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Abstract

These notes are a guide to algebraic groups, especially reductive groups, over a
field. Proofs are usually omitted or only sketched. The only prerequisite is a basic
knowledge of commutative algebra and the language of modern algebraic geometry.
My goal in these notes is to write a modern successor to the review articles Springer
1979, 1994.

Caution: These notes will be revised without warning (the numbering may change).
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Introduction
The study of algebraic groups, regarded as groups of matrices, is almost as old as group theory
itself. The group PGL2.Fp/ occurs already in the work of Galois. The classical algebraic
groups (special linear, orthogonal, symplectic) over a general field were introduced by Jordan
in the 1860s. The study of the structure of these groups, for example, the determination of
their normal subgroups, was pursued by Dickson (c. 1910) and Dieudonné (c. 1950).

Linear algebraic groups1 over the complex numbers appear in the work of Picard around
1885. To a homogeneous linear differential equation, he attached an algebraic group (its
“Galois group”) with the aim of developing a Galois theory of such equations. According
to Springer (1994, p. 5), Picard seems to have been the first to use a name like “algebraic
group”.

Picard’s “Galois theory” was made algebraic and extended by Ritt (c. 1930) and Kolchin
(c. 1950). In preparation for his study of differential algebraic groups, Kolchin developed
some of the basic theory of linear alebraic groups, for example, the properties of the identity
component, and he proved that connected solvable algebraic groups over algebraically closed
fields are trigonalizable (Lie-Kolchin theorem).

From another direction, the interest of number theorists in quadratic forms led to the
study of the arithmetic theory of algebraic groups (Gauss, Eisenstein, Dirichlet, Hermite,
H.J.S. Smith, Minkowski, . . . , Siegel). Langlands (2005, p. 3) wrote: to Siegel we owe, more
than any other mathematician, the present overwhelming importance of algebraic groups in
number theory.

In the 1940s, Weil developed the theory of abelian varieties over an arbitrary field, and
in the 1950s he proved some of the basic facts concerning the quotients of linear algebraic
groups and the extension of birational group laws to algebraic groups.

In the 1950s Chevalley became interested in algebraic groups as a link between complex
Lie algebras and finite groups. In a fundamental paper, Chevalley (1955) constructed, for
each simple Lie algebra over C, a corresponding linear group over any field k. By taking k
to be finite, he obtained several families of finite simple groups, some new.

Using the methods of algebraic geometry, Borel (1956) proved his fixed point theorem
and thereby obtained his important results on the solvable subgroups of algebraic groups.
These methods were further developed in the famous Paris seminar 1956–58 organized by
Chevalley.

A central problem in the subject is the classification of the simple algebraic groups.
The similar problem for Lie groups was solved by Killing and Cartan: the classification of
simple complex Lie groups is the same as that of simple complex Lie algebras, and Killing
and Cartan showed that, in addition to the classical simple Lie algebras, there are only
five exceptional algebras E6, E7, E8, F4, G2. As all semisimple complex Lie groups are
algebraic, the classification of simple algebraic groups over C is the same as that of the

1A linear group is a group of linear transformations of some finite-dimensional vector space over a field
(possibly noncommutative). A linear algebraic group is an algebraic group over a field that can be realized as
an algebraic subgroup of GLV for some finite-dimensional vector space V . An algebraic group is linear if and
only if it is affine. Thus, “linear algebraic group” and “affine algebraic group” are synonyms.
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simple Lie algebras. This solves the classification problem over C. Borel’s proof of his
fixed point theorem enabled Chevalley to extend some of his earlier work and prove that the
classification of simple algebraic groups over an algebraically closed field is independent
of the field. For fields of nonzero characteristic, this was surprising because the similar
statement for Lie algebras is false. Chevalley went further, and showed that for split groups,
i.e., those containing a split maximal torus, the classification is independent of the base field,
algebraically closed or not, and even applies over Z. In his 1965 thesis, Grothendieck’s
student Demazure showed that Chevalley’s classification theory extended in an entirely
satisfactory way to split reductive group schemes over arbitrary base schemes. In a single
remarkable decade, the subject of algebraic groups had gone from one in which many of its
main results had been proved only for algebraic groups over C to one that had achieved a
certain maturity as the study of group schemes over arbitrary bases.

Most of this work is documented in the published notes of seminars in the Paris region.
The first of these is Séminaire “Sophus Lie” (1954–56), organized by Cartier, which devel-
oped (in improved form) the Killing-Cartan theory of real and complex Lie algebras. The
second is Séminaire Chevalley (1956–58), organized by Chevalley, which explained Borel’s
work on unipotent subgroups and his own work on the classification of simple algebraic
groups over algebraically closed fields. Chevalley sketched the extension of his theory to
split groups over arbitrary field (and even Z) in a 1961 Bourbaki seminar. Finally, in 1962–64
Grothendieck and Demazure organized a seminar on group schemes at IHES, which is now
referred to as SGA 3. The first two-thirds of the seminar is a comprehensive exposition of
the theory of group schemes over an arbitrary base scheme, and the final third is a detailed
exposition by Demazure of his results on reductive group schemes over an arbitrary base
scheme.

At this point the theory over fields was complete only for reductive groups, not pseudo-
reductive groups (over perfect fields, the two are the same). This lacuna was filled by the
book of Conrad, Gabber, and Prasad (2010, 2015), which completes earlier work of Borel
and Tits.

In the meantime, in a seminar at IAS in 1959–60, Weil had re-expressed some of Siegel’s
work in terms of adèles and algebraic groups, and Langlands (in the 1960s) had found in the
Borel-Chevalley theory of reductive groups the tool he needed to state his famous conjectures
on automorphic representations.

Conventions and notation
Throughout, k is a field and R is a finitely generated k-algebra (thus, “for all k-algebras R”
means “for all finitely generated k-algebras R”). All k-algebras and R-algebras are required
to be commutative and finitely generated unless it is specified otherwise. Unadorned tensor
products are over k. An extension of k is a field containing k, and a separable extension
is a separable algebraic extension. When V is a vector space over k, we sometimes write
VR or V.R/ for V ˝R, and, for v 2 V , we let vR D v˝1 2 VR. The symbol ka denotes an
algebraic closure of k and ks (resp. ki ) denotes the separable (resp. perfect) closure of k in
ka. The group of invertible elements of a ring R is denoted by R�.

By X � Y we mean that X is a subset of Y (not necessarily proper). Between “equality”
(denotedD) and “isomorphic” (denoted �) there lies another relation, closer to the former
than the latter, namely, “isomorphic with a given isomorphism”, which we denote by '.
Words in bold-italic are being defined.
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In contrast to much of the literature on algebraic groups, we use the terminology of
modern (post 1960) algebraic geometry. For example, for algebraic groups over a field k; a
homomorphism is automatically defined over k, not over some large algebraically closed
field. All constructions are to be understood as being in the sense of schemes. For example,
fibres of maps of algebraic varieties need not be reduced, and the kernel of a homomorphism
of smooth algebraic groups need not be smooth.

Throughout the notes, “algebraic group over k” means “affine algebraic group over k”,
i.e., “affine group scheme of finite type over k”. When the base field k is understood, we
omit it, and write “algebraic group” for “algebraic group over k”.

Prerequisites
A knowledge of basic commutative algebra, for example, the first fifteen sections of my
notes A Primer of Commutative Algebra, and the basic language of algebraic geometry.

References
We use the following abbreviations.
B J.S. Milne, Algebraic Groups. CUP 2017.
Bourbaki LIE Bourbaki LIE.
CA J.S. Milne, A Primer of Commutative Algebra, 2017 (my website)
CGP B. Conrad, O. Gabber, and G. Prasad, Pseudo-reductive Groups. CUP 2015.
monnnn Question nnnn on mathoverflow.net.

Other references are listed by author-year. Full references can be found in the bibliog-
raphy of B or by searching the web. I sometimes refer to other of my notes just by their
titles.

1 Review of algebraic schemes over a field
We let Algk denote the category of finitely generated k-algebras and Set the category of sets.
An algebraic group is a group object in the category opposite to Algk . This description is
not convenient, and so we develop two geometric interpretations of this opposite category:
representable functors and affine algebraic schemes.

Algebraic schemes
We assume that the reader is familiar with the Yoneda lemma (Wikipedia).

1.1. A k-algebra A defines a functor

hAWAlgk! Set; R Hom.A;R/.

Functors isomorphic to hA for some finitely generated A are said to be representable. For
example, if AD kŒT1; : : : ;Tn�=.f1; : : : ;fm/, then

hA.R/D f.a1; : : : ;an/ 2R
n
j fi .a1; : : : ;am/D 0; i D 1; : : : ;ng:
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To say that F WAlgk!Set is representable byAmeans that there exists a “universal” element
a 2 F.A/ such that, for every k-algebra R and x 2 F.R/, there is a unique homomorphism
A!R with the property that F.A/! F.R/ sends a to x.

A homomorphism A! B of k-algebras defines a natural transformation hB ! hA, and
according to the Yoneda lemma,

Hom.A;B/' Nat.hB ;hA/:

Thus, the category of representable functors Algk! Set is locally small, and A hA is a
contravariant equivalence from Algk to this category.

Let F be a functor Algk ! Set, and let A1 be the functor sending a k-algebra R to
its underlying set (so A1 ' hkŒT �). Then B def

D Nat.A1;F / has a natural structure of a
k-algebra,2 and hB ' F . Thus, F is representable if and only if B is finitely generated.

1.2. For a k-algebra A, we let spm.A/ denote the set of maximal ideals in A endowed with
its Zariski topology, and we let Spm.A/ denote spm.A/ endowed with its natural sheaf of
k-algebras (CA �15).

1.3. An algebraic scheme X over k is a scheme of finite type over k. In other words, X is
a finite union of open schemes of the form Spm.A/ with A a finitely generated k-algebra.
By a “point” of an algebraic scheme over k we always mean a closed point. For an algebraic
scheme .X;OX / over k, we often letX denote the scheme and jX j the underlying topological
space of closed points. We use zX , or just X , to denote the functor R X.R/WAlgk! Set.
For a locally closed subset Z of jX j, the (unique) reduced subscheme of X with underlying
spaceZ is denoted byZred. The residue field at a point x ofX is denoted by �.x/. When the
base field k is understood, we omit it, and write “algebraic scheme” for “algebraic scheme
over k”. Unadorned products of algebraic k-schemes are over Spm.k/.

Algebraic varieties
1.4. Recall that a ring is said to be reduced if it has no nonzero nilpotent elements. An

affine k-algebra is a finitely generated k-algebra A such that A˝ka is reduced. If A is an
affine k-algebra and B is a reduced k-algebra, then A˝B is reduced. In particular, A˝K
is reduced for every field K containing k. The tensor product of two affine k-algebras is
affine. If k is perfect, then every reduced k-algebra is affine.

1.5. Recall that an algebraic scheme X over k is geometrically reduced if Xka is reduced,
and it is separated if the diagonal in X �X is closed. An algebraic scheme is an algebraic
variety if it is geometrically reduced and separated. Therefore, an affine algebraic scheme
X over k is an algebraic variety if and only if OX .X/ is an affine k-algebra. From 1.4 we
see that products of varieties are varieties, a variety remains a variety under extension of the
base field, and, when k is perfect, all reduced separated algebraic schemes are varieties.

2This is not quite correct: Nat.A1;F / need not be a set, i.e., it may be a proper class. Strictly speaking, we
should be considering only functors of k-algebras that are “small” in some sense. In these notes, we ignore such
questions, which are not serious in our setting.
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Smoothness
1.6. Let X be an algebraic scheme over k. For x 2 jX j, we have

dim.OX;x/� dim.mx=m2x/.

Here mx is the maximal ideal in the local ring OX;x , the “dim” at left is the Krull dimension,
and the “dim” at right is the dimension as a �.x/-vector space (see CA �22). When equality
holds, the point x is said to be regular. A scheme X is regular if x is regular for all x 2 jX j.

1.7. It is possible for X to be regular without Xka being regular. To remedy this, we need
a stronger notion. Let kŒ"� be the k-algebra generated by an element " with "2 D 0. From
the homomorphism " 7! 0, we get a map X.kŒ"�/!X.k/, and we define the tangent space
Tgtx.X/ at a point x 2X.k/ to be the fibre of this map over x. Then

Tgtx.X/' Homk-linear.mx=m
2
x;k/;

and so dimTgtx.X/� dim.OX;x/. When equality holds, the point is said to be smooth. The
formation of the tangent space commutes with extension of the base field, and so a point
x 2X.k/ is smooth on X if and only if it is smooth on Xka . An algebraic scheme X over an
algebraically closed field k is said to be smooth if all x 2 jX j are smooth, and an algebraic
scheme X over an arbitrary field k is said to be smooth if Xka is smooth. Smooth schemes
are regular, and the converse is true in characteristic zero.

Alternatively, let˝X=k be the sheaf of differentials onX , and let˝X=k.x/D˝X=k˝OX
�.x/ for x 2 jX j. Then dim�.x/˝X=k.x/� dim.OX;x/. When equality holds, x is said to
be smooth. When x 2 X.k/, the k-vector spaces ˝X=k.x/ and Tgtx.X/ are dual, and so
this agrees with the previous definition. The scheme X is smooth if and only if every point
x 2 jX j is smooth.

The points of an algebraic scheme

1.8. Let X be an algebraic scheme over k. For each x 2 jX j, �.x/ def
DOX;x=mx is a finite

field extension of k. To give an element of X.K/, where K is a field containing k, amounts
to giving a point x 2 jX j and a k-homomorphism �.x/! K. This allows us to identify
X.k/ with the set of x in jX j such that �.x/ D k. In particular, when k is algebraically
closed, we can identify X.k/ with jX j. The group Aut.ka=k/ acts on X.ka/' jXka j, and
the natural map jXka j ! jX j of topological spaces is a quotient map whose fibres are the
orbits of Aut.ka=k/.

1.9. Let X be an algebraic scheme over k. The following conditions on a subset S of
X.k/� jX j are equivalent:

(a) the only closed subscheme Z of X such that S �Z.k/ is X itself;
(b) a k-morphism uWX ! Y with Y a separated algebraic scheme over k is determined

by the map s 7! u.s/WS ! Y.k/;
(c) a section f of OX over an open subset U of X is determined by its values f .s/ 2

�.s/D k for s 2 U.k/\S ;
(d) X is reduced and S is dense in jX j.

A subset S satisfying these conditions is said to be dense inX as a scheme or schematically
dense in X . See B, Section 1a.
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1.10. A schematically dense subset remains schematically dense under extension of the
base field (because the condition (c) remains true). Therefore, if X admits a schematically
dense subset, then it is geometrically reduced. See B 1.11.

1.11. If X is geometrically reduced and k is separably closed, then X.k/ is sehematically
dense in X (B 1.17).

Étale schemes
1.12. A k-algebra A is diagonalizable if it is isomorphic to the product algebra kn for

some n 2 N, and it is étale if A˝k0 is diagonalizable for some field k0 containing k. In
particular, an étale k-algebra is a finite k-algebra.

1.13. A k-algebra kŒT �=.f .T // is étale if and only if the polynomial f .T / is separable,
i.e., has distinct roots in ka. Every étale k-algebra is a finite product of such algebras.

1.14. The following conditions on a k-algebra A are equivalent: (a) A is étale; (b) A˝ks

is diagonalizable; (c) A is a finite product of finite separable field extensions of k; (d) A is
finite over k and A˝k0 is reduced for all fields k0 containing k (Fields and Galois Theory,
Chap. 8).

1.15. The following conditions on an algebraic scheme X over k are equivalent: (a) X
is affine and O.X/ is an étale k-algebra; (b) X is an algebraic variety over k of dimension
zero; (c) the space jX j is discrete and the local rings OX;x for x 2 jX j are finite separable
field extensions of k; (d) X is finite and geometrically reduced over k; (e) X is finite and
smooth over k. A scheme X over k satisfying these conditions is said to be étale.

1.16. Fix a separable closure ks of k, and let � DGal.ks=k). The functorX X.ks/ is an
equivalence from the category of étale schemes over k to the category of finite discrete � -sets.
This is an easy consequence of standard Galois theory (Fields and Galois Theory, Chap. 8).
By a discrete � -set we mean a set X equipped with a continuous action � �X !X of �
(Krull topology on � ; discrete topology on X). An action of � on a finite discrete set is
continuous if and only if it factors through Gal.K=k/ for some finite Galois extension K of
k contained in ks.

Connected components
1.17. Let X be an algebraic k-scheme which, for simplicity, we assume to be affine. The

composite of all étale k-subalgebras of O.X/ is again an étale algebra, which we denote by
�.X/. Let �0.X/D Spm.�.X//. The fibres of X ! �0.X/ are the connected components
of X . The formation of the morphism X ! �0.X/ commutes with extension of the base
field, and �0.X �Y /' �0.X/��0.Y /. See B 1.29, 1.30.

1.18. Let X be an affine algebraic scheme over k. Elements of X.k/ correspond to
k-algebra homomorphisms O.X/! k, and so �.X/ has k as a direct factor if X.k/ is
nonempty. If X is connected and X.k/ is nonempty, then �.X/D k, and so X is geometri-
cally connected.
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Schemes and ultraschemes (for scheme theorists)
1.19. In the language of EGA, we are ignoring the nonclosed points in our algebraic

schcmes.3 In other words, we are working with ultraschemes rather than schemes (EGA
I, Appendice). Readers unfamiliar with max specs should convince themselves that this is
harmless by proving the following statements.

(a) Let X be an algebraic scheme over k in the sense of EGA, and let X0 be the set of
closed points. The map S 7! S \X0 is an isomorphism from the lattice of closed
(resp. open, constructible) subsets of X onto the lattice of similar subsets of X0. In
particular, X is connected if and only if X0 is connected. To recover X from X0,
add a point z for each irreducible closed subset Z of X0 not already a point; the
point z lies in an open subset U if and only if U \Z is nonempty. Thus the ringed
spaces .X;OX / and .X0;OX jX0/ have the same lattice of open subsets and the same
k-algebra for each open subset; they differ only in the underlying sets.

(b) Let X be an algebraic scheme over k in the sense of EGA. Then X is normal (resp.
regular) if and only if OX;x is a normal (resp. regular) for all closed points x of X .
Moreover, X is smooth over k, i.e., the morphism Spec.X/! Spec.k/ is smooth, if
and only if Xka is regular, which again is a condition on the closed points.

(c) Morphisms of algebraic schemes over k map closed points to closed points. The
functor .X;OX /! .X0;OX jX0/ is an equivalence from the category of algebraic
schemes over k to the category of ultraschemes over k.

(d) Let 'WX ! Y be a morphism of algebraic schemes over k in the sense of EGA. Then
˘ ' is surjective if and only if it is surjective on closed points;
˘ ' is quasi-finite if and only if '�1.y/ is finite for all closed points y of Y ;
˘ ' is flat if and only if OY;'.x/!OX;x is flat for all closed points x of X ;
˘ ' is smooth if and only if it is flat and all its closed fibres are smooth.

2 Algebraic groups over a field; geometric properties

Definition
Recall that a group is a set G together with an associative binary operation mWG�G!G

for which there exists a neutral element and inverse elements. The neutral element and the
inverses are uniquely determined by m.

2.1. Let G be an affine algebraic scheme over k and mWG�G!G a k-morphism. The
pair .G;m/ is an algebraic group if .G.R/;m.R// is a group for all R in Algk . Then
R .G.R/;m.R// is a functor to groups. In particular, there is a natural transformation
� ! G, where � D hk , sending the unique element of �.R/ to the neutral element of
G.R/, and a natural transformation invWG!G sending an element of G.R/ to its inverse.
According to the Yoneda lemma, these natural transformations arise from unique morphisms
of schemes over k. It follows that a pair .G;m/ is an algebraic group over k if and only if
there exist (unique) morphisms

eW� !G; invWG!G; .� D Spm.k//;

3This is customary when working over a field. See, for example, Mumford 1970, p. 89.
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such that the following diagrams commute:

G�G�G G�G

G�G G

m�id

id�m

m

m

��G G�G G��

G

e�id

'
m

id�e

'

(1)

G G�G G

� G �

.inv;id/

m

.id;inv/

e e

(2)

A homomorphism .G;mG/! .H;mH / of algebraic groups is a morphism 'WG!H such
that ' ımG DmH ı .'�'/.

2.2. Let A be a k-algebra and �WA! A˝A a homomorphism of k-algebras. A pair of
k-algebra homomorphisms f1;f2WA!R defines a homomorphism

.f1;f2/WA˝A!R; .a1;a2/ 7! f1.a1/f2.a2/;

and we set f1 �f2 D .f1;f2/ı�. The pair .A;�/ is a Hopf algebra over k if .f1;f2/ 7!
f1 �f2 is a group structure on Hom.A;R/ for all R in Algk . By the Yoneda lemma, .A;�/
is a Hopf algebra if and only if there exist (unique) k-algebra homomorphisms

�WA! k; S WA! A;

such that

.id˝�/ı�D .�˝ id/ı�

.id; �/ı�D idD .�; id/ı�

.id;S/ı�D � D .S; id/ı�:

The homomorphisms �, �, and S are called the comultiplication map, the co-identity map,
and the antipode (or inversion) respectively.

2.3. Let A be a finitely generated k-algebra, and let G D Spm.A/. A homomorphism
�WA! A˝A defines a morphism mWG�G!G,

G�G ' Spm.A˝A/
Spm.�/
�! Spm.A/DG:

Now �$m is a one-to-one correspondence between the Hopf algebra structures on A and
the algebraic group structures on G.

Homogeneity
2.4. Let G be an algebraic group over k, and let a 2G.k/. The maps

x 7! axWG.R/!G.R/

are functorial in the k-algebra R, and so they arise from a morphism laWG!G, called left
translation by a. Clearly la ı lb D lab . As le D id, we have la ı la�1 D idD la�1 ı la, and
so la is an isomorphism. If b;c 2 G.k/, then left translation by cb�1 is an isomorphism
G ! G sending b to c. In particular, OG;b ' OG;c (local rings at b and c). When k is
algebraically closed, this means that OG;b 'OG;c for all b;c 2 jGj.
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Dimension
2.5. The dimension of an algebraic group G is the Krull dimension of the local ring OG;e .

This does not change under extension of the base field, and so, because of 2.4, it equals the
Krull dimension of OG;a for all a 2 jGj. When G is smooth and connected, its dimension is
the transcendence degree over k of the field of fractions k.G/ of O.G/.

Connectedness
2.6. The following conditions on an algebraic group G over k are equivalent:

(a) G is irreducible (i.e., jGj is not the union of two proper closed subsets);
(b) the quotient of O.G/ by its nilradical is an integral domain;
(c) G is connected (i.e., jGj is not the union of two proper disjoint closed subsets);
(d) G is geometrically connected (i.e., Gka is connected).

The equivalence of (a) and (b) is true for all affine algebraic schemes over a field, and the
equivalence of (c) and (d) is true for all algebraic schemes X over k such that X.k/ is
nonempty (1.18). That (a) implies (c) is trivial; for the converse, if G were not irreducible,
then some point would lie on more than one irreducible component, and so all would (by
homogeneity 2.4), which is impossible.

2.7. For an algebraic group G over k, we let Gı denote the connected component of G
containing the neutral element, and we call it the neutral (or identity) componentof G. It is
an algebraic subgroup of G, and, according to (2.6), it is geometrically connected.

Smoothness
2.8. The following conditions on an algebraic group G over k are equivalent:

(a) G is smooth;
(b) the point e is smooth on GI
(c) the local ring OG;e is regular;
(d) G is geometrically reduced.

The equivalence of (b) and (c) follows from the definitions (1.6, 1.7). That (a) implies (b)
is follows from the definitions, and the converse is proved by passing to the algebraic closure
of k and applying homogeneity (2.4). That (a) implies (d) is obvious, and the converse
follows from the homogeneity of Gka because every nonempty variety over an algebraically
closed field has a smooth point.

Therefore the group varieties over k are exactly the smooth algebraic groups over k:

“group variety”D “smooth algebraic group”:

2.9 (CARTIER’S THEOREM). Every algebraic group over a field k of characteristic zero is
smooth (B 3.23).

3 Examples of algebraic groups
To give an algebraic group over k is the same as giving a functor from Algk to groups whose
underlying functor to sets is representable.
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3.1. The additive group Ga is the functorR .R;C/. It is represented by O.Ga/D kŒT �,
and the universal element in Ga.kŒT �/ is T : for every k-algebra R and x 2Ga.R/, there is
a unique homomorphism kŒT �!R with the property that Ga.kŒT �/!Ga.R/ sends T to
r . The comultiplication map is the k-algebra homomorphism �WkŒT �! kŒT �˝kŒT � such
that

�.T /D T ˝1C1˝T:

3.2. The multiplicative group Gm is the functorR .R�; �/. It is represented by O.Gm/D
kŒT;T �1�� k.T /, and the comultiplication map is the k-algebra homomorphism � such
that

�.T /D T ˝T:

3.3. Let .F;m/ be a finite group, and let Fk be a disjoint union of copies of Spm.k/
indexed by F . Then Fk is a scheme such that jFkj D F , and there is a unique morphism
mk WFk �Fk! Fk such that jmkj Dm. The pair .Fk;mk/ is the constant algebraic group
attached to F . It represents the functor

R Hom.�0;F / (maps of sets)

where �0 is the set of connected components of spm.R/. In particular, Fk.R/D F if R has
no idempotents¤ 0;1 (CA 14.2). The functor F  .F /k sending a finite abstract group to
the corresponding constant algebraic group over k is an equivalence of categories.

3.4. For an integer n � 1, �n is the functor R fr 2 R j rn D 1g. It is represented by
O.�n/D kŒT �=.T n�1/, and the comultiplication map is induced by that of Gm.

3.5. Let k have characteristic p ¤ 0, and let ˛pm be the functor R fr 2R j rpm D 0g.
Then ˛pm.R/ is a subgroup of .R;C/ because .xCy/p

m

D xp
m

Cyp
m

in characteristic
p. The functor is represented by O.˛pm/D kŒT �=.T p

m

/, and the comultiplication map is
induced by that of Ga. Note that

kŒT �=.T p
m

/D kŒT �=..T C1/p
m

�1/D kŒU �=.U p
m

�1/; U D T C1,

and so ˛pm and �pm are isomorphic as schemes (but not as algebraic groups).

3.6. For a k-vector space V , we let Va denote the functor R .V ˝R;C/. For a k-
vector spaceW , the symmetric algebra Sym.W / onW has the following universal property:
every k-linear map W ! A from W to a k-algebra A extends uniquely to a k-algebra
homomorphism Sym.W /! A. Assume that V is finite dimensional, and let V _ be its dual.
Then, for a k-algebra R,

V ˝R' Homk.V
_;R/ (homomorphisms of k-vector spaces)

' Homk.Sym.V _/;R/ (homomorphisms of k-algebras).

Therefore, Va is an algebraic group with O.Va/D Sym.V _/.
Let fe1; : : : ; eng be a basis for V and ff1; : : : ;fng the dual basis for V _. Then

Sym.V _/' kŒf1; : : : ;fn� (polynomial ring).

For this reason, Sym.V _/ is often called the ring of polynomial functions on V . The choice
of a basis for V determines an isomorphism Gna! Va.
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3.7. For integers m;n � 1, let Mm;n denote the functor sending R to the additive group
Mm;n.R/ of m�n matrices with entries in R. It is represented by kŒT11;T12; : : : ;Tmn�. For
a vector space V over k, we define EndV to be the functor

R End.VR/ (R-linear endomorphisms).

When V has finite dimension n, the choice of a basis for V determines an isomorphism
EndV !Mn;n, and so EndV is an algebraic group.

3.8. The general linear group GLn is the functor R GLn.R/ (group of invertible n�n
matrices with entries in R). It is represented by

O.GLn/D
kŒT11;T12; : : : ;Tnn;T �

.det.Tij /T �1/
D kŒT11;T12; : : : ;Tnn;1=det�;

and the universal element in GLn.kŒT11; : : :�/ is the matrix .Tij /1�i;j�n: for every k-algebra
R and .aij / 2 GLn.R/, there is a unique homomorphism kŒT11; : : :�!R with the property
that GLn.kŒT11; : : :�/! GLn.R/ sends .Tij / to .aij /. The comultiplication map is the
k-algebra homomorphism

�WkŒT11; : : :�! kŒT11; : : :�˝kŒT11; : : :�

such that
�Tij D

X
1�l�n

Til˝Tlj : (3)

Symbolically, the matrix .�Tij /D .Til/˝ .Tlj /.
More generally, for any vector space V over k, we define GLV to be the functor

R Aut.VR/ (R-linear automorphisms).

If V has finite dimension n, then the choice of a basis for V determines an isomorphism
GLV ! GLn, and GLV is an algebraic group.

The special linear groups SLn and SLV are the algebraic subgroups of GLn and GLV
of elements with determinant 1.

The projective linear group PGLn is the quotient of GLn by its centre Gm (see Section
4 for centres and quotients).

3.9. The following are algebraic subgroups of GLn:

TnWR f.aij / j aij D 0 for i > j g (upper triangular matrices)

UnWR f.aij / j aij D 0 for i > j , aij D 1 for i D j g

DnWR f.aij / j aij D 0 for i ¤ j g (diagonal matrices).
�
� � � � � � �

� � �

: : :
: : :

0 � �

�

��
1 � � � � � �

1 � �

: : :
: : :

0 1 �

1

��
�

� 0
: : :

0 �

�

�

Tn Un Dn
For example, Un is represented by the quotient of kŒT11;T12; : : : ;Tnn� by the ideal generated
by the polynomials Tij .n� i > j � 1/ and Ti i �1 (n� i � 1).
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3.10. Let C 2 GLn.k/, and consider the group-valued functor

GWR fA 2 GLn.R/ j AtCAD C g

(At is the transpose of A). The condition AtCA D C is polynomial on the entries of A,
and so G is represented by a quotient of O.GLn/. Therefore it is an algebraic group. If
C D .cij /, then an element of GLn.R/ lies in G.R/ if and only if it preserves the form
�.Ex; Ey/D

P
cijxiyj on Rn. The following examples are especially important (they are the

split almost-simple classical groups).
(a) The subgroup SLn of GLn does not fit this pattern, but we include it here for reference.
(b) When char.k/¤ 2, the orthogonal group O2nC1 is the algebraic group attached to

the matrix C D
�
1 0 0
0 0 In
0 In 0

�
. Then, O2nC1.R/ consists of the elements of GL2nC1.R/

preserving the symmetric bilinear form

�.Ex; Ey/D x0y0C .x1ynC1CxnC1y1/C�� �C .xny2nCxny2n/

on R2nC1. The special orthogonal group SO2nC1 is O2nC1\SL2nC1.
(c) The symplectic group Sp2n is the algebraic group attached to the matrixC D

�
0 In
�In 0

�
.

Then Sp2n.R/ consists of the elements of GLn.R/ preserving the skew-symmetric
bilinear form

�.Ex; Ey/D .x1ynC1�xnC1y1/C�� �C .xny2n�x2nyn/D Ex
tC Ey

on R2n. More generally, let V be a vector space of dimension 2n over k and � a
nondegenerate alternating form on V . Let Sp.V;�/ be the algebraic subgroup of GLV
whose elements preserve �. Choose a basis e1; : : : ; e2n for V such that �.ei ; ej /D˙1
if j D i˙n and D 0 otherwise. This identifies V with k2n and �.Ex; Ey/ with ExtC Ey,
and so it defines an isomorphism Sp.V;�/! Sp2n;

(d) When char.k/¤ 2, the orthogonal group O2n is the algebraic group attached to the
matrix C D

�
0 In
In 0

�
. Thus, O2n.R/ consists of the elements of GL2n.R/ preserving

the symmetric bilinear form

�.Ex; Ey/D .x1ynC1CxnC1y1/C�� �C .xny2nCxny2n/

on R2n. The special orthogonal group SO2n is O2n\SL2n.
More generally, we write SO.V;�/ and O.V;�/ for the groups attached to a bilinear form
� on a vector space V . When char.k/ D 2, the orthogonal groups can be defined using
quadratic forms instead of bilinear forms (see a later version of the notes).

3.11. An algebraic group over k is a torus if it becomes isomorphic to a product of copies
of Gm over a finite separable extension of k. A torus over k is split if it is isomorphic to a
product of copies of Gm over k.

3.12. An algebraic group U over k is a vector group if it is isomorphic to a product of
copies of Ga. For example, the algebraic group Va attached to a finite-dimensional vector
space V over k is a vector group. This vector group has a natural action of Gm. An
action of Gm on a vector group U is linear if it is defined by an isomorphism U ! Va. In
characteristic zero, there is exactly one linear action of Gm on a vector group U , namely
that defined by the canonical isomorphism U ' Lie.U /a (see 8.14). In characteristic p, a
vector group may have more than one linear action, and it has actions that are not linear, for
example, the composite of a linear action with the pth power map on Gm.
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3.13. Let V be a finite-dimensional vector space over k. Then GLV acts on the vector
space T rs

def
D V ˝r˝ .V _/˝s , and so a t 2 T rs defines a natural map

g 7! g � t WG.R/! T rs .R/; R a k-algebra,

and hence a morphism of schemes G!
�
T rs
�
a
. The fibre of this map over t is an algebraic

subgroup over GLV , called the algebraic group fixing the tensor t . The algebraic group
fixing tensors t1; : : : ; tn is defined to be the intersection of the algebraic groups fixing the ti
individually.

For example, a t 2 T 0s can be regarded as a multilinear map

t WV � � � ��V ! k (s copies of V ).

Let G be the algebraic group fixing t . For a k-algebra R, G.R/ consists of the g 2 GLV .R/
such that

t .gv1; : : : ;gvs/D .v1; : : : ;vs/; all .vi / 2 V s:

3.14. An algebraic group G over k is finite if it is finite as a scheme over k. This means
that O.G/ is a finite k-algebra. The order o.G/ ofG is the dimension of O.G/ as a k-vector
space.

A finite algebraic group G is infinitesimal if jGj D e. For example, ˛pr and �pr are
infinitesimal when p D char.k/.

An algebraic group G over k is finite if and only if G.K/ is finite for all fields K
containing k, and it is infinitesimal if and only if G.K/D feg for all fields K containing k.

Recall that “algebraic group” is short for “algebraic group scheme”. Thus “finite
algebraic group” is short for “finite algebraic group scheme”; but finite implies algebraic,
and so we usually abbreviate this to “finite group scheme”.

Let G be a finite group scheme of prime order p over an algebraically closed field k. If
char.k/¤ p, then G is isomorphic to .Z=pZ/k , and if char.k/D p, then G is isomorphic
to .Z=pZ/k , �p, or ˛p. In particular, G is commutative. See B 11.19.

3.15. An algebraic group over k is étale if it is étale as a scheme over k. A finite group
scheme G is étale if and only if Tgte.G/D 0.

Let � D Gal.ks=k/. A group in the category of finite discrete � -sets is a finite group
together with a continuous action of � by group homomorphisms. From 1.16 we obtain the
following statement:

The functor G G.ks/ is an equivalence from the category of étale group
schemes over k to the category of discrete finite groups endowed with a contin-
uous action of � by group homomorphisms.

The order of an étale group scheme G is the order of the abstract group G.ks/, and the group
of points of G in a subfield K of ks containing k is G.ks/Gal.ks=K/.

An étale group scheme is trivial if it is connected (because the point e is both open and
closed in jGj), and, in particular, if it is infinitesimal. Thus a finite algebraic group G over k
is trivial if both Tgte.G/ and G.ks/ are trivial.
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4 Group theory
Most of the statements of elementary group theory hold also for algebraic groups over a
field.4

Subgroups
4.1. An algebraic subgroup of an algebraic group .G;mG/ over k is an algebraic group
.H;mH / over k such that H is a k-subscheme of G and the inclusion map is a homomor-
phism of algebraic groups. Then jH j is closed in jGj, and so H ,!G is a closed immersion
(B 1.41). We often write “subgroup” for “algebraic subgroup” (there being no other kind).

4.2. Let .G;mG/ be an algebraic group over k and H a closed subscheme of G. If H.R/
is a subgroup of G.R/ for all k-algebras R, then the restriction of mG to H �H factors
through H and defines on H the structure of an algebraic subgroup of G. When H is
smooth, it suffices to check that H.k0/ is a subgroup of G.k0/ for some separably closed
field k0 containing k.

4.3. An algebraic subgroup H of G is normal if H.R/ is a normal subgroup of G.R/ for
all R. When H and G are smooth, it suffices to check that H.k0/ is normal in G.k0/ for
some separably closed field k0 containing k (B 1.85).

4.4. An algebraic subgroup H of G is characteristic if, for all k-algebras R, HR is stable
under all automomorphisms of GR. Let a be the kernel of O.G/! O.H/; then H is
characteristic if and only if a˝R is stable under all automorphisms of the Hopf R-algebra
.O.G/˝R;�˝R/.

4.5. Let .G;m/ be an algebraic group over k. If Gred is geometrically reduced, then
.Gred;mred/ is an algebraic subgroup of .G;m/. However, it need not be normal (4.18
below).

4.6. Let G be an algebraic group over k. Then Gı is a characteristic subgroup of G (B
1.52). Therefore, if G is normal in some larger algebraic group, then so is Gı.

4.7. LetG be an algebraic group over k and S a closed subgroup ofG.k/. There is a unique
reduced algebraic subgroup H of G such that S DH.k/; moreover, H is geometrically
reduced. The algebraic subgroups H of G that arise in this way are exactly those for which
H.k/ is schematically dense in H . See B 1.45.

4.8. Let S be a subgroup of G.k/. The Zariski closure xS of S in G.k/ is again a subgroup
(B 1.40). The unique reduced algebraic subgroup H of G such that xS DH.k/ is called the
Zariski closure of S in G.

4This is not true for group varieties. In particular, the Noether isomorphism theorems fail for group varieties.
For example, in characteristic p, the subgroup varieties SLp and Gm of GLp intersect in the subgroup variety e,
but

SLp =SLp\Gm D SLp! PGLp D .SLp �Gm/=Gm
is not an isomorphism of group varieties. When nilpotents are allowed, this becomes the isomorphisms

SLp =�p! PGLp :
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Centralizers and normalizers
Let H and N be algebraic subgroups of an algebraic group G.

4.9. We say that H normalizes N if H.R/ normalizes N.R/ for all k-algebras R, i.e.,

h �N.R/DN.R/ �h for all h 2H.R/.

Similarly, we say that H centralizes N if H.R/ centralizes N.R/ for all k-algebras R, i.e.,

h �nD n �h for all h 2H.R/ and n 2N.R/:

4.10. Among the algebraic subgroups of G containing H as a normal subgroup, there is a
largest one, called the normalizer NG.H/ of H in G. It represents the functor

R fg 2G.R/ j g normalizes H.R0/ in G.R0/ for all R-algebras R0g.

When H is smooth, N.k/ consists of the elements of G.k/ normalizing H.ks/ in G.ks/.
The formation of NG.H/ commutes with extensions of the base field. See B 1.83 et seq.

4.11. Among the algebraic subgroups of G centralizing H , there is a largest one, called
the centralizer CG.H/ of H in G. It represents the functor

R fg 2G.R/ j g centralizes H.R0/ in G.R0/ for all R-algebras R0g.

When H is smooth, C.k/ consists of the elements of G.k/ centralizing H.ks/ in G.ks/.
The formation of CG.H/ commutes with extensions of the base field. See B 1.92 et seq.

The centre of G, denoted Z.G/ or ZG, is CG.G/.

4.12. Let T be a subtorus of a smooth algebraic group G. Then both CG.T / and NG.T /
are smooth (10.6 below). It follows that,

(a) NG.T / is the unique smooth algebraic subgroup of G such NG.T /.ka/ is the normal-
izer of T .ka/ in G.ka/;

(b) CG.T / is the unique smooth algebraic subgroup of G such CG.T /.ka/ is the central-
izer of T .ka/ in G.ka/.

Quotient maps
4.13. Let 'WG ! H be a homomorphism of algebraic groups over k. The following

conditions on ' are equivalent:
(a) the morphism ' is faithfully flat;
(b) the homomorphism of k-algebras O.H/!O.G/ is injective;
(c) for all k-algebras R and h 2H.R/, there exists a faithfully flat R-algebra R0 and a

g 2G.R0/ mapping to h in H.R0/,

G.R0/ H.R0/ g h

G.R/ H.R/ h

A homomorphism ' satisfying these conditions is called a quotient map (and H is called a
quotient of G). (For (a),(b), see B 3.31; for (a),(c), see B 5.7.)
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4.14. Let 'WG!H be a homomorphism of algebraic groups over k. If H is reduced,
then the following are equivalent (B 1.71):

(a) ' is dominant;
(b) ' is surjective;
(c) ' is a quotient map.

Semidirect products
4.15. An algebraic groupG is said to be a semidirect product of its algebraic subgroupsN

andQ, denotedGDN ÌQ, ifN is normal inG and the map .n;q/ 7! nqWN.R/�Q.R/!

G.R/ is a bijection of sets for all k-algebras R. Equivalently, G is a semidirect product of N
and Q if G.R/ is a semidirect product of its subgroups N.R/ and Q.R/ for all k-algebras
R.

For example, Tn is the semidirect product, Tn D UnÌDn, of its subgroups Un and Dn
(see 3.9).

4.16. An algebraic group G is the semidirect product of subgroups N and Q if and only if
there exists a homomorphism G!Q0 whose restriction to Q is an isomorphism and whose
kernel is N (B 2.34).

4.17. Let N and Q be algebraic groups, and let

� WQ�N !N

be an action ofQ on N by group homomorphisms.5 For every k-algebra R, we get an action
of Q.R/ on N.R/ by group homomorphisms, and so we can form the semidirect product

.N Ì� H/.R/
def
DN.R/Ì�.R/H.R/:

The functor N Ì� H is an algebraic group because its underlying set-valued functor is
N �Q. We call N Ì� Q the semidirect product of N and Q defined by � . The subgroup
Q is normal in N Ì� H if and only if the action of Q on N is trivial. See B, Section 2f.

EXAMPLES

In the examples, p D char.k/.

4.18. We construct algebraic groups G such that Gred is a nonnormal algebraic subgroup
of G:

(a) The action .u;a/ 7! uaWGm�Ga!Ga of Gm on Ga stabilizes ˛pn , and so we can
form the semidirect product G D ˛pn ÌGm. Then Gred DGm, which is not normal
because the action of Gm on ˛pn is not trivial.

(b) Let F D Z=.p� 1/Z, and let G D �p ÌFk with Fk acting on �p by .n;�/ 7! �n.
Then Gred D Fk , which is not normal in G because its action on �p is not trivial.

