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Notations.

We use the standard (Bourbaki) notations:

ND f0;1;2; : : :g;
ZD ring of integers,

RD field of real numbers,

CD field of complex numbers,

Fp D Z=pZD field with p elements, p a prime number.

Given an equivalence relation, Œ�� denotes the equivalence class con-
taining �. The cardinality of a set S is denoted by jS j (so jS j is the
number of elements in S when S is finite). Let I and A be sets. A
family of elements of A indexed by I , denoted .ai /i2I , is a func-
tion i 7! ai WI ! A. Throughout the notes, p is a prime number:
pD 2;3;5;7;11; : : :.

X � Y X is a subset of Y (not necessarily proper).

X
def
D Y X is defined to be Y , or equals Y by definition.

X � Y X is isomorphic to Y .
X ' Y X and Y are canonically isomorphic.

PREREQUISITES

Group theory (for example, GT), basic linear algebra, and some elemen-
tary theory of rings.

References.

Dummit, D., and Foote, R.M., 1991, Abstract Algebra, Prentice Hall.
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Jacobson, N., 1964, Lectures in Abstract Algebra, Volume III — Theory
of Fields and Galois Theory, van Nostrand.
Also, the following of my notes (available at www.jmilne.org/math/).

GT Group Theory, v3.12, 2012.
ANT Algebraic Number Theory, v3.03, 2011.
CA A Primer of Commutative Algebra, v2.23, 2012.
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PARI is an open source computer algebra system freely available from
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Chapter 1

Basic Definitions and Results

Rings

A ring is a setR with two composition lawsC and � such that

(a) .R;C/ is a commutative group;
(b) � is associative, and there exists1 an element 1R such that a �

1R D aD 1R �a for all a 2RI
(c) the distributive law holds: for all a;b;c 2R,

.aCb/ �c D a �cCb �c

a � .bCc/D a �bCa �c.

1We follow Bourbaki in requiring that rings have a 1, which entails that we
require homomorphisms to preserve it.
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12 1. BASIC DEFINITIONS AND RESULTS

We usually omit “�” and write 1 for 1R when this causes no confusion.
If 1R D 0, thenRD f0g.

A subring S of a ringR is a subset that contains 1R and is closed
under addition, passage to the negative, and multiplication. It inherits
the structure of a ring from that onR.

A homomorphism of rings ˛WR!R0 is a map with the properties

˛.aCb/D ˛.a/C˛.b/ all a;b 2R;

˛.ab/D ˛.a/˛.b/ all a;b 2R;

˛.1R/D 1R0 :

A ringR is said to be commutative if multiplication is commutative:

abD ba for all a;b 2R:

A commutative ring is said to be an integral domain if 1R ¤ 0 and the
cancellation law holds for multiplication:

abD ac, a¤ 0, implies bD c:

An ideal I in a commutative ring R is a subgroup of .R;C/ that is
closed under multiplication by elements ofR:

r 2R, a 2 I , implies ra 2 I:

The ideal generated by elements a1; : : : ;an is denoted .a1; : : : ;an/.
For example, .a/ is the principal ideal aR.

We assume that the reader has some familiarity with the elementary
theory of rings. For example, in Z (more generally, any Euclidean
domain) an ideal I is generated by any “smallest” nonzero element of
I .
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Fields

DEFINITION 1.1 A field is a set F with two composition lawsC and
� such that

(a) .F;C/ is a commutative group;
(b) .F �; �/, where F � DF Xf0g, is a commutative group;
(c) the distributive law holds.

Thus, a field is a nonzero commutative ring such that every nonzero
element has an inverse. In particular, it is an integral domain. A field
contains at least two distinct elements, 0 and 1. The smallest, and one
of the most important, fields is F2 D Z=2ZD f0;1g.

A subfield S of a field F is a subring that is closed under passage
to the inverse. It inherits the structure of a field from that on F .

LEMMA 1.2 A nonzero commutative ring R is a field if and only if it
has no ideals other than .0/ andR.

PROOF. Suppose R is a field, and let I be a nonzero ideal in
R. If a is a nonzero element of I , then 1D a�1a 2 I , and so
I D R. Conversely, suppose R is a commutative ring with no
nontrivial ideals. If a¤ 0, then .a/DR, and so there exists a b
in R such that ab D 1. 2

EXAMPLE 1.3 The following are fields: Q, R, C, Fp D Z=pZ (p
prime):

A homomorphism of fields ˛WF !F 0 is simply a homomorphism
of rings. Such a homomorphism is always injective, because its kernel
is a proper ideal (it doesn’t contain 1), which must therefore be zero.
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The characteristic of a field

One checks easily that the map

Z!F; n 7! 1F C1F C�� �C1F .n copies/;

is a homomorphism of rings, and so its kernel is an ideal in Z.
CASE 1: The kernel of the map is .0/, so that

n �1F D 0 H) nD 0 (in Z).

Nonzero integers map to invertible elements of F under n 7! n �
1F WZ!F , and so this map extends to a homomorphism

m

n
7! .m �1F /.n �1F /

�1WQ ,!F:

Thus, in this case, F contains a copy of Q, and we say that it has
characteristic zero.

CASE 2: The kernel of the map is ¤ .0/, so that n �1F D 0 for
some n¤ 0. The smallest positive such n will be a prime p (otherwise
there will be two nonzero elements in F whose product is zero), and
p generates the kernel. Thus, the map n 7! n �1F WZ!F defines an
isomorphism from Z=pZ onto the subring

fm �1F jm 2 Zg

of F . In this case, F contains a copy of Fp , and we say that it has
characteristic p.

The fields F2;F3;F5; : : : ;Q are called the prime fields. Every field
contains a copy of exactly one of them.

REMARK 1.4 The binomial theorem

.aCb/m D amC
�
m
1

�
am�1bC

�
m
2

�
am�2b2C�� �Cbm



Review of polynomial rings 15

holds in any commutative ring. If p is prime, then p divides
�
pn

r

�
for

all r with 1� r � pn�1. Therefore, when F has characteristic p,

.aCb/p
n
D ap

n
Cbp

n
all n� 1;

and so the map a 7! apWF ! F is a homomorphism. It is called
the Frobenius endomorphism of F . When F is finite, the Frobenius
endomorphism is an automorphism.

Review of polynomial rings

For more on the following, see Dummit and Foote 1991, Chapter 9. Let
F be a field.

1.5 The ring F ŒX� of polynomials in the symbol (or “indeterminate”
or “variable”)X with coefficients in F is an F -vector space with basis
1,X , . . . ,Xn, . . . , and with the multiplication defined by�X

i
aiX

i
��X

j
bjX

j
�
D
X

k

�X
iCjDk

aibj

�
Xk :

For any ring R containing F as a subring and element r of R, there
is a unique homomorphism ˛WF ŒX�!R such that ˛.X/D r and
˛.a/D a for all a 2F .

1.6 Division algorithm: given f .X/ and g.X/2F ŒX�with g¤ 0,
there exist q.X/, r.X/2F ŒX� with r D 0 or deg.r/ < deg.g/ such
that

f D gqCrI

moreover, q.X/ and r.X/ are uniquely determined. Thus F ŒX� is a
Euclidean domain with deg as norm, and so is a unique factorization
domain.
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1.7 From the division algorithm, it follows that an element a of F is
a root of f (that is, f .a/D 0) if and only ifX�a divides f . From
unique factorization, it now follows that f has at most deg.f / roots
(see also Exercise 1-3).

1.8 Euclid’s algorithm: Let f and g 2 F ŒX� have gcd d.X/. Eu-
clid’s algorithm constructs polynomials a.X/ and b.X/ such that

a.X/ �f .X/Cb.X/ �g.X/D d.X/;

deg.a/ < deg.g/; deg.b/ < deg.f /:

Recall how it goes. We may assume that deg.f /� deg.g/ since the
argument is the same in the opposite case. Using the division algorithm,
we construct a sequence of quotients and remainders

f D q0gCr0

g D q1r0Cr1

r0 D q2r1Cr2

� � �

rn�2 D qnrn�1Crn

rn�1 D qnC1rn

with rn the last nonzero remainder. Then, rn divides rn�1, hence
rn�2,. . . , hence g , and hence f . Moreover,

rn D rn�2�qnrn�1

D rn�2�qn.rn�3�qn�1rn�2/

� � �

D af Cbg

and so every common divisor of f and g divides rn: we have shown
rn D gcd.f;g/.
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Let af Cbg D d . If deg.a/ � deg.g/, write aD gqC r with
deg.r/ < deg.g/; then

rf C .bCqf /g D d;

and bCqf automatically has degree < deg.f /.
PARI knows Euclidean division: typing divrem(13,5) in PARI

returns Œ2;3�, meaning that 13D 2�5C3, and gcd(m,n) returns
the greatest common divisor ofm and n.

1.9 Let I be a nonzero ideal in F ŒX�, and let f be a nonzero polyno-
mial of least degree in I ; then I D .f / (because F ŒX� is a Euclidean
domain). When we choose f to be monic, i.e., to have leading coeffi-
cient one, it is uniquely determined by I . Thus, there is a one-to-one
correspondence between the nonzero ideals of F ŒX� and the monic
polynomials in F ŒX�. The prime ideals correspond to the irreducible
monic polynomials.

1.10 Since F ŒX� is an integral domain, we can form its field of
fractions F.X/. Its elements are quotients f=g , f and g polynomials,
g ¤ 0:

Factoring polynomials

The following results help in deciding whether a polynomial is reducible,
and in finding its factors.

PROPOSITION 1.11 Suppose r 2Q is a root of a polynomial

amX
mCam�1X

m�1C�� �Ca0; ai 2 Z;

and let r D c=d , c;d 2 Z, gcd.c;d/D 1. Then cja0 and d jam:
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PROOF. It is clear from the equation

amc
m
Cam�1c

m�1d C�� �Ca0d
m
D 0

that d jamcm, and therefore, d jam: Similarly, cja0. 2

EXAMPLE 1.12 The polynomial f .X/DX3�3X�1 is irreducible
in QŒX� because its only possible roots are ˙1, and f .1/ ¤ 0 ¤
f .�1/.

PROPOSITION 1.13 (GAUSS’S LEMMA) Letf .X/2ZŒX�. Iff .X/
factors nontrivially in QŒX�, then it factors nontrivially in ZŒX�.
PROOF. Let f D gh in QŒX�. For suitable integers m and n,
g1

def
Dmg and h1

def
D nh have coefficients in Z, and so we have a

factorization
mnf D g1 �h1 in ZŒX�.

If a prime p divides mn, then, looking modulo p, we obtain an
equation

0D g1 �h1 in Fp ŒX�.

Since Fp ŒX� is an integral domain, this implies that p divides
all the coefficients of at least one of the polynomials g1;h1, say
g1, so that g1 D pg2 for some g2 2 ZŒX�. Thus, we have a
factorization

.mn=p/f D g2 �h1 in ZŒX�.

Continuing in this fashion, we can remove all the prime factors
of mn, and so obtain a factorization of f in ZŒX�. 2
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PROPOSITION 1.14 If f 2 ZŒX� is monic, then every monic factor of
f in QŒX� lies in ZŒX�.
PROOF. Let g be a monic factor of f in QŒX�, so that f D gh
with h 2 QŒX� also monic. Let m;n be the positive integers
with the fewest prime factors such that mg;nh 2 ZŒX�. As in
the proof of Gauss’s Lemma, if a prime p divides mn, then it
divides all the coefficients of at least one of the polynomials
mg;nh, say mg, in which case it divides m because g is monic.
Now m

p g 2 ZŒX�, which contradicts the definition of m. 2

REMARK 1.15 We sketch an alternative proof of Proposition 1.14. A
complex number ˛ is said to be an algebraic integer if it is a root
of a monic polynomial in ZŒX�. Proposition 1.11 shows that every
algebraic integer in Q lies in Z. The algebraic integers form a subring of
C — for an elementary proof of this, using nothing but the symmetric
polynomials theorem (5.33), see Theorem 1.16 of my notes on algebraic
geometry. Now let ˛1; : : : ;˛m be the roots of f in C. By definition,
they are algebraic integers, and the coefficients of any monic factor of
f are polynomials in (certain of) the ˛i , and therefore are algebraic
integers. If they lie in Q, then they lie in Z.

PROPOSITION 1.16 (EISENSTEIN’S CRITERION) Let

f D amX
mCam�1X

m�1C�� �Ca0; ai 2 ZI

suppose that there is a prime p such that:

˘ p does not divide am,
˘ p divides am�1; :::;a0,
˘ p2 does not divide a0.
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Then f is irreducible in QŒX�.
PROOF. If f .X/ factors in QŒX�, it factors in ZŒX�:

amX
m
Cam�1X

m�1
C�� �Ca0

D .brX
r
C�� �Cb0/.csX

s
C�� �C c0/

bi ; ci 2 Z, r;s < m. Since p, but not p2, divides a0 D b0c0,
p must divide exactly one of b0, c0, say, b0. Now from the
equation

a1 D b0c1Cb1c0;

we see that pjb1; and from the equation

a2 D b0c2Cb1c1Cb2c0;

that pjb2. By continuing in this way, we find that p divides
b0;b1; : : : ;br , which contradicts the condition that p does not
divide am. 2

The last three propositions hold with Z replaced by any unique
factorization domain.

REMARK 1.17 There is an algorithm for factoring a polynomial in
QŒX�. To see this, consider f 2QŒX�. Multiply f .X/ by a rational
number so that it is monic, and then replace it byDdeg.f /f .X

D
/, with

D equal to a common denominator for the coefficients of f , to obtain
a monic polynomial with integer coefficients. Thus we need consider
only polynomials

f .X/DXmCa1X
m�1C�� �Cam; ai 2 Z:
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From the fundamental theorem of algebra (see 5.6 below), we know
that f splits completely in CŒX�:

f .X/D

mY
iD1

.X �˛i /; ˛i 2 C:

From the equation

0D f .˛i /D ˛
m
i
Ca1˛

m�1
i
C�� �Cam,

it follows that j˛i j is less than some bound depending only on the
degree and coefficients of f ; in fact,

j˛i j �maxf1;mBg, B Dmax jai j.

Now if g.X/ is a monic factor of f .X/, then its roots in C are certain
of the ˛i , and its coefficients are symmetric polynomials in its roots.
Therefore, the absolute values of the coefficients of g.X/ are bounded
in terms of the degree and coefficients of f . Since they are also integers
(by 1.14), we see that there are only finitely many possibilities for g.X/.
Thus, to find the factors of f .X/ we (better PARI) have to do only a
finite amount of checking.2

Therefore, we need not concern ourselves with the problem of
factoring polynomials in the rings QŒX� or FpŒX� since PARI knows
how to do it. For example, typing content(6*X^2+18*X-24) in PARI
returns 6, and factor(6*X^2+18*X-24) returns X �1 and XC4,
showing that

6X2C18X �24D 6.X �1/.XC4/

2Of course, there are faster methods than this. The Berlekamp–Zassenhaus
algorithm factors the polynomial over certain suitable finite fields Fp , lifts the
factorizations to rings Z=pmZ for somem, and then searches for factorizations
in ZŒX� with the correct form modulo pm.
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in QŒX�. Typing factormod(X^2+3*X+3,7) returnsXC4 andXC
6, showing that

X2C3XC3D .XC4/.XC6/

in F7ŒX�.

REMARK 1.18 One other observation is useful. Let f 2 ZŒX�. If the
leading coefficient of f is not divisible by a prime p, then a nontrivial
factorization f D gh in ZŒX� will give a nontrivial factorization xf D
xgxh in FpŒX�. Thus, if f .X/ is irreducible in FpŒX� for some prime
p not dividing its leading coefficient, then it is irreducible in ZŒX�.
This test is very useful, but it is not always effective: for example,
X4�10X2C1 is irreducible in ZŒX� but it is reducible3 modulo
every prime p.

3Here is a proof using only that the product of two nonsquares in F�p is a
square, which follows from the fact that F�p is cyclic (see Exercise 1-3). If 2 is a
square in Fp , then

X4�10X2C1D .X2�2
p
2X �1/.X2C2

p
2X �1/:

If 3 is a square in Fp , then

X4�10X2C1D .X2�2
p
3XC1/.X2C2

p
3XC1/:

If neither 2 nor 3 are squares, 6 will be a square in Fp , and

X4�10X2C1D .X2� .5C2
p
6//.X2� .5�2

p
6//:

The general study of such polynomials requires nonelementary methods. See,
for example, the paper
Brandl, R., Amer. Math. Monthly, 93 (1986), pp286–288, which proves that every
nonprime integer n � 1 occurs as the degree of a polynomial in ZŒX� that is
irreducible over Z but reducible modulo all primes:
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Extension fields

A field E containing a field F is called an extension field of F (or
simply an extension of F ). Such anE can be regarded as an F -vector
space, and we write ŒE WF � for the dimension, possibly infinite, ofE
as an F -vector space. This dimension is called the degree of E over
F . We say thatE is finite over F when it has finite degree over F:

EXAMPLE 1.19 (a) The field of complex numbers C has degree 2 over
R (basis f1;ig/:

(b) The field of real numbers R has infinite degree over Q: the
field Q is countable, and so every finite-dimensional Q-vector space is
also countable, but a famous argument of Cantor shows that R is not
countable.

(c) The field of Gaussian numbers

Q.i/ def
D faCbi 2 C j a;b 2Qg

has degree 2 over Q (basis f1;ig).
(d) The field F.X/ has infinite degree over F ; in fact, even its

subspace F ŒX� has infinite dimension over F (basis 1;X;X2; : : :).

PROPOSITION 1.20 (MULTIPLICATIVITY OF DEGREES) LetL�E �
F (all fields and subfields). Then L=F is of finite degree if and only if
L=E andE=F are both of finite degree, in which case

ŒLWF �D ŒLWE�ŒE WF �:

PROOF. If L is of finite degree over F , then it is certainly of
finite degree over E. Moreover, E, being a subspace of a finite
dimensional F -vector space, is also finite dimensional.

Thus, assume that L=E and E=F are of finite degree, and
let .ei /1�i�m be a basis for E as an F -vector space and let
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.lj /1�j�n be a basis for L as an E-vector space. To complete
the proof, it suffices to show that .ei lj /1�i�m;1�j�n is a basis
for L over F , because then L will be finite over F of the
predicted degree.

First, .ei lj /i;j spans L. Let 
 2 L. Then, because .lj /j
spans L as an E-vector space,


 D
P
j ˛j lj ; some ˛j 2E;

and because .ei /i spans E as an F -vector space,

˛j D
P
iaij ei ; some aij 2 F :

On putting these together, we find that


 D
P
i;j aij ei lj :

Second, .ei lj /i;j is linearly independent. A linear relationP
aij ei lj D 0, aij 2F , can be rewritten

P
j .
P
i aij ei /lj D 0.

The linear independence of the lj ’s now shows that
P
i aij ei D

0 for each j , and the linear independence of the ei ’s shows that
each aij D 0. 2

Construction of some extension fields

Let f .X/2F ŒX� be a monic polynomial of degreem, and let .f / be
the ideal generated by f . Consider the quotient ring F ŒX�=.f .X//,
and write x for the image ofX in F ŒX�=.f .X//, i.e., x is the coset
XC .f .X//. Then:
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(a) The map

P.X/ 7!P.x/WF ŒX�!F Œx�

is a surjective homomorphism in which f .X/ maps to 0. Therefore,
f .x/D 0.

(b) From the division algorithm, we know that each element g of
F ŒX�=.f / is represented by a unique polynomial r of degree <m.
Hence each element of F Œx� can be expressed uniquely as a sum

a0Ca1xC�� �Cam�1x
m�1; ai 2F: (*)

(c) To add two elements, expressed in the form (*), simply add the
corresponding coefficients.

(d) To multiply two elements expressed in the form (*), multiply in
the usual way, and use the relation f .x/D 0 to express the monomials
of degree �m in x in terms of lower degree monomials.

(e) Now assume f .X/ is irreducible. To find the inverse of an
element ˛ 2F Œx�, use (b) to write ˛D g.x/ with g.X/ is a polyno-
mial of degree �m�1, and use Euclid’s algorithm in F ŒX� to obtain
polynomials a.X/ and b.X/ such that

a.X/f .X/Cb.X/g.X/D d.X/

with d.X/ the gcd of f and g . In our case, d.X/ is 1 because f .X/
is irreducible and degg.X/ < degf .X/. When we replaceX with x,
the equality becomes

b.x/g.x/D 1:

Hence b.x/ is the inverse of g.x/.
From these observations, we can conclude:

1.21 For a monic irreducible polynomial f .X/ of degreem inF ŒX�,

F Œx�DF ŒX�=.f .X//

is a field of degreem over F . Moreover, computations in F Œx� reduce
to computations in F .
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EXAMPLE 1.22 Let f .X/DX2C1 2 RŒX�. Then RŒx� has:
elements: aCbx, a;b 2 RI
addition: .aCbx/C .a0Cb0x/D .aCa0/C .bCb0/xI
multiplication: .aCbx/.a0Cb0x/D .aa0�bb0/C.ab0Ca0b/x:

We usually write i for x and C for RŒx�:

EXAMPLE 1.23 Let f .X/DX3�3X�12QŒX�. We observed in
(1.12) that this is irreducible over Q, and so QŒx� is a field. It has basis
f1;x;x2g as a Q-vector space. Let

ˇ D x4C2x3C3 2QŒx�:

Then using that x3�3x�1D 0, we find that ˇ D 3x2C7xC5.
BecauseX3�3X �1 is irreducible,

gcd.X3�3X �1;3X2C7XC5/D 1:

In fact, Euclid’s algorithm gives

.X3�3X �1/
�
�7
37
XC 29

111

�
C .3X2C7XC5/

�
7

111
X2�

26

111
XC

28

111

�
D 1:

Hence

.3x2C7xC5/
�
7
111

x2� 26
111

xC 28
111

�
D 1;

and we have found the inverse of ˇ:
We can also do this in PARI: beta=Mod(X^4+2*X^3+3,X^3-3*X-1)

reveals that ˇ D 3x2C7xC5 in QŒx�, and beta^(-1) reveals that
ˇ�1 D 7

111
x2� 26

111
xC 28

111
.
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Stem fields

Let f be a monic irreducible polynomial in F ŒX�. We say that F Œ˛�
is a stem field4 for f if f .˛/D 0. Then

˛$ xWF Œ˛�'F Œx�
def
DF ŒX�=.f /:

Therefore, stem fields always exist, and each element of a stem field
F Œ˛� for f has a unique expression

a0Ca1˛C�� �Cam�1˛
m�1; ai 2F; mD deg.f /,

i.e., 1;˛; : : : ;˛m�1 is a basis for F Œ˛� over F . Arithmetic in F Œ˛�
can be performed using the same rules as in F Œx�. If F Œ˛0� is a second
stem field for f , then there is a uniqueF -isomorphismF Œ˛�!F Œ˛0�
sending ˛ to ˛0.

The subring generated by a subset

An intersection of subrings of a ring is again a ring. Let F be a subfield
of a field E , and let S be a subset of E . The intersection of all the
subrings of E containing F and S is evidently the smallest subring
of E containing F and S . We call it the subring of E generated by
F and S (or generated over F by S), and we denote it F ŒS�. When
S D f˛1; :::;˛ng, we write F Œ˛1; :::;˛n� for F ŒS�. For example,
CD RŒ

p
�1�.

4Following A. Albert, Modern Higher Algebra, 1937, who calls the splitting
field of a polynomial its root field. More formally, a stem field for f is a pair
.E;˛/ consisting of a fieldE containing F and a generator ˛ such that f .˛/D
0.
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LEMMA 1.24 The ring F ŒS� consists of the elements of E that can
be expressed as finite sums of the formX

ai1���in˛
i1
1 � � �˛

in
n ; ai1���in 2F; ˛i 2 S: (*)

PROOF. Let R be the set of all such elements. Evidently, R is a
subring containing F and S and contained in every other such
subring. Therefore R equals F ŒS�. 2

EXAMPLE 1.25 The ring QŒ��, � D 3:14159:::, consists of the com-
plex numbers that can be expressed as a finite sum

a0Ca1�Ca2�
2C�� �Can�

n; ai 2Q:

The ring QŒi� consists of the complex numbers of the form aCbi ,
a;b 2Q.

Note that the expression of an element in the form (*) will not be
unique in general. This is so already in RŒi�.

LEMMA 1.26 Let R be an integral domain containing a subfield F
(as a subring). IfR is finite dimensional when regarded as an F -vector
space, then it is a field.

PROOF. Let ˛ be a nonzero element of R — we have to show
that ˛ has an inverse in R. The map x 7! ˛xWR! R is an
injective linear map of finite dimensional F -vector spaces, and
is therefore surjective. In particular, there is an element ˇ 2R
such that ˛ˇ D 1. 2

Note that the lemma applies to subrings (containing F ) of an exten-
sion fieldE of F of finite degree.
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The subfield generated by a subset

An intersection of subfields of a field is again a field. LetF be a subfield
of a field E , and let S be a subset of E . The intersection of all the
subfields of E containing F and S is evidently the smallest subfield
of E containing F and S . We call it the subfield of E generated
by F and S (or generated over F by S), and we denote it F.S/. It
is the field of fractions of F ŒS� in E , since this is a subfield of E
containingF and S and contained in every other such field. When S D
f˛1; :::;˛ng, we writeF.˛1; :::;˛n/ forF.S/. Thus,F Œ˛1; : : : ;˛n�
consists of all elements ofE that can be expressed as polynomials in the
˛i with coefficients in F , and F.˛1; : : : ;˛n/ consists of all elements
ofE that can be expressed as the quotient of two such polynomials.

Lemma 1.26 shows that F ŒS� is already a field if it is finite dimen-
sional over F , in which case F.S/DF ŒS�.

EXAMPLE 1.27 The field Q.�/,�D3:14: : : consists of the complex
numbers that can be expressed as a quotient

g.�/=h.�/; g.X/;h.X/ 2QŒX�; h.X/¤ 0:

The ring QŒi� is already a field.

An extension E of F is said to be simple if E D F.˛/ some
˛ 2E . For example, Q.�/ and QŒi� are simple extensions of Q:

Let F and F 0 be subfields of a field E . The intersection of the
subfields ofE containing F and F 0 is evidently the smallest subfield
ofE containing both F and F 0. We call it the composite of F and F 0

inE , and we denote it F �F 0. It can also be described as the subfield
ofE generated over F by F 0, or the subfield generated over F 0 by F :

F.F 0/DF �F 0 DF 0.F /.
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Algebraic and transcendental elements

For a field F and an element ˛ of an extension field E , we have a
homomorphism

f .X/ 7! f .˛/WF ŒX�!E:

There are two possibilities.
CASE 1: The kernel of the map is .0/, so that, for f 2F ŒX�,

f .˛/D 0 H) f D 0 (in F ŒX�).

In this case, we say that ˛ transcendental over F . The homomorphism
F ŒX�!F Œ˛� is an isomorphism, and it extends to an isomorphism
F.X/!F.˛/.

CASE 2: The kernel is¤ .0/, so that g.˛/D 0 for some nonzero
g 2 F ŒX�. In this case, we say that ˛ is algebraic over F . The poly-
nomials g such that g.˛/D 0 form a nonzero ideal in F ŒX�, which is
generated by the monic polynomial f of least degree such f .˛/D 0.
We call f the minimum polynomial of ˛ over F . It is irreducible,
because otherwise there would be two nonzero elements of E whose
product is zero. The minimum polynomial is characterized as an element
of F ŒX� by each of the following sets of conditions:
f is monic; f .˛/D 0 and divides every other polynomial g in

F ŒX� with g.˛/D 0.
f is the monic polynomial of least degree such that f .˛/D 0I
f is monic, irreducible, and f .˛/D 0.

Note that g.X/ 7! g.˛/ defines an isomorphism F ŒX�=.f /!
F Œ˛�. Since the first is a field, so also is the second:

F.˛/DF Œ˛�:

Thus, F Œ˛� is a stem field for f .
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EXAMPLE 1.28 Let ˛ 2C be such that ˛3�3˛�1D 0. ThenX3�
3X � 1 is monic, irreducible, and has ˛ as a root, and so it is the
minimum polynomial of ˛ over Q. The set f1;˛;˛2g is a basis for
QŒ˛� over Q. The calculations in Example 1.23 show that if ˇ is the
element ˛4C2˛3C3 of QŒ˛�, then ˇ D 3˛2C7˛C5, and

ˇ�1 D 7
111

˛2� 26
111

˛C 28
111

:

REMARK 1.29 PARI knows how to compute in QŒ˛�. For example,
factor(X^4+4) returns the factorization

X4C4D .X2�2XC2/.X2C2XC2/

in QŒX�. Now type nf=nfinit(a^2+2*a+2) to define a number
field “nf” generated over Q by a root a of X2C 2X C 1. Then
nffactor(nf,x^4+4) returns the factorization

X4C4D .X �a�2/.X �a/.XCa//.XCaC2/;

in QŒa�.

A field extension E=F is said to be algebraic, and E is said to
be algebraic over F , if all elements ofE are algebraic over F ; other-
wise it is said to be transcendental (orE is said to be transcendental
over F ). Thus,E=F is transcendental if at least one element ofE is
transcendental over F .

PROPOSITION 1.30 A field extensionE=F is finite if and only ifE
is algebraic and finitely generated (as a field) over F .

PROOF. H): To say that ˛ is transcendental over F amounts to
saying that its powers 1;˛;˛2; : : : are linearly independent over
F . Therefore, ifE is finite over F , then it is algebraic over F . It
remains to show that E is finitely generated over F . If E D F ,
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then it is generated by the empty set. Otherwise, there exists
an ˛1 2EXF . If E ¤ F Œ˛1�, there exists an ˛2 2EXF Œ˛1�,
and so on. Since

ŒF Œ˛1�WF � < ŒF Œ˛1;˛2�WF � < � � �< ŒEWF �

this process terminates.
(H: Let E D F.˛1; :::;˛n/ with ˛1;˛2; : : :˛n algebraic

over F . The extension F.˛1/=F is finite because ˛1 is alge-
braic over F , and the extension F.˛1;˛2/=F.˛1/ is finite be-
cause ˛2 is algebraic over F and hence over F.˛1/. Thus, by (
1.20), F.˛1;˛2/ is finite over F . Now repeat the argument. 2

COROLLARY 1.31 (a) IfE is algebraic over F , then every subringR
ofE containing F is a field.

(b) If in L�E � F , L is algebraic over E and E is algebraic
over F , then L is algebraic over F:

PROOF. (a) We observed above (p. 30), that if ˛ is algebraic
over F , then F Œ˛� is a field. If ˛ 2R, then F Œ˛��R, and so ˛
has an inverse in R.

(b) Every ˛ 2L is a root of a monic polynomial f DXmC
am�1X

m�1C �� � C a0 2 EŒX�. Now each of the extensions
F Œa0; : : : ;am�1;˛��F Œa0; : : : ;am�1��F is finite (1.20), and
so F Œa0; : : : ;am�1;˛� is finite (hence algebraic) over F . 2

Transcendental numbers

A complex number is said to be algebraic or transcendental according
as it is algebraic or transcendental over Q. First some history:
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1844: Liouville showed that certain numbers, now called Liouville
numbers, are transcendental.

1873: Hermite showed that e is transcendental.
1874: Cantor showed that the set of algebraic numbers is countable,

but that R is not countable. Thus most numbers are transcendental
(but it is usually very difficult to prove that any particular number is
transcendental).5

1882: Lindemann showed that � is transcendental.
1934: Gel’fond and Schneider independently showed that ˛ˇ is

transcendental if ˛ and ˇ are algebraic, ˛ ¤ 0;1, and ˇ … Q. (This
was the seventh of Hilbert’s famous problems.)

2004: Euler’s constant


 D lim
n!1

 
nX
kD1

1=k� logn

!

has not yet been proven to be transcendental or even irrational.
2004: The numbers eC� and e�� are surely transcendental, but

again they have not even been proved to be irrational!

PROPOSITION 1.32 The set of algebraic numbers is countable.

PROOF. Define the height h.r/ of a rational number to be
max.jmj; jnj/, where r D m=n is the expression of r in its
lowest terms. There are only finitely many rational numbers
with height less than a fixed number N . Let A.N/ be the set of

5In 1873 Cantor proved the rational numbers countable. . . . He also showed
that the algebraic numbers. . . were countable. However his attempts to de-
cide whether the real numbers were countable proved harder. He had proved
that the real numbers were not countable by December 1873 and published
this in a paper in 1874 (http://www-gap.dcs.st-and.ac.uk/~history/
Mathematicians/Cantor.html).

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Cantor.html
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Cantor.html
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algebraic numbers whose minimum equation over Q has degree
�N and has coefficients of height<N . ThenA.N/ is finite for
each N . Count the elements of A.10/; then count the elements
of A.100/; then count the elements of A.1000/, and so on.6 2

A typical Liouville number is
P1
nD0

1

10nŠ
— in its decimal ex-

pansion there are increasingly long strings of zeros. We prove that the
analogue of this number in base 2 is transcendental.

THEOREM 1.33 The number ˛D
P

1

2nŠ
is transcendental.

PROOF. 7Suppose not, and let

f .X/DXd Ca1X
d�1
C�� �Cad ; ai 2Q;

be the minimum polynomial of ˛ over Q. Thus ŒQŒ˛�WQ�D d .
Choose a nonzero integer D such that D �f .X/ 2 ZŒX�.

Let ˙N D
PN
nD0

1
2nŠ

, so that ˙N ! ˛ as N !1, and
let xN D f .˙N /. If ˛ is rational,8 f .X/DX �˛; otherwise,
f .X/; being irreducible of degree > 1, has no rational root.
Since ˙N ¤ ˛, it can’t be a root of f .X/, and so xN ¤ 0.
Evidently, xN 2Q; in fact .2NŠ/dDxN 2 Z, and so

j.2NŠ/dDxN j � 1. (*)

6More precisely, choose a bijection from some segment Œ0;n.1/� of N onto
A.10/; extend it to a bijection from a segment Œ0;n.2/� onto A.100/, and so
on.

7This proof, which I learnt from David Masser, also works for
P

1

anŠ
for

every integer a� 2.
8In fact ˛ is not rational because its expansion to base 2 is not periodic.
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From the fundamental theorem of algebra (see 5.6 below),
we know that f splits in CŒX�, say,

f .X/D

dY
iD1

.X �˛i /; ˛i 2 C; ˛1 D ˛;

and so

jxN j D

dY
iD1

j˙N �˛i j � j˙N �˛1j.˙N CM/d�1;

where M Dmaxi¤1f1; j˛i jg. But

j˙N �˛1j D

1X
nDNC1

1

2nŠ
�

1

2.NC1/Š

 
1X
nD0

1

2n

!
D

2

2.NC1/Š
:

Hence
jxN j �

2

2.NC1/Š
� .˙N CM/d�1

and

j.2NŠ/dDxN j � 2 �
2d �NŠD

2.NC1/Š
� .˙N CM/d�1

which tends to 0 as N !1 because

2d �NŠ

2.NC1/Š
D

 
2d

2NC1

!NŠ
! 0:

This contradicts (*). 2
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Constructions with straight-edge and compass.

The Greeks understood integers and the rational numbers. They were
surprised to find that the length of the diagonal of a square of side 1,
namely,

p
2, is not rational. They thus realized that they needed to

extend their number system. They then hoped that the “constructible”
numbers would suffice. Suppose we are given a length, which we call
1, a straight-edge, and a compass (device for drawing circles). A real
number (better a length) is constructible if it can be constructed by
forming successive intersections of

˘ lines drawn through two points already constructed, and
˘ circles with centre a point already constructed and radius a

constructed length.

This led them to three famous questions that they were unable to
answer: is it possible to duplicate the cube, trisect an angle, or square
the circle by straight-edge and compass constructions? We’ll see that
the answer to all three is negative.

Let F be a subfield of R. For a positive a 2 F ,
p
a denotes the

positive square root of a in R. The F -plane is F �F � R�R. We
make the following definitions:

An F -line is a line in R�R through two points in the
F -plane. These are the lines given by equations

axCbyCc D 0; a;b;c 2F:

An F -circle is a circle in R�R with centre an F -point
and radius an element of F . These are the circles given
by equations

.x�a/2C .y�b/2 D c2; a;b;c 2F:
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LEMMA 1.34 Let L¤L0 be F -lines, and let C ¤C 0 be F -circles.

(a) L\L0 D; or consists of a single F -point.
(b) L\C D; or consists of one or two points in theF Œ

p
e�-plane,

some e 2F , e > 0.
(c) C \C 0 D ; or consists of one or two points in the F Œ

p
e�-

plane, some e 2F , e > 0.
PROOF. The points in the intersection are found by solving
the simultaneous equations, and hence by solving (at worst) a
quadratic equation with coefficients in F . 2

LEMMA 1.35 (a) If c and d are constructible, then so also are cCd ,
�c, cd , and c

d
.d ¤ 0/.

(b) If c > 0 is constructible, then so also is
p
c.

