (P) S— BT (X)) (p) 8 AT = H_{(XJ)(p) .

We are given tet € P(S,EZE(X)(p)) and are told that its image
. 2p C 2p _

in Het(xs)(p) is in HB (Xs)(p) if s = sy - The next easy
lemma shows that toe lies in F(S,ggp(X)(p)) , and therefore

A 2p
is in Hy (Xs)(p) for all s .

Lemma 2.13. Let V €~ W be an inclusion of vector spaces,
and let 72 be a third vector space. Then V ® Z €— We® Z ,

and (Ve 2Z)YNw=V.

‘Remark 2.14. The assumption in the theorem that

0,,2p . L .
(th)s € F HdR(Xs)(p) for all s is unnecessary; it is
implied by the condition that VtDR = 0 (Deligne [4, 4.1.2,

Théoréme de la partie fixel).

We shall also need a slight generalization of (2.12).

Theorem 2.15. Let w: X + S be as in (2.12) , and let V
be a local subsystem of Rzpn*m(p) such that Ve consists
of (0,0)-cycles for all s and of absolute Hodge cycles

for at least one s . Then Vg consists of absolute Hodge

cycles for all s
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Proof. If V 1is constant, so that every element of Vg
extends to a global section, then this follows from (2.12).
The following argument reduces the general case to that case.

At each point s € 8 , R2p m, (D(p)S has a Hodge structure.
Moreover R2p 7,2(p) has a polarization, i.e., there is a form
/S R2P T, @®(p) x R2p m, @(p) > @ which at each point s defines
a polarization on the Hodge structure R2p Ty (D(p)s . On
R2p T, A(p) N (Rzp Ty (I.’(p))o'0 the form is symmetric, bilinear,
rational, and positive definite. Since the action of ﬂl(S,so)

preserves the form, the image of nl(s,s in Aut(vs ) is

0

finite. Thus, after passing to a finite covering we can

o)

assume that V 1is constant.

Remark 2.16. Both (2.12) and (2.15) generalize, in an

obvious way, to families Ty: Xg > S .

3. Mumford-Tate groups; principle A.

Let G be a reductive algebraic group over a field k of

characteristic zero, and let (Va) be a faithful family of

a€A
finite~dimensional representations over k of G , so that the

map G &— IIGL(VO‘) is injective. For any m € ]N(A) , n € IN(A)

em (a) yén(a)
a

we can form TV = @ Va ® Vv which is again a

representation of G . For any subgroup H of G we write
H' for the subgroup of G fixing all tensors, occurring in some

m,n

T 'Y, that are fixed by H . Clearly H < H', and we shall need

criteria guaranteeing their equality.
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Proposition 3.1. The notations are as above.

(a) Any finite-dimensional representation of G 1is

. \ . . m,n
contained in a direct sum of representations T ' .

{(b) (Chevalley's theorem). Any subgroup H of G is
the stabilizer of a line D in some finite-dimensional

representation of G .

(c) If H is reductive, or if Xk(G) > Xk(H) is

surjective (or has finite cokernel), then H H' . (Here

Xk(G) denotes Homk(G,Gm)).

Proof. (a) Let W be a representation of G , and let W0
be the trivial representation (meaning gw = w , all g € G,w € W)
with the same underlying vector space as W . Then G x W » W
defines a map W + W, ® kIG] which is G-equivariant

(Waterhouse [1, 3.5]). Since W. 8 k[G] = k[g]dim W ;¢

0
suffices to prove (a) for the regular representation. There
is a finite sum V = @ Vu such G =+ GL(V) 1is injective (because
G 1is Noetherian). The map GL(V) » End(V) x End(vv) identifies
GL (V) (and hence G) with a closed subvariety of End(V) x End(Vy)
(loc. cit.). There is therefore a surjection Sym (End(V)) x
Sym(End(@/)) —» k[G], where Sym denotes a symmetric algebra,
and (a) now follows from the fact that representations of
reductive groups are semisimple (see ITI.2).
(b) Let I be the idea of functions on G which
are zero on H . Then, in the regular representation of
G on k[G] , H is the stabilizer of I . Choose a finite-

dimensional subspace W of k[G] that is G-stable and
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contains a generating set for the ideal I . Then H 1is the
stabilizer of the subspace I A W of W , and of Ad(I A W)
in AdW , where d is the dimension of I N W (Borel [1, 5.1]}.
(c) According to (b), H 1is the stabilizer of a line
D in some representation V of G and it follows from (a)
that V can be taken to be a direct sum of T''% s .
Assume that H is reductive. Then V = V' & D for

v v v
some H-stable V' and V =V' @ D . Thus H 1is the group

fiking a generator of D ® g in vV ® ¥ .

Assume that Xk(G) -+ Xk(H) is surjective, i.e. that any
character of H extends to a character of G . The one-
dimensional representation of H on D can be regarded as

the restriction to H of a representation of G . Now H

v v
is the group fixing a generator of D ® D in V ® D .

Remark 3.2 <(a) It is clearly necessary to have some condition
on H in order to have H' = H . For example, let B be

a Borel subgroup of the reductive group G and let v € V be
fixed by B . Then g r=+ gv defines a map of algebraic
varieties G/B + V which is constant because G/B is
complete. Thus v is fixed by G , and B' = G .

However, the above argument shows the following: let H'
be the group fixing all tensors occurring in subquotients of
™ Ps  that are fixed by H ; then H = H' .

(b) In fact, in all our applications of (3.1lc), H will
be the Mumford-Tate group of a polarizable Hodge structure,
and hence will be reductive. However the Mumford-Tate groups

of mixed Hodge structure (even polarizable) need not be
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reductive, but may satisfy the second condition of (3.1c)
(with G = GL) .

(c) The Theorem of Haboush (Demazure [1]) can be used
to show that the second from of (3.lc) holds when k has
characteristic p

Let V be a finite-dimensional vector space over (.

A (0-rational Hodge structure of weight n on V is a

decomposition Vm = @ vP'9  gsuch that vPr9d = y94P
ptg=n
Such a structure determines a map

w: G+ GL(Vy) such that n()vP 9 = \TPyPd (P g Prd

The complex conjugate § of p satisfies E(l)vp'q = % %P, since
y and p commute, their product determines a map of real algebraic
groups h: @ = GL(Vp) . hvP'd = ATPX7 NP9 | conversely, a

homomorphism h: o - GL(V..,) such that ®’RY &» ¢ — GL(VBQ

R
is A+~ A ™.id defines a Hodge structure of weight n on V .
r 1
We write FPv = @ vP 'Y | 5o that ... o FPv o FPTly o ...
p'>p

is a decreasing filtration on V .

Let @(1) denote the vector space @ with the unique
-1,-1

Hodge structure such that Q(l)¢ = @(1) ; it has weight
-2 and h(A)1l = AX1 . For any integer m, m<1>@m af @ (m)
(ll(m)_m’—m has weight -2m . (Strictly speaking, we should

define Q@Q(1) =21i @ ....)

Remark 3.3. The notation h(}) vPrd = A-Pi—qvp'q is the
negative of that used in Deligne [2] and Saavedra [1]. It
is perhaps justified by the following. Let A be an abelian

variety over € . The exact sequences,
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0 — Lie(aV)V — H)(4,0) — Lie(d) — 0
and

0 — FlHl(A,C) —_— Hl(A,(I:) —_— Fl/F2 —_— 0

gl 0 = g0l g0r1 - Hl(Ox)

are canonically dual. Since Hl(A,m) has a natural Hodge
structure of weight 1 with (1,0)-component Ho(gl), Hl(A,w)
has a natural Hodge structure of weight -1 with (-1,0)-component

Lie(A) . Thus h{()) acts as ) on Lie(A) the tangent space

’

to A at zero.

Let V be a vector space over (@ with Hodge structure
em
h of weight n . For .ml,mzelNand m3ezz,'r=v 1@
vem, 8m,
\' ® (1) has a Hodge structure of weight (ml—mz)n - 2m3 .

An element of T is said to be rational of bidegree (p,q)

if it lies in TaTP’? . wWe let v € Gm act on Q@Q(1) as

u-l 7 there is then a canonical action of GL(V) x mm on T .

The Mumford-Tate group G of (v,h) 1is the subgroup of
GL(V) x Gm fixing all rational tensors of bidegree (0,0)
belonging to any T . Thus projection on the first factor
identifies G(@) with the set of g € GL(V) for which there
exists a v(g) € Qx with the property that gt = v(g)pt

Qm vom

1 2

for any t €V ® Vv of bidegree (p,p) .

Proposition 3.4. The group G 1is the smallest algebraic sub-

group of GL(V) x G, defined over @ for which u(Gm) < Gm .
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Proof: Let cl(u) be the intersection of all Q@-rational
algebraic subgroups of GL(V) x & which, over @, contain
H(Gm)' For any t € T, t is of type (0,0) if and only if
it is fixed by u(mm) or, equivalently, it is fixed by cl(u).
Thus G = cl{p)' in the notation of (3.1) and the next lemma

completes the proof.

Lemma 3.5. Any @-rational character of «c¢l(u) extends to

a {-rational character of GL(V) x Gm .

Proof: Let x: cl(u) > GL(W) be a representation of dimension
one defined over @, i.e. a Q-rational character. The restriction
of the representation to G is isomorphic to @(n) for some

n . After tensoring W with @(-n), we can assume that

xeu =1, i.e. u(mm) acts trivially. But then «cl(u) must

act trivially, and the trivial character extends to the trivial

character.
Proposition 3.6. If V 1is polarizable then G is reductive.

Proof: Choose an 1 and write C = h(i) . (C 1is often called
the Weil operator.) For vPrd g yPr4 ’ cvPrd = ;7P vP'? | and so

C2 acts as (—1)n

on V ( n=p+tg 1is the weight of (V,h)).
We choose a polarization ¥ for V . Recall that Y is

a morphism ¢¥: V & V + Q(-n) of Hodge structures such that the

real-valued form y(x,Cy) on V]R is symmetric and positive

definite. Under the canonical isomorphism Hom(V ® V,Q(-n)) =

vV g Vv(—n) , ¢ corresponds to a tensor of bidegree (0,0)

(because it is a morphism of Hodge structures) and therefore
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it is fixed by G: w(glv,glv') = g;¢(V.V') for
(gl,gz) € G € GL(V) x @m and v,v' € V
Recall that if H is a real algebraic group and ¢ is
an involution of Hm , then the real-form of H defined by
¢ 1s a real algebraic group Hc together with an isomorphism
Hm =, (H0)¢ under which complex conjugation on H(T)
corresponds to o o (complex conjugation) on Ho(m) . We are
going to use the following criterion: a connected algebraic
group H over IR 1is reductive if it has a compact real-form
H0 . To prove the criterion it suffices to show that H0 is
reductive. On any finite-dimensional representation of V
of H there is an Hg-invariant positive-definite symmetric
form, namely <u,v>0 = fﬁo<hu,hv> dh where < , > is any
positive-definite symmetric formon Vv . If W is an HO—stable
subspace of V , then its orthogonal complement is also
H -stable. Thus every finite-dimensional representation of
H is semisimple, and this implies H is reductive (see [II.2]).
We shall apply the criterion to the special Mumford-Tate
group of (V,h) , G0 af Ker (G —+ Gm]. Let Gl be the smallest

Q-rational subgroup of GL(V) x Gm such that G%{
z

contains

h(ul) , where Uvl(R)= {z e c*|zZ =1} . Then G cG , and
in fact Gl < Go . Since G1 'h(mx) = G and h(Ul) =

IR R
Ker(h(mx) > Gm) , it follows that G0 = Gl , and therefore

GO is connected.

