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An algebraic number field is a finite extension of @Q; an alge-
braic number is an element of an algebraic number field. Alge-
braic number theory studies the arithmetic of algebraic number
fields — the ring of integers in the number field, the ideals and
units in the ring of integers, the extent to which unique factor-
ization holds, and so on.

An abelian extension of a field is a Galois extension of the
field with abelian Galois group. Class field theory describes the
abelian extensions of a number field in terms of the arithmetic
of the field.

These notes are concerned with algebraic number theory,
and the sequel with class field theory.
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Notations.

We use the standard (Bourbaki) notations: N = {0,1,2,...};
Z = ring of integers; R = field of real numbers; C = field of
complex numbers; Fp = Z/ pZ = field with p elements, p a
prime number.

For integers m and n, m|n means that m divides n, i.e.,
n € mZ. Throughout the notes, p is a prime number, i.e.,
p=2,3,5,...

Given an equivalence relation, [*] denotes the equivalence
class containing *. The empty set is denoted by @. The car-
dinality of a set S is denoted by |S| (so |S| is the number of
elements in S when S is finite). Let / and A be sets; a family
of elements of A indexed by I, denoted (a;);e7, is a function
iap:l — A

X CY Xisasubsetof Y (not necessarily proper);

def

X =Y X isdefined to be Y, or equals Y by definition;
X ~Y X isisomorphic to Y;
X ~>~Y X andY are canonically isomorphic

(or there is a given or unique isomorphism);
— denotes an injective map;
— denotes a surjective map.

It is standard to use Gothic (fraktur) letters for ideals:

C
c

ST

a
a



Prerequisites

The algebra usually covered in a first-year graduate course, for
example, Galois theory, group theory, and multilinear algebra.
An undergraduate number theory course will also be helpful.
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DRAMATIS PERSONZA

FERMAT (1601-1665). Stated his last “theorem”, and proved it
for m = 4. He also posed the problem of finding integer solu-
tions to the equation,

X2_AY?=1, AeZ, )

which is essentially the problem! of finding the units in Z[+/A].
The English mathematicians found an algorithm for solving
the problem, but neglected to prove that the algorithm always
works.

EULER (1707-1783). He introduced analysis into the study of
the prime numbers, and he discovered an early version of the
quadratic reciprocity law.

LAGRANGE (1736-1813). He found the complete form of the
quadratic reciprocity law:

(E) (i) = (—=1)P~DE=D/4 ", 4 odd primes,
q p

and he proved that the algorithm for solving (I) always leads
to a solution,

LEGENDRE (1752-1833). He introduced the “Legendre sym-
bol” (%) and gave an incomplete proof of the quadratic reci-
procity law. He proved the following local-global principle for

The Indian mathematician Bhaskara (12th century) knew general rules for
finding solutions to the equation.



quadratic forms in three variables over QQ: a quadratic form
Q(X,Y, Z) has anontrivial zero in Q if and only if it has one in
R and the congruence Q = 0 mod p” has a nontrivial solution
for all p and n.

GAUSS (1777-1855). He found the first complete proofs of the
quadratic reciprocity law. He studied the Gaussian integers Z|i]
in order to find a quartic reciprocity law. He studied the classi-
fication of binary quadratic forms over Z, which is closely re-
lated to the problem of finding the class numbers of quadratic
fields.

DIRICHLET (1805-1859). He introduced L-series, and used
them to prove an analytic formula for the class number and
a density theorem for the primes in an arithmetic progression.
He proved the following “unit theorem™: let o be a root of a
monic irreducible polynomial f(X) with integer coefficients;
suppose that f(X) has r real roots and 2s complex roots; then
Z[a]* is a finitely generated group of rank r + s — 1.

KUMMER (1810-1893). He made a deep study of the arith-
metic of cyclotomic fields, motivated by a search for higher
reciprocity laws, and showed that unique factorization could be
recovered by the introduction of “ideal numbers”. He proved
that Fermat’s last theorem holds for regular primes.

HERMITE (1822-1901). He made important contributions to
quadratic forms, and he showed that the roots of a polynomial
of degree 5 can be expressed in terms of elliptic functions.
EISENSTEIN (1823-1852). He published the first complete
proofs for the cubic and quartic reciprocity laws.



KRONECKER (1823-1891). He developed an alternative to
Dedekind’s ideals. He also had one of the most beautiful ideas
in mathematics for generating abelian extensions of number
fields (the Kronecker liebster Jugendtraum).

RIEMANN (1826-1866). Studied the Riemann zeta function,
and made the Riemann hypothesis.

DEDEKIND (1831-1916). He laid the modern foundations of
algebraic number theory by finding the correct definition of
the ring of integers in a number field, by proving that ideals
factor uniquely into products of prime ideals in such rings, and
by showing that, modulo principal ideals, they fall into finitely
many classes. Defined the zeta function of a number field.

WEBER (1842-1913). Made important progress in class field
theory and the Kronecker Jugendtraum.

HENSEL (1861-1941). He gave the first definition of the field
of p-adic numbers (as the set of infinite sums > oo, an p”,
an €{0,1,...,p—1}).

HILBERT (1862-1943). He wrote a very influential book on al-
gebraic number theory in 1897, which gave the first systematic
account of the theory. Some of his famous problems were on
number theory, and have also been influential.

TAKAGI (1875-1960). He proved the fundamental theorems of
abelian class field theory, as conjectured by Weber and Hilbert.
NOETHER (1882-1935). Together with Artin, she laid the
foundations of modern algebra in which axioms and conceptual
arguments are emphasized, and she contributed to the classifi-
cation of central simple algebras over number fields.



HECKE (1887-1947). Introduced Hecke L-series generalizing
both Dirichlet’s L-series and Dedekind’s zeta functions.

ARTIN (1898-1962). He found the “Artin reciprocity law”,
which is the main theorem of class field theory (improvement
of Takagi’s results). Introduced the Artin L-series.

HASSE (1898-1979). He gave the first proof of local class
field theory, proved the Hasse (local-global) principle for all
quadratic forms over number fields, and contributed to the clas-
sification of central simple algebras over number fields.

BRAUER (1901-1977). Defined the Brauer group, and con-
tributed to the classification of central simple algebras over
number fields.

WEIL (1906-1998). Defined the Weil group, which enabled
him to give a common generalization of Artin L-series and
Hecke L-series.

CHEVALLEY (1909-84). The main statements of class field
theory are purely algebraic, but all the earlier proofs used anal-
ysis; Chevalley gave a purely algebraic proof. With his intro-
duction of ideles he was able to give a natural formulation of
class field theory for infinite abelian extensions.

IWASAWA (1917-1998). He introduced an important new ap-
proach into algebraic number theory which was suggested by
the theory of curves over finite fields.

TATE (1925- ). He proved new results in group cohomology,
which allowed him to give an elegant reformulation of class
field theory. With Lubin he found an explicit way of generating
abelian extensions of local fields.



LANGLANDS (1936 ). The Langlands program? is a vast se-
ries of conjectures that, among other things, contains a non-
abelian class field theory.

ZNot to be confused with its geometric analogue, sometimes referred to as
the geometric Langlands program, which appears to lack arithmetic significance.
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Introduction

It is greatly to be lamented that this virtue of the [rational
integers], to be decomposable into prime factors, always the
same ones for a given number, does not also belong to the
[integers of cyclotomic fields].

Kummer 1844 (as translated by André Weil)

The fundamental theorem of arithmetic says that every
nonzero integer m can be written in the form,

m = xp1---pn, p;aprime number,

and that this factorization is essentially unique.

Consider more generally an integral domain A. An element
a € A is said to be a unit if it has an inverse in A (element b
such thatab = 1 = ba). 1 write A for the multiplicative group
of units in A. An element 7 of A4 is said to prime if it is neither
zero nor a unit, and if

wlab = mw|a or w|b.

If A is a principal ideal domain, then every nonzero element a
of A can be written in the form,

a=umy-Tp, Uaunit, s; aprime element,

and this factorization is unique up to order and replacing each
mr; with an associate, i.e., with its product with a unit.

Our first task will be to discover to what extent unique
factorization holds, or fails to hold, in number fields. Three



problems present themselves. First, factorization in a field only
makes sense with respect to a subring, and so we must define
the “ring of integers” Ok in our number field K. Secondly,
since unique factorization will fail in general, we shall need
to find a way of measuring by how much it fails. Finally, since
factorization is only considered up to units, in order to fully un-
derstand the arithmetic of K, we need to understand the struc-
ture of the group of units Uk in Ok.

THE RING OF INTEGERS

Let K be an algebraic number field. Each element « of K sat-
isfies an equation

" +ara” 4 tag=0

with coefficients ay,...,a, in Q, and « is an algebraic integer
if it satisfies such an equation with coefficients ag,...,a, in Z.
We shall see that the algebraic integers form a subring Og of
K.

The criterion as stated is difficult to apply. We shall show
that « is an algebraic integer if and only if its minimum
polynomial over QQ has coefficients in Z.

Consider for example the field K = Q[v/d], where d is
a square-free integer. The minimum polynomial of o = a +

bVd, b £0,a,beqQ,is
(X —(a+bVd) (X —(a—bVd)) = X2 —2aX + (a®—b%d),
and so « is an algebraic integer if and only if

2a€Z, a?>-b%*dcl.



From this it follows easily that, when d = 2,3 mod 4, « is an
algebraic integer if and only if @ and b are integers, i.e.,

OK:Z[«/E]:{Hb«/Em,beZ},

and, when d = 1 mod 4, « is an algebraic integer if and only if
a and b are either both integers or both half-integers, i.e.,

Ok = Z[15/d) = {Hb% ‘ a,bez}.

For example, the minimum polynomial of 1/2+ +/5/2is X2 —

X —1, and so 1/2 + +/5/2 is an algebraic integer in Q[+/3].
Let {; be a primitive dth root of 1, for example, {; =

exp(2mi/d), and let K = Q[{;]. Then we shall see that

Ok =ZLg]) = {>X mi | mi € Z}.

as one would hope.

FACTORIZATION

A nonzero element 7 of an integral domain A is said to be ir-
reducible if it is not a unit, and can’t be written as a product
of two nonunits. For example, a prime element is (obviously)
irreducible. A ring A is a unique factorization domain if every
nonzero element of A can be expressed as a product of irre-
ducible elements in essentially one way. Is the ring of integers
Ok aunique factorization domain? No, not in general!



We shall see that each element of Og can be written as a
product of irreducible elements (this is true for all Noetherian
rings), and so it is the uniqueness that fails.

For example, in Z[+/—5] we have
6=2-3=(1+~-51—-+v-5).

To see that 2, 3, 1 + ~/—5, 1 — +/—5 are irreducible, and no two
are associates, we use the norm map

Nm:Q[v—-5] > Q, a+bv—-5+ a® +5b2.
This is multiplicative, and it is easy to see that, for « € Ok,
Nm(x) =1 < aa¢ =1 < o« isaunit. *)

If 1 + =5 = af, then Nm(eff) = Nm(1 4+ +/—5) = 6. Thus
Nm(x) = 1,2,3, or 6. In the first case, « is a unit, the second
and third cases don’t occur, and in the fourth case § is a unit. A

similar argument shows that 2, 3, and 1 — +/—5 are irreducible.
Next note that (*) implies that associates have the same norm,

and so it remains to show that 1 4+ +/—5 and 1 — +/—5 are not
associates, but

14+ vV=5=(a+bv=3)(1-v-5)

has no solution with a,b € Z.
Why does unique factorization fail in Og ? The problem is
that irreducible elements in Og need not be prime. In the above

example, 1 + +/—5 divides 2- 3 but it divides neither 2 nor 3.

4



In fact, in an integral domain in which factorizations exist (e.g.
a Noetherian ring), factorization is unique if all irreducible el-
ements are prime.

What can we recover? Consider

210=6-35=10-21.

If we were naive, we might say this shows factorization is not
unique in Z; instead, we recognize that there is a unique fac-
torization underlying these two decompositions, namely,

210 = (2:3)(5-7) = (2-5)(3-7).

The idea of Kummer and Dedekind was to enlarge the set of

“prime numbers” so that, for example, in Z[+/—5] there is a
unique factorization,

6= (p1-p2)(P3-p4) = (p1-P3)(h2-ba),

underlying the above factorization; here the p; are “ideal prime
factors”.

How do we define “ideal factors”? Clearly, an ideal fac-
tor should be characterized by the algebraic integers it divides.
Moreover divisibility by a should have the following proper-
ties:

al0; ala,alb = alatb; ala = alab forallb e Ok.
If in addition division by a has the property that

alab = ala or ab,



then we call a a “prime ideal factor”. Since all we know about
an ideal factor is the set of elements it divides, we may as well
identify it with this set. Thus an ideal factor a is a set of ele-
ments of Ok such that

Oca; abeca=atbea;, aca=abeaforallbeOg;
it is prime if an addition,
abea=acaorbea.

Many of you will recognize that an ideal factor is what we now
call an ideal, and a prime ideal factor is a prime ideal.
There is an obvious notion of the product of two ideals:

ablc & ¢ =Za,~b,~, ala;, b|b;.
In other words,

ab = {Zaibi |ai €a, bl' € [l}.
One see easily that this is again an ideal, and that if
a=(ay,....,am) and b = (by,...,by)

then
a-b= (albl,...,aibj,...,ambn).

With these definitions, one recovers unique factorization: if
a # 0, then there is an essentially unique factorization:

(a) = py1---pn with each p; a prime ideal.

6



In the above example,
(6) = 2,1+ vV=5)(2,1-V=5)3,1+ V=5)(3,1-vV=5).
In fact, I claim
2.1+ V=5)@2.1-vV=5) = (2)
G, 14+ V=353, 1-v=3)=(3)
2.1+ vV=3)3.1+vV=3) = (1+-5)
2.1-V=5)3.1-V=5) = (1-V=5).

For example, (2,1 + +/—5)(2,1—+/=5) = (4,2+2+/-5,2—
2+/—5,6). Since every generator is divisible by 2, we see that

2,1+v=5)2,1-+=5) C (2).
Conversely,
2=6—-4€(4,2+2v-5,2—-2+/-5,6)

and so (2,1 + +/=5)(2,1 —+/=5) = (2), as claimed. I fur-
ther claim that the four ideals (2,1 + ~/=5), (2,1 — +~/=5),
3,1+ JTS), and (3,1 — JjS) are all prime. For example,
the obvious map Z — Z[~/—5]/(3,1—+/—=5) is surjective with
kernel (3), and so

ZIV=5]/(3.1—~=5) ~ 7/ (3),



which is an integral domain.

How far is this from what we want, namely, unique fac-
torization of elements? In other words, how many “ideal” ele-
ments have we had to add to our “real” elements to get unique
factorization. In a certain sense, only a finite number: we shall
see that there exists a finite set S of ideals such that every ideal
is of the form a- (a) for some a € S and some a € Ok . Better,
we shall construct a group / of “fractional” ideals in which the
principal fractional ideals (@), a € K*, form a subgroup P of
finite index. The index is called the class number hg of K. We
shall see that

hg =1 <= Ok is a principal ideal domain
<= O is a unique factorization domain.
UNITS

Unlike Z, Ok can have infinitely many units. For example,
(1+ +/2) is a unit of infinite order in Z[v/2] :

(1+vV2)(=1+v2)=1; (1+~2)" #1ifm #0.
In fact Z[v/2]* = {£(1 4+ +/2)"" | m € Z}, and so
Z[«/E]X ~ {£1} x {free abelian group of rank 1}.

In general, we shall show (unit theorem) that the roots of 1 in
K form a finite group p(K), and that

Og ~ u(K)xZ" (as an abelian group);

moreover, we shall find r.



APPLICATIONS

One motivation for the development of algebraic number the-
ory was the attempt to prove Fermat’s last “theorem”, i.e., when
m > 3, there are no integer solutions (x, y, z) to the equation

XM yym=zm

with all of x, y, z nonzero.

When m = 3, this can proved by the method of “infinite de-
scent”, i.e., from one solution, you show that you can construct
a smaller solution, which leads to a contradiction®. The proof
makes use of the factorization

Y3=23-X3=2Z-X)(Z*+XZ+X?),

and it was recognized that a stumbling block to proving the
theorem for larger m is that no such factorization exists into
polynomials with integer coefficients of degree < 2. This led
people to look at more general factorizations.

In a famous incident, the French mathematician Lamé gave
a talk at the Paris Academy in 1847 in which he claimed to
prove Fermat’s last theorem using the following ideas. Let p >
2 be a prime, and suppose x, y, z are nonzero integers such
that

xP +yP =277,

Write
xP=zP—yP =[]z=t'y). 0<i<p-1, (=P,

3The simplest proof by infinite descent is that showing that /2 is irrational.



He then showed how to obtain a smaller solution to the equa-
tion, and hence a contradiction. Liouville immediately ques-
tioned a step in Lamé’s proof in which he assumed that, in or-
der to show that each factor (z —¢? y) is a pth power, it suffices
to show that the factors are relatively prime in pairs and their
product is a pth power. In fact, Lamé couldn’t justify his step
(Z[¢] is not always a principal ideal domain), and Fermat’s last
theorem was not proved for almost 150 years. However, shortly
after Lamé’s embarrassing lecture, Kummer used his results on
the arithmetic of the fields Q[¢] to prove Fermat’s last theorem
for all regular primes, i.e., for all primes p such that p does not
divide the class number of Q[{p].

Another application is to finding Galois groups. The split-
ting field of a polynomial f(X) € Q[X] is a Galois extension
of Q. In a basic Galois theory course, we learn how to compute
the Galois group only when the degree is very small. By using
algebraic number theory one can write down an algorithm to
do it for any degree.

For applications of algebraic number theory to elliptic
curves, see, for example, Milne[2006|

Some comments on the literature
COMPUTATIONAL NUMBER THEORY

Cohen| [1993| and |Pohst and Zassenhaus| 1989 provide algo-
rithms for most of the constructions we make in this course.
The first assumes the reader knows number theory, whereas
the second develops the whole subject algorithmically. Cohen’s
book is the more useful as a supplement to this course, but

10



wasn’t available when these notes were first written. While the
books are concerned with more-or-less practical algorithms for
fields of small degree and small discriminant, Lenstra (1992)
concentrates on finding “good” general algorithms.

HISTORY OF ALGEBRAIC NUMBER THEORY

Dedekind|[1996| with its introduction by Stillwell, gives an ex-
cellent idea of how algebraic number theory developed. |[Ed-
wards|[1977|is a history of algebraic number theory, concen-
trating on the efforts to prove Fermat’s last theorem. The notes
in Narkiewicz||1990| document the origins of most significant
results in algebraic number theory.|Lemmermeyer|2009, which
explains the origins of “ideal numbers”, and other writings by
the same author, e.g.,[Lemmermeyer|2000} 2007|

Exercises

0-1 Let d be a square-free integer. Complete the verification
that the ring of integers in Q[+/d] is as described.

0-2 Complete the verification that, in Z[+/—5],
6)=2,1+v=5(2,1-vV=-5(3,1+ V=53, 1-v-5)

is a factorization of (6) into a product of prime ideals.



Chapter 1

Preliminaries from
Commutative Algebra

Many results that were first proved for rings of integers in num-
ber fields are true for more general commutative rings, and it is
more natural to prove them in that context.!

Basic definitions

All rings will be commutative, and have an identity element
(i.e., an element 1 such that la = a for all @ € A), and a homo-

!'See also the notes A Primer of Commutative Algebra available on my web-
site.



morphism of rings will map the identity element to the identity
element.

A ring B together with a homomorphism of rings A — B
will be referred to as an A-algebra. We use this terminology
mainly when A is a subring of B. In this case, for elements
Bi1,....Bm of B, A[B1,..., Bm] denotes the smallest subring of
B containing A and the f;. It consists of all polynomials in the
Bi with coefficients in A4, i.e., elements of the form

. . i im . .
E al]...lmﬂl B iy, €A

We also refer to A[B1, ..., Bm] as the A-subalgebra of B gen-
erated by the f;, and when B = A[f1, ..., Bm]| we say that the
Bi generate B as an A-algebra.

For elements ay,az,... of A, we let (ay,as,...) denote
the smallest ideal containing the a;. It consists of finite
sums Y c;jd;, ¢; € A, and it is called the ideal generated by
ai,az,.... When a and b are ideals in A, we define

at+b={a+b|aca beb}

It is again an ideal in A — in fact, it is the smallest ideal con-
taining both a and b. If a = (ay,...,an) and b = (by,...,by),
thena+b = (ai,....am.b1,....by).

Given an ideal a in A, we can form the quotient ring
A/a.Let f: A — A/a be the homomorphism a — a + a; then
b~ f~1(b) defines a one-to-one correspondence between the
ideals of A/a and the ideals of A containing a, and

A/fN(6) S (4/a)/b.

13



A proper ideal a of A is prime if ab € a=a or b € a.
An ideal a is prime if and only if the quotient ring A/a is an
integral domain. A nonzero element i of A is said to be prime
if (7r) is a prime ideal; equivalently, if |ab = w|a or 7 |b.

An ideal m in A is maximal if it is maximal among the
proper ideals of A, i.e., if m # A and there does not exist an
ideal a # A containing m but distinct from it. An ideal a is max-
imal if and only if A/a is a field. Every proper ideal a of 4 is
contained in a maximal ideal — if A is Noetherian (see below)
this is obvious; otherwise the proof requires Zorn’s lemma. In
particular, every nonunit in A4 is contained in a maximal ideal.

There are the implications: A is a Euclidean domain = A is
a principal ideal domain = A is a unique factorization domain
(see any good graduate algebra course).

Ideals in products of rings

PROPOSITION 1.1 Consider a product of rings A x B. If a and
b are ideals in A and B respectively, then a x b is an ideal in
A x B, and every ideal in A X B is of this form. The prime
ideals of A x B are the ideals of the form

px B (p aprime ideal of A), AXxyp (p a prime ideal of B).

PROOF. Let ¢ be an ideal in A x B, and let
a={acA|(a,0)ec}, b={beB|(0,b)cc}.

Clearly a x b C ¢. Conversely, let (a,b) € c. Then (a,0) =
(a,b)-(1,0) € cand (0,b) = (a.b)-(0,1) € ¢, and so (a,b) €
axb.



Recall that an ideal ¢ C C is prime if and only if C/c¢ is an
integral domain. The map

AxB—> A/axB/b, (a,b)+ (a+a,b+0b)
has kernel a x b, and hence induces an isomorphism
(Ax B)/(axb) ~ A/ax B/b.

Now use that a product of rings is an integral domain if and
only if one ring is zero and the other is an integral domain. o

REMARK 1.2 The lemma extends in an obvious way to a finite
product of rings: the ideals in Ay x -+- x A, are of the form
a] X--+ X, wWith a; an ideal in A;; moreover, aj X -++ Xty 1S
prime if and only if there is a j such that a; is a prime ideal in
Ajand a; = A; fori # j.

Noetherian rings

Aring A is Noetherian if every ideal in A is finitely generated.

PROPOSITION 1.3 The following conditions on a ring A are
equivalent:

(a) A is Noetherian.
(b) Every ascending chain of ideals

apCax C---Cap C---

eventually becomes constant, i.e., for some n, a; =
Ap+1 =---.



(c) Every nonempty set S of ideals in A has a maximal el-
ement, i.e., there exists an ideal in S not properly con-
tained in any other ideal in S.

PROOF. (a)=(b): Let a = (Ja;; it is an ideal, and hence is
finitely generated, say a = (ay,...,a,). For some n, a, will
contain all the a;, and so a, = ap41 =+ =a.

(b)=(c): Let ay € S.If ay is not a maximal element of S, then
there exists an a € S such that ag g ay. If ap is not maximal,
then there exists an a3 etc.. From (b) we know that this process
will lead to a maximal element after only finitely many steps.
(c)=>(a): Let a be an ideal in A4, and let S be the set of finitely
generated ideals contained in a. Then S is nonempty because it
contains the zero ideal, and so it contains a maximal element,
say, @’ = (aj,...,ar). If @’ # a, then there exists an element
a€a~d,and (ay,...,ar,a) will be a finitely generated ideal
in a properly containing a’. This contradicts the definition of
a. a

A famous theorem of Hilbert states that k[X1,..., X,] is
Noetherian. In practice, almost all the rings that arise naturally
in algebraic number theory or algebraic geometry are Noethe-
rian, but not all rings are Noetherian. For example, the ring
k[X1,...,Xn,...] of polynomials in an infinite sequence of
symbols is not Noetherian because the chain of ideals

(X1) C (X1,X2) C(X1,X2,X3) C -+

never becomes constant.



PROPOSITION 1.4 Every nonzero nonunit element of a
Noetherian integral domain can be written as a product of irre-
ducible elements.

PROOF. We shall need to use that, for elements a and b of an
integral domain A4,

(a) C (b) < b|a, with equality if and only if b = a x unit.

The first assertion is obvious. For the second, note that if ¢ =
bc and b = ad thena = bc = adc, and so dc = 1. Hence both
¢ and d are units.

Suppose the statement of the proposition is false for a
Noetherian integral domain A. Then there exists an element
a € A which contradicts the statement and is such that (a) is
maximal among the ideals generated by such elements (here
we use that A4 is Noetherian). Since a can not be written as a
product of irreducible elements, it is not itself irreducible, and
so a = bc with b and ¢ nonunits. Clearly (b) D (a), and the
ideals can’t be equal for otherwise ¢ would be a unit. From the
maximality of (a), we deduce that b can be written as a product
of irreducible elements, and similarly for ¢. Thus a is a product
of irreducible elements, and we have a contradiction. o

REMARK 1.5 Note that the proposition fails for the ring O of
all algebraic integers in the algebraic closure of Q in C, be-
cause, for example, we can keep in extracting square roots —
an algebraic integer « can not be an irreducible element of O
because +/a will also be an algebraic integer and @ = /& - /.
Thus O is not Noetherian.



Noetherian modules

Let A be a ring. An A-module M is said to be Noetherian if
every submodule is finitely generated.

PROPOSITION 1.6 The following conditions on an A-module
M are equivalent:
(a) M is Noetherian;
(b) every ascending chain of submodules eventually be-
comes constant;
(c) every nonempty set of submodules in M has a maximal
element.

PROOF. Similar to the proof of Proposition[T.3] o

PROPOSITION 1.7 Let M be an A-module, and Iet N be a sub-
module of M. If N and M/ N are both Noetherian, then so also
isM.

PROOF. I claim that if M’ C M’ are submodules of M such
that M NN = M" NN and M’ and M" have the same im-
age in M/N, then M’ = M". To see this, let x € M"’; the
second condition implies that there exists a y € M’ with the
same image as x in M/N, i.e., such that x —y € N. Then
x—yeM"NNCM’' andsoxe M.

Now consider an ascending chain of submodules of M. If
M/ N is Noetherian, the image of the chain in M/N becomes
constant, and if N is Noetherian, the intersection of the chain
with N becomes constant. Now the claim shows that the chain
itself becomes constant. ]



PROPOSITION 1.8 Let A be a Noetherian ring. Then every
finitely generated A-module is Noetherian.

PROOE. If M is generated by a single element, then M ~ A/a
for some ideal a in A4, and the statement is obvious. We argue
by induction on the minimum number n of generators of M.
Since M contains a submodule N generated by n — 1 elements
such that the quotient M/ N is generated by a single element,
the statement follows from (I.7). o

Local rings

A ring A is said to local if it has exactly one maximal ideal m.
In this case, A* = A\ m (complement of m in A).

LEMMA 1.9 (NAKAYAMA’S LEMMA) Let A be a local
Noetherian ring, and let a be a proper ideal in A. Let M be a
finitely generated A-module, and define

aM ={>"ajm; |aj €a, m; € M}.
(a) IfaM = M, then M = 0.
(b) If N is a submodule of M such that N +aM = M, then
N =M.

PROOE. (a) Suppose that aM = M but M # 0. Choose a min-
imal set of generators {eq,...,e,} for M, n > 1, and write

e =ajel +--+anen, a;€a.
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Then
(1—ar)e; = azez +---+anen.

As 1 —aq is not in m, it is a unit, and so {ey, ...,e, } generates
M, which contradicts our choice of {e1,...,ep}.

(b) It suffices to show that a(M/N) = M/N for then (a)
shows that M/N = 0. Consider m + N, m € M. From the as-
sumption, we can write

m=n+Za,~mi,withai cea,mi €M.
Then
m+N =Y (aimi+N)=) aj(m; + N)
andsom+ N € a(M/N). o

The hypothesis that M be finitely generated in the lemma
is essential. For example, if A is a local integral domain with
maximal ideal m # 0, then mM = M for any field M contain-
ing Abut M # 0.

Rings of fractions

Let A be an integral domain; there is a field K D A, called the
field of fractions of A, with the property that every ¢ € K can
be written in the form ¢ = ab~! with a,b € A and b # 0. For
example, Q is the field of fractions of Z, and k(X) is the field
of fractions of k[X].
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Let A be an integral domain with field of fractions K. A
subset S of A is said to be multiplicative if 0 ¢ S, 1€ S, and S
is closed under multiplication. If S is a multiplicative subset,
then we define

ST'A={a/beK|beS}
It is obviously a subring of K.

EXAMPLE 1.10 (a) Let ¢ be a nonzero element of A; then
Sy L1002,

is a multiplicative subset of A, and we (sometimes) write A; for
S, 1 4. For example, if d is a nonzero integer, then? Zg con-
sists of those elements of Q whose denominator divides some
power of d:

Zg=1{a/d" €Q|aeZ,n>0}.

(b) If p is a prime ideal, then S, = A \ p is a multiplicative
set (if neither a nor b belongs to p, then ab does not belong to
p). We write A for S 1 A. For example,

Z(py = {m/n € Q| n is not divisible by p}.

PROPOSITION 1.11 Consider an integral domain A and a mul-
tiplicative subset S of A. For an ideal a of A, write a® for the

2This notation conflicts with a later notation in which Z,, denotes the ring
of p-adic integers.
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ideal it generates in ST A; for an ideal a of ST A, write a¢
foran A. Then:

a‘¢ =a forall ideals a of S~ A
a®“ =a ifais a prime ideal of A disjoint from S.

PROOF. Let a be an ideal in S~ A. Clearly (a N A4)¢ C a be-
cause aN A C a and a is an ideal in S™'A. For the reverse
inclusion, let b € a. We can write it b = a/s with a € A,
se€S.Thena=s-(a/s)eanA,andsoa/s = (s-(a/s))/s €
(an A)e.

Let p be a prime ideal disjoint from S. Clearly (S~1p) N
A D p. For the reverse inclusion, let a/s € (S~1p)N A4, a € p,
s € S. Consider the equation % -s =a €p.Botha/s and s are
in A, and so at least one of a/s or s is in p (because it is prime);
but s ¢ p (by assumption), and so a/s € p. O

PROPOSITION 1.12 Let A be an integral domain, and let S be

a multiplicative subset of A. The map p +> p¢ e p-S~1Adisa
bijection from the set of prime ideals in A such thatp NS =&
to the set of prime ideals in ST1A; the inverse map is p —
pNA.

PROOF. Itis easy to see that
p a prime ideal disjoint from S => p is a prime ideal in S ™1 4,

p a prime ideal in sl4= p N A is aprime ideal in A
disjoint from S,

and (1.11)) shows that the two maps are inverse. =
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EXAMPLE 1.13 (a) If p is a prime ideal in A, then A, is a
local ring (because p contains every prime ideal disjoint from
Sp).
(b) We list the prime ideals in some rings:

Z: (2),(3),(5),(D), (11),...,(0);
Za: (3),(5).(7),(11),....(0);
Zy:  (2),(0);
Zaz:  (5),(11),(13),...,(0);
Z/(42): (2),(3).(7).

N

Note that in general, for ¢ a nonzero element of an integral
domain,

{prime ideals of A;} <> {prime ideals of 4 not containing ¢}
{prime ideals of A/(¢)} <> {prime ideals of A containing #}.

The Chinese remainder theorem

Recall the classical form of the theorem: let d1, ..., d, be inte-
gers, relatively prime in pairs; then for any integers x1, ..., Xz,
the congruences

x = x; mod d;

have a simultaneous solution x € Z; moreover, if x is one so-
lution, then the other solutions are the integers of the form
x+md withm € Zand d =[] d;.

We want to translate this in terms of ideals. Integers m and
n are relatively prime if and only if (m,n) = Z, i.e., if and only
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if (m) + (n) = Z. This suggests defining ideals a and b in a ring
A to be relatively prime if a +b = A.

If my,...,my are integers, then (\(m;) = (m) where m is
the least common multiple of the m;. Thus (\(m;) D ([[m;),
which equals [](m;). If the m; are relatively prime in pairs,
then m = [[m;, and so we have ("\(m;) = [](m;). Note that
in general,

ap-az---ay CayNazN..Nag,

but the two ideals need not be equal.
These remarks suggest the following statement.

THEOREM 1.14 Letay,...,a, be ideals in a ring A, relatively
prime in pairs. Then for any elements x1, ..., X, of A, the con-
gruences

x =x; moda;

have a simultaneous solution x € A; moreover, if x is one so-
lution, then the other solutions are the elements of the form
x +a with a € (\a;, and (\a; = []a;. In other words, the
natural maps give an exact sequence

n
0—-a—>A4A— l_[A/al-—>0
i=1
witha=a; =[]a;.