4.19. In contrast to abstract groups, a finite algebraic group of order p may act nontrivially
on another group of order p, and so there are noncommutative finite algebraic groups of
order p2. For example, there is an action of �p on ˛p,

.u; t/ 7! ut W�p.R/�˛p.R/! ˛p.R/;

5This means that, for every R and q 2Q.R/, the map n 7! qnWN.R/!N.R/ is a group homomorphism.
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and the corresponding semidirect productGD ˛pÌ�p is a noncommutative finite connected
algebraic group of order p2. We have O.G/D kŒt; s� with

tp D 1; sp D 0; �.t/D t˝ t; �.s/D t˝ sC s˝1I

the normal subgroup scheme ˛p corresponds to the quotient of O.G/ obtained by putting
t D 1, and the subgroup scheme �p corresponds to the quotient with s D 0 (Tate and Oort
1970, p. 6).

Kernels and embeddings
4.20. The kernel of a homomorphism 'WG!H of algebraic groups over k is defined by

the following diagram:
Ker.'/DG�H � �

G H

e

'

Thus Ker.'/ is the closed subscheme of G such that Ker.'/.R/ D Ker.'.R// for all k-
algebras R. As Ker.'.R// is a normal subgroup of G.R/ for all R, we see that Ker.'/ is a
normal algebraic subgroup of G.

4.21. Let 'WG ! H be a homomorphism of algebraic groups over k. The following
conditions on ' are equivalent (B 5.31):

(a) the morphism ' is a closed immersion;
(b) Ker.'/D e;
(c) the map '.R/WG.R/!H.R/ is injective for all k-algebras R.

A homomorphism ' satisfying these conditions is called an embedding.

4.22. A homomorphism G!G0 of smooth connected algebraic groups is an isogeny if it
is surjective with finite kernel. The degree of an isogeny is the order of its kernel.

The Noether isomorphism theorems
4.23 (EXISTENCE OF QUOTIENTS). Every normal subgroup N of an algebraic group G

arises as the kernel of a quotient map qWG!H (B 5.18). In particular, the normal subgroups
of an algebraic group are exactly the kernels of homomorphisms.

Let qWG!G=N be a quotient map with kernel N . If q0WG!H is a homomorphism
whose kernel contains N , then there is a unique homomorphism 'WG=N !H such that
' ı q D q0 (B 5.13). Therefore the pair .G=N;q/ is uniquely determined up to a unique
isomorphism. We call it the quotient of G by the normal subgroup N .

4.24 (HOMOMORPHISM THEOREM). Every homomorphism 'WG!H of algebraic groups
over k factors into a composite of homomorphisms

G
q
�! I

i
�!H

with q faithfully flat and i a closed immersion. This factorization corresponds to the
factorization

O.H/!O.H/=a!O.G/; a
def
D Ker.O.H/!O.G//;
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of the k-algebra homomorphism '�WO.H/!O.G/. The algebraic group I , regarded as a
subgroup of H , is called the image of '. An element h 2H.R/ lies in I.R/ if and only if it
lies in '.G.R0// for some faithfully flat R-algebra R0. See B 5.39.

4.25. Let H and N be subgroups of an algebraic group G, and assume that H normalizes
N . The action of H.R/ on N.R/ by conjugation is functorial in R, and so defines an action
� of H on N by group homomorphisms. The map

.n;h/ 7! nhWN Ì� H !G

is a homomorphism of algebraic groups, and we define NH DHN to be its image. An
element g 2G.R/ lies in .NH/.R/ if and only if it lies in N.R0/H.R0/ for some faithfully
flat R-algebra R0.

4.26 (ISOMORPHISM THEOREM). Let H and N be subgroups of an algebraic group G,
and assume that H normalizes N . Then H \N is a normal subgroup of H , and the natural
map

H=H \N !HN=N

is an isomorphism. In other words, there is a diagram

e N HN HN=N e

H=H \N

i q

'

in which the row is exact, i.e., i is an embedding, q is a quotient map, and Ker.q/D Im.i/.
See B 5.52.

4.27. Let H and N be subgroups of an algebraic group G, with N normal. The image of
H in G=N is an algebraic subgroup of G=N whose inverse image in G is HN (B 5.54).

4.28 (CORRESPONDENCE THEOREM). Let N be a normal algebraic subgroup of an alge-
braic group G. The map H 7!H=N is a bijection from the lattice of algebraic subgroups
of G containing N to the lattice of algebraic subgroups of G=N . A subgroup H of G
containingN is normal inG if and only ifH=N is normal inG=N , in which case the natural
map

G=H ! .G=N/=.H=N/

is an isomorphism. See B 5.55.

Existence of a largest subgroup with a given property
4.29. Let P be a property of algebraic groups over k such that extensions and quotients of

groups with property P have property P . For example, “smooth” and “connected” are such
properties (B 1.62, 5.59).

(a) If the groups H and N in 4.26 have property P , then it follows from the diagram that
HN also has property P .
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(b) Every algebraic group G contains a largest smooth connected normal subgroup H
with property P ; moreover, the quotient G=H contains no nontrivial such subgroup.
Indeed, any smooth connected normal subgroup of G with property P of highest
dimension contains all such other subgroups (because of (a)).

(c) The statement (b) may fail without the conditions “smooth” and “connected”. For
example, extensions and quotients of finite algebraic groups are finite, but in general
Gm contains no largest finite subgroup (even smooth or connected).

See B, Section 6g.

Some exact sequences

4.30 (THE EXTENDED SNAKE LEMMA). A homomorphism uWG!G0 of algebraic groups
is said to be normal if its image is a normal subgroup of G0. For a normal homomorphism
uWG!G0, the quotient mapG0!G0=u.G/ is the cokernel of u in the category of algebraic
groups over k. If in the commutative diagram

e Ker f Ker a Ker b Ker c

A B C e

A′e B′ C ′

Coker a Coker b Coker c Coker g′ e

d

f g

a b c

f ′ g′

the homomorphisms a;b;c are normal and the sequences .f;g/ and .f 0;g0/ are exact, then
the sequence

e! Kerf ! �� � ! Kerc
d
�! Cokera! �� � ! Cokerg0! e

exists and is exact. See B 5-7.

4.31 (THE KERNEL-COKERNEL EXACT SEQUENCE). A pair of normal homomorphisms

G
f
�!G0

g
�!G00

of algebraic groups whose composite is normal gives rise to an exact (kernel–cokernel)
sequence

0! Kerf ! Kerg ıf
f
�! Kerg �! Cokerf

g
�! Cokerg ıf ! Cokerg! 0:

This follows from the extended snake lemma. See B 5-8.



4 GROUP THEORY 21

Subnormal series
4.32. Let G be an algebraic group over k. A subnormal series of G is a finite sequence
.Gi /iD0;:::;s of algebraic subgroups of G such that G0 D G, Gs D e, and Gi is a normal
subgroup of Gi�1 for i D 1; : : : ; s:

G DG0�G1� � � ��Gs D e:

A subnormal series .Gi /i is a normal series (resp. characteristic series) if eachGi is normal
(resp. characteristic) in G.

4.33. Two subnormal series�
G DG0 �G1 � �� � �Gs D e

G DH0 �H1 � �� � �Ht D e
(4)

are said to be equivalent if s D t and there is a permutation � of f1;2; : : : ; sg such that
Gi=GiC1 �H�.i/=H�.i/C1. Any two subnormal series (4) in an algebraic group G have
equivalent refinements (Schreier refinement theorem, B 6.3). This can be deduced, as for
abstract groups, from a “butterfly lemma”.

Composition series
4.34. Let G be an algebraic group over k. A subnormal series

G DG0 �G1 � �� � �Gs D e

is a composition series if

dimG0 > dimG1 > � � �> dimGs

and the series cannot be refined, i.e., for no i does there exist a normal algebraic subgroup
N of Gi containing GiC1 and such that

dimGi > dimN > dimGiC1:

In other words, a composition series is a subnormal series whose terms have strictly de-
creasing dimensions and which is maximal among subnormal series with this property. This
disagrees with the usual definition that a composition series is a maximal subnormal series,
but it appears to be the correct definition for algebraic groups as few algebraic groups have
maximal subnormal series.

4.35. Let G be an algebraic group over a field k. Then G admits a composition series. If

G DG0 �G1 � �� � �Gs D e

and
G DH0 �H1 � �� � �Ht D e

are both composition series, then s D t and there exists a permutation � of f1;2; : : : ; sg such
that Gi=GiC1 is isogenous to H�.i/=H�.i/C1 for all i .
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4.36. The algebraic group GLn has composition series

GLn � SLn � e

GLn �Gm � e

with quotients fGm;SLng and fPGLn;Gmg respectively. They have equivalent refinements

GLn � SLn � �n � e

GLn �Gm � �n � e:

4.37. There is a canonical normal series

Tn � U .0/n � �� � � U .r/n � U
.rC1/
n � �� � � U .m/n D e .Un D U

.0/
n / (5)

in Tn, with quotients Tn=U .0/n 'Gnm and U .r/n =U
.rC1/
n 'Ga. Moreover, the action of Tn

on each quotient Ga is linear (i.e., factors through the natural action of Gm on Ga), and Un
acts trivially on each quotient Ga. In particular, (5) is a solvable series for Tn and a central
series for Un, which is therefore nilpotent. For example, when nD 3, the series is8<:
�
� � �

0 � �

0 0 �

�9=;�
8<:
�
1 � �

0 1 �

0 0 1

�9=;�
8<:
�
1 0 �

0 1 �

0 0 1

�9=;�
8<:
�
1 0 �

0 1 0

0 0 1

�9=;�
8<:
�
1 0 0

0 1 0

0 0 1

�9=; :
See B, Section 6i.

5 Representations

Definitions
5.1. Let G be an algebraic group over k. A linear representation of G on a vector space
V is a natural transformation

G.R/! AutR-linear.V ˝R/

of group-valued functors on Algk . When V is finite-dimensional, this is the same as a
homomorphism r WG! GLV of algebraic groups. A linear representation r is faithful if
r.R/WG.R/!AutR-linear.V ˝R/ is injective for all k-algebrasR. For finite-dimensional lin-
ear representations, this is equivalent to r being a closed immersion (4.21). A representation
is trivial if r.G/D e. From now on we write “representation” for “linear representation”.6

5.2. To give a representation .V;r/ of G on V is the same as giving an action

G�Va! Va

ofG on the functor Va such that, for all k-algebrasR, the groupG.R/ acts on Va.R/DV ˝R
through R-linear maps. When viewed in this way, we call .V;r/ a G-module.

6A nonlinear representation would be a homomorphism G! Aut.Va/ (automorphisms of the k-scheme
Va ignoring its linear structure). In the old literature a group variety is identified with its ka-points, and the
representations in our sense are called rational representations to distinguish them from the representations of
the abstract group G.ka/.
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5.3. A (right) O.G/-comodule is a k-linear map �WV ! V ˝O.G/ such that�
.idV ˝�/ı�D .�˝ idO.G//ı�
.idV ˝�/ı�D idV :

(6)

The map � is called the co-action. Let .V;�/ be an O.G/-comodule. An O.G/-subcomodule
of V is a k-subspace W such that �.W /�W ˝O.G/. Then .W;�jW / is again an O.G/-
comodule.

5.4. Let ADO.G/, and let V be a finite-dimensional k-vector space. A representation
r WG! GLV � EndV of G maps the universal element a in G.A/ to an A-linear endomor-
phism r.a/ of End.V ˝A/, which is uniquely determined by its restriction to a k-linear
homomorphism �WV ! V ˝A. The map � is an A-comodule structure on V , and in this
way we get a one-to-one correspondence r$ � between the representations of G on V and
the A-comodule structures on V .

Let e1; : : : ; en be a basis for V , and let .aij /1�i;j�n 2 GLn.A/. The map

�WV ! V ˝A; ej 7!
X

i
ei ˝aij

is a comodule structure on V if and only if the maps

g 7! .aij .g//1�i;j�nWG.R/! GLn.R/' GLV .R/

define a representation r of G on V . When this is the case, � is the A-comodule structure on
V corresponding to r as in the preceding paragraph. See B 4.1.

5.5. A right action of an algebraic group G on an algebraic scheme X is a regular map
X �G!X such that, for all k-algebras R, the map X.R/�G.R/!X.R/ is a right action
of the group G.R/ on the set X.R/. Such an action defines a map

�WO.X/!O.X/˝O.G/;

which makes O.X/ into an O.G/-comodule. This is the comodule corresponding to the
representation of G on O.X/,

.gf /.x/D f .xg/; g 2G.k/, f 2O.X/, x 2X.k/:

The representation of G on O.G/ arising from mWG�G!G is called the regular repre-
sentation.7 It corresponds to the co-action �WO.G/!O.G/˝O.G/.

5.6. Let r WG!GLV be a representation of G on a finite-dimensional vector space V over
k, and let W be a subspace of V . The functor

R GW .R/D fg 2G.R/ j g.W ˝R/DW ˝Rg

is represented by an algebraic subgroup GW of G (called the stabilizer of W in G). See B
4.3.

7For an algebraic monoid G is this is the only possible definition of a regular representation in which G acts
on the left. It is called the right regular representation. The left regular representation of an algebraic group is
.gf /.x/D f .g�1x/.
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Main theorems
Let G be an algebraic group over k.

5.7. Every representation of G is a filtered union of its finite-dimensional subrepresenta-
tions (B 4.8).

5.8. The regular representation of G is faithful. Therefore, G admits a faithful finite-
dimensional subrepresentation, and so is isomorphic to an algebraic subgroup of GLn for
some n (B 4.9).

5.9. Let .V;r/ be a faithful representation of G. Then every finite-dimensional represen-
tation of G is a subquotient of a direct sum of representations

Nm
.V ˚V _/, m 2 N. If

r.G/� SLV , then the dual is not needed. See B 4.14.

5.10 (CHEVALLEY’S THEOREM). Let G be an algebraic group over k. Every algebraic
subgroup H of G arises as the stabilizer of a subspace W in a finite-dimensional representa-
tion of G. In fact, W can be chosen to be one-dimensional. See B 4.27.

Semisimple representations
5.11. A representation of an algebraic group is simple if it is nonzero and its only subrep-

resentations are 0 and itself. It is semisimple if it is a sum of simple subrepresentations.8

5.12. Every simple representation of an algebraic group is finite-dimensional (because it
contains a nonzero finite-dimensional representation by 5.7).

5.13. Let .V;r/ be a representation of an algebraic group G over k. If V is a sum of simple
subrepresentations, say V D

P
i2I Si , then, for every subrepresentation W of V , there is a

subset J of I such that
V DW ˚

M
i2J

Si :

In particular, V is a direct sum of simple subrepresentations, and W is a direct summand of
V . See B 4.17.

5.14. A representation is semisimple if and only if every subrepresentation is a direct
summand.

5.15. Let .V;r/ be a finite-dimensional representation of an algebraic group G over k. Let
k0 be an extension of k, and let .V 0; r 0/ be the representation .V;r/˝k0 of Gk0 .

(a) If .V 0; r 0/ is simple (resp. semisimple), then so also is .V;r/.
(b) If .V;r/ is simple and End.V;r/D k, then .V 0; r 0/ is simple.
(c) If .V;r/ is semisimple, then .V 0; r 0/ is semisimple if

i) k0 is a separable extension of k; or
ii) End.V;r/ is a separable algebra over k (i.e., semisimple with étale centre).

See B 4.19.
8Traditionally, simple (resp. semisimple) representations of G are said to be irreducible (resp. completely

reducible) when regarded as representations of G, and simple (resp. semisimple) when regarded as G-modules.
I find this terminology clumsy and confusing, and so I follow DG, in using “simple” and “semisimple” for both.
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5.16 (SCHUR’S LEMMA). Let .V;r/ be a representation of an algebraic group G. If .V;r/
is simple and k is algebraically closed, then End.V;r/D k. See B 4.20.

5.17. Let G1 and G2 be algebraic groups over a field k. If .V1; r1/ and .V2; r2/ are simple
representations ofG1 andG2 and End.V2; r2/D k, then V1˝V2 is a simple representation of
G1�G2. Every simple representation ofG1�G2 is of this form if, in addition, End.V;r/D k
for all simple representations .V;r/ of G2. See B 4.21.

5.18. An algebraic group G is linearly reductive if every finite-dimensional representation
is semisimple. In characteristic zero, G is linearly reductive if and only if Gı is reductive
(see 14.32 for the definition). In characteristic p, G is linearly reductive if and only if Gı is
a torus and the index of Gı in G is not divisible by p. See B 12.56 and the references there.

Characters and eigenspaces

5.19. A character9 of an algebraic group G over k is a homomorphism G ! Gm. As
O.Gm/D kŒT;T �1� and �.T /D T ˝T , to give a character � of G is the same as giving
an invertible element aD a.�/ of O.G/ such that �.a/D a˝a; such an element is said to
be group-like. Note that �.g/D a.g/ for g 2G.k/. We use the following notation:

X.G/D Hom.G;Gm/
X�.G/D Hom.Gka ;Gmka/

X�.G/D Hom.Gm�a ;Gka/:

5.20. A character � of G defines a representation r of G on a vector space V by the rule

r.g/v D �.g/v; g 2G.R/, v 2 V ˝R:

In this case, we say that G acts on V through the character�. In other words, G acts on V
through the character � if r factors through the centre Gm of GLV as

G
�
�!Gm � GLV : (7)

For example, in
g 7! diag.�.g/; : : : ;�.g//WG! GLn ,

G acts on kn through the character �. When V is one-dimensional, GLV DGm, and so G
always acts on V through a character.

5.21. Let r WG! GLV be a representation of G and �WV ! V ˝O.G/ the corresponding
co-action. Let � be a character of G and a.�/ the corresponding group-like element of
O.G/. Then G acts on V through � if and only if

�.v/D v˝a.�/; all v 2 V: (8)

To see this, choose a basis for V and use the description of r$ � in 5.4.
9In the old literature, a character in our sense is called a rational character to distinguish it from a character

of the abstract group G.ka/.
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5.22. We say thatG acts on a subspaceW of V through a character � ifW is stable under
G andG acts onW through �. IfG acts on subspacesW andW 0 through a character �, then
it acts on W CW 0 through �. Therefore, there is a largest subspace V� of V on which G
acts through �, called the eigenspace for G with character�. Let .V;r/ be a representation
of G and �WV ! V ˝O.G/ the corresponding co-action. For a character � of G,

V� D fv 2 V j �.v/D v˝a.�/g.

5.23. The group-like elements in a Hopf algebra are linearly independent. It follows that
distinct characters �1; : : : ;�n of an algebraic group are linearly independent, i.e.,X

ci�i D 0; ci 2 k H) c1 D �� � D cn D 0:

See B 4.23, 4.24.

5.24. Let r WG! GL.V / be a representation of an algebraic group on a vector space V . If
V is a sum of eigenspaces, say V D

P
�2� V� with � a set of characters of G, then it is a

direct sum of the eigenspaces, V D
L
�2� V�. See B 4.25.

6 Some basic constructions

The connected-étale exact sequence
6.1. Let G be an algebraic group over k. Because Gı is a normal subgroup of G, the set
�0.Gks/ of connected components of Gks has a (unique) group structure for which the map

G.ks/! �0.Gks/ (9)

is a homomorphism. This group structure is respected by the action of Gal.ks=k/, and so
it defines on �0.X/ the structure of an étale group scheme over k (see 3.15). Therefore
(9) arises from a homomorphism 'WG! �0.G/ of algebraic groups over k. This homo-
morphism corresponds to the inclusion �.G/ ,! O.G/, where �.G/ is the largest étale
k-subalgebra of O.G/ (see 1.17). The quotient G! �0.G/ of G is called the component
group or group of connected components of G.

6.2. Let G be an algebraic group over k.
(a) Gı is the unique normal subgroup of G such that G=Gıis étale.
(b) Every homomorphism from a connected algebraic group to G factors through Gı.
(c) The homomorphism 'WG! �0.G/ is universal among homomorphisms from G to

an étale group scheme over k.
(d) The kernel of ' is Gı, and so the sequence

e!Gı!G
'
�! �0.G/! e

is exact. It is called the connected-étale exact sequence.
(e) The formation of the connected-étale exact sequence commutes with extension of the

base field. In particular, for a field k0 containing k,

�0.Gk0/' �0.G/k0

.Gk0/
ı
' .Gı/k0 :
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(f) The fibres of j'j W jGj ! j�0.G/j are the connected components of jGj. The order of
the finite group scheme �0.G/ is the number of connected components of Gks .

(g) For algebraic groups G and G0,

�0.G�G
0/' �0.G/��0.G

0/

.G�G0/ı 'Gı�G0ı:

See B 2.37, 5.58.

6.3. Let G be a finite group scheme over k. When k is characteristic zero, G is étale and
so G D �0.G/ and Gı D 1. When k is perfect, the connected-étale exact sequence splits,
and G 'GıÌ�0.G/ (B 11.3).

The Frobenius morphism
6.4. Let k be a field of characteristic p ¤ 0, and let f be the map a 7! ap. For g 2
kŒT1; : : : ;Tn�, we let g.p/ denote the polynomial obtained by applying f to the coefficients
of g. For a closed subscheme X of An defined by polynomials g1;g2; : : :, we let X .p/

denote the closed subscheme defined by the polynomials g.p/1 ;g
.p/
2 ; : : :. Then

.a1; : : : ;an/ 7! .a
p
1 ; : : : ;a

p
n /WA

n.k/! An.k/

maps X.k/ into X .p/.k/. We want to realize this map of sets as a morphism of k-schemes
FX WX !X .p/:

6.5. Let X be a scheme over a field k of characteristic p. The absolute Frobenius mor-
phism �X WX !X acts as the identity map on jX j and as the map

f 7! f pWOX .U /!OX .U /

on the sections of OX over an open subset U of X . For all morphisms 'WX! Y of schemes
over Fp,

�Y ı' D ' ı�X ;

i.e., � is an endomorphism of the identity functor.

6.6. For an algebraic scheme X over k, let X X .p/, ' '.p/ denote base change with
respect to c 7! cpWk! k. The relative Frobenius morphism FX WX !X .p/ is defined by
the diagram

X

X X .p/

Spm.k/ Spm.k/:
�Spm.k/

�X

FX

The scheme X .p/ represents the functor R X.fR/ and FX WX.R/!X.fR/ is induced
by the homomorphism a 7! apWR! fR. Similarly, we can define F nWX ! X .p

n/ by
replacing p with pn in the above discussion. It is the composite of the maps

X
F
�!X .p/

F
�! �� �

F
�!X .p

n/:
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6.7. The assignment X 7! FX has the following properties.
(a) Functoriality: for all morphisms 'WX ! Y of schemes over k, the following diagram

commutes:
X Y

X .p/ Y .p/:

'

FX FY

'.p/

(b) Compatibility with products: FX�Y is the composite

X �Y
FX�FY
�����!X .p/�Y .p/ ' .X �Y /.p/.

(c) Base change: the formation of FX commutes with extension of the base field.

6.8. Let G be an algebraic group over k. Then R G.fR/ is a group-valued functor, and
so G.p/ is an algebraic group. Moreover, FG.R/WG.R/!G.p/.R/ is a homomorphism of
groups for all R, and so FG is a homomorphism of algebraic groups. The kernel of F nG is a
characteristic subgroup of G. If F nG D 0, then G is said to have height � n.

6.9. If G is smooth and connected, then G.p/ is smooth and connected, and the Frobenius
map FG WG!G.p/ is an isogeny of degree pdim.G/ (in particular, it is faithfully flat). See
B 2.29.

The Verschiebung morphism
6.10. Let G be a commutative algebraic group over k. The Verschiebung morphism is the

homomorphism VG WG
.p/!G corresponding to the map A! A˝k;f k in the following

diagram:

A .A˝p/Sp A˝k;f k

A˝p.

�A

inclusioncomultiplication

Here f Wk! k is the map a 7! ap, Sp is the symmetric group acting by permutation, and
�A is the unique k-linear map sending x � .a˝�� �˝a/ to a˝x. See B 11.39.

6.11. The assignment G 7! VG has the following properties.
(a) Functoriality: for all homomorphisms 'WG!H , VH ı'.p/ D ' ıVG :
(b) Compatibility with products: VG�H is the composite

.G�H/.p/ 'G.p/�H .p/ VG�VH
�����!G�H:

(c) Base change: the formation of VG commutes with extension of the base field.

6.12. Let G be a commutative algebraic group over k. Then,

VG ıFG D p � idG and FG ıVG D p � idG.p/ :

It follows that a smooth commutative group scheme G has exponent p if and only if VG D 0.
See B 11.40, 11.41.
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The algebraic subgroup generated by a morphism
6.13. Let G be an algebraic group over k and 'WX ! G be a morphism from an affine

algebraic scheme X to G. Assume that there exists an o 2X.k/ such that '.o/D e.
(a) There exists smallest algebraic subgroup H of G such that ' factors through H (B

2.46).
(b) Let In be the kernel of the homomorphism O.G/!O.Xn/ of k-algebras defined by

the morphism

'nWXn!G; .x1; : : : ;xn/ 7! '.x1/ � � � � �'.xn/;

and let I D
T
n In. If '.X.R// is closed under g 7! g�1 for all k-algebras R, then

H is the subscheme of G defined by I (B 2.46).
(c) The formation of H commutes with extension of the base field (B 2.47).
(d) If X is geometrically connected, then H is geometrically connected (B 2.48).
(e) If X is geometrically reduced, then H is geometrically reduced. If, in addition,

'.X.R// is closed under g 7! g�1 for all k-algebras R, then H is the reduced
algebraic subscheme of G wih underlying set the closure of

S
n Im.'n/.

The algebraic group H is called the subgroup of G generated by ' (or X ).

The derived group
6.14. Let G be an algebraic group over k. The derived group DG of G is the intersection

of the normal subgroups N of G such that G=N is commutative. It is the smallest normal
subgroup of G such that G=DG is commutative. It is also denoted by Gder or ŒG;G�.

6.15. The derived subgroup DG of G is the subgroup of G generated by the commutator
map

.g1;g2/ 7! Œg1;g2�D g1g2g
�1
1 g�12 WG�G!G:

See B 6.18.

6.16. Let G be an algebraic group over k.
(a) The formation of the derived group commutes with extension of the base field.
(b) If G is smooth or connected, then so also is DG.

See B 6.19.

6.17. Let G be a smooth algebraic group over k
(a) For every k-algebra R, an element of G.R/ lies in .DG/.R/ if and only if it lies in

the derived group of G.R0/ for some faithfully flat R-algebra R0.
(b) If G is connected, then DG is the unique smooth connected subgroup of G such that

.DG/.ka/DD.G.ka//.
(c) Let H be a commutative algebraic group over k and R a k-algebra. Every homomor-

phism GR!HR is trivial on .DG/R.
(d) DG is a characteristic subgroup of G.

See DG, II, �5, 4.8, p. 247 for the proof of (a). The remaining statements follow from (a).

6.18. There is an explicit description of the coordinate ring of DG. Let In denote the
kernel of the homomorphism O.G/!O.G2n/ of k-algebras defined by the morphism

.g1;g2; : : : ;g2n/ 7! Œg1;g2� � Œg3;g4� � � � � WG
2n
!G:
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For n sufficiently large,
O.DG/DO.G/=In.

See B 6.20.

6.19. Let G D GLn. Then DG D SLn. Certainly, DG � SLn. Conversely, every element
of SLn.k/ is a commutator, because SLn.k/ is generated by elementary matrices, and every
elementary matrix is a commutator if k has at least three elements (B 20.24). It follows that
D.PGLn/D PGLn.

6.20. The abstract group G.k/ may have commutative quotients without G having com-
mutative quotients, i.e., we may have G.k/¤D.G.k// but G DDG. This is the case for
G D PGLn when k� ¤ k�n because the determinant map defines a surjection PGLn.k/!
k�=k�n whose kernel contains all commutators.

Restriction of scalars

Let k0 be a finite extension of k. We summarize B, Section 2i.

6.21. If X is a quasi-projective scheme over k0, then the functor

R X.R˝k0/WAlgk! Set

is represented by an algebraic scheme .X/k0=k over k. When G is an algebraic group,
.G/k0=k is an algebraic group over k, which is said to have been obtained from G by (Weil)
restriction of scalars.

6.22. Let ˘k0=k denote the functor G  .G/k0=k . Then ˘k0=k is right adjoint to the
functor “extension of scalars”: for algebraic groups H and G over k and k0 respectively,

Homk.H;˘k0=kG/' Homk0.Hk0 ;G/.

6.23. Let k00 be a finite extension of k0. Then

˘k0=k ı˘k00=k '˘k00=k :

6.24. Let K be a field containing k such that K˝k k0 is a product of fields k; and let G be
an algebraic group over k0. Then�

˘k0=kG
�
K
'

Y
i
˘ki=KGki :

6.25. Assume that k0 is separable over k, and let K be a subfield of ks containing all
k-conjugates of k0. Then

.˘k0=kG/K '
Y

� Wk0!k
�G;

where �G is obtained from G by extension of scalars with respect to � Wk0!K.
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Torsors
Let R0 be a k-algebra and G an algebraic group over R0. Let S0 D Spm.R0/.

6.26. A right G-torsor over S0 is a scheme S faithfully flat over S0 together with an action
S �S0 G! S of G on S such that the map

.s;g/ 7! .s; sg/WS �S0 G! S �S0 S

is an isomorphism of S0-schemes. We also refer to S as a torsor under G over S0. If S is a
torsor under G over S0 and R is an R0-algebra, then either S.R/ is empty or it is a principal
homogeneous space for G.R/. If S.R0/ is nonempty, then S is said to be trivial; the choice
of an s 2 S.R0/ determines an isomorphism g 7! sgWS !G.

6.27. Let G be an algebraic group over k. To give a torsor under GS0 over S0 amounts to
giving a scheme S faithfully flat over S0 together with an action S �G! S of G on S such
that .s;g/ 7! .s; sg/WS�G!S�S0 S is an isomorphism (because S�S0 .S0�G/'S�G).

6.28. Let G!Q be a quotient map with kernel N . The action G�QN !G of N on G
induces an isomorphism G�QG 'G�N , and so G is a torsor under N over Q (B 2.68).

6.29. Let S ! S0 be a G-torsor over S0. If G is smooth (resp. . . . ) over S0, then the
morphism S ! S0 is smooth (resp. . . . ). This follows from descent theory (B 2.69).

6.30. For an algebraic group G over k, we defineH 1
flat.S0;G/ to be the set of isomorphism

classes of torsors under G over S0. Let R be a faithfully flat R0-algebra. The torsors under
GR0 over R0 having an R-point are classified by the cohomology set H 1.R=R0;G/ of the
complex

G.R/!G.R˝R0 R/!G.R˝R0 R˝R0 R/.

For example, the GaR0-torsors over R0 are all trivial because the sequence

R!R˝R0 R!R˝R0 R˝R0 R

is exact (CA 11.1). Thus H 1
flat.S0;Ga/D 0. Similarly,

H 1
flat.S0;Gm/DH

1.S0;O�S0/D Pic.S0/:

See B 2.72 and the references there.

Forms of algebraic groups
Let G be an algebraic group over k and let Aut.G/ be the functor R Aut.GR/.

6.31. An algebraic groupH over k is a form ofG if it becomes isomorphic toG over some
extension field of k. Two forms of G are isomorphic if they are isomorphic as algebraic
groups over k. If H is a form of G, then

R Hom.GR;HR/

is a Aut.G/-torsor, and so defines a class in the flat cohomology set H 1
flat.k;Aut.G//. In this

way, the isomorphism classes of forms of G over k are classified by H 1
flat.k;Aut.G//.
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6.32. Assume that G is smooth over k. Then every form of G becomes isomorphic to
G over a separable extension of k. Let H be a form of G, and let f WGks ! Hks be an
isomorphism. The 1-cocycle

� 7! a� D f
�1
ı�f W� 7! Aut.Gks/; � D Gal.ks=k/;

is continuous, and so defines a class in the Galois cohomology group

H 1.k;Aut.G// def
DH 1.�;Aut.Gks//:

In this way, the isomorphism classes of forms of G over k are classified by H 1.k;Aut.G//.

6.33. Each g 2 G.k/ defines an automorphism inn.g/, a 7! gag�1, of G. An automor-
phism ˛ of G is inner if it becomes of this form over ka. The action of G on itself by
conjugation defines an action of the algebraic group Gad def

DG=Z.G/ on G, which induces
an isomorphism of Gad.k/ with the group of inner automorphisms of G. We write inn.g/
for the inner automorphism of G defined by an element g 2Gad.k/.

For example, let t 2 k�. The inner automorphism�
a b

c d

�
7!

�
a tb

t�1c d

�
D

�
t 0

0 1

��
a b

c d

��
t�1 0

0 1

�
of GL2 induces an automorphism 
t�

a b

c d

�
7!

�
a tb

t�1c d

�
WSL2! SL2

of SL2. If �2 D t , then 
t D inn.diag.�;��1// and so 
t is inner. It is the automorphism of
SL2 induced by the element of PGL2.k/ represented by diag.t;1/.

6.34. Assume that G is smooth. There is an exact sequence of groups equipped with a
continuous action of � ,

1!Gad.ks/! Aut.Gks/! Out.Gks/! 1;

and hence an exact sequence of pointed sets

H 1.k;Gad/
i
�!H 1.k;Aut.G// �!H 1.k;Out.G//:

6.35. Assume that G is smooth. By an inner form of G we mean a pair .H;f / consisting
of an algebraic group G over k and an isomorphism f WGks !Hks such that a�

def
D f �1 ı

�f is inner for all � 2 � . An isomorphism .H1;f1/! .H2;f2/ of inner forms is an
isomorphism 'WH1!H2 such that f2 differs from 'ks ıf1 by an inner automorphism of
Gks , i.e., such that f �12 ı'ks ıf1 is inner. The isomorphism classes of inner forms of G
over k are classified by H 1.k;Gad/. Isomorphic inner forms .H1;f1/ and .H2;f2/ are also
said to be equivalent.

Sometimes H alone is said to be an inner form of G if there exists an isomorphism
f such that .G;f / is an inner form in the above sense. In other words, a form H of G is
said to be inner if its cohomology class lies in the image of H 1.k;Gad/ in H 1.k;Aut.G//.
With this definition, the isomorphism classes of inner forms are classified by the image of
H 1.k;Gad/ in H 1.k;Aut.G//.
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6.36. Let .H;f / be an inner form of G. Then f defines an isomorphism Z.H/!Z.G/

(over k) that is independent of f , i.e., if .H;f1/ and .H;f2/ are equvalent inner forms, then
f1 and f2 define the same isomorphism Z.H/! Z.G/. Therefore Z.H/ and Z.G/ can
be identified.

IfH is an inner form ofG in the second sense (6.35), thenZ.H/ is isomorphic toZ.G/,
but not canonically.

ASIDE 6.37. There is considerable confusion in the literature concerning inner forms. Usually
“inner form” is defined (or tacitly taken to be) as in the second paragraph of 6.35, but then it is
sometimes assumed incorrectly that the isomorphism classes of inner forms of G are classified by
H 1.k;Gad/ — the map H 1.k;Gad/!H 1.k;G/ fails to be injective as a map of sets even for SLn,
n > 2 (see 21.16 below). The finer definition was introduced in Milne 1982, Appendix B, to fix this
problem. It can also be found elsewhere in the literature, e.g., in Satake 2001, p.198. The finer inner
forms behave better than the usual inner forms. For example, there is obviously a Hasse principle for
the finer inner forms of a reductive group G over a number field k (because there is for H 1.k;Gad/;
25.14 below).

7 Tannaka duality and applications
According to Pontryagin duality, the canonical homomorphism G! G__ from a locally
compact commutative topological group G to its double dual is an isomorphism. It follows
that each ofG and its dualG_ can be recovered from the other, and so they can be considered
equal partners.

Clearly, “commutative” is required in the above statements, because every character of
G is trivial on its derived group. However, Tannaka showed that it is possible to recover a
compact noncommutative topological group from the category of its unitary representations.
In this chapter, we discuss an analogue of this for algebraic groups. The Tannakian perspec-
tive is that an algebraic group G and its category of representations should be considered
equal partners.

Recovering an algebraic group from its representations
Let G be an algebraic group over k, and let Rep.G/ denote the category of representations
of G on finite-dimensional k-vector spaces.

7.1. Let R be a k-algebra and g an element of G.R/. For every .V;rV / in Rep.G/;we
have an R-linear map

�V
def
D rV .g/WV ˝R! V ˝R:

These maps satisfy the following conditions:
(a) for all V and W , �V˝W D �V ˝�W ;
(b) �11 is the identity map (here 11 denotes k with the trivial action of G);
(c) for all G-equivariant maps uWV !W , �W ıuR D uR ı�V :

7.2 (RECONSTRUCTION THEOREM, B 9.2). LetR be a k-algebra. Suppose that, for every
finite-dimensional representation .V;rV / of G, we are given an R-linear map �V WVR! VR.
If the family .�V / satisfies the conditions (a, b, c) of 7.1, then there exists a unique g 2G.R/
such that �V D rV .g/ for all V .
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7.3. Statement 7.2 identifies G.R/ with the collection of families .�V / satisfying the
conditions (a, b, c) of 7.1. Thus, from the category Rep.G/, its tensor structure, and the
forgetful functor, we can recover the functor R G.R/, and hence the group G itself.

7.4. Let .�V / be a family satisfying the conditions (a, b, c). As �V D rV .g/ for some
g 2G.R/, we see that each map �V is an isomorphism and that �V _ D .�V /_.

7.5. Let ! denote the forgetful functor Repk.G/! Veck . For a k-algebra R, let !R D
!˝R, and let End˝.!R/ denote the set of natural transformations �W!R! !R commuting
with tensor products, i.e., such that

(a) �V˝W D �V ˝�W for all representations V and W of G and
(b) �11 is the identity map.

Then 7.2 says that the canonical map G.R/! End˝.!R/ is an isomorphism.
Now let End˝.!/ denote the functorR End˝.!R/. Then 7.2 says thatG'End˝.!/.

Because of 7.4, this can be written G ' Aut˝.!/.

The Jordan-Chevalley decomposition
7.6. Let ˛ be an endomorphism of a finite-dimensional vector space over k. The eigenvalues

of ˛ are the roots in ka of its characteristic polynomial. The primary space attached to an
eigenvalue a in k is

V a
def
D fv 2 V j .˛�a/N v D 0 for some N > 0g:

The following conditions on ˛ are equivalent:
(a) all of its eigenvalues lie in k;
(b) V is a direct sum (over the distinct eigenvalues) of the primary spaces, V D

L
aV

a;
(c) for some choice of a basis for V , the matrix of ˛ is upper triagonal.

An endomorphism satisfying these conditions is said to be trigonalizable.

7.7 (JORDAN DECOMPOSITION, B 9.11). Let V be a finite-dimensional vector space over
a perfect field, and let ˛ be an automorphism of V . There exist unique automorphisms ˛s
and ˛u of V such that

(a) ˛ D ˛s ı˛u D ˛u ı˛s , and
(b) ˛s is semisimple and ˛u is unipotent.

Moreover, each of ˛s and ˛u is a polynomial in ˛. The automorphisms ˛s and ˛u are called
the semisimple and unipotent parts of ˛, and

˛ D ˛s ı˛u D ˛u ı˛s

is the multiplicative Jordan decomposition.

7.8. Let ˛ be an endomorphism of a finite-dimensional vector space V over k. If ˛ is
trigonalizable, choose a basis for which the matrix A of ˛ is upper triagonal. Then ˛s is
the endomorphism whose matrix is obtained from A by setting all nondiagonal elements to
zero, and ˛n D ˛ ı˛�1s . If ˛ becomes trigonalizable only over a separable extension k0 of k,
then the Jordan decomposition of ˛ over k0 is defined over k (by uniqueness) and is a Jordan
decomposition over k.

7.9. Jordan decompositions have the following properties.
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(a) Let ˛ and ˇ be automorphisms of vector spaces V and W over a perfect field k, and
let 'WV ! W be a k-linear map such that ' ı˛ D ˇ ı'; then ' ı˛s D ˇs ı' and
' ı˛u D ˇu ı'.

(b) Let V be a vector space over a perfect field. If a subspace W of V is stable under
˛, then it is stable under ˛s and ˛u and the Jordan decomposition of ˛jW is ˛sjW ı
˛ujW .

(c) For any automorphisms ˛ and ˇ of vector spaces V and W over a perfect field,

.˛˝ˇ/s D ˛s˝ˇs

.˛˝ˇ/u D ˛u˝ˇu:

7.10 (JORDAN-CHEVALLEY DECOMPOSITION). Let G be an algebraic group over a per-
fect field k, and let g 2G.k/. There exist unique elements gs;gu 2G.k) such that, for every
representation .V;rV / of G, rV .gs/D rV .g/s and rV .gu/D rV .g/u.

In view of 7.9, the statement follows immediately from 7.2 applied to the families
.rV .g/s/V and .rV .g/u/V .

The elements gs and gu are called the semisimple and unipotent parts of g. We have

g D gsgu D gugs

in G.k/. This is called the Jordan decomposition (or Jordan–Chevalley decomposition) of
g.

To check that g D gsgu is the Jordan decomposition of g, it suffices to check that
r.g/D r.gs/r.gu/ is the Jordan decomposition of r.g/ for a single faithful representation
of G.

Homomorphisms of algebraic groups preserve Jordan decompositions (B 9.21).

7.11. An element g 2 G.k/ is unipotent (resp. semisimple) if r.g/ is unipotent (resp.
semisimple) for all finite-dimensional representations r . When k is perfect, g is unipotent
(resp. semisimple) if and only if g D gu (resp. g D gs).

Characterizing categories of representations
7.12. By an affine group scheme over k we mean a functor Algk!Grp whose underlying

functor to sets is representable by a k-algebra, not necessarily finitely generated. A repre-
sentation of an affine group G is a homomorphism G! GLV for some finite-dimensional
vector space V . The category Rep.G/ of such representations is a k-linear abelian category
with a tensor structure. Much of the preceding theory extends to affine group schemes. We in-
troduce them here only because it is simpler to characterize the categories of representations
of affine groups than of algebraic groups.

