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Notations.
‘We use the standard (Bourbaki) notations:

N={0,1,2,...},

Z = ring of integers,

R = field of real numbers,

C = field of complex numbers,

F, =7/ pZ = field with p elements, p a prime number.

Given an equivalence relation, [x] denotes the equivalence class containing *. The cardi-
nality of a set S is denoted by |S| (so |S| is the number of elements in S when S is finite).
Let 7 and A be sets. A family of elements of A indexed by 7, denoted (a;);ey, is a function
i — a;:1 — A. Throughout the notes, p is a prime number: p = 2,3,5,7,11,....

X CY X isasubsetof Y (not necessarily proper).
def

X =Y X isdefined tobe Y, or equals Y by definition.
X ~Y X isisomorphicto Y.
X ~Y X andY are canonically isomorphic (or there is a given or unique isomorphism).

PREREQUISITES

Group theory (for example, GT), basic linear algebra, and some elementary theory of rings.
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Dummit, D., and Foote, R.M., 1991, Abstract Algebra, Prentice Hall.

Jacobson, N., 1964, Lectures in Abstract Algebra, Volume III — Theory of Fields and
Galois Theory, van Nostrand.

Also, the following of my notes (available at www.jmilne.org/math/).

GT Group Theory, v3.11, 2011.
ANT Algebraic Number Theory, v3.02, 2009.

A reference monnnnn is to http://mathoverflow.net/questions/nnnnn/
PARI is an open source computer algebra system freely available from http://pari.
math.u-bordeaux.fr/.
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CHAPTER

Basic Definitions and Resulis

Rings
A ring is a set R with two composition laws + and - such that

(a) (R,4+) is a commutative group;

(b) - is associative, and there exists' an element 1g such that a-1g = a = 1g-a for all
a € R;

(¢) the distributive law holds: for all a,b,c € R,

(a+b)-c=a-c+b-c
a-(b+c)y=a-b+a-c.

T3]

We usually omit and write 1 for 1 g when this causes no confusion. If 1 = 0, then

R = {0}.

A subring S of a ring R is a subset that contains 1g and is closed under addition,
passage to the negative, and multiplication. It inherits the structure of a ring from that on
R.

A homomorphism of rings «: R — R’ is a map with the properties

ala+b)=a(a)+a), olab)=ca(a)a(d), a(lgr)=1g/, alla,beR.
A ring R is said to be commutative if multiplication is commutative:
ab = ba foralla,b € R.

A commutative ring is said to be an integral domain if 1 # 0 and the cancellation law
holds for multiplication:
ab=ac,a # 0, implies b = c.

An ideal I in a commutative ring R is a subgroup of (R, +) that is closed under multipli-
cation by elements of R:
re R,ael,impliesra € 1.

IWe follow Bourbaki in requiring that rings have a 1, which entails that we require homomorphisms to
preserve it.
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The ideal generated by elements ay,...,a, is denoted (a1,...,a,). For example, (a) is the
principal ideal aR.

We assume that the reader has some familiarity with the elementary theory of rings.
For example, in Z (more generally, any Euclidean domain) an ideal [ is generated by any
“smallest” nonzero element of /.

Fields

DEFINITION 1.1 A field is a set F' with two composition laws + and - such that

(a) (F,+) is a commutative group;
(b) (F*,-), where F* = F ~ {0}, is a commutative group;
(c) the distributive law holds.

Thus, a field is a nonzero commutative ring such that every nonzero element has an inverse.
In particular, it is an integral domain. A field contains at least two distinct elements, 0 and
1. The smallest, and one of the most important, fields is F, = Z/27 = {0, 1}.

A subfield S of a field F is a subring that is closed under passage to the inverse. It
inherits the structure of a field from that on F.

LEMMA 1.2 A nonzero commutative ring R is a field if and only if it has no ideals other
than (0) and R.

PROOF. Suppose R is a field, and let I be a nonzero ideal in R. If a is a nonzero element
of I, then 1 =a~'a € I, and so I = R. Conversely, suppose R is a commutative ring with
no nontrivial ideals. If @ # 0, then (@) = R, and so there exists a b in R such that ab = 1.

EXAMPLE 1.3 The following are fields: Q, R, C, F, = Z/ pZ (p prime).

A homomorphism of fields a: F — F’ is simply a homomorphism of rings. Such a
homomorphism is always injective, because its kernel is a proper ideal (it doesn’t contain
1), which must therefore be zero.

The characteristic of a field
One checks easily that the map
Z—~F, n—Ilp+1p+---+1F (n copies),

is a homomorphism of rings, and so its kernel is an ideal in Z.
CASE 1: The kernel of the map is (0), so that

n-lp=0= n=0 (inZ%).

Nonzero integers map to invertible elements of F under n — n-1g:Z — F, and so this
map extends to a homomorphism

%l—)(m-lp)(n-lp)_l:(@%F.
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Thus, in this case, F' contains a copy of Q, and we say that it has characteristic zero.

CASE 2: The kernel of the map is # (0), so thatn-1r = 0 for some n # 0. The smallest
positive such n will be a prime p (otherwise there will be two nonzero elements in F' whose
product is zero), and p generates the kernel. Thus, the map n +— n-1g:Z — F defines an
isomorphism from Z/ pZ onto the subring

{m-1p |meZ}

of F. In this case, F' contains a copy of ¥, and we say that it has characteristic p.
The fields F,,F3,F5,...,Q are called the prime fields. Every field contains a copy of
exactly one of them.

REMARK 1.4 The binomial theorem
(@+b)" =a"+(7)a" b+ (F)a" b+ + 0"

holds in any commutative ring. If p is prime, then p divides (prn) for all » with 1 <r <
p" — 1. Therefore, when F has characteristic p,

(a+b)?" =a?" +bP" alln>1,

and so the map a > a?: F — F is a homomorphism. It is called the Frobenius endomor-
phism of F. When F is finite, the Frobenius endomorphism is an automorphism.

Review of polynomial rings

For more on the following, see Dummit and Foote 1991, Chapter 9. Let F' be a field.

1.5 The ring F[X] of polynomials in the symbol (or “indeterminate” or “variable”) X
with coefficients in F is an F-vector space with basis 1, X, ... , X", ... , and with the
multiplication defined by

(Zi a,-Xi) (ZJ ijj) - Zk (Zi+j=kaibj) X,

For any ring R containing F as a subring and element r of R, there is a unique homomor-
phism «: F[X] — R suchthat ¢(X) =r and a(a) =a foralla € F.

1.6 Division algorithm: given f(X) and g(X) € F[X] with g # 0, there exist g(X),
r(X) e F[X] with r = 0 or deg(r) < deg(g) such that

f=gq+r;

moreover, ¢(X) and r(X) are uniquely determined. Thus F'[X] is a Euclidean domain with
deg as norm, and so is a unique factorization domain.

1.7 From the division algorithm, it follows that an element a of F is a root of f (that is,
f(a) =0) if and only if X —a divides f. From unique factorization, it now follows that f
has at most deg( f) roots (see also Exercise [1-3).
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1.8 Euclid’s algorithm: Let f and g € F[X] have gcd d(X). Euclid’s algorithm con-
structs polynomials a(X) and b(X) such that

a(X)- f(X)+b(X)-g(X)=d(X), deg(a)<deg(g). deg(h)<deg(f).

Recall how it goes. We may assume that deg( ) > deg(g) since the argument is the same
in the opposite case. Using the division algorithm, we construct a sequence of quotients
and remainders

f =4qog+ro
g=dqiro+n
ro =q2r1+r2

'n—2 ={qn¥n—1+Tn

'n—1 =4n+17n

with r, the last nonzero remainder. Then, r, divides r,—1, hence r,—»,..., hence g, and
hence f. Moreover,

'n =Frpn—2—qnlrn—-1 = rn—Z_Qn(rn—S_QH—lrn—Z) = :af+bg

and so any common divisor of f and g divides r,: we have shown r, = gcd(f, g).
Letaf +bg =d. If deg(a) > deg(g), write a = gq + r with deg(r) < deg(g); then

rf+(b+qf)g=d.

and b + g f automatically has degree < deg( f).
PARI knows Euclidean division: typing divrem(13,5) in PARI returns [2, 3], meaning
that 13 =2x 543, and gcd (m,n) returns the greatest common divisor of m and n.

1.9 Let I be anonzero ideal in F[X], and let f be a nonzero polynomial of least degree in
I;then I = (f) (because F[X] is a Euclidean domain). When we choose f to be monic,
i.e., to have leading coefficient one, it is uniquely determined by /. Thus, there is a one-
to-one correspondence between the nonzero ideals of F[X] and the monic polynomials in
F[X]. The prime ideals correspond to the irreducible monic polynomials.

1.10 Since F[X] is an integral domain, we can form its field of fractions F(X). Its ele-
ments are quotients f/g, f and g polynomials, g # 0.
Factoring polynomials

The following results help in deciding whether a polynomial is reducible, and in finding its
factors.

PROPOSITION 1.11 Suppose r € Q is a root of a polynomial
am X" +am1 X" Y+t ag, a;j €7,

andletr =c/d,c,d € Z, gcd(c,d) = 1. Then clag and d |ay,.
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PROOF. Itis clear from the equation
Amc™ +am_1c"Vd +-+agd™ =0

that d |an, c™, and therefore, d |ay,. Similarly, c|ay. o

EXAMPLE 1.12 The polynomial f(X) = X3 —3X —1 is irreducible in Q[X] because its
only possible roots are £1, and f(1) #£ 0 # f(—1).

PROPOSITION 1.13 (GAUSS’S LEMMA) Let f(X) € Z[X]. If f(X) factors nontrivially
in Q[ X1, then it factors nontrivially in Z[ X].

PROOF. Let f = gh in Q[X]. For suitable integers m and n, g1 défmg and /1y & 5 h have
coefficients in Z, and so we have a factorization

mnf = g1-hy in Z[X].
If a prime p divides mn, then, looking modulo p, we obtain an equation
0=g1-h inF,[X].

Since F»[X] is an integral domain, this implies that p divides all the coefficients of at least
one of the polynomials g1,/41, say g1, so that g; = pg» for some g, € Z[X]. Thus, we
have a factorization

(mn/p)f = g2-hy in Z[X].

Continuing in this fashion, we can remove all the prime factors of mn, and so obtain a
factorization of f in Z[X]. o

PROPOSITION 1.14 If f € 7Z[X] is monic, then any monic factor of f in Q[X] lies in
Z[X].

PROOF. Let g be a monic factor of f in Q[X], so that f = gh with h € Q[X] also monic.
Let m,n be the positive integers with the fewest prime factors such that mg,nh € Z[X]. As
in the proof of Gauss’s Lemma, if a prime p divides mn, then it divides all the coefficients
of at least one of the polynomials mg,nh, say mg, in which case it divides m because g is
monic. Now % g € Z[X], which contradicts the definition of m. 0

REMARK 1.15 We sketch an alternative proof of Proposition[I.14] A complex number « is
said to be an algebraic integer if it is a root of a monic polynomial in Z[X]. Proposition[I.11]
shows that every algebraic integer in Q lies in Z. The algebraic integers form a subring of
C — for an elementary proof of this, using nothing but the symmetric polynomials theorem
(5.33), see Theorem 1.16 of my notes on algebraic geometry. Now let q,...,a, be the
roots of f in C. By definition, they are algebraic integers, and the coefficients of any monic
factor of f are polynomials in (certain of) the ¢;, and therefore are algebraic integers. If
they lie in @Q, then they lie in Z.
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PROPOSITION 1.16 (EISENSTEIN’S CRITERION) Let
f=amX"+am X" '+ tao, a;€Z;

suppose that there is a prime p such that:

o p does not divide a,,
¢ pdivides am—1,...,4a0,
o p? does not divide ay.

Then f is irreducible in Q[ X].

PROOF. If f(X) factors in Q[X], it factors in Z[X]:
am X" +am 1 X"+ bag = (br X"+ +bo)(cs X* + -+ co)

bi,c;i € Z, r,s < m. Since p, but not p2, divides ag = bgcop, p must divide exactly one of
bo, co, say, bg. Now from the equation

a)p = bocl +b16‘0,
we see that p|by, and from the equation
az = bocy +bicy + baco,

that p|b,. By continuing in this way, we find that p divides by, b1,...,b;, which contradicts
the condition that p does not divide a,. O

The last three propositions hold with Z replaced by any unique factorization domain.

REMARK 1.17 There is an algorithm for factoring a polynomial in Q[X]. To see this,
consider f € Q[X]. Multiply f(X) by a rational number so that it is monic, and then
replace it by Ddee(f) £ (%), with D equal to a common denominator for the coefficients
of f, to obtain a monic polynomial with integer coefficients. Thus we need consider only
polynomials

fXO)=X"+a1 X" '+ +am, a; €l

From the fundamental theorem of algebra (see|5.6|below), we know that f splits com-
pletely in C[X]:

m
SO =[]X =) eieC
i=1
From the equation
0= fla) =" +ara™ '+ +am,

it follows that |o;| is less than some bound depending only on the degree and coefficients
of f;in fact,
laj| < max{l,mB}, B = max|a;|.

Now if g(X) is a monic factor of f(X), then its roots in C are certain of the «;, and its
coefficients are symmetric polynomials in its roots. Therefore, the absolute values of the
coefficients of g(X) are bounded in terms of the degree and coefficients of f. Since they are
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also integers (by[1.14), we see that there are only finitely many possibilities for g(X). Thus,
to find the factors of f(X) we (better PARI) have to do only a finite amount of checking.?

Therefore, we need not concern ourselves with the problem of factoring polynomi-
als in the rings Q[X] or F,[X] since PARI knows how to do it. For example, typing
content (6*X~2+18*X-24) in PARI returns 6, and factor (6*xX~2+18*X-24) returns
X —1 and X + 4, showing that

6X2+18X —24 =6(X —1)(X +4)
in Q[X]. Typing factormod (X~2+3*X+3,7) returns X + 4 and X + 6, showing that
X2 43X 4+3=(X+4)(X +6)

in F7[X]

REMARK 1.18 One other observation is useful. Let f € Z[X]. If the leading coefficient of
f is not divisible by a prime p, then a nontrivial factorization f = gh in Z[X] will give a
nontrivial factorization f = gh in F plX]. Thus, if f(X) is irreducible in F,[X] for some
prime p not dividing its leading coefficient, then it is irreducible in Z[X]. This test is very
useful, but it is not always effective: for example, X* —10X? + 1 is irreducible in Z[X] but
it is reducible® modulo every prime p.

Extension fields

A field E containing a field F is called an extension field of F (or simply an extension of
F). Such an E can be regarded as an F-vector space, and we write [ E: F] for the dimension,
possibly infinite, of E as an F'-vector space. This dimension is called the degree of E over
F. We say that E is finite over F' when it has finite degree over F.

EXAMPLE 1.19 (a) The field of complex numbers C has degree 2 over R (basis {1,i}).

(b) The field of real numbers R has infinite degree over QQ: the field Q is countable,
and so every finite-dimensional Q-vector space is also countable, but a famous argument of
Cantor shows that R is not countable.

20f course, there are faster methods than this. The Berlekamp—Zassenhaus algorithm factors the polyno-
mial over certain suitable finite fields IF p, lifts the factorizations to rings Z/ p™ Z for some m, and then searches
for factorizations in Z[X] with the correct form modulo p™.

3Here is a proof using only that the product of two nonsquares in IF; is a square, which follows from the
fact that IF; is cyclic (see Exercise . If 2 is a square in F ,, then

X4 —10X2 +1= (X2 -2V2X - 1) (X2 +2V2X —1).
If 3 is a square in [F ;,, then

X4 —10X2+1= (X2 —2V3X + 1)(X2 +2V3X +1).
If neither 2 nor 3 are squares, 6 will be a square in F, and

X*—10X2 +1= (X2 - (5+2V6)) (X% - (5-2V6)).

The general study of such polynomials requires nonelementary methods. See, for example, the paper
Brandl, R., Amer. Math. Monthly, 93 (1986), pp286-288, which proves that every nonprime integer n > 1
occurs as the degree of a polynomial in Z[X] that is irreducible over Z but reducible modulo all primes.
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(c) The field of Gaussian numbers
QG)E{a+bi eCla,beQ

has degree 2 over Q (basis {1,i}).
(d) The field F(X) has infinite degree over F; in fact, even its subspace F[X] has
infinite dimension over F (basis 1, X, X 2 . ).

PROPOSITION 1.20 (MULTIPLICATIVITY OF DEGREES) Let L D E D F (all fields and
subfields). Then L/F is of finite degree if and only if L/E and E/F are both of finite
degree, in which case

[L: F]1=[L:E][E: F].

PROOF. If L is of finite degree over F, then it is certainly of finite degree over E. More-
over, E, being a subspace of a finite dimensional F -vector space, is also finite dimensional.
Thus, assume that L/E and E/F are of finite degree, and let (¢;)1<;<m be a basis
for E as an F-vector space and let (/;)1<;<x be a basis for L as an E-vector space. To
complete the proof, it suffices to show that (e;/;)1<i<m,1<j<n is a basis for L over F,
because then L will be finite over F of the predicted degree.
First, (e;l);,; spans L. Let y € L. Then, because (/;); spans L as an E-vector space,

yzzjajlj, some o € E,
and because (e;); spans E as an F-vector space,

o =) a;je;, some a;; € F.
On putting these together, we find that

y =2 aijeilj.

Second, (e;/;);,; is linearly independent. A linear relation ) a;je;l; =0, a;; € F,
can be rewritten }  ;(3_; ajje;)lj = 0. The linear independence of the /;’s now shows that
Zi ajje; = 0 for each j, and the linear independence of the ¢;’s shows that each a;; = 0.g

Construction of some extension fields

Let f(X) € F[X] be a monic polynomial of degree m, and let ( ) be the ideal gener-
ated by f. Consider the quotient ring F[X]/(f(X)), and write x for the image of X in
F[X]/(f(X)),i.e., x is the coset X + (f(X)). Then:
(a) The map
P(X)— P(x): F[X]— F[x]

is a surjective homomorphism in which f(X) maps to 0. Therefore, f(x) = 0.

(b) From the division algorithm, we know that each element g of F[X]/(f) is rep-
resented by a unique polynomial r of degree < m. Hence each element of F[x] can be
expressed uniquely as a sum

a0+a1x—|—~-+am_1xm_1, a; € F. *)
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(c) To add two elements, expressed in the form (*), simply add the corresponding coef-
ficients.

(d) To multiply two elements expressed in the form (*), multiply in the usual way, and
use the relation f(x) = 0 to express the monomials of degree > m in x in terms of lower
degree monomials.

(e) Now assume f'(X) is irreducible. To find the inverse of an element @ € F[x], use (b)
to write @ = g(x) with g(X) is a polynomial of degree < m — 1, and use Euclid’s algorithm
in F[X] to obtain polynomials a(X) and b(X) such that

a(X) f(X) +b(X)g(X) = d(X)

with d(X) the gcd of f and g. In our case, d(X) is 1 because f(X) is irreducible and
degg(X) < deg f(X). When we replace X with x, the equality becomes

b(x)g(x)=1.

Hence b(x) is the inverse of g(x).
From these observations, we can conclude:

1.21 For a monic irreducible polynomial f(X) of degree m in F[X],

Flx] = F[X]/(f(X))

is a field of degree m over F'. Moreover, computations in F|[x] reduce to computations in
F.

EXAMPLE 1.22 Let f(X) = X2+ 1 € R[X]. Then R[x] has:
elements: a + bx, a,b € R;
addition: (a +bx)+ (a’ +b'x) = (a+a’)+ (b +b)x;
multiplication: (a + bx)(a’ +b'x) = (aa’ —bb’) + (ab’ +a’'b)x.
We usually write i for x and C for R[x].

EXAMPLE 1.23 Let f(X) = X3 —3X —1 € Q[X]. We observed in (1.12) that this is
irreducible over Q, and so Q[x] is a field. It has basis {1, x,x?} as a Q-vector space. Let

B =x*+2x3+3eQ[x].

Then using that x3 —3x — 1 = 0, we find that 8 = 3x2 + 7x + 5. Because X3 —3X —1 is
irreducible,
ged(X3—3X —1,3X%2+7X +5) = 1.

In fact, Euclid’s algorithm gives

(X3-3X-D(HZX+2Z)+0CX2+7X+5 ({5 X* -2 Xx+ ) =1

Hence
Bx2+7x+5) (1x2 - 2x + 2B) =1,

and we have found the inverse of S.
We can also do this in PARI: beta=Mod (X~4+2*X~3+3,X~3-3*X-1) reveals that § =

3x2 4 7x 4+ 5in Q[x], and beta~ (-1) reveals that 8~! = lzlxz — %x + %.
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Stem fields

Let f be a monic irreducible polynomial in F[X]. We say that F[«] is a stem field* for f
if f(a) =0. Then

o< x:Fla]l~ Flx], Fl[x]=F[X]/f(X).

Therefore, stem fields always exist, and each element of a stem field F[w] for f has a
unique expression

ao+ara+-+am1e™ Y, a; € F, m=deg(f),

ie., l,a,...,a™ 1 is abasis for F[a] over F. Arithmetic in F[«] can be performed using

the same rules as in F[x]. If F[a'] is a second stem field for f, then there is a unique
F-isomorphism F[o] — F[o'] sending « to .

The subring generated by a subset

An intersection of subrings of a ring is again a ring. Let F be a subfield of a field E, and let
S be a subset of E. The intersection of all the subrings of E containing F and S is evidently
the smallest subring of E containing F and S. We call it the subring of E generated by
F and S (or generated over F by S), and we denote it F[S]. When S = {a1,...,an}, we
write Flag, ...,a,] for F[S]. For example, C = R[v/—1].

LEMMA 1.24 The ring F[S] consists of the elements of E that can be expressed as finite
sums of the form

§ : i1 i
Ajyin O 0, Ajpeiy € F, o; €S8S. )

PROOF. Let R be the set of all such elements. Evidently, R is a subring containing F' and
S and contained in any other such subring. Therefore R equals F[S]. o

EXAMPLE 1.25 The ring Q[r], m = 3.14159..., consists of the complex numbers that can
be expressed as a finite sum
ag+ar1m +arm?+---Fapn”, a; €Q.
The ring Q[i] consists of the complex numbers of the form a + bi, a,b € Q.
Note that the expression of an element in the form (*) will not be unique in general.
This is so already in R[i].
LEMMA 1.26 Let R be an integral domain containing a subfield F (as a subring). If R is

finite dimensional when regarded as an F -vector space, then it is a field.

PROOF. Let a be a nonzero element of R — we have to show that « has an inverse in R.
The map x — ax: R — R is an injective linear map of finite dimensional F-vector spaces,
and is therefore surjective. In particular, there is an element 8 € R such that o8 = 1. O

Note that the lemma applies to subrings (containing F') of an extension field E of F of
finite degree.

“4Following A. Albert, Modern Higher Algebra, 1937, who calls the splitting field of a polynomial its root
field. More formally, a stem field for f is a pair (E,«) consisting of a field E containing F and a generator «
such that f(x) = 0.
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The subfield generated by a subset

An intersection of subfields of a field is again a field. Let F be a subfield of a field E,
and let S be a subset of E. The intersection of all the subfields of £ containing F and S
is evidently the smallest subfield of E containing F' and S. We call it the subfield of E
generated by F and S (or generated over F by S), and we denote it F(S). It is the field
of fractions of F[S] in E, since this is a subfield of E containing F' and S and contained
in any other such field. When S = {«1,...,a,}, we write F(q,...,05) for F(S). Thus,
Flag,...,a,] consists of all elements of E that can be expressed as polynomials in the «;
with coefficients in F, and F(«1,...,®,) consists of all elements of E that can be expressed
as the quotient of two such polynomials.

Lemma [1.26] shows that F[S] is already a field if it is finite dimensional over F, in
which case F(S) = F[S].

EXAMPLE 1.27 The field Q(;r), ¥ = 3.14... consists of the complex numbers that can be
expressed as a quotient

g(m)/h(x), g(X).h(X)eQ[X]. h(X)#O0.
The ring Q[i] is already a field.

An extension E of F is said to be simple it E = F(«) some « € E. For example, Q(7r)
and QQ[i] are simple extensions of Q.

Let F and F’ be subfields of a field E. The intersection of the subfields of E containing
F and F’ is evidently the smallest subfield of E containing both F and F’. We call it the
composite of F and F’ in E, and we denote it F' - F’. It can also be described as the subfield
of E generated over F by F’, or the subfield generated over F’ by F':

F(F'Y=F -F = F'(F).

Algebraic and transcendental elements
For a field F' and an element « of an extension field £, we have a homomorphism
f(X)—~ f(a):F[X]— E.

There are two possibilities.
CASE 1: The kernel of the map is (0), so that, for f € F[X],

fl@)=0 = f=0(n F[X]).

In this case, we say that « franscendental over F. The homomorphism F[X]| — F[«] is an
isomorphism, and it extends to an isomorphism F(X) — F(x).

CASE 2: The kernel is # (0), so that g(c) = 0 for some nonzero g € F[X]. In this case,
we say that « is algebraic over F. The polynomials g such that g(«) = 0 form a nonzero
ideal in F[X], which is generated by the monic polynomial f of least degree such f(«) =0.
We call f the minimum polynomial of a over F. It is irreducible, because otherwise there
would be two nonzero elements of £ whose product is zero. The minimum polynomial is
characterized as an element of F[X] by each of the following sets of conditions:

f is monic; f(«) = 0 and divides every other polynomial g in F[X] with g(«) = 0.
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f is the monic polynomial of least degree such that f(a) = 0;
f is monic, irreducible, and f(«) = 0.
Note that g(X) > g(«) defines an isomorphism F[X]/(f) — FJ[«]. Since the first is a
field, so also is the second:
F(a) = Fla].

Thus, F«] is a stem field for f.

EXAMPLE 1.28 Let @ € C be such that «> =3¢ —1 = 0. Then X3 —3X — 1 is monic,
irreducible, and has « as a root, and so it is the minimum polynomial of « over Q. The set
{1,0,?} is a basis for Q[«] over Q. The calculations in Example show that if 8 is the
element a* 4+ 2a3 4 3 of Q[«], then B = 3a? + 7 + 5, and

-1 _ _7 ,2_ 26 28
B~ = e — i + 1

REMARK 1.29 PARI knows how to compute in Q[«]. For example, factor (X~4+4) re-
turns the factorization

XY 44=(X>-2X +2)(X>+2X +2)

in Q[X]. Now type nf=nfinit (a”~2+2*a+2) to define a number field “nf” generated over
Qby aroota of X2 42X + 1. Then nffactor (nf ,x~4+4) returns the factorization

X*+4=X—-a-2)(X—a)(X +a))(X +a+?2),

in Q[a].

A field extension £/ F is said to be algebraic, and E is said to be algebraic over F, if
all elements of E are algebraic over F; otherwise it is said to be transcendental (or E is
said to be transcendental over F). Thus, E/F is transcendental if at least one element of
E is transcendental over F.

PROPOSITION 1.30 A field extension E/ F is finite if and only if E is algebraic and finitely
generated (as a field) over F.

PROOF. ==: To say that « is transcendental over F' amounts to saying that its powers
1,a,02,... are linearly independent over F. Therefore, if E is finite over F, then it is
algebraic over F. It remains to show that £ is finitely generated over F. If £ = F, then it
is generated by the empty set. Otherwise, there exists an oy € E ~ F. If E # F|o], there
exists an o € E ~ F[a1], and so on. Since

[Fla1]: F] < [Floar,a2]: F] < - < [E: F]

this process terminates.

<=:Let E = F(ay,...,a5) withay,as,...q, algebraic over F. The extension F(a)/F
is finite because o is algebraic over F, and the extension F'(«1,®2)/ F (o) is finite because
ay is algebraic over F and hence over F(«;). Thus, by ([I.20), F(«1, ) is finite over F.
Now repeat the argument. o
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COROLLARY 1.31 (a) If E is algebraic over F, then any subring R of E containing F is
a field.

(b) Ifin L D E D F, L is algebraic over E and E is algebraic over F, then L is
algebraic over F.

PROOF. (a) We observed above (p. [I8), that if « is algebraic over F, then F[e] is a field.
If « € R, then Fla] C R, and so « has an inverse in R.

(b) Any « € L is a root of some monic polynomial f = X™ +a,, 1 X™ ' +.--4ag e
E[X]. Now each of the extensions Flaop,...,am—1,¢] D Flag,...,am—1] D F is finite
(1.20), and so F'ay,...,am—1,] is finite (hence algebraic) over F. O

Transcendental numbers

A complex number is said to be algebraic or transcendental according as it is algebraic or
transcendental over Q. First some history:

1844: Liouville showed that certain numbers, now called Liouville numbers, are tran-
scendental.

1873: Hermite showed that e is transcendental.

1874: Cantor showed that the set of algebraic numbers is countable, but that R is not
countable. Thus most numbers are transcendental (but it is usually very difficult to prove
that any particular number is transcendental).’

1882: Lindemann showed that 7 is transcendental.

1934: Gel’fond and Schneider independently showed that b is transcendental if & and
B are algebraic, o # 0,1, and 8 ¢ Q. (This was the seventh of Hilbert’s famous problems.)

2004: Euler’s constant

n
y =nll)n;o (Z l/k—logn)

k=1

has not yet been proven to be transcendental or even irrational.
2004: The numbers e + 7 and e — r are surely transcendental, but again they have not
even been proved to be irrational!

PROPOSITION 1.32 The set of algebraic numbers is countable.

PROOF. Define the height 4 (r) of a rational number to be max(|m|, |n|), where r = m/n
is the expression of r in its lowest terms. There are only finitely many rational numbers
with height less than a fixed number N. Let A(N) be the set of algebraic numbers whose
minimum equation over QQ has degree < N and has coefficients of height < N. Then A(N)
is finite for each N. Count the elements of A(10); then count the elements of A(100); then

count the elements of 4(1000), and so on.® O

SIn 1873 Cantor proved the rational numbers countable. ... He also showed that the algebraic numbers. . .
were countable. However his attempts to decide whether the real numbers were countable proved harder. He
had proved that the real numbers were not countable by December 1873 and published this in a paper in 1874
(http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Cantor.html).

®More precisely, choose a bijection from some segment [0,7(1)] of N onto A(10); extend it to a bijection
from a segment [0,7(2)] onto A(100), and so on.
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A typical Liouville number is Y -, ﬁ — in its decimal expansion there are in-
creasingly long strings of zeros. We prove that the analogue of this number in base 2 is
transcendental.

L

a7 18 transcendental.

THEOREM 1.33 The numbera = )

PROOF. "Suppose not, and let
JX) =X+ ar X o tag, ai€Q

be the minimum polynomial of « over Q. Thus [Q[«]:Q] = d. Choose a nonzero integer
D such that D - f(X) € Z[X].
Let Xy = Z;ILOW’ so that ¥y — o as N — oo, and let xy = f(Xy). If « is
rational,® f(X) = X —a; otherwise, f(X), being irreducible of degree > 1, has no rational
root. Since Xy # «, it can’t be a root of f(X), and so xy # 0. Evidently, xy € Q; in fact
¥4 Dxy € Z, and so

1YY Dxy| > 1. (*)

From the fundamental theorem of algebra (see below), we know that f splits in
C[X], say,

d
fX)=]](X-a), aeC, a1=a,

i=1
and so
d
vl =[] 1En —ail < 1ZN —o[(Zn + M)* 7Y, WhereM=m£X{1,lai|}-
i#1

i=1

But
oo o0
1 1 1 2
PN M e (Z 2_) S,

n=N+1 n=0
Hence 5

lxn | = savrnr (&N + M4
and

N1yd “N'D d-1
|(27)* Dxn]| EZ'W'(EN + M)
. 2d-N! 2d N! . . %

which tends to 0 as N — oo because s&yFnr = <2N+1> — 0. This contradicts (*). g

"This proof, which I learnt from David Masser, also works for Z# for any integer a > 2.
8n fact « is not rational because its expansion to base 2 is not periodic.
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Constructions with straight-edge and compass.

The Greeks understood integers and the rational numbers. They were surprised to find
that the length of the diagonal of a square of side 1, namely, +/2, is not rational. They
thus realized that they needed to extend their number system. They then hoped that the
“constructible” numbers would suffice. Suppose we are given a length, which we call 1, a
straight-edge, and a compass (device for drawing circles). A real number (better a length)
is constructible if it can be constructed by forming successive intersections of

¢ lines drawn through two points already constructed, and
¢ circles with centre a point already constructed and radius a constructed length.

