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1. Autoduality

Let C be a projective smooth curve over a field k, with
chosen rational point ©. The Jacobian of C is an abelian
variety A defined over k, such that for any field extension K

of k we get a 1 - 1 correspondence

points of A with) _ S K-rational divisor
values in K {classes of degree 0 on C]

Alternatively, if Pic C is the Picard scheme of C, then
Pic C = A & Z and A = Pic% = the connected component of
Pic C.

Suppose that C has genus g. Then dim A = g. In fact,
let s8¢ be the g-fold symmetric product of C. s8¢ is by
definition the quotient of Cx...xC(g-factors) under the
obvious action of the symmetric group on g-letters. It is a
non;singular complete variety of dimension g. Using the
chosen point @%0n C, define a map

f1 88¢ ——> 4 by £((P ...,P)) =

1 g
the divisor'class of (P1+P2+...+Pg- g+ © . It follows from
the Riemann-Roch theorem on C that f is a birational
morphism.

If i:C —> 38 is defined by i(P)=(P,®,..., ), then we get
the usual map t = £0i:C —> A, namely t(P) = divisor class
of (P-8).

Proposition: (A,t) is the Albanese variety of :(C,®}. That

is, if B is any abelian variety and h:C ——> B is a morphism

such that h(®&) = the origin of B; then there exists a unique
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morphism of abelian varieties ﬁ: A —> B such that the

following diagram commutess
B
]
t > A

Proof: There is a morphism Sgh:SgC —> B

o]

C

given by (sgh)(Pl,...,Pg) = h(P) +...+ h(P,) (addition on the
abelian variety B). Since A and S8 are birationally equiva-
lent, there is at least a rational map s A ===-> B making

the diagram commute. Also h (origin of A) = h(o)=origin of B,
and by the theory of abelian varieties (cf. Lang [5]) h is

a homomorphism of abelian varieties.

If A is any abelian variety, let X' =pPic oA = {divisors
algebraically equivalent to 0}/ {divisors linearly equivalent
to 0}. Then Pic and " are contravariant functors.

Theorem (Autoduality for the Jacobian of a curve): Let A
be the jacobian of C., The map t: C ——> A induces a map
s A= Pic®A ——> Pic®% = A, and this map is an isomorphism.

Sketch of proofs One first shows that Pic® = Pic9%8c ("Pic

is a birational invariant.") Now there is a map

Pic Sgc ——> Pic C as always. Moreover, given an invertible
sheaf L on C, it determines in a canonical way an invertible
sheaf S8L on s8¢ having the property that its ruvll back to
CX.eeexC (g-fold product) is pi’L f...8 pzb, where pi:Cg—~> C

is the i-th projection. Thus-there is a map "L —> SO&LY
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from Pic C —> Pic S%¢. That is:
Pi¢c ¢ ——> Pic 8% > Pic C
U U U
A > Pic038C > A

3

Iz -7
P

A A A
This shows that A = A & ker t. Since A is connected, it suffices

4
to prove ker t finite. TIor use here and later we invoke the
following consequence of the theorem of the square:

Deep Result:s Suppose L 1s an invertible sheaf on the abelian

variety A. Consider the three maps AxA

> A given by Pl
(first projection), Pa(second projection), and S (sum). Then L
is algebra;cally equivalent to 0 <==> s*L % PfL 2 P:L.
(Barsotti [2]).

Now consider the commutative diagram

CXOOOXC M> .AX../OXA
n
s&c sum (g=fold products)

e

Suppose L i1s an invertible sheaf on A algebraically equivalent to
zero, Then it follows from the deep result, applied to the above
diagram that L pulls back to tj(L) 8 ... 8 t;(L) on Ox...xC,
where t, = P, o t. Thus if L ¢ ker ©; that is L pulls back

trivially to C, then m f (L) is trivial. Now the map



lp-

CXae.exC T

> 58 is finite, and of order g! , and so it

follows from a usual norm argument that if F is an invertible
*_ . . LR .

sheaf on S5 such that w'I" is trivial, then Fgg is trivial

’p!

on 58C. Therefore (f*L) is trivial, which shows that g!