Since C = h(i) acts as iI =1 on @(l), C € GO(m.

Its square 02 acts as (-1)" on V and therefore lies in the
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centre of GO(IR). The inner automorphism ad C of Gr

defined by C is therefore an involution. For u,v € VG

and g € GO(E) we have

Y(u,Cv) = Y(gu,gCv) = w(gu,CC—lgCV) = Y (gu,Cg*v)
where g* = C_IEC = (ad C) (g). Thus the positive definite form
¢ (u,v) df P(u,Cv) on V is invariant under the real-form of

R

G0 defined by ad C , and so the real-form is compact.

Example 3.7. (Abelian variety of CM-type). Let F be a finite
product of totally real number fields Fi , and E a product
of fields, each of which is a quadratic imaginary extension of
exactly one of the fields Fi . Let S = Hom(E,€) =

Hom(E,@) = spec Ep - Gal(@/Q@) acts on S and for any

o € S,16 = OIE/F , where 1 is the canonical involution of

E/F
E with fixed algebra F . A CM-type for E is a subset

£ €8 such that S = £ U 1Il(disjoint union) . Correspondingly
we define A to be EE /Z(OE) where Op the ring of integers

in E ,is embedded in mz by u— (ou)cez . Obviously

E acts on A; moreover Hl(A,Q) = E , and
Hl(A)®(r=E&G:—E~*(I!S=¢Z€B(P.IE, with @ the
udl — (Uu)Ues
(-1,0) -component of Hl(A) ® C and EIE the (0,-1)-component.
z
Thus M(A) acts as A on € and 1 on le .
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Let G be the Mumford-Tate group of Hl(A) . The actions
of (@) and E* on Hj(A) 8 T commute. As E* is its
own commutant in GL(Hl(A)) this means that u(mx) c(E® @)

and G = cl(y) < E* . 1In particular G is a torus, and can be

described by its cocharacter group Y(G) af

Clearly Y(G) < Y(E) x Y(G ) = Z° x . Note that

Homm(mm,G) .

u € Y(G) is equal to ] e_ + e, , where {e } < 2%  is the
s€l

basis dual to S = {s} C:X(Ex) and eq is the element 1 of

the last copy of Z . The following are obvious:

(a) (Z'zS x 72) /¥Y(G) 1is torsion-free.
(b) n € Y(G) .
(c) Y(G) is stable under Gal(@/®); thus Y(G) is the

Gal-module generated by u .

(d) Since p + 1p=1 on S, Y(G) « {yezzs x Z |y =
) neeg + ngey,ngtn = cnst} .
This means G(Q) < Ker(NE/F: ES + Fx/mx) x Q.
Theorem 3.8 (Principle A) Let (Xa)a be a family of varieties
over @ and consider spaces T obtained by tensoring spaces
of the form H;“(xa) , H;"‘(xa)" , and Q(1) . Let t, €T, ,

i=1,...,N, (Ti of the above type) be absolute Hodge cycles

n
and let G be the subgroup of aH GL (H a(X )) X @ fixing the
,na B a m

ti . If t belongs to some T and is fixed by G , then it is

an absolute Hodge cycle.

Proof: We remove the identification of the ground field k

with € . Let o0: k =, ¢ be the isomorphism implicit in
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statement of the theorem and let Tt1: k =+ € be a second
isomorphism. We can assume that the ti and t all belong
to the same space T . The canonical inclusions of cohomology

groups

H (X)) & H (X)) el x m~) «—= H_(X )
induce maps

T0L> T@(a:xmf)e—’DTT.

We shall regard these maps as inclusions. Thus {tl,...,tN,t} <
f

T, & T 8(Cx R ) and {tl,...,tN} <T . To show that t

is rational we have to show that t € TT .

Let P be the functor of Q@Q-algebras such that

P(R) = {p: Hc ® R =5 HT ® R|p maps ti(ln Tc) to

ti(in TT), i=1,...,N} .

The existence of the canonical inclusions mentioned above

shows that P(C x nf) s non-empty, and it is easily checked

that P 1is a G-torsor.

Lemma 3.9 Let P be a Q-rational G-torsor of maps H§ e
where (Hg)u and (H?)a are families of @-rational representa-

tions of G . Let T0 and TT be like spaces of tensors

constructed out of H and HT respectively. Then P

defines a map TG > T .
o T
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Proof: Locally for the étale topology on spec(@), points of
P define maps T0 = TT . The restriction to TS of such a
map is independent of the point. Thus, by étale descent

theory, they define a map of vector spaces TS —_— TT .

On applying the lemma (and its proof) in the above

situation we obtain a map Tg — 'I‘T such that

T

_ T

[

TG — T &(C x ]Af)

“~——a @

commutes. This means that TS < T_r , and therefore t € TT .

It remains to show that the first component tDR of
0

t , lying in T ® C = TDR , is in F TDR' But in general, if
s 1is rational and s € TDR , Where TDR is constructed out of
n n
a a v 0 .
spaces Hyo (Xa) P HDR(xa) , @(1) , then sé€&F Tpr 1S

equivalent to s being fixed by u(mx) . Thus (ti)DR e

F0, i =1,...,N, implies G > u(C*) , which implies t € ro .

4. Construction of some absolute Hodge cycles

Recall that a number field E is a CM-field if, for any
embedding E <— @ , complex conjugation induces a nontrivial
automorphism e +—> e of E that is independent of the embedd-
ing. The fixed field of the automorphism is then a totally real
field F over which E has degree two.

A bi-additive form

¢: V xV — E
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on a vector space V over such a field E is Hermitian

if ¢(ev,w) = ed(v,w) and o¢(v,w) = ¢(w,v) for v,w €V,

e € E. For any embedding t: F <= IR we obtain a

Hermitian form ¢r in the usual sense on the vector space

VT =V ®F,Tni, and we let a. and bT be the dimensions

of maximal subspaces of VT on which ¢T is positive definite
and negative definite respectively. 1If d = dim V then ¢
defines a Hermitian form on AdV that, relative to some basis
vector, is of the form (x,y) ++ fxy . The element £ is

in F , and is independent of the choice of the basis vector up

x
to multiplication by an element of NE/FE . It is called the

discriminant of ¢ . Let {vl,...,vd} be an orthogonal basis

for ¢ and let ¢(vi,vi) = c; i then a, is the number of i
for which TCS > 0, bT the number of i for which TC; < o,
b
- x ; - (-1) T
and f = Hci (mod NE/FE ) . Note that sign(Ttf) = (-1) .

Proposition 4.1. Suppose given integers (aT, bT) for each

X x
1 , and an element f € F /NE/FE , such that a + b_r =d all

b
T and sign(tf) = (-1) 1. Then there exists a non-degenerate

Hermitian form ¢ on a vector space V of dimension d with
invariants (ar’br) and f ; moreover (V,¢). is unique up to

isomorphism.

Proof: This result is due to Landherr [l]. Today one prefers
to regard it as a consequence of the Hasse principle for simply-
connected semisimple algebraic groups and the classification

of Hermitian forms over local fields.
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Corollary 4.2. Assume that the Hermitian space (V,¢) is

non-degenerate and let d = dim(V) . The following are equivalent:

(a) a_=b_ for all T , and disc(f) = (-18/2
(b) there is a totally isotropic subspace of V of

dimension 4/2 .

Proof: Let W be a totally isotropic subspace of V of
dimension d/2. The map v +—+ ¢(-,v): V > w'  induces an anti-
linear isomorphism V/W —=5>W . Thus a basis VirererVao

of W can be extended to a basis {vi} of V such that

¢(Vi'vd/2+i) =1, 1<i<d/2,

¢(Virvj) = 0, J#lid/z .
It is now easily checked that (V,¢) satisfies (a). Conversely
(Edl¢)r where

¢«ai)l (bi)) = z ain/2+l +

a b, ,
1<i%a/2 d/2+i"1i

d/ZZiid
is, up to isomorphism, the only Hermitian space satisfying (a),
and it also satisfies (b).

A Hermitian form satisfying the equivalent conditions
of the corollary will be said to be split (because then
AutE(V,¢) is an E-split algebraic group).

We shall need the following (trivial) lemma.

Lemma 4.3. Let k be a field, let k' be an étale k-algebra (i.e., a
finite product of separable finite field extensions of k), and

let V be a free k'-module of finite rank.



52

(a) For any k'~linear map f: V = k' , define

Trk‘/kf to be the k-linear map v +—— Trk./k(f(v)): vV + k ;

then £ +— Trk,/kf: Homk.(V,k ) - Homk(V,k) is an isomorphism.
(b) A"y is, in a natural way, a direct summand of
kl
At v
k
Proof: (a) Since the pairing Trk'/k: k' x k' » k is

non-degenerate, it is obvious that f +— Trk‘/kf is injective,
and the two spaces have the same dimension over k .

v — n

(b) There are obvious maps v

5w

\i
v

—_—

<<

A D
k 1
and A" A
k' k
v v v
where V is the k'-linear dual of V . But (AV) = (AV)

n
and so the second map gives rise to a map Ay — A"y,
. k k ]

which is inverse to the first. (More elegantly, descent

theory shows that it suffices to prove the proposition with

k' =k, s = Homk(k',f). Then V= & V_ and the map in (a)

se€s
sends f = (fs) to Efs , which is obviously an isomorphism.
For (b) , note that
n g
Aty = e (@AVS)DeAnvS=Anv-)
k In_=n ses ses k'

Let A be an abelian variety over T , E a cM-field,
and v: E —End(A) a homomorphism (so, in particular,

v(l) = id). Let & be the dimension of Hl(A,Q) over E ,




53

so that d[E:Q] = 2dim(A) . When Hl(A,BU is identified
with the tangent space to A at zero it acquires a complex
structure; we denote by J the R- linear endomorphism "multi-
plication by i" of H (A,R). If h: ¢* » cL(m'(a,R)) =
GL(Hl(A,Hn) is the homomorphism determined by the Hodge
structure on Hl(A,IU then h(i) = J .