PROOF. Suppose first that n = 2. As a; 4+ az = A, there are
elements a; € a; such that a; +a, = 1. The element x =
a1x2 + azxi has the required property.
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For each i we can find elements a; € a; and b; € a; such
that
a;+b; =1,alli >2.

The product [ [;5,(a; +b;) = 1, and lies in aj +[[;5, ;, and

o)
ai +1—L‘32 a; = A.

We can now apply the theorem in the case n = 2 to obtain an
element y; of A such that

yi=1moda;, y;=0mod Hizzai"
These conditions imply
yi=1moday, y;=0moda;,allj>1.
Similarly, there exist elements y, ..., y, such that
yi=1moda;, y; =0moda; forj #i.
The element x = Y x; y; now satisfies the requirements.

It remains to prove that ()a; = []Ja;. We have already
noted that (\a; D []a;. First suppose that n = 2, and let
ai +ap =1, as before. For ¢ € a; Naj, we have

c=ajic+azcear-ay

which proves that a; Nay = ajaz. We complete the proof by
induction. This allows us to assume that [[;5, a; = ();5, 0;-
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We showed above that a; and [];-, a; are relatively prime,

and so
al'(l_[i>2ai):alm(l_[i>2ui):mai- o

The theorem extends to A-modules.

THEOREM 1.15 Letay,...,a, be ideals in A, relatively prime
in pairs, and let M be an A-module. There is an exact sequence:

O—>aM—>M—>1_[,M/aiM—>O
1
witha=[]a; = a;.
This can be proved in the same way as Theorem[I.14] but I
prefer to use tensor products, which I now review.

Review of tensor products

Let M, N, and P be A-modules. A mapping f:M x N — P
is said to be A-bilinear if

fm+m' n) = f(m,n)+ f(m' ,n)
f(m,n+n")y= f(m,n)+ f(m,n") allac A, m,m" e M, n,
flam,n) =af(m,n) = f(m,an)

i.e., if it is linear in each variable. A pair (Q, f) consisting

of an A-module Q and an A-bilinear map f:M x N — Q is
called the tensor product of M and N if any other A-bilinear
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map f':M x N — P factors uniquely into f/ = @ o f with
a:Q — P A-linear. The tensor product exists, and is unique
(up to a unique isomorphism making the obvious diagram com-
mute). We denote itby M ® 4 N, and we write (m,n) —m®n
for f. The pair (M ®4 N, (m,n) — m @n) is characterized by
each of the following two conditions:

(a) The map M x N - M ®4 N is A-bilinear, and any
other A-bilinear map M x N — P is of the form (m,n) —
a(m ®n) for a unique A-linear map «: M ® 4 N — P; thus

Biling (M x N, P) = Homy(M ®4 N, P).

(b) The A-module M ® 4 N has as generators the m Q@ n,
mée M,n € N, and as relations

m+mHn=m@n+m' ®n
m@n+n)=mn+men’ } alacA,mm eM,n,n e
am@n=a(m@n) =m@an

Tensor products commute with direct sums: there is a
canonical isomorphism

@D, M) ®a @D, Ni) > P, Mi ®a Ny,
QCm) @ onj) >3 m; ®n;.

It follows that if M and N are free A-modules® with bases (¢;)
and (fj) respectively, then M ®4 N is a free A-module with

3Let M be an A-module. Elements ey ..., e, form a basis for M if every
element of M can be expressed uniquely as a linear combination of the e; ’s with
coefficients in A. Then A™ — M, (ay,...,am) > >_a;e;, is anisomorphism
of A-modules, and M is said to be a free A-module of rank m.
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basis (¢; ® f;). In particular, if V and W are vector spaces over
a field k of dimensions m and n respectively, then V ®; W is
a vector space over k of dimension mn.

Leta:M — M’ and B: N — N’ be A-linear maps. Then

(m,n) = a(m)@PMn):MxN - M 4N’

is A-bilinear, and therefore factors uniquely through M x N —
M ®4 N. Thus there is a unique A-linear map o ® f: M ®4
N — M’ ®4 N’ such that

(@@ p)(m®@n) = a(m)®p(n).

REMARK 1.16 The tensor product of two matrices regarded as
linear maps is called their Kronecker product.* If A is m xn
(so alinear map k™ — k") and B is r x s (so a linear map k¥ —
k"), then AQ® B is the mr x ns matrix (linear map k™5 — k™7)
with
ainB - axB
A®B =

amB - amnB

LEMMA 1.17 Ifa:M — M’ and B: N — N’ are surjective,
then so also is

AQBMOUN - M ®4N'.

“#Kronecker products of matrices pre-date tensor products by about 70 years.
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PROOF. Recall that M’ ® N’ is generated as an A-module by
the elements m’ ® n’, m’ € M’, n’ € N'. By assumption m’ =
a(m) for some m € M and n’ = B(n) for some n € N, and
som' @n’ = a(m) ® B(n) = (@ ® B)(m ® n). Therefore the
image of @ ® B contains a set of generators for M’ ® 4 N” and
so it is equal to it. o

One can also show that if
M —>M->M'—-0
is exact, then so also is
MUP—->MUP —>M"'®04 P —0.
For example, if we tensor the exact sequence
0—>a—>A—>A/a—>0

with M, we obtain an exact sequence

aQqM—>M— (A/a)@4q4 M —0 2
The image of a®@4 M in M is

aM déf{Zaimi laj €a,mj e M},
and so we obtain from the exact sequence (2) that

M/aM ~ (A/a) @4 M 3)
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By way of contrast, if M — N is injective, then M ® 4 P —
N ®4 P need not be injective. For example, take A = 7Z, and

note that (Z = 7Z) ®7,(Z/mZ) equals Z/ mZ = 7./ mZ, which
is the zero map.

PROOF (OF THEOREM|I.15) Return to the situation of the
theorem. When we tensor the isomorphism
Ala>T[A/q

with M, we get an isomorphism

M/aM ~ (A/a)®4 M > [[(A/a;) @4 M ~ [ M/a; M,

as required. o

EXTENSION OF SCALARS

If A— Bisan A-algebraand M is an A-module, then B ® 4 M
has a natural structure of a B-module for which

b @m)=bb'®@m, bb eB, meM.

We say that B ® 4 M is the B-module obtained from M by
extension of scalars. The map m+— 1@m: M — B®4 M has
the following universal property: it is A-linear, and for any A-
linear map o: M — N from M into a B-module N, there is a
unique B-linear map o’: B®4 M — N such that o/ (1 @ m) =
a(m). Thus @ — o’ defines an isomorphism

Homy(M,N) - Hompg(B®4 M,N), N a B-module.

30



For example, A®q M = M. If M is a free A-module with
basis e1,...,em, then B ®4 M is a free B-module with basis
I1®er,....1Qey,.

TENSOR PRODUCTS OF ALGEBRAS

If f:A— B and g:4A — C are A-algebras, then B ®4 C has
a natural structure of an A-algebra: the product structure is de-
termined by the rule

bc)b' ®c’)y=bb'®cc’

andthemap A > B®4Cisar f(a)®1=1® g(a).
For example, there is a canonical isomorphism

a® faf:KQrk[X1,....,.Xm] > K[X1,..., Xm]
)
TENSOR PRODUCTS OF FIELDS

We are now able to compute K @y, §2 if K is a finite separable
field extension of a field k and £2 is an arbitrary field exten-
sion of k. According to the primitive element theorem (FT[5.1)),
K = ko] for some « € K. Let f(X) be the minimum polyno-
mial of «. By definition this means that the map g(X) — g(«)
determines an isomorphism

kIX]/(f(X)) — K.

Hence

K @ 2 ~ (k[X]/(f(X))) @k 2 ~ 2[X]/(f (X))
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by (3) and (@). Because K is separable over k, f(X) has dis-
tinct roots. Therefore f(X) factors in £2[X] into monic irre-
ducible polynomials

S(X) = fi(X)- fr(X)

that are relatively prime in pairs. We can apply the Chinese
Remainder Theorem to deduce that

eX)/(f0) = [T _, X/ (fi(X).

Finally, 2[X]/(f; (X)) is a finite separable field extension of
§2 of degree deg f;. Thus we have proved the following result:

THEOREM 1.18 Let K be a finite separable field extension of
k, and let 2 be an arbitrary field extension. Then K ®j, §2 is a
product of finite separable field extensions of §2,

,
Kepe=[]_ 2
If o is a primitive element for K/ k, then the image «; of « in

§2; is a primitive element for §2; /§2, and if f(X) and f;(X)
are the minimum polynomials for « and «; respectively, then

o0 =TT _, fix).

EXAMPLE 1.19 Let K = Q[«] with « algebraic over Q. Then

CooK =~ C®q@Q[X]/(f(X))
CIXT/((f(X))

]_[:=IC[X]/(X—a,-)mcr.

12

12
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Here o1, ...,ar are the conjugates of « in C. The composite of
B+ 1®B: K — C®qg K with projection onto the i th factor is

Yajal > Zaj(xl.j.

We note that it is essential to assume in (I.I8) that K is
separable over k. If not, there will be an « € K such that a? € k
but « ¢ k, and the ring K ®; K will contain an element f =
(¢ ®1—1Q®a) # 0 such that

BP=a?®1-10a? =a?(1®1)—a?(1®1) =0.

Hence K ®j K contains a nonzero nilpotent element, and so it
can’t be a product of fields.

NOTES Ideals were introduced and studied by Dedekind for rings of
algebraic integers, and later by others in polynomial rings. It was not
until the 1920s that the theory was placed in its most natural set-
ting, that of arbitrary commutative rings (by Emil Artin and Emmy
Noether).

Exercise

1-1 Let A be an integral domain. A multiplicative subset S of
A is said to be saturated if

abe S =aandbes.

(a) Show that S is saturated <= its complement is a union
of prime ideals.
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(b) Show that given a multiplicative system S, there is a
unique smallest saturated multiplicative system S’ con-
taining S, and that S” = A\ |Jp, where p runs over
the prime ideals disjoint from §. Show that §'~14 =
S~1 4. Deduce that S~! 4 is characterized by the set of
prime ideals of A that remain prime in S~ A.
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Chapter 2

Rings of Integers

Let A be an integral domain, and let L be a field containing A.
An element « of L is said to be integral over A if it is a root
of a monic polynomial with coefficients in A, i.e., if it satisfies
an equation

" +aod" 14+ 4a,=0, a;€A.
THEOREM 2.1 The elements of L integral over A form a ring.

I shall give two proofs of this theorem. The first uses New-
ton’s theory of symmetric polynomials and a result of Eisen-
stein, and the second is Dedekind’s surprisingly modern proof,
which avoids symmetric polynomials.
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First proof that the integral elements form a ring

A polynomial P(X1,...,X;) € A[X1,..., X;] is said to be sym-
metric if it is unchanged when its variables are permuted, i.e.,
if
P(XO'(I)""7XU(7‘)) = P(X1,....X,), alloeSym,.
For example
S1=>"Xi. S3=Y XiXj. ... Sy=Xi-X
i<j

are all symmetric. These particular polynomials are called the
elementary symmetric polynomials.

THEOREM 2.2 (Symmetric function theorem) Let A be a ring.
Every symmetric polynomial P(X1q,...,X;) in A[X1, ..., Xr] is
equal to a polynomial in the symmetric elementary polynomi-
als with coefficients in A, i.e., P € A[S1,...,Sr].

PROOF. We define an ordering on the monomials in the X; by
requiring that

xitx2oxir > x'x . x)r
if either
i1tizt-+ir>j1t+jat+Jr
or equality holds and, for some s,

i1=J1,..,0s = Jg, Dutigy1 > js41.
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Let X{cl ~--X£€" be the highest monomial occurring in P with
a coefficient ¢ # 0. Because P is symmetric, it contains all
monomials obtained from X fl - X f " by permuting the X’s.
Hence k1 > kp > --- > ky.

Clearly, the highest monomial in S; is X --- X;, and it fol-
lows easily that the highest monomial in S ii ! S;j "is

X{il +dy++dy X512+"'+dr X’fdr )

Therefore

P(X1,...,X;)—cSK

1mhagkatks sk < P(X1,. X)),

We can repeat this argument with the polynomial on the left,
and after a finite number of steps, we will arrive at a represen-
tation of P as a polynomial in S1,...,Sr. o

Let f(X)=X"4+a1 X" 1 +...4a, € A[X], and let
a1,...,0n be the roots of f(X) in some ring containing A,
so that f(X) =[](X —«;) in the larger ring. Then

al = —Sl(al,...,a,,),
an = Sz(al,...,an),
anp = xSp(ag,...,an).

Thus the elementary symmetric polynomials in the roots of
f(X) liein A, and so the theorem implies that every symmetric
polynomial in the roots of f(X) lies in A.
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PROPOSITION 2.3 Let A be an integral domain, and let §2 be
an algebraically closed field containing A. If oy, ...,y are the
roots in §2 of a monic polynomial in A[X], then any polyno-
mial g(ay,...,a,) in the a; with coefficients in A is a root of
a monic polynomial in A[X].

PROOF. Clearly

def
WO =TT, gy, X~ 8@y @)
is a monic polynomial whose coefficients are symmetric poly-
nomials in the «;, and therefore lie in A. But g(aq,...,a,) is
one of its roots. O

We now prove Theorem Let @1 and o be elements of
L integral over A. There exists a monic polynomial in A[X]
having both «; and oy as roots. We can now apply with
g(oq,...) equal to o1 £ ap or ajap to deduce that these ele-
ments are integral over A.

Dedekind’s proof that the integral elements form
aring

PROPOSITION 2.4 Let L be a field containing A. An element
a of L is integral over A if and only if there exists a nonzero

finitely generated A-submodule of L such that M C M (in
fact, we can take M = Alw], the A-subalgebra generated by

o).
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PROOF. =>: Suppose
a"+ad" 14+ 4a,=0, q; €A.

Then the A-submodule M of L generated by 1, «, ..., "1 has
the property that M C M.

<=: We shall need to apply Cramer’s rule. As usually
stated (in linear algebra courses) this says that, if

m
ch’jxj' =d;, i=1,...,m,
Jj=1

then
x;j = det(C;)/det(C)

where C = (c;;) and C; is obtained from C by replacing the
elements of the j th column with the d;s. When one restates the
equation as

det(C)-x; = det(C)

it becomes true over any ring (whether or not det(C) is in-
vertible). The proof is elementary—essentially it is what you
wind up with when you eliminate the other variables (try it for
m = 2). Alternatively, expand out
C11 chjxj Clm
detC; = : :
Cml - 2.CmjXj ... Cmm

using standard properties of determinants.
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Now let M be a nonzero A-module in L such that M C
M, and let vy,...,v, be a finite set of generators for M. Then,
for each i,

av; =) a;jvj,somea;; € A.

We can rewrite this system of equations as

(¢ —ayy)vy —ajpva —azvz—---=0
—az vy + (@ —azz)vy —az3vz—---=0
—

Let C be the matrix of coefficients on the left-hand side. Then
Cramer’s rule tells us that det(C)-v; = 0 for all i. Since at least
one v; is nonzero and we are working inside the field L, this
implies that det(C) = 0. On expanding out the determinant, we
obtain an equation

o+ Va2 4ty =0, ¢ € A. o

We now prove Theorem [2.1] Let o and 8 be two elements

of L integral over A, and let M and N be finitely generated
A-modules in L such that M C M and BN C N. Define

MN:{Zm,-ni |m,-€M, n,-eN}.

Then:
(a) MN is an A-submodule of L (easy);
(b) it is finitely generated because, if {e1,...,em}

generates M and {f1,...,fn} generates N, then
{e1f1.....€i fj.....em fn} generates M N;
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(c) itis stable under multiplication by af and by o & .
We can now apply (2.4) to deduce that «f and o + § are inte-

gral over A.
Integral elements

DEFINITION 2.5 The ring of elements of L integral over 4 is
called the integral closure of A in L. The integral closure of
Z in an algebraic number field L is called the ring of integers
Op in L.

Next we want to see that L is the field of fractions of Oy ;
in fact we can prove more.

PROPOSITION 2.6 Let K be the field of fractions of A, and let
L be a field containing K. If « € L is algebraic over K, then
there exists ad € A such that da is integral over A.

PROOF. By assumption, o satisfies an equation
™ +ad™ ' +da, =0, a; €K.

Let d be a common denominator for the a;, so that da; € A for
all i, and multiply through the equation by d"” :

d™d™ +a1d™e™ . 4 amd™ =0.
We can rewrite this as

(da)™ +ayd(da)™ '+ 4 amd™ =0.
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As aid, ..., a;md™ € A, this shows that da is integral over
A. 0

COROLLARY 2.7 Let A be an integral domain with field of
fractions K, and let B be the integral closure of A in a field L
containing K. If L is algebraic over K, then it is the field of
fractions of B.

PROOF. The proposition shows that every o € L can be written
a=pB/d with e B,d e A. O

DEFINITION 2.8 A ring A is integrally closed if it is its own
integral closure in its field of fractions K, i.e., if

a € K, «integral over A = « € A.

PROPOSITION 2.9 A unique factorization domain, for exam-
ple, a principal ideal domain, is integrally closed.

PROOEF. Let A be a unique factorization domain, and let a /b,
with a,b € A, be an element of the field of fractions of A in-
tegral over A. If b is a unit, then a/b € A. Otherwise we may
suppose that there is an irreducible element 7 of A dividing b
but not a. As a/b is integral over A, it satisfies an equation

(a/b)*+ai(@/b)" ' 4+--4a, =0, a;€A.
On multiplying through by »", we obtain the equation

a"+ara® b+ .. +ayb" =0.
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The element 7 then divides every term on the left except a”,
and hence must divide a”. Since it doesn’t divide a, this is a
contradiction. o

The proposition makes it easy to give examples of rings
where unique factorization fails — take any ring which is not

integrally closed, for example, Z[+/3].

EXAMPLE 2.10 (a) The rings Z and Z[i] are integrally closed
because both are principal ideal domains.
(b) Unique factorization fails in Z[+/—3] because

4=2x2=(1+V=3)(1-vV=3),

and the four factors are all irreducible because they have the
minimum norm 4. However, Z[v/—3] C Z[ 3/1] which is a prin-
cipal ideal domain (and hence the integral closure of Z in
Q[vV=3] = Q[¥1).

(c) For any field k, I claim that the integral closure of
k[S1,....Sm] in k(X1,...,Xm) is k[X1,..., Xm] (here the S;
are the elementary symmetric polynomials).

Let f € k(X1,...,Xm) be integral over k[Sy,...,Sm].
Then f is integral over k[X1,..., X;;], which is a unique fac-
torization domain, and hence is integrally closed in its field of
fractions. Thus f € k[X1,..., Xm].

Conversely, let f € k[X1,..., Xmm]. Then f is a root of the
monic polynomial

[T T-rXoqy. - Xom))-

o E€Sym,,
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The coefficients of this polynomial are symmetric polynomials
in the X;, and therefore (see[2.2) lie in k[S7,...., Sr].

PROPOSITION 2.11 Let K be the field of fractions of A, and
let L be an extension of K of finite degree. Assume A is inte-
grally closed. An element @ of L is integral over A if and only
if its minimum polynomial over K has coefficients in A.

PROOF. Let o be an element of L integral over A, so that
™ +a1d™ V4. 4+am=0, somea; € A.

Let f(X) be the minimum polynomial of o over K. For any
root @’ of f(X), the fields K[«] and K [a'] are both stem fields
for f (see FT p.[19), and so there exists a K -isomorphism

o:Kla] - K[a'], o(a) =d';
On applying o to the above equation we obtain the equation
o™ +ard™ V¢ tam =0,

which shows that o’ is integral over A. Hence all the roots of
f(X) are integral over A, and it follows that the coefficients
of f(X) are integral over A (by[2.1). They lie in K, and A4 is
integrally closed, and so they lie in A. This proves the “only if”
part of the statement, and the “if” part is obvious. !

REMARK 2.12 As we noted in the introduction, this makes it
easy to compute some rings of integers. For example, an ele-

ment o € Q[+/d] is integral over Z if and only if its trace and
norm both lie in Z.
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PROPOSITION 2.13 If B is integral over A and finitely gen-
erated as an A-algebra, then it is finitely generated as an A-
module.

PROOF. First consider the case that B is generated as an A-
algebra by a single element, say B = A[f]. By assumption

B +a1p" M+ +a, =0, somea; € A.
Every element of B can be expressed as a finite sum
co+c1p —|—Cz,32 +~~~+CN/3N, ci €4,
and we can exploit the preceding equality to replace " (suc-

cessively) with a linear combination of lower powers of B.
Thus every element of B can be expressed as a finite sum

cotcifpteap?+-ten1p"Y, o eA,

andso 1,8,B2,..., 8! generate B as an A-module. In order
to pass to the general case, we need a lemma. o

LEMMA 2.14 Let A C B C C be rings. If B is finitely gen-
erated as an A-module, and C is finitely generated as a B-
module, then C is finitely generated as an A-module.

PROOE. If {B1,...,Bm} is a set of generators for B as an A-
module, and {y1,...,yn} is a set of generators for C as a B-
module, then {f;y;} is a set of generators for C as an A-
module. o
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We now complete the proof of (2.13). Let B1,...,Bm gen-
erate B as an A-algebra, and consider

AC A1l C A[B1.B2] C--- C A[B1,....Bm] = B.

We saw above that A[B1] is finitely generated as an A-
module. Since A[B1, B2] = A[B1][B2], and B, is integral over
A[B1] (because it is over A), the same observation shows that
A[B1,B2] is finitely generated as a A[f1]-module. Now the
lemma shows that A[B1, 2] is finitely generated as an A-
module. Continuing in this fashion, we find that B is finitely
generated as an A-module.

PROPOSITION 2.15 Consider integral domains A C B C C;
if B is integral over A, and C is integral over B, then C is
integral over A.

PROOF. Let y € Cj; it satisfies an equation

Y 4+by" 1 4-4b, =0, b; €B.
Let B’ = Alby,...,by]. Then B’ is finitely generated as an A-
module (by the last proposition), and y is integral over B’ (by
our choice of the b;), and so B'[y] is finitely generated as an

A-module. Since yB’[y] C B’[y], Proposition|2.4|shows that y
is integral over A. o

COROLLARY 2.16 The integral closure of A in an algebraic
extension L of its field of fractions is integrally closed.
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PROOF. Let B be the integral closure of 4 in L, and let C be
the integral closure of B in L. Then C is integral over A, and
soC C B. m

REMARK 2.17 In particular, the ring of integers in a number
field is integrally closed. Clearly we want this, since we want
our ring of integers to have the best chance of being a unique
factorization domain (see[2.9).

EXAMPLE 2.18 Let k be a finite field, and let K be a finite
extension of k(X). Let Ok be the integral closure of k[X] in
K. The arithmetic of Ok is very similar to that of the ring of
integers in a number field.

Review of bases of A-modules

Let M be an A-module. Recall that a set of elements eq,...,e,
is a basis for M if

(@) > aje; =0,a; € A= alla; =0, and

(b) every element x of M can be expressed in the form x =
Za[ei, a; € A.

Let {ey,...,en} be a basis for M, and let {f1,..., fn} be
a second set of n elements in M. Then we can write f; =
Y ajjej,a;j € A, and f; is also a basis if and only if the ma-
trix (a;;) is invertible in the ring My (A4) of n x n matrices with
coefficients in A (this is obvious). Moreover (a;;) is invertible
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in My (A) if and only if its determinant is a unit in A4, and in
this case, the inverse is given by the usual formula:

(aij)~" =adj(a;;)-det(a;;) "

In the case that A = Z, the index of N & ZH+Zf+--+
Zfn in M is |det(a;;)| (assuming this is nonzero). To prove
this, recall from basic graduate algebra that we can choose
bases {e} for M and { f/} for N such that f/ =m;e], m; € Z,
m; > 0.1f (e]) = U-(e;) and (f/) = V- (f;), then (f;) =
V~1DU(e;) where D = diag(my,...,my), and

det(V "1 DU) =det(V™1)-det(D)-det(U) = [[m; = (M : N).

Review of norms and traces

Let A C B be rings such that B is a free A-module of rank n.
Then any 8 € B defines an A-linear map

x+— Bx:B — B,

and the trace and determinant of this map are well-defined.
We call them the trace Trp;4 8 and norm Nmp,4f8 of B
in the extension B/A. Thus if {eq,...,e,} is a basis for B
over A, and Be; = Y a;je;, then Trp/4(B) = ) a;; and
Nmp, 4(B) = det(a;;). When B D A is a finite field exten-
sion, this agrees with the usual definition. The following hold
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(fora € A, 8,8’ € B):

Tr(B+p) = Te(B) + Tr(B')  Nm(BB') = Nm(B)-Nm(g')
Tr(aB) = a Tr(B) Nm(a) = a”
Tr(a) = na

PROPOSITION 2.19 Let L/K be an extension of fields of de-
green, and let B € L. Let f(X) be the minimum polynomial
of B over K and let B1 = B, B2, ... , Bm be the roots of f(X).
Then

Trp g (B)=r(Br+-+Bm). Nmp/g(B)=(B1-Bm)"
wherer =[L: K[B]l =n/m.

PROOF. Suppose first that L = K[B], and com;l)ute the matrix
of x > Bx relative to the basis {1,8,...,8" one sees
easily that it has trace ) f8; and determinant ]_[/3, For the
general case, use the transitivity of norms and traces (see FT

B.44). o
COROLLARY 2.20 Assume L is separable of degree n over
K, andlet{o1,...,0n} be the set of distinct K -homomorphisms
L — §2 where §2 is some big Galois extension of K (e.g., the
Galois closure of L over K). Then

Trp/x (B) =01B++++0nB. Nmp g (B)=018---0nB.

PROOE. Each B; occurs exactly r times in the family {o; 8}.00
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COROLLARY 2.21 Let A be an integrally closed integral do-
main, and let L be a finite extension of the field of fractions
K of A; if B € L is integral over A, then Try g (B) and
Nmy g (B) are in A.

PROOF. We know that if § is integral, then so also is each of
its conjugates. Alternatively, apply 2.11} o

ASIDE 2.22 Let L = K[a], and let @] = o, a2,...,a, be the con-
jugates of & (in some Galois extension of K containing L). For any
B=g(@)inL,

Nmz, x (B)=Tli=18(@), Trr x(B)=>7_;g().

This is a restatement of (2.20), and is Dedekind’s original definition
(Dedekind| 1877} §17).

Review of bilinear forms

Let V' be a finite-dimensional vector space over a field K. Re-
call that a bilinear form on V is a K-bilinear map

v:VxV —>K.

Such a form is symmetric if ¥ (x,y) = ¥ (y,x) forall x,y €
V. The discriminant of a bilinear form v relative to a basis

{e1.....em} of V is det(V(e;.e;)). If { f1...., fm} is a set of
elements of V, and f; =) a;;e;, then

V(fi 1) =) Vlagieiazze)) =Y agi-Vei.e)-ay;,

i,J i,J

50



and so
W (fie: 1) = A- (Y (ej.ej))- AT

(equality of m x m matrices) where A is the invertible matrix
(a;;). Hence

det(Y (fi. 7)) = det(4)? -det(¥ (e; . ¢})) )

The form ¥ is said to be nondegenerate if it satisfies each of
the following equivalent conditions:

(a) ¥ has a nonzero discriminant relative to one (hence ev-
ery) basis of V;

(b) the leftkernel {v € V | ¥ (v,x) =0 forall x € V} is zero;

(c) the right kernel of ¥ is zero.

Thus if ¥ is nondegenerate, the map v — (x — ¥ (v,x)) from

V onto the dual vector space VY “ Hom(V, K) is an isomor-

phism. Let {eq,...,ex } be a basis for V, and let f1,..., /i be
the dual basis in V'V, i.e., fi(ej) = 8;; (Kronecker delta). We
can use the isomorphism V — V'V given by a nondegenerate
form y to transfer { f1, ..., fm} to a basis {e],...,e;,} of Vit
has the property that

V(ef.ej) =6ij.

For example, suppose {e1,...,em} is a basis such that
(¥ (ej,ej)) is a diagonal matrix — the Gram-Schmidt process
always allows us to find such a basis when the form is symmet-
ric —then e} = ¢; /Y (e; . €;).
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Discriminants

If L is a finite extension of K (L and K fields), then
(a,) = Trp g (@f): Lx L — K

is a symmetric bilinear form on L regarded as a vector space
over K, and the discriminant of this form is called the discrim-
inantof L/K.

More generally, let B D A be rings, and assume B is free of
rank m as an A-module. Let f1,..., Bm be elements of B. We
define their discriminant to be

D(B1,.... Bm) = det(Trg; 4(Bi B;))-
LEMMA 2.23 Ify; =) a;; B, a;j € A, then

D(y1.....ym) = det(@;j)? - D(B1.... Bm)-
PROOF. See the proof of (3). o

If the Bs and ys each form a basis for B over A,
then det(a;;) is a unit (see . Thus the discriminant
D(B1,...,Bm) of a basis {B1,...,Bm} of B is well-defined up
to multiplication by the square of a unit in A. In particular, the
ideal in A that it generates is independent of the choice of the
basis. This ideal, or D(B1, ..., Bm) itself regarded as an element
of A/A*?, s called the discriminant disc(B/A) of B over A.

For example, when we have a finite extension of fields
L/K, disc(L/K) is an element of K, well-defined up to mul-
tiplication by a nonzero square in K.
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When A = Z, disc(B/A) is a well-defined integer, because
1 is the only square of a unit in Z.

Warning: We shall see shortly that, when K is a number
field of degree m over Q, the ring of integers Og in K is
free of rank m over Z, and so disc(Og /Z) is a well-defined
integer. Sometimes this is loosely referred to as the discrimi-
nant of K/Q — strictly speaking, disc(K/Q) is the element of
Q*/Q*? represented by the integer disc(Og /Z).

PROPOSITION 2.24 Let A C B be integral domains and
assume that B is a free A-module of rank m and that
disc(B/A) # 0. Elements y1, ...,y form a basis for B as an
A-module if and only if

(D(y1,---»Ym)) = (disc(B/A)) (asidealsin A).
PROOF. Let{f1,...,Bm} be a basis for B as an A-module, and

let y1,...,ym be any elements of B. Write y; =) a;; B, a;; €
A. Then

D1 vm) B det(aij)? - DBy ).

and, as we noted earlier, {y1,...,ym} is a basis if and only if
det(a;;) is a unit. o

REMARK 2.25 Take A = Z in (2.24)). Elements y1,¥2,...,VYm
generate a submodule N of finite index in B if and only if

D(y1,....ym) # 0, in which case

D(y1.....ym) = (B:N)?-disc(B/Z).
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To prove this, choose a basis f1,...,8m for B as a Z-module,
and write y; = Y a;;B;. Then both sides equal det(aij)z«
D(B1,..-,Bm)-

PROPOSITION 2.26 Let L be a finite separable extension of
the field K of degree m, and let 01,...,0m, be the distinct K -
homomorphisms of L into some large Galois extension §2 of
L. Then, for any basis B1, ..., Bm of L over K,

D(,Bl, ...,,Bm) = det(a,-ﬂj)z 75 0.

PROOF. By direct calculation, we have

D(Bi.....Bm) = det(Tr(B; B)))
= det(}_ ox (Bi B;)) (by[2.20)
=det(Q_ ok (Bi) -0 (B)))
= det(ox (B;)) - det(ox (B;))
= det(ox (B:))>.

Suppose that det(o; 8;) = 0. Then there exist c1,...,cm € 2

such that
Zci(fl‘ (Bj)=0all j.
i a

By linearity, it follows that ) ; ¢;0; () = 0 for all 8 € L, but
this contradicts Dedekind’s theorem on the independence of
characters (apply it with G = L*):

Let G be a group and £2 a field, and let

01, ...,0m be distinct homomorphisms G — £2%;

then 01, ...,0p, are linearly independent over £2,
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i.e., there do not exist ¢; € §£2 such that x —
Y i ¢ioi(x):G — £2 is the zero map (FT|5.14).

COROLLARY 2.27 Let K be the field of tractions of A, and
let L be a finite separable extension of K of degree m. If the
integral closure B of A in L is free of rank m over A, then
disc(B/A) # 0.

PROOF. If {f1,...,Bm} is a basis for B as an A-module, then
it follows easily from (2.6) that it is also a basis for L as a
K-vector space. Hence disc(B/A) represents disc(L/K). @

REMARK 2.28 (a) The proposition shows that the K-bilinear
pairing
(B.B") > Te(B-B):LxL — K

is nondegenerate (its discriminant is disc(L/K)).
(b) The assumption that L /K is separable is essential; in
fact, if L/K is not separable, then disc(L/K) = 0 (see Exer-

cise2-3).
Rings of integers are finitely generated

We now show that Ok is finitely generated as a Z-module.

PROPOSITION 2.29 Let A be an integrally closed integral do-
main with field of fractions K, and let B the integral closure of
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A in a separable extension L of K of degree m. There exists
free A-submodules M and M’ of L such that

McBcCcM. 6)

Therefore B is a finitely generated A-module if A is Noethe-
rian, and it is free of rank m if A is a principal ideal domain.