7.13. Let Veck denote the category of finite-dimensional vector spaces over k. For k-vector
spaces U;V;W , there are canonical isomorphisms

�U;V;W WU ˝ .V ˝W /!.U ˝V /˝W; u˝ .v˝w/ 7! .u˝v/˝w

 U;V WU ˝V ! V ˝U; u˝v 7! v˝u:

Let !WA! B be a faithful functor of categories. We say that a morphism !X ! !Y lives
in A if it lies in Hom.X;Y /� Hom.!X;!Y /.
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7.14. Let C be an abelian k-linear category, and let˝WC�C! C be a k-bilinear functor.
Consider the following conditions on an exact faithful functor !WC! Veck:

(a) !.X˝Y /D !.X/˝!.Y / for all X;Y ;
(b) the isomorphisms �!X;!Y;!Z and  !X;!Y live in C for all X;Y;Z;
(c) there exists an (identity) object 11 in C such that !.11/D k and the canonical isomor-

phisms
!.11/˝!.X/' !.X/' !.X/˝!.11/

live in C for all X ;
(d) for every object X such that !.X/ has dimension 1, there exists an object X�1 in C

such that X˝X�1 � 11.
For example, if G is an affine group over k, then the forgetful functor Rep.G/! Veck
satisfies these conditions.

7.15 (RECOGNITION THEOREM, B 9.24). Let .C;˝/ be as in (7.14), and let !WC!Veck
be an exact faithful k-linear functor satisfying the conditions (a, b, c, d). For a k-algebra R,
let G.R/ be the set of families .�X /, �X 2 End.!.X/˝R/, such that

(a) for all X and Y in C, �X˝Y D �X ˝�Y ;
(b) �11 is the identity map;
(c) for all morphisms uWX ! Y in C, �Y ıuR D uR ı�X .

Then the functor R G.R/ is an affine group over k, and ! defines an equivalence of
categories C! Rep.G/. The group G is algebraic if and only if there exists an object
X such that every object of C is isomorphic to a subquotient of a direct sum of objectsNm

.X˚X_/.

EXAMPLES

7.16. Let M be a commutative abstract group. An M -gradation on a finite-dimensional
vector space V over k is a family .Vm/m2M of subspaces of V such that V D

L
m2M Vm.

If V is graded by a family of subspaces .Vm/m and W is graded by .Wm/m, then V ˝W is
graded by the family of subspaces

.V ˝W /m D
M

m1Cm2Dm
Vm1˝Wm2 :

For the category of finite-dimensionalM -graded vector spaces, the forgetful functor satisfies
the conditions of 7.14, and so the category is the category of representations of an affine
group. When M is finitely generated, this is the algebraic group D.M/ defined in 9.1 below.

7.17. Let K be a topological group. The category RepR.K/ of continuous representations
of K on finite-dimensional real vector spaces has a natural tensor product. The forgetful
functor satisfies the conditions of 7.14, and so there is an algebraic group zK over R, called
the real algebraic envelope of K, and an equivalence

RepR.K/! RepR. zK/:

This equivalence is induced by a homomorphism K ! zK.R/, which is an isomorphism
when K is compact (Serre 1993, 5.2).
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7.18. LetG be a connected complex Lie group or a finitely generated abstract group, and let
C be the category of representations of G on finite-dimensional complex vector spaces. Then
C has a natural tensor product, and the forgetful functor satisfies the hypotheses of 7.14, and
so C is the category of representations of an affine group A.G/. Almost by definition, there
exists a homomorphism P WG! A.G/.C/ with the property that, for each representation
.V;�/ of G, there is a unique representation .V; y�/ of A.G/ such that y�D � ıP .

The group A.G/ was introduced and studied by Hochschild and Mostow in a series of
papers published in the American Journal of Mathematics between 1957 and 1969 – it is
called the Hochschild–Mostow group. For a brief exposition of this work, see Magid 2011.

8 The Lie algebra of an algebraic group
In this section, an algebra A over k need not be commutative or even associative.

Definition
8.1. A Lie algebra over k is a vector space g over k together with a k-bilinear map

Œ ; �Wg�g! g

(called the bracket) such that
(a) Œx;x�D 0 for all x 2 g, and
(b) Œx; Œy;z��C Œy; Œz;x��C Œz; Œx;y��D 0 for all x;y;z 2 g.

A homomorphism of Lie algebras is a k-linear map uWg! g0 such that

u.Œx;y�/D Œu.x/;u.y/� for all x;y 2 g:

A Lie subalgebra of a Lie algebra g is a k-subspace s such that Œx;y� 2 s whenever x;y 2 s
(i.e., such that Œs;s�� s).

Condition (b) is called the Jacobi identity. Note that condition (a) applied to ŒxCy;xC
y� shows that the Lie bracket is skew-symmetric,

Œx;y�D�Œy;x�, for all x;y 2 g; (10)

and that (10) allows us to rewrite the Jacobi identity as

Œx; Œy;z��D ŒŒx;y�;z�C Œy; Œx;z��. (11)

We shall be mainly concerned with finite-dimensional Lie algebras.

8.2. Let A be an algebra over k. A k-linear map DWA! A is a derivation of A if

D.ab/DD.a/bCaD.b/ for all a;b 2 A:

The composite of two derivations need not be a derivation, but their bracket

ŒD;E�DD ıE�E ıD

is, and so the set of k-derivations A! A is a Lie subalgebra Derk.A/ of glA.



8 THE LIE ALGEBRA OF AN ALGEBRAIC GROUP 38

8.3. Let g be a Lie algebra over k. For a fixed x in g, the k-linear map

y 7! Œx;y�Wg! g

is called the adjoint map of x, and is denoted by adg.x/ or ad.x/. The Jacobi identity
(specifically (11)) says that adg.x/ is a derivation of g:

ad.x/.Œy;z�/D Œad.x/.y/;z�C Œy;ad.x/.z/�:

Directly from the definitions, one sees that .Œad.x/;ad.y/�/.z/D ad.Œx;y�/.z/, and so

adgWg! Derk.g/

is a homomorphism of Lie algebras. It is called the adjoint representation.

EXAMPLES

8.4. The Lie algebra sl2 is the k-vector space of 2�2 matrices of trace 0 equipped with
the bracket Œx;y�D xy�yx. The elements

X D

�
0 1

0 0

�
; H D

�
1 0

0 �1

�
; Y D

�
0 0

1 0

�
;

form a basis for sl2 and ŒX;Y �DH , ŒH;X�D 2X , ŒH;Y �D�2Y .

8.5. Let A be an associative algebra over k (not necessarily commutative). The bracket
Œa;b�D ab�ba is k-bilinear, and it makes A into a Lie algebra because Œa;a� is obviously 0
and the Jacobi identity can be proved by a direct calculation. When A is the endomorphism
ring Endk-linear.V / of a k-vector space V , this Lie algebra is denoted by glV , and when
ADMn.k/, it is denoted by gln.

The Lie algebra of an algebraic group
8.6. Let G be an algebraic group. The augmentation ideal IG is the kernel of the co-

identity map �WO.G/! k. Then O.G/D k˚IG as a k-vector space because the k-linear
map k!O.G/ �

�! k compose to the identity. The map

Homk-linear.IG=I
2
G ;k/! Tgte.G/ (12)

sending a k-linear map DWIG=I
2
G! k to the element

O.G/!O.G/=I 2G D k˚IG=I
2
G

.a;b/ 7!aCD.b/"
�����������! kŒ"�

of Tgte.G/ is an isomorphism.

8.7. For example, whenGDGLn, the augmentation ideal is the ideal in kŒT11;T12; : : : ;Tnn;det�1�
generated by the polynomials Tij � ıij , 1 � i;j � n, and so IG=I

2
G is the k-vector space

with basis
.T11�1/CI

2
G ; T12CI

2
G ; : : : ; .Tnn�1/CI

2
G :

Therefore
Homk-linear.IG=I

2
G ;k/'Mn.k/:

In this case,
Tgte.G/D fInCA" j A 2Mn.k/g;

and the isomorphism (12) is A 7! InCA".
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8.8. There exists a unique functor Lie from the category of algebraic groups over k to the
category of Lie algebras over k with the following properties:

(a) Lie.G/D Homk-linear.IG=I
2
G ;k/ as a k-vector space;

(b) Lie.GLn/D gln as a Lie algebra.
Note that

Lie.G/' Tgte.G/ (13)

as a k-vector space.
The uniqueness follows from the fact that every algebraic group embeds into GLn for

some n. For the existence, see B 10.23.
Following a standard convention, we write g for Lie.G/, h for Lie.H/, and so on.

8.9. Let G be an algebraic group over k. The action of G on itself by conjugation defines
a representation AdWG! GLg of G on g (as a k-vector space), whose differential is the
adjoint representation adgWg! Der.g/ of g.

8.10. For example, the map AdWGLn! GLg is given by

Ad.A/.X/D AXA�1; A 2 GLn.R/; X 2 gln.R/'Mn.R/;

and its differential adWgln! Der(gln/ is given by

ad.A/.X/D AX �XA; A;X 2 gln 'Mn.k/:

Lie algebras and finite inverse limits
8.11. LetH �G be algebraic groups. Then Tgte.H/�Tgte.G/, and so Lie.H/�Lie.G/.

If H is smooth and G is connected, then

Lie.H/D Lie.G/ H) H DG:

8.12. Let .Gi ;'ij / be an inverse system of algebraic groups indexed by a finite set I . For
each i , the sequence 0! Tgte.Gi /!Gi .kŒ"�/!Gi .k/ is exact. On passing to the inverse
limit, we obtain an exact sequence

0! lim
 �
.Tgte.Gi //! .lim

 �
Gi /.kŒ"�/! .lim

 �
Gi /.k/;

and so lim
 �
.Tgte.Gi /' Tgte.lim �

Gi /. Hence

lim
 �
.Lie.Gi //' Lie.lim

 �
Gi /:

For example, an exact sequence of groups e!G0!G!G00 gives an exact sequence of
Lie algebras

0! Lie.G0/! Lie.G/! Lie.G00/;

and the functor Lie commutes with fibred products:

Lie.H1�GH2/' Lie.H1/�Lie.G/ Lie.H2/:

In particular, if H1 and H2 are algebraic subgroups of G, then Lie.H1/ and Lie.H2/ are
subspaces of Lie.G/ and

Lie.H1\H2/D Lie.H1/\Lie.H2/: (14)
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Consider, for example, the subgroups SL2 and Gm (scalar matrices) of GL2 over a field k of
characteristic 2. Then SL2\Gm D �2, and

Lie.SL2/\Lie.Gm/D
˚�
a 0
0 a

� ˇ̌
a 2 k

	
D Lie.�2/

(this uses that aCaD 0 in k).10

Examples
8.13. We have

Tgte.Un/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
1 "c12 � � � "c1n�1 "c1n
0 1 � � � "c2n�1 "c2 n
:::

:::
: : :

:::
:::

0 0 � � � 1 "cn�1n
0 0 � � � 0 1

�9>>>>>>=>>>>>>;
;

and
Lie.Un/' nn

def
D f.cij / j cij D 0 if i � j g.

8.14. Let Va be the algebraic group defined by a finite-dimensional k-vector space V (see
3.6). Then

O.Va/D Sym.V _/D
M
n�0

.V _/˝n;

the augmentation ideal I D
L
n�1.V

_/˝n, and I=I 2 ' .V _/˝1 D V _. Therefore

Lie.Va/' Homk-linear.V
_;k/' V;

and so Va ' .Lie.Va//a. In fact, U ' Lie.U /a for any vector group U .

8.15. Let t WV � � � ��V ! k be an r tensor, and let G be the algebraic subgroup of GLV
fixing t (see 3.13). Then

Lie.G/' fg 2 End.V / j
P
j t .v1; : : : ;gvj ; : : : ;vr/D 0 all .vi / 2 V rg:

Indeed, Tgte.G/ consists of the endomorphisms 1Cg" of V.kŒ"�/ such that

t ..1Cg"/v1; .1Cg"/v2; : : :/D t .v1;v2; : : :/:

On expanding this and cancelling, we obtain the assertion.

9 Groups of multiplicative type

Diagonalizable groups
9.1. Let M be a finitely generated commutative (abstract) group, written multiplicatively.

The group algebra of M is the k-vector space with basis the elements of M and the

10In a world without nilpotents, SL2\Gm D e, and so (14) fails.
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multiplication given by that of M . Every set of generators for M generates kŒM� as a
k-algebra. The functor

R Hom.M;R�/ (homomorphisms of groups)

is representable by kŒM�, and so it is an algebraic group D.M/ with coordinate ring kŒM�.
The comultiplication is given by �.m/Dm˝m. The elements of M are exactly the group-
like elements of kŒM�. The algebraic groups of the form D.M/ are exactly those whose
coordinate ring is spanned (as a k-vector space) by its group-like elements. They are said to
be diagonalizable. If G is diagonalizable, then G DD.M/ with

M DX.G/
def
D Hom.G;Gm/:

The functor M  D.M/ is a contravariant equivalence from the category of finitely gen-
erated commutative groups to the category of diagonalizable algebraic groups. Under the
equivalence, exact sequences correspond to exact sequences.

9.2. If M is cyclic, then the choice of a generator for M determines an isomorphism
D.M/' Gm when M is infinite and an isomorphism D.M/' �n when M has order n.
As every M is a direct sum of cyclic groups and

D.M1˚�� �˚Mr/'D.M1/� � � ��D.Mr/;

we see that every diagonalizable group is a product of copies of Gm and finite groups �n.
When only copies of Gm occur, D.M/ is a split torus.

9.3. Let p be the characteristic exponent of k. Then the following hold:

D.M/ is connected ” the only torsion in M is p-torsion
D.M/ is smooth ” M has no p-torsion
D.M/ is smooth and connected ” M is free.

REPRESENTATIONS

9.4. The name “diagonalizable” is justified by the following fact:

An algebraic group is diagonalizable if and only if every finite-dimensional
representation is diagonalizable, i.e., a direct sum of one-dimensional represen-
tations (B 12.12).

Therefore the simple representations of a diagonalizable group are the one-dimensional
representations defined by the characters of the group.

Groups of multiplicative type
9.5. An algebraic group over k is of multiplicative type if it becomes diagonalizable over

some field containing k. It then becomes diagonalizable over ks (B 12.18). The functor

G X�.G/
def
D Hom.Gka ; .Gm/ka/

is an equivalence from the category of groups of multiplicative type over k to the category
of finitely generated commutative groups equipped with a continuous action of Gal.ks=k/.
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Under the equivalence, exact sequences of algebraic groups correspond to exact sequence of
modules. For an extension K of k contained in ks,

G.K/D Hom.X�.G/;.ks/�/Gal.ks=K/.

9.6. The tori are the smooth connected algebraic groups of multiplicative type. These are
the algebraic groups of multiplicative type whose character group is torsion-free (9.3). Every
algebraic group G of multiplicative type contains a largest subtorus, namely, the subgroup
T such that X�.T /D X�.G/=ftorsiong. As a subscheme, T DGıred.

REPRESENTATIONS

9.7. Let G be an algebraic group of multiplicative type over k. Then Rep.G/ is a semisim-
ple abelian category, and the isomorphism classes of simple objects in Rep.G/ are classified
by the orbits of Gal.ks=k/ acting on X�.G/. Let .V;r/ be the representation corresponding
to an orbit � , and let � 2 � . Then V ˝ks D

L
�2� V�, and End.V;r/' k� where k� is

the subfield of ks fixed by the subgroup of Gal.ks=k/ fixing �. See B 12.30.

DENSITY

9.8. LetG be an algebraic group of multiplicative type over k, and letGn denote the kernel
of nWG!G. The only closed subscheme of G containing every Gn is G itself. See B 12.33.

RIGIDITY

9.9. Let G�H !H be an action by group homomorphisms of an algebraic group G on
a group H of multiplicative type. If G is connected then the action is trivial (B 12.37). It
follows that every normal subgroup of multiplicative type of a connected algebraic group is
central (i.e., contained in the centre) .

9.10. Let G be a smooth connected algebraic group and H a group of multiplicative
type. Every morphism G!H of algebraic schemes sending e to e is a homomorphism of
algebraic groups (B 12.49).

UNIRATIONALITY

9.11. An irreducible algebraic variety X over k is rational (resp. unirational) if its field
of rational functions k.X/ is a purely transcendental extension of k (resp. contained in a
purely transcendental extension of k). Equivalently, X is rational (resp. unirational) if there
exists a k-isomorphism (resp. a surjective k-morphism) from an open subscheme of some
affine space onto an open subscheme of X . If X is unirational and k is infinite, then X.k/ is
dense in jX j.

9.12. A torus said to be induced11 if it is a finite product of tori of the form .Gm/k0=k with
k0 a finite separable extension of k (notation as in 6.22). Every torus is a quotient of an
induced torus (B 12.63).

9.13. Every induced torus is rational. Hence every torus T over k is unirational, and so
T .k/ is dense in jT j if k is infinite. There exist tori, even over fields of characteristic zero,
that are not rational. See B 12.60, 12.64, 17.94.

11There are many other names.
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10 Algebraic groups acting on schemes
By a functor (resp. group functor), we mean a functor from k-algebras to sets (resp. groups).

Basics
10.1. An action of a group functor G on a functor X is a natural transformation

�WG�X !X

such that �.R/ is an action of the group G.R/ on the set X.R/ for all k-algebras R. An
action of an algebraic group G on an algebraic scheme X is a morphism �WG �X ! X

such that the following diagrams commute:

G�G�X G�X

G�X X

id��

m�id �

�

��X G�X

X:

e�id

'
�

Because of the Yoneda lemma, to give an action of G on X is the same as giving an action of
zG on zX . We often write gx or g �x for �.g;x/. We say that a subscheme Y of X is stable
under G if the restriction of � to G�Y factors through Y ,!X .

10.2. Let � be an action of a group functor G on a functor X . The diagram

G�X G�X

X X:

.g;x/ 7!.g;gx/

.g;x/7!gx� .g;x/ 7!xp2

x 7!x

obviously commutes, and the horizontal maps are isomorphisms. It follows that, if � is an
action of an algebraic group on an algebraic scheme, then � is faithfully flat, and it is smooth
(resp. finite) if G is smooth (resp. finite).

10.3. Let � and �0 be actions of G on X and X 0 respectively. A morphism ˛WX ! X 0

is equivariant or a G-morphism if ˛.�.g;x//D �0.g;˛.x// for all k-algebras R, all g 2
G.R/, and all x 2X.R/.

10.4. Let G be a group functor. Let X and Y be nonempty algebraic schemes on which G
acts, and let f WX ! Y be an equivariant map.

(a) If Y is reduced and G.ka/ acts transitively on Y.ka/, then f is faithfully flat.
(b) If G.ka/ acts transitively on X.ka/, then the set f .jX j/ is locally closed in jY j; let

f .X/red denote f .jX j/ with its reduced subscheme structure.
(c) If X is reduced and G.ka/ acts transitively on X.ka/, then f factors into

X
faithfully
�����!

flat
f .X/red

immersion
������! Y .

Moreover, f .X/red is stable under the action of G.
See B 1.65 and the references there.
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The fixed-point subscheme
10.5. Let �WG�X !X be an action of a group functor on a separated algebraic scheme

over k. Then there exists a largest closed subscheme XG of X on which G acts trivially. For
all k-algebras R,

XG.R/D fx 2XR j �.g;xR0/D xR0 for all g 2G.R0/ and all R-algebras R0g:

The subscheme XG is called the fixed-point subscheme. From its second description, one
sees that its formation commutes with extension of the base field. See B 7.1.

10.6. Let G be a smooth algebraic group acting on a separated algebraic scheme X . If
G is linearly reductive and X is smooth, then XG is smooth (B 13.1). For example, if H
is a subtorus of a smooth algebraic group G, then CG.H/ D GH is smooth. Moreover,
NG.H/

ı acts trivially on H (by rigidity 9.9), and so NG.H/ı D CG.H/ı, which implies
that NG.H/ is smooth.

Orbits
10.7. Let �WG�X !X be an action of an algebraic group G on an algebraic scheme X ,

and let x 2X.k/: The orbit map

�x WG!X; g 7! gx;

is defined to be the restriction of � to G�fxg 'G. According to 10.4(b), the image of j�xj
is a locally closed subset of X . The orbit Ox of x is defined to be this locally closed subset
equipped with its structure of a reduced subscheme of X .

(a) If G.ka/ acts transitively on X.ka/, then the orbit map �x is surjective, and so
Ox DXred.

(b) IfG.ka/ acts transitively onX.ka/ andX is reduced, then the orbit map�x is faithfully
flat and Ox DX .

(c) If G is reduced, then Ox is stable under G and the map �x WG!Ox is faithfully flat.
(d) If G is smooth, then Ox is smooth.

See B 7.4, 7.5.

10.8. The isotropy group Gx at a point x of X.k/ is the fibre of the orbit map �x WG!X

over x. It is a closed subscheme of G, and, for all k-algebras R,

Gx.R/D fg 2G.R/ j gxR D xRg.

This is a subgroup of G.R/, and so Gx is an algebraic subgroup of G by 4.2.

10.9 (ORBIT THEOREM). Let G be a smooth algebraic group acting on an algebraic
scheme X over k. Any nonempty subscheme of X of smallest dimension among those stable
under G is closed. When k is algebraically closed, such a subscheme is an orbit, and so
every orbit of smallest dimension is closed; in particular, there exists a closed orbit.

10.10. For example, in the action,

SL2�A2! A2;
�
a b

c d

��
x

y

�
D

�
axCby

cxCdy

�
,

there are two orbits, namely, f.0;0/g and its complement. The smaller orbit is closed, but the
larger is neither closed nor affine.
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11 Homogeneous spaces
Let G be an abstract group. A homogeneous space for G is a set X with a transitive
action of G. The quotient G=H of G by a subgroup H is a homogeneous space, and if
X is a homogeneous space, then the choice of point o in X determines an isomorphism
G=H !X with H the isotropy group at o. We extend this theory to algebraic groups.

Notion of a homogeneous space
11.1. Let X be a nonempty separated algebraic scheme over k with an action � of an

algebraic group G. The following conditions on .X;�/ are equivalent:
(a) the morphism

f WG�X !X �X; .g;x/ 7! .gx;x/

is faithfully flat;
(b) the orbit map �x WGka !Xka is faithfully flat for some x 2X.ka/.

A homogeneous space for G is a pair .X;�/ satisfying these (equivalent) conditions.
Note that (b) implies that G.ka/ acts transitively on X.ka/ and that the orbit map �x

is faithfully flat for all x 2 X.ka/. To prove that (a) and (b) are equivalent, we use the
commutative diagram

G�X X �X

X

f

.g;x/7!x .x1;x2/7!x2

A standard result on flatness (SGA 1, IV, 5.9)12 says that f is flat if and only if the fibre
fx WG�fxg!X �fxg of f over x 2 jX j is faithfully flat for all x 2 jX j. The first condition
is (a) and the second is obviously equivalent to (b).

11.2. For example, the quotientX DG=N ofG by a normal subgroupN is a homogeneous
space for G with the action by left multiplication. In this case, X is affine. In general,
homogeneous spaces will not be affine (see 11.10 below).

Notion of a quotient by an arbitrary algebraic subgroup
11.3. Let H be a subgroup of an algebraic group G over k. A quotient of G by H is a

separated algebraic scheme X equipped with an action �WG �X ! X of G and a point
o 2X.k/ such that for all k-algebras R,

(a) the nonempty fibres of the map g 7! goWG.R/! X.R/ are the cosets of H.R/ in
G.R/;

(b) each element of X.R/ lifts to an element of G.R0/ for some faithfully flat R-algebra
R0.

When it exists, the quotient .X;�;o/ has the expected universal properties (see 11.4, 11.5
below), and so it is uniquely determined up to a unique isomorphism. We denote X by G=H
and (loosely) call it the quotient of G by H .

12Let A! B! C be homomorphisms of local noetherian rings. Suppose that B is flat over A, and let � be
the residue field of A. Then C is flat over B if and only if C is flat over A and C ˝A � is flat over B˝A �.
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11.4. Let .X;�;o/ be a quotient of G by H . Every morphism
'WG ! X 0 of schemes over k such that '.R/ is constant on the
cosets ofH.R/ inG.R/ for allR factors uniquely through�oWG!
X .

G X

X 0
'

�o

11.5. Let .X;�;o/ be a quotient of G by H . For every scheme
X 0 with an action of G and point o0 2 X 0.k/ fixed by H , there is
a unique equivariant map X ! X 0 making the diagram at right
commute.

G X

X 0:

g 7!go

g 7!go0

The orbit map g 7! go0WG! X 0 in 11.5 is constant on the cosets of H in G, and so 11.5
follows from 11.4.

11.6. Let G�X !X be an action of an algebraic group on a separated algebraic scheme
X , and let o 2 X.k/. Then .X;o/ is the quotient of G by Go if and only if the orbit map
�oWG!X is faithfully flat. See B 7.11.

Existence of quotients
We sketch a proof that quotients of algebraic groups by arbitrary subgroups exist.

11.7. The algebraic scheme Pn over k represents the functor

R fdirect summands of rank 1 of RnC1g:

Note that, when R is a field, every R-subspace of RnC1 is a direct summand, and so P n.R/
consists of the lines through the origin in RnC1. For a proof of 11.7, see B 7.10.

11.8. Let G �X ! X be the action of an algebraic group G on a separated algebraic
scheme X , and let o 2 X.k/. The quotient G=Go exists, and the orbit map defines an
immersion G=Go!X (an isomorphism G=Go!Oo when G is smooth).

See B 7.17 for the smooth case, and B 7.20 for the general case.

11.9. Let H be a subgroup of an algebraic group G. Then the quotient G=H exists as a
separated algebraic scheme.

According to Chevalley’s theorem (5.10), there exists a representation of G on a vector
space knC1 such that H is the stabilizer of a one-dimensional subspace L of knC1. The
representation of G on knC1 defines a natural action of G.R/ on the set Pn.R/, and hence
an action of G on Pn (Yoneda lemma). For this action of G on Pn, H is the isotropy group
at L regarded as an element of Pn.k/. Now 11.8 completes the proof.

11.10. The proof of 11.9 shows that, for a representation .V;r/ of a smooth algebraic
group G and line L, the orbit of L in P.V / is a quotient of G by the stabilizer of L in G. For
example, let G D GL2 and let H D f.� �0 �/g. Then H is the stabilizer of the line LD f.�0 /g
in the natural action of G on k2. Hence G=H is isomorphic to the orbit of L, but G acts
transitively on the set of lines, and so G=H ' P1. In particular, the quotient is not affine.
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Properties of quotients
Throughout this subsection, G is an algebraic group over k.

11.11. Let H be a subgroup of G. The map qWG! G=H is faithfully flat, and G=H is
smooth if G is.

11.12. Let H be a subgroup of G. The map

.g;h/ 7! .g;gh/WG�H !G�G=H G

is an isomorphism, and so G is an H -torsor over G=H .

11.13. Let H be a subgroup of G. Then,

dimG D dimH CdimG=H:

It suffices to prove this with k algebraically closed, and then with G and H reduced. Now
use that, for any dominant map 'WY ! X of connected algebraic varieties, dim.Y / D
dim.X/Cdim.'�1.P // for all P in a nonempty open subset of X (see AG 9.9).

11.14. Let H 0 �H be algebraic subgroups of G. Then H 0=H is a closed subscheme of
G=H , and the canonical map xqWG=H ! G=H 0 is faithfully flat. If the scheme H 0=H is
smooth (resp. finite) over k, then the morphism G=H 0!G=H is smooth (resp. finite and
flat). In particular, the map G!G=H is smooth (resp. finite and flat) if H is smooth (resp.
finite). See B 7.15.

11.15. LetH 0 be an algebraic subgroup ofG containingH and having the same dimension
as H . Then dim.H 0=H/D 0 (see 11.13), and so H 0=H is finite. Therefore the canonical
map G=H !G=H 0 is finite and flat (11.14). In particular, it is proper.

11.16. Consider an algebraic group G acting on an algebraic variety X . Assume that
G.ka/ acts transitively on X.ka/. By homogeneity, X is smooth, and, for any o 2 X.k/,
the map g 7! goWG ! X defines an isomorphism G=Go! X (apply 11.8). When k is
perfect, .Go/red is a smooth algebraic subgroup of G, and G=.Go/red ! X is finite and
purely inseparable.

ASIDE 11.17. A quotient G=H may be affine without H being normal. When G and H are smooth
and G is reductive, Matsushima’s criterion says that G=H is affine if and only if H ı is reductive. See
B 5.30 and the references there.

ASIDE 11.18. One can ask whether every algebraic G-scheme X over k is a union of homogeneous
subspaces. A necessary condition for this is that the ka-points of X over a single point of X lie in a
single orbit of Gka . Under this hypothesis, the answer is yes if G is smooth and connected and the
field k is perfect, but not in general otherwise. See Exercise 7-1.

12 Tori acting on schemes

Limits in schemes
Let R� act continuously on Rn, and let a 2 Rn. If limt!0 ta exists, then it is a fixed
point of the action because t 0.limt!0 ta/ D limt!0 t

0ta D limt!0 ta. Similarly, if
limt!1 ta exists, then it is fixed by the action. We prove similar statements in an
algebraic setting.
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12.1. Let 'WA1X0!X be a morphism of separated algebraic schemes over k. If ' extends
to a morphism z'WA1!X , then it does so uniquely, and we say that limt!0'.t/ exists and
equals z'.0/. Similarly, if ' extends to z'WP1X0!X , then we say that limt!1'.g/ exists
and equals z'.1/. When X is affine, ' corresponds to a homomorphism of k-algebras

f 7! f ı'WO.X/! kŒT;T �1�;

and limt!0' exists if and only if f ı' 2 kŒT � for all f 2 O.X/. Similarly, limt!1'
exists if and only if f ı' 2 kŒT �1� for all f 2O.X/.

12.2. Let Gm act on An according to the rule

t � .x1; : : : ;xn/D .t
m1x1; : : : ; t

mnxn/; t 2 k
�; xi 2 k; mi 2 Z (not all 0/:

Let v D .a1; : : : ;an/ 2 An.k/. The orbit map

�vWGm! An; t 7! .tm1a1; : : : ; t
mnan/

corresponds to the homomorphism of k-algebras

kŒT1; : : : ;Tn�! kŒT;T �1�; Ti 7! aiT
mi : (15)

Suppose first that mi � 0 for all i . Then the homomorphism (15) takes values in kŒT �,
and �v extends to the morphism

z�vWA1! An; t 7! .tm1a1; : : : ; t
mnan/

where we have set 00 D limt!0 t0 D 1. Note that

lim
t!0

�v.t/
def
D z�v.0/D .b1; : : : ;bn/, where bi D

�
ai if mi D 0
0 otherwise,

which is certainly fixed by the action of Gm on An.
On the other hand, if mi � 0 for all i , then the homomorphism (15) maps into kŒT �1�,

and so z�v extends uniquely to a regular map z�vWP1Xf0g ! An with

lim
t!1

�v.t/
def
D z�v.1/D .b1; : : : ;bn/:

12.3. Let .V;r/ be a finite-dimensional representation of Gm. Then r defines an action of
Gm on the scheme Va. Let

V D
M

i2Z
Vi

denote the decomposition of V into its eigenspaces (so t 2 k� acts on Vi as t i ). Let v 2 V ,
and let v D

P
i vi with vi 2 Vi .

(a) If the weights of Gm on V are � 0, then limt!0 tv exists and equals v0.
(b) If the weights of Gm on V are � 0, then limt!1 tv exists and equals v0.
(c) The subscheme of Va on which limt!0 tv exists is .

L
i�0Vi /a, the fixed subscheme

is .V0/a, and the map v 7! limt!0 tvW.
L
i�0Vi /a! .V0/a is the natural projection.

These statements follow from 12.2 when we choose a basis of eigenvectors for V .

12.4. If in 12.3, the weights of Gm on V are > 0, then 0 is the unique fixed point for the
action, and limt!0 tvD 0 for all v 2 V . If the weights are all < 0, then 0 is again the unique
fixed point, but limt!0 tv exists only for v D 0.
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12.5. A finite-dimensional representation .V;r/ of Gm defines an action of Gm on the
scheme P.V /:

t; Œv� 7! Œtv�WGm�P.V /! P.V /:

Here Œv� denotes the image in P.V / of a nonzero v 2 V . Let v 2 V . The orbit map

�Œv�WGm! P.V /; t 7! t Œv�;

extends uniquely to a regular map z�Œv�WP1 ! P.V /. Either Œv� is a fixed point or the
closure of its orbit in P.V / has exactly two fixed points, namely, limt!0 t � Œv�D z�Œv�.0/ and
limt!1 t � Œv�D z�Œv�.1/. See B 13.20.

12.6. Let R be a k-algebra and 'W.A1 X 0/R ! XR a morphism of R-schemes. If '
extends to a morphism z'WA1R!XR, then we say that limt!0'.t/ exists and we set it equal
to the restriction of z' to

0R D Spm.RŒT �=.T //� A1R:

Thus, when it exists, limt!0'.t/ is an R-point of X . In the following, 0 is the closed sub-
scheme Spm.kŒT �=.T // of the affine line A1 D Spm.kŒT �/, and we identify the underlying
scheme of Gm with A1X0.

12.7. Let X be an affine scheme with an action of Gm, and let Z be a closed subscheme of
X stable under Gm. The functor

R fx 2X.R/ j lim
t!0

tx exists and lies in Z.R/g

is representable by a closed subscheme X.Z/ of X , called the concentrator scheme of Z in
X . If X and Z are smooth, then X.Z/ is the unique smooth closed subscheme of X such
that

X.Z/.ka/D fx 2X.ka/ j lim
t!0

tx exists and lies in Z.ka/g:

See B, Section 13c.

Limits in algebraic groups
12.8. Let G be an algebraic group over k. A cocharacter �WGm! G of G defines an

action of Gm on G by

t �g D inn.�.t//.g/D �.t/g�.t/�1.

Define

PG.�/D concentrator subscheme of G in G

UG.�/D concentrator scheme of e in G

ZG.�/D centralizer of �.Gm/ in G.

12.9. Let G be a smooth algebraic group over k and � a cocharacter of G.
(a) PG.�/ is the unique smooth algebraic subgroup of G such that

PG.�/.k
a/D fg 2G.ka/ j lim

t!0
t �g exists (in G.ka//g:
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(b) UG.�/ is the unique smooth algebraic subgroup of P.�/ such that

UG.�/.k
a/D fg 2 PG.�/.k

a/ j lim
t!0

t �g exists and equals eg:

(c) PG.�/\PG.��/DZG.�/ where ZG.�/D CG.�Gm/.
These statements follow from 12.7 and the definitions.

12.10. Let G D SL2, and let � be the homomorphism sending t to diag.t; t�1/. Then�
t 0

0 t�1

��
a b

c d

��
t 0

0 t�1

��1
D

�
a bt2

c
t2

d

�
,

and so lim
t!0

�
a bt2

c
t2

d

�
exists, and equals

�
a 0

0 d

�
, if and only if c D 0. Therefore,

P.�/D

��
a b

0 a�1

��
; U.�/D

��
1 b

0 1

��
; Z.�/D

��
a 0

0 a�1

��
P.��/D

��
a 0

b a�1

��
; U.��/D

��
1 0

b 1

��
; Z.��/D

��
a 0

0 a�1

��
:

12.11. Let G D GL3, and let � be the homomorphism sending t to diag.tm1 ; tm2 ; tm3/
with m1 �m2 �m3. Then0@a b c

d e f

g h i

1A conjugate by

diag.tm1 ;tm2 ;tm3 /

0@ a tm1�m2b tm1�m3c

tm2�m1d e tm2�m3f

tm3�m1g tm3�m2h i

1A :
If m1 >m2 >m3, then

P.�/D

8<:
0@� � �0 � �

0 0 �

1A9=; ; U.�/D
8<:
0@1 � �0 1 �

0 0 1

1A9=; ; Z.�/D
8<:
0@� 0 0

0 � 0

0 0 �

1A9=; :
If m1 Dm2 >m3, then

P.�/D

8<:
0@� � �� � �

0 0 �

1A9=; ; U.�/D
8<:
0@1 0 �

0 1 �

0 0 1

1A9=; ; Z.�/D
8<:
0@� � 0

� � 0

0 0 �

1A9=; :
12.12. Let G be a smooth algebraic group over k and �WGm! G a cocharacter of G.

Then Gm acts on the Lie algebra g of G through Adı�. We let gn.�/ denote the subspace
of g on which Gm acts through the character t 7! tn, and we let

g�.�/D
M
n<0

gn; gC.�/D
M
n>0

gn.

(a) The groups PG.�/, ZG.�/, and UG.�/ are smooth algebraic subgroups of G, and
UG.�/ is a normal subgroup of PG.�/.

(b) The multiplication map UG.�/ÌZG.�/! PG.�/ is an isomorphism of algebraic
groups.

(c) Lie.ZG.�//D g0.�/; Lie.UG.˙�//D g˙.�/; Lie.PG.�//D g0.�/˚gC.�/.
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(d) The multiplication map UG.��/�PG.�/!G is an open immersion (of schemes).
(e) If G is connected, then PG.�/, ZG.�/, and UG.�/ are connected.

See B 13.3.13

12.13. Let 'WG!G0 be a surjective homomorphism of connected group varieties. Let �
be a cocharacter of G, and let �0 D ' ı�. Then

'.PG.�//D PG0.�
0/; '.UG.�//D UG0.�

0/:

See B 13.4.

The Białynicki-Birula decomposition
12.14. An action of an algebraic group G on an algebraic scheme X over k is linear if

there exists a representation .V;r/ of G and a G-equivariant immersion X ! P.V /. The
action is locally affine if X admits a covering by G-invariant open affine subschemes.

12.15. Let .V;r/ be a finite-dimensional representation of a split torus T . Then P.V /
admits a covering by T -stable open affine subsets (B 13.46). It follows that linear actions by
split tori on quasi-projective schemes are locally affine (B 13.47).

12.16. Let X be a scheme equipped with an action of Gm, and let x 2 X.k/ be a fixed
point for the action. Then Gm acts on the tangent space TgtxX , which decomposes into a
direct sum

TgtxX D
M
i2Z

Tgtx.X/i

of eigenspaces (so t 2 T .k/ acts on Tgtx.X/i as multiplication by t i ). Let

TgtCx X D
M
i>0

.TgtxX/i (contracting subspace)

Tgt�x X D
M
i<0

.TgtxX/i .

12.17 (BIAŁYNICKI-BIRULA DECOMPOSITION). Let X be a smooth algebraic variety
over k equipped with a locally affine action of Gm.

(a) For every connected component Z of XGm , there exist a unique smooth subvariety
X.Z/ of X such that

X.Z/.ka/D fy 2X.ka/ j lim
t!0

ty exists and lies in Z.ka/g

and a unique regular map 
Z WX.Z/!Z sending y 2X.Z/.ka/ to the limit limt!0 ty 2
Z.ka/.

(b) The map 
Z realizes X.Z/ as a fibre bundle over Z. More precisely, every point
z 2Z.k/ has an open neighbourhood U such that the restriction of 
Z to 
�1Z .U / is
isomorphic over U to the projection U � .TgtCz .X/a! U .

13The exposition in B is adapted from Springer 1998, 13.4.2. Springer defines an algebraic subgroup by
giving its ka-points, and then proves that it is defined (as a group variety) over k. In B, an algebraic subgoup is
defined by giving its functor of R-points (so it is automatically defined over k), and then Springer’s argument is
used to show that it is smooth.
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(c) The topological space jX j is a disjoint union of the locally closed subsets jX.Z/j as
Z runs over the connected components of XGm .

See B 13.47.

12.18 (BIAŁYNICKI-BIRULA, HESSELINK, IVERSEN). Let X be a smooth projective va-
riety over k equipped with an action of Gm. Then there is a numbering XGm D

Fn
iD1Zi of

the set of connected components of the (smooth closed) fixed-point scheme, a filtration

X DXn �Xn�1 � �� � �X0 �X�1 D ;;

and affine fibrations14 'i WXi XXi�1!Zi . The relative dimension ai of the affine fibration
'i is the dimension of TgtCz .X/ for any z in Zi , and the dimension of Zi is the dimension
of TgtzX

Gm . See B 13.55 and the references there.

13 Unipotent groups

Groups of unipotent endomorphisms
13.1. An element r of a ring is unipotent if r�1 is nilpotent. Let V be a finite-dimensional

vector space. An endomorphism of V is unipotent if and only if its matrix relative to some
basis lies in

Un.k/
def
D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
1 � � : : : �

0 1 � : : : �

0 0 1 : : : �
:::

:::
: : :

:::

0 0 0 � � � 1

�9>>>>>>=>>>>>>;
;

and a subgroup of Aut.V / consisting of unipotent endomorphisms lies in Un.k/ for some
choice of a basis for V (see B 14.2).

Unipotent algebraic groups
13.2. An algebraic group G is unipotent if every nonzero representation .V;r/ of G has a

nonzero fixed vector, i.e.,
V ¤ 0 H) V G ¤ 0:

In terms of the associated comodule .V;�/, this means that there exists a nonzero v 2 V such
that �.v/D v˝1.

13.3. Every quotient Q of a unipotent algebraic group G is unipotent (because a represen-
tation of Q can be regarded as a representation of G, and so has a fixed vector).

13.4. A finite-dimensional representation .V;r/ of an algebraic group G is unipotent if
there exists a basis of V for which r.G/ � Un. Equivalently, .V;r/ is unipotent if there
exists a flag V D Vm � � � � � V1 � 0 stable under G and such that G acts trivially on each
quotient ViC1=Vi .

14A flat morphism �WX !Z is an affine fibration if Z is a union of open subsets U such that the restriction
of � to ��1.U / is isomorphic to the projection map U �An! U for some n.
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13.5. The following conditions on an algebraic group G over k are equivalent:
(a) G is unipotent;
(b) every finite-dimensional representation of G is unipotent;
(c) some faithful finite-dimensional representation of G is unipotent.

That (b) implies (a) is obvious, and the converse follows from an easy induction argument.
That (b) implies (c) is trivial, and the converse is proved in B 14.5.

13.6. Subgroups, quotients, and extensions of unipotent algebraic groups are unipotent.
For subgroups, apply 13.5. For quotients, see 13.3. For extensions, let G be an algebraic
group containing a normal subgroup such that N and G=N are unipotent, and let .V;r/ be a
nonzero representation of G. Because N is normal, V N is stable under G, which acts on it
through G=N . As V is nonzero, V N is nonzero, and so V G D .V N /G=N is nonzero.

13.7. Let G be an algebraic group over k, and let k0 be an extension of k. Then G is
unipotent over k if and only if Gk0 is unipotent over k0 (B 14.9).

13.8. It follows from 13.5 that every subgroup of Un is unipotent. As Ga �U2, we see that
Ga is unipotent. In characteristic p, the subgroups ˛p and .Z=pZ/k of Ga are unipotent.
An étale group over k is unipotent if and only if its order is a power of the characteristic
exponent of k (B 14.14).