This led them to three famous questions that they were unable to answer: is it possible
to duplicate the cube, trisect an angle, or square the circle by straight-edge and compass
constructions? We’ll see that the answer to all three is negative.

Let F be a subfield of R. For a positive a € F, /a denotes the positive square root of
a in R. The F-plane is F x F C R xR. We make the following definitions:

An F-line is a line in R x R through two points in the F-plane. These are the
lines given by equations

ax+by+c=0, a,b,ceF.

An F-circle is a circle in R x R with centre an F-point and radius an element
of F. These are the circles given by equations

(x—a)’+(»—-b?=c% ab,ceF.

LEMMA 1.34 Let L # L’ be F-lines, and let C # C’ be F -circles.

(a) LN L" =0 or consists of a single F -point.
(b) LN C = @ or consists of one or two points in the F [/e]|-plane, some e € F, e > 0.
(c) C NC’ =0 or consists of one or two points in the F[./e]-plane, some e € F, e > 0.

PROOF. The points in the intersection are found by solving the simultaneous equations,
and hence by solving (at worst) a quadratic equation with coefficients in F. O

LEMMA 1.35 (a) If ¢ and d are constructible, then so also are ¢ +d, —c, cd, and %

(d #0).

(b) If ¢ > 0 is constructible, then so also is +/c.

PROOF. (SKETCH) First show that it is possible to construct a line perpendicular to a given
line through a given point, and then a line parallel to a given line through a given point.
Hence it is possible to construct a triangle similar to a given one on a side with given length.
By an astute choice of the triangles, one constructs cd and c¢~!. For (b), draw a circle of
radius % and centre (€31,0), and draw a vertical line through the point 4 = (1,0) to
meet the circle at P. The length AP is /c. (For more details, see Artin, M., 1991, Algebra,
Prentice Hall, Chapter 13, Section 4.) o

THEOREM 1.36  (a) The set of constructible numbers is a field.
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(b) A number « is constructible if and only if it is contained in a subfield of R of the
form

QIVar.....Ja), ai €Qlyar.....Jai1l, ai>0.

PROOF. (a) Immediate from (a) of Lemmal|l.3
(b) It follows from Lemma [I.34] that every constructible number is contained in such

a field Q[+ /a1, ..., /ar]. Conversely, if all the elements of Q[./ay,...,./a;—1] are con-
structible, then /a; is constructible (by|1.35p), and so all the elements of Q[ /a1, ..., /a;
are constructible (by (a)). Applying this for i = 0,1,..., we find that all the elements of

Q[+ /a1, ..., /ar] are constructible. O

COROLLARY 1.37 If o is constructible, then « is algebraic over Q, and [Q[«]: Q] is a
power of 2.

PROOF. According to Proposition[I.20] [Q[e]: Q] divides
[Qlva1]-[ar]:Q]
and [Q[ /a1, ...,+/ar]:Q] is a power of 2. 0

COROLLARY 1.38 It is impossible to duplicate the cube by straight-edge and compass
constructions.

PROOF. The problem is to construct a cube with volume 2. This requires constructing the
real root of the polynomial X3 —2. But this polynomial is irreducible (by Eisenstein’s

criterion for example), and so [Q[+/2]: Q] = 3. 0

COROLLARY 1.39 In general, it is impossible to trisect an angle by straight-edge and com-
pass constructions.

PROOF. Knowing an angle is equivalent to knowing the cosine of the angle. Therefore, to
trisect 3o, we have to construct a solution to

cos3a = 4cos® o —3cosa.

For example, take 3o = 60 degrees. As cos60° = % to construct o, we have to solve
8x3 —6x —1 = 0, which is irreducible (apply [1.11]). 0

COROLLARY 1.40 It is impossible to square the circle by straight-edge and compass con-
structions.

PROOF. A square with the same area as a circle of radius r has side /mr. Since 7 is
transcendental®, so also is /7. O

9Proofs of this can be found in many books on number theory, for example, in 11.14 of
Hardy, G. H., and Wright, E. M., An Introduction to the Theory of Numbers, Fourth Edition, Oxford, 1960.
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We now consider another famous old problem, that of constructing a regular polygon.
Note that X" — 1 is not irreducible; in fact

X" =X -DX" 4 X" 241 1),

LEMMA 1.41 If p is prime then X?~ 4 ... + 1 is irreducible; hence Q[e2™!/P] has degree
p—1overQ.

PROOF. Let f(X)=(X?—-1)/(X—1)=XP"14...41; then

X+1HP -1 _
X+ = % =XP 4 tarX?+ar1 X +p,
with a; = (l._fl). Now p|a; fori =1,...,p—2, and so f(X + 1) is irreducible by Eisen-
stein’s criterion This implies that f(X) is irreducible. o

In order to construct a regular p-gon, p an odd prime, we need to construct

cos%” = (ez% + (ez%)_l)/l
But 2i
Qle™” 12> Qleos 271 > Q,

and the degree of Q[e%] over QQ[cos 27”] is 2 — the equation

2mi

04—2003 T.q+1=0, a=er,
shows that it is < 2, and it is not 1 because Q[e r ] is not contained in R. Hence

2m. _p —1
[Qleos 2]:Q) = o~
Thus, if the regular p-gon is constructible, then (p—1)/2 = 2k for some k (later tb
we shall see a converse), which implies p = 2K+1 1. But 2" + 1 can be a prime only if r
is a power of 2, because otherwise r has an odd factor ¢ and for ¢ odd,

Yi4l=+DX" =Y 244 1);

whence
2T 1 =25+ D)5 =224 4 1),

Thus if the regular p-gon is constructible, then p = 22° 41 for some k. Fermat conjectured
that all numbers of the form 22k + 1 are prime, and claimed to show that this is true for k <5
— for this reason primes of this form are called Fermat primes. For 0 < k < 4, the numbers
p =3,5,17,257,65537, are prime but Euler showed that 232 4+ 1 = (641)(6700417), and
we don’t know of any more Fermat primes.

Gauss showed that!”

2
cosl—j;z—ﬁ—i— V1 +—\/34 217 \/17+3¢ \/34 217 2\/34+2«/

when he was 18 years old. This success encouraged him to become a mathematician.

100r perhaps that
cos2Z =~ + LV17+ L 34—2~/17+g\/17+3«/17—2\/34—2~/17—\/170—26«/17

— both expressions are correct.
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Algebraically closed fields

We say that a polynomial splits in F[X] (or, more loosely, in F)if it is a product of polyno-
mials of degree 1 in F[X].

PROPOSITION 1.42 For a field §2, the following statements are equivalent:

(a) Every nonconstant polynomial in $2[X] splits in £2[X].

(b) Every nonconstant polynomial in §2[X] has at least one root in 2.
(c) The irreducible polynomials in §2[X ] are those of degree 1.

(d) Every field of finite degree over §2 equals §2.

PROOF. The implications (a) = (b) = (c) = (a) are obvious.

(c) = (d). Let E be a finite extension of §2. The minimum polynomial of any element «
of E has degree 1, and so « € £2.

(d) = (c). Let f be an irreducible polynomial in £2[X]. Then £2[X]/(f) is an extension
field of £2 of degree deg( f) (see[.30), and so deg(f) = 1. o

DEFINITION 1.43 (a) A field £2 is said to be algebraically closed when it satisfies the
equivalent statements of Proposition [1.42]

(b) A field §2 is said to be an algebraic closure of a subfield F when it is algebraically
closed and algebraic over F.

For example, the fundamental theorem of algebra (see [5.6] below) says that C is alge-
braically closed. It is an algebraic closure of R.

PROPOSITION 1.44 If §2 is algebraic over F and every polynomial f € F[X] splits in
£2[X], then 2 is algebraically closed (hence an algebraic closure of F).

PROOF. Let f be a nonconstant polynomial in £2[X]. We have to show that f has a root
in £2. We know (see|1.21) that f has a root « in some finite extension §2’ of £2. Set

f:anX"+---+ao,a,~ € 52,
and consider the fields
F C Flay,...,an] C Flao,...,an,a].

Each extension is algebraic and finitely generated, and hence finite (by [I.30). Therefore «
lies in a finite extension of F', and so is algebraic over F' — it is a root of a polynomial g
with coefficients in F. By assumption, g splits in £2[X], and so the roots of g in £’ all lie
in £2. In particular, o € £2. o

PROPOSITION 1.45 Let 2 D F; then
{a € 2 | o algebraic over F}

is a field.
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PROOF. If @ and B are algebraic over F, then F|w, ] is a field (by [1.31)) of finite degree
over F (by[1.30). Thus, every element of F|«,f] is algebraic over F, including o &+ S,

a/B,ap. o
The field constructed in the lemma is called the algebraic closure of F in 2.
COROLLARY 1.46 Let §2 be an algebraically closed field. For any subfield F of §2, the

algebraic closure of F in §2 is an algebraic closure of F.

PROOF. From its definition, we see that it is algebraic over F and every polynomial in
F[X] splits in it. Now Proposition shows that it is an algebraic closure of F'. o

Thus, when we admit the fundamental theorem of algebra (5.6), every subfield of C
has an algebraic closure (in fact, a canonical algebraic closure). Later (Chapter 6) we shall
prove (using the axiom of choice) that every field has an algebraic closure.

Exercises

Exercises marked with an asterisk were required to be handed in.
1-1 (*) Let E = Q[a], where a® —a? +a +2 = 0. Express («? +a + 1)(a? —a) and
(¢ — 1)1 in the form aa® + ba + ¢ with a,b,c € Q.

1-2 (*) Determine [Q(+/2, +/3):Q].

1-3 (*) Let F be afield, and let f(X) € F[X].

(a) For any a € F, show that there is a polynomial ¢(X) € F[X] such that

f(X)=q(X)(X —a)+ f(a).

(b) Deduce that f(a) = 0 if and only if (X —a)| f(X).

(c) Deduce that f(X) can have at most deg f roots.

(d) Let G be a finite abelian group. If G has at most m elements of order dividing m for
each divisor m of (G:1), show that G is cyclic.

(e) Deduce that a finite subgroup of F*, F a field, is cyclic.

1-4 (*) Show that with straight-edge, compass, and angle-trisector, it is possible to con-
struct a regular 7-gon.






CHAPTER 2

Splitting Fields; Multiple Roots

Maps from simple extensions.

Let E and E’ be fields containing F. An F-homomorphism is a homomorphism
¢:E— E’

such that ¢(a) = a for all @ € F. Thus an F-homorphism ¢ maps a polynomial

i i
E Ajy iy O] O Qjei,, € F,
to

Zail"’im(p(al)il o .go(am)im .

An F-isomorphism is a bijective F-homomorphism. Note that if £ and E’ have the same
finite degree over F', then every F-homomorphism is an F-isomorphism.

PROPOSITION 2.1 Let F(«) be a simple field extension of a field F, and Iet §2 be a second
field containing F'.

(a) Let be transcendental over F. For every F-homomorphism ¢: F(x) — §2, ¢(«) is
transcendental over F, and the map ¢ — ¢(«) defines a one-to-one correspondence

{ F -homomorphisms ¢: F (a) — 2} <> {elements of §2 transcendental over F }.

(b) Leta be algebraic over F with minimum polynomial f(X). Forevery F -homomorphism
. Fla] — 2, () is aroot of f(X) in §2, and the map ¢ — ¢(«) defines a one-to-
one correspondence

{ F -homomorphisms ¢: F [a] — §2} <> {roots of f in §2}.

In particular, the number of such maps is the number of distinct roots of f in 2.

PROOF. (a) To say that « is transcendental over F means that F[«] is isomorphic to the
polynomial ring in the symbol o with coefficients in F. For any y € £2, there is a unique F -
homomorphism ¢: F[a] — §2 sending « to y (see[1.5). This extends to the field of fractions
F(a) of F[«] if and only if all nonzero elements of F[«] are sent to nonzero elements of
£2, which is so if and only if y is transcendental.

27
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(b) Let f(X) = a; X', and consider an F-homomorphism ¢: F[a] — £2. On apply-
ing ¢ to the equation Y a;a’ = 0, we obtain the equation Y a;¢(a)’ = 0, which shows
that ¢(«) is a root of f(X) in £2. Conversely, if y € §2 is a root of f(X), then the map
F[X]— 2, g(X) — g(y), factors through F[X]/(f(X)). When composed with the in-
verse of the isomorphism X + f(X) — a: F[X]/(f(X)) — F][a], this becomes a homo-
morphism F[a] — £2 sending « to y. o

We shall need a slight generalization of this result.

PROPOSITION 2.2 Let F(«) be a simple field extension of a field F, and let ¢o: F — §2
be a homomorphism of F into a second field §2.

(a) If o is transcendental over F, then the map ¢ +— @() defines a one-to-one corre-
spondence

{extensions ¢: F () — £2 of po} <> {elements of §2 transcendental over ¢o(F)}.

(b) If o is algebraic over F, with minimum polynomial f(X), then the map ¢ — ¢(«)
defines a one-to-one correspondence

{extensions ¢: F [a] — 2 of ¢g} <> {roots of ¢ [ in 2}.

In particular, the number of such maps is the number of distinct roots of g f in 2.

By ¢ f we mean the polynomial obtained by applying ¢ to the coefficients of f: if
f =>a; X" then ¢o f =Y @(a;)X'. By an extension of ¢g to F(c) we mean a homo-
morphism ¢: F(«) — §2 such that ¢|F = ¢y.

The proof of the proposition is essentially the same as that of the preceding proposition.

Splitting fields

Let f be a polynomial with coefficients in F. A field E containing F is said to split f if
S osplitsin E[X]: f(X) =[]/2;(X —a;) with o; € E. If, in addition, E is generated by
the roots of f,

E = Floay,...,an],

then it is called a splitting or root field for f. Note that [ [ f; (X)™ (m; > 1) and [] f; (X)
have the same splitting fields. Also, that if f has deg(f)—1 roots in E, then it splits in
E[X].

EXAMPLE 2.3 (a) Let f(X) =aX?+bX +c € Q[X], and let & = v/b2 —4ac. The sub-
field Q[«] of C is a splitting field for f.

(b) Let f(X) = X34+aX?>+bX +c € Q[X] be irreducible, and let a1,z a3 be its
roots in C. Since the nonreal roots of f occur in conjugate pairs, either 1 or 3 of the «; are
real. Then Qo o2, 3] = Q[o1, 2] is a splitting field for f(X). Note that [Q[x1]: Q] = 3
and that [Q[oy,22]: Q[e1]] = 1 or 2, and so [Q[a,x2]: Q] = 3 or 6. We’ll see later
that the degree is 3 if and only if the discriminant of f(X) is a square in Q. For example,
the discriminant of X3 +bX + ¢ is —4b3 —27¢2, and so the splitting field of X3+ 10X + 1
has degree 6 over Q.
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PROPOSITION 2.4 Every polynomial f € F[X] has a splitting field E ¢, and

[Ef:F] <(deg f)! (factorial deg f').

PROOF. Let F; = F[ay] be a stem field for some monic irreducible factor of f in F[X].

Then f(a1) =0, and we let F> = F1[a] be a stem field for some monic irreducible factor

of f(X)/(X —ay)in F1[X]. Continuing in this fashion, we arrive at a splitting field E ¢.
Letn =deg f. Then [F1: F]=deggy <n,[F2: F1] <n—1,..,andso [Ef: E] <nl.p

REMARK 2.5 For a given integer n, there may or may not exist polynomials of degree n in
F[X] whose splitting field has degree n! — this depends on F. For example, there do not
forn > 1 if F = C (see[5.6), nor for n > 2 if F =T (see[d.21)) or F = R. However, later
we shall see how to write down infinitely many polynomials of degree n in Q[X]
whose splitting fields have degree n!.

EXAMPLE 2.6 (a) Let f(X) =(X?—-1)/(X —1) € Q[X], p prime. If { is one root of f,
then the remaining roots are £2,¢3,...,¢P~1, and so the splitting field of f is Q[].

(b) Suppose F is of characteristic p, and let f = X? — X —a € F[X]. If « is one root
of f, then the remaining roots are @ + 1,...,a¢ + p — 1, and so any field generated over F
by « is a splitting field for f (and Fe] >~ F[X]/(f) if f is irreducible).

(c) If « is one root of X" —a, then the remaining roots are all of the form {«, where
{" = 1. Therefore, if F contains all the nth roots of 1 (by which we mean that X" — 1 splits
in F[X]), then F[«] is a splitting field for X" —a. Note that if p is the characteristic of F,
then X? —1 = (X —1)?, and so F automatically contains all the pth roots of 1.

PROPOSITION 2.7 Let f € F[X]. Let E be a field generated over F by roots of f, and let
2 be a field containing F in which f splits.

(a) There exists an F-homomorphism ¢: E — §2; the number of such homomorphisms
is at most [E: F], and equals [E: F] if f has distinct roots in £2.

(b) If E and $2 are both splitting fields for f, then each F -homomorphism E — 2 is an
isomorphism. In particular, any two splitting fields for f are F -isomorphic.

PROOF. By f splitting in £2, we mean that

deg(f)
fO =L X-a)., aecg

in 2[X]. By f having distinct roots in §2, we mean that o; # o; if i # j.

We begin with an observation: let ', f, and §2 be as in the statement of the proposition,
let L be a subfield of §2 containing F, and let g be a factor of f in L[X]; then g divides
f in 2[X] and so (by unique factorization in £2[X]), g is product of certain number of the
factors X —a; of f in £2[X]; in particular, we see that g splits in £2, and that its roots are
distinct if the roots of f are distinct.

(a) By assumption, £ = Fay,..., 0] with the «; (some of the) roots of f(X). The
minimum polynomial of o is an irreducible polynomial f; dividing f, and deg( f1) =
[Floep]: F]. From the initial observation with L = F, we see that f; splits in £2, and that
its roots are distinct if the roots of f are distinct. According to Proposition there exists
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an F-homomorphism ¢1: F[a1] — §2, and the number of such homomorphisms is at most
[F[oe1]: F], with equality holding when f has distinct roots in £2.

The minimum polynomial of ., over F 1] is an irreducible factor f, of f in F[o1][X].
On applying the initial observation with L = ¢ F[o1] and g = ¢; f>, we see that ¢; f> splits
in £2, and that its roots are distinct if the roots of f are distinct. According to Proposition
each @1 extends to a homomorphism @,: F[o1, 2] — £2, and the number of extensions
is at most [ F[aq, oz]: F'[a1]], with equality holding when f has distinct roots in £2.

On combining these statements we conclude that there exists an F'-homomorphism

@: Flog, ] — £2,

and that the number of such homomorphisms is at most [ F [y, 2]: F], with equality hold-
ing if f has distinct roots in £2.

After repeating the argument m times, we obtain (a).

(b) Every F-homomorphism E — §2 is injective, and so, if there exists such a homo-
morphisms, [E: F] < [§2: F]. If E and 2 are both splitting fields for f, then (a) shows
that there exist homomorphism F < E, and so [E: F] = [§2: F]. Therefore, every F-
homomorphism £ — §2 is an isomorphism. =

COROLLARY 2.8 Let E and L be extension fields of F, with E finite over F .

(a) The number of F -homomorphisms E — L is at most [E: F].
(b) There exists a finite extension §2/L and an F -homomorphism E — 2.

PROOF. Write E = Flay,...,0], and f be the product of the minimum polynomials of
the o;. Let £2 be a splitting field for f regarded as an element of L[X]. The proposition
shows that there is an F-homomorphism E — §2, and the number of such homomorphisms
is < [E: F]. This proves (b), and since an F-homomorphism £ — L can be regarded as an
F-homomorphism £ — §2, it also proves (a). |

REMARK 2.9 (a)Let Eq, E»,..., Ey, be finite extensions of F', and let L be an extension of
F. The corollary implies that there exists a finite extension §2/L containing an isomorphic
copy of every E;.

(b) Let f € F[X]. If E and E’ are both splitting fields of f, then we know there is an
F-isomorphism E — E’, but there will in general be no preferred such isomorphism. Error
and confusion can result if you simply identify the fields. Also, it makes no sense to speak
of “the field F[«] generated by a root of f” unless f is irreducible (the fields generated by
the roots of two different factors are unrelated). Even when f is irreducible, it makes no
sense to speak of “the field F[«, B] generated by two roots o, B of f” (the extensions of
F ] generated by the roots of two different factors of f in F[«][X] may be very different).

Multiple roots

Let f,g € F[X]. Even when f and g have no common factor in F[X], one might expect
that they could acquire a common factor in £2[X] for some £2 O F. In fact, this doesn’t
happen — greatest common divisors don’t change when the field is extended.
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PROPOSITION 2.10 Let f and g be polynomials in F[X], and let 2 D F. If r(X) is
the gcd of f and g computed in F[X], then it is also the gcd of f and g in 2[X]. In
particular, distinct monic irreducible polynomials in F[X] do not acquire a common root in
any extension field of F'.

PROOF. Let rr(X) and rg(X) be the greatest common divisors of f and g in F[X] and
2[X] respectively. Certainly rg (X)|re(X) in £2[X], but Euclid’s algorithm (1.8) shows
that there are polynomials a and b in F[X] such that

a(X) f(X)+b(X)g(X) =rr(X),

and so r (X) divides rg (X) in £2[X].
For the second statement, note that the hypotheses imply that ged(f,g) = 1 (in F[X]),
and so f and g can’t acquire a common factor in any extension field. o

The proposition allows us to speak of the greatest common divisor of f and g without
reference to a field.
Let f € F[X], and let

f(X)=a H(X—a,-)mi, «; distinet, m; > 1, Zmi = deg(f). )

i=1 i=1

be a splitting of f in some extension field £2 of F. We say that ¢; is a root of f of
multiplicity m;. If m; > 1, o; is said to be a multiple root of f, and otherwise it is a simple
root.

The unordered sequence of integers my,...,m, in (*) is independent of the extension
field £2 in which f splits. Certainly, it is unchanged when £2 is replaced with its subfield
Flog,...,am], but Flay,...,an] is a splitting field for f, and any two splitting fields are
isomorphic (2.7p).

We say that f has a multiple root when at least one of the m; > 1, and we say that f
has only simple roots when all m; = 1.

We wish to determine when a polynomial has a multiple root. If f has a multiple factor
in F[X], say f =]]fi(X)™ with some m; > 1, then obviously it will have a multiple
root. If =] fi with the f; distinct monic irreducible polynomials, then Proposition
shows that f has a multiple root if and only if at least one of the f; has a multiple root.
Thus, it suffices to determine when an irreducible polynomial has a multiple root.

EXAMPLE 2.11 Let F be of characteristic p # 0, and assume that F' contains an element a
that is not a pth-power, for example, a = T in the field F, (7). Then X ? —a is irreducible
in F[X],but X? —a e (X —a)? inits splitting field. Thus an irreducible polynomial can
have multiple roots.

Define the derivative f’(X) of a polynomial f(X)= > a; X' tobe Y ia; X'~!. When
f has coefficients in R, this agrees with the definition in calculus. The usual rules for
differentiating sums and products still hold, but note that in characteristic p the derivative
of X7 is zero.

PROPOSITION 2.12 For a nonconstant irreducible polynomial f in F[X], the following
statements are equivalent:
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(a) f has a multiple root;

(b) ged(f. f) # L;
(¢) F has characteristic p # 0 and f is a polynomial in X ?;
(d) all the roots of f are multiple.

PROOF. (a) = (b). Let « be a multiple root of f, and write f = (X —a)"g(X),m > 1,
in some splitting field. Then

S'(X) =m(X =)™ g(X) + (X —a)"g'(X).
Hence f/(«) =0, and so ged(f, /') # 1.
(b) = (c). Since f is irreducible and deg( /') < deg(f),
ged(f f)#1 = f'=0.

But, because f is nonconstant, f” can be zero only if the characteristic is p # 0 and f is a
polynomial in X 7.

(c) = (d). Suppose f(X)=g(X?),andlet g(X)=][;(X —a;)™ insome splitting
field for f. Then

X)) =g(X?) = [.(X7 —a™ = [.(X —ar)?™

where ocf = a;. Hence every root of f(X) has multiplicity at least p.
(d) = (a). Obvious. o

DEFINITION 2.13 A polynomial f € F[X] is said to be separable over F if none of its
irreducible factors has a multiple root (in a splitting field).

The preceding discussion shows that f € F[X] will be separable unless

(a) the characteristic of F is p # 0, and
(b) at least one of the irreducible factors of f is a polynomial in X 7.

Note that, if f € F[X] is separable, then it remains separable over every field §2 containing
F (condition (b) of continues to hold — see[2.10)).

DEFINITION 2.14 A field F is said to be perfect if all polynomials in F[X] are separable
(equivalently, all irreducible polynomials in F'[X] are separable).

PROPOSITION 2.15 A field of characteristic zero is always perfect, and a field F of char-
acteristic p # 0 is perfect if and only if every element of F is a pth power.

PROOF. A field of characteristic zero is obviously perfect, and so we may suppose F to be
of characteristic p # 0. If F' contains an element a that is not a pth power, then X? —a €
F[X] is not separable (see [2.11). Conversely, if every element of F is a pth power, then
every polynomial in X7 with coefficients in F is a pth power in F[X],

Zaisz(ZbiX)p if a; =b?,

and so is not irreducible. o

IThis is the standard definition, although some authors, for example, Dummit and Foote 1991, 13.5, give a
different definition.
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EXAMPLE 2.16 (a) A finite field F is perfect, because the Frobenius endomorphism
a+> a?: F — F is injective and therefore surjective (by counting).
(b) A field that can be written as a union of perfect fields is perfect. Therefore, every
field algebraic over IF, is perfect.
(c) Every algebraically closed field is perfect.
(d) If Fy has characteristic p # 0, then F = Fy(X) is not perfect, because X is not a pth
power.

Exercises

2-1 (*) Let F be a field of characteristic # 2.
(a) Let E be quadratic extension of F (i.e., [E: F] = 2); show that

S(E)={a € F*|aisasquarein E}

is a subgroup of F* containing F*2.

(b) Let E and E’ be quadratic extensions of F; show that there is an F-isomorphism
¢:E — E’if and only if S(E) = S(E’).

(c) Show that there is an infinite sequence of fields £, E», ... with E; a quadratic exten-
sion of Q such that E; is not isomorphic to E; fori # j.

(d) Let p be an odd prime. Show that, up to isomorphism, there is exactly one field with
p? elements.

2-2 (*) (a) Let F be a field of characteristic p. Show that if X? — X —a is reducible in
F[X], then it splits into distinct factors in F[X].
(b) For any prime p, show that X? — X — 1 is irreducible in Q[ X].

2-3 (*) Construct a splitting field for X°> —2 over Q. What is its degree over Q?

2-4 (*) Find a splitting field of X?" —1 € Fp[X]. What is its degree over IF,?

2-5 Let f € F[X], where F is a field of characteristic 0. Let d(X) = gcd(f, f’). Show
that g(X) = f(X)d(X)~! has the same roots as f(X), and these are all simple roots of
g(X).

2-6 (*) Let f(X) be an irreducible polynomial in F[X], where F has characteristic p.

Show that f(X) can be written f(X) = g(X?°) where g(X) is irreducible and separable.
Deduce that every root of f(X) has the same multiplicity p¢ in any splitting field.






CHAPTER 3

The Fundamental Theorem of Galois
Theory

In this chapter, we prove the fundamental theorem of Galois theory, which gives a one-to-
one correspondence between the subfields of the splitting field of a separable polynomial
and the subgroups of the Galois group of f.

Groups of automorphisms of fields

Consider fields £ D F. An F-isomorphism E — E is called an F-automorphism of E.
The F-automorphisms of E form a group, which we denote Aut(E/F).

EXAMPLE 3.1 (a) There are two obvious automorphisms of C, namely, the identity map
and complex conjugation. We’ll see later (8.18]) that by using the Axiom of Choice one can
construct uncountably many more.
— ; 1 X+b
(b) Let E = C(X). Then Aut(E/C) consists of the maps’ X — ZXer, ad —bc #0
(Jacobson 1964, IV, Theorem 7, p158), and so

Aut(E/C) = PGL»(C),

the group of invertible 2 x 2 matrices with complex coefficients modulo its centre. Analysts
will note that this is the same as the automorphism group of the Riemann sphere. This
is not a coincidence: the field of meromorphic functions on the Riemann sphere ]P’(%: is
C(z) ~ C(X), and so there is certainly a map Aut(IP)(%:) — Aut(C(z)/C), which one can
show to be an isomorphism.

(c) The group Aut(C(X1, X2)/C) is quite complicated — there is a map

PGL3(C) = Aut(P%) < Aut(C(X1, X»)/C),

but this is very far from being surjective. When there are more X’s, the group is unknown.
(The group Aut(C(X1,...,X,)/C) is the group of birational automorphisms of P{.. It is
called the Cremona group. lIts study is part of algebraic geometry.)

In this section, we shall be concerned with the groups Aut(E£/F) when E is a finite
extension of F.

aX+b)

IBy this I mean the map that sends a rational function f(X) to f( X1d

35
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PROPOSITION 3.2 If E is a splitting field of a separable polynomial f € F[X], then
Aut(E/F) has order [E: F].

PROOF. Let f =] fimi , with the f; irreducible and distinct. The splitting field of f is
the same as the splitting field of [ | f;. Hence we may assume f is a product of distinct
separable irreducible polynomials, and so has deg f distinct roots in £. Now Proposition
shows that there are [E: F] distinct F-homomorphisms E — E. Because E has finite
degree over F, they are automatically isomorphisms. O

EXAMPLE 3.3 (a) Consider a simple extension £ = F[a], and let f be a polynomial with
coefficients in F having « as aroot. If f has norootin E other than «, then Aut(E/F) = 1.
For example, if 3/2 denotes the real cube root of 2, then Aut(Q[</2]/Q) = 1. Thus, in the
proposition, it is essential that E be a splitting field.

(b) Let F be a field of characteristic p # 0, and let a be an element of F that is not a pth
power. Then f = X? —a has only one root in a splitting field £, and so Aut(E/F) = 1.
Thus, in the proposition, it is essential that £ be a splitting field of a separable polynomial.

When G is a group of automorphisms of a field E, we set
EC =Inv(G)={a € E|oa=qa,allo € G}.

It is a subfield of E, called the subfield of G-invariants of E or the fixed field of G.
In this section, we shall show that, when E is the splitting field of a separable polyno-
mial in F[X] and G = Aut(E/F), then the maps

M+ Aut(E/M), Hw—1Inv(H)

give a one-to-one correspondence between the set of intermediate fields M, F C M C E,
and the set of subgroups H of G.

THEOREM 3.4 (E. ARTIN) Let G be a finite group of automorphisms of a field E, and let
F = EG; then[E:F] < (G:1).

PROOF. Let G = {01 =1,...,0p}, and let aq,...,a, be n > m elements of £E. We shall
show that the «; are linearly dependent over F. In the system of linear equations

o1(a) X1+ +o1(an) X, =0

om(@1) X1+ +om(an) Xy, =0

there are m equations and n > m unknowns, and hence there are nontrivial solutions in E
— choose one (cy,...,c,) having the fewest possible nonzero elements. After renumbering
the o;’s, we may suppose that ¢; # 0, and then (after multiplying by a scalar) that ¢; € F.
With these normalizations, we’ll show that all ¢; € F. Then the first equation

a1c1+ - Foue, =0

(recall that oy = 1) will be a linear relation on the ¢; .
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If not all ¢; are in F, then 0% (c;) # ¢; for some k and i, k % 1 £ i. On applying oy to
the equations
o1(ar)cr + -+ o1(an)cn =0
()
om(ar)cr + -4+ om(an)en =0

and using that {0} 01,...,0,0n} is a permutation of {o1,...,0,,}, we find that

(c1,0%(c2),...,01(ci),...)

is also a solution to the system of equations (*). On subtracting it from the first, we obtain a
solution (0,...,¢; —og(c¢;i),...), which is nonzero (look at the i th coordinate), but has more
zeros than the first solution (look at the first coordinate) — contradiction. O

COROLLARY 3.5 For any finite group G of automorphisms of a field E, G = Aut(E / E9).