PROOE. Let{f1,..., Bm} be abasis for L over K. According to
(2:6), there exists ad € A such thatd - B; € B foralli. Clearly
{d-B1,...,d - Bm} is still a basis for L as a vector space over
K, and so we may assume to begin with that each 8; € B.
Because the trace pairing is nondegenerate, there is a “dual”
basis {8/, ..., B, } of L over K such that Tr(B; ',3}) = §;j (see
the discussion following (5), f51)). We shall show that

AB1+ ABa 4+ ABm C B C ARy + ABL + -+ ABL,.

Only the second inclusion requires proof. Let 8 € B. Then 8
can be written uniquely as a linear combination f =} b; ,3;

of the ﬁ} with coefficients b; € K, and we have to show that
each b; € A. As ,Bl and B are in B, so also is § - f;, and so
Tr(B- ﬁl) € A (see[2.21). But

Tr(B- ﬁz)—Tr(Zb B; ﬂ»—Zb Te(B) - Bi)

_Zb -8ij =bj.
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Hence b; € A.

If A Noetherian, then M’ is a Noetherian A-module (see
[[:8), and so B is finitely generated as an A-module. If A is a
principal ideal domain, then B is free of rank < m because it
is contained in a free A-module of rank m, and it has rank > m
because it contains a free A-module of rank m (see any basic
graduate algebra course). !

COROLLARY 2.30 The ring of integers in a number field L is
the largest subring that is finitely generated as a Z-module.

PROOF. We have just seen that Oy, is a finitely generated Z-
module. Let B be another subring of L that is finitely generated
as a Z-module; then every element of B is integral over Z (by
[24),andso B C Or. o

REMARK 2.31 (a) The hypothesis that L /K be separable is
necessary to conclude that B is a finitely generated A-module
(we used that the trace pairing was nondegenerate). However it
is still true that the integral closure of k[X] in any finite exten-
sion of k(X) (not necessarily separable) is a finitely generated
k[X]-module.

(b) The hypothesis that A be a principal ideal domain is
necessary to conclude from () that B is a free A-module —
there do exist examples of number fields L/ K such that Oy, is
not a free Og-module.

(c) Here is an example of a finitely generated module that
is not free. Let A = Z[+/=5], and consider the A-modules

(2) C (2,14 v=5) C Z[V-5].
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Both (2) and Z[+/—5] are free Z[+/—5]-modules of rank 1, but

(2,14 +/=5) is not a free Z[+/—5]-module of rank 1, because
it is not a principal ideal (see the Introduction). In fact, it is not
a free module of any rank.

DEFINITION 2.32 When K is a number field, a basis
ar,....o, for Og as a Z-module is called an integral basis
for K.

REMARK 2.33 We retain the notations of the proposition and
its proof.
(a) Let C = > AB; C B, with ; a basis for L over K.
Define
C*={BeL|Tr(By)c Aforally € C}.
By linearity,

BeC* < Tr(BBi)c Afori =1,...m,

C*=Y " Ap].

and it follows that

Thus we have:
C=) ABiCBC)Y AB=C*.
(b) Write L = Q[B] with B € B, and let f(X) be the min-

imum polynomial of 8. Let C = Z[f] = Z1 + ZB + --- +
ZB™~'. We want to find C*.
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One can show (Artin[1959| Chapter 7) that

if 0<i<m-2

] 0
1 / _
Te(B' /1 (B) = 1 if i=m—1
(these formulas go back to Euler). It follows from this that

det(Tr(B" - B/ /' (B)) = (=1)™

(the only term contributing to the determinant is the product of
the elements on the other diagonal). If 8/,..., B, is the dual

basisto 1,8,...,™1, so that Tr(8! ﬂ;) = 8;;, then
det(Tr(B" - ) = 1.
On comparing these formulas, one sees that the matrix relating

the family
/f B, BV 1 (B

to the basis
BB}

has determinant 41, and so it is invertible in My (A).
Thus we see that C* is a free A-module with basis

(/£ B)..... B £ (B
C=AlglcBC f'(B)Algl=C*.
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Finding the ring of integers

‘We now assume K to be a field of characteristic zero.

PROPOSITION 2.34 Let L = K[B] some B, and let f(X) be
the minimum polynomial of  over K. Suppose that f(X) fac-
tors into [[(X — B;) over the Galois closure of L. Then

DB ")y = ] Bi—-8)?

1<i<j<m

(—1)™m=D/2 . Nmy g (f'(B)).

PROOF. We have

D(1.B,p%,....p" ")

= det(0; (7))? 226)
= det(8/)?
=(li< j (Bi _/3].))2 (Vandermonde)

= (=1)mm=D/2. TT.([T; 2 (Bi — B;))
= (=)D ()
= (=1)y"=D2Nm(f/(B)).

]

The number in is called the discriminant of f(X). It
can also be defined as the resultant of f(X) and f’/(X). The
discriminant of f lies in K, and it is zero if and only if f has a
repeated root. It is a symmetric polynomial in the 8; with coef-
ficients in K, and so (by[2.2) it can be expressed in terms of the
coefficients of f(X), but the formulas are quite complicated.
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EXAMPLE 2.35 We compute the discriminant of
fX)=X"+aX+b, abek,

assumed to be irreducible and separable. Let B be a root of
f(X), and let

y=/f"(B)=np""" +a.
We compute Nmg g1,k (). On multiplying the equation
B" +ap+b=0
by n8~1 and rearranging, we obtain the equation
np" ' = —na—nbp~l.

Hence
y=np"1+a=—(n—-a—nbp L.
Solving for § gives
—nb
p=—
y+m—1a

from which it is clear that K[8] = K[y], and so the minimum
polynomial of y over K also has degree n. If we write

—nb
f(m) = P(X)/0(X),
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then P(y)/Q(y) = f(B) =0and so P(y) =0. Since
PX)=X+@m—-Da)"—na(X +n—-1a)* "+ (=1)"n"p""!

is monic of degree n, it must be the minimum polynomial of
y. Therefore Nm(y) is (—1)" times the constant term of this
polynomial, and so we find that

Nm(y) =n"b" 1+ (=1)" L (n—1)""1a".

Finally we obtain the formula:

disc(X" +aX +b) = (—1)"=D/2Gnpn—1
_|_ (_l)n—l(n _ l)n—lan)

For example:
disc(X2 +aX +b) = —4b + a2,
disc(X3 4+ aX +b) = —27b% —4a3,
disc(X* 4+ aX +b) = 25603 —27a*,
disc(X> 4+ aX +b) =5°b* 4+ 4%a°.

For any polynomials more complicated than the above, use
a computer program. For example, typing
poldisc (X~ 3+a*xX"2+b*X+c)
in PARI returns
—4xc*a”3 + b"2xa"2 + 18*cxbka + (-4%b"3 - 27*c"2)
ie., —4ca’ +b2a? + 18cha + (—4b3 —27c2).

The general strategy for finding the ring of integers of K
is to write K = Qo] with @ an integer in K, and compute

62



D(1,a,...,a™ 1) It is an integer, and if it is square-free, then
{1,a,...,a™ 1} is automatically an integral basis, because (see

2:25)
D(1,a,....a™ 1) = disc(Og /Z)- (Ok : Z[a])®.  (7)

If it is not square-free, {1,c, ...,a™ 1} may still be an integral
basis, and sometimes one can tell this by using Stickelberger’s
theorem (see [2.40] below) or by looking at how primes ramify
(see later). If {I,c,...,a™ 1} is not an integral basis, one has
to look for algebraic integers not in ZZ-O[i (we describe an
algorithm below).

EXAMPLE 2.36 The polynomial X3 — X —1 is irreducible! in
Q[X], because, if it factored, it would have a root in Q, which
would be an integer dividing 1. Let « be a root of X3 — X —1.
‘We have

D(1,a,0?) = disc(f (X)) = =23,

which contains no square factor, and so {1, c, az} is an integral
basis for Q[«] (and Z[«] is the ring of integers in Q[«]).

EXAMPLE 2.37 The polynomial X3 + X + 1 is irreducible in
Q[X], and, for any root & of it, D(1,a,a?) = disc(f(X)) =
—31, which contains no square factor, and so again {1,o,a*}
is an integral basis for Q[«].

'In fact, this is the monic irreducible cubic polynomial in Z[X] with the
smallest discriminant.

63



EXAMPLE 2.38 This example goes back to Dedekind. Let
K = Q[«], where « is a root of

f(X)=X3+X2-2X +8.

The discriminant of f is —2012 = —4-503, but Dedekind
showed that Og # Z[B], and so disc(O/Z) = —503. In fact
Dedekind showed that there is no integral basis of the form 1,
B, B? (see|[Weiss| 1963, p170; for another example of this type,
see Exercise[2-6])

EXAMPLE 2.39 Consider the field Q[«] where « is a root of
f(X) = X°— X —1. This polynomial is irreducible, because
it is irreducible in F3[X]. The discriminant of f(X) is 2869 =
19-151, and so the ring of integers in Q[«] is Z[«].

PROPOSITION 2.40 Let K be an algebraic number field.

(a) The sign of disc(K/Q) is (—1)%, where 2s is the num-
ber of homomorphisms K < C whose image is not con-
tained in R.

(b) (Stickelberger’s theorem) disc(Og /Z) = 0 or 1 mod 4.
PROOEF. (a) Let K = Q|], and let o1 = «, @2, ..., &y be the

real conjugates of @ and oy 41, 41, .. ocr+s,ar+s the com-
plex conjugates. Then

. m—1 . _ 2
sign(D(1....a 1) = sign ([, _, _, @r+i —ar+i))

because the other terms are either squares of real numbers or
occur in conjugate pairs, and this equals (—1)*.
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(b) Recall that disc(Og /Z) = det(o; aj)z, where oy, ...,am,
is an integral basis. Let P be the sum of the terms in the ex-
pansion of det(o; ;) corresponding to even permutations, and
—N the sum of the terms corresponding to odd permutations.
Then

disc(Og /Z) = (P —N)* = (P + N)? —4PN.

If 7 is an element of the Galois group of the Galois closure of
K over Q, then either TP = P and tN = N,or P = N and
tN = P. In either case, 7 fixes P + N and PN, and so they
are rational numbers. As they are integral over Z, they must in
fact be integers, from which it follows that

disc(Okg/Z) = (P +N)®>=0or1 mod 4. .

EXAMPLE 2.41 Consider the field Q[+/m], where m is a
square-free integer.

Case m = 2,3 mod 4. Here D(1, /m) = disc(X2 —m) =
4m, and so Stickelberger’s theorem shows that disc(Og /Z) =
4m, and hence {1, ./m} is an integral basis.

Case m = 1 mod 4. The element (1 + /m)/2 is integral
because it is a root of X2 — X 4+ (1 —m)/4. As D(1,(1 +
/m)/2) = m, we see that {1, (1 + 4/m)/2} is an integral basis.

REMARK 2.42 Let K and K’ be number fields. If K and K’
are isomorphic, then they have the same degree and the same
discriminant, but the converse statement is false. For example,
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there are four nonisomorphic cubic number fields with discrim-
inant —4027 (4027 is prime). See (3.48) and (3.49) for two of
them.

The curious may wonder why we didn’t give an example of
a field generated over Q by an integral element whose mini-
mum polynomial has discriminant 1. The reason is that there
is no such polynomial of dezgree > 1 — see the discussion fol-
lowing Theorem below.

Algorithms for finding the ring of integers

By an algorithm 1 mean a procedure that could (in principle)
be put on a computer and is guaranteed to lead to the answer in
a finite number of steps. Suppose the input requires N digits to
express it. A good algorithm is one whose running time is <
N¢ for some c. For example, there is no known good algorithm
for factoring an integer. By a practical algorithm 1 mean one
that has been (or should have been) put on a computer, and is
actually useful.

The following variant of (2.29) is useful. Let A be a prin-
cipal ideal domain with field of fractions K, and let B be the
integral closure of A in a finite separable extension L of K of
degree m.

2In fact, the smallest discriminant is 3, which occurs for Q[+/—3].
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PROPOSITION 2.43 Let B1,...,fm be a basis for L over K
consisting of elements of B, and let d = disc(81, ..., Bm). Then

A-B1+..+A-Bn CBCA-(B1/d)+ ...+ A-(Bm/d).
PROOE. Let 8 € B, and write
B=x1f1+-+xmPm, xi€K.

Let 01,...,0mm be the distinct K-embeddings of L into some
large Galois extension §2 of K. On applying the o’s to this
equation, we obtain a system of linear equations:

0;B=x10iB1+x20iBo+-+xXm0iBm, i=1,...,m.
Hence by Cramer’s rule
xi =vi/d

where § = det(o; ;) and y; is the determinant of the same ma-
trix, but with the i th column replaced with (o; 8). From (2.34),
we know that 62 = d. Thus x; = y;8/d, and y;§ is an element
of K (because it equals dx;) and is integral over A. Therefore
yi8 € A, which completes the proof. !

Thus there is the following algorithm for finding the ring
of integers in a number field K. Write K = Qo] where « is

integral over Q. Compute d = disc(1,a, ...,a™~!). Then

Zla] € Ox C d™ ' Z]a].
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Note that (d ~1Z[a]: Z[a]) = d™, which is huge but finite.
Each coset 8 + Z[«], B € d ~1Z[a], consists entirely of alge-
braic integers or contains no algebraic integer. Find a set of
representatives B, ..., B for Z[a] in d ~1Z[«], and test each to
see whether it is integral over Z (the coefficients of its mini-
mum polynomial will have denominators bounded by a power
of d, and so it is possible to tell whether or not they are integers
by computing them with sufficient accuracy).
Unfortunately this method is not practical. For example,

FX) =X +17X* +3X342X2 4+ X 41

is irreducible, and has discriminant 285401001. Hence, if « is
aroot of f(X) and K = Q[«], then the index of Z[«] in Z% +

Z% 4 +ZOZI—4 is (285401001)° . Actually, as luck would have
it, 285401001 = 3-179-233-2281 is square-free, and so Og =
Za].

Note that PARI can compute the minimum polynomial of
an algebraic number. For example, let a = \/3 1+ /7. We first
type “a=sqrtn(1+sqrt(7),3)” in PARI, which reports that
a=1.539084083333266359084139071. Now “algdep(a,6)”
asks PARI for a minimum polynomial for a of degree at most
6, which (correctly) reports it to be

X0-2x3-6=(x3-1)2-7.

Unfortunately, of course, PARI will find a “minimum polyno-
mial” for a even when a is transcendental.

I now discuss a practical algorithm for finding Og for small
degrees and small discriminants from [Pohst and Zassenhaus
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1989| (see the additional references at the end of this section).
The next result will help us get an idea of what should be pos-
sible.

LEMMA 2.44 Let (A,$) be Euclidean domain, and let M be
an m X m matrix with coefficients in A. Then it is possible to
put M into upper triangular form by elementary row operations
of the following type:

(r1) add a multiple of one row to a second;
(r2) swap two rows.

PROOE. By definition §: A — Z is a function with the follow-
ing property: for any two elements a,b of A with a # 0, there
exist elements ¢ and r such that

b=gqa+r,withr =0o0ré(r) <8(a).

Apply an operation of type (r2) so that the element of the first
column with the minimum § is in the (1, 1)-position. If a1 di-
vides all elements in the first column, we can use operations
of type (rl) to make all the remaining elements of the first col-
umn zero. If not, we can use (r1) to get an element in the first
column that has smaller §-value than a1, and put that in the
(1, 1) position. Repeat — eventually, we will have the gcd of
the original elements in the first column in the (1,1) position
and zeros elsewhere. Then move onto the next column.... g

REMARK 2.45 (a) The operations (rl) and (r2) are invertible

in matrices with coefficients in A, and they correspond to mul-
tiplying on the left with an invertible matrix in My (A). Hence
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we have shown that there exists an invertible matrix U in
My, (A) such that UM is upper triangular. On taking transposes,
we find that for any matrix M € My (A), there is an invertible
matrix U in My (A) such that M U is lower triangular.

(b) Take A = Z (for simplicity), and add the (invertible)
operation:

(r3) multiply a row by —1.

Using (r1,r2,r3), it is possible to make the triangular matrix
T = UM satisfy the following conditions (assuming det(M ) #
0):
aj; >0foralli;
the elements a;; of the jth column satisfy 0 < a;; < aj;j.
Then T is unique. It is called the Hermite normal form of A.

Consider the field K = Qo] generated over Q by the
algebraic integer o with minimum polynomial f(X). Let
{w1,...,wn} be a basis for Og as a Z-module, and write

A=M-X2

where A = (1,a,...,a” DT and 2 = (w1, ...,wp)". Choose U
so that M U is lower triangular (and in Hermite normal form),

and write
A=MU-U'Q=T-2'

Here 2’ £ U142 is again a Z-basis for Og,and 2’ =T 1.4
with 771 also lower triangular (but not necessarily with inte-
ger coefficients). Thus

) =al;
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w)y =azl+axna;
etc.,
where d -a;; € Z,d = |det(M )| = |det(T)|.

EXAMPLE 2.46 Let K = Q[+/m], m square-free, m = 1 (mod
4). The integral basis

1+
2

1L,
is of the above form.

In [Pohst and Zassenhaus|[1989| 4.6, there is an algorithm
that, starting from a monic irreducible polynomial

fX)=X"+a1 X" " +tay, anel,

constructs an integral basis w1, ..., wy, such that

i
o= > aje’ | /N;
k=1

where
aisarootof f(X), ajx€Z, N;e€Z, ged(a;y,....a;;j)=1.

In an Appendix, they use it to show that Q[«], where « is a root
of

FX)=x"4+101x10 +4151X° 4 --- — 332150625,
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has an integral basis

w1 =1,

wr=(1/2)a+1/2

w3 = (1/4)a%—1/4

w4 = (1/8)a® + (1/8)a? —(1/8)a —1/8

11 = (1/9103145472000)'® + ... —
4064571/49948672.

The discriminant of f is 2139 x 312 x 512 x 2918 % 822316,
and the index of Z[«] in O is 2°¢ x 36 x 53 % 29°.

The first step is to compute D(1,a,a2,...) = disc(f(X))
and to find its square factors. Finding the square factors of
disc( f(X)) is the most time-consuming part of the algorithm.
The time taken to factor an N -digit number is exponential in
the number of digits of N. Every computer can factor a 50 digit
number easily, but after that it becomes rapidly more difficult.
Hundred digit numbers are already difficult. Thus this is not
a good algorithm in the above sense. Once one has found the
square factors of disc(f(X)) the algorithm for computing an
integral basis of the above form is good.

USING PARI

To determine whether a polynomial f is irre-
ducible, use polisirreducible(f). For example,
polisirreducible (X"5+17*X"4+3*X"3+2xX"2+X+1) re-
turns 1, which means that X + 17X4 +3X3 +2X2 + X +1
is irreducible, and g) lisirreducible (X~2-1) returns O,
which means that X< — 1 is reducible.
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To find the discriminant of a polynomial f, use
poldisc(£). For example,
poldisc(X"5+17*X"4+3%X"3+2+X"2+X+1) returns
285401001, and poldisc(X~2+3) returns -12.

To study the stem field of a polynomial f, use nfinit (f).
For example,
nfinit (X"5-5*%X"3+4*X-1) returns
[X"5 - 5#X"3 + 4%X - 1, [6, 0], 38569, ...]
which means that X° —5X3 44X — 1 has 5 real roots and
no nonreal roots and that its stem field Q[«] has discriminant
38569. Moreover, typing
nfbasis (X"5-5*X"3+4*X-1) returns
[1, X, X*2, X"3, X"4],
which means that {l,a, o? , o3 R ot4} is an integral basis for Q]
(cf. f68).

On the other hand, typing
nfinit (X~2+3) returns
[x~2 + 3, [0, 1], -3, ...]
which means that, X2 + 3 has no real roots and one conjugate
pair of complex roots, and that the field Q[+/—3] has discrimi-
nant —3. Moreover, typing
nfbasis (X"2+3) returns
[1, 1/2xX + 1/2],

which means that {1, L/=3+ %} is an integral basis for
Qlv-3l.
For Dedekind’s polynomial in (2.38)), PARI says that it has

one real root and one conjugate pair of nonreal roots, and that
its stem field has discriminant —503. It finds the integral basis
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{L,a, %az + %a}. Note that

Zla] = Z[1, e, 0 + ],

[—2012
(Ok:Zla]) =2 = m,

as predicted by Equation[7] g63]

and that

NOTES As noted earlier, it was Dedekind who found the correct def-
inition of the ring of integers in a number fields. Earlier authors ei-
ther luckily chose the correct ring, e.g., Kummer chose Z[{], {7 =1
which is the ring of integers in Q[¢], or unluckily chose the wrong
ring, e.g., Euler gave a proof of Fermat’s last theorem for the exponent
3, which becomes correct when the ring Z[«/j] is replaced in the
proof by its integral closure Z[¢], £3 = 1.

Exercises

2-1 Since Z[+/3] is not integrally closed, it can not be a
unique factorization domain. Give an example of an element
of Z[~/5] that has two distinct factorizations into irreducible
elements.

2-2 Let A be an integrally closed ring, and let K be its field
of fractions. Let f(X) € A[X] be a monic polynomial. If f(X)
is reducible in K[X], show that it is reducible in A[X].

2-3 Show that if L/K is not separable, then disc(L/K) = 0.
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2-4 Let a = (2,1 + +/=3) in Z[+/—=3]. Show that a # (2),
but a? = (2)a. Conclude that ideals in Z[+/—3] do not factor
uniquely into prime ideals. (Hence Z[~/—3] is the wrong choice
for the ring of integers in Q[+/—3].)

2-5 Let A be a subring of a ring B, and let 8 be a unit in B.
Show that every o € A[B] N A[B™!] is integral over A. [This
has a short solution, but it’s not obvious.]

2-6 Let K = Q[+/7,+/10], and let o be an algebraic integer
in K. The following argument will show that Og # Z[«].
(a) Consider the four algebraic integers:

a1 = (1+ V7)1 + V10);
az = (1+~7)(1-10);
az = (1—v7)(1 4+ V10);
as = (1= V7)(1=10).

Show that all the products o; e, i # j, are divisible by 3 in
Ok, but that 3 does not divide any power of any «;. [Hint:
Show that oz;’ /3 is not an algebraic integer by considering its
trace: show that Tr(a]') = (Za}’) = 4" (mod 3) in Z[«]; de-
duce Tr(a}') = 1 (mod 3) in Z.]

(b) Assume now that Og = Z[«] — we shall derive a con-
tradiction. Let f(X) be the minimum polynomial of & over Q.
For g(X) € Z[X], let g(X) denote the image of g in F3[X],
F3 = 7Z/(3). Show that g(«) is divisible by 3 in Z[«] if and
only if g is divisible by f in F3[X].
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(c) Foreach i, 1 <i <4, let f; be a polynomial in Z[X]
such that ; = f; («). Show that f_|f_lf; (i # j) inF3[X], but
that f does not divide f_i" for any n. Conclude that for each i,
f has an irreducible factor which does not divide f_l but does
divide all f;, j #i.

(d) This shows that f_ has at least four distinct irreducible

factors over F3. On the other hand, f has degree at most 4.
Why is this a contradiction?

76



Chapter 3

Dedekind Domains;
Factorization

Es steht schon bei Dedekind.
(It’s already in Dedekind.)
Emmy Noether

In this Chapter, we define the notion of a Dedekind domain,
and prove that

¢ ideals in Dedekind domains factor uniquely into prod-
ucts of prime ideals, and
¢ rings of integers in number fields are Dedekind domains,

but first we consider a local version of a Dedekind domain.
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Discrete valuation rings

The following conditions on a principal ideal domain are
equivalent:

(a) A has exactly one nonzero prime ideal;
(b) up to associates, A has exactly one prime element;
(c) Aislocal and is not a field.

A ring satisfying these conditions is called a discrete valuation
ring. Later we shall define discrete valuations, and so justify
the name.

EXAMPLE 3.1 The ring Z(,) = {% € Q| n not divisible by
p} is a discrete valuation ring with (p) as its unique nonzero
prime ideal. The units in Zpy are the nonzero elements m/n
with neither m nor n divisible by p, and the prime elements are
those of the form unitx p.

In a discrete valuation ring A with prime element ,
nonzero elements of A can be expressed uniquely as uz™ with
u aunit and m > 0 (and m > 0 unless the element is a unit). Ev-
ery nonzero ideal in A is of the form (7™") for a unique m € N.
Thus, if a is an ideal in A and p denotes the (unique) maximal
ideal of A, then a = p™ for a well-defined integer m > 0.

Recall that, for an A-module M and an m € M, the anni-
hilator of m

Ann(m) ={a € A|am =0}.

It is an ideal in A, which is proper if m # 0. Suppose that A is
a discrete valuation ring, and let ¢ be a nonzero element of A.
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Let M = A/(c). What is the annihilator of a nonzero element
b + (¢) of M? Fix a prime element 7 of A, and let ¢ = un™,
b = vx™ with u and v units. Then n < m (else b+ (¢) =0 in
M), and

Ann(b + (¢)) = (™).

Thus, a b for which Ann(b + (c¢)) is maximal, is of the form
v~ and for this choice Ann(b + (c)) is a prime ideal gen-
erated by £. We shall exploit these observations in the proof of
the next proposition, which gives a criterion for a ring to be a
discrete valuation ring.

PROPOSITION 3.2 An integral domain A is a discrete valua-
tion ring if and only if

(a) A is Noetherian,
(b) A is integrally closed, and
(c) A has exactly one nonzero prime ideal.

PROOF. The necessity of the three conditions is obvious, and
so let A be an integral domain satisfying (a), (b), and (c). We
have to show that every ideal in A is principal. As a first step,
we prove that the nonzero prime ideal is principal. Note that
(c) implies that A is a local ring.

Choose an element ¢ € A, ¢ # 0, ¢ # unit, and consider the
A-module M £ A /(c). For each nonzero element m of M,

Ann(m) ={a € A|am =0}

is a proper ideal in A. Because A is Noetherian, we can choose
an m so that Ann(m) is maximal among these ideals. Write
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m = b+ (c) and p = Ann(b + (c¢)). Note that ¢ € p, and so
p # 0, and that
p={aeA|clab}.

I claim that p is prime. If not there exist elements x, y € A
such that xy € p but neither x nor y € p. Then yb+ (c) is a
nonzero element of M because y ¢ p. Consider Ann(yb + (c)).
Obviously it contains p and it contains x, but this contradicts
the maximality of p among ideals of the form Ann(m). Hence
p is prime.

Ao~

I claim that 2 ¢ A. Otherwise b = ¢ - g €(c),and m =0
(in M).

I claim that 7 € A4, and p = (). By definition, pb C (c),

and so p- ECA and it is an ideal in A. If p- 7Cp,thenz

1s integral over A (by[24] since p is finitely generated) and so

E € A (because of condition (b)), but we know E ¢ A. Thus
p- % =A (by (c)), and this implies that p = ().

Letm = b’ so that p = (). Let a be a proper ideal of A,
and consider the sequence

-1 -2

aCam Cam C -

—r —r

Ifar ™" =ax "1 forsome r, then 7! (ar™") = an ™", and
71 is integral over A (by , and so lies in A — this is im-
possible (7 is not a unit in A). Therefore the sequence is strictly
increasing, and (again because A is Noetherian) it can’t be con-
tained in A. Let m be the smallest integer such that ax =™ C A
but ar ™1 ¢ A. Then ax ™™ ¢ p, and so ax~™ = A. Hence
a= (7). O
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Dedekind domains

DEFINITION 3.3 A Dedekind domain is an integral domain
A, not equal to a field, such that

(a) A is Noetherian,
(b) A is integrally closed, and
(c) every nonzero prime ideal is maximal.

Thus Proposition [3.2] says that a local integral domain is a
Dedekind domain if and only if it is a discrete valuation ring.

PROPOSITION 3.4 Let A be a Dedekind domain, and let S be
a multiplicative subset of A. Then ST A is either a Dedekind
domain or a field.

PROOF. Condition (c) says that there is no containment rela-
tion between nonzero prime ideals of A. If this condition holds
for A, then shows that it holds for S~! A. Conditions (a)
and (b) follow from the next lemma. o

PROPOSITION 3.5 Let A be an integral domain, and let S be
a multiplicative subset of A.

(a) If A is Noetherian, then so also is S™1A.
(b) If A is integrally closed, then so also is STL A.

PROOF. (a) Let a be an ideal in S™! 4. Then a = S~!(an A)
(see[I.11), and so a is generated by any (finite) set of generators
foran A.
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(b) Let o be an element of the field of fractions of 4 (=
field of fractions of S~ A) that is integral over S~ 4. Then

" +a1™ e tam =0, somea; € STLA.

For each i, there exists an s; € S such that s;a; € A. Set s =
§1++-Sm € S, and multiply through the equation by s™ :

(sa)™ +sai(sa)™ L 4o 4 5™a,, = 0.

This equation shows that s« is integral over A, and so lies in
A.Hence a = (sa)/s € STLA. o

COROLLARY 3.6 For any nonzero prime ideal p in a
Dedekind domain A, the localization Ay, is a discrete valuation
ring.

PROOF. We saw in (1.13p) that A}, is local, and the proposition
implies that it is Dedekind. o

Unique factorization of ideals
The main result concerning Dedekind domains is the follow-
ing.

THEOREM 3.7 Let A be a Dedekind domain. Every proper
nonzero ideal a of A can be written in the form

ri ¥,
a=p; ...pn"

with the p; distinct prime ideals and the r; > 0; the p; and the
r; are uniquely determined.
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The proof will require several lemmas.

LEMMA 3.8 Let A be a Noetherian ring; then every ideal a in
A contains a product of nonzero prime ideals.

PROOF. (Note the similarity to the proof of [T.4}) Suppose not,
and choose a maximal counterexample a. Then a itself can not
be prime, and so there exist elements x and y of A such that
Xy € abut neither x nor y € a. The ideals a + (x) and a + ()
strictly contain a, but their product is contained in a. Because
a is a maximal counterexample to the statement of the lemma,
each of a+ (x) and a + () contains a product of prime ideals,
and it follows that a contains a product of prime ideals. o

LEMMA 3.9 Let A be a ring, and let a and b be relatively
prime ideals in A; for any m, n € N, a™ and b" are relatively
prime.

PROOF. If @ and b" are not relatively prime, then they are
both contained in some prime (even maximal) ideal p. But if a
prime ideal contains a power of an element, then it contains the
element,andsop D a” = pDaandp D b” = pDb. Thusa
and b are both contained in p, which contradicts the hypothesis.

Alternative proof: We are given that there exist elements
a € Aand b € B such that a + b = 1. Consider

l=(a+b) =a" +(})a" 'b+--+b".

If r > m + n, then the term on the right is the sum of an element
of @™ with an element of b”. o
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If p and p’ are distinct prime ideals of a Dedekind domain,
then condition (c) of the definition implies that p and p’ are
relatively prime, and the lemma shows that p™ and p’" are also
relatively prime for all m,n > 1.

LEMMA 3.10 Letp be a maximal ideal of a ring A, and let q
be the ideal it generates in Ay, q = pAyp. The map

a+p">a+qm AN - Ap /g7
is an isomorphism.

PROOF. We first show that the map is one-to-one. For this we
have to show that ¢ N A = p™ . But ¢ = S~ 1p™, S = A—p,
and so we have to show that p”* = (S~1p™) N A. An element
of (S™1p™)N A can be written @ = b/s with b € p*, s € S,
and a € A. Then sa € p™, and so sa = 0 in A/p™. The only
maximal ideal containing p” is p (because m D p" = m D p),
and so the only maximal ideal in A4/p™ is p/p™; in particular,
A/p™ is a local ring. As s + p™ is not in p/p™, it is a unit in
A/p™, andsosa =0in A/p™ = a=0in A/p™, ie.,a €p™.

We now prove that the map is surjective. Let % € Ayp. Be-
cause s ¢ p and p is maximal, we have that (s) +p = 4, i.e., (5)
and p are relatively prime. Therefore (s) and p™ are relatively
prime, and so there exist b € A and g € p™ such thatbs +¢ = 1.
Then b maps to s~ ! in Ap/q™ and so ba maps to 4. More pre-
cisely: because s is invertible in Ay /q™, & is the unique ele-
ment of this ring such that s ¢ = a; since s(ba) = a(1 —q), the
image of ha in Ay also has this property and therefore equals
a

s o
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REMARK 3.11 With the notations of Proposition [[.T1} we
have shown in the above proof that a® = a if a is a power
of a maximal ideal p and S = S \ p.

We now prove that a nonzero ideal a of A can be factored
into a product of prime ideals. According to |3.8| applied to A4,
the ideal a contains a product of nonzero prime ideals,

b= p'{l p;nm
We may suppose that the p; are distinct. Then
AJb = AJp |t X x Afppt 2 Ay /aY XX Ay, /G

where q; = p; Ap; is the maximal ideal of Ay, . The first iso-
morphism is given by the Chinese Remainder Theorem (and
[3:9), and the second is given by (3.10). Under this isomor-

phism, a/b corresponds to q;' /q}" X+ x gy /qpr for some

s; < r; (recall that the rings Ay, are all discrete valuation

rings). Since this ideal is also the image of pi' ooy under
the isomorphism, we see that

a=pjl--ppin A/b.
Both of these ideals contain b, and so this implies that
a=py' g

in A (because there is a one-to-one correspondence between
the ideals of A/b and the ideals of A containing b).
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To complete the proof of Theorem we have to prove
that the above factorization is unique. Suppose that we have
two factorizations of the ideal a. After adding factors with zero
exponent, we may suppose that the same primes occur in each
factorization, so that

t
Py = a=pip
say. In the course of the above proof, we showed that
. P
;= adp; =d;
where q; the maximal ideal in Ay, . Therefore s; = ¢; for all i.
REMARK 3.12 Note that

Si>0 < ClApi #Apz <~ aCp;.