SKETCH OF PROOF. First show that it is possible to construct
a line perpendicular to a given line through a given point, and
then a line parallel to a given line through a given point. Hence
it is possible to construct a triangle similar to a given one on
a side with given length. By an astute choice of the triangles,
one constructs cd and c�1. For (b), draw a circle of radius
cC1
2 and centre . cC12 ;0/, and draw a vertical line through the

point AD .1;0/ to meet the circle at P . The length AP is
p
c.

(For more details, see Artin, M., 1991, Algebra, Prentice Hall,
Chapter 13, Section 4.) 2

THEOREM 1.36 (a) The set of constructible numbers is a field.
(b) A number ˛ is constructible if and only if it is contained in a

subfield of R of the form

QŒ
p
a1; : : : ;

p
ar �; ai 2QŒ

p
a1; : : : ;

p
ai�1�; ai > 0.
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PROOF. (a) Immediate from (a) of Lemma 1.35.
(b) It follows from Lemma 1.34 that every constructible num-

ber is contained in such a field QŒpa1; : : : ;
p
ar �. Conversely, if

all the elements of QŒpa1; : : : ;
p
ai�1� are constructible, then

p
ai is constructible (by 1.35b), and so all the elements of

QŒpa1; : : : ;
p
ai � are constructible (by (a)). Applying this for

i D 0;1; : : :, we find that all the elements of QŒpa1; : : : ;
p
ar �

are constructible. 2

COROLLARY 1.37 If ˛ is constructible, then ˛ is algebraic over Q,
and ŒQŒ˛�WQ� is a power of 2.
PROOF. According to Proposition 1.20, ŒQŒ˛�WQ� divides

ŒQŒ
p
a1� � � � Œ

p
ar �WQ�

and ŒQŒpa1; : : : ;
p
ar �WQ� is a power of 2. 2

COROLLARY 1.38 It is impossible to duplicate the cube by straight-
edge and compass constructions.
PROOF. The problem is to construct a cube with volume 2. This
requires constructing the real root of the polynomial X3� 2.
But this polynomial is irreducible (by Eisenstein’s criterion 1.16
for example), and so ŒQŒ 3

p
2�WQ�D 3. 2

COROLLARY 1.39 In general, it is impossible to trisect an angle by
straight-edge and compass constructions.
PROOF. Knowing an angle is equivalent to knowing the cosine
of the angle. Therefore, to trisect 3˛, we have to construct a
solution to

cos3˛ D 4cos3˛�3cos˛:
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For example, take 3˛ D 60 degrees. As cos60ı D 1
2 , to con-

struct ˛, we have to solve 8x3�6x�1D 0, which is irreducible
(apply 1.11). 2

COROLLARY 1.40 It is impossible to square the circle by straight-edge
and compass constructions.

PROOF. A square with the same area as a circle of radius r has
side
p
�r . Since � is transcendental9, so also is

p
� . 2

We now consider another famous old problem, that of constructing
a regular polygon. Note thatXm�1 is not irreducible; in fact

Xm�1D .X �1/.Xm�1CXm�2C�� �C1/:

LEMMA 1.41 If p is prime thenXp�1C�� �C1 is irreducible; hence
QŒe2�i=p� has degree p�1 over Q:
PROOF. Let f .X/ D .Xp � 1/=.X � 1/ D Xp�1 C �� � C 1;
then

f .XC1/D
.XC1/p �1

X
DXp�1C�� �Ca2X

2
Ca1XCp;

with ai D
� p
iC1

�
. Now pjai for i D 1; :::;p�2, and so f .XC1/

is irreducible by Eisenstein’s criterion 1.16. This implies that
f .X/ is irreducible. 2

9Proofs of this can be found in many books on number theory, for example,
in 11.14 of
Hardy, G. H., and Wright, E. M., An Introduction to the Theory of Numbers,
Fourth Edition, Oxford, 1960.
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In order to construct a regular p-gon, p an odd prime, we need to
construct

cos 2�
p
D .e

2�i
p C .e

2�i
p /�1/=2:

But
QŒe

2�i
p ��QŒcos 2�

p
��Q;

and the degree of QŒe
2�i
p � over QŒcos 2�

p
� is 2— the equation

˛2�2cos 2�
p
�˛C1D 0; ˛D e

2�i
p ;

shows that it is � 2, and it is not 1 because QŒe
2�i
p � is not contained

in R. Hence

ŒQŒcos 2�
p
�WQ�D

p�1

2
:

Thus, if the regular p-gon is constructible, then .p�1/=2D 2k

for some k (later (5.12), we shall see a converse), which implies pD
2kC1C1. But 2rC1 can be a prime only if r is a power of 2, because
otherwise r has an odd factor t and for t odd,

Y t C1D .Y C1/.Y t�1�Y t�2C�� �C1/I

whence

2st C1D .2sC1/..2s/t�1� .2s/t�2C�� �C1/.

Thus if the regular p-gon is constructible, then pD 22
k
C1 for some

k. Fermat conjectured that all numbers of the form 22
k
C1 are prime,

and claimed to show that this is true for k � 5 — for this reason
primes of this form are called Fermat primes. For 0 � k � 4, the
numbers pD 3;5;17;257;65537, are prime but Euler showed that
232C1D .641/.6700417/, and we don’t know of any more Fermat
primes.
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Gauss showed that10

cos 2�
17
D� 1

16
C 1
16

p
17C 1

16

q
34�2

p
17C 1

8

r
17C3

p
17�

q
34�2

p
17�2

q
34C2

p
17

when he was 18 years old. This success encouraged him to become a
mathematician.

Algebraically closed fields

We say that a polynomial splits in F ŒX� (or, more loosely, in F ) if it
is a product of polynomials of degree 1 in F ŒX�.

PROPOSITION 1.42 For a field˝, the following statements are equiv-
alent:

(a) Every nonconstant polynomial in˝ŒX� splits in˝ŒX�.
(b) Every nonconstant polynomial in˝ŒX� has at least one root in

˝.
(c) The irreducible polynomials in˝ŒX� are those of degree 1.
(d) Every field of finite degree over˝ equals˝.

PROOF. The implications (a)H) (b)H) (c)H) (a) are obvi-
ous.
(c) H) (d). Let E be a finite extension of ˝. The minimum
polynomial of any element ˛ of E has degree 1, and so ˛ 2˝.
(d)H) (c). Let f be an irreducible polynomial in ˝ŒX�. Then
˝ŒX�=.f / is an extension field of ˝ of degree deg.f / (see
1.30), and so deg.f /D 1. 2

10Or perhaps that

cos 2�
17
D� 1

16
C 1
16

p
17C 1

16

q
34�2

p
17C 1

8

r
17C3

p
17�2

q
34�2

p
17�

q
170�26

p
17

— both expressions are correct.
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DEFINITION 1.43 (a) A field˝ is said to be algebraically closed if it
satisfies the equivalent statements of Proposition 1.42.

(b) A field ˝ is said to be an algebraic closure of a subfield F
when it is algebraically closed and algebraic over F .

For example, the fundamental theorem of algebra (see 5.6 below)
says that C is algebraically closed. It is an algebraic closure of R.

PROPOSITION 1.44 If ˝ is algebraic over F and every polynomial
f 2 F ŒX� splits in ˝ŒX�, then ˝ is algebraically closed (hence an
algebraic closure of F ).

PROOF. Let f be a nonconstant polynomial in ˝ŒX�. We have
to show that f has a root in ˝. We know (see 1.21) that f has
a root ˛ in some finite extension ˝ 0 of ˝. Set

f D anX
n
C�� �Ca0, ai 2˝;

and consider the fields

F � F Œa0; : : : ;an�� F Œa0; : : : ;an;˛�:

Each extension is algebraic and finitely generated, and hence
finite (by 1.30). Therefore ˛ lies in a finite extension of F , and
so is algebraic over F — it is a root of a polynomial g with
coefficients in F . By assumption, g splits in ˝ŒX�, and so the
roots of g in ˝ 0 all lie in ˝. In particular, ˛ 2˝: 2

PROPOSITION 1.45 Let˝ �F ; then

f˛ 2˝ j ˛ algebraic over F g

is a field.



Exercises 43

PROOF. If ˛ and ˇ are algebraic over F , then F Œ˛;ˇ� is a field
(by 1.31) of finite degree over F (by 1.30). Thus, every element
of F Œ˛;ˇ� is algebraic over F , including ˛˙ˇ, ˛=ˇ, ˛ˇ. 2

The field constructed in the proposition is called the algebraic clo-
sure of F in˝.

COROLLARY 1.46 Let ˝ be an algebraically closed field. For any
subfield F of ˝, the algebraic closure of F in ˝ is an algebraic
closure of F:

PROOF. From its definition, we see that it is algebraic over F
and every polynomial in F ŒX� splits in it. Now Proposition 1.44
shows that it is an algebraic closure of F . 2

Thus, when we admit the fundamental theorem of algebra (5.6), ev-
ery subfield of C has an algebraic closure (in fact, a canonical algebraic
closure). Later (Chapter 6) we shall prove (using the axiom of choice)
that every field has an algebraic closure.

Exercises

Exercises marked with an asterisk were required to be handed in.

1-1 (*) Let E DQŒ˛�, where ˛3�˛2C˛C2D 0. Express
.˛2C˛C1/.˛2�˛/ and .˛�1/�1 in the form a˛2Cb˛C c
with a;b;c 2Q.

1-2 (*) Determine ŒQ.
p
2;
p
3/WQ�.

1-3 (*) Let F be a field, and let f .X/ 2 F ŒX�.
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(a) For every a 2 F , show that there is a polynomial q.X/ 2
F ŒX� such that

f .X/D q.X/.X �a/Cf .a/:

(b) Deduce that f .a/D 0 if and only if .X �a/jf .X/.
(c) Deduce that f .X/ can have at most degf roots.
(d) Let G be a finite abelian group. If G has at most m

elements of order dividingm for each divisorm of .GW1/,
show that G is cyclic.

(e) Deduce that a finite subgroup of F�, F a field, is cyclic.

1-4 (*) Show that with straight-edge, compass, and angle-
trisector, it is possible to construct a regular 7-gon.



Chapter 2

Splitting Fields; Multiple
Roots

Maps from simple extensions.

Let E and E 0 be fields containing F . An F -homomorphism is a
homomorphism

'WE!E 0

such that '.a/D a for all a 2F . Thus an F -homorphism ' maps a
polynomial X

ai1���im˛
i1
1 � � �˛

im
m ; ai1���im 2F;

to X
ai1���im'.˛1/

i1 � � �'.˛m/
im :

45
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An F -isomorphism is a bijective F -homomorphism. Note that if E
andE 0 have the same finite degree overF , then everyF -homomorphism
is an F -isomorphism.

PROPOSITION 2.1 Let F.˛/ be a simple field extension of a field F ,
and let˝ be a second field containing F .

(a) Let ˛ be transcendental over F . For every F -homomorphism
'WF.˛/!˝, '.˛/ is transcendental over F , and the map
' 7! '.˛/ defines a one-to-one correspondence

fF -homomorphisms 'WF.˛/!˝g$

felements of˝ transcendental over F g:

(b) Let ˛ be algebraic over F with minimum polynomial f .X/.
For every F -homomorphism 'WF Œ˛�! ˝, '.˛/ is a root
of f .X/ in ˝, and the map ' 7! '.˛/ defines a one-to-one
correspondence

fF -homomorphisms 'WF Œ˛�!˝g$ froots of f in˝g:

In particular, the number of such maps is the number of distinct
roots of f in˝.

PROOF. (a) To say that ˛ is transcendental over F means that
F Œ˛� is isomorphic to the polynomial ring in the symbol ˛
with coefficients in F . For every 
 2˝, there is a unique F -
homomorphism 'WF Œ˛�! ˝ sending ˛ to 
 (see 1.5). This
extends to the field of fractions F.˛/ of F Œ˛� if and only if all
nonzero elements of F Œ˛� are sent to nonzero elements of ˝,
which is so if and only if 
 is transcendental.

(b) Let f .X/D
P
aiX

i , and consider anF -homomorphism
'WF Œ˛�!˝. On applying ' to the equation

P
ai˛

i D 0, we



Maps from simple extensions. 47

obtain the equation
P
ai'.˛/

i D 0, which shows that '.˛/
is a root of f .X/ in ˝. Conversely, if 
 2 ˝ is a root of
f .X/, then the map F ŒX�!˝, g.X/ 7! g.
/, factors through
F ŒX�=.f .X//. When composed with the inverse of the isomor-
phism XCf .X/ 7! ˛WF ŒX�=.f .X//! F Œ˛�, this becomes a
homomorphism F Œ˛�!˝ sending ˛ to 
 . 2

We shall need a slight generalization of this result.

PROPOSITION 2.2 Let F.˛/ be a simple field extension of a field F ,
and let '0WF !˝ be a homomorphism of F into a second field˝.

(a) If ˛ is transcendental over F , then the map ' 7! '.˛/ defines
a one-to-one correspondence

fextensions 'WF.˛/!˝ of '0g$

felements of˝ transcendental over '0.F /g:

(b) If ˛ is algebraic overF , with minimum polynomial f .X/, then
the map ' 7! '.˛/ defines a one-to-one correspondence

fextensions 'WF Œ˛�!˝ of '0g$ froots of '0f in˝g:

In particular, the number of such maps is the number of distinct
roots of '0f in˝.

By '0f we mean the polynomial obtained by applying '0 to the
coefficients of f : if f D

P
aiX

i then '0f D
P
'.ai /X

i . By an
extension of '0 to F.˛/ we mean a homomorphism 'WF.˛/!˝
such that 'jF D '0.

The proof of the proposition is essentially the same as that of the
preceding proposition.
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Splitting fields

Let f be a polynomial with coefficients in F . A fieldE containing F
is said to split f if f splits inEŒX�: f .X/D

Qm
iD1.X �˛i / with

˛i 2E . If, in addition,E is generated by the roots of f ,

E DF Œ˛1; : : : ;˛m�;

then it is called a splitting or root field for f . Note that
Q
fi .X/

mi

(mi � 1) and
Q
fi .X/ have the same splitting fields. Also, that if f

has deg.f /�1 roots inE , then it splits inEŒX�.

EXAMPLE 2.3 (a) Let f .X/D aX2CbXCc 2QŒX�, and let ˛Dp
b2�4ac. The subfield QŒ˛� of C is a splitting field for f .

(b) Let f .X/DX3CaX2CbXCc 2QŒX� be irreducible, and
let ˛1;˛2;˛3 be its roots in C. Since the nonreal roots of f occur in
conjugate pairs, either 1 or 3 of the ˛i are real. Then QŒ˛1;˛2;˛3�D
QŒ˛1;˛2� is a splitting field for f .X/. Note that ŒQŒ˛1�WQ�D 3 and
that ŒQŒ˛1;˛2�WQŒ˛1��D 1 or 2, and so ŒQŒ˛1;˛2�WQ�D 3 or 6.
We’ll see later (4.2) that the degree is 3 if and only if the discriminant of
f .X/ is a square in Q. For example, the discriminant ofX3CbXCc
is �4b3 � 27c2, and so the splitting field of X3C 10X C 1 has
degree 6 over Q.

PROPOSITION 2.4 Every polynomial f 2F ŒX� has a splitting field
Ef , and

ŒEf WF �� .degf /Š .factorial degf /:

PROOF. Let F1 D F Œ˛1� be a stem field for some monic ir-
reducible factor of f in F ŒX�. Then f .˛1/ D 0, and we let
F2 D F1Œ˛2� be a stem field for some monic irreducible factor
of f .X/=.X �˛1/ in F1ŒX�. Continuing in this fashion, we
arrive at a splitting field Ef .
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Let nD degf . Then ŒF1WF �D degg1 � n, ŒF2WF1�� n�
1; :::, and so ŒEf WE�� nŠ. 2

REMARK 2.5 For a given integer n, there may or may not exist poly-
nomials of degree n in F ŒX� whose splitting field has degree nŠ —
this depends on F . For example, there do not for n > 1 if F D C (see
5.6), nor for n > 2 if F D Fp (see 4.21) or F D R. However, later
(4.32) we shall see how to write down infinitely many polynomials of
degree n in QŒX� whose splitting fields have degree nŠ.

EXAMPLE 2.6 (a) Letf .X/D .Xp�1/=.X�1/2QŒX�,p prime.
If � is one root of f , then the remaining roots are �2;�3; : : : ;�p�1,
and so the splitting field of f is QŒ��.

(b) Suppose F is of characteristic p, and let f DXp�X �a 2
F ŒX�. If ˛ is one root of f , then the remaining roots are ˛C1;:::;˛C
p�1, and so any field generated over F by ˛ is a splitting field for f
(and F Œ˛�'F ŒX�=.f / if f is irreducible).

(c) If ˛ is one root of Xn�a, then the remaining roots are all of
the form �˛, where �n D 1. Therefore, if F contains all the nth roots
of 1 (by which we mean that Xn�1 splits in F ŒX�), then F Œ˛� is
a splitting field for Xn�a. Note that if p is the characteristic of F ,
then Xp �1D .X �1/p , and so F automatically contains all the
pth roots of 1.

PROPOSITION 2.7 Let f 2F ŒX�. LetE be a field generated over F
by roots of f , and let˝ be a field containing F in which f splits.

(a) There exists an F -homomorphism 'WE!˝; the number of
such homomorphisms is at most ŒE WF �, and equals ŒE WF � if
f has distinct roots in˝.



50 2. SPLITTING FIELDS; MULTIPLE ROOTS

(b) IfE and˝ are both splitting fields for f , then each F -homo-
morphism E !˝ is an isomorphism. In particular, any two
splitting fields for f are F -isomorphic.

PROOF. By f splitting in ˝, we mean that

f .X/D
Ydeg.f /

iD1
.X �˛i /; ˛i 2˝;

in˝ŒX�. By f having distinct roots in˝, we mean that ˛i ¤˛j
if i ¤ j .

We begin with an observation: let F , f , and ˝ be as in the
statement of the proposition, let L be a subfield of˝ containing
F , and let g be a factor of f in LŒX�; then g divides f in˝ŒX�
and so (by unique factorization in˝ŒX�), g is product of certain
number of the factors X �˛i of f in ˝ŒX�; in particular, we
see that g splits in ˝, and that its roots are distinct if the roots
of f are distinct.

(a) By assumption, E D F Œ˛1; :::;˛m� with the ˛i (some of
the) roots of f .X/. The minimum polynomial of ˛1 is an irre-
ducible polynomial f1 dividing f , and deg.f1/D ŒF Œ˛1�WF �.
From the initial observation with LD F , we see that f1 splits
in ˝, and that its roots are distinct if the roots of f are distinct.
According to Proposition 2.1, there exists an F -homomorphism
'1WF Œ˛1�! ˝, and the number of such homomorphisms is
at most ŒF Œ˛1�WF �, with equality holding when f has distinct
roots in ˝.

The minimum polynomial of ˛2 over F Œ˛1� is an irreducible
factor f2 of f in F Œ˛1�ŒX�. On applying the initial observation
with LD '1F Œ˛1� and gD '1f2, we see that '1f2 splits in˝,
and that its roots are distinct if the roots of f are distinct. Ac-
cording to Proposition 2.2, each '1 extends to a homomorphism
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'2WF Œ˛1;˛2�! ˝, and the number of extensions is at most
ŒF Œ˛1;˛2�WF Œ˛1��, with equality holding when f has distinct
roots in ˝:

On combining these statements we conclude that there exists
an F -homomorphism

'WF Œ˛1;˛2�!˝;

and that the number of such homomorphisms is at most

ŒF Œ˛1;˛2�WF �;

with equality holding if f has distinct roots in ˝:
After repeating the argument m times, we obtain (a).
(b) Every F -homomorphism E!˝ is injective, and so, if

there exists such a homomorphisms, ŒEWF �� Œ˝WF �. If E and
˝ are both splitting fields for f , then (a) shows that there exist
homomorphism F � E, and so ŒEWF � D Œ˝WF �. Therefore,
every F -homomorphism E!˝ is an isomorphism. 2

COROLLARY 2.8 LetE andL be extension fields of F , withE finite
over F .

(a) The number of F -homomorphismsE!L is at most ŒE WF �.
(b) There exists a finite extension˝=L and an F -homomorphism

E!˝:

PROOF. Write E D F Œ˛1; : : : ;˛m�, and f be the product of
the minimum polynomials of the ˛i . Let ˝ be a splitting field
for f regarded as an element of LŒX�. The proposition shows
that there is an F -homomorphism E ! ˝, and the number
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of such homomorphisms is � ŒEWF �. This proves (b), and
since an F -homomorphism E! L can be regarded as an F -
homomorphism E!˝, it also proves (a). 2

REMARK 2.9 (a) Let E1;E2; : : : ;Em be finite extensions of F , and
let L be an extension of F . The corollary implies that there exists a
finite extension˝/L containing an isomorphic copy of everyEi .

(b) Let f 2 F ŒX�. If E and E 0 are both splitting fields of f ,
then we know there is an F -isomorphism E!E 0, but there will in
general be no preferred such isomorphism. Error and confusion can
result if you simply identify the fields. Also, it makes no sense to speak
of “the field F Œ˛� generated by a root of f ” unless f is irreducible
(the fields generated by the roots of two different factors are unrelated).
Even when f is irreducible, it makes no sense to speak of “the field
F Œ˛;ˇ� generated by two roots ˛;ˇ of f ” (the extensions of F Œ˛�
generated by the roots of two different factors of f in F Œ˛�ŒX� may
be very different).

Multiple roots

Let f;g 2 F ŒX�. Even when f and g have no common factor in
F ŒX�, one might expect that they could acquire a common factor
in ˝ŒX� for some ˝ � F . In fact, this doesn’t happen — greatest
common divisors don’t change when the field is extended.

PROPOSITION 2.10 Let f and g be polynomials in F ŒX�, and let
˝ � F . If r.X/ is the gcd of f and g computed in F ŒX�, then
it is also the gcd of f and g in ˝ŒX�. In particular, distinct monic
irreducible polynomials in F ŒX� do not acquire a common root in any
extension field of F:



Multiple roots 53

PROOF. Let rF .X/ and r˝.X/ be the greatest common di-
visors of f and g in F ŒX� and ˝ŒX� respectively. Certainly
rF .X/jr˝.X/ in˝ŒX�, but Euclid’s algorithm (1.8) shows that
there are polynomials a and b in F ŒX� such that

a.X/f .X/Cb.X/g.X/D rF .X/;

and so r˝.X/ divides rF .X/ in ˝ŒX�.
For the second statement, note that the hypotheses imply

that gcd.f;g/D 1 (in F ŒX�), and so f and g can’t acquire a
common factor in any extension field. 2

The proposition allows us to speak of the greatest common divisor
of f and g without reference to a field.

Let f 2F ŒX�, and let

f .X/Da

rY
iD1

.X�˛i /
mi ; ˛i distinct,mi �1,

rX
iD1

mi D deg.f /;

(*)
be a splitting of f in some extension field˝ of F . We say that ˛i is
a root of f of multiplicity mi . If mi > 1, ˛i is said to be a multiple
root of f , and otherwise it is a simple root.

The unordered sequence of integers m1; : : : ;mr in (*) is inde-
pendent of the extension field ˝ in which f splits. Certainly, it is
unchanged when ˝ is replaced with its subfield F Œ˛1; : : : ;˛m�, but
F Œ˛1; : : : ;˛m� is a splitting field for f , and any two splitting fields
are isomorphic (2.7b).

We say that f has a multiple root when at least one of themi >1,
and we say that f has only simple roots when allmi D 1.

We wish to determine when a polynomial has a multiple root. If
f has a multiple factor in F ŒX�, say f D

Q
fi .X/

mi with some
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mi > 1, then obviously it will have a multiple root. If f D
Q
fi with

the fi distinct monic irreducible polynomials, then Proposition 2.10
shows that f has a multiple root if and only if at least one of the fi
has a multiple root. Thus, it suffices to determine when an irreducible
polynomial has a multiple root.

EXAMPLE 2.11 Let F be of characteristic p¤ 0, and assume that F
contains an element a that is not a pth-power, for example, aD T in

the field Fp.T /: ThenXp�a is irreducible inF ŒX�, butXp�a
1:4
D

.X�˛/p in its splitting field. Thus an irreducible polynomial can have
multiple roots.

Define the derivative f 0.X/ of a polynomial f .X/D
P
aiX

i

to be
P
iaiX

i�1. When f has coefficients in R, this agrees with
the definition in calculus. The usual rules for differentiating sums and
products still hold, but note that in characteristic p the derivative of
Xp is zero.

PROPOSITION 2.12 For a nonconstant irreducible polynomial f in
F ŒX�, the following statements are equivalent:

(a) f has a multiple root;
(b) gcd.f;f 0/¤ 1;
(c) F has characteristic p¤ 0 and f is a polynomial inXp ;
(d) all the roots of f are multiple.

PROOF. (a) H) (b). Let ˛ be a multiple root of f , and write
f D .X �˛/mg.X/, m> 1, in some splitting field. Then

f 0.X/Dm.X �˛/m�1g.X/C .X �˛/mg0.X/:

Hence f 0.˛/D 0, and so gcd.f;f 0/¤ 1.
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(b) H) (c). Since f is irreducible and deg.f 0/ < deg.f /,

gcd.f;f 0/¤ 1 H) f 0 D 0:

But, because f is nonconstant, f 0 can be zero only if the char-
acteristic is p ¤ 0 and f is a polynomial in Xp .

(c) H) (d). Suppose f .X/ D g.Xp/, and let g.X/ DQ
i .X �ai /

mi in some splitting field for f . Then

f .X/D g.Xp/D
Y

i
.Xp �ai /

mi D

Y
i
.X �˛i /

pmi

where ˛pi D ai . Hence every root of f .X/ has multiplicity at
least p.

(d) H) (a). Obvious. 2

DEFINITION 2.13 A polynomial f 2 F ŒX� is said to be separable
overF if none of its irreducible factors has a multiple root (in a splitting
field).1

The preceding discussion shows that f 2F ŒX� will be separable
unless

(a) the characteristic of F is p¤ 0, and
(b) at least one of the irreducible factors of f is a polynomial in

Xp .

Note that, if f 2 F ŒX� is separable, then it remains separable over
every field˝ containing F (condition (b) of 2.12 continues to hold —
see 2.10).

1This is the standard definition, although some authors, for example, Dummit
and Foote 1991, 13.5, give a different definition.
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DEFINITION 2.14 A field F is said to be perfect if all polynomials in
F ŒX� are separable (equivalently, all irreducible polynomials in F ŒX�
are separable).

PROPOSITION 2.15 A field of characteristic zero is always perfect,
and a field F of characteristic p ¤ 0 is perfect if and only if every
element of F is a pth power.

PROOF. A field of characteristic zero is obviously perfect, and
so we may suppose F to be of characteristic p ¤ 0. If F con-
tains an element a that is not a pth power, then Xp �a 2 F ŒX�
is not separable (see 2.11). Conversely, if every element of F is
a pth power, then every polynomial in Xp with coefficients in
F is a pth power in F ŒX�,X

aiX
p
D .

X
biX/

p if ai D b
p
i ,

and so is not irreducible. 2

EXAMPLE 2.16 (a) A finite field F is perfect, because the Frobe-
nius endomorphism a 7! apWF !F is injective and therefore
surjective (by counting).

(b) A field that can be written as a union of perfect fields is perfect.
Therefore, every field algebraic over Fp is perfect.

(c) Every algebraically closed field is perfect.
(d) If F0 has characteristic p¤ 0, then F DF0.X/ is not perfect,

becauseX is not a pth power.
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Exercises

2-1 (*) Let F be a field of characteristic¤ 2.

(a) Let E be quadratic extension of F (i.e., ŒEWF � D 2);
show that

S.E/D fa 2 F� j a is a square in Eg

is a subgroup of F� containing F�2.
(b) Let E and E 0 be quadratic extensions of F ; show that

there is an F -isomorphism 'WE ! E 0 if and only if
S.E/D S.E 0/.

(c) Show that there is an infinite sequence of fieldsE1;E2; : : :
with Ei a quadratic extension of Q such that Ei is not
isomorphic to Ej for i ¤ j .

(d) Let p be an odd prime. Show that, up to isomorphism,
there is exactly one field with p2 elements.

2-2 (*) (a) Let F be a field of characteristic p. Show that if
Xp �X � a is reducible in F ŒX�, then it splits into distinct
factors in F ŒX�.

(b) For every prime p, show that Xp �X �1 is irreducible
in QŒX�.

2-3 (*) Construct a splitting field for X5�2 over Q. What is
its degree over Q?

2-4 (*) Find a splitting field of Xp
m
�1 2 Fp ŒX�. What is its

degree over Fp?
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2-5 Let f 2 F ŒX�, where F is a field of characteristic 0. Let
d.X/D gcd.f;f 0/. Show that g.X/D f .X/d.X/�1 has the
same roots as f .X/, and these are all simple roots of g.X/.

2-6 (*) Let f .X/ be an irreducible polynomial inF ŒX�, where
F has characteristic p. Show that f .X/ can be written f .X/D
g.Xp

e
/ where g.X/ is irreducible and separable. Deduce that

every root of f .X/ has the same multiplicity pe in any splitting
field.



Chapter 3

The Fundamental Theorem of
Galois Theory

In this chapter, we prove the fundamental theorem of Galois theory,
which gives a one-to-one correspondence between the subfields of the
splitting field of a separable polynomial and the subgroups of the Galois
group of f .

Groups of automorphisms of fields

Consider fields E �F . An F -isomorphismE!E is called an F -
automorphism ofE . TheF -automorphisms ofE form a group, which
we denote Aut.E=F /.

59
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EXAMPLE 3.1 (a) There are two obvious automorphisms of C, namely,
the identity map and complex conjugation. We’ll see later (8.18) that by
using the Axiom of Choice one can construct uncountably many more.

(b) LetE D C.X/. Then Aut.E=C/ consists of the maps1 X 7!
aXCb
cXCd

, ad �bc ¤ 0 (Jacobson 1964, IV, Theorem 7, p158), and so

Aut.E=C/D PGL2.C/;

the group of invertible 2�2matrices with complex coefficients modulo
its centre. Analysts will note that this is the same as the automorphism
group of the Riemann sphere. This is not a coincidence: the field of
meromorphic functions on the Riemann sphere P1C is C.z/' C.X/,
and so there is certainly a map Aut.P1C/! Aut.C.z/=C/, which one
can show to be an isomorphism.

(c) The group Aut.C.X1;X2/=C/ is quite complicated — there is
a map

PGL3.C/D Aut.P2C/ ,! Aut.C.X1;X2/=C/;

but this is very far from being surjective. When there are moreX ’s, the
group is unknown. (The group Aut.C.X1; : : : ;Xn/=C/ is the group of
birational automorphisms of PnC. It is called the Cremona group. Its
study is part of algebraic geometry.)

In this section, we shall be concerned with the groups Aut.E=F /
whenE is a finite extension of F .

PROPOSITION 3.2 If E is a splitting field of a separable polynomial
f 2F ŒX�, then Aut.E=F / has order ŒE WF �:

1By this I mean the map that sends a rational function f .X/ to f
�
aXCb
cXCd

�
.



Groups of automorphisms of fields 61

PROOF. Let f D
Q
f
mi
i , with the fi irreducible and distinct.

The splitting field of f is the same as the splitting field of
Q
fi .

Hence we may assume f is a product of distinct separable
irreducible polynomials, and so has degf distinct roots in E.
Now Proposition 2.7 shows that there are ŒEWF � distinct F -
homomorphisms E!E. Because E has finite degree over F ,
they are automatically isomorphisms. 2

EXAMPLE 3.3 (a) Consider a simple extensionE DF Œ˛�, and let f
be a polynomial with coefficients in F having ˛ as a root. If f has
no root in E other than ˛, then Aut.E=F /D 1: For example, if 3

p
2

denotes the real cube root of 2, then Aut.QŒ 3
p
2�=Q/D 1. Thus, in the

proposition, it is essential thatE be a splitting field.
(b) Let F be a field of characteristic p¤ 0, and let a be an element

of F that is not a pth power. Then f DXp�a has only one root in
a splitting fieldE , and so Aut.E=F /D 1. Thus, in the proposition, it
is essential thatE be a splitting field of a separable polynomial.

WhenG is a group of automorphisms of a fieldE , we set

EG D Inv.G/D f˛ 2E j �˛D ˛, all � 2Gg:

It is a subfield of E , called the subfield of G-invariants of E or the
fixed field ofG.

In this section, we shall show that, whenE is the splitting field of a
separable polynomial in F ŒX� andG D Aut.E=F /, then the maps

M 7! Aut.E=M/; H 7! Inv.H/

give a one-to-one correspondence between the set of intermediate fields
M , F �M �E , and the set of subgroupsH ofG.
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THEOREM 3.4 (E. ARTIN) LetG be a finite group of automorphisms
of a fieldE , and let F DEG ; then ŒE WF �� .GW1/:
PROOF. LetGDf�1D 1; : : : ;�mg, and let ˛1; : : : ;˛n be n>m
elements of E. We shall show that the ˛i are linearly dependent
over F . In the system of linear equations

�1.˛1/X1C�� �C�1.˛n/Xn D 0

� � � � � �

�m.˛1/X1C�� �C�m.˛n/Xn D 0

there are m equations and n > m unknowns, and hence there
are nontrivial solutions in E — choose one .c1; : : : ; cn/ having
the fewest possible nonzero elements. After renumbering the
˛i ’s, we may suppose that c1 ¤ 0, and then (after multiplying
by a scalar) that c1 2 F . With these normalizations, we’ll show
that all ci 2 F . Then the first equation

˛1c1C�� �C˛ncn D 0

(recall that �1 D 1) will be a linear relation on the ˛i .
If not all ci are in F , then �k.ci / ¤ ci for some k and i ,

k ¤ 1¤ i . On applying �k to the equations

�1.˛1/c1C�� �C�1.˛n/cn D 0

� � � � � � (*)
�m.˛1/c1C�� �C�m.˛n/cn D 0

and using that f�k�1; : : : ;�k�mg is a permutation of f�1; : : : ;�mg,
we find that

.c1;�k.c2/; : : : ;�k.ci /; : : :/
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is also a solution to the system of equations (*). On subtracting
it from the first, we obtain a solution .0; : : : ; ci � �k.ci /; : : :/,
which is nonzero (look at the i th coordinate), but has more
zeros than the first solution (look at the first coordinate) —
contradiction. 2

COROLLARY 3.5 For any finite groupG of automorphisms of a field
E ,G D Aut.E=EG/.

PROOF. We know that:
ŒEWEG �� .GW1/ (by 3.4),
G � Aut.E=EG/ (obvious),
.Aut.E=EG/W1/� ŒEWEG � (by 2.8a).

The inequalities

ŒEWEG �� .GW1/� .Aut.E=EG/W1/� ŒEWEG �

must be equalities, and so G D Aut.E=EG/: 2

Separable, normal, and Galois extensions

DEFINITION 3.6 An algebraic extension E=F is said to be separa-
ble if the minimum polynomial of every element of E is separable;
otherwise, it is inseparable.

Thus, an algebraic extension E=F is separable if every irreducible
polynomial in F ŒX� having a root inE is separable, and it is insepara-
ble if

˘ F is nonperfect, and in particular has characteristic p¤ 0, and
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˘ there is an element ˛ ofE whose minimal polynomial is of the
form g.Xp/, g 2F ŒX�.

For example,E D Fp.T / is an inseparable extension of Fp.Tp/:

DEFINITION 3.7 An algebraic extension E=F is normal if the mini-
mum polynomial of every element ofE splits inEŒX�.

In other words, an algebraic extension E=F is normal if every
irreducible polynomial f 2F ŒX� having a root inE splits inE .

Let f be an irreducible polynomial of degreem in F ŒX�. If f has
a root inE , then

E=F separable H) roots of f distinct
E=F normal H) f splits inE

�
H) f hasm distinct roots inE:

Therefore,E=F is normal and separable if and only if, for each ˛ 2E ,
the minimum polynomial of ˛ has ŒF Œ˛�WF � distinct roots inE .

EXAMPLE 3.8 (a) The field QŒ 3
p
2�, where 3

p
2 is the real cube root

of 2, is separable but not normal over Q (X3�2 doesn’t split in QŒ˛�).
(b) The field Fp.T / is normal but not separable over Fp.Tp/—

the minimum polynomial of T is the inseparable polynomialXp�Tp .

DEFINITION 3.9 Let F be a field. A finite extension E of F is said
to be Galois if F is the fixed field of the group of F -automorphisms of
E . This group is then called the Galois group of E over F , and it is
denoted Gal.E=F /.

THEOREM 3.10 For an extensionE=F , the following statements are
equivalent:
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(a) E is the splitting field of a separable polynomial f 2F ŒX�.
(b) F DEG for some finite groupG of automorphisms ofE .
(c) E is normal and separable, and of finite degree, over F .
(d) E is Galois over F .