A 7
annihilates ker t, whence ker t is actually zero.

" ;
2. Interpretation of A as Ext (Serre [10], Ch. VII),

Definition: A sequence G > B > A of commutative

algebraic groups over a field is an extension of A by G if
E ——> A 1is a surjection with scheme~theoretic kernel G.
Isomorphism classes of extensions of A by G form a
group Ext?(A,G) under the usual Baer multiplication. The
zero of Ext?(A,G) is the "split extension" G—>GxA——>A .

Theorem: (Serre) Let G = Gm’ let A be an abelian variety,

and let G > B > A be an extension. Then the sheaf E

of germs of sections A ——> E is a principal fibre space with
group G. Thus the mapping E p> E defines a mapping

f: Ext?(A,Q) —> H‘(A,Gm) = PicA. This map is injective
with image ﬁ.

Proof: (see Serre [10], Ch. VII no. 5, 15, and 16).

a) f{ is injective. If G —> E —> A is an extension
such that I is the trivial sheaf, then there is a regular
global section 33 A —> E. The obstruction cocycle to s being
a homomorphism lies in Maps (AXA,G), which consists of
constants, since AxXA is complete and G is affine. Therefore

if we choose s such that s(OA)= OE’ S must be a homomorphism.
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A
b) TImage £ ¢ A: Let S,Pl,PQ: AxXA ——> A be sum,

first projection, and second projection. Now Ext!(G,A) is a
biadditive functor: Ext'(G,AxA) = Ext'(G,A)® Ext!(G,A) and
s*g = Pi"szE in Ext'(G,A). Therefore S'F = p’;'L; 8 p:jE_ for
the sheaves. The "Deep Result" stated earlier shows that E
is algebraically equivalent to zero, so E ¢ ﬁ.

A
¢c) Image £ = A. Let I be an invertible sheaf on A.

' gotten by removing

Let E be the "principal fibre space for Gm'
the zero section from the line bundle associated to F. TWe
must show that if F is algebraically equivalent to zero, then
E can be given the structure of an algebraic group so that

Gm > E > A is an extension.

Suppose F is algebraically equivalent to zero. As in
part (b) we have S°F = piF ) ij, so also s B= pr ] ij.

Consider the projection diagram S

E x =B > 5
VoL Y
A x A > A

’
v

we get a map ExE ———> p;(E) 8 bj(E), and composing with
S¥(B) —> T we get a map ExE —> E which defines the
required group structure. See Serre. sec. 15 for details.
The point of the last theorem is that we can consider
the autoduality A = Q‘as a duality between A and
Ext‘(A,Gm). The category of commutative group schemes of
finite type over k is an abelian category, so Exti(A,Gm) can
be defined for all i. If k is algebraically closed, then
Exti(A,Gm) =0 for 1 > 1., (See Ocrt [9], p.II.12-1). TUsing

i g , .
IS senliV SENSYE



these results and standard results on Gm, we can make the
following tables

Let f3C ——> Spec(k) = Y be the structure morphism. Thens

a2,

HO(C,& ) = k*; that is, .6 = G&
o TEmg my
R'£,6 =Pic C =4 & Z
< M
c
rRir & =0 if g > 1.
@ mC

The Exts of these groups into Gm are the followings

= . pxtd = ]
Hom (Gm,Gm) Z Ext»(@m,ﬁm) 0 if q > o.

Hom (%6 ) = € ; ExtX(Z, &) =0 if q > O.
Hom (A,E ) = 0; Ext'(A,6 )% A; Ext “a,e ) =0 if q > 1.

In other words, the same terms appear in the various Exts as
in the first variable. It is therefore reasonable to expect
that all of these facts sbould be combined in an isomorphism,
;n a suitable derived category, as folléwéhéééé‘ﬁartéhorne
[3] for derived categories):

RE.&n

L] o] 1
> R Hom (Rl%ﬁﬁ,Gm).

(G$ is the complex with Gm in dimension one and zeros else~

where). Section li below makes this viewpoint more precise

in a more general setting, e LT
V4
LR R S
3. Ideles. AT )

Let C be a complete smooth curve over k with function
field K = k(C).