PROOF. We know that:
[E:EC] < (G:1) (by3.4).
G C Aut(E/E©) (obvious),
(Aut(E/EG):1) <[E:E®]  (byR2:8p).
The inequalities
[E:EC] < (G:1) < (Aut(E/E%):1) < [E: EY]

must be equalities, and so G = Aut(E/E%). 0

Separable, normal, and Galois extensions

DEFINITION 3.6 An algebraic extension £/ F is said to be separable if the minimum poly-
nomial of every element of E is separable; otherwise, it is inseparable.

Thus, an algebraic extension £/ F is separable if every irreducible polynomial in F[X]
having a root in E is separable, and it is inseparable if

¢ F is nonperfect, and in particular has characteristic p # 0, and
¢ there is an element @ of E whose minimal polynomial is of the form g(X?), g €
F[X].

For example, E = F,(T) is an inseparable extension of F , (T ?).

DEFINITION 3.7 An algebraic extension E/F is normal if the minimum polynomial of
every element of E splits in E[X].

In other words, an algebraic extension E/F is normal if every irreducible polynomial
f € F[X] having a root in E splits in E.
Let f be an irreducible polynomial of degree m in F[X]. If f has aroot in E, then

E/F separable = roots of f distinct

E/F normal — £ splits in E = f has m distinct roots in E.

Therefore, E/F is normal and separable if and only if, for each @ € E, the minimum
polynomial of & has [F[«]: F] distinct roots in E.



38 3. THE FUNDAMENTAL THEOREM OF GALOIS THEORY

EXAMPLE 3.8 (a) The field Q[~/2], where /2 is the real cube root of 2, is separable but
not normal over Q (X3 —2 doesn’t split in Q[c]).

(b) The field F,(T') is normal but not separable over [, (7 #) — the minimum polyno-
mial of T is the inseparable polynomial X? — T2,

DEFINITION 3.9 Let F be a field. A finite extension E of F is said to be Galois if F is
the fixed field of the group of F'-automorphisms of E. This group is then called the Galois
group of E over F, and it is denoted Gal(E/ F).

THEOREM 3.10 For an extension E / F, the following statements are equivalent:

(a) E is the splitting field of a separable polynomial f € F[X].
(b) F = EC for some finite group G of automorphisms of E.
(c) E is normal and separable, and of finite degree, over F .

(d) E is Galois over F.

PROOF. (a) = (d). Let G = Aut(E/F), and let F/ = E® > F. Then E is also the
splitting field of f regarded as a polynomial with coefficients in F’, and f is still separable
when it is regarded in this way. Hence Proposition [3.2] shows that

[E:F'] = |Aut(E/F")|
[E:F] = |Aut(E/F)|.

Since Aut(E/F’) G = Aut(E/F) , we conclude that F = F', and so F = E©.

(d) = (b). According to (2.8h), Gal(E/ F) is finite, and so this is obvious.

(b) = (c). By Proposition[3.4] we know that [E: F] < (G:1); in particular, it is finite.
Let o € E and let f be the minimum polynomial of «; we have to prove that f splits into
distinct factors in E[X]. Let {1 = «, ..., } be the orbit of & under the action of G on E,
and let

gX)=[](X—a)=X"+a1 X"+t ap.

Any o € G merely permutes the ¢;. Since the a; are symmetric polynomials in the o;,
we find that oa; = q; for all i, and so g(X) € F[X]. It is monic, and g(«) = 0, and so
f(X)|g(X) (see the definition of the minimum polynomial p.[I7). But also g(X)|f(X),
because each «; is a root of f(X) (if ¢; = o, then applying ¢ to the equation f(x) =0
gives f(a;) = 0). We conclude that f(X) = g(X), and so f(X) splits into distinct factors
in E.

(c) = (a). Because E has finite degree over F, it is generated over F by a finite
number of elements, say, £ = Foq,...,am], @i € E, «; algebraic over F. Let f; be the
minimum polynomial of o; over F. Because E is normal over F, each f; splits in E, and
so E is the splitting field of f = [] fi. Because E is separable over F, f is separable. o

REMARK 3.11 (a) Let E be Galois over F with Galois group G, and let @« € E. The
elements o1 = «, 2, ..., of the orbit of o are called the conjugates of . In the course
of the proof of (b) = (c) of the above theorem we showed that the minimum polynomial
of ais [[(X —a).

(b) Note that if F = EY for some finite group G, then, because E is the splitting
field of a separable polynomial, Proposition [2.7|shows that Gal(E/ F) has [E: F] elements.
Combined with Artin’s theorem (3.4)), this shows that G = Gal(E/F) and (G:1) = [E: F].
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COROLLARY 3.12 Every finite separable extension E of F' is contained in a finite Galois
extension.

PROOF. Let E = Fluy,...,am,]. Let f; be the minimum polynomial of «; over F', and take
E’ to be the splitting field of [] f; over F. O

COROLLARY 3.13 Let E D M D F; if E is Galois over F, then it is Galois over M.

PROOF. We know F is the splitting field of some separable f € F[X]; it is also the splitting
field of f regarded as an element of M[X]. o

REMARK 3.14 When we drop the assumption that E is separable over F, we can still say
something. An element o of an algebraic extension of F is said to be separable over F if its
minimum polynomial over F is separable. The proof of Corollary[3.12]shows that any finite
extension generated by separable elements is separable. Therefore, the elements of a finite
extension £ of F' that are separable over F form a subfield E¢p, of E that is separable over
F; write [E: Flsep = [Egep: F] (separable degree of E over F). If §2 is an algebraically
closed field containing F', then every F'-homomorphism E., — §2 extends uniquely to E,
and so the number of F-homomorphisms E — 2 is [E: Fls,. When E D M D F (finite
extensions),
[E:F]sep = [E:M]sep[M: F]sep-

In particular,
E is separable over ' <= [ is separable over M and M is separable over F.

See Jacobson 1964, 1 10, for more details.

DEFINITION 3.15 A finite extension E D F is called a cyclic, abelian, ..., solvable exten-
sion if it is Galois with cyclic, abelian, ..., solvable Galois group.

The fundamental theorem of Galois theory

THEOREM 3.16 (FUNDAMENTAL THEOREM OF GALOIS THEORY) Let E be a Galois ex-
tension of F, and let G = Gal(E/F). The maps H — EH and M + Gal(E /M) are in-
verse bijections between the set of subgroups of G and the set of intermediate fields between
E and F':

{subgroups of G} <> {intermediate fields F C M C E}.

Moreover,

(a) the correspondence is inclusion-reversing: Hy D H, <= EHi c EHz;
(b) indexes equal degrees: (Hy: Hy) = [EH2: Ef1];

() cHo ' < oM, ie., ECH ™' = o(EH); Gal(E/oM) = o Gal(E/M)o".
(d) H isnormalin G <= E*™ isnormal (hence Galois) over F, in which case

Gal(E® /F) ~ G/H.
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PROOF. For the first statement, we have to show that H — E* and M + Gal(E/M) are
inverse maps.

Let H be a subgroup of G. Then, as we observed in ), Gal(E/EH) = H.

Let M be an intermediate field. Then E is Galois over M by (3.13]), which means that
EGal(E/M) =M.

(a) We have the obvious implications:
Hi D> H, = EH' c EH2 — Gal(E/Ef") 5 Gal(E/E™2).

But Gal(E/EHi) = H;.
(b) As we observed in (3.11b), for any subgroup H of G, [E: EH] = (Gal(E/Ef):1).
This proves (b) in the case H> = 1, and the general case follows, using that

(Hy:1) = (Hy: Hy)(Ha:1) and [E:Ef) = [E: EF2|[EH2. EHY.

(c)ForteGanda € E, ta =a <= ot0 !(0a) = oa. Therefore, Gal(E/oM) =
oGal(E/M)o~ !, andsoc Gal(E/M)o~! <> oM.

(d) Let H be a normal subgroup of G. Because cHo~! = H for all 0 € G, we must
have cEH = EH forall o € G, i.e., the action of G on E stabilizes E H wWe therefore
have a homomorphism

o 0o|Ef:G - Au(EH /F)

whose kernel is H. As (EH )G/ H — F we see that EH is Galois over F (by Theorem
and that G/H ~ Gal(Ef / F) (by3.11p).

Conversely, assume that M is normal over F, and write M = Faq,...,a,]. Foro € G,
oa; is a root of the minimum polynomial of «; over F, and so liesin M. Hence oM = M,
and this implies that 0 H o l=H (by (). o

REMARK 3.17 The theorem shows that there is an order reversing bijection between the
intermediate fields of £/ F and the subgroups of G. Using this we can read off more results.

(a) Let M1, M>,..., M, be intermediate fields, and let H; be the subgroup correspond-
ing to M; (i.e., H; = Gal(E/M;)). Then (by definition) My M5 --- M, is the smallest field
containing all M;; hence it must correspond to the largest subgroup contained in all H;,
which is () H;. Therefore

Gal(E/My--M,) = HiN...N H,.

(b) Let H be a subgroup of G and let M = E | The largest normal subgroup contained
in His N =(\,eqoHo ! (see GT , and so EV, which is the composite of the fields
oM, is the smallest normal extension of F' containing M . It is called the normal, or Galois,
closure of M in E.

PROPOSITION 3.18 Let E and L be field extensions of F contained in some common
field. If E/ F is Galois, then EL/L and E/E N L are Galois, and the map

o+ o|E:Gal(EL/L) — Gal(E/ENL)

is an isomorphism.
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PROOF. Because E is Galois over F, it is the splitting field of a separable polynomial

f € F[X]. Then EL is the splitting field of f over L, and E is the split-

ting field of f over E N L. Hence EL/L and E/E N L are Galois. Any EL

automorphism o of EL fixing the elements of L maps roots of f to roots / \=
E

of f,and so 0 E = E. There is therefore a homomorphism L

o o|E:Gal(EL/L) — Gal(E/ENL). \= /

ENL
If 0 € Gal(EL/L) fixes the elements of E, then it fixes the elements of ‘

EL, and hence is 1. Thus, o — o|E is injective. If @ € E is fixed by all

o € Gal(EL/L), then « € L N E. By the fundamental theorem,
this implies that the image of 0 > o|E is Gal(E/E N L). o

COROLLARY 3.19 Suppose, in the proposition, that L is finite over F'. Then

(EL: F) = EFILE]
[ENL:F]

PROOF. According to Proposition [I.20]
[EL:F]=[EL: L][L: F],

but
[E: F]

1528 e
[ENL:F] o

[EL:L E:ENL]

PROPOSITION 3.20 Let E; and E, be field extensions of F' contained in some common
field. If E1 and E, are Galois over F, then E1 E, and E1 N E, are Galois over F, and

o+> (0|E1,0|E2):Gal(E1Ey/F) — Gal(E 1/ F) xGal(E3/ F)
is an isomorphism of Gal(E1 E»/ F) onto the subgroup
H ={(01,02) |01|E1 N Ey = 02| E1 N Ea}

of Gal(E1/ F) xGal(E3/ F).

PROOF: Leta € E1 N E3, and let f be its minimum polynomial over F'. Then f has
deg f distinct roots in £ and deg f distinct roots in E5. Since f

can have at most deg f roots in E1 E>, it follows that it has deg f E\E>
distinct roots in £ N E5. This shows that £1 N E5 is normal and / \
separable over F, and hence Galois @I) As Ei and E, are E E,
Galois over F, they are splitting fields of separable polynomials

f1, f> € F[X]. Now Ej E; is a splitting field for f f>, and hence \\ /

it also is Galois over F. The map o > (0|E;,0|E>) is clearly EiNE;
an injective homomorphism, and its image is contained in H. We ‘
prove that the image is the whole of H by counting. F

From the fundamental theorem,

Gal(Ez/F)/Gal(Ez/El NEj) >~ Gal(E; N Ez/F),
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and so, for each o1 € Gal(E1/F), o1|E1 N E3 has exactly [E»: E; N E3] extensions to an
element of Gal(E,/ F). Therefore,

[E1:F]-[Ex: F]
H:1)=|[E{.F|[Exs:E.NE)] = ——FF——,
(H:1) =[Ey: F][E2: E1 N E3] (£ N Ey F]
which equals [E1 E>: F] by (3.19). O

Examples

EXAMPLE 3.21 We analyse the extension Q[¢]/Q, where ( is a primitive 7th root of 1, say
_ ,2mi]7
=e .
Note that Q[¢] is the splitting field of the poly-

nomial X7 — 1, and that ¢ has minimum polyno-

mial

X+ X+ X4+ X3+ X2+ X +1 Qlg]

(see [L.41). Therefore, Q[¢] is Galois of degree (a3) (0?)
6 over Q. For any o € Gal(Q[¢]/Q), o¢ =i, <

some i, 1 <i <6, and the map o > i defines an Q¢ +¢
isomorphism Gal(Q[¢]/Q) — (Z/7Z)*. Let o be N
the element of Gal(Q[¢]/Q) such that o¢ = 3.
Then o generates Gal(Q[{]/Q) because the class Q

of 3in (Z/77Z)* generates it (the powers of 3 mod

7 are 3,2,6,4,5,1). We investigate the subfields

of Q[¢] corresponding to the subgroups (o) and

(0?).

Note that 03¢ = ¢6 = ¢ (complex conjugate of ). The subfield of Q[¢] corresponding
to (03) is Q[¢ +¢], and ¢ + & = 2cos 27” Since (¢3) is a normal subgroup of (c'), Q[¢ + ]
is Galois over Q, with Galois group (o)/(c3). The conjugates of a; e ¢+ are a3 =
03 4¢3, ap = {2 4+ 2. Direct calculation shows that

6 .
a1 +oy+o3 = Zizlé'l =—1,

a1 +oro3 +aze3 = =2,
aronas =+ + )P+
=C+C++9@E+H

=@+ 14240+ 140483
=1.

Hence the minimum polynomial® of ¢ + ¢is

gX)=X34Xx2-2x 1.

>More directly, on setting X = + E in
(X3-3X)+(X%2-2)+ X +1

one obtains 1 +¢ + %24+ % =0.
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The minimum polynomial of cos 27” =

g(2X)
8

&L is therefore
=X3+X2/2-X/2-1/8.

The subfield of Q[¢] corresponding to (02) is generated by B = ¢ + 2+ ¢4, Let p/ =
oB. Then (B — B’)?> = —7. Hence the field fixed by (02) is Q[+/—7].

EXAMPLE 3.22 We compute the Galois group of a splitting field £ of X> —2 € Q[X].
Recall from Exercise that £ = Q[¢, «] where { is a primitive

5th root of 1, and « is a root of X —2. For example, we could

take E to be the splitting field of X5 —2 in C, with ¢ = €27/ and Q[¢, ]

a equal to the real 5th root of 2. We have the picture at right, and 7N

N H
/ AN
[Q[¢]:Ql =4, [Qle]: Q] =>5. QI¢] Qle]
AN
Because 4 and 5 are relatively prime, G/ N\ /
[Q[¢. @] : Q] = 20. Q

Hence G = Gal(Q[¢, «]/Q) has order 20, and the subgroups N and H fixing Q[¢] and Q]
have orders 5 and 4 respectively. Because Q[¢] is normal over Q (it is the splitting field of
X?°—1), N is normal in G. Because Q[¢]-Q[a] = Q[¢,«], we have H NN = 1, and so
G = N %y H. Moreover, H ~ G/N =~ (Z/57Z)*, which is cyclic, being generated by the
class of 2. Let t be the generator of H corresponding to 2 under this isomorphism, and let
o be a generator of N. Thus o («) is another root of X> —2, which we can take to be {«
(after possibly replacing o by a power). Hence:

{T§=§2{0Z=§

o = « ca = (a.

Note that ot~ (o) = toa = t(¢a) = {2 and it fixes ¢; therefore tot~! = 2. Thus G
has generators o and t and defining relations

The subgroup H has five conjugates, which correspond to the five fields Q[¢ o],

o'Ho™' < 0o'Qo] =Q[¢'a], 1<i<5

Constructible numbers revisited

Earlier, we showed (1.36) that a real number « is constructible if and only if it is con-
tained in a subfield of R of the form Q[./a1,..., </ar] with each a; a positive element of

Q[+ /a1, ..., /ai—1]. In particular
« constructible = [Q[a]: Q] = 2° some s. (1)

Now we can prove a partial converse to this last statement.
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THEOREM 3.23 If is contained in a subfield of R that is Galois of degree 2" over QQ, then
it is constructible.

PROOF. Suppose @ € E C R where E is Galois of degree 2" over Q, and let G = Gal(E/Q).
Because finite p-groups are solvable (GT[6.7)), there exists a sequence of groups

{I}=GoCc Gy CG,C---CG, =G
with G; /G;—1 of order 2. Correspondingly, there will be a sequence of fields,
E=EyDE{DE;D---DE,=Q

with E;_; of degree 2 over E;. The next lemma shows that £; = E;_1[./a;] for some
a; € Ei_1,and a; > 0 because otherwise E; would not be real. This proves the theorem. o

LEMMA 3.24 Let E/F be a quadratic extension of fields of characteristic # 2. Then
E = F[/d] for some d € F.

PROOF. Leta € E, a ¢ F, and let X2 + bX + ¢ be the minimum polynomial of . Then
o = —bEVbi—dc V2b2_4c, and so E = F[vb2 —4c]. =

COROLLARY 3.25 If p is a prime of the form 2% + 1, then cos 27” is constructible.

PROOF. The field Q[e27!/P] is Galois over Q with Galois group G =~ (Z/ pZ)*, which has
order p — 1 = 2K The field Q[cos 27”] is contained in Q[e27!/P], and therefore is Galois of

degree dividing 2k (fundamental theorem and . As Q[cos 27”] is a subfield of R,
we can apply the theorem. O

Thus a regular p-gon, p prime, is constructible if and only if p is a Fermat prime,
i.e., of the form 22" + 1. For example, we have proved that the regular 65537-polygon is
constructible, without (happily) having to exhibit an explicit formula for cos 652%.

REMARK 3.26 The converse to (I)) is false. We’ll show below (#.9) that the Galois group
of the splitting field E over Q of the polynomial f(X) = X*—4X +2 is S4. If the four
roots of f(X) were constructible, then all the elements of £ would be constructible (1.36p).
Let H be a Sylow subgroup of S4. Then £ has odd degree over Q, and so the elements
of EH < Q can’t be constructible. 3

3As Shuichi Otsuka has pointed out to me, it is possible to prove this without appealing to the Sylow
theorems. If a root o of f(X) were constructible, then there would exist a tower of quadratic extensions
Qo] D M D Q. By Galois theory, the groups Gal(E/M) D Gal(E/Q[w]) have orders 12 and 6 respectively.
As Gal(E/Q) = S4, Gal(E /M) would be A4. But A4 has no subgroup of order 6, a contradiction. Thus no
root of f(X) is constructible. (Actually Gal(E/Q[a]) = S3, but that does not matter here.)
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The Galois group of a polynomial

If the polynomial f € F[X] is separable, then its splitting field F's is Galois over F', and
we call Gal(F ¢/ F) the Galois group G ¢ of f.

Let / =[]/—; (X —;) inasplitting field F . We know that the elements of Gal(F s/ F)
map roots of f to roots of f,i.e., they map the set {&1,a,...,a,} into itself. Being au-
tomorphisms, they define permutations of {1, 2,...,0,}, and as the «; generated F £, an
element of Gal(F ¢/ F) is uniquely determined by the permutation it defines. Thus G s can
be identified with a subset of Sym({a1,@z,...,an}) ~ Sy. In fact, G ¢ consists exactly of
the permutations o of {&1,a2,...,®,} such that, for P € F[Xq,..., Xn],

P(ay,...,0n) =0 = P(oay,...,00,) =0.

This gives a description of G s without mentioning fields or abstract groups (neither of
which were available to Galois).
Note that this shows again that (G f: 1), hence [Fy: F], divides deg(f)!.

Solvability of equations

For a polynomial f € F[X], we say that f(X) = 0 is solvable in radicals if its solutions can
be obtained by the algebraic operations of addition, subtraction, multiplication, division,
and the extraction of mth roots, or, more precisely, if there exists a tower of fields

F=FCF  CF,C--CFy

such that
@) F; = Fi—q[o]. o] € Fi—1;
(b) Fj, contains a splitting field for f.

THEOREM 3.27 (GALOIS, 1832) Let F be a field of characteristic zero. The equation
f = 0is solvable in radicals if and only if the Galois group of f is solvable.

We shall prove this later (5.32). Also we shall exhibit polynomials f(X) € Q[X] with
Galois group S, which are therefore not solvable when n > 5 by GT

REMARK 3.28 If F has characteristic p, then the theorem fails for two reasons:

(a) f may not be separable, and so not have a Galois group;
(b) X? — X —a = 0 is not solvable by radicals even though it is separable with abelian
Galois group (cf. Exercise [2-2).

If the definition of solvable is changed to allow extensions of the type in (b) in the chain,
and f is required to be separable, then the theorem becomes true in characteristic p.

Exercises

3-1 (*) Let F be a field of characteristic 0. Show that F(X?)N F(X? — X) = F (inter-
section inside F(X)). [Hint: Find automorphisms ¢ and t of F(X), each of order 2, fixing
F(X?) and F(X?— X) respectively, and show that o't has infinite order.]
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3-2 (*) *Let p be an odd prime, and let ¢ be a primitive pth root of 1 in C. Let E = Q[¢],
and let G = Gal(E/Q); thus G = (Z/(p))*. Let H be the subgroup of index 2 in G. Put

a=Y;cylandB= dieG\H ¢'. Show:
(a) o and B are fixed by H;
(b) ifc €e G\ H,thenca = B, 0 = «.

Thus « and B are roots of the polynomial X2 + X + af8 € Q[X]. Compute o and show
that the fixed field of H is Q[,/p] when p =1 mod 4 and Q[,/=p] when p =3 mod 4.

3-3 (%) Let M = Q[V2, V3] and E = M[y/ (V2 +2)(+/3+3)] (subficlds of ).

(a) Show that M is Galois over Q with Galois group the 4-group C, x C».
(b) Show that E is Galois over Q with Galois group the quaternion group.

4This problem shows that every quadratic extension of Q is contained in a cyclotomic extension of Q. The
Kronecker-Weber theorem says that every abelian extension of Q is contained in a cyclotomic extension.



CHAPTER 4

Computing Galois Groups

In this chapter, we investigate general methods for computing Galois groups.

Whenis G, C A4,?
Consider a polynomial
JX)=X"+ar X"+ tay
and let f(X) = []72;(X —o;) in some splitting field. Set
Af)= [] @-ap). DH=A7= [] (@—-a

1<i<j<n 1<i<j<n

The discriminant of f is defined to be D( f). Note that D( f) is nonzero if and only if f
has only simple roots, i.e., if f" is separable with no multiple factors. Let G s be the Galois
group of f, and identify it with a subgroup of Sym({«1,...,a,}) (as on p.#5). The choice
of a numbering for the roots determines an isomorphism Sym({«y,...,0,}) >~ Sy, and the
subgroup of Sym({«1,...,a,}) corresponding to any normal subgroup of S, is independent
of the choice for n # 6 (because all automorphisms of S, are inner when n # 6, cf. GT

B.4).

PROPOSITION 4.1 Assume f is separable, and leto € G 5.
(@) cA(f) =sign(a)A(f), where sign(o) is the signature of o.
(b) aD(f) = D(f).

PROOF. The first equation follows immediately from the definition of the signature of o
(see GT p. [65)), and the second equation is obtained by squaring the first. O

COROLLARY 4.2 Let f(X) € F[X] be of degree n and have only simple roots. Let F s be
a splitting field for f, so that G y = Gal(Fy /F).

(a) The discriminant D(f) € F.
(b) The subfield of Fy corresponding to A, NG ¢ is F[A( f)]. Hence

GrCAy < A(f)eF <= D(f)isasquareinF.

47
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PROOF. (a) The discriminant of f is an element of F fixed by G ¢ 4 Gal(Fy/F), and
hence lies in F (by the fundamental theorem of Galois theory).

(b) Because f has simple roots, A( f) # 0, and so the formula cA( f) = sign(c)A(f)
shows that an element of G f fixes A(f') if and only if it lies in A,,. Thus, under the Galois
correspondence,

GyrNAy < FIA(f)]

Hence,
GfﬂAnsz@F[A(f)]zF. O

The discriminant of f can be expressed as a universal polynomial in the coefficients of
f . For example:

D(aX?+bX +c¢) = (b*—4ac)/a?
D(X3 +bX +c) = —4b3—27¢2.

By completing the cube, one can put any cubic polynomial in this form (in characteristic
# 3).

The formulas for the discriminant rapidly become very complicated, for example, that
for X> +aX*+bX3+cX?+dX + e has 59 terms. Fortunately, PARI knows them. For
example, typing poldisc (X~ 3+a*X"2+b*X+c,X) returns the discriminant of X3 +aX? +
bX + ¢, namely,

—4ca® +b%a® + 18cha + (—4b> —27¢2?).

REMARK 4.3 Suppose F C R. Then D( f) will not be a square if it is negative. It is known
that the sign of D( f) is (—1)% where 2s is the number of nonreal roots of f in C (see ANT
2.39). Thus if s is odd, then G ¢ is not contained in A, . This can be proved more directly by
noting that complex conjugation acts on the roots as the product of s disjoint transpositions.

Of course the converse is not true: when s is even, G ¢ is not necessarily contained in
Ap.

When is G ; transitive?

PROPOSITION 4.4 Let f(X) € F[X] have only simple roots. Then f(X) is irreducible if
and only if G y permutes the roots of f transitively.

PROOF. = : If « and B are two roots of f(X) in a splitting field F ¢ for f, then they
both have f(X) as their minimum polynomial, and so F[«] and F[B] are both stem fields
for f. Hence, there is an F-isomorphism

Fla] >~ F[B], a < B.

Write Fy = Flay,az,...] with oy = o and a2, a3, ... the other roots of f(X). Then the F-
homomorphism & — B: F[a] — Fy extends (step by step) to an F-homomorphism Fz —
Fy (use ), which is an F-isomorphism sending o to 5.
<= :Let g(X) € F[X] be an irreducible factor of f, and let & be one of its roots. If 8
is a second root of f, then (by assumption) 8 = o« for some o € G r. Now, because g has
coefficients in F,
gloa) =og(a) =0,
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and so f is also a root of g. Therefore, every root of f is also a root of g, and so f(X) =
g(X). a

Note that when f(X) is irreducible of degree n, n|(G f: 1) because [F[a]: F] = n and
[Fla]: F] divides [Fs: F] = (G :1). Thus G ¢ is a transitive subgroup of S, whose order
is divisible by n.

Polynomials of degree at most three

EXAMPLE 4.5 Let f(X) € F[X]be a polynomial of degree 2. Then f is inseparable <=
F has characteristic 2 and f(X) = X2 —a for some a € F ~ F2. If f is separable, then
Gy = 1(= A3) or S; according as D(f') is a square in F' or not.

EXAMPLE 4.6 Let f(X) € F[X] be a polynomial of degree 3. We can assume f to be
irreducible, for otherwise we are essentially back in the previous case. Then f is insepara-
ble if and only if F has characteristic 3 and f(X) = X3 —a forsomea € F\ F3. If f is
separable, then G f is a transitive subgroup of S3 whose order is divisible by 3. There are
only two possibilities: G 5 = A3 or S3 according as D( f) is a square in F' or not. Note
that A3 is generated by the cycle (123).

For example, X3 —3X 41 € Q[X] is irreducible (see, its discriminant is —4(—3)3 —
27 = 81 = 92, and so its Galois group is A43.

On the other hand, X3 43X 4 1 € Q[X] is also irreducible (apply , but its dis-
criminant is —135 which is not a square in Q, and so its Galois group is S3.

Quartic polynomials

Let f(X) be a quartic polynomial without multiple roots. In order to determine G s we
shall exploit the fact that S4 has

V ={1,(12)(34), (13)(24), (14)(23)}

as a normal subgroup — it is normal because it contains all elements of type 2 + 2 (GT
. Let E be a splitting field of f, and let f(X) =[](X — ;) in E. We identify
the Galois group G y of f with a subgroup of the symmetric group Sym({or1, a2, @3,04}).
Consider the partially symmetric elements

o =010 + 0304
B =103 +oz04

Y = 010q + 0203,
They are distinct because the «; are distinct; for example,
a—B =ai(ox—a3) +as(az —az) = (1 —ag) (02 —a3).

The group Sym({a1, 0, 03,04}) permutes {«, B,y } transitively. The stabilizer of each of
a, B,y must therefore be a subgroup of index 3 in Sy, and hence has order 8. For example,
the stabilizer of 8 is ((1234), (13)). Groups of order 8 in S4 are Sylow 2-subgroups. There
are three of them, all isomorphic to D4. By the Sylow theorems, V' is contained in a Sylow
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2-subgroup; in fact, because the Sylow 2-subgroups are conjugate and V' is normal, it is
contained in all three. It follows that V' is the intersection of the three Sylow 2-subgroups.
Each Sylow 2-subgroup fixes exactly one of «, B, or y, and therefore their intersection V is
the subgroup of Sym({o1, o2, 3,04}) fixing «, B, and y.

LEMMA 4.7 The fixed field of Gy NV is Fla,B,y]. Hence

Fla,B.y] is Galois over F with Galois group G ¢ /Gy NV E

PROOF. The above discussion shows that the subgroup of G s of ‘ GrOv

elements fixing Fla, B,y]is Gy NV, and so ECG" = Fla,B.y] Fla,B.y]
by the fundamental theorem of Galois theory. The remaining state-
ments follow from the fundamental theorem using that V' is nor-
mal. O F

‘Gf/GfﬂV

Let M = Fla,B,y],and let g(X) = (X —a)(X —B)(X —y) € M[X] —itis called the
resolvent cubic of f. Any permutation of the o; (a fortiori, any element of G y) merely
permutes «, 8,y, and so fixes g(X). Therefore (by the fundamental theorem) g(X) has
coefficients in F'. More explicitly, we have:

LEMMA 4.8 The resolvent cubic of f = X*+bX3+cX?2+dX +eis
g=X3—cX?+ (bd —4e)X —b%e+4ce—d>.

The discriminants of f and g are equal.

PROOF. (SKETCH) Expand f = (X —a1)(X —a2)(X —a3)(X —ay) to express b,c,d,e

in terms of a1, 02, x3,4. Expand g = (X —a)(X — B)(X —y) to express the coefficients
of g in terms of a1, 2, o3, 24, and substitute to express them in terms of b,c,d, e. o

Now let f be an irreducible separable quartic. Then G = G ¢ is a transitive subgroup
of S4 whose order is divisible by 4. There are the following possibilities for G:

G | GnV:1) | (G:VNG)

S4 4 6

A4 4 3 (GNV:1)=[E:M]
v 4 1 (G:VNG)=[M:F]
Dy 4 2

Cs 2 2

The groups of type D4 are the Sylow 2-subgroups discussed above, and the groups of type
C4 are those generated by cycles of length 4.

We can compute (G: V' N G) from the resolvent cubic g, because G/ V NG = Gal(M/ F)
and M is the splitting field of g. Once we know (G:V N G), we can deduce G except in the
case thatitis 2. If [M: F] =2,then GNV =V or C,. Only the first group acts transitively
on the roots of f, and so (from[4.4) we see that in this case G = D4 or C4 according as f
is irreducible or not in M [X].
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EXAMPLE 4.9 Consider f(X) = X*—4X +2 € Q[X]. It is irreducible by Eisenstein’s
criterion (1.16), and its resolvent cubic is g(X) = X3 —8X + 16, which is irreducible
because it has no roots in [F5. The discriminant of g(X) is —4864, which is not a square,
and so the Galois group of g(X) is S3. From the table, we see that the Galois group of

£(X)is Sa.

EXAMPLE 4.10 Consider f(X) = X*+4X? +2 € Q[X]. Itis irreducible by Eisenstein’s
criterion , and its resolvent cubic is (X —4)(X2 —8); thus M = Q[+/2]. From the
table we see that Gy is of type D4 or Cy, but f factors over M (even as a polynomial in
X2), and hence G s is of type Cs.

EXAMPLE 4.11 Consider f(X) = X*—10X? 44 € Q[X]. It is irreducible in Q[X] be-
cause (by inspection) it is irreducible in Z[X]. Its resolvent cubic is (X + 10)(X +4)(X —
4), and so Gy is of type V.

EXAMPLE 4.12 Consider f(X) = X*—2 € Q[X]. It is irreducible by Eisenstein’s crite-
rion , and its resolvent cubic is g(X) = X3+ 8X. Hence M = Q[i+/2]. One can
check that f is irreducible over M, and G # is of type Dy.