COROLLARY 3.13 Let a and b be ideals in A; then
aCb < ad, CbAy
for all ideals nonzero prime ideals p of A. In particular, a = b
if and only if aAp = bA,, for all p.
PROOF. The necessity is obvious. For the sufficiency, factor a
and b
u:p’il...pfn’", b:p‘i]...pfrzﬂ, ri»YiZO.

Then
ClApi C bApI < ri =S,

(recall that Ay, is a discrete valuation ring) and r; > s; all i
implies a C b. i
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COROLLARY 3.14 Let A be an integral domain with only
finitely many prime ideals; then A is a Dedekind domain if
and only if it is a principal ideal domain.

PROOF. Assume A is a Dedekind domain. After (3.7)), to show
that A is principal, it suffices to show that the prime ideals are
principal. Let py,...,pm, be these ideals. Choose an element
X1 €p1— p%. According to the Chinese Remainder Theorem
(T:T4), there is an element x € A4 such that

X =x1 modp%, x=1 modp;, iF#Il.
Now the ideals p1 and (x) generate the same ideals in Ay, for

all 7, and so they are equal in A (by[3.13). 0

COROLLARY 3.15 Leta D b # 0 be two ideals in a Dedekind
domain; then a = b+ (a) for somea € A.

PROOF. Letb = pil —epi?and a = pil -pim with ri,sj > 0.
Because b C a,s; <r; foralli. For 1 <i <m, choose an x; €
A such that x; € pi’, x; ¢ p}' *1 By the Chinese Remainder

Theorem, there is an a € A such that
a=x; modp;, foralli.

Now one sees that b4 (a) = a by looking at the ideals they
generate in Ay for all p. !

COROLLARY 3.16 Let a be an ideal in a Dedekind domain,
and let a be any nonzero element of a; then there exists ab € a
such that a = (a, b).
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PROOF. Apply (3.15) to a D (a). o

COROLLARY 3.17 Let a be a nonzero ideal in a Dedekind do-
main; then there exists a nonzero ideal a* in A such that aa*
is principal. Moreover, a* can be chosen to be relatively prime
to any particular ideal ¢, and it can be chosen so that aa® = (a)
with a any particular element of a (but not both).

PROOF. Leta € a, a # 0; then a D (@), and so we have
(@ =py pp anda=pyoppls s <7
If a* = p|! 7% ooopp ™5™ then aa* = (a).

We now show that a* can be chosen to be prime to ¢. We
have a D ac, and so (by [3.15) there exists an a € a such that
a=ac+ (a). AsaD (a), we have (a) = a-a* for some ideal a*
(by the above argument); now, ac+ aa™ = a, and so ¢+ a* =
A. (Otherwise ¢+ a* C p some prime ideal, and ac + aa* =
a(c+a*) Cap #a.) O

In basic graduate algebra courses, it is shown that

A a principal ideal domain = A is a unique
factorization domain.

The converse is false because, for example, k[ X, Y] is a unique
factorization domain in which the ideal (X, Y') is not principal,
but it is true for Dedekind domains.

PROPOSITION 3.18 A Dedekind domain that is a unique fac-
torization domain is a principal ideal domain.
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PROOF. In a unique factorization domain, an irreducible ele-
ment 7 can divide a product bc only if 7 divides b or ¢ (write
bc = mq and express each of b, ¢, and ¢ as a product of irre-
ducible elements). This means that () is a prime ideal.

Now let A be a Dedekind domain with unique factoriza-
tion. It suffices to show that each nonzero prime ideal p of A
is principal. Let a be a nonzero element of p. Then a factors
into a product of irreducible elements (see[T.4) and, because p
is prime, it will contain one of these irreducible factors 7. Now
p D (1) D (0), and, because (r) is a nonzero prime ideal, it is
maximal, and so equals p. !

The ideal class group

Let A be a Dedekind domain. A fractional ideal of A is a
nonzero A-submodule a of K such that

dud=ef{da|aea}

is contained in A for some nonzero d € A (or K), i.e., itis a
nonzero A-submodule of K whose elements have a common
denominator. Note that a fractional ideal is not an ideal unless
it is contained in A — when necessary to avoid confusion, we
refer to the ideals in A as integral ideals.

A fractional ideal a is a finitely generated A-module, be-
cause da is an integral ideal, hence finitely generated, for
some d # 0, and the map x + dx:a — da is an isomor-
phism of A-modules. Conversely, a nonzero finitely generated
A-submodule of KX is a fractional ideal, because a common de-
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nominator for the generators will be a common denominator
for all the elements of the module.
Every nonzero element b of K defines a fractional ideal

b)EbAZ {ba|ae A}
A fractional ideal of this type is said to be principal.
The product of two fractional ideals is defined in the same
way as for (integral) ideals

a‘b={2aibl~ |al~ €a, bi Eb}.

This is again a fractional ideal: it is obviously an A-module,
and if da C A and eb C A, then deab C A. For principal frac-
tional ideals, (a)(b) = (ab).

EXAMPLE 3.19 Let A4 be a discrete valuation ring with max-
imal ideal p and field of fractions K. Write 7 for a generator
of p. Every nonzero element of K can be written uniquely in
the form @ = un™ with u a unit in A and m € Z. Let a be a
fractional ideal of A. Then da C A for some d € A, and we
can suppose d = ”. Thus 7" a is an ideal in A, and so it is of
the form (7) for some m > 0. Clearly, a = (z™ ™). Thus the
fractional ideals of A are of the form ("), m € Z. They form
a free abelian group Id(A) of rank 1, and the map

mi— (7™):Z — 1d(A)

is an isomorphism.

THEOREM 3.20 Let A be a Dedekind domain. The set Id(A)
of fractional ideals is a group; in fact, it is the free abelian group
on the set of prime ideals.
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PROOF. We have noted that the law of composition is well-
defined. It is obviously commutative. For associativity, one
checks that

(ab)e = {Zaibici laj €a, bjeb, ¢ e c} = a(bc).

The ring A plays the role of an identity element: a4 = a. In
order to show that Id(A) is a group, it remains to show that
inverses exist.

Let a be a nonzero integral ideal. According to (3.17), there
is an ideal a* and an a € A such that aa* = (a). Clearly
a-(a 1a*) = A, and so a~la* is an inverse of a. If a is a
fractional ideal, then da is an integral ideal for some d, and
d - (da)~1 will be an inverse for a.

It remains to show that the group Id(A) is freely generated
by the prime ideals, i.e., that each fractional ideal can be ex-
pressed in a unique way as a product of powers of prime ide-
als. Let a be a fractional ideal. Then d a is an integral ideal for
some d € A, and we can write

da:p'il...p;;ln’ (d):p”;lpsmm

Thus a = py' ™! ---pp ™™ The uniqueness follows from the
uniqueness of the factorization for integral ideals. o

REMARK 3.21 (a) Conversely, E. Noether showed that an in-
tegral domain whose fractional ideals form a group under ideal
multiplication is a Dedekind domain (see/Cohn|1991} Theorem
4.6).
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(b) Let S be a multiplicative subset in a Dedekind domain
A, and let Ag = ST1A. It is an integral domain with the same
field of fractions as A:

AC Ag CK.

For any fractional ideal a of A, S~la £ {$laca,seS}is
a fractional ideal of Ag. It is the Ag-module generated by a.
The following hold for any fractional ideals a and b,

S7lab) = (S ta)(S7 1), STla7l = (adg)7.
For any fractional ideal a, define
o« ={acK|aaC A}

This is an A-module, and if d € a, d # 0, then da’ C A, and
so a’ is a fractional ideal. From the definition of a/, we see that
aa’ is an ideal in A. If it is not equal to A, then it is contained in
some prime ideal p. When we pass to Ay, the inclusion aa’ C
p becomes bb’ C g, where b, b, and q are the ideals in Ay
generated by a, a’, and p. Moreover,

b'={aecK|abC A,}.

But g = (7),and b = (#™) = 2" - A, for some m € Z. Clearly
b’ =7"™Ap, and so bb’ = A, — we have a contradiction.

We define the ideal class group CI(A) of A to be the quo-
tient C1(A) = Id(A4)/P(A) of Id(A) by the subgroup of princi-
pal ideals. The class number of A is the order of CI(A) (when
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finite). In the case that A is the ring of integers Ok in a number
field K, we often refer to C1(Og) as the ideal class group of
K, and its order as the class number of K.

One of the main theorems of these notes will be that the
class number hg of a number field K is finite. Understand-
ing how the class numbers of number fields vary remains
an interesting problem. For example, the class number of
Q[+/—m] for m positive and square-free is 1 if and only if
m=1,2,3,7,11,19,43,67,163. It not difficult to show that
these fields have class number 1, but it was not until 1954 that it
was shown (by Heegner) that there were no more (and for more
than 15 years, no one believed Heegner’s proof to be correct).
We have seen that Z[+/—5] is not a principal ideal domain, and
so can’t have class number 1— in fact it has class number 2.
The method we use to prove that the class number is finite
is effective: it provides an algorithm for computing it. There
are expected to be an infinite number of real quadratic fields
with class number one, but this has not been proved. Using the
equivalent language of binary quadratic forms (see Chapter 4),
Gauss showed that the class group of a quadratic field Q[«/g ]
can have arbitrarily many cyclic factors of even order.

It is known that every abelian group can be realized as the
class group of a Dedekind domain (not necessarily the ring of
integers in a number 1“1eld).1

EXAMPLE 3.22 Consider the affine elliptic curve

Y2=X34aX+b, A=-4a>-27b>+0.

IClaborn, Luther. Every abelian group is a class group. Pacific J. Math. 18
1966 219-222.
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The associated ring A = C[X,Y]/(Y? — X3 —aX —b) of regu-
lar functions on A is a Dedekind domain, and its class group is
uncountable. In fact, it is isomorphic in a natural way to C/ A
for some lattice A in C.2

PROPOSITION 3.23 Let A be a Dedekind domain, and let S be
a multiplicative set in A. Then a — S~ !a defines an isomor-
phism from the subgroup of Id(A) generated by prime ideals
not meeting S to the group Id(S~1 A).

PROOF. Immediate consequence of [I.12]and [3.20} o

REMARK 3.24 Let A be a Dedekind domain with finite ideal
class group. There is then a finite set of ideals ay, ..., a; which
is a set of representatives for the ideal classes. Clearly we may
take the a; to be integral. Let b be any element in () a;, and let
S be the multiplicative set generated by b, S = {1,b,b2, R |
claim that S™" A4 is a principal ideal domain.

By assumption, any ideal a C A can be written a = (a) - a;
forsomea € K* and i, 1 <i < m. Because the map bi>S~1p
is a homomorphism we have S™!a = (a)- S~ la; where (a)
now denotes the ideal generated by a in S~ A. Since S~ 1a;
contains a unit, it is the whole ring. Thus “lg= (a), and we

2Let E be the associated complete curve, and let Div?(E) be the group
of divisors of degree zero on E. There is an obvious isomorphism DivO(E) ~
1d(A) under which principal divisors correspond to principal ideals, and so

Cl(A) ~Pic®(E) ~ E(C) ~C/A
(Milne[2006] 1 4.10, IIT 3.10).
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see that every ideal in S~ 4 of the form S~la is principal.
According to (1.11), all ideals of S~! 4 are of this form.

REMARK 3.25 The following conditions on an integral do-
main A are equivalent:

(a) A is a Dedekind domain;

(b) for every prime ideal p of A, Ay is a discrete valuation
ring;

(c) the fractional ideals of A form a group;

(d) for every fractional ideal a of A, there is an ideal b such
that ab = A.

We have seen that (a) implies (b) , (c), and (d), and the same
arguments show that (b) implies (c) and (d). The conditions (c)
and (d) are obviously equivalent, and we have already noted in

(3:21) that (c) implies (a).

Discrete valuations

Let K be a field. A discrete valuation on K is a nonzero homo-
morphism v: K* — Z such that v(a + b) > min(v(a),v(b)).
As v is not the zero homomorphism, its image is a nonzero sub-
group of Z, and is therefore of the form mZ for some m € Z.
If m = 1, then v: K* — Z is surjective, and v is said to be
normalized; otherwise, x > m™1 -v(x) will be a normalized
discrete valuation.
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Note that, for a discrete valuation ord,
ord(ay +-+-+am) min(ord(ay),ord(az +---+am))

=
=
=

min (ord(a;)).
1<i<m

EXAMPLE 3.26 (a) Let M be the field of meromorphic func-
tions on a connected open subset U of the complex plane (or,
better, a compact Riemann surface), and let f € M. For each
P € U, define ordp (f) to be —m, m, or 0 according as f has
apole of order m at P, a zero of order m at P, or neither a pole
nor a zero at P. Then ordp is a normalized discrete valuation
on M.

(b) Let A be a principal ideal domain with field of fractions
K, and let 7 be a prime element of A. Then each element ¢
of K* can be expressed uniquely in the form ¢ = nm% with
m € Z and a and b elements of A relatively prime to . Define
v(c) = m. Then v is a normalized discrete valuation on K.

(c) Let A be a Dedekind domain and let p be a prime ideal
in A. For any ¢ € K*, let p¥(©) be the power of p in the fac-
torization of (c). Then v is a normalized discrete valuation on
K.

In all these examples, we have that v(a + b) = v(b) if
v(a) > v(b). This is in fact a general property of discrete valu-
ations. First note that v () = 0 for any element of K™ of finite
order because v is a homomorphism and 7Z has no elements of
finite order); hence v(—a) = v(—1) + v(a) = v(a). Therefore,
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if v(a) > v(b), we have

v(b) v(a+b—a)) >min(v(a +b),
v(@) =z min(v(a).v(b)) = v(b),

and so equality must hold throughout, and this implies v(a +
b) =v(b).

We often use “ord” rather than “v” to denote a discrete valu-
ation; for example, we often use ordy, to denote the normalized
discrete valuation defined by p in (c).

Example (b) shows that every discrete valuation ring gives
rise to a discrete valuation on its field of fractions. There is a
converse to this statement.

PROPOSITION 3.27 Let v be a discrete valuation on K, then

def

A={aeK|v(a)>0}
is a principal ideal domain with maximal ideal

def

m={aeK|v(a)>0}
If v(K>) = mZ, then the ideal m is generated by any element
7 such that v(w) = m.

PROOF. Routine. o

Later we shall see that a discrete valuation ord defines a
topology on K for which two elements x and y are close if
ord(x — y) is large. The Chinese Remainder Theorem can be
restated as an approximation theorem.
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PROPOSITION 3.28 Let x1,...,Xm be elements of a Dedekind
domain A, and let p1,...,pm be distinct prime ideals of A. For
any integer n, there is an x € A such that

ordp, (x—x;)>n, i=12,..,m.

PROOF. From l) we know that the ideals p" *1 are rela-

tively prime in pairs, and so (T.14) provides us with an element
x € A such that

X =x; modp"+1, i=1,2,....m
i.e., such that

ordy, (x —x;) >n, i=12,..m. :

Integral closures of Dedekind domains

We now prove a result that implies that rings of integers in
number fields are Dedekind domains, and hence that their ide-
als factor uniquely into products of prime ideals.

THEOREM 3.29 Let A be a Dedekind domain with field of
fractions K, and let B be the integral closure of A in a finite
separable extension L of K. Then B is a Dedekind domain.

PROOF. We have to check the three conditions in the definition
of a Dedekind domain (p3.3). We first show that B is Noethe-
rian. In (2.29) we showed that B is contained in a finitely gen-
erated A-module. It follows that every ideal in B is finitely
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generated when regarded as an A-module (being a submodule
of a Noetherian A-module) and a fortiori as an ideal (= B-
module). Next, B is integrally closed because of 2.16). It re-
mains to prove that every nonzero prime ideal q of B is maxi-
mal. Let 8 € q, B # 0. Then B is integral over A, and so there
is an equation

B +a1p +4a, =0, a; €A,

which we may suppose to have the minimum possible degree.
Then a, # 0. As a, € BB N A, we have that ¢ A # (0). But
q N A is a prime ideal (obviously), and so it is a maximal ideal
pof A, and A/p is a field. We know B/q is an integral domain,
and the map

a+p—a+q

identifies A/p with a subfield of B/q. As B is integral over A4,
B/q is algebraic over A/p. The next lemma shows that B/q is
a field, and hence that q is maximal. o

LEMMA 3.30 Any integral domain B containing a field k and
algebraic over k is itself a field.

PROOEF. Let S be a nonzero element of B — we have to prove
that it has an inverse in B. Because § is algebraic over k, the
ring k[f] is finite-dimensional as a k-vector space, and the map
x = Bx:k[B] — k[B] is injective (because B is an integral do-
main). From linear algebra we deduce that the map is surjec-
tive, and so there is an element B’ € k[B] such that 88’ = 1. o
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In fact, Theorem is true without the assumption that
L be separable over K — see [Janusz|[1996| I 6.1 for a proof
of the more general result. The added difficulty is that, without
the separability condition, B may fail to be finitely generated
as an A-module, and so the proof that it is Noetherian is more
difficult.

Modules over Dedekind domains (sketch).

The structure theorem for finitely generated modules over prin-
cipal ideal domains has an interesting extension to modules
over Dedekind domains. Throughout this subsection, A4 is a
Dedekind domain.

First, note that a finitely generated torsion-free A-module
M need not be free. For example, every fractional ideal is
finitely generated and torsion-free but it is free if and only if
it is principal. Thus the best we can hope for is the following.

THEOREM 3.31 Let A be a Dedekind domain.
(a) Every finitely generated torsion-free A-module M is iso-
morphic to a direct sum of fractional ideals,

M=~a &P ay.

(b) Two finitely generated torsion-free A-modules M =
a1 @---Day and N ~ by & --- D by, are isomorphic if
and only if m = n and [[a; = [[b; modulo principal
ideals.
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Hence,
M~a @ - @an~A® - ®ADas - am.

Moreover, two fractional ideals a and b of A are isomorphic as
A-modules if and only if they define the same element of the
class group of A.

The rank of a module M over an integral domain R is the
dimension of K ® g M as a K-vector space, where K is the
field of fractions of R. Clearly the rank of M ~ a; &--- D az,
ism.

These remarks show that the set of isomorphism classes
of finitely generated torsion-free A-modules of rank 1 can be
identified with the class group of A. Multiplication of elements
in CI(A) corresponds to the formation of tensor product of
modules. The Grothendieck group of the category of finitely
generated A-modules is C1(A4) & Z.

THEOREM 3.32 (INVARIANT FACTOR THEOREM) Let M D
N be finitely generated torsion-free A-modules of the same
rank m. Then there exist elements e1,...,e;,; of M, fractional
ideals ay, ..., a;;, and integral ideals by D by D ... D by, such
that

M =aje1®---®amem, N =aibre; ®---®anbmem.
The ideals by, by, ..., by, are uniquely determined by the
pair M D N, and are called the invariant factors of N in M.

The last theorem also yields a description of finitely gener-
ated torsion A-modules.
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For proofs of the above results, see|Curtis and Reiner|1962,
III, 22, |[Frohlich and Taylor][1991] II 4, or Narkiewicz|1990} I
3.

Factorization in extensions

Let A be a Dedekind domain with field of fractions K, and let
B be the integral closure of A in a finite separable extension L
of K.

A prime ideal p of A will factor in B,

pB =P P, e > 1.

If any of the numbers is > 1, then we say that p is ramified in
B (or L). The number e; is called the ramification index. We
say ‘B divides p (written |p) if P occurs in the factorization
of p in B. We then write e(33/p) for the ramification index
and f(*B/p) for the degree of the field extension [B/B: A/p]
(called the residue class degree). A prime p is said to split (or
split completely) in L if e; = f; = 1 for all i, and it said to be
inert in L if p B is a prime ideal (so g =1 =e).

For example, (2) = (1+1)? in Z[i], and so (2) ramifies with
ramification index 2. On the other hand, (3) is inert in Q[i ] with
residue field Z[i]/(3) = Fo, and (5) splits as the product of two
prime ideals (5) = 2+1i)(2—1i).

LEMMA 3.33 A prime ideal 3 of B divides p if and only if
p="PNK.
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PROOF. =: Clearly p C BN K and PN K # A. As p is max-
imal, this implies that p = P N K.

<: If p C*B, then pB C %P, and we have seen that
this implies that *J3 occurs in the factorization of p B. o

THEOREM 3.34 Let m be the degree of L over K, and let
PB1,....Pg be the prime ideals dividing p; then

g
> eifi=m. ®)
i=1
If L is Galois over K, then all the ramification numbers are
equal, and all the residue class degrees are equal, and so

efg=m. )

PROOF. To prove (8), we shall show that both sides equal

[B/pB:A/p].
For the equality Zlg:]eifi = [B/pB:A/p], note that

B/pB = B/[[B;" ~[]B/PB;" (Chinese Remainder Theo-
rem), and so it suffices to show that [B/&Bfi A/pl =e; fi.
From the definition of f;, we know that B/}3; is a field of de-
gree f; over A/p. For each r;, ‘13? /‘Blr’ tlisa B/93;-module,
and because there is no ideal between %;i and &B;i +1, it must
have dimension one as a B/}3; -vector space, and hence dimen-

sion f; as an A/p-vector space. Therefore each quotient in the
chain

BOP; DP? D DRV
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has dimension f; over A/p, and so the dimension of B/‘iji is
e fi.

The proof of the equality [B/pB: A/p] = m is easy when
B is a free A-module, for example, if A is a principal ideal
domain, because an isomorphism A" — B of A-modules,
when tensored with K, gives an isomorphism K” — L, which
shows that n = m, and, when tensored A/p, gives an iso-
morphism (4/p)" — B/pB (see (3), P29), which shows that
n=[B/pB:A/pl.

Now let S be a multiplicative subset of A disjoint from p
and such that S ™! 4 is principal (e.g., S = A—p). Write B/ =
S71B and A’ = S™'A. Then pB’ = [[(F; B))® (see[3.23),
andso Y e; fi = [B’/pB’: A’ /pA’]; but A’ is principal, and so
[B’/pB’: A’ /pA’] = m. This completes the proof

Now assume L is Galois over K. An element o of
Gal(L/K) maps B isomorphically onto itself. In particular, if
B is a prime ideal of B, then o’ is also a prime ideal. More-
over, if 3 divides p, then it follows from (3.33) that o3 divides
p. Clearly e(aB/p) = e(B/p) and f(oaP/p) = f(F/p), and
so it remains to show that Gal(L/K) acts transitively on the
prime ideals of B dividing p.

Suppose B and Q both divide p, and suppose £ is not con-
jugate to B, i.e., that for all 0 € Gal(L/K), 0B # Q. Ac-
cording to the Chinese Remainder Theorem, we can find an

element B lies in Q but not in any of the ideals o*P. Con-
def

sider b = Nm(B) = [JoB. Then b € A4, and as B € Q, it
also lies in 9; hence b € QN A = p. On the other hand, for
all o € Gal(L/K), B ¢ c~1p, and so of ¢ B. The fact that
[ToB € p C ‘P contradicts the primality of 3. o
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The primes that ramify

In this subsection, we obtain a description of the primes that
ramify in an extension.

THEOREM 3.35 Let L be a finite extension of a number field
K, let A be a Dedekind domain in K with field of fractions
K (e.g., A= Og), and let B be the integral closure of A in
L. Assume that B is a free A-module (this is true for example
if A is principal ideal domain). Then a prime p ramifies in L
if and only if p|disc(B/A). In particular, only finitely many
prime ideals ramify.

We obtain this as the consequence of a series of lemmas.

LEMMA 3.36 Let A be a ring and let B be a ring containing
A and admitting a finite basis {e1, ...,em } as an A-module. For
any ideal a of A, {é1,....,em} Iis a basis for the A/a-module
B/aB, and

D(ey,....em) = D(e1,...,e;;) mod a.
PROOF. As in the proof of (3.34), the isomorphism
(ai,...,am) Y ajei:A™ — B
gives, when tensored with A/a, an isomorphism
(ai,...,am)> Y a;ei:(A/a)™ - B/a

which shows that eq,...,éy, is a basis for B/aB. The second
assertion is obvious from the definitions. o
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LEMMA 3.37 Let A be aring and let By, ..., Bg be rings con-
taining A and free of finite rank as A-modules. Then

disc((] | Bi)/A) = [ ] disc(B;/A).

PROOF. Choose bases ¢; for each of the B; (as A-modules),
and compute the discriminant of B/A using the basis | J; &;. o

An element « of a ring is said to be nilpotent if o™ = 0 for
some m > 1. A ring is said to be reduced if it has no nonzero
nilpotent elements.

LEMMA 3.38 Let k be a perfect field, and let B be a k-
algebra of finite dimension. Then B is reduced if and only if
disc(B/ k) # 0.

PROOF. Let 8 # 0 be a nilpotent element of B, and choose a
basis eq,...,en for B with e; = B. Then Be; is nilpotent for
all i, and so the k-linear map

X+ fejx:B—> B

is nilpotent. Its matrix is also nilpotent, but a nilpotent matrix
has trace zero—its minimum polynomial (and hence its char-
acteristic polynomial) is of the form X”—and so the first row
of the matrix (Tr(e;e;)) is zero. Therefore its determinant is
Zero.

Conversely, suppose B is reduced. We first show that the
intersection 1 of the prime ideals of B is zero (this, in fact,
is true for any reduced Noetherian ring). Let b € B, b # 0.
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Let X be the set of ideals of B containing no power of b. Be-
cause b is not nilpotent, X' contains the zero ideal, and hence
is nonempty. Because B is Noetherian, X' has a maximal ele-
ment p. We shall show that p is prime. Since b ¢ p, this will
show that b ¢ 1.

Let x, y be elements of B not in p. Then p+ (x) and p + (y)
strictly contain p, and so

" ep+(x), b"ep+(y)
for some m, n, say,
P"=p+ecx, b"=p' +c'y, p.pep, ¢, eB.

Then b™+" = pp’ + pc’'y + p'ex +cc’xy € p+ (xy), and so
p+ (xy) is not in X'; in particular, p + (xy) # p, and xy € p.
Therefore p is prime ideal, which completes the proof that 91 =
0.

Let p be a prime ideal of B. Then B/p is an integral domain,
algebraic over k, and hence is a field (by . Therefore p is
maximal. Let p1,p2,...,p, be prime ideals of B. Since they
are all maximal, they are relatively prime in pairs. Therefore
the Chinese remainder theorem shows that

B/Mvp; =[1B/pi ).
Note that
[B:k]=>[B/pi:kl=>[B/pi:k]>r.

Therefore B has only finitely many prime ideals, say p1,....pg
where g <[B:k], and [\p; = 0. When we take r = g in (*) we
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find that <
B=]]._, B/pi.

For each i, B/p; is a field, and it is a finite extension of k.
Because k is perfect, it is even a separable extension of k. Now
we can apply to deduce that disc((B/p;)/k) # 0, and
we can apply the preceding lemma to deduce that disc(B/ k) #
0. =

We now prove the theorem. From the first lemma, we see
that

disc(B/A) modp =disc((B/pB)/(A/p)),

and from the last lemma that disc((B/pB)/(A/p)) = 0
if and only B/pB is not reduced. Let pB = [[R{.
Then B/pB ~ [[B/P%, and [[B/P% isreduced <—
each B/3¢ isreduced <= eache; = 1.

REMARK 3.39 (a) In fact there is a precise, but complicated,
relation between the power of p dividing disc(B/A) and the
extent to which p ramifies in B. It implies for example that
ordp (disc(B/A)) = 3 fi(e; — 1), and that equality holds if no
e; is divisible by the characteristic of A/p. See|Serre[1962| IIT
6.

(b) Let A be the ring of integers in a number field K, and
let B be the integral closure of A4 in a finite extension L of K.
It is possible to define disc(B/A) as an ideal without assuming
B to be a free A-module. Let p be an ideal in A, and let S =
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A—p. Then S714 = Ay is principal, and so we can define
disc(S~1B/S™1A). It is a power (pAp)’”(p) of pAyp. Define

disc(B/A) = [ Jp™®.

The index m(p) is nonzero for only finitely many p, and so this
formula does define an ideal in A. Clearly this definition agrees
with the usual one when B is a free A-module, and the above
proof shows that a prime ideal p ramifies in B if and only if it
divides disc(B/A).

EXAMPLE 3.40 (Forexperts on Riemann surfaces.) Let X and
Y be compact connected Riemann surfaces, and let o: Y —
X be a nonconstant holomorphic mapping. Write M(X) and
M(Y) for the fields of meromorphic functions on X and Y.
The map f +— f o« is an inclusion M(X) < M(Y) which
makes M(Y) into a field of finite degree over M(X); let m
be this degree. Geometrically, the map is m: 1 except at a finite
number of branch points.

Let P € X and let Op be the set of meromorphic functions
on X that are holomorphic at P — it is the discrete valua-
tion ring attached to the discrete valuation ordp, and its max-
imal ideal is the set of meromorphic functions on X that are
zero at P. Let B be the integral closure of Op in M(Y). Let
a1 (P)={01,..., Qg } and let e; be the number of sheets of

Y over X that coincide at Q;. Then pB = ]_[lei where q; is
the prime ideal { f € B | £(Q;) = 0}.
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Finding factorizations

The following result often makes it very easy to factor an ideal
in an extension field. Again A is a Dedekind domain with field
of fractions K, and B is the integral closure of A in a finite
separable extension L of K.

THEOREM 3.41 Suppose that B = Ala], and let f(X) be the
minimum polynomial of « over K. Let p be a prime ideal in
A. Choose monic polynomials g1(X),...,gr(X) in A[X] that
are distinct and irreducible modulo p, and such that f(X) =
[1gi (X)¢ modulo p. Then

pB =[] gi (@)

is the factorization of pB into a product of powers of dis-
tinct prime ideals. Moreover, the residue field B/(p, g; (o)) =~
(A/p)[X]/(gi), and so the residue class degree f; is equal to
the degree of g; .

PROOF. Our assumption is that the map X +— « defines an iso-
morphism
A[X]/(f(X)) — B.
When we divide out by p (better, tensor with A/p), this be-
comes an isomorphism
k[X1/(f(X))— B/pB, X r>a.

where k = A/p. The ring k[X]/(f) has maximal ideals
(&1).--(gr), and T](g;)¢ = 0 (but no product with smaller
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exponents is zero). The ideal (g;) in k[X]/(f) corresponds
to the ideal (g;j(«)) + pB in B/pB, and this corresponds to
the ideal 3; < (p.gi()) in B. Thus Py.,.... P, is the com-
plete set of prime ideals containing p B, and hence is the com-
plete set of prime divisors of p (see 3.12). When we write
pB = ]_[‘Bff , then the e; are characterized by the fact that p B
contains H‘Bfi but it does not contain the product when any
e; is replaced with a smaller value. Thus it follows from the
above (parenthetical) statement that e; is the exponent of g;
occurring in the factorization of f. !

REMARK 3.42 When it applies the last theorem can be used to

prove and (333). For example, m = deg( /), and so the
equation m = Y _e; f; is simply the equation deg(f) =Y e; -
deg(g;). Also, disc(B/A) = disc(f(X)), and this is divisible
by p if and only if f(X) has multiple factors (when regarded
as an element of (4/p)[X]), i.e., if and only if some ¢; > 0.

REMARK 3.43 The conclusion of the theorem holds for a par-
ticular prime p of A under the following weaker hypothesis:
disc(1,,...,a™ 1) = a-disc(B/A) with a an ideal of A not
divisible by p. To prove this, invert any element of a not in p,
and apply the theorem to the new ring and its integral closure.

Examples of factorizations

We use Theorem [3.41] to obtain some factorizations.
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EXAMPLE 3.44 Let m # 1 be a square-free integer. We con-
sider the factorization of prime integers in K = Q[+/m]. Recall
that disc(1, /m) = 4m, and that disc(Og /Z) = disc(1, \/m)
if m = 2,3 mod 4, and that disc(Og /Z) = disc(1, s/m)/4 if
m = 1 mod 4. In both cases, we can use the set {1, /m} to
compute the factorization of an odd prime p (see[3.43). Note
that allows only three possible factorizations of (p) in
Ok, namely,

(p) =p?: (p)ramifies,e =2, f =1,g=1;

(p)=p: (p)staysprime,e=1, f =2,g=1;

(p)=pi1p2: (p)splits,e=1,f=1,¢g=2.
One obtains the following result.
() If p|disc(Ok /7Z), then (p) ramifies in Og.
(i1) For an odd prime p not dividing the m, we have

(p) is the product of two distinct ideals <= m is a square
mod p, i.e., (%) =1

(p) is a prime ideal in Q[ /m] <= m is not a square mod
p,ie., (%) =—1.
(iii) For the prime 2 when m =1 mod 4, we have

(p) is the product of two distinct ideals <= m =1
mod 8;

(p) is a prime ideal in Q[/m] <= m =5 mod 8.
To prove (iii), we must use the integral basis {l,a}, o =
(1+ /m)/2. The minimum polynomial of & is X% — X + (1—
m)/4. If m = 1 mod 8, this factors as X2+ X = X(X + 1)
mod 2, and so (2) = (2,a)(2,14+«). If m =5 mod 8§, then
X?2-X+(1-m)/4= X%+ X+ 1 mod 2, which is irre-
ducible, and so (2) = (2,14« +a2) = (2).
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EXAMPLE 3.45 Itis proved in basic graduate algebra courses
that Z[i], the Gaussian integers, is a principal ideal domain.
I claim that the following conditions on an odd prime p are
equivalent:

(a) p=1 mod4;
(b) (p) splits in Z[i];
(c) there exist integers a and b such that p = a? +b2.