Definition: The local idele group at a closed point
P of C is Ip= K*/(1+ ). (This is a slightly non-stadard

definition.) There is an exact sequence

Loprvpert VUL, &

R N A LA
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) OI'dv 3%
0 —> k(P)™ ——> IP ——P> 7 —> 0, where k(P)™ is the

multiplicative group of the residue class field of C at P.

Definition: The (global) idele group I of C is the restricted

direct product of the Ip’s with respect to the subgroups

k(P)*. In other words I c g[IP is the subgroup of vectors

(ab)’abe Ip’ %, € X(P) ¥ for all but a finite number of P,
There is a canonical injection

K¥ e I given by f —> (), where I is the image of

in Kﬁ/(l+ %wp). The relevant information can be collected

in a wonderful commutatlve squares

s U ‘
k" S G—— D_
.o it > I >D — = (Tate),
ok et ‘\‘,) \\ ‘L L
a > T > PicC
3 >

where all rows and columns are short exact sequences;
U = k(P)* is the group of "unit ideles"; D = divisor group
of C, De = divisors linearly equivalent to zero, and o is

(by definition) the idele class proup of C.

A Pairings
Suppose that v is any discrete valuation of K, with

valuation ring R maximal ideal Mw% and residue class

field Rv/ mo = k(v).

Definition: If f,g ejfﬁi define the local symbol

(f,g)v e k(v)% by (f,g)v = yresidue class of(~1)™ /g mod m,,
where m = v(£f), n = v (g). For proofs see Serre [10], Chap.

III, sec L.)



Easy Properties:

(1) (flfz,g)v = (fl,g)v'(fz,g)

(2) If'fis aunitinR , (f,g)_ = £ mod m_.
v v v

A

(3) (., )8 K¥%K ™ ——s k(v) " annihilates 1+#n,, giving
a pairing I, = Iv —> k(v)" uw (, )i R;'x R;'—~—> k(v)™

is the trivial pairing.

Main Formulagé4a e )

Suppose K ¢ K! is a finite algebraic extension, and
that v;,...,v; are the valuations of K! lying over v .
Suppose - ¢ K‘*, g € k¥, Then
(NK,/K(f),g)v = ﬂj; Nk‘(vi)/k(v)(f’g)vi’ where N denotes the
norm mapping.

Product Formula:s

If K = k(C), and f,g ¢ K*: then II (f,8), = 1.
peC P

(Proofs This follows easily from the above formula. One
checks the formula directly fog the projective line, and then
applies the Main Formula to the map gz C ——> [
k(R') < k(C).)

One defines a "global symbol" or pairing of the idele
group as follows:

If a,p eI, thenc¢a B> =11 N
P <Py =L k(@) la,p) . (The

factors are almost all 1), By (l.) above U ¢ I is self=-
orthogonal, so from the wonderful square we get a pairing
U x D —> k¥, By the product farmula, X* is self orthogonal,

so we also have a pairing K" x ¢ —> k™,
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Finally we note the following explicit consequence of
the product formulas
Suppose that d = zgviPi is any divisor on X. We define

f(a) = rENk(P )/kf(Pi)vi. Then if £ and g have disjoint
. 2

divisors (f) and (g), <f,g »= £((g))/s((£)),

) Chek dee LR L wly hes < broeus Ky o oF
Whence f( (g)) = g( (f)) i C e ¥ TTS Aol b Matee Aen R,
o ‘ . AY Tl 4 M e Mg k L (‘r‘/'v { brewo ot 4
VIR mn Y et < ;’\;, s AN w2 3 L PN L C - e em
1 . N . . .
- oy b sv 0T O E e Y e PR . .
o L. ZIdeles in the relative case. (The results of this section

-

and the next were worked out jointly with B. Mazur).