13.9. A smooth algebraic group is unipotent if and only if G.ka/ consists of unipotent
elements (in the sense of 7.11). In proving this, we may suppose that k is algebraically
closed. Let .V;r/ be a faithful representation of G. If the elements of G.k/ are unipotent,
then G.k/� Un for some basis of V by 13.1, which implies that G � Un because G.k/ is
dense in G as a scheme. Conversely, if G is unipotent, then its representations are unipotent,
which implies that the elements of G.k/ are unipotent.

13.10. A unipotent algebraic group admits a central normal series whose quotients are
isomorphic to subgroups of Ga (because this is true of Un, 4.37). In particular, it is nilpotent
(see 14.23 below).

13.11. An algebraic group is unipotent if and only if every nontrivial algebraic subgroup
admits a nontrivial homomorphism to Ga (B 14.22).

13.12. Obviously, no nontrivial diagonalizable group is unipotent (9.4), and hence groups
of multiplicative type are not unipotent (13.7). For example, �n, n > 1, is not unipotent. If
M is a group of multiplicative type over k and U is unipotent, then there are no nontrivial
homomorphisms U !M or M ! U (B 14.18). In particular, if U and M are subgroups of
the same algebraic group, then U \M D e.

13.13. A smooth connected algebraic group over an algebraically closed field is unipotent
if and only if it contains no nontrivial torus (B 16.60).

Classification in characteristic zero
Throughout this subsection, k is a field of characteristic zero.
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13.14. Let V be a finite-dimensional vector space over k. If ˛ is a nilpotent endomorphism
of V ˝R for some k-algebra R, then we can define

exp.˛/D 1C
˛

1Š
C
˛2

2Š
C
˛3

3Š
C�� � (endomorphism of V ˝R).

13.15. Let G be a unipotent algebraic group over k. From a representation rV of G on V
we get a representation drV Wg! glV of g. For a suitable choice of a basis for V , we have
rV .G/� Un, and so .drV /.g/� nn (see 8.13). In particular, .drV /.X/ is nilpotent for all
X 2 g˝R, and so exp.drV .X// is a well-defined endomorphism of V ˝R. For a fixed
X 2 g˝R, these endomorphisms have the following properties:

(a) for all representations .V;rV / and .W;rW / of G,

exp.drV˝W .X//D exp.drV .X//˝ exp.drW .X//I

(b) if G acts trivially on V , then exp.drk.X// is the identity map;
(c) for all G-equivariant maps uW.V;rV /! .W;rW /,

exp.drW .X//ıuR D uR ı exp.drV .X//:

According to 7.2, there is a (unique) element exp.X/ 2G.R/ such that

rV .exp.X//D exp..drV /.X//

for all .V;rV /. On varying X , we obtain a map expWR˝g!G.R/ for each R. These maps
are natural in R, and hence (by the Yoneda lemma) they define a morphism of schemes

expWga!G.

13.16. Let G be a unipotent algebraic group over k. The exponential map

expWLie.G/a!G

is an isomorphism of schemes (B 14.32). If the unipotent group G is commutative, then the
exponential map is an isomorphism of algebraic groups. In particular, every commutative
unipotent group over k is isomorphic to Gra for some r , and the only algebraic subgroups
of Ga are e and Ga itself. More precisely, the functor G Lie.G/ is an equivalence from
the category of commutative unipotent algebraic groups over k to Veck , with quasi-inverse
V  Va. See B 14.35.

It remains to describe the group structure on ga 'G when G is not commutative. First,
we must introduce the class of Lie algebras that unipotent groups correspond to.

13.17. All Lie algebras will be finite-dimensional over k. A Lie algebra g is nilpotent if
there is a filtration

gD a0 � a1 � �� � � ar�1 � ar D 0

by ideals such that Œg;ai �� aiC1 for all i . Every nilpotent Lie algebra g admits a faithful
representation .V;�/ such that �.g/ consists of nilpotent endomorphisms (Ado-Iwasawa
theorem, Lie Algebras, Algebraic Groups,. . . 6.27). If �Wg! glV is a representation of a
Lie algebra g such that �.g/ consists of nilpotent endomorphisms, then there exists a basis
of V for which �.V /� nn (Engel’s theorem, Lie Algebras, Algebraic Groups,. . . 2.8).
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13.18. The Campbell–Hausdorff series is a formal power series H.U;V / in the noncom-
muting symbols U and V with coefficients in Q such that

exp.U / � exp.V /D exp.H.U;V //;

where
exp.U /D 1CU CU 2=2CU 3=3ŠC�� � 2QŒŒU ��:

It can be defined as
log.exp.U / � exp.V //;

where

log.T /D�
�
1�T

1
C
.1�T /2

2
C
.1�T /3

3
C�� �

�
.

For a nilpotent matrix X in Mn.k/, exp.X/ is a well-defined element of GLn.k/. If X;Y 2
nn, then ad.X/n D 0D ad.Y /n, and soHm.X;Y /D 0 for allm sufficiently large; therefore
H.X;Y / is a well-defined element of nn, and

exp.X/ � exp.Y /D exp.H.X;Y //:

13.19. (a) Let g be a finite-dimensional nilpotent Lie algebra g over k. The maps

.x;y/ 7!H.x;y/Wg.R/�g.R/! g.R/ (R a k-algebra)

make ga into a unipotent algebraic group over k.
(b) LetG be a unipotent algebraic group over k, and let gD Lie.G/. Then g is a nilpotent

Lie algebra, and the exponential map expWga!G is an isomorphism of algebraic groups.
In particular,

exp.x/ � exp.y/D exp.H.x;y//

for all k-algebras R and x;y 2 g˝R.
(c) The functor g ga defined in (a) is an equivalence from the category of finite-

dimensional nilpotent Lie algebras over k to the category of unipotent algebraic groups, with
quasi-inverse G Lie.G/.
See B 14.36, 14.37.

13.20. Every Lie subalgebra g of glV consisting of nilpotent endomorphisms is the Lie
algebra of an algebraic group (V finite-dimensional). (According to Engel’s theorem, g is
nilpotent, and so gD Lie.ga/.)

Classification in characteristic p
Throughout this subsection, k is a field of characteristic p ¤ 0.

THE ADDITIVE GROUP Ga

13.21. Let k be a field of characteristic p¤ 0. We let � denote the endomorphism x 7! xp

of k, and we let k� ŒF � denote the ring of polynomials c0C c1F C�� �C cmFm, ci 2 k, with
the multiplication defined by Fc D c�F , c 2 k.
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13.22. Recall (3.1) that O.Ga/D kŒT � with �.T /D T ˝1C1˝T . Therefore, to give a
homomorphism G!Ga amounts to giving an element f 2O.G/ such that

�G.f /D f ˝1C1˝f: (16)

Such an f is said to be primitive, and we write P.G/ for the set of primitive elements in G;
thus

Hom.G;Ga/' P.G/: (17)

13.23 (THE ENDOMORPHISMS OF Ga). A direct calculation (B 14.40) shows that the
primitive polynomials in O.Ga/D kŒT � are the polynomialsX

j�0

bjT
pj
D b0T Cb1T

p
C�� �CbnT

pn ; bj 2 k:

For c 2 k, let c (resp. F ) denote the endomorphism of Ga acting on R-points as x 7! cx

(resp. x 7! xp). Then Fc D c�F , and so we have a homomorphism

k� ŒF �! End.Ga/' P.Ga/

sending
P
bjF

j to the primitive element
P
bjT

pj . In this way, we get an isomorphism

k� ŒF �' End.Ga/' P.Ga/ (18)

with
P
bjF

j acting on Ga.R/DR as c 7!
P
bj c

pj .

13.24 (THE SUBGROUPS OF Ga). Let H be a proper algebraic subgroup of Ga.
(a) There exists a surjective endomorphism ' of Ga with kernel H .
(b) Write

' D arF
r
CarC1F

rC1
C�� �CasF

s

with r;s 2 N, ar ; : : : ;as 2 k, and ar ¤ 0¤ as . Then H ı � ˛pr ,

�0.H/D Ker.ar idCarC1F C�� �CasF s�r/;

and �0.H/.ks/� .Z=pZ/s�r .
(c) If H is stable under the natural action of Gm on Ga, then it is connected.

See B 14-3 and the references there.

13.25 (THE FORMS OF Ga). Let k be a nonperfect field of characteristic p. For every
finite sequence a0; : : : ;am of elements of k with a0 ¤ 0 and m� 1, the algebraic subgroup
G of Ga�Ga defined by the equation

Y p
n

D a0XCa1X
p
C�� �CamX

pm

is a form of Ga, and every form of Ga arises in this way. Note that G is the fibred product

G Ga

Ga Ga:
a0FC���CamF

pm

F n

In particular, G is an extension of Ga by a finite subgroup of Ga. There is a criterion for
when two forms are isomorphic. For example, when a0 D 1, G becomes isomorphic to Ga
over an extension K of k if and only if K contains a pnth root of each ai . See B 14.57, 14-2.
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ELEMENTARY UNIPOTENT GROUPS

13.26. Let G be a commutative algebraic group over k. The following conditions are
equivalent (B 14.48):

(a) the Verschiebung morphism VG WG
.p/!G is zero;

(b) G embeds into a vector group Va;
(c) O.G/ is generated by homomorphisms G!Ga.

A commutative algebraic group satisfying these conditions is elementary unipotent.

Every unipotent algebraic group can be built up from elementary groups by successive
central extensions (13.11). We confine ourselves to classifying elementary unipotent groups
because the general problem is too difficult.

13.27. Let G be an algebraic group over k. From the isomorphism k� ŒF � ' End.Ga/,
we get an action of k� ŒF � on P.G/' Hom.G;Ga/. Explicitly, for f 2O.G/ and c 2 k,
cf D c ıf and Ff D f p. Now P is a contravariant functor

G P.G/

from algebraic groups over k to k� ŒF �-modules. This functor defines an equivalence from
the category of elementary unipotent groups over k to the category of finitely generated
k� ŒF �-modules. See B 14.46.

13.28. Let G be an elementary unipotent group. Every subgroup of G isomorphic to Ga
is a direct factor of G (because every quotient of P.G/ isomorphic to k� ŒF � is a direct
summand). See B 14.47.

13.29. Let k be a perfect field. Then every finitely generated left k� ŒF �-module is a direct
sum of cyclic modules. It follows that every elementary unipotent algebraic group over k is
a product of groups isomorphic to Ga, ˛pr for some r , or an étale group of order a power of
p. See B 14.51, 14.52.

13.30. Let k be a perfect field.
(a) Every smooth connected commutative algebraic group over k of exponent p is iso-

morphic to Gra for some r (B 14.54).
(b) Every nontrivial smooth connected unipotent algebraic group over k contains a central

subgroup isomorphic to Ga (B 14.55).

Split unipotent groups
13.31. A unipotent algebraic group G over k is split if it admits a subnormal series each

of whose quotients is isomorphic to Ga (rather than just subgroups of Ga).

13.32. A split unipotent algebraic group is automatically smooth and connected; it remains
split after an extension of the base field.

13.33. Recall (13.10) that every unipotent algebraic group admits a normal series whose
quotients are subgroups of Ga. In characteristic zero, Ga has no proper subgroups (13.24),
and so all connected unipotent algebraic groups are split. In characteristic p, a connected
unipotent group variety need not be split, but it is if the ground field is perfect – this follows
by induction from 13.30(b). Hence every connected unipotent group variety splits over a
finite purely inseparable extension of the ground field.
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13.34. An elementary unipotent group G over k is split if and only if it isomorphic to Gra
for some r . This follows by induction from 13.28.

13.35. A unipotent group G over k is split if it splits over a separable field extension k0

of k. In proving this, we may suppose that G is elementary and that k0 is finite over k. If
fx1; : : : ;xng is a basis for k0 as a k-vector space, then so also is fxp

r

1 ; : : : ;x
pr

n g for all r (here
we use that k0 is separable over k), and it follows that fx1; : : : ;xng is a basis for k0� ŒF � as a
k� ŒF �-module. We know that P.Gk0/ is a free k0� ŒF �-module, and so P.G/ is a submodule
of a free k� ŒF �-module. This implies that it is free (B 14.50).

13.36. Let G be a split unipotent algebraic group of dimension n. Then the underlying
scheme of U is isomorphic to An. Indeed, inductively, G is a Ga-torsor over An�1, and
such a torsor is trivial (6.30).

13.37. A form of Gra over k is split if and only if it is trivial (i.e., isomorphic to Gra over
k). This follows from 13.34. In particular, every nontrivial form of Ga, e.g., Rosenlicht’s
group Y p �Y D tXp, is nonsplit. Moreover, every split smooth connected commutative
algebraic group of exponent p is isomorphic to Gra for some r .

13.38. The algebraic group Un is split. Every connected group variety admitting an action
by a split torus with only nonzero weights is a split unipotent group (see below). For example,
the unipotent radical of a parabolic subgroup of a reductive algebraic groups is split.

14 Solvable algebraic groups

Algebraic groups of dimension one
14.1. Let G be a smooth connected algebraic group of dimension 1 over a field k. Either G

becomes isomorphic to Gm over a finite separable extension of k or it becomes isomorphic
to Ga over a finite purely inseparable extension of k. Over an algebraically closed field, Ga
and Gm are the only smooth connected algebraic groups of dimension 1. See B 16.16.

Commutative algebraic groups
14.2. Let G be a commutative algebraic group over k.

(a) There exists a largest algebraic subgroup Gs of G of multiplicative type; this is a
characteristic subgroup of G, and the quotient G=Gs is unipotent.

(b) Let k be perfect. There exists a largest unipotent algebraic subgroup Gu of G, and

G 'Gu�Gs

(unique decomposition of G into a product of a unipotent subgroup and a subgroup of
multiplicative type). If G is smooth (resp. connected), so also are Gu and Gs .

See B 16.13.
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Trigonalizable algebraic groups
14.3. An algebraic group is trigonalizable if every simple representation has dimension

one. In other words, G is trigonalizable if every nonzero representation .V;r/ contains
an eigenvector. In terms of the associated comodule .V;�/, this means that there exists a
nonzero v 2 V such that �.v/D v˝a for some a 2O.G/.

14.4. A finite-dimensional representation .V;r/ of an algebraic group G is trigonalizable
representation if there exists a basis of V for which r.G/ � Tn. Equivalently, .V;r/ is
trigonalizable if G stabilizes a maximal flag in V .

14.5. The following conditions on an algebraic group G over k are equivalent (B 16.2):
(a) G is trigonalizable;
(b) every finite-dimensional representation of G is trigonalizable;
(c) some faithful finite-dimensional representation of G is trigonalizable;
(d) there exists a normal unipotent subgroup Gu of G such that G=Gu is diagonalizable.

14.6. Subgroups and quotients of trigonalizable algebraic groups are trigonalizable, but
extensions of trigonalizable groups need not be (B 16.3, 16.5).

14.7. A trigonalizable algebraic group remains trigonalizable after an extension of the base
field.

14.8. Let G be a trigonalizable algebraic group over k, and consider the exact sequence

e!Gu!G
q
�!D! e

(Gu unipotent and D diagonalizable). Assume that one of the following holds:
˘ the field k is algebraically closed;
˘ the field k is perfect and Gu is smooth and connected;
˘ the field k is perfect and D is connected.

Then
(a) q admits a section s (i.e., a homomorphism sWD!G such that q ı s D idD/;
(b) if s1; s2WD ! G are sections to q, then there exists a u 2 Gu.k/ such that s2 D

inn.u/ı s1;
(c) the maximal diagonalizable subgroups of G are those of the form s.D/ for s a section

of q, and any two are conjugate by an element of Gu.k/.
See B 16.26, 16.27 and the references there.

Potentially trigonalizable algebraic groups
14.9. The following conditions on an algebraic group G over k are equivalent (B 16.6):

(a) G becomes trigonalizable over a separable field extension of k;
(b) G contains a normal unipotent subgroup Gu such that G=Gu is of multiplicative type.

An algebraic group satisfying these conditions is said to be potentially trigonalizable.15

14.10. When G is potentially trigonalizable, we write Gu for the subgroup in 14.9(b), i.e.,
for the unique normal unipotent subgroup Gu such that G=Gu is of multiplicative type, and
we call it the unipotent part of G.

15I made this name up.
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14.11. Let
e!Gu!G

q
�!D! e

be an exact sequence of algebraic groups with Gu unipotent and D a smooth group of
multiplicative type. Statements (a, b, c) of 14.8 hold in each of the following cases (SGA 3,
XVII, 5.2.3, 5.3.1):

(a) Gu is commutative and q admits a section as a map of schemes;
(b) k is algebraically closed;
(c) k is perfect and Gu is connected;
(d) Gu is split (as a unipotent group).

In the remainder of this subsection, G is an potentially trigonalizable algebraic group.

14.12. The algebraic subgroup Gu is characterized by each of the following properties:
(a) it is the largest unipotent algebraic subgroup of G; (b) it is a normal unipotent algebraic
subgroup U of G such that G=U is of multiplicative type; (c) it is the smallest normal
algebraic subgroup U such that G=U is of multiplicative type. From (b), it follows that the
formation of Gu commutes with extension of the base field.

14.13. Assume that k is perfect. Let .V;r/ be a faithful representation ofG. By assumption,
there exists a basis of Vka for which r.G/ka � Tn. For this basis, r .Gu/ka D Un\ r.G/ka .
As Un.ka/ is the set of unipotent elements of Tn.ka/, it follows that Gu(ka/ is the set of
unipotent elements of G.ka/:

Gu.k
a/DG.ka/u:

When Gu is smooth, this equality characterizes Gu.

14.14. If G is smooth (resp. connected), then Gu is smooth (resp. connected) (because it
becomes a quotient of G over kaI see 14.8).

Solvable algebraic groups
14.15. An algebraic group G is solvable if it admits a subnormal series

G DG0 �G1 � �� � �Gt D e

such that each quotient Gi=GiC1 is commutative (such a series is called a solvable series
for G). In other words, G is solvable if it can be built up from commutative algebraic groups
by successive extensions.

14.16. Algebraic subgroups, quotients, and extensions of solvable algebraic groups are
solvable (B 6.27).

14.17. Let G be an algebraic group over k. Write D2G for the second derived group
D.DG/ of G, D3G for the third derived group D.D2G/ and so on. Thederived series for
G is the normal series

G �DG �D2G � �� � :

If G is smooth, then DnG is a smooth characteristic subgroup of G, and each quotient
DnG=DnC1G is commutative; if G is also connected, then DnG is connected (6.16). An
algebraic group G is solvable if and only if its derived series terminates with e (B 6.30).
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14.18. Let G be an algebraic group over k, and let k0 be an extension of k. Then G is
solvable if and only if Gk0 is solvable. See B 6.31.

14.19. Let G be a solvable algebraic group over k. If G is connected (resp. smooth, resp.
smooth and connected), then it admits a solvable series whose terms are connected (resp.
smooth, resp. smooth and connected). (The derived series has the required property.)

14.20 (LIE-KOLCHIN THEOREM). Every smooth connected solvable algebraic group over
a perfect field is potentially trigonalizable; in particular, it is trigonalizable if the field is
algebraically closed.

14.21. A solvable algebraic group G over k is said to be split if it admits a subnormal
series G DG0 �G1 � �� � �Gn D e such that each quotient Gi=GiC1 is isomorphic to Ga
or to Gm. Each term Gi in such a subnormal series is smooth, connected, and affine, and so
G itself is smooth, connected, and affine. This definition agrees with the definitions 3.11 for
tori and 13.31 for unipotent groups.

14.22. Extensions of split solvable groups are obviously split, and quotients of split solvable
groups are split because nontrivial quotients of Ga and Gm are isomorphic to Ga or Gm. A
split solvable group G is trigonalizable.

NOTES. In the literature, a split solvable algebraic group over k is said to be k-solvable (k-résoluble)
or k-split. We adopt the second term, but can omit the “k” because of our convention that statements
concerning an algebraic group G over k are intrinsic to G over k.

Nilpotent algebraic groups
14.23. An algebraic group G is nilpotent if it admits a central series, i.e., a normal series

G DG0 �G1 � �� � �Gt D e

such that each quotientGi=GiC1 is contained in the centre ofG=GiC1 (such a series is called
a nilpotent series forG). In other words,G is nilpotent if it can be built up from commutative
algebraic groups by successive central extensions. For example, every unipotent algebraic
group is nilpotent (13.10).

14.24. Algebraic subgroups and quotients (but not necessarily extensions) of nilpotent
algebraic groups are nilpotent.

14.25. Let G be a smooth connected algebraic group. The descending central series for
G is the normal series

G0 DG �G1 D ŒG;G�� �� � �Gi D ŒG;Gi�1�� �� � ;

and G is nilpotent if and only if its descending central series terminates with e (B 6.38).

14.26. A smooth connected algebraic group G is nilpotent if and only if it admits a
nilpotent series whose terms are smooth connected algebraic groups.
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14.27. Let G be a nilpotent smooth connected algebraic group. If G ¤ e, then it contains
a nontrivial smooth connected algebraic group in its centre (e.g., the last nontrivial term in
its descending central series).

14.28 (B 16.47). Let G be a connected nilpotent algebraic group over k, and let Z.G/s
be the largest algebraic subgroup of Z.G/ of multiplicative type (see 14.2).

(a)Z.G/s is the largest algebraic subgroup ofG of multiplicative type; it is characteristic
and central, and the quotient G=Z.G/s is unipotent.

(b) If G is potentially trigonalizable, then it has a unique decomposition into a product
G DGu�Z.G/s with Gu unipotent and Z.G/s of multiplicative type.

(c) If G is smooth, then Z.G/s is a torus.

Decomposition of a solvable group under the action of a split torus
Recall that a semigroup is a set with an associative binary operation. In the next two
statements, G is a smooth connected algebraic group equipped with an action of a split torus
T and 	 �X.T / is the set of weights of T on Lie.G/, so that

Lie.G/D
M
˛2	

Lie.G/˛:

14.29. Let A be a subsemigroup of X.T /. There is a unique smooth connected T -stable
subgroup HA of G such that

Lie.HA/D
M
fLie.G/˛ j ˛ 2 A\	g .

A smooth connected T -stable subgroupH ofG is contained inHA if and only if the weights
of T on Lie.H/ lie in A (so HA is the largest smooth connected T -stable subgroup with
weights in A). See B 16.65.

14.30. Assume that G is solvable, and let A1; : : : ;An be subsemigroups of X.T /. If 	 is
the disjoint union of the sets Ai \	 , then the multiplication map

HA1 � � � ��HAn !G

is an isomorphism of algebraic schemes over k. See B 16.68 and the references there.

Semisimple and reductive groups
We finally introduce the groups that are the main focus of these notes.

14.31. Let G be a smooth connected algebraic group over k. Extensions and quotients of
solvable algebraic groups are solvable (14.16), and so G contains a largest smooth connected
solvable normal subgroup (4.29). This is called the radical R.G/ of G. A smooth connected
algebraic group over k is semisimple if its geometric radical R.Gka/ is trivial. When k is
algebraically closed, G=R.G/ is semisimple.

14.32. Let G be a smooth connected algebraic group over k. Extensions and quotients
of unipotent algebraic groups are unipotent (13.6), and so G contains a largest smooth
connected solvable normal subgroup (4.29). This is called the unipotent radical Ru.G/
of G. A smooth connected algebraic group G over a field k is said to be reductive if its
geometric unipotent radical Ru.Gka/ is trivial. When k is algebraically closed, G=Ru.G/
is reductive.
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14.33. A smooth connected algebraic group G is pseudo-reductive if Ru.G/D e. Every
reductive group is pseudo-reductive, but the following example shows that not all pseudo-
reductive groups are reductive. In particular, a smooth connected algebraic group G over k
may be pseudo-reductive without Gka being pseudo-reductive.

Let char.k/D 2, and let t 2 kXk2. Let G be the algebraic group over k

R f.x;y/ 2R2 j x2� ty2 2R�g

with the multiplication

.x;y/.x0;y0/D .xx0C tyy0;xy0Cx0y/:

Then O.G/D kŒX;Y;Z�=..X2� tY 2/Z�1/, and G is a smooth connected algebaic group
(the polynomial .X2 � tY 2/Z � 1 is irreducible over ka). Let 'WG ! Gm be the ho-
momorphism .x;y/ 7! x2 � ty2. The kernel N of ' is the algebraic group defined by
X2� tY 2 D 0, which is reduced but not geometrically reduced. We have Ru.G/D e, but
Ru.Gka/D .Nka/red 'Ga. Thus G is pseudo-reductive but not reductive.

15 Borel and Cartan subgroups
Throughout this section, G is a smooth connected algebraic group over k.

Borel and parabolic subgroups
15.1. The parabolic subgroups of G are the smooth subgroups P such that G=P is com-

plete (as an algebraic variety). Every smooth subgroup of G containing a parabolic subgroup
is parabolic. The group G itself is parabolic. When k is algebraically closed, there exist
proper parabolic subgroups unless G is solvable (B 17.17). Let k0 be a field containing k;
then a subgroup P of G is parabolic if and only if Pk0 is parabolic in Gk0 .

15.2. Let k be algebraically closed. The following conditions on a smooth connected
subgroup B of G are equivalent:

(a) B is maximal among the smooth connected solvable subgroups of G;
(b) B is solvable and parabolic;
(c) B is minimal among the parabolic subgroups.

See B 17.19.

15.3. A subgroup B of G is Borel if it is smooth, connected, solvable, and parabolic.
When k is algebraically closed, a smooth connected subgroup of G is Borel if and only if it
satisfies the equivalent conditions of 15.2. A Borel pair .B;T / in G is a Borel subgroup and
a maximal torus of G contained in B (in fact, every torus T � B maximal in B is maximal
in G, because this is true over ka). Let k0 be a field containing k; then a subgroup B of G is
Borel if and only if Bk0 is Borel in Gk0 .

15.4. When k is algebraically closed, G contains a Borel subgroup because every smooth
connected solvable subgroup of highest dimension is Borel. In general, G need not contain a
Borel subgroup. When it does, it is said to be quasi-split.
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15.5. Any two minimal parabolic subgroups in G are conjugate by an element of G.k/
(see B 25.8). It follows that, when G is quasi-split, the Borel subgroups are exactly the
minimal parabolic subgroups. In particular, any two Borel subgroups are conjugate by an
element of G.k/.

15.6. Let k be algebraically closed. Every element ofG.k/ is contained in a Borel subgroup
of G. For a fixed Borel subgroup B of G, every element of G.k/ is conjugate to an element
of B.k/. See B 17.33.

15.7. Let P be a smooth subgroup of G. If P contains a Borel subgroup B of G, then
P is connected and P D NG.P / (B 17.49). Therefore, every parabolic subgroup of G
is connected and equal to its own normalizer (because this is so over ka). In particular,
every Borel subgroup B is equal to its own normalizer, and B DNG.Bu/ if B is potentially
trigonalizable (B 17.50).

15.8. Borel subgroups of G are maximal among the smooth solvable subgroups (not
necessarily connected), but not every smooth solvable subgroup is contained in a Borel
subgroup (even when k is algebraically closed). See B 17.51.

15.9. Let B be a Borel subgroup of G. Then Z.B/D CG.B/DZ.G/ (B 17.22, 17.70).

15.10. Let qWG!Q be a quotient map, and let H be a smooth subgroup of G. If H is
parabolic (resp. Borel), then so also is q.H/; moreover, every such subgroup of Q arises in
this way (B 17.20).

15.11. Let S be a torus in G. The centralizer CG.S/ of S in G is smooth (10.6) and
connected (B 17.38). Let B be a Borel subgroup of G containing S . Then CG.S/\B is a
Borel subgroup of CG.S/, and every Borel subgroup of CG.S/ is of this form when k is
algebraically closed (B 17.46).

Chevalley’s theorem; reductive groups
15.12. Assume that k is algebraically closed field. Let I denote the reduced identity

component of the intersection of the Borel subgroups of G. Thus I is a smooth connected
subgroup of G. It is solvable because it is contained in a solvable subgroup, and it is
normal because the collection of Borel subgroups is closed under conjugation. Every smooth
connected solvable subgroup is contained in a Borel subgroup, and, if it is normal, then it
is contained in all Borel subgroups, and so it is contained in I . Therefore I is the largest
smooth connected solvable normal subgroup of G, i.e.,

R.G/D
�\

B�G Borel
B
�ı

red
:

Similarly,

Ru.G/D
�\

B�G Borel
Bu

�ı
red

where Bu is the unipotent part of B (14.10).
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15.13 (CHEVALLEY’S THEOREM). Assume that k is algebraically closed. For a fixed
maximal torus T in G,

R.G/D
�\

B Borel�T
B
�ı

red

Ru.G/D
�\

B Borel�T l
Bu

�ı
red
:

where the intersections are over the finite set of Borel subgroups of G containing T . See B
17.56.

15.14. Let G be a reductive group over a field k:
(a) Let T be a torus in G. Then CG.T / is reductive (B 17.59), and CG.T /D T if and

only if T is maximal (B 17.61).
(b) The centre of G is a group of multiplicative type, contained in all maximal tori of G.
(c) The radical of G is the largest subtorus Z.G/ıred of Z.G/. Therefore, the formation of

R.G/ commutes with extension of the base field and G=R.G/ is semisimple.

15.15. Let G be a reductive group over k, and let � be a cocharacter of G. Then P.�/
is parabolic subgroup of G, and every parabolic subgroup is of this form (B 25.1). The
unipotent radical of P.�/ is U.�/, which is a split unipotent group, and P.�/=U.�/ is
reductive. See B 17.60.

15.16. An adjoint group is a semisimple algebraic group with trivial centre. Let G be a
reductive group. Then Gad def

D G=Z.G/ is an adjoint group (B 17.62). The action of G on
itself by conjugation defines an action of Gad on G which identifies Gad.k/ with the group
of inner automorphisms of G (14.10).

Cartan subgroups and maximal tori
15.17. Every torus in G of largest dimension is maximal. In particular, G has maximal

tori. Let k0 be a field containing k. A torus T in G is maximal if and only if Tk0 is maximal
in Gk0 . See B 17.82.

15.18. There exists a maximal torus in Gka defined over k; in fact, if T is maximal in G,
then Tka is such a torus.

15.19. Let G be an almost-direct product16 of smooth connected subgroups,

G DG1 � � �Gn;

and let T be a maximal torus in G. Then T is an almost-direct product T D T1 � � �Tn with
Ti

def
D .T \Gi /t a maximal torus in G. See B 17.86.

15.20. Any two maximal split tori in G are conjugate by an element of G.k/ (see B 25.10).
In particular, any two split maximal tori are conjugate by an element of G.k/, and any two
maximal tori become conjugate after a finite separable extension of k.

16This means that the multiplication map

G1� � � ��Gn!G

is a faithfully flat homomorphism with finite kernel. In other words, the subgroups Gi commute in pairs,
G1 � � �Gn DG, and G1\� � �\Gn is finite.
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15.21. A Cartan subgroup of G is the centralizer of a maximal torus. Every Cartan
subgroup of G is smooth, connected, and nilpotent (B 17.44). When k is algebraically
closed, any two Cartan subalgebras are conjugate by an element of G.k/, and the union of
the Cartan subgroups contains a dense open subset of G.

15.22. If G is reductive, then the Cartan subgroups of G are exactly the maximal tori in G
(by 15.14a).

15.23. The algebraic group G is generated by its Cartan subgroups. If follows that G is
unirational (and G.k/ is dense in G if k is infinite) if every Cartan subgroup is unirational.
This is the case if

(a) k is perfect, or
(b) G is reductive.

See B 17.91, 17.92, 17.93..

EXAMPLES

15.24. The torus Dn is maximal in GLn because Dn is its own centralizer in GLn. To see
this, let Eij denote the matrix with a 1 in the ij th position and zeros elsewhere, and let
A 2Mn.R/ for some k-algebra R. If

.I CEi i /AD A.I CEi i /

then aij D 0D aj i for all j ¤ i , and so A must be diagonal if it commutes with the matrices
I CEi i .

15.25. Let V be a vector space of dimension n over k. The conjugacy classes of maximal
tori in GLn are in natural one-to-one correspondence with the isomorphism classes of étale
k-algebras of degree n.

To see this, let T be a maximal torus in GLV . As a T -module, V decomposes into
a direct sum of simple T -modules, V D

L
i Vi , and the endomorphism ring of Vi (as a

T -module) is a separable extension ki of k such that dimki Vi D 1 (see 9.7). Now
Q
i ki is

an étale k-algebra of degree n, and T .k/D
Q
i k
�
i .

Conversely, let AD
Q
i ki be an étale k-algebra of degree n. The choice of a nonzero

element of V defines on V the structure of a free A-module of rank 1. Then V D
L
i Vi

with Vi a one-dimensional ki -vector space. The automorphisms of V preserving this
gradation and commuting with the action of A form a maximal subtorus T of GLV such that
T .k/D A� D

Q
i k
�
i .

In particular, the split maximal tori in GLV are in natural one-to-one correspondence
with the decompositions V D V1˚ �� � ˚Vn of V into a direct sum of one-dimensional
subspaces. From this it follows that they are all conjugate. The (unique) conjugacy class of
split maximal tori corresponds to the étale k-algebra k� � � ��k (n copies).

The Weyl group
15.26. Let T be a maximal torus in a smooth connected algebraic group G over k. Then

(a) CG.T /DNG.T /ıI
(b) CG.T / is contained in every Borel subgroup containing T ;
(c) CG.T /D CG.T /uÌT if k is perfect.
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See B 17.39.

15.27. Let T be a maximal torus in a smooth connected algebraic group G over k. The
Weyl group W.G;T / of G with respect to T is the étale group scheme �0.NG.T //. Thus,

W.G;T /
def
DNG.T /=NG.T /

ı
DNG.T /=CG.T /:

By definition, W.G;T / acts faithfully on T , and hence on X�.T / and X�.T /. When G is
reductive, CG.T /D T , and so W.G;T /DNG.T /=T (quotient of algebraic groups).

15.28. LetG DGLV and let T be a split maximal torus inG. The action of T decomposes
V into a direct sum V D

L
i2I Vi of one-dimensional eigenspaces. The normalizer of T

consists of the automorphisms preserving the decomposition, and CG.T / consists of the
automorphisms preserving the decomposition including the indexing. We have NG.T /D
T ÌSk , and W.G;T /D Sk (finite constant group attached to the symmetric group on the
finite set I ).

For example, the normalizer of Dn in GLn consists of the monomial matrices, and the
Weyl group is .Sn/k , which can be realized as the group of permutation matrices in GLn.k/.
Similarly, the Weyl group of SLn is .Sn/k , but in this case there is no subgroup ofNG.T /.k/
mapping isomorphically onto .Sn/k .

Split algebraic groups
15.29. We say that G is split if it has a Borel subgroup that is split (as a solvable group).

15.30. A split algebraic group is quasi-split, but there exist quasi-split groups that are not
split, for example, the special orthogonal group of x21Cx

2
2Cx

2
3 �x

2
4 over k D R.

15.31. Every quotient of a split algebraic group is split because the image of a Borel
subgroup is Borel and a quotient of a split solvable group is split.

15.32. Suppose that G is solvable. Obviously, G is split as an algebraic group if and only
if it is split as a solvable algebraic group. For example, a torus is split as an algebraic group
if and only if it is split as a torus. We shall see that a reductive algebraic group is split as an
algebraic group if and only if it has a split maximal torus.

15.33. If H is a split solvable subgroup of G and B is a split Borel subgroup, then
H � gBg�1 for some g 2G.k/.

15.34. Any two split Borel subgroups of G are conjugate by an element of G.k/.

16 Isogenies and universal covers
We sketch a proof (following Iversen 1976) that a large class of algebraic groups, including
all semisimple groups, admit universal covers. Throughout, G is a smooth connected
algebraic group over k.
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Central and multiplicative isogenies

16.1. Let 'WG0!G be an isogeny of smooth connected groups. We say that ' is central
if its kernel is central, and that it is multiplicative if its kernel is of multiplicative type.
A multiplicative isogeny is central by rigidity (9.9), and conversely a central isogeny is
multiplicative if G0 is reductive (because the centres of reductive groups are of multiplicative
type, 15.14).

16.2. A composite of multiplicative isogenies is multiplicative (B 18.2).

16.3. An isogeny of degree prime to the characteristic has étale kernel (B 11.31), and
so it is central (B 12.39). In nonzero characteristic, there exist noncentral isogenies, for
example, the Frobenius morphism (6.8) and that in the example below. The isogenies in
nonzero characteristic that behave as the isogenies in characteristic zero are the multiplicative
isogenies.

16.4. Let k be a field of characteristic 2. Let G D SO2nC1 be the algebraic group attached
to the quadratic form x20C

Pn
iD1xixnCi on k2nC1 andG0D Sp2n that attached to the skew-

symmetric form
Pn
iD1.xix

0
nCi �xnCix

0
i / on k2n. These are semisimple algebraic groups,

and the diagonal tori in each are split maximal tori. The group G fixes the basis vector e0 in
k2nC1 (here we use that the characteristic is 2) and hence acts on k2nC1=ke0 ' k2n. From
this isomorphism, we get an isogeny from G to G0 that restricts to an isomorphism on the
diagonal maximal tori. It is not central because the centre of a reductive group is contained
in every maximal torus.

ASIDE 16.5. Borel and Tits (1972) call a homomorphism 'WG!G0 of smooth connected algebraic
groups quasi-central if the kernel of '.ka/ is central. This amounts to requiring that the commutator
map G.ka/�G.ka/!G.ka/ factor through '.G.ka//�'.G.ka//. If this factorization takes place
on the level of algebraic groups, then they say that ' is central (same article 2.2). This agrees with
our definition. A homomorphism ' of smooth connected algebraic groups is central if and only if it
is quasi-central and the kernel of Lie.'/ is contained in the centre of Lie.G/, i.e., if and only if '.ka/

and Lie.'/ are both central (same article, 2.15).

The notion of a universal covering
16.6. An algebraic group H is perfect if H DDH . The groups SL2 and PGL2 are perfect

(6.19). Every semisimple group is perfect because, after an extension of the base field, it is
generated by copies of SL2 and PGL2. See B 21.50.

16.7. We say that G is simply connected if every multiplicative isogeny G0!G with G0

smooth and connected is an isomorphism.

16.8. Assume thatG is simply connected, and let 'WG0!G be a surjective homomorphism
with finite kernel of multiplicative type (G0 not necessarily smooth or connected). Then '
admits a section in each of the following two cases:

(a) k is perfect, i.e., k D kp;
(b) G is perfect, i.e., G DDG.

See B 18.6.
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16.9. A universal covering (or simply connected covering) ofG is a multiplicative isogeny
zG! G with zG smooth, connected, and simply connected. When the universal covering
exists, its kernel is called the fundamental group �1.G/ of G.

16.10. Let � W zG!G be a universal covering of a smooth connected algebraic group G
over k. Assume that either k or G is perfect, and let 'WG0!G be a multiplicative isogeny
of smooth connected algebraic groups. Then there exists a unique homomorphism ˛W zG!G

such that � D ' ı˛:
zG

G0 G:

�˛

'

In particular, . zG;�/ is uniquely determined up to a unique isomorphism (B 18.8).

Line bundles and characters
16.11. Assume that G is split, and let B be a split Borel subgroup of G. Then B is

trigonalizable, and T def
D B=Bu is a split torus. Let � be a character of B , and let B act on

G�A1 according to the rule

.g;x/b D .gb;�.b�1/x/; g 2G; x 2 A1; b 2 B:

This is a B-homogeneous line bundle on G which descends to a line bundle L.�/ on G=B .
Every character of B factors uniquely through T , and so X.B/'X.T /. In this way, we get
a linear map

� 7! L.�/WX.T /! Pic.G=B/;

called the characteristic map for G. The following sequence is exact:

0!X.G/!X.T /! Pic.G=B/! Pic.G/! 0: (19)

See B, Section 18c.

16.12. For example, let T be the diagonal maximal torus in G D SL2, and let B be the
standard (upper triangular) Borel subgroup. The natural action of G on A2 defines an action
of G on P1, and B is the stabilizer of the point .1W0/ in P1. The canonical line bundle Luniv
on SL2 =B ' P1 is equipped with an SL2-action, and B acts on the fibre over .1W0/ through
the character �

z x

0 z�1

�
7! z�1:

In this case the characteristic map X.T /! Pic.SL2 =B/ is an isomorphism and X.SL2/D
0D Pic.SL2/. It follows from 16.14 below that SL2 is simply connected.

16.13. Let 'WG0!G be a surjective homomorphism of split smooth connected algebraic
groups. If the kernel of ' is of multiplicative type, then there is an exact sequence

0!X.G/!X.G0/!X.Ker.'//! Pic.G/! Pic.G0/! 0:

This is proved by applying the snake lemma to the exact sequences (19) for G and G0.
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16.14. Assume that G is split and that

X.G/D 0D Pic.G/:

We show that G is simply connected. If 'WG0!G is a multiplicative isogeny, then, in the
exact sequence,

0DX.G/!X.G0/!X.Ker'/! Pic.G/D 0;

the group X.Ker'/ is finite and the group X.G0/ is torsion-free (because G0 is smooth and
connected). Therefore X.Ker'/D 0, which implies that Ker.'/D e.

Existence of a universal covering (split case)
Throughout this section, G is a split smooth connected algebraic group and B is a split Borel
subgroup of G. We sketch a proof that G admits a universal covering if it has no nonzero
characters.

16.15. First we show that the Picard group ofG=B is finitely generated. AsG=B is smooth,
we can interpret Pic.G=B/ as the group of Weil divisors modulo principal divisors. The
varietyG=B contains an open subvariety U isomorphic to An, and so Pic.G=B/ is generated
by the irreducible components of the boundary .G=B/XU with codimension one, which
are finite in number.

16.16. Next we show that there exists a multiplicative isogeny 'WG0 ! G such that
Pic.G0/D 0. It suffices to find a multiplicative isogeny 'WG0! G such that Pic.'/D 0
because Pic.G/! Pic.G0/ is surjective (16.13). For this it suffices to find, for each line
bundle in a finite generating set for Pic.G/, a multiplicative isogeny G0! G such that L
becomes trivial on G0. This can be done by using the universal line bundle on P.V / for a
suitable vector space V . See B 18.22 and the references there.

16.17. Let 'WG0!G be the isogeny in 16.16. From the exact sequence

X.Ker.'//! Pic.G/! Pic.G0/D 0

we deduce that Pic.G/ is finite.

16.18. If G is simply connected, then the isogeny in 16.16 is an isomorphism, and so
Pic.G/D 0.

16.19. Finally, we can show that if X.G/D 0, then G admits a universal covering. Let
'WG0!G be the isogeny in 16.16. Because G0 is smooth and connected, X.G0/ is torsion-
free. Now the exact sequence in 16.13 shows that X.G0/D 0D Pic.G0/, and so zG is simply
connected (16.14).