Corresponding to the decomposition

e® z r— (...,g(e)z,...): E em ¢ — & «,S=Hm(E,T)
ges

there is a decomposition

1

(E-linear isomorphism)
B,o

Hé(A)@Q =, o H
agés

such that e € E acts on the complex vector space H

as o(e) . Each Hé o has dimension 4 , and (as E
’

respects the Hodge structure on Hé(A)) acquires a

B,o

Hodge structure,

Let a_ = dim Hl’o 0,1
a B,qg el

and bc = dinm HB

: thus a_ +b_ =4 .
o o

Proposition 4.4: The subspace A% HL(A) of ®¥(a,0) is
E
purely of bidegree (Q é) if and only if a_ = d - b
2'2 g 2 o
d d 1
Proof: Note that H (A,@) = A~ H (A,Q) , and so (4.3)
@

a .1

canonically identifies A HB(A) with a subspace of Hg(A) .

E
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As in the last line of the proof of (4.3) we have

(AdHé) 8 C = /\d HIJB‘ QT = © AdHé = 8 Ad(Hé'O [::] Hg'l)
E EGCT oes 'O ges "0 '
a b
=$AGH1]3"0®AOHE’é,
g€s [xe) '

a b

g 1,0 o 0,1 .
and A HB,O and A HB,O are purely of bidegree (aG,O)
and (D,bo) respectively.

Thus, in this case, (Ad Hé(A))(%) consists of Hodge cycles,
E
and we would like to show that it consists of absolute Hodge

cycles. In one special case this is easy.

Lemma 4.5. Let AO be an abelian variety of dimension %

and let A = Ay 8 E . Then 295l (a, @) (%) cuda, @) (%)
E

consists of absolute Hodge cycles.

Proof: There is a commutative diagram

d d d d
HB(AO) (7) ®CD E _— H]A (AO) (5) @m E

oy d a1 a a 4
(o 8g ) (G} — (A iy By @ £)) (5) CHy (A, 8 5) ()

1

d
(AT H
E B

in which the vertical maps are induced by Hl(AO) 8 E =
Hl(AO ® E) . From this, and similar diagrams corresponding to
isomorphisms o: € =+ € , one seesthat H%k(AO)(%) 8 E &
d d . . : d d
e [
HE\(AO ® E)(z) induces an inclusion CAH(AD) ® E CAH(AO ® E).
d _ a d . d d . 3 .
But CAH(AO) = HB(AO)(i) since HB(AO)(E) is a one~dimensional

space generated by the class of any point on AO .
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In order to prove the general result we need to consider
families of abelian varieties (ultimately, we wish to apply
(2.15)), and for this we need to consider polarized abelian
varieties. A polarization & on A is determined by a
Riemann form, i.e. a Q-bilinear alternating form ¢ on
Hl(A,m) such that the form (z,w) +— ¢(z,Jw) on Hl(A,EU
is symmetric and definite; two Riemann forms ¢ and y' on
Hl(A,m) correspond to the same polarizaton if and only if
there is an a € mx such that ¢' = ay . We shall consider only
triples (A,8,v) in which the Rosati involution defined by 8
induces complex conjugation on E. (The Rosati involution
e te;End(A) + End(A) 1is determined by the condition

v(ev,w) = w(v,tew), v,w € Hl(A,(,D).)

Lemma 4.6. Let £ € E° be such that f = -f, and let y
be a Riemann form for A . There exists a unique E-Hermitian

form ¢ on H, (A,®) such that y(x,y) = TrE/Q(f¢(x,y)) .
Proof: We first need:

Sublemma 4.7. Let V and W be finite~dimensional vector
spaces over E , and let § :V x W > I be a D-bilinear form
such that y(ev,w) = y(v,ew) . Then there exists a unique

E-bilinear form ¢ such that y(v,w) = TrE/m¢(v,w) .

Proof: Y defines a @-linear map V @E W+ @ , i.e. an element

of (Vv @E W)v . But Tr identifies the (@-linear dual of

E/Q
V ®; W with the E-linear dual, and ¢ with a ¢ .
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To prove (4.6), we take V to be Hl(A,m) and W to
be Hl(A,Q) with E acting through complex conjugation, and
apply (4.7). This shows that ¥(x,y) = TrE/m¢l(x,y) with

¢, sesquilinear. Let ¢ = gL

¢l , so that V¥(x,y) =
TrE/m(f¢[x,y)). Since ¢ is sesquilinear it remains to show
that ¢(x,y) = ¢(y,x) . As ¥(x,y) = -¥(y,x) for all

x,y € H (A,@, Tr(fé(x,y)) = - Tr(foly,x)) = Tr (E¢ (y,x)) .

On replacing x by ex with e € E , we find that

Tr (fe¢ (x,y)) = Tr(f€¢(y,x)). On the other hand Tr(fe¢(x,y)) =
Tr(fe¢ (x,y)) and, as fe is an arbitrary element of E , the

non-degeneracy of the trace implies ¢(x,y) = ¢(y.x)

The uniqueness of ¢ is obvious from (4.7).

Theorem 4.8. Let A be an abelian variety over € , and let
vi E — End(A) be a homomorphism, where E 1is a CM-field.

Assume there exists a polarization 6 for A such that:

{a) the Rosati involution of 6 induces complex
conjugation on E ;

(b) there exists a split E-Hermitian form ¢ on Hl(A,m)

[

and on f e E° , with £ = - £ , such that (x,y) TrE/Q(f¢(x,y))
is a Riemann form for 6 .
Then the subspace (A%u%(2,0) (%) e, @ (D , where

B

d = dimE Hl(A,m), consists of absolute Hodge cycles.

Proof: In the course of the proof we shall see that (b) implies
that A satisfies the equivalent statements of (4.4). Thus

the theorem will follow from (2.15), (4.4), and (4.5)

once we have show there exists a connected smooth (not necessarily

complete) variety S over € and an abelian scheme Y over S
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together with an action v of E on Y/S such that:

(a) for all s e S ,(Ys,vs) satisfies the equivalent

statements in (4.4):

(b) for some Sy e s , YSO = AO Gm E , with e € E

acting as id @ e ;

(c) for some S, e s , (Ys,vsl) = (A,v) .

We shall first construct an analytic family of abelian varieties
satisfying these conditions, and then pass to the quotient
by a discrete group to obtain an algebraic family.

Let H = Hl(A,m) , regarded as an E-space, and choose
a 6, ¢, £, and ¢y as in the statement of the theorem. We
choose 1 such that y(x,h(i)y) is positive definite.

Consider the set of all quadruples (Al,el,vl,kl) in

which A is an abelian variety over @, vy is an action of

1

E on A ] is a polarization of A , and kl is an

1" 71
E-linear isomorphism Hl(Al,Q) =+ H carrying a Riemann
form for 6y into cyp for some c € @ . From such a
quadruple we obtain a complex structure on H(IR) (corresponding
via kl to the complex structure on Hl(Al,IU = Lie(Al))
such that:
(a) the action of E commutes with the complex structure:;
(b} y is a Riemann form relative to the complex structure.
Conversely, a complex structure on H @ R satisfying (a) and

(b} determines a guadruple (Al,el,vl,kl) with Hl(Al,m) = H
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(as an E-module), Lie(Al) = H ® R (provided with the given
complex structure), 81 the polarization with Riemann form ¢ ,

and k the identity map. Moreover two quadruples (Al,el,vl,kl)

1
and (Az,ez,vz,kz) are isomorphic if and only if they define
the same complex structure on H . Let X be the set of
complex structures on H satisfying (a) and (b). Our first
task will be to turn X into an analytic manifold in such a
way that the family of abelian varieties that it parametrizes
becomes an analytic family.

A point of X is determined by an R- linear map

J: H® R »H® R, J> = -1 , such that
(a') J is E-linear, and
(b') P(x,Jy) is symmetric and definite.

Note that ¥(x,Jy) is symmetric if and only if ¢ (Jx,Jy) =

Y(x,y). Fix an isomorphism

E @Q} R — & C (T =Hom(F,R) , F = real subfield of E)
TeT

such that £ & 1 Hﬂ'(ifT) with fT € R, fT >0 .

Corresponding to this isomorphism there is a decomposition
H@mIR—i-*Q H,
TET
in which each Ho is a complex vector space. Condition (a')

implies J = ® J_ , where J. is a C-linear isomorphism
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H =+ H such that J2 = -1 . Let
T T T

H =H' o
T T T

where H: and H; are the eigenspaces of JT with eigenvalues
+i and -i respectively. The compatibility of ¢y and v
implies

(H,y) 8 R —=— & (H_,y.)
TET Tt

with b, an R -bilinear alternating from on HT such that
b (zx,y) = wr(x,Ey) for z @ € . The condition y(Jx,Jy) =
y(x,y) implies that H: is the orthogonal complement of

H_ relative to ¢_: H_ = H' _L H . We also have
T T T T T

(H,¢) © R —=> @& (H_,¢_)
TET T

and wT(x,y) = Trm/ni(ifT¢T(x,y)) . As y(x,y) =

§ Trc/n{(ifT¢T(xT,yT)) , we find

y(x,Jx) > 0, all x <— Trm/nz(ifr¢r(xr’th)) > 0,

all xT, T,

_ Trm/n{(i¢1(xT,JxT)) > 0 all X To

¢_ is positive definite on H_, and

T

AL A4

¢T is negative definite on H

0,-1

This shows, in particular, that H: = ﬁ;Lo and H; = H

each have dimension d/2 (cf. 4.4). Let X' and X be the
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sets of J € X for which V¥(x,Jy) is positive definite and
negative definite respectively. Then X is a disjoint union
X=X UxXx" . As J is determined by its +i eigenspace

we see that X+ can be identified with

{(VT) a maximal subspace of H such that

T@T'VT

¢T >0 on VT} .

This is an open connected complex submanifold of a product of
Grassman manifolds

xt ©¢ 1 crass

(v.) .
TeT a/2" 't

Moreover, there is an analytic structure on xt x V(R) such

that X+ x V(R) ~+ X+ is analytic and the inverse image of

J e xt is V(R) with the complex structure provided by J .

On dividing V(R) by an OE—stable lattice V(Z) in v,

we obtain the sought analytic family B of abelian varieties.
Note that A is a member of the family. We shall next

show that there is also an abelian variety of the form

A. ® E in the family. To do this we only have to show that

0
there exists a quadruple (Al,el,vl,kl) of the type discussed

above with Al = AO 8@ E . Let Ao be any abelian variety of
dimension d/2 and define Vi E > End(AosE) so that e € E
acts on Hl(AO®E) = Hl(AO) ® E through its action on E .

A Riemann form wo on AO extends in an obvious way to

a Riemann form b, on Ay that is compatible with the action
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of E . We define 61 to be the corresponding polarization,
and let ¢l be the Hermitian form on Hl(AOQE,m)

such that *1 = Tr (f¢l) (see 4.6) . If I ClHl(AO,m)

E/Q 0

is a totally isotropic subspace of Hl(Ao,m) of (maximum)
dimension d/2 then ID ® E is a totally isotropic subspace
of dimensiona d/2 over E, which (by 4.2) shows that the
Hermitian space (Hl(Aer,m),¢l) is split. There is therefore
an E-linear isomorphism ky: (Hl(AOQE,m),¢1) =+ (H,4) ,

which carries wl = TrE/m(f¢1) to ¢y = Tr (£¢) This completes

E/Q
this part of the proof.