PROOF. (a) H) (d). LetG DAut.E=F /, and let F 0DEG �
F . Then E is also the splitting field of f regarded as a polyno-
mial with coefficients in F 0, and f is still separable when it is
regarded in this way. Hence Proposition 3.2 shows that

ŒEWF 0�D
ˇ̌
Aut.E=F 0/

ˇ̌
ŒEWF �D jAut.E=F /j :

Since Aut.E=F 0/
(3.5)
D G D Aut.E=F / , we conclude that F D

F 0, and so F DEG .
(d) H) (b). According to (2.8a) , Gal.E=F / is finite, and

so this is obvious.
(b) H) (c). By Proposition 3.4, we know that ŒEWF � �

.GW1/; in particular, it is finite. Let ˛ 2 E and let f be the
minimum polynomial of ˛; we have to prove that f splits into
distinct factors in EŒX�. Let f˛1 D ˛; :::;˛mg be the orbit of ˛
under the action of G on E, and let

g.X/D
Y
.X �˛i /DX

m
Ca1X

m�1
C�� �Cam:

Every � 2G merely permutes the ˛i . Since the ai are symmet-
ric polynomials in the ˛i , we find that �ai D ai for all i , and so
g.X/ 2 F ŒX�. It is monic, and g.˛/D 0, and so f .X/jg.X/
(see the definition of the minimum polynomial p. 30). But also
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g.X/jf .X/, because each ˛i is a root of f .X/ (if ˛i D �˛,
then applying � to the equation f .˛/D 0 gives f .˛i /D 0). We
conclude that f .X/D g.X/, and so f .X/ splits into distinct
factors in E.

(c) H) (a). Because E has finite degree over F , it is
generated over F by a finite number of elements, say, E D
F Œ˛1; :::;˛m�, ˛i 2E, ˛i algebraic over F . Let fi be the min-
imum polynomial of ˛i over F . Because E is normal over F ,
each fi splits in E, and so E is the splitting field of f D

Q
fi :

Because E is separable over F , f is separable. 2

REMARK 3.11 (a) Let E be Galois over F with Galois groupG, and
let ˛ 2 E . The elements ˛1 D ˛, ˛2; :::;˛m of the orbit of ˛ are
called the conjugates of ˛. In the course of the proof of (b) H) (c)
of the above theorem we showed that the minimum polynomial of ˛ isQ
.X �˛i /:

(b) Note that if F DEG for some finite groupG, then, becauseE
is the splitting field of a separable polynomial, Proposition 2.7 shows
that Gal.E=F / has ŒE WF � elements. Combined with Artin’s theorem
(3.4), this shows thatG D Gal.E=F / and .GW1/D ŒE WF ].

COROLLARY 3.12 Every finite separable extension E of F is con-
tained in a finite Galois extension.

PROOF. Let E D F Œ˛1; :::;˛m�. Let fi be the minimum poly-
nomial of ˛i over F , and take E 0 to be the splitting field ofQ
fi over F . 2

COROLLARY 3.13 Let E �M � F ; if E is Galois over F , then it
is Galois overM:
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PROOF. We know E is the splitting field of some separable
f 2 F ŒX�; it is also the splitting field of f regarded as an
element of MŒX�: 2

REMARK 3.14 When we drop the assumption thatE is separable over
F , we can still say something. An element ˛ of an algebraic extension
of F is said to be separable over F if its minimum polynomial over
F is separable. The proof of Corollary 3.12 shows that every finite
extension generated by separable elements is separable. Therefore, the
elements of a finite extension E of F that are separable over F form
a subfield Esep of E that is separable over F ; write ŒE WF �sep D

ŒEsepWF � (separable degree of E over F /. If ˝ is an algebraically
closed field containing F , then every F -homomorphism Esep!˝
extends uniquely toE , and so the number of F -homomorphismsE!
˝ is ŒE WF �sep. WhenE �M �F (finite extensions),

ŒE WF �sep D ŒE WM�sepŒM WF �sep:

In particular,

E is separable over F ”

E is separable overM andM is separable over F:

See Jacobson 1964, I 10, for more details.

DEFINITION 3.15 A finite extensionE �F is called a cyclic, abelian,
..., solvable extension if it is Galois with cyclic, abelian, ..., solvable
Galois group.

The fundamental theorem of Galois theory

THEOREM 3.16 (FUNDAMENTAL THEOREM OF GALOIS THEORY) Let
E be a Galois extension of F , and let G D Gal.E=F /. The maps
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H 7!EH andM 7! Gal.E=M/ are inverse bijections between the
set of subgroups ofG and the set of intermediate fields betweenE and
F :

fsubgroups ofGg$ fintermediate fields F �M �Eg:

Moreover,

(a) the correspondence is inclusion-reversing: H1 � H2 ”
EH1 �EH2 I

(b) indexes equal degrees: .H1WH2/D ŒEH2 WEH1 �;

(c) �H��1$ �M , i.e.,E�H�
�1
D �.EH /; Gal.E=�M/D

�Gal.E=M/��1:

(d) H is normal inG ” EH is normal (hence Galois) over F ,
in which case

Gal.EH =F /'G=H:
PROOF. For the first statement, we have to show thatH 7!EH

and M 7! Gal.E=M/ are inverse maps.
Let H be a subgroup of G. Then, as we observed in (3.11b),

Gal.E=EH /DH:
Let M be an intermediate field. Then E is Galois over M

by (3.13), which means that EGal.E=M/ DM .
(a) We have the obvious implications:

H1�H2 H) EH1 �EH2 H) Gal.E=EH1/�Gal.E=EH2/:

But Gal.E=EHi /DHi .
(b) As we observed in (3.11b), for every subgroup H of

G, ŒEWEH � D .Gal.E=EH /W1/. This proves (b) in the case
H2 D 1, and the general case follows, using that

.H1W1/D .H1WH2/.H2W1/
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and
ŒEWEH1 �D ŒEWEH2 �ŒEH2 WEH1 �:

(c) For � 2G and ˛ 2E, �˛ D ˛ ” ����1.�˛/D �˛.
Therefore, Gal.E=�M/D �Gal.E=M/��1 , and so

�Gal.E=M/��1$ �M:

(d) Let H be a normal subgroup of G. Because �H��1 D
H for all � 2 G, we must have �EH D EH for all � 2 G,
i.e., the action of G on E stabilizes EH . We therefore have a
homomorphism

� 7! � jEH WG! Aut.EH =F /

whose kernel is H . As .EH /G=H D F , we see that EH is
Galois overF (by Theorem 3.10) and thatG=H 'Gal.EH =F /
(by 3.11b).

Conversely, assume that M is normal over F , and write
M D F Œ˛1; :::;˛m�. For � 2G, �˛i is a root of the minimum
polynomial of ˛i over F , and so lies in M . Hence �M DM ,
and this implies that �H��1 DH (by (c)). 2

REMARK 3.17 The theorem shows that there is an order reversing
bijection between the intermediate fields ofE=F and the subgroups of
G. Using this we can read off more results.

(a) LetM1;M2; : : : ;Mr be intermediate fields, and letHi be the
subgroup corresponding to Mi (i.e., Hi D Gal.E=Mi /). Then (by
definition)M1M2 � � �Mr is the smallest field containing allMi ; hence
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it must correspond to the largest subgroup contained in allHi , which
is
T
Hi . Therefore

Gal.E=M1 � � �Mr /DH1\ :::\Hr :

(b) Let H be a subgroup of G and let M D EH . The largest
normal subgroup contained in H is N D

T
�2G �H�

�1 (see GT
4.10), and so EN , which is the composite of the fields �M , is the
smallest normal extension of F containingM . It is called the normal,
or Galois, closure ofM inE .

PROPOSITION 3.18 LetE and L be field extensions of F contained
in some common field. IfE=F is Galois, thenEL=L andE=E \L
are Galois, and the map

� 7! � jE WGal.EL=L/! Gal.E=E \L/

is an isomorphism.

PROOF. Because E is Galois over F , it is the splitting field
of a separable polynomial f 2 F ŒX�. Then EL is the splitting
field of f over L, and E is the splitting field of f over E\L.
Hence EL=L and E=E\L are Galois.

Every automorphism � ofEL fixing the elements ofLmaps
roots of f to roots of f , and so �E DE: There is therefore a
homomorphism

� 7! � jEWGal.EL=L/! Gal.E=E\L/.

If � 2 Gal.EL=L/ fixes the elements of E, then it fixes the
elements of EL, and hence is 1. Thus, � 7! � jE is injective. If
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˛ 2 E is fixed by all � 2 Gal.EL=L/, then ˛ 2 L\E. By the
fundamental theorem,

EL

E L

E\L

F

D

D

this implies that the image of � 7! � jE is Gal.E=E\L/. 2

COROLLARY 3.19 Suppose, in the proposition, that L is finite over
F . Then

ŒELWF �D
ŒE WF �ŒLWF �

ŒE \LWF �
.

PROOF. According to Proposition 1.20,

ŒELWF �D ŒELWL�ŒLWF �;

but

ŒELWL�
3:18
D ŒEWE\L�

1:20
D

ŒEWF �

ŒE\LWF �
.

2
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PROPOSITION 3.20 Let E1 and E2 be field extensions of F con-
tained in some common field. If E1 and E2 are Galois over F , then
E1E2 andE1\E2 are Galois over F , and

� 7! .� jE1;� jE2/WGal.E1E2=F /! Gal.E1=F /�Gal.E2=F /

is an isomorphism of Gal.E1E2=F / onto the subgroup

H D f.�1;�2/ j �1jE1\E2 D �2jE1\E2g

of Gal.E1=F /�Gal.E2=F /.

PROOF: Let a 2E1\E2, and let f be its minimum polynomial over
F . Then f has degf distinct roots inE1 and degf distinct roots in
E2. Since f can have at most degf roots in E1E2, it follows that
it has degf distinct roots in E1\E2. This shows that E1\E2 is
normal and separable over F , and hence Galois (3.10). As E1 and E2
are Galois over F , they are splitting fields of separable polynomials
f1;f2 2 F ŒX�. Now E1E2 is a splitting field for f1f2, and hence
it also is Galois over F . The map � 7! .� jE1;� jE2/ is clearly an
injective homomorphism, and its image is contained inH . We prove
that the image is the whole ofH by counting.

E1E2

E1 E2

E1\E2

F
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From the fundamental theorem,

Gal.E2=F /=Gal.E2=E1\E2/' Gal.E1\E2=F /,

and so, for each �1 2Gal.E1=F /, �1jE1\E2 has exactly ŒE2WE1\
E2� extensions to an element of Gal.E2=F /. Therefore,

.H W1/D ŒE1WF �ŒE2WE1\E2�D
ŒE1WF � � ŒE2WF �

ŒE1\E2WF �
;

which equals ŒE1E2WF � by (3.19): �

Examples

EXAMPLE 3.21 We analyse the extension QŒ��=Q, where � is a prim-
itive 7th root of 1, say � D e2�i=7. Note that QŒ�� is the splitting field
of the polynomialX7�1, and that � has minimum polynomial

X6CX5CX4CX3CX2CXC1

(see 1.41). Therefore, QŒ�� is Galois of degree 6 over Q. For any � 2
Gal.QŒ��=Q/, ��D � i , some i , 1� i �6, and the map � 7! i defines
an isomorphism Gal.QŒ��=Q/! .Z=7Z/�. Let � be the element of
Gal.QŒ��=Q/ such that �� D �3. Then � generates Gal.QŒ��=Q/
because the class of 3 in .Z=7Z/� generates it (the powers of 3 mod 7
are 3;2;6;4;5;1). We investigate the subfields of QŒ�� corresponding
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to the subgroups h�3i and h�2i.

QŒ��

QŒ�Cx�� QŒ
p
�7�

Q

h�3i h�2i

h�i=h�3i h�i=h�2i

Note that �3� D �6 D x� (complex conjugate of �/. The subfield
of QŒ�� corresponding to h�3i is QŒ�Cx��, and �Cx� D 2cos 2�

7
.

Since h�3i is a normal subgroup of h�i, QŒ� C x�� is Galois over

Q, with Galois group h�i=h�3i: The conjugates of ˛1
def
D �Cx� are

˛3 D �
3C��3, ˛2 D �2C��2. Direct calculation shows that

˛1C˛2C˛3 D
X6

iD1
� i D�1;

˛1˛2C˛1˛3C˛2˛3 D�2;

˛1˛2˛3 D .�C�
6/.�2C�5/.�3C�4/

D .�C�3C�4C�6/.�3C�4/

D .�4C�6C1C�2C�5C1C�C�3/

D 1:



Examples 75

Hence the minimum polynomial2 of �Cx� is

g.X/DX3CX2�2X �1:

The minimum polynomial of cos 2�
7
D
˛1
2

is therefore

g.2X/

8
DX3CX2=2�X=2�1=8:

The subfield of QŒ�� corresponding to h�2i is generated by ˇ D
�C �2C �4. Let ˇ 0 D �ˇ . Then .ˇ �ˇ 0/2 D�7. Hence the field
fixed by h�2i is QŒ

p
�7�:

EXAMPLE 3.22 We compute the Galois group of a splitting fieldE of
X5�2 2QŒX�. Recall from Exercise 2-3 thatE DQŒ�;˛� where �
is a primitive 5th root of 1, and ˛ is a root ofX5�2. For example, we
could takeE to be the splitting field ofX5�2 in C, with � D e2�i=5

and ˛ equal to the real 5th root of 2. We have the picture at right, and

ŒQŒ�� WQ�D 4; ŒQŒ˛� WQ�D 5:

Because 4 and 5 are relatively prime,

ŒQŒ�;˛� WQ�D 20:

2More directly, on settingX D �Cx� in

.X3�3X/C .X2�2/CXC1

one obtains 1C�C�2C�� �C�6 D 0.
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QŒ�;˛�

QŒ�� QŒ˛�

Q

N H

G=N

HenceG D Gal.QŒ�;˛�=Q/ has order 20, and the subgroupsN and
H fixing QŒ�� and QŒ˛� have orders 5 and 4 respectively. Because
QŒ�� is normal over Q (it is the splitting field ofX5�1),N is normal
in G. Because QŒ�� �QŒ˛�D QŒ�;˛�, we have H \N D 1, and so
G DN Ì� H . Moreover, H 'G=N ' .Z=5Z/�, which is cyclic,
being generated by the class of 2. Let � be the generator of H cor-
responding to 2 under this isomorphism, and let � be a generator of
N . Thus �.˛/ is another root ofX5�2, which we can take to be �˛
(after possibly replacing � by a power). Hence:�

�� D �2

�˛ D ˛

�
�� D �
�˛ D �˛:

Note that ����1.˛/D ��˛D �.�˛/D �2˛ and it fixes � ; therefore
����1 D �2. ThusG has generators � and � and defining relations

�5 D 1; �4 D 1; ����1 D �2:

The subgroupH has five conjugates, which correspond to the five fields
QŒ� i˛�,

� iH��i $ � iQŒ˛�DQŒ� i˛�; 1� i � 5:
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Constructible numbers revisited

Earlier, we showed (1.36) that a real number ˛ is constructible if and
only if it is contained in a subfield of R of the form QŒ

p
a1; : : : ;

p
ar �

with each ai a positive element of QŒ
p
a1; : : : ;

p
ai�1�. In particular

˛ constructible H) ŒQŒ˛�WQ�D 2s some s: (1)

Now we can prove a partial converse to this last statement.

THEOREM 3.23 If ˛ is contained in a subfield of R that is Galois of
degree 2r over Q, then it is constructible.
PROOF. Suppose ˛ 2 E � R where E is Galois of degree 2r
over Q, and let G D Gal.E=Q/. Because finite p-groups are
solvable (GT 6.7), there exists a sequence of groups

f1g DG0 �G1 �G2 � �� � �Gr DG

with Gi=Gi�1 of order 2. Correspondingly, there will be a
sequence of fields,

E DE0 �E1 �E2 � �� � �Er DQ

with Ei�1 of degree 2 over Ei . The next lemma shows that
Ei D Ei�1Œ

p
ai � for some ai 2 Ei�1, and ai > 0 because

otherwise Ei would not be real. This proves the theorem. 2

LEMMA 3.24 Let E=F be a quadratic extension of fields of charac-
teristic¤ 2. ThenE DF Œ

p
d� for some d 2F .

PROOF. Let ˛ 2 E, ˛ … F , and let X2C bX C c be the min-

imum polynomial of ˛. Then ˛ D �b˙
p
b2�4c
2 , and so E D

F Œ
p
b2�4c�. 2
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COROLLARY 3.25 If p is a prime of the form 2kC1, then cos 2�
p

is
constructible.

PROOF. The field QŒe2�i=p � is Galois over Q with Galois
group G ' .Z=pZ/�, which has order p� 1D 2k . The field
QŒcos 2�p � is contained in QŒe2�i=p �, and therefore is Galois of

degree dividing 2k (fundamental theorem 3.16 and 1.20). As
QŒcos 2�p � is a subfield of R, we can apply the theorem. 2

Thus a regular p-gon, p prime, is constructible if and only if p is a
Fermat prime, i.e., of the form 22

r
C1. For example, we have proved

that the regular 65537-polygon is constructible, without (happily) hav-
ing to exhibit an explicit formula for cos 2�

65537
.

REMARK 3.26 The converse to (1) is false. We’ll show below (4.9)
that the Galois group of the splitting field E over Q of the polynomial
f .X/D X4�4XC2 is S4. If the four roots of f .X/ were con-
structible, then all the elements of E would be constructible (1.36a).
LetH be a Sylow subgroup of S4. ThenEH has odd degree over Q,
and so the elements ofEH XQ can’t be constructible. 3

3As Shuichi Otsuka has pointed out to me, it is possible to prove this without
appealing to the Sylow theorems. If a root ˛ of f .X/ were constructible, then
there would exist a tower of quadratic extensions QŒ˛��M � Q. By Galois
theory, the groups Gal.E=M/� Gal.E=QŒ˛�/ have orders 12 and 6 respec-
tively. As Gal.E=Q/D S4, Gal.E=M/ would be A4. But A4 has no subgroup
of order 6, a contradiction. Thus no root of f .X/ is constructible. (Actually
Gal.E=QŒ˛�/D S3, but that does not matter here.)



The Galois group of a polynomial 79

The Galois group of a polynomial

If the polynomial f 2F ŒX� is separable, then its splitting field Ff is
Galois over F , and we call Gal.Ff =F / the Galois groupGf of f:

Let f D
Qn
iD1.X �˛i / in a splitting field Ff . We know that

the elements of Gal.Ff =F / map roots of f to roots of f , i.e., they
map the set f˛1;˛2; : : : ;˛ng into itself. Being automorphisms, they
define permutations of f˛1;˛2; : : : ;˛ng, and as the ˛i generated Ff ,
an element of Gal.Ff =F / is uniquely determined by the permutation
it defines. ThusGf can be identified with a subset of

Sym.f˛1;˛2; : : : ;˛ng/� Sn:

In fact,Gf consists exactly of the permutations � of f˛1;˛2; : : : ;˛ng
such that, for P 2F ŒX1; : : : ;Xn�,

P.˛1; : : : ;˛n/D 0 H) P.�˛1; : : : ;�˛n/D 0:

This gives a description of Gf without mentioning fields or abstract
groups (neither of which were available to Galois).

Note that this shows again that .Gf W1/, hence ŒFf WF �, divides
deg.f /Š:

Solvability of equations

For a polynomial f 2 F ŒX�, we say that f .X/D 0 is solvable in
radicals if its solutions can be obtained by the algebraic operations of
addition, subtraction, multiplication, division, and the extraction ofmth
roots, or, more precisely, if there exists a tower of fields

F DF0 �F1 �F2 � �� � �Fm

such that
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(a) Fi DFi�1Œ˛i �, ˛
mi
i
2Fi�1;

(b) Fm contains a splitting field for f:

THEOREM 3.27 (GALOIS, 1832) Let F be a field of characteristic
zero. The equation f D 0 is solvable in radicals if and only if the
Galois group of f is solvable.

We shall prove this later (5.32). Also we shall exhibit polynomials
f .X/ 2QŒX� with Galois group Sn, which are therefore not solvable
when n� 5 by GT 4.37.

REMARK 3.28 If F has characteristic p, then the theorem fails for
two reasons:

(a) f may not be separable, and so not have a Galois group;
(b) Xp�X �aD 0 is not solvable by radicals even though it is

separable with abelian Galois group (cf. Exercise 2-2).

If the definition of solvable is changed to allow extensions of the type
in (b) in the chain, and f is required to be separable, then the theorem
becomes true in characteristic p.

Exercises

3-1 (*) LetF be a field of characteristic 0. Show thatF.X2/\
F.X2�X/D F (intersection inside F.X/). [Hint: Find auto-
morphisms � and � of F.X/, each of order 2, fixing F.X2/ and
F.X2�X/ respectively, and show that �� has infinite order.]
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3-2 (*) 4 Let p be an odd prime, and let � be a primitive pth
root of 1 in C. Let E D QŒ��, and let G D Gal.E=Q/; thus
G D .Z=.p//�. Let H be the subgroup of index 2 in G. Put
˛ D

P
i2H �

i and ˇ D
P
i2GnH �

i . Show:

(a) ˛ and ˇ are fixed by H ;
(b) if � 2G nH , then �˛ D ˇ, �ˇ D ˛.

Thus ˛ and ˇ are roots of the polynomialX2CXC˛ˇ 2QŒX�.
Compute ˛ˇ and show that the fixed field of H is QŒpp� when
p � 1 mod 4 and QŒp�p� when p � 3 mod 4.

3-3 (*) LetM DQŒ
p
2;
p
3� andEDMŒ

q
.
p
2C2/.

p
3C3/�

(subfields of R).

(a) Show that M is Galois over Q with Galois group the
4-group C2�C2.

(b) Show that E is Galois over Q with Galois group the
quaternion group.

4This problem shows that every quadratic extension of Q is contained in a
cyclotomic extension of Q. The Kronecker-Weber theorem says that every abelian
extension of Q is contained in a cyclotomic extension.





Chapter 4

Computing Galois Groups

In this chapter, we investigate general methods for computing Galois
groups.

When is Gf � An?

Let � be a permutation of the set f1;2; : : : ;ng. The pairs .i;j / with
i < j but �.i/ > �.j / are called the inversions of � , and � is said to
be even or odd according as the number of inversions is even or odd.
The signature of � , sign.�/, is C1 or �1 according as � is even or
odd. We can define the signature of a permutation � of any set S of n
elements by choosing a numbering of the set and identifying � with
a permutation of f1;: : : ;ng. Then sign is the unique homomorphism
Sym.S/!f˙1g such that sign.�/D�1 for every transposition. In

83
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particular, it is independent of the choice of the numbering. See GT,
4.25.

Now consider a polynomial

f .X/DXnCa1X
n�1C�� �Can

and let f .X/D
Qn
iD1.X �˛i / in some splitting field. Set

�.f /D
Y

1�i<j�n

.˛i �˛j /;

D.f /D�.f /2 D
Y

1�i<j�n

.˛i �˛j /
2:

The discriminant of f is defined to be D.f /. Note that D.f / is
nonzero if and only if f has only simple roots, i.e., if f is separable
with no multiple factors. LetGf be the Galois group of f , and identify
it with a subgroup of Sym.f˛1; : : : ;˛ng/ (as on p. 79).

PROPOSITION 4.1 Assume f is separable, and let � 2Gf .

(a) ��.f /D sign.�/�.f /, where sign.�/ is the signature of �:
(b) �D.f /DD.f /:

PROOF. Each inversion of � introduces a negative sign into
��.f /, and so (a) follows from the definition of sign.�/. The
equation in (b) is obtained by squaring that in (a). 2

While�.f / depends on the choice of the numbering of the roots
of f ,D.f / does not.

COROLLARY 4.2 Let f .X/ 2 F ŒX� be of degree n and have only
simple roots. LetFf be a splitting field forf , so thatGf DGal.Ff =F /.

(a) The discriminantD.f / 2F .
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(b) The subfield of Ff corresponding to An\Gf is F Œ�.f /�.
Hence

Gf �An ” �.f / 2F ” D.f / is a square in F:

PROOF. (a) The discriminant of f is an element of Ff fixed

byGf
def
DGal.Ff =F /, and hence lies in F (by the fundamental

theorem of Galois theory).
(b) Because f has simple roots, �.f /¤ 0, and so the for-

mula ��.f / D sign.�/�.f / shows that an element of Gf
fixes �.f / if and only if it lies in An. Thus, under the Galois
correspondence,

Gf \An$ F Œ�.f /�.

Hence,

Gf \An DGf ” F Œ�.f /�D F: 2

The roots of aX2CbXCc are �b˙
p
b2�4ac
2a

and so

�.aX2CbXCc/D

p
b2�4ac

a
(or �

p
b2�4ac

a
),

D.aX2CbXCc/D
b2�4ac

a2
:

Although there is a not a universal formula for the roots of f in terms
its coefficients when the degree of f is>4 , there is for its discriminant.
For example,

D.X3CbXCc/D�4b3�27c2:
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By completing the cube, one can put any cubic polynomial in this form
(in characteristic¤ 3).

The formulas for the discriminant rapidly become very compli-
cated, for example, that for X5CaX4C bX3C cX2CdX C e
has 59 terms. Fortunately, PARI knows them. For example, typing
poldisc(X^3+a*X^2+b*X+c,X) returns the discriminant of X3C
aX2CbXCc, namely,

�4ca3Cb2a2C18cbaC .�4b3�27c2/:

REMARK 4.3 Suppose F � R. ThenD.f / will not be a square if it
is negative. It is known that the sign ofD.f / is .�1/s where 2s is the
number of nonreal roots of f in C (see ANT 2.39). Thus if s is odd,
thenGf is not contained in An. This can be proved more directly by
noting that complex conjugation acts on the roots as the product of s
disjoint transpositions.

Of course the converse is not true: when s is even, Gf is not
necessarily contained in An.

When is Gf transitive?

PROPOSITION 4.4 Let f .X/ 2 F ŒX� have only simple roots. Then
f .X/ is irreducible if and only ifGf permutes the roots of f transi-
tively.

PROOF. H) W If ˛ and ˇ are two roots of f .X/ in a splitting
field Ff for f , then they both have f .X/ as their minimum
polynomial, and so F Œ˛� and F Œˇ� are both stem fields for f .
Hence, there is an F -isomorphism

F Œ˛�' F Œˇ�; ˛$ ˇ:
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Write Ff D F Œ˛1;˛2; :::� with ˛1 D ˛ and ˛2;˛3; : : : the other
roots of f .X/. Then the F -homomorphism ˛ 7!ˇWF Œ˛�!Ff
extends (step by step) to an F -homomorphism Ff ! Ff (use
2.2b), which is an F -isomorphism sending ˛ to ˇ.
(H W Let g.X/ 2 F ŒX� be an irreducible factor of f , and

let ˛ be one of its roots. If ˇ is a second root of f , then (by
assumption) ˇ D �˛ for some � 2 Gf . Now, because g has
coefficients in F ,

g.�˛/D �g.˛/D 0;

and so ˇ is also a root of g. Therefore, every root of f is also a
root of g, and so f .X/D g.X/: 2

Note that when f .X/ is irreducible of degree n, nj.Gf W1/ be-
cause ŒF Œ˛�WF � D n and ŒF Œ˛�WF � divides ŒFf WF � D .Gf W1/.
ThusGf is a transitive subgroup of Sn whose order is divisible by n.

Polynomials of degree at most three

EXAMPLE 4.5 Let f .X/ 2F ŒX� be a polynomial of degree 2. Then
f is inseparable ” F has characteristic 2 and f .X/DX2�a
for some a 2F XF 2. If f is separable, thenGf D 1.DA2/ or S2
according asD.f / is a square in F or not.

EXAMPLE 4.6 Let f .X/ 2 F ŒX� be a polynomial of degree 3. We
can assume f to be irreducible, for otherwise we are essentially back in
the previous case. Then f is inseparable if and only if F has character-
istic 3 and f .X/DX3�a for some a 2F nF 3. If f is separable,
thenGf is a transitive subgroup of S3 whose order is divisible by 3.
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There are only two possibilities:Gf DA3 or S3 according asD.f /
is a square in F or not. Note that A3 is generated by the cycle .123/.

For example, X3�3XC1 2 QŒX� is irreducible (see 1.12), its
discriminant is �4.�3/3�27D 81D 92, and so its Galois group is
A3.

On the other hand,X3C3XC12QŒX� is also irreducible (apply
1.11), but its discriminant is �135 which is not a square in Q, and so
its Galois group is S3.

Quartic polynomials

Let f .X/ be a quartic polynomial without multiple roots. In order to
determineGf we shall exploit the fact that S4 has

V D f1;.12/.34/;.13/.24/;.14/.23/g

as a normal subgroup — it is normal because it contains all elements of
type 2C2 (GT 4.29). LetE be a splitting field of f , and let f .X/DQ
.X �˛i / in E . We identify the Galois group Gf of f with a

subgroup of the symmetric group Sym.f˛1;˛2;˛3;˛4g/. Consider
the partially symmetric elements

˛D ˛1˛2C˛3˛4

ˇ D ˛1˛3C˛2˛4


 D ˛1˛4C˛2˛3:

They are distinct because the ˛i are distinct; for example,

˛�ˇ D ˛1.˛2�˛3/C˛4.˛3�˛2/D .˛1�˛4/.˛2�˛3/:

The group Sym.f˛1;˛2;˛3;˛4g/ permutes f˛;ˇ;
g transitively. The
stabilizer of each of ˛;ˇ;
 must therefore be a subgroup of index
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3 in S4, and hence has order 8. For example, the stabilizer of ˇ is
h.1234/;.13/i. Groups of order 8 inS4 are Sylow 2-subgroups. There
are three of them, all isomorphic to D4. By the Sylow theorems, V
is contained in a Sylow 2-subgroup; in fact, because the Sylow 2-
subgroups are conjugate and V is normal, it is contained in all three. It
follows that V is the intersection of the three Sylow 2-subgroups. Each
Sylow 2-subgroup fixes exactly one of ˛;ˇ; or 
 , and therefore their
intersection V is the subgroup of Sym.f˛1;˛2;˛3;˛4g/ fixing ˛, ˇ ,
and 
 .

LEMMA 4.7 The fixed field ofGf \V isF Œ˛;ˇ;
�. HenceF Œ˛;ˇ;
�
is Galois over F with Galois groupGf =Gf \V .
PROOF. The above discussion shows that the subgroup of Gf
of elements fixing F Œ˛;ˇ;
� is Gf \V , and so EGf \V D
F Œ˛;ˇ;
� by the fundamental theorem of Galois theory. The
remaining statements follow from the fundamental theorem
using that V is normal.

E

F Œ˛;ˇ;
�

F

Gf \V

Gf =Gf \V

2

LetM DF Œ˛;ˇ;
�, and let g.X/D .X�˛/.X�ˇ/.X�
/2
MŒX� — it is called the resolvent cubic of f . Every permutation of
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the ˛i (a fortiori, every element ofGf ) merely permutes ˛;ˇ;
 , and
so fixes g.X/. Therefore (by the fundamental theorem) g.X/ has
coefficients in F . More explicitly, we have:

LEMMA 4.8 The resolvent cubic of f DX4CbX3CcX2CdXC
e is

g DX3�cX2C .bd �4e/X �b2eC4ce�d2:

The discriminants of f and g are equal.

SKETCH OF PROOF. Expand

f D .X �˛1/.X �˛2/.X �˛3/.X �˛4/

to express b;c;d;e in terms of ˛1;˛2;˛3;˛4. Expand gD .X�
˛/.X � ˇ/.X � 
/ to express the coefficients of g in terms
of ˛1;˛2;˛3;˛4, and substitute to express them in terms of
b;c;d;e. 2

Now let f be an irreducible separable quartic. ThenG DGf is a
transitive subgroup of S4 whose order is divisible by 4. There are the
following possibilities forG:

G .G\V W1/ .GWV \G/

S4 4 6

A4 4 3

V 4 1

D4 4 2

C4 2 2

.G\V W1/D ŒE WM�

.GWV \G/D ŒM WF �
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The groups of type D4 are the Sylow 2-subgroups discussed above,
and the groups of type C4 are those generated by cycles of length 4.

We can compute .GWV \G/ from the resolvent cubic g , because
G=V \G D Gal.M=F / and M is the splitting field of g . Once we
know .GWV \G/, we can deduce G except in the case that it is 2.
If ŒM WF � D 2, then G\V D V or C2. Only the first group acts
transitively on the roots of f , and so (from 4.4) we see that in this case
G DD4 or C4 according as f is irreducible or not inMŒX�.

EXAMPLE 4.9 Consider f .X/ D X4 � 4X C 2 2 QŒX�. It is ir-
reducible by Eisenstein’s criterion (1.16), and its resolvent cubic is
g.X/DX3�8XC16, which is irreducible because it has no roots
in F5. The discriminant of g.X/ is �4864, which is not a square, and
so the Galois group of g.X/ is S3. From the table, we see that the
Galois group of f .X/ is S4.

EXAMPLE 4.10 Consider f .X/DX4C4X2C2 2QŒX�. It is ir-
reducible by Eisenstein’s criterion (1.16), and its resolvent cubic is
.X�4/.X2�8/; thusM DQŒ

p
2�. From the table we see thatGf

is of type D4 or C4, but f factors over M (even as a polynomial in
X2), and henceGf is of type C4.

EXAMPLE 4.11 Consider f .X/D X4�10X2C4 2 QŒX�. It is
irreducible in QŒX� because (by inspection) it is irreducible in ZŒX�.
Its resolvent cubic is .XC10/.XC4/.X�4/, and soGf is of type
V .

EXAMPLE 4.12 Consider f .X/DX4�2 2QŒX�. It is irreducible
by Eisenstein’s criterion (1.16), and its resolvent cubic is g.X/ D
X3C8X . HenceM DQŒi

p
2�. One can check that f is irreducible

overM , andGf is of typeD4.
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Alternatively, analyse the equation as in (3.22).

As we explained in (1.29), PARI knows how to factor polynomials
with coefficients in QŒ˛�.

EXAMPLE 4.13 (From the web, sci.math.research, search for “final
analysis”.) Consider f .X/DX4�2cX3�dX2C2cdX�dc2 2
ZŒX� with a > 0, b > 0, c > 0, a > b and d D a2�b2. Let r D
d=c2 and let w be the unique positive real number such that r D
w3=.w2C4/. Letm be the number of roots of f .X/ in Z (counted
with multiplicities). The Galois group of f is as follows:

˘ IfmD 0 and w not rational, thenG is S4.
˘ IfmD 1 and w not rational thenG is S3.
˘ If w is rational and w2C4 is not a square thenG DD4.
˘ Ifw is rational andw2C4 is a square thenGDV DC2�C2:

This covers all possible cases. The hard part was to establish thatmD 2
could never happen.

Examples of polynomials with Sp as Galois
group over Q

The next lemma gives a criterion for a subgroup of Sp to be the whole
of Sp .

LEMMA 4.14 For p prime, the symmetric group Sp is generated by
any transposition and any p-cycle.
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PROOF. After renumbering, we may assume that the transpo-
sition is � D .12/, and we may write the p-cycle � so that 1
occurs in the first position, � D .1i2 � � � ip/. Now some power
of � will map 1 to 2 and will still be a p-cycle (here is where
we use that p is prime). After replacing � with the power, we
have � D .12j3 : : :jp/, and after renumbering again, we have
� D .123: : :p/: Now

.i iC1/D � i .12/��i

(see GT 4.29) and so lies in the subgroup generated by � and � .
These transpositions generate Sp . 2

PROPOSITION 4.15 Let f be an irreducible polynomial of prime de-
gree p in QŒX�. If f splits in C and has exactly two nonreal roots,
thenGf D Sp :

PROOF. Let E be the splitting field of f in C, and let ˛ 2E be
a root of f . Because f is irreducible, ŒQŒ˛�WQ�D degf D p,
and so pjŒEWQ�D .Gf W1/. Therefore Gf contains an element
of order p (Cauchy’s theorem, GT 4.13), but the only elements
of order p in Sp are p-cycles (here we use that p is prime
again).

Let � be complex conjugation on C. Then � transposes
the two nonreal roots of f .X/ and fixes the rest. Therefore
Gf � Sp and contains a transposition and a p-cycle, and so is
the whole of Sp . 2

It remains to construct polynomials satisfying the conditions of the
Proposition.
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EXAMPLE 4.16 Let p� 5 be a prime number. Choose a positive even
integerm and even integers

n1 < n2 < � � �< np�2;

and let

g.X/D .X2Cm/.X �n1/:::.X �np�2/:

The graph of g crosses the x-axis exactly at the points n1; : : : ;np�2,
and it doesn’t have a local maximum or minimum at any of those points
(because the ni are simple roots). Thus eDming0.x/D0 jg.x/j> 0,
and we can choose an odd positive integer n such that 2

n
< e.

Consider

f .X/D g.X/�
2

n
.