We know that (p) splits in Z[i] if and only if X2 -+ 1 splits
modulo p, but this is so if and only if IF;, contains a 4th root of
1, i.e., if and only if the group IF; contains an element of order
4. As Fy is a cyclic group (FT Exercise of order p—1,
this is so if and only if 4|p — 1. Thus we have shown that (a)
and (b) are equivalent.

Suppose (p) splits in Z[i], say (p) = p1p2. Then p; and
pp are principal, and if p; = (a +ib) then py = (a —ib).
Therefore a? 4+ h? = p up to multiplication by a unit in Z[i].
But the only units in Z[i] are +1, +i, and so obviously
a? 4+ b? = p. Conversely, if p = a? + b? with a,b € Z, then
(p) =(a+ib)(a—ib)in Z|[i].

ASIDE 3.46 The fact that every prime of the form 4n + 1 is a sum
of two squares was stated as a theorem by Fermat in a letter in 1654.
Euler, who was almost certainly unaware of Fermat’s letter, found a
proof. For some history, and a discussion of algorithms for finding a
and b, see[Edwards|1977] p. 55.

REMARK 3.47 (a) From and (3:43) we see that, for al-

most all p, factoring (p) in Og amounts to factoring a poly-
nomial f(X) modulo p into a product of powers of irreducible
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polynomials. Clearly, this can always be done, but it may re-
quire a lot of hard work but not much intelligence. Hence it
can safely be left to the computer. In PARI, factormod (f,p)
factors the polynomial f modulo p. For example,

factormod (X~3+10*X+1,2) returns (X + 1)(X2 4+ X + 1),
factormod (X~3+10%X+1,17) returns X3 + 10X + 1,
factormod (X~3+10*X+1,4027) returns (X + 2215)2(X +
3624), etc., as in the following table.

(b) In the next section, we shall show, not only that the class
group of a number field is finite, but that it is generated by
the prime ideals dividing a certain small set of prime numbers.
Finding the class number therefore involves finding the prime
ideal factors of these prime numbers, and the relations among
them.

EXAMPLE 3.48 Let o be a root of X3 + 10X + 1. Recall that
the discriminant of the polynomial is —4027, and so the ring
of integers in Q[«] is Z + Za + Za2. There are the following
factorizations:

2 (14+X)0+X4+X2)
3 Q2+4X)2+X+X%) (3
5 (14+X)(1+4X+X2) (5
7 G+X)G+HAX+X2) ()
11 E+X)Q+5X+X%) (11
13 14+10X + X3 (13)
17 1+10X +Xx3 17)
4027 (2215+ X)?(3624+ X) (4027)

Q. 1+@)2,1+a+a?)
B.2+a)3.24+a+a?)

5. 14+a)(5.1+4a+a?)
(7.34)(7.5+4a +a?)

(11,6 4+a)(11,2+ 50 +a?)
(13,14 10a +a3) = (13)

prime ideal.

(4027,2215 + «)%(4027,3624 + ).

EXAMPLE 3.49 Let « be aroot of X3 —8X + 15. Here again,
the discriminant of the polynomial is —4027, and so the ring
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of integers in Q[«] is Z + Zo + Zo2. There are the following

17 (G+X)6+X)(T+X) (17)
4027 (509+ X)(1759+ X)2. (4027)

factorizations:

2 (1+X)(1+X+X%) (2 =1+ 1+a+a?)
3 X(1+X2) 3) = G.a)G1+a?)

5 X2+X?) 6 = Ga)G.2+a?)

7 G+X)EH2X+X?) () = (La)(T.3+2a+a?)
11 (I+X)E+10X+X2) (11) = (11,0)(11,4+ 10a +a?)
13 245X +X%3 13) = (13)

(17.4+a)(17,6+a)(17,7 + @)
(4027,509 + o) (4027, 1759 + )2

On comparing the factorizations of (17) in the fields in the last
two examples, we see that the fields are not isomorphic.

REMARK 3.50 When K is a number field, it is interesting to
have a description of the set Spl(K) of prime numbers that split
in K. For K = Q[+/m] with m square free, this is the set of odd
p not dividing m for which (%) = 1 together possibly with
2 (see 3-44). We shall see later that the quadratic reciprocity
law gives a good description of the set. For any abelian Ga-
lois extension K of Q, class field theory gives a similarly good
description, but for an arbitrary extension very little is known
about what sets can occur. There is a theorem that says that two
Galois extensions K and K’ of Q are isomorphic if and only if
Spl(K) =Spl(K’). Moreover, this can be made into an effec-
tive procedure for determining when fields are isomorphic. See
Theorem [§.38] below.

EXAMPLE 3.51 In (2.39), we saw that f(X) =X —X —1is
irreducible in Q[X ], and that its discriminant is 19- 151, which
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is square-free, and so, if « is a root of f(X), then Z[«] is the
ring of integers in Q[«]. We have the following factorizations:
9 1 /= (6-+X)2(104+ 13X +17X2 4+ X3)
(19) = (19,6 + @)%(19,10 + 13 + 172 4+ a3)
151 { f=0+X)(39+X)2(61 + 64X + X2)
(151) = (151,94 )(151,39 + @)2(151,61 + 64a + a?)
027 § /= (12614 X)(2592+ X)(790 + 3499 + 174X 4 X 3)
(4027) = (4027,1261 + ) (4027,2592 + @) (4027,790 + 34990 + 17402 + 3.

Thus (19) and (151) are ramified in Q[«], and 4027 is not,
which is what Theorem [3:33] predicts.

EXAMPLE 3.52 According to PARI,
X4+ X34 X24X+1=(X+4* mod5

Why is this obvious?

Eisenstein extensions

Recall that Eisenstein’s Criterion says that a polynomial
X" 4a X g,

such that a; € Z, pla; all i, and p2 does not divide a,, is
irreducible in Q[X]. We will improve this result, but first we
need to make two observations about discrete valuations.

Let A be a Dedekind domain, and let B be its integral clo-
sure in a finite extension L of its field of fractions K. Let p be
a prime ideal of A and let 3 be an ideal of B dividing p, say
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pB = ¢ ---. Write ord, and ordsg for the normalized valua-
tions on K and L defined by p and ‘3. Then

ordy |K = e-ordy (10)

because, if (@) = p™--- in A, then (a) =P™¢--- in B.
Next I claim that if

ai +...+an :07

then the minimum value of ord(a; ) must be attained for at least
two 7s. Suppose not, say ord(a;) < ord(a;) for all i > 1. Then
—ay = ) ;>,a; implies that

®
ord(ay) = ord(X:l_>2 a;) > min_ ord(a;),

which is a contradiction.
Let A be a Dedekind domain and let p be a prime ideal in
A. A polynomial

X" +a Xm L va,, a; €A,
is said to be Eisenstein relative to p if
ordp(ay) >0, ..., ordp(am—1) > 0, ordp(am) = 1.
PROPOSITION 3.53 Let f(X) € A[X] be an Eisenstein poly-
nomial with respect to p. Then f(X) is irreducible, and if o

is a root of f(X), then p is totally ramified in K|[«]; in fact
pB =P withB = (p,«) and m = deg(f).
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PROOEF. Let L be the field generated by a root « of f(X); then

def

[L: K] <m = deg(f).Let*p be a prime ideal dividing p, with
ramification index e say. Consider the equation

o +ard™ V4 day, =0.

Because f(X) is Eisenstein,

ordsp (o) = m - ordsp (00);

ordqg(aiotm_i) > (m—i)-ordyp(a) +e;

ords (am) = e.
If ordsg(a) = 0, then the minimum value of ordsy is taken
for a single term, namely am._This is impossible, and so
ordyp () > 1, and ordsg(a;@™™") > ordgp(am) = e for i =

1,...,m. From the remark preceding the proposition, we see
that m - ordsp (@) = e. Then

m-ordp(a) = e < [K[o] : K] <m,

and we must have equalities throughout: ordg(a) = 1,
[K(@):K]=m =e. =

NOTES Gauss proved the quadratic reciprocity law, and studied the
arithmetic of Q[i] in order to discover the quartic reciprocity law.
Kummer made an intense study of the arithmetic of the fields Q[¢,],
where &), is a primitive nth root of 1, in order to prove higher reci-
procity laws. A major problem for him was that unique factorization
fails already for n = 23. To restore unique factorization, he developed
his theory of “ideal numbers”. One of Dedekind’s great achievements
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was to realize that, by replacing Kummer’s “ideal numbers” with his
new notion of “ideals”, it was possible to simplify Kummer’s theory
and extend it to the rings of integers in all number fields. A difficult
step for him was showing that if a|b, then there exists an ideal ¢ such
that a = bc. Emmy Noether re-examined Kummer’s work more ab-
stractly, and named the integral domains for which his methods applied
“Dedekind domains”.

Exercises

3-1 Let k be a field. Is k[X,Y] a Dedekind domain? (Ex-
plain).

3-2 Show that Z[+/3] is the ring of integers in Q[+/3] and
Z[+/7] is the ring of integers in Q[+/7], but that Z[+/3, /7] is
not the ring of integers in Q[+/3, +/7]. (Hint: look at (+/3 +
V7)/2)

3-3 Complete the proofs of the following statements (cf.
B.43):
(@) x>+ y2 = phasasolutioninZ <= p =1mod 4;
(b) x%2+2y% = phasasolutioninZ <= p =1 or 3 mod

8;
(¢) x2+3y2 = phasasolutioninZ <= p=1mod 3.3

3Kwangho Choiy notes that x2 + 3y2 = p can be replaced by x2 + xy +
y2 = p, because the norm is of the form x2 + xy + y2. However, both are true,
because (_73) = (4). Moreover, we can remark that the prime ideal lying over

p with (§) = 1 can be generated by an element in Z[+/—3].
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You may assume that Q[,/—p] has class number 1 for p < 5.

3-4 Let k be a field, and let 4 be the subring k[X2, X3] of
k[X].

(a) Show that k[X] is a finitely generated k[X2]-module,
and hence is a Noetherian k[X ?]-module. Deduce that
A is Noetherian.

(b) Show that every nonzero prime ideal of A is maximal,
but that A is not a Dedekind domain.

Hence A satisfies conditions (a) and (c) to be a Dedekind do-
main, but not (b). There are also rings that satisfy (b) and (c)
but fail (a), and rings that satisfy (a) and (b) but not (c) (for
example, k[X,Y]).
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Chapter 4

The Finiteness of the Class
Number

In this section we prove the first main theorem of the course:
the class number of a number field is finite. The method of
proof is effective: it gives an algorithm for computing the class

group.

Norms of ideals

Let A be a Dedekind domain with field of fractions K, and let
B be the integral closure of A4 in a finite separable extension
L. We want to define a homomorphism Nm:Id(B) — Id(A4)
which is compatible with taking norms of elements, i.e., such
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that the following diagram commutes:

b—>(b
< 220 14

le JNm (11)

ar>(a)

K* ——> 1d(A)

Because 1d(B) is the free abelian group on the set of prime
ideals, we only have to define Nm(p) for p prime.

Let p be a prime ideal A, and factor pB = ]_[‘Bfi. Ifpis
principal, say p = (7r), then we should have

Nm(pB) =Nm(x-B) =Nm(n)-A= (=) =p", m=[L:K].
Also, because Nm is to be a homomorphism, we should have
Nm(pB) = Nm([TB;") = [TNm(P;)*.

On comparing these two formulas, and recalling (3.34) that

m =) e; fi, we see that we should define Nm(3;) = pff.
We take this as our definition:

Nm(R) = p/ F/P) where p =P A and f(PB/p) = [B/B: A/p].

To avoid confusion, I sometimes use N to denote norms of
ideals.
If we have a tower of fields M D L D K, then
Npjg Nag/La0) = Npyg/xa
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because f(Q/F)- f(B/p) = f(Q/p). ie., [C/Q: B/P]-
[B/B:A/p]=[C/Q: A/p] where C D B D A are the integral
closures of Ain M, L, and K respectively.

PROPOSITION 4.1 Let A C B and K C L be as above.

(a) For any nonzero ideal a C A, Nk (aB) = o™, where
m=[L:K].

(b) Suppose L is Galois over K. Let 3 be a nonzero prime
ideal of B and letp =P N A. Writep- B = (P1---Pg)®
(cf.[3:34). Then

NP-B=P1PB) = [] oP

o€Gal(L/K)

(c¢) For any nonzero element § € B, Nm(f)-A =Nm(8- B)
(e, commutes).

PROOF. (a) It suffices to prove this for a prime ideal p, and for
such an ideal we have that

NpB) =N(I18;) EpXeifi =pm  (by[34).

(b) Since N3; = pf for each i, the first equality is ob-
vious. In the course of the proof of (3.34), we showed that
Gal(L/K) acts transitively on the set {*1,...,B¢ }, and it fol-
lows that each 3; occurs % = ef times in the family {0’} |
o € Gal(L/K)}.

(c) Suppose first that L is Galois over K, and let 8- B = b.
The map a +> a- B:1d(A) — Id(B) is injective (remember they
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are the free abelian groups on the sets of nonzero prime ideals),
and so it suffices to show that Nm(f)- B = Nm(b) - B. But

®)

Nm(b)- B = [[ob=[](c8-B) = ([[of)- B =Nm(p)- B

as required.

In the general case, let E be a finite Galois extension of K
containing L, and let d = [E: L]. Let C be the integral closure
of B in E. From (a), the Galois case, and the transitivity of A/
we have that

Nk (B-B)? =Ng g (B-C)=Nmpg g (B)-A=Nmp g (B)* -
As the group of ideals Id(A) is torsion-free, this implies that
Np/k(B-B) =Nmp g (B)-A. 0

Let a be a nonzero ideal in the ring of integers Ok of a
number field K. Then a is of finite index in Ok, and we let
Na, the numerical norm of a, be this index:

Na= (O :a).

PROPOSITION 4.2 Let Ok be the ring of integers in a number
field K.

(a) For any ideal a in Ok, NK/@(Q) = (N(a)); therefore
N(ab) = N(a)N(b).
(b) Letb C a be fractional ideals in K ; then

(a:b) =N(a"'p).
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PROOF. (a) Write a = [[p;’, and let f; = f(p;/p;) where
(pi) = ZNyp;; then Nm(p;) = (pi)ff. From the Chinese re-
mainder theorem, Ok /a ~ [JOk /p!’, and so (Ok : a) =
[1(Ok : p;[ ). In the course of the proof of , we showed
that Og/ p;’ has a filtration of length r; whose quotients are
vector spaces of dimension f; over Fp,, and so (O : p;i) =
pifi " On taking the product over i, we find that (O : a) =
l_[(p,-f[ "y =Nk /@9 When we identify the set of nonzero ide-

als in Z with the set of positive integers, then A/ becomes iden-
tified with N, and so the multiplicativity of N follows from that
of V.

(b) For any nonzero d € K, the map x — dx: K — K is
an additive isomorphism, and so (da: db) = (a: b). Since
(da)(db)~! = ab™!, we may suppose that a and b are inte-
gral ideals. The required formula then follows from (a) and the

formulas
Ok :a)(a:b) =(Ok :b)

and
N(a)-N(a~'b) = N(b). 0

Statement of the main theorem and its conse-
quences

We now state the main theorem of this section and discuss
some of its consequences.
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THEOREM 4.3 Let K be an extension of degree n of Q, and
let Ak be the discriminant of K /Q. Let 2s be the number of
nonreal complex embeddings of K. Then there exists a set of
representatives for the ideal class group of K consisting of in-
tegral ideals a with

b4

n! (4\* 1
N = 2 (5) 14,

The number on the right is called the Minkowski bound —
n! (4\°

we sometimes denote it by Bg. The term Cx = ;57 () is
called the Minkowski constant. 1t takes the following values:

n ro s C

2 0 1 0.637

2 2 0 0.500

3 1 1 0.283

3 30 0.222

4 0o 2 0.152

4 2 1 0.119

4 4 0 0.094

5 1 2 0.062

5 31 0.049

5 5 0 0.038

100 100 0 0.93x10742
Here r is the number of real embeddings of K. We have

K®gR~R"xC’,
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and, if K = Q[«] and f(X) is the minimum polynomial of
«, then r is the number of real roots of f(X) and 2s is the
number of its nonreal roots. To see that these descriptions of r

and s agree, apply (I.18).
Before proving (4.3)), we give some applications and exam-

ples.

THEOREM 4.4 The class number of K is finite.

PROOF. It suffices to show that there are only finitely many in-
tegral ideals a in Og such that N(a) is less than the Minkowski
bound — in fact, we shall show that, for any integer M, there
are only finitely many integral ideals a with N(a) < M. If
a= ]_[p;’, then N(a) = le.rifi where (p;) = p; N7Z. As
N(a) < M, this allows only finitely many possibilities for the
pi (and hence for the p;), and only finitely many possibilities
for the exponents r;. m]

Let S be the set of integral ideals in K with norm < Bg.
Then S is a finite set, and C1(Og) = S/ ~, where a ~ b if one
ideal is the product of the other with a principal (fractional)
ideal. There is an algorithm for finding S, and an algorithm for
deciding whether a ~ b, and so there is an algorithm for finding
Cl(Og) (the group, not just its order). To find S, find the prime
ideal factors of enough prime numbers, and form some of their
products. To decide whether a ~ b, one has to decide whether
¢ = ab~1 is principal. From ) we know that, for y € c,

c=(y) < Nc=|Nmy|
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and so we have to solve the equation:
Nmy = constant.

When we express y in terms of an integral basis, this becomes a
(very special) type of diophantine equation. For a descriptions
of algorithms for finding C1(Og), see |Cohen![1993, 6.5, and
Pohst and Zassenhaus| 1989, p424.

EXAMPLE 4.5 Let K = QJi]. The condition in Theorem[&.3]is
that N(a) < %%2 < 1.27. There are no such ideals other than
Z[i], and so Z[i] is a principal ideal domain. (Of course, the
elementary proof of this shows more, namely, that Z[i] is a Eu-
clidean domain. Even for rings of integers in number fields, it
is not true that all principal ideal domains are Euclidean do-
mains. For example, Q[+ —19] has class number 1, but its ring
of integers is not a Euclidean domain. For more on such things,
see the survey article Lemmermeyer 1995'.)

EXAMPLE 4.6 Let K = Q[+/=5]. Here N(a) < 0.63 x +/20<
3. Any ideal satistfying this must divide (2). In fact, (2) =
pZ where p = (2,1 + +~/—5), and Np2 = N(2) = 4, and so
Np = 2. The ideals Ok and p form a set of representatives
for C1(Z[+/—5]). The ideal p can’t be principal because there
does not exist an element & = m + 11+/—5 such that Nm(at) =
m? +5n2 =2, and so CI(Z[+~/—5]) has order 2.

! Lemmermeyer, Franz. The Euclidean algorithm in algebraic number fields.
Exposition. Math. 13 (1995), no. 5, 385-416.
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EXAMPLE 4.7 Let K be a cubic field with discriminant < 0.
Since the sign of Ag is (—1)*, and [K : Q] = r + 25, we have
s =1, r = 1. The Minkowski bound is

By <0.283|Ag|2.

For |[Ag| <49, Bg < 2, and so for cubic fields with —49 <
Ag < 0, the class number & = 1. For example, this is true for
the number fields with discriminants —23 and —31 discussed
earlier (see 237).

For the stem field of X3 + 10X + 1, the discriminant is
—4027, and the Minkowski bound is < 18. Recall from
that

Q) =2, 1+x)2,1+a+a?).

Letp = (2,1+@); its norm is 2. One can show that it generates
the class group, and that it has order 6 in the class group, i.e.,
p® but no smaller power is principal. Hence the class group is
cyclic of order 6. (The proof takes quite a bit of hard work if
you do it by hand — see |Artin|[1959, 12.6, 13.3. Using PARI,
you can type “bnfclgp(X~3+10%X+1)”)

EXAMPLE 4.8 Let o be a root of f(X) = X°—X +1. We
saw in that £(X) is irreducible and its discriminant is
19 x 151, and so the ring of integers of Q[«] is Z[e].

According to Theorem every class of ideals for Q[«]
contains an integral ideal a with

N(a) <0.062x+/19x151 =3.3 < 4.
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If p is a prime ideal with N(p) = 2, then the residue field at p
must be 5, and f(X) must have a root mod 2; however, both
f(0) and f(1) are odd, and so f(X) doesn’t have a root in 5,
which shows that p doesn’t exist. Similarly, there is no prime
ideal p with N(p) = 3, and so Ok is a principal ideal domain!

The Galois group of the splitting field M of f(X) is
S5 (later we shall see how to find Galois groups; for the
moment type “polgalois(X~5-X-1)" in PARI), and hence
[M:Q] = 120. 1t is possible to show that M is unramified over

Q[v19x 151].

An extension L of a number field K is said to be unramified
over K if no prime ideal of O ramifies in Op,.

THEOREM 4.9 There does not exist an unramified extension

of Q.

PROOE. Let K be a finite extension of Q. Since a set of rep-
resentatives for the class group must have at least one element,
and that element will have numerical norm > 1, Theorem [£.3]
shows that

nn n

= G =

1
Let ay = rhs. Then ap > 1, and ""H =(F)20+ %)" > 1,
and so the sequence a;, is monotomcally increasing. Hence the
discriminant of K has absolute value > 1, and we know from
(3-33) that any prime dividing the discriminant ramifies. o

A2
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COROLLARY 4.10 There does not exist an irreducible monic
polynomial f(X) € Z[X] of degree > 1 with discriminant 1.

PROOEF. Let f(X) be such a polynomial, and let « be a root of
f(X). Then disc(Z|«]/Z) = £1, and so Z[«] is the ring of in-
tegers in K e Q[r] and disc(Og /Z) = +1, which contradicts
the theorem. o

REMARK 4.11 There may exist unramified extensions of
number fields other than Q. In fact, class field theory says that
the maximal abelian unramified? extension of K (called the
Hilbert class field of K) has Galois group canonically isomor-
phic to Cl(Ok). For example, the theory says that Q[v/—5]
has an unramified extension of degree 2, and one verifies that
Q[v—1,+/=5] is unramified over Q[+/—5]. In particular, the
discriminant of Q[v/—1, +/=5] over Q[+/—5] is a unit.

REMARK 4.12 Let K; be a number field with class number
hg, > 1. Its Hilbert class field is an abelian unramified exten-
sion K of K; with Gal(K»/K1) >~ CI(K1). Let K3 be the
Hilbert class field of K5, and so on. In this way, we obtain a
tower of fields,

KiCKyCKzC:--

It was a famous question (class field tower problem) to decide
whether this tower can be infinite, or must always terminate

2The Hilbert class field L of K is required to be unramified even at the
infinite primes — this means that every real embedding of K extends to a real
embedding of L.
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with a field of class number 1 after a finite number of steps. It
was shown by Golod and Shafarevich in the early 60s that the
tower is frequently infinite. See Roquette| 1967,

If K has class number 1, then it has no abelian unramified
extensions, but it may have nonabelian unramified extensions,
even infinite (see, for example, D. Brink, Remark on infinite
unramified extensions of number fields with class number one,
J. Number Theory 130 (2010), 304-306; mo53530).

Lattices

Let V be a vector space of dimension n over R. A lattice A in
V is a subgroup of the form

A=TZei +-+Zer

with ey, ..., e; linearly independent elements of V. Thus a lat-
tice is the free abelian subgroup of V' generated by elements of
V that are linearly independent over R. When r = n, the lattice
is said to be full. At the opposite extreme, A = {0} is a lattice
(generated by the empty set of elements). In terms of tensor
products, one can say that a full lattice in V' is a subgroup A of
V' such that the map

Sri®xi—=> > rixitRQgA—>V,
is an isomorphism.

NONEXAMPLE 4.13 The subgroup Z + Z+/2 of R is a free

abelian group of rank 2 (because /2 is not rational), but it is
not a lattice in R.
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We shall need another criterion for a subgroup A of V' to
be a lattice. The choice of a basis for V' determines an isomor-
phism of V' with R”, and hence a topology on V; the topology
is independent of the basis, because any linear automorphism
of R” is a homeomorphism. A subgroup A of V is said to be
discrete if it is discrete in the induced topology. A topological
space is discrete if its points (hence all subsets) are open, and
so to say that A is discrete means that every point o of A has a
neighbourhood U in V such that U N A = {«}.

LEMMA 4.14 The following conditions on a subgroup A of a
finite-dimensional real vector space V' are equivalent:

(a) A is a discrete subgroup;

(b) there is an open subset U of V such that U N A = {0};
(c) each compact subset of V' intersects A in a finite set;
(d) each bounded subset of V intersects A in a finite set.

PROOF. (a) <= (b). Obviously (a) implies (b). For the con-
verse, note that the translation map x — o +x:V — Visa
homeomorphism, and so, if U is a neighbourhood of 0 such
that U N A = {0}, then o + U is a neighbourhood of « such
that (o +U)N A = {a}.

(a)=(c). Condition (a) says that A is a discrete space for
the induced topology. Hence, if C is compact, then C N A is
both discrete and compact,3 and therefore must be finite.

3T am implicitly using that a discrete subgroup of a Hausdorff group is closed
(note that a discrete subset need not be closed, e.g., {1/n | n an integer > 0} is
not closed in the real numbers). Here is the proof. Let H be a discrete subgroup
of a Hausdorff group G. There exists a neighbourhood U of 1 such that U N
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(¢)=(d). The closure of a bounded set in R” (hence in V)
is compact, and so this is obvious.

(d)=(b). Let U be a bounded open neighbourhood of 0.
Then S = U N A~ {0} is finite and hence closed, and so U \ S
is an open neighbourhood of {0} such that (U ~S)N A = {0}.g

PROPOSITION 4.15 A subgroup A of V is a lattice if and only
if it is discrete.

PROOF. Clearly, a lattice is discrete. For the converse, let A
be a discrete subgroup of V', and choose a maximal R-linearly
independent subset {e,...,e,} of A. We shall argue by induc-
tion on r.

If r =0, A =0, and there is nothing to prove.

If r =1, then A C Rey. Because A is discrete, for each
M >0,

{aeq |lal<M}IN A

is finite, and so there is an f € A such that, when we write f =
aeq, a attains its minimum value > 0. I claim A = Z f. Any
o€ ANZf will equal (m + b) f for some m € Z and b with
0<b < 1;butthen (¢ —mf)=bf =abey,and 0 < ab < a,
which contradicts our choice of f.

Ifr > 1,welet A’ = AN (Rey +---+Rey—1). Clearly this

is a discrete subgroup of the vector space V' el Reyp +---+

H = 1; choose a neighbourhood V' of 1 such that V=1V is contained in U.
For distinct elements @ and b of H, Va and Vb are disjoint. Let g lie in the
closure of H, so that H NV ~1g is nonempty. If a lies in H NV~ lg, say
a=v"lg, then g € Va. This shows that H NV ~'g = {a}. As g is in the
closure of H , this implies that g = a, and so g lies in H.
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Rey—1 and so, by induction, A’ =Z f +-+-+Z f—1 for some
fi that are linearly independent over R (and hence also form a
basis for VV'). Every € A can be written uniquely

a=ayfi+-+ar—1fr—1+aer, aj,acR.

Let ¢: A — R be the map « + «, and let A” = Im(p). Note
that a is also the image of

(a1 —[a1]) A + -+ (ar—1 —lar—1]) fr—1 +aer,

[*] = integer part, and so each element a € A” in a bounded
set, say with 0 < |a| < M, is the image of an element of A in a
bounded set,

0<a;j<l1, i=1,....,r—1, |a|<M.

Thus there are only finitely many such as, and so A” is a lattice
inR, say A” =Z-o(fy), fr € A.

Leta € A. Then ¢(a) = agp( fy) for some a € Z, and p(a —
afy) = 0. Therefore « —af, € A’, and so it can be written

a—afy =ar fi+--+ar—1fr—1, a; €Z.
Hence

a=aifi+--+ar—1fr-1tafr, aia€k,
which proves that A =Y Z f;. O

Let V be areal vector space of dimension 7, and let A be a
full lattice in V, say A = > Ze;. For any Ag € A, let

D={A0+Zaiei |0<a; <1}
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Such a set is called a fundamental parallelopiped for A. The
shape of the parallelopiped depends on the choice of the basis
(e;), but if we fix the basis and vary Ag € A, then the paral-
lelopipeds cover R” without overlaps.

REMARK 4.16 (a) For a fundamental parallelopiped D of a
full lattice
A=Zf i+ +Zfu

in R”, the volume of D

w(D) = |det(f1,-++, fu)l.

(See any good book on calculus.) If also
A=Zf|+Zf5++ZLf,,

then the determinant of the matrix relating { f; } and { fl/ } has
determinant £1, and so the volume of the fundamental paral-
lelopiped doesn’t depend on the choice of the basis for A.

(b) When A D A’ are two full lattices R”, we can choose
bases {e; } and { f; } for A and A’ such that f; = m;e; with m;
a positive integer. With this choice of bases, the fundamental
parallelopiped D of A is a disjoint union of (A : A”) funda-
mental parallelopipeds D’ of A’. Hence

(D)

=4 *).
D) = o

As we noted above, the choice of a basis for V' determines
an isomorphism V = R”, and hence a measure y on V. This
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measure is translation invariant (because the Lebesgue measure
on R” is translation invariant), and well-defined up to multipli-
cation by a nonzero constant (depending on the choice of the
basis) 4. Thus the ratio of the measures of two sets is well-
defined, and the equation (*) holds for two full lattices A D A’
inV.

THEOREM 4.17 Let Do be a fundamental parallelopiped for
a full lattice in V', and let S be a measurable subset in V. If
w(S) > u(Dy), then S contains distinct points o and 8 such
that —a € A.

PROOF. The set S N D is measurable for all fundamental par-
allelopipeds D, and

w(S) = u(SND)

(sum over translates of D by elements of A). For each D, a
(unique) translate of S N D by an element of A will be a subset
of Dg. Since u(S) > u(Dy), at least two of these sets will
overlap, i.e., there exist elements «, 8 € S such that

a—A=pB-1", somei, A e€A.

Then B —a € A. o

REMARK 4.18 In the language of differential geometry, the
theorem can be given a more geometric statement. Let M =

4The experts will recognize i as being a Haar measure on V.
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V/ A; it is an n-dimensional torus. The measure p on V' defines
ameasure on M for which M has measure (M) = (D). The
theorem says that if £ (S) > (M), then the restriction of the
quotient map V' — M to S can’t be injective.

Let T be a set such that
1
(x,ﬂeT=>§((x—ﬂ)eT, (%)

and let § = %T. Then T contains the difference of any two
points of S, and so 7" will contain a point of A other than the
origin whenever

1 _
wD) <pu(GT) =27"W(T).
i.e., whenever
w(T) > 2" u(D).

We say that a set 7" is convex if, with any two points, it con-
tains the line joining the two points, and that T is symmetric in
the origin if o € T implies —a € T'. A convex set, symmetric
in the origin, obviously satisfies (**), and so it will contain a
point of A\ {0} if its volume is greater than 2" u(D).

THEOREM 4.19 (MINKOWSKI’S) Let T be a subset of V' that
is compact, convex, and symmetric in the origin. If

w(T) = 2" (D)

then T contains a point of the lattice other than the origin.
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PROOE. Replace T' with (1+¢)T, e > 0. Then
w((1+e)T) = (1+e)" u(T) > 2" u(D),

and so (1 +¢)T contains a point of A other than the origin (see
the preceding remark). It will contain only finitely many such
points because A is discrete and (1 +¢)7 is compact. Because

T is closed
T = ﬂ€>0(1 +&)T.

If none of the (finitely many) points of AN (14 ¢)7T other than
the origin is in 7', we will be able to shrink (1 4 ¢)T (keeping
& > 0) so that it contains no point of A other than the origin—
which is a contradiction. O

REMARK 4.20 Theorem [£.19] was discovered by Minkowski
in 1896. Although it is almost trivial to prove, it has lots of non-
trivial consequences, and was the starting point for the branch
of number theory called the “geometry of numbers”. We give
one immediate application of it to prove that every positive in-
teger is a sum of four squares of integers.

From the identity

(@ +b>+c*+d*) (4> + B>+ C*+ D) =
(@aA—bB—cC —dD)*+(aB+bA+cD—dC)*+
(@aC —bD +cA+dB)? +(aD +bC —cB +dA)?,
we see that it suffices to prove that a prime p is a sum of four

squares.
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Since
2=124+124+0%+02,

we can suppose that p is odd. I claim that the congruence
m?+n24+1=0 mod p

has a solution in Z. As m runs through 0,1,...,p—1, m? takes
exactly (p + 1)/2 distinct values modulo p, and similarly for
—1—n?. For the congruence to have no solution, all these val-
ues, p + 1 in total, must be distinct, but this is impossible.

Fix a solution m,n to the congruence, and consider the lat-
tice A C Z* consisting of (a,b,c¢,d) such that

c=ma+nb, d=mb—na mod p.