Let n be an integer > 3, and let T be the set of

OE—isomorphisms g: V(Z) » V(Z) preserving ¢y and such
that (g-1)V(Z) cnv(Z). Then T acts on X+ by
1

J b goJog and (compatibly) on B . On forming

the quotients, we obtain a map TI'\B - P\X+ which is an
algebraic family of abelian varieties. In fact I‘\x+ is the
moduli variety for gquadruples (Al,el,vl,kl) in which

A,,9 and v are essentially as before, but now k is a level

1
A (€©) = H (A, Z/nZ) - V(Z)/nvV(Z); the

171 1
n structure kl:
map xt - F\X+ can be interpreted as "regard kl modulo n" .
To prove these facts, one can use the theorem of Baily-Borel [1]
to show that I‘\X+ is algebraic and a theorem of Borel [2] to

show that TI'\B is algebraic — see §6 where we discuss a

similar question in greater detail.

Remark 4.9. With the notations of the theorem, let G be the

Q-rational algebraic group such that
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G = {g e GL (M) | Julg) e @* such that y(gx,gy) =
viglyp(x,y), ¥x,y € H} . The homomorphism h: €* 5 GL(H & R)
defined by the Hodge structure on Hl(A,m) factors through
GR’ and X can be identified with the G(IR) —conjugacy
class of homomorphisms e - an containing h . Let K be
the compact open subgroup of G(mf) of g such that
(g—l)V(ﬁ) c nv(Z) . Then l‘\X+ is a connected component of
the Shimura variety ShK(G,x) . The general theory shows that
ShK(G,X) is a fine moduli scheme (see Deligne [3,§4] or

V.2 below) and so, from this point of view, the only part of
the above proof that is not immediate is that the connected

component of ShK(G,x) containing A also contains a variety

AOGE.

Remark 4.10. It is easy to construct algebraic cycles on
A, ® E : any @-linear map A: E + Q0 defines a map AO ® E ~+

Ao Q= AO , and we can take c¢l{\) = image of the class of a
point in Hd(AO) - Hd(A0 ® E) . More generally we have

Sym* (Hom

m—linear(E'm)) + {algebraic cycles on A, ® E} . If

E = QF , this gives the obvious cycles.

Remark 4.11. The argument in the proof of (4.8) is similar

to, and was suggested by, an argument of B. Gross [1].

5. Completion of the proof for abelian varieties of CM-type.

The Mumford-Tate, or Hodge, group of an abelian variety

A over € is defined to be the Mumford-Tate group of the




63

rational Hodge structure Hl(A,Q): it is therefore the subgroup
of GL(Hl(A,Q)) x Gm fixing all Hodge cycles (see §3). In
the language of the next article, the category of rational
Hodge structures is Tannakian with an obvious fibre functor,
and the Mumford-Tate group of A 1is the group associated with
the subcategory generated by Hy(A,@) and Q(1).
An abelian variety A is said to be of CM-type if its
Mumford-Tate group is commutative. Since any abelian variety
A 1is a product A = HAu of simple abelian varieties (up
to isogeny) and A 1is of CM-type if and only if each Aa
is of CM-type (the Mumford-Tate group of A is contained in
the product of those of the Au) , in understanding this concept

we can assume A is simple.

Proposition 5.1. A simple abelian variety A over € is of
CM-type if and only if E = End A is a commutative field over
which Hl(A,Q) has dimension 1. Then E is a CM-field,

and the Rosati involution on E = End(A) defined by any

polarization of A 1is complex conjugation.

Proof: Let A be simple and of CM-type, and let

'E Gm -+ GL(Hl(A,E)) be defined by the Hodge structure on
Hl(A,G) (see §3). As A is simple, E = End(A) is a field
(possibly noncommutative) of degree < dim Hl(A,m) over @ .
As for any abelian variety, End(A) is the subalgebra of
End(Hl(A,m)) of elements commuting with the Hodge structure

or, equivalently that commute with u(mm) in GL(Hl(A,E)).
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If G is the Mumford-Tate group of A then Gg is
generated by the groups {au(mm)lo € Aut(T)} (see 3.4).
Therefore E is the commutant of G in End(Hl(A,m)) .

By assumption G 1is a torus, and so Hl(A,m) = @ H
xex(c) X

The commutant of G therefore contains étale commutative
algebras of rank dim Hl(A,Q) over Q@ . It follows that E
is a commutative field of degree dim Hl(A,m) over @ (and
that it is generated, as a Q-algebra, by G(@); in particular,
h(i) € E ® R) .

Let y be a Riemann form corresponding to some polarization
on A . The Rosati involution e r— e* on End(A) = E is
determined by the condition y(x,ey) = yp{e*x,y), x,y € Hl(A,Q).
It follows from ¢ (x,y) = Y(h(i)x,h(i)y) that h(i)* =
h(i)_1(= -h(i)). The Rosati involution therefore is non-trivial
on E , and E has degree 2 over its fixed field F . We
can write E = F[vyal , a € F , Yo* = -/a ; ¢ is uniquely
determined up to multiplication by a square in F . If E
is identified with Hl(A,Q) through the choice of an
appropriate basis vector, then ¢ (x,y) = TrE/m oxy* , x,y € E
(cf. 4.6). The positivity condition on ¢ implies
(ah(i) lxx*) > 0, x # 0, x € E ® R. In particular,

)]
(fxz) >0, x#0, x€F® R, £f=a/h(i) which implies

Treer/R

Treer/R

that F is totally real. Moreover, for every embedding
gt F & R we must have o(a) < 0 , for otherwise
E @F,GI1= R x IR with (rl,rz)* = (rz,rl) , and the positivity

condition is impossible. Thus o¢(a) < 0, and * is complex

conjugation relative to any embedding of E in C .
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For the converse we only have to observe that u(Gm)
commutes with E ® IR in End(Hl(A,nU) , and so if
Hl(A,m) is of dimension 1 over E then u(Gm) < (E ¢ n&f
and G CE" .

Let (Aa) be a finite family of abelian varieties over

C of CM-type. We shall show that every element of a space

om Vén

1 o 1 a
7 oHn (Xa) ) 8 (QQH]A (Xa) ) (m)

that is a Hodge cycle (relative to € d , €) is an
absolute Hodge cycle. According to (3.8) (Principle A) to
do this it suffices to show that the following two subgroups

of GL(HHl(Aa,Q)) x Gm are equal:

GH = group fixing all Hodge cycles;

Pl - group fixing all absolute Hodge cycles.

Obviously el CGAH .

After breaking up each Aa into its simple factors, we
can assume A, itself is simple. Let E, be the CM-field
End(Au) and let E be the smallest Galois extension of

containing all Ea : it is again a CM-field. Let Ba = Aa &, E .
a

It suffices to prove the theorem for the family (Bu) (because
the Tannakian category generated by the Hl(Ba) and Q(1)
contains every Hl(Aa): cf. the next article).

In fact we consider an even larger family. Fix E ,
a CM-field Galois over @ , and consider the family (Aa)

of all abelian varieties with complex multiplication by E
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(so Hl(Aa) has dimension 1 over E) up to E-isogeny. This
family is indexed by P , the set of CM-types for E . Thus,
if 8 = Hom(E,C) then each element of ,3 is a set ¢ € S
such that S = ¢yr® (disjoint union). We often identify

® with the characteristic function of ¢ , i.e. we write

& (s) 1, s¢€9

1]

d(s) 0, s¢god.

With each ¢ we associate the isogeny class of abelian varieties

containing the abelian variety ¢¢ /@(OE) where Op = ring of

. . _ ¢
integers in E and ¢(OE) = {(oe)oe¢ € T|o € OE} .

With this new family we have to show that GH = GAH .

We begin by determining GH (cf. 3.7). The Hodge structure
on each Hl(AQ,Q) is compatible with the action of E . This

implies that

H

G C IM,GL(H,(A.)) x @&
¢eg 1% m
commutes with n _EX . It is therefore contained in
e d
NE" x Gm . In particular GH is a torus, and can be described

as

by its group of cocharacters Y(GH) Hom__ (Gm,GH) or
Q

its group of characters X(GH) . Note that

SXJ

Y(GH) CY( I E x Gm) =Z x Z . There is a canonical
¢e
basis for X(Ex), namely S , and therefore a canonical basis

for X( 1 EX x G ) which we denote ((x Q),x ) . We denote
oe m s, 0
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the dual basis for Y(HEX x Gm) by (ys ¢’y0) . The element
’

H

H
u e Y(G) equals ) é(s)ys'¢ + ¥, (see 3.7) . As G

s,

generated by {ou(mmjo € Aut ¢} , Y(GH) is the Gal(Q/Q)-

is

submodule of Y(IE® x G ) generated by u . (Gal (/D) acts

S x J %

on S by os = s oo™l it acts on Y (IEX x €)=z 7

through its action on S: g 5 =Y these actions factor
I

os,¢:
through Gal(E/@Q)).

To begin the computation of chH » we make a list of
tensors that we know to be absolute Hodge cycles on the Aa .

(a) The endomorphisms E C End(A¢) for each ¢ . (More
precisely we mean the classes C1]A (I‘e) e H]A (Ad>) ® HJA (A¢) .
Te = graph of e , e € E.)

(b) Let (A¢, v:i E ¢ End(AQ)) correspond to ¢ € ,3 .

and let o € Gal(E/Q). Define o¢ = {os|s € ¢} . There is an

isomorphism Ay > Ach induced by
¢ ®
c — € (eeerz(®)rees) 9 (vee,2{(0T)rees)
¥ ¥

] cd
C /¢(OE) — C /U¢(OE)

whose graph is an absolute Hodge cycle. (Alternatively, we

could have used the fact that (A¢,0v: E » End(A¢)), where

ov = v oo_l , is of type o¢¢ to show that AQ and Ao@ are

isomorphic.)

(© Let (8,), be a family of elements of .&

[oN

< i<

and let A =
i

&

Ai where Ai = A . Then E acts on A and
1 i
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a

Hl(A,m) = & H;(A,AQ) has dimension d over E . Under the
i=1

assumption that | @, = constant (so that [ ¢, (s) = d/2,

1 1

all s € S) we shall apply (4.8) to construct absolute Hodge
cycles on A .
For each i, there is an E-linear isomorphism

H,(A,,0) € —— ® H,(A,)
1'7i @ ses 1%1i’s

such that s € E acts on Hl(Ai)s as s(e) . From the

definitions one sees that

_ -1,0
Hy(Ag), = Hi(AL) ' s € ¢,

_ 0,-1

= Hy(A;) s é ¢, .