Alternatively, analyse the equation as in (3.22).

As we explained in (1.29), PARI knows how to factor polynomials with coefficients in
Qla].

EXAMPLE 4.13 (From the web, sci.math.research, search for “final analysis”.) Consider
f(X)=X*-2¢X3—dX?+2cdX —dc? € Z[X] witha >0, b >0, ¢ >0, a > b and
d =a?>—b? Letr =d/c? and let w be the unique positive real number such that r =
w3 /(w? 4+ 4). Let m be the number of roots of f(X) in Z (counted with multiplicities).
The Galois group of f is as follows:

If m = 0 and w not rational, then G is Sy.

If m = 1 and w not rational then G is S3.

If w is rational and w? + 4 is not a square then G = D4.

If w is rational and w2 + 4 is a square then G =V = C, x C».

S OO0

This covers all possible cases. The hard part was to establish that m = 2 could never happen.

Examples of polynomials with S, as Galois group over Q

The next lemma gives a criterion for a subgroup of S, to be the whole of S).

LEMMA 4.14 For p prime, the symmetric group S, is generated by any transposition and
any p-cycle.

PROOF. After renumbering, we may assume that the transposition is T = (12), and we may
write the p-cycle o so that 1 occurs in the first position, 0 = (1i2--+i,). Now some power
of o will map 1 to 2 and will still be a p-cycle (here is where we use that p is prime). After
replacing o with the power, we have 0 = (123 ... jp), and after renumbering again, we
have 0 = (123... p). Now

(ii+1)=0'(12)07"
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(see GT and so lies in the subgroup generated by o and r. These transpositions
generate S . o

PROPOSITION 4.15 Let f be an irreducible polynomial of prime degree p in Q[X]. If f
splits in C and has exactly two nonreal roots, then G y = Sp.

PROOF. Let E be the splitting field of f in C, and let « € E be a root of f. Because f is
irreducible, [Q[a]: Q] = deg f = p, and so p|[E:Q] = (G f:1). Therefore G ¢ contains an
element of order p (Cauchy’s theorem, GT [4.13), but the only elements of order p in S,
are p-cycles (here we use that p is prime again).

Let o be complex conjugation on C. Then o transposes the two nonreal roots of f(X)
and fixes the rest. Therefore G s C S and contains a transposition and a p-cycle, and so is
the whole of §). o

It remains to construct polynomials satisfying the conditions of the Proposition.

EXAMPLE 4.16 Let p> 5 be a prime number. Choose a positive even integer m and even
integers
nyp<ng<--<np-a,

and let
g(X) = (X>+m)(X =n1)..(X —np_s).

The graph of g crosses the x-axis exactly at the points n1,...,n,—2, and it doesn’t have a

local maximum or minimum at any of those points (because the n; are simple roots). Thus

e = ming/(y)=o |g(x)| > 0, and we can choose an odd positive integer n such that % <e.
Consider

0 =g(x0)~ 2.

2 . .
As £ < e, the graph of f also crosses the x-axis at exaf:tly p — 2 points, and so f has
exactly two nonreal roots. On the other hand, when we write

nf(X)=nX?+a1 XP~' - +a,,

the a; are all even and a,, is not divisible by 22, and so Eisenstein’s criterion implies that
f is irreducible. Over R, f has p — 2 linear factors and one quadratic factor, and so it
certainly splits over C (high school algebra). Therefore, the proposition applies to f.!

EXAMPLE 4.17 The reader shouldn’t think that, in order to have Galois group S, a poly-
nomial must have exactly two nonreal roots. For example, the polynomial X> —5X3 +
4X — 1 has Galois group S5 but all of its roots are real.

U1f m is taken sufficiently large, then g(X) —2 will have exactly two nonreal roots, i.e., we can take n = 1,
but the proof is longer (see Jacobson 1964, p107, who credits the example to Brauer). The shorter argument in
the text was suggested to me by Martin Ward.
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Finite fields

LetF, = Z/ pZ, the field of p elements. As we noted in §1, any other field E of character-
istic p contains a copy of F,, namely, {ml1g | m € Z}. No harm results if we identify I,
with this subfield of E.

Let E be a field of degree n over F,,. Then E has ¢ = p” elements, and so E* is
a group of order ¢ — 1. Hence the nonzero elements of E are roots of X9~! —1, and all
elements of E (including 0) are roots of X4 — X. Hence E is a splitting field for X7 — X,
and so any two fields with ¢ elements are isomorphic.

PROPOSITION 4.18 Every extension of finite fields is simple.

PROOF. Consider E D F. Then E* is a finite subgroup of the multiplicative group of a
field, and hence is cyclic (see Exercise [1-3). If ¢ generates E* as a multiplicative group,
then certainly £ = F[{]. a)

Now let E be the splitting field of f(X) = X9 — X, g = p". The derivative f/(X) =
—1, which is relatively prime to f(X) (in fact, to every polynomial), and so f(X) has
q distinct roots in E. Let S be the set of its roots. Then S is obviously closed under
multiplication and the formation of inverses, but it is also closed under subtraction: if a? =
a and b9 = b, then

(a—b)! =a?—b%=a—b.

Hence S is a field, and so S = E. In particular, E has p” elements.

PROPOSITION 4.19 For each power ¢ = p" there is a field F; with g elements. It is
the splitting field of X4 — X, and hence any two such fields are isomorphic. Moreover,
F, is Galois over IF ), with cyclic Galois group generated by the Frobenius automorphism
o(a) =aP.

PROOF. Only the final statement remains to be proved. The field I, is Galois over [,

because it is the splitting field of a separable polynomial. We noted in that x 5> x? is
an automorphism of F;. An element a of F, is fixed by o if and only if a? = a, but F),
consists exactly of such elements, and so the fixed field of (o) is IF,. This proves that [y, is
Galois over F, and that (o) = Gal(F, /F ) (see[3.11p). O

COROLLARY 4.20 Let E be a field with p™ elements. For each divisorm ofn, m >0, E
contains exactly one field with p™ elements.

PROOF. We know that E is Galois over I, and that Gal(E/FF ) is the cyclic group of order
n generated by . The group (o) has one subgroup of order n/m for each m dividing n,
namely, (0”"), and so E has exactly one subfield of degree m over IF), for each m dividing
n, namely, £ {@™). Because it has degree m over I, E (@) has p™ elements. O

COROLLARY 4.21 Each monic irreducible polynomial f of degree d|n in F,[X] occurs
exactly once as a factor of X P" _ X ; hence, the degree of the splitting field of f is <d.
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PROOF. First, the factors of X P" _ X are distinct because it has no common factor with
its derivative. If f(X) is irreducible of degree d, then f(X) has a root in a field of degree
d over F,. But the splitting field of X P" _ X contains a copy of every field of degree
d over F, with d|n. Hence some root of X P" _ X is also a root of f(X), and therefore
F(X)|XP" —X. In particular, f divides X ! _x , and therefore it splits in its splitting
field, which has degree d over IF,. o

PROPOSITION 4.22 Let I be an algebraic closure of F,. Then IF contains exactly one field
IFpn for each integern > 1, and IF ,n consists of the roots of X 7 "X, Moreover,

Fpm CFpn < min.

The partially ordered set of finite subfields of ¥ is isomorphic to the set of integers n > 1
partially ordered by divisibility.

PROOF. Obvious from what we have proved. O
PROPOSITION 4.23 The field F;, has an algebraic closure IF.

PROOF. Choose a sequence of integers 1| =n; < ny < nz < --- such that n;|n; 4, for all
i, and every integer n divides some n;. For example, let n; = i!. Define the fields F ,»;
inductively as follows: F,n =Fp; F pri is the splitting field of X " _ X over F pli—1.
Then, Fyni C Fpna CFpnz C -+, and we define F = | JF ;. As a union of a chain of
fields algebraic over [F, it is again a field algebraic over [F,,. Moreover, every polynomial
in F,[X] splits in I, and so it is an algebraic closure of I (by . O

REMARK 4.24 Since the F,»’s are not subsets of a fixed set, forming the union requires
explanation. Define S to be the disjoint union of the F,n. Fora,b € §,seta ~bifa=0>b
in one of the F ,». Then ~ is an equivalence relation, and we let F = §/ ~.

PARI factors polynomials modulo p very quickly. Recall that the syntax is
factormod (£ (X),p). For example, to obtain a list of all monic polynomials of degree
1,2, or 4 over Fs, ask PARI to factor X °2° — X modulo 5 (note that 625 = 5%).

ASIDE 4.25 In one of the few papers published during his lifetime, Galois defined finite fields of
arbitrary prime power order and established their basic properties, for example, the existence of a
primitive element (Notices AMS, Feb. 2003, p. 198). For this reason finite fields are often called
Galois fields and T is often denoted GF(g).

Computing Galois groups over ()

In the remainder of this chapter, I sketch a practical method for computing Galois groups
over Q and similar fields. Recall that for a separable polynomial f € F[X], F s denotes a
splitting field for F, and G r = Gal(F s/ F) denotes the Galois group of F'. Moreover, G ¢
permutes the roots aq,a2,... of f in Fy:

G C Sym{aq,az,...}.

The first result generalizes Proposition 4.4
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PROPOSITION 4.26 Let f(X) be a polynomial in F[X] with only simple roots, and sup-
pose that the orbits of G ¢ acting on the roots of f have my,...,m, elements respectively.
Then f factors as f = fi--- fr with f; irreducible of degree m; .

PROOF. We may assume that f is monic. Let a1,..., o, m = deg f, be the roots of f(X)
in Fz. The monic factors of f(X) in Fz[X] correspond to subsets S of {a1,...,0m},

So fs=]](X-a),

aEeS

and fg is fixed under the action of G s (and hence has coefficients in F) if and only if S
is stable under G r. Therefore the irreducible factors of f in F[X] are the polynomials fs
corresponding to minimal subsets S of {«1, ..., } stable under G £ but these subsets S
are precisely the orbits of G ¢ in {1, ..., 0} o

REMARK 4.27 Note that the proof shows the following: let {&1,...,0,} = | O; be the

decomposition of {a1,..., & into a disjoint union of orbits for the group G r; then
r=[1s fi=]]x-a
o; €0;

is the decomposition of f into a product of irreducible polynomials in F[X].

Now suppose F is finite, with p” elements say. Then G ¢ is a cyclic group generated by
the Frobenius automorphism o: x — x?. When we regard ¢ as a permutation of the roots of
/', then distinct orbits of o correspond to the factors in its cycle decomposition (GT [4.26).
Hence, if the degrees of the distinct irreducible factors of f are my,my,...,m;, then ¢ has
a cycle decomposition of type

my4+---+m, :degf

LEMMA 4.28 Let R be a unique factorization domain with field of fractions F, and let f
be a monic polynomial in R[X]. Let P be a prime ideal in R, and let f be the image of f
in (R/P)[X]. Assume that neither f nor f has a multiple root. Then the roots ay.,. .., cm
of f lie in some finite extension R’ of R, and their reductions &; modulo PR’ are the roots
of f. Moreover Gf- C Gy when both are identified with subgroups of Sym{ay,... 0} =
Sym{a@i,...,0m}.

PROOF. Omitted — see van der Waerden, Modern Algebra, I, §61 (second edition) or ANT
3.41. o

On combining these results, we obtain the following theorem.

THEOREM 4.29 (DEDEKIND) Let f(X) € Z[X] be a monic polynomial of degree m, and
let p be a prime such that f mod p has simple roots (equivalently, D( f) is not divisible by
p). Suppose that f =[] f; with f; irreducible of degree m; in F plX]. Then G ¢ contains
an element whose cycle decomposition is of type

m=miq—+--+mp.
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EXAMPLE 4.30 Consider X° — X — 1. Modulo 2, this factors as (X2 + X + 1)(X3+ X% +
1), and modulo 3 it is irreducible. Hence G  contains (ik)(/mn) and (12345), and so also

((ik)(Imn))3 = (ik). Therefore G y = Ss by (#.14).

LEMMA 4.31 A transitive subgroup of H C S, containing a transposition and an (n —1)-
cycle is equal to S, .

PROOF. After possibly renumbering, we may suppose the (n — 1)-cycle is (123...n—1).
Because of the transitivity, the transposition can be transformed into (in), some 1 <i <n—
1. Conjugating (in) by (123...n—1) and its powers will transform it into (1n), (2n),...,(n—
1n), and these elements obviously generate S;. O

EXAMPLE 4.32 Select monic polynomials of degree n, fi, f2, f3 with coefficients in Z
such that:

(a) fi is irreducible modulo 2;

(b) f> = (degree 1)(irreducible of degree n — 1) mod 3;

(¢) f3 = (irreducible of degree 2)(product of 1 or 2 irreducible polys of odd degree) mod
5.

We also choose f1, f2, f3 to have only simple roots. Take

f=—15f1+10f2 +6f3.

Then

(i) Gy is transitive (it contains an n-cycle because f = f1 mod 2);
(i) Gy contains a cycle of length n —1 (because f = f> mod 3);
(iii) G s contains a transposition (because f = f3 mod 5, and so it contains the prod-
uct of a transposition with a commuting element of odd order; on raising this to an
appropriate odd power, we are left with the transposition). Hence G ¢ is Sp.

The above results give the following strategy for computing the Galois group of an
irreducible polynomial f € Q[X]. Factor f modulo a sequence of primes p not dividing
D( f) to determine the cycle types of the elements in G y — a difficult theorem in number
theory, the effective Chebotarev density theorem, says that if a cycle type occurs in G ¢,
then this will be seen by looking modulo a set of prime numbers of positive density, and
will occur for a prime less than some bound. Now look up a table of transitive subgroups
of S, with order divisible by n and their cycle types. If this doesn’t suffice to determine the
group, then look at its action on the set of subsets of r roots for some r.

See, Butler and McKay, The transitive groups of degree up to eleven, Comm. Alge-
bra 11 (1983), 863-911. This lists all transitive subgroups of S, n < 11, and gives the
cycle types of their elements and the orbit lengths of the subgroup acting on the r-sets of
roots. With few exceptions, these invariants are sufficient to determine the subgroup up to
isomorphism.

PARI can compute Galois groups for polynomials of degree < 11 over Q. The syntax
is polgalois(£f) where f is an irreducible polynomial of degree < 11 (or < 7 depending
on your setup), and the output is (7, s, k,name) where #n is the order of the group, s is +1
or —1 according as the group is a subgroup of the alternating group or not, and “name” is
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the name of the group. For example, polgalois(X"5-5*%X"3+4*X-1) (see returns
the symmetric group S5, which has order 120, polgalois (X~11-5%X"3+4*X-1) returns
the symmetric group S, which has order 39916800, and

polgalois(X~12-5%X"3+4xX-1) returns an apology. The reader should use PARI to

check the examples [4.9H4.12]

See also, Soicher and McKay, Computing Galois groups over the rationals, J. Number
Theory, 20 (1985) 273-281.

Exercises

4-1 (*) Find the splitting field of X —1 € F,[X].
4-2 (*) Find the Galois group of X* —2X3 —8X —3 over Q.
4-3 (*) Find the degree of the splitting field of X8 —2 over Q.

4-4 (*) Give an example of a field extension E/F of degree 4 such that there does not
exista field M with FC M C E, [M: F] =2.

4-5 List all irreducible polynomials of degree 3 over F7 in 10 seconds or less (there are
112).

4-6 “It is a thought-provoking question that few graduate students would know how to
approach the question of determining the Galois group of, say,

XO0+2X° +3X*+4X3+5X%2+6X +7.

[over Q].

(a) Can you find it?
(b) Can you find it without using the “polgalois” command in PARI?

4-7 (*) Let f(X)=X>4+aX +b,a,b € Q. Show that G 5 ~ Ds (dihedral group) if and
only if

(a) f(X) is irreducible in Q[X], and

(b) the discriminant D( f) = 4*a® + 5°b* of f(X) is a square, and
(c) the equation f(X) = 0 is solvable by radicals.

4-8 Show that a polynomial f of degree n = ]—[f;l pl.r ! is irreducible over Fy if and only
if gcd(f(x),an/p[ —x)=1foralli.

4-9 Let f(X) be an irreducible polynomial in Q[X] with both real and nonreal roots.
Show that its Galois group is nonabelian. Can the condition that f is irreducible be
dropped?






CHAPTER 5

Applications of Galois Theory

In this chapter, we apply the fundamental theorem of Galois theory to obtain other results
about polynomials and extensions of fields.

Primitive element theorem.

Recall that a finite extension of fields £/ F is simple if £ = F[a] for some element o of
E. Such an « is called a primitive element of E. We shall show that (at least) all separable

extensions have primitive elements.
Consider for example Q[+/2, +/3]/Q. We know (see Exercise that its Galois group
over Q is a 4-group (o, t), where

o2 = =2 W2 = V2
ov3 = 3 W3 = —J/3°
Note that
o(V2+3) = —V2+43,
t(W24+V3) = V2-43,
(0T)(V2+V3) = —V2-43.

These all differ from +/2 + +/3, and so only the identity element of Gal(Q[+/2, v/3]/Q)
fixes the elements of Q[+/2 + +/3]. According to the fundamental theorem, this implies that
V2 + +/3 is a primitive element:

Q[v2,+/3] = Q[V2 + V3.

It is clear that this argument should work much more generally.
Recall that an element « algebraic over a field F is separable over F if its minimum
polynomial over F' has no multiple roots.

THEOREM 5.1 Let E = F[ay,...,ar] be a finite extension of F, and assume that a3, ...,o;

are separable over F (but not necessarily «y). Then there is an element y € E such that
E = Fly].

PROOF. For finite fields, we proved this in (4.18)). Hence we may assume F' to be infinite.
It suffices to prove the statement for r = 2, for then

Flay,a2,...,0r] = Fla),a3,...,0;] = Flo] ,a4,...,0;] = .

59



60 5. APPLICATIONS OF GALOIS THEORY

Thus let £ = F|«, §] with B separable over F. Let f and g be the minimum polynomials
of o and B over F. Let a1 = «,...,us be the roots of f in some big field containing E,
and let 1 = B, B2,..., Bs be the roots of g. For j # 1, B; # B1, and so the the equation

o +XB; =a1 + XB1,

has exactly one solution, namely, X = %. If we choose a ¢ € F different from any of
J
these solutions (using that F is infinite), then

o +cBj #a+cPunlessi =1=j.

Let y = « + ¢f. Then the polynomials g(X) and f(y —c X) have coefficients in F[y],
and have S as a root:

gB)=0, fly—cB)=f(a)=0.

In fact, B is their only common root, because we chose ¢ so that y —cB; # «; unless
i = 1= j. Therefore
ged(g(X), f(y —cX)) =X —B.

Here we have computed the gcd in some field splitting fg, but we have seen (Proposition
that the gcd of two polynomials has coefficients in the same field as the coefficients
of the polynomials. Hence B € F[y], and this implies that « = y —¢f also lies in F[y]. We
have shown that F o, 8] = F[y]. o

REMARK 5.2 When F is infinite, the proof shows that y can be chosen to be of the form
y=a1+62a2+"'+crar, C,EF

If E is Galois over F, then an element of this form will be a primitive element provided
it is moved by every element of Gal(E/F) except 1. These remarks make it very easy to
write down primitive elements.

Our hypotheses are minimal: if two of the as are not separable, then the extension need
not be simple. Before giving an example to illustrate this, we need another result.

PROPOSITION 5.3 Let E = F|[y] be a simple algebraic extension of F. Then there are
only finitely many intermediate fields M,

FCMCE.

PROOF. Let M be such a field, and let g(X) be the minimum polynomial of y over M. Let
M’ be the subfield of E generated over F by the coefficients of g(X). Clearly M’ C M,
but (equally clearly) g(X) is the minimum polynomial of y over M’. Hence

[E:M'] =degg = [E: M],

and so M = M’ — M is generated by the coefficients of g(X).

Let f(X) be the minimum polynomial of y over F. Then g(X) divides f(X) in M [X],
and hence also in E[X]. Therefore, there are only finitely many possible g’s, and conse-
quently only finitely many possible M ’s. O
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REMARK 5.4 (a) Note that the proof in fact gives a description of all the intermediate
fields: each is generated over F by the coefficients of a factor g(X) of f(X) in E[X]. The
coefficients of such a g(X) are partially symmetric polynomials in the roots of f(X) (that
is, fixed by some, but not necessarily all, of the permutations of the roots).

(b) The proposition has a converse: if E is a finite extension of F and there are only
finitely many intermediate fields M, FF C M C E, then E is a simple extension of F
(see Dummit and Foote 1991, p508). This gives another proof of Theorem [5.1]in the case
that E is separable over F', because Galois theory shows that there are only finitely many
intermediate fields in this case (the Galois closure of E over F' has only finitely many
intermediate fields).

EXAMPLE 5.5 The simplest nonsimple algebraic extensionis k(X,Y) D k(X?,Y?), where
k is an algebraically closed field of characteristic p. Let F = k(XP?,Y?). For any ¢ € k,
we have

k(X,Y)=F[X, Y] DF[X+cY]DF

with the degree of each extension equal to p. If
FIX+cY]=F[X+cY], c#/c,

then F[X + cY] would contain both X and Y, which is impossible because [k(X,Y): F] =
p?. Hence there are infinitely many distinct intermediate fields.'

Fundamental Theorem of Algebra

We finally prove the misnamed” fundamental theorem of algebra.

THEOREM 5.6 The field C of complex numbers is algebraically closed.

PROOF. Define C to be the splitting field of X2 + 1 € R[X], and let i be a root of X2 + 1
in C; thus C = R[i]. We have to show (see|1.44) that every f(X) € R[X] has aroot in C.
The two facts we need to assume about R are:

¢ Positive real numbers have square roots.
¢ Every polynomial of odd degree with real coefficients has a real root.

Both are immediate consequences of the Intermediate Value Theorem, which says that a
continuous function on a closed interval takes every value between its maximum and mini-
mum values (inclusive). (Intuitively, this says that, unlike the rationals, the real line has no
“holes”.)

1Zariski showed that there is even an intermediate field M that is not isomorphic to F(X,Y), and Piotr
Blass showed in his thesis (University of Michigan 1977), using the methods of algebraic geometry, that there
is an infinite sequence of intermediate fields, no two of which are isomorphic.

2Because it is not strictly a theorem in algebra: it is a statement about R whose construction is part of
analysis (or maybe topology). In fact, I prefer the proof based on Liouville’s theorem in complex analysis to
the more algebraic proof given in the text: if f(z) is a polynomial without a root in C, then f(z)~! will be
bounded and holomorphic on the whole complex plane, and hence (by Liouville) constant. The Fundamental
Theorem was quite a difficult theorem to prove. Gauss gave a proof in his doctoral dissertation in 1798 in
which he used some geometric arguments which he didn’t justify. He gave the first rigorous proof in 1816.
The elegant argument given here is a simplification by Emil Artin of earlier proofs (see Artin, E., Algebraische
Konstruction reeller Korper, Hamb. Abh., Bd. 5 (1926), 85-90; translation available in Artin, Emil. Exposition
by Emil Artin: a selection. AMS; LMS 2007).
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We first show that every element of C has a square root. Write « = a + bi, witha,b € R,
and choose ¢, d to be real numbers such that

2 (a + va?+b?) _ (—a++a?+b?)
= = .

2

d2

Then ¢? —d? = a and (2cd)? = b?. If we choose the signs of ¢ and d so that cd has the
same sign as b, then (¢ +di)?> = « and so ¢ + di is a square root of «.

Let £(X) € R[X], and let E be a splitting field for f(X)(X? + 1) — we have to show
that £ = C. Since R has characteristic zero, the polynomial is separable, and so E is Galois
over R. Let G be its Galois group, and let H be a Sylow 2-subgroup of G.

Let M = EH_ Then M is of odd degree over R, and M = R[] some « (Theorem .
The minimum polynomial of o over R has odd degree and so has a root in R. It therefore
has degree 1,andso M =Rand G = H.

We now know that Gal(E/C) is a 2-group. If it is # 1, then it has a subgroup N of
index 2 (GT . The field EV has degree 2 over C, and can therefore be obtained by
extracting the square root of an element of C (see [3.24), but we have seen that all such
elements already lie in C. Hence E N — C, which is a contradiction. Thus £ = C. O

COROLLARY 5.7 (a) The field C is the algebraic closure of R.
(b) The set of all algebraic numbers is an algebraic closure of Q.

PROOF. Part (a) is obvious from the definition of “algebraic closure” (I.43), and (b) follows

from Corollary o

Cyclotomic extensions

A primitive nth root of 1 in F is an element of order n in F*. Such an element can exist
only if F has characteristic 0 or characteristic p not dividing 7.

PROPOSITION 5.8 Let F be a field of characteristic O or characteristic p not dividing n.
Let E be the splitting field of X" — 1.

(a) There exists a primitive nthroot of 1 in E.

(b) If¢ is a primitive nth root of 1 in E, then E = F[{].

(c) The field E is Galois over F ; for eacho € Gal(E/F), there is ani € (Z/nZ)* such
that o¢ = ¢! for all £ with ¢ = 1; the map o > [i] is an injective homomorphism

Gal(E/F) — (Z/nZ)*.

PROOF. (a) The roots of X" — 1 are distinct, because its derivative nX"~! has only zero
as a root (here we use the condition on the characteristic), and so E contains n distinct nth
roots of 1. The nth roots of 1 form a finite subgroup of E*, and so (see Exercise 3) they
form a cyclic group. Any generator will have order n, and hence will be a primitive nth root
of 1.

(b) The roots of X" — 1 are the powers of , and F[{] contains them all.

(c) If o is one primitive nth root of 1, then the remaining primitive nth roots of 1 are
the elements é‘é with i relatively prime to n. Since, for any automorphism o of E, o (g is
again a primitive nth root of 1, it equals {6 for some i relatively prime to n, and the map
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o i mod n is injective because (o generates E over F. It obviously is a homomorphism.
Moreover, for any other nth root of 1, ¢ = ",

ol =(cl)" =" =10 o

The map o +> [i]:Gal(F[¢]/F) — (Z/nZ)* need not be surjective. For example, if
F = C, then its image is {1}, and if F = R, it is either {[1]} or {[—1],[1]}. On the other
hand, when n = p is prime, we saw in that [Q[¢]: Q] = p—1, and so the map is
surjective. We now prove that the map is surjective for all # when F = Q.

The polynomial X" — 1 has some obvious factors in Q[X], namely, the polynomials
X2 —1 for any d |n. The quotient of X” — 1 by all these factors for d < n is called the nth
cyclotomic polynomial ®,. Thus

&, = l_[(X -0 (product over the primitive nth roots of 1).

It has degree ¢(n), the order of (Z/nZ)*. Since every nth root of 1 is a primitive d th root
of 1 for exactly one d dividing n, we see that

X" —1=]]osX).
din

For example, @1 (X) =X —1, ®2(X) = X + 1, P3(X) = X?+ X + 1, and

X°—1

_v2__
DX +nX21x 4~ ~4*h

De(X) =

This gives an easy inductive method of computing the cyclotomic polynomials. Alterna-
tively ask PARI by typing polcyclo(n,X).

Because X" — 1 has coefficients in Z and is monic, every monic factor of it in Q[ X] has
coefficients in Z (see[I.14). In particular, the cyclotomic polynomials lie in Z[X].

LEMMA 5.9 Let F be a field of characteristic 0 or p not dividing n, and let { be a primitive
nth root of 1 in some extension field. The following are equivalent:

(a) the nth cyclotomic polynomial @, is irreducible;
(b) the degree [F[C]: F] = ¢(n);
(c) the homomorphism
Gal(F[¢]/F) — (Z/nZ)*

is an isomorphism.
PROOF. Because ¢ is a root of @,,, the minimum polynomial of ¢ divides @,. It is equal to
itif and only if [F[{]: F] = ¢(n), which is true if and only if the injection Gal(F [{]/ F) —
(Z/nZ)* is onto. o

THEOREM 5.10 The nth cyclotomic polynomial @y, is irreducible in Q[ X].
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PROOF. Let f(X) be a monic irreducible factor of @, in Q[X]. Its roots will be primitive
nth roots of 1, and we have to show they include all primitive nth roots of 1. For this it
suffices to show that

Carootof f(X) = Zi aroot of f(X) for all i such that ged(i,n) = 1.
Such an i is a product of primes not dividing 7, and so it suffices to show that
Carootof f(X) = ¢P arootof f(X) for all primes p {n.

Write
Pn(X) = f(X)g(X).
Proposition shows that f(X) and g(X) lie in Z[X]. Suppose ¢ is a root of f but
that, for some prime p not dividing n, {? is not a root of f. Then ¢? is a root of g(X),
g(¢P) =0, and so ¢ is a root of g(X?). As f(X) and g(X?) have a common root, they
have a nontrivial common factor in Q[X] (2.10), which automatically lies in Z[X] (1.14).
Write h(X) — h(X) for the map Z[X] > F,[X], and note that

gedyx (f(X), g(XP)) # 1 = gedy 1x)(f(X),8(XP)) # 1.

But g(X?) = g(X)? (use the mod p binomial theorem and that a? = a for all a € ),
and so f_ (X) and g(X) have a common factor. Hence X” — 1, when regarded as an element
of IF,[X], has multiple roots, but we saw in the proof of Proposition that it doesn’t.
Contradiction. o

REMARK 5.11 This proof is very old — in essence it goes back to Dedekind in 1857 —
but its general scheme has recently become popular: take a statement in characteristic zero,
reduce modulo p (where the statement may no longer be true), and exploit the existence
of the Frobenius automorphism a + a” to obtain a proof of the original statement. For
example, commutative algebraists use this method to prove results about commutative rings,
and there are theorems about complex manifolds that were first proved by reducing things
to characteristic p.

There are some beautiful and mysterious relations between what happens in character-
istic 0 and in characteristic p. For example, let f(X1,..., X,) € Z[X1, ..., Xn]. We can

(a) look at the solutions of f = 0 in C, and so get a topological space;
(b) reduce mod p, and look at the solutions of f = 0in Fn.

The Weil conjectures (Weil 1949; proved in part by Grothendieck in the 1960’s and com-
pletely by Deligne in 1973) assert that the Betti numbers of the space in (a) control the
cardinalities of the sets in (b).

THEOREM 5.12 The regular n-gon is constructible if and only if n = 2K py--- ps where the
p; are distinct Fermat primes.

PROOF. The regular n-gon is constructible if and only if cos%” (or ¢ = 271/ is con-
structible. We know that Q[¢] is Galois over Q, and so (according to and [3.23)) ¢ is
constructible if and only if [Q[¢]: Q] is a power of 2. But (see GT[3.5)

em)=[[(p—0p" @1 n=]]p"?.
pln

and this is a power of 2 if and only if n has the required form. O
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REMARK 5.13 (a) As mentioned earlier, the Fermat primes are those of the form 22" +1.
It is known that these numbers are prime when k = 0, 1,2, 3,4, but it is not known whether
or not there are more Fermat primes. Thus the problem of listing the n for which the regular
n-gon is constructible is not yet solved.

(b) The final section of Gauss’s, Disquisitiones Arithmeticae (1801) is titled “Equations
defining sections of a Circle”. In it Gauss proves that the nth roots of 1 form a cyclic group,
that X" — 1 is solvable (this was before the theory of abelian groups had been developed,
and before Galois), and that the regular n-gon is constructible when 7 is as in the Theorem.
He also claimed to have proved the converse statement. This leads some people to credit
him with the above proof of the irreducibility of &,,, but in the absence of further evidence,
I’'m sticking with Dedekind.

Dedekind’s theorem on the independence of characters

THEOREM 5.14 (DEDEKIND’S) Let F be a field, and let G be a group (monoid will do).
Then any finite set {)1,..., xm} of homomorphisms G — F* is linearly independent over
F,ie.,

Zai)(,- =0 (as a functionG —- F) =— a1 =0,...,a, =0.

PROOF. Induction on m. For m = 1, it’s obvious. Assume it for m — 1, and suppose that,
for some set {y1,..., xm} of homomorphisms G — F* and a; € F,

ary1(x)+axy2(x)+---+amym(x) =0 forall x € G.

We have to show that the a; are zero. As y; and y» are distinct, they will take distinct
values on some g € G. On replacing x with gx in the equation, we find that

arx1(@)x1(x) +azx2(8) x2(x) +-+amxm(g) ym(x) =0 forall x € G.