16.20. If X.G/D 0, then, for the universal covering zG!G, the exact sequence in 16.13
becomes 0!X.�1G/! Pic.G/! 0, and so

Pic.G/'X.�1G//.
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Existence of a universal covering (nonsplit case)

16.21. The group G admits a universal covering zG!G in each of the following cases:
(a) k is perfect and X�.G/D 0;
(b) G is semisimple.

In each case, the universal covering has the universal property 16.10, and the formation of
zG!G commutes with extension of the base field.

To prove (a) use that G splits over a finite Galois extension k0 of k, and so it has a
universal covering over k0, which descends to k because of the uniqueness property 16.10.

To prove (b) use the following properties of a semisimple group over k: it remains
semisimple over extensions of k; it is perfect and so has no nonzero characters; it splits
over a separable extension of k; its fundamental groups (as an étale group scheme) does not
change with extension of the base field.

17 Semisimple and reductive groups

Semisimple groups
17.1. Let G be a connected group variety over k. Recall (14.31) that the radical R.G/

of G is the largest connected normal solvable subgroup variety of G. For example, if G
is the algebraic subgroup of GLmCn consisting of the invertible matrices

�
A B
0 C

�
with A of

size m�m and C of size n�n, then R.G/ consists of the matrices of the form
�
aIm B
0 cIn

�
with aIm and cIn nonzero scalar matrices. The quotient G=RG is the semisimple group
PGLm�PGLn.

17.2. Recall (14.31) that a semisimple algebraic group over k is a connected group variety
such that R.Gka/D e. When k is perfect, it suffices to check that R.G/D e (because the
formation of R.G/ commutes with separable field extensions, B 19.1).

17.3. Let G be a connected group variety over k. If G is semisimple, then every smooth
connected normal commutative subgroup is trivial, and the converse is true if k is perfect
(B 19.3). The following examples show that none of the conditions on the subgroup can be
dropped. Let p D char.k/.

(a) The subgroup Z=2ZD f˙I g of SL2 (p ¤ 2/ is smooth, normal, and commutative,
but not connected.

(b) The subgroup �2 of SL2 (p D 2) is connected, normal, and commutative, but not
smooth.

(c) The subgroup U2 D
˚�
1 �
0 1

�	
of SL2 is smooth, connected, and commutative, but not

normal.
(d) The subgroup e�SL2 of SL2�SL2 is smooth, connected, and normal, but not com-

mutative.

17.4. Let k0 be a field containing k. An algebraic group G over k is semisimple if and only
if Gk0 is semisimple (B 19.5).
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Reductive groups
17.5. Let G be a connected group variety over k. Recall (14.32) that the unipotent radical
Ru.G/ of G is the largest connected normal unipotent subgroup variety of G. For example,
if G is the algebraic subgroup of GLmCn consisting of the invertible matrices

�
A B
0 C

�
with A

of size m�m and C of size n�n, then Ru.G/ consists of the matrices of the form
�
Im B
0 In

�
.

The quotient G=Ru.G/ is the reductive group GLm�GLn.

17.6. Recall (14.32) that a reductive group G over k is a connected group variety such that
Ru.Gka/D e. When k is perfect, it suffices to check that Ru.G/D e (because the formation
of Ru.G/ commutes with separable field extensions, B 19.9).

17.7. Let G be a reductive group over k. Recall (15.14) that the centre Z.G/ is of
multiplicative type, and R.G/ is the largest subtorus of Z.G/. The formation of R.G/
commutes with all extensions of the base field, and G=R.G/ is semisimple. The centre of a
reductive group need be neither smooth nor connected.

17.8. The following conditions on a reductive algebraic group G are equivalent: (a) G is
semisimple; (b) R.G/D e; (c) Z.G/ is finite; (d) G is perfect (B 19.10, 21.54).

17.9. Let G be a connected group variety over k. If G is reductive, then every smooth
connected normal commutative algebraic subgroup is a torus; the converse is true if k is
perfect (B 19.2).

17.10. Let G be an algebraic group variety over k, and let k0 be a field containing k. Then
G is reductive if and only if Gk0 is reductive.

17.11. Let 'WG0! G be an isogeny of connected group varieties. If G is reductive or
semisimple, then so is G0. See B 19.14.

17.12. A semisimple group G is simply connected if and only if every central isogeny
G0! G from a semisimple group G0 to G is an isomorphism (B 19.5). This is the usual
definition of “simply connected” for semisimple groups.

17.13. Let G be a connected group variety over k. Normal unipotent subgroups of G
act trivially on semisimple representations of G, and so if G admits a faithful semisimple
representation, then Ru.G/D e.

17.14. The algebraic groups SLn, SOn, Sp2n, and GLn are reductive because they are
connected and their standard representations are simple and faithful and remain so over ka.
The first three are semisimple because their centres are finite.

17.15. Let G be a connected group variety over a field k. The following conditions are
equivalent:

(a) G is reductive;
(b) the geometric radical R.Gka/ of G is a torus;
(c) G is an almost-direct product of a torus and a semisimple group.

When k is perfect, these conditions are equivalent to the following condtions:
(d) the radical R.G/ of G is a torus;
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(e) G admits a semisimple representation with finite kernel.
See B 21.60, 21.61.

17.16. A reductive group is splittable if it contains a split maximal torus. A split reduc-
tive group over k is a pair .G;T / consisting of a reductive group G over k and a split
maximal torus T in G. A homomorphism of split reductive groups .G;T /! .G0;T 0/ is a
homomorphism 'WG!G0 such that '.T /� T 0.

We often loosely refer to a splittable reductive group as a split reductive group. When
the base field k is separably closed, all reductive groups are splittable because all tori are
split. Therefore every reductive group splits over a finite separable extension of the base
field.

The rank of a group variety
17.17. Let G be a group variety over k. The rank of G is the dimension of a maximal

torus in Gka , and the semisimple rank of G is the rank of Gka=R.Gka/. The k-rank of G
is the dimension of a maximal split torus in G, and the semisimple k-rank of a reductive
group G is the k-rank of the semisimple group G=R.G/.

Since any two maximal tori in Gka are conjugate, the rank is well-defined. The rank
of G is equal to the dimension of any maximal torus in G, and the semisimple rank of a
reductive group G is the rank of its semisimple quotient G=R.G/ of G. The rank does not
change with extension of the base field, but the semisimple rank may.

17.18. Let G be a connected group variety over k.
(a) G has rank 0 if and only if it is unipotent.
(b) G has semisimple rank 0 if and only if it is solvable.
(c) G is reductive of semisimple rank 0 if and only if it is a torus.

17.19. Let G be a reductive group over k.
(a) The semisimple rank of G is rank.G/�dimZ.G/.
(b) The algebraic group Z.G/\Gder is finite.
(c) The algebraic group Gder is semisimple of rank equal to the semisimple rank of G

(because the map Gder!Gad def
DG=Z.G/ is an isogeny).

Deconstructing semisimple algebraic groups
We explain how semisimple groups are built from almost-simple groups.

17.20. An algebraic group over k is simple (resp. almost-simple) if it is semisimple and
noncommutative, and every proper normal algebraic subgroup is trivial (resp. finite). It
isgeometrically simple (resp. almost-simple) if it is almost-simple (resp. simple) and remains
so over ka.17

For example, SLn is almost-simple and PGLn
def
D GLn =Gm ' SLn =�n is simple for

n > 1. Later we show that every almost-simple algebraic group over a separably closed field
is isogenous to one of the algebraic groups in the four families 3.10a, 3.10b, 3.10c, 3.10d, or
to one of five exceptional algebraic groups.

17There is considerable disagreement in the literature concerning these terms. While Borel 1991, IV, 14.10,
writes “almost simple” for our “almost-simple”, Springer 1998, 8.1.12, writes “quasi-simple”, and CGP write
“simple”. The old literature writes “absolutely” for “geometric”.
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17.21. A split semisimple group if almost-simple if and only if it is geometrically almost-
simple. In particular, almost-simple semisimple groups over a separably closed field are
geometrically almost-simple. See B 24.1.

17.22. A semisimple group G has only finitely many minimal normal subgroup varieties
G1; : : : ;Gr , and it is the almost-direct product of them, i.e., the multiplication map

G1� � � ��Gr !G

is an isogeny. Each Gi is almost-simple (in particular, connected). Every connected normal
subgroup variety of G is a product of those Gi it contains, and it is centralized by the
remaining ones. See B 21.51.18 It follows that quotients and connected normal subgroup
varieties of semisimple groups are semisimple (because they are almost products of almost-
simple groups). Moreover, every semisimple group is perfect (because this is true of
almost-simple groups).

17.23. Let G be a semisimple group over k, and let fG1; : : : ;Grg be the set of almost-
simple normal subgroup varieties of Gks . According to 17.22. there is an isogeny

.g1; : : : ;gr/ 7! g1 � � �gr WG1� � � ��Gr !Gks . (20)

When G is simply connected, this becomes an isomorphism

Gks 'G1� � � ��Gr . (21)

17.24. Let G be a simply connected semisimple group over k. When we apply an element
� of � to (21), it becomes Gks ' �G1 � � � � � �Gr with f�G1; : : : ;�Grg a permutation
of fG1; : : : ;Grg. In this way, we get a continuous action of � on the set fG1; : : : ;Grg.
Let H1; : : : ;Hs denote the products of the Gi in the different orbits for this action. Then
�Hi DHi , and so Hi is defined over k as a subgroup of G. Now

G DH1� � � ��Hs

is a decomposition of G into a product of almost-simple groups over k.

17.25. Let G be an almost-simple algebraic group over k. Then � def
D Gal.ks=k/ acts

transitively on the set fG1; : : : ;Grg. Let � 0 be the set of � 2 � such that �G1 DG1, and let
K D .ks/�

0

. Then Homk.K;ks/' �=� 0 and G1 is defined over K as a subgroup of GK
(we call K the field of definition of G1 as a subgroup of G/. The Weil restriction of G1 is
an algebraic group .G1/K=k over k equipped with an isomorphism

..G1/K=k/ks 'G1� � � ��Gr DGks .

This isomorphism is � -equivariant, and so it is defined over k:

.G1/K=k 'G:

18Here are some additional details for the proof of B 21.51. First, a smooth connected normal subgroup N of
a semisimple group G is semisimple. In proving this, we may suppose that k is algebraically closed. Then it
suffices to show that the radical R of N is normal in G, and for this it suffices to show that R is stable under
inn.g/ for all g 2G.k/ (see 1.85), but this is obvious. In particular, the Gi in the proof of 22.51 are semisimple,
and hence almost-simple. The rest of the proof is valid when k is algebraically closed. When k is arbitrary,
replace the last paragraph with: It remains to show that H D G. For this it suffices to show that, if not, then
the centralizer of H in G contains a connected subgroup variety of dimension � 1. This follows from the case
k D ka.
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17.26. Let G be a simply connected semisimple group over k. Let S be the set of almost-
simple normal subgroup varieties of Gks , and let fG1; : : : ;Gsg be a set of representatives for
the orbits of � acting on S . Then

G ' .G1/k1=k � � � �� .Gs/ks=k

where ki is the field of definition of Gi as a subgroup of G. Each group Gi is geometrically
almost-simple and .Gi /ki=k is almost-simple.

To prove this, let Hi be the product of the groups in the orbit of Gi . According to the
above discussion, Hi is defined over k (as a subgroup of G) and is almost-simple; moreover,
Hi ' .Gi /ki=k and G 'H1� � � ��Hs .

17.27. If G is adjoint, then the map (20) is again an isomorphism, and 17.25 holds for G
with “simple” for “almost-simple”. For a general semisimple group G, the best we can say
is that G is the quotient by a central subgroup of an algebraic group of the form

.G1/k1=k � � � �� .Gs/ks=k

with ki=k separable and Gi simply connected almost-simple. Therefore, to understand all
semisimple groups, it suffices to understand the simply connected almost-simple groups and
their centres.

Deconstructing reductive groups
We explain how reductive groups are built from semisimple groups and groups of multiplica-
tive type.19

17.28. Let G be a reductive algebraic group over k, and let T DG=Gder (so T is a torus).
Then there is a diagram

Z.Gder/ Gder

Z.G/ G Gad

T

(22)

in which the column and row are short exact sequences20 and the diagonal arrows have
common kernel

Z.G/\Gder
DZ.Gder/:

This gives rise to an exact sequence

e!Z.Gder/
g 7!.g;g�1/
��������!Z.G/�Gder .g1;g2/ 7!g1g2

����������!G! e:

19They are also built from semisimple groups and tori, but the additional flexibility is useful.
20We say that

G0!G!G00

is a short exact sequence if
e!G0!G!G00! e

is an exact sequence.
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and to exact sequences

e Z.Gder/ Gder Gad e

e Z.Gder/ Z.G/ T e:

See B 19.25.

17.29. It is helpful to keep in mind the following example. There is a diagram

�n SLn

Gm GLn PGLn

Gm
x 7!xn

in which the column and row are short exact sequences and the diagonal arrows have common
kernel

Gm\SLn D �n:

This gives rise to an exact sequence

e! �n
g 7!.g;g�1/
��������!Gm�SLn

.g1;g2/ 7!g1g2
����������!G! e:

and to exact sequences

e �n SLn PGLn e

e �n Gm Gm e:
n

17.30. Consider a triple .H;D;'/ with H semisimple, D of multiplicative type, and
'WZ.H/!D a homomorphism whose cokernel is a torus. The homomorphism

z 7! .'.z/;z�1/WZ.H/!D�H

is normal, and we define G.'/ to be its cokernel. Let Z D Ker.'/ (a finite group scheme)
and T D Coker.'/ (a torus). Then the algebraic group G DG.'/ is reductive with

Z.G/'D; Gder
'H=Z; Gad

'H ad; G=Gder
' T:

The diagram (22) for G.'/ is

Z.H/=Z H=Z

D G.'/ H ad

T

' h7!Œe;h�

d 7!Œd;e�
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This gives rise to an exact sequence

e!Z!Z.H/!D�H=Z!G.'/! e

and to exact sequences

e Z.H/=Z H=Z H ad e

e Z.H/=Z D T e:

17.31. Every reductive groupG arises from a triple .H;D;'/ as in 17.30. For example, we
could takeH DGder,DDZ.G/, and ' to be the inclusionZ.Gder/ ,!Z.G/. Alternatively,
we could take H DGsc (the universal covering of Gder), D DZ.G/, and ' the composite
map Z.Gsc/!Z.Gder/!Z.G/.

17.32. The following construction is often useful. Let G be a reductive group over a
field k, and let k0 be a finite Galois extension of k splitting some maximal torus in G. Let
G0!Gder be a central isogeny. Then there exists a central extension

e!N !G1!G! e

such that G1 is a reductive group, N is a product of copies of .Gm/k0=k , and Gder
1 !Gder is

the given isogeny G0!Gder (Milne and Shih 1982, 3.1).

17.33. Let G be a semisimple algebraic group over k. Then there exists a reductive
group G1 with derived group G and centre an induced torus. Therefore G1.k/!Gad.k/ is
surjective, and every inner automorphism of G is of the form inn.g/jG with g 2G1.k/. For
example, if G D SLn, then we can take G1 to be GLn.

SUMMARY 17.34. To give a reductive group over k amounts to giving a simply connected
semisimple group H , a group D of multiplicative type, and a homomorphism Z.H/!D

whose cokernel is a torus.

Deconstructing pseudo-reductive groups
17.35. Over a perfect field, a smooth connected algebraic group G is an extension of a

reductive group G=RuG by a unipotent group RuG. This sometimes allows us to reduce a
problem to these two cases. When the field is not perfect, then G is only an extension of a
pseudo-reductive groups by a unipotent group, whence the importance of pseudo-reductive
groups.

17.36. We briefly summarize CGP, which completes earlier work of Borel and Tits (Borel
and Tits 1978, Tits 1992, Tits 1993, Springer 1998, Chapters 13–15). Recall that a smooth
connected algebraic group is pseudo-reductive if its unipotent radical is trivial (14.33). For
example, such a group is pseudo-reductive if it admits a faithful semisimple representation.

17.37. We gave an example of a nonreductive pseudo-reductive group earlier (14.33). We
construct a more general example. Let G D .Gm/k0=k , where k is infinite and k0=k is purely
inseparable of degree p. Then G is a smooth connected commutative algebraic group over k.
The canonical map Gm!G realizes Gm as the largest subgroup of G of multiplicative type,
and the quotient G=Gm is unipotent. Over ka, G decomposes into .Gm/ka � .G=Gm/ka , and
so G is not reductive. However, G contains no smooth unipotent subgroup because G.k/ is
dense in G and G.k/ contains no element of order p (it equals .k0/�).
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17.38. Let k0 be a finite field extension of k, and let G be a reductive group over k0. If k0

is separable over k, then .G/k0=k is reductive, but otherwise it is only pseudo-reductive. For
example, if k0=k is purely inseparable of degree p, thenG is a nonreductive pseudo-reductive
group as in 17.37.

17.39. Let C be a commutative connected algebraic group over k. If C is reductive,
then it is a torus, and the tori are classified by the continuous actions of Gal.ks=k/ on
free commutative groups of finite rank. By contrast, “it seems to be an impossible task to
describe general commutative pseudo-reductive groups over imperfect fields” (CGP, p. xvii).
The main theorem of CGP describes all pseudo-reductive groups in terms of commutative
pseudo-reductive groups and the Weil restrictions of reductive groups, as we now explain.

17.40. Let k1; : : : ;kn be finite field extensions of k. For each i , let Gi be a reductive group
over ki , and let Ti be a maximal torus in Gi . Define algebraic groups

G - T � xT

by
G D

Y
i
.Gi /ki=k; T D

Y
i
.Ti /ki=k;

xT D
Y

i
.Ti=Z.Gi //ki=k .

Let �WT ! C be a homomorphism of commutative pseudo-reductive groups that factors
through the quotient map T ! xT :

T
�
�! C

 
�! xT :

Then  defines an action of C on G by conjugation, and so we can form the semidirect
product GÌC . The map

t 7! .t�1;�.t//WT !GÌC

is an isomorphism from T onto a central subgroup of GÌC , and the quotient .GÌC/=T
is a pseudo-reductive group over k. The main theorem (5.1.1) of CGP says that, except
possibly when k has characteristic 2 or 3, every pseudo-reductive group over k arises by
such a construction (the theorem also treats the exceptional cases).

17.41. The maximal tori in reductive groups are their own centralizers. Any pseudo-
reductive group with this property is reductive (except possibly in characteristic 2; CGP,
11.1.1).

17.42. If G is reductive, then G DDG � .ZG/t , where DG is the derived group of G and
.ZG/t is the largest central connected reductive subgroup of G. This statement becomes
false with “pseudo-reductive” for “reductive” (CGP 11.2.1).

17.43. For a reductive groupG, the mapRG!G=DG is an isogeny, andG is semisimple
if and only if one of these groups (hence both) is trivial. For a pseudo-reductive group, the
condition RG D e does not imply that G DDG. Instead there is the following definition:
an algebraic group G is pseudo-semisimple if it is pseudo-reductive and G D DG (CGP
11.2.2). The derived group of a pseudo-reductive group is pseudo-semisimple.

17.44. Every reductive group G over a field k is unirational, and so G.k/ is dense in G
if k is infinite. This fails for pseudo-reductive groups: over every nonperfect field k there
exists a commutative pseudo-reductive group that is not unirational, and G.k/ need not be
dense in G for infinite k (CGP 11.3.1).
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Deconstructing general groups (Levi subgroups)
17.45. Every smooth connected algebraic group G over a field k is an extension

e!Ru.G/!G!G=Ru.G/! e

of a pseudo-reductive group by a unipotent group. If k is perfect, then the quotientG=Ru.G/
is reductive and the unipotent group Ru.G/ is split. In good cases, the extension itself splits.

17.46. Let G be a smooth connected algebraic group over k. A Levi subgroup of G is
a subgroup L such that the quotient map Gka ! Gka=RuGka restricts to an isomorphism
Lka !Gka=RuGka . In other words, L is a reductive subgroup of G such that

Gka DRuGka ÌLka .

When a Levi subgroup exists, to some extent the study of G reduces to that of a reductive
group and of a unipotent group.

17.47. Let P be a minimal parabolic subgroup of a reductive group G over k. Then P
admits a Levi subgroup, and any two Levi subgroups are conjugate by a unique element of
.RuP /.k/ (see B 25.6).

17.48. Suppose that the geometric unipotent radical of G is defined over k, i.e., that there
exists a subgroupR ofG such thatRka DRu.Gka/. ThenR is smooth, connected, unipotent,
and normal, and the quotient G=R is reductive. In this case, a Levi subgroup of G is a
connected subgroup L such that the quotient map G! G=R restricts to an isomorphism
L!G=R, and, when L exists, G is the semidirect product G DRÌL of a reductive group
L with a unipotent group R.

17.49. When k is perfect, a subgroup R as in 17.48 always exists. In characteristic zero,
Levi subgroups always exist and any two are conjugate by an element of the unipotent radical
(Theorem of Mostow; Hochschild 1981, VIII, Theorem 4.3).

17.50. Let G be a reductive group over a field k of characteristic zero. Then gD r˚s with
r the radical of g (equal the centre of g). Such an s is semisimple, and any two are conjugate
by a special automorphism of g (see Lie Algebras, Algebraic Groups,. . . 6.25). Let L be the
semisimple algebraic group with Rep.L/D Rep.s/. From the exact tensor functors

Rep.G/! Rep.g/! Rep.s/

we obtain an embedding L ,!G, and G 'RGÌL.

17.51. Every pseudo-reductive group with a split maximal torus has a Levi subgroup (CGP,
3.4.6).

17.52. In nonzero characteristic, a smooth connected algebraic group need not have a Levi
subgroup, even when the base field is algebraically closed. An example is SLn.W2.k//,
n > 1, regarded as an algebraic group over k. Here W2.k/ is the ring of Witt vectors of
length 2 with coefficents in k. Moreover, an algebraic group can have Levi subgroups that
are not conjugate, even over the algebraic closure of the base field.

For recent work on Levi subgroups, see McNinch 2010, 2013, 2014.
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Algebraic groups of semisimple rank 1

THE ALGEBRAIC GROUP SL2

As SL2 is the basic building block for all split semisimple groups, we study it in some detail.

17.53. We use the following notation: T2 is the diagonal torus in SL2; n is the element�
0 1
�1 0

�
of the normalizer of T2; UC andU� are the algebraic subgroups

˚�
1 �
0 1

�	
and

˚�
1 0
� 1

�	
of SL2; and 
t is the inner automorphism of SL2,�

a b

c d

�
7!

�
a tb

t�1c d

�
(see 6.33). As T2 DGm, its only automomorhisms are t 7! t˙1 and so Aut.T2/' f˙1g.

17.54. The algebraic group SL2 is generated by its subgroups UC and U� (because its
Lie algebra is generated by their Lie algebras).

17.55. The algebraic groups SL2 and PGL2 are perfect. (It suffices to show that SL2 is
perfect. As SL2 is smooth, it suffices to show that the abstract group SL2.ka/ is perfect. In
fact, an elementary argument shows that SLn.k/ is perfect if k has at least three elements.
See B 20.24.)

17.56. Every automorphism of SL2 is inner, i.e., the action of PGL2 on SL2 by conjugation
defines an isomorphism

PGL2.k/' Aut.SL2/:

See B 20.27.

17.57. Let 
 be an automorphism of .SL2;T2/. Either
(a) 
 acts asC1 on T2, in which case 
.UC/D UC and 
 D 
t for a unique t 2 k�, or
(b) 
 acts as �1 on T2, in which case 
.UC/ D U� and 
 D inn.n/ ı 
t for a unique

t 2 k�.
See B 20.25.

17.58. Recall that N=T is the constant group of order 2 generated by n mod T2. Consider
N=�2 � SL2 =�2 ' PGL2. The isomorphism in 17.56 induces isomorphisms

.N=�2/.k/' Aut.SL2;T2/

.T=�2/.k/' Aut.SL2;T2;UC/:

The map diag.t; t�1/ 7! t2 defines an isomorphism of algebraic groups T2=�2!Gm, and
hence an isomorphism .T2=�2/.k/! k�. The second map sends diag.t; t�1/ to 
t , and so
it is an isomorphism by 17.57. As N D T2tT2n, the first map is also an isomorphism.

17.59. The Picard groups of SLn and PGLn are zero (because their coordinate rings are
unique factorization domains, B 20.30).

17.60. The algebraic group SL2 is simply connected, PGL2 is adjoint, and the map SL2!
PGL2 is the universal covering of PGL2. Therefore �1.PGL2/D �2. For an elementary
proof of these statements, see B 20.31.
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SPLIT REDUCTIVE GROUPS OF SEMISIMPLE RANK 1

It will surprise no one that the only split semisimple groups of rank 1 are SL2 and PGL2,
but the proof of this is quite lengthy. We briefly sketch it.

17.61. Let G be a split reductive group of semisimple rank 1 over k, and let B be a Borel
subgroup of G. Then G=B is isomorphic to P1, and the homomorphism

G! Aut.G=B/� PGL2

is surjective with kernel Z.G/.
To prove this, one first shows that G=B has dimension 1 (see B 20.16), and hence is a

smooth complete curve. As this curve admits a nontrivial action by the connected group
variety G and it has a k-point, it is isomorphic to P1 (see B 20.5). The automorphism group
of P1 is PGL2 (see B 20.7), and so we get a surjective homomorphism G! PGL2. Finally,
one shows that the kernel of this homomorphism is Z.G/ (see B 20.22).

17.62. Let .G;T / be a split reductive group of semisimple rank 1. According to 17.61,
there exists an exact sequence

e!Z.G/!G
q
�! PGL2! e:

After composing q with an inner morphism of PGL2, we may suppose that it maps T onto the
diagonal torus in PGL2. The homomorphism q restricts to a central isogeny Gder! PGL2.
As SL2 is the universal covering of PGL2, we get a commutative diagram

SL2

e Z.G/ G PGL2 e:

v

q

where v is a homomorphism .SL2;T2/! .G;T / with central kernel. Every such homomor-
phism is a central isogeny from SL2 onto the derived group of G, and any two differ by an
element of .N=�2/.k/. See B 20.32.

17.63. Every split reductive group G of semisimple rank 1 and rank rC1 is isomorphic to
exactly one of the groups

Grm�SL2; Grm�PGL2; Gr�1m �GL2 :

No two groups on this list are isomorphic because their derived groups are SL2, PGL2, SL2
and their centres are Grm��2, Grm, Grm .

To prove this, use that G corresponds to a triple .SL2;D;'/ by 17.31. See B 20.33.

NONSPLIT REDUCTIVE GROUPS OF SEMISIMPLE RANK 1

17.64. The three algebraic groups GL2, SL2, and PGL2 are defined in terms of k-algebra
M2.k/ and its determinant map as follows:

GL2.R/D fa 2M2.R/ j det.a/¤ 0g, all k-algebras R;

SL2.R/D fa 2M2.R/ j det.a/D 1g, all k-algebras R, and

PGL2 D GL2 =Z.GL2/:
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We have
Aut.GL2/' Aut.SL2/' Aut.PGL2/:

As Aut.M2.k//' PGL2, we see that this isomorphism classes of forms of GL2 (resp. SL2,
resp. PGL2) are in natural one-to-one correspondence with the forms of M2.k/ (because
they are both classified by H 1.k;PGL2/).

17.65. We make this explicit. A form of M2.k/ is a quaternion algebra over k, i.e., a
central simple k-algebra A of degree 4 over k. Let A be a quaternion algebra over k.
Then A˝ks �M2.k

s/, and there is a well-defined reduced norm map NrdWA! k which
corresponds to det under and such isomorphism. The functors

GAWR fa 2 A˝R j Nrd.a/¤ 0g

SAWR fa 2 A˝R j Nrd.a/D 1g

are representable by algebraic groups over k, and we define

PA DGA=Z.GA/:

Then GA (resp. SA, resp. PA/ is a form of GL2 (resp. SL2, resp. PGL2/. Every form of
GL2, SL2, or PGL2 arises in this way from a quaternion algebra over k. The forms arising
from two quaternion algebras are isomorphic if and only if the quaternion algebras are
isomorphic (as k-algebras).

17.66. Every reductive group of semisimple rank 1 over k is isomorphic to exactly one of
the groups

T �SA; T �PA; T �GA

with A a quaternion algebra over k and T a torus over k (B 20.36).

18 Split semisimple groups and their root systems
A split semisimple group over k is a pair .G;T / consisting of a semisimple group G over
k and a split maximal torus T in G. They are classified up to a central isogeny by certain
combinatorial data called root systems, which we now define.

Root systems
Let V be a finite-dimensional vector space over F of characteristic zero.

18.1. A reflection of V is an endomorphism of V that fixes the elements of some hy-
perplane and acts as �1 on a complementary line. If s.˛/D �˛ ¤ 0, then s is said to be
reflection with vector ˛. If ˛_ is an element of V _ with h˛;˛_i D 2, then

s˛Wx 7! x�hx;˛_i˛

is a reflection with vector ˛, and every reflection with vector ˛ is of this form for a unique
˛_. For any set ˚ spanning V and nonzero ˛ 2 V , there exists at most one reflection s with
vector ˛ such that s.˚/� ˚ .
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18.2. Let ˚ be a finite set spanning V and not containing 0. We say that ˚ is a root system
in V if, for each ˛ 2 ˚ , there exists an ˛_ 2 V _ such that h˛;˛_i D 2, h˚;˛_i � Z, and
the reflection s˛Wx 7! hx;˛_i˛ maps ˚ into ˚ . Note that ˛_ is uniquely determined by ˚
and ˛. If ˚ is a root system in V , then ˚_ D f˛_ j ˛ 2 ˚g is a root system in V _. We
sometimes refer to the pair .V;˚/ as a root system over F . The elements ˛ of ˚ are then
called the roots of the root system, and ˛_ is the coroot of ˛. The dimension of V is called
the rank of the root system.

18.3. Let .V;˚/ be a root system over F , and let V0 be the Q-vector space generated by
˚ . Then V0 is a Q-structure on V and ˚ is a root system in V0. Thus, to give a root system
over F is the same as giving a root system over Q (or over R).

18.4. The Weyl group W DW.˚/ of a root system .V;˚/ is the group of automorphisms
of V generated by the reflections s˛ for ˛ 2 ˚ . The group W.˚/ acts on ˚ , and as ˚ spans
V , this action is faithful. Therefore W.˚/ is finite. For ˛ 2˚ , let H 0˛ denote the hyperplane
in V _ orthogonal to ˛:

H 0˛ D ft 2 V
_
j h˛; ti D 0g:

When F � R, the Weyl chambers are the connected components21 of V X
S
˛2˚H

0
˛. The

Weyl group W.˚/ acts simply transitively on the set of Weyl chambers.

18.5. Let .V;˚/ be a root system over F . If ˛ is a root, the so also is s˛.˛/D�˛. We say
that .V;˚/ is reduced if, for all ˛ 2 ˚ , the only multiples of ˛ in ˚ are˙˛.

From now on “root system” will mean “reduced root system”.

INVARIANT INNER PRODUCTS

Let .V;˚/ be a root system over F � R.

18.6. There exists an inner product . ; / on V for which the elements of W act as or-
thogonal maps. For example, we can choose any inner product . ; /0 and let .x;y/ DP
w2W .wx;wy/

0.

18.7. Once an invariant inner product has been chosen, the above theory takes on a more
familiar form. For example, s˛ is given by the formula

s˛.v/D v�2
.v;˛/

.˛;˛/
˛; v 2 V:

The hyperplaneH˛ of vectors in V fixed by s˛ is orthogonal to ˛, and the ratio .v;˛/=.˛;˛/
is independent of the choice of the inner form:

hv;˛_i D 2
.v;˛/

.˛;˛/
D .v;˛0/; where ˛0 D

2˛

.˛;˛/
:

Note that the map ˛ 7! . ;˛/ is an isomorphism V ! V _ sending H˛ onto H 0˛. Thus it
maps V X

S
˛2˚H˛ isomorphically onto V _X

S
˛2˚H

0
˛.

21Strictly speaking, we mean the intersection with V of the Weyl chambers of .V ˝F R;˚/.
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BASES

Let .V;˚/ be a root system over F � R.

18.8. A subset � of ˚ is a base for ˚ if it is a basis for V and every root is a linear
combination of elements of � whose coefficients are integers all of the same sign. A system
of positive roots for ˚ is a subset ˚C such that (a) for each root ˛, exactly one of˙˛ lies
in ˚C, and (b) if ˛ and ˇ are distinct elements of ˚C and ˛Cˇ 2 ˚ , then ˛Cˇ 2 ˚C. If
� is a base for ˚ , then N�\˚ is a system of positive roots. Conversely, if ˚C is a system
of positive roots, then the simple roots, i.e., those that cannot be written as the sum of two
elements of ˚C, form a base.

18.9. Choose an invariant inner product on V , and let t lie in a Weyl chamber. Thus, t is
an element of V such that .˛; t/¤ 0 if ˛ 2˚ . Let ˚Ct D f˛ 2˚ j .˛; t/ > 0g. Then ˚Ct is a
system of positive roots. The map t 7!˚Ct defines a one-to-one correspondence between the
set of Weyl chambers of .V;˚/ and the set of systems of positive roots. Because the Weyl
group W acts simply transitively on the set of Weyl chambers, it acts simply transitively on
the set of bases for ˚ . For any base �, the pair .W;�/ is a Coxeter system and W ��D ˚ .

INDECOMPOSABLE ROOT SYSTEMS

18.10. If .Vi ;˚i /i2I is a finite family of root systems, thenL
i2I .Vi ;˚i /

def
D .

L
i2I Vi ;

F
˚i /

is a root system, called the direct sum of the .Vi ;˚i /. A root system is indecomposable if it
cannot be written as a direct sum of nonempty root systems. Clearly, every root system is a
direct sum of indecomposable root systems (and the decomposition is unique).

18.11. Attached to any root system .V;˚/ and base �, there is a Dynkin diagram whose
nodes are indexed by the elements of �. Up to isomorphism, the Dynkin diagram depends
only on the root system and determines it up to isomorphism. Indecomposable root systems
correspond to indecomposable Dynkin diagrams. Each indecomposable Dynkin diagram
is isomorphic to exactly one in the following list: An (n� 1), Bn (n� 2), Cn .n� 3/, Cn
(n� 4/, E6, E7, E8, F4, G2. See B, Appendix Cg.

THE ROOT AND WEIGHT LATTICES

18.12. Let .V;˚/ be a root system over Q. The root latticeQDQ.˚/ is the Z-submodule
of V generated by the roots, i.e.,

Q.˚/D Z˚ D
nX

˛2˚
m˛˛ jm˛ 2 Z

o
:

Every base for ˚ forms a basis for Q as a Z-module. The weight lattice P D P.˚/ is the
lattice dual to Q.˚_/:

P.˚/D fv 2 V j hv;˛_i 2 Z for all ˛ 2 ˚g:

The elements of P are called the weights of the root system. Note that Q.˚/ � P.˚/
because h˚;˛_i � Z for all ˛ 2 ˚ . The quotient P.˚/=R.˚/ is finite because P and Q
are lattices in the same Q-vector space.
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THE FUNDAMENTAL WEIGHTS

18.13. Let .V;˚/ be a root system over Q, and let�D f˛1; : : : ;˛ng be a base for ˚ . Then
�_ D f˛_1 ; : : : ;˛

_
n g is a base for �_. Let f�1; : : : ;�ng be the basis for V dual to �_, i.e.,

h�i ;˛
_
j i D ıij for j D 1;2; : : : ;n:

Then

Q.˚/D Z˛1˚�� �˚Z˛n
P.˚/D Z�1˚�� �˚Z�n:

The �i are called the fundamental weights of the root system (relative to the base .˛i /).
Choose an invariant inner product . ; / on V . Then �i is the element of V such that

2
.�i ;˛j /

.˛j ;˛j /
D ıij for j D 1;2; : : : ;n:

DIAGRAMS

18.14. A diagram is a root system .V;˚/ together with a lattice X in V such that

Q.˚/�X � P.˚/:

To give X amounts to giving a subgroup of the finite group P.R/=Q.R/.

The root system of a split semisimple group
18.15. For the moment, let .G;T / be a split reductive group over k, and let AdWG !

GLg be the adjoint representation. Then T acts on g and, because T is diagonalizble, g
decomposes into a direct sum

gD g0˚
M

˛2X.T /

g˛

with g0 D gT and g˛ the subspace on which T acts through a nontrivial character ˛. The
characters ˛ of T occurring in this decomposition are called the roots of .G;T /. They form
a finite subset ˚.G;T / of X.T /. Note that

g0 D Lie.G/T
(B 10.34)
D Lie.GT /D Lie.CG.T //

(15.14)
D Lie.T /D t;

and so
gD t˚

M
˛2˚.G;T /

g˛.

18.16. Let .G;T / be a split semisimple group. Then ˚.G;T / is a reduced root system in
V

def
DX.T /˝Q, called the root system of .G;T /; in particular, ˚.G;T / spans V .

To show that ˚.G;T / is a root system, we have to attach to every root ˛ of .G;T / a
coroot ˛_ having certain properties. The strategy for doing this is the following. From a
root ˛ of .G;T /, we get an exact sequence

e! T˛! T
˛
�!Gm! e
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wth T˛ DKer.˛/. The centralizer of T˛ is a reductive subgroup G˛ of G of semisimple rank
1, and we let G˛ denote its derived group. Then G˛ is a split semisimple group of rank 1,
and T ˛ def

D .G˛\T /ıred is a maximal torus in G˛, which ˛ maps onto Gm. There is unique
cocharacter ˛_WGm! T ˛ � T such that ˛ ı˛_ D 2, i.e., such that h˛;˛_i D 2. One shows
that ˛_ has the required properties.

First examples
18.17. Let G D SL2 and let T2 be the diagonal torus in G. Then X.T2/D Z�, where � is

the character diag.t; t�1/ 7! t . The Lie algebra of SL2 is

sl2 D

��
a b

c d

�
2M2.k/

ˇ̌̌̌
aCd D 0

�
;

and T acts on sl2 by conjugation:�
t 0

0 t�1

��
a b

c d

��
t�1 0

0 t

�
D

�
a t2b

t�2c d

�
: (23)

Therefore,

sl2 D t˚g˛˚g�˛; g˛ D

��
0 �

0 0

��
, g�˛ D

��
0 0

� 0

��
where T2 acts on g˛ and g�˛ through the characters ˛ D 2� and �˛ D �2� respectively.
Thus ˚.SL2;T2/D f˛;�˛g. The coroot ˛_ is t 7! diag.t; t�1/; it is the unique cocharacter
such that h˛;˛_i D 2.

18.18. Let G D PGL2. Recall that this is defined to be the quotient of GL2 by its centre
Gm, and that PGL2.k/D GL2.k/=k�. We let T be the diagonal torus��

t1 0

0 t2

� ˇ̌̌̌
t1t2 ¤ 0

����
t 0

0 t

�ˇ̌̌̌
t ¤ 0

�
:

Then X.T /D Z�, where � is the character diag.t1; t2/ 7! t1=t2. The Lie algebra of PGL2 is

pgl2 D gl2=fscalar matricesg;

and T acts on pgl2 by conjugation. Therefore, the roots are ˛ D � and �˛ D ��. The
coroot ˛_ is t 7! diag.t; t�1/ modulo scalar matrices. It is the unique cocharacter such that
h˛;˛_i D 2:

18.19. In computing the roots of a split semisimple group, we usually realize the group as a
subgroup GLn. Thus, it is useful to know the roots of G D GLn relative to its diagonal torus
T D Dn. Note that X.T /D

L
1�i�nZ�i , where �i is the character diag.t1; : : : ; tn/ 7! ti .

The Lie algebra of GLn is

gln DMn.k/ with ŒA;B�D AB �BA;
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and T acts on g by conjugation:

�
t1 0

: : :

0 tn

�
ˇ
a11 � � � � � � a1n
::: aij

:::
:::

:::

an1 � � � � � � ann



�
t�11 0

: : :

0 t�1n

�

D

ˇ
a11 � � � � � �

t1
tn
a1n

::: ti
tj
aij

:::

:::
:::

tn
t1
an1 � � � � � � ann




:

Therefore T acts through the character ˛ij D �i ��j on g˛ij D kEij . The set of nontrivial
characters occurring in the decomposition of g is

f˛ij j 1� i;j � n; i ¤ j g:

When we use the �i to identify X.T / with Zn, this set becomes identified with

fei � ej j 1� i;j � n; i ¤ j g

where e1; : : : ; en is the standard basis for Zn.

Example (An): SLnC1; n� 1
18.20. Let G D SLnC1, n� 1. The diagonal torus

T D fdiag.t1; : : : ; tnC1/ j t1 � � � tnC1 D 1g

is a split maximal torus in SLnC1. Its character group is

X�.T /D
L
i Z�i

ı
Z�;

where �i is the character diag.t1; : : : ; tnC1/ 7! ti and �D
P
�i , and

X�.T /D
˚P

ai�i 2
L
i Z�i j

P
ai D 0

	
;

where
P
ai�i is the cocharacter t 7! diag.ta1 ; : : : ; tanC1/. The canonical pairing X�.T /�

X�.T /! Z is h�j ;
P
ai�i i D aj :The Lie algebra of SLnC1 is

slnC1 D f.aij / 2MnC1.k/ j
P
ai i D 0g;

and SLnC1 acts on it by conjugation. Let x�i denote the class of �i in X�.T /. Then T
acts trivially on the set g0 of diagonal matrices in g, and it acts through the character
˛ij

def
D x�i � x�j on kEi;j , i ¤ j (see 18.19). Therefore,

slnC1 D g0C
L
i¤j g˛ij ; g˛ij D kEi;j ;

and
˚.G;T /D f˛ij j 1� i;j � nC1; i ¤ j g:
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We next compute the coroots. Consider, for example, the root ˛D ˛12. With the notation
of 18.16,

T˛ D fdiag.x;x;x3; : : : ;xnC1/ j xxx3 � � �xnC1 D 1g

and

G˛ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
� � 0 0

� � 0 0

0 0 � 0
: : :

:::

0 0 0 � � � �

�

2 SLnC1

9>>>>>>=>>>>>>;
:

Therefore,

G˛ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
� � 0 0

� � 0 0

0 0 1 0
: : :

:::

0 0 0 � � � 1

�

2 SLnC1

9>>>>>>=>>>>>>;
and

T ˛ D fdiag.x1;x2;1; : : : ;1/ j x1x2 D 1g

The Weyl group W.G˛;T / D f1;s˛g, where s˛ acts on T by interchanging the first two
coordinates – it is represented by

n˛ D

�
0 1 0 0

�1 0 0 0

0 0 1 0
: : :

:::

0 0 0 � � � 1

�

2NG.T /.k/:

Let �D
PnC1
iD1 ai x�i 2X

�.T /. Then

s˛.�/D a2 x�1Ca1 x�2C
PnC1
iD3 ai x�i D ��h�;�1��2i.x�1� x�2/:

In other words,
s˛12.�/D ��h�;˛

_
12i˛12

with ˛_12 D �1��2, as expected.
When the ordered index set f1;2; : : : ;nC1g is replaced with an unordered set, everything

becomes symmetric among the roots, and so the coroot of ˛ij is

˛_ij D �i ��j ; all i ¤ j:

Let B be the standard (upper triangular) Borel subgroup of SLnC1. The roots occurring
in Lie.B/ form a system of positive roots ˚C D f�i ��j j i < j g, which has base f�1�
�2; : : : ;�n��nC1g:

The set ˚ is a root system in the vector space

X�.T /˝Q'QnC1=he1C�� �C enC1i:

We can transfer it to a root system in the hyperplane H W
PnC1
iD1 aiXi D 0 by noticing that

each element of QnC1=he1C�� �C enC1i has a unique representative in H .
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SUMMARY 18.21. Let V be the hyperplane in QnC1 of .nC 1/-tuples .ai / such thatP
ai D 0. Let f"1; : : : ; "nC1g be the standard basis for QnC1, and consider

roots ˚ D f"i � "j j 1� i;j � nC1; i ¤ j g

root lattice Q.˚/ D f
P
ai"i j ai 2 Z;

P
ai D 0g

weight lattice P.˚/ DQ.˚/Ch"1� ."1C�� �C "nC1/=.nC1/ig

base � D f"1� "2; : : : ; "n� "nC1g:

The pair .V;˚/ is an indecomposable root system with Dynkin diagram of type An. The
group SLnC1 is split and geometrically almost-simple with root system .V;˚/. It is simply
connected because X D P.˚/, and its centre is �nC1 because P.˚/=Q.˚/' Z=.nC1/Z.