As 2
n
< e, the graph of f also crosses the x-axis at exactly p�2

points, and so f has exactly two nonreal roots. On the other hand, when
we write

nf .X/D nXpCa1X
p�1C�� �Cap;

the ai are all even and ap is not divisible by 22, and so Eisenstein’s
criterion implies that f is irreducible. Over R, f has p�2 linear
factors and one quadratic factor, and so it certainly splits over C (high
school algebra). Therefore, the proposition applies to f .1

EXAMPLE 4.17 The reader shouldn’t think that, in order to have Galois
group Sp , a polynomial must have exactly two nonreal roots. For
example, the polynomial X5�5X3C4X �1 has Galois group S5
but all of its roots are real.

1Ifm is taken sufficiently large, then g.X/�2will have exactly two nonreal
roots, i.e., we can take nD 1, but the proof is longer (see Jacobson 1964, p107,
who credits the example to Brauer). The shorter argument in the text was suggested
to me by Martin Ward.
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Finite fields

Let Fp D Z=pZ, the field of p elements. As we noted in �1, any other
field E of characteristic p contains a copy of Fp , namely, fm1E j
m 2 Zg. No harm results if we identify Fp with this subfield ofE .

LetE be a field of degree n over Fp . ThenE has qDpn elements,
and soE� is a group of order q�1. Hence the nonzero elements ofE
are roots ofXq�1�1, and all elements of E (including 0) are roots
ofXq�X . HenceE is a splitting field forXq�X , and so any two
fields with q elements are isomorphic.

PROPOSITION 4.18 Every extension of finite fields is simple.

PROOF. Consider E � F . Then E� is a finite subgroup of the
multiplicative group of a field, and hence is cyclic (see Exercise
1-3). If � generates E� as a multiplicative group, then certainly
E D F Œ��. 2

Now letE be the splitting field of f .X/DXq�X , qDpn. The
derivative f 0.X/D�1, which is relatively prime to f .X/ (in fact,
to every polynomial), and so f .X/ has q distinct roots in E . Let S
be the set of its roots. Then S is obviously closed under multiplication
and the formation of inverses, but it is also closed under subtraction: if
aq D a and bq D b, then

.a�b/q D aq�bq D a�b:

Hence S is a field, and so S DE . In particular,E has pn elements.

PROPOSITION 4.19 For each power q D pn there is a field Fq with
q elements. It is the splitting field of Xq �X , and hence any two
such fields are isomorphic. Moreover, Fq is Galois over Fp with cyclic
Galois group generated by the Frobenius automorphism �.a/D ap .
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PROOF. Only the final statement remains to be proved. The
field Fq is Galois over Fp because it is the splitting field of

a separable polynomial. We noted in (1.4) that x
�
7! xp is an

automorphism of Fq . An element a of Fq is fixed by � if and
only if ap D a, but Fp consists exactly of such elements, and
so the fixed field of h�i is Fp . This proves that Fq is Galois
over Fp and that h�i D Gal.Fq=Fp/ (see 3.11b). 2

COROLLARY 4.20 LetE be a field withpn elements. For each divisor
m of n,m� 0,E contains exactly one field with pm elements.
PROOF. We know thatE is Galois over Fp and that Gal.E=Fp/
is the cyclic group of order n generated by � . The group h�i
has one subgroup of order n=m for each m dividing n, namely,
h�mi, and so E has exactly one subfield of degree m over Fp
for each m dividing n, namely, Eh�

mi. Because it has degree
m over Fp , Eh�

mi has pm elements. 2

COROLLARY 4.21 Each monic irreducible polynomial f of degree
d jn in FpŒX� occurs exactly once as a factor ofXp

n
�X ; hence, the

degree of the splitting field of f is � d .

PROOF. First, the factors of Xp
n
�X are distinct because it

has no common factor with its derivative. If f .X/ is irreducible
of degree d , then f .X/ has a root in a field of degree d over Fp .
But the splitting field of Xp

n
�X contains a copy of every field

of degree d over Fp with d jn. Hence some root of Xp
n
�X is

also a root of f .X/, and therefore f .X/jXp
n
�X . In particular,

f divides Xp
d
�X , and therefore it splits in its splitting field,

which has degree d over Fp . 2
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PROPOSITION 4.22 Let F be an algebraic closure of Fp . Then F con-
tains exactly one field Fpn for each integer n� 1, and Fpn consists of
the roots ofXp

n
�X . Moreover,

Fpm � Fpn ” mjn:

The partially ordered set of finite subfields of F is isomorphic to the set
of integers n� 1 partially ordered by divisibility.
PROOF. Obvious from what we have proved. 2

PROPOSITION 4.23 The field Fp has an algebraic closure F.
PROOF. Choose a sequence of integers 1D n1 <n2 <n3 < � � �
such that ni jniC1 for all i , and every integer n divides some ni .
For example, let ni D i Š. Define the fields Fpni inductively as
follows: Fpn1 D Fp ; Fpni is the splitting field of Xp

ni
�X

over Fpni�1 . Then, Fpn1 � Fpn2 � Fpn3 � � � � , and we define
FD

S
Fpni . As a union of a chain of fields algebraic over Fp ,

it is again a field algebraic over Fp . Moreover, every polynomial
in Fp ŒX� splits in F, and so it is an algebraic closure of F (by
1.44). 2

REMARK 4.24 Since the Fpn ’s are not subsets of a fixed set, forming
the union requires explanation. Define S to be the disjoint union of the
Fpn . For a;b 2 S , set a� b if aD b in one of the Fpn . Then � is
an equivalence relation, and we let FD S=�.

PARI factors polynomials modulo p very quickly. Recall that the
syntax is
factormod(f(X),p). For example, to obtain a list of all monic poly-
nomials of degree 1;2; or 4 over F5, ask PARI to factor X625�X
modulo 5 (note that 625D 54).
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ASIDE 4.25 In one of the few papers published during his lifetime,
Galois defined finite fields of arbitrary prime power order and estab-
lished their basic properties, for example, the existence of a primitive
element (Notices AMS, Feb. 2003, p. 198). For this reason finite fields
are often called Galois fields and the field with q elements is often
denotedGF.q/.

Computing Galois groups over Q

In the remainder of this chapter, I sketch a practical method for com-
puting Galois groups over Q and similar fields. Recall that for a sepa-
rable polynomial f 2F ŒX�, Ff denotes a splitting field for F , and
Gf D Gal.Ff =F / denotes the Galois group of F . Moreover, Gf
permutes the roots ˛1;˛2; : : : of f in Ff :

G � Symf˛1;˛2; : : :g.

The first result generalizes Proposition 4.4.

PROPOSITION 4.26 Let f .X/ be a polynomial in F ŒX� with only
simple roots, and suppose that the orbits of Gf acting on the roots
of f havem1; : : : ;mr elements respectively. Then f factors as f D
f1 � � �fr with fi irreducible of degreemi .
PROOF. We may assume that f is monic. Let ˛1; : : : ;˛m,mD
degf , be the roots of f .X/ in Ff . The monic factors of f .X/
in Ff ŒX� correspond to subsets S of f˛1; : : : ;˛mg,

S $ fS D
Y
˛2S

.X �˛/,

and fS is fixed under the action of Gf (and hence has coef-
ficients in F ) if and only if S is stable under Gf . Therefore
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the irreducible factors of f in F ŒX� are the polynomials fS
corresponding to minimal subsets S of f˛1; : : : ;˛mg stable un-
der Gf , but these subsets S are precisely the orbits of Gf in
f˛1; : : : ;˛mg. 2

REMARK 4.27 Note that the proof shows the following: let

f˛1; : : : ;˛mg D
[
Oi

be the decomposition of f˛1; : : : ;˛mg into a disjoint union of orbits
for the groupGf ; then

f D
Y
fi ; fi D

Y
˛i2Oi

.X �˛i /

is the decomposition of f into a product of irreducible polynomials in
F ŒX�.

Now suppose F is finite, with pn elements say. Then Gf is a
cyclic group generated by the Frobenius automorphism � Wx 7! xp .
When we regard � as a permutation of the roots of f , then distinct
orbits of � correspond to the factors in its cycle decomposition (GT
4.26). Hence, if the degrees of the distinct irreducible factors of f are
m1;m2; : : : ;mr , then � has a cycle decomposition of type

m1C�� �Cmr D degf:

LEMMA 4.28 Let R be a unique factorization domain with field of
fractions F , and let f be a monic polynomial in RŒX�. Let P be a
prime ideal inR, and let xf be the image of f in .R=P/ŒX�. Assume
that neither f nor xf has a multiple root. Then the roots ˛1; : : : ;˛m of
f lie in some finite extensionR0 ofR, and their reductions x̨i modulo
PR0 are the roots of xf . MoreoverG xf �Gf when both are identified
with subgroups of Symf˛1; : : : ;˛mg D Symfx̨1; : : : ; x̨mg.
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PROOF. Omitted — see van der Waerden, Modern Algebra, I,
�61 (second edition) or ANT 3.41. 2

On combining these results, we obtain the following theorem.

THEOREM 4.29 (DEDEKIND) Let f .X/ 2 ZŒX� be a monic poly-
nomial of degree m, and let p be a prime such that f mod p has
simple roots (equivalently,D.f / is not divisible by p). Suppose that
xf D

Q
fi with fi irreducible of degree mi in FpŒX�. Then Gf

contains an element whose cycle decomposition is of type

mDm1C�� �Cmr :

EXAMPLE 4.30 Consider X5 �X � 1. Modulo 2, this factors as
.X2CXC1/.X3CX2C1/, and modulo 3 it is irreducible. Hence
Gf contains .ik/.lmn/ and .12345/, and so also ..ik/.lmn//3D
.ik/. ThereforeGf D S5 by (4.14).

LEMMA 4.31 A transitive subgroup ofH � Sn containing a transpo-
sition and an .n�1/-cycle is equal to Sn.

PROOF. After possibly renumbering, we may suppose the .n�
1/-cycle is .123: : :n�1/. Because of the transitivity, the trans-
position can be transformed into .in/, some 1� i � n�1. Con-
jugating .in/ by .123: : :n� 1/ and its powers will transform
it into .1n/; .2n/; : : : ; .n� 1n/, and these elements obviously
generate Sn: 2

EXAMPLE 4.32 Select monic polynomials of degree n, f1;f2;f3
with coefficients in Z such that:

(a) f1 is irreducible modulo 2;
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(b) f2 D .degree 1/.irreducible of degree n�1/ mod 3;
(c) f3 D .irreducible of degree 2)(product of 1 or 2 irreducible

polys of odd degree) mod 5.

We also choose f1, f2, f3 to have only simple roots. Take

f D�15f1C10f2C6f3:

Then

(i) Gf is transitive (it contains an n-cycle because f � f1 mod
2);

(ii) Gf contains a cycle of length n�1 (because f � f2 mod 3);
(iii) Gf contains a transposition (because f � f3 mod 5, and

so it contains the product of a transposition with a commuting
element of odd order; on raising this to an appropriate odd power,
we are left with the transposition). HenceGf is Sn:

The above results give the following strategy for computing the
Galois group of an irreducible polynomial f 2QŒX�. Factor f modulo
a sequence of primes p not dividingD.f / to determine the cycle types
of the elements in Gf — a difficult theorem in number theory, the
effective Chebotarev density theorem, says that if a cycle type occurs in
Gf , then this will be seen by looking modulo a set of prime numbers
of positive density, and will occur for a prime less than some bound.
Now look up a table of transitive subgroups of Sn with order divisible
by n and their cycle types. If this doesn’t suffice to determine the group,
then look at its action on the set of subsets of r roots for some r .

See, Butler and McKay, The transitive groups of degree up to eleven,
Comm. Algebra 11 (1983), 863–911. This lists all transitive subgroups
of Sn, n � 11, and gives the cycle types of their elements and the
orbit lengths of the subgroup acting on the r-sets of roots. With few
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exceptions, these invariants are sufficient to determine the subgroup up
to isomorphism.

PARI can compute Galois groups for polynomials of degree �
11 over Q. The syntax is polgalois(f) where f is an irreducible
polynomial of degree � 11 (or � 7 depending on your setup), and
the output is .n;s;k;name/ where n is the order of the group, s is
C1 or �1 according as the group is a subgroup of the alternating
group or not, and “name” is the name of the group. For example,
polgalois(X^5-5*X^3+4*X-1) (see 4.17) returns the symmetric
group S5, which has order 120, polgalois(X^11-5*X^3+4*X-1)
returns the symmetric group S11, which has order 39916800, and
polgalois(X^12-5*X^3+4*X-1) returns an apology. The reader should
use PARI to check the examples 4.9–4.12.

See also, Soicher and McKay, Computing Galois groups over the
rationals, J. Number Theory, 20 (1985) 273–281.

Exercises

4-1 (*) Find the splitting field of Xm�1 2 Fp ŒX�.

4-2 (*) Find the Galois group of X4�2X3�8X �3 over Q.

4-3 (*) Find the degree of the splitting field of X8� 2 over
Q.

4-4 (*) Give an example of a field extension E=F of degree
4 such that there does not exist a field M with F �M � E,
ŒM WF �D 2.
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4-5 List all irreducible polynomials of degree 3 over F7 in 10
seconds or less (there are 112).

4-6 “It is a thought-provoking question that few graduate stu-
dents would know how to approach the question of determining
the Galois group of, say,

X6C2X5C3X4C4X3C5X2C6XC7:”

[over Q].

(a) Can you find it?
(b) Can you find it without using the “polgalois” com-

mand in PARI?

4-7 (*) Let f .X/DX5CaXCb, a;b 2Q. Show thatGf �
D5 (dihedral group) if and only if

(a) f .X/ is irreducible in QŒX�, and
(b) the discriminant D.f / D 44a5 C 55b4 of f .X/ is a

square, and
(c) the equation f .X/D 0 is solvable by radicals.

4-8 Show that a polynomial f of degree n D
Qk
iD1p

ri
i is

irreducible over Fq if and only if gcd.f .x/;xq
n=pi
�x/D 1

for all i .

4-9 Let f .X/ be an irreducible polynomial in QŒX� with both
real and nonreal roots. Show that its Galois group is nonabelian.
Can the condition that f is irreducible be dropped?





Chapter 5

Applications of Galois Theory

In this chapter, we apply the fundamental theorem of Galois theory to
obtain other results about polynomials and extensions of fields.

Primitive element theorem.

Recall that a finite extension of fields E=F is simple if E D F Œ˛�
for some element ˛ of E . Such an ˛ is called a primitive element of
E . We shall show that (at least) all separable extensions have primitive
elements.

Consider for example QŒ
p
2;
p
3�=Q. We know (see Exercise 3-3)

that its Galois group over Q is a 4-group h�;�i; where(
�
p
2 D �

p
2

�
p
3 D

p
3
;

(
�
p
2 D

p
2

�
p
3 D �

p
3
:

105
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Note that

�.
p
2C
p
3/ D �

p
2C
p
3;

�.
p
2C
p
3/ D

p
2�
p
3;

.��/.
p
2C
p
3/ D �

p
2�
p
3:

These all differ from
p
2C
p
3, and so only the identity element of

Gal.QŒ
p
2;
p
3�=Q/ fixes the elements of QŒ

p
2C
p
3�. According

to the fundamental theorem, this implies that
p
2C
p
3 is a primitive

element:
QŒ
p
2;
p
3�DQŒ

p
2C
p
3�:

It is clear that this argument should work much more generally.
Recall that an element ˛ algebraic over a field F is separable over

F if its minimum polynomial over F has no multiple roots.

THEOREM 5.1 LetE DF Œ˛1; :::;˛r � be a finite extension ofF , and
assume that ˛2; :::;˛r are separable over F (but not necessarily ˛1).
Then there is an element 
 2E such thatE DF Œ
�.

PROOF. For finite fields, we proved this in (4.18). Hence we
may assume F to be infinite. It suffices to prove the statement
for r D 2, for then

F Œ˛1;˛2; : : : ;˛r �DF Œ˛
0
1;˛3; : : : ;˛r �DF Œ˛

00
1 ;˛4; : : : ;˛r �D �� � :

Thus let E D F Œ˛;ˇ� with ˇ separable over F . Let f and g
be the minimum polynomials of ˛ and ˇ over F . Let ˛1 D
˛; : : : ;˛s be the roots of f in some big field containing E, and
let ˇ1 D ˇ, ˇ2; : : : ;ˇt be the roots of g. For j ¤ 1, ˇj ¤ ˇ1,
and so the the equation

˛i CXˇj D ˛1CXˇ1;
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has exactly one solution, namely, X D ˛i�˛1
ˇ1�ˇj

. If we choose
a c 2 F different from any of these solutions (using that F is
infinite), then

˛i C cˇj ¤ ˛C cˇ unless i D 1D j:

Let 
 D ˛Ccˇ. Then the polynomials g.X/ and f .
�cX/
have coefficients in F Œ
�, and have ˇ as a root:

g.ˇ/D 0; f .
 � cˇ/D f .˛/D 0:

In fact, ˇ is their only common root, because we chose c so that

 � cˇj ¤ ˛i unless i D 1D j . Therefore

gcd.g.X/;f .
 � cX//DX �ˇ.

Here we have computed the gcd in some field splitting fg, but
we have seen (Proposition 2.10) that the gcd of two polynomi-
als has coefficients in the same field as the coefficients of the
polynomials. Hence ˇ 2 F Œ
�, and this implies that ˛ D 
 �cˇ
also lies in F Œ
�. We have shown that F Œ˛;ˇ�D F Œ
�. 2

REMARK 5.2 WhenF is infinite, the proof shows that 
 can be chosen
to be of the form


 D ˛1Cc2˛2C�� �Ccr˛r ; ci 2F:

IfE is Galois over F , then an element of this form will be a primitive
element provided it is moved by every element of Gal.E=F / except 1.
These remarks make it very easy to write down primitive elements.
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Our hypotheses are minimal: if two of the ˛s are not separable, then
the extension need not be simple. Before giving an example to illustrate
this, we need another result.

PROPOSITION 5.3 LetE DF Œ
� be a simple algebraic extension of
F . Then there are only finitely many intermediate fieldsM ,

F �M �E:

PROOF. Let M be such a field, and let g.X/ be the minimum
polynomial of 
 over M . Let M 0 be the subfield of E gener-
ated over F by the coefficients of g.X/. Clearly M 0 �M , but
(equally clearly) g.X/ is the minimum polynomial of 
 over
M 0. Hence

ŒEWM 0�D degg D ŒEWM�;

and so M DM 0 — M is generated by the coefficients of g.X/.
Let f .X/ be the minimum polynomial of 
 over F . Then

g.X/ divides f .X/ in MŒX�, and hence also in EŒX�. There-
fore, there are only finitely many possible g’s, and consequently
only finitely many possible M ’s. 2

REMARK 5.4 (a) Note that the proof in fact gives a description of all
the intermediate fields: each is generated over F by the coefficients of
a factor g.X/ of f .X/ inEŒX�. The coefficients of such a g.X/ are
partially symmetric polynomials in the roots of f .X/ (that is, fixed by
some, but not necessarily all, of the permutations of the roots).

(b) The proposition has a converse: ifE is a finite extension of F
and there are only finitely many intermediate fieldsM , F �M �E ,
thenE is a simple extension of F (see Dummit and Foote 1991, p508).
This gives another proof of Theorem 5.1 in the case thatE is separable
over F , because Galois theory shows that there are only finitely many
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intermediate fields in this case (the Galois closure of E over F has
only finitely many intermediate fields).

EXAMPLE 5.5 The simplest nonsimple algebraic extension is k.X;Y /�
k.Xp;Y p/, where k is an algebraically closed field of characteristic
p. Let F D k.Xp;Y p/. For all c 2 k, we have

k.X;Y /DF ŒX;Y ��F ŒXCcY ��F

with the degree of each extension equal to p. If

F ŒXCcY �DF ŒXCc0Y �; c ¤ c0;

then F ŒXCcY � would contain both X and Y , which is impossible
because Œk.X;Y /WF �D p2. Hence there are infinitely many distinct
intermediate fields.1

Fundamental Theorem of Algebra

We finally prove the misnamed2 fundamental theorem of algebra.

1Zariski showed that there is even an intermediate fieldM that is not isomor-
phic to F.X;Y /, and Piotr Blass showed in his thesis (University of Michigan
1977), using the methods of algebraic geometry, that there is an infinite sequence
of intermediate fields, no two of which are isomorphic.

2Because it is not strictly a theorem in algebra: it is a statement about R
whose construction is part of analysis (or maybe topology). In fact, I prefer the
proof based on Liouville’s theorem in complex analysis to the more algebraic
proof given in the text: if f .z/ is a polynomial without a root in C, then f .z/�1
will be bounded and holomorphic on the whole complex plane, and hence (by
Liouville) constant. The Fundamental Theorem was quite a difficult theorem to
prove. Gauss gave a proof in his doctoral dissertation in 1798 in which he used
some geometric arguments which he didn’t justify. He gave the first rigorous proof
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THEOREM 5.6 The field C of complex numbers is algebraically closed.

PROOF. Define C to be the splitting field of X2C 1 2 RŒX�,
and let i be a root of X2C1 in C; thus CD RŒi �. We have to
show (see 1.44) that every f .X/ 2 RŒX� has a root in C.

The two facts we need to assume about R are:

˘ Positive real numbers have square roots.
˘ Every polynomial of odd degree with real coefficients

has a real root.

Both are immediate consequences of the Intermediate Value
Theorem, which says that a continuous function on a closed
interval takes every value between its maximum and minimum
values (inclusive). (Intuitively, this says that, unlike the rationals,
the real line has no “holes”.)

We first show that every element of C has a square root.
Write ˛ D aC bi , with a;b 2 R, and choose c;d to be real
numbers such that

c2 D
.aC
p
a2Cb2/

2
; d2 D

.�aC
p
a2Cb2/

2
:

Then c2�d2 D a and .2cd/2 D b2. If we choose the signs of
c and d so that cd has the same sign as b, then .cCdi/2 D ˛
and so cCdi is a square root of ˛.

Let f .X/2RŒX�, and letE be a splitting field for f .X/.X2C
1/ — we have to show that E D C. Since R has characteristic

in 1816. The elegant argument given here is a simplification by Emil Artin of
earlier proofs (see Artin, E., Algebraische Konstruction reeller Körper, Hamb.
Abh., Bd. 5 (1926), 85-90; translation available in Artin, Emil. Exposition by Emil
Artin: a selection. AMS; LMS 2007).
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zero, the polynomial is separable, and so E is Galois over R.
Let G be its Galois group, and let H be a Sylow 2-subgroup of
G.

Let M DEH . Then M is of odd degree over R, and M D
RŒ˛� some ˛ (Theorem 5.1). The minimum polynomial of ˛
over R has odd degree and so has a root in R. It therefore has
degree 1, and so M D R and G DH .

We now know that Gal.E=C/ is a 2-group. If it is¤ 1, then
it has a subgroup N of index 2 (GT 4.17). The field EN has
degree 2 over C, and can therefore be obtained by extracting
the square root of an element of C (see 3.24), but we have seen
that all such elements already lie in C. Hence EN D C, which
is a contradiction. Thus E D C. 2

COROLLARY 5.7 (a) The field C is the algebraic closure of R.
(b) The set of all algebraic numbers is an algebraic closure of Q:

PROOF. Part (a) is obvious from the definition of “algebraic
closure” (1.43), and (b) follows from Corollary 1.46. 2

Cyclotomic extensions

A primitive nth root of 1 in F is an element of order n in F �. Such
an element can exist only if F has characteristic 0 or characteristic p
not dividing n.

PROPOSITION 5.8 Let F be a field of characteristic 0 or characteristic
p not dividing n. LetE be the splitting field ofXn�1.

(a) There exists a primitive nth root of 1 inE .
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(b) If � is a primitive nth root of 1 inE , thenE DF Œ��.
(c) The field E is Galois over F ; for each � 2 Gal.E=F /, there

is an i 2 .Z=nZ/� such that �� D � i for all � with �n D 1;
the map � 7! Œi� is an injective homomorphism

Gal.E=F /! .Z=nZ/�.

PROOF. (a) The roots of Xn�1 are distinct, because its deriva-
tive nXn�1 has only zero as a root (here we use the condition
on the characteristic), and so E contains n distinct nth roots of
1. The nth roots of 1 form a finite subgroup of E�, and so (see
Exercise 3) they form a cyclic group. Every generator has order
n, and hence will be a primitive nth root of 1.

(b) The roots of Xn�1 are the powers of �, and F Œ�� con-
tains them all.

(c) If �0 is one primitive nth root of 1, then the remaining
primitive nth roots of 1 are the elements �i0 with i relatively
prime to n. Since, for any automorphism � of E, ��0 is again a
primitive nth root of 1, it equals �i0 for some i relatively prime to
n, and the map � 7! i mod n is injective because �0 generates
E over F . It obviously is a homomorphism. Moreover, for any
other nth root of 1, � D �m0 ,

�� D .��0/
m
D �im0 D �

i : 2

The map � 7! Œi�WGal.F Œ��=F /! .Z=nZ/� need not be surjec-
tive. For example, if F D C, then its image is f1g, and if F D R, it is
either fŒ1�g or fŒ�1�; Œ1�g. On the other hand, when nD p is prime,
we saw in (1.41) that ŒQŒ��WQ�D p�1, and so the map is surjective.
We now prove that the map is surjective for all n when F DQ.
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The polynomialXn�1 has some obvious factors in QŒX�, namely,
the polynomials Xd �1 for any d jn. The quotient of Xn�1 by all
these factors for d < n is called the nth cyclotomic polynomial ˚n.
Thus

˚n D
Y
.X ��/ (product over the primitive nth roots of 1/:

It has degree '.n/, the order of .Z=nZ/�. Since every nth root of 1 is
a primitive d th root of 1 for exactly one d dividing n, we see that

Xn�1D
Y
d jn

˚d .X/:

For example, ˚1.X/DX �1, ˚2.X/DXC1, ˚3.X/DX2C
XC1, and

˚6.X/D
X6�1

.X �1/.XC1/.X2CXC1/
DX2�XC1:

This gives an easy inductive method of computing the cyclotomic poly-
nomials. Alternatively ask PARI by typing polcyclo(n,X).

Because Xn�1 has coefficients in Z and is monic, every monic
factor of it in QŒX� has coefficients in Z (see 1.14). In particular, the
cyclotomic polynomials lie in ZŒX�.

LEMMA 5.9 Let F be a field of characteristic 0 or p not dividing
n, and let � be a primitive nth root of 1 in some extension field. The
following are equivalent:

(a) the nth cyclotomic polynomial ˚n is irreducible;
(b) the degree ŒF Œ��WF �D '.n/;
(c) the homomorphism

Gal.F Œ��=F /! .Z=nZ/�

is an isomorphism.
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PROOF. Because � is a root of ˚n, the minimum polynomial
of � divides ˚n. It is equal to it if and only if ŒF Œ��WF � D
'.n/, which is true if and only if the injection Gal.F Œ��=F / ,!
.Z=nZ/� is onto. 2

THEOREM 5.10 The nth cyclotomic polynomial ˚n is irreducible in
QŒX�.
PROOF. Let f .X/ be a monic irreducible factor of ˚n in QŒX�.
Its roots will be primitive nth roots of 1, and we have to show
they include all primitive nth roots of 1. For this it suffices to
show that

� a root of f .X/ H) �i a root of f .X/ for all i such that gcd.i;n/D 1:

Such an i is a product of primes not dividing n, and so it suffices
to show that

� a root of f .X/ H) �p a root of f .X/ for all primes p − n:

Write
˚n.X/D f .X/g.X/:

Proposition 1.14 shows that f .X/ and g.X/ lie in ZŒX�. Sup-
pose � is a root of f but that, for some prime p not dividing
n, �p is not a root of f . Then �p is a root of g.X/, g.�p/D 0,
and so � is a root of g.Xp/. As f .X/ and g.Xp/ have a com-
mon root, they have a nontrivial common factor in QŒX� (2.10),
which automatically lies in ZŒX� (1.14). Write h.X/ 7! xh.X/
for the map ZŒX� 7! Fp ŒX�, and note that

gcdZŒX�.f .X/;g.X
p//¤ 1 H) gcdFp ŒX�.

xf .X/; xg.Xp//¤ 1:
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But xg.Xp/D xg.X/p (use the mod p binomial theorem and that
ap D a for all a 2 Fp/, and so xf .X/ and xg.X/ have a common
factor. Hence Xn�1, when regarded as an element of Fp ŒX�,
has multiple roots, but we saw in the proof of Proposition 5.8
that it doesn’t. Contradiction. 2

REMARK 5.11 This proof is very old — in essence it goes back to
Dedekind in 1857 — but its general scheme has recently become pop-
ular: take a statement in characteristic zero, reduce modulo p (where
the statement may no longer be true), and exploit the existence of the
Frobenius automorphism a 7! ap to obtain a proof of the original state-
ment. For example, commutative algebraists use this method to prove
results about commutative rings, and there are theorems about complex
manifolds that were first proved by reducing things to characteristic p:

There are some beautiful and mysterious relations between what
happens in characteristic 0 and in characteristic p. For example, let
f .X1; :::;Xn/ 2 ZŒX1; :::;Xn�. We can

(a) look at the solutions of f D 0 in C, and so get a topological
space;

(b) reduce mod p, and look at the solutions of xf D 0 in Fpn .

The Weil conjectures (Weil 1949; proved in part by Grothendieck in the
1960’s and completely by Deligne in 1973) assert that the Betti numbers
of the space in (a) control the cardinalities of the sets in (b).

THEOREM 5.12 The regular n-gon is constructible if and only if nD
2kp1 � � �ps where the pi are distinct Fermat primes.

PROOF. The regular n-gon is constructible if and only if cos 2�n
(or � D e2�i=n) is constructible. We know that QŒ�� is Galois
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over Q, and so (according to 1.37 and 3.23) � is constructible if
and only if ŒQŒ��WQ� is a power of 2. But (see GT 3.5)

'.n/D
Y
pjn

.p�1/pn.p/�1; nD
Y
pn.p/;

and this is a power of 2 if and only if n has the required form.2

REMARK 5.13 (a) As mentioned earlier, the Fermat primes are those
of the form 22

k
C1. It is known that these numbers are prime when

k D 0;1;2;3;4, but it is not known whether or not there are more
Fermat primes. Thus the problem of listing the n for which the regular
n-gon is constructible is not yet solved.

(b) The final section of Gauss’s, Disquisitiones Arithmeticae (1801)
is titled “Equations defining sections of a Circle”. In it Gauss proves
that the nth roots of 1 form a cyclic group, that Xn�1 is solvable
(this was before the theory of abelian groups had been developed, and
before Galois), and that the regular n-gon is constructible when n
is as in the Theorem. He also claimed to have proved the converse
statement. This leads some people to credit him with the above proof
of the irreducibility of ˚n, but in the absence of further evidence, I’m
sticking with Dedekind.

Dedekind’s theorem on the independence of
characters

THEOREM 5.14 (DEDEKIND’S) Let F be a field, and let G be a
group (monoid will do). Then every finite set f�1; : : : ;�mg of ho-
momorphismsG!F � is linearly independent over F , i.e.,X

ai�i D 0 (as a functionG!F / H) a1 D 0;: : : ;am D 0:
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PROOF. Induction on m. For m D 1, it’s obvious. Assume it
for m� 1, and suppose that, for some set f�1; : : : ;�mg of ho-
momorphisms G! F� and ai 2 F ,

a1�1.x/Ca2�2.x/C�� �Cam�m.x/D 0 for all x 2G:

We have to show that the ai are zero. As �1 and �2 are distinct,
they will take distinct values on some g 2 G. On replacing x
with gx in the equation, we find that

a1�1.g/�1.x/Ca2�2.g/�2.x/C�� �Cam�m.g/�m.x/D 0 for all x 2G:

On multiplying the first equation by �1.g/ and subtracting it
from the second, we obtain the equation

a02�2C�� �Ca
0
m�m D 0; a0i D ai .�i .g/��1.g//:

The induction hypothesis now shows that a0i D 0 for all i �
2. Since �2.g/��1.g/ ¤ 0, we must have a2 D 0, and the
induction hypothesis shows that all the remaining ai ’s are also
zero. 2

COROLLARY 5.15 Let F1 and F2 be fields, and let �1; :::;�m be
distinct homomorphisms F1!F2. Then �1; :::;�m are linearly inde-
pendent over F2:
PROOF. Apply the theorem to �i D �i jF�1 . 2

COROLLARY 5.16 Let E be a finite separable extension of F of de-
greem. Let ˛1; : : : ;˛m be a basis forE over F , and let �1; : : : ;�m
be distinct F -homomorphisms fromE into a field˝. Then the matrix
whose .i;j /th-entry is �i˛j is invertible.
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PROOF. If not, there exist ci 2˝ such that
Pm
iD1 ci�i .˛j /D

0 for all j . But
Pm
iD1 ci�i WE ! ˝ is F -linear, and so this

implies that
Pm
iD1 ci�i .˛/D 0 for all ˛ 2E, which contradicts

Corollary 5.15. 2

The normal basis theorem

DEFINITION 5.17 LetE be a finite Galois extension ofF with Galois
group G. A normal basis for E is an F -basis of the form f�˛ j � 2
Gg, i.e., an F -basis consisting of the conjugates of an element ˛ ofE .

THEOREM 5.18 (NORMAL BASIS THEOREM) Every Galois extension
has a normal basis.

PROOF. Let E=F be a Galois extension with Galois group G.
We give two proofs, the first of which assumes that F is infinite
and the second that G is cyclic. Since every Galois extension of
a finite field is cyclic (4.19), this covers all cases.3

Assume that F is infinite. This has the consequence that,
if f 2 F ŒX1; : : : ;Xm� has the property that f .a1; : : : ;am/D 0
for all a1; : : : ;am 2 F , then f .X1; : : : ;Xm/D 0. We prove this
by induction on m. For m D 1 it follows from the fact that a
nonzero polynomial in one symbol has only finitely many roots.
For m> 1, write

f D
X

ci .X1; : : : ;Xm�1/X
i
m:

3For two proofs that work equally well for finite and infinite fields, together
with an outline of the history of the theorem, see Blessenohl, Dieter. On the normal
basis theorem. Note Mat. 27 (2007), 5–10.
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For any m�1-tuple, a1; : : : ;am�1,

f .a1; : : : ;am�1;Xm/

is a polynomial in Xm having every element of F as a root.
Therefore, each of its coefficients is zero: ci .a1; : : : ;am�1/D 0
for all i . Since this holds for all .a1; : : : ;am�1/, the induction
hypothesis shows that ci .X1; : : : ;Xm�1/ is zero.

Now number the elements of G as �1; : : : ;�m (with �1 D 1).
Let f .X1; : : : ;Xm/ 2 F ŒX1; : : : ;Xm� have the property that

f .�1˛; : : : ;�m˛/D 0

for all ˛ 2E. For a basis ˛1; : : : ;˛m of E over F , let

g.Y1; : : : ;Ym/D f .
Pm
iD1Yi�1˛i ;

Pm
iD1Yi�2˛i ; : : :/:

The hypothesis on f implies that g.a1; : : : ;am/ D 0 for all
ai 2 F , and so gD 0. But the matrix .�i˛j / is invertible (5.16).
Since g is obtained from f by an invertible linear change of
variables, f can be obtained from g by the inverse linear change
of variables. Therefore it also is zero.

Write Xi D X.�i /, and let A D .X.�i�j //, i.e., A is the
m�m matrix having Xk in the .i;j /th place if �i�j D �k .
Then det.A/ is a polynomial in X1; : : : ;Xm, say, det.A/ D
h.X1; : : : ;Xm/. Clearly, h.1;0; : : : ;0/ is the determinant of a
matrix having exactly one 1 in each row and each column and
its remaining entries 0. Hence the rows of the matrix are a
permutation of the rows of the identity matrix, and so its deter-
minant is˙1. In particular, h is not identically zero, and so there
exists an ˛ 2E� such that h.�1˛; : : : ;�m˛/ .D det.�i�j ˛/) is
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nonzero. We shall show that f�i˛g is a normal basis. For this,
it suffices to show that �i˛ are linearly independent over F .
Suppose Xm

jD1
aj �j ˛ D 0

for some aj 2 F . On applying �1; : : : ;�m successively, we
obtain a system of m-equationsX

aj �i�j ˛ D 0

in the m “unknowns” aj . Because this system of equations is
nonsingular, the aj ’s are zero. This completes the proof of the
lemma in the case that F is infinite.