On multiplying the first equation by y;(g) and subtracting it from the second, we obtain
the equation

arfat+tamm =0, ai =ai(xi(g)— x1(2))-
The induction hypothesis now shows that a; = 0 for all i > 2. Since x2(g) — x1(g) #0, we
must have a, = 0, and the induction hypothesis shows that all the remaining a;’s are also
Zero. o

COROLLARY 5.15 Let Fy and F> be fields, and let 01, ...,04, be distinct homomorphisms
Fy — F,. Then oy,...,0, are linearly independent over F5.

PROOF. Apply the theorem to y; = o;| F;*. o

COROLLARY 5.16 Let E be a finite separable extension of F' of degree m. Let oy, ... 0y,
be a basis for E over F, and let 01,...,04 be distinct F-homomorphisms from E into a
field §2. Then the matrix whose (i, j )th-entry is o;«; is invertible.

PROOF. If not, there exist ¢; € §2 such that Z;”Zl cioi(aj)=0forall j. But Z;":l cioi  E—
£2 is F-linear, and so this implies that er'n=1 cioij(a) = 0 for all @ € E, which contradicts
Corollary[5.15] o
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The normal basis theorem

DEFINITION 5.17 Let E be a finite Galois extension of F' with Galois group G. A normal
basis for E is an F-basis of the form {o« | 0 € G}, i.e., an F-basis consisting of the
conjugates of an element « of E.

THEOREM 5.18 (NORMAL BASIS THEOREM) Every Galois extension has a normal basis.

PROOF. Let E/F be a Galois extension with Galois group G. We give two proofs, the
first of which assumes that F is infinite and the second that G is cyclic. Since every Galois
extension of a finite field is cyclic (4.19), this covers all cases.’

Assume that F is infinite. This has the consequence that, if f € F[X1,..., X;] has the
property that f(ai,...,am) =0forallay,...,am, € F, then f(X1,...,X;n) = 0. We prove
this by induction on m. For m = 1 it follows from the fact that a nonzero polynomial in one
symbol has only finitely many roots. For m > 1, write

f=> ciXi.... Xm D)X},

For any m — 1-tuple, ay,...,am—1,

f(a17'~~aam—laXm)

is a polynomial in X, having every element of F as a root. Therefore, each of its coeffi-

cients is zero: ¢;(ai,...,am—1) = 0 for all i. Since this holds for all (ay,...,am—1), the
induction hypothesis shows that ¢; (X1,..., X;u—1) is zero.
Now number the elements of G as 01,...,0, (With o1 = 1).

Let f(X1,...,Xm) € F[X1,..., Xim] have the property that

flora,...,oma) =0

for all « € E. For a basis «1,..., 0, of E over F, let

g(Y1,....Ym) = fOQ L Yiowe, Y i Yioaa, ...

The hypothesis on f implies that g(ay,...,a,) =0 for all a; € F, and so g = 0. But the
matrix (o; ) is invertible . Since g is obtained from f by an invertible linear change
of variables, f can be obtained from g by the inverse linear change of variables. Therefore
it also is zero.

Write X; = X(0;), and let A = (X(0;0})), i.e., A is the m x m matrix having X in
the (i, j)th place if 0;0; = ok. Then det(A4) is a polynomial in X7, ..., Xy, say, det(4) =
h(X1,...,Xm). Clearly, h(1,0,...,0) is the determinant of a matrix having exactly one 1
in each row and each column and its remaining entries 0. Hence the rows of the matrix are
a permutation of the rows of the identity matrix, and so its determinant is 1. In particular,
h is not identically zero, and so there exists an « € E* such that h(o1a,...,0n0) (=
det(o;0a)) is nonzero. We shall show that {o;«} is a normal basis. For this, it suffices to
show that o; ¢ are linearly independent over F'. Suppose

Zm 0
ajo;jo =
j=1 7"/

3For two proofs that work equally well for finite and infinite fields, together with an outline of the history
of the theorem, see Blessenohl, Dieter. On the normal basis theorem. Note Mat. 27 (2007), 5-10.
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for some a; € F. On applying 071,...,0s, successively, we obtain a system of m-equations

E ajoiojo =0

in the m “unknowns” a ;. Because this system of equations is nonsingular, the a ;’s are zero.
This completes the proof of the lemma in the case that F is infinite.

Now assume that G is cyclic generated, say, by an element g of order n. Then [E: F] =
n. The minimum polynomial of g regarded as an endomorphism of the F'-vector space E is
the monic polynomial in F[X] of least degree such that P (og) = 0 (as an endomorphism of
E). Tt has the property that it divides every polynomial Q(X) € F[X] such that Q(o¢) =
0. Since o = 1, P(X) divides X" — 1. On the other hand, Dedekind’s theorem on the
independence of characters implies that 1, 0y, ..., 0(’)’_1 are linearly independent over
F, and so deg P(X) > n—1. We conclude that P(X) = X" — 1. Therefore, as an F[X]-
module with X acting as gg, E is isomorphic to F[X]/(X" —1). For any generator « of E
as a F[X]-module, o, 09, .. .,000" 1 isa F-basis for E. o

Hilbert’s Theorem 90

Let G be a finite group. A G-module is an abelian group M together with an action of G,
i.e.,amap G x M — M such that

(@) o(m+m'y=om+om’ forallo € G,m,m' € M;
() (ot)(m)=0(tm) forallo,t€e G,me M;
(c) Im=mforallme M.

Thus, to give an action of G on M is the same as to give a homomorphism G — Aut(M)
(automorphisms of M as an abelian group).

EXAMPLE 5.19 Let E be a Galois extension of F with Galois group G. Then (£, +) and
(E*,-) are G-modules.

Let M be a G-module. A crossed homomorphism is a map f:G — M such that
f(ot)= f(o)+of(r)forallo,t €G.
Note that the condition implies that /(1) = f(1-1) = f(1)+ f(1),and so f(1) =0.
EXAMPLE 5.20 (a) Let f:G — M be a crossed homomorphism. For any o € G,

f(0%) = f(0) +0f(0),
f(0%) = f(0-0%) = f(0) +0f(0) +0° f(0)

f(6™) = f(0)+0f(@)+-+0""" f(0).

Thus, if G is a cyclic group of order n generated by o, then a crossed homomorphism
f:G — M is determined by its value, x say, on ¢, and x satisfies the equation

x+ox4-+0"x =0, (*)
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Conversely, if x € M satisfies (¥), then the formulas f(0') = x +0x+---+0'1x definea
crossed homomorphism f: G — M. Thus, for a finite group G = (o), there is a one-to-one
correspondence

fof(o) e
{crossed homs f:G — M}~ <— " {x € M satisfying (*)}.

(b) For any x € M, we obtain a crossed homomorphism by putting
f(o)=0x—x, allo € G.

A crossed homomorphism of this form is called a principal crossed homomorphism.

(c) If G acts trivially on M, i.e., om = m for all 0 € G and m € M, then a crossed
homomorphism is simply a homomorphism, and there are no nonzero principal crossed
homomorphisms.

The sum and difference of two crossed homomorphisms is again a crossed homomor-
phism, and the sum and difference of two principal crossed homomorphisms is again prin-
cipal. Thus we can define

HY(G. M) = {crossed homomorphisms}

{principal crossed homomorphisms}

(quotient abelian group). The cohomology groups H"(G, M) have been defined for all
n € N, but since this was not done until the twentieth century, it will not be discussed in this
course. We leave it as an exercise to the reader to show that an exact sequence of G-modules

0O->M ->M-—->M"'—>0
gives rise to an exact sequence
0>M%->M%->M'S 5 HY (G M) H (G, M)— H (G, M").

EXAMPLE 5.21 Let 7: X — X be the universal covering space of a topological space X,
and let I" be the group of covering transformations. Under some fairly general hypotheses,
a I'-module M will define a sheaf M on X, and H'(X, M) ~ H'(I",M). For example,
when M = 7 with the trivial action of I', this becomes the isomorphism H1(X,Z) ~
HY(I",Z) = Hom(I',7Z).

THEOREM 5.22 Let E be a Galois extension of F with group G; then HY(G,EX) =0,
i.e., every crossed homomorphism G — E* is principal.

PROOF. Let f be a crossed homomorphism G — E*. In multiplicative notation, this
means,

flor) = f(0)-0(f(r)). o0.7€G,

and we have to find a y € E* such that f(0) = % for all 0 € G. Because the f(t) are
nonzero, Corollary [5.15|implies that

ZteG f()t:E—-E
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is not the zero map, i.e., there exists an « € E such that

g Ztec f(t)ra £0.

But then, for o € G,

op=) _o(f(®)-ot(@)
=Y /@7 flon)or(@)
=f@) 7" ) o Slevor(@),

which equals f(0)~! B because, as  runs over G, so also does o't. Therefore, f(0) = %
1

and we can take § =y~ .

~'

O

Let E be a Galois extension of F with Galois group G. We define the norm of an

element o € E to be
Nmao = oo.
l_[UGG

Fort € G,
t(Nmea) = l_[ o toX = Nmo,
o}

and so Nmoa € F. The map
o> Nma: EX — F*

is a obviously a homomorphism.

EXAMPLE 5.23 The norm map C* — R is o — |o|? and the norm map Q[+/d]* — Q*
isa+b~d > a?—db>.

We are interested in determining the kernel of the norm map. Clearly an element of the
form tﬁ has norm 1, and our next result show that, for cyclic extensions, all elements with
norm 1 are of this form.

COROLLARY 5.24 (HILBERT’S THEOREM 90) “Let E be a finite cyclic extension of F
with Galois group (0); if Nmg,p o =1, thena = 8/0f for some § € E.

PROOF. Letm = [E: F]. The condition on e is that - -6 1o = 1, and so (see[5.20k)
there is a crossed homomorphism f: (o) — E* with f(0) = «. Theorem now shows
that f is principal, which means that there is a 8 with (o) = 8/08. 0

“4This is Satz 90 in Hilbert’s book, Theorie der Algebraischen Zahlkorper, 1897. The theorem was discov-
ered by Kummer in the special case of Q[{5]/Q, and generalized to Theorem by E. Noether. Theorem
[5.22] as well as various vast generalizations of it, are also referred to as Hilbert’s Theorem 90.

For an illuminating discussion of Hilbert’s book, see the introduction to the English translation (Springer
1998) written by F. Lemmermeyer and N. Schappacher.
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Cyclic extensions

We are now able to classify the cyclic extensions of degree n of a field F in the case that F'
contains a primitive nth root of 1. Write u, for the group of nth roots of 1 in F. Then uy
is a cyclic subgroup of F* of order n with generator .

Consider a field £ = F[a] generated by an element @ whose nth power is in F. Then
« is a root of X —a, and the remaining roots are the elements ¢ ‘@, 1<i <n-—1. Since
these are all in £, E is a Galois extension of F, with Galois group G say. For any o € G,
oo is also a root of X" —a, and so oo = ¢« for some i. Hence oot/ € ji,,. The map

o oa/a:G— iy

doesn’t change when « is replaced by a conjugate, and it follows that the map is a homo-
morphism: 2% = %Of‘)%. Because o generates E over F, the map is injective. If it is
not surjective, then G maps into a subgroup pg of @, some d|n, d < n. In this case,
(ca/a)? =1, ie., ca? =a?, forall 0 € G, and so «? € F. Thus the map is surjective
if n is the smallest positive integer such that «” € F. We have proved the first part of the

following statement.

PROPOSITION 5.25 Let F be a field containing a primitive nth root of 1. Let E = F[«a]
where o" € F and no smaller power of « is in F. Then E is a Galois extension of F with
cyclic Galois group of order n. Conversely, if E is cyclic extension of F of degree n, then
E = F|«] for some o witha" € F.

PROOF. It remains to prove the second statement. Let o generate G and let { generate iy.
It suffices to find an element « € E* such that coe = ¢~ !, for then «” € F, and " is the
smallest power of « that lies in . According to the Normal Basis Theorem there

exists an element y € E such that {y,oy,...,6" 1y} is a basis for E as an F-vector space.

Form the sum o
a= ZE’U’)/.

Then « # 0 because the o y are linearly independent and the ¢ € F,and oo = { ',

REMARK 5.26 (a) The polynomial X" —a, n > 2, is irreducible in F[X] under the follow-
ing condition: a is not a pth power for any p dividing n, and, if 4|n, then a ¢ —4F*. See
Lang, Algebra, Addison-Wesley, 1965, VIII, §9, Theorem 16.

(b) If F has characteristic p (hence has no pth roots of 1 other than 1), then X? — X —a
is irreducible in F[X] unless a = b? — b for some b € F, and when it is irreducible, its
Galois group is cyclic of order p (generated by o — « + 1 where « is a root). Moreover,
every extension of F which is cyclic of degree p is the splitting field of such a polynomial.

PROPOSITION 5.27 Two cyclic extensions F[a%] and F[b%] of F of degree n are equal
if and only if a = b" ¢" for some r € 7 relatively prime to n and some ¢ € F*, i.e., if and
only if a and b generate the same subgroup of F*/F*",

PROOF. Only the “only if” part requires proof. We are given that F[«] = F[f] withe” =a
and 8" = b. Let o be the generator of the Galois group with ca = {«, and let 68 = (' 8,



Kummer theory 71

(i,n) = 1. We can write
n—1
B = ch-oz/, cj€F,
Jj=0

and then
n—1

of = Zc,[jaj.
j=0
On comparing this with o8 = ¢’ 8, we find that Cic]- =/ c; forall j. Hence c¢; = 0 for
j # i, and therefore 8 = c;jo'. o

Kummer theory

Throughout this section, F is a field containing a primitive nth root of 1, {. In particular, F
either has characteristic 0 or characteristic p not dividing ».

The last two results give us a complete classification of the cyclic extensions of F of
degree n. We now extend this to a classification of all abelian extensions of exponent 7.
(Recall that a group G has exponent n if ¢ = 1 for all 0 € G and n is the smallest positive
integer for which this is true. A finite abelian group of exponent n is isomorphic to a
subgroup of (Z/nZ)" for some r.)

Let £/ F be a finite Galois extension with Galois group G. From the exact sequence

1—>Mn—>Exﬂ>EX"—>l

we obtain a cohomology sequence

1= iy — F* 2250 FXAEX 5 HY(G, ) — 1.
The 1 at the right is because of Hilbert’s Theorem 90. Thus we obtain an isomorphism
F*NE*"/F*" — Hom(G, ().

This map can be described as follows: let a be an element of F* that becomes an nth power
in E, say a = a”; then ¢ maps to the homomorphism o +—> %. If G is abelian of exponent
n, then
[Hom(G, pn)| = (G:1).
THEOREM 5.28 The map
Ew F*NEX"/F*"

defines a one-to-one correspondence between the finite abelian extensions of F of exponent
n contained in some fixed algebraic closure 2 of F and the finite subgroups B of F* | F*".

The extension corresponding to B is F [B%], the smallest subfield of §2 containing F and
an nth root of each element of B. If E <> B, then [E: F] = (B: F*").

PROOF. For any finite Galois extension E of F, define B(E) = F* N E*". Then E D
F[B(E) nl], and for any group B containing F*"* as a subgroup of finite index, B(F [B%]) D
B. Therefore,

[E:F] > [F[B(E)"]: F] = (B(F|B(E)n]): F*") > (B(E): F*").
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If E/F is abelian of exponent n, then [E:F] = (B(E): F*"), and so equalities hold
throughout: E = F[B(E)].

Next consider a group B containing F*" as a subgroup of finite index, and let E =
F [B%]. Then E is a composite of the extensions F [a%] for a running through a set of
generators for B/ F*", and so it is a finite abelian extension of exponent 7. Therefore

1

ars (0> GZ—Z):B(E)/FX” — Hom(G, i), G = Gal(E/F),

is an isomorphism. This map sends B/ F*" isomorphically onto the subgroup Hom(G/H, (i)
of Hom(G, pt,) where H consists of the o € G such that aa%/a = 1foralla € B. Butsuch
ao fixes all a7 fora € B, and therefore is the identity automorphism on £ = F[B %] This
shows that B(E) = B, and hence E +— B(E) and B — F [B%] are inverse bijections. g

EXAMPLE 5.29 (a) The quadratic extensions of R are (certainly) in one-to-one correspon-
dence with the subgroups of R* /R*? = {+1}.

(b) The finite abelian extensions of (Q of exponent 2 are in one-to-one correspondence
with the finite subgroups of Q*/Q*?2, which is a direct sum of cyclic groups of order 2
indexed by the prime numbers plus oo (modulo squares, every nonzero rational number has
a unique representative of the form & pq --- p, with the p; prime numbers).

REMARK 5.30 (KUMMER THEORY) Let E be an abelian extension of F of exponent n.
Then
B(E) = {a € F* | a becomes an nth power in E}.

There is a perfect pairing

(a,0) —~ ﬂ:iE)xGal(E/F) — Un.
a F

Xn

In particular, [E: F| = (B(E): F*™"). (Cf. Exercise 5 for the case n = 2.)

Proof of Galois’s solvability theorem

LEMMA 5.31 Let f € F[X] be separable, and let F’ be an extension field of F. Then the
Galois group of f as an element of F'[X] is a subgroup of that of f as an element of F[X].

PROOF. Let E’ be a splitting field for f over F’, and let a1, ..., oy be the roots of f(X)
in E’. Then E = F[oy,...,ay] is a splitting field of f over F. Any element of Gal(E'/F")
permutes the o; and so maps E into itself. The map o +> ¢ | E is an injection Gal(E'/ F') —
Gal(E/F). a)

THEOREM 5.32 Let F be a field of characteristic 0. A polynomial in F[X] is solvable if
and only if its Galois group is solvable.

PROOF. «=: Let f € F[X] have solvable Galois group G s. Let F’ = F[{] where { is a
primitive nth root of 1 for some large n — for example, n = (deg f)! will do. The lemma
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shows that the Galois group G of f as an element of F'[X] is a subgroup of G ¢, and hence
is also solvable (GT|[6.6p). This means that there is a sequence of subgroups

G:GoDGlD---DGm_lDGm:{l}

such that each G; is normal in G;_1 and G;_1/G; is cyclic. Let E be a splitting field of
f(X) over F/, and let F; = ECi. We have a sequence of fields

FCF[{]=F' =FyCFICFHC--CFy,=E

with F; cyclic over F;_j. Theoremﬂshows that F; = F;_1[a;] with al-[Fi:Fi*‘] e F_q,
each i, and this shows that f is solvable.

== It suffices to show that G s is a quotient of a solvable group (GT ). Hence it
suffices to find a solvable extension E of F such that f(X) splits in E[X].

We are given that there exists a tower of fields
F=FCF CF,C--CFy

such that

(@) F; = Fi—i[og]. o) € Fioy;
(b) Fj, contains a splitting field for f.

Letn =ry---ry, and let §2 be a field Galois over F and containing (a copy of) Fy,
and a primitive nth root ¢ of 1. For example, choose a primitive element y for F;;, over F
(see[5.1), and take 2 to be a splitting field of g(X)(X" —1) where g(X) is the minimum
polynomial of y over F.

Let G be the Galois group of £2/F, and let E be the Galois closure of Fy,[¢] in £2.
According to ), E is the composite of the fields 0 Fj,[¢], o € G, and so it is generated
over F by the elements

£, 01,02, ..., 0y, OQ],..., 00,0 A1, . ...
We adjoin these elements to F one by one to get a sequence of fields
FCF[|CFlt,ay]C---CF CF'c---CE

in which each field F” is obtained from its predecessor F’ by adjoining an rth root of an
elementof F/ (r =ry,...,ry. orn). According to li and (5.25)), each of these extensions
is abelian (and even cyclic after for the first), and so E/F is a solvable extension. O

The general polynomial of degree n

When we say that the roots of
aX*+bX +c
are
—b+Vb%—4ac
2a
we are thinking of a, b, ¢ as variables: for any particular values of a, b, ¢, the formula gives

the roots of the particular equation. We shall prove in this section that there is no similar
formula for the roots of the “general polynomial” of degree > 5.
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We define the general polynomial of degree n to be
fX)=X"—n X" ot (=1)"ty € Flt1,....1][X]

where the ¢#; are variables. We shall show that, when we regard f as a polynomial in X with
coefficients in the field F(¢1,...,t,), its Galois group is S,. Then Theorem proves the
above remark (at least in characteristic zero).

SYMMETRIC POLYNOMIALS

Let R be a commutative ring (with 1). A polynomial P(X1y,..., X,) € R[X1,..., Xp] is said
to be symmetric if it is unchanged when its variables are permuted, i.e., if

P(Xg(l),...,XU(n))IP(Xl,...,Xn), allo € §y,.

For example

1 = ZiXi =X1+Xo+:-+ X,

P2 = i< XiX; =X1Xo+ X1 X3+ + X1 Xy + X2 X3+ -+ + Xp—1Xn,
P3 = Yicj<kXiXjXk, =X1X2X3+-

pr = Zi1<--~<ir Xiy .. Xi,

Pn = X1 X2+ Xp

are all symmetric because p; is the sum of a/l monomials of degree r made up out of distinct
X;’s. These particular polynomials are called the elementary symmetric polynomials.

THEOREM 5.33 (SYMMETRIC POLYNOMIALS THEOREM) Every symmetric polynomial
P(X1,....X,) in R[X1,..., X,] is equal to a polynomial in the elementary symmetric poly-
nomials with coefficients in R, i.e., P € R[p1, ..., Pn].

PROOF. We define an ordering on the monomials in the X; by requiring that
X x2.oxin s xI x o x
if either
ivtizt-din > j1+j2+ 4 Jn
or equality holds and, for some s,
i1=J1,....0s = Js. butig41 > js41.

For example,
X1X3X3 > X1 X3 X3 > X1 X2 X3,

Let X f X ,]f " be the highest monomial occurring in P with a coefficient ¢ # 0. Because

P is symmetric, it contains all monomials obtained from X f‘ - X ,]f " by permuting the X’s.
Hence k1 > ky > --- > k.
The highest monomial in p; is X;---X;, and it follows that the highest monomial in

xditdotectdn ydototdy | ydy ?2)
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Therefore the highest monomial of P(X7q,...,X,)—c p’fl_kz p’zcz_k3 p,’f" is strictly less

than the highest monomial in P(X1,...,X,). We can repeat this argument with the poly-
nomial on the left, and after a finite number of steps, we will arrive at a representation of P
as a polynomial in py,..., ps. 0

Let f(X)=X"4+a X" ' +.--4+a, € R[X], and suppose that f splits over some ring
S containing R:
JX) =l{o1(X —),a; €S,

Then

ay =—p1(a1,...,05), az=pa(a1,....,an), ..., an==Lpu(ay,...,an).

Thus the elementary symmetric polynomials in the roots of f(X) lie in R, and so the
theorem implies that every symmetric polynomial in the roots of f(X) lies in R. For
example, the discriminant

D(f) =] ](ei—e;)?

i<j

of f liesin R.

SYMMETRIC FUNCTIONS

THEOREM 5.34 (SYMMETRIC FUNCTIONS THEOREM) When S, actson E = F(X1,..., Xp)
by permuting the X;’s, the field of invariants is F(p1, ..., Pn).

FIRST PROOF Let f € F(Xy,...,X,) be symmetric (i.e., fixed by S,). Set f = g/h,
g.h e F[Xy1,...,Xy]. The polynomials H = ]_[Uesn oh and H f are symmetric, and there-
fore lie in F[p1,..., pn] (5.33). Hence their quotient f = Hf/H liesin F(p1,...,pn)- o

SECOND PROOF Clearly
F(p1.....pn) CES" CE.

On the one hand, [E: F(p1,..., pn)] <n!because E is the splitting field of (T — X1)--- (T —
X,) over F(p1,...,pn); on the other, [E: ES7] > n! by (2.8). 0

COROLLARY 5.35 The field F(X1,..., Xp) is Galois over F(p1,..., pn) with Galois group
Sn (acting by permuting the X; ).

PROOF. We have shown that F(py.,...,pn) = F(X1,....X,)5", and so this follows from

@.10). 0

As we noted in the second proof, F(X1,..., X,) is the splitting field over F(p1,..., pn)
of

g(T)=(T=X1)-(T=Xp) =X"—p1 X" -4 (=1)" pn.
Therefore, the Galois group of g(T') € F(p1,..., pn)[T]is Su.
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THE GENERAL POLYNOMIAL OF DEGREE n

THEOREM 5.36 The Galois group of the general polynomial of degree n is Sy,.

PROOF. Let f(X) be the general polynomial of degree n,
FX)=X"—t X"+ (=1)"ty € Flt1, ... ta][X].
If we can show that the map
ti—>pitFlti,....ty] > Fp1,..., pnl

is injective (i.e., the p; are algebraically independent over F, see p.[99), then it will extend
to an isomorphism
F(ty,....tn) > F(p1,...,Pn)

sending f(X) to
gX)=X"—p1 X" o+ (=1)" pn € F(p1,.... pn)[X].

Therefore the statement will follow from Corollary
We now prove that the p; are algebraically independent®. Suppose on the contrary
that there exists a P(f1,...,t,) such that P(pi,...,pn) = 0. Equation (), p. shows

that if mq(tq,...,t,) and mo(t1,...,t,) are distinct monomials, then m;(p1,..., py) and
ma(p1,-.., pn) have distinct highest monomials. Therefore, cancellation can’t occur, and
so P(t1,...,ty) must be the zero polynomial. o

REMARK 5.37 Since S, occurs as a Galois group over QQ, and every finite group occurs
as a subgroup of some Sy, it follows that every finite group occurs as a Galois group over
some finite extension of , but does every finite Galois group occur as a Galois group over
Q itself?

The Hilbert-Noether program for proving this was the following. Hilbert proved that
if G occurs as the Galois group of an extension £ D Q(t1,...,#,) (the #; are symbols),
then it occurs infinitely often as a Galois group over Q. For the proof, realize E as the
splitting field of a polynomial f(X) € k|[t1,...,t,][X] and prove that for infinitely many
values of the ¢;, the polynomial you obtain in Q[X] has Galois group G. (This is quite a
difficult theorem — see Serre, J.-P., Lectures on the Mordell-Weil Theorem, 1989, Chapter
9.) Noether conjectured the following: Let G C S, act on F(Xy,..., X») by permuting the
X;; then F(X1,..., Xn)G ~ F(t1,...,ty) (for variables ¢;). However, Swan proved in 1969
that the conjecture is false for G the cyclic group of order 47. Hence this approach can not
lead to a proof that all finite groups occur as Galois groups over QQ, but it doesn’t exclude
other approaches. For more information on the problem, see Serre, ibid., Chapter 10, and
Serre, J.-P., Topics in Galois Theory, 1992.

REMARK 5.38 Take F = C, and consider the subset of C**! defined by the equation

X" T X" 1.4 (=1)"T, = 0.

SThis can also be proved by noting that, because F(X7,..., Xy) is algebraic over F(py,..., Pn), the latter
must have transcendence degree n (see §8).
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It is a beautiful complex manifold S of dimension n. Consider the projection
.S —>C", (x,t1,....th) — (t1,...,1n).
Its fibre over a point (ay,...,ay) is the set of roots of the polynomial
X"—a 1 X" o (=1)"ay,.

The discriminant D(f) of f(X) = X" —T1 X" ! +... 4+ (=1)"T, is a polynomial in
C[T1,...,Ty]. Let A be the zero set of D(f) in C”. Then over each point of C" \ A,
there are exactly n points of S, and S . 7~!(A) is a covering space over C" \ A,

A BRIEF HISTORY

As far back as 1500 BC, the Babylonians (at least) knew a general formula for the roots of
a quadratic polynomial. Cardan (about 1515 AD) found a general formula for the roots of a
cubic polynomial. Ferrari (about 1545 AD) found a general formula for the roots of quartic
polynomial (he introduced the resolvent cubic, and used Cardan’s result). Over the next
275 years there were many fruitless attempts to obtain similar formulas for higher degree
polynomials, until, in about 1820, Ruffini and Abel proved that there are none.

Norms and traces

Recall that, for an n x n matrix A = (a;;)

Tr(A) = Y ;aii (trace of A)

det(4) = Zaesn sign(o)aig(1)***Ano(n): (determinant of A)

ca(X) = det(XI,—A) (characteristic polynomial of A4).
Moreover,

ca(X) = X"—Tr(A)X" 1 ... 4 (=1)"det(A).

None of these is changed when A is replaced by its conjugate UAU ~! by an invertible
matrix U. Therefore, for any endomorphism « of a finite dimensional vector space V', we
can define®

Tr(a) = Tr(A), det(a) = det(A), ce(X) = c4(X)

where A is the matrix of o with respect to any basis of V. If 8 is a second endomorphism
of V,

Tr(a + B) = Tr(a) + Tr(B);
det(aB) = det(a) det(B).

The coefficients of the characteristic polynomial
ca(X)=X"+c1 X" 4 tep,
of o have the following description

ci = (=) Tr(e| \' V)
— see Bourbaki, N., Algebra, Chapter 3, 8.11.
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Now let E be a finite field extension of F of degree n. An element o of E defines an
F-linear map
o E—E, x—ax,

and we define

Trg/p(a) = Tr(ar) (trace of @)
Nmg,p(x) = det(or) (norm of &)
ca,£/F(X) = cq,(X) (characteristic polynomial of «).

Thus, Trg,f is a homomorphism (E,+) — (F,+), and Nmg,r is a homomorphism
(EX") g (va')'

EXAMPLE 5.39 (a) Consider the field extension C D R. For « = a + bi, the matrix of o,
with respect to the basis {1,i}is (¢ 7?), and so

Tre/r(@) = 2R (@), Nme/p(@) = |of?.
(b) For a € F, ay, is multiplication by the scalar a. Therefore

Trg/r(a) =na, Nmg,p(a) =a", cq g/r(X) = (X —a)"

where n = [E: F].

Let E = Qla, i] be the splitting field of X® —2. To compute the trace and norm of ¢ in
E, the definition requires us to compute the trace and norm of a 16 x 16 matrix. The next
proposition gives us a quicker method.

PROPOSITION 5.40 Let E/F be a finite extension of fields, and let f(X) be the minimum
polynomial of « € E. Then

Co.£/F(X) = fOXOEFR

PROOF. Suppose first that £ = F[a]. In this case, we have to show that ¢4 (X) = f(X).
Note that @ > a7, is an injective homomorphism from E into the ring of endomorphisms
of E as a vector space over F. The Cayley-Hamilton theorem shows that ¢y (7)) = 0, and
therefore ¢y (o) = 0. Hence f'|cq, but they are monic of the same degree, and so they are
equal.

For the general case, let 81, ..., B, be abasis for F[x] over F, andlet y1, ..., ¥, be a basis
for E over Fla]. As we saw in the proof of (1.20), {8 yx} is a basis for E over F. Write
afi =) a;iB;. Then, according to the first case proved, A =4 (a;;) has characteristic
polynomial f(X). Butaf;yx =) a ;B vk, and so the matrix of 7, with respect to {S; yx }
breaks up into n x n blocks with A’s down the diagonal and zero matrices elsewhere, from
which it follows that co, (X) = c4(X)" = f(X)™. o

COROLLARY 5.41 Suppose that the roots of the minimum polynomial of « are a7y, ...,y
(in some splitting field containing E ), and that [E: F [«]] = m. Then

Tr(a) =m) i o, Nmg,ro = (]_[?zlozi)m.
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PROOF. Write the minimum polynomial of ¢ as

fX)=X"+a1 X" '+ tay =X —ap),

so that
a; =—y «;,and
an = (—1)"1_[011'-
Then
ca(X)=(f(X)" =X""+mar X"+ +alf,
so that

Trg/F (@) = —ma; = m) a;, and
Nmg,p(a) = (=1)""a,’ = (J]oi)™. O

EXAMPLE 5.42 (a) Consider the extension C D R. If & € C\ R, then
ca(X) = f(X) = X?> 2R ()X + |a|?.

If o € R, then cq(X) = (X —a)?.

(b) Let E be the splitting field of X® —2. Then E has degree 16 over Q and is generated
by o = v/2and i = +/—1 (see Exercise 16). The minimum polynomial of « is X ® —2, and
SO

Cagl/oX) = X*=2.  cuppX) = (X327
Tr@[a]/@a = 07 TI'E/Q(X = 0
Nmgjgjg = -2, Nmgoa = 4

REMARK 5.43 Let E be a separable extension of F, and let X' be the set of F'-homomorphisms
of E into an algebraic closure §2 of F. Then

TrE/FO =) sex0Q
Nmg/pa =[] ez00.