Let Y be a reduced noetherian scheme. Let f: X——> Y
be a projective morphism, flat, with fibres pure of dimension
one and free of embedded components.
(e.g. X =C, Y = 3pec k as in previous sections.)
Assume that feﬁ&
X —> Y is flat) assume H°(Xy,65( ) = k(y) for &ll y € Y.

r

= e§ universally, or equivalently (since

D4
Cunsecter ik trey We work in the category on X defined by the Zariski

Y& y-, <dued . topology on X x Y! where Y! —> Y is any covering of finite
Y

W L Tovisl., ol
. t N ] n ]
Moo ) on type with Y! reduced. Alternatively, an "open set of X is
AN a pair (Y?,U!), where Y! —> Y is of finite type and reduced,
Lpca, o S . . s A .
peas puws Y w0 gnd U is Zapiski-open in X! = X x Y'. We consider functors
M‘ o A A Sprvan . . Y .
Ve on this category which are sheaves for some appropriate
€ Fofa

topology (éfale or smooth, say . These two are in fact
Sheave, by -
Chie thy, /Yy equivalent).

Definition: The (6étale) sheaf of relative rational functions

on X/¥ is given by R¥(U') = {g|g is a rational function on
X'; and there is an open subset V c U! such that g e Gm(V)

and V N U‘y is dense in U'y for all y & Y'}.
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Suppose x € X, so that f(x) is its image in Y.

Suppose Pl,Pz,...,P” are the generic points of the components

of the fibre Xf(x) which pass through x. Then the stalk of

o

3% 3 r e
R at x (for the Zariski topology) is RZ =.n &, .
X 1=4 }\, Pi
Roughly speaking, R¥ is the sheaf of functions on X

whose divisors contain no components of fibres of the map

f: X =—> Y. =

XH o i
In other words, the i ”\»~”“Mj= divisor
S =iy of
divisor of a function { ~L (¥ &
o% 3 f
g ¢ R~ should be "horizontal'. v v

¥
Definition: The sheaf D of horizontal Cartier divisors of

X/Y is defined as the cokernel of & ——> R¥, so that the

sequence 0 ——> @ ——> RY ==——> D ——> 0 is exact.

Proposition: The following sequence of étale sheaves on Y

is exacty 77T Y bl i)
JGimy
0O > f @ —=——>fR" —>fD —>RIFTE ~—>0
P my w w5 ¢ Mo
= £
By definition, R'f & = Pic(X/¥), the "relative Picard
T X

functor.”

e define the complex P° = {0 ~—>P°% —> P! —> 0} by
P* = {0 —> fiﬁie——> £D—>0 }, and we consider P' as an
object of the derived category of the»category of abelian
étale sheaves on Y. (See Hartshorne [3], Chapter I). Let
ﬁfﬁ@m denote the object of the derived category gotten by
truncating Rfﬁﬁm above dimension 1. Then (almost by

definition) we have P" ~ Rf,& .
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Definitions If x is a point of X}, the local relative idele

group 1is
- ¥/
I.'X = RX/ (1+ Iﬂx)
We have an exact sequence for every x:
0 —> k(x) " —> I, —>D,—>0 ,
where DX is the stalk at x of the sheaf of relative Cartier

divisors.

Definition: The sheaf of relative unit ideles is defined

by U(V) = ]1 k(x) ™ for every open set V c X?,
xeV

Note that U(V) ¢ |l I_. we also have R¥(v) ¢ [l 1.
xev * xev

Definition: The sheaf %K‘Of relative ideles is the subsheaf

of F[Ix generated by R*'and U.
X

As in Section 3 we have a commutative square (this time
3

of sheaves)X ) :

. ({Tm s > R ——> :ID ¢
J« v Wl
T —_— IX —> D
vo_b

4
where all rows and columns are exact and & is by definition

the sheaf of relative, idele classes on X/Y.

- s Fvby g Lanha ke n‘-gel.,.,,r vty gt

Lemma: U is acyclic for f: X ——> Y. Hence the sequence

G, > U > (»» gives an exact sequence

-

0 —> & —> [ U—>f (5 —> Pic(X/¥) —> O,

Nt

We define the complex U' = {0 —> y° —> yg! —> 0}
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to be {0 —> f U —==—> f C ——> 0}, Just as with P; we have

U* = Rf & , so that U’ ~ P' in the derived category of sheaves

on Y.

Some Auxiliary Sheaves on Y.