Then Z* > A D pZ* and A/ pZ* is a 2-dimensional subspace
of IF?, (the a and b can be arbitrary mod p, but then ¢ and d are
determined). Hence A has index p? in Z*, and so the volume
of a fundamental parallelopiped is p2. Let T be a closed ball
of radius r centered at the origin. Then T has volume 72r%/2,
and so if we choose r so that 2p > r2 > 1.9p say, then

w(T) > 164(D).

According to Minkowski’s theorem, there is a point
(a,b,c,d) € (A\{0})NT.Because (a,b,c,d) € A,

A1 +m?+n>)+ b2 +m? +n?)
0 mod p,

a®>+b%+c%+d?
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and because (a,b,c,d) e T,

a?+b%+c?+d?* <2p.
As a? + b% + 2 + d? is a positive integer, these conditions
imply that it equals p.

This result was stated by Fermat. Euler tried to prove it over
a period of 40 years, and Lagrange succeeded in 1770.

Some calculus

4.21 Let V be a finite-dimensional real vector space. A norm
on V is a function | - ||: ¥ — R such that

(a) forallxe V, x| >0, and ||x|| =0 < x=0;

(b) forr e Randx eV, |rx| = |r||Ix||;

(c) (triangle law) for x,y € V, ||x+y| < |Ix|| + ll¥]l-

Let V =R" x C® — it is a real vector space of dimension
n =r 4+ 2s. Define a norm on V' by

r r+s
Ixl=>"lxil+2 > |z
i=1 i=r+1

ifX=(X1,.0s Xr, Zrd1s-ees Zr4s)-
LEMMA 4.22 For any real number t > 0, let
X@)={xeV||x| =z}

Then
w(X(0)) =2"(m/2)°t" /n!.
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PROOE. Since X(¢) is symmetric with respect to the r real

axes, we have
p(X(t) =2"- (Y (1)

where Y (¢) = {x | |x|| < ¢, x1,....,xr > 0}. For the complex
variables, we make the change of variable

1
zZj = xj +iy; = gpj(cos@- +isinf;).

The Jacobian of this change of variables is p; /4. After inte-
grating over the 6;, for 0 < 6; <27, we find that

pn(X(1) =
2r'4_3'(2”)S/ZPr+1"'Pr+sdx1"'dxrdpr+l"'dPr+s
where

Z={(x.p) €R™™ |xj.p; =0, Yxi+Ypi <t}

The result now follows from the next lemma by taking: m =
r+s;a; =0,1<i <r;a; =1,r+1<1i < m; for then

wX@)=2"-475.Q2n)*-1"/n!
as required. !

LEMMA 4.23 Fora; > 0€R, let

I(al,...,am,t)=/ x?l---x,an’”dxl---dxm,
Z(t)
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where Z(t) = {x e R"™ | x; >0, Y x; <t}. Then

I'(ai+1)---T'(am+1)

I(ay,....am;t) = tX%+m. .
(a1 mit) Tai+-+am+m+1)

PROOF. Recall that, by definition, (e.g., Widder, D., Advanced
Calculus, 1961, Chapter 11),

o0
rx)= / et V.
0+

It takes the value I"(n) = (n —1)! for n a nonnegative integer.
By making the change of variables xlf =tx; in I, we see
that
I(ay,....am;t) = (24T am ).

Therefore it suffices to prove the formula for = 1. We prove
this case by induction on m. First, we have

1
1(01;1)2/ x{dxy = ! =F(al+1)-
0 ay+1 I'a+2)

Let

Z(xm) ={xeR™ [ x; =0, D x; <1—xm}.
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Then

I(ay,....,am:1)

1
= /x,a,{" (/ x‘lll--- Gm— [ldxy - dxm_l)dxm,
0 Z(xm)

1
= / xomI(ay, ....am—1;1—Xm)dxm
0

1
= I(al,...,am_l;l)/(; X (] — xp) 2B tm=1gy

I'am+DI'(ay +--+am—1+m)

= I(ay,....,am—1:1
(@ m—1:1) ay+-+am+m+1)
In the last step, we used the standard formula

I'(m)I"(n)

1
m—1._ \n—1 — —
/; X (1—x)"""dx = B(m,n) Fomtn) o

EXAMPLE 4.24 (a)Caser =2, s =0. Then X (¢) is defined by
|x|+|y| <t.Itis a square of side v/2¢, and so u(X (1)) = 2¢2.

(b) Case r =0, s = 1. Then X(¢) is the circle of radius ¢ /2,
which has area 712 /4.

LEMMA 4.25 Letay,...,a, be positive real numbers. Then

(e < (Cap) /n;
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equivalently,

[Tai = XCap)™ /n™.
(The geometric mean is less than or equal to the arithmetic
mean.)

PROOF. See any good course on advanced calculus. o

Finiteness of the class number

Let K be a number field of degree n over Q. Suppose that K
has r real embeddings {071, ...,0,} and 2s complex embedding
{0r4+1,0r+1,---,0r+5,0r+s}. Thus n = r + 25. We have an
embedding

0:K—>R"'xC%, ar(01¢,...,0r45).

We identify V £ R” x CS with R” using the basis {1,i} for C.

PROPOSITION 4.26 Let a be an ideal in Ok ; then o(a) is a
full lattice in V, and the volume of a fundamental parallelop-

iped of o(a) is27* -Na- |AK|%.

PROOF. Let «ay,...,ay be a basis for a as a Z-module.
To prove that o(a) is a lattice we show that the vectors
o(a1),...,0(ay) are linearly independent, and we prove this

by showing that the matrix A, whose i th row is

(G](Ol,'),...,Gr(oti),m(ar+1ot[),3(0r+1041'),...)
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has nonzero determinant.
First consider the matrix B whose ith row is

(01(0t), -, 07 (), 07 41(0t), 0741 (), -, Or 5 (0t))).

We saw in (2.26) that det(B)? = disc(aq,... o) # 0.

What is the relation between the determinants of A and B?
Add column r 42 in B to column r + 1, and then subtract 1/2
column r + 1 from column r + 2. This gives us 2R (o +1(¢;))
in column r + 1 and —i J(0741(e;)) in column r + 2. Repeat
for the other pairs of columns. These column operations don’t
change the determinant of B, and so

det(B) = (—2i)* det(A),
or
det(A) = (=2i) "5 det(B) = £(—2i) S disc(q, ....an) /2 #0.
Thus o (a) is a lattice in V.

Since o(a) = Y 7—; Zo(e;), the volume of a fundamen-
tal parallelopiped D for o (a) is |det(A)|, and from (2.25) we
know that

|disc(aq,...,an)| = (O : a)2-|disc(OK/Z)|.

Hence

1 1
w(D) =27%-|disc(ay,...,an)|2 =27°-Na-|Ak|2. g
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PROPOSITION 4.27 Let a be an ideal in Og . Then a contains
a nonzero element a of K with

4\* n! 1
N = B -Na= () Zrilagl.
b4 n

PROOF. Let X(¢) be as in {#.22), and let D be a fundamental
domain for the lattice o (a). The set X(¢) is compact convex
and symmetric in the origin, and so, when we choose ¢ so large
that (X (7)) > 2" - u(D), Minkowski’s Theorem shows that
X(t) contains a point o («) # 0 of o (a). For this « € a,

INm(a)| = o1 (@)| |07 (@)||or4+1 (@) >+ |07 45 (@)
<O _loial+ Y 2lo;al)"/n" (byE23)
<t"/n".

In order to have u(X(¢)) > 2" - u(D), we need

2 (2/2)°t" /n > 2275 .Na-| Ak |2,

n—r

‘Na-|Ag|?.

t" >nl.

s

When we take 1™ to equal the expression on the right, we find
that
! 21’1—7‘

n! 1
|Nm(a)|§n—n- Na-|Ag]2.

P
As n—r = 2s, this is the required formula. o
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PROOF (OF THEOREM [4.3)) Let ¢ be a fractional ideal in K —
we have to show that the class of ¢ in the ideal class group is
represented by an integral ideal a with

o ! (4N 1
NafBKdzf—n(f) |Ak|2.
n g

For some d € KX, dc™! is an integral ideal, say (d)-¢~! = b.
According to the result just proved, there is a f € b, 8 # 0,
with

INm(B)| < Bk -Nb.

Now 8Ok C b= BOg = ab with a integral, and a ~ b~ ~c.
Moreover,

Na-Nb = [Nmg /g 8| < Bk -Nb.

On cancelling Nb, we find that Na < Bg. o

REMARK 4.28 Proposition can be useful in deciding
whether an integral ideal is principal.

Binary quadratic forms

Gauss studied binary quadratic forms, and even defined a prod-
uct for them. This work was greatly clarified when Kummer
and Dedekind defined ideals, and it was realized that Gauss’s
results were related to the ideal class groups of quadratic num-
ber fields. Here I briefly explain the connection.
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By a binary quadratic form we mean an expression of the
form
O(X,Y)=aX?+bXY +cY?.

We call the form integral if Q(m,n) is an integer whenever m
and n are integers, or, equivalently, if a,b, ¢ € Z. The discrim-
inant of Q is

dg = b% —4ac.

A form is said to be nondegenerate if its discriminant is
nonzero. Two integral binary quadratic forms Q and Q' are

said to be equivalent if there exists a matrix A = (3 lg ) €
SL,(Z) such that
0'(X.Y) = Q(aX +BY,yX +8Y).

Clearly, equivalent forms have the same discriminant, but there
exist inequivalent forms with the same discriminant. The ques-
tion considered by Gauss was to try to describe the set of equiv-
alence classes of forms with a fixed discriminant.
Let d # 1 be a square-free integer, let K = Q[+/d], and let
dg = disc(Og /Z). Define the norm form qg by
gk (X.Y) =Nmg (X +YVd) = X>—dY?,

ifd =2,3 mod4 or

gk (X,Y) = Nmg o (X + Y 154y = x2 | yy 4 15dy2

if d =1 mod 4. In both cases gg has discriminant dg (= 4d
ord).
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In general, if Q is an integral binary quadratic form, then
dg =dg f2,some integer f, where K = Q[\/@] Moreover,
if dgp = dg, then Q is primitive, i.e., ged(a,b,c) = 1.

Fix a field K = Q[+/d] and an embedding K < C. We
choose +/d to be positive if d > 0, and to have positive imag-
inary part if d is negative. Set \/dg = 2+/d or v/d. Write
Gal(K/Q) = {1,0}. If d <0, define C1T (K) = CI(K) (usual
class group of K) and if d > 0, define

It (K) = 1d(K) /P (K)

where P T (K) is the group of principal ideals of the form ()
with & > 0 under every embedding of K into R.

Let a be a fractional ideal in K, and let a1, ap be a basis for
a as a Z-module. From we know that

al an

_ 2
ca; ods =dgNa“.

After possibly reordering the pair a1,a, we will have

=+ dKNa.

ai as
oay oap

For such a pair, define

Qay.a>(X.Y) =Na~'Nmg g(a1 X +az?).

This is an integral binary quadratic form with discriminant dg .
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THEOREM 4.29 The equivalence class of Qg;,4,(X,Y) de-

pends only on the image of a in CI* (K); moreover, the map
sending a to the equivalence class of Qgq, 4, defines a bijec-

tion from CIT (K) to the set of equivalence classes of integral
binary quadratic forms with discriminant dg .

PROOF. See Frohlich and Taylor 1991, VIL.2 (and else-
where). o

In particular, the set of equivalence classes is finite, and has
the structure of an abelian group. This was known to Gauss,
even though groups had not yet been defined. (Gauss even
knew it was a direct sum of cyclic groups.)

ASIDE 4.30 Write hg for the class number of Q[+/d], d a square-
free integer 7 1. In modern terminology, Gauss conjectured that, for
a fixed A, there are only finitely many negative d such that hg; = h.
(Actually, because of a difference of terminology, this is not quite what
Gauss conjectured.)

In 1935, Siegel showed that, for every € > 0, there exists a constant
¢ > 0 such that .

hyg >cld|27%, d<O.

This proves Gauss’s conjecture. Unfortunately, the ¢ in Siegel’s the-
orem is not effectively computable, and so Siegel’s theorem gives no
way of computing the d's for a given A.

In 1951, Tatuzawa showed that Siegel’s theorem is true with an
effectively computable ¢ except for at most one exceptional d .

It is easy to show that hy = 1 for —d =
1,2,3,7,11,19,43,67,163 (exercise!). Thus in 1951 it was
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known that there exist these 9 quadratic imaginary number fields with
class number 1, and possibly 1 more.

In 1952 Heegner proved that there was no 10th such field, but his
proof was not recognized to be correct until 1969 (by Deuring and
Stark). In the interim, Baker (1966), Stark (1966), and Siegel (1968)
had found proofs.

More recently (1983), Goldfeld, Gross, and Zagier showed, using
completely different methods from Siegel, that there is an effective pro-
cedure for finding all d < 0 with &4 equal to a given A. For an expos-
itory article on this, see Goldfeld, Bull. Amer. Math. Soc. 13 (1985),
23-37.

By way of contrast, it is conjectured that there are infinitely many
real quadratic fields with class number 1, but this has not been proved.

NOTES Fermat stated, and probably proved, the three statements in
Exercise@ However, for 5 he could only state the following conjec-
ture:

If two primes are of the form 20k + 3 or 20k + 7, then

their product is of the form x2+5y2.
The fact that this statement is more complicated than it is for 1, 2, or
3 was the first indication that the arithmetic of the ring of integers in
Q[JTS] is more complicated than it is in the fields with smaller dis-
criminant. Lagrange found an explanation for Fermat’s statements by
showing that all binary quadratic forms of discriminant —4 are equiv-
alent, and similarly for discriminants —8 and —12, but that the forms
of discriminant —20 fall into two equivalence classes. Dedekind was
able to interprete this as showing that Q[«/j5] has class number 2.

152



Exercises

4-1 Give an example of an integral domain B, a nonzero
prime ideal p in B, and a subring A of B such thatp N A = 0.
(Note that this can’t happen if B is integral over A — see the

paragraph preceding )

4-2 Let F C K C L be a sequence of number fields, and let
A C B C C be their rings of integers. If Q[P and B|p (prime
ideals in C, B, and A respectively), show that

e(Q/P)-e(P/p) =e(Q/p).  fQ/P)-f(B/p) = f(Q/p).

4-3 Let K = Q[a] where o is aroot of X3 + X +1 (see.
According to (3.34), what are the possible ways that (p) can
factor in O as a product of prime ideals. Which of these pos-
sibilities actually occur? (Illustrate by examples.)

4-4 Show that Q[+/—23] has class number 3, and that
Q[+~/—47] has class number 5.

4-5 Let K be an algebraic number field. Prove that there is a
finite extension L of K such that every ideal in Og becomes
principal in Op . [Hint: Use the finiteness of the class number.]

4-6 Let K = Qo] where « is aroot of X3 — X + 2. Show that
Ok =Z[c] and that K has class number 1. [One approach is to
consider the square factors of the discriminant of X 3_X+2,
and show that %(a + ba 4 ca?) is an algebraic integer if and
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only if a, b, and c are all even, but you may be able to find a
better one. ]

4-7 Let K = Q[v/—1,45]. Show that Og =
Z[V-1, 1+2‘/§]. Show that the only primes (in Z) that
ramify in K are 2 and 5, and that their ramification indexes are
both 2. Deduce that K is unramified over Q[+/—5]. Prove that
Q[+/—5] has class number 2, and deduce that K is the Hilbert
class field of Q[v/—5]. (Cf..11])
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Chapter 5

The Unit Theorem

In this section we prove the second main theorem of the course.

Statement of the theorem

Recall that a finitely generated abelian group A is isomorphic
to Ators B ZF for some ¢ where Aoy is the (finite) subgroup
of torsion elements of A (i.e., of elements of finite order). The
number ¢ is uniquely determined by A, and is called the rank
of A.

As before, we write r for the number of real embeddings of
a number field K and 2s for the number of nonreal complex
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embeddings. Thus
K®pR~R" xC*

and r + 25 = [K:Q]. Moreover, if K = Q[«], then r is the
number of real conjugates of & and 2s is the number of nonreal
complex conjugates.

THEOREM 5.1 The group of units in a number field K is
finitely generated with rank equal tor +s—1.

For example, for a real quadratic field, the rank is 2 40 —
1 =1, and for an imaginary quadratic field itis04+1—1 = 0.

The theorem is usually referred to as the “Dirichlet Unit
Theorem” although Dirichlet proved it for rings of the form
Z[«] rather than Ok .

Write Uk (= (’)}é) for the group of units in K. The torsion
subgroup of Uk is the group p(K) of roots of 1 in K.

A set of units uy,...,ur45—1 is called a fundamental sys-
tem of units if it forms a basis for Ugx modulo torsion, i.e., if
every unit ¥ can be written uniquely in the form

m my4s—1
u=§u11---ur_i’_3'_vl, e w(K), mj; €.

The theorem implies that . (K) is finite (and hence cyclic).
As we now explain, this can be proved directly. In Chapter 7,
we shall see that, if {z, is a primitive mth root of 1, then Q[¢]
is a Galois extension of Q with Galois group isomorphic to
(Z/mZ)*. If m = ]_[pl.ri is the factorization of m into pow-
ers of distinct primes, then Z/mZ ~ [[Z/ pl.riZ by the Chi-

nese remainder theorem, and so (Z/mZ)* ~ [](Z/ pl.r i Z)X.
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As the nonunits of Z/pl.ri Z are exactly the elements divisible

by p. and there are p;’ L of these, we see that |(z/ p]"2)*| =
ri -1

p;' (pi—1),and so

(@/mz)*| =T1pI " (pi = 1) £ p(m).

Since
{m € K = Q[fm] C K = p(m)|[K : Q]

the field K can contain only finitely many &,.

LEMMA 5.2 Anelementa € K is a unit if and only ifo € Og
and Nmg g = *1.

PROOF. If « is a unit, then there is a f € Ok such that ¢ff =
1, and then Nm(«) and Nm(f) lie in Z and 1 = Nm(«f) =
Nm(«) -Nm(f). Hence Nma € Z* = {+1}.

For the converse, fix an embedding o of K into C, and use
it to identify K with a subfield of C. Recall that

Nm (x) = 1_[ ca=0uo- 1_[ oa.
0:K—C o#00

Let B =[]gq, 0. If @ € Ok, then B is an algebraic integer.

If Nm (&) = #1, then 8 = o~ ! and so belongs to K. There-
fore, if « satisfies both conditions, it has an inverse +f in Ok,
and so is a unit. m]

For all real fields, i.e., fields with an embedding into R,
W(K) = {£1}; for “most” nonreal fields, this is also true.
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EXAMPLE 5.3 Let K be a quadratic field Q[vd]. Then Og =

{m+nvd|m,neZyor{m+n(1+~d)/2|m,neZ} Inthe
two cases, the units in Ok are the solutions to the equations

m?—n?d = &1, or

2m+n)?—dn? = +4.

When d < 0, these equations (obviously) have only finitely
many solutions, and so Ug = u(K). Note that (s, lies in a
quadratic field if and only if ¢(m) < 2. This happens only for
m dividing 4 or 6. Thus p(K) = {£1} except for the following
fields:

Qli], p(K) ={£1,£i};

QV=3l, w(K) = {1, +p,+p?}, with p = (I +
V=3)/2).
When d > 0, the theorem shows that there are infinitely many
solutions, and that Ug = +uZ for some element u (called
the fundamental unit). As Cohn (19781 puts it, “the actual
computation of quadratic units lies in the realm of popularized
elementary number theory, including devices such as contin-
ued fractions.” The method is surprisingly effective, and yields
some remarkably large numbers — see later.

!Cohn, Harvey. A classical invitation to algebraic numbers and class fields.
With two appendices by Olga Taussky: ”Artin’s 1932 Géttingen lectures on class
field theory” and “Connections between algebraic number theory and integral
matrices”. Universitext. Springer-Verlag, New York-Heidelberg, 1978. xiii+328
pp-
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EXAMPLE 5.4 Let K = Q[«], where « is a root of X3 +
10X + 1. We know that the discriminant Ag = —4027. Since
sign(Ag) = (—=1)* and r + 25 = 3, we must have r = 1 = s.
From its minimum equation, we see that Nm (o) = —1, and so
« is a unit. Clearly « is of infinite order, and later we shall show
that it is a fundamental unit, and so Ug = {+a™ | m € Z}.

Proof that Uy is finitely generated

We first need an elementary result.

PROPOSITION 5.5 For any integers m and M, the set of all
algebraic integers o such that

¢ the degree of « is < m, and
o |a’| < M for all conjugates o’ of a

is finite.

PROOF. The first condition says that « is a root of a monic ir-
reducible polynomial of degree < m, and the second condition
implies that the coefficients of the polynomial are bounded in
terms of M. Since the coefficients are integers, there are only
finitely many such polynomials, and hence only finitely many
oS. [m]

COROLLARY 5.6 An algebraic integer «, all of whose conju-
gates in C have absolute value 1, is a root of 1.

PROOF. According to the proposition, the set {lL,a,02,.. .} is
finite. o
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REMARK 5.7 It is essential to require « to be an algebraic in-
teger. For example, « = (34 4i)/5 and its conjugate both have
absolute value 1, as do their powers, but the set {1, «, a?,.. s
not finite.

Recall that we previously considered the map
0:K >R xC* ar (010,...,00@,0r410,...,0r45Q)
where {01,...,07,0r41,0741,---,0r+45,0r+s} is the com-
plete set of embeddings of K into C. It takes sums to sums.
Now we want a map that takes products to sums, and so we
take logarithms. Thus we consider the map:

L:K* >R o> (logloral,....logloral,2log|or 1], ...

It is a homomorphism. If u is a unit in Ok, then Nmg g u =
+1, and so

loul -+ lorullor 4 1ul® oy 5ul* = 1.
On taking logs, we see that L(u) is contained in the hyperplane
H:x14+ - +xr+2x41+ -+ 2x,45 =0.

Dropping the last coordinate defines an isomorphism H =
R7Ts—1

PROPOSITION 5.8 The image of L:U — H is a lattice in H,
and the kernel of L is a finite group (hence is 1 (K)).
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PROOF. Let C be a bounded subset of H containing 0, say
Cci{xeH||xj| <M}

If L(u) € C, then |oju| < eM for all j, and Proposition

implies that there are only finitely many such us. Thus L(U)N

C is finite, and this implies that L(U) is a lattice in H (by

4.15). If « is in the kernel of L, then |o; | = 1 for all i, and so
the kernel is finite by Proposition [5.3] o

Since the kernel of L is finite, we have

rank(U) =rank(L(U)) <dimH =r+s—1.

Computation of the rank

We now prove the unit theorem.

THEOREM 5.9 The image L(U) of U in H is a full lattice;
thus U has rankr +s—1.

PROOF. To prove the theorem, we have to find a way to con-
struct units. We work again with the embedding

0K >R xCS~ R 125
For x = (X1,....Xr,Xr41,...) € R" x C%, define

Nm(X) = X1 Xp - Xpp1-Xp41 0 Xpts - Xrts.
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Then Nm(o(«¢)) = Nm(a). Note that |Nm(x)| =
Pea |- e[| xr 12 o s ]
Recall from (4.26), that o(Ok) is a full lattice in R” x C¥,

and the volume of its fundamental parallelopiped is 275 -| A| 3 ;
in more detail, if «y,...,0, is a Z-basis for Ok, then we
showed that the absolute value of the determinant of the ma-
trix whose i th row is

o(a;) = (01(c;)..... R(0r+1(;)), (07 +1(;)),-..)

1
is 275 - |A|2. In fact, we showed that we could get this matrix
from the matrix whose ith row is

(o1(@i), -, 0r41(0;), 0r41(ci),..)

by some elementary column operations that multiplied the ab-
solute value of the determinant by 275, and we know that the
determinant of the second matrix is £|A| 3.
In the rest of the proof, x will be a point of R” x C5 with
1/2 < |Nm(x)| < L.
Define
x-0(0Og)=1{x-0(a) |a € Og}.

Since R” x C is a ring, this product makes sense. This is again
a lattice in R” x C%, and the volume of its fundamental paral-
lelopiped is the determinant of the matrix whose i th row is

(x101(a;), .-, N(xr 4107 +1(27)), S(Xr410741(07)), - . ).
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As before, the absolute value of the determinant of this matrix
is 275 times the absolute value of the determinant of the matrix
whose ith row is

(x101(e)s .o sXp1-0p41(0), Xp 41 - Op 41 (), .. ),

which is .
[A]2 - [Nm(x)].

Therefore x-0(Ok) is a lattice with 275 |A|% |Nm(x)| as the
volume of its fundamental domain. Note that as X ranges over
our set these volumes remain bounded.

Let T be a compact convex subset of R” x C*, which is
symmetric in the origin, and whose volume is so large that,
for every x in the above set, Minkowski’s theorem im-
plies there is a point y of Ok, y # 0, such that x-o(y) € T.
The points of 7" have bounded coordinates, and hence bounded
norms, and so

x-0(y) €T = [Nm(x-a(y))| = M,
for some M (depending on T'); thus
INm(y)| < M/Nm(x) < 2M.

Consider the set of ideals y - Ok, where y runs through the y’s
in Ok for whichx-o(y) € T for some x in our set. The norm N
of such an ideal is <2M , and so there can only be finitely many
such ideals, say y; - Ok, ..., ys-Og. Now if y is any element
of Og with x-0(y) € T, some x, then y-Og = y; - Ok for
some i, and so there exists a unit & such that y = y; -&. Then
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x-0(g) € 0()/[._1)~T. Theset T’ = o(yl_l)~TU ...Uo(yt_l)-T
is bounded, and so we have shown that, for each x in our set
there exists a unit & such that the coordinates of x-o(g) are
bounded uniformly in x (the set 7’ doesn’t depend on x).

We are now ready to prove that L(U) is a full lattice in H.
If r +s—1 = 0, there is nothing to prove, and so we assume
r+s—1>1.

For each i, 1 <i <r + s, we choose an x in our set such
that all the coordinates of x except x; are very large (compared
with T"), and x; is sufficiently small that [Nmx| = 1. We know
that there exists a unit g; such that x- o (¢;) has bounded coor-
dinates, and we deduce that |oje;| < 1 for j # i, and hence
that log|oje;| <O0.

I claim that L(e1),..., L(er4+s—1) are linearly independent
vectors in the lattice L(U). For this we have to prove that the
matrix whose ith row is

(I1(&i)s o lrs—1(i)),  1i(e) =log|ojel,

is invertible. The elements of the matrix except those on the
diagonal are negative, but the sum

li(ei) -+ lrps—1(8) +lrps(ei) =0
and so the sum of the terms in the i th row
li(ei)+ -+ lrps—1(8i) = —lr4s(gi) > 0.

The next lemma implies that the matrix is invertible, and so
completes the proof of Theorem 0
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LEMMA 5.10 Let (a;;) be a real m X m matrix such that

o ajj <0fori # j;

o 7 aij >0fori=1,2,....m.

Then (a;;) is invertible.

PROOF. Ifitisn’t, then the system of equations

Za,-jxj =0 i=1,....m O
has a nontrivial solution. Write x1, ..., X, for such a solution,
and suppose ig is such that |x;,| = max{|x;|}. We can scale

the solution so that x;, = 1. Then |x;| < 1 for j # ip, and the
ipth equation gives a contradiction:

0 = Zjaiojxj'
= aioi0+z_i¢i0aiojxj
Ajpi aj,i > 0.
ioio T 2_4j 4 %o
S -units

Let S be a finite set of prime ideals of K, and define the ring
of S-integers to be

Ok (S) = ﬂp¢s Op = {o € K | ordy(a) > 0,all p ¢ S}.
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For example, if S = @, then Ok (S) = Ok.
Define the group of S-units, to be

U(S) =0k (S) ={a €K |ordy(x) =0,all p ¢ S}.
Clearly, the torsion subgroup of U(S) is again u(K).

THEOREM 5.11 The group of S-units is finitely generated
withrank r +s +#S — 1.

PROOF. Let p1,p2,...,ps be the elements of S. The homo-
morphism

ur> (... ordp; (u),...): U(S) > Z!

has kernel U. To complete the proof, it suffices to show that
the image of U(S) in Z* has rank ¢. Let & be the class number

of K. Then pl}.’ is principal, say plh = (), and 7; is an S-unit
with image
0,...,h,...,0) (hinthe ith position).
Clearly these elements generate a subgroup of rank ¢. !
For example, if K = Q and S = {(2), (3), (5)} then
U(S) = {£2%3"5" | k.m.n € Z},

and the statement is obvious in this case.
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Example: CM fields

A number field is totally real if all of its embeddings in C lie
in R, and it is totally imaginary if none of its embeddings in C
lie in R. For example, K = Q[a] >~ Q[X]/(f) is totally real if
all the roots of f are real, and it is totally imaginary if none of
the roots of f are real.

A CM field is a totally imaginary quadratic extension of
a totally real field. Every such field can be obtained from a
totally real field by adjoining the square root of an element all
of whose real conjugates are negative.

Let K be a CM field, which is a quadratic extension of the
totally real field KT, and let 2n = [K : Q]. Then K has 2n
complex embeddings and KT has n real embeddings, and so

rank(Ug) =n—1 =rank(Ug+).

Therefore, Ug+ has finite index in Uk. In fact, it is possible
to prove more.

PROPOSITION 5.12 The index of j1(K) - Ug+ in Uk is either
1 or2.

PROOF. Let a — a be the nontrivial automorphism of K fix-
ing K*. Then p(@) = p(a) for all homomorphisms p: K — C.
In particular, for any a € Ug, all conjugates of a/a in C
have absolute value 1, and so a/a € u(K) (by [5.6). Con-
sider the map ¢: Ux — (K)/1(K)? determined by a +> a/a.
Clearly ¢ is a homomorphism. Suppose u lies in its kernel,
so that u/ii = ¢2 for some ¢ € u(K). Then ul/i¢ = 1, and
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so ut € Kt. It follows that u € u(K)- Ug+. Conversely, if
u==t-ute W(K)-Ug+, then u/it = 2 € Ker(¢p). We have
shown that Ker(¢) = u(K)-Ug+ . As (K)/p(K)? has order
2, this completes the proof. o

Example: real quadratic fields
An expression
ap +

ai +
an +

1
as + .-

is called a continued fraction. We abbreviate the expression on
the right as
lag.a1,az,...].

We shall always assume that the a; are integers with a; >
0, ap > 0,.... The integers a; are called the quotients, and
[ag,at,...,an] is called the nth convergent. Every irrational
number « can be expressed in just one way as an infinite con-
tinued fraction, and the continued fraction is periodic if and
only if o has degree 2 over Q. (See any book on elementary
number theory, for example, Hardy, G. H., and Wright, E. M.,
An Introduction to the Theory of Numbers, Oxford Univ. Press,
1960 (4th edition), Chapter X.)

Now let d be a square-free positive integer, and let & be

the (unique) fundamental unit for Q[+/d] with & > 1. Let s be
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the period of the continued fraction for Vd and let p/q be the
(s — 1)th convergent of it; then

8=p+qﬁifd =2,3 mod4,ord =1 modS8,
and
e=p +q\/3 ored = p —i—q«/a7 otherwise.

Using a computer algebra program, it is very easy to carry this
out, and one obtains some spectacularly large numbers.

For example, to find the fundamental unit in Q[+/94], first
compute v/ 94 = 9.6954.... Then compute the continued frac-
tion of +/94. One gets

{9,1,2,3,1,1,5,1,8,1,5,1,1,3,2,1,18,1,2,3,...}.

This suggests the period is 16. Now evaluate the 15th conver-

gent. One gets
2143295

221064
Hence the fundamental unit > 1 is
& = 2143295 4221064 - v/94.
Compute that
(2143295)% — (221064)2- 94 = 1,

which verifies that ¢ is a unit.

When one carries out this procedure for Q[+/9199], the first
coefficient of the fundamental unit has 88 digits! The computer
has no problem finding the fundamental unit — the only prob-
lem is counting the length of the period, which is about 180.
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Example: cubic fields with negative discriminant

Since the sign of the discriminant is (—1)* (see[2.40), a cubic
field K will have negative discriminant if and only if r =1 =
s. We identify K with a subfield of R using its unique real
embedding. We have A < 0, and the group of units is {£&™}
for some ¢ (fundamental unit). We want to find €. Since —e,
—&71, and 71 are also fundamental units, we may suppose
that ¢ > 1.

LEMMA 5.13 Let K be a cubic extension of Q with negative
discriminant, and let ¢ be the fundamental unit with e > 1. Then

|[Ax| < 4¢3 +24.

PROOE. Since ¢ ¢ Q, it must generate K. The two conjugates
of ¢ (other than ¢ itself) must be complex conjugates, and so the
product of ¢ with its conjugates must be +1 (rather than —1).
Write ¢ = u%, u € R, u > 1. Then the remaining conjugates of
& can be written

ulet?  y1emi? 0<0<m).