When E = Fla], this follows from and the observation (cf. [2.1Ib) that the o« are
the roots of the minimum polynomial f(X) of o over F. In the general case, the oo are
still roots of f(X) in £2, but now each root of f(X) occurs [E: F[«]] times (because each
F-homomorphism F[a] — §2 has [E: F[«]] extensions to E). For example, if E is Galois
over F with Galois group G, then

TrEg/Fo =) segod
Nmg/ra=][][sego.

PROPOSITION 5.44 For finite extensions E D M D F, we have

TrgymoTiyr =Trg/F.
Nmg/p oNmy/ p =Nmg/p.
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PROOF. If E is separable over F, then this can be proved fairly easily using the descriptions
in the above remark. We omit the proof in the general case. O

PROPOSITION 5.45 Let f(X) be a monic irreducible polynomial with coefficients in F,
and let o be a root of f in some splitting field of f. Then

dise f(X) = (=)™ V2 Nmppr /()

where f' is the formal derivative % of f.

PROOF. Let f(X) =[]/ (X —a;) be the factorization of f in the given splitting field,
and number the roots so that « = 1. Compute that

dise /(X) = [ [ (i —a))?

i<j
= (- D2 TT([ (i —a)
i j#Ai
= (=)D T f (@)
= ()" D2 Nmpgr(f/(@)  (byFA). .

EXAMPLE 5.46 We compute the discriminant of
f(X)=X"+aX+b, a,beF,

assumed to be irreducible and separable, by computing the norm of

def

Y= fl@)=na""'+a, fla)=0.

On multiplying the equation
o' +acw+b=0

by no~! and rearranging, we obtain the equation

noa ' = —na—nba™!.
Hence
y=na""'4a=—-m—-1)a—-nba"".
Solving for « gives
—nb

o=—.
y+mn—1a
From the last two equations, it is clear that F'[a] = F[y], and so the minimum polynomial
of y over F has degree n also. If we write

—nb _ P(X)
/ (X+(n—1)a) - 0(X)
PX)=X+m—-1Da)"—na(X +(n—1)a)" '+ (=1)"n"p"!
Q(X) = (X +(n—1)a)"/b,
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then

P(y)= f(@)-Q(y) =0.

o= YDA _ by,
a'h

and P (X) is monic of degree n, it must be the minimum polynomial of y. Therefore Nm y
is (—1)" times the constant term of P (X)), namely,

Nmy =n"b"" '+ (=) 1 (n—1)""1a".
Therefore,
disc(X" +aX +b) = (=" D2npn=t 4 (— 1) T (n—1)""1a"),

which is something PARI doesn’t know (because it doesn’t understand symbols as expo-
nents). For example,
disc(X> +aX +b) = 5°b* +4%a°.

Exercises

5-1 (*) Fora € Q, let G4 be the Galois group of X* + X3 4+ X2 + X +a. Find integers
ai,az,as,as such thati # j = Gy; is not isomorphic go Ga;.

5-2 (*) Prove that the rational solutions a,b € Q of Pythagoras’s equation a? + b2 = 1

are of the form y
s°—t 2st
a=———, b=——, s,t €Q,
52412 52412 Q

and deduce that any right triangle with integer sides has sides of length

d(m? —n?,2mn,m? +n?)

for some integers d, m, and n (Hint: Apply Hilbert’s Theorem 90 to the extension Q[i]/Q.)

5-3 (*) Prove that a finite extension of (Q can contain only finitely many roots of 1.






CHAPTER 6

Algebraic Closures

In this section, we prove that Zorn’s lemma implies that every field F has an algebraic
closure §2. Recall that if F is a subfield C, then the algebraic closure of F' in C is an
algebraic closure of F' (I.46). If F is countable, then the existence of §2 can be proved as
in the finite field case (#.23), namely, the set of monic irreducible polynomials in F[X] is
countable, and so we can list them f1, f3,...; define E; inductively by, Eg = F, E; = a
splitting field of f; over E;_;; then £2 = J E; is an algebraic closure of F.

The difficulty in showing the existence of an algebraic closure of an arbitrary field F is
in the set theory. Roughly speaking, we would like to take a union of a family of splitting
fields indexed by the monic irreducible polynomials in F[X], but we need to find a way
of doing this that is allowed by the axioms of set theory. After reviewing the statement of
Zorn’s lemma, we sketch three solutions! to the problem.

Zorn’s lemma

DEFINITION 6.1 (a) A relation < on a set S is a partial ordering if it reflexive, transitive,
and anti-symmetric (¢ <b and b <a = a =Db).

(b) A partial ordering is a fotal ordering if, for all s,t € T, either s <t ort <s.

(c) An upper bound for a subset T of a partially ordered set (S, <) is an element s € S
such thatt <sforallr € T.

(d) A maximal element of a partially ordered set S is an element s such that s < s’ —>
s=1s'.

A partially ordered set need not have any maximal elements, for example, the set of
finite subsets of an infinite set is partially ordered by inclusion, but it has no maximal
elements.

LEMMA 6.2 (ZORN’S) Let (S,<) be a nonempty partially ordered set for which every
totally ordered subset has an upper bound in S. Then S has a maximal element.

IThere do exist naturally occurring fields, not contained in C, that are uncountable. For example, for any
field F there is aring F[[T']] of formal power series ) ;5o a; T*, a; € F, and its field of fractions is uncountable
even if F is finite.

83
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Zorn’s lemma? is equivalent to the Axiom of Choice, and hence independent of the

axioms of set theory.

REMARK 6.3 The set S of finite subsets of an infinite set doesn’t contradict Zorn’s lemma,
because it contains totally ordered subsets with no upper bound in S

The following proposition is a typical application of Zorn’s lemma — we shall use a *
to signal results that depend on Zorn’s lemma (equivalently, the Axiom of Choice).

PROPOSITION 6.4 (*) Every nonzero commutative ring A has a maximal ideal (meaning,
maximal among proper ideals).

PROOF. Let S be the set of all proper ideals in A, partially ordered by inclusion. If T is a
totally ordered set of ideals, then J = | J; < I is again an ideal, and it is proper because if
1€ J then1 e I for some [ in T, and I would not be proper. Thus J is an upper bound
for T. Now Zorn’s lemma implies that S has a maximal element, which is a maximal ideal
in A. O

First proof of the existence of algebraic closures

(Bourbaki, 1959, Chap. 5 §4.) An F-algebra is a ring containing F as a subring. Let
(A;)ier be a family of commutative F-algebras, and define Q) A; to be the quotient of
the F-vector space with basis [ [;; A; by the subspace generated by elements of the form:
(x;)+ (yi)—(z;) withx; +y; =z forone j € [ and x; = y; = z; forall i # j;
(x;)—a(y;) withx; =ay; forone j € I and x; = y; foralli # j,
(Bourbaki, 1989, Chap. II, 3.9)%. It can be made into a commutative F -algebra in an
obvious fashion, and there are canonical homomorphisms A; — Q) A; of F-algebras.
For each polynomial f € F[X], choose a splitting field E ¢, and let 2 = (X g Er)/M
where M is a maximal ideal in Q) 5 E # (whose existence is ensured by Zorn’s lemma).
Note that F C @ E s and M N F = 0. As §2 has no ideals other than (0) and £2, and it
is a field (see . The composite of the F-homomorphisms E r — @ E y — £2, being
a homomorphism of fields, is injective. Since f splits in E ¢, it must also split in the larger
field £2. The algebraic closure of F in §2 is therefore an algebraic closure of F (by [I.44).

2The following is quoted from A.J. Berrick and M.E. Keating, An Introduction to Rings and Modules,
2000: The name of the statement, although widely used (allegedly first by Lefschetz), has attracted the attention
of historians (Campbell 1978). As a ‘maximum principle’, it was first brought to prominence, and used for
algebraic purposes in Zorn 1935, apparently in ignorance of its previous usage in topology, most notably in
Kuratowski 1922. Zorn attributed to Artin the realization that the ‘lemma’ is in fact equivalent to the Axiom of
Choice (see Jech 1973). Zorn’s contribution was to observe that it is more suited to algebraic applications like
ours.

3Bourbaki, N., Eléments de mathématique. I: Les structures fondamentales de I’analyse. Fascicule XI.
Livre II: Algebre. Chapitre 4: Polynomes et fractions rationnelles. Chapitre 5: Corps commutatifs. Deuxiéme
édition. Actualités Scientifiques et Industrielles, No. 1102 Hermann, Paris 1959 iv+222 pp. (2 inserts). MR 30
#4751

“Bourbaki, Nicolas. Algebra. I. Chapters 1-3. Translated from the French. Reprint of the 1974 edition.
Elements of Mathematics. Springer-Verlag, Berlin, 1989. xxiv+709 pp.
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Second proof of the existence of algebraic closures

(Jacobson 1964, pl144.). After we may assume F to be infinite. This implies that
the cardinality of any field algebraic over F is the same as that of F' (ibid. p143). Choose
an uncountable set & of cardinality greater than that of F', and identify F' with a subset
of Z. Let S be the set triples (E,+,-) with E C E and (+,-) a field structure on E such
that (E, +,-) contains F as a subfield and is algebraic over it. Write (E,+,-) < (E’,+',")
if the first is a subfield of the second. Apply Zorn’s lemma to show that S has maximal
elements, and then show that a maximal element is algebraically closed. (See ibid. p144
for the details.)

Third proof of the existence of algebraic closures

Consider the polynomial ring F|[...,x 7, ...] in a family of symbols x s indexed by the non-
constant monic polynomials f € F[X]. If 1 lies in the ideal I of F[...,xr,...] generated
by the polynomials f(x r), then

gifilxg)+-+gufulxg)=1  (inF[....xf,...])

for some g; € F[...,x r,...] and some nonconstant monic f; € F[X]. Let E be an extension
of F such that each f;, i = 1,...,n, has a root ¢; in E. Under the F-homomorphism
F[....xf,...] > F’ sending

xfi = o

Xf|—>0, f¢{f1v’fn}

the above relation becomes O = 1. From this contradiction, we deduce that 1 does not lie in
I, and so Propositionapplied to F[...,xz,...]/I shows that ] is contained in a maximal
ideal M of F[...,xz,...]. Let 2 = F[....xr,...]/M. Then £ is a field containing (a
copy of) F in which every nonconstant polynomial in F[X] has at least one root. It is also
algebraic over F (because it is generated by the algebraic elements x s), and so the next
lemma shows that it is an algebraic closure of F'.

LEMMA 6.5 Let §2 be a field. If §2 is algebraic over a subfield F and every nonconstant
polynomial in F[X] has a root in §2, then §2 is algebraically closed (and hence an algebraic
closure of F').

PROOF. It suffices to show that every irreducible polynomial f in F[X] splits in £2[X] (see
[1.44). Suppose first that f is separable, and let E be a splitting field for f. According to
Theorem[5.1] E = F[y] for some y € E. Let g(X) be the minimum polynomial of y over
F. Then g(X) has coefficients in F', and so it has aroot 8 in §2. Both of F[y] and F[8] are
stem fields for g, and so there is an F-isomorphism F[y] — F[B] C £2. As f splits over
F[y], it must split over £2.

This completes the proof when F is perfect. Otherwise, F has characteristic p # 0,
and we let F’ be the set of elements x of §2 such that x?”' € F for some m. It is easy to see
that F’ is a field, and we shall complete the proof of the lemma by showing that

(a) F'is perfect, and
(b) every polynomial in F’[X] has a root in £2.
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PROOF OF (a). Leta € F’, so that b &£ 4P" € F for some m. The polynomial X

b has coefficients in F, and so it has a root « € §2, which automatically lies in F’. Now
m-+1
ap

pm-l—l

=a?”, which implies that «? = a, because the pth power map is injective on fields
of characteristic p.

Before continuing, we note that, because §2 is algebraic over a perfect field F’, it is
itself perfect: let a € £2, and let g be the minimum polynomial of a over F’; if X? —a is
irreducible in 2[X], then g(X ?) is irreducible in F’[X], but it is not separable, which is a
contradiction.

PROOF OF (b). Let f(X) € F'[X], say, f(X) = ;a; X', a; € F'. For some m, the

p

polynomial ), a; " X' has coefficients in F , and therefore has a root o« € £2. As £2 is

perfect, we can write « = B?" with 8 € £2. Now

B = (3, ap) =3 ol =0,
and so B is aroot of f. 0

NOTES In most expositions of the proof, which is credited to E. Artin, one lets £, = §2, E, =
(E1)1, - - ., and shows that |_J E; is algebraically closed (see Dummit and Foote 1991, 13.4).

(Non)uniqueness of algebraic closures

THEOREM 6.6 (*) Let §2 be an algebraic closure of F, and let E be an algebraic extension
of F. There exists an F-homomorphism E — §2, and, if E is also an algebraic closure of
F, then every such homomorphism is an isomorphism.

PROOF. Suppose first that E is countably generated over F, i.e., E = Flay,....,0p,...].
Then we can extend the inclusion map F — £2 to F o] (map «; to any root of its minimal
polynomial in £2), then to F o1, 2], and so on (see[2.2).

In the uncountable case, we use Zorn’s lemma. Let S be the set of pairs (M, @) with
M afield F C M C E and ¢ps an F-homomorphism M — §2. Write (M, @) < (N, ¢n)
if M C N and on|M = ¢pr. This makes S into a partially ordered set. Let 7 be a
totally ordered subset of S. Then M’ = | Js7 M is a subfield of E, and we can define a
homomorphism ¢’: M’ — §2 by requiring that ¢’ (x) = @ (x) if x € M. The pair (M, ¢")
is an upper bound for 7" in S. Hence Zorn’s lemma gives us a maximal element (M, ¢) in
S'. Suppose that M # E. Then there exists an element @ € E, o« ¢ M. Since « is algebraic
over M, we can apply to extend ¢ to M [«], contradicting the maximality of M. Hence
M = E, and the proof of the first statement is complete.

If E is algebraically closed, then every polynomial f € F[X] splits in E[X] and hence
in p(E)[X]. Let @ € £2, and let f(X) be the minimum polynomial of @. Then X —« is
a factor of f(X) in £2[X], but, as we just observed, f(X) splits in ¢(E)[X]. Because of
unique factorization, this implies that o € ¢(E). O

The above proof is a typical application of Zorn’s lemma: once we know how to do
something in a finite (or countable) situation, Zorn’s lemma allows us to do it in general.

5] thank Keith Conrad for pointing out to me that E itself was known to be algebraically closed (Gilmer,
Robert. A Note on the Algebraic Closure of a Field. Amer. Math. Monthly 75 (1968), no. 10, 1101-1102).
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REMARK 6.7 Even for a finite field F, there will exist uncountably many isomorphisms
from one algebraic closure to a second, none of which is to be preferred over any other.
Thus it is (uncountably) sloppy to say that the algebraic closure of F' is unique. All one can
say is that, given two algebraic closures §2, 2’ of F, then, thanks to Zorn’s lemma, there
exists an F-isomorphism £2 — 2.

Separable closures

Let £2 be a field containing F, and let £ be a set of intermediate fields F C E C £2 with the
following property:

(*) for any Eq, E5 € £, there exists an £ € € such that E1, E» C E.

Then E(E) = Jgeg E is a subfield of £2 (and we call | Jg ¢ E a directed union), because
(*) implies that any finite set of elements of E(£) is contained in a common E € £, and
therefore their product, sum, etc., also lie in E ().

We apply this remark to the set of subfields E of §2 that are finite and separable over F'.
As the composite of any two such subfields is again finite and separable over F (cf. [3.14),
we see that the union L of all such E is a subfield of 2. We call L the separable closure
of F in §2 — clearly, it is separable over F and every element of §2 separable over F lies
in L. Moreover, because a separable extension of a separable extension is separable, 2 is
purely inseparable over L.

DEFINITION 6.8 (a) A field £2 is said to be separably closed if every nonconstant separable
polynomial in £2[X] splits in £2.

(b) A field 2 is said to be a separable closure of a subfield F if it is separable and
algebraic over F and it is separably closed.

THEOREM 6.9 (*) (a) Every field has a separable closure.

(b) Let E be a separable algebraic extension of F, and let §2 be a separable algebraic
closure of F. There exists an F-homomorphism E — 2, and, if E is also a separable
closure of F, then every such homomorphism is an isomorphism.

PROOF. Replace “polynomial” with “separable polynomial” in the proofs of the corre-
sponding theorems for algebraic closures. Alternatively, define §2 to be the separable clo-
sure of F' in an algebraic closure, and apply the preceding theorems. O






CHAPTER 7

Infinite Galois Extensions

In this chapter, we make free use of Zorn’s lemma.

Topological groups

DEFINITION 7.1 A set G together with a group structure and a topology is a topological
group if the maps

(g.h)—~gh:GxG — G,
g—>g 1G6—-G

are both continuous.

. grag . .
Let a be an element of a topological group G. Then a;:G —— G is continuous
because it is the composite of

, h h
G £ gy g bl

In fact, it is a homeomorphism with inverse (¢~ !)z. Similarly ag:g + ga and g — g~

are both homeomorphisms. In particular, for any subgroup H of G, the coset aH of H is
open or closed if H is open or closed. As the complement of H in G is a union of such
cosets, this shows that H is closed if it is open, and it is open if it is closed and of finite
index.

Recall that a neighbourhood base for a point x of a topological space X is a set of
neighbourhoods A such that every open subset U of X containing x contains an N from

N.

PROPOSITION 7.2 Let G be a topological group, and let N be a neighbourhood base for
the identity element e of G. Then'

(a) for all Ny, Ny € N, there exists an N’ € N such thate € N’ C N1 N\ Ny;

(b) forall N € N, there exists an N’ € N such that N'N' C N;

(c) forall N € N, there exists an N’ € N such that N' ¢ N~—1;

(d) forall N e N and all g € G, there exists an N’ € N such that N’ C gNg~1;

For subsets S and S’ of G, we set SS” = {ss' |s€ S,s’ € §'},and S~ = {571 |s e S}

89
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(e) forallg € G,{gN | N € N'} is a neighbourhood base for g.

Conversely, if G is a group and N is a nonempty set of subsets of G satisfying (a,b,c,d),
then there is a (unique) topology on G for which (e) holds.

PROOF. If \ is a neighbourhood base at e in a topological group G, then (b), (c), and
(d) are consequences of the continuity of (g,4) — gh, g~ g~ !, and h — ghg™! respec-
tively. Moreover, (a) is a consequence of the definitions and (e) of the fact that g is a
homeomorphism.

Conversely, let N be a nonempty collection of subsets of a group G satisfying the
conditions (a)—(d). Note that (a) implies that e lies in all the N in A/. Define U to be the
collection of subsets U of G such that, for every g € U, there exists an N € N with gN C
U. Clearly, the empty set and G are in I/, and unions of sets in I are in/. Let Uy,U, € U,
and let g € Uy N Us; by definition there exist N1, N, € N with gN1,gN, C U; on applying
(a) we obtain an N’ € N such that gN’ C Uy N Uy, which shows that Uy NU e U. Tt
follows that the elements of I/ are the open sets of a topology on G (and, in fact, the unique
topology for which (e) holds).

We next use (b) and (d) to show that (g,g’) — gg’ is continuous. Note that the sets
g1 N1 x g2 N, form a neighbourhood base for (g1, g2) in G x G. Therefore, given an open
U C G and a pair (g1,g2) such that g;g> € U, we have to find N1, N, € N such that
g1N1g2N> C U. As U is open, there exists an N € N such that g1goN C U. Ap-
ply (b) to obtain an N’ such that NN’ C N; then g1goN'N’ C U. But g1g2N'N’ =
g1(g2N'g5")gaN’, and it remains to apply (d) to obtain an Ny € A such that Ny C
g2N'gy .

Finally, we use (c) and (d) to show that g — g~ is continuous. Given an open U C G
and a g € G such that g~! € U, we have to find an N € NV such that gN Cc U~!. By
definition, there exists an N € A such that g=!N Cc U. Now N~lg Cc U~!, and we use
(c) to obtain an N’ € N’ such that N’g C U™, and (d) to obtain an N” € A such that
gN" cg(g"'N'gycU. o

1

The Krull topology on the Galois group

Recall @D that a finite extension 2 of F' is Galois over F if it is normal and separable, i.e.,
if every irreducible polynomial f € F[X] having a root in §2 has deg f distinct roots in £2.
Similarly, we define an algebraic extension §2 of F' to be Galois over F if it is normal and
separable. Clearly, £2 is Galois over F if and only if it is a union of finite Galois extensions.

PROPOSITION 7.3 If §2 is Galois over F, then it is Galois over any intermediate field M .
PROOF. Let f(X) be an irreducible polynomial in M[X] having a root a in §2. The min-

imum polynomial g(X) of a over F splits into distinct degree-one factors in £2[X]. As f
divides g (in M[X]), it also must split into distinct degree-one factors in £2[X]. 0

PROPOSITION 7.4 Let §2 be a Galois extension of F' and let E be a subfield of §2 contain-
ing F. Then every F-homomorphism E — 2 extends to an F -isomorphism §2 — §2.

PROOF. The same Zorn’s lemma argument as in the proof of Theorem [6.6]shows that every
F-homomorphism E — §2 extends to an F'-homomorphism «: 2 — §2. Leta € §2, and let
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f be its minimum polynomial over F. Then 2 contains exactly deg( /) roots of f, and so
therefore does «(£2). Hence a € «(§2), which shows that « is surjective. o

Let £2 be a Galois extension of F, and let G = Aut(§2/F). For any finite subset S of
£2, let
G(S)={oeG|os=sforalls e S}

PROPOSITION 7.5 There is a unique structure of a topological group on G for which the
sets G(S) form an open neighbourhood base of 1. For this topology, the sets G(S) with S
G -stable form a neighbourhood base of 1 consisting of open normal subgroups.

PROOF. We show that the collection of sets G(S) satisfies (a,b,c,d) of . It satisfies (a)
because G(S1) N G(S2) = G(S1US,). It satisfies (b) and (c) because each set G(S) is a
group. Let S be a finite subset of 2. Then F(S) is a finite extension of F, and so there are
only finitely many F-homomorphisms F(S) — £2. Since 6S = tS if 0| F(S) = t|F(S),
this shows that S = UgeG oS is finite. Now oS = S for all o € G, and it follows that
G(S) is normal in G. Therefore, 6G(S)o~! = G(S) C G(S), which proves (d). It also
proves the second statement. O

The topology on Aut(£2/ F') defined in the proposition is called the Krull topology. We
write Gal(§2/F) for Aut(§2/F) endowed with the Krull topology, and call it the Galois
group of 2/ F.

PROPOSITION 7.6 Let §2 be Galois over F. For any intermediate field E finite and Galois
over F, the map
o o|E:Gal($2/F) — Gal(E/F)

is a continuous surjection (discrete topology on Gal(E/ F)).

PROOF. Leto € Gal(E/F), and regard it as an F'-homomorphism £ — £2. Then o extends
to an F-isomorphism §2 — £2 (see [7.4), which shows that the map is surjective. For any
finite set S of generators of E over F, Gal(E/F) = G(S), which shows that the inverse
image of 1G4 £/ F) is open in G. By homogeneity, the same is true for any element of
Gal(E/F). o

PROPOSITION 7.7 All Galois groups are compact and totally disconnected.>

PROOF. Let G = Gal(£2/F). We first show that G is Hausdorff. If o # 7, theno 17 # 1,
and so it moves some element of £2, i.e., there exists an a € §2 such that o (a) # t(a). For
any S containing a, 0 G(S) and tG(S) are disjoint because their elements act differently
on a. Hence they are disjoint open subsets of G containing o and t respectively.

We next show that G is compact. As we noted above, if S is a finite set stable under G,
then G(S) is a normal subgroup of G, and it has finite index because it is the kernel of

G — Sym(S).

2Following Bourbaki, we require compact spaces to be Hausdorff. A topological space is totally discon-
nected if its connected components are the one-point sets.
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Since every finite set is contained in a stable finite set, the argument in the last paragraph
shows that the map
G — ]‘[ G/G(S)
S finite stable under G

is injective. When we endow [ [ G/G(S) with the product topology, the induced topology
on G is that for which the G(5) form an open neighbourhood base of e, i.e., it is the Krull
topology. According to the Tychonoff theorem, [[G/G(S) is compact, and so it remains
to show that G is closed in the product. For each S; C 52, there are two continuous maps
[1G/G(S) — G/G(S1), namely, the projection onto G/G(S7) and the projection onto
G/G(S,) followed by the quotient map G(S2) — G(S1). Let E(S1,S2) be the closed
subset of [ [ G/ G(S) on which the two maps agree. Then (g, g, E£(S1,52) is closed, and
equals the image of G.

Finally, for each finite set S stable under G, G(S) is a subgroup that is open and hence
closed. Since () G(S) = {1}, this shows that the connected component of G containing
1 is just {1 }. By homogeneity, a similar statement is true for every element of G. o

PROPOSITION 7.8 For any Galois extension 2/ F, QCR/F) — .

PROOF. Every element of §2 . F lies in a finite Galois extension of F, and so this follows
from the surjectivity in Proposition O

ASIDE 7.9 There is a converse to the proposition: every compact totally disconnected group arises
as the Galois group of some Galois extension of fields of characteristic zero (Douady, A., Cohomolo-
gie des groupes compact totalement discontinus (d’apres J. Tate), Séminaire Bourbaki 1959/60, no.
189).

The fundamental theorem of infinite Galois theory

PROPOSITION 7.10 Let £2 be Galois over F, with Galois group G.

(a) The field §2 is Galois over every subfield M containing F; moreover, Gal(£2/ M) is
closed in G, and 204 (2/M) — pr.
(b) For every subgroup H of G, Gal(£2 /2 is the closure of H .

PROOF. (a) The first assertion was proved in (7.3). For each finite subset S C M, G(S) is
an open subgroup of G, and hence it is closed. But Gal(2/M) = (g G(S), and so it
also is closed. The final statement follows from (7.8).

(b) Since Gal(2/2H) contains H and is closed, it certainly contains the closure H of
H. On the other hand, let © € G ~. H. Then 6 G(S) N H = @ for some finite subset S of
£2 which we may assume to be stable under G. Now o G(S) N H = @ implies 0 ¢ HG(S),
and so there exists an o € F(S) that is fixed by H but moved by . This shows that
o ¢ Gal(2/2%), as required. a)

THEOREM 7.11 Let §2 be Galois over F with Galois group G. The maps

Hw— Q7 M Gal(2/M)
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are inverse bijections between the set of closed subgroups of G and the set of intermediate
fields between §2 and F':

{closed subgroups of G} <> {intermediate fields F C M C §2}.

Moreover,

(a) the correspondence is inclusion-reversing: Hy D Hy, <— QH c QH>,

(b) a closed subgroup H of G is open if and only if 2 has finite degree over F, in
which case (G: H) = [ : F];

) cHo ' < oM, ie, 2°H " = 5(Q2H); Gal(R2/oM) = 0 Gal(2/M)o™!;

(d) a closed subgroup H of G is normal if and only if 2% is Galois over F, in which
case Gal(2” /F) ~ G/H.

PROOF. For the first statement, we have to show that H > 2 and M +— Gal(2/M) are
inverse maps.

Let H be a closed subgroup of G. Then §2 is Galois over 2 and Gal(2/2H) = H
(see[7.10).

Let M be an intermediate field. Then Gal(£2/M) is a closed subgroup of G and

QGAER2/M) — M (see (7.10).

(a) We have the obvious implications:
H D> Hy, = Q1 c @2 — Gal(@/21) 5 Gal(2/22),

But Gal(§2/2i) = H; (see.

(b) As we noted earlier, a closed subgroup of finite index in a topological group is
always open. Because G is compact, conversely an open subgroup of G is always of finite
index. Let H be such a subgroup. The map o — o |2H defines a bijection

G/H — Homp (27 ,82)

(apply from which the statement follows.

(c)ForteGanda € 2,70 =a < oto !(0a) = oa. Therefore, Gal(2/oM) =
o Gal(2/M)o~ !, and so 0 Gal(2/M)o~! < oM.

(d) Let H < M. It follows from (c) that H is normal if and only if M is stable under
the action of G. But M is stable under the action of G if and only it is a union of finite
extensions of F stable under G, i.e., of finite Galois extensions of G. We have already
observed that an extension is Galois if and only if it is a union of finite Galois extensions.n

REMARK 7.12 As in the finite case (3.17), we can deduce the following statements.

(a) Let (M;);c7 be a (possibly infinite) family of intermediate fields, and let H; <> M;.
Let [ [M; be the smallest field containing all the M;; then because ﬂie 7 Hi is the largest
(closed) subgroup contained in all the H;,

Gal(2/[1M;) = () Hi.
iel

(b) Let M <> H. The largest (closed) normal subgroup containedin H is N =\, 0 H o1
(cf. GT , and so 2, which is the composite of the fields oM, is the smallest normal
extension of F' containing M.
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EL
PROPOSITION 7.13 Let E and L be field extensions of F con- / \:
tained in some common field. If E/F is Galois, then EL/L and £ L

E/E N L are Galois, and the map
o o|E:Gal(EL/L)— Gal(E/ENL) ENL

is an isomorphism of topological groups. ‘
F

PROOF. The proof that the map is an isomorphism of groups (neglecting the topology) is
the same as in the finite case (3.18)).

We next prove it is continuous. Let Gy = Gal(EL/L) and let G, = Gal(E/E N L).
For any finite set S of elements of £, the inverse image of G»(S) in G1 is G1(S).

Finally, we prove that it is open. An open subgroup of Gal(EL /L) is closed (hence
compact) of finite index; therefore its image in Gal(E/E N L) is compact (hence closed) of
finite index, and hence open. O

COROLLARY 7.14 Let §2 be an algebraically closed field containing F, and let E and L
be as in the proposition. If p:E — §2 and 0:L — §2 are F-homomorphisms such that
p|ENL =o|ENL, then there exists an F-homomorphism t: EL — §2 such that t|E = p
andt|L =o0.

PROOF. According to (7.4), o extends to an F-homomorphism s: EL — £2. As s|E N
L = p|EN L, we can write s|E = poe¢ for some ¢ € Gal(E/E N L). According to the

proposition, there exists a unique e € Gal(EL/L) such that e|E = ¢. Define t = soe™! .o

EXAMPLE 7.15 Let §2 be an algebraic closure of a finite field F,. Then G = Gal(£2/F )
contains a canonical Frobenius element, ¢ = (a — a?), and it is generated by it as a topo-
logical group, i.e., G is the closure of {¢). Endow Z with the topology for which the groups
nZ,n > 1, form a fundamental system of neighbourhoods of 0. Thus two integers are close
if their difference is divisible by a large integer.

As for any topological group, we can complete Z for this topology. A Cauchy sequence
in Z is a sequence (a;)i>1, a; € Z, satisfying the following condition: for all n > 1, there
exists an N such thata; =a; modn fori,j > N. Call a Cauchy sequence in Z trivial if
ai —> 0 asi — oo, 1.e., if for all n > 1, there exists an N such that a; = 0 mod n for all
i > N. The Cauchy sequences form a commutative group, and the trivial Cauchy sequences
form a subgroup. We define Z to be the quotient of the first group by the second. It has a
ring structure, and the map sending m € Z to the constant sequence m,m,m, ... identifies
Z with a subgroup of Z.

Let « € Z be represented by the Cauchy sequence (a;). The restriction of o to Fpn
has order n. Therefore (o|F ,»)% is independent of i provided it is sufficiently large, and
we can define 0% € Gal(£2/F ) to be such that, for each n, 6%|F ,n = (0|Fpn)% for all i
sufficiently large (depending on ). The map o > o“: 7 — Gal(2/F p) is an isomorphism.

The group 7 is uncountable. To most analysts, it is a little weird—its connected com-
ponents are one-point sets. To number theorists it will seem quite natural — the Chinese
remainder theorem implies that it is isomorphic to [ | P prime Zp where Zp is the ring of
p-adic integers.
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EXAMPLE 7.16 Let £2 be the algebraic closure of Q in C; then Gal(£2/Q) is one of the
most basic, and intractable, objects in mathematics. It is expected that every finite group
occurs as a quotient of it, and it certainly has S, as a quotient group for every n (and every
sporadic simple group, and every...) — cf. . We do understand Gal(F2/F) where
F C C is a finite extension of Q and F® is the union of all finite abelian extensions of F
contained in C. For example, Gal(Q**/Q) ~ 7. (This is abelian class field theory — see
my notes Class Field Theory.)