Consider the sequence
0 —> & ¥ —> G° —> G! —> 0, of sheaves on Y, where
G° = sheaf of unit ideles, G°(Y!) = f[’ k(y") ™, and G!
= sheaf of idele classes which is by nginition G°/Gm.
Define f I, = I. We want to define a pairing I x I —> G°
as follows: Suppose a,Bel. It will suffice to restrict a,p
to sach fiber Xy and define a pairing there. Urite

Xy = :2; Vici (as a cycle on X), where Ci is an irreducible

1=1 PR RO L PR

curve. Here vy denotes the length of the local ring Qk oh o

M) ci
of Xy at the generic point Ci of Ci' There is a pairing
< s> 5 OB Ci by the previous work on curves. We define

<a’6>y=.H<ai’Bi>i ’

where now &i is the restriction of a to Ci' We glue these
local pairing together to get a sheai map I x I ——> G° ,
Since the local unit ideles and rational functions are self;
orthogonal (see Section 3), I x I ——> G° gives pairings

U°% x P! —> g% and

U' x P° —~—> G°,

These pairings give a commutative diagram

7.0 —> Hom (P!,G°)

o

U! —> Hom (P°,G°) .

AN

H
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Some notation: Define a bicomplex by
_H__o_‘n_l'p"q(P',G'l) = Hom (P‘P’GQ"l)
(Note the sign changeAin P and the diménsion shift in G.)
Let Hom’(P*,G"*) be the associated total complex. The

bicomplex looké like

0 1 2
0 0 (P°,G°) (p°,at)
-1 0 (Pt,G°) (P?,G!)

and the assoclated total complex is

Hom (P?!,G°)

Hom°(P*,G**)
Hom™(P*,G**) = Hom (P°%G°) ® Hom (P',G*)
(We negléot ﬁgﬁé.) The boundary operator is
d = Hom (dp.,Go) ® Hom (P!,d,.) where dp. and d,. are boundary
operators for P° and G° . We have already defined maps
U° —> Hom (P?,G°) and U* —> Hom (P°%G°% . We want a map
U* —> Hom"(P*,G"*) of comple%es, so we need a map

Ut 2> Honm (P!',G') and a commutative diagram

W e e ) U° —> Hom(P',G°)
. ' | |
7 ¥ \(/ _ \l/ <3 -5 I_'I_O_IB( P, dG. )
‘ff",‘“‘("'" Crr o RN

U! —> Hom(P*,G?)

Suppose for a moment that we have constructed the
required map, so that we have a map of complexes
U® —> Hom"(P°,G"*). There is always given a map

Hom"(P*,G"%) ~—> R Hom (P°,G"?) (in the derived category),
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we have

U® ~RfG, P'SRIC

i

, and G°* % c}ml={o ~>0 =>¢_—> 0}

(all complexes truncated at dimension two). Therefore:

Theorem., There exists a map

Rf & ——> E;Eﬂm.(Rf*Gm’Gé)’ of complexes truncated at
dimension two. In particular, there exists a map
Pic(X/¥) —> Ext*(Pic(X/Y),& ) which reduces to the auto-
duality for a cur%e if Y = Spec k.
Remarkss 1. The truncations at dimension two are possibly
superfluous. In any case, Rfﬁ@m is probably acyclic in
dimension > 1, but this has not been proved.

2. The "in particular" part of the theorem
follows in two steps. First the map in the derived category
gives the map

Pic(X/Y) —> EEE'(EEE(X/Y)’Gm) by general nonsense
in derived category theory. Then in the case Y = Spec k
this map of (representable) functors gives a map of schemes
A —> Ext'(A,Gm). To check that this is the same map as
the one in Section 1, it suffices to check this on torsion
points of A, and this can bg done using known explicit
formulas of Weil (cf. Weil [11], Lang [5]).

3. The map Pic X/Y — Ext® need not be an
isomorphism, even on the connected comﬁonent of Pic, when
the fibres of X/Y are singular. However, we will see an
Important case 1in the next section where 1t is an

isomorphism.
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Finally, we sketch the construction of the map
Ut —> Hom (P',G'). Actually we get a map y' x P' —G?,
or (idele classes on X) x (divisors on X) ——> (idele classes
on Y).