Thus, with the notations of (4.4),
a =] ¢;(s)
i

b, = g (l—@i(s)) = g ¢i(1s) =a. -

The assumption that E¢i = constant therefore implies ag = bs =
da/2 , all s .

For each i , choose a polarization ei for Ai whose
Rosati involution stablizes E , and let wi be the corresponding
Riemann form. For any totally positive elements fi in F
(the maximal totally real subfield of E) 8 = @ fiei is a
polarization for A . Choose vy # 0, v, € Hl(Ai,Q): then

{Vi} is a basis for Hl(Ai,Q) over E . There exists a

X el —_
z; €E such that Ly = "4y and wi(xvi,yvi) = TrE/m(;ixy)
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for all x,y € E . Thus ¢i’ where ¢i(xvi,yvi) = (ci/gl)xy ,
is an E-Hermitian form on Hl(Ai,Q) such that yY(v,w) =

TrE/m(Cl¢i(v,w)) - The E-Hermitian form on H, (A,Q)

o Ix;vy Iysvy) = E £03 (x3Vy0¥595)
is such that y(v,w) = TrE/m(cl¢(v,w)) is the Riemann form
of 6 . The discriminant of ¢ is I fi(;i/cl). On the other
i
hand, if s € S restricts to T on F , then sign(tdisc(¢)) =
b
-1) = -1)¥2 | Thus disc ¢ = £(-1)¥?  for some totally

positive element f£ of F . After replacing one fi with
£./£ , we have that disc(f) = (-1)%?, and that ¢ is split.
Hence (4.8) applies.

d
In summary: let A = @& A, be such that Z@i = constant;
= i

then (A% wl@a,0)(a/2) cu%(a,0)(d/2) consists of absolute
E
Hodge cycles.
since G fixes the absolute Hodge cycles of type (a),

X
GAH COHE x Gm . It is therefore a torus, and we have an

@

inclusion

sx J

vc*) c y(me® x ¢) == x

and a surjection,

sx 9

X (IE* x €)=z x m — x(cPy.

Let W be a space of absolute Hodge cycles. Under the
action of the torus nE® x G, WO CT=®o WX where the sum is

over X € X(HEx bS Gm) and the torus acts on WX through .
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Since GAH fixes the elements of W , the ¥ for which
wX # 0 map to zero in X(GAH).

On applying this remark with W equal to the space of
absolute Hodge cycles described in (b) , we find that

X maps to zero in X(GAH) , all o e Gal(E/Q),

s,0 = *us,00
s € 5, and ¢ € 3 . As Gal(E/Q) acts simply transitively on

S , this implies that, for a fixed Sy e s , X(GAH) is

generated by the image of {x d>,x0|<l> e 31 .
0
Let d(¢) > 0 be integers such that I d(¢)® = d/2 (constant
function on S) where d = fd(¢) . Then (c) shows that

®gd (9) a(e)
®

- - = d -—
W= ep H (3@ as) = 2% o agth o) (-az2)

a(o)
CHd((B Aq) ,@) (-4/2) .

consists of absolute Hodge cycles. The remark then shows that

d(e)x - d/2 maps to zero in X(GAH) for all s .
s

;0

Let X = X(IE® x Gm)/z Z (x X ), and regard

os,00 "s,0

{x xJ@ € 81 as a basis for X . We know that
so,ﬂ
X(HEx x Gm) — X(GAH) factors through X , and that therefore

¥ 2v(c®¥) (ov@h!)) where Y is the submodule of Y(IEX x c,)

dual to X .

1
Lemma 5.2. The submodule Y(GH) of X orthogonal to

Y(e")  is equal to {Jd(e)x, . -5 x| ld@e = Sl aw =ar;
OI

it is generated by elements ] a(e)x - (d/2)xy, ] d{e)e = d/2,

0r®
d(e) > 0 all o
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Proof: As Y(GH) is the Gal(E/Q)-submodule of Y generated

. L
by ¥ , we see that x ¥ a(e) X, g " d/2 X, e Y(GH) if
ol

and only if <ou,x> =0 all aq € Gal(E/Q) . But
po=7 o(slyg o + Yq and On = ) #(s)y,g ¢ + %o + and so
<op,x> =) d(¢)¢(o_lso) - d/2 . The first assertion is now
obvious.
+ Byh nan
As ¢ + 196 =1, XSDI¢ xso,1¢ - x0 € Y(G) an as

positive coefficients d(¢) . By adding enough elements of
this form to an arbitrary element x € Y(GH)L we obtain an
element with coefficients d(¢) > 0 , which completes the
proof of the lemma.

H,L AH
The lemma shows that Y(G') C Ker(X — X(G)) =

L
Y(GAH) . Hence Y(GH) C Y(GAH) and it follows that GH =

GAH; the proof is complete.

6. Completion of the proof; consequences.

Let A be an abelian variety over € and let ty, r @ €I,
be Hodge cycles on A (relative to Ad, C€) . To prove the
Main Theorem 2.l11 we have to show the tu are absolute
Hodge cycles. Since we know the result for abelian varieties

of CM-type, (2.15) shows that it remains only to prove the

following proposition.

Proposition 6.1. There exists a connected, smooth (not
necessarily complete) algebraic variety S over € and an

abelian scheme 7: Y » S such that



(a) for some s, € S, Ys = A;

0

€S, Y is of CM-type:
S1

(c) the ta extend to elements that are rational and of

0

(b} for some sy

bidegree (0,0) everywhere in the family.

The last condition means the following. Suppose that

t belongs to the tensor space Ta = Hé(A

)@m((l)
o
om (o)

@ ...7
then there is a section t of Rln*m ®... over the

universal covering S of s (equivalently, over a finite

covering of S) such that for §0 mapping to S £, = ta'
S0
and for all s € S , t, € Hé(Yu)Qm(a) ® ... is a Hodge cycle.
s s

We sketch a proof of (6.1). (See also V.2). The parameter
variety S will be a Shimura variety and (b) will hold for a
dense set of points sy

We can assume that one of the ta is a polarization 6
for A. Let H = Hl(A,m) and let G be the subgroup of
GL (H) x Gm fixing the ta . The Hodge structure on H

x 0

defines a homomorphism h C + G(R). Let G =

0:
Ker (G + Gm): then ad(ho(i)) is a Cartan involution on Gg
because the real form of Gg corresponding to it fixes the
positive definite form y(x,h(i)y) on H ® IR where ¢ 1is a
Riemann form for 6 . 1In particular, G is reductive (see 3.6).

Let X = {h: C" =~ G(R)| h conjugate to h, under G(R)} .
Each h € X defines a Hodge structure on H of type

{(-1,0),(0,-1)} relative to which each t, is of bidegree
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0,-1

(0,0). Let F°(h) = H CH®CTC . Since G(R) /K — X ,
o

where K_  is the centralizer of h0 , there is an obvious real

differentiable structure on X , and the tangent space to

X at hO , tgth (xX) = Lie(Gng /Lie(K) . 1In fact X is a

0

Hermitian symmetric domain. The Grassmanian, Grassy (HOT)

I

{W CH ® C|W of dimension d} , d = dim(A), is a complex analytic
manifold (even an algebraic variety). The map ¢: X -
Grassd(H ® C), h+— Fo(h), is a real differentiable map, and
is injective (because the Hodge filtration determines the Hodge

decomposition). The map on tangent spaces factors into

tgthoix) = Lie(Gp) /Lie(k,) <= End (H8T) /F°End (H8T) = tgtq)(ho) (Grass)
Lie (Gp) /F° (Lie(Gp)),

the maps being induced by G(R) <— G(T) < GL (H®T) . (The
filtrations on Lie(Gm) and End(H®C) are those corresponding
to the Hodge structures defined by hO)' Thus d¢ identifies

tgt, (X) with a complex subspace of tgt (Grass), and
hy ¢ (hy)

so X is an almost-complex submanifold of Grassd(Hem) . It
follows that it is a complex manifold (see Deligne [6,1.1]
for more details). (There is an alternative, more group-
theoretic description of the complex structure; see Knapp [1 ,
2.4, 2.51).

To each point h of X we can associate a complex
torus F°(h)\H®TC/H(Z) , where H(Z) is some fixed lattice

in H . For example, to hg is associated F°(h0)\H®m/H(zn =

tgtO(A)/H(Z) , which is an abelian variety representing A .
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From the definition of the complex structure on X it is
clear that these tori form an analytic family B over X

Let I = {g e G(@)] (g-1)H(Z) c nH(Z)} some fixed
integer n . For a suitably large n > 3, I will act
freely on X , and so TNX will again be a complex manifold.
The theorem of Baily and Borel [1] shows that S = T'\X is
an algebraic variety.

I' acts compatibly on B, and on forming the quotients we
obtain a complex analytic map m: Y = S with Y = T \B.
For s € S, Y is a polarized complex torus (hence an
abelian variety) with level n structure (induced by
Hl(Bh,zz) =+ H(%Z) where h maps to s). The solution M of
the moduli problem for polarized abelian varieties with level

n-structure in the category of algebraic varieties is also a

solution in the category of complex analytic manifolds. There
is therefore an analytic map 9%: S —> Mo such that Y is the
pull-back of the universal family on Moo A theorem of
Borel [2,3.10] shows that 1§ is automatically algebraic, from
which it follows that Y/S 1is an algebraic family.

For some connected component S° of S , 7 1(s®) » g°
will satisfying (a) and (c) of the proposition. To prove (b)
we shall show that, for some h € X <close to h0 P Bh is
of CM-type (cf. Deligne [3,5.2]).

Recall (§5) that an abelian variety is of CM-type if and
only if its Mumford-Tate group is a torus. From this it

follows that B, , h € X , is of CM-type if and only if h

h
factors through a subtorus of G defined over @ .
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Let T be a maximal torus, defined over IR, of the
algebraic group K, - (See Borel-Springer [1] for a proof
that T exists.) Since ho(mx) is contained in the centre
of K_ ., ho(mx) CT(IR) . If T' is any torus in G]R con-
taining T then T' will centralize h0 and so T' CK_
T 1is therefore maximal in an' For a general (regular)
element X of Lie(T), T 1is the centralizer of A . Choose

a A' € Lie(G) that is close to A in Lie(G and let

HQ

T' be the centralizer of A' in G . Then T' is a maximal

torus of G that is defined over @ and T' = ng_l where

g 1is an element of G(IR) that is close to 1 . Thus

h = ad(g)oh0 is close to ho and Bh
This completes the proof of the main theorem. We end

is of CM-type.

this section by giving two immediate consequences.

Let X be a variety over a field k and let
Y € HZP(Xet,mz)(p), % # char(k) ; then Tate's conjecture
asserts that <y 1is algebraic if and only if there exists a
subfield k0 of k finitely generated over the prime field,
a model XO of X over ko , and a Yo € HZP(XOQEO,QR)(p)
mapping to y that is fixed by Gal(EO/kO) . (Only the last

condition is not automatic.)