ASIDE 7.17 A simple Galois correspondence is a system consisting of two partially ordered sets
P and Q and order reversing maps f: P — Q and g: Q — P such that gf(p) > p forall pe P

and fg(q) > ¢ for all ¢ € Q. Then fgf = f, because fg(fp) > fp and gf(p) > p implies
f(gfp) < f(p) forall p € P. Similarly, g fg = g, and it follows that f and g define a one-to-one

correspondence between the sets g(Q) and f(P).

From a Galois extension £2 of F' we get a simple Galois correspondence by taking P to be the
set of subgroups of Gal(£2/F) and Q to be the set of subsets of £2, and by setting f(H) = 2 and
g(S) = G(S). Thus, to prove the one-to-one correspondence in the fundamental theorem, it suffices
to identify the closed subgroups as exactly those in the image of g and the intermediate fields as
exactly those in the image of /. This is accomplished by (7.10).

Galois groups as inverse limits

DEFINITION 7.18 A partial ordering < on a set / is said to be directed, and the pair (/, <)
is called a directed set, if for all i, j € I there exists a k € [ such thati,j <k.

DEFINITION 7.19 Let (I, <) be a directed set, and let C be a category (for example, the
category of groups and homomorphisms, or the category of topological groups and contin-
uous homomorphisms).

(a) Aninverse system in C indexed by (/, <) is a family (A4;);e; of objects of C together
with a family (pij :Aj — A;)i<; of morphisms such that pf =idy, and pl.j opﬁ? = plk
alli < j <k.

(b) An object A of C together with a family (p;: A — A;) ;e of morphisms satisfying
pl.] op;j = p; alli < j is said to be an inverse limit of the system in (a) if it has
the following universal property: for any other object B and family (g;: B — A;) of
morphisms such pij ogqj =gq; all i < j, there exists a unique morphism r: B — A
such that pjor =g; for j,

A

Clearly, the inverse limit (if it exists), is uniquely determined by this condition up to a
unique isomorphism. We denote it 1<i_1_n(A,- , pij ), or just 1<i_111A,-.
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EXAMPLE 7.20 Let (G, pl.j:Gj — G;) be an inverse system of groups. Let
G={g)e]]Gi|p/(g))=gialli=j}

and let p;: G — G; be the projection map. Then pij o p; = pi is just the equation pij (gj)=
gi. Let (H,g;) be a second family such that pij og; = g;. The image of the homomorphism

h> (qi():H - [ [ Gi

is contained in G, and this is the unique homomorphism H — G carrying ¢; to p;. Hence
(G. pi) =1im(G;. p;).

EXAMPLE 7.21 Let (Gi,pij:Gj — Gj) be an inverse system of topological groups and

continuous homomorphisms. When endowed with the product topology, [ [ G; becomes a

topological group .
G={(@g)e[]Gilp/(g)=gialli=j}

and G becomes a topological subgroup with the subspace topology. The projection maps
pi are continuous. Let H be (H,q;) be a second family such that pl.J oqj =¢qi. The
homomorphism

h> (qi(h):H - [ [ Gi

is continuous because its composites with projection maps are continuous (universal prop-
erty of the product). Therefore H — G is continuous, and this shows that (G, p;) =

LiLn(Gi,pi])-

EXAMPLE 7.22 Let (Gj, pij :G; — G;) be an inverse system of finite groups, and regard
it as an inverse system of topological groups by giving each G; the discrete topology. A
topological group G arising as an inverse limit of such a system is said to be profinite’.

If (x;) ¢ G, say pi°(xj,) # Xi,, then

0
GN{(gj) | gjo=Xjor &io=Xigy =9.

As the second set is an open neighbourhood of (x;), this shows that G is closed in [ [G;. By
Tychonoff’s theorem, [ [G; is compact, and so G is also compact. The map p;:G — G; is
continuous, and its kernel U; is an open subgroup of finite index in G (hence also closed).
As (\U; = {e}, the connected component of G containing e is just {e}. By homogeneity,
the same is true for every point of G: the connected components of G are the one-point sets
— G is totally disconnected.

We have shown that a profinite group is compact and totally disconnected, and it is an
exercise to prove the converse.*

EXAMPLE 7.23 Let §2 be a Galois extension of F'. The composite of two finite Galois
extensions of in §2 is again a finite Galois extension, and so the finite Galois subextensions
of §2 form a directed set /. For each E in I we have a finite group Gal(E/ F'), and for each

3 An inverse limit is also called a projective limit. Thus a profinite group is a projective limit of finite
groups.
4More precisely, it is Exercise 3 of §7 of Chapter 3 of Bourbaki’s General Topology.
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E C E’ we have a restriction homomorphism pg/:Gal(E’/F) — Gal(E/F). In this way,
we get an inverse system of finite groups (Gal(E/ F), pg ") indexed by 1.

For each E, there is a restriction homomorphism pg:Gal(£2/F) — Gal(E/F) and,
because of the universal property of inverse limits, these maps define a homomorphism

Gal($2/ F) — limGal(E/ F).

This map is an isomorphism of topological groups. This is a restatement of what we showed
in the proof of (7.7).

Nonopen subgroups of finite index

We apply Zorn’s lemma to construct a nonopen subgroup of finite index in Gal(Q* /Q).’

LEMMA 7.24 Let V be an infinite dimensional vector space. For all n > 1, there exists a
subspace V;, of V such that V/ V,, has dimension n.

PROOF. Zorn’s lemma shows that V' contains maximal linearly independent subsets, and
then the usual argument shows that such a subset spans V, i.e., is a basis. Choose a basis,
and take V, to be the subspace spanned by the set obtained by omitting 7 elements from the
basis. o

PROPOSITION 7.25 The group Gal(Q /Q) has nonopen normal subgroups of index 2" for
alln > 1.

PROOF. Let E be the subfield Q[+ —1, V2,..., /D--..] of C. For each prime p,

Gal(Q[V-1,v2,..../7l/Q)

is a product of copies of Z /27 indexed by the set {primes < p} U{oo} (apply see also
[5.29pb). Therefore,

Gal(E/Q) = l(iLnGal(Q[\/—_l, V2.....J7)/Q)

is a direct product of copies of Z/27Z indexed by the primes [/ of Q (including / = oc0)
endowed with the product topology. Let G = Gal(E/Q), and let

H ={(a;) € G | a; = 0 for all but finitely many /}.

This is a subgroup of G (in fact, it is a direct sum of copies of Z /27 indexed by the primes
of ), and it is dense in G because® clearly every open subset of G contains an element of
H. We can regard G/H as vector space over [F» and apply the lemma to obtain subgroups
G, of index 2" in G containing H. If G, is open in G, then it is closed, which contradicts
the fact that H is dense. Therefore, G, is not open, and its inverse image in Gal(Q/Q) is
the desired subgroup. O

SContrast: “... it is not known, even when G = Gal(Q/Q), whether every subgroup of finite index in
G is open; this is one of a number of related unsolved problems, all of which appear to be very difficult.”
Swinnerton-Dyer, H. P. F., A brief guide to algebraic number theory. Cambridge, 2001, p133.

Better, let (a 1) € G; then the sequence

(0,0,0,0,...), (a¢s0,a2,0,0,...), (¢x0,a2,a3,0,...),...

in H converges to (a;).
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ASIDE 7.26 Let G = Gal(Q*/Q). We showed in the above proof that there is a closed normal sub-
group N = Gal(Q"/E) of G such that G/N is an uncountable vector space over F,. Let (G/N)V
be the dual of this vector space (also uncountable). Every nonzero f € (G/N)" defines a surjective
map G — F, whose kernel is a subgroup of index 2 in G. These subgroups are distinct, and so G
has uncountably many subgroups of index 2. Only countably many of them are open because @ has
only countably many quadratic extensions in a fixed algebraic closure.

ASIDE 7.27 Let G be a profinite group that is finitely generated as a topological group. It is a
difficult theorem, only recently proved, that every subgroup of finite index in G is open (Nikolov,
Nikolay; Segal, Dan. On finitely generated profinite groups. I. Strong completeness and uniform
bounds. Ann. of Math. (2) 165 (2007), no. 1, 171-238.)

ASIDE 7.28 Itis necessary to assume the axiom of choice in order to have a sensible Galois theory
of infinite extensions. For example, it is consistent with Zermelo-Fraenkel set theory that there be
an algebraic closure L of the QQ such that Gal(L/Q) is trivial. See: Hodges, Wilfrid, Liuchli’s
algebraic closure of Q. Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 2, 289-297.



CHAPTER 8

Transcendental Extensions

In this chapter we consider fields £2 D F with £2 much bigger than F. For example, we
could have C D Q.

Algebraic independence

Elements o/, ...,a, of §2 give rise to an F-homomorphism
e flag,...,an): F[X1,...,Xn] = £2.

If the kernel of this homomorphism is zero, then the «; are said to be algebraically inde-
pendent over F, and otherwise, they are algebraically dependent over F. Thus, the o;
are algebraically dependent over F if there exists a nonzero polynomial f(X1y,...,Xy) €
F[X1,...,Xy] such that f(«q,...,a5) = 0, and they are algebraically independent if

i, =0alliy, ... i,.

.....

Note the similarity with linear independence. In fact, if f is required to be homogeneous
of degree 1, then the definition becomes that of linear independence.

EXAMPLE 8.1 (a) A single element « is algebraically independent over F if and only if it
is transcendental over F.

(b) The complex numbers 7 and e are almost certainly algebraically independent over
Q, but this has not been proved.

An infinite set A is algebraically independent over F if every finite subset of A is
algebraically independent; otherwise, it is algebraically dependent over F .
REMARK 8.2 If ay,...,ap are algebraically independent over F, then
f(X1,0 Xn) = flo1,.0n): F[X1,..., Xn] = Flog, ..., 0]

is an injection, and hence an isomorphism. This isomorphism then extends to the fields of
fractions,
Xi—> o F(X1,...,Xn) > F(ay,...,05)

In this case, F (a1, ...,0t,) is called a pure transcendental extension of F. The polynomial
fX)=X"—a X" o (=)
has Galois group S, over F(aq,...,0) (5.36).

99
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LEMMA 8.3 Lety € §2 and let A C §2. The following conditions are equivalent:

(a) y is algebraic over F(A);

(b) there exist B1,...,Bn € F(A) such that y" 4+ B1y" 1 4+.-. 4+ B, =0;

(c) there exist Bo,P1.....Bn € F[A], not all 0, such that Boy™ + B1y" L 4+ Bn =0;

(d) there exists an f(X1,...,Xm.,Y) € F[X1...,Xm,Y] and ay,...,0, € A such that
flat,...,am,Y)#0but f(ay,...,0m,y) =0.

PROOF. (a) = (b) = (c) = (a) are obvious.
(d) = (c¢). Write f(X1,...,Xm,Y) as a polynomial in ¥ with coefficients in the ring
Fl(X1,..., Xml, _
(X1, X, Y) =D fi(Xq,.. . X)) YL

Then (c) holds with 8; = fi(a1,...,0m).

(¢)= (d). The §; in (c) can be expressed as polynomials in a finite number of elements
ai,...,0, of A, say, Bi = fi(a1,...,a,) with f; € F[X1,..., Xm]. Then (d) holds with
f = fiXe, o, X)) Y :

DEFINITION 8.4 When y satisfies the equivalent conditions of Lemma 8.3} it is said to be
algebraically dependent on A (over F). A set B is algebraically dependent on A if each
element of B is algebraically dependent on A.

The theory in the remainder of this chapter is logically very similar to a part of linear
algebra. It is useful to keep the following correspondences in mind:

Linear algebra Transcendence
linearly independent algebraically independent
A C span(B) A algebraically dependent on B
basis transcendence basis
dimension transcendence degree

Transcendence bases

THEOREM 8.5 (FUNDAMENTAL RESULT) Let A = {«,....,anm} and B = {f,..., Bn} be
two subsets of §2. Assume

(a) A is algebraically independent (over F');
(b) A is algebraically dependent on B (over F).

Thenm <n.

We first prove two lemmas.

LEMMA 8.6 (THE EXCHANGE PROPERTY) Let {«1,...,a} be a subset of §2; if B is al-
gebraically dependent on {«1,...,0,} but not on {«y,...,am—1}, then oy, is algebraically
dependent on {ay,...,0m—1, B}.
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PROOF. Because f is algebraically dependent on {«y,...,®,}, there exists a polynomial
f(X1,..., Xm,Y) with coefficients in F such that

floq,om,Y)#0,  f(og,...,am,B)=0.

Write f as a polynomial in X,

i

and observe that, because f(o,...,an,Y) # 0, at least one of the polynomials
ai(a@1,...,0m—1,Y),
say aj,, is not the zero polynomial. Because f is not algebraically dependent on
{@1, ., 0m—1},

aio (a1, ...,o0m—1, B) # 0. Therefore, f(a1,....,0m—1,Xm,B) # 0. Since f(a1,....,am,B) =
0, this shows that «, is algebraically dependent on {«1, ..., 0m—1, B}. o

LEMMA 8.7 (TRANSITIVITY OF ALGEBRAIC DEPENDENCE) IfC is algebraically depen-

dent on B, and B is algebraically dependent on A, then C is algebraically dependent on
A.

PROOF. The argument in the proof of Proposition [I.44] shows that if y is algebraic over a

field E which is algebraic over a field F, then y is algebraic over F (if ay,...,a, are the
coefficients of the minimum polynomial of y over E, then the field Flay,...,an,y] has
finite degree over F'). Apply this with E = F(AU B) and F = F(A). o

PROOF. (OF THEOREM [8.5)) Let k be the number of elements that A and B have in com-
mon. If k = m, then A C B, and certainly m < n. Suppose that k < m, and write B =

{1, .oy 0, Brs1s---» B} Since g 41 is algebraically dependent on {1, ..., 0k, Br 415> Bn}
but not on {a1, ..., }, there will be a B;, k +1 < j < n, such that oy 4, is algebraically
dependent on {o, ...,k Br+1, ..., B} but not

{061, ...,Otk,ﬂk_H, ...,,3]'_1}.
The exchange lemma then shows that §; is algebraically dependent on

def
By = BU{ag11)~{B;}
Therefore B is algebraically dependent on Bj, and so A is algebraically dependent on By
(by[.7). If k + 1 < m, repeat the argument with A and B;. Eventually we’ll achieve k = m,
and m <n. 8]

DEFINITION 8.8 A transcendence basis for §2 over F is an algebraically independent set
A such that £2 is algebraic over F(A).

LEMMA 8.9 If §2 is algebraic over F(A), and A is minimal among subsets of §2 with this
property, then it is a transcendence basis for §2 over F.
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PROOF. If A is not algebraically independent, then there is an o € A that is algebraically
dependent on A . {e}. It follows from Lemma 8.7 that £2 is algebraic over F(A \ {a}). o

THEOREM 8.10 If there is a finite subset A C §2 such that §2 is algebraic over F(A), then
£2 has a finite transcendence basis over F'. Moreover, every transcendence basis is finite,
and they all have the same number of elements.

PROOF. In fact, any minimal subset A’ of A such that £2 is algebraic over F(A") will be a
transcendence basis. The second statement follows from Theorem [8.3] O

LEMMA 8.11 Suppose that A is algebraically independent, but that AU {B} is algebraically
dependent. Then B is algebraic over F(A).

PROOF. The hypothesis is that there exists a nonzero polynomial
f(X1, ... Xn,Y) e F[X1,....Xn. Y]

such that f(«q,...,an,8) = 0, some distinct aq,...,a, € A. Because A is algebraically
independent, Y does occur in f. Therefore

As go # 0 and the «; are algebraically independent, go(o1,...,&,) # 0. Because B is a root
of
f = g()(Otl,...,Oln)Xm +g1(a17"'7aﬂ)Xm_1 + - +gm(a1, --~,an),

it is algebraic over F(ay,...,a5) C F(A). a)

PROPOSITION 8.12 Every maximal algebraically independent subset of §2 is a transcen-
dence basis for 2 over F.

PROOF. We have to prove that 2 is algebraic over F(A) if A is maximal among alge-
braically independent subsets. But the maximality implies that, for every B € 2 \ A4,
AU{p} is algebraically dependent, and so the lemma shows that § is algebraic over F(A).no

Recall that (except in §7), we use an asterisk to signal a result depending on Zorn’s
lemma.

THEOREM 8.13 (*) Every algebraically independent subset of §2 is contained in a tran-
scendence basis for §2 over F ; in particular, transcendence bases exist.

PROOF. Let S be the set of algebraically independent subsets of £2 containing the given
set. We can partially order it by inclusion. Let T be a totally ordered subset of S, and let
B =|J{A| AeT}. Iclaimthat B € S, i.e., that B is algebraically independent. If not,
there exists a finite subset B’ of B that is not algebraically independent. But such a subset
will be contained in one of the sets in 7', which is a contradiction. Now Zorn’s lemma shows
that there exists a maximal algebraically independent containing S, which Proposition [8.12]
shows to be a transcendence basis for §2 over F. O
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It is possible to show that any two (possibly infinite) transcendence bases for §2 over F
have the same cardinality. The cardinality of a transcendence basis for £2 over F is called
the transcendence degree of §2 over F'. For example, the pure transcendental extension
F(X1,...,Xy) has transcendence degree n over F.

EXAMPLE 8.14 Let p1,..., pn be the elementary symmetric polynomials in X1,..., Xp.
The field F(X1,...,Xy) is algebraic over F(p1,...,pn), and so {p1, p2,..., pn} contains a
transcendence basis for F(X1,...,X,). Because F(X1,..., X,) has transcendence degree
n, the p;’s must themselves be a transcendence basis.

EXAMPLE 8.15 Let £2 be the field of meromorphic functions on a compact complex man-
ifold M.

(a) The only meromorphic functions on the Riemann sphere are the rational functions
in z. Hence, in this case, §2 is a pure transcendental extension of C of transcendence degree
1.

(b) If M is a Riemann surface, then the transcendence degree of §2 over C is 1, and §2
is a pure transcendental extension of C <= M is isomorphic to the Riemann sphere

(c) If M has complex dimension #n, then the transcendence degree is < n, with equality
holding if M is embeddable in some projective space.

PROPOSITION 8.16 Any two algebraically closed fields with the same transcendence de-
gree over I are F -isomorphic.

PROOF. Choose transcendence bases A and A’ for the two fields. By assumption, there
exists a bijection A — A’, which extends uniquely to an F-isomorphism F[A] — F[A’], and
hence to an F-isomorphism of the fields of fractions F(A) — F(A’). Use this isomorphism
to identify F(A) with F(A’). Then the two fields in question are algebraic closures of the
same field, and hence are isomorphic (Theorem [6.6). o

REMARK 8.17 Any two algebraically closed fields with the same uncountable cardinality
and the same characteristic are isomorphic. The idea of the proof is as follows. Let F' and
F’ be the prime subfields of £2 and £2’; we can identify F' with F’. Then show that when £2
is uncountable, the cardinality of £2 is the same as the cardinality of a transcendence basis
over F. Finally, apply the proposition.

REMARK 8.18 What are the automorphisms of C? There are only two continuous auto-
morphisms (cf. Exercise [A-8and solution). If we assume Zorn’s lemma, then it is easy to
construct many: choose any transcendence basis A for C over Q, and choose any permu-
tation o of A; then « defines an isomorphism Q(A) — Q(A) that can be extended to an
automorphism of C. Without Zorn’s lemma, there are only two, because the noncontinuous
automorphisms are nonmeasurable,' and it is known that the Zorn’s lemma is required to
construct nonmeasurable functions.?

LA fairly elementary theorem of G. Mackey says that measurable homomorphisms of Lie groups are con-
tinuous (see David Witte Morris, Introduction to Arithmetic Groups, http://people.uleth.ca/"dave.morris/, Ap-
pendix 1.C).

2«We show that the existence of a non-Lebesgue measurable set cannot be proved in Zermelo-Frankel set
theory (ZF) if use of the axiom of choice is disallowed...” R. Solovay, Ann. of Math., 92 (1970), 1-56.
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Liiroth’s theorem

THEOREM 8.19 (LUROTH’S THEOREM) Any subfield E of F(X) containing F but not
equal to F is a pure transcendental extension of F .

PROOF. Jacobson 1964, IV 4, p157. o

REMARK 8.20 This fails when there is more than one variable — see Zariski’s example
(footnote to Remark@ and Swan’s example (Remark . The best true statement is the
following: if [F(X,Y): E] < oo and F is algebraically closed of characteristic zero, then E
is a pure transcendental extension of F' (Theorem of Zariski, 1958).

Separating transcendence bases

Let £ D F be fields with E finitely generated over F. A subset {x1,...,x47} of E is a
separating transcendence basis for E / F if it is algebraically independent over F and E is
a finite separable extension of F(xq,...,x4).

THEOREM 8.21 If F is perfect, then every finitely generated extension E of F admits a
separating transcendence basis over F'.

PROOF. If F has characteristic zero, then every transcendence basis is separating, and so
the statement becomes that of (8.10). Thus, we may assume F has characteristic p # 0.
Because F is perfect, every polynomialin X7, ..., X with coefficients in F is a pth power
in F[X1,...,Xu]:

. 1 3 p
L np inp ? 151 in
Y aiyiy X)X P = (§ al.; X X,,)

Let E = F(x1,...,Xxp), and assume n > d + 1 where d is the transcendence degree
of E over F. After renumbering, we may suppose that x1,...,x, are algebraically in-
dependent (8.9). Then f(x1....,xz41) = 0 for some nonzero irreducible polynomial
f(X1,...,X441) with coefficients in F. Not all df/dX; are zero, for otherwise f would
be a polynomial in X7,.... X 5 41> Which implies that it is a pth power. After renum-
bering, we may suppose that df/0X;41 # 0. Then F(x1,...,Xg541,Xg+2) is algebraic
over F(x1,...,xg) and x4z is separable over F(x1,...,xg), and so, by the primitive el-
ement theorem (5.1)), there is an element y such that F(x1,...,xz42) = F(x1,...,x4, ).
Thus E is generated by n — 1 elements (as a field containing F). After repeating the pro-
cess, possibly several times, we will have E = F(z1,...,z44+1) With zz41 separable over

F(zy,....zg). o

ASIDE 8.22 In fact, we showed that E admits a separating transcendence basis with d + 1 ele-
ments where d is the transcendence degree. This has the following geometric interpretation: every
irreducible algebraic variety of dimension d over a perfect field F is birationally equivalent with a
hypersurface H in A4+ for which the projection (a1, ...,ag4+1) — (ai,...,aq) realizes F(H) as
a finite separable extension of F(A?) (see my notes on Algebraic Geometry).



Transcendental Galois theory 105

Transcendental Galois theory

THEOREM 8.23 (*) Let §2 be a separably closed field and let F' be a perfect subfield of 2.
Ifa € 82 is fixed by all F -automorphisms of 2, thena € F, i.e., 2¢ = F.

PROOF. Let o € 2\ F. If « is transcendental over F, then it is part of a transcendence
basis A for £2 over F (see [8.13). Choose an automorphism o of A4 such that o () # «.
Then o extends to an F-automorphism of F(A), which extends to an F-automorphism of
the separable closure §2 of F(A) (seel6.9).

If « is algebraic over F, then by infinite Galois theory there exists an F'-automorphism
o of the separable closure of F in §2 such that o (o) # «. As before, o can be extended to
an F-automorphism of 2. o

Let £2 D F be fields and let G = Aut(§2/F). For any finite subset S of £2, let
G(S)={oeG|os=sforallseS}.

Then, as in §7, the subgroups G (S) of G form a neighbourhood base for a unique topology
on G, which we again call the Krull topology. The same argument as in §7 shows that this
topology is Hausdorff (but it is not necessarily compact).

THEOREM 8.24 Let 2 O F be fields such that 2° = F, G = Aut(2/ F).
(a) For every finite extension E of F in 2, 2A"82/E) = |
(b) The maps
Hw— Q7 M Au(Q2/M) (3)

are inverse bijections between the set of compact subgroups of G and the set of intermediate
fields over which 2 is Galois (possibly infinite):

Galois

{compact subgroups of G} <> {fields M suchthat F C M C

(c) If there exists an M finitely generated over F such that §2 is Galois over M, then G
is locally compact, and under (3):

finitely generated Galois
M

{open compact subgroups of G } s {fields M such that F C C

(d) Let H be a subgroup of G, and let M = Q2H  Then the algebraic closure My of M
is Galois over M. If moreover H = Aut(§2/M), then Aut(§2/M;) is a normal subgroup
of H, and o + o|My maps H/Aut(§2/M;) isomorphically onto a dense subgroup of
Aut(M/M).

PROOF. See 6.3 of Shimura, Goro., Introduction to the arithmetic theory of automorphic
functions. Princeton, 1971. o






APPENDIX A

Review Exercises

A-1 Let p be a prime number, and let m and n be positive integers.

(a) Give necessary and sufficient conditions on m and n for I ,» to have a subfield iso-
morphic with [F,m. Prove your answer.

(b) If there is such a subfield, how many subfields isomorphic with IF,» are there, and
why?

A-2 Show that the Galois group of the splitting field F of X3 —7 over Q is isomorphic
to S3, and exhibit the fields between Q and F. Which of the fields between (Q and F are
normal over Q?

A-3 Prove that the two fields Q[+/7] and Q[+/11] are not isomorphic.

A-4  (a) Prove that the multiplicative group of all nonzero elements in a finite field is
cyclic.

(b) Construct explicitly a field of order 9, and exhibit a generator for its multiplicative
group.

A-5 Let X be transcendental over a field F, and let E be a subfield of F(X) properly
containing F. Prove that X is algebraic over E.

A-6 Prove as directly as you can that if  is a primitive pth root of 1, p prime, then the
Galois group of Q[¢] over Q is cyclic of order p — 1.

A-7 Let G be the Galois group of the polynomial X° —2 over Q.

(a) Determine the order of G.
(b) Determine whether G is abelian.
(¢) Determine whether G is solvable.

A-8 (a) Show that every field homomorphism from R to R is bijective.
(b) Prove that C is isomorphic to infinitely many different subfields of itself.

A-9 Let F be a field with 16 elements. How many roots in F' does each of the following
polynomials have? X3 x40 xb 1 xV7 1.
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A-10 Find the degree of a splitting field of the polynomial (X3 —5)(X 3 —7) over Q.
A-11 Find the Galois group of the polynomial X ® —5 over each of the fields Q and R.

A-12 The coefficients of a polynomial f(X) are algebraic over a field F'. Show that f(X)
divides some nonzero polynomial g(X) with coefficients in F.

A-13 Let f(X) be a polynomial in F[X] of degree n, and let E be a splitting field of f.
Show that [E: F] divides n!.

A-14 Find a primitive element for the field Q[v/3, v/7] over @, i.e., an element such that
QV3,V7] = Qla].

A-15 Let G be the Galois group of (X —2)(X3 —5) over Q.

(a) Give a set of generators for G, as well as a set of defining relations.
(b) What is the structure of G as an abstract group (is it cyclic, dihedral, alternating,
symmetric, etc.)?

A-16 Let F be a finite field of characteristic # 2. Prove that X2 = —1 has a solution in
Fifandonlyif |F|=1 mod4.

A-17 Let E be the splitting field over Q of (X? —2)(X? —5)(X? —7). Find an element
« in E such that £ = Q[a]. (You must prove that £ = Q[«].)

A-18 Let E be a Galois extension of F with Galois group S;, n > 1 not prime. Let H; be
the subgroup of S, of elements fixing 1, and let H, be the subgroup generated by the cycle
(123...n). Let E; = EHi i =1,2. Find the degrees of E1, E», E1 N E», and E1 E, over
F. Show that there exists a field M suchthat F C M C E», M # F, M # E», but that no
such field exists for E.

A-19 Let ¢ be a primitive 12th root of 1 over Q. How many fields are there strictly
between Q[¢3] and Q[{].

A-20 For the polynomial X 3 — 3, find explicitly its splitting field over Q and elements that
generate its Galois group.

A-21 Let E =Q[¢], &% =1, ¢ # 1. Show that i ¢ E, and that if L = E[i], then —1 is a
norm from L to E. Here i = +/—1.

A-22 Let E be an extension field of F, and let £2 be an algebraic closure of E. Let
01,...,0n be distinct F-isomorphisms £ — £2.

(a) Show that 01, ...,0, are linearly dependent over £2.

(b) Show that [E: F] > m.

(c) Let F have characteristic p > 0, and let L be a subfield of 2 containing E and
such that a? € E for all a € L. Show that each g; has a unique extension to a
homomorphism o/: L — £2.



109

A-23 Identify the Galois group of the splitting field F of X* — 3 over Q. Determine the
number of quadratic subfields.

A-24 Let F be a subfield of a finite field E. Prove that the trace map 7" = Trg,r and the
normmap N = Nmg, g of E over F both map E onto F. (You may quote basic properties
of finite fields and the trace and norm.)

A-25 Prove or disprove by counterexample.

(a) If L/ F is an extension of fields of degree 2, then there is an automorphism o of L
such that F is the fixed field of o.
(b) The same as (a) except that L is also given to be finite.

A-26 A finite Galois extension L of a field K has degree 8100. Show that there is a field
F with K C F C L such that [F: K] = 100.

A-27 An algebraic extension L of a field K of characteristic 0 is generated by an element
6 that is a root of both of the polynomials X3 —1 and X* 4 X2 + 1. Given that L # K,
find the minimum polynomial of 6.

A-28 Let F/Q be a Galois extension of degree 3", n > 1. Prove that there is a chain of
fields
@=FOCF1C-~-Fn=F

such that forevery i,0 <i <n—1, [Fi+1: F;] = 3.

A-29 Let L be the splitting field over Q of an equation of degree 5 with distinct roots.
Suppose that L has an automorphism that fixes three of these roots while interchanging the
other two and also an automorphism « # 1 of order 5.

(a) Prove that the group of automorphisms of L is the symmetric group on 5 elements.
(b) How many proper subfields of L are normal extensions of Q? For each such field F,
what is [F:Q]?

A-30 If L/K is a separable algebraic field extension of finite degree d, show that the
number of fields between K and L is at most 2¢".

A-31 Let K be the splitting field over Q of X> — 1. Describe the Galois group Gal(K /Q)

of K over QQ, and show that K has exactly one subfield of degree 2 over QQ, namely, Q[ +
%, ¢ # 1 aroot of X° — 1. Find the minimum polynomial of ¢ 4 ¢# over Q. Find Gal(L/Q)
when L is the splitting field over Q of

@) (X2-=5)(X°—1);
(b) (XZ2+3)(X>-1).

A-32 Let £21 and §2; be algebraically closed fields of transcendence degree 5 over Q, and
let a: 21 — £25 be a homomorphism (in particular, e(1) = 1). Show that « is a bijection.
(State carefully any theorems you use.)
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A-33 Find the group of Q-automorphisms of the field k = Q[+ —3, v/ -2].

A-34 Prove that the polynomial f(X) = X3 —5 is irreducible over the field Q[+/7]. If
L is the splitting field of f(X) over Q[+/7], prove that the Galois group of L/Q[+/7] is
isomorphic to S3. Prove that there must exist a subfield K of L such that the Galois group
of L/K is cyclic of order 3.

A-35 Identify the Galois group G of the polynomial f(X) = X°—6X%4 3 over F, when
(a) F = Q and when (b) F = F,. In each case, if E is the splitting field of f(X) over F,
determine how many fields K there are such that £ D K D F with [K: F] = 2.

A-36 Let K be a field of characteristic p, say with p” elements, and let € be the au-
tomorphism of K that maps every element to its pth power. Show that there exists an
automorphism « of K such that 8o = 1 if and only if 7 is odd.

A-37 Describe the splitting field and Galois group, over Q, of the polynomial X> — 9.

A-38 Suppose that E is a Galois field extension of a field F such that [E: F] = 53 (43)2.
Prove that there exist fields K7 and K; lying strictly between F and E with the following
properties: (i) each K; is a Galois extension of F; (ii) K1 N K» = F; and (iii) K1 K> = E.

A-39 Let F' =, for some prime p. Let m be a positive integer not divisible by p, and
let K be the splitting field of X" — 1. Find [K: F] and prove that your answer is correct.