Now assume that G is cyclic generated, say, by an element
�0 of order n. Then ŒEWF � D n. The minimum polynomial
of �0 regarded as an endomorphism of the F -vector space
E is the monic polynomial in F ŒX� of least degree such that
P.�0/D 0 (as an endomorphism of E). It has the property that
it divides every polynomial Q.X/ 2 F ŒX� such that Q.�0/D
0. Since �n0 D 1, P.X/ divides Xn � 1. On the other hand,
Dedekind’s theorem on the independence of characters (5.14)
implies that 1;�0; : : : ;�n�10 are linearly independent over F ,
and so degP.X/ > n� 1. We conclude that P.X/ D Xn �
1. Therefore, as an F ŒX�-module with X acting as �0, E is
isomorphic to F ŒX�=.Xn�1/. For any generator ˛ of E as a
F ŒX�-module, ˛;�0˛; : : : ;�0˛n�1 is a F -basis for E. 2
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Hilbert’s Theorem 90

LetG be a finite group. AG-module is an abelian groupM together
with an action ofG, i.e., a mapG�M !M such that

(a) �.mCm0/D �mC�m0 for all � 2G,m;m0 2M ;
(b) .��/.m/D �.�m/ for all �;� 2G,m 2M ;
(c) 1mDm for allm 2M .

Thus, to give an action ofG onM is the same as to give a homomor-
phismG! Aut.M/ (automorphisms ofM as an abelian group).

EXAMPLE 5.19 LetE be a Galois extension of F with Galois group
G. Then .E;C/ and .E�; �/ areG-modules.

LetM be aG-module. A crossed homomorphism is a mapf WG!
M such that

f .��/D f .�/C�f .�/ for all �;� 2G.

Note that the condition implies that f .1/D f .1 �1/D f .1/Cf .1/,
and so f .1/D 0:

EXAMPLE 5.20 (a) Let f WG!M be a crossed homomorphism. For
any � 2G,

f .�2/D f .�/C�f .�/;

f .�3/D f .� ��2/D f .�/C�f .�/C�2f .�/

� � �

f .�n/D f .�/C�f .�/C�� �C�n�1f .�/:
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Thus, ifG is a cyclic group of order n generated by � , then a crossed
homomorphism f WG!M is determined by its value, x say, on � ,
and x satisfies the equation

xC�xC�� �C�n�1xD 0; (*)

Conversely, if x 2M satisfies (*), then the formulas f .� i /D xC
�xC�� �C� i�1x define a crossed homomorphism f WG!M . Thus,
for a finite groupG D h�i, there is a one-to-one correspondence

fcrossed homs f WG!M g
f$f.�/
 ! fx 2M satisfying (*)g:

(b) For every x 2M , we obtain a crossed homomorphism by
putting

f .�/D �x�x; all � 2G:

A crossed homomorphism of this form is called a principal crossed
homomorphism.

(c) If G acts trivially on M , i.e., �m D m for all � 2 G and
m 2M , then a crossed homomorphism is simply a homomorphism,
and there are no nonzero principal crossed homomorphisms.

The sum and difference of two crossed homomorphisms is again a
crossed homomorphism, and the sum and difference of two principal
crossed homomorphisms is again principal. Thus we can define

H1.G;M/D
fcrossed homomorphismsg

fprincipal crossed homomorphismsg

(quotient abelian group). The cohomology groups Hn.G;M/ have
been defined for all n2N, but since this was not done until the twentieth
century, it will not be discussed in this course. We leave it as an exercise
to the reader to show that an exact sequence ofG-modules

0!M 0!M !M 00! 0
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gives rise to an exact sequence

0!M 0G!MG!M 00G!

H1.G;M 0/!H1.G;M/!H1.G;M 00/:

EXAMPLE 5.21 Let �W zX!X be the universal covering space of a
topological spaceX , and let� be the group of covering transformations.
Under some fairly general hypotheses, a � -module M will define a
sheaf M on X , and H1.X;M/'H1.�;M/. For example, when
M D Z with the trivial action of � , this becomes the isomorphism
H1.X;Z/'H1.�;Z/D Hom.�;Z/.

THEOREM 5.22 Let E be a Galois extension of F with group G;
thenH1.G;E�/D 0, i.e., every crossed homomorphismG!E�

is principal.

PROOF. Let f be a crossed homomorphism G!E�. In mul-
tiplicative notation, this means,

f .��/D f .�/ ��.f .�//; �;� 2G;

and we have to find a 
 2 E� such that f .�/ D �


 for all

� 2G. Because the f .�/ are nonzero, Corollary 5.15 implies
that X

�2G
f .�/� WE!E

is not the zero map, i.e., there exists an ˛ 2E such that

ˇ
def
D

X
�2G

f .�/�˛ ¤ 0:
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But then, for � 2G,

�ˇ D
X

�2G
�.f .�// ���.˛/

D

X
�2G

f .�/�1 f .��/ ���.˛/

D f .�/�1
X

�2G
f .��/��.˛/;

which equals f .�/�1ˇ because, as � runs over G, so also does
�� . Therefore, f .�/D ˇ

�.ˇ/
and we can take ˇ D 
�1. 2

LetE be a Galois extension of F with Galois groupG. We define
the norm of an element ˛ 2E to be

Nm˛D
Y
�2G

�˛:

For � 2G,
�.Nm˛/D

Y
�2G

��˛D Nm˛;

and so Nm˛ 2F . The map

˛ 7! Nm˛WE�!F �

is a obviously a homomorphism.

EXAMPLE 5.23 The norm map C�!R� is ˛ 7! j˛j2 and the norm
map QŒ

p
d��!Q� is aCb

p
d 7! a2�db2.

We are interested in determining the kernel of the norm map. Clearly
an element of the form ˇ

�ˇ
has norm 1, and our next result show that,

for cyclic extensions, all elements with norm 1 are of this form.
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COROLLARY 5.24 (HILBERT’S THEOREM 90) 4LetE be a finite cyclic
extension of F with Galois group h�iI if NmE=F ˛ D 1, then ˛ D
ˇ=�ˇ for some ˇ 2E .
PROOF. Let mD ŒEWF �. The condition on ˛ is that

˛ ��˛ � � ��m�1˛ D 1;

and so (see 5.20a) there is a crossed homomorphism f W h�i !
E� with f .�/D ˛. Theorem 5.22 now shows that f is princi-
pal, which means that there is a ˇ with f .�/D ˇ=�ˇ: 2

Cyclic extensions

Let F be a field containing a primitive nth root of 1, some n� 2, and
write �n for the group of nth roots of 1 in F . Then �n is a cyclic
subgroup ofF � of order n with generator � . In this section, we classify
the cyclic extensions of degree n of F .

Consider a fieldE DF Œ˛� generated by an element ˛ whose nth
power is in F . Then ˛ is a root of Xn�a, and the remaining roots
are the elements � i˛, 1� i � n�1. Since these are all in E , E is
a Galois extension of F , with Galois group G say. For every � 2G,
�˛ is also a root of Xn�a, and so �˛ D � i˛ for some i . Hence
�˛=˛ 2�n. The map

� 7! �˛=˛WG!�n

4This is Satz 90 in Hilbert’s book, Theorie der Algebraischen Zahlkörper,
1897. The theorem was discovered by Kummer in the special case of QŒ�p�=Q,
and generalized to Theorem 5.22 by E. Noether. Theorem 5.22, as well as various
vast generalizations of it, are also referred to as Hilbert’s Theorem 90.

For an illuminating discussion of Hilbert’s book, see the introduction to the
English translation (Springer 1998) written by F. Lemmermeyer and N. Schap-
pacher.
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doesn’t change when ˛ is replaced by a conjugate, and it follows that
the map is a homomorphism: ��˛

˛
D
�.�˛/
�˛

�˛
˛

. Because ˛ generates
E over F , the map is injective. If it is not surjective, thenG maps into
a subgroup �d of �n, some d jn, d < n. In this case, .�˛=˛/d D 1,
i.e., �˛d D ˛d , for all � 2 G, and so ˛d 2 F . Thus the map is
surjective if n is the smallest positive integer such that ˛n 2 F . We
have proved the first part of the following statement.

PROPOSITION 5.25 Let F be a field containing a primitive nth root
of 1. LetE DF Œ˛� where ˛n 2F and no smaller power of ˛ is in F .
ThenE is a Galois extension of F with cyclic Galois group of order n.
Conversely, ifE is cyclic extension of F of degree n, thenE DF Œ˛�
for some ˛ with ˛n 2F .
PROOF. It remains to prove the second statement. Let � gen-
erate G and let � generate �n. It suffices to find an element
˛ 2 E� such that �˛ D ��1˛, for then ˛n 2 F , and ˛n is the
smallest power of ˛ that lies in F . According to the Normal
Basis Theorem 5.18, there exists an element 
 2 E such that
f
;�
; : : : ;�n�1
g is a basis for E as an F -vector space. Form
the sum

˛ D
X

�i� i
:

Then ˛ ¤ 0 because the � i
 are linearly independent and the
�i 2 F , and �˛ D ��1˛. 2

REMARK 5.26 (a) It is not difficult to show that the polynomialXn�
a is irreducible in F ŒX� if a is not a pth power for any prime p
dividing n. When we drop the condition that F contains a primitive
nth root of 1, this is still true except that, if 4jn, we need to add the
condition that a 2�4F 4. See Lang, Algebra, Springer, 2002, VI, �9,
Theorem 9.1.
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(b) If F has characteristic p (hence has no pth roots of 1 other
than 1), thenXp�X �a is irreducible in F ŒX� unless aD bp�b
for some b 2F , and when it is irreducible, its Galois group is cyclic of
order p (generated by ˛ 7! ˛C1 where ˛ is a root). Moreover, every
extension of F which is cyclic of degree p is the splitting field of such
a polynomial.

PROPOSITION 5.27 Two cyclic extensions F Œa
1
n � and F Œb

1
n � of F

of degree n are equal if and only if aD brcn for some r 2Z relatively
prime to n and some c 2F �, i.e., if and only if a and b generate the
same subgroup of F �=F �n.

PROOF. Only the “only if” part requires proof. We are given
that F Œ˛�D F Œˇ� with ˛n D a and ˇn D b. Let � be the gen-
erator of the Galois group with �˛ D �˛, and let �ˇ D �iˇ,
.i;n/D 1. We can write

ˇ D

n�1X
jD0

cj ˛
j ; cj 2 F;

and then

�ˇ D

n�1X
jD0

cj �
j ˛j :

On comparing this with �ˇ D �iˇ, we find that �icj D �j cj
for all j . Hence cj D 0 for j ¤ i , and therefore ˇ D ci˛i . 2
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Kummer theory

Throughout this section, F is a field containing a primitive nth root of
1, � . In particular, F either has characteristic 0 or characteristic p not
dividing n.

The last two results give us a complete classification of the cyclic
extensions of F of degree n. We now extend this to a classification
of all abelian extensions of exponent n. (Recall that a group G has
exponent n if �n D 1 for all � 2 G and n is the smallest positive
integer for which this is true. A finite abelian group of exponent n is
isomorphic to a subgroup of .Z=nZ/r for some r .)

LetE=F be a finite Galois extension with Galois groupG. From
the exact sequence

1!�n ����!E�
x 7!xn

����!E�n! 1

we obtain a cohomology sequence

1!�n!F �
x 7!xn

����!F �\E�n!H1.G;�n/! 1:

The 1 at the right is because of Hilbert’s Theorem 90. Thus we obtain
an isomorphism

F �\E�n=F �n! Hom.G;�n/:

This map can be described as follows: let a be an element of F �

that becomes an nth power in E , say a D ˛n; then a maps to the
homomorphism � 7! �˛

˛
. IfG is abelian of exponent n, then

jHom.G;�n/j D .GW1/:

THEOREM 5.28 The map

E 7!F �\E�n=F �n
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defines a one-to-one correspondence between the finite abelian exten-
sions ofF of exponent n contained in some fixed algebraic closure˝ of
F and the finite subgroupsB of F �=F �n. The extension correspond-
ing to B is F ŒB

1
n �, the smallest subfield of ˝ containing F and an

nth root of each element of B . IfE$B , then ŒE WF �D .BWF �n/.

PROOF. For any finite Galois extensionE of F , defineB.E/D
F�\E�n. Then E � F ŒB.E/

1
n �, and for any group B con-

taining F�n as a subgroup of finite index, B.F ŒB
1
n �/ � B .

Therefore,

ŒEWF �� ŒF ŒB.E/
1
n �WF �D .B.F ŒB.E/

1
n �/WF�n/� .B.E/WF�n/:

If E=F is abelian of exponent n, then ŒEWF �D .B.E/WF�n/,
and so equalities hold throughout: E D F ŒB.E/

1
n �.

Next consider a group B containing F�n as a subgroup of
finite index, and let E D F ŒB

1
n �. Then E is a composite of the

extensions F Œa
1
n � for a running through a set of generators for

B=F�n, and so it is a finite abelian extension of exponent n.
Therefore

a 7! .� 7!
�a

1
n

a
/WB.E/=F�n!Hom.G;�n/; GDGal.E=F /;

is an isomorphism. This map sends B=F�n isomorphically
onto the subgroup Hom.G=H;�n/ of Hom.G;�n/ where H
consists of the � 2G such that �a

1
n =aD 1 for all a 2 B . But

such a � fixes all a
1
n for a 2 B , and therefore is the identity
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automorphism onE DF ŒB
1
n �. This shows thatB.E/DB , and

hence E 7! B.E/ and B 7! F ŒB
1
n � are inverse bijections. 2

EXAMPLE 5.29 (a) The quadratic extensions of R are (certainly) in
one-to-one correspondence with the subgroups of R�=R�2 D f˙1g.

(b) The finite abelian extensions of Q of exponent 2 are in one-to-
one correspondence with the finite subgroups of Q�=Q�2, which is a
direct sum of cyclic groups of order 2 indexed by the prime numbers
plus1 (modulo squares, every nonzero rational number has a unique
representative of the form˙p1 � � �pr with the pi prime numbers).

REMARK 5.30 (KUMMER THEORY) Let E be an abelian extension
of F of exponent n. Then

B.E/D fa 2F � j a becomes an nth power inEg:

There is a perfect pairing

.a;�/ 7!
�a

a
W
B.E/

F �n
�Gal.E=F /!�n:

In particular, ŒE WF �D .B.E/WF �n/. (Cf. Exercise 5 for the case
nD 2.)

Proof of Galois’s solvability theorem

LEMMA 5.31 Let f 2F ŒX� be separable, and letF 0 be an extension
field of F . Then the Galois group of f as an element of F 0ŒX� is a
subgroup of that of f as an element of F ŒX�:
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PROOF. Let E 0 be a splitting field for f over F 0, and let
˛1; : : : ;˛m be the roots of f .X/ inE 0. ThenE DF Œ˛1; :::;˛m�
is a splitting field of f over F . Every element of Gal.E 0=F 0/
permutes the ˛i and so maps E into itself. The map � 7! � jE
is an injection Gal.E 0=F 0/! Gal.E=F /: 2

THEOREM 5.32 Let F be a field of characteristic 0. A polynomial in
F ŒX� is solvable if and only if its Galois group is solvable.

PROOF. (H: Let f 2 F ŒX� have solvable Galois group Gf .
Let F 0DF Œ��where � is a primitive nth root of 1 for some large
n — for example, nD .degf /Š will do. The lemma shows that
the Galois group G of f as an element of F 0ŒX� is a subgroup
of Gf , and hence is also solvable (GT 6.6a). This means that
there is a sequence of subgroups

G DG0 �G1 � �� � �Gm�1 �Gm D f1g

such that each Gi is normal in Gi�1 and Gi�1=Gi is cyclic.
Let E be a splitting field of f .X/ over F 0, and let Fi D EGi .
We have a sequence of fields

F � F Œ��D F 0 D F0 � F1 � F2 � �� � � Fm DE

with Fi cyclic over Fi�1. Theorem 5.25 shows that Fi D
Fi�1Œ˛i � with ˛ŒFi WFi�1�i 2 Fi�1, each i , and this shows that
f is solvable.
H): It suffices to show that Gf is a quotient of a solvable

group (GT 6.6a). Hence it suffices to find a solvable extension
zE of F such that f .X/ splits in zEŒX�.
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We are given that there exists a tower of fields

F D F0 � F1 � F2 � �� � � Fm

such that

(a) Fi D Fi�1Œ˛i �, ˛
ri
i 2 Fi�1;

(b) Fm contains a splitting field for f:

Let n D r1 � � �rm, and let ˝ be a field Galois over F and
containing (a copy of) Fm and a primitive nth root � of 1: For
example, choose a primitive element 
 for Fm over F (see 5.1),
and take ˝ to be a splitting field of g.X/.Xn�1/ where g.X/
is the minimum polynomial of 
 over F .

Let G be the Galois group of ˝=F , and let zE be the Galois
closure of FmŒ�� in˝. According to (3.17a), zE is the composite
of the fields �FmŒ��, � 2 G, and so it is generated over F by
the elements

�;˛1;˛2; : : : ;˛m;�˛1; : : : ;�˛m;�
0˛1; : : : :

We adjoin these elements to F one by one to get a sequence of
fields

F � F Œ��� F Œ�;˛1�� �� � � F
0
� F 00 � �� � � zE

in which each field F 00 is obtained from its predecessor F 0 by
adjoining an r th root of an element of F 0 (r D r1; : : : ; rm; or
n). According to (5.8) and (5.25), each of these extensions is
abelian (and even cyclic after for the first), and so zE=F is a
solvable extension. 2
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The general polynomial of degree n

When we say that the roots of

aX2CbXCc

are
�b˙

p
b2�4ac

2a
we are thinking of a;b;c as variables: for any particular values of
a;b;c, the formula gives the roots of the particular equation. We shall
prove in this section that there is no similar formula for the roots of the
“general polynomial” of degree � 5.

We define the general polynomial of degree n to be

f .X/DXn� t1X
n�1C�� �C .�1/ntn 2F Œt1; :::; tn�ŒX�

where the ti are variables. We shall show that, when we regard f as a
polynomial inX with coefficients in the field F.t1; : : : ; tn/, its Galois
group is Sn. Then Theorem 5.32 proves the above remark (at least in
characteristic zero).

SYMMETRIC POLYNOMIALS

LetR be a commutative ring (with 1). A polynomialP.X1; :::;Xn/2
RŒX1; : : : ;Xn� is said to be symmetric if it is unchanged when its
variables are permuted, i.e., if

P.X�.1/; : : : ;X�.n//DP.X1; : : : ;Xn/; all � 2 Sn:

For example
p1 D

P
iXi DX1CX2C�� �CXn;

p2 D
P
i<j XiXj DX1X2CX1X3C�� �CX1XnCX2X3C�� �CXn�1Xn;

p3 D
P
i<j<kXiXjXk ; DX1X2X3C�� �

� � �

pr D
P
i1<���<ir

Xi1 :::Xir
� � �

pn D X1X2 � � �Xn
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are all symmetric because pr is the sum of all monomials of degree r
made up out of distinctXi ’s. These particular polynomials are called
the elementary symmetric polynomials.

THEOREM 5.33 (SYMMETRIC POLYNOMIALS THEOREM) Every sym-
metric polynomialP.X1; :::;Xn/ inRŒX1; :::;Xn� is equal to a poly-
nomial in the elementary symmetric polynomials with coefficients in
R, i.e., P 2RŒp1; :::;pn�:

PROOF. We define an ordering on the monomials in the Xi by
requiring that

X
i1
1 X

i2
2 � � �X

in
n >X

j1
1 X

j2
2 � � �X

jn
n

if either

i1C i2C�� �C in > j1Cj2C�� �Cjn

or equality holds and, for some s,

i1 D j1; : : : ; is D js ; but isC1 > jsC1:

For example,

X1X
3
2X3 >X1X

2
2X3 >X1X2X

2
3 :

Let Xk11 � � �X
kn
n be the highest monomial occurring in P with

a coefficient c ¤ 0. Because P is symmetric, it contains all
monomials obtained from X

k1
1 � � �X

kn
n by permuting the X’s.

Hence k1 � k2 � � � � � kn.
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The highest monomial in pi is X1 � � �Xi , and it follows that
the highest monomial in pd11 � � �p

dn
n is

X
d1Cd2C���Cdn
1 X

d2C���Cdn
2 � � �X

dn
n : (2)

Therefore the highest monomial of

P.X1; : : : ;Xn/� cp
k1�k2
1 p

k2�k3
2 � � �p

kn
n

is strictly less than the highest monomial in P.X1; : : : ;Xn/. We
can repeat this argument with the polynomial on the left, and
after a finite number of steps, we will arrive at a representation
of P as a polynomial in p1; : : : ;pn. 2

Let f .X/D XnCa1Xn�1C�� �Can 2 RŒX�, and suppose
that f splits over some ring S containingR:

f .X/D
Qn
iD1.X �˛i /, ˛i 2 S .

Then

a1 D�p1.˛1; : : : ;˛n/

a2 D p2.˛1; : : : ;˛n/

: : :

an D˙pn.˛1; : : : ;˛n/:

Thus the elementary symmetric polynomials in the roots of f .X/ lie
inR, and so the theorem implies that every symmetric polynomial in
the roots of f .X/ lies inR. For example, the discriminant

D.f /D
Y
i<j

.˛i �˛j /
2

of f lies inR.
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SYMMETRIC FUNCTIONS

THEOREM 5.34 (SYMMETRIC FUNCTIONS THEOREM) WhenSn acts
onE DF.X1; :::;Xn/ by permuting theXi ’s, the field of invariants
is F.p1; :::;pn/:

FIRST PROOF Let f 2F.X1; : : : ;Xn/ be symmetric (i.e., fixed
by Sn/. Set f D g=h, g;h 2 F ŒX1; : : : ;Xn�. The polynomials
H D

Q
�2Sn

�h and Hf are symmetric, and therefore lie in
F Œp1; : : : ;pn� (5.33). Hence their quotient f DHf=H lies in
F.p1; : : : ;pn/. 2

SECOND PROOF Clearly

F.p1; : : : ;pn/�E
Sn �E:

On the one hand, ŒEWF.p1; : : : ;pn/� � nŠ because E is the
splitting field of .T �X1/ � � �.T �Xn/ over F.p1; : : : ;pn/; on
the other, ŒEWESn �� nŠ by (2.8). 2

COROLLARY 5.35 The fieldF.X1; :::;Xn/ is Galois overF.p1; :::;pn/
with Galois group Sn (acting by permuting theXi ).

PROOF. We have shown thatF.p1; : : : ;pn/DF.X1; : : : ;Xn/Sn ,
and so this follows from (3.10). 2

As we noted in the second proof, F.X1; : : : ;Xn/ is the splitting
field over F.p1; : : : ;pn/ of

g.T /D .T �X1/ � � �.T �Xn/DX
n�p1X

n�1C�� �C.�1/npn:

Therefore, the Galois group of g.T / 2F.p1; : : : ;pn/ŒT � is Sn.
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THE GENERAL POLYNOMIAL OF DEGREE n

THEOREM 5.36 The Galois group of the general polynomial of degree
n is Sn.

PROOF. Let f .X/ be the general polynomial of degree n,

f .X/DXn� t1X
n�1
C�� �C .�1/ntn 2 F Œt1; :::; tn�ŒX�:

If we can show that the map

ti 7! pi WF Œt1; : : : ; tn�! F Œp1; : : : ;pn�

is injective (i.e., the pi are algebraically independent over F ,
see p. 181), then it will extend to an isomorphism

F.t1; : : : ; tn/! F.p1; : : : ;pn/

sending f .X/ to

g.X/DXn�p1X
n�1
C�� �C .�1/npn 2 F.p1; : : : ;pn/ŒX�:

Therefore the statement will follow from Corollary 5.35.
We now prove that the pi are algebraically independent5.

Suppose on the contrary that there exists a P.t1; : : : ; tn/ such
that P.p1; : : : ;pn/ D 0. Equation (2), p. 135, shows that if
m1.t1; : : : ; tn/ and m2.t1; : : : ; tn/ are distinct monomials, then
m1.p1; : : : ;pn/ andm2.p1; : : : ;pn/ have distinct highest mono-
mials. Therefore, cancellation can’t occur, and so P.t1; : : : ; tn/
must be the zero polynomial. 2

5This can also be proved by noting that, becauseF.X1; : : : ;Xn/ is algebraic
over F.p1; : : : ;pn/, the latter must have transcendence degree n (see �8).
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REMARK 5.37 Since Sn occurs as a Galois group over Q, and every
finite group occurs as a subgroup of some Sn, it follows that every finite
group occurs as a Galois group over some finite extension of Q, but
does every finite Galois group occur as a Galois group over Q itself?

The Hilbert-Noether program for proving this was the following.
Hilbert proved that if G occurs as the Galois group of an extension
E �Q.t1; :::; tn/ (the ti are symbols), then it occurs infinitely often
as a Galois group over Q. For the proof, realizeE as the splitting field
of a polynomial f .X/ 2 kŒt1; : : : ; tn�ŒX� and prove that for infinitely
many values of the ti , the polynomial you obtain in QŒX� has Galois
groupG. (This is quite a difficult theorem — see Serre, J.-P., Lectures
on the Mordell-Weil Theorem, 1989, Chapter 9.) Noether conjectured the
following: Let G � Sn act on F.X1; :::;Xn/ by permuting the Xi ;
then F.X1; : : : ;Xn/G � F.t1; :::; tn/ (for variables ti ). However,
Swan proved in 1969 that the conjecture is false forG the cyclic group
of order 47. Hence this approach can not lead to a proof that all finite
groups occur as Galois groups over Q, but it doesn’t exclude other
approaches. For more information on the problem, see Serre, ibid.,
Chapter 10, and Serre, J.-P., Topics in Galois Theory, 1992.

REMARK 5.38 TakeF DC, and consider the subset of CnC1 defined
by the equation

Xn�T1X
n�1C�� �C .�1/nTn D 0:

It is a beautiful complex manifold S of dimension n. Consider the
projection

�WS! Cn; .x;t1; : : : ; tn/ 7! .t1; : : : ; tn/:

Its fibre over a point .a1; : : : ;an/ is the set of roots of the polynomial

Xn�a1X
n�1C�� �C .�1/nan:
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The discriminantD.f / off .X/DXn�T1Xn�1C�� �C.�1/nTn
is a polynomial in CŒT1; : : : ;Tn�. Let � be the zero set of D.f / in
Cn. Then over each point of CnX�, there are exactly n points of S ,
and S X��1.�/ is a covering space over CnX�.

A BRIEF HISTORY

As far back as 1500 BC, the Babylonians (at least) knew a general
formula for the roots of a quadratic polynomial. Cardan (about 1515
AD) found a general formula for the roots of a cubic polynomial. Ferrari
(about 1545 AD) found a general formula for the roots of quartic poly-
nomial (he introduced the resolvent cubic, and used Cardan’s result).
Over the next 275 years there were many fruitless attempts to obtain
similar formulas for higher degree polynomials, until, in about 1820,
Ruffini and Abel proved that there are none.

Norms and traces

Recall that, for an n�n matrix AD .aij /
Tr.A/ D

P
i aii (trace of A)

det.A/ D
P
�2Sn

sign.�/a1�.1/ � � �an�.n/; (determinant of A)
cA.X/ D det.XIn�A/ (characteristic polynomial of A).

Moreover,

cA.X/DX
n�Tr.A/Xn�1C�� �C .�1/n det.A/.

None of these is changed whenA is replaced by its conjugate UAU�1

by an invertible matrix U . Therefore, for any endomorphism ˛ of a
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finite dimensional vector space V , we can define6

Tr.˛/D Tr.A/, det.˛/D det.A/, c˛.X/D cA.X/

where A is the matrix of ˛ with respect to any basis of V . If ˇ is a
second endomorphism of V ,

Tr.˛Cˇ/D Tr.˛/CTr.ˇ/I

det.˛ˇ/D det.˛/det.ˇ/:

Now letE be a finite field extension of F of degree n: An element
˛ ofE defines an F -linear map

˛LWE!E; x 7! ˛x;

and we define

TrE=F .˛/ D Tr.˛L/ (trace of ˛)
NmE=F .˛/ D det.˛L/ (norm of ˛)
c˛;E=F .X/ D c˛L .X/ (characteristic polynomial of ˛):

Thus, TrE=F is a homomorphism .E;C/! .F;C/, and NmE=F is
a homomorphism .E�; �/! .F �; �/.

EXAMPLE 5.39 (a) Consider the field extension C� R. For ˛D aC
bi , the matrix of ˛L with respect to the basis f1;ig is

�
a �b
b a

�
, and so

TrC=R.˛/D 2<.˛/, NmC=R.˛/D j˛j
2:

6The coefficients of the characteristic polynomial

c˛.X/DX
nCc1X

n�1C�� �Ccn;

of ˛ have the following description

ci D .�1/
i Tr.˛j

^i

V /

— see Bourbaki, N., Algebra, Chapter 3, 8.11.
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(b) For a 2F , aL is multiplication by the scalar a. Therefore

TrE=F .a/D na , NmE=F .a/D an, ca;E=F .X/D .X �a/n

where nD ŒE WF �:

LetE DQŒ˛;i� be the splitting field ofX8�2. To compute the
trace and norm of ˛ in E , the definition requires us to compute the
trace and norm of a 16�16 matrix. The next proposition gives us a
quicker method.

PROPOSITION 5.40 Let E=F be a finite extension of fields, and let
f .X/ be the minimum polynomial of ˛ 2E . Then

c˛;E=F .X/D f .X/
ŒEWFŒ˛��:

PROOF. Suppose first that E D F Œ˛�. In this case, we have to
show that c˛.X/ D f .X/. Note that ˛ 7! ˛L is an injective
homomorphism from E into the ring of endomorphisms of E
as a vector space over F . The Cayley-Hamilton theorem shows
that c˛.˛L/ D 0, and therefore c˛.˛/ D 0. Hence f jc˛ , but
they are monic of the same degree, and so they are equal.

For the general case, let ˇ1; :::;ˇn be a basis for F Œ˛� over
F , and let 
1; :::;
m be a basis for E over F Œ˛�. As we saw in
the proof of (1.20), fˇi
kg is a basis forE over F . Write ˛ˇi DP
aj iˇj . Then, according to the first case proved, ADdef .aij /

has characteristic polynomial f .X/. But ˛ˇi
k D
P
aj iˇj 
k ,

and so the matrix of ˛L with respect to fˇi
kg breaks up into
n� n blocks with A’s down the diagonal and zero matrices
elsewhere, from which it follows that c˛L.X/ D cA.X/

m D

f .X/m: 2



142 5. APPLICATIONS OF GALOIS THEORY

COROLLARY 5.41 Suppose that the roots of the minimum polynomial
of ˛ are ˛1; : : : ;˛n (in some splitting field containing E ), and that
ŒE WF Œ˛��Dm. Then

Tr.˛/Dm
Pn
iD1˛i ; NmE=F ˛D

�Qn
iD1˛i

�m
:

PROOF. Write the minimum polynomial of ˛ as

f .X/DXnCa1X
n�1
C�� �Can D

Q
.X �˛i /;

so that

a1 D�
P
˛i , and

an D .�1/
nQ˛i .

Then

c˛.X/D .f .X//
m
DXmnCma1X

mn�1
C�� �Camn ;

so that

TrE=F .˛/D�ma1 Dm
P
˛i , and

NmE=F .˛/D .�1/
mnamn D .

Q
˛i /

m. 2

EXAMPLE 5.42 (a) Consider the extension C� R. If ˛ 2 CnR, then

c˛.X/D f .X/DX
2�2<.˛/XCj˛j2:

If ˛ 2 R, then c˛.X/D .X �a/2.
(b) LetE be the splitting field ofX8�2. ThenE has degree 16

over Q and is generated by ˛D 8
p
2 and i D

p
�1 (see Exercise 16).

The minimum polynomial of ˛ isX8�2, and so

c˛;QŒ˛�=Q.X/ D X8�2; c˛;E=Q.X/ D .X8�2/2

TrQŒ˛�=Q˛ D 0; TrE=Q˛ D 0
NmQŒ˛�=Q˛ D �2; NmE=Q˛ D 4
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REMARK 5.43 LetE be a separable extension of F , and let˙ be the
set ofF -homomorphisms ofE into an algebraic closure˝ of F . Then

TrE=F ˛D
P
�2˙�˛

NmE=F ˛D
Q
�2˙�˛:

When E DF Œ˛�, this follows from 5.41 and the observation (cf. 2.1b)
that the �˛ are the roots of the minimum polynomial f .X/ of ˛
over F . In the general case, the �˛ are still roots of f .X/ in ˝,
but now each root of f .X/ occurs ŒE WF Œ˛�� times (because each
F -homomorphism F Œ˛�!˝ has ŒE WF Œ˛�� extensions toE ). For
example, ifE is Galois over F with Galois groupG, then

TrE=F ˛D
P
�2G�˛

NmE=F ˛D
Q
�2G�˛:

PROPOSITION 5.44 For finite extensionsE �M �F , we have

TrE=M ıTrM=F D TrE=F ;

NmE=M ıNmM=F D NmE=F :

PROOF. If E is separable over F , then this can be proved fairly
easily using the descriptions in the above remark. We omit the
proof in the general case. 2

PROPOSITION 5.45 Let f .X/ be a monic irreducible polynomial with
coefficients in F , and let ˛ be a root of f in some splitting field of f .
Then

discf .X/D .�1/m.m�1/=2NmFŒ˛�=F f 0.˛/

where f 0 is the formal derivative df
dX

of f .
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PROOF. Let f .X/D
Qm
iD1.X �˛i / be the factorization of f

in the given splitting field, and number the roots so that ˛ D ˛1.
Compute that

discf .X/ def
D

Y
i<j

.˛i �˛j /
2

D .�1/m.m�1/=2 �
Y
i

.
Y
j¤i

.˛i �˛j //

D .�1/m.m�1/=2 �
Y
i

f 0.˛i /

D .�1/m.m�1/=2NmF Œ˛�=F .f
0.˛// (by 5.43):2

EXAMPLE 5.46 We compute the discriminant of

f .X/DXnCaXCb; a;b 2F;

assumed to be irreducible and separable, by computing the norm of



def
D f 0.˛/D n˛n�1Ca; f .˛/D 0.

On multiplying the equation

˛nCa˛CbD 0

by n˛�1 and rearranging, we obtain the equation

n˛n�1 D�na�nb˛�1:

Hence

 D n˛n�1CaD�.n�1/a�nb˛�1:
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Solving for ˛ gives

˛D
�nb


C .n�1/a
:

From the last two equations, it is clear that F Œ˛�DF Œ
�, and so the
minimum polynomial of 
 over F has degree n also. If we write

f

�
�nb

XC .n�1/a

�
D
P.X/

Q.X/

where

P.X/D .XC .n�1/a/n�na.XC .n�1/a/n�1C .�1/nnnbn�1

Q.X/D .XC .n�1/a/n=b;

then
P.
/D f .˛/ �Q.
/D 0:

As

Q.
/D
.
C .n�1/a/n

b
D
.�nb/n

˛nb
¤ 0

andP.X/ is monic of degree n, it must be the minimum polynomial of

 . Therefore Nm
 is .�1/n times the constant term ofP.X/, namely,

Nm
 D nnbn�1C .�1/n�1.n�1/n�1an:

Therefore,

disc.XnCaXCb/D

.�1/n.n�1/=2.nnbn�1C .�1/n�1.n�1/n�1an/;

which is something PARI doesn’t know (because it doesn’t understand
symbols as exponents). For example,

disc.X5CaXCb/D 55b4C44a5:
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Étale algebras

Galois theory classifies the intermediate fields of a Galois extension
˝=F . In this section, we explain that, more generally, it classifies the
étale F -algebras split by˝.

DEFINITION 5.47 An F -algebra is a commutative ring A containing
F as a subring. An F -algebra A is étale if it is isomorphic to a finite
product of finite separable field extensions of F . The degree ŒAWF � of
an F -algebra A is its dimension as an F -vector space.

EXAMPLE 5.48 Let f 2 F ŒX�, and let AD F ŒX�=.f /. Let f DQ
f
mi
i

with the fi irreducible and distinct. According to the Chinese
remainder theorem (CA 2.12)

A'
Y
i
F ŒX�=.f

mi
i
/:

The F -algebra F ŒX�=.f mi
i
/ is a field if and only if mi D 1, in

which case it is a separable extension ofF if and only if fi is separable.
Therefore A is an étale F -algebra if and only if f is a separable
polynomial without multiple factors.

REMARK 5.49 Let A be an étale F -algebra. The maximal subfields
of A form a finite set fF1; : : : ;Fng, and the map

.a1; : : : ;an/ 7! a1C�� �CanWF1��� ��Fn!A

is an isomorphism.

DEFINITION 5.50 An étale F -algebra A is split by an extension field
˝ if˝˝F A is isomorphic to a product of copies of˝.



Étale algebras 147

EXAMPLE 5.51 Let AD F ŒX�=.f /, where f is a separable poly-
nomial without multiple factors. Then f factors in ˝ŒX� as f D
f1 � � �fn with the fi distinct irreducible polynomials, and

˝˝F A'˝ŒX�=.f /'
Y
i
˝ŒX�=.fi /:

(Chinese remainder theorem). Therefore˝ splits A if and only if each
fi has degree 1, i.e., if and only if˝ splits f .

REMARK 5.52 When˝ is Galois over F , an étale F -algebra
Q
i Fi

is split by˝ if and only if, for each i , there exists anF -homomorphism
Fi !˝. Every étale F -algebra is split by a finite Galois extension.