Let A’ = D(1,¢,£2) be the discriminant of the minimum equa-
tion of . Then

A’% _ (uz _u—leie)(uz _u—le—ie)(u—leie _u—le—iG)
=2i(u3 +u"3—2cosh)sinéh.
If we set 2& = u3 +u 3, then

|A’|% = 4(£ —cos®)sinf,
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which, for a given u, has a maximum where
£cos —cos? 0 +sin? 0 = 0,
or
def 2
—g(x)=&x—-2x"4+1=0, |x]<1, x=cosb.
We seek a root of g(x) with [x| < 1.But g(1)=1-£<0

e 3_,-3
(because u > 1 implies § = “=X— > 1), and g(—Zu%) =

%(u_6 —1) < 0. Since g(x) = 2x2 +---, it follows g(x) has
one root > 1, and that the desired root xg, with |xgo| < 1, is

1
< —3,3- But then

= u_6—4xg <0= u_6—4x62—4x3 <0.
(12)

X2 > —
07 4yub

This maximum yields
|A'] < 16(5% — 260 +x) (1 - x5).

and, on applying the conditions £xg = 2x% —-1,¢ Zx(% = 4x3 —
4x(2) + 1, and the inequality we find that

|A"|

A

16(82 +1—x2 —x3)
4u® 424+ 4(u™0 —4x3 —4x3) < 4ub 424,

Hence
|A| < 43 +24.
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Since A’ = Ag - (square of an integer), this completes the
proof. o

EXAMPLE 5.14 Let K = Q[o] where « is a real root of
X3 410X + 1. Here the discriminant is —4027, and so & >

3 %{24 > 10 for e the fundamental unit with ¢ > 1.

Note that Nm(«) = —1, and so « is a unit. Moreover, o =
—0.0999003... and so B = —a~! = 10.00998.... Since B is a
power of &, we must have § = ¢; i.e., —a~1 is the fundamental
unit > 1. Thus

Uk ={*a™ |meZ}.

Once one knows ¢, it becomes easier to compute the class
group. We know (see [3.48) that there is a prime ideal p =
(2,14 «) such that N(p) = 2. One shows that p generates the
class group, and it then remains to find the order of p. One ver-

3
e
to show that p2 and p> are nonprincipal.

and so it remains

ifies that p® is the ideal generated by

3
Suppose p3 = (y). Then y? = +a™ - % for some m

and choice of signs. But this says that at least one of the num-
a—1 a—1 a—1 a—1 .
bers oT2 —oi2 %oty —Ugys is asquare. Let § be that

number. If q is a prime ideal such that 8 € Oy (i.e., such that
ordg(B) > 0), then we can look at 8 mod q and ask if it is a
square.

We first work modulo 29. We have

X3 410X +1=(X+5)(X—3)(X—2) mod29.
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Take q to be the ideal (29, —2). The residue field Ok /q is
Fr9 = 7Z/(29), and the map Z[a] — Fa9 is o — 2 (mod 29).
Thus

a—11, a+2>4, (@+2)7 122, -l -1

The numbers 1, 4, and —1 = 122 are squares modulo 29, but 2
is not; hence m must be 0. Since % a+2 < 0 it can’t be a square
in K (smce itisn’t even in R), and so the only possibility for 8
is—g +2 We eliminate this by looking mod 7.
Take q = (7, + 3) (see [348). Then in the map Z[o] —
Zlal/q = F7.
a—1 -3 1

a——-3=4, — > —=——=—-4=3 mod?7,
o+2 6 2

and 3 is not a square modulo 7. Thus — _‘é is not a square in

Qla].
Similarly, p?> = (y) can be shown to be impossible. Thus
Cl(Ok) is a cyclic group of order 6.

Finding 1 (K)

As we noted eariler, if Q[{;;] C K, where (s, is a primitive
mth root of 1, then ¢(m)|[K:Q]. Thus there are only finitely
many possibilities for m. For each of them, use the test in the
later section on algorithms to determine whether the minimum
polynomial @, for ¢, has arootin K.
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Finding a system of fundamental units

One strategy for finding units in the general case seems to be
to find lots of solutions to equations Nm(«) = m for m a fixed
small number, and then take quotients of solutions. Note that
there can be only finitely many ideals a with N(a) = m; thus if
we have lots of elements «; with Nm(«; ) = m, then frequently
a; -Og = aj - Ok, and this implies that o; and «; differ by
a unit — note that this was the strategy used to prove the unit
theorem. See Pohst and Zassenhaus 1989, Chapter 5.

Regulators

There is one other important invariant that we should define.
Lett =r+s—1,andletuy,...,us be a system of fundamental
units. Then the vectors
L(uj) a (loglo1ul,....log|oru;|,2-log|or+1u;l,...,2log|osu; |
generate the lattice L(U) in R. The regulator is defined to be
determinant of the matrix whose ith row is L(u;). Thus, up to
sign, the regulator is the volume of a fundamental domain for
L(U) (regarded as a full lattice in R?).

The regulator plays the same role for the group of units
(mod torsion) that the discriminant plays for Og . One can sim-
ilarly define the regulator of any set {¢1,...,&;} of independent

2Kwangho Choiy writes: in the definition of regulators, I think that L (u;)
may have to be more precise, i.e., we can make sure about the index of o. But
the definition in the notes is still correct.
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units, and the index of the group generated by the &; and p(K)
in the full group of units is measured by ratio

[Reg(e1.....&1)|/|Reg(U)].

There are lower bounds for the regulator (see Pohst and
Zassenhaus 1989, p 365) similar to the one we proved for a
cubic field with one real embedding.

For an algorithm that computes the class group, regulator,
and fundamental units of a general number field, but which
requires the generalized Riemann hypothesis to prove its cor-
rectness, see|Cohen| 1993} Algorithm 6.5.9.

NOTES To find the units in Q[\/E ], d > 0, one has to solve certain
diophantine equations (see [5.3), whose study has a long history. The-
orem was proved by Dirichlet (1840, 1846)3 only for rings of the
form Z[a] because, at the time, a definition of O g was lacking. How-
ever, his proof extends easily to Og (and to Og (S)).

Exercises
5-1 Fix an m and and M. Is it necessarily true that the set of

algebraic integers « in C of degree < m and with |o| < M is
finite? [Either prove, or give a counterexample.]

5-2 Find a fundamental unit for the field Q[+/67].

3Dirichlet, P. G. Lejeune-, Sur la théorie des nombres, C. R. Acad. Sci. Paris
10 (1840), 285-288. Dirichlet, P. G. Lejeune-, Zur Theorie der complexen Ein-
heiten. Verhandl. Preuss. Akad. Wiss. (1846), 103-107.
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5-3 Let « be an element of a number field K. Does
Nmg ,q(e) = £1 imply that « is unit in Ok . [Either prove,
or give a counterexample.]
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Chapter 6

Cyclotomic Extensions;
Fermat’s Last Theorem.

The cyclotomic! extensions of Q are those generated by a root
of 1. They provide interesting examples of the theory we have
developed, but, more significantly, they have important appli-
cations, for example, to Fermat’s last theorem and to the exis-
tence of reciprocity laws (more generally, to class field theory
itself).

'The name cyclotomic (circle-dividing) derives from the fact that the nth
roots of 1 are space evenly around the unit circle.
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The basic results

An element ¢ of a field K is said to be a primitive nth root of
1if " =1 but é’d # 1 for any d < n, i.e., if { is an element
of order n in K*. For example, the nth roots of 1 in C are the
numbers ¢27"/" () < m < n—1, and the next lemma shows
that €271/ is a primitive nth root of 1 if and only if m is
relatively prime to n.

LEMMA 6.1 Let ¢ be a primitive nth root of 1. Then {™ is
again a primitive nth root of 1 if and only if m is relatively
prime ton.

PrROOF. This is a consequence of a more general fact: if « is

an element of order 7 in a group, then o™ is also of order n

if and only if m is relatively prime to n. Here is the proof. If
n m

d|m,n, then (@)@ = o™ @ = 1. Conversely, if m and n are

relatively prime, then there are integers ¢ and b such that

am+bn=1.

Now ™ = ¢ and so (@™)? =1 = a? = @¥)4 =1 =
nld. O

Let K = Q[¢], where ¢ is a primitive nth root of 1. Then K
is the splitting field of X™ — 1, and so it is Galois over Q. Let
G = Gal(Q[¢]/Q). It permutes the set of primitive nth roots of
1in K, and so, for any o € G, a¢ = {™ for some integer m rel-
atively prime to n; moreover, m is well-defined modulo 7. The
map o +> [m] is an injective homomorphism G — (Z/nZ)*.
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In FT, [5.10] it is proved that this map is an isomorphism,
and so [K : Q] = ¢(n) e #(Z/nZ)*. We shall give another
proof, and at the same time obtain many results concerning the
arithmetic of Q[¢].

The cyclotomic polynomial ®,, is defined to be,
Pn(X) = [J(X =¢™)

where the product runs over a set of representatives m for the
elements of (Z/nZ)*, for example, over the integers m, 0 <
m < n — 1, relatively prime to n. Equivalently,

on(X) =[x =¢)

where ¢’ runs over the primitive nth roots of 1. Because G per-
mutes the ¢/, @,(X) € Q[X], and clearly @, () = 0. There-
fore, @, (X) is the minimum polynomial of ¢ if and only if
it is irreducible, in which case [K : Q] = ¢(n) and the map
G — (Z/nZ)* is an isomorphism. Hence the following state-
ments are equivalent:

(a) the map Gal(Q[¢]/Q) — (Z/nZ)* is an isomorphism;

(b) [Q[¢]: Q] = g(n):

(c) Gal(Q[¢]/Q) acts transitively on the set of primitive nth
roots of 1 (i.e., they are conjugates);

(d) @,(X) is irreducible (and so @, (X) is the minimum
polynomial of ¢).

‘We shall see that all these statements are true.
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Note that each nth root of 1 is a primitive dth root of 1 for

exactly one d |n, and so
X' —1=[[Pa(X)=(X—-1)-Du(X).
din

To find the nth cyclotomic polynomial,
“polcyclo(n,X)” in PARI For example,

P3(X)=X2>+X+1
Pa(X)=X%+1
Pe(X)=X>—-X+1
Pa(X)=X*—X2+1
and
X2
= X-DX+DX2+X+D(X%2+1)
X2-X+DX*=X%+1).

type

We first examine a cyclotomic extension in the case that n

is a power p” of a prime.

PROPOSITION 6.2 Let ¢ be a primitive p” th root of 1, and let

K = Q[].

(a) The field Q[¢] is of degree (p”) = p"~1(p—1) over

Q.
(b) The ring of integers in Q[¢] is Z[¢].
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(¢) The element m £ 1 — ¢ is a prime element of Ok, and

(p) = (m)¢ withe = o(p"). )
(d) The discriminant of Og over Z is &+ p€, some ¢ (in fact,

¢ = p"~Y(pr—r—1)); therefore, p is the only prime to
ramify in Q[{].

PROOF. Because ¢ is integral over Z, the ring Z[¢] is contained
in Og.

If ¢’ is another primitive p”th root of 1, then ¢’ = ¢S and
¢ = {'* for some integers s and ¢ not divisible by p, and so

Z[¢') = Z[¢] and Q[¢'] = Q[¢]. Moreover,
1-¢
1-¢

Similarly, (1—¢)/(1—¢") € Z[¢], and so (1—-¢')/(1—¢) is a
unit in Z[{] (hence also in Ok ). Note that

=1+{++ ezl

xr -1
¢Pr(X) = W
P
-1
S P S G
and so
@, (1) = p.
For its definition, we see that
1-¢ r
Cbpr(l):l_[(l_é'/):1—[17_;(]—@'):”.(]_@‘)‘/)(1’)’
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with ¥ a unit in Z[{]. Therefore we have an equality of ideals
in Og,

def

(p)=@° nm=1-( e=9p(p"), (13)

and so (p) has at least ¢(p") prime factors in Og . Now
implies that [Q[¢] : Q] > ¢(p"). This proves (a) of the Propo-
sition since we know [Q[¢] : Q] < ¢(p").

Moreover we see that w must generate a prime ideal in Ok,
otherwise, again, (p) would have too many prime-ideal factors.
This completes the proof of (c).

For future reference, we note that, in Og,

(p)=p*P) p=(n), fp/p)=1.

The last equality means that the map Z/(p) — Ok /() is an
isomorphism.

We next show that (up to sign) disc(Z[¢]/Z) is a power of
p. Since

disc(Ok /Z)- (O : Z[§))* = disc(Z[¢]/2),

this will imply:

(1) disc(Og /Z) is a power of p;

(i) (O : Z[¢)) is a power of p, and therefore pM O C
Z|¢] for some M.

To compute disc(Z[¢]/Z), we shall use the formula in
(2:34), which in our case reads:

disc(Z[¢)/2) = % Nmg g (@, (£).
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On differentiating the equation

r—1

XP'T 1)@ (X) = XPT 1
and substituting ¢ for X, we find that 45}/,,(@) =
pré'pr_l/(fpr_l —1). Clearly
Nmg /gl =+1. Nmgqp" = (p")?P") = prer’),
We shall show that
NmK/@(l—é'ps)zzl:ppS, 0<s<r,
and so
Nmg /g @) (§) = % p°.
c=r(p=1p" ' =p" = p T (pr—r—1.

First we compute Nmg /(1 — ¢). The minimum polyno-
mial of 1 —{ is @, (1 —X), which has constant term @, (1) =
p,and so Nmg /g(1—¢) = £p.

1

We next compute Nmg /(1 — é‘ps) some s < r. Because

¢P* is a primitive p” ~Sth root of 1, the computation just made
(with r replaced by r —s) shows that

) _eP’y =
Nmgepsy/p1 =47 ) = *p.
Using that Nmps g = Nmyz g oNmys 7, and Nmys /g 0 =
M:L]if o e L, we see that Nmg /g (1 —¢P") = +p® where

a=[QIE]: QP N = p(p")/e(p"~*) = p°.

a[
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This completes the proof of (d).

We are now ready to prove (b). As we observed above
the inclusion Z — Ok induces an isomorphism Z/(p) —
Ok /(7). In other words,

Og =2+ 70k,
and so, certainly,
Ok =Z[{]+70Ok.
On multiplying through by 7, we obtain the equality
nO0k = nZ[¢] + 72 0k.

Therefore,

Ok = Z[t]+ = Z[t) + n2 Ok
=Z[f]+ n*Ok.

On repeating this argument, we find that
Og =Z[¢{]+ 7" Ok

for all m > 1. Since 7%(P") = p x (unit), this implies that
Ok =Z[t]+p™ - Ok

for all m > 1. But for m large enough, we know that p™ Ok C
Z[¢], and so Z[{] = Ok . This completes the proof of (b). o
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REMARK 6.3 (a) The sign of the disc(Q[¢]/Q), ¢ any root of
1, can be computed most easily by using (2.40h). Clearly Q[¢]
has no real embeddings unless { = +1 (and Q[¢{] = Q), and so,
except for this case,

sign(disc(Q[¢]/Q)) = (=D*, s =[Q[¢]: Ql/2.
If ¢ is a primitive p”th root of 1, p” > 2, then

[QE]:Ql/2=(p—1)p""!/2

which is odd if and only if p" =4 or p =3 mod 4.
(b) Let ¢ and ¢’ be primitive p”th and ¢*th roots of 1. If p
and ¢ are distinct primes, then

QEINQET=Q

because if K C Q[¢], then p ramifies totally in K and ¢ does
not, and if K C Q[¢’], then ¢ ramifies totally in K and p does
not, and these are contradictory unless K = Q.

THEOREM 6.4 Let ¢ be a primitive nth root of 1.

(a) The field Q[¢] is of degree ¢(n) over Q.
(b) The ring of integers in Q[¢] is Z[¢], and so

1,¢,...,690M=1 js an integral basis for Ogle) over Z.
(c) If p ramifies in Q[¢] then p|n; more precisely, if n =
p" -m with m relatively prime to p, then

(p) = (P1--P5)*?"
in Q[¢] with the *3; distinct primes in Q[{].
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PROOF. We use induction on the number of primes dividing .
Write n = p” -m with m not divisible by p. We may assume

the theorem for m. Note that {pr “ ¢™ is a primitive p” th root

of 1, &y = {pr is a primitive mth root of 1, and that Q[¢] =
QI[¢pr]-Ql¢m]. Consider the fields:

According to Proposition 6.2, (p) ramifies totally in Q[ ],
say (p) = p"’(l’r), but is unramified in Q[¢y], say (p) =
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p1---ps with the p; distinct primes. Because Q[¢] is obtained
from Q[{m] by adjoining pr, its degree over Q[¢y,] is at most
@(p"). It follows from Theorem[3.34]that pj ---ps can become
a ¢(p")th power in Q[¢] only if [Q[¢]:Ql¢m]l = ¢(p") and
each prime p; ramifies totally in Q[¢], say p; Og[¢] = ‘B?(p ).
Therefore, [Q[¢] : Q] = ¢(p") - p(m) = ¢(n), and to complete
the proof, it remains to show that Og[¢] = Z[{pr, im] = Z[L].
This is accomplished by the next lemma, because the only
primes that can divide the discriminant of Ogy¢,,]/Z are the
divisors of m (induction hypothesis and[3.35). o

LEMMA 6.5 Let K and L be finite extensions of Q such that
[KL:Q] = [K:Q]-[L:Q].
and let d be the greatest common divisor of disc(Og /7Z) and
disc(Or /7Z)). Then
Ok Cd 'Ok -Op.

PROOF. Let {ay,...,am} and {B1,..., B, } be integral bases for
K and L respectively. Then «; 8 is a basis for K- L over Q.
Thus every y € Ok., can be written in the form
i
= Z%aiﬂj, ajj.r € Z,
i

with a% uniquely determined. After dividing out any common
factors from top and bottom, no prime factor of r will divide
all the a;;, and we then have to show that r|d.
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When we identify L with a subfield of C, every embedding
o of K into C will extend uniquely to an embedding of K - L
into C fixing the elements of L. To see this, write K = Q|«];
then K - L = L[], and the hypothesis on the degrees implies
that the minimum polynomial of o doesn’t change when we
pass from Q to L; there is therefore a unique L-homomorphism
L[o] — C sending o to oc.
On applying such a o to the above equation, we obtain an
equation
@i
o)=Y —Lo(@)p;.
ij "
Write x; = Zj (ajj/r)Bj,andlet 01,02, ...,0m be the distinct
embeddings of K into C. We obtain a system of m linear equa-
tions

Zak(ozi)xi =or(y), k=12,..m,
i

and Cramer’s rule tells us that
Dx,- = Di

where D = det(o;(;)) and D; is a similar determinant. Ac-
cording to li D2=A% disc(Ok /7Z), and so

A X = DDI'.
By construction, both D and D; are algebraic integers, and so
A-x; is an algebraic integer. But Ax; = Y A‘r’i-/ B, and the
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ﬂjs form an integral basis for Oy, and so % € 7. Hence
r|Aa;j all i, j, and, because of our assumption on r and the
a;js, this implies that r|A.

Similarly, r|disc(Or /Z), and so r divides the greatest com-
mon divisor of disc(Og /Z) and disc(Op, /Z). |

REMARK 6.6 (a) Statement (c) of the theorem shows that if p
divides n, then p ramifies unless ¢(p”) = 1. Since ¢(p") =
p"~1(p—1), this happens only if p” = 2. Thus, if p divides
n, then p ramifies in Q[¢,] except when p =2 and n = 2-
(odd number).

(b) Let m be an integer > 1; then ¢(mn) > ¢(n) except
when n is odd and m = 2. Therefore 1 (Q[{,]) is cyclic of order
n (generated by ) except when n is odd, in which case it is
cyclic of order 2n (generated by —j).

(c) In the situation of the lemma,

disc(KL/Q) = disc(K/Q)ILW . dise(L/Q)K A (14)

provided Ok = Ok - Oy,. This can be proved by an elemen-
tary determinant calculation. Using this, one can show that, for
¢ a primitive nth root of 1,

disc(Q[¢n]/Q) = (_1)w(n)/2,,w(n)/npw(n)/(p—l).
pln

The example

Qli. V5] = Qli]- Q[v~3]
shows that the condition on the rings of integers is necessary
for to hold, because the extensions Q[i] and Q[+/—5] have
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discriminants 4 and 20 respectively, but Q[i, +/5] has discrimi-
nant 4252 = 42202 /42,

Class numbers of cyclotomic fields

Let ¢ be a primitive pth root of 1, p an odd prime. It is known
that the class number of Q[¢] grows quite rapidly with p, and
that in fact the class number is 1 if and only if p < 19.

Here is how to prove that Q[¢] has class number > 1 when
p = 23. The Galois group of Q[¢] over Q is cyclic of order
22, and therefore has a unique subgroup of index 2. Hence
Q[¢] contains a unique quadratic extension K of Q. Since 23
is the only prime ramifying in Q[¢], it must also be the only
prime ramifying in K, and this implies that K = Q[+/—23].
One checks that (2) splits in Q[+ —23], say (2) = pq, that p is
not principal, and that p3 is principal. Let 93 be a prime ideal
of Z[¢] lying over p. Then N3 = pf, where f is the residue
class degree. Since f divides [Q[{]: Q[v—23]] = 11, we see
that f = 1 or 11 (in fact, f = 11). In either case, pf is not
principal, and this implies that I3 is not principal, because the
norm of a principal ideal is principal.

Because of the connection to Fermat’s last theorem, primes
p such that p does not divide the class number of Q[{] are of
particular interest. They are called regular. Kummer found a
simple test for when a prime is regular: define the Bernoulli
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numbers B;, by the formula

00 m
= E Bp—, BpeQ;
n!

n=0

t
el —1

then p is not regular if and only if p divides the numerator
of some By, with k =2,4,..., p—3. It has long been known
that there are infinitely many irregular primes, but it is still not
proved that there are infinitely many regular primes. It is ex-
pected that 61% of primes are regular and 39% are irregular.

Units in cyclotomic fields

Let ¢ be a primitive nth root of 1, n > 2. Define

QI = Q+¢7'1.

For example, if ¢ = ¢271/7 then Q[¢]1T = Q[cos 27”] Under
any embedding of Q[¢] into C, {~! maps to the complex con-
jugate of ¢, and therefore the image of Q[¢]T is fixed under

complex conjugation and hence lies in R. Thus, we see that
Q[¢] is a CM field with maximal totally real subfield Q[¢]T.

According to Proposition [5.12] the index of w(Q[¢]) - Ugpe)+
in Ugye) is 1 or 2. In fact, when n is a prime power, it must be

PROPOSITION 6.7 Assume thatn is a prime power; then every
unit u € Q[¢] can be written

u=2¢-v



with ¢ a root of unity and v a unit in Q[¢]T.

PROOF. We prove this only for powers of odd primes (which
is all we shall need in the next section). If the statement is false,
then the homomorphism

w>u/i:Ugpe) = /12, = QLD

in the proof of Proposition (3.12) is surjective, and so there
exists a unit u of Q[¢] such that # = {'u where ¢’ is a root
of 1 that is not a square. Recall (6.6p) that, because n is odd,
w={£1}-(¢), and so u? = (¢). Therefore {’ = —¢™ for some
integer m. Let

u=ag +--~—|—a¢(,,)_1§"’(”)_1, aj €.
Then 4 = ag + -+ + a(p(,,)_lé“’(”)_l, and modulo the prime
ideal p = (1—¢) = (1—¢) of Ogyzy»
Uu=do+-tdyp)-1 =u.

Thus
u=—{"u=—umodp,

and so 2u € p. This is a contradiction because p is prime, 2 ¢ p,
and u ¢ p. 0
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The first case of Fermat’s last theorem for regu-
lar primes

Kummer proved Fermat’s last theorem for regular primes. Here
we prove a weaker result, known as the first case of Fermat’s
last theorem.

THEOREM 6.8 Let p be an odd prime. If the class number of
Q[¢] is not divisible by p, then there does not exist an integer
solution (x, y,z) to

XP+yYP=2?P
with p relatively prime to xyz.

We show that existence of integers x, y,z with x? 4+ yP =
zP and p t xyz leads to a contradiction. After removing any
common factor, we may suppose that ged(x, y,z) = 1.

We first treat the case p = 3. The only cubes modulo 9 are
—1,0, 1, and so

x3 +y3 =-2,0,or2 mod?9,

3=—1lorl mod 9,

which are contradictory. Similarly we may eliminate the case
p = 5 by looking modulo 25. Henceforth we assume p > 5.

If x=y =—z mod p, then —2z? = z? and p|3z, con-
tradicting our hypotheses. Hence one of the congruences can’t
hold, and after rewriting the equation x? + (—z)? = (—y)? if
necessary, we may assume that p{x — y.
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The roots of X? + 1 are —1,—¢,...,—¢P~!, and so
p—1 ;
D — i
XP+1= | |l_=O(X+§ ).

Hence )
p— .
[T_,G+ey=2P

The idea of the proof is to exploit this factorization and what

we know of the arithmetic of Q[¢] to obtain a contradiction.
Let p be the unique prime ideal of Z[¢] dividing (p); thus

p=(1 —Ei) where i can be any integer such that 1 <i < p—1

(see[6.2).

LEMMA 6.9 The elements x + ¢’ y of Z[{] are relatively prime
in pairs.

PROOF. We have to show that there does not exist a prime ideal
q dividing x + &'y and x + ¢/ y fori # j. Suppose there does.
Then q|((¢' —¢7)y) = py, and q|((§/ —{')x) = px. By as-
sumption, x and y are relatively prime, and therefore q = p.
Thusx+y=x+¢y=0 modp.Hence x+y € pNZ = (p).
But z? = x? + y? =x+y =0 mod p, and so p|z, which
contradicts our hypotheses. !

LEMMA 6.10 Forevery a € Z[{], o? € Z+ pZ[].
PROOF. Write
a=ap +a1§'+--~—|—ap_2§p_2, a; €.
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Then
a? Eaé’—}—af—}—---—{—all)’_l mod p,

which lies in Z. o

LEMMA 6.11 Leta =ao+a1§+---+ap_1§p_l witha; € Z
and at least one a; = 0. If o is divisible by an integer n, i.e., if
a € nZ[t), then each a; is divisible by n.

PROOF. Since 14 ¢ + -+ + P71 = 0, any subset of
{1,¢,..., 2P~} with p — 1 elements will be a Z-basis for Z[{].
The result is now obvious. o

We can now complete the proof of Theorem|[6.8] Regard the
equation

[T et+en =7

as an equality of ideals in Z[]. Since the factors on the left are
relatively prime in pairs, each one must be the pth power of an
ideal, say .

(x+¢'y) =af

for some ideal a; in Z[{]. This equation implies that a; has
order dividing p in the class group, but we are assuming that
the class group of Z[(] is of order prime to p, and so a; itself
is principal, say a; = ().

Take i = 1, and omit the subscript on «;. Then we have that
X + ¢y = ua? for some unit u in Z[¢]. We apply to write
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u = {"v where ¥ = v. According to (6.10), there is an a € Z
such that ? = a mod p. Therefore

x+¢y=¢va? =¢"va mod p.

Also _
x+¢ly=C"va? =¢"va mod p.

On combining these statements, we find that
{Tgy) = (g y) mod p,
or
x+ly—tFx=2 "1y =0 mod p. (15)

If 1,£,627=1 ¢27 are distinct, then, because p > 5, Lemma
[61T) implies that p divides x and y, which is contrary to our
original assumption. The only remaining possibilities are:

(a) 1={¢2";but then (*) says
ty—¢"'y=0 modp,

and Lemma implies p|y, which contradicts our
original assumption.
(b) 1 =2¢2""1;then ¢ = ¢2", and (*) says

(x=y)=(x=y)¢{=0 modp,

and Lemma implies that p|x — y, which contradicts
the choice of x and y made at the start of the proof.
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(¢) & =121 but then (*) says
x_gzx =0 mod p,
and Lemma implies that p|x, which contradicts our
original assumption.
This completes the proof.

NOTES Everything in this section was known to Kummer, but in terms
of “ideal numbers” rather than ideals. The methods of this section have
not (so far) sufficed to prove Fermat’s last theorem but, as the reader
may already be aware, other methods have.

Exercises

6-1 Show that X3 —3X 4 1 is an irreducible polynomial in
Q[X] with three real roots. Let  be one of them, and let K =
Q[e]. Compute disc(Z[w]/7Z), and deduce that

Ok D Z[a] 23" 0Ok

for some m. Show that o and « + 2 are units in Z[«¢] and Ok,
and that (o + 1)3 = 3a(a + 2). Deduce that (o + 1) is a prime
ideal in Ok, and show that Og = Z[a] + (o + 1)Og. Use this

to show that Og = Z[«]. Show that (2) is a prime ideal in Ok,
and deduce that O is a principal ideal domain.

. . . 27 2
6-2 Show that the ring of integers in Q[cos <% ] is Z[2cos 5.
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Chapter 7

Valuations; Local Fields

In this section, we define the notion of a valuation and study
the completions of number fields with respect to valuations.

Valuations
A (multiplicative) valuation on a field K is a function x —
|x]: K — R such that

(a) |x| > 0 except that [0| =0;

(®) |xyl=|x]lyl
(©) |x+y| <|x|+|y| (triangle inequality).

If the stronger condition
() [x + y| = max{|x|.|y[}
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holds, then | | is called a nonarchimedean valuation.

Note that (a) and (b) imply that | | is a homomorphism
K* — R (multiplicative group of positive real numbers).
Since R~ is torsion-free, | | maps all roots of unity in K to
1. In particular, | — 1| = 1, and | — x| = | x| for all x.
EXAMPLE 7.1 (a) For any number field K, and embedding
0:K < C, we get a valuation on K by putting |a| = |oa].

(b) Let ord: K* — Z be an (additive) discrete valuation, and
let e be a real number with e > 1; then

la| = (1/e)™@, a#£0, 10]=0

is a nonarchimedean valuation on K. For example, for any
prime number p, we have the p-adic valuation | |, on Q :

jalp = (1/)7%@.
Usually we normalize this by taking e = p; thus
lalp = (1/p)*% @ =1/p" if a = ag- p" with ordy(ag) = 0.

Similarly, for any prime ideal p in a number field K, we have a
normalized p-adic valuation

Jalp = (1/Np)™ e @,
(c) On any field we can define the trivial valuation: |a| = 1

for all @ # 0. When K is finite, there is no other (because all
nonzero elements of a finite field are roots of 1).
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Nonarchimedean valuations

Recall that this means that, instead of the triangle inequality,
we have
|x + y| < max{|x|.[y[}.

By induction, this condition implies that
|20 x; | < max{|x;|}. (16)

PROPOSITION 7.2 A valuation | | is nonarchimedean if and
only if it takes bounded values on {m1 | m € Z}.

PROOF. If | | is nonarchimedean, then, for m > 0,
ml|=]|1+1+---+1]<|1|=1.

As we noted above, | — 1| = |1|, and so | —m1| = |ml| < 1.
Conversely, suppose [m1| < N for all m. Then

eyt =Y )y =Y A Ty
r
Clearly |x["|y["™" < max{|x|",|y|"} = max{|x|.[y|}" and
’r') is an integer, and so
v+ [ < N1+ Dmaxifx], [y 1}".
On taking nth roots we find that
4y < N7 DY max]x]. |yl
When we let n — oo, the terms involving n tend to 1 (to see

this, take logs). o
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COROLLARY 7.3 If char K # 0, then K has only nonar-
chimedean valuations.

PROOE. In this case, the set {m -1 | m € Z} is finite. O

ASIDE 7.4 Archimedes stated that for any two line segments, laying
the shorter segment end-to-end a sufficient finite number of times will
create a segment longer than the other. In other words, for any two
nonzero real numbers a and b, there is an n € N such that |b| < |nal.
The proposition shows that the nonarchimedean valuations are exactly
those that don’t have this “archimedean property”.

As we noted above, a discrete (additive) valuation ord on K
determines a valuation by
|x| — e—ord(x),
any e > 1. Taking logs gives log, |x| = —ord(x), or ord(x) =
—log, |x|. This suggests how we might pass from multiplica-
tive valuations to additive valuations.

PROPOSITION 7.5 Let| | be a nontrivial nonarchimedean val-
uvation, and put v(x) = —log|x|, x # 0 (log to base e for any
reale > 1). Thenv: K™ — R satisfies the following conditions:

(@) v(xy) =v(x)+v(y);
() v(x+y) = min{v(x),v(y)}.

If v(K™) is discrete in R, then it is a multiple of a discrete
valuation ord: K* — Z C R.
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PROOF. That v satisfies (a) and (b) is obvious. For the last
statement, note that v(K*) is a subgroup of R (under addi-
tion). If it is a discrete subgroup, then it is a lattice (by 4.15)),
which means that v(K*) = Zc for some ¢. Now ord el
is an additive discrete valuation K* — Z. !

We shall say | | is discrete when | K*| is a discrete subgroup
of Rx¢. Note that, even when | K| is discrete in R, | K| usually
won’t be, because 0 will be a limit point for the set |K*|. For
example, |p"|p, = p~", which converges to 0 as n — oo.

PROPOSITION 7.6 Let | | be a nonarchimedean valuation.
Then w
A={a e K |la| <1} is a subring of K, with
= {a € K | |a| = 1} as its group of units, and
mE{aeck | |la| < 1} as its unique maximal ideal.
The valuation | | is discrete if and only if m is principal, in

which case A is a discrete valuation ring.