A-40 Let F be a field of 81 elements. For each of the following polynomials g(X),
determine the number of roots of g(X) that liein F: X830 —1, X8 —1, X8 1.

A-41 Describe the Galois group of the polynomial X® —7 over Q.

A-42 Let K be a field of characteristic p > 0 and let F = K(u, v) be a field extension of
degree p? such that u? € K and v” € K. Prove that K is not finite, that F is not a simple
extension of K, and that there exist infinitely many intermediate fields F D L D K.

A-43 Find the splitting field and Galois group of the polynomial X3 —5 over the field
Q2]

A-44 For any prime p, find the Galois group over Q of the polynomial X> —5p*X + p.

A-45 Factorize X* + 1 over each of the finite fields (a) Fs; (b) Fas; and (c) F25. Find its
splitting field in each case.

A-46 Let Q[x] be a field of finite degree over Q. Assume that there is a g € Q, g # 0,
such that |p(a)| = ¢ for all homomorphisms p: Q[a] — C. Show that the set of roots of
the minimum polynomial of « is the same as that of ¢2?/«. Deduce that there exists an
automorphism o of Q[«] such that
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(@) 0> =1and
() p(oy) = p(y) forall y € Q[] and p: Q] — C.

A-47 Let F be a field of characteristic zero, and let p be a prime number. Suppose that
F has the property that all irreducible polynomials f(X) € F[X] have degree a power of
p (1 = p® is allowed). Show that every equation g(X) = 0, g € F[X], is solvable by
extracting radicals.

A-48 Let K = Q[+/5,+/—7] and let L be the splitting field over Q of f(X) = X3—10.

(a) Determine the Galois groups of K and L over Q.
(b) Decide whether K contains a root of f.
(c) Determine the degree of the field K N L over Q.

[Assume all fields are subfields of C.]

A-49 Find the splitting field (over F,) of X?" — X € F,[X], and deduce that X?" — X
has an irreducible factor f* € IF,[X] of degree r. Let g(X) € Z[X] be a monic polynomial
that becomes equal to f(X) when its coefficients are read modulo p. Show that g(X) is
irreducible in Q[X].

A-50 Let E be the splitting field of X3 —51 over Q. List all the subfields of E, and find
an element y of E such that £ = Q[y].

A-51 Let k = F1924 be the field with 1024 elements, and let K be an extension of k of
degree 2. Prove that there is a unique automorphism o of K of order 2 which leaves k

elementwise fixed and determine the number of elements of K such that o(x) = x 1.

A-52 Let F and E be finite fields of the same characteristic. Prove or disprove these
statements:

(a) There is a ring homomorphism of F into E if and only if | E| is a power of | F|.
(b) There is an injective group homomorphism of the multiplicative group of F into the
multiplicative group of E if and only if | E| is a power of | F|.

A-53 Let L/K be an algebraic extension of fields. Prove that L is algebraically closed if
every polynomial over K factors completely over L.

A-54 Let K be afield, and let M = K(X), X an indeterminate. Let L be an intermediate
field different from K. Prove that M is finite-dimensional over L.

A-55 Let 6y, 6,, 05 be the roots of the polynomial f(X) = X3+ X2—-9X +1.

(a) Show that the 6; are real, nonrational, and distinct.
(b) Explain why the Galois group of f(X) over Q must be either A3 or S3. Without
carrying it out, give a brief description of a method for deciding which it is.
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(c¢) Show that the rows of the matrix

39 9 9
3 60 62 63
3 6, 05 6
3 63 61 6,

are pairwise orthogonal; compute their lengths, and compute the determinant of the
matrix.

A-56 Let E/K be a Galois extension of degree p2q where p and g are primes, ¢ < p and
g not dividing p? — 1. Prove that:

(a) there exist intermediate fields L and M such that [L: K] = p? and [M: K] = ¢;
(b) such fields L and M must be Galois over K; and
(c) the Galois group of E/K must be abelian.

A-57 Let ¢ be a primitive 7th root of 1 (in C).

(a) Provethat 1+ X 4+ X2+ X3 + X*+ X + X6 is the minimum polynomial of ¢ over
Q

(b) Find the minimum polynomial of ¢ + % over Q.

A-58 Find the degree over QQ of the Galois closure K of Q[Z%] and determine the isomor-
phism class of Gal(K/Q).

A-59 Let p,q be distinct positive prime numbers, and consider the extension K = Q[,/p, /4] D
Q.
(a) Prove that the Galois group is isomorphic to C3 x Cs.

(b) Prove that every subfield of K of degree 2 over Q is of the form Q[/m] where
m €{p.q.pq}.

(c) Show that there is an element y € K such that K = Q[y].



APPENDIX B

Two-hour Examination

1. (a) Let o be an automorphism of a field E. If o*=1and
o(e) + 03 () = o+ 0% (a) alla € E,

show that 02 = 1.
(b) Let p be a prime number and let a, b be rational numbers such that a® + ph? = 1. Show

_ . _ c>—pd? — _2cd _ "
that there exist rational numbers ¢, d such that a = Zipd? and b = Zipd? !!Check!!

2. Let f(X) be an irreducible polynomial of degree 4 in Q[X], and let g (X)) be the resolvent
cubic of f. What is the relation between the Galois group of f and that of g? Find the
Galois group of f if

(@ g(X)=X3-3X+1,;
(b) g(X)=X3+3X+1.

3. (a) How many monic irreducible factors does X2°> — 1 € F,[X] have, and what are their
degrees.
(b) How many monic irreducible factors does X2°° — 1 € Q[X] have, and what are their
degrees?

4. Let E be the splitting field of (X° —3)(X°> —7) € Q[X]. What is the degree of E over
Q? How many proper subfields of E are there that are not contained in the splitting fields
of both X> —3 and X°> —7?

[You may assume that 7 is not a 5th power in the splitting field of X° —3.]

5. Consider an extension §2 DO F of fields. Define a € §2 to be F-constructible if it is
contained in a field of the form

FIVai.....\Jan).  ai € FlJ/ai.....Jaizil.

Assume £2 is a finite Galois extension of F' and construct a field E, F C E C §2, such that
every a € 2 is E-constructible and E is minimal with this property.

6. Let £2 be an extension field of a field F. Show that every F-homomorphism 2 — £2 is
an isomorphism provided:

(a) £2 is algebraically closed, and
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(b) $2 has finite transcendence degree over F.
Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterex-
ample.)

You should prove all answers. You may use results proved in class or in the notes, but you
should indicate clearly what you are using.

Possibly useful facts: The discriminant of X3 4+aX +bis —4a3—27b% and 28 —1 =255 =
3x5x17.



APPENDIX C

Solutions to the Exercises

These solutions fall somewhere between hints and complete solutions. Students were ex-
pected to write out complete solutions.

[-1} Similar to Example[1.28]
Verify that 3 is not a square in Q[+/2], and so [Q[+/2, v/3]: Q] = 4.

(a) Apply the division algorithm, to get f(X) = ¢(X)(X —a) + r(X) with r(X)
constant, and put X =« to find r = f(a).

(c) Use that factorization in F[X] is unique (or use induction on the degree of f).

(d) If G had two cyclic factors C and C’ whose orders were divisible by a prime p, then G
would have (at least) p? elements of order dividing p. This doesn’t happen, and it follows
that G is cyclic.

(e) The elements of order m in F* are the roots of the polynomial X — 1, and so there are
at most m of them. Hence any finite subgroup G of F* satisfies the condition in (d).

Note that it suffices to construct & = cos 27”, and that [Q[w]:Q] = % = 3, and so
its minimum polynomial has degree 3. There is a standard method (once taught in high
schools) for solving cubics using the equation

cos360 = 4cos> 6 —3cosh.

By “completing the cube”, reduce the cubic to the form X3 — pX —¢. Then construct a so
that a? = %p. Choose 36 such that cos36 = 2—3. If B = cos6 is a solution of the above

equation, then « = af will be a root of X3 — pX —gq.

(a) is obvious, as is the “only if”” in (b). For the “if”” note that for any a € S(E), a ¢ F?,
E ~ F[X]/(X?—a).

(c) Take E; = Q[,/pi] with p; the ith prime. Check that p; is the only prime that
becomes a square in E;. For this use that (a + b\/ﬁ)2 €eQ = 2ab=0.

(d) Any field of characteristic p contains (an isomorphic copy of) IF,, and so we are
looking at the quadratic extensions of I ,. The homomorphism a > a?: [}, — I}, has kernel
{£1}, and so its image has index 2 in F7,. Thus the only possibility for S(E) is ', and
so there is at most one £ (up to [ ,-isomorphism). To get one, take £ = F[X]/(X 2 _a),
a¢ IF?,.

(a) If « is a root of f(X) = X? — X —a (in some splitting field), then the remaining
rootsare @ + 1,...,a + p — 1, which obviously lie in whichever field contains «. Moreover,
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they are distinct. Suppose that, in F[X],
fX)=X"+a; X" o da)(XPTT ), 0<r<p.

Then —a; is a sum of r of the roots of f, —a; = ra+d some d € Z-1F, and it follows
thato € F.

(b) As 0 and 1 are not roots of X? —X —1inF, it can’t have p distinct roots in F ,, and
so (a) implies that X? — X —1 is irreducible in F,[X] and hence also in Z[X] and Q[X]

(see[l.18}[1.13).
2-3l Let & be the real 5th root of 2. Eisenstein’s criterion shows that X — 2 is irre-
ducible in Q[X], and so Q[</2] has degree 5 over Q. The remaining roots of X° —2

are {a, C%a, 30, C*ar, where ¢ is a primitive 5th root of 1. It follows that the subfield of C
generated by the roots of X° —2 is Q[¢,«]. The degree of Q[¢,«] is 20, since it must be

divisible by [Q[¢]: Q] = 4 and [Q[w]: Q] = 5.
It's T, because X?" —1 = (X —1)?". (Perhaps I meant X7 — X — that would have
been more interesting.)

If f(X)=[](X—o;)™,a; #aj,then

: f(X)
Xy = omi

and s0 d(X) = [[,>1 (X —a;)™ 1, Therefore g(X) = [](X —a;).

From we know that either f is separable or f(X) = f1(X?) for some polyno-

mial fj. Clearly f; is also irreducible. If fj is not separable, it can be written fj(X) =

f>(XP). Continue in the way until you arrive at a separable polynomial. For the final state-

ment, note that g(X) = [[(X —a;),a; #aj,andso f(X) = g(XP) =T](X —a;)P° with
pe

Oll- =d;.

Let o and t be automorphisms of F(X) given by 0(X) = —X and 7(X) =1—-X.
Then o and 7 fix X2 and X2 — X respectively, and so ot fixes E & F(X)NF(X?-X).
But atX =1+ X, and so (01)"(X) = m+ X. Thus Aut(F(X)/E) is infinite, which
implies that [F(X): E] is infinite (otherwise F(X) = E|o1,...,0,]; an E-automorphism
of F(X) is determined by its values on the «;, and its value on ¢; is a root of the minimum
polynomial of ¢;). If E contains a polynomial f(X) of degree m > 0, then [F(X): E] <
[F(X): F(f(X))] = m — contradiction.

Since 1 +¢+---+¢P71 =0, wehave a + 8 = —1. If i € H, then iH = H and
i(GNH)=G~ H,andso« and f8 are fixedby H. If j € G~ H, then jH = G ~ H and
Jj(GNH)= H,and so ja = B and jB = «. Hence o € Q, and o and B are the roots of
X2 + X +af. Note that

aﬂ:Z§i+j, ieH, jeG-~H.
i?j
How many times do we have i + j = 0? Ifi + j =0, then —1 =i ~! j, which is a nonsquare;
conversely, if —1 is a nonsquare, take i = 1 and j = —1to geti + j = 0. Hence

i+j=0someieH, jeG~\H < —lisasquaremod p <= p=-1 mod4.
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If we do have a solution to i 4 j = 0, we get all solutions by multiplying it through by the
pT_l squares. So in the sum for a8 we see 1 a total of pT_l times when p =3 mod 4 and
not at all if p =1 mod 4. In either case, the remaining terms add to a rational number,

which implies that each power of é‘ occurs the same number of times. Thus for p =1

mod 4, af = —(251)?/(p — 1) = 221; the polynomial satisfied by o and f is X2 + X —
p—_l whose roots are (— 1:|:«/1+p 1)/2; the fixed field of H is Q[,/p]. For p = —1
mod 4, aff = 5= Ly (-1 ((‘!’21)2 L 1)/(p— 1= —PT3 pH ; the polynomial

is X2+ X + pT, with roots (—1 £ /T— p—1)/2; the ﬁxed field of H is Q[/=pI-
(a) It is easy to see that M is Galois over Q with Galois group (o, 7):

oVi= 3 Vi=A3
{ oVi= 3 %m@:—ﬁ‘

(b) We have

0a2_2—ﬁ_(2—ﬁ)2_ 242 2
@2 2442 42 _( V2 ) = /21

ie., oa? = ((v/2—1)a)2. Thus, if € M, then oo = +(+/2— 1), and
o?a = (—V2-1)(vV2-Da=—

as o2a = a # 0, this is impossible. Hence a ¢ M, and so [E:Q] = 8.

Extend o to an automorphism (also denoted o) of E. Again oo = +(+/2— 1)« and 02a =
—a, and so o2 # 1. Now ota =, 04|M =1, and so we can conclude that ¢ has order 4.
After possibly replacing o with its inverse, we may suppose that oo = (v/2 — 1)a.

: Lta? _ 3—43 _ (3—«/5)
Repeat the above argument with 7: 25 = s = U and so we can extend t to

3—/3

an automorphism of L (also denoted 7) with o = s o. The order of 7 is 4.
Finally compute that

ora—3 f(f—l)a raa—([—l)3ff

Hence o1 # to, and Gal(E/Q) has two noncommuting elements of order 4. Since it has
order 8, it must be the quaternion group.

The splitting field is the smallest field containing all mth roots of 1. Hence it is F »
where 7 is the smallest positive integer such that mg|p” — 1, m = mqp”, where p is prime
and does not divide my.

We have X4 —2X3—-8X -3 =(X3+X243X +1)(X—=3),and g(X) = X3+ X2 +
3X + 1 is irreducible over Q (use[I.11)), and so its Galois group is either A3 or S3. Either
check that its discriminant is not a square or, more simply, show by examining its graph
that g(X) has only one real root, and hence its Galois group contains a transposition (cf.

the proof of .15).

Eisenstein’s criterion shows that X8 —2 is irreducible over Q, and so [Q[a]: Q] = 8

where « is a positive 8th root of 2. As usual for polynomials of this type, the splitting field

is Q[a, ¢] where ¢ is any primitive 8th root of 1. For example, ¢ can be taken to be ljzl
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which lies in Q[w,7]. It follows that the splitting field is Q[«,i]. Clearly Q[«,i] # Q[«],
because Q[«], unlike i, is contained in R, and so [Q«,i]: Q[«]] = 2. Therefore the degree
is2x 8 =16.

Find an extension L/ F with Galois group S4, and let E be the fixed field of S3 C S4.
There is no subgroup strictly between S, and S,—1, because such a subgroup would be
transitive and contain an (n — 1)-cycle and a transposition, and so would equal S,,. We can
take E = L53. More specifically, we can take L to be the splitting field of X* — X +2 over
Q and E to be the subfield generated by a root of the polynomial (see [3.26).

Type: “Factor(X3*3 — X) mod 7;” and discard the 7 factors of degree 1.

Type “galois(X® 4+2X° +3X* +4X3 +5X2 4+ 6X +7);”. It is the group PGL,(Fs)
(group of invertible 2 x 2 matrices over [F5 modulo scalar matrices) which has order 120.
Alternatively, note that there are the following factorizations: mod 3, irreducible; mod 5
(deg 3)(deg 3); mod 13 (deg 1)(deg 5); mod 19, (deg 1)?(deg 4); mod 61 (deg 1)%(deg 2)?;
mod 79, (deg 2)3. Thus the Galois group has elements of type:

6, 3+3, 1+5 1+1+4, 1+1+2+42, 2+2+2.

No element of type 2, 3, 342, or 4 4 2 turns up by factoring modulo any of the first 400
primes (or, so I have been told). This suggests it is the group 714 in the tables in Butler and
McKay, which is indeed PGL;(IF5).

< Condition (a) implies that G s contains a 5-cycle, condition (b) implies that
G y C As, and condition (c) excludes As. That leaves D5 and Cs as the only possibilities
(see, for example, Jacobson, Basic Algebra I, p305, Ex 6). The derivative of f is 5X *+a,
which has at most 2 real zeros, and so (from its graph) we see that f can have at most 3
real zeros. Thus complex conjugation acts as an element of order 2 on the splitting field of
/, and this shows that we must have G 5 = Ds.

— : Regard D5 as a subgroup of S5 by letting it act on the vertices of a regular pentagon—
all subgroups of S5 isomorphic to D5 look like this one. If G r = D3, then (a) holds because
D5 is transitive, (b) holds because D5 C A3, and (c) holds because Dj is solvable.

Omitted.

Let a1,a; be conjugate nonreal roots, and let a3 be a real root. Complex conjugation
defines an element ¢ of the Galois group of f switching a; and a5 and fixing az. On the
other hand, because f is irreducible, its Galois group acts transitively on its roots, and so
there is a 7 such that t(a3) = a;. Now

T o
azt—day —dap

o T
azt—azt—daj.
This statement is false for reducible polynomials — consider for example f(X) = (X2 +
DX —-1).

For a = 1, this is the polynomial @5(X), whose Galois group is cyclic of order 4.
Fora =0, itis X(X3+ X2+ X +1) = X(X + 1)(X? + 1), whose Galois group is cyclic
of order 2.

For a = —4, itis (X —1)(X3 +2X?% +3X +4). The cubic does not have 1,42, or +4
as roots, and so it is irreducible in Q[X]. Hence its Galois group is S3 or A3. But looking
modulo 2, we see it contains a 2-cycle, so it must be S3.
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For any a, the resolvent cubic is
gX)=X3—-X?>+(1—4a)X +3a—1.

Take a = —1. Then f = X%+ X3 + X2 + X — 1 is irreducible modulo 2, and so it is
irreducible in Q[X]. We have g = X3 — X2 45X — 4, which is irreducible. Moreover
g =3X?>-2X+5=3X—- %)2 + 4% > (0 always, and so g has exactly one real root.
Hence the Galois group of g is S3, and therefore the Galois group of f is S4. [In fact, 4
is the maximum number of integers giving distinct Galois groups: checking mod 2, we see
there is a 2-cycle or a 4-cycle, and so 1, A3, A4, V4 are not possible. For Dg, a can’t be an
integer.]

We have Nm(a +ib) = a® + b?. Hence a®> +bh?> =1 if and only a +ib = if—l’; for
some s,t € Q (Hilbert’s Theorem 90). The rest is easy.
The degree [Q[,]: Q] = ¢(n), ¢, a primitive nth root of 1, and ¢(n) — oo as n — oo.

(a) Need that m|n, because
n = [Fan]Fp] = [FanFpm]-[Fpmin] = [FanFprn]-m.

Use Galois theory to show there exists one, for example. (b) Only one; it consists of all the
solutions of X?" — X = 0.

[A-2] The polynomial is irreducible by Eisenstein’s criterion. The polynomial has only one
real root, and therefore complex conjugation is a transposition in G ¢. This proves that
G 5 ~ S3. The discriminant is —1323 = —3372. Only the subfield Q[+/—3] is normal over
Q. The subfields Q[~/7], Q[¢ /7] Q[¢2 ¥/7] are not normal over Q. [The discriminant of
X3 —ais —27a* = —3(3a)?.]

The prime 7 becomes a square in the first field, but 11 does not: (a + b~/7)? =
a? + 7b2 4+ 2ab+/7, which lies in Q only if ab = 0. Hence the rational numbers that
become squares in Q[+/7] are those that are already squares or lie in 7Q*2.

[A-4}(a) See Exercise 3.
(b) Let F =TF3[X]/(X?+ 1). Modulo 3

XEol=(X-DX+DX*+ D(X*+ X +2)(X*+2X +2).

Take « to be a root of X2+ X + 2.

IA-5| Since E # F, E contains an element § with the degree of f or g > 0. Now

&)
)= Gy 8D

is a nonzero polynomial having X as a root.

Use Eisenstein to show that X7~ ! 4-... 4+ 1 is irreducible, etc. Done in class.

The splitting field is Q[¢, ] where ¢° = 1 and @ = 2. It is generated by o = (12345)
and T = (2354), where oo = o and t¢ = 2. The group has order 20. It is not abelian
(because Q[«] is not Galois over QQ), but it is solvable (its order is < 60).
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[A-8, (a) A homomorphism «:R — R acts as the identity map on Z, hence on Q, and it maps
positive real numbers to positive real numbers, and therefore preserves the order. Hence,
for each real number a,

{reQla<r}={reQ|ua(a)<r},

which implies that «(a) = a.

(b) Choose a transcendence basis A for C over Q. Because it is infinite, there is a
bijection «: A — A’ from A onto a proper subset. Extend « to an isomorphism Q(4) —
Q(A’), and then extend it to an isomorphism C — C’ where C’ is the algebraic closure of
Q(A4") in C.

The group F* is cyclic of order 15. It has 3 elements of order dividing 3, 1 element

of order dividing 4, 15 elements of order dividing 15, and 1 element of order dividing 17.

[A-10] If E; and E, are Galois extensions of F, then E1E, and E1 N E, are Galois over
F, and there is an exact sequence

1 —> Gal(E1E»/F) —> Gal(E1/F)xGal(E»/F) —> Gal(E; N E»/F) —> 1.

In this case, £1 N E, = Q[¢] where ¢ is a primitive cube root of 1. The degree is 18.

Over Q, the splitting field is Q[e, {] where «® = 5 and ¢3 = 1 (because —( is then a
primitive 6th root of 1). The degree is 12, and the Galois group is D¢ (generators (26)(35)
and (123456)).

Over R, the Galois group is C».

Let the coefficients of f be ay,...,a, — they lie in the algebraic closure 2 of F.
Let g(X) be the product of the minimum polynomials over F of the roots of f in £2.

Alternatively, the coefficients will lie in some finite extension £ of F, and we can take
the norm of f(X) from E[X] to F[X].

If f is separable, [E: F] = (G s: 1), which is a subgroup of S,. Etc..

V3 + /7 will do.

The splitting field of X* —2 is E; = Q[i,a] where a* = 2; it has degree 8, and
Galois group Dy4. The splitting field of X3 —5is E, = Q[¢, B]; it has degree 6, and Galois
group D3. The Galois group is the product (they could only intersect in Q[+/3], but /3
does not become a square in E).

[A-16] The multiplicative group of F is cyclic of order ¢ — 1. Hence it contains an element
of order 4 if and only if 4|g — 1.

Take o = 2+ /5 + /7.

We have E; = EH1 which has degree n over F, and E; = E<!"> which has
degree (n —1)! over F, etc.. This is really a problem in group theory posing as a problem
in field theory.

We have Q[¢] = Q[i,{’] where ¢’ is a primitive cube root of 1 and +i = ¢3 etc..
The splitting field is Q[¢, ~/3], and the Galois group is Ss.

[A=21] Use that
C+HHA+P) =+ + P +¢
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(a) is Dedekind’s theorem. (b) is Artin’s theorem [3.4} (c) is O.K. because X? —a?
has a unique root in £2.

The splitting field is Q[ «] where a* = 3, and the Galois group is D4 with generators
(1234) and (13) etc..

From Hilbert’s theorem 90, we know that the kernel of the map N: E* — F* consists
of elements of the form %. The map E* — E*, o %, has kernel F*. Therefore the
kernel of N has order q:__ll, and hence its image has order ¢ — 1. There is a similar proof

for the trace — I don’t know how the examiners expected you to prove it.

(a) is false—could be inseparable. (b) is true—couldn’t be inseparable.

[A-26] Apply the Sylow theorem to see that the Galois group has a subgroup of order 81.
Now the Fundamental Theorem of Galois theory shows that F exists.

The greatest common divisor of the two polynomials over Q is X2 + X + 1, which
must therefore be the minimum polynomial for 6.

[A-28] Theorem on p-groups plus the Fundamental Theorem of Galois Theory.

[A-29] 1t was proved in class that S, is generated by an element of order p and a transposi-
tion (4.14). There is only one F, and it is quadratic over Q.

Let L = KJ[a]. The splitting field of the minimum polynomial of « has degree at
most d!, and a set with d! elements has at most 24! subsets. [Of course, this bound is much
too high: the subgroups are very special subsets. For example, they all contain 1 and they
are invariant under a — a~1.]

The Galois group is (Z/57), which cyclic of order 4, generated by 2.

CHH+@+) =-1, C+HEP+P) =1

(a) Omit.
(b) Certainly, the Galois group is a product Cy x Cjy.
Let ay,...,as be a transcendence basis for £21/Q. Their images are algebraically

independent, therefore they are a maximal algebraically independent subset of £2,, and
therefore they form a transcendence basis, etc..

[A-33, C2 x 2.

If f(X) were reducible over Q[+/7], it would have a root in it, but it is irreducible
over Q by Eisenstein’s criterion. The discriminant is —675, which is not a square in any R,

much less Q[+/7].

(a) Should be X°> —6X* 4 3. The Galois group is Ss, with generators (12) and
(12345) — it is irreducible (Eisenstein) and (presumably) has exactly 2 nonreal roots. (b)

It factors as (X 4+ 1)(X* 4 X34+ X2 4+ X + 1). Hence the splitting field has degree 4 over
5, and the Galois group is cyclic.

This is really a theorem in group theory, since the Galois group is a cyclic group of
order n generated by 6. If n is odd, say n = 2m + 1, then &« = 6™ does.

It has order 20, generators (12345) and (2354).
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[A-38, Take K; and K, to be the fields corresponding to the Sylow 5 and Sylow 43 sub-
groups. Note that of the possible numbers 1,6,11,16,21,... of Sylow 5-subgroups, only 1
divides 43. There are 1, 44, 87, ... subgroups of ....

A-39L See Exercise 14.
The group F* is cyclic of order 80; hence 80, 1, 8.

It's Dg, with generators (26)(35) and (123456). The polynomial is irreducible by
Eisenstein’s criterion, and its splitting field is Q[a, ¢] where ¢ # 1 is a cube root of 1.

[A-42] Example[5.5]

Omit.

It’s irreducible by Eisenstein. Its derivative is 5X* — 5p*, which has the roots X =
4 p. These are the max and mins, X = p gives negative; X = —p gives positive. Hence

the graph crosses the x-axis 3 times and so there are 2 imaginary roots. Hence the Galois
group is Ss.

Its roots are primitive 8th roots of 1. It splits completely in Fas. (a) (X2 +2)(X? +
3).

p(a)p(a) = g2, and ,o(oz)p(%z) = g2. Hence ,o(qa—z) is the complex conjugate of p(«).
Hence the automorphism induced by complex conjugation is independent of the embedding
of Q] into C.

[A-47] The argument that proves the Fundamental Theorem of Algebra, shows that its Galois
groupis a p-group. Let E be the splitting field of g(X), and let H be the Sylow p-subgroup.
Then EH = F, and so the Galois group is a p-group.

[A-48] (a) C3 x C; and S3. (b) No. (c). 1
[A-49. Omit.

[A-50L Omit.
1024 =21° Wantox-x =1, ie., Nx = 1. They are the elements of the form %;
have
xr—>"x—x
1 k> K* K*.

Hence the number is 211/210 = 2.

Pretty standard. False; true.

Omit.

[A-54, Similar to a previous problem.

[A-35 Omit.

This is really a group theory problem disguised as a field theory problem.

(a) Prove it’s irreducible by apply Eisenstein to f(X + 1). (b) See example worked
out in class.

It’'s D4, with generators (1234) and (12).
Omit.
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SOLUTIONS FOR THE EXAM.

1. (a) Let o be an automorphism of a field E. If o%=1and
o)+ 03 () = o+ 0%(a) alla € E,

show that 02 = 1.

If 02 # 1, then 1,0,02,03 are distinct automorphisms of E, and hence are linearly
independent (Dedekind — contradiction. [If 62 = 1, then the condition becomes
20 = 2, so either o0 = 1 or the characteristic is 2 (or both).]

(b) Let p be a prime number and let a, b be rational numbers such that a? + pb? = 1. Show
that there exist rational numbers ¢, d such that a = iifﬁ Z; and b = 622_6; 77
Apply Hilbert’s Theorem 90 to Q[/p] (or Q[,/=p], depending how you wish to correct

the sign).

2. Let f(X) be an irreducible polynomial of degree 4 in Q[ X, and let g(X) be the resolvent
cubic of f. What is the relation between the Galois group of f and that of g? Find the
Galois group of f if

(@) g(X)=X>-3X +1;
b) g(X)=X34+3X+1.

We have Gg = G ¢ /G r NV, where V = {1,(12)(34),...}. The two cubic polynomials
are irreducible, because their only possible roots are 1. From their discriminants, one
finds that the first has Galois group A3 and the second S3. Because f(X) is irreducible,
4[(G #:1) and it follows that G y = A4 and Sy in the two cases.

3. (a) How many monic irreducible factors does X 255 _1el, [X] have, and what are their
degrees?

Its roots are the nonzero elements of F,s, which has subfields Fy4D F,2D F». There
are 256 — 16 elements not in [F1¢, and their minimum polynomials all have degree 8. Hence
there are 30 factors of degree 8, 3 of degree 4, and 1 each of degrees 2 and 1.

(b) How many monic irreducible factors does X2°> — 1 € Q[X] have, and what are their
degrees?

Obviously, X% —1 = [Tiass @a = @1P3Ps5Py5 - Pass, and we showed in class that
the @, are irreducible. They have degrees 1,2,4,8,16,32,64,128.

4. Let E be the splitting field of (X> —3)(X°> —7) € Q[X]. What is the degree of E over
@Q? How many proper subfields of E are there that are not contained in the splitting fields
of both X° —3 and X° —7?

The splitting field of X° — 3 is Q[¢, «], which has degree 5 over Q[¢] and 20 over Q.
The Galois group of X> —7 over Q[¢,«] is (by ...) a subgroup of a cyclic group of order
5, and hence has order 1 or 5. Since 7 is not a 5th power in Q[{,«], it must be 5. Thus
[E:Q] = 100, and

G =Gal(E/Q) = (C5 x Cs) x Cy.

We want the nontrivial subgroups of G not containing Cs5 x Cs. The subgroups of order
5 of C5 x C5 are lines in (IF5)2, and hence Cs5 x Cs has 6 + 1 = 7 proper subgroups. All
are normal in G. Each subgroup of Cs x Cs is of the form H N (C5 x Cs) for exactly
3 subgroups H of G corresponding to the three possible images in G/(Cs x Cs5) = Cy.
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Hence we have 21 subgroups of G not containing Cs x Cs, and 20 nontrivial ones. Typical

fields: Q[«], Q[e, cos 2?”], Qle, ).

[You may assume that 7 is not a 5th power in the splitting field of X°> —3.]

5. Consider an extension §2 D F of fields. Define o € §2 to be F-constructible if it is
contained in a field of the form

FlJai,...,/an], a; € F[i/ay,...,\/ai—1].

Assume £2 is a finite Galois extension of F and construct a field E, F C E C §2, such that
every a € §2 is E-constructible and E is minimal with this property.

Suppose E has the required property. From the primitive element theorem, we know
2 = E[a] for some a. Now a E-constructible = [£2: E] is a power of 2. Take E = 2%,
where H is the Sylow 2-subgroup of Gal(§2/F).

6. Let £2 be an extension field of a field . Show that every F-homomorphism 2 — £2 is
an isomorphism provided:

(a) £2 is algebraically closed, and
(b) £2 has finite transcendence degree over F.

Can either of the conditions (i) or (ii) be dropped? (Either prove, or give a counterex-
ample.)

Let A be a transcendence basis for £2/F. Because 0:£2 — 2 is injective, 0(A) is
algebraically independent over F', and hence (because it has the right number of elements)
is a transcendence basis for £2/F. Now F[oA] C 0§2 C §2. Because 2 is algebraic over
F[oA] and 0 £2 is algebraically closed, the two are equal. Neither condition can be dropped.
E.g,C(X)—» C(X), X — X2 E.g., 2 = the algebraic closure of C(X1, X3, X3,...), and
consider an extension of the map X1 — X5, Xo — X3, ...
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