Fix a Galois extension ˝ of F , and let G D Gal.˝=F /. For an
F -algebra A, let F.A/ denote the set of F -algebra homomorphisms
A!˝. The groupG acts on F.A/ according to the rule

.�˛/.a/D �.˛.a//; � 2G, ˛ 2F.A/, a 2A;

i.e., �˛D � ı˛. Now A F.A/ is a contravariant functor from the
category of F -algebras to the category of leftG-sets.

Suppose ADA1��� ��An. Because˝ has no nonzero zero divi-
sors, every homomorphism ˛WA!˝ is zero on all but oneAi , and so,
to give a homomorphism A!˝ amounts to giving a homomorphism
Ai !˝ for some i . In other words,

F.
Q
i Ai /'

F
i F.Ai /:

In particular, for an étale F -algebra A'
Q
i Fi ,

F.A/'
G
i

HomF -algebra.Fi ;˝/:

From Proposition 2.7, we deduce that F.A/ is finite, and has order
ŒAWF � if˝ splits A.
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THEOREM 5.53 The functor F is a contravariant equivalence from the
category of étale F -algebras split by˝ to the category of finiteG-sets.

PROOF. We have to prove the following two statements.

(a) The functor F is fully faithful, i.e., for all étaleF -algebras
A and B split by ˝, the map

Homk-algebras.A;B/! HomG-sets.F.B/;F.A//

is a bijection.
(b) The functor F is essentially surjective, i.e., every G-set

is isomorphic to F.A/ for some étale F -algebra A split
by ˝.

Let V be a vector space over F , and let V˝ D ˝˝F V .
Then G acts on V˝ through its action on ˝, and

V ' .V˝/
G def
D fv 2 V˝ j �v D v for all � 2Gg:

To see this, choose an F -basis e D fe1; : : : ; eng for V . Then e
is an ˝-basis forV˝ , and

�.a1e1C�� �Canen/D .�a1/e1C�� �C .�an/en; ai 2˝:

Therefore a1e1C�� �Canen is fixed by all � 2G if and only if
a1; : : : ;an 2 F .

Similarly, if W is a second vector space over F , then G acts
on Hom˝-linear.V˝ ;W˝/ by �˛ D � ı˛ ı��1, and

HomF -linear.V;W /' Hom˝-linear.V˝ ;W˝/
G : (3)
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Indeed, a choice of bases for V andW determines isomorphisms
HomF -linear.V;W /'Mm;n.F / and Hom˝-linear.V˝ ;W˝/'
Mm;n.˝/, and G acts on Mm;n.˝/ in the obvious way. Now
(3) follows from the obvious statement:Mm;n.F /DMm;n.˝/G .

Let A and B be étale k-algebras split by ˝. Under the
isomorphism

HomF -linear.A;B/' Hom˝-linear.A˝ ;B˝/
G ;

F -algebra homomorphisms correspond to˝-algebra homomor-
phisms, and so

HomF -algebra.A;B/' Hom˝-algebra.A˝ ;B˝/
G .

Because A (resp. B) is split by ˝, A˝ (resp. B˝ ) is a product
of copies of ˝ indexed by the elements of F.A/ (resp. F.B/).
Let t be a map of sets F.B/! F.A/. Then

.ai /i2F.A/ 7! .bj /j2F.B/; bj D at.j /;

is a homomorphism of ˝-algebras A˝ ! B˝ , and every ho-
momorphism A˝ ! B˝ is of this form for a unique t . Thus

Hom˝-algebra.A˝ ;B˝/' HomSets.F.B/;F.A//:

This isomorphism is compatible with the actions of G, and so

HomF -algebra.A;B/' Hom˝-algebra.A˝ ;B˝/
G

' HomSets.F.B/;F.A//G

D HomG-sets.F.B/;F.A//:
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This proves (a). For (b), let S be a finite G-set, and let S DF
i2I Si be the decomposition of S into a union of G-orbits.

For each i , choose an si 2 Si , and let Fi be the subfield of ˝
fixed by the stabilizer of si . Then

F
�Q

i2I Fi
�
' S: 2

Exercises

5-1 (*) For a 2Q, let Ga be the Galois group of X4CX3C
X2CXCa. Find integers a1;a2;a3;a4 such that i ¤ j H)
Gai is not isomorphic to Gaj .

5-2 (*) Prove that the rational solutions a;b 2Q of Pythago-
ras’s equation a2Cb2 D 1 are of the form

aD
s2� t2

s2C t2
; b D

2st

s2C t2
; s; t 2Q;

and deduce that every right triangle with integer sides has sides
of length

d.m2�n2;2mn;m2Cn2/

for some integers d , m, and n (Hint: Apply Hilbert’s Theorem
90 to the extension QŒi �=Q.)

5-3 (*) Prove that a finite extension of Q can contain only
finitely many roots of 1.



Chapter 6

Algebraic Closures

In this section, we prove that Zorn’s lemma implies that every field F
has an algebraic closure ˝. Recall that if F is a subfield C, then the
algebraic closure of F in C is an algebraic closure of F (1.46). If F is
countable, then the existence of˝ can be proved as in the finite field
case (4.23), namely, the set of monic irreducible polynomials in F ŒX�
is countable, and so we can list them f1;f2; : : :; defineEi inductively
by,E0DF ,Ei D a splitting field of fi overEi�1; then˝ D

S
Ei

is an algebraic closure of F .
The difficulty in showing the existence of an algebraic closure of

an arbitrary field F is in the set theory. Roughly speaking, we would
like to take a union of a family of splitting fields indexed by the monic
irreducible polynomials in F ŒX�, but we need to find a way of doing
this that is allowed by the axioms of set theory. After reviewing the

151



152 6. ALGEBRAIC CLOSURES

statement of Zorn’s lemma, we sketch three solutions1 to the problem.

Zorn’s lemma

DEFINITION 6.1 (a) A relation � on a set S is a partial ordering if it
reflexive, transitive, and anti-symmetric (a� b and b � a H) aD
b).

(b) A partial ordering is a total ordering if, for all s; t 2 T , either
s � t or t � s.

(c) An upper bound for a subset T of a partially ordered set .S;�/
is an element s 2 S such that t � s for all t 2 T .

(d) A maximal element of a partially ordered set S is an element s
such that s � s0 H) sD s0.

A partially ordered set need not have any maximal elements, for
example, the set of finite subsets of an infinite set is partially ordered by
inclusion, but it has no maximal elements.

LEMMA 6.2 (ZORN’S) Let .S;�/ be a nonempty partially ordered
set for which every totally ordered subset has an upper bound in S .
Then S has a maximal element.

Zorn’s lemma2 is equivalent to the Axiom of Choice, and hence
independent of the axioms of set theory.

1There do exist naturally occurring fields, not contained in C, that are un-
countable. For example, for any field F there is a ring F ŒŒT �� of formal power
series

P
i�0 aiT

i , ai 2F , and its field of fractions is uncountable even if F is
finite.

2The following is quoted from A.J. Berrick and M.E. Keating, An Introduc-
tion to Rings and Modules, 2000: The name of the statement, although widely
used (allegedly first by Lefschetz), has attracted the attention of historians (Camp-
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REMARK 6.3 The set S of finite subsets of an infinite set doesn’t
contradict Zorn’s lemma, because it contains totally ordered subsets
with no upper bound in S .

The following proposition is a typical application of Zorn’s lemma
— we shall use a * to signal results that depend on Zorn’s lemma (equiv-
alently, the Axiom of Choice).

PROPOSITION 6.4 (*) Every nonzero commutative ring A has a max-
imal ideal (meaning, maximal among proper ideals).

PROOF. Let S be the set of all proper ideals in A, partially
ordered by inclusion. If T is a totally ordered set of ideals, then
J D

S
I2T I is again an ideal, and it is proper because if 1 2 J

then 1 2 I for some I in T , and I would not be proper. Thus J
is an upper bound for T . Now Zorn’s lemma implies that S has
a maximal element, which is a maximal ideal in A. 2

First proof of the existence of algebraic closures

(Bourbaki, Algèbre, Chap. V, �4.) An F -algebra is a ring containing
F as a subring. Let .Ai /i2I be a family of commutative F -algebras,
and define

N
F Ai to be the quotient of the F -vector space with basisQ

i2I Ai by the subspace generated by elements of the form:

bell 1978). As a ‘maximum principle’, it was first brought to prominence, and
used for algebraic purposes in Zorn 1935, apparently in ignorance of its previous
usage in topology, most notably in Kuratowski 1922. Zorn attributed to Artin the
realization that the ‘lemma’ is in fact equivalent to the Axiom of Choice (see
Jech 1973). Zorn’s contribution was to observe that it is more suited to algebraic
applications like ours.
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.xi /C .yi /� .zi / with xj Cyj D zj for one j 2 I and xi D
yi D zi for all i ¤ j ;
.xi /�a.yi / with xj D ayj for one j 2 I and xi D yi for all

i ¤ j ,
(ibid., Chap. II, 3.9). It can be made into a commutative F -algebra in
an obvious fashion, and there are canonical homomorphisms Ai !N
F Ai of F -algebras.
For each polynomial f 2F ŒX�, choose a splitting fieldEf , and

let ˝ D .
N
F Ef /=M where M is a maximal ideal in

N
F Ef

(whose existence is ensured by Zorn’s lemma). Note thatF �
N
F Ef

and M \F D 0. As ˝ has no ideals other than .0/ and ˝, and it
is a field (see 1.2). The composite of the F -homomorphisms Ef !N
F Ef !˝, being a homomorphism of fields, is injective. Since

f splits in Ef , it must also split in the larger field˝. The algebraic
closure of F in˝ is therefore an algebraic closure of F (by 1.44).

ASIDE 6.5 In fact, it suffices to take ˝ D .
N
F Ef /=M where f

runs over the monic irreducible polynomials in F ŒX� and Ef is the
stem field F ŒX�=.f / of f (apply the statement in 6.7 below).

Second proof of the existence of algebraic
closures

(Jacobson 1964, p144.) After (4.23) we may assume F to be infinite.
This implies that the cardinality of every field algebraic over F is the
same as that of F (ibid. p143). Choose an uncountable set� of cardi-
nality greater than that of F , and identify F with a subset of � . Let
S be the set triples .E;C; �/ withE �� and .C; �/ a field structure
onE such that .E;C; �/ contains F as a subfield and is algebraic over
it. Write .E;C; �/� .E 0;C0; �0/ if the first is a subfield of the second.
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Apply Zorn’s lemma to show that S has maximal elements, and then
show that a maximal element is algebraically closed. (See ibid. p144
for the details.)

Third proof of the existence of algebraic
closures

(Emil Artin.) Consider the polynomial ring F Œ: : : ;xf ; : : :� in a family
of symbols xf indexed by the nonconstant monic polynomials f 2
F ŒX�. If 1 lies in the ideal I of F Œ: : : ;xf ; : : :� generated by the
polynomials f .xf /, then

g1f1.xf1 /C�� �Cgnfn.xfn /D 1 .in F Œ: : : ;xf ; : : :�/

for some gi 2 F Œ: : : ;xf ; : : :� and some nonconstant monic fi 2
F ŒX�. LetE be an extension ofF such that each fi , i D 1;: : : ;n, has
a root ˛i in E . Under the F -homomorphism F Œ: : : ;xf ; : : :�! F 0

sending �
xfi 7! ˛i
xf 7! 0; f … ff1; : : : ;fng

the above relation becomes 0D 1. From this contradiction, we deduce
that 1 does not lie in I , and so Proposition 6.4 applied toF Œ: : : ;xf ; : : :�=I
shows that I is contained in a maximal ideal M of F Œ: : : ;xf ; : : :�.
Let˝ DF Œ: : : ;xf ; : : :�=M . Then˝ is a field containing (a copy of)
F in which every nonconstant polynomial in F ŒX� has at least one
root. Repeat the process starting withE1 instead of F to obtain a field
E2. Continue in this fashion to obtain a sequence of fields

F DE0 �E1 �E2 � �� � ;

and letE D
S
iEi . ThenE is algebraically closed because the coeffi-

cients of any nonconstant polynomial g inEŒX� lie inEi for some i ,
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and so g has a root inEiC1. Therefore, the algebraic closure of F in
E is an algebraic closure of F (1.46).

ASIDE 6.6 In fact, E is algebraic over F . To see this, note that E1
is generated by algebraic elements over F , and so is algebraic over F
(apply 1.45). Similarly, E2 is algebraic over E1, and hence over F
(apply 1.31b). Continuing in this fashion, we find that every element of
everyEi is algebraic over F .

ASIDE 6.7 In fact,E1 is already algebraically closed (hence the alge-
braic closure of F ). This follows from the statement:

Let˝ be a field. If˝ is algebraic over a subfield F and
every nonconstant polynomial in F ŒX� has a root in˝,
then˝ is algebraically closed.

In order to prove this, it suffices to show that every irreducible poly-
nomial f in F ŒX� splits in˝ŒX� (see 1.44). Suppose first that f is
separable, and let E be a splitting field for f . According to Theorem
5.1, E D F Œ
� for some 
 2E . Let g.X/ be the minimum polyno-
mial of 
 overF . Then g.X/ has coefficients inF , and so it has a root
ˇ in ˝. Both of F Œ
� and F Œˇ� are stem fields for g , and so there
is an F -isomorphism F Œ
�!F Œˇ��˝. As f splits over F Œ
�, it
must split over˝.

This completes the proof when F is perfect. Otherwise, F has
characteristic p¤ 0, and we let F 0 be the set of elements x of˝ such
that xp

m
2F for somem. It is easy to see that F 0 is a field, and we

shall complete the proof of the lemma by showing that (a) F 0 is perfect,
and (b) every polynomial in F 0ŒX� has a root in˝.

PROOF OF (a). Let a 2 F 0, so that b
def
D ap

m
2 F for some m.

The polynomialXp
mC1
�b has coefficients in F , and so it has a root

˛ 2˝, which automatically lies in F 0. Now ˛p
mC1
D ap

m
, which
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implies that ˛p D a, because the pth power map is injective on fields
of characteristic p.

Before continuing, we note that, because ˝ is algebraic over a
perfect fieldF 0, it is itself perfect: let a 2˝, and let g be the minimum
polynomial of a over F 0; if Xp �a is irreducible in ˝ŒX�, then
g.Xp/ is irreducible in F 0ŒX�, but it is not separable, which is a
contradiction.

PROOF OF (b). Let f .X/2F 0ŒX�, say, f .X/D
P
i aiX

i , ai 2
F 0. For some m, the polynomial

P
i a
pm

i
X i has coefficients in F ,

and therefore has a root ˛ 2˝. As˝ is perfect, we can write ˛Dˇp
m

with ˇ 2˝. Now

.f .ˇ//p
m

D

�X
i
aiˇ

i
�pm
D
X

i
a
pm

i
˛i D 0;

and so ˇ is a root of f .

(Non)uniqueness of algebraic closures

THEOREM 6.8 (*) Let ˝ be an algebraic closure of F , and let E
be an algebraic extension of F . There exists an F -homomorphism
E!˝, and, ifE is also an algebraic closure of F , then every such
homomorphism is an isomorphism.

PROOF. Suppose first thatE is countably generated over F , i.e.,
E D F Œ˛1; :::;˛n; : : :�. Then we can extend the inclusion map
F !˝ to F Œ˛1� (map ˛1 to any root of its minimal polynomial
in ˝/, then to F Œ˛1;˛2�; and so on (see 2.2).

In the uncountable case, we use Zorn’s lemma. Let S be the
set of pairs .M;'M / withM a field F �M �E and 'M an F -
homomorphismM !˝. Write .M;'M /� .N;'N / ifM �N
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and 'N jM D 'M . This makes S into a partially ordered set. Let
T be a totally ordered subset of S . Then M 0 D

S
M2T M is a

subfield of E, and we can define a homomorphism '0WM 0!˝
by requiring that '0.x/D 'M .x/ if x 2M . The pair .M 0;'0/
is an upper bound for T in S . Hence Zorn’s lemma gives us
a maximal element .M;'/ in S . Suppose that M ¤ E. Then
there exists an element ˛ 2E, ˛ …M . Since ˛ is algebraic over
M , we can apply (2.2) to extend ' to MŒ˛�, contradicting the
maximality of M . Hence M D E, and the proof of the first
statement is complete.

If E is algebraically closed, then every polynomial f 2
F ŒX� splits in EŒX� and hence in '.E/ŒX�. Let ˛ 2 ˝, and
let f .X/ be the minimum polynomial of ˛. Then X �˛ is a
factor of f .X/ in ˝ŒX�, but, as we just observed, f .X/ splits
in '.E/ŒX�. Because of unique factorization, this implies that
˛ 2 '.E/. 2

The above proof is a typical application of Zorn’s lemma: once we
know how to do something in a finite (or countable) situation, Zorn’s
lemma allows us to do it in general.

REMARK 6.9 Even for a finite field F , there will exist uncountably
many isomorphisms from one algebraic closure to a second, none of
which is to be preferred over any other. Thus it is (uncountably) sloppy
to say that the algebraic closure of F is unique. All one can say is
that, given two algebraic closures˝,˝0 of F , then, thanks to Zorn’s
lemma, there exists an F -isomorphism˝!˝0.
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Separable closures

Let˝ be a field containing F , and let E be a set of intermediate fields
F �E �˝ with the following property:

(*) for allE1;E2 2 E , there exists anE 2 E such that
E1;E2 �E .

Then E.E/D
S
E2EE is a subfield of ˝ (and we call

S
E2EE a

directed union), because (*) implies that every finite set of elements of
E.E/ is contained in a common E 2 E , and therefore their product,
sum, etc., also lie inE.E/.

We apply this remark to the set of subfieldsE of˝ that are finite
and separable over F . As the composite of any two such subfields is
again finite and separable over F (cf. 3.14), we see that the union L
of all such E is a subfield of ˝. We call L the separable closure of
F in ˝ — clearly, it is separable over F and every element of ˝
separable over F lies in L. Moreover, because a separable extension of
a separable extension is separable,˝ is purely inseparable over L.

DEFINITION 6.10 (a) A field˝ is said to be separably closed if every
nonconstant separable polynomial in˝ŒX� splits in˝.

(b) A field˝ is said to be a separable closure of a subfield F if it
is separable and algebraic over F and it is separably closed.

THEOREM 6.11 (*) (a) Every field has a separable closure.
(b) LetE be a separable algebraic extension of F , and let˝ be a

separable algebraic closure of F . There exists an F -homomorphism
E !˝, and, if E is also a separable closure of F , then every such
homomorphism is an isomorphism.

PROOF. Replace “polynomial” with “separable polynomial” in
the proofs of the corresponding theorems for algebraic closures.
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Alternatively, define ˝ to be the separable closure of F in an
algebraic closure, and apply the preceding theorems. 2



Chapter 7

Infinite Galois Extensions

In this chapter, we make free use of Zorn’s lemma.

Topological groups

DEFINITION 7.1 A setG together with a group structure and a topol-
ogy is a topological group if the maps

.g;h/ 7! ghWG�G!G;

g 7! g�1WG!G

are both continuous.

161
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Let a be an element of a topological groupG. Then aLWG
g 7!ag
����!

G is continuous because it is the composite of

G
g 7!.a;g/
������!G�G

.g;h/7!gh
�������!G:

In fact, it is a homeomorphism with inverse .a�1/L. Similarly aRWg 7!
ga and g 7! g�1 are both homeomorphisms. In particular, for any
subgroupH ofG, the coset aH ofH is open or closed ifH is open
or closed. As the complement ofH inG is a union of such cosets, this
shows thatH is closed if it is open, and it is open if it is closed and of
finite index.

Recall that a neighbourhood base for a point x of a topological
spaceX is a set of neighbourhoods N such that every open subset U
ofX containing x contains anN from N .

PROPOSITION 7.2 LetG be a topological group, and let N be a neigh-
bourhood base for the identity element e ofG. Then1

(a) for all N1;N2 2 N , there exists an N 0 2 N such that e 2
N 0 �N1\N2;

(b) for allN 2N , there exists anN 0 2N such thatN 0N 0 �N ;
(c) for allN 2N , there exists anN 0 2N such thatN 0 �N�1;
(d) for allN 2N and all g 2G, there exists anN 0 2N such that

N 0 � gNg�1I

(e) for all g 2G, fgN jN 2N g is a neighbourhood base for g .

Conversely, if G is a group and N is a nonempty set of subsets of G
satisfying (a,b,c,d), then there is a (unique) topology on G for which
(e) holds.

1For subsets S and S 0 of G, we set SS 0 D fss0 j s 2 S , s0 2 S 0g, and
S�1 D fs�1 j s 2 Sg.
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PROOF. If N is a neighbourhood base at e in a topological
group G, then (b), (c), and (d) are consequences of the conti-
nuity of .g;h/ 7! gh, g 7! g�1, and h 7! ghg�1 respectively.
Moreover, (a) is a consequence of the definitions and (e) of the
fact that gL is a homeomorphism.

Conversely, let N be a nonempty collection of subsets of a
group G satisfying the conditions (a)–(d). Note that (a) implies
that e lies in all the N in N . Define U to be the collection
of subsets U of G such that, for every g 2 U , there exists
an N 2 N with gN � U . Clearly, the empty set and G are
in U , and unions of sets in U are in U . Let U1;U2 2 U , and
let g 2 U1 \U2; by definition there exist N1;N2 2 N with
gN1;gN2 �U ; on applying (a) we obtain an N 0 2N such that
gN 0 � U1\U2, which shows that U1\U2 2 U . It follows that
the elements of U are the open sets of a topology on G (and, in
fact, the unique topology for which (e) holds).

We next use (b) and (d) to show that .g;g0/ 7! gg0 is con-
tinuous. Note that the sets g1N1 � g2N2 form a neighbour-
hood base for .g1;g2/ in G �G. Therefore, given an open
U � G and a pair .g1;g2/ such that g1g2 2 U , we have to
find N1;N2 2 N such that g1N1g2N2 � U . As U is open,
there exists an N 2 N such that g1g2N � U . Apply (b) to
obtain an N 0 such that N 0N 0 �N ; then g1g2N 0N 0 � U . But
g1g2N

0N 0 D g1.g2N
0g�12 /g2N

0, and it remains to apply (d)
to obtain an N1 2N such that N1 � g2N 0g�12 .

Finally, we use (c) and (d) to show that g 7! g�1 is contin-
uous. Given an open U � G and a g 2 G such that g�1 2 U ,
we have to find an N 2 N such that gN � U�1. By def-
inition, there exists an N 2 N such that g�1N � U . Now
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N�1g � U�1, and we use (c) to obtain an N 0 2 N such
that N 0g � U�1, and (d) to obtain an N 00 2 N such that
gN 00 � g.g�1N 0g/� U�1. 2

The Krull topology on the Galois group

Recall (3.9) that a finite extension ˝ of F is Galois over F if it is
normal and separable, i.e., if every irreducible polynomial f 2F ŒX�
having a root in˝ has degf distinct roots in˝. Similarly, we define
an algebraic extension˝ of F to be Galois over F if it is normal and
separable. Clearly, ˝ is Galois over F if and only if it is a union of
finite Galois extensions.

PROPOSITION 7.3 If˝ is Galois over F , then it is Galois over every
intermediate fieldM .
PROOF. Let f .X/ be an irreducible polynomial in MŒX� hav-
ing a root a in ˝. The minimum polynomial g.X/ of a over F
splits into distinct degree-one factors in ˝ŒX�. As f divides g
(in MŒX�), it also must split into distinct degree-one factors in
˝ŒX�. 2

PROPOSITION 7.4 Let˝ be a Galois extension of F and let E be a
subfield of˝ containing F . Then every F -homomorphismE!˝
extends to an F -isomorphism˝!˝.
PROOF. The same Zorn’s lemma argument as in the proof of
Theorem 6.8 shows that every F -homomorphism E!˝ ex-
tends to an F -homomorphism ˛W˝!˝. Let a 2˝, and let
f be its minimum polynomial over F . Then ˝ contains ex-
actly deg.f / roots of f , and so therefore does ˛.˝/. Hence
a 2 ˛.˝/, which shows that ˛ is surjective. 2
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Let ˝ be a Galois extension of F , and let G D Aut.˝=F /. For
any finite subset S of˝, let

G.S/D f� 2G j �sD s for all s 2 Sg:

PROPOSITION 7.5 There is a unique structure of a topological group
onG for which the setsG.S/ form an open neighbourhood base of 1.
For this topology, the setsG.S/with S G-stable form a neighbourhood
base of 1 consisting of open normal subgroups.

PROOF. We show that the collection of sets G.S/ satisfies
(a,b,c,d) of (7.2). It satisfies (a) because G.S1/\G.S2/ D
G.S1 [S2/. It satisfies (b) and (c) because each set G.S/ is
a group. Let S be a finite subset of ˝. Then F.S/ is a fi-
nite extension of F , and so there are only finitely many F -
homomorphisms F.S/! ˝. Since �S D �S if � jF.S/ D
� jF.S/, this shows that xS D

S
�2G �S is finite. Now � xS D xS

for all � 2 G, and it follows that G. xS/ is normal in G. There-
fore, �G. xS/��1 D G. xS/ � G.S/, which proves (d). It also
proves the second statement. 2

The topology on Aut.˝=F / defined in the proposition is called the
Krull topology. We write Gal.˝=F / for Aut.˝=F / endowed with
the Krull topology, and call it the Galois group of˝=F .

PROPOSITION 7.6 Let ˝ be Galois over F . For every intermediate
fieldE finite and Galois over F , the map

� 7! � jE WGal.˝=F /! Gal.E=F /

is a continuous surjection (discrete topology on Gal.E=F /).
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PROOF. Let � 2Gal.E=F /, and regard it as anF -homomorphism
E ! ˝. Then � extends to an F -isomorphism ˝ ! ˝ (see
7.4), which shows that the map is surjective. For every finite
set S of generators of E over F , Gal.E=F / D G.S/, which
shows that the inverse image of 1Gal.E=F / is open in G. By
homogeneity, the same is true for every element of Gal.E=F /.2

PROPOSITION 7.7 All Galois groups are compact and totally discon-
nected.2

PROOF. LetGDGal.˝=F /. We first show thatG is Hausdorff.
If � ¤ � , then ��1� ¤ 1G , and so it moves some element of
˝, i.e., there exists an a 2˝ such that �.a/¤ �.a/. For any
S containing a, �G.S/ and �G.S/ are disjoint because their
elements act differently on a. Hence they are disjoint open
subsets of G containing � and � respectively.

We next show that G is compact. As we noted above, if S is
a finite set stable under G, then G.S/ is a normal subgroup of
G, and it has finite index because it is the kernel of

G! Sym.S/:

Since every finite set is contained in a stable finite set, the
argument in the last paragraph shows that the map

G!
Y

S finite stable underG

G=G.S/

2Following Bourbaki, we require compact spaces to be Hausdorff. A topolog-
ical space is totally disconnected if its connected components are the one-point
sets.
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is injective. When we endow
Q
G=G.S/ with the product topol-

ogy, the induced topology on G is that for which the G.S/ form
an open neighbourhood base of e, i.e., it is the Krull topology.
According to the Tychonoff theorem,

Q
G=G.S/ is compact,

and so it remains to show that G is closed in the product. For
each S1 � S2, there are two continuous maps

Q
G=G.S/!

G=G.S1/, namely, the projection onto G=G.S1/ and the pro-
jection onto G=G.S2/ followed by the quotient map G.S2/!
G.S1/. Let E.S1;S2/ be the closed subset of

Q
G=G.S/ on

which the two maps agree. Then
T
S1�S2

E.S1;S2/ is closed,
and equals the image of G.

Finally, for each finite set S stable under G, G.S/ is a sub-
group that is open and hence closed. Since

T
G.S/ D f1Gg,

this shows that the connected component of G containing 1G is
just f1Gg. By homogeneity, a similar statement is true for every
element of G. 2

PROPOSITION 7.8 For any Galois extension ˝=F , ˝Gal.˝=F/ D

F .

PROOF. Every element of ˝ XF lies in a finite Galois exten-
sion of F , and so this follows from the surjectivity in Proposi-
tion 7.6. 2

ASIDE 7.9 There is a converse to the proposition: every compact to-
tally disconnected group arises as the Galois group of some Galois
extension of fields of characteristic zero (Douady, A., Cohomologie des
groupes compact totalement discontinus (d’après J. Tate), Séminaire
Bourbaki 1959/60, no. 189).
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The fundamental theorem of infinite Galois
theory

PROPOSITION 7.10 Let˝ be Galois over F , with Galois groupG.

(a) The field ˝ is Galois over every subfield M containing F ;
moreover, Gal.˝=M/ is closed inG, and˝Gal.˝=M/ DM .

(b) For every subgroupH ofG, Gal.˝=˝H / is the closure ofH .

PROOF. (a) The first assertion was proved in (7.3). For each
finite subset S �M ,G.S/ is an open subgroup ofG, and hence
it is closed. But Gal.˝=M/D

T
S�M G.S/, and so it also is

closed. The final statement follows from (7.8).
(b) Since Gal.˝=˝H / containsH and is closed, it certainly

contains the closure xH of H . On the other hand, let � 2GX xH .
Then �G.S/\H D ; for some finite subset S of ˝ which
we may assume to be stable under G. Now �G.S/\H D ;
implies � … HG.S/, and so there exists an ˛ 2 F.S/ that is
fixed by H but moved by � . This shows that � … Gal.˝=˝H /,
as required. 2

THEOREM 7.11 Let ˝ be Galois over F with Galois group G. The
maps

H 7!˝H ; M 7! Gal.˝=M/

are inverse bijections between the set of closed subgroups ofG and the
set of intermediate fields between˝ and F :

fclosed subgroups ofGg$ fintermediate fields F �M �˝g:

Moreover,
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(a) the correspondence is inclusion-reversing: H1 � H2 ”
˝H1 �˝H2 ;

(b) a closed subgroupH ofG is open if and only if˝H has finite
degree over F , in which case .GWH/D Œ˝H WF �;

(c) �H��1$�M , i.e.,˝�H�
�1
D�.˝H /; Gal.˝=�M/D

�Gal.˝=M/��1;
(d) a closed subgroup H of G is normal if and only if ˝H is

Galois over F , in which case Gal.˝H =F /'G=H .
PROOF. For the first statement, we have to show thatH 7!˝H

and M 7! Gal.˝=M/ are inverse maps.
Let H be a closed subgroup of G. Then ˝ is Galois over

˝H and Gal.˝=˝H /DH (see 7.10).
LetM be an intermediate field. Then Gal.˝=M/ is a closed

subgroup of G and ˝Gal.˝=M/ DM (see 7.10).
(a) We have the obvious implications:

H1�H2 H) ˝H1 �˝H2 H) Gal.˝=˝H1/�Gal.˝=˝H2/:

But Gal.˝=˝Hi /DHi (see 7.10).
(b) As we noted earlier, a closed subgroup of finite index

in a topological group is always open. Because G is compact,
conversely an open subgroup of G is always of finite index. Let
H be such a subgroup. The map � 7! � j˝H defines a bijection

G=H ! HomF .˝
H ;˝/

(apply 7.4) from which the statement follows.
(c) For � 2G and ˛ 2˝, �˛ D ˛ ” ����1.�˛/D �˛.

Therefore, Gal.˝=�M/D �Gal.˝=M/��1 , and so

�Gal.˝=M/��1$ �M:
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(d) Let H $M . It follows from (c) that H is normal if and
only ifM is stable under the action of G. ButM is stable under
the action of G if and only it is a union of finite extensions of F
stable under G, i.e., of finite Galois extensions of G. We have
already observed that an extension is Galois if and only if it is a
union of finite Galois extensions. 2

REMARK 7.12 As in the finite case (3.17), we can deduce the follow-
ing statements.

(a) Let .Mi /i2I be a (possibly infinite) family of intermediate
fields, and let Hi $Mi . Let

Q
Mi be the smallest field containing

all the Mi ; then because
T
i2IHi is the largest (closed) subgroup

contained in all theHi ,

Gal.˝=
Q
Mi /D

\
i2I

Hi :

(b) LetM $H . The largest (closed) normal subgroup contained
in H is N D

T
� �H�

�1 (cf. GT 4.10), and so ˝N , which is the
composite of the fields �M , is the smallest normal extension of F
containingM .

PROPOSITION 7.13 Let E and L be field extensions of F contained
in some common field. IfE=F is Galois, thenEL=L andE=E \L
are Galois, and the map

� 7! � jE WGal.EL=L/! Gal.E=E \L/
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is an isomorphism of topological groups.

EL

E L

E \L

F

D

D

PROOF. The proof that the map is an isomorphism of groups
(neglecting the topology) is the same as in the finite case (3.18).

We next prove it is continuous. Let G1 D Gal.EL=L/ and
let G2 D Gal.E=E\L/. For any finite set S of elements of E,
the inverse image of G2.S/ in G1 is G1.S/.

Finally, we prove that it is open. An open subgroup of
Gal.EL=L/ is closed (hence compact) of finite index; therefore
its image in Gal.E=E\L/ is compact (hence closed) of finite
index, and hence open. 2

COROLLARY 7.14 Let ˝ be an algebraically closed field contain-
ing F , and let E and L be as in the proposition. If �WE !˝ and
� WL!˝ are F -homomorphisms such that �jE \LD � jE \L,
then there exists anF -homomorphism � WEL!˝ such that � jE D �
and � jLD � .

PROOF. According to (7.4), � extends to an F -homomorphism
sWEL!˝. As sjE\LD �jE\L, we can write sjE D � ı "
for some "2Gal.E=E\L/. According to the proposition, there
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exists a unique e 2 Gal.EL=L/ such that ejE D ". Define � D
s ı e�1. 2

EXAMPLE 7.15 Let ˝ be an algebraic closure of a finite field Fp .
ThenG D Gal.˝=Fp/ contains a canonical Frobenius element, � D
.a 7! ap/, and it is generated by it as a topological group, i.e., G is
the closure of h�i. Endow Z with the topology for which the groups
nZ, n� 1, form a fundamental system of neighbourhoods of 0. Thus
two integers are close if their difference is divisible by a large integer.

As for any topological group, we can complete Z for this topology.
A Cauchy sequence in Z is a sequence .ai /i�1, ai 2 Z, satisfying the
following condition: for all n� 1, there exists anN such that ai � aj
mod n for i;j > N . Call a Cauchy sequence in Z trivial if ai ! 0
as i !1, i.e., if for all n � 1, there exists an N such that ai � 0
mod n for all i >N . The Cauchy sequences form a commutative group,
and the trivial Cauchy sequences form a subgroup. We define yZ to be
the quotient of the first group by the second. It has a ring structure, and
the map sendingm2Z to the constant sequencem;m;m;: : : identifies
Z with a subgroup of yZ.

Let ˛ 2 yZ be represented by the Cauchy sequence .ai /. The restric-
tion of � to Fpn has order n. Therefore .� jFpn /ai is independent of
i provided it is sufficiently large, and we can define �˛ 2 Gal.˝=Fp/
to be such that, for each n, �˛ jFpn D .� jFpn /ai for all i sufficiently
large (depending on n). The map ˛ 7! �˛W yZ! Gal.˝=Fp/ is an
isomorphism.

The group yZ is uncountable. To most analysts, it is a little weird—its
connected components are one-point sets. To number theorists it will
seem quite natural — the Chinese remainder theorem implies that it is
isomorphic to

Q
p prime Zp where Zp is the ring of p-adic integers.
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EXAMPLE 7.16 Let˝ be the algebraic closure of Q in C; then Gal.˝=Q/
is one of the most basic, and intractable, objects in mathematics. It is
expected that every finite group occurs as a quotient of it, and it cer-
tainly has Sn as a quotient group for every n (and every sporadic simple
group, and every...) — cf. (5.37). We do understand Gal.F ab=F /where
F �C is a finite extension of Q andF ab is the union of all finite abelian
extensions ofF contained in C. For example, Gal.Qab=Q/�yZ�. (This
is abelian class field theory — see my notes Class Field Theory.)

ASIDE 7.17 A simple Galois correspondence is a system consisting
of two partially ordered sets P and Q and order reversing maps
f WP !Q and gWQ!P such that gf .p/� p for all p 2P and
fg.q/� q for all q 2Q. Then fgf D f , because fg.fp/� fp
and gf .p/� p implies f .gfp/� f .p/ for all p 2 P . Similarly,
gfg D g , and it follows that f and g define a one-to-one correspon-
dence between the sets g.Q/ and f .P /.

From a Galois extension ˝ of F we get a simple Galois corre-
spondence by taking P to be the set of subgroups of Gal.˝=F / and
Q to be the set of subsets of ˝, and by setting f .H/D˝H and
g.S/DG.S/. Thus, to prove the one-to-one correspondence in the
fundamental theorem, it suffices to identify the closed subgroups as
exactly those in the image of g and the intermediate fields as exactly
those in the image of f . This is accomplished by (7.10).