Corollary 6.2. Let A be an abelian variety over € . If
Tate's conjecture is true for A then so also is the Hodge

conjecture.

Proof: We first remark that, for any variety X over T ,
Tate's conjecture implies that all absolute Hodge cycles on
X are algebraic. For (2.9) shows that there exists a subfield

k0 of € finitely generated over @ and a model X, of
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X over k, such that Gal(EO/kO) acts trivially on

P
alg

subspace of CiH(X0 ® EO) of algebraic cycles, then Tate's

P = = s
CAH(X0 ® ko) . If we let C (x0 ® ko) be the Q-linear

. : p p ;
conjecture shows that the images of CAH and Calg in
HZP(Xet,QQ)(p) generate the same mg—linear subspaces.

p _ AP p - P
Thus Calg ® QZ = CAH ® mz , and Calg CAH .

Now let A be an abelian variety over € and let
t e HZP(A,E) be rational of bidegree (p,p) . If t0 e HZP(A,Q)
maps to t , then the image t' of t0 in H;E(A)(p) is a
Hodge cycle relative to ——ié»m . The main theorem shows

that t' is an absolute Hodge cycle, and the remark shows

that it is algebraic.

Remark 6.3. The above result was first proved independently

by Piatetski-Shapiro [1] and Deligne (unpublished) by an
argument similar to that which concluded the proof of the

main theorem. ((6.2) is easy to prove for varieties of

CM-type; in fact, Pohlmann [1) shows that the two conjectures
are equivalent in that case.) We mention also that Borovoi [1]
shows that, for an abelian variety X over a field k , the Qa'
subspace of Hzp(xet,ml)(p) generated by cycles that are Hodge
relative to an embedding o¢: k© — € is independent of

the embedding.

Corollary 6.4. Let A be an abelian variety over & and
let GH be the Mumford-Tate group of A . Then dim(GH) >

tr.degkk(pij) where the p.. are the periods of A .

1]

Proof: Same as that of (l1.6).
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7. Algebraicity of values of the T-function

The following result generalizes (1.5)

Proposition 7.1. Let k be an algebraically closed subfield

of € , and let V be a variety of dimension n over k .

If o € ng(v) maps to an absolute Hodge cycle Yy under
=T
B (27mi) B oy, .2n-2r _ 2n-2r _
H, (V) =——=——H, (V) (-r)==H (V) (n-r)&— Hp (Vg) (n-x)

then, for any c” differential r-form ® on VE whose

. 2r . . 2r =
class [w] in HDR(V/E) lies in HDR(V/k) ,
[0 € )Tk,

Proof: Proposition 2.9 shows that Yy arises from an absolute

Hodge cycle Y, ©on v/k . Let (YO)DR be the component of
Y in Hgg_zr(v/i) . Then, as in the proof of (1.5),
_ T v ..2n =y N
IU w= (2mi)" Ty ((v)ppv []) e(2ni)” Hop(V/k) = (2mi)" k.

In the most important case of the proposition, k will
be the algebraic closure @ of @ in € , and it will then

be important to know not only that the period

P(o,0) ¥ (2mi)7F [g0

is algebraic, but also which field it lies in. We begin by
describing a general procedure for finding this field and then
illustrate it by an example in which V is a Fermat hyperspace
and the period is a product of values of the TI'-function.

Let V now be a variety over a number field kc C

and let S be a finite abelian group acting on V over k .
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If a: S =+ ¢ is a character of S taking values in x* and
H is a k vector space on which S acts k-linearly , then

we write

Hy, = {veH | sv=oa(s)v, all s g8} .

Assume that all Hodge cycles on VE are absolutely Hodge and

that I—IZI‘Y"(V((E),G:)(1 has dimension 1 and is of bidegree

(r,r) . Then (Cgﬂ(ﬁ) ® k), . where V=yv 81(5 , has dimension

one over k . The actions of S and Gal(@/k) on

Hg;(ﬁ/ﬁ) = Hgg(v/k) 81(5 commute because the latter acts through
its action on @ : they therefore also commute on C;H(ﬁ) 8 k ,
which embeds into H%E(V/E) . It follows that Gal(@/k) stabilizes
(C;H(V) ® k)a and, as this has dimension 1 , there is a character

X: Gal(@/k) — k* such that

_ -1 = r o5
Ty = x(1) "y , T € Gal(Q/k) , Y € (Cxy(V) ® k) .
Proposition 7.2. With the above assumptions, let o € ng(v)

and let o be a ¢® differential 2r-form on V(L) whose
. 2r : : 2r .
class [w] in HDR(V/Q) lies in HDR(V/k)a ; then P(og,wn)

lies in an abelian algebraic extension of k , and

T(P(0,w)) x(t) P(o,0) , all 1 € Gal(@/k) .

Il

. 2r _ r o .
Proof: Regard [w] € HDR(V/m)a = (CAH(V) ® m)u : then

[w] = zy for some z €T , Y € (CiH(V) ® k), . Moreover

df
P(o,0) = ( %;i)r fco)= zy (o 8 (2wi) Ty € zk , where we are

regarding y as an element of ng(v)(r) ® k = ng(v)(—ry ®k .

Thus P(o,0) le]l € (CL (V) ® k) . As [o]€ HEL(9/®) =Cpy (D) 08 ,
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this shows that P(o,w) € @ . Moreover, T(P(o,m)_l[m]) =

x(r)_l(P(o,w)_l[m]) . On using that t[w] = {w] , we deduce

that t(P(o,w)) = x(1) P(o,0) .
r = - . 2r =
Remark 7.3 (a) Because C,,(V) injects into H™"(V_,.Q,)(r) ,

X can be calculated from the action of Gal(Q/k) on
2r o
HEE (V@) (1) .
(b) The argument in the proof of the proposition shows that

r

o ® (2ri)™F e HS (V) (-r) and P(o,w) l(u] € 2D (9/T)  are

different manifestations of the same absolute Hodge cycle.

The Fermat hypersurface

We shall apply (7.2) to the Fermat hypersurface

+Xl+...+Xn+l=0

. 4 d d
V: X0
of degree d and dimension n , which will be regarded as

2ﬂi/d)

a variety over k £ Q(e As above we write

vV=yv @](@ , and we shall often drop the subscript on V,
It is known that the motive of V is contained in the
category of motives generated by motives of abelian varieties

(see (II 6.26)), and therefore (2.11) shows that every Hodge

cycle on V is absolutely Hodge (cf. (II 6.27)) .

Let Mg be the group of dth roots of 1 in T ,
+1
and let 8§ = ?@ ud/(diagonal) . Then S acts on V/k
i=o
according to the formula:
(Co: ...)(xo: cee) = (Coxo: ves) ., all (xo:...) ev(c) .

The character group of S will be identified with
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n+2 li= (

X(s) = {a € (m=/4d &) a ,ee.,a

o n+1) ¢ T2y =0l

a € X(S) corresponds to the character

a
- ., adfp i
E, - (CO. -.-) E_ II ;i
For a € Z/d% we let <a> denote the representative of a
in #Z with 1 < <a> < d , and for a g X(S} we let
<a> = d-l L <ai> e N.

If H(V) 1is a cohomology group on which there is a

natural action of k , we have a decomposition

H(V) = @ H(V)_ , H(V), = {v]zv = v, z e s}

Let (Z/4 zz)x act on X(S) in the obvious way,
u(ao,...) = (uao,...) , and let [a)l be the orbit of a
The irreducible representations of S over @ (and hence
the idempotents of @[S]) are classified by these orbits,
and so Q[S] = 1@ [(a] where @(a] is a field whose degree
over @ is equal to the order of [a] . The map g+ _c_é: s§~>TrC
induces an embedding Q@[a]“— k . Any cohomology group

decomposes as H(V) = & H(V) la] where H(V) [al] [ =a‘8[a] (H(V) @(I:)a, .

Calculation of the cohomology

Proposition 7.4 The dimension of e®(v,e)_ -is 1 if no a; =o

a
or if all a; = 0 : otherwise H"(v,u:)a =0 .
Proof: The map
. . d, 4, . ht+l n+l
(xo. X3 ves) (xo. X ¢ ves): TP — 1P




81

defines a finite surjective map w: V » P"  where Pn(ﬁf]Pn)

is the hyperplane I X, = 0 . There is an action of S on
7,0 which induces a decomposition n*¢¢5®(n*¢)a , and
HI(V,E)33+ Hr(Pn,n*m) , being compatible with tgé actions of

S , gives rise to isomorphisms Hr(V,m)aiE+ Hr(Pn,(w*m)a) .
The sheaf (n*m)a is locally constant ;f dimension 1 _éxcept
over the hyperpl;nes H,: X, =0 corresponding to i for
which a; # o , where it is ramified. Clearly (w*m)o =C ,

and so Hr(Pn,(ﬂ*E)o ﬁﬁﬂr(IPn,m) for all r . It follows that

Hr(Pn,(n*m)a) =o, r#n, a#o=(o,...,0) , and so

hN

-1 dim Hn(Pn,(n*E)a) , a # o, is equal to the Euler-Poincaré

characteristic of (n*G)a .  We have

EP(P", (n,&) )= EP(P" - U H D) .

ai#o

Suppose first that no a; is zero. Then

- - - 3 - - nz n
(xo. TERE R in) +r (xo. R xn). P+ P

induces

n+l n

~ -
pP - U g, & opt_ U goup™l

i=o i i=o i
where Hi denotes the coordinate hyperplane in Pn+1 or
P". as

(P"-Un. vy y ™! _Un,) = 2" -Us. ,
i i i
and an—-UHi , being topologically isomorphic to (CI:X)n ;
has Euler-Poincaré characteristic zero, we have

+ — .
EP (P - nu]' Hy) = -gp (P71 - Ln)Hi) = ... = (-1)PEP(P°) = (-1)" .

X, r

If some, but not all, a; are zero, then PO —kJHi A (C) x ¢?7F
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with r > 1 , and so EP(P" - UH;) = 0" x 1 =0 .

Remark 7.5. The above proof shows also that the primitive

cohomology of V ,

n n
H (V,C)__. = @& H(V,C)_.
' prim afo a

The action of S on Hn(V,CI:) respects the Hodge decomposition,
and so Hn(V,(I:)a is pure of bidegree (p,q) for some p , g

with p+g=n .

Proposition 7.6. If no a; =0, then #" (V,(l‘)a is of bidegree

(p,q) with p = <a> -1

Proof: We apply the method of Griffiths [1,§8]. When V is
n+l

a smooth hypersurface in TP , Griffiths shows that the maps
in
Hn+l(IPn+l, T) o, Hn+1(IPn+l - v,0)— I{3+2(1Pn+1, C)— Hn+2(]Pn+1, )

| -

1 (V) (-1)

induce an isomorphism

n+l n+l

=~ n
H (P - V,C) — H (V) (—l)prim

and that the Hodge filtration on H® (V) (-1) has the following

n+l

explicit interpretation: identify Hn+l(IP - V,T) with

n+l _ n+l n+l

(P v, oy ar (@™ - v,2") and let
Q;4-1(V) = {w e P (P"1-v,2"1)| w has a pole of order <p on V}:
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then the map R: Qg+l (v) » H"(v,C) determined by

fc w , all o e H_ (V,C)

induces an isomorphism

n-p+l

= F B (V) .