Example (Bn): SO2nC1, n� 2
18.22. Let O2nC1 denote the algebraic subgroup of GL2nC1 preserving the quadratic form

q D x20Cx1xnC1C�� �Cxnx2n;

i.e., O2nC1.R/D fg 2 GL2nC1.R/ j q.gx/D x for all x 2R2ng. Define SO2nC1 to be the
kernel of the determinant map O2nC1! Gm. When char.k/¤ 2, SO2nC1 is the special
orthogonal group of the symmetric bilinear form

� D 2x0y0Cx1ynC1CxnC1y1C�� �Cxny2nCx2nyn;

i.e., it consists of the 2nC1�2nC1 matrices A of determinant 1 such that

At

0@1 0 0

0 0 I

0 I 0

1AAD
0@1 0 0

0 0 I

0 I 0

1A :
The subgroup T D fdiag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n /g is a split maximal torus in SO2nC1

and

X�.T /D
M

1�i�n
Z�i ; �i Wdiag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti

X�.T /D
M

1�i�n
Z�i ; �i W t 7! diag.1; : : : ;

iC1
t ; : : : ; t�1; : : :1/

h�i ;�j i D ıij ; �i 2X
�.T /; �j 2X�.T /:

The Lie algebra so2nC1 of SO2nC1 consists of the 2nC1�2nC1 matrices A of trace
zero such that �.x;Ax/D 0 for all x. When char.k/¤ 2, the second condition becomes

At

0@1 0 0

0 0 I

0 I 0

1AC
0@1 0 0

0 0 I

0 I 0

1AAD 0:
In the adjoint action of T on so2nC1, there are the following nonzero eigenvectors,

Weight Eigenvector

�i C�j Ei;nCj �Ej;nCi 1� i < j � n

��i ��j EnCi;j �EnCj;i 1� i < j � n

�i ��j Ei;j �EnCj;nCi 1� i ¤ j � n

��i E0;i �2EnCi;0 1� i � n

�i E0;nCi �2Ei;0 1� i � n:
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SUMMARY 18.23. Let V DQn with standard basis f"1; : : : "ng, and consider

roots ˚ D
˚
˙"i .1� i � n/;˙"i ˙ "j .1� i < j � n/

	
root lattice Q.˚/ D

Ln
iD1Z"i

weight lattice P.˚/ D
Ln
iD1Z"i CZ.1

2

Pn
iD1 "i /

base � D f"1� "2; : : : ; "n�1� "n; "ng :

The pair .V;˚/ is an indecomposable root system with Dynkin diagram of type Bn. The
group SO2nC1 is split and geometrically almost-simple with root system .V;˚/. It is an
adjoint group because X DQ.˚/. Its simply connected covering group is the spin group
Spin2nC1 (see later), which has center �2 because P.˚/=Q.˚/' Z=2Z.

Example (Cn): Sp2n, n� 3
18.24. Let Sp2n denote the algebraic subgroup of GL2n of matrices preserving the skew-

symmetric bilinear

� D x1ynC1�xnC1y1C�� �Cxny2n�x2nyn.

Thus Sp2n consists of the 2n�2n matrices A such that �.Ax;Ay/D �.x;y/, i.e., such that

At
�

0 I

�I 0

�
AD

�
0 I

�I 0

�
:

The subgroup T D diag.t1; : : : ; tn; t�11 ; : : : ; t�1n / is a split maximal torus in Sp2n, and

X�.T /D
M

1�i�n
Z�i ; �i Wdiag.t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti

X�.T /D
M

1�i�n
Z�i ; �i W t 7! diag.1; : : : ;

i
t ; : : : ; t�1; : : :1/.

The Lie algebra spn of Spn consists of the 2n� 2n matrices A such that �.Ax;y/C
�.x;Ay/D 0, i.e., such that

At
�

0 I

�I 0

�
C

�
0 I

�I 0

�
AD 0:

In the adjoint action of T on spn, there are the following nonzero eigenvectors,

Weight Eigenvector

2�i Ei;nCi 1� i � n

�2�i EnCi;i 1� i � n

�i C�j Ei;nCj CEj;nCi 1� i < j � n

��i ��j EnCi:j CEnCj;i 1� i < j � n

�i ��j Ei;j �EnCj;nCi 1� i ¤ j � n:
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SUMMARY 18.25. Let V DQn with standard basis f"1; : : : "ng, and consider

roots ˚ D
˚
˙2"i .1� i � n/;˙"i ˙ "j ; .1� i < j � n/

	
root lattice Q.˚/ D f

P
aiei j ai 2 Z;

P
ai 2 2Zg

weight lattice P.˚/ D f
P
aiei j ai 2 Zg

base � D f"1� "2; : : : ; "n�1� "n;2"n:g

The pair .V;˚/ is an indecomposable root system with Dynkin diagram of type Cn. The
group Spn is split and geometrically almost-simple. It is simply connected because X D
P.˚/, and its centre is �2 because P.˚/=Q.˚/ equals Z=2Z.

Example (Dn): SO2n, n� 4
18.26. Let O2n denote the algebraic subgroup of GL2n of matrices preserving the quadratic

form
q D x1xnC1C�� �Cxnx2n:

When char.k/¤ 2, we define SO2n to be the kernel of the determinant map O2n!Gm; it
is the special orthogonal group of the symmetric bilinear form

� D x1ynC1CxnC1y1C�� �Cxny2nCx2ny2n:

The subgroup T D fdiag.t1; : : : ; tn; t�11 ; : : : ; t�1n /g is a split maximal torus in SO2n and

X�.T /D
M

1�i�n
Z�i ; �i Wdiag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti

X�.T /D
M

1�i�n
Z�i ; �i W t 7! diag.1; : : : ;

i
t ; : : : ; t�1; : : :1/.

The Lie algebra so2n of SO2n consists of the 2nC1�2nC1 matrices A of trace zero
such that �.x;Ax/D 0 for all x. When char.k/¤ 2, the second condition becomes

At
�
0 I

I 0

�
C

�
0 I

I 0

�
AD 0:

In the adjoint action of T on so2n, there are the following nonzero eigenvectors:

Weight Eigenvector

�i C�j Ei;nCj �Ej;nCi 1� i < j � n

��i ��j EnCi;j �EnCj;i 1� i < j � n

�i ��j Eij �EnCj;nCi 1� i ¤ j � n:

SUMMARY 18.27. Let V DQn, and let "1; : : : "n be the standard basis for Qn. Then

roots ˚ D
˚
˙"i ˙ "j .1� i < j � n/

	
root lattice Q.˚/ D f

P
aiei j ai 2 Z;

P
ai 2 2Zg

weight lattice P.˚/ D
Ln
iD1Z"i CZ.1

2

Pn
iD1 "i /

base � D f"1� "2; : : : ; "n�1� "n; "n�1C "ng :
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The pair .V;˚/ is an indecomposable root system with Dynkin diagram of type Dn. The
group SO2n is split and geometrically almost-simple. It is neither adjoint nor simply con-
nected because Q.˚/¤X ¤ P.˚/. Its simply connected covering group is the spin group
Spin2n (see later). When n is even, the centre of Spin2n is �2��2 because P.˚/=Q.˚/'
Z=2Z�Z=2Z, and when n is odd, its centre is �4 because P.˚/=Q.˚/' Z=4Z.

Summary
18.28. To each split semisimple group .G;T / over k there is attached a diagram .V;˚;X/

with X DX.T /, V DX.T /˝Q, and ˚ the set of nonzero weights of T acting on Lie.G/.
A split semisimple group is determined up to isomorphism by its diagram, and every diagram
arises from a split semisimple group over k.

18.29. To each split semisimple group .G;T / over k there is attached a root system .V;˚/

(forget X in the diagram of .G;T //. The root system determines the split semisimple group
up to a central isogeny, and every root system arises from a split semisimple group over k.

18.30. Let .G;T / be a split semisimple group over k. Then G is almost-simple if and
only if its root system is indecomposable. Every root system is (uniquely) a product of
indecomposable root systems. The indecomposable root systems are classified by the
indecomposable Dynkin diagrams.

We refer the reader to B, Chapters 21 and 23, for the proofs of these statements.

19 Split reductive groups and their root data
Recall that a split reductive group over k is a pair .G;T / consisting of a reductive group G
over k and a split maximal torus T in G. They are classified up to isomorphism by certain
combinatorial data called root data, which we now define.

Root data

DEFINITION OF A ROOT DATUM

19.1. LetX be a free Z-module of finite rank. We letX_ denote the linear dual Hom.X;Z/
of X , and we write h ; i for the perfect pairing

hx;f i 7! f .x/WX �X_! Z:

More loosely, we sometimes write X_ for a free Z-module of finite rank equipped with a
perfect pairing

h ; iWX �X_! Z:

19.2. A root datum is a triple RD .X;˚;˛ 7! ˛_/ consisting of a free Z-module X of
finite rank, a finite subset ˚ of X , and a map ˛ 7! ˛_ from ˚ into the dual X_ of X
satisfying
(rd1) h˛;˛_i D 2 for all ˛ 2 ˚ ;
(rd2) the reflection s˛Wx 7! x�hx;˛_i˛ maps ˚ into ˚ for all ˛ 2 ˚ I
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(rd3) the group generated by the automorphisms s˛ of X is finite (it is denoted W.R/ and
called the Weyl group of R).

We let ˚_ D f˛_ j ˛ 2 ˚g. The elements of ˚ and ˚_ are called the roots and coroots of
the root datum (and ˛_ is the coroot of ˛). If, for all roots ˛,˙˛ are the only multiples of
˛ in ˚ , then the root datum is said to be reduced. From now on, “root datum” will mean

“reduced root datum”.

THE ASSOCIATED ROOT SYSTEM

19.3. Let .X;˚;˛ 7! ˛_/ be a triple satisfying (rd1) and (rd2), and let V be the Q-subspace
of XQ spanned by ˚ . Then .V;˚/ is a root system and the image of ˛_ in V _ is the coroot
of ˛ in the sense of root systems.

19.4. By a base � for a root datum .X;˚;˛ 7! ˛_/, we mean a base of the associated root
system .V;˚/. There is a natural identification of the Weyl group W of .X;˚;˛ 7! ˛_/

with that of .V;˚/, and so W ��D ˚ (see 18.9).

THE DUAL OF A ROOT DATUM

19.5. Let X be a free Z-module of finite rank, and let ˚ and ˚_ be finite subsets of X and
X_. There exists at most one map ˛ 7! ˛_W˚ ! ˚_ �X_ satisfying (rd1) and (rd2) (see
B C.33). Thus, we could define a datum to be a triple .X;˚;˚_/ such that there exists a
map ˛ 7! ˛_W˚ ! ˚_ �X_ satisfying (rd1), (rd2), and (rd3).

19.6. More symmetrically, we could define a root datum to be a quadruple .X;˚;X_;˚_/
with X and X_ free Z-modules of finite rank in a perfect duality (19.1) and ˚ and ˚_ finite
subsets of X and X_ such that there exists a map ˛ 7! ˛_W˚ ! ˚_ �X_ satisfying (rd1),
(rd2), and (rd3). This condition is equivalent to the following (self-dual) condition:

(a) ˚ and ˚_ are root systems in Q˚ def
D .Z˚/˝Q and Q˚_ def

D .Z˚_/˝Q, and
(b) there exists a one-to-one correspondence ˛$ ˛_W˚ $ ˚_ such that h˛;˛_i D 2

and the reflections s˛ and s˛_ of the root systems .Q˚;˚/ and .Q˚_;˚_/ are

x 7! x�hx;˛_i˛; x 2Q˚ and

y 7! y�h˛;yi˛_; y 2Q˚_:

See B, Section C.e.

19.7. It follows from the last remark that if .X;˚;X_;˚_/ is a root datum, then so also is
.X_;˚_;X;˚/.

SEMISIMPLE ROOT DATA AND DIAGRAMS

19.8. A root datum .X;˚;˛ 7! ˛_/ is semisimple if ˚ spans the Q-vector space XQ. In
this case, ˛_ is the unique element of .XQ/

_ such that h˛;˛_i D 2 and the reflection x 7!
x�hx;˛_i˛ maps ˚ into ˚ (see 18.1). In particular, the map ˛ 7! ˛_ (hence also ˚_/ is
uniquely determined by the pair .X;˚/.

19.9. If .X;˚/ is a semisimple root datum, then .XQ;˚/ is a root system with the same
map ˛ 7! ˛_, and

Q.˚/�X � P.˚/: (24)
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Conversely, if .V;˚/ is a root system, then, for any choice of a lattice X in V satisfying (24),
the pair .X;˚/ is a semisimple root datum. Thus, to give a semisimple root datum amounts
to giving a diagram in the sense of 18.14.

19.10. The rank (resp. semisimple rank) of a root datum .X;˚;˚_/ is the dimension of
X˝ZQ (resp. .Z˚/˝ZQ).

The root datum of a split reductive group

THE MAIN THEOREM

Let .G;T / be a split reductive group over k.

19.11. Let ˛ be a root of .G;T /. As in 18.16, we let T˛ D Ker.˛/ (a subtorus of T of
codimension 1) and G˛ D CG.T˛/.

(a) The pair .G˛;T / is a split reductive group of semisimple rank 1.
(b) The Lie algebra of G˛ satisfies

Lie.G˛/D t˚g˛˚g�˛

with t D Lie.T / and dimg˛ D 1 D dimg�˛. The only rational multiples of ˛ in
˚.G;T / are˙˛.

(c) There is a unique algebraic subgroup U˛ of G (called the root group) isomorphic to
Ga, normalized by T , on which T acts through the character ˛. The last condition
means that, for every isomorphism uWGa! U˛;

t �u.a/ � t�1 D u.˛.t/a/, all t 2 T .R/, a 2Ga.R/, R a k-algebra.

Lie.U˛/D g˛, and a smooth algebraic subgroup of G contains U˛ if and only if its
Lie algebra contains g˛.

(d) The Weyl group W.G˛;T / contains exactly one nontrivial element s˛, and s˛ is
represented by an n˛ 2NG˛ .T /.k/.

(e) There is a unique ˛_ 2X�.T / such that

s˛.x/D x�hx;˛
_
i˛; for all x 2X.T /: (25)

Moreover, h˛;˛_i D 2.
For the proof, see B 21.11.

19.12. Let X D X.T / and identify X�.T / with X_ (cf. 19.1). As we now explain RD
.X;˚;˛ 7! ˛_/ is reduced root datum. The Weyl group W.G;T / of .G;T / acts faithfully
on X and preserves the set of roots (B 21.2). When we identify W.G;T / with a subgroup
Aut.X/, 19.11 shows that W.G;T / contains s˛. Therefore s˛ also maps ˚ into ˚ . As
W.G;T / is finite, the group generated by the s˛ is finite. Therefore R is a root datum,
and (b) of 19.11 shows that it is reduced. We have also shown that W.G;T / is canonically
isomorphic to the Weyl group of .X;˚;˚_/ regarded as a constant algebraic group (the two
are equal as subgroups of Aut.X/).

19.13. It follows from 17.62 that there exists a central isogeny

v˛WSL2!G˛
def
D .G˛/

der
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such that v˛.diag.t; t�1//D ˛_.t/ and v˛.UC/D U˛ . If v0˛ is a second such isomorphism,
then v0˛ D v˛ ı 
t for a unique t 2 k�. The restriction of v˛ to UC is an isomorphism
UC! U˛, and v˛ is uniquely determined by this restriction. There are natural one-to-one
correspondences between the following objects:

(a) nonzero elements e˛ of g˛;
(b) isomorphisms u˛WGa! U˛I

(c) central isogenies v˛WSL2!G˛ with v˛.diag.t; t�1//D ˛_.t/ and v˛.UC/D U˛.
See B 23.35.

EXAMPLES

19.14. The only root data of semisimple rank 1 are the systems
.Zr ;f˙˛g;f˙˛_g/ with�

˛ D 2e1
˛_ D e01;

�
˛ D e1
˛_ D 2e01;

or
�
˛ D e1C e2
˛_ D e01C e

0
2:

Here e1; e2; : : : and e01; e
0
2; : : : are the standard dual bases, and r � 2 in the third case. These

are the root data of the groups (see 17.63)

Gr�1m �SL2; Gr�1m �PGL2; Gr�2m �GL2 :

19.15. Let .G;T / D .GLn;Dn/, and let ˛ D ˛12 D �1 � �2 (see 18.19). Then T˛ D
fdiag.x;x;x3; : : : ;xn/ j xxx3 � � �xn ¤ 1g and

G˛ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
� � 0 0

� � 0 0

0 0 � 0
: : :

:::

0 0 0 � � � �

�

2 GLn

9>>>>>>=>>>>>>;
:

Moreover

n˛ D

�
0 1 0 0

1 0 0 0

0 0 1 0
: : :

:::

0 0 0 � � � 1

�

represents the unique nontrivial element s˛ of W.G˛;T /. It acts on T by

diag.x1;x2;x3; : : : ;xn/ 7�! diag.x2;x1;x3; : : : ;xn/:

For x Dm1�1C�� �Cmn�n,

s˛x Dm2�1Cm1�2Cm3�3C�� �Cmn�n

D x�hx;�1��2i.�1��2/:

Thus (25) holds if and only if ˛_ is taken to be �1��2. In general, the coroot ˛_ij of ˛ij is

t 7! diag.1; : : : ;1; t
i
;1; : : : ;1; t�1

j
;1; : : : ;1/:

Clearly h˛ij ;˛_ij i D ˛ij ı˛
_
ij D 2.
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NOTES

19.16. The root group U˛ in 19.11 equals UG˛ .�/ for any character � of T such that
h˛;�i> 0:

19.17. The root datum of a split reductive group does not change under extension of the
base field. This is obvious from its definition.

19.18. Up to isomorphism, the root datum R.G;T / of .G;T / depends only on G (see B
21.18; in fact, one can do a little better, B 21.43).

19.19. The reductive group G is generated by T and its root groups U˛.

Centres of reductive groups
19.20. LetG be a reductive algebraic group, and let T be a maximal torus inG. The centre
Z.G/ of G is contained in T , and is equal to the kernel of AdWT ! GLg (B 21.7).

19.21. Let .G;T / be a split reductive group, and let Z˚ denote the Z-submodule ofX�.T /
generated by the roots. Then

X�.Z.G//DX�.T /=Z˚;

and so Z.G/ is the diagonalizable subgroup of T with character group X.T /=Z˚ . More
precisely, the inclusion Z.G/! T is the transpose of the homomorphism

X.T /!X.T /=Z˚:

Borel subgroups
Let .G;T / be a split reductive group.

19.22. There exists a Borel subgroup containing T (B 21.30). If B is a Borel subgroup of
G containing T , then the set of roots occurring in Lie.B/;

˚C.B/
def
D f˛ 2 ˚ j g˛ � bg;

is a system of positive roots in˚ , and every such system arises from a unique Borel subgroup
containing T (B 21.32). It follows that the Weyl group of .G;T / acts simply transitively on
the Borel subgroups containing T .

For example, ifGDGLn andB is the group of upper triangular matrices, then˚C.B/D
f�i ��j j i � j g (notation as in 18.19).

19.23. Let B be a Borel subgroup containing T . Then B is split as a solvable algebraic
group and the homomorphism

BuÌT ! B

is an isomorphism (B 21.34).

19.24. Let B be a Borel subgroup of G containing T . For every ordering f˛1; : : : ;˛rg of
the set ˚C.B/; the multiplication map

U˛1 � � � ��U˛r ! Bu

is an equivariant isomorphism of algebraic varieties with a T -action.
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The unipotent subgroups normalized by T
19.25. Let .G;T / be a split reductive group, and let B be a Borel subgroup containing T .

Let U be a smooth subgroup of Bu normalized by T . For every ordering fˇ1; : : : ;ˇsg of the
set of weights of T on Lie.U /, the multiplication map

Uˇ1 � � � ��Uˇr ! U

is an equivariant isomorphism of algebraic varieties with a T -action. A subset ˚ 0 of ˚ arises
as the set of weights of such a U if and only if ˚ 0\�˚ 0 D ; and .N˛CNˇ/\˚ � ˚ 0 for
all ˛;ˇ 2 ˚ 0. See B 21.68.

The Bruhat decomposition
Let .G;T / be a split reductive group over k and B a Borel subgroup of G containing T .

19.26. The symmetry with respect to B is the element w0 2 W such that w0.˚C// D
�˚C. As the Weyl group acts simply transitively on the set of Weyl chambers, there is a
unique such element. Note that w0 is an involution.

19.27 (BRUHAT DECOMPOSITION). Let .G;B;T / be as above.
(a) There are decompositions (of smooth algebraic varieties)

G=B D
G

w2W
BuwB=B (cellular decomposition)

G D
G

w2W
BuwB (Bruhat decomposition).

(b) The dense open orbit for the action of Bu on G=B is Buw0B=B and the dense open
orbit for the action of Bu�B on G is Buw0B .

This is a special case of 12.17. See B 21.73.

19.28. As B D Bu �T and W normalizes T , we have BwB D BuwB and BwB=B D
BuwB=B . Therefore, the decompositions in (a) can be written

G=B D
G

w2W
BwB=B

G D
G

w2W
BwB:

19.29. Let U D Bu. Let ˚� D �˚C and U� D n0.U /. Each of U and U� is equal to
the product of the root groups it contains (19.25), and�

U˛ � U ” ˛ 2 ˚C

U˛ � U
� ” ˛ 2 ˚�.

19.30. For w 2W , define Uw D U \nw.U / and Uw D U \nw.U�/. Then Uw and Uw

are smooth and connected, and(
Uw '

Y
fU˛ j ˛ 2 ˚

C
\w.˚C/

Uw '
Y
fU˛ j ˛ 2 ˚

C
\w.˚�/:

(26)

19.31. Let w 2W .
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(a) The isotropy group at ew in G (resp. U ) is nw.B/ (resp. Uw ).
(b) The orbits Uwew � Uew are equal, and the orbit map

Uw ! Uwew D Uew

is an isomorphism.
(c) The dimension of Uew is n.w/ def

D
ˇ̌
˚C\w.˚�/

ˇ̌
:

19.32 (BRUHAT DECOMPOSITION). (a) There are decompositions (of smooth algebraic
varieties)

G=B D
G

w2W
UwnwB=B (cellular decomposition of G=B)

G D
G

w2W
UwnwB (Bruhat decomposition of G).

(b) For every w 2W , the morphism

Uw �B! UwnwB; .u;b/ 7! unwb

is an isomorphism.
(c) There are open coverings

G D
[
w2W

nwU
�B

G=B D
[
w2W

nwU
�B=B .

The Big Cell
19.33. The intersection of any two Borel subgroups of a smooth algebraic groupG contains

a maximal torus of G; if the intersection is a maximal torus, then the Borel subgroups are
said to be opposite. Opposites exist if and only if G is reductive. Let .G;T / be a split
reductive group, and let B be a Borel subgroup containing T . Then there exists a unique
(opposite) Borel subgroup B 0 such that B \B 0 D T , namely, w0B .

19.34. If B and B 0 are opposite, then the multiplication map

B 0u�T �Bu!G (27)

is an open immersion (of algebraic varieties). The dense open subvariety B 0u �T �Bu of G is
called the big cell in G. It equals BuwoB 0.

19.35. Let .G;T / be a split reductive group over k, and let˚C be a positive system of roots.
Then U D

Q
˛2˚CU˛ and U� D

Q
˛2˚CU�˛ are maximal connected unipotent smooth

subgroups of G. Each of U and U� is isomorphic as an algebraic variety to the product
of the factors in its definition (in any order). The subgroups B D UT and B� D U�T
are opposite Borel subgroups of G. Finally, C D U�T U (the big cell) is a dense open
subvariety of G.

19.36. Let .G;T /D .GLn;Dn/. Its roots are

˛ij Wdiag.t1; : : : ; tn/ 7! ti t
�1
j ; i;j D 1; : : : ;n; i ¤ j:

The corresponding root groups are Uij D fI CaEij j a 2 kg. Let ˚CD f˛ij j i < j g. Then
U and U� are, respectively, the subgroups of superdiagonal and subdiagonal unipotent
matrices, and the big cell is the set of matrices for which the i � i matrix in the upper
left-hand corner is invertible for all i .
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Isogenies of root data

19.37. Let RD .X;˚;˚_/ and R0 D .X 0;˚ 0;˚ 0_/ be root data. An injective homomor-
phism f WX 0!X with finite cokernel is an isogeny of root data R0!R if there exists a
one-to-one correspondence ˛$ ˛0W˚ $ ˚ 0 and a map qW˚ ! pN satisfying

f .˛0/D q.˛/˛ and f _.˛_/D q.˛/˛0_ (28)

for all ˛ 2 ˚ .
Then f .˚ 0/�pN˚ and f _.˚_/�pN˚ 0_. Because we require root data to be reduced,

given ˛ 2 ˚ , there exists at most one ˛0 2 ˚ 0 such that f .˛0/ is a positive multiple of ˛.
It follows that the correspondence ˛$ ˛0 and the map q are uniquely determined by f .
As .�˛/0 and �˛0 are both elements of ˚ 0 such that f ..�˛/0/ and f .�˛0/ are positive
multiples of �˛, we find that .�˛/0 D�˛0 and q.�˛/D q.˛/.

19.38. An isogeny f of root data is central if q.˛/D 1 for all ˛ 2˚ ; it is an isomorphism
if it is central and f is an isomorphism of Z-modules. Thus an isomorphism f WX 0!X of Z-
modules is an isomorphism of root data if and only if there exists a one-to-one correspondence
˛$ ˛0W˚ $ ˚ 0 such that f .˛0/D ˛ and f _.˛_/D ˛0_ for all ˛ 2 ˚ .

19.39. Let .X;˚;˚_/ be a root datum, and let q be a power of p. The map x 7! qxWX !

X is an isogeny .X;˚;˚_/! .X;˚;˚_/, called the Frobenius isogeny (the correspon-
dence ˛$ ˛0 is the identity map, and q.˛/D q for all ˛).

19.40. Let f W.X 0;˚ 0;˚ 0_/! .X;˚;˚_/ be an isogeny of root data, and let ˚C be a
system of positive roots for ˚ with base �. Then ˚ 0C def

D f˛0 j ˛ 2 ˚Cg is a system of
positive roots for ˚ 0 with base �0 def

D f˛0 j ˛ 2�g.

The isogeny theorem
19.41. Let .G;T / be a split reductive group, and let ˚ � X.T / be its set of roots. Let
U˛ denote the root group attached to a root ˛ 2 ˚ . In the following, u˛ always denotes an
isomorphism Ga! U˛.

19.42. An isogeny of split reductive groups .G;T /! .G0;T 0/ is an isogeny 'WG! G0

such that '.T /� T 0. We write 'T for 'jT WT ! T 0.

19.43. If 'W.G;T /! .G0;T 0/ is an isogeny of split reductive groups, then

f
def
DX.'T /WX.T

0/!X.T /

is an isogeny of root data. Roots ˛ 2 ˚ and ˛0 2 ˚ 0 correspond if and only if '.U˛/D U˛0 ,
in which case

'.u˛.a//D u˛0.c˛a
q.˛//; all a 2Ga.k/; (29)

where c˛ 2 k� and q.˛/ is such that f .˛0/ D q.˛/˛. The isogeny ' is central (resp. an
isomorphism) if and only if f is central (resp. an isomorphism). See B 23.5.

19.44. Let '1;'2W.G;T /� .G0;T 0/ be isogenies of split reductive groups. If they induce
the same map on root data, then '2 D inn.t/ı'1 for a unique t 2 .T 0=Z.G0//.k/. See B
23.7.
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19.45. Let .G;T / and .G0;T 0/ be split reductive algebraic groups over k. An isogeny
'WT ! T 0 of tori extends to an isogenyG!G0 if and only if the mapX.'/WX.T 0/!X.T /

is an isogeny of root data. See B 23.9

SUMMARY 19.46. Let 'W.G;T /! .G0;T 0/ be an isogeny of split reductive groups over
the field k; then ' defines an isogeny f D X.'jT /WR.G0;T 0/! R.G;T / of root data,
and every isogeny of root data arises in this way from an isogeny of split reductive groups;
moreover, ' is uniquely determined by f up to an inner automorphism defined by an element
of .T 0=Z0/.k/. This statement also holds with “isogeny” replaced by “central isogeny”,
“Frobenius isogeny”, or “isomorphism”.

In particular, an isomorphism ' of split reductive groups defines an isomorphism f of
root data, and every isomorphism of root data f arises from a ', unique up to the inner
automorphism defined by an element of .T 0=Z0/.k/.

COROLLARIES OF THE ISOGENY THEOREM

19.47. Let .G;T / and .G0;T 0/ be split reductive groups over k. If G and G0 become
isomorphic over ka, then .G;T / and .G0;T 0/ are isomorphic over k. See B 23.27.

19.48. Let G and G0 be reductive groups over k. If G and G0 become isomorphic over ka,
then they become isomorphic over a finite separable extension of k. (Because they split over
a finite separable extension.)

Pinnings; the fundamental theorem

19.49. A pinning22 of a split reductive group .G;T / is a pair .�;.e˛/˛2�/ with � a base
for the roots and e˛ a nonzero element of g˛ . A pinned reductive group is a split reductive
group equipped with a pinning. The homomorphisms u˛WGa ! U˛ and v˛WSL2! G˛

corresponding to e˛ as in (19.13) are called the pinning maps. When e˛ and u˛ correspond,
we let exp.e˛/D u˛.1/.

19.50. An isogeny of pinned groups .G;T;�;.e˛/˛2�/! .G0;T 0;�0; .e0˛/˛2�0/ is an
isogeny 'W.G;T /! .G0;T 0/ such that

(a) under the one-to-one correspondence ˛$ ˛0W˚ $ ˚ 0 defined by ', elements of �
correspond to elements of �0, and

(b) '.exp.e˛//D exp.e˛0/ for all ˛ 2�.
When ' is a central isogeny the conditions become: (a) if ˛ 2�, then ˛0 2�0 and ' restricts
to an isomorphism U˛! U˛0 ; (b) .'jU˛/ıu˛ D u˛0 .

19.51. A based root datum is a root datum .X;˚;˚_/ equipped with a base � for ˚ . An
isogeny of based root data .X;˚;˚_;�/! .X 0;˚ 0;˚ 0_;�0/ is an isogeny of root data
such that simple roots correspond to simple roots under ˛$ ˛0. Central isogenies and
isomorphisms of based root data are defined similarly.

19.52 (FUNDAMENTAL THEOREM). Let G and G0 be pinned reductive groups over k,
and let f WR.G0/!R.G/ be an isogeny of the corresponding based root data. Then there
exists a unique isogeny 'WG!G0 of pinned groups such that R.'/D f . Thus, the functor

.G;T;�;.e˛// .X;˚;˚_;�/

22The original French term is “épinglage”. Some authors prefer “frame” to “pinning”.
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from pinned reductive groups over k to based root data is fully faithful.

Automorphisms; quasi-split forms
19.53. Let G be a reductive group over k. There is an exact sequence of group schemes

e! Inn.G/! Aut.G/! Out.G/! e (30)

over k, where Out.G/ is the cokernel of the first morphism and Inn.G/'Gad.

19.54. Let .G;T / be a split reductive group over k. The choice of a pinning for .G;T /
determines a splitting of (30). In more detail, let .�;.e˛// be a pinning for .G;T /. Then
Aut.G;T;�;.e˛// is a finite subgroup of Aut.G/, and the homomorphism Aut.G/!
Out.G/ induces an isomorphism

Aut.G;T;�;.e˛//k! Out.G/:

Therefore
Aut.X;˚;˚_;�/k ' Aut.G;T;�;.e˛//k ' Out.G/:

19.55. When G is semisimple, Out.G/ is a finite étale group scheme, and Aut.G/ is an
affine algebraic group over k (because this becomes true over ks). Otherwise, Out.Gks/ is
the constant group scheme attached to an infinite finitely generated abelian group, which is
neither affine nor of finite type.

19.56. Let G be a split reductive group over k. Let P be a torsor under Out.G/. The
section of Aut.G/!Out.G/ defined by a pinning of G determines a torsor under Aut.G/,
and hence a form HP of G. The reductive groups over k obtained in this way are exactly
the quasi-split forms of G.

19.57. Let G be a reductive group over k. There exists an inner form .H;f / of G such
that H is quasi-split, and any two such inner forms are isomorphic. In particular, the class of
.H;f / in H 1.k;Gad/ is uniquely determined. (To see this, let G0 be the split form of G,
and choose a torsor P for Out.G0/ whose class in H 1.k;Out.G0// is that of G; then HP is
a quasi-split inner form of G. The uniqueness uses that, if H is quasi-split over k, then the
map Aut.Hks/� ! Out.Hks/� , � D Gal.ks=k/, is surjective; B 23.54, erratum).

The existence theorem
19.58 (EXISTENCE THEOREM). Every reduced root datum arises from a split reductive

group over k. As a consequence, the functor .G;T / .X;˚;˚_/ is an equivalence from
the category �

objects: split reductive groups .G;T / over k
morphisms: .T 0=Z0/.k/nIsog..G;T /; .G0;T 0//

to the category �
objects: root data
morphisms: isogenies.

A remarkable feature of this statement is that, while the first category appears to depend
on k, the second does not. In particular, if k0=k is an extension of fields, then every split
reductive group .G;T / over k0 arises from a split reductive group over k.
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19.59. Let G be a reductive group over k. There exists a split reductive group G0 over k,
unique up to isomorphism, such that G0ks 'Gks .

19.60. The map .G;T / 7! .V;˚;X// defines a bijection from the set of isomorphism
classes of split semisimple groups over k to the set of isomorphism classes of diagrams.
(The isomorphism and existence theorems give a one-to-one correspondence between the
first set and the set of isomorphism classes of semisimple root data, but semisimple root data
are essentially the same as diagrams.)

19.61. Let .G;T / be a split semisimple group with diagram .V;˚;X/. Then G is simply
connected if and only if X D P.˚/.

19.62. The groups SLn, Sp2n, and Spinn are simply connected, the groups SO2nC1 and
PSLn are adjoint, while the groups SO2n are neither. The groups of type G2, F4, E8 are
simultaneously simply connected and adjoint. See Section 21.

19.63. Two semisimple algebraic group G and G0 are said to be strictly isogenous if there
exist central isogenies H ! G and H ! G0. Equivalently, they are strictly isogenous if
they have the same simply connected covering group.

19.64. Two splittable semisimple groups over k are strictly isogenous if and only if they
have the same Dynkin diagram, and every Dynkin diagram arises from a splittable semisimple
group over k. Such a group is almost-simple if and only if its Dynkin diagram is connected.
(Simply connected semisimple groups are classified by their root systems (19.60, 19.61),
which in turn are classified by their Dynkin diagrams.)

20 Representations of reductive groups

The semisimple representations of a split reductive group

20.1. Let .G;T / be a split reductive group over k, and let .X;˚;˚_/ be its root datum.
Because T is split, every representation .V;r/ of G decomposes into a direct sum V DL
�2X.T /V� of its weight spaces V� for the action of T . The � for which V� ¤ 0 are called

the weights of .V;r/.

20.2. To classify the semisimple representations of G, it suffices to classify the simple
representations. For this, we fix a Borel subgroup B of G containing T . Let ˚C denote
the corresponding system of positive roots and � the set of simple roots in ˚C. Define
an order relation on X by setting � � � if ��� D

P
˛2�m˛˛ with m˛ 2 N. Thus

˚C D f˛ 2 ˚ j ˛ > 0g. An element � of X is said to be dominant if h�;˛_i � 0 for all
˛ 2 ˚C.

20.3. Let V be a simple representation of G.
(a) There exists a unique one-dimensional B-stable subspace L of V ;
(b) The subspace L in (a) is a weight space for T , and its weight � is dominant;
(c) If � is also a weight for T in V , then ���D

P
˛2�m˛˛ with m˛ � 0.
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BecauseB is trigonalizable, there does exist a one-dimensional eigenspace forB; the content
of (a) is that when V is a simple represenation of G, the space is unique. As L is stable
under B , it is also stable under T , and so it lies in a weight space. The content of (b) is that
it is the whole of the weight space and that the weight is dominant. Because of (c) , � is
called the highest weight of V .

20.4. Every dominant weight occurs as the highest weight of a simple representation of
G, and two simple representations of G are isomorphic if and only if they have the same
highest weight.

20.5. In summary: for every dominant character �, there is a simple representation V.�/ of
G, unique up to isomorphism, with highest weight �; two representations V.�1/ and V.�2/
are isomorphic if and only if �1 D �2.

20.6. Let � be dominant. Every nonzero endomorphism ˛ of V.�/ is an isomorphism
because V.�/ is simple, and it maps the highest weight line L into itself. As L generates
V.�/ as a G-module, ˛ is determined by its restriction to L. It follows that End.V .�//' k,
and that V.�/ remains simple under extension of the base field (5.15).

20.7. Let G be a split reductive group over k, and let k0 be an extension of k. For every
semisimple representation .V 0; r 0/ of Gk0 over k0, there exists a semisimple representation
.V;r/ of G over k and an isomorphism .V;r/˝k0! .V 0; r 0/. This follows from 20.6.

20.8. Let V.�/ and V.�0/ be simple representations of split reductive groups G and G0

with highest weights � and �0. Because End.V .�//' k, the representation V.�/˝V.�0/ of
G�G0 is simple (5.17), and it obviously has highest weight �C�0.

20.9. Let G be a reductive group over k (not necessarily split). Every semisimple repre-
sentation of G over ka is defined over ks. Indeed, G splits over ks, and so we can apply
20.7.

20.10. Let .G;B;T / be as before but with G semisimple, and let w0 be the symmetry with
respect to B , so that w0.˚C/D�˚C D ˚�. The automorphism �W˛ 7! �w0.˛/ of X.T /
is called the opposition involution. If � id 2W , then � is the identity map. This is the case
for groups of type Bn, Cn, Dn n even, G2, F4, E7, E8.

20.11. The contragredient of a representation .V;r/ of G is the representation r_ on V _

given by the rule r_.g/v_ D .r.g/_/�1v_. On writing V as a sum of eigenspaces for T ,
we see that the weights of r_ are the negatives of the weights of r . If .V;r/ is simple, then
so is .V _; r_/, and it follows that

�.r_/D ��.r/:

In particular, if w0 D� id, then every semisimple representation is self-dual (isomorphic to
its contragredient).
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THE DOMINANT CHARACTERS

20.12. Let .V;˚/ be a root system over Q. Choose a base �D f˛1; : : : ;˛ng for ˚ and let
�1; : : : ;�n be the corresponding fundamental weights (18.13). The weight lattice

P.˚/D Z�1˚�� �˚Z�n

and its elements are called the weights of the root system. A weight � 2 P.˚/ is said to be
dominant if h�;˛_i i � 0 for all i D 1; : : : ;n. Thus, the dominant weights � form a cone C
with the fundamental weights as base, i.e.. every � 2C can be written uniquely �D

P
mi�i ,

mi 2 N.
Let .G;T / be a split semisimple group with root system .V;˚/. Then .G;T / defines

a diagram .V;˚;X/ with X D X�.T /. The dominant characters for .V;˚;X/ are the
dominant weights of .V;˚/ lying in X . The simple representations of the universal cover
of G are classified by the dominant weights � of .V;˚/, and a representation V.�/ factors
through G if and only if � 2X ..

We explain this last step. Let � be a dominant weight of .V;˚/. Then the weights of T
on the representation V.�/ of zG are of the form ��

P
˛2�m˛˛ with m˛ 2 N. The centre

of zG has character group P.˚/=Q.˚/, and Z. zG/ acts on V.�/ through the characters
.��

P
m˛˛/CQ D �CQ.. The centre of G has character group X=Q � P=Q, and so

the representation of Z. zG/ on V.�/ factors through Z.G/ if and only if � lies in X .

20.13. Let .X;˚;˚_/ be a root datum, and let V D Q˝Q where Q D Q.˚/ D Z˚ .
Then .V;˚/ is a root system with root lattice Q and weight lattice

P.˚/D f� 2 V j h�;˛_i 2 Z for all ˛ 2 ˚g:

Then Q and P are lattices in V , and

X �X0CP.˚/�X˝Q

where X0 D fx 2 X j hx;˛_i D 0 for all ˛ 2 ˚g. Let � D f˛1; : : : ;˛ng be a base for ˚ .
Then f˛_1 ; : : : ;˛

_
n g is a base for ˚_, and

Q.˚/D Z˛1˚�� �˚Z˛n
P.˚/D Z�1˚�� �˚Z�n;

where f�1; : : : ;�ng is the basis of Q˝ZQ dual to f˛_1 ; : : : ;˛
_
n g, i.e., �i in V is such that

h�i ;˛
_
j i D ıij for all j . The �i are called the fundamental weights. A dominant character

� can be written uniquely in the form

�D
X

1�i�n
mi�i C�0; mi 2 N;

X
mi�i 2X; �0 2X0: (31)

20.14. When G is a torus, XC D X0 D X , and the fundamental theorem says that the
simple representations of G are the one-dimensional spaces on which G acts through a
character.