Galois groups as inverse limits

DEFINITION 7.18 A partial ordering� on a set I is said to be directed,
and the pair .I;�/ is called a directed set, if for all i;j 2 I there exists
a k 2 I such that i;j � k.
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DEFINITION 7.19 Let .I;�/ be a directed set, and let C be a cate-
gory (for example, the category of groups and homomorphisms, or the
category of topological groups and continuous homomorphisms).

(a) An inverse system in C indexed by .I;�/ is a family .Ai /i2I
of objects of C together with a family .pj

i
WAj ! Ai /i�j

of morphisms such that pi
i
D idAi and pj

i
ıpk

j
D pk

i
all

i � j � k.
(b) An objectA of C together with a family .pj WA!Aj /j2I of

morphisms satisfying pj
i
ıpj D pi all i � j is said to be an

inverse limit of the system in (a) if it has the following universal
property: for any other object B and family .qj WB!Aj / of
morphisms such pj

i
ıqj D qi all i � j , there exists a unique

morphism rWB!A such that pj ır D qj for j ,

B A

Aj

Ai

q
j

qi pi

pj

p
j
i

r

Clearly, the inverse limit (if it exists), is uniquely determined by this
condition up to a unique isomorphism. We denote it lim

 �
.Ai ;p

j

i
/, or

just lim
 �
Ai .
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EXAMPLE 7.20 Let .Gi ;p
j

i
WGj ! Gi / be an inverse system of

groups. Let

G D f.gi / 2
Y
Gi j p

j

i
.gj /D gi all i � j g;

and let pi WG!Gi be the projection map. Then pj
i
ıpj Dpi is just

the equation pj
i
.gj /D gi . Let .H;qi / be a second family such that

p
j

i
ıqj D qi . The image of the homomorphism

h 7! .qi .h//WH !
Y
Gi

is contained in G, and this is the unique homomorphism H ! G

carrying qi to pi . Hence .G;pi /D lim
 �
.Gi ;p

j

i
/.

EXAMPLE 7.21 Let .Gi ;p
j

i
WGj ! Gi / be an inverse system of

topological groups and continuous homomorphisms. When endowed
with the product topology,

Q
Gi becomes a topological group

G D f.gi / 2
Y
Gi j p

j

i
.gj /D gi all i � j g;

and G becomes a topological subgroup with the subspace topology.
The projection maps pi are continuous. LetH be .H;qi / be a second
family such that pj

i
ıqj D qi . The homomorphism

h 7! .qi .h//WH !
Y
Gi

is continuous because its composites with projection maps are continu-
ous (universal property of the product). ThereforeH !G is continu-
ous, and this shows that .G;pi /D lim

 �
.Gi ;p

j

i
/.
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EXAMPLE 7.22 Let .Gi ;p
j

i
WGj ! Gi / be an inverse system of

finite groups, and regard it as an inverse system of topological groups
by giving eachGi the discrete topology. A topological groupG arising
as an inverse limit of such a system is said to be profinite3:

If .xi / …G, say pj0
i0
.xj0 /¤ xi0 , then

G\f.gj / j gj0 D xj0 ; gi0 D xi0g D ;.

As the second set is an open neighbourhood of .xi /, this shows thatG
is closed in

Q
Gi . By Tychonoff’s theorem,

Q
Gi is compact, and so

G is also compact. The map pi WG!Gi is continuous, and its kernel
Ui is an open subgroup of finite index in G (hence also closed). AsT
Ui D feg, the connected component ofG containing e is just feg.

By homogeneity, the same is true for every point ofG: the connected
components ofG are the one-point sets —G is totally disconnected.

We have shown that a profinite group is compact and totally discon-
nected, and it is an exercise to prove the converse.4

EXAMPLE 7.23 Let˝ be a Galois extension of F . The composite of
two finite Galois extensions of in˝ is again a finite Galois extension,
and so the finite Galois subextensions of ˝ form a directed set I .
For each E in I we have a finite group Gal.E=F /, and for each
E �E 0 we have a restriction homomorphism pE

0

E WGal.E 0=F /!
Gal.E=F /. In this way, we get an inverse system of finite groups
.Gal.E=F /;pE

0

E / indexed by I .
For eachE , there is a restriction homomorphismpE WGal.˝=F /!

Gal.E=F / and, because of the universal property of inverse limits,

3An inverse limit is also called a projective limit. Thus a profinite group is a
projective limit of finite groups.

4More precisely, it is Exercise 3 of �7 of Chapter 3 of Bourbaki’s General
Topology.
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these maps define a homomorphism

Gal.˝=F /! lim
 �

Gal.E=F /.

This map is an isomorphism of topological groups. This is a restatement
of what we showed in the proof of (7.7).

Nonopen subgroups of finite index

We apply Zorn’s lemma to construct a nonopen subgroup of finite index
in Gal.Qal=Q/.5

LEMMA 7.24 Let V be an infinite dimensional vector space. For all
n� 1, there exists a subspace Vn of V such that V=Vn has dimension
n.

PROOF. Zorn’s lemma shows that V contains maximal linearly
independent subsets, and then the usual argument shows that
such a subset spans V , i.e., is a basis. Choose a basis, and take
Vn to be the subspace spanned by the set obtained by omitting
n elements from the basis. 2

PROPOSITION 7.25 The group Gal.Qal=Q/ has nonopen normal sub-
groups of index 2n for all n > 1.

5Contrast: “. . . it is not known, even whenG D Gal.xQ=Q/, whether every
subgroup of finite index inG is open; this is one of a number of related unsolved
problems, all of which appear to be very difficult.” Swinnerton-Dyer, H. P. F., A
brief guide to algebraic number theory. Cambridge, 2001, p133.
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PROOF. LetE be the subfield QŒ
p
�1;
p
2; : : : ;

p
p; : : :�, p prime,

of C. For each p,

Gal.QŒ
p
�1;
p
2; : : : ;

p
p�=Q/

is a product of copies of Z=2Z indexed by the set fprimes �
pg[f1g (apply 5.30; see also 5.29b). As

Gal.E=Q/D lim
 �

Gal.QŒ
p
�1;
p
2; : : : ;

p
p�=Q/;

it is a direct product of copies of Z=2Z indexed by the primes
l of Q (including l D1) endowed with the product topology.
Let G D Gal.E=Q/, and let

H D f.al / 2G j al D 0 for all but finitely many lg:

This is a subgroup of G (in fact, it is a direct sum of copies
of Z=2Z indexed by the primes of Q), and it is dense in G
because6 clearly every open subset of G contains an element
of H . We can regard G=H as vector space over F2 and apply
the lemma to obtain subgroups Gn of index 2n in G containing
H . If Gn is open in G, then it is closed, which contradicts the
fact that H is dense. Therefore, Gn is not open, and its inverse
image in Gal.Qal=Q/ is the desired subgroup.7 2

6Alternatively, let .al / 2G; then the sequence

.a1;0;0;0; : : :/, .a1;a2;0;0; : : :/, .a1;a2;a3;0; : : :/; : : :

inH converges to .al /.
7The inverse image is not open because every continuous homomorphism

from a compact group to a separated group is open. Alternatively, if the inverse
image were open, its fixed field would be a nontrivial extensionE of Q contained
in QŒ
p
�1;
p
2;: : : ;

p
p;: : :�; but thenE would be fixed byGn, which is dense.
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ASIDE 7.26 LetGDGal.Qal=Q/. We showed in the above proof that
there is a closed normal subgroup N D Gal.Qal=E/ of G such that
G=N is an uncountable vector space over F2. Let .G=N/_ be the dual
of this vector space (also uncountable). Every nonzero f 2 .G=N/_

defines a surjective mapG! F2 whose kernel is a subgroup of index
2 inG. These subgroups are distinct, and soG has uncountably many
subgroups of index 2. Only countably many of them are open because
Q has only countably many quadratic extensions in a fixed algebraic
closure.

ASIDE 7.27 LetG be a profinite group that is finitely generated as a
topological group. It is a difficult theorem, only recently proved, that
every subgroup of finite index inG is open (Nikolov, Nikolay; Segal,
Dan. On finitely generated profinite groups. I. Strong completeness and
uniform bounds. Ann. of Math. (2) 165 (2007), no. 1, 171–238.)

ASIDE 7.28 It is necessary to assume the axiom of choice in order to
have a sensible Galois theory of infinite extensions. For example, it is
consistent with Zermelo-Fraenkel set theory that there be an algebraic
closureL of the Q such that Gal.L=Q/ is trivial. See: Hodges, Wilfrid,
Läuchli’s algebraic closure of Q. Math. Proc. Cambridge Philos. Soc.
79 (1976), no. 2, 289–297.

Étale algebras

Let ˝ be a separable closure of F , and let G D Gal.˝=F /. For an
F -algebra A, let F.A/ denote the set of F -algebra homomorphisms
A!˝. IfA is finitely generated (as an F -algebra), then the action of
G on F.A/ is continuous for the discrete topology on F.A/.
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THEOREM 7.29 The functor A F.A/ is a contravariant equiva-
lence from the category of étale F -algebras to the category of finite
discreteG-sets.

PROOF. Immediate consequence of Theorem 5.53. 2

ASIDE 7.30 The reader should note the similarity of (7.29) with the
following statement:

Let X be a connected topological manifold, and let
pW˝ ! X be a universal covering space for X . Let
G denote the group of covering transformations (so the
choice of a point e 2 ˝ determines an isomorphism
G! �1.X;pe/). For a covering space Y of X , let
F.Y / denote the set of covering maps ˝! Y . Then
Y  F.Y / is an equivalence from the category of cov-
ering spaces of X with only finitely many connected
components to the category of (right)G-sets with only
finitely many orbits.

For more on this, see the section on the étale fundamental group in my
“Lectures on Étale Cohomology”.



Chapter 8

Transcendental Extensions

In this chapter we consider fields˝ �F with˝ much bigger than F .
For example, we could have C�Q:

Algebraic independence

Elements ˛1; :::;˛n of˝ give rise to an F -homomorphism
f 7! f .˛1; :::;˛n/WF ŒX1; : : : ;Xn�!˝.

If the kernel of this homomorphism is zero, then the ˛i are said to be al-
gebraically independent over F , and otherwise, they are algebraically
dependent over F . Thus, the ˛i are algebraically dependent over F
if there exists a nonzero polynomial f .X1; :::;Xn/ 2F ŒX1; :::;Xn�
such that f .˛1; :::;˛n/D 0, and they are algebraically independent if

ai1;:::;in 2F;
X
ai1;:::;in˛

i1
1 :::˛

in
n D0 H) ai1;:::;in D0 all i1; :::; in:

181
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Note the similarity with linear independence. In fact, if f is required to
be homogeneous of degree 1, then the definition becomes that of linear
independence.

EXAMPLE 8.1 (a) A single element ˛ is algebraically independent
over F if and only if it is transcendental over F:

(b) The complex numbers � and e are almost certainly algebraically
independent over Q, but this has not been proved.

An infinite setA is algebraically independent overF if every finite
subset of A is algebraically independent; otherwise, it is algebraically
dependent over F .

REMARK 8.2 If ˛1; :::;˛n are algebraically independent overF , then

f .X1; :::;Xn/ 7! f .˛1; :::;˛n/WF ŒX1; :::;Xn�!F Œ˛1; :::;˛n�

is an injection, and hence an isomorphism. This isomorphism then
extends to the fields of fractions,

Xi 7! ˛i WF.X1; :::;Xn/!F.˛1; :::;˛n/

In this case, F.˛1; :::;˛n/ is called a pure transcendental extension
of F . The polynomial

f .X/DXn�˛1X
n�1C�� �C .�1/n˛n

has Galois group Sn over F.˛1; :::;˛n/ (5.36).

LEMMA 8.3 Let 
 2˝ and let A�˝. The following conditions are
equivalent:

(a) 
 is algebraic over F.A/;
(b) there exist ˇ1; : : : ;ˇn 2F.A/ such that 
nCˇ1
n�1C�� �C

ˇn D 0;
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(c) there exist ˇ0;ˇ1; : : : ;ˇn 2F ŒA�, not all 0, such that ˇ0
nC
ˇ1


n�1C�� �Cˇn D 0;
(d) there exists an f .X1; : : : ;Xm;Y / 2 F ŒX1 : : : ;Xm;Y � and

˛1; : : : ;˛m 2A such that f .˛1; : : : ;˛m;Y /¤ 0 but

f .˛1; : : : ;˛m;
/D 0:

PROOF. (a)H) (b)H) (c)H) (a) are obvious.
(d)H) (c). Write f .X1; : : : ;Xm;Y / as a polynomial in Y

with coefficients in the ring F ŒX1; : : : ;Xm�,

f .X1; : : : ;Xm;Y /D
P
fi .X1; : : : ;Xm/Y

n�i .

Then (c) holds with ˇi D fi .˛1; : : : ;˛m/.
(c) H) (d). The ˇi in (c) can be expressed as polyno-

mials in a finite number of elements ˛1; : : : ;˛m of A, say,
ˇi D fi .˛1; : : : ;˛m/ with fi 2 F ŒX1; : : : ;Xm�. Then (d) holds
with f D

P
fi .X1; : : : ;Xm/Y

n�i . 2

DEFINITION 8.4 When 
 satisfies the equivalent conditions of Lemma
8.3, it is said to be algebraically dependent on A (over F /. A set B
is algebraically dependent on A if each element of B is algebraically
dependent on A.

The theory in the remainder of this chapter is logically very similar
to a part of linear algebra. It is useful to keep the following correspon-
dences in mind:

Linear algebra Transcendence
linearly independent algebraically independent
A� span.B/ A algebraically dependent on B

basis transcendence basis
dimension transcendence degree
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Transcendence bases

THEOREM 8.5 (FUNDAMENTAL RESULT) LetADf˛1; :::;˛mg and
B D fˇ1; :::;ˇng be two subsets of˝. Assume

(a) A is algebraically independent (over F );
(b) A is algebraically dependent on B (over F ).

Thenm� n.

We first prove two lemmas.

LEMMA 8.6 (THE EXCHANGE PROPERTY) Let f˛1; :::;˛mg be a sub-
set of ˝; if ˇ is algebraically dependent on f˛1; :::;˛mg but not on
f˛1; :::;˛m�1g, then˛m is algebraically dependent on f˛1; :::;˛m�1;ˇg:

PROOF. Because ˇ is algebraically dependent on f˛1; : : : ;˛mg,
there exists a polynomial f .X1; :::;Xm;Y / with coefficients in
F such that

f .˛1; :::;˛m;Y /¤ 0; f .˛1; :::;˛m;ˇ/D 0:

Write f as a polynomial in Xm,

f .X1; :::;Xm;Y /D
X
i

ai .X1; :::;Xm�1;Y /X
n�i
m ;

and observe that, because f .˛1; : : : ;˛m;Y /¤ 0, at least one of
the polynomials

ai .˛1; :::;˛m�1;Y /;
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say ai0 , is not the zero polynomial. Because ˇ is not alge-
braically dependent on

f˛1; :::;˛m�1g;

ai0.˛1; :::;˛m�1;ˇ/¤ 0. Therefore, f .˛1; :::;˛m�1;Xm;ˇ/¤
0. Since f .˛1; :::;˛m;ˇ/D 0, this shows that ˛m is algebraically
dependent on f˛1; :::;˛m�1;ˇg. 2

LEMMA 8.7 (TRANSITIVITY OF ALGEBRAIC DEPENDENCE) IfC is
algebraically dependent on B , and B is algebraically dependent on A,
then C is algebraically dependent on A.

PROOF. The argument in the proof of Proposition 1.44 shows
that if 
 is algebraic over a field E which is algebraic over
a field F , then 
 is algebraic over F (if a1; : : : ;an are the
coefficients of the minimum polynomial of 
 over E, then the
field F Œa1; : : : ;an;
� has finite degree over F ). Apply this with
E D F.A[B/ and F D F.A/. 2

PROOF. [of Theorem 8.5]Let k be the number of elements that
A and B have in common. If k Dm, then A� B , and certainly
m� n. Suppose that k < m, and write

B D f˛1; :::;˛k ;ˇkC1; :::;ˇng:

Since ˛kC1 is algebraically dependent on f˛1; :::;˛k ;ˇkC1; :::;ˇng
but not on f˛1; :::;˛kg, there will be a ˇj , kC1� j � n, such
that ˛kC1 is algebraically dependent on f˛1; :::;˛k ;ˇkC1; :::;ˇj g
but not

f˛1; :::;˛k ;ˇkC1; :::;ˇj�1g:
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The exchange lemma then shows that ˇj is algebraically depen-
dent on

B1
def
D B [f˛kC1gXfˇj g:

Therefore B is algebraically dependent on B1, and so A is
algebraically dependent on B1 (by 8.7). If kC 1 < m, repeat
the argument with A and B1. Eventually we’ll achieve k Dm,
and m� n: 2

DEFINITION 8.8 A transcendence basis for ˝ over F is an alge-
braically independent set A such that˝ is algebraic over F.A/:

LEMMA 8.9 If ˝ is algebraic over F.A/, and A is minimal among
subsets of˝ with this property, then it is a transcendence basis for˝
over F .

PROOF. If A is not algebraically independent, then there is an
˛ 2 A that is algebraically dependent on AX f˛g. It follows
from Lemma 8.7 that ˝ is algebraic over F.AXf˛g/: 2

THEOREM 8.10 If there is a finite subset A�˝ such that ˝ is al-
gebraic over F.A/, then ˝ has a finite transcendence basis over F .
Moreover, every transcendence basis is finite, and they all have the same
number of elements.

PROOF. In fact, every minimal subset A0 of A such that ˝ is
algebraic over F.A0/ will be a transcendence basis. The second
statement follows from Theorem 8.5. 2

LEMMA 8.11 Suppose that A is algebraically independent, but that
A[fˇg is algebraically dependent. Then ˇ is algebraic over F.A/:
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PROOF. The hypothesis is that there exists a nonzero polyno-
mial

f .X1; :::;Xn;Y / 2 F ŒX1; :::;Xn;Y �

such that f .˛1; :::;˛n;ˇ/D 0, some distinct ˛1; :::;˛n 2A. Be-
cause A is algebraically independent, Y does occur in f . There-
fore

f D g0Y
m
Cg1Y

m�1
C�� �Cgm

where

gi 2 F ŒX1; : : : ;Xn�; g0 ¤ 0; m� 1:

As g0 ¤ 0 and the ˛i are algebraically independent,

g0.˛1; : : : ;˛n/¤ 0:

Because ˇ is a root of

f D g0.˛1; : : : ;˛n/X
m
Cg1.˛1; : : : ;˛n/X

m�1
C�� �

Cgm.˛1; : : : ;˛n/;

it is algebraic over F.˛1; : : : ;˛n/� F.A/: 2

PROPOSITION 8.12 Every maximal algebraically independent subset
of˝ is a transcendence basis for˝ over F .

PROOF. We have to prove that ˝ is algebraic over F.A/ if
A is maximal among algebraically independent subsets. But
the maximality implies that, for every ˇ 2˝ XA, A[fˇg is
algebraically dependent, and so the lemma shows that ˇ is
algebraic over F.A/. 2



188 8. TRANSCENDENTAL EXTENSIONS

Recall that (except in �7), we use an asterisk to signal a result
depending on Zorn’s lemma.

THEOREM 8.13 (*) Every algebraically independent subset of ˝ is
contained in a transcendence basis for ˝ over F ; in particular, tran-
scendence bases exist.

PROOF. Let S be the set of algebraically independent subsets
of ˝ containing the given set. We can partially order it by
inclusion. Let T be a totally ordered subset of S , and let B DS
fA j A 2 T g. I claim that B 2 S , i.e., that B is algebraically

independent. If not, there exists a finite subset B 0 of B that
is not algebraically independent. But such a subset will be
contained in one of the sets in T , which is a contradiction. Now
Zorn’s lemma shows that there exists a maximal algebraically
independent containing S , which Proposition 8.12 shows to be
a transcendence basis for ˝ over F . 2

It is possible to show that any two (possibly infinite) transcen-
dence bases for ˝ over F have the same cardinality. The cardinality
of a transcendence basis for ˝ over F is called the transcendence
degree of˝ over F . For example, the pure transcendental extension
F.X1; : : : ;Xn/ has transcendence degree n over F .

EXAMPLE 8.14 Let p1; : : : ;pn be the elementary symmetric poly-
nomials in X1; : : : ;Xn. The field F.X1; : : : ;Xn/ is algebraic over
F.p1; : : : ;pn/, and so fp1;p2; : : : ;png contains a transcendence ba-
sis for F.X1; : : : ;Xn/. Because F.X1; : : : ;Xn/ has transcendence
degree n, the pi ’s must themselves be a transcendence basis.

EXAMPLE 8.15 Let ˝ be the field of meromorphic functions on a
compact complex manifoldM .
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(a) The only meromorphic functions on the Riemann sphere are the
rational functions in z. Hence, in this case,˝ is a pure transcendental
extension of C of transcendence degree 1.

(b) IfM is a Riemann surface, then the transcendence degree of˝
over C is 1, and˝ is a pure transcendental extension of C ” M is
isomorphic to the Riemann sphere

(c) IfM has complex dimension n, then the transcendence degree
is � n, with equality holding ifM is embeddable in some projective
space.

PROPOSITION 8.16 Any two algebraically closed fields with the same
transcendence degree over F are F -isomorphic.

PROOF. Choose transcendence bases A and A0 for the two
fields. By assumption, there exists a bijection A! A0, which
extends uniquely to an F -isomorphism F ŒA�! F ŒA0�, and
hence to an F -isomorphism of the fields of fractions F.A/!
F.A0/. Use this isomorphism to identify F.A/ with F.A0/.
Then the two fields in question are algebraic closures of the
same field, and hence are isomorphic (Theorem 6.8). 2

REMARK 8.17 Any two algebraically closed fields with the same un-
countable cardinality and the same characteristic are isomorphic. The
idea of the proof is as follows. Let F and F 0 be the prime subfields
of ˝ and ˝0; we can identify F with F 0. Then show that when ˝
is uncountable, the cardinality of˝ is the same as the cardinality of a
transcendence basis over F . Finally, apply the proposition.

REMARK 8.18 What are the automorphisms of C? There are only
two continuous automorphisms (cf. Exercise A-8 and solution). If we
assume Zorn’s lemma, then it is easy to construct many: choose any
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transcendence basis A for C over Q, and choose any permutation ˛ of
A; then ˛ defines an isomorphism Q.A/!Q.A/ that can be extended
to an automorphism of C. Without Zorn’s lemma, there are only two,
because the noncontinuous automorphisms are nonmeasurable,1 and it
is known that the Zorn’s lemma is required to construct nonmeasurable
functions.2

Lüroth’s theorem

THEOREM 8.19 (LÜROTH’S THEOREM) Every subfieldE of F.X/
containing F but not equal to F is a pure transcendental extension of
F .
PROOF. Jacobson 1964, IV 4, p157. 2

REMARK 8.20 This fails when there is more than one variable — see
Zariski’s example (footnote to Remark 5.5) and Swan’s example (Re-
mark 5.37). The best true statement is the following: if ŒF .X;Y /WE�<
1 and F is algebraically closed of characteristic zero, thenE is a pure
transcendental extension of F (Theorem of Zariski, 1958).

Separating transcendence bases

Let E � F be fields with E finitely generated over F . A subset
fx1; : : : ;xd g of E is a separating transcendence basis for E=F if

1A fairly elementary theorem of G. Mackey says that measurable homomor-
phisms of Lie groups are continuous (see David Witte Morris, Introduction to
Arithmetic Groups, http://people.uleth.ca/˜dave.morris/, Appendix I.C).

2“We show that the existence of a non-Lebesgue measurable set cannot
be proved in Zermelo-Frankel set theory (ZF) if use of the axiom of choice is
disallowed...” R. Solovay, Ann. of Math., 92 (1970), 1–56.
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it is algebraically independent over F and E is a finite separable
extension of F.x1; : : : ;xd /.

THEOREM 8.21 IfF is perfect, then every finitely generated extension
E of F admits a separating transcendence basis over F .

PROOF. If F has characteristic zero, then every transcendence
basis is separating, and so the statement becomes that of (8.10).
Thus, we may assume F has characteristic p ¤ 0. Because F
is perfect, every polynomial in Xp1 ; : : : ;X

p
n with coefficients in

F is a pth power in F ŒX1; : : : ;Xn�:X
ai1���inX

i1p
1 : : :X

inp
n D

�X
a
1
p

i1���in
X
i1
1 : : :X

in
n

�p
:

Let E D F.x1; : : : ;xn/, and assume n > d C 1 where d
is the transcendence degree of E over F . After renumber-
ing, we may suppose that x1; : : : ;xd are algebraically inde-
pendent (8.9). Then f .x1; : : : ;xdC1/ D 0 for some nonzero
irreducible polynomial f .X1; : : : ;XdC1/ with coefficients in
F . Not all @f=@Xi are zero, for otherwise f would be a poly-
nomial in Xp1 ; : : : ;X

p
dC1

, which implies that it is a pth power.
After renumbering, we may suppose that @f=@XdC1 ¤ 0. Then
F.x1; : : : ;xdC1;xdC2/ is algebraic over F.x1; : : : ;xd / and
xdC1 is separable over F.x1; : : : ;xd /, and so, by the prim-
itive element theorem (5.1), there is an element y such that
F.x1; : : : ;xdC2/D F.x1; : : : ;xd ;y/. Thus E is generated by
n�1 elements (as a field containing F /. After repeating the pro-
cess, possibly several times, we will haveE DF.z1; : : : ; zdC1/
with zdC1 separable over F.z1; : : : ; zd /. 2
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ASIDE 8.22 In fact, we showed that E admits a separating transcen-
dence basis with dC1 elements where d is the transcendence degree.
This has the following geometric interpretation: every irreducible al-
gebraic variety of dimension d over a perfect field F is birationally
equivalent with a hypersurface H in AdC1 for which the projection
.a1; : : : ;adC1/ 7! .a1; : : : ;ad / realizes F.H/ as a finite separable
extension of F.Ad / (see my notes on Algebraic Geometry).

Transcendental Galois theory

THEOREM 8.23 (*) Let˝ be a separably closed field and let F be a
perfect subfield of˝. If ˛ 2˝ is fixed by all F -automorphisms of˝,
then ˛ 2F , i.e.,˝G DF .
PROOF. Let ˛ 2 ˝ XF . If ˛ is transcendental over F , then
it is part of a transcendence basis A for ˝ over F (see 8.13).
Choose an automorphism � of A such that �.˛/ ¤ ˛. Then
� extends to an F -automorphism of F.A/, which extends to
an F -automorphism of the separable closure ˝ of F.A/ (see
6.11).

If ˛ is algebraic over F , then by infinite Galois theory (7.8)
there exists an F -automorphism � of the separable closure of
F in ˝ such that �.˛/¤ ˛. As before, � can be extended to an
F -automorphism of ˝. 2

Let˝ �F be fields and letGDAut.˝=F /. For any finite subset
S of˝, let

G.S/D f� 2G j �sD s for all s 2 Sg.

Then, as in �7, the subgroupsG.S/ ofG form a neighbourhood base
for a unique topology on G, which we again call the Krull topology.
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The same argument as in �7 shows that this topology is Hausdorff (but
it is not necessarily compact).

THEOREM 8.24 Let ˝ � F be fields such that ˝G D F , G D
Aut.˝=F /.

(a) For every finite extensionE of F in˝,˝Aut.˝=E/ DE .
(b) The maps

H 7!˝H ; M 7! Aut.˝=M/ (4)

are inverse bijections between the set of compact subgroups ofG and
the set of intermediate fields over which˝ is Galois (possibly infinite):

fcompact subgroups ofGg$ ffieldsM such that F �M
Galois
� ˝g:

(c) If there exists an M finitely generated over F such that ˝ is
Galois overM , thenG is locally compact, and under (4):

fopen compact subgroups ofGg
1W1
$

ffieldsM such that F
finitely generated
� M

Galois
� ˝g:

(d) Let H be a subgroup of G, and let M D ˝H . Then the
algebraic closure M1 of M is Galois over M . If moreover H D
Aut.˝=M/, then Aut.˝=M1/ is a normal subgroup ofH , and � 7!
� jM1 mapsH=Aut.˝=M1/ isomorphically onto a dense subgroup
of Aut.M1=M/.

PROOF. See 6.3 of Shimura, Goro., Introduction to the arith-
metic theory of automorphic functions. Princeton, 1971. 2





Appendix A

Review Exercises

A-1 Let p be a prime number, and let m and n be positive
integers.

(a) Give necessary and sufficient conditions on m and n for
Fpn to have a subfield isomorphic with Fpm . Prove your
answer.

(b) If there is such a subfield, how many subfields isomorphic
with Fpm are there, and why?

A-2 Show that the Galois group of the splitting field F of
X3� 7 over Q is isomorphic to S3, and exhibit the fields be-
tween Q and F . Which of the fields between Q and F are
normal over Q?

195
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A-3 Prove that the two fields QŒ
p
7� and QŒ

p
11� are not iso-

morphic.

A-4 (a) Prove that the multiplicative group of all nonzero
elements in a finite field is cyclic.

(b) Construct explicitly a field of order 9, and exhibit a gen-
erator for its multiplicative group.

A-5 Let X be transcendental over a field F , and let E be
a subfield of F.X/ properly containing F . Prove that X is
algebraic over E.

A-6 Prove as directly as you can that if � is a primitive pth
root of 1, p prime, then the Galois group of QŒ�� over Q is
cyclic of order p�1.

A-7 Let G be the Galois group of the polynomial X5�2 over
Q.

(a) Determine the order of G.
(b) Determine whether G is abelian.
(c) Determine whether G is solvable.

A-8 (a) Show that every field homomorphism from R to R
is bijective.

(b) Prove that C is isomorphic to infinitely many different
subfields of itself.

A-9 Let F be a field with 16 elements. How many roots in F
does each of the following polynomials have? X3�1; X4�1;
X15�1; X17�1.
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A-10 Find the degree of a splitting field of the polynomial
.X3�5/.X3�7/ over Q.

A-11 Find the Galois group of the polynomial X6� 5 over
each of the fields Q and R.

A-12 The coefficients of a polynomial f .X/ are algebraic
over a field F . Show that f .X/ divides some nonzero polyno-
mial g.X/ with coefficients in F .

A-13 Let f .X/ be a polynomial in F ŒX� of degree n, and let
E be a splitting field of f . Show that ŒEWF � divides nŠ.

A-14 Find a primitive element for the field QŒ
p
3;
p
7� over

Q, i.e., an element such that QŒ
p
3;
p
7�DQŒ˛�.

A-15 Let G be the Galois group of .X4�2/.X3�5/ over Q.

(a) Give a set of generators for G, as well as a set of defining
relations.

(b) What is the structure of G as an abstract group (is it
cyclic, dihedral, alternating, symmetric, etc.)?

A-16 Let F be a finite field of characteristic¤ 2. Prove that
X2 D�1 has a solution in F if and only if jF j � 1 mod 4.

A-17 Let E be the splitting field over Q of .X2� 2/.X2�
5/.X2�7/. Find an element ˛ in E such that E DQŒ˛�. (You
must prove that E DQŒ˛�.)
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A-18 Let E be a Galois extension of F with Galois group Sn,
n > 1 not prime. Let H1 be the subgroup of Sn of elements
fixing 1, and let H2 be the subgroup generated by the cycle
.123: : :n/. Let Ei D EHi , i D 1;2. Find the degrees of E1,
E2, E1\E2, and E1E2 over F . Show that there exists a field
M such that F �M �E2,M ¤ F ,M ¤E2, but that no such
field exists for E1.

A-19 Let � be a primitive 12th root of 1 over Q. How many
fields are there strictly between QŒ�3� and QŒ��.

A-20 For the polynomial X3�3, find explicitly its splitting
field over Q and elements that generate its Galois group.

A-21 Let E DQŒ��, �5 D 1, � ¤ 1. Show that i …E, and that
if LDEŒi�, then �1 is a norm from L to E. Here i D

p
�1.

A-22 Let E be an extension field of F , and let ˝ be an alge-
braic closure of E. Let �1; : : : ;�n be distinct F -isomorphisms
E!˝.

(a) Show that �1; : : : ;�n are linearly dependent over ˝.
(b) Show that ŒEWF ��m.
(c) Let F have characteristic p > 0, and letL be a subfield of

˝ containingE and such that ap 2E for all a 2L. Show
that each �i has a unique extension to a homomorphism
� 0i WL!˝.

A-23 Identify the Galois group of the splitting field F of
X4�3 over Q. Determine the number of quadratic subfields.
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A-24 Let F be a subfield of a finite field E. Prove that the
trace map T D TrE=F and the norm map N D NmE=F of E
over F both map E onto F . (You may quote basic properties
of finite fields and the trace and norm.)

A-25 Prove or disprove by counterexample.
(a) If L=F is an extension of fields of degree 2, then there is

an automorphism � of L such that F is the fixed field of
� .

(b) The same as (a) except that L is also given to be finite.

A-26 A finite Galois extension L of a field K has degree
8100. Show that there is a field F with K � F � L such that
ŒF WK�D 100.

A-27 An algebraic extension L of a field K of characteristic
0 is generated by an element � that is a root of both of the
polynomials X3�1 and X4CX2C1. Given that L¤K, find
the minimum polynomial of � .

A-28 Let F=Q be a Galois extension of degree 3n, n � 1.
Prove that there is a chain of fields

QD F0 � F1 � �� �Fn D F

such that for every i , 0� i � n�1, ŒFiC1WFi �D 3.

A-29 Let L be the splitting field over Q of an equation of de-
gree 5 with distinct roots. Suppose that L has an automorphism
that fixes three of these roots while interchanging the other two
and also an automorphism ˛ ¤ 1 of order 5.
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(a) Prove that the group of automorphisms of L is the sym-
metric group on 5 elements.

(b) How many proper subfields of L are normal extensions
of Q? For each such field F , what is ŒF WQ�?

A-30 If L=K is a separable algebraic field extension of finite
degree d , show that the number of fields between K and L is at
most 2dŠ.

A-31 Let K be the splitting field over Q of X5�1. Describe
the Galois group Gal.K=Q/ of K over Q, and show that K
has exactly one subfield of degree 2 over Q, namely, QŒ�C �4�,
� ¤ 1 a root ofX5�1. Find the minimum polynomial of �C�4
over Q. Find Gal.L=Q/ when L is the splitting field over Q of

(a) .X2�5/.X5�1/;
(b) .X2C3/.X5�1/.

A-32 Let ˝1 and ˝2 be algebraically closed fields of tran-
scendence degree 5 over Q, and let ˛W˝1! ˝2 be a homo-
morphism (in particular, ˛.1/D 1). Show that ˛ is a bijection.
(State carefully all theorems you use.)

A-33 Find the group of Q-automorphisms of the field k D
QŒ
p
�3;
p
�2�.

A-34 Prove that the polynomial f .X/DX3�5 is irreducible
over the field QŒ

p
7�. If L is the splitting field of f .X/ over

QŒ
p
7�, prove that the Galois group of L=QŒ

p
7� is isomorphic
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to S3. Prove that there must exist a subfield K of L such that
the Galois group of L=K is cyclic of order 3.

A-35 Identify the Galois group G of the polynomial f .X/D
X5 � 6X4C 3 over F , when (a) F D Q and when (b) F D
F2. In each case, if E is the splitting field of f .X/ over F ,
determine how many fields K there are such that E �K � F
with ŒKWF �D 2.

A-36 Let K be a field of characteristic p, say with pn ele-
ments, and let � be the automorphism of K that maps every
element to its pth power. Show that there exists an automor-
phism ˛ of K such that �˛2 D 1 if and only if n is odd.

A-37 Describe the splitting field and Galois group, over Q, of
the polynomial X5�9.

A-38 Suppose that E is a Galois field extension of a field
F such that ŒEWF � D 53 � .43/2. Prove that there exist fields
K1 and K2 lying strictly between F and E with the following
properties: (i) each Ki is a Galois extension of F ; (ii) K1 \
K2 D F ; and (iii) K1K2 DE.

A-39 Let F D Fp for some prime p. Let m be a positive
integer not divisible by p, and let K be the splitting field of
Xm�1. Find ŒKWF � and prove that your answer is correct.

A-40 Let F be a field of 81 elements. For each of the follow-
ing polynomials g.X/, determine the number of roots of g.X/
that lie in F : X80�1, X81�1, X88�1.
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A-41 Describe the Galois group of the polynomial X6 � 7
over Q.

A-42 Let K be a field of characteristic p > 0 and let F D
K.u;v/ be a field extension of degree p2 such that up 2 K
and vp 2K. Prove that K is not finite, that F is not a simple
extension ofK, and that there exist infinitely many intermediate
fields F � L�K.

A-43 Find the splitting field and Galois group of the polyno-
mial X3�5 over the field QŒ

p
2�.

A-44 For every prime p, find the Galois group over Q of the
polynomial X5�5p4XCp.