Qg+1(v)/d9n &, 7P gyl (y) (-1)

p-1 prim prim

(For example, if p =1, R 1is the residue map Q;_Hl (v)+ FPE (V) =
H® (v,e™).

Let £ be the irreducible polynomial defining V . As

+1 .
ot (n + 2)= 0 has basis
n+l n+l
r hid

A

_ gy 1
wy = L(-1) Xi dxo/\.../\d}(i/\.../\dxn ,

any differential form o = Pmo/fp with P a homogeneous

polynomial of degree p deg(f) - (n + 2) lies in Q;H' (V).

In particular, when V 1is our Fermat hypersurface,

<a > <a > <a > <a >
_ o -1 nt+l -1 _ o n+l i A
w=X_ cee X Wy = X <o X Z(-1) dXOA...AdXi/\...
d d <a> d d <a>
+oaan 2 2
(Xo + Xn+l) (xo+"'+xn+1) X X
: n+l -1
lies in Q<a_> (V) . For ¢ es, X; = ¢;7 X, , and so
Tw = 5_3 w . This shows that Hn(v,tl:)_ac_Fn'<a_>‘*‘l v, o) .

Since <-a> -1 =n + 1 - <a> , we can rewrite this inclusion

n <a>-1
as H'(V,0) cF2 H(V,e) . Thus H“(v,cr)a is of bidegree
(p,q) with p > <a> - 1 . The complex conjugate of Hn(V,a:)a

is Hn(V,G)’a ,» and is of bidegree (g,p) . Hence

n-p=g><-a>-1l=n+1-<a>

and so p < <a>-1.
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Recall that HB(V)[E] = @& H (V)i' : thus (7.4)

B
a'elal
shows that Hg(v)[a] has dimension 1 over @[al when no

. . n n _
a, 1s zero and otherwise HB(V)[g]n HB(V)Prim =0 .

Corcllary 7.7. Assume no a; =o; Hg(v)[a] is purely of

bidegree (g,% if and only if <ua> is independent of u ..

Proof: As <a> + <-a> =n + 2 , <ua> 1is constant if and only
if <ua> =32+ 1 for all u e(m/d®z) , i.e. if and only if
<a'> =n/2 + 1 for all a' € [a] . Thus the corollary follows

from the proposition.

Corollary 7.8. If no a; =o and <ua> 1is constant, then

n g . .
CAH(V)IE] has dimension one over Q[al .

Proof: This follows immediately from (7.7) since, as we have

remarked, all Hodge cycles on V are absolutely Hodge.

The action of Gal({i/k) on the étale cohomology.

Let /f be a prime ideal of k not dividing d , and let

Ty be the residue field of ¥ . Then d|g-1 and reduction
modulo £ defines an isomorphism Wy fE*-]F; whose inverse

n+1) € X(8) with all a;

. X
nonzero, and define a character et Bﬁl > Hg by

we denote t . Fix an a = (ao,...,a

e, (x) = eI /dyai s g,

As Hsi.= 1., 1 ei(xi) is well-defined for x = (xO:...:Xn+l

Pn+l tmq), and we define a Jacobi sum



n n+l
J(egrener€pyy) = (F1) Zn igo g, (xy)
xeP (IFq)

where P" is the hyperplane in = o0 in ]Pn"'1 . (As usual,
we set ei(o) =0 .) Let ¢ be a nontrivial additive
character P: IFq—> G:x and define Gauss sums
gy ag¥) = -1 g5 (x) b(x)
XEF
q
n+l
-<a>
gl ,a) =q = glapra. . ¥) .
? i=o /f 1
. _ <a> -1
Lemma 7.9. The Jacobi sum J(e_,...,e 1) =q = 9(7,3) .
<a> n+l
Proof: q—g(fx a) = T -3 e, (x) $(x))
i=o x€F
q
n n+l
= -1" 3} T e (x)) W(Ix)), X = (X ,..0)
e i
|
n n+l
= 1" ) ¥ (izoei(xxiw(uxi)) .

x" (F_) \EF .
- q q

We can omit the A from 1 ei(kxi) , and so obtain

<a> n n+1l
q ="glp,a) = (-1) I(m egx)) ] Y (AIx,) .
x i=o x o
= AeTr
q
n+l n+l
Since ] 1 e;(x5) = 1 (2 €;(x)) = o , we can replace
x i=o i=o erFq

the sum over A € Iqu by a sum over X\ € ]Fq . From



) w(lﬂxi) = {; if Ix; = o
AETF
q Lo if in # o

we deduce finally that
n+l

-1%q | (1 e (x))
§€Pn(1Fq) i=o

q<‘3>g(y (a)

q J(so,...,en] .

Note that this shows that g(tg,g) is independent of
Yy and lies in k .
Let & be a prime such that ¢ X & , P Y&, anda dle-1.

th

Then mz contains a primitive d root of 1 and so, after

choosing an embedding k &~ mz , We can assume g(:p,g) e Ql

Proposition 7.10. Let F¥ e Gal(m/k)ab be a geometric Frobenius
n.—
element of ~p Yd : for any v € H (Vet’ml)i ,
< -
Fﬁ":qé)lg('f’é)v

Proof: As:yld , V reduces to a smooth variety Vﬁ over mﬁ
and the proper-smooth base change theorem shows that there is

an isomorphism Hn(ﬁ,ml) = Hn(?ﬂ’mz) compatible with the action
of S and carrying the action of Ef on H™(V, ml) into the
action of the Frobenius endomorphism Frob on Hn(ﬁy,mk) .

The comparison theorem shows that Hn(\_},mk)a has dimension 1 ,
and so it remains to compute -

Tr(F¥|Hn(\7,mR’)i) = Tr(Frob[Hn(\_ly,ml)i) .
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Let m: V¥ > P" be as before. Then Hn(\_lix,q)g)é = Hn(Pn,(n*mg)i),

and the Lefschetz trace formula shows that

n

(-1) Tr(FroblHn(pn,(n*Ql)a) = 3 Tr(Frob[((n*QR)a)x) (7.10.1)

n
XEP (T )
xer (¥

where (("*mz)a)x is the stalk of ("*mz)a at x .

. n . =
Fix an X € P tmq) with no Xy zero, and let y € V}(Eq)

map to X ; thus yq = x. all i . Then ﬂ-l(i) = Izylz € s} ,

i i -
d (7,@,) is the vector space QEL (x)
an @y x s e P ) .
If ¢ denotes the arithmetic Frobenius automorphism

(i.e., the generator 2z = 29 of Gal(I_Fq/ ]Fq)) then

g-1 a-1
=3 -, 4 _ d .
Oly;) = yi =% vy = t(x;7 )y, 0<i<n+1
and so
ig
Frob(y) = n y where n = (...: t(xid )i ...) E S .

Thus Frob acts on ("*mk)x as n , and for v e(("*mn)a)x

we have
a a n+l
Frob(v) =n v =n-v , n— = T si(xi) e kc.mz.
i=o
Consequently
n+l
Tr (Frob| ((m,@,)_),) = T e, (x,) .

If some X; =0 then both sides are zero (("*Qz)a is ramified
over the coordinate hyperplanes), and so on summing over x

and applying (7.10.1) and (7.9), we obtain the proposition.
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Corollary 7.11. Assume that no ai is zero and that <ua>

. n,s n
is constant. Then, for any v € H (Vet’mk)g(f) B
Fev =gly.,a)v.

Proof: The hypotheses on a imply that <a> =n/2 + 1 ;

. . _ . n,;
therefore, if we write v = Vs ® 1 with Vo € H (Vet’ml)g ,

then

n/

Ej}e v = F,# Vo @ Fyls= qn/zg(y,g) v, ® qa 2=g(rﬁ,§) v

Calculation of the periods

Recall that the TI'-function is defined by

rs) = [e "8G, s>0,
Q

and satisfies the following equations

1

I'(s) T(1-5s) % (sin ws)

T(l +s) s T(s) .

The last equation shows that, for s e mx , the class of T (s)
“in E/mx depends only on the class of s in @/Z . Thus, for
a € X(S) , we can define

n+1l

T r(a./d) e ©/@ .
i=o 1

T(a) = (2mi)°%

Let Vv° denote the open affine subvariety of V with

equation

Yo, + ... + Yn+l = -1 (so Yi = Xi/XO)

) e ®* e, >0,

Denote by A the n-simplex {(t;,...,t ;2

n+l

T t; = 1} and define 0, A+ vo(@) to be
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d
1/4 1/4 mi/2d _ acy 1/4
’ = = - , t. >0
(tl,...,tm_l))—-* (:-:tl ,...,etn+l) e 1 i
itive integers such
Lemma 7.12, Let ag s oceey a1 be positive g

that I ai =0 . Then

- + .
a1 an+l le dYn 1 B ao n+l al
LIRNEPEIR VO R sulatl - A R I - x
g (&) 1 n i=
o
where £ = ez-'rl/d

Proof: Write W for the integrand. Then

a a dt; dt,
_ _ 1/4,°1 1/4,“n+l .--n—=A.. . A——
= [o¥ta) =[(et]") ~ .. (et i) a Ty £
o _(A) A A
o)
=c | 1, ot di/\.../\ﬁi
A 1 n+l tl tn
a;+...+a n
where b, = ai/d and ¢ = € 1 n'lhl(%) . On multiplying
i b.+...+b
= - -t 71 n+l ..
by T(l-b_) =T(l+by+...+b ) = foe t dt we
obtain
® b +...+b b b_ 4t at
_ -t 1 n+l 1 n+l "1 - n
T(l-b)) fao(A)“’o =c [ [ et £ et LT T A A T Aadt

If, on the inner integral, we make the change of variables

s; = tti , the integral becomes
© b b ds ds
-t 1 n+l 1 n
— N —
c fo IA(t)e Sy e84 5] Aee S Ndt
n
where A(t) = {(sl,...,sm_l)[si >0, Zs;= t} . We now let
t=1= S; v and obtain
L3 © -5 -5 -s 1+b ds
_ 1 2 n+l 1 n+l ds. n+l
T(l-bo) '(0 (A)m—cfo...foe sy - n+l s A
] 1 n+l
= cl"(bl) F(bz) I‘(bn) r(1 +bn+1)
= cbn+ll‘(bl) r(bn+l) .
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The formula recalled above shows that T (1 —bo) = H/(sinrrbo) I‘(bo) '

-a_ sinThb
o

-1 _ ) X
and so ¢ I‘(l—bo) =€ Er— I‘(bo) (mod Q)
—2Ti ,, Tib -rib
= L g7AmRy (e ° - e O)I‘(b )
m - o
2i
-2a
_ 1 _ o
=357 (1 -¢ ) F(bo) .