20.15. An isogeny .G0;T 0/! .G;T / of split reductive groups realizesX.T / as a subgroup
of X.T 0/ of finite index. Let � be a dominant element of X.T 0/; and let V.�/ be a simple
representation of G0 whose weights other than � are < �. Then, as in the preceding example,
Z.G0/ acts on V.�/ through the character �CQ, and � factors through G if and only if
� 2X.T /.
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20.16. Let .G;T / be a split reductive group. WriteG DZ �Gder. We omit, for the moment,
an explanation of the relation between the semisimple representations of G and those of Z
and Gder and how this relates to their fundamental characters.

RESTATEMENT OF THE MAIN THEOREM

20.17. Let G be an algebraic group over k and H an algebraic subgroup of G. For a
representation .V;r/ of H over k, we define

IndGH .V /D ff 2Mor.G;Va/ j f .gh/D h�1f .g/ all g 2G.R/, h 2H.R/g:

This is a k-vector space on which G acts according to the rule

.gf /.x/D f .g�1x/; g;x 2G.R/; f 2 IndGH .V /R:

In this way we obtain a functor IndGH from representations of H to representations of G. As
in the case of finite groups, Frobenius reciprocity holds:

(a) the map "W IndGH .V /! V , f 7! f .e/, is a homomorphism of H -modules;
(b) for every G-module W , the map ' 7! "ı' is an isomorphism

HomG.W; IndGH .V //' HomH .W;V /:

See Jantzen 2003, I.3.

20.18. Let .G;T / be a split reductive group with a Borel subgroup B , and let Ga.�/
be the one-dimensional representation of B on which B acts through � 2 X.T /. Then
E.�/D IndGB .Ga.�//, and so

HomG.V;E.�//' HomB.V;G˛.�//

for all representations V of G. We often write IndGB .�/ for IndGB .Ga.�//.

20.19. The socle soc.V / of a representation .V;r/ of G is the sum of the simple subrepre-
sentations of V . In other words, it is the largest semisimple subrepresentation of G. With
this terminology, the fundamental theorem (20.3, 20.4) becomes the following statement:

The B-socle of a simple representation V of G is one-dimensional; if � is the
weight of this socle, then V D IndGB .�/, and so V is uniquely determined by �;
the characters � of T that arise in this way are exactly those that are dominant.

EXAMPLES

20.20. Let G D GLn with its standard Borel pair .B;T /. Then X.T / has basis �1; : : : ;�n,
where �i sends diag.x1; : : : ;xn/ to xi , and we use this to identify X.T / with Zn. Then the
roots of .G;T / are the vectors ei � ej , i ¤ j , the positive roots are the vectors ei � ej with
i < j , and the simple roots are e1�e2; : : : ; en�1�en. Moreover, .ei �eiC1/_D .ei �eiC1/,
and so the dominant weights are the expressions

m1e1C�� �Cmnen; mi 2 Z; m1 � � � � �mn.

The fundamental weights are �1; : : : ;�n�1 with

�i D e1C�� �C ei �n
�1i .e1C�� �C en/ :
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The obvious representation of GLn on kn defines a representation of GLn on
Vi
.kn/,

1 � i � n. The nonzero weight spaces for T in
Vi
.kn/ are all one-dimensional, and they

are permuted by the Weyl group Sn, and so the representation is simple. Its highest weight
is e1C�� �C ei .

Note that GLn has a representation

GLn
det
�!Gm

t 7!tm

�! GL1 DGm

for eachm 2Z, and that every representation can be tensored with one of these. Thus, we can
shift the weights of a simple representation of GLn by any integer multiple of e1C�� �C en.

20.21. Let G D SL2. With the standard torus T and Borel subgroup B D T �UC, the
root datum is isomorphic to fZ;f˙2g;Z;f˙1gg, the root lattice is Q D 2Z, the weight
lattice is P D Z, and PC D N. Therefore, there is (up to isomorphism) exactly one simple
representation for each m � 0. There is a natural action of SL2.k/ on the ring kŒX;Y �,
namely, let �

a b

c d

��
X

Y

�
D

�
aXCbY

cXCdY

�
:

In other words,
f A.X;Y /D f .aXCbY;cXCdY /:

This is a right action, i.e., .f A/B D f AB . We turn it into a left action by settingAf D f A
�1

.
One can show that the representation of SL2 on the set of homogeneous polynomials of
degreem is simple if char.k/D 0 or char.k/D p andm< p ormD ph�1 (Springer 1977,
Chapter 3).

20.22. Let G D SLn. Let T1 be the diagonal torus in SLn. Then

X�.T1/DX
�.T /=Z.�1C�� �C�n/

with T D Dn. The root datum for SLn is isomorphic to

.Zn=Z.e1C�� �C en/;f"i � "j j i ¤ j g; : : :/

where "i is the image of ei in Zn=Z.e1C�� �C en/. It follows from the GLn case that the
fundamental weights are �1; : : : ;�n�1 with

�i D "1C�� �C "i :

Again, the simple representation with highest weight "1 is the representation of SLn on kn,
and the simple representation with highest weight "1C�� �C "i is the representation of SLn
on
Vi
.kn/.

20.23. Let G D PGLn. Let T1 be the diagonal in SLn. Then

X�.T1/DX
�.T /=Z.�1C�� �C�n/

with T D Dn. The root datum for SLn is isomorphic to

.Zn=Z.e1C�� �C en/;f"i � "j j i ¤ j g; : : :/
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where "i is the image of ei in Zn=Z.e1C�� �C en/. It follows from the GLn case that the
fundamental weights are �1; : : : ;�n�1 with

�i D "1C�� �C "i :

Again, the simple representation with highest weight "1 is the representation of SLn on kn,
and the simple representation with highest weight "1C�� �C "i is the representation SLnonVi
.kn/.

The fundamental weights for each of the almost-simple split groups are listed in the
tables in Bourbaki, LIE, 4.

Characters and Grothendieck groups
20.24. Let A be an abelian category, and let ŒA� denote the isomorphism class of an object
A of A. The Grothendieck group K.A/ of A is the commutative group with one generator
for each isomorphism class of objects of A, and one relation ŒA�� ŒB�C ŒC � for each exact
sequence

0! A! B! C ! 0.

If the objects of A have finite length, then K.A/ is generated as a Z-module by the elements
ŒA� with A simple. If A is semisimple (i.e., every object is a finite sum of simple objects),
then K.A/ is the free abelian group generated by the isomorphism classes of simple objects.

EXAMPLE 20.25. Let T be a split torus over k, and let X D X�.T /. The group algebra
of X is the free Z-module ZŒX� with basis the set of symbols fe� j � 2 Xg and with
e� � e�

0

D e�C�
0

. The (formal) character of a representation .V;r/ of T is

ch.V / def
D

X
�2X

dim.V�/ � e�:

In other words, the coefficient of e� is the multiplicity of � as a weight of V . The character
of V depends only on the isomorphism class of .V;r/, and ch defines an isomorphism

K.Rep.T //! ZŒX�:

20.26. Let .G;T / be a split reductive group over k, and let X D X�.T /. We define the
character chG.V / of a representation .V;r/ of G to be its character as a representation of T .
Choose a Borel subgroup B of G containing T , and let ˚C be the corresponding system of
positive roots. As before, we write �� � if ��� is a linear combination of positive roots
with coefficients in N. Recall that a � 2X is dominant if h�;˛_i � 0 for all ˛ 2 ˚C.

20.27. For every dominant � 2 X , there exists a unique (up to isomorphism) simple
representation V.�/ of G such that

chG.V .�//D e�C
X

�
e�

with all � < �. Every simple representation of G is isomorphic to V.�/ for some dominant
�. This is a restatement of the fundamental theorem (20.3, 20.4).

20.28. In particular, the elements ŒV .�/� with � dominant generate K.Rep.G//. The Weyl
groupW of .G;T / acts on X , and hence on ZŒX�. The homomorphism chG WK.Rep.G//!
ZŒX� is injective with image ZŒX�W (elements of ZŒX� fixed by the action of the Weyl
group). See B 22.38.
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Weyl’s character formula
20.29. Let .G;T / be a split reductive group over a field k. We assume that Pic.G/D 0.

When G is semisimple, this condition means that G is simply connected. Let B be a Borel
subgroup of G containing T . Let X D X.T / and let W DW.G;T /. We let W act on the
group algebra ZŒX� on the left (as in 20.25). For w 2W , we let det.w/D det.wjX/, and
we define the antisymmetry operator

J WZŒX�! ZŒX�; J.e�/D
X

w2W
det.w/ew.�/:

The half sum of the positive roots,

�D
1

2

X
f˛ j ˛ 2 ˚Cg;

lies in X (here we use that Pic.G/D 0).

20.30 (WEYL CHARACTER FORMULA). Let � 2X be dominant. The simple representa-
tion of G with highest weight � has character,

chG.V /D
J.e�C�/

J.e�/

def
D

P
w2W det.w/ew.�C�/P
w2W det.w/ew.�/

:

See Iversen 1976, 9.5, or Jantzen 2003, 5.10.

Characteristic zero
Throughout this subsection, k is a field of characteristic zero.

20.31. A connected algebraic group G over k is semisimple (resp. reductive) if and only if
its Lie algebra is semisimple (resp. reductive and Z.G/ is of multiplicative type).

20.32. Let Rep.g/ be the category of finite-dimensional representations of a Lie algebra g
over k. It has a tensor product, and the forgetful functor satisfies the conditions of 7.15, and
so there is an affine group scheme G.g/ such that

Rep.G.g//D Rep.g/:

20.33. Let g be a semisimple Lie algebra over k. Then G.g/ is the simply connected
semisimple algebraic group over k with Lie algebra g. For any algebraic group H over k,

Hom.G.g/;H/' Hom.g;Lie.H//:

If g is split with root system .V;˚/, then G is split with diagram .V;˚;P.˚//. See B 23.70.

20.34. Let G be a semisimple algebraic group over k. Then the natural functor Rep.G/!
Rep.g/ is fully faithful, and it is essentially surjective if G is simply connected. It fol-
lows from the theory of Lie algebras that the finite-dimensional representations of G are
semisimple, and that, when G is split, then its simple representations are classified by the
fundamental characters. See Lie Algebras, Algebraic Groups,. . . .

20.35. The following conditions on a connected algebraic group G over k are equivalent:
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(a) G is reductive;
(b) every finite-dimensional representation of G is semisimple;
(c) some faithful finite-dimensional representation of G is semisimple.

We deduce (b) from (a). If G is reductive, then G D Z �G0, where Z is the centre
of G (a group of multiplicative type) and G0 is the derived group of G (a semisimple
group). Let G! GLV be a representation of G. When regarded as a representation of Z,
V decomposes into a direct sum V D

L
i Vi of simple representations. Because Z and G0

commute, each subspace Vi is stable under G0. As a G0-module, Vi decomposes into a direct
sum Vi D

L
j Vij with each Vij simple as a G0-module (20.34). Now V D

L
i;j Vij is a

decomposition of V into a direct sum of simple G-modules.
It is obvious that (b) implies (c) because every algebraic group has a faithful finite-

dimensional representation.
Finally, (c) implies that the unipotent radical of G is trivial (17.13), which implies that

G is reductive (as k has characteristic zero).

20.36. Let G be an algebraic group over k. Every finite-dimensional representations of G
is semisimple if and only if Gı is reductive.

20.37. Let G be an algebraic group over k, and let V and W be finite-dimensional repre-
sentations of G. If V and W are semisimple, then so also is V ˝W . See B 22.45.

Simple representations of nonsplit groups
20.38. Let T be a torus over k, and let � D Gal.ks=k/. Recall that there is the following

description of the finite-dimensional representations of T over k. For each � 2X�.T /, the
one-dimensional representation V.�/ on which T acts through � is defined over k; it is
absolutely simple, and every absolutely simple representation of T over k is isomorphic to
V.�/ for a unique �. For each orbit � of � on X�.T /, there is a representation V.�/ of T
over k such that V.�/ks is a direct sum of one-dimensional eigenspaces with characters the
� in � ; it is simple, and every simple representation of T over k is isomorphic to V.�/ for
a unique � -orbit � . One can ask whether similar statements hold for an arbitrary reductive
group over k. The answer is yes, but not in any naive sense unless G is quasi-split.

20.39. Let G be a reductive group over k. Choose a maximal torus T in k and a Borel
subgroup B in Gks containing Tks . Let �� X def

D X�.T / be the set of simple roots corre-
sponding to B , and let

XC D f� 2X j h�;˛_i � 0 for all ˛ 2�g

be the set of dominant weights. For each dominant �, there is a simple representation V.�/
of G over ks, and every simple representation of G over ks is isomorphic to V.�/ for a
unique �. The first problem we run into is that the natural action of � onX need not preserve
the set of dominant weights (because the action of � need not preserve B or �). Instead,
we must use the action of � on XC deduced from the �-action of � on �. The second
problem is that, if a dominant � is fixed by � , then V.�/ need not be defined over k, but
only over a certain division algebra D.�/ over k. Nevertheless, it does turn out that the
simple representations of G over k are classified by the � -orbits of dominant weights.

20.40. This theory is worked out in detail in Tits 1971 (for earlier results, see Borel and
Tits 1965, 12.6, 12.7, and Satake 1967, I, II). We now sketch it.
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REPRESENTATIONS OVER AN ALGEBRA

20.41. By an algebra A over k in this section, we mean an associative algebra over k of
finite degree (not necessarily commutative). Let A be an algebra over k and M a finitely
generated A-module. We define GLM;A to be the algebraic group over k such that, for
every k-algebra R, GLM;A.R/ is the group of A˝R-linear automorphisms of M ˝R. It is
naturally an algebraic subgroup of GLM (M regarded as a k-vector space). When M is the
free module Am, m 2 N, we write GLm;A for GLM;A.

20.42. Let A be a simple algebra over k, and let S be a simple A-module. The centralizer
of A in the k-algebra Endk.S/ of k-linear endomorphisms of S is a division algebra D. If
S has dimension d as a D-vector space, then A�Md .D/. As D is a division algebra, we
can make S into a rightD-module. ThenM  S˝DM WModD!ModA is an equivalence
of categories. Let M be an A-module, and M1 a D-module mapped to M by this functor.
Then

GLM1;D ' GLM;A : (32)

20.43. LetD be a central division algebra over k andM aD-module. AD-representation
ofG onM is a homomorphism r WG!GLM;D of algebraic groups over k. Let ADD˝ks.
Then A is a matrix algebra over ks, and so (32) becomes

GLM1;ks ' GLM˝ks;D˝ks

withM1 a suitable ks-vector space such that dimks.M1/D ŒDWk�
1=2 �dimD.M/. Therefore,

a D-representation r WG! GLM;D defines a representation r1WGks ! GLM1 . We say that
a representation of Gks is defined over D if it arises in this way.

THE TITS CLASS AND THE TITS ALGEBRA

20.44. Let G be a simply connected semisimple algebraic group over k. There is a quasi-
split group G0 over k, unique up to isomorphism, and an isomorphism f WG0ks !Gks such
that .G;f / is an inner form of G0. Let 
 2H 1.k;Gad

0 / be the cohomology class of .G;f /.
From the exact sequence

e!Z.G0/!G0!Gad
0 ! e

we get a boundary map ıWH 1.k;Gad
0 /! H 2.k;Z.G0// (flat cohomology). As was ex-

plained earlier, Z.G0/'Z.G/. Let tG denote the image of ı.
/ under the isomorphism

H 2.k;Z.G0//'H
2.k;Z.G//:

Then tG is called the Tits class of G. When G is not simply connected, its Tits class is
defined to be that of its simply connected cover (so tG 2H 2.k;Z. zG/). By definition, tG
depends only on the strict isogeny class of G. Obviously it is zero if G is quasi-split.

20.45. Let � be a character of Z. zG/, and let k.�/ be its field of definition (i.e., k.�/
is the subfield of ks fixed by the subgroup of � fixing �). Then � is a homomorphism
Z. zG/k.�/!Gm;k.�/, and we write �.tG/ for the image of tG under

H 2.k;Z. zG//!H 2.k.�/;Z. zG/k.�//
H2.�/
�! H 2.k.�/;Gm/:

The Brauer group of k.�/ is canonically isomorphic to the cohomology groupH 2.k.�/;Gm/
(Serre 1962, X, �5). We define the Tits algebra D.�/ to be the central division algebra over
k.�/ whose class ŒD.�/� in the Brauer group corresponds to �.tG/ under this isomorphism.
It is uniquely determined up to isomorphism.



20 REPRESENTATIONS OF REDUCTIVE GROUPS 111

STATEMENTS OF THE MAIN THEOREMS

20.46. Let G be a simply connected semisimple group over k and T a maximal torus in G.
We fix a Borel subgroup B of Gks containing Tks . The Galois group � acts on the dominant
weights through the �-action.

20.47. Let � be a dominant weight of G. If � is fixed by � , then the simple representation
of Gks of highest weight � is defined over D.�/. See Tits 1971, 3.3.

In more detail, a dominant weight � restricts to a character of Z.G/, and we let D.�/
denote the corresponding Tits algebra. The theorem says that there exists a D.�/-module M
and a representation r WG!GLM;D.�/ such that the corresponding representation r1WGks!

GLM1 (see above) is simple of highest weight �. Tits’s theorem also includes a uniqueness
statement. If r 0WG! GLM 0;D.�/ is a second representation with the same property, then
there is an isomorphism of D.�/-modules M !M 0 such that r 0 is the composite of r with
the map GLM;D.�/! GLM 0;D.�/ defined by the isomorphism.

20.48. Let � be a dominant weight of G fixed by � , and let d2 D ŒD.�/Wk�. There exists
a representation r 0WG! GLV such that .V;r 0/ks is isomorphic to a direct sum of d simple
representations each with highest weight �: (Let r WG! GLM;D be the representation in
20.47. As noted above, GLM;D is naturally an algebraic subgroup of GLM (M regarded as
a k-vector space). The composite of r with the inclusion GLM;D ,! GLM has the required
property.)

20.49. Let � be a dominant weight, and let k.�/ be its field of definition. The Tits algebra
D.�/ is a central division algebra over k.�/, whose degree we denote by d2. According to
the corollary, there exists a representation r1WGk.�/! GLV1 over k.�/ such .V1; r1/˝k.�/
ks � V.�/˚d . By the universality of the Weil restriction functor, r1 corresponds to a
homomorphism

r2WG!˘k.�/=k.GLV1/' GLV1;k.�/;

and there is a natural inclusion GLV1;k.�/ ,! GLV1 (V1 regarded as a k-vector space). We
hdefine kr.�/ to be the composite of r2 with this homomorphism.

20.50. For every dominant weight �, the representation kr.�/ is simple, and every simple
representation of G is equivalent to a representation of this form. The representations kr.�/
and kr.�0/ corresponding to two dominant weights � and �0 are equivalent if and only if
�.�/D �0 for some � 2 � . See Tits 1973, 7.2.

In particular the isomorphism classes of simple representations of G over k are classified
by the orbits of � in XC. Note, however, that if .V;r/ is the representation corresponding
to an orbit f�1; : : : ;�rg, then .V;r/ becomes isomorphic over ks, not to

V.�1/˚�� �˚V.�r/,

but to a direct sum of d copies of this representation.

EXAMPLE 20.51. If G is quasi-split, then there exists a Borel subgroup B in G and we
take T to be a maximal torus in B . As B is stable under the action of � , the �-action on �
is the natural action on it as a subset of X . Moreover, the Tits algebra D.�/ of a dominant
weight equals k.�/. Thus,
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(a) if a fundamental weight � is fixed by � , then V.�/ is defined over k, and every
absolutely simple representation of G over k is isomorphic to V.�/ for a unique �;

(b) if � is a � -orbit in XC, then the representation V.�/ def
D
L
�2� V.�/ is defined over

k, and every simple representation of G over k is isomorphic to V.�/ for a unique
� -orbit � .

21 Construction of the semisimple groups
In this section, we often shorten “semisimple algebraic group” to “semisimple group” and
“simply connected semisimple group” to “simply connected group”. Algebras A over k are
nonzero and finite-dimensional as k-vector vector spaces. They need not be commutative.

Generalities on semisimple groups and their forms
21.1. Let .G;T / be a split semisimple group over k and B a Borel subgroup of G contain-

ing T . The triple .G;B;T / determines a based semisimple root datum .X;˚;�/, which in
turn determines a Dynkin diagram D whose nodes are indexed by the elements of �. Up to
isomorphism, the Dynkin diagram depends only on G. Every Dynkin diagram arises from a
split simply connected semisimple group over k, and two such groups are isomorphic if and
only if their Dynkin diagrams are isomorphic. A split semisimple group is geometrically
almost-simple if it is almost-simple.

21.2. Let G be a quasi-split semisimple group over k, and let .B;T / be a Borel pair in G
(over k). Let .X;˚;�/ be the based semisimple root datum of .G;B;T /ks . As � fixes B ,
the natural action of � on X def

DX�.T / preserves �, and so we get a continuous action of �
on the Dynkin diagram of Gks . Every Dynkin diagram and continuous action of � arises in
this way from a quasi-split simply connected semisimple group, and two such groups are
isomorphic if and only if their Dynkin diagrams are � -equivariantly isomorphic.

21.3. By definition, a semisimple group G over k is split if and only if there is a maximal
torus T inG such that � acts trivially onX�.T /. A semisimple groupG over k is quasi-split
if and only if there is a maximal torus T in G and a base � for the root system of .G;T /ks

such that the natural action of � on X def
DX�.T / stabilizes �.

21.4. Let .G;T / be a split semisimple group over k. Then Out.G/' Aut.X;˚;�/. If G
is simply connected, then Aut.X;˚;�/' Sym.D/, and so there is an exact sequence

1! Inn.G/! Aut.G/! Sym.D/! 1:

Any choice of a pinning for .G;T / splits the sequence.

21.5. Let G be a simply connected semisimple group over k and T a maximal torus in G
(over k). Let D be the Dynkin diagram of .G;T /ks . There is canonical action of � on D,
called the �-action, such that

1! Innks.G/! Autks.G/! Sym.D/! 1 (33)

is � -equivariant (B 24.6). When G is quasi-split, the �-action is the natural action described
in 21.3.
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The cohomology sequence of (33) is an exact sequence (of pointed sets)

� � � ! Sym.D/� !H 1.�; Innks.G//!H 1.�;Autks.G//!H 1.�;Sym.D//:

When G is split, the sequence (33) splits, and we have an exact sequence

H 1.�; Innks.G//!H 1.�;Autks.G//!H 1.�;Sym.D//! 1:

21.6. Let G be a semisimple group over k, and let G0 be the split form of G — it is unique
up to isomorphism. We say that G is inner or outer according as it is an inner or outer form
of its split form.

21.7. Let G0 be a split, simply connected, almost-simple group over k. Such groups are
classified by their Dynkin diagrams, which are indecomposable. For a list of indecomposable
Dynkin diagrams, see B, p. 626. Thus, each such group is of type An (n� 1), Bn (n� 2/, Cn
(n� 3/, Dn (n� 4/, E6, E7, E8, F4, or G2. Every k-form G of G0 defines a cohomology
class 
 in H 1.�;Autks.G0//. If 
 lies in the image of H 1.�; Innks.G//, then G is an inner
form ofG0. Otherwise it maps to a nontrivial element inH 1.k;Sym.D//. As � acts trivially
on the Dynkin diagram, 
 corresponds to a continuous homomorphism � ! Sym.D/ (up to
conjugation in the case D4; see below). Let � 0 denote the kernel of this homomorphism and
K its fixed field in ks. Then G becomes an inner form of G0 overK. As G0 is geometrically
almost-simple, so also is G. If G0 has type Xy , then we say that G has type zXy , where
z D ŒKWk�D .� W� 0/. For example, to say that G is of type 3D4 means that it is an outer
form of type D4 and becomes an inner form over a cubic extension of k.

21.8. The indecomposable Dynkin diagrams have few symmetries:

Type Sym.D/ Nontrivial symmetries
An (n > 1/ Z=2Z reflection about centre
D4 S3 permutations of three outer nodes
Dn (n > 4/ Z=2Z reflection about axis
E6 Z=2Z reflection about centre
remainder 1

Thus z is 1 or 2 except forD4, for which it can be 1, 2, 3, or 6. Moreover,H 1.k;Sym.D//D
Homconts.�;Sym.D// except for D4.

21.9. LetG be a semisimple group. WhenG is simply connected and geometrically almost-
simple, we say thatG is classical if it is of typeAn, Bn, Cn, orDn, but not of subtype 3D4 or
6D4, and it is exceptional if it is of typeE6, E7, E8, F4, orG2. A general semisimple group
G is classical (resp. exceptional) if, in the decomposition zG '

Q
.Gi /ki=k in 17.26, all Gi

are classical (resp. exceptional). Groups of subtypes 3D4 or 6D4 are neither exceptional nor
classical.

In more down-to-earth terms, the geometrically almost-simple simply connected classical
groups over k are the k-forms of SLnC1, Sp2n, and Spinn (see below), except for some
k-forms of Spin8. Each is an inner form or becomes so over a quadratic extension of k.
Weil restrictions of classical groups are classical, products of classical groups are classical,
and every group isogenous to a classical group is classical. In this section, we describe all
geometrically almost-simple classical groups in terms of associative algebras.
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The centres of semisimple groups
21.10. Let .G;T / be a split semisimple group over k. The centre Z.G/ of G is the

diagonalizable group whose character group is X.T /=Z˚ with � acting trivially. Thus,
for each direct summand Z=nZ of X.T /=Z˚ , Z.G/ has a direct factor �n. When G is
simply connected, X.T / is the weight lattice P.˚/, and so X�.Z.G// D P.˚/=Q.˚/.
From the tables in Bourbaki LIE 4, one arrives at the following table of centres for the simply
connected split almost-simple groups:

An Bn Cn D2m D2mC1 E6 E7 E8, F4 G2
�nC1 �2 �2 �2��2 �4 �3 �2 e

For example, the simply connected split almost-simple group of type An is SLnC1. This has
centre �nC1, which is the diagonalizable group whose character group is Z=.nC1/Z with
� acting trivially. Note that the centre need not be étale.

21.11. Let � DGal.ks=k/. Let G0 and G be algebraic groups over k with centres Z0 and
Z. If G is obtained from G0 by twisting by a cocycle in Z1.�;Aut.G0ks//, then Z.G/ is
obtained from Z.G0/ by twisting with the same cocycle.

21.12. Let .G;f / be an inner form of G0 (see 6.35). Then the automorphism a� D

f �1 ı�f of G0 is inner, and so it acts trivially on the centre. Hence f jZ0 D �.f jZ0/ for
all � 2 � , and so f jZ0 is defined over k. If .G;f / and .G0;f 0/ are equivalent inner forms
of G0, then

Z.G/'Z.G0/'Z.G
0/.

In other words, the centre of G depends only on the equivalence class of .G;f /, and is
canonically isomorphic to the centre of G0.

21.13. We now have a procedure for computing the centre of any simply connected
semisimple group G. Write

G ' .G1/k1=k � � � �� .Gs/ks=k

as in 17.26. Then Gi is the twist by a 1-cocycle of the split group Hi of the same type over
ki , and Z.Gi / is the twist of Z.Hi / by the same cocycle. Now

Z.G/' .Z.G1//k1=k � � � �� .Z.Gs//ks=k .

The connected algebraic groups isogenous toG are the quotients ofG by algebraic subgroups
of Z.G/. These correspond to quotients of X�.Z.G// by � -stable subgroups.

The geometrically almost-simple groups of type A
The split simply connected almost-simple group of type An�1 is SLn. Thus, we need to find
the forms of SLn.
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THE INNER FORMS OF SLn

21.14. When we embed SLn.ks/ in Mn.k
s/,

X 7!X WSLn.ks/!Mn.k
s/;

the action of PGLn.ks/ onMn.k
s/ by inner automorphisms preserves SLn.ks/, and identifies

PGLn.ks/ with the full group of inner automorphisms of SLn:

Inn.SLn;ks/' Aut.Mn.k
s//' PGLn.ks/:

Thus the isomorphism classes of inner k-forms of SLn are in natural one-to-one correspon-
dence with the isomorphism classes of k-forms of Mn (because they are both classified by
H 1.k;PGLn/).

21.15. We make this explicit. The k-forms of Mn are the central simple algebras A of
degree n2 over k (B 24.22). Given such an A, we define SL1.A/ to be the algebraic group
over k such that

SL1.A/.R/D fa 2 .A˝R/� j Nrd.a/D 1g

for all k-algebras R (here Nrd is the reduced norm, B 24.25). The choice of an isomor-
phism Mn.k

s/! A˝ks determines an isomorphism f W.SLn/ks ! SL1.A/ks , and the pair
.SL1.A/;f / is an inner form of SLn. Every inner form of SLn arises in this way from an A,
and inner forms .SL1.A/;f / and .SL1.A0/;f 0/ are isomorphic if and only if A and A0 are
isomorphic.

21.16. Caution: SL1.A/ and SL1.Aopp/ are isomorphic as algebraic groups over k, because

SL1.A/' SU.A�Aopp; "/' SL1.Aopp/; ".a;b/D .b;a/;

even though A and Aopp need not be isomorphic k-algebras.

THE OUTER FORMS OF SLn

21.17. There is an exact sequence

1! PGLn.ks/! Aut.SLnks/! Sym.D/! 1;

and Sym.D/ has order 2 if n > 2. The map X 7! .X t /�1 is an outer automorphism of SLn
inducing the obvious symmetry on the Dynkin diagram.

21.18. Endow Mn.k/�Mn.k/ with the involution

�W.X;Y / 7! .Y t ;X t /:

The automorphisms of .Mn.k
s/�Mn.k

s/;�/ are the inner automorphisms by elements
.X;.X t /�1/ and the composites of such automorphisms with .X;Y / 7! .Y;X/. When we
embed SLn.ks/ in Mn.k

s/�Mn.k
s/,

X 7! .X;.X t /�1/WSLn.ks/ ,!Mn.k
s/�Mn.k

s/; (34)

the action of Aut.Mn.k
s/�Mn.k

s/;�/ preserves SLn.ks/, and induces an isomorphism

Aut.SLnks/' Aut.Mn.k
s/�Mn.k

s/;�/:

Thus, the isomorphism classes of k-forms of SLn are in natural one-to-one correspondence
with the isomorphism classes of k-forms of .Mn.k/�Mn.k/;�/.
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21.19. A k-algebra with involution .A;�/ is a form of .Mn.k/�Mn.k/;�/ if and only if
� is of the second kind, the centre K of A is an étale k-algebra of degree 2, and A is either
simple (case K is a field) of the product of two simple k-algebras (case K D k�k). Such a
pair .A;�/ is said to be of simple unitary type. See B 24.42.

21.20. We make the correspondence in 21.18 explicit. Let .A;�/ be of simple unitary type
and of degree 2n2 over k. Define SU.A;�/ to be the algebraic group over k such that

SU.A;�/.R/D fa 2 A˝kR j a
�aD 1, Nrd.a/D 1g

for all k-algebras R. Then SU.A;�/ is a form of SLn. Every form of SLn arises in this way
from a pair .A;�/, and SU.A;�/ and SU.A0;�0/ are isomorphic if and only if .A;�/ and
.A0;�0/ are isomorphic as algebras with involution over k.

21.21. There is a commutative diagram

Aut.SLnks/ Sym.D/

Aut.Mn.k
s/�Mn.k

s/;�/ Aut.ks�ks/:

' '

restrict

The centre of A is the form of ks�ks corresponding to the image of the cohomology class of
G in Sym.D/. Therefore, SU.A;�/ is an inner or outer form of SLn according as the centre
of A is k�k or a field.

The geometrically almost-simple groups of type C
The split simply connected almost-simple group of type Cn is Sp2n. Thus, we need to find
the k-forms of Sp2n.

21.22. Endow M2n.k/ with the involution

X 7!X�
def
D S�1X tS; S D

�
0 I

�I 0

�
:

The automorphisms of .M2n.k
s/;�/ are the inner automorphisms defined by a matrix U

such that U tSU D S , i.e., such that U 2 Sp2n.k
s/. As the Dynkin diagram of type Cn has

no symmetries, all automorphisms of Sp2n are inner. When we embed Sp2n.k
s/ inM2n.k

s/,

X 7!X WSp2n.k
s/ ,!M2n.k

s/;

the action of Sp2n.k
s/ on M2n.k

s/ preserves Sp2n.k
s/, and induces an isomorphism

Aut.Sp2nks/' Aut.M2n.k
s/;�/:

Thus, the isomorphism classes of k-forms of SLn are in natural one-to-one correspondence
with the isomorphism classes of k-forms of .M2n.k/;�/.

21.23. A k-algebra with involution .A;�/ is said to be of simple symplectic type if it is
a k-form of .M2n.k/;�/. Note that A is then a central simple algebra over k and � is an
involution of the first kind.
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21.24. We make the correspondence in 21.22 more explicit. Let .A;�/ be a k-algebra with
involution of simple symplectic type. Define Sp.A;�/ to be the algebraic group over k such
that

Sp.A;�/.R/D fa 2 .A˝kR/
�
j a�aD 1g

for all k-algebras R. Then Sp.A;�/ is a k-form of Sp2n. Every k-form of Sp2n arises in
this way from a pair .A;�/, and Sp.A;�/ and Sp.A0;�0/ are isomorphic if and only if .A;�/
and .A0;�0/ are isomorphic as k-algebras with involution.

The geometrically almost-simple group of types B and D
Certain special orthogonal groups are split almost-simple groups of type Bn or Dn, but they
are not simply connected, and so we first have to construct their simply connected covers.
These are the spin groups. In this version of the notes, we assume that char.k/¤ 2.

QUADRATIC FORMS

21.25. Let V be a vector space over k (always finite-dimensional). A map qWV ! k is a
quadratic form if there exists a k-bilinear form �WV �V ! k such that q.v/D �.v;v/ for
all v 2 V . Then the polar symmetric bilinear form

�q.v;w/D q.vCw/�q.v/�q.w/

of q has the property that �q.v;w/ D 2q.v/. We say that � is nondegenerate if �q is
nondegenerate. A quadratic space is a vector space V equipped with a quadratic form q. A
quadratic space .V;q/ is regular if q is nondegenerate.

CLIFFORD ALGEBRAS

21.26. Let .V;q/ be a quadratic space. The Clifford algebra C.V;q/ is the quotient of
the tensor algebra T .V / of V by the two-sided ideal generated by the elements of the
form x˝x�q.x/ with x 2 V . Let �WV ! C.V;q/ be the composite of the canonical map
V ! T .V / and the quotient map T .V /! C.V;q/. Then � is k-linear and �.x/2 D q.x/2

for all x 2 V ; moreover, � is universal among maps with these properties.

21.27. The map �WV ! C.V;q/ is injective, and so we often use it to identify V with a
subset of C.V;q/. Clearly, V generates C.V;q/ as a k-algebra. The dimension of C.V;q/
as a k-vector space is 2dim.V / (B 24.56).

21.28. The Clifford algebra inherits a Z=2Z-gradation

C.V;q/D C0.V;q/˚C1.V;q/

from the Z-gradation on T .V /.

21.29. Assume that .V;q/ is regular. The map �WV ! C.V;q/opp is k-linear and has the
property that �.x/2 D q.x/, and so it extends uniquely to a homomorphism �WC.V;q/!
C.V;q/opp. This can be regarded as an involution � of C.V;q/.
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THE SPIN GROUPS

Let .V;q/ be a regular quadratic space over k of dimension n, and let SO.V;q/ be the
algebraic group

R f˛ 2 SLV .R/ j qR.˛v/D qR.v/ for all v 2 V ˝Rg.

21.30. Let g 2 SO.V;q/.k/. Then g is an isomorphism V ! V , and so it extends to
an isomorphism C.V;q/! C.V;q/ of the Clifford algebra (by universality). It is known
that this is the inner automorphism defined by an element h 2 C0.V;q/�. Conversely, if
h 2 C0.V;q/

�
R is such that hVRh�1 D VR, then the mapping x 7! hxh�1WVR! VR is an

element of SO.q/.R/.

21.31. Define GSpin.V;q/ to be the algebraic group over k such that

GSpin.V;q/.R/D fg 2 C0.V;q/�R j gVRg
�1
D VRg:

From the above discussion, we see that there is a natural homomorphism GSpin! SO.V;q/
sending g 2 GSpin.V;q/.R/ to the map v 7! gvg�1WVR! VR. The kernel consists of the
scalars, and so there is an exact sequence

e!Gm! GSpin.V;q/! SO.V;q/! e:

It follows that GSpin.V;q/ is smooth and connected, and that it is reductive with adjoint
group the adjoint group of SO.V;q/.

21.32. When g 2 GSpin.V;q/.R/, its norm g�g lies in R�, and g 7! g�g is a homomor-
phism GSpin.V;q/!Gm, called the spinor norm. The group Spin.V;q/ is defined to be
its kernel. There is a commutative diagram

�2 Spin.V;q/

Gm GSpin.V;q/ SO.V;q/

Gm
x 7!x2

spinor norm

(35)

in which the column and row are short exact sequences and the diagonal arrows have common
kernel �2. We see that Spin.V;q/ is the derived group of GSpin.V;q/, and it is a two-fold
covering group of SO.V;q/. Moreover, there is an exact sequence

e! �2! Spin.V;q/�Gm! GSpin.V;q/! e:

21.33. The root system .V;˚/ of Spin.V;q/ equals that of SO.V;q/, but X D P.˚/ and
so Spin.V;q/ is the simply connected covering group of SO.V;q/. The root datum of GSpin
can be computed from the diagram (35).
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THE FORMS OF SOm

21.34. Let .V;q/ be a regular quadratic space of dimension m. We define O.V;q/ to be
the algebraic group such that

O.V;q/.R/D f˛ 2 GLV .R/ j qR.˛v/D qR.v/ for all v 2 VRg

for all k-algebras R, and so

SO.V;q/D Ker.O.V;q/
det
�!Gm/:

Because of our assumption on the characteristic of k, O.V;q/D O.V;�q/ and SO.V;q/D
SO.V;�q/.

21.35. Let .V;q/ be a regular quadratic space of dimension m. The Witt index of .V;q/
is the common dimension of the maximal totally isotropic subspaces of V . The groups
SO.V;q/ and Spin.V;q/ are split if and only if .V;q/ has the largest possible Witt index. For
example, the quadratic forms

q D x20C
Xn

iD1
x2i�1x2i .mD 2nC1 odd/

q D
Xn

iD1
x2i�1x2i .mD 2n even/

on km have the largest possible Witt index, namely, nD bm
2
c. We write Om, and SOm for

the algebraic groups attached to these forms.

21.36. Let .V;q/ be a regular quadratic space of dimension m � 7 with largest possible
Witt index. The group O.V;q/.k/ acts on its subgroup SO.V;q/ by conjugation, and
every automorphism of SO.V;q/ arises from an element of O.V;q/.k/. On the other
hand, O.V;q/ acts on the Clifford algebra C.V;q/, and hence on Spin.V;q/. The map
O.V;q/! Aut.Spin.V;q// factors into isomorphisms

O.V;q/ad
' Aut.SO.V;q//' Aut.Spin.V;q//

ifm¤ 8. We conclude that the k-forms of Spinm are exactly the simply connected coverings
of the k-forms of SOm, except for mD 8.

21.37. Thus, it suffices to find the k-forms of SOm. Let S be the matrix of one of
the quadratic forms on km displayed above, and let � be the involution X� D X tSX�1

on Mm.k/. The automorphisms of .Mm.k
s/;�/ are the inner automorphisms defined by

elements a such that a�aD 1, i.e., such that a 2 Om.k/. The automorphisms of SOm are
the inner automorphisms by elements of O.k/. When we embed SOm.ks/ in Mm.k

s/;

X 7!X WSOm.ks/ ,!Mm.k
s/

the action of Om.ks/ on Mm.k
s/ preserves SOm.ks/, and identifies Aut.Mm.k

s/;�/ with
the group of automorphisms of SOm:

Aut.SOm;ks/' Aut.Mm.k
s/;�/:

Thus the isomorphism classes of k-forms of SOm are in natural one-to-one correspondence
with the k-forms of .Mm.k

s/;�/.
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21.38. A k-algebra with involution .A;�/ is said to be of simple orthogonal type if it is
a form of .Mm.k

s/;�/. Note that then A is a central simple algebra A over k and � is an
involution of the first kind.

21.39. We make the correspondence in 21.37 more explicit. Let .A;�/ be a k-algebra with
involution of simple orthogonal type. Define SO.A;�/ to be the algebraic group over k such
that

SO.A;�/.R/D fa 2 .A˝R/� j a�aD 1; Nrd.a/D 1g

for all k-algebras R. Then SO.A;�/ is a k-form of SOm. Every k-form of SOm arises in this
way from a pair .A;�/, and SO.A;�/ and SO.A0;�0/ are isomorphic if and only if .A;�/
and .A0;�0/ are isomorphic.

The classical groups in terms of sesquilinear forms
In the preceding subsections, we described the geometrically almost-simple classical groups
in terms of simple algebras with involution, but every simple algebra is a matrix algebra over
a division algebra. In this subsection, we explain how to rewrite the previous description in
terms of division algebras and sesquilinear forms. We continue to assume that char.k/¤ 2.

21.40. Let .D;�/ be a division algebra over k with an involution �, and let V be a left
vector space over D.

(a) A bi-additive form �WV �V !D is sesquilinear if it is semilinear in the first variable
and linear in the second, so

�.ax;by/D a��.x;y/b for a;b 2D; x;y 2 V .

(b) A sesquilinear form � is hermitian if

�.x;y/D �.y;x/�; for x;y 2 V;

and skew hermitian if

�.x;y/D��.y;x/�; for x;y 2 V:

For example, if D D k and � the identity map, then the hermitian and skew hermitian forms
are, respectively, the symmetric and skew symmetric forms. If D D C with � is complex
multiplication, then the hermitian and skew hermitian forms are the usual objects.

21.41. Let .D;�/ be a central division algebra over k with involution �, and let � be a
nondegenerate sesquilinear form on a vector space V over D. For each ˛ 2 EndD.V /, there
is an ˛�� 2 EndD.V / uniquely characterized by the equation

�.˛��x;y/D �.x;˛y/; x;y 2 V:

If � is hermitian or skew hermitian then �� is an involution.