Suppose & 1s an ldele on X, d a divisor on X. Suppose
xeX, and suppose g is a local equation for 4 at x. If g is
regular at x, define
/éx(d) = dimk(x)(ei 'é)’ where y = f(x), Xy is the fibre,
and g is the restriction of g to Xy.

Suppose a 1s a unit idele at x, that is, akek(x)* .
Then set
(d)

and

- F
Uy = M2 fusy) % X

@. =1  «a e x(y)*
Wy 1(x)=y *

when these definitions are possible.

We have now defined a map (a,d) —> a(d) under certain
special condition on a and d. This map can actually be
extended to give the desired pairing U! x P! —> G!. That
is given an idele class a and a divisor d, one can choose a
good idele representative a and map (a,d) ——> image of

a(d) in G!', We omit the details.

5. Applications.

Suppose Y is a regular one-dimensional scheme, X is a
regular two dimensional scheme and f: X—> Y has one

dimensional fibers. We also assume that the generic fibre
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is a non~singular curve with rational point. The basic
example is gotten as follows (Kodaira [l], Lichtenbaum [6],
Neron [8]):

Let C be a complete non~singular curve over the field K,
and let K = k(Y) be an algebraic function field in one
variable with constant field k. Let X be a minimal non~
singular model for the field K(C) over k. Then X is a
surface and the field inclusion K ¢ K(C) induces a projection
fs X —> Y., 1In Kodaira's examples C is an elliptic curve,
and at a point y ¢ Y where C has "good reduction" the fiber
Xy is just the reduced curve. If C has bad reduction at
y', the Xy can be an elaborate concatenation of rational
curves.

Let f: X——> Y be any morphism satisfying the conditions
above, and let C be the generic fiber, Let A be the Jacobian
of C. Then there exists a canonical "best" group scheme
N(A) ——> Y (the Neron minimal model). The following pro;
position describes Pic(X/Y).

Proposition: ZLet Pic®(X/¥) = {those invertible sheaves

which have degree O on the generic fiber} so that

Pic(X/Y) = Pic®(X/Y) @ Z. Then there is a sequence of group

functors (and of group schemes /Y if the residue fields are

separately closed) 0 ——> A —> Pic®(X/Y) —> N(A) —> O,

A is concentrated on the fibers of X over degenerate points

of y, and if a finitely generated group at each of those.
The general auto;duality theorem gives a map

¢t Pic(X/Y) ——> Ext'(Pic°(X/Y),Gm).
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Theorem? ¢ is an isomorphism for sheaves in the smooth
topology over Y.

The proof uses explicit descriptions of Yoneda exten-
sions and explicit formulas for pairings.

Open Questionss Show that in a suitable context

Extq(Pic°(X/Y),G}m) =0 (g > 1) or that Extq(N(A),Gm) =0
(q > 1).

As a final application let 0 be the ring of integers
of an algebraic number field K, and let ¥ = Spec ©. Let C
be a curve of genus g > 0 defined over K which has a point
rational over K. Then there exists a non~singular proper
model for C. That is, there is a 2;dimensional regular
scheme X and a proper morphism f3 X --—> Y with C as generic
fiber. Furthermore X is uniquely determined if there are no
"exceptional curves" on X (Lichtenbaum [6]) .

Class field theory can be interpreted as the statement
that ¥ is a "cghomological 3-manifold". (See ArtinQVerdier
[1], or Mazur [7]). Therefore X should be a "cohomological

S-manifold." Using the autoduality, one obtains

Theorenm (Artin:Mazur): Let p = n-th roots of unity, with
(2,n) =1 or X totally imaginary. Then there is a pairing
HP(X,u) X Hi;?(X,p) —_— HS(X,mm) = @©/Z which is a perfect
duality, wheée the cohomology is taken with respect to the flat

topologies on X and Y.

'i/i,_»_‘(%(; St ?{1 v - ;;,{,Ca ,/. ,%L..v»‘/\;\ /{4& (g Ay ]L:r RNy

éu/;hv*‘--.w};) :’i "21'(7} - - hoop Pltes free, L e A, g

1 N o 3y .
R W7 P (A ) >ONNY ) v iy
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