The lemma is now obvious.

The group algebra @[S] acts on the @-space of

differentiable n-simplices in V(L) . For a € X(S) and
By = (Leaosrenn) (B = e®™/% 40 3™ position) , define
n+l
c=T (1-£)Y0 (8)C vO(a)
. 23 o
i=1
where CIO and A are as above.
Proposition 7.13. Let a € X(S) be such that no a; is zero,
and let ©° be the differential
] 1
o1 Ser o Yy
1 n+l Yl Yn
on V° , where a'i represents -ay s and a'i >>0 . Then
(a) &°® =€20°;
n+l a, -a,
o_ 1 _r 1 i
R SR CO
i=o
. . . . _ -1
Proof: (a) This is obvious since rY,= (g,/T) ~ ¥,
° n+l ° n+l a, w°
(b) [ow= [ py M A-gpe = 0 A-£D) [, w
o i=1 o
1 n+l a; a;
= 75T _H (L-& ™) P(_T)
i=o
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From the Gysin sequence

(c=) B2 (w-v°,0) » B, » 8 (v°,0) » o

we obtain an isomorphism Hn(v,m)prinlﬁb-ﬂn(vo,m) , which
shows that there is an isomorphism
n ~ n o _ O ~n o LN+l
HDR(V/k)prim—-’ HDR(V /kYy = T{v,27)/dr(v",Q ) .
The class [m°] of the differential w®

Correspondingly we get a c’

V(L) such that
(a) the class
and

_ 1
®) fgo =5

Note that, if we

. . n
even lies in HDR

The theorem

Recall that

?’(3) =

and for :; a prime of k not

gty.g) =

differential

n-form

on

. . n o
lies in HDR(V /k)i .

. n . . n
[w] of w in HDR(V/G) lies in HDR(V/k)E '

n+l ai ai
T (1-& ™) F(— 7;) , Where
i=o
regard V as a variety over
(v/@) .
for a € X(8) , we set
n+l
(2ri) "2 1 r(a,/q)
i=o

<a>

q~ - I]-T g(‘? ,ai,w) r g(’¥ :ai,w) =

o)

]

_z t

x€ IF
q

n+l

i=1

, then

(e t/07)

dividing 4 , we set

where g 1is the order of the residue field of ¢ -

Theorem 7.15.

<ua> = <a> (= n/2

Let

a € X(S) have no a;

1

+ 1) for all

u e(Z/azm) .

1-g\a,
k)t

=T (1-g;)°

[w]

1

co(A) .

Y (x)

= o and be such that
X
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(a) Then 'f‘/(g) € @ and generates an abelian extension of

X = (D(ezni/d)

(b) If Fy € Gal (T/%)3® is the geometric Frobenius element

at ,/y, then
Fp F@) =aly.2) Tla) .
(c) For any T € Gal(@/@) , A_(T) 4 /F(g)/'r,f‘/(g) lies in k :
moreover, for any u €(Z/d ZZ)X .
TU(XE(T)) = Aa (M)

where 1 = is the element of Gal (k/Q) defined by u

Proof: Choose ¢ € Hi(v) and ® as in (7.14). Then all
the conditions of (7.2) are fulfilled with « the character a .
Moreover, (7.14) and (7.11l) show respectively that
~ ‘ n+l a;
P(o,w) = E(a) T(-a), where £(a) =i£o(l—€ )

and

X(Eyg ) = g(ga._a_)_l .

As E(a) € k , (7.2) shows that 'l‘“lt-g) generates an abelian
algebraic extension of k and that F.ﬂ’f‘/(—g) = g(ry,g_) _l'IY(—g) .
It is clear from this equation that g(rdq,a_) has absolute
value 1 (in fact, it is a root of 1): thus
9('}12)_1= M = g(ry,—-i) . This proves (a) and (b) for
-a and hence for a .

To prove (c) we have to regard V as a variety over @ .

If S is interpreted as an algebraic group, then its action

on V is rational over @ . This means that
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Tx) = 1(7) T(x) , T € Gal(@/@) ,zes(@ , x€ V(D)
and implies that
T(Ly) = t(g) ty) , T €Gal@/® , tes@, yec,, W

Therefore Gal(@/@) stabilizes CXH(G)[a] and, as this is
a one-dimensional vector space over {[a] , there exists for
- . = X
any vy € CXH(V)[a] a crossed homomorphism A: Gal(@/@) - Qla}
such that t(y) = A(t)y for all 1 . On applying the canonical
n g n 5 . . .
map CAH(V)[E] - (CAH(V) ® k)‘3 to this equality, we obtain

Tty 8 1) = A2 (v @ 1) .

We take Yy to be the image of o ® (2':ri)—n/2

B n
e Hn(V) (—5)
in cp, () (a] - Then (c£. 7.3), (y ® 1) = P(o,0) YTlo] , if

[w] 1is as in (7.14). Hence

A1) 2

]

P(o,w)/t P(o,w) = A__(1) (E(a)/T E(a)) .

On comparing

A (1) = A(1)72 (1 E(-a)/%(-a)) and
Maa ™ = A(t) U2 (1 £ (-ua) /E (-ua)) ,
and using that T(£(-ua)) = T(Tu(E(-g))~= Tu(T £(-a)) , one

obtains (c) of the theorem.

Remark 7.16 (a) The first statement of the theorem, that
?(3) is algebraic, has an elementary proof; see the appendix
by Koblitz and Ogus to Deligne [7].

(b) Part (b) of the theorem has been proved up to sign by

Gross and Koblitz [1, 4.5] using p-adic methods.
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Remark 7.17 Let Ig be the group of ideals of k prime to

d , and consider the character

o
I

r. r.
oL = ]'I?ili——-) glot,a) Hg(}’i'i) l:Id+kx

When a satisfies the conditions in the theorem, then this
is an algebraic Hecke character (Weil [1l], [3]: see also
Deligne [5, §6]). This means that there exists an ideal

m of k (dividing a power of d)} and a homomorphism

X : k= k*  that is algebraic (i.e., defined by a map of

alg
tori) and such that, for all x € k" totally positive and

= 1(mod m) , g((x), a) =x (x) . There is then a unique
= ab X _

character Xé' Gal(@/k)“ " — k such that XE(Fy) = gb},g)

for all 2 prime to d . Part (b) of the theorem can be

stated as
o(F(a)) = x (o) T(a) , all oe Gal(k/k) .

(There is an elegant treatment of algebraic Hecke characters
in Serre [2, II]. Such a character with conductor dividing

a modulus m corresponds to a character ¥ of the torus

. _ s X T oc Xy X
Sm(loc. cit. p II-17). The map Xalg is k — T =8, kK .

One defines from ¥ a character ¥ of the idele class group
as in (loc. cit., II 2.7). Weil's determination of Xalg
shows that x_, 4is of finite order; in particular it is trivial

on the connected component of the idéle class group, and so

gives rise to a character x_: Gal((T)/k)ab )
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Restatement of the theorem

For b e d lm/ @, we write <b> for the representative

of b in a?t

#Z with 1/d < <b> <1 . Let b = L n(b) 5b be
an element of the free abelian group generated by the set
alm/m- {0} , and assume that I n(b) <ub> = ¢ is an

integer independent of u € Z/d Z . Define

T(b) = —=— 1 I'(<b>)

(27i)€ b

n(b)

Let ~ be a prime of k , not dividing d , and let ]Fq be
the residue field at /‘3‘ . For ¢ a non-trivial additive

character of IFq , define

g(rg,b) = ic M g(y,b,P) nB)  here g(p.b, ) =~} Py gk

b er
9 X q

As in (7.17), “b g(~.,b) defines an algebraic Hecke character of
- X

k and a character Xl_:)_: Gal(@/k) = C such that XE(F»,,.) = g(n,b)

for all Apfb.

Theorem 7.18. Assume that b = I n(b) Bb satisfies the condition
above.

b

(a) Then 'F(g) e k@ , and for all o € Gal(G/x)2P ,

o T(b) = x,(0) Tip) .

(b) For T e Gal(@/@ , let A (1) = T(0)/tT(b); then

A (t) € k , and, for any ue (Z/dZ)",

Tu(AE(T)) = XA, (1) .

ub

Proof: Suppose first that n(b) > o for all b . Let
n+2=2LIn(b), and let a be an (n+2)-triple in which

each a € Z/d%Z occurs exactly n(a/d)times. Write
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a= (a Then I a; d(Z n(b)b) = dc (mod 4) = o ,

o""'an+1)

and so a € X(S) . Moreover,

<ua> =f

Z n(b) <ub> =c¢

=

I <ua.>
i

for all u € Z/dZ . Thus <ua> is constant, and c¢ = <a> .
We deduce that ?(g) = ?%9) + gl~g,a)=g(g,b), and x, =X -
Thus in this case, (7.18) follows immediately from (7.I5) a;a
(7.17).

Let b be arbitrary. For some N , b + NEO has positive
coefficients, where QO =1z 5b' Thus (7.18) is true for

b+ Nb, . Since T(b) + b,) = (b)) T(b,) (mod @) and

5)
gly,by +by) = gl~f/b)) glg,by) this completes the proof.
Remark 7.19. (a) Part (b) of the theorem determines T (ub)
(up to multiplication by a rational number) starting from

r(pb) .

(b) Conjecture 8.11 of Deligne [7] is a special case of part
(a) of the above theorem. The more precise form of the
conjecture, Deligne [7, 8.13], can be proved by a modification

of the above methods.

Final Note. The original seminar of Deligne comprised fifteen
lectures, given between 29/10/78 and 15/5/79. The first

six sections of these notes are based on the first eight lectures
of the seminar, and the final section on the last two lectures.
The remaining five lectures (which the writer of these notes

was unable to attend) were on the following topics:
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(6/3/79) review of the proof that Hodge cycles on abelian
varieties are absolutely Hodge: discussion of the expected
action of the Frobenius endomorphism on the image of an
absolute Hodge cycle in crystalline cohomology:

(13/3/79) definition of the category of motives using absolute
Hodge cycles; semisimplicity of the category: existence of

the motivic Galois group G ;

(20/3/79) fibre functors in terms of torsors; the motives of
Fermat hypersurfaces and K 3-surfaces are contained in the
category generated by abelian varieties;

(27/3/79) Artin motives; the exact sequence
1+6°+6 gal(@/@) +~ 1 ;

identification of G° with the Serre group, and description
of the G°-torsor = l(1) ;
(3/4/79) action of Gal(@/@) on G° ; study of G ® 00 7
Hasse principle for Hl(Q,GO) .
Most of the material in these five lectures is contained in
the remaining articles of this volume (especially 1IV).

The writer of these notes is indebted to P. Deligne and
A. Ogus for their criticisms of the first draft of the notes

and to Ogus for his notes on which the final section is largely

based.
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