21.42. Let .D;�/ and .V;�/ be as above, and let AD EndD.V /. Assume that � is of the
first kind on D and that char.k/¤ 2. The map � 7! �� defines a one-to-one correspondence

fnondegenerate hermitian or skew hermitian forms on V g=k�

$ finvolutions on A extending � on Dg.
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The involutions �� and � have the same or opposite type according as � is hermitian or skew
hermitian:

� � ��

symplectic type hermitian symplectic type
orthogonal type hermitian orthogonal type
symplectic type skew hermitian orthogonal type
orthogonal type skew hermitian symplectic type

21.43. To each hermitian or skew hermitian form, we attach the group of automorphisms
of .V;�/, and the special group of automorphisms of � (the automorphisms with determinant
1, if this is not automatic). The geometrically almost-simple, simply connected, classical
groups over k are the following.
(A) The groups SLm.D/ for D a central division algebra over k (the inner forms of SLn);

the groups attached to a hermitian form for a quadratic field extension K of k (the
outer forms of SLn).

(C) The symplectic groups, and unitary groups of hermitian forms over division algebras.
(BD) The spin groups of quadratic forms, and the spin groups of skew hermitian forms over

division algebras.

21.44. If a central simple algebra over k admits an involution, then A� Aopp. Quaternion
algebras always have this property. When they are the only central simple algebras over k
with this property, Statement 21.43 simplifies. This is the case, for example, if
˘ k is separably closed or finite,
˘ k is R or a local field (i.e., finite extension of Qp or Fp..T //),
˘ k is a global field (i.e., a finite extension of Q or Fp.T /).

21.45. Assume that the only central simple algebras A over k such that A' Aopp are the
quaternion algebras. The geometrically almost-simple, simply connected, classical groups
over k are the following:
(A) The groups SLm;D for D a central division algebra over k (the inner forms of SLn); the

groups attached to a hermitian form for a quadratic field extension K of k (the outer
forms of SLn).

(BD) The spin groups of quadratic forms, and the spin groups of skew hermitian forms over
quaternion division algebras.

(C) The symplectic groups, and unitary groups of hermitian forms over quaternion division
algebras.

The exceptional groups
In this subsection, we describe the almost-simple groups of exceptional type F4, E6, E7,
E8, and G2. This is only a brief survey. For more details, we refer the reader to Springer
1998 and the references therein. For the corresponding root systems, see Bourbaki LIE 4.

The exceptional Lie algebras over C were discovered and classified by Killing in the
1880s. They form a chain

g2 � f4 � e6 � e7 � e8:

In this subsection, an algebra A over k is a finite-dimensional k-vector space equipped
with a k-bilinear map A�A! A.
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GROUPS OF TYPE G2

21.46. Let V be the hyperplane x1Cx2Cx3 D 0 in R3 and ˚ the set of elements

˙ .e1� e2/; ˙.e1� e3/; ˙.e2� e3/;

˙ .2e1� e2� e3/; ˙.2e2� e1� e2/; ˙.2e3� e1� e2/:

Then .V;˚/ is a root system with base �D fe1� e2;�2e2C e2C e3/ and Dynkin diagram
G2. It has rank 2, and there are 12 roots, and so every geometrically almost-simple group of
type G2 has dimension 14. As P.˚/DQ.˚/, such a group is both simply connected and
adjoint.

21.47. A Hurwitz algebra over k is an algebra A of finite degree over k with 1 together
with a nondegenerate quadratic (norm) form N WA! k such that

N.xy/DN.x/N.y/ for all x;y 2 A:

If char.k/D 2, the bilinear form attached toN is required to be nondegenerate. The possible
dimensions of A are 1, 2, 4, and 8. A Hurwitz algebra of dimension 8 is called an octonion
algebra. For such an algebra A, the functor

R AutR.R˝k A/

is a simple group variety over k of type G2, and all geometrically simple group varieties of
type G2 arise in this way from octonion algebras.

21.48. Consider the map

x D

�
a b

c d

�
7! xx D

�
d �b

�c a

�
WM2.k/!M2.k/:

The special octonion algebra O over k equals M2.k/˚M2.k/ as a vector space, and the
multiplication and norm form on O are defined by

.x;y/.u;v/D .xu�xvy;vxCyxu/

N..x;y//D xxx�y xy D det.x/�det.y/.

The group G attached to O is a split connected group variety of type G2.

21.49. Every octonion algebra over k becomes isomorphic to O over ks and

G.ks/' Aut.Gks/' Aut.O˝ks/:

Therefore there are natural bijections between the following sets: (a) isomorphism classes of
octonion algebras over k; (b) isomorphism classes of geometrically simple groups of type
G2 over k; (c) H 1.k;G/. There is a canonical bijection from H 1.k;G/ onto the subset of
H 3.k;Z=2Z/ consisting of decomposable elements, i.e., cup products of three elements of
H 1.k;Z=2Z/. Thus these groups are quite well understood.

21.50. References: Springer 1998, 17.4; Serre 1997, III, Annexe.
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GROUPS OF TYPE F4

21.51. Let V be R4 and ˚ the set of elements

˙ei .1� i � 4/; ˙ei ˙ ej .1� i < j � 4/;
1
2
.˙e1˙ e2˙ e3˙ e4/:

Then .V;˚/ is a root system with base

fe2� e2; e3� e4; e4;
1
2
.e1� e2� e3� e4/g

and Dynkin diagram F4. It has rank 4 and there are 48 roots, and so every geometrically
almost-simple group of type F4 has dimension 52. As P.˚/DQ.˚/, such a group is both
simply connected and adjoint.

21.52. An Albert algebra over k is a finite-dimensional k-vector space A equipped with a
cubic (norm) form N , a nondegenerate symmetric bilinear (trace) form � , and an element
e 2 A satisfying certain conditions (see below). For such an algebra A, the functor

R AutR.R˝A;N;�;e/

is a simple group variety over k of type F4, and all simple group varieties of type F4 arise in
this way from Albert algebras.

21.53. Let V DM3.k/�M3.k/�M3.k/ – it is a k-vector space of dimension 27. Let d
and t denote the determinant and trace on M3.k/, and let N0 denote the cubic form

N0..x0;x1;x2//D d.x0/Cd.x1/Cd.x2/� t .x0x1x2/

on V . For a 2 GL3.k/, we define �.a/D d.a/a�1. Then � is a quadratic map M3.k/!

M3.k/, and we define n to be the quadratic map V ! V with

n..x0;x1;x2//D .�.x0/�x1x2;�.x2/�x0x1;�.x1/�x2x0/:

We have a symmetric bilinear map

V �V ! V; x�y D n.xCy/�n.x/�n.y/;

and a nondegenerate symmetric bilinear form

�0WV �V ! k; �.x;y/D t .x0y0Cx1y2Cx2y1/:

Finally, let e0D .1;0;0/. ThenA0D .V;N0;�0; e0/ is an Albert algebra, called the standard
Albert algebra. The group G0 attached to A0 is the split connected simple group variety of
type F4.

21.54. By definition, the Albert algebras over k are the quadruples .A;N;�;e/ over k that
become isomorphic to .A0;N0;�0; e0/ over ks. As

G0.k
s/' Aut.G0ks/' Aut.A˝ks/;

we see that there are natural bijections between the following sets: (a) isomorphism classes
of Albert algebras over k; (b) isomorphism classes of geometrically simple groups of type
F2 over k; (c) H 1.k;G0/.

21.55. There are constructions of Tits that yield all Albert algebras (up to isomorphism)
over an arbitrary field.

21.56. References: Springer 1998, p. 305; Knus, Merkurjev et al. 1998, �40.
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GROUPS OF TYPE E6

21.57. Let V be the subspace of R8 defined by the equations x6 D x7 D�x8 and ˚ the
set of elements

˙ei ˙ ej .1� i < j � 5/;

˙
1
2
.e8� e7� e6C

P5
iD1.�1/

�.i/ei with
P5
iD1 �.i/ even:

Then .V;˚/ is a root system of type E6. It has rank 6 and there are 72 roots, and so every
geometrically almost-simple group of type E6 has dimension 78. The quotient P.˚/=Q.˚/
is cyclic of order 3 and so the centre of a split simply connected almost-simple group of type
E6 is isomorphic to �3.

21.58. Let AD .V;N;�;e/ be an Albert algebra over k. Recall that N is a cubic form on
V . Let G be the subgroup of GLV fixing N . Then G is a simply connected group variety
over k of type E6, which is split if A is the standard Albert algebra.

21.59. Let G0 be the split group of type E6. From the description of G0, we see that
H 1.k;G0/ classifies the isomorphism classes of cubic forms on the k-vector space V0 D
M3.k/

3 becoming isomorphic toN over ks. The group of symmetries of the Dynkin diagram
of G has order 2 (the nontrivial element is the reflection about ˛4/, and so G has both inner
and outer forms. The inner forms are classified by H 1.k;Gad

0 /, where Gad
0 DG0=�3.

21.60. References: Springer 1998, 17.6, 17.7; Knus, Merkurjev et al. 1998.

GROUPS OF TYPE E7

21.61. Let V be the hyperplane in R8 orthogonal to e7C e8 and ˚ the set of vectors

˙ei ˙ ej .1� i < j � 6/;

˙
1
2
.e7� e8C

P6
iD1.�1/

�.i/ei with
P6
iD1 �.i/ even:

Then .V;˚/ is a root system of type E7. It has rank 7 and there are 126 roots, and so
every geometrically almost-simple group of type E7 has dimension 133. The quotient
P.˚/=Q.˚/ is cyclic of order 2 and so the centre of a split simply connected group of type
E7 is isomorphic to �2.

21.62. Over a field k of characteristic¤ 2;3, adjoint groups of type E7 are the automor-
phism groups of certain objects called gifts (generalized Freudenthal triple systems). There
is a natural bijection between the isomorphism classes of adjoint groups of type E7 and the
isomorphism classes of gifts (Garibaldi 2001, 3.13).

GROUPS OF TYPE E8

21.63. Let V be R8 and ˚ the set of elements

˙ei ˙ ej .1� i < j � 8/;
1
2

P8
iD1.�1/

�.i/ei with
P8
iD1 �.i/ even.

Then .V;˚/ is a root system of type E8. It has rank 8 and there are 240 roots, and so a
geometrically almost-simple group of type E7 has dimension 248. As P.˚/DQ.˚/, such
a group is both simply connected and adjoint.

21.64. For a recent expository article on groups of type E8, see Garibaldi 2016.
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THE TRIALITARIAN GROUPS (GROUPS OF SUBTYPE 3D4 AND 6D4)

21.65. An algebraic group over k is said to be trialitarian if it is geometrically almost-
simple of type D4 and the Galois group of k permutes the three end vertices of its Dynkin
diagram. This means that the group is of subtype 3D4 or 6D4. Detailed studies of trialitarian
groups over fields of characteristic¤ 2 can be found in Knus, Merkurjev et al. 1998, Chapter
X, and Garibaldi 1998.

22 Parabolic subgroups of reductive groups
In this section, G is a reductive group over k.

Description in terms of cocharacters
22.1. Let � be a cocharacter of G. Then P.�/ is a parabolic subgroup of G, and every

parabolic subgroup of G is of this form. More precisely, if � is regular, then P.�/ is a Borel
subgroup, and otherwise P.�/ contains P.�0/ for any regular �0 sufficiently close to �.

22.2. The parabolic subgroup P.�/DG if and only if �.Gm/�Z.G/. It follows that G
contains a proper parabolic subgroup if and only if it contains a noncentral split torus.

Isotropic groups
22.3. A semisimple group is isotropic if contains a nontrivial split torus, and otherwise

it is said to be anistropic. Thus a semisimple group is isotropic if and only it contains a
proper parabolic subgroup. Some authors, for example, Springer, say that a reductive group
is isotropic if it contains a noncentral split torus, and some say it is isotropic if it contains a
nontrivial split torus. The second definition agrees with the usual definition for tori. With
Springer’s definition, the isotropic reductive groups are those containing a proper parabolic
subgroup.

22.4. Let D be a central division algebra over k, and let G be the algebraic group R 
.D˝R/�. It is a k-form of GLn, where nD ŒDWk�1=2. If S is a split torus in D, then there
exists a basis e1; e2; : : : for D as a k-vector space consisting of eigenvectors for the action of
S on D by conjugation, i.e., such that seis�1 2 kei for all s 2 S.ka/ and all i . This implies
that S �Z.G/, and so G is anisotropic.

22.5. Let G D SO.q/ for some regular quadratic space .V;q/, and assume char.k/¤ 2.
Recall that q is isotropic if q.x/D 0 for some nonzero x 2 V , and otherwise it is anisotropic.
In general, there exists a basis for V such that

q D x1xnC�� �Cxrxn�rC1Cq0.xrC1; : : : ;xn�r/

with q0 anistropic (Witt decomposition; Scharlau 1985, Chapter 1, �5). Here r is the Witt
index of q.

If G is isotropic, then q is isotropic, because q.x/D 0 for any eigenvector x of a split
torus in G. Therefore G is anisotropic if q is anisotropic.
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The subgroup S of G consisting of the matrices

diag.s1; : : : ; sr ;1; : : : ;1; s�1r ; : : : ; s�11 /

is a split subtorus of G. Its centralizer is isomorphic to S �SO.q0/, and so S is maximal.
Thus G is isotropic if and only if q is isotropic. More precisely, the k-rank of G is equal to
the Witt index of q.

Parabolic subgroups
22.6. Let P be a parabolic subgroup of G.

(a) The unipotent group RuP is split and the quotient P=RuP is reductive.
(b) If P is minimal and S is a maximal split torus of P , then CG.S/ is a reductive

subgroup of P , and P 'RuP ÌCG.S/.
(c) If S and S 0 are maximal split subtori of P , then CG.S/ and CG.S 0/ are conjugate by

a unique element of .RuP /.k/.

22.7. Let P and Q be parabolic subgroups of G with P minimal. There exists a g 2G.k/
such that gPg�1 � Q. Consequently, any two minimal parabolic subgroups in G are
conjugate by an element of G.k/.

22.8. Let P be a parabolic subgroup of G.
(a) If k is infinite, then the map � WG!G=P has local sections, i.e., G=P is covered by

open subsets over which the map has a section.
(b) The map G.k/! .G=P /.k/ is surjective.

22.9. Any two maximal split tori in G are conjugate by an element of G.k/.
The proof is by induction on the dimension of G. If G contains no noncentral split

torus, there is nothing to prove. Otherwise G contains a proper parabolic subgroup P . Let
S be a split solvable subgroup of G. When we let S act on G=P , there is a fixed point
x 2 .G=P /.k/. According to 22.9 there exists a g 2G.k/ mapping to x. Then SgP � gP ,
and so gSg�1 � P . Thus, we may suppose that the two split tori S and S 0 are contained in
P . Now 22.6 allows us to suppose that CG.S/D CG.S 0/. As this group is reductive, we
can apply the induction hypothesis.

Parabolic subgroups and filtrations on Rep.G/

In this subsection, k is a field of characteristic zero.

22.10. Let V be a vector space. A homomorphism �WGm! GLV defines a filtration

� � � � F sV � F sC1V � �� � ; F sV D
M

i�s
Vi

of V , where V D
L
i Vi is the gradation defined by �.

22.11. Let G be an algebraic group over a field k. A homomorphism �WGm!G defines
a filtration F � on V for each representation .V;r/ of G, namely, that corresponding to
r ı�. These filtrations are compatible with the formation of tensor products and duals,
and they are exact in the sense that the functor V  Gr�.V / is exact. Conversely, a
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functor .V;r/ .V;F �/ from representations of G to filtered vector spaces satisfying these
conditions arises from a (nonunique) homomorphism �WGm!G. We call such a functor a
filtration F � of Rep.G/, and a homomorphism �WGm!G defining F � is said to split F �.
We write Filt.�/ for the filtration defined by �.

22.12. For each s, we define F sG to be the algebraic subgroup of G whose elements act
as the identity map on

L
i F

iV=F iCsV for all representations V of G. Clearly, F sG is
unipotent for s � 1, and F 0G is the semidirect product of F 1G with the centralizer Z.�/ of
any cocharacter � splitting F �.

22.13. Let G be a reductive group over a field k, and let F � be a filtration of Rep.G/.
From the adjoint action of G on g, we acquire a filtration of g.

(a) F 0G is the algebraic subgroup of G respecting the filtration on each representation of
G; it is a parabolic subgroup of G with Lie algebra F 0g.

(b) F 1G is the algebraic subgroup of F 0G acting trivially on the graded moduleM
i
F iV=F iC1V

attached to each representation ofG; it is the unipotent radical ofF 0G, and Lie.F 1G/D
F 1g.

(c) The centralizer Z.�/ of any cocharacter � splitting F � is a connected algebraic
subgroup of F 0G such that the quotient map qWF 0G ! F 0G=F 1G induces an
isomorphism Z.�/! F 0G=F 1G; the composite q ı� of � with q is central.

(d) Two cocharacters � and �0 of G define the same filtration of G if and only if they
define the same group F 0G and q ı�D q ı�0; the cocharacters � and �0 are then
conjugate under F 1G.

As the algebraic subgroups F 0G and F 1G of G equal P.�/ and U.�/ for any cocharacter
� splitting the filtration, this is a restatement of earlier results.

23 The small root system
In this section, G is a reductive group over k.

The relative roots
23.1. Let S be a maximal split torus in G. Under the adjoint action of S , the Lie algebra g

of G decomposes into a direct sum

gD g0˚
M

˛2X.S/
g˛

with g0 the Lie algebra of CG.S/ and g˛ the subspace of g on which S acts through a
nontrivial character ˛. The characters ˛ of S such that g˛ ¤ 0 are called the relative roots23

of .G;S/. They form a finite subset k˚ D k˚.G;S/ of X.S/.
23The “relative” means relative to the field k. Since, for us, everything is relative to the field k, we should

omit the “relative”, but this would be too confusing. With this terminology, the absolute roots of G are the roots
of .G;T /ks , where T is a maximal torus T of G containing S . The relative roots are sometimes called restricted
roots because they are the restrictions to S of the absolute roots.
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Semisimple groups of k-rank 1
23.2. The role of split semisimple groups of rank 1 in the split case is taken by semisimple

groups of k-rank 1. Let G be such a group and let S be a maximal split torus. Choose an
isomorphism �WGm! S , and let P D P.�/. Then,

(a) there exists an n 2NG.S/.k/ acting as s 7! s�1 on S ;
(b) G.k/D P.k/[P.k/nP.k/:

As in the split case, S has at least two fixed points in .G=P /.k/. On the other hand, the
group .NG.S/=CG.S//.k/ acts faithfully on S and so it has order at most two. Therefore S
has exactly two fixed points P and nP , and n is the required element.

23.3. The classification of semisimple groups of k-rank 1 is complicated because it includes
the classification of all anisotropic semisimple groups (those of k-rank 0). For example, if q
is a quadratic form of Witt index 1, then SO.q/ has k-rank 1.

The relative (or small) root system
23.4. Let S be a maximal split torus in G. Let kV be the subspace of X.S/˝Q spanned

by the relative roots of .G;S/. The quotient NG.S/=CG.S/ acts faithfully on S , and we
identify it with its image in GL

kV . Then,
(a) the pair .kV;k˚/ is a root system;
(b) every connected component of NG.S/ meets G.k/;
(c) the quotient NG.S/=CG.S/ is a finite constant group scheme canonically isomorphic

to the Weyl group of the root system .kV;k˚/.
The proof is based on a study of semisimple groups of k-rank 1.

23.5. The pair .kV;k˚/ is the relative(or small) root systemof .G;S/. It is not, in general,
reduced. This means that there may be roots �2˛;�˛;˛;2˛. The Weyl group of .kV;k˚/
is called the relative Weyl group and is denoted kW or kW.G;S/. The action of NG.S/ on
kV factors through an isomorphism NG.S/=CG.S/! kW (finite constant group schemes).
In particular, it preserves k˚ . Every coset of CG.S/ in NG.S/ is represented by an element
of NG.S/.k/:The set of ˛ 2 k˚ such that 1

2
˛ … k˚ is a reduced root system k˚i in kV . A

base for k˚ is defined to be a base for k˚i , and a system of positive roots in k˚ is a set of
the form N� with � a base.

23.6. The centralizer CG.S/ of S in G is a reductive group over k. Its derived group
CG.S/

0 is an anisotropic semisimple group, called the anisotropic semisimple kernel. It is
one ingredient in the classification of nonsplit groups.

The root groups
23.7. Let S be a maximal split in G. Let T be a maximal torus containing S , and let ˚ be

the set of roots of .G;T /ks . Then k˚ is the set of nontrivial restrictions to S of elements
of ˚ . Let ˛ 2 k˚ . The subgroup of Gks generated by the root groups Uˇ in Gks such that
ˇjS D ˛ is defined over k. It is denoted kU˛ and called the root group of ˛. It is the unique
unipotent subgroup of G normalized by S with Lie algebra g˛ . It is a split unipotent group.

23.8. If G is split over k, then kU˛ is the usual root group; in particular it has dimension
1. In general, dim.kU˛/D dimg˛Cdimg2˛.
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Example: special orthogonal groups

23.9. Let G D SO.q/ with q as in 22.5. Write q0.x/D xtM0x. Then the Lie algebra of
G consists of the matrices

AD

0@A11 A12 A13
A21 A22 �M0A

t
12

A31 �A
t
21M

�1
0 �At11

1A
with A13 and A31 skew-symmetric and At22 D�M

�1
0 A22M0. The diagonal torus S acts on

Lie.G/ by conjugation. The root system k˚ of .G;S/ is of type Br unless nD 2r , in which
case it is of typeDr . The elements ofG that are upper triangular in this block decomposition
(so A21 D 0D A31) form a minimal parabolic subgroup of G.

Parabolic subgroups
23.10. Any two minimal parabolic subgroups of G are conjugate by an element of G.k/

(see 22.9). Let S be a maximal split torus in G. The minimal parabolic subgroups containing
S are indexed by the Weyl chambers of the root system .kV;k˚/, and they are permuted
simply transitively by the relative Weyl group.

23.11. Let P be a minimal parabolic subgroup of G, and let S be a maximal split torus in
P . Then P D Ru.P /ÌCG.S/, and P defines a base k� for k˚ . For a subset I � k�, let
PI denote the algebraic subgroup of G generated by CG.S/ and the root groups U˛ such
that, when ˛ is expressed as a linear combination of the elements of k�, the roots not in I
occur with nonnegative coefficients. Then

G D P
k� � PI � P; D P .

In particular, P is generated by CG.S/ and the root groups U˛ with ˛ positive. The PI
are the standard parabolic subgroups of G containing P . Every parabolic subgroup is
conjugate by an element of G.k/ to a unique PI . The reduced identity component SI ofT
˛2I Ker˛ is a split torus in G, and

PI DRu.PI /ÌCG.SI /:

Moreover, Ru.PI / is generated by the U˛ , where ˛ runs over the positive roots that are not
linear combinations of elements of I .

23.12. Let Q be a parabolic subgroup of G with unipotent radical U . A Levi subgroup
of Q is an algebraic subgroup L such that Q is the semidirect product QD U ÌL. Such a
subgroup is reductive. It follows from 23.11 that a Levi subgroup in Q always exists. Any
two Levi subgroups of Q are conjugate by an element of G.k/. If Q is minimal, then for
any maximal split subtorus of the centre of L, we have LD CG.S/.

23.13. If S is a split subtorus of G, then there is a parabolic subgroup Q of G with Levi
subgroup CG.S/. Two such Q are not necessarily conjugate by an element of G.k/ (as
they are when S is a maximal split torus). Two parabolic subgroups Q1 and Q2 are said to
be associated if they have Levi subgroups that are conjugate by an element of G.k/. This
defines an equivalence relation on the set of parabolic subgroups.
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23.14. Let P andQ be parabolic subgroups. Then .P \Q/Ru.P / is a parabolic subgroup
contained in P . It equals P if and only if some Levi subgroup of P contains a Levi subgroup
of Q. Parabolic subgroups P and Q are said to be opposite if P \Q is a Levi subgroup of
P and Q.

Bruhat decomposition of G.k/
23.15. Let P be a minimal parabolic subgroup of G with unipotent radical U , and let S

be a maximal split torus such that P D U ÌCG.S/. Then

G.k/D
G
w2kW

U.k/wP.k/ (Bruhat decomposition).

As in the split case, this can be made more precise. Let nw 2NG.S/.k/ represent w 2 kW .
There exist two subgroup varieties Uw and Uw of U such that

U ' Uw �U
w (product of varieties)

and the map
.u;p/ 7! unwpWU

w
�P ! UnwP

is an isomorphism of algebraic varieties. We then have

G=P D
G

w2kW
UwnwP=P

G D
G

w2kW
UwnwP

(decompositions of smooth algebraic varieties).
The reflections s˛ with ˛ 2 kW form a set of generators kS of kW , and

.G.k/;P.k/;NG.S/.k/;kS/

is a Tits system. This implies the above statements on the level of sets.

NOTES. The original reference for most of the results in this section is Borel and Tits 1965, 1972.
For proofs, see Borel 1992, V.21, and Springer 1998, Chapter 15.

24 The Satake–Tits classification
A theorem of Witt says that a regular quadratic space is determined up to isomorphism by
its index and its anistropic direct summand. In this section, we explain a similar result for
reductive groups. Throughout, G is a reductive group over k and � D Gal.ks=k/.

The index of G
24.1. Let S be a maximal split torus in G and T a maximal torus containing S . Then
.G;T /ks is split, and so Tks is contained in a Borel subgroup B of Gks . Let .X;˚;˚_;�/
be the based root datum of .Gks ;B;Tks/. This is “independent” of the choice of .B;T / (B
21.43),and so, even though the action of � on Gks need not preserve B , it does define an
action of � on .X;˚;˚_;�/. We make this explicit. As the action of � on Gks preserves
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Tks , there are natural actions of � on X DX�.T / and X_ DX�.T /. These preserve ˚ and
˚_. If � is an element of � , then �.�/ is also a base for ˚ , and so w� .�.�//D� for a
unique w� 2W . For ˛ 2�, define � �˛ D w� .�˛/. This does define an action of � on �,
and it is obviously continuous. It is called the �-action.

24.2. Let �0 be the set of ˛ 2� whose restriction to S is trivial. Then � stabilizes both
�0 and its complement in �. The elements of �X�0 are called distinguished.

(a) The group G is quasi-split if and only if �0 D ;, in which case the �-action is the
natural action of � on � as a subset of X .

(b) The group G is anisotropic if and only if �0 D�.

24.3. Let V D Z˚ ˝Q. Then .V;˚/ is a root system, and we let D denote the Dynkin
diagram of .V;˚;�/. Its nodes are indexed by the elements of �. We write � for the
�-action of � on the nodes of D. The triple .D;�0;�/ is called the index (or Tits index or
Satake diagram) of G, and is denoted by I.G/.

24.4. Up to isomorphism, the index depends only on G. When k is replaced by an
extension field k0, the Dynkin diagram D is unchanged, distinguished simple roots remain
distinguished, and the �-action for Gk0 is obtained from that for G by composing with the
map Gal.k0s=k0/! Gal.ks=k/ (here ks � k0s). Traditionally, the index is illustrated by
marking the distinguished nodes in the Dynkin diagram and circling the � -orbits in � X�0.
It is possible to recover the relative root system of .G;S/ from I.G/. See Tits 1966 and
Selbach 1976.

Classification up to isomorphism
24.5. Let G0 denote the derived group of CG.S/. It is a connected anisotropic semisimple

group over k, called the semisimple anisotropic kernel of G. Its Dynkin diagram is the
full subgraph D0 of D with nodes indexed by the elements of �0. A reductive group G
over k is determined up to isomorphism by its isomorphism class over ks, its index, and its
semisimple anisotropic kernel (as a subgroup of G).

More precisely, letG andG0 be two reductive groups over k, and let T and T 0 be maximal
tori in G and G0 containing maximal split tori S and S 0. If there exists an isomorphism of
algebraic groups 'WGks !G0

ks such that
(a) '.Tks/D T 0

ks ,
(b) ' restricts to an isomorphism G0!G00 defined over k, and
(c) ' induces an isomorphism of I.G/ onto I.G0/,

then there exists an isomorphism G!G0

Examples
24.6. Let G D SO.q/, S , and q0 be as in 22.5 and 23.9. Assume that n�2r is odd. Let T0

be a maximal torus in SO.q0/, and identify it with a torus in SO.q/ by identifying A with
diag.Ir ;A;Ir/. Then T def

D S �T0 is a maximal torus containing S . The set �X�0 consists
of the first r nodes of D.

24.7. Let D be a central division algebra over k of degree d2, and let GLrC1;D be the
algebraic group representing R GLrC1.D˝R/. It becomes isomorphic to GL.rC1/d



25 GALOIS COHOMOLOGY 132

over any field k0 splitting D (in particular, over ks). There is a natural embedding of
GLrC1 in GLrC1;D , and the image of any split maximal torus in GLrC1 is a maximal
split torus in GLrC1;D . Suitably numbered �X�0 is the subset f˛d ;˛2d ; : : :g of � D
f˛1; : : : ;˛.rC1/d�1g.

Classification up to strict isogeny
24.8. Two semisimple groups over k are strictly isogenous if and only if they become

strictly isogenous over ks, their anistropic semisimple kernels are isogenous, and their indices
are isomorphic. See Tits 1966, 2.6, 2.7.

24.9. Isogenous semisimple groups need not have isomorphic indices. Indeed, there exists
a quadratic form q in characteristic 2 such that SO.q/ is isogenous to SL2 but the two groups
have different k-ranks.

24.10. After 24.8, the problem of classifying the semisimple groups over a field k comes
down to the following two problems:

(a) determine the indices arising from semisimple groups over k;
(b) for a given index, find all possible semisimple anistropic kernels.

As before, we need only consider the simply connected almost-simple case. Much is known
about (a), and much is known about (b) for certain fields. However, for a general field, little
is known about (b), essentially because little is known about the division algebras over the
field.

NOTES. The theory sketched in this section originated with Satake’s article (1963), and with Tits’s
talk at the 1965 Boulder conference (Tits 1966). Tits’s report on his talk was expanded and completed
by Selbach in his 1973 Diplomarbeit (Selbach 1976). See also the 1967 lectures of Satake (Satake
1971). In addition to the original sources, the topic is treated in Springer 1998, Chapters 16 and 17.
For the classification of pseudo-reductive groups, see Conrad and Prasad 2016.

25 Galois cohomology

Let G be an algebraic group over k. In this section, we write H 1.k;G/ for the flat co-
homology group (6.30). When G is smooth, it is canonically isomorphic to the Galois
cohomology group H 1.�;G.ks//, � D Gal.ks=k/ (they both classify the isomorphism
classes of G-torsors over k).

Tori
25.1. Recall that a torus T is induced if it is a finite product of tori of the form .Gm/k0=k

with k0 finite and separable over k. If T D
Q
i .Gm/ki=k , then

H 1.k;T /'
Y

i
H 1.ki ;Gm/D 1.

If T is induced over k, then Tk0 is induced over k0 for all fields k0 � k, and soH 1.k0;Tk0/D

1. This property characterizes direct factors of induced tori.
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Finite fields; fields of dimension � 1
25.2. A field k is said to have dimension � 1 if every finite-dimensional division algebra

over k is commutative. An equivalent condition is that Br.k0/D 0 for all fields k0 algebraic
over k. Finite fields and fields of transcendence degree 1 over an algebraically closed field
have dimension � 1 (Tsen’s theorem).

25.3. Let G be a connected group variety over a field k of dimension � 1. If k is perfect or
G is reductive, then H 1.k;G/D 1. This generalizes Lang’s theorem. See Steinberg 1965,
1.9, and Borel 1968, 8.6, for the proof.

25.4. Let k be a perfect field of dimension � 1. Every connected group variety over k is
quasi-split. This follows from 25.3.

The field of real numbers
25.5 (CARTAN). Let G be a semisimple algebraic group over R. If G is simply connected,

then G.R/ is connected. See Borel and Tits 1972, 4.7.

25.6. Let G be a reductive algebraic group over R. Then G.R/ has only finitely many
components for the real topology. For a torus, this can be proved directly, and for a general
G it can be deduced from 25.5 using the exact sequence e!N ! T �Gsc!G! e with
N finite, T a torus, and Gsc simply connected.

25.7 (CARTAN). Every semisimple algebraic group over R has an anisotropic form, which
is unique up to isomorphism (Harder 1965, 3.3.2).

25.8 (CARTAN). Let G be an anisotropic semisimple algebraic group over R. Then any
two maximal tori in G are conjugate by an element of G.R/.

25.9. Let G be a reductive algebraic group over R, and let T0 be a maximal compact torus
in G. The centralizer of T0 in G is a torus T , and W0 DNG.T0/=T is a finite group acting
on H 1.R;T /. The map H 1.R;T /!H 1.R;G/ induces an isomorphism

H 1.R;T /=W0.R/!H 1.R;G/.

See Borovoi 2014, Theorem 9.

25.10 (BOREL AND SERRE). Let G be an anisotropic semisimple algebraic group over R.
Then

T .R/2=W 'H 1.R;G/;

where T .R/2 denotes the set of elements of order � 2 in T .R/ and W is the Weyl group.
This is a special case of 25.9.

Local fields
By a local field in this subsection, we mean a finite extension of Qp or Fp..T //.

25.11. Let G be a semisimple group over a local field k.
(a) If G is simply connected, then H 1.k;G/D 1.
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(b) If G is simply connected, almost-simple, and anisotropic, then it is isomorphic to
SL1.D/ for some finite-dimensional division algebra D.

These statements were proved in characteristic zero by Kneser and extended to more
general local fields by Bruhat and Tits (1987, 4.3).

25.12. Let G be a semisimple group over a local field k and let zG ! G be its simply
connected covering. Then the boundary map

ıWH 1.k;G/!H 2.k;Z. zG//

is bijective.
In characteristic zero, the statement is proved in Kneser 1969, Theorem 2, p. 60, and in

nonzero characteristic, it is proved in Thǎńg 2008.

Global fields
A global field is a finite extension of Q or Fp.T /. We let V denote the set of primes (possibly
infinite) of a global field k, and kv the completion of k at a v 2 V .

25.13. Let G be a semisimple group over a global field k and let zG! G be its simply
connected covering. Then the boundary map

H 1.k;G/
ı
�!H 2.k;Z. zG//

is surjective.
See Harder 1975 for the number field case and Thǎńg 2008 for the function field case.

25.14. Let G be an algebraic group over a global field k. The canonical map

H 1.k;G/!
Y

v
H 1.kv;G/ (36)

is injective in each of the following cases:
(a) G is semisimple and simply connected;
(b) G is semisimple with trivial centre and k is a number field;
(c) G D O.�/ for some nondegenerate quadratic space .V;�/ and k is a number field.

Statement (a) was proved in the number field case in Harder 1966 except for the case E8,
which was proved in Chernousov 1989, and the function field case was proved in Harder
1975. The remaining statements can be deduced from (a) by using 25.13 and a knowledge of
the cohomology of finite group schemes.

25.15. Note that (c) of the theorem implies that two quadratic spaces over a number field
k are isomorphic if and only if they become isomorphic over kv for all primes v (including
the infinite primes). This is a very important result in number theory.

25.16. A group G for which the map (36) is injective is said to satisfy the Hasse principle
for H 1.

25.17. Let G be a simply connected semisimple group over a global field k. Then

H 1.k;G/'
Y

v real
H 1.kv;G/:

See B 25.65 and the references there.
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25.18. Let G be a semisimple algebraic group over a global field k. For every nonar-
chimedean prime v0 of k, the canonical map

H 1.k;G/!
Y

v¤v0
H 1.kv;G/

is surjective.
In the number field case, this can be proved by the same argument as Theorem 1.7 of

Borel and Harder 1978. For the function field case, see Thǎńg 2012.

25.19. In the situation of 25.18, suppose given for each v ¤ v0 an inner form .G.v/;f .v//

of Gkv over kv; then there exists an inner form .G0;f 0/ of G over k such that .G0;f 0/�
.G.v/;f .v// for all v ¤ v0. This is a restatement of 25.18; see 6.33.

25.20. Let G be a geometrically almost-simple group over a number field, and let S be a
finite set of primes for k. If G is simply connected or has trivial centre, then the canonical
map

H 1.k;Aut.G//!
Y

v2S
H 1.kv;Aut.Gkv //

is surjective. See Borel and Harder 1978, Theorem B.

25.21. In the situation of 25.20, suppose given a kv-form G.v/ of Gkv for each v 2 S ; then
there exists a k-form of G0 of G such that G0

kv
�G.v/ for all v 2 S . This is a restatement of

25.20.

25.22 (REAL APPROXIMATION THEOREM). For every connected group variety G over
Q, the group G.Q/ is dense in G.R/ (B 25.70).

25.23. LetG be a reductive group over Q. If the derived groupG0 ofG is simply connected
and the torus G=G0 satisfies the Hasse principle for H 1, then G satisfies the Hasse principle
for H 1.

Theorems 25.21 and 25.22 can be extended to groups over number fields by using
Shapiro’s lemma.
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hermitian form, 120
highest weight, 102
Hochschild–Mostow group, 36
homogeneous space, 45
homomorphism of algebraic groups, 8
homomorphism of Lie algebras, 37
homomorphism of split reductive groups, 72
Hopf algebra, 8
Hurwitz algebra, 121

identity component, 9
IG , 38
image of a homomorphism, 18
indecomposable, 83
index, 131
induced torus, 42
infinitesimal algebraic group, 13
inner automorphism, 31
inner form, 32
inner semisimple group, 113
inversion, 8
irreducible representation, 23
isogeny of based root data, 100
isogeny of connected group varieties, 17
isogeny of pinned groups, 100
isogeny of root data, 98
isogeny of split reductive groups, 99
isomorphic forms, 31
isomorphism of based root data, 100
isomorphism of inner forms, 32
isomorphism of root data, 98
isotropic semisimple group, 125
isotropy group, 44

Jacobi identity, 37
Jordan decomposition, 34
Jordan–Chevalley decomposition, 34

kernel of a homomorphism, 17

largest subtorus, 41
left translation, 9
Levi subgroup, 78, 129
Lie algebra, 36
Lie subalgebra, 37
linear action, 50
linear algebraic group, 1
linear group, 1
linear representation, 22
linear vector group, 13
linearly reductive algebraic group, 24
locally affine, 50

Mm;n, 11
module., 22
morphism lives in, 35
multiplicative group, 10
multiplicative isogeny, 67
multiplicative Jordan decomposition, 34
multiplicative type, 41

neutral component, 9
nilpotent algebraic group, 61
nilpotent Lie algebra, 54
nilpotent series, 61
nondegenerate quadratic form, 117
normal algebraic subgroup, 14
normal homomorphism, 19
normal series, 20
normalizer, 15
normalizes a subgroup, 15

octonion algebra, 121
o.G/, 13
On, 12
opposite, 98, 129
opposition involution, 103
orbit, 44
orbit map, 43
order of a finite group scheme, 13
orthogonal group, 12
outer semisimple group, 113

parabolic subgroup, 63
perfect algebraic group, 68
PGLn, 11
pinned reductive group, 100
pinning, 100
potentially trigonalizable group, 59
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primary space of an endomorphism, 33
primitive element, 55
projective linear group, 11
pseudo-reductive algebraic group, 62
pseudo-semisimple, 78

quadratic form, 117
quadratic space, 117
quasi-central homomorphism, 68
quasi-split algebraic group, 63
quotient (of an algebraic group), 16
quotient by a normal subgroup, 18
quotient by a subgroup, 45
quotient map, 16

radical of an algebraic group, 62
rank of a group variety, 72
rank of a root datum, 93
rank of a root system, 82
rational variety, 42
real algebraic envelope, 36
reduced root datum, 92
reduced root system, 82
reductive algebraic group, 62
reflection, 82
reflection with vector, 82
regular point, 5
regular quadratic space, 117
regular representation, 23
regular scheme, 5
relative roots, 127
relative Weyl group, 128
representation, 110
representation of an affine group, 35
restriction of scalars, 30
root, 82
root datum, 92
root group, 93, 128
root lattice, 84
root system, 82, 85
roots, 92
roots of a split reductive group, 85

Satake diagram, 131
schematically dense, 6
semidirect product, 16
semisimple, 34
semisimple algebraic group, 62
semisimple element, 35
semisimple part, 34
semisimple rank, 72
semisimple rank of a root datum, 93
semisimple representation, 23
semisimple root datum, 93
sesquilinear form, 120

Set, 4
short exact sequence, 75
simple , 73
simple orthogonal type, 119
simple representation, 23
simple roots, 83
simple symplectic type, 116
simply connected algebraic group, 68
simply connected covering, 68
skew hermitian form, 120
SL1.A/, 115
SLn, 11
smooth, 5
smooth point, 5
smooth point 1, 5
socle, 105
solvable algebraic group, 60
solvable series, 60
SOn, 12
Sp.V;�/, 12
Sp2n, 12
special linear group, 11
special octonion algebra, 122
special orthogonal group, 12
spinor norm, 118
split a filtration, 126
split algebraic group, 66
split reductive group, 72
split semisimple group, 82
split solvable group, 60
split torus, 13
split unipotent group, 57
splittable reductive group, 72
stabilizer of a subspace, 23
stable under a group action, 42
standard Albert algebra, 123
standard parabolic subgroup, 129
strictly isogenous, 102
subcomodule, 22
subgroup generated by a map, 28
subnormal series, 20
Sym.V /, 11
symmetric algebra, 11
symmetry with respect to a Borel subgroup, 96
symplectic group, 12
system of positive roots, 83, 128

tangent space, 5
Tgtx.X/, 5
theorem

Cartier’s, 10
Chevalley’s, 23, 64
Correspondence, 19
Homomorphism, 18
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Isomorphism, 18
Lie-Kolchin, 60
Noether isomorphism, 18
Recognition, 35
Reconstruction, 33
Schreier refinement, 20

Tits algebra, 110
Tits class, 110
Tits index, 131
Tn, 12
torsor, 30
torus, 13
trigonalizable, 58
trigonalizable algebraic group, 58
trigonalizable endomorphism, 34
trivial representation, 22
trivial torsor, 30

Un, 12
unipotent algebraic group, 52
unipotent element, 35, 51
unipotent part, 34
unipotent part of an algebraic group, 59
unipotent radical, 62
unipotent representation, 52
unirational variety, 42
universal covering, 68

Va, 11
vector group, 13
Verschiebung morphism, 28

w0, 96
weight lattice, 84
weights of the root system, 84
Weil restriction of scalars, 30
Weyl chambers, 82
Weyl group, 82, 92
Witt index, 118

X.G/, 24
X�.G/, 24
X�.G/, 24
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