A-45 Factorize X4C 1 over each of the finite fields (a) F5;
(b) F25; and (c) F125. Find its splitting field in each case.

A-46 Let QŒ˛� be a field of finite degree over Q. Assume that
there is a q 2Q, q ¤ 0, such that j�.˛/j D q for all homomor-
phisms �WQŒ˛�!C. Show that the set of roots of the minimum
polynomial of ˛ is the same as that of q2=˛. Deduce that there
exists an automorphism � of QŒ˛� such that

(a) �2 D 1 and
(b) �.�
/D �.
/ for all 
 2QŒ˛� and �WQŒ˛�! C.

A-47 Let F be a field of characteristic zero, and let p be
a prime number. Suppose that F has the property that all ir-
reducible polynomials f .X/ 2 F ŒX� have degree a power of
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p .1 D p0 is allowed). Show that every equation g.X/ D 0,
g 2 F ŒX�, is solvable by extracting radicals.

A-48 Let K D QŒ
p
5;
p
�7� and let L be the splitting field

over Q of f .X/DX3�10.

(a) Determine the Galois groups of K and L over Q.
(b) Decide whether K contains a root of f .
(c) Determine the degree of the field K\L over Q.

[Assume all fields are subfields of C.]

A-49 Find the splitting field (over Fp) of Xp
r
�X 2 Fp ŒX�,

and deduce that Xp
r
�X has an irreducible factor f 2 Fp ŒX�

of degree r . Let g.X/ 2 ZŒX� be a monic polynomial that be-
comes equal to f .X/ when its coefficients are read modulo p.
Show that g.X/ is irreducible in QŒX�.

A-50 Let E be the splitting field of X3 � 51 over Q. List
all the subfields of E, and find an element 
 of E such that
E DQŒ
�.

A-51 Let k D F1024 be the field with 1024 elements, and let
K be an extension of k of degree 2. Prove that there is a unique
automorphism � of K of order 2 which leaves k elementwise
fixed and determine the number of elements of K� such that
�.x/D x�1.

A-52 Let F and E be finite fields of the same characteristic.
Prove or disprove these statements:
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(a) There is a ring homomorphism of F into E if and only if
jEj is a power of jF j.

(b) There is an injective group homomorphism of the multi-
plicative group of F into the multiplicative group of E if
and only if jEj is a power of jF j.

A-53 Let L=K be an algebraic extension of fields. Prove that
L is algebraically closed if every polynomial over K factors
completely over L.

A-54 Let K be a field, and let M DK.X/, X an indetermi-
nate. Let L be an intermediate field different fromK. Prove that
M is finite-dimensional over L.

A-55 Let �1;�2;�3 be the roots of the polynomial f .X/ D
X3CX2�9XC1.

(a) Show that the �i are real, nonrational, and distinct.
(b) Explain why the Galois group of f .X/ over Q must be

either A3 or S3. Without carrying it out, give a brief
description of a method for deciding which it is.

(c) Show that the rows of the matrix0B@3 9 9 9
3 �1 �2 �3
3 �2 �3 �1
3 �3 �1 �2

1CA
are pairwise orthogonal; compute their lengths, and com-
pute the determinant of the matrix.
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A-56 Let E=K be a Galois extension of degree p2q where p
and q are primes, q < p and q not dividing p2�1. Prove that:

(a) there exist intermediate fieldsL andM such that ŒLWK�D
p2 and ŒM WK�D q;

(b) such fields L and M must be Galois over K; and
(c) the Galois group of E=K must be abelian.

A-57 Let � be a primitive 7th root of 1 (in C).

(a) Prove that 1CX CX2CX3CX4CX5CX6 is the
minimum polynomial of � over Q.

(b) Find the minimum polynomial of �C 1
�

over Q.

A-58 Find the degree over Q of the Galois closureK of QŒ2
1
4 �

and determine the isomorphism class of Gal.K=Q/.

A-59 Let p;q be distinct positive prime numbers, and consider
the extension K DQŒpp;pq��Q.

(a) Prove that the Galois group is isomorphic to C2�C2.
(b) Prove that every subfield of K of degree 2 over Q is of

the form QŒ
p
m� where m 2 fp;q;pqg.

(c) Show that there is an element 
 2K such that K DQŒ
�.





Appendix B

Two-hour Examination

1. (a) Let � be an automorphism of a fieldE . If �4 D 1 and

�.˛/C�3.˛/D ˛C�2.˛/ all ˛ 2E;

show that �2 D 1.
(b) Let p be a prime number and let a;b be rational numbers such that
a2Cpb2 D 1. Show that there exist rational numbers c;d such that

aD c2�pd2

c2Cpd2
and bD 2cd

c2Cpd2
. !!Check!!

2. Let f .X/ be an irreducible polynomial of degree 4 in QŒX�, and
let g.X/ be the resolvent cubic of f . What is the relation between the
Galois group of f and that of g? Find the Galois group of f if

(a) g.X/DX3�3XC1;

207
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(b) g.X/DX3C3XC1.

3. (a) How many monic irreducible factors does X255�1 2 F2ŒX�
have, and what are their degrees.
(b) How many monic irreducible factors doesX255�1 2QŒX� have,
and what are their degrees?

4. LetE be the splitting field of .X5�3/.X5�7/ 2QŒX�. What is
the degree ofE over Q? How many proper subfields ofE are there that
are not contained in the splitting fields of bothX5�3 andX5�7?
[You may assume that 7 is not a 5th power in the splitting field of
X5�3.]

5. Consider an extension ˝ � F of fields. Define a 2˝ to be F -
constructible if it is contained in a field of the form

F Œ
p
a1; : : : ;

p
an�; ai 2F Œ

p
a1; : : : ;

p
ai�1�:

Assume ˝ is a finite Galois extension of F and construct a field E ,
F � E � ˝, such that every a 2 ˝ is E -constructible and E is
minimal with this property.

6. Let ˝ be an extension field of a field F . Show that every F -
homomorphism˝!˝ is an isomorphism provided:

(a) ˝ is algebraically closed, and
(b) ˝ has finite transcendence degree over F .

Can either of the conditions (i) or (ii) be dropped? (Either prove, or
give a counterexample.)

You should prove all answers. You may use results proved in class or in
the notes, but you should indicate clearly what you are using.

Possibly useful facts: The discriminant of X3CaXCb is �4a3�
27b2 and 28�1D 255D 3�5�17.



Appendix C

Solutions to the Exercises

These solutions fall somewhere between hints and complete solutions.
Students were expected to write out complete solutions.
1-1. Similar to Example 1.28.

1-2. Verify that 3 is not a square in QŒ
p
2�, and so ŒQŒ

p
2;
p
3�WQ�D

4.

1-3. (a) Apply the division algorithm, to get f .X/D q.X/.X�a/C
r.X/ with r.X/ constant, and putX D a to find r D f .a/.
(c) Use that factorization in F ŒX� is unique (or use induction on the
degree of f ).
(d) IfG had two cyclic factorsC andC 0 whose orders were divisible by
a prime p, thenG would have (at least) p2 elements of order dividing
p. This doesn’t happen, and it follows thatG is cyclic.

209
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(e) The elements of order m in F � are the roots of the polynomial
Xm�1, and so there are at most m of them. Hence every finite sub-
groupG of F � satisfies the condition in (d).

1-4. Note that it suffices to construct ˛D cos 2�
7

, and that ŒQŒ˛�WQ�D
7�1
2
D 3, and so its minimum polynomial has degree 3 (see Example

3.21). There is a standard method (once taught in high schools) for
solving cubics using the equation

cos3� D 4cos3 � �3cos�:

By “completing the cube”, reduce the cubic to the formX3�pX �q.
Then construct a square root a of 4p

3
, so that a2 D 4p

3
. Let 3� be the

angle such that cos3� D 4q

a3
, and use the angle trisector to construct

cos� . From the displayed equation, we find that ˛D acos� is a root
ofX3�pX �q.

2-1. (a) is obvious, as is the “only if” in (b). For the “if” note that for
any a 2 S.E/, a …F 2,E �F ŒX�=.X2�a/.

(c) Take Ei D QŒ
p
pi � with pi the i th prime. Check that pi is

the only prime that becomes a square in Ei . For this use that .aC
b
p
p/2 2Q H) 2abD 0.
(d) Every field of characteristic p contains (an isomorphic copy

of) Fp , and so we are looking at the quadratic extensions of Fp . The
homomorphism a 7! a2WF�p! F�p has kernel f˙1g, and so its image
has index 2 in F�p . Thus the only possibility for S.E/ is F�p , and
so there is at most one E (up to Fp-isomorphism). To get one, take
E DF ŒX�=.X2�a/, a … F2p .

2-2. (a) If ˛ is a root of f .X/DXp�X�a (in some splitting field),
then the remaining roots are ˛C1;: : : ;˛Cp�1, which obviously lie
in whichever field contains ˛. Moreover, they are distinct. Suppose that,
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in F ŒX�,

f .X/D .XrCa1X
r�1C�� �Car /.X

p�rC�� �/; 0 < r < p:

Then �a1 is a sum of r of the roots of f , �a1 D r˛Cd some
d 2 Z �1F , and it follows that ˛ 2F .

(b) As 0 and 1 are not roots ofXp�X �1 in Fp it can’t have p
distinct roots in Fp , and so (a) implies thatXp�X �1 is irreducible
in FpŒX� and hence also in ZŒX� and QŒX� (see 1.18, 1.13).

2-3. Let ˛ be the real 5th root of 2. Eisenstein’s criterion shows that
X5�2 is irreducible in QŒX�, and so QŒ 5

p
2� has degree 5 over Q.

The remaining roots of X5�2 are �˛;�2˛;�3˛;�4˛, where � is a
primitive 5th root of 1. It follows that the subfield of C generated by
the roots of X5�2 is QŒ�;˛�. The degree of QŒ�;˛� is 20, since it
must be divisible by ŒQŒ��WQ�D 4 and ŒQŒ˛�WQ�D 5.

2-4. It’s Fp becauseXp
m
�1D .X�1/p

m . (Perhaps I meantXp
m
�

X — that would have been more interesting.)

2-5. If f .X/D
Q
.X �˛i /

mi , ˛i ¤ ˛j , then

f 0.X/D
X
mi

f .X/

X �˛i

and so d.X/D
Q
mi>1

.X �˛i /
mi�1. Therefore g.X/D

Q
.X �

˛i /.

2-6. From (2.12) we know that either f is separable or f .X/ D
f1.X

p/ for some polynomial f1. Clearly f1 is also irreducible.
If f1 is not separable, it can be written f1.X/ D f2.Xp/. Con-
tinue in the way until you arrive at a separable polynomial. For the
final statement, note that g.X/ D

Q
.X � ai /, ai ¤ aj , and so

f .X/D g.Xp
e
/D

Q
.X �˛i /

pe with ˛p
e

i
D ai .
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3-1. Let � and � be automorphisms of F.X/ given by �.X/D�X
and �.X/D 1�X . Then � and � fix X2 and X2�X respectively,

and so �� fixesE
def
DF.X/\F.X2�X/. But ˛�XD1CX , and so

.��/m.X/DmCX . Thus Aut.F .X/=E/ is infinite, which implies
that ŒF .X/WE� is infinite (otherwise F.X/DEŒ˛1; : : : ;˛n�; anE -
automorphism of F.X/ is determined by its values on the ˛i , and
its value on ˛i is a root of the minimum polynomial of ˛i ). If E
contains a polynomial f .X/ of degree m > 0, then ŒF .X/WE� �
ŒF .X/WF.f .X//�Dm— contradiction.

3-2. Since 1C�C�� �C�p�1 D 0, we have ˛Cˇ D�1. If i 2H ,
then iH DH and i.GXH/DGXH , and so ˛ and ˇ are fixed by
H . If j 2GXH , then jH DGXH and j.GXH/DH , and so
j˛ D ˇ and jˇ D ˛. Hence ˛ˇ 2 Q, and ˛ and ˇ are the roots of
X2CXC˛ˇ . Note that

˛ˇ D
X
i;j

� iCj ; i 2H; j 2GXH:

How many times do we have iC j D 0? If iC j D 0, then �1D
i�1j , which is a nonsquare; conversely, if �1 is a nonsquare, take
i D 1 and j D�1 to get iCj D 0. Hence

iCj D0 some i 2H; j 2GXH”�1 is a square mod p” p��1 mod 4:

If we do have a solution to iCj D 0, we get all solutions by multiply-
ing it through by the p�1

2
squares. So in the sum for ˛ˇ we see 1 a total

of p�1
2

times when p� 3 mod 4 and not at all if p� 1 mod 4. In
either case, the remaining terms add to a rational number, which implies
that each power of � occurs the same number of times. Thus for p� 1
mod 4, ˛ˇ D�.p�1

2
/2=.p�1/D p�1

4
; the polynomial satisfied by

˛ and ˇ isX2CX� p�1
4

, whose roots are .�1˙
p
1Cp�1/=2;
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the fixed field of H is QŒ
p
p�. For p ��1 mod 4, ˛ˇ D p�1

2
C

.�1/
�
.p�1
2
/2� p�1

2

�
=.p�1/D p�1

2
�
p�3
4
D
pC1
4

; the poly-

nomial is X2CX C p�1
4

, with roots .�1˙
p
1�p�1/=2; the

fixed field ofH is QŒ
p
�p�.

3-3. (a) It is easy to see that M is Galois over Q with Galois group
h�;�i: (

�
p
2D�

p
2

�
p
3D
p
3

(
�
p
2D
p
2

�
p
3D�

p
3
:

(b) We have

�˛2

˛2
D
2�
p
2

2C
p
2
D
.2�
p
2/2

4�2
D

 
2�
p
2

p
2

!2
D .
p
2�1/2;

i.e., �˛2D ..
p
2�1/˛/2. Thus, if ˛ 2M , then �˛D˙.

p
2�1/˛,

and
�2˛D .�

p
2�1/.

p
2�1/˛D�˛I

as �2˛D ˛¤ 0, this is impossible. Hence ˛ …M , and so ŒE WQ�D 8.
Extend � to an automorphism (also denoted �) of E . Again �˛ D
˙.
p
2�1/˛ and �2˛D�˛, and so �2¤1. Now �4˛D˛, �4jM D

1, and so we can conclude that � has order 4. After possibly replacing
� with its inverse, we may suppose that �˛D .

p
2�1/˛.

Repeat the above argument with � : �˛
2

˛2
D
3�
p
3

3C
p
3
D

�
3�
p
3p
6

�2
, and

so we can extend � to an automorphism of L (also denoted �) with

�˛D 3�
p
3p
6
˛. The order of � is 4.

Finally compute that

��˛D
3�
p
3

�
p
6
.
p
2�1/˛I ��˛D .

p
2�1/

3�
p
3

p
6
˛:
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Hence �� ¤ �� , and Gal.E=Q/ has two noncommuting elements of
order 4. Since it has order 8, it must be the quaternion group.

4-1. The splitting field is the smallest field containing allmth roots of
1. Hence it is Fpn where n is the smallest positive integer such that
m0jp

n�1,mDm0pr , where p is prime and does not dividem0.

4-2. We haveX4�2X3�8X�3D .X3CX2C3XC1/.X�3/,
and g.X/DX3CX2C3XC1 is irreducible over Q (use 1.11), and
so its Galois group is eitherA3 or S3. Either check that its discriminant
is not a square or, more simply, show by examining its graph that
g.X/ has only one real root, and hence its Galois group contains a
transposition (cf. the proof of 4.15).

4-3. Eisenstein’s criterion shows thatX8�2 is irreducible over Q, and
so ŒQŒ˛�WQ� D 8 where ˛ is a positive 8th root of 2. As usual for
polynomials of this type, the splitting field is QŒ˛;�� where � is any
primitive 8th root of 1. For example, � can be taken to be 1Cip

2
, which

lies in QŒ˛;i�. It follows that the splitting field is QŒ˛;i�. Clearly
QŒ˛;i� ¤ QŒ˛�, because QŒ˛�, unlike i , is contained in R, and so
ŒQŒ˛;i�WQŒ˛��D 2. Therefore the degree is 2�8D 16.

4-4. Find an extension L=F with Galois group S4, and let E be the
fixed field of S3 � S4. There is no subgroup strictly between Sn and
Sn�1, because such a subgroup would be transitive and contain an
.n�1/-cycle and a transposition, and so would equal Sn. We can take
E DLS3 . More specifically, we can take L to be the splitting field of
X4�XC2 over Q and E to be the subfield generated by a root of
the polynomial (see 3.26).

4-5. Type: “Factor.X343�X/ mod 7;” and discard the 7 factors of
degree 1.



215

4-6. Type “galois.X6C2X5C3X4C4X3C5X2C6XC7/;”.
It is the group PGL2.F5/ (group of invertible 2�2 matrices over F5
modulo scalar matrices) which has order 120. Alternatively, note that
there are the following factorizations: mod 3, irreducible; mod 5 (deg
3)(deg 3); mod 13 (deg 1)(deg 5); mod 19, (deg 1/2(deg 4); mod
61 (deg 1/2(deg 2/2; mod 79, (deg 2/3. Thus the Galois group has
elements of type:

6; 3C3; 1C5; 1C1C4; 1C1C2C2; 2C2C2:

No element of type 2, 3, 3C2, or 4C2 turns up by factoring modulo
any of the first 400 primes (or, so I have been told). This suggests it
is the group T14 in the tables in Butler and McKay, which is indeed
PGL2.F5/.

4-7. (H : Condition (a) implies thatGf contains a 5-cycle, condition
(b) implies thatGf �A5, and condition (c) excludes A5. That leaves
D5 and C5 as the only possibilities (see, for example, Jacobson, Basic
Algebra I, p305, Ex 6). The derivative of f is 5X4Ca, which has
at most 2 real zeros, and so (from its graph) we see that f can have
at most 3 real zeros. Thus complex conjugation acts as an element of
order 2 on the splitting field of f , and this shows that we must have
Gf DD5.
H) : RegardD5 as a subgroup of S5 by letting it act on the vertices
of a regular pentagon—all subgroups of S5 isomorphic to D5 look
like this one. IfGf DD5, then (a) holds becauseD5 is transitive, (b)
holds becauseD5 �A5, and (c) holds becauseD5 is solvable.

4-8. Omitted.

4-9. Let a1;a2 be conjugate nonreal roots, and let a3 be a real root.
Complex conjugation defines an element � of the Galois group of f
switching a1 and a2 and fixing a3. On the other hand, because f is
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irreducible, its Galois group acts transitively on its roots, and so there is
a � such that �.a3/D a1. Now

a3
�
7! a1

�
7! a2

a3
�
7! a3

�
7! a1.

This statement is false for reducible polynomials — consider for exam-
ple f .X/D .X2C1/.X �1/.

5-1. For aD 1, this is the polynomial ˚5.X/, whose Galois group is
cyclic of order 4.
For aD0, it isX.X3CX2CXC1/DX.XC1/.X2C1/, whose
Galois group is cyclic of order 2.
For aD�4, it is .X�1/.X3C2X2C3XC4/. The cubic does not
have˙1;˙2; or˙4 as roots, and so it is irreducible in QŒX�. Hence
its Galois group is S3 or A3. But looking modulo 2, we see it contains
a 2-cycle, so it must be S3.
For any a, the resolvent cubic is

g.X/DX3�X2C .1�4a/XC3a�1:

Take a D �1. Then f D X4CX3CX2CX � 1 is irreducible
modulo 2, and so it is irreducible in QŒX�. We have g DX3�X2C
5X � 4, which is irreducible. Moreover g 0 D 3X2 � 2X C 5 D
3.X � 1

3
/2C 4 2

3
> 0 always, and so g has exactly one real root.

Hence the Galois group of g is S3, and therefore the Galois group of
f is S4. [In fact, 4 is the maximum number of integers giving distinct
Galois groups: checking mod 2, we see there is a 2-cycle or a 4-cycle,
and so 1;A3;A4;V4 are not possible. ForD8, a can’t be an integer.]

5-2. We have Nm.aC ib/D a2Cb2. Hence a2Cb2D 1 if and only
aC ibD sCit

s�it
for some s; t 2Q (Hilbert’s Theorem 90). The rest is

easy.



217

5-3. The degree ŒQŒ�n�WQ�D '.n/, �n a primitive nth root of 1, and
'.n/!1 as n!1.

A-1. (a) Need thatmjn, because

nD ŒFpn WFp�D ŒFpn WFpm � � ŒFpm WFp�D ŒFpn WFpm � �m:

Use Galois theory to show there exists one, for example. (b) Only one;
it consists of all the solutions ofXp

m
�X D 0.

A-2. The polynomial is irreducible by Eisenstein’s criterion. The poly-
nomial has only one real root, and therefore complex conjugation is a
transposition inGf . This proves thatGf � S3. The discriminant is
�1323D�3372. Only the subfield QŒ

p
�3� is normal over Q. The

subfields QŒ 3
p
7�, QŒ� 3

p
7� QŒ�2 3

p
7� are not normal over Q. [The

discriminant ofX3�a is �27a2 D�3.3a/2.]

A-3. The prime 7 becomes a square in the first field, but 11 does not:
.aCb

p
7/2D a2C7b2C2ab

p
7, which lies in Q only if abD 0.

Hence the rational numbers that become squares in QŒ
p
7� are those

that are already squares or lie in 7Q�2.

A-4.(a) See Exercise 3.
(b) Let F D F3ŒX�=.X2C1/. Modulo 3

X8�1D .X�1/.XC1/.X2C1/.X2CXC2/.X2C2XC2/:

Take ˛ to be a root ofX2CXC2.

A-5. SinceE ¤F , E contains an element f
g

with the degree of f or
g > 0. Now

f .T /�
f .X/

g.X/
g.T /

is a nonzero polynomial havingX as a root.
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A-6. Use Eisenstein to show that Xp�1C�� �C1 is irreducible, etc.
Done in class.

A-7. The splitting field is QŒ�;˛� where �5 D 1 and ˛5 D 2. It is
generated by � D .12345/ and � D .2354/, where �˛ D �˛ and
�� D �2. The group has order 20. It is not abelian (because QŒ˛� is
not Galois over Q), but it is solvable (its order is < 60).

A-8. (a) A homomorphism ˛WR! R acts as the identity map on Z,
hence on Q, and it maps positive real numbers to positive real numbers,
and therefore preserves the order. Hence, for each real number a,

fr 2Q j a < rg D fr 2Q j ˛.a/ < rg;

which implies that ˛.a/D a.
(b) Choose a transcendence basis A for C over Q. Because it is

infinite, there is a bijection ˛WA! A0 from A onto a proper subset.
Extend ˛ to an isomorphism Q.A/!Q.A0/, and then extend it to an
isomorphism C! C0 where C0 is the algebraic closure of Q.A0/ in C.

A-9. The group F � is cyclic of order 15. It has 3 elements of order
dividing 3, 1 element of order dividing 4, 15 elements of order dividing
15, and 1 element of order dividing 17.

A-10. If E1 and E2 are Galois extensions of F , then E1E2 and
E1\E2 are Galois over F , and there is an exact sequence

1!Gal.E1E2=F /!Gal.E1=F /�Gal.E2=F /!Gal.E1\E2=F /!1:

In this case, E1\E2 D QŒ�� where � is a primitive cube root of 1.
The degree is 18.

A-11. Over Q, the splitting field is QŒ˛;�� where ˛6 D 5 and �3 D 1
(because �� is then a primitive 6th root of 1). The degree is 12, and
the Galois group isD6 (generators .26/.35/ and .123456/).
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Over R, the Galois group is C2.

A-12. Let the coefficients of f be a1; : : : ;an — they lie in the algebraic
closure˝ of F . Let g.X/ be the product of the minimum polynomials
over F of the roots of f in˝.

Alternatively, the coefficients will lie in some finite extension E of
F , and we can take the norm of f .X/ fromEŒX� to F ŒX�.

A-13. If f is separable, ŒE WF �D .Gf W1/, which is a subgroup of
Sn. Etc..

A-14.
p
3C
p
7 will do.

A-15. The splitting field of X4�2 is E1 D QŒi;˛� where ˛4 D 2;
it has degree 8, and Galois group D4. The splitting field of X3�5
is E2 D QŒ�;ˇ�; it has degree 6, and Galois group D3. The Galois
group is the product (they could only intersect in QŒ

p
3�, but

p
3 does

not become a square inE1).

A-16. The multiplicative group of F is cyclic of order q�1. Hence it
contains an element of order 4 if and only if 4jq�1.

A-17. Take ˛D
p
2C
p
5C
p
7.

A-18. We have E1 DEH1 , which has degree n over F , and E2 D
E<1���n>, which has degree .n�1/Š over F , etc.. This is really a
problem in group theory posing as a problem in field theory.

A-19. We have QŒ��DQŒi;� 0� where � 0 is a primitive cube root of 1
and˙i D �3 etc..

A-20. The splitting field is QŒ�; 3
p
3�, and the Galois group is S3.

A-21. Use that

.�C�4/.1C�2/D �C�4C�3C�
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A-22. (a) is Dedekind’s theorem. (b) is Artin’s theorem 3.4. (c) is O.K.
becauseXp�ap has a unique root in˝.

A-23. The splitting field is QŒi;˛� where ˛4D 3, and the Galois group
isD4 with generators .1234/ and .13/ etc..

A-24. From Hilbert’s theorem 90, we know that the kernel of the map
N WE�!F � consists of elements of the form �˛

˛
. The mapE�!

E�, ˛ 7! �˛
˛

, has kernel F �. Therefore the kernel of N has order
qm�1
q�1

, and hence its image has order q�1. There is a similar proof
for the trace — I don’t know how the examiners expected you to prove
it.

A-25. (a) is false—could be inseparable. (b) is true—couldn’t be insep-
arable.

A-26. Apply the Sylow theorem to see that the Galois group has a
subgroup of order 81. Now the Fundamental Theorem of Galois theory
shows that F exists.

A-27. The greatest common divisor of the two polynomials over Q is
X2CXC1, which must therefore be the minimum polynomial for � .

A-28. Theorem on p-groups plus the Fundamental Theorem of Galois
Theory.

A-29. It was proved in class that Sp is generated by an element of order
p and a transposition (4.14). There is only one F , and it is quadratic
over Q.

A-30. Let LDKŒ˛�. The splitting field of the minimum polynomial
of ˛ has degree at most dŠ, and a set with dŠ elements has at most 2dŠ

subsets. [Of course, this bound is much too high: the subgroups are very
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special subsets. For example, they all contain 1 and they are invariant
under a 7! a�1.]

A-31. The Galois group is .Z=5Z/�, which cyclic of order 4, generated
by 2.

.�C�4/C .�2C�3/D�1; .�C�4/.�2C�3/D�1:

(a) Omit.
(b) Certainly, the Galois group is a product C2�C4.

A-32. Let a1; : : : ;a5 be a transcendence basis for ˝1=Q. Their im-
ages are algebraically independent, therefore they are a maximal alge-
braically independent subset of˝2, and therefore they form a transcen-
dence basis, etc..

A-33. C2�C2.

A-34. If f .X/ were reducible over QŒ
p
7�, it would have a root in it,

but it is irreducible over Q by Eisenstein’s criterion. The discriminant
is �675, which is not a square in R, much less QŒ

p
7�.

A-35. (a) Should be X5�6X4C3. The Galois group is S5, with
generators .12/ and .12345/— it is irreducible (Eisenstein) and (pre-
sumably) has exactly 2 nonreal roots. (b) It factors as .XC1/.X4C
X3CX2CXC1/. Hence the splitting field has degree 4 over F2,
and the Galois group is cyclic.

A-36. This is really a theorem in group theory, since the Galois group is
a cyclic group of order n generated by � . If n is odd, say nD 2mC1,
then ˛D �m does.

A-37. It has order 20, generators .12345/ and .2354/.

A-38. Take K1 and K2 to be the fields corresponding to the Sy-
low 5 and Sylow 43 subgroups. Note that of the possible numbers
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1;6;11;16;21; ::: of Sylow 5-subgroups, only 1 divides 43. There
are 1, 44, 87, ... subgroups of ....

A-39. See Exercise 14.

A-40. The group F � is cyclic of order 80; hence 80, 1, 8.

A-41. It’sD6, with generators .26/.35/ and .123456/. The polyno-
mial is irreducible by Eisenstein’s criterion, and its splitting field is
QŒ˛;�� where � ¤ 1 is a cube root of 1.

A-42. Example 5.5.

A-43. Omit.

A-44. It’s irreducible by Eisenstein. Its derivative is 5X4�5p4, which
has the roots X D˙p. These are the max and mins, X D p gives
negative;X D�p gives positive. Hence the graph crosses the x-axis
3 times and so there are 2 imaginary roots. Hence the Galois group is
S5.

A-45. Its roots are primitive 8th roots of 1. It splits completely in F25.
(a) .X2C2/.X2C3/.

A-46. �.˛/�.˛/D q2, and �.˛/�.q
2

˛
/D q2. Hence �.q

2

˛
/ is the

complex conjugate of �.˛/. Hence the automorphism induced by com-
plex conjugation is independent of the embedding of QŒ˛� into C.

A-47. The argument that proves the Fundamental Theorem of Algebra,
shows that its Galois group is a p-group. LetE be the splitting field of
g.X/, and letH be the Sylow p-subgroup. Then EH D F , and so
the Galois group is a p-group.

A-48. (a) C2�C2 and S3. (b) No. (c). 1
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A-49. Omit.

A-50. Omit.

A-51. 1024 D 210. Want �x �x D 1, i.e., Nx D 1. They are the
elements of the form �x

x
; have

1�����! k� �����!K�
x 7! �x

x
�����!K�:

Hence the number is 211=210 D 2.

A-52. Pretty standard. False; true.

A-53. Omit.

A-54. Similar to a previous problem.

A-55. Omit.

A-56. This is really a group theory problem disguised as a field theory
problem.

A-57. (a) Prove it’s irreducible by apply Eisenstein to f .XC1/. (b)
See example worked out in class.

A-58. It’sD4, with generators .1234/ and .12/.

A-59. Omit.

SOLUTIONS FOR THE EXAM.

1. (a) Let � be an automorphism of a fieldE . If �4 D 1 and

�.˛/C�3.˛/D ˛C�2.˛/ all ˛ 2E;
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show that �2 D 1.
If �2 ¤ 1, then 1;�;�2;�3 are distinct automorphisms ofE , and

hence are linearly independent (Dedekind 5.14) — contradiction. [If
�2 D 1, then the condition becomes 2� D 2, so either � D 1 or the
characteristic is 2 (or both).]
(b) Let p be a prime number and let a;b be rational numbers such that
a2Cpb2 D 1. Show that there exist rational numbers c;d such that

aD c2Cpd2

c2�pd2
and bD 2cd

c2�pd2
.

Apply Hilbert’s Theorem 90 to QŒ
p
p� (or QŒ

p
�p�, depending

how you wish to correct the sign).

2. Let f .X/ be an irreducible polynomial of degree 4 in QŒX�, and
let g.X/ be the resolvent cubic of f . What is the relation between the
Galois group of f and that of g? Find the Galois group of f if

(a) g.X/DX3�3XC1;
(b) g.X/DX3C3XC1.

We haveGgDGf =Gf \V , whereV Df1;.12/.34/; : : :g. The
two cubic polynomials are irreducible, because their only possible roots
are ˙1. From their discriminants, one finds that the first has Galois
groupA3 and the second S3. Because f .X/ is irreducible, 4j.Gf W1/
and it follows thatGf DA4 and S4 in the two cases.

3. (a) How many monic irreducible factors does X255�1 2 F2ŒX�
have, and what are their degrees?

Its roots are the nonzero elements of F28 , which has subfields
F24� F22� F2. There are 256�16 elements not in F16, and their
minimum polynomials all have degree 8. Hence there are 30 factors of
degree 8, 3 of degree 4, and 1 each of degrees 2 and 1.
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(b) How many monic irreducible factors doesX255�1 2QŒX� have,
and what are their degrees?

Obviously, X255 � 1 D
Q
d j255˚d D ˚1˚3˚5˚15 � � �˚255,

and we showed in class that the ˚d are irreducible. They have degrees
1;2;4;8;16;32;64;128.

4. LetE be the splitting field of .X5�3/.X5�7/ 2QŒX�. What is
the degree ofE over Q? How many proper subfields ofE are there that
are not contained in the splitting fields of bothX5�3 andX5�7?

The splitting field of X5�3 is QŒ�;˛�, which has degree 5 over
QŒ�� and 20 over Q. The Galois group ofX5�7 over QŒ�;˛� is (by
...) a subgroup of a cyclic group of order 5, and hence has order 1 or 5.
Since 7 is not a 5th power in QŒ�;˛�, it must be 5. Thus ŒE WQ�D 100,
and

G D Gal.E=Q/D .C5�C5/ÌC4:
We want the nontrivial subgroups of G not containing C5�C5. The
subgroups of order 5 ofC5�C5 are lines in .F5/2, and henceC5�C5
has 6C1D 7 proper subgroups. All are normal inG. Each subgroup of
C5�C5 is of the formH \ .C5�C5/ for exactly 3 subgroupsH of
G corresponding to the three possible images inG=.C5�C5/DC4.
Hence we have 21 subgroups of G not containing C5�C5, and 20
nontrivial ones. Typical fields: QŒ˛�, QŒ˛;cos 2�

5
�, QŒ˛;��.

[You may assume that 7 is not a 5th power in the splitting field of
X5�3.]

5. Consider an extension ˝ � F of fields. Define ˛ 2˝ to be F -
constructible if it is contained in a field of the form

F Œ
p
a1; : : : ;

p
an�; ai 2F Œ

p
a1; : : : ;

p
ai�1�:

Assume ˝ is a finite Galois extension of F and construct a field E ,
F � E � ˝, such that every a 2 ˝ is E -constructible and E is
minimal with this property.
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SupposeE has the required property. From the primitive element
theorem, we know ˝ D EŒa� for some a. Now a E -constructible
H) Œ˝WE� is a power of 2. Take E D˝H , whereH is the Sylow
2-subgroup of Gal.˝=F /.

6. Let ˝ be an extension field of a field F . Show that every F -
homomorphism˝!˝ is an isomorphism provided:

(a) ˝ is algebraically closed, and
(b) ˝ has finite transcendence degree over F .

Can either of the conditions (i) or (ii) be dropped? (Either prove, or
give a counterexample.)

Let A be a transcendence basis for ˝=F . Because � W˝ ! ˝
is injective, �.A/ is algebraically independent over F , and hence
(because it has the right number of elements) is a transcendence basis
for ˝=F . Now F Œ�A� � �˝ � ˝. Because ˝ is algebraic over
F Œ�A� and �˝ is algebraically closed, the two are equal. Neither
condition can be dropped. E.g., C.X/! C.X/,X 7!X2. E.g.,˝ D
the algebraic closure of C.X1;X2;X3; : : :/, and consider an extension
of the mapX1 7!X2,X2 7!X3, : : :.
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Euclid’s, 16
factoring a polynomial, 20

automorphism, 59
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maximal, 152
exponent, 128
extension
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cyclic, 67
finite, 23
Galois, 64
inseparable, 63
normal, 64
separable, 63
simple, 29
solvable, 67

extension field, 23

F -algebra, 146
étale, 146

field, 13
prime, 14
stem, 27

fixed field, 61
Frobenius

endomorphism, 15, 56
fundamental theorem

of algebra, 21, 35, 42, 43,
109

of Galois theory, 67

Galois, 164
Galois closure, 70
Galois correspondence, 173
Galois field, 98
Galois group, 64

infinite, 165
of a polynomial, 79

Gaussian numbers, 23
general polynomial, 133

group
Cremona, 60
profinite, 176
topological, 161

homomorphism
crossed, 121
of fields, 13
of rings, 12
principal crossed, 122

ideal, 12
integral domain, 12
invariants, 61
inverse limit, 174
inverse system, 174

Lemma
Gauss’s, 18

module
G-, 121

multiplicity, 53

norm, 124, 140
normal basis, 118
normal closure, 70

ordering
partial, 152
total, 152

PARI, 8, 17, 21, 26, 31, 86, 92, 97,
102, 103, 113, 145

perfect field, 56
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polynomial
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monic, 17
separable, 55

prime
Fermat, 40

primitive element, 105
primitive root of 1, 111

regular n-gon, 115
ring, 11
root

multiple, 53
simple, 53

separable, 106
separable element, 67
separably closed, 159
solvable in radicals, 79
split, 48, 146
splits, 41
splitting field, 48
subfield, 13

generated by subset, 29
subring, 12

generated by subset, 27
symmetric polynomial, 133

elementary, 134

theorem
Artin’s, 62
binomial in characteristic

p, 14
constructibility of n-gons,

115
constructible numbers, 37,

77

cyclotomic polynomials, 114
Dedekind, 100
Galois 1832, 80
Galois extensions, 64
independence of characters,

116
Liouville, 34
normal basis, 118
primitive element, 105

topology
Krull, 165, 192

trace, 140
transcendence degree, 188
transcendental, 30–32
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