PROOE. The first assertion is obvious. If | | is discrete, then
A and m are the pair associated (as in [3.27) with the additive
valuation —log| |, and so A is a discrete valuation ring and m
is generated by any element & € K> such that || is the largest
element of |K*| less than one. Conversely, if m = (i), then
|K*| is the subgroup of R~ generated by |r|. =

REMARK 7.7 There do exist nondiscrete nonarchimedean val-
uations. For example, let Q! be an algebraic closure of Q. We
shall see later that the p-adic valuation | |,:Q — R extends to
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Q" (in many different ways). Since Q* contains an element
pl/7 for all n, we see that |Q¥%] > (p~Hl/n = 1/ 2/p for
all n, and 1/ Yp—>1lasn—oo. In fact, one can show that
|Q2%| = {p” | r € Q}, which is not discrete in Rsg.

Equivalent valuations

Note that a valuation | | defines a metric on K, with distance
function

d(a,b) =|a—b|,

and hence a topology on K: for a € K, the sets
U(a,e)={xeK||x—a|l<e}, &>0,

form a fundamental system of open neighbourhoods of a. A set
is open if and only if it is a union of sets of the form U(a, ¢).

For example, for the topology on Q defined by | |,, @ and
b are close if their difference is divisible by a high power of p.
In particular, the sequence

Lp.p2....p"% ...

converges to 0.

The topology defined by the p-adic valuation | |, is called
the p-adic topology on K.

PROPOSITION 7.8 Let | |1, | |2 be valuations on K, with | |1
nontrivial. The following conditions are equivalent:

@) | |1, | |2 define the same topology on K;
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®) lah <1=lalz<1;
(©) |2 =114 for somea > 0.

PROOF. (a) = (b): Since |@”| = |a|", clearly «” — 0 if and
only if |a| < 1. Therefore (a) implies that

o1 <1 <= |a|2 < 1.

(b) = (c): Because | |1 is nontrivial, there exists a y € K
such that |y| > 1. Let

a =log|yl2/log|yl1,

so that
log|y|2 = a-log|yl1.

or
yl2 = IyI{-
Now let x be any nonzero element of K. There is a real number
b such that
lxly = |y[5.
To prove (c), it suffices to prove that
[l = IyI3.

because then

b b
Ixl2 =1y3 = IyI{” = IxI{.
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Let m/n, n > 0, be a rational number > b. Then

b m
lxl1 = yI] <Iyl{

and so
Ix"/y™ < 1.

From our assumption (b), this implies that
X" /y™ 2 <1
and so
m
Ixl2 <yly -
This is true for all rational numbers % > b, and so
b
[xl2 < |yl3-
A similar argument with rational numbers 2 < b shows that
b
Ix[2 = |y13.

and so we have equality, which completes the proof of (a). o

Two valuations are said to be equivalent if they satisfy the
conditions of the proposition.
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Properties of discrete valuations

‘We make some easy, but important, observations about discrete
valuations.

7.9 For an additive valuation, we are given that
ord(a + b) > min{ord(a),ord(h)}

and we checked (3.2 et seq.) that this implies that equality
holds if ord(a) # ord(b). For multiplicative valuations, we are
given that

|a +b| < max{|al.|b[},

and a similar argument shows that equality holds if |a| # |b|.
This has the following consequences.

7.10 Recall that we define a metric on K by setting d(a,b) =
la —b|. T claim that if x is closer to b than it is to a, then
d(a,x) = d(a,b). For we are given that

|x —b| < |x—al,
and this implies that
|b—a|=|b—x+x—a|=|x—al.
7.11 Suppose
ay+az+--+ap =0.

Then an argument as on shows that the maximum value
of the summands must be attained for at least two values of the
subscript.
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Complete list of valuations for the rational num-
bers

We now give a complete list of the valuations on Q (up to
equivalence). We write | |oo for the valuation on Q defined by

the usual absolute value on R, and we say that | | is normal-
ized.

THEOREM 7.12 (OSTROWSKI) Let | | be a nontrivial valua-
tion on Q.

(a) If| | is archimedean, then | | is equivalent to | |sc-
(b) If| | is nonarchimedean, then it is equivalent to | |, for
exactly one prime p.

PROOF. Letm,n be integers > 1. Then we can write
m=ag+an—+---+arn"

with the a; integers, 0 < a; <n,n” <m.Let N =max{l, |n|}.
By the triangle inequality,

m) <Y lailinl’ <Y lai [N
We know
r <log(m)/log(n),

(log relative to some e > 1) and the triangle inequality shows
that
laj| < [1+--+1]=a;|1| =a; <n.
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On putting these into the first inequality, we find that

1 logm
m| < (1+r)nN" < (1 + Ogm)nN Toen
logn

In this inequality, replace m with m’ (¢ an integer), and take
tth roots:

1
tloem\7? 1 logm
|m|§(]+7g ) nt N logn |

logn

Now let t — oo. The terms involving ¢ tend to 1, and so

logm
|m| < N logn (*)

CASE (i): For all integers n > 1, |n| > 1.
In this case N = |n|, and (*) yields:

|m|1/logm < |n|1/logn'

By symmetry, we must have equality, and so there is an ¢ > 1

such that
¢ = |m|1/logm — |n|1/logn

for all integers m,n > 1. Hence

Jogn

|}’l| = logclogn

=e =n'og a1 integers n > 1.
Let a = logc, and rewrite this

|n| = |n|‘;o, all integers n > 1,
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where | |0 is the usual absolute value on Q. Since both | | and
| |4, are homomorphisms Q™ — R, the fact that they agree
on a set of generators for the group Q* (the primes and —1)
implies that they agree on all of Q*.

CASE (ii): For some n > 1, |n| < 1.

In this case, N = 1, and (*) implies |m| < 1 for all integers
m. Therefore the valuation is nonarchimedean. Let A be the
associated local ring and m its maximal ideal. From the defini-
tion of A, we know that Z C A. Then m N Z is a prime ideal in
Z (because m is a prime ideal), and it is nonzero for otherwise
the valuation would be trivial. Hence mNZ = (p) for some p.
This implies that |m| = 1 if m is an integer not divisible by p,
and so |np”| = |p|" if n is a rational number whose numer-
ator and denominator are not divisible by p. If a is such that
[pl = (1/p)%; then |x| = |x|§ for all x € Q. 0

THEOREM 7.13 (PRODUCT FORMULA) For p =
2,3,5,7,...,00, let | |p be the corresponding normalized
valuation on Q. For any nonzero rational number a

l—[ lalp = 1 (product over all p including 00).

PROOF. Let @ =a/b, a,b € Z. Then |a|, = 1 unless pla or
p|b. Therefore ||, = 1 for all but finite many vs, and so the
product is really finite.

Let w(a) =[] |aly- Then 7 is a homomorphism Q* — R*,
and so it suffices to show that 7(—1) = 1 and 7r(p) = 1 for each
prime number p. The first is obvious, because | — 1| = 1 for all
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valuations | |. For the second, note that

lplp =1/p. |plg =1, qaprime # p, |ploo = p.

The product of these numbers is 1. o

The primes of a number field

Let K be an algebraic number field. An equivalence class of
valuations on K is called a prime or place of K.

THEOREM 7.14 Let K be an algebraic number field. There
exists exactly one prime of K

(a) for each prime ideal p;
(b) for each real embedding;
(c) for each conjugate pair of complex embeddings.

PROOF. See Chapter 8. !

In each equivalence class of valuations of K we select a
normalized valuation! as follows:
for a prime ideal p of Ok, |alp = (1/Np)°rdp (@ = (Op :
—1.
(@)™
!'These are the most natural definitions for which the product formula hold.

Alternatively, let K, be the completion of K with respect to the valuation v, and
let (4 be a Haar measure on (K, +) — it is uniquely determined up to a nonzero

constant. For any nonzero a € Ky, g (U) £ w(aU) is also a Haar measure
on (Ky,+), and so i, = c(a)u for some constant ¢ (a). In fact, c(a) = |a|,
the normalized valuation of a.
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for a real embedding 0: K — R, |a| = |oal;

for a nonreal complex embedding 0: K < C, |a| = |oal|?.
Note that this last is not actually a valuation, because it doesn’t
satisfy the triangle law. There are various ways of getting
around this problem the best of which is simply to ignore it.

Notations

We generally write v for a prime. If it corresponds to a prime
ideal p of Ok, then we call it a finite prime, and we write py
for the ideal. If it corresponds to a (real or nonreal) embedding
of K, then we call it an infinite (real or complex) prime. We
write | |, for a valuation in the equivalence class. If L D K
and w and v are primes of L and K such that | | restricted
to K is equivalent to | |y, then we say that w divides v, or w
lies over v, and we write w|v. For a finite prime, this means
PBw N Ok = py or, equivalently, that Py, divides py - Op,. For
an infinite prime, it means that w corresponds to an embedding
0:L — C that extends the embedding corresponding to v (or
its complex conjugate).

THEOREM 7.15 (PRODUCT FORMULA) For each prime v, let
| |v be the normalized valuation. For any nonzero « € K,

l_[ |a|y = 1 (product over all primes of K).

PROOF. The product formula for a general number field fol-
lows from the product formula for Q and the next result. o

LEMMA 7.16 Let L be a finite extension of a number field K.
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(a) Each prime on K extends to a finite number of primes of

(b) For any prime v of K anda € L™,

1_[ lotlw = INmp /g et

wlv
PROOF. See Chapter 8. a

REMARK 7.17 The product formula is true in two other im-
portant situations.

(a) Let K be a finite extension of k(T") where k is a finite
field. According to (7.3), the valuations of K are all discrete,
and hence correspond to discrete valuation rings in K. As in
the number field case, we can normalize a valuation by setting
lalo = (1/Nv)'9v (@) where Nv is the number of elements in
the residue field of the discrete valuation ring and ordy: K* —
Z. Then [], |aly = 1. The proof of this is easy when K =
k(T), and the general case is obtained by means of a result like
(7.16).

(b) Let K be a finite extension of k(7") where k is an al-
gebraically closed field. In this case we look only at primes
that are trivial when restricted to k. All such primes are
nonarchimedean, and hence correspond to discrete valuations
ordy: KX — Z. Fix an e > 1, and define |a|, = (1/¢)°dv (@)
for every v. Then []|a|, = 1 for all @ € K*. This of course is
equivalent to the statement

Zordv (a) =0.
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For example, let X be a compact Riemann surface, and let K
be the field of meromorphic functions on X. For each point P
of X we have a discrete valuation, defined by ordp (f) = m
or —m according as f has a zero or pole of order m at P.
The valuations ordp are precisely the valuations on K trivial
on C C K, and so the product formula for K is simply the
statement that f* has as many zeros as poles.

The proof of this runs as follows: the Cauchy integral for-
mula implies that if f is a nonconstant meromorphic function
on an open set U in C, and I" is the oriented boundary of a
compact set C contained in U, then

/')
r /)

where Z is the number of zeros of f in C and P is the number
of poles of f, both counted with multiplicities. This formula
also holds for compact subsets of manifolds. If the manifold
M is itself compact, then we can take C = M, which has no
boundary, and so the formula becomes

dz =2ni(Z—-P)

Z—-P=0,

> ordp(f)=0. PeM.

The weak approximation theorem

Recall that a valuation on a field K is homomorphism a —
la|: K* — Rsq such that |a +b| < |a| + |b| for all a,b € K*.
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We extend it to K by setting |0] = 0. A valuation is trivial if
|a| = 1 for all @ # 0. Two nontrivial valuations |-|; and |-| are
equivalent if |a|; < 1 implies |a|z < 1, in which case |- |2 =
|-]7 for some r € R (see 7.8). The statements in this section
continue to hold if we replace “valuation” with “positive power
of a valuation” (which, in the archimedean case, may fail to
satisfy the triangle rule).

LEMMA 7.18 If|-|1,| |2, ... , |- |n are nontrivial inequiva-
lent valuations of K, then there is an element a € K such that
lalh > 1
lal; < 1, i#1.

PROOE. First let n = 2. Because | |1 and | | are inequivalent,
there are elements b and ¢ such that

bl < 1, [bl2=1
el = 1, Jela<1.

Now a = % has the required properties.
We proceed by induction assuming that the lemma is true
for n — 1 valuations. There exist elements b, ¢ such that

b1 > 1, |bl; <1, i=2.3,....n—1
lel1 < 1, Jeln>1

If |b|ln <1, then @ = ¢b” works for sufficiently large r. If
|b|ln > 1, then a, = % works for sufficiently large r, be-

r .
cause # converges to 0 or 1 according as |b| < 1 or |b| >
[}
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LEMMA 7.19 In the situation of the last lemma, there exists
an element of K that is close to 1 for |- |1 and close to O for
[-li,i=2,...n.

. . r
PROOF. Choose a as in (7.18)), and consider a, = liﬁ' Then

1 1
ar—1|1 = < -0
== e S g
asr — oo. Fori > 2,
lalf lal!
arli = ——+=< L
lar s 1+all = 1—l|alf
asr — 0. m]
THEOREM 7.20 Let |-|1,|-|2,... .| |n be nontrivial in-
equivalent valuations of a field K, and let ay,...,a, be ele-

ments of K. For any ¢ > 0, there is an element a € K such that
la—a;|; <eforalli.

PROOE. Choose b;,i =1,...,n,close to 1 for | |; and close to
Ofor||j, j #i.Then

a=aiby+---+anby

works. o
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Let K; be the completion of K for |-|;. The statement of
the theorem also holds with a; in K; (rather than K)—choose
a} € K very close to a; and a € K very close to each a;. Thus
K (embedded diagonally) is dense in [] K.

The theorem shows that there can be no finite product for-
mula. More precisely:

COROLLARY 7.21 Let |-|1,||2, --- » |- |n be nontrivial in-
equivalent valuations on a field K. If

lal}' --laly* =1, ri€R,
foralla € K*, thenr; =0 for alli.

PROOE. If any r; # 0, an a for which |a|; is sufficiently large
and the |a|;, j # 1, are sufficiently small provides a contradic-
tion. o

The reader should compare the Weak Approximation The-
orem with what the Chinese Remainder Theorem gives (see

Exercise [7-1)).

NOTES The Weak Approximation Theorem first occurs in Artin and
Whaples 1945.% See also|Artin|1959] Our account follows the original.

2 Axiomatic characterization of fields by the product formula for valuations,
Bull. AMS, 51, 1945, pp. 469-492.
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Completions

Let K be a field with a nontrivial valuation. A sequence (a) of
elements in K is called a Cauchy sequence if, for every ¢ > 0,
there is an N such that

lan —am| < e, allm,n > N.

The field K is said to be complete if every Cauchy sequence
has a limit in K. (The limit is necessarily unique.)

EXAMPLE 7.22 Consider the sequence in Z

4,34,334,3334,....

As
|am —anl|s =5" (m>n),

this is a Cauchy sequence for the 5-adic topology on Q. Note
that

3.4=12, 3-34=102, 3-334=1002, 3-3334=10002,...

and so 3-a; —2 — 0 as n — oco. Thus limp 0 an, =2/3 €Q.

There is a similar notion of Cauchy series. For example, any
series of the form

a—np " +-taotarpt+-tamp™ +-. 0=a; <p.

is a Cauchy series in Q for the p-adic topology.
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THEOREM 7.23 Let K be a field with a valuation | |. Then
there exists a complete valued field (K,| |) and a homomor-

phism K — R preserving the valuation that is universal in the
following sense: any homomorphism K — L from K into a
complete valued field (L,| |) preserving the valuation, extends
uniquely to a homomorphism K—L.

PROOF (SKETCH) Every point of K will be the limit of a se-
quence of points in K, and the sequence will be Cauchy. Two

Cauchy sequences will converge to the same point in K if and
only if they are equivalent in the sense that

lim |ay —by| =0.
n—>oo

This suggests defining K to be the set of equivalence classes
of Cauchy sequences in K. Define addition and multiplication
of Cauchy sequences in the obvious way, and verify that K
is a field. There is a canonical map K — K sending a to the
constant Cauchy sequence a,a,a, ..., which we use to identify
K with a subfield of K. We can extend a homomorphism from
K into a second complete valued field L to K by mapping the
limit of a Cauchy sequence in K toits limit in L. o

REMARK 7.24 (a) As usual, the pair (K — K, | |) is uniquely
determined up to a unique isomorphism by the universal prop-

erty (cf. GT[2.4).
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(b) The image of K in K is dense because the closure K of
K in K is complete and (K — K,| |) has the same universal
property as (K — K,| ).

For a prime v of K, we write K, for the completion of K
with respect to v. When v corresponds to a prime ideal p, we
write K} for the completion, and @p for the ring of integers
in K. For example, Qp is the completion of QQ with respect to
the p-adic valuation | |,. We write Zj, (not Zp) for the ring of
integers in Qp (the ring of p-adic integers).

Completions in the nonarchimedean case

Let | | be a discrete nonarchimedean valuation on K, and let
be an element of K with largest value < 1 (therefore & gener-
ates the maximal ideal m in the valuation ring A). Such a  is
called a local uniformizing parameter.

The set of values is

K| ={c™ |meZ}U{0}, c=|m|

Leta € K*, and let ap be a sequence in K converging to a.
Then |a,| — |a| (because | | is a continuous map), and so |a|
is a limit point for the set |[K*|. But |K*| is closed (being
discrete), and so |a| € |[K*|. Thus |1€| =|K|,and so | | is a
discrete valuation on K also. Let ord: K* — Z be a normal-
ized discrete additive valuation corresponding to | |; then ord
extends to a normalized discrete valuation on K.
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Note that if a, — a # 0, then |a, | — |a| # 0, and (because
| K*| is discrete), |an| = |a| for all n large enough.
The ring associated with | | in K is

A={aeK||al <1}

Clearly A is the set of limits of Cauchy sequences in A4, and it
is therefore the closure of A in K. The maximal ideal in A4 is

m={aeckK||al<1}.
Again it is the set of limits of Cauchy sequences in m, and so
it is the closure of m. Similarly, m” is the closure of m”. Let
be an element with ord(z) = 1; then 7 generates m in A and
fin A.

LEMMA 7.25 For any n, the map A/m" — A/ﬁi" is an iso-
morphism.

PROOEF. Note that
m" ={acA|la|<|x|"}={acA|la <|x|"""}

is both open and closed in A. Because it is closed, the map is
injective; because m” is open, the map is surjective. !

PROPOSITION 7.26 Choose a set S of representatives for
A/m, and let = generate m. The series

a_pn P+ dagtarw+-+apa™ 4+, a; €8
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is a Cauchy series, and every Cauchy series is equivalent to
exactly one of this form. Thus each element of K has a unique
representative of this form.

PROOF. Letsps = Zf‘i_n a;7'. Then
Ispr —sy | < |7 MFLif M < N,

which shows that the sequence 57 is Cauchy. Let « € K. Be-
cause |I€| |K|, we can write @ = 7" ¢ with «g a unit in A.
From the definition of S, we see that there exists an ag € S
such that g —ag € th. Now 2090 ¢ A, and so there exists an

ai € S such that 20290 4, ¢ m. Now there exists an a such

that 20=90°41T _ 4, € 1, etc. In the limit,
ag=ap+arm+-+, a=mn"ag.
Note that )
Sairi] = 27|

if a;, is the first nonzero coefficient. Therefore ) a; 7l =0Gf
and) only if a; = 0 for all i. This proves the uniqueness. !

Thus, for example, every equivalence class of Cauchy se-
quences in Q for | |, has a unique representative of the form

denp "4 4ao+aiptarp®+--, 0<a; <p.
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Note that the partial sums of such a series are rational numbers.
It is as easy to work with such series as with decimal expan-
sions of real numbers — just remember high powers of p are
small, and hence the first to be ignored.

We explain this in more detail. The maps

Z/(p") = L)/ (p™) = Zp /(™)

are both bijective (see [3.10] for the first map). Let o € Zp. Be-
cause the map is bijective, for all n, there is an a, € Z such
that @ = a, mod p”. Note that, if n < m, a, = a, mod p”,
which implies that (a,) is a Cauchy sequence. Let

an=cotc1p+-tepm1p"t modp”, 0<¢ <p-1;

a=2qpi.

i>0

then

Conversely, if o = Zcipi, 0 <¢; < p—1,then cg,cy,...is
the unique sequence of integers, 0 < ¢; < p—1, such that

n—1
o= Zcipi mod p”.
i=0

If @ € Qp but not Zp, then p™« € Zj for a sufficiently large
m, and the above arguments can be applied to it.

The following examples illustrate how to work with p-adic
numbers.
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EXAMPLE 7.27 In Q5,
1424 42" 4
converges to —1, because the sum of the first n terms is

2" —1
=2"-1
2—-1

which converges to —1.

EXAMPLE 7.28 I claim that —1 is a square in Q5. We have to
find a series

ap+ai5+ax5*>+-, a;j=0,1,2,3,0r4

such that
(ao+a15+az5%+..)>+1=0.

We first need that
ag +1=0mod 5.

Thus we must take ag = 2 or 3; we choose 2 (choosing 3 would
lead to the other root). Next we need

(2+a15)%*+ 1 =0 mod 52,
and so we want

5+20a; = 0 (mod 5%).
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We must take a1 = 1. Suppose we have found

Cn=ag+ai5+az5*+-+aps"

such that
¢241=0(mod5"t1),

5n+1

and consider ¢, +ap+1 . We want

(cn+ans15"™H2% +1 =0 (mod 5" +?2),
for which we need that

€2 414 2cpan+15" T =0 (mod 5"12),

or that
2enan 15" = (=1—¢7) (mod 5"+2),
or that
2enant1 = (—1—c;)/5" ! (mod 5),
or that

4apt1 = (—1—c2)/5" 1 (mod 5).

Since 4 is invertible modulo 5, we can always achieve this.
Hence we obtain a series converging to —1. In fact,

1
ﬁ:%mzéz S (2)
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EXAMPLE 7.29 We study the convergence of the power series

x2 x"
7+...+7+...
n!

exp(x) =14+x+ 2

in Qp. Write

n=ap+aip+--+arp’, 0<a;<p-1

ordp (n!) = [%] + [%} et [%}

where here [a] denotes the floor of a (largest integer less than
a), and

B
2
3] - :

On summing these equalities, we find that

Then

r—1

ar+ azp+azp®+--+arp

r—2

az +azp +--+arp

0 1 2 r
-1 -1 -1 -1
ordp (n!) =aop +alp +a2p +~--+arp
p—1 p—1 p—1 p—1
_n—>a;
=
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Therefore
x" 1 3 a;
ordp (F) =n (ordp(x) - F) + p_i .

>a;i _ log(n)

AS 57T = Tog(p)”

ﬁ. Therefore (see Exercise, the series exp(x) converges
1

for ord(x) > =1

we see that ’;l—r,l — 0 if and only if ord(x) >

There is a leisurely, and very detailed, discussion of Qp in
the first chapter of Koblitz 19773,

ASIDE 7.30 Those who have taken a course in commutative algebra
will know another method of completing a local ring R, namely

R’ =1£T1R/mn ={(an) lan € R/m", ap41=a, modm"}.

In the case that R is a discrete valuation ring, this definition agrees
with the above. There is an injective homomorphism

R— R, a+—(a,), a,=amodn”.

We can define a homomorphism R’ — R as follows: let (an) € R,
and choose a representative a,, for @, in R; then (a},) is an Cauchy
sequence whose equivalence class is independent of the choices of the
a,,, and we can map (a,) to (a},). It is easy to see that the map R’ —

R is surjective, and it follows that it is an isomorphism.

3Koblitz, Neal. p-adic numbers, p-adic analysis, and zeta-functions. Gradu-
ate Texts in Mathematics, Vol. 58. Springer-Verlag, New York-Heidelberg, 1977.
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Newton’s lemma

The argument in the above example works much more gener-
ally. Let £(X) = X2+ 1. Then all we in fact used was that
f(X) has a simple root modulo 5.

In the rest of this subsection, A is a complete discrete val-
uation ring and 7 generates its maximal ideal (unless we say
otherwise).

PROPOSITION 7.31 Let f(X) € A[X], and let ag be a simple
root of f(X) mod m. Then there is a unique root a of f(X)
witha = ag mod .

PROOF. Suppose we have found a, = ag mod 7 such that
flan)=0 modnx"t1.

Letay+1 = an +ha"*tl h e A. We want
flan +ha™T1) =0mod n" 12,

Recall (trivial Taylor’s expansion) that, for any polynomial f,
fle+tn=flO+t-f'e)+-

where f/(X) is the formal derivative of f(X). Then

f(an +ha" 1) = f(an) +ha" - f an) + oo

which we want = 0 mod 7”12, Hence we must take / so that

_f(an)

h= Tl

< f'(an)™! mod .
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This is possible because 7" 11| f(a,,) and

f'(an) = f'(ap) modr,

which is nonzero, and hence invertible, mod 7. m]

There is a stronger form of the proposition. Recall Newton’s
approximation* method for finding a solution to f(x) = 0,
where f is a function of a real variable. Starting from an ag
such that f(ag) is small, define a sequence ag,az, ... by putting

dp+1 =dn _f(an)/f/(an)~

Often ap converges to a root of f(x). In the above proof, this
is what we did, but the same argument can be made to work
more generally.

THEOREM 7.32 (NEWTON’S LEMMA) Let f(X) € A[X].
Letag € A satisty

| f(ao)l < |f'(ao)*.

Then there is a unique root a of f(X) such that

S(ao)
f(a0)?

la —ao| <

#When Newton found his interpolation formula in 1670, ancient Chinese
mathematicians had been using the formula in more sophisticated forms for more
than one millennium. He, Ji-Huan, Appl. Math. Comput. 152 (2004), no. 2, 367—
371.
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PROOF. Define a sequence ag,aq,... by setting

Ana1 = dpn— f(an)

n+ n f/(an)
and prove that it is a Cauchy sequence converging to a root of
f(X). See, for example, Milne|2006} 2.12. =

Proposition shows that a simple factor of degree 1 of
f(X) mod = lifts to a factor of f(X). This generalizes.

THEOREM 7.33 (HENSEL’S LEMMA) Let k be the residue
field of A; for f(X) € A[X], write f(X) for the image of
f in k[X]. Consider a monic polynomial f(X) € A[X]. If
f(X) factors as f = goho with go and hg monic and rela-
tively prime (in k[X]), then f itself factors as f = gh with g
and h monic and such that g = go and h = hg. Moreover, g
and h are uniquely determined, and (g,h) = A[X].

We first prove that (g,h) = A[X] (such a pair is said to be

strictly coprime; in k[X] strictly coprime just means coprime,
i.e., relatively prime).
LEMMA 7.34 Let A be a local ring with residue field k. If
f.g € A[X] are such that f and g are relatively prime and
f is monic, then (f,g) = A[X]. More precisely, there exist
u,v € A[X] with degu < degg and degv < deg f such that

uf +vg=1. Y
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PROOF. Let M = A[X]/(f,g). As f is monic, this is a finitely
generated A-module. As (f,g) = k[X], we have that (f,g) +
mA[X] = A[X] and so mM = M. Now Nakayama’s Lemma
(T.9) implies that M = 0.

This shows that there exist u, v € A[X] such that holds.
If degv > deg f, write v = fq + r with degr < deg f. Then

(u+qg)f+rg=1,

and u + gg automatically has degree < degg. o

We next prove uniqueness of g and .
LEMMA 7.35 Let A be a local ring with residue field k. Sup-
pose [ = gh = g'h’ with g,h,g’.h’ all monic, and g = g’,
h = h' with g and h relatively prime. Then g = g’ and h = h’.

PROOF. From the preceding lemma we know that (g,h’) =
A[X], and so there exist r,s € A[X] such that gr +h's = 1.
Now

g =g'gr+g'h's=ggr+ghs,

and so g divides g’. As both are monic and have the same de-
gree, they must be equal. a

Finally, we prove the existence of g and h. We are given
that there exist monic polynomials gg, hg € A[X] such that

f—goho e m-A[X].
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Suppose we have constructed monic polynomials g5, &y such
that
f—gnhn =0mod n" 1 A[X]

and g, = go, hn = ho mod wA[X]. We want to find u, v €
A[X] with degu < deg go and degv < deghg such that

f—(gn+ 7" u)(hy + 72" F1v) = 0 mod 2" T2 4[X],
i.e., such that
(f —gnhn) — 7" T why + gnv) = 0 mod 7" T2 A[X].

Thus we are looking for polynomials u, v in A[X] with degu <
deg go and degv < deghg such that

why + gnv = (f —gnhn)/7" ! mod 7A[X].

Because go and /¢ are monic and relatively prime, Lemma
shows that such polynomials exist.

REMARK 7.36 An induction argument extends the theorem to
show that a factorization of f into a product of relatively prime
polynomials in k[X] lifts to a factorization in A[X]. For exam-
ple, in Fp[X], X? — X splits into p distinct factors, and so it
also splits in Z,[X]. Hence Zp contains the (p — 1)st roots of
1. More generally, if K has a residue field k with ¢ elements,
then K contains ¢ roots of the polynomial X9 — X. Let S be
the set of these roots. Then

ar—a:S —k,
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is a bijection preserving multiplication (but not, of course, ad-
dition) — the elements of S are called the Teichmiiller repre-
sentatives for the elements of the residue field.

REMARK 7.37 Theorems and are both stronger ver-
sions of There is in fact a stronger version of For a
polynomial 7 = ) " ¢; X', define

7]l = max|c;].
Let
fX)=anX" +an_1 X"+ +ag € A[X]

have |an| =1 (i.e., a, is a unit). Let go(X) and ho(X) be
polynomials in A[X] with degrees r and s respectively, and
suppose that

I £(X) —go(X)ho(X)|| < [Res(go(X).ho(X))|*

where Res denotes the resultant. Then f(X) factors in A[X]
as the product of a polynomial of degree r and a polynomial of
degree 5. The proof follows the same general lines as the above
proofs. In fact, the hypothesis can be replaced by

L/ (X) = go(X)ho(X)|| < |disc(f)].

(For this, see|Cassels|[1986, p107.)

Note that, this gives an algorithm for factoring polynomials
in Qp[X] (for example). Given f(X), compute disc( f). If this
is zero, then f and f’ have a common factor, which we can

232



find by the Euclidean algorithm. Otherwise ord(disc(f)) =m
for some m, and it is enough to consider factorizations of f
into polynomials with coefficients in the finite ring Z/p"™Z.
Apparently the fastest algorithms for factoring polynomials in
Z[X] begin by factoring in Zp[X] for an appropriate prime p
— computers seem to have no problem handling polynomi-
als of degree 200. (But Exercise [7-6] shows that there exist ir-
reducible polynomials in Z[X] of arbitrarily large degree that
factor in all the rings Zp[X] into polynomials of low degree.)

Extensions of nonarchimedean valuations

We explain how to extend a valuation to a larger field.

THEOREM 7.38 Let K be complete with respect to a discrete
valuation | |k, and let L be a finite separable extension of K
of degree n. Then | | extends uniquely to a discrete valuation
| | on L, and L is complete for the extended valuation. For all
BeL,

Bl = INmy/x B/

PROOF. Let A be the discrete valuation ring in K, and let B
be its integral closure in L. Let p be the maximal ideal of A.
We know from that B is a Dedekind domain, and the
valuations of L extending | |, correspond to the ideals of B
lying over p.

Suppose that there are distinct prime ideals 31 and ‘B in B
dividing p. There will be a 8 € B such that 31 N A[B] # P2 N
A[B]; for example, choose B € B such that 8 € By, B ¢ P».

233



Let f(X) be the minimum polynomial of 8 over K, so that
A[B] ~ A[X]/(f(X)). Because f(X) is irreducible in A[X]
and A is complete, Hensel’s lemma shows that f(X) (image
of f(X) in k[X], k = A/p) must be a power of an irreducible
polynomial. Then

ABI/pAIB] ~ k[X]/(f (X))

is a local ring, which contradicts the fact that A[8] has two
prime ideals containing p.
Hence | | extends uniquely to a valuation | | on L.
Clearly, | |, also extends uniquely to the Galois closure L’
of L. For each ¢ € Gal(L/K), consider the map L — C, § —
|oB|. This is again a valuation of L, and so the uniqueness
implies that |§| = |o8]|. Now

INm(B)| = [ [oB] = IBI"

which implies the formula.

Finally, we have to show that L is complete. Let e1,... e,
be a basis for B as an A-module, and let («(m)) be a Cauchy
sequence in L. Write a(m) = aj(m)ey + --- + an (m)ey, with
a;j(m) € K. For each i, a; (m) is a Cauchy sequence, and if a;

. .. df . ..
denotes its limit, then « = ajeq + -+ + aney is the limit of the
sequence o/(m). o

REMARK 7.39 It is obvious from the criterion that
a nonarchimedean valuation can only extend to a nonar-
chimedean valuation. It is possible to prove without as-
suming that the valuation | | on K is discrete or even nonar-
chimedean, but the proof is then completely different, and
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much longer — we shall in fact need this in the Chapter
8, and so I should have included it. The formula |8|; =

|NmL/Kﬁ|}{/n shows that | |, is discrete if and only if | |
is discrete.

COROLLARY 7.40 Let K be as in the theorem, and let §2 be a
(possibly infinite) separable algebraic extension of K. Then | |
extends in a unique way to a valuation | | on £2.

PROOE. The theorem shows that | | extends in a unique way to
any finite subextension of £2, and hence it extends uniquely to
2. m

REMARK 7.41 In the last corollary, the extended valuation is
still nonarchimedean, but it need not be discrete, and §2 need
not be complete. However, the completion of §2 is again alge-
braically closed.

For example as we noted in (7.6), the valuation on the alge-
braic closure Q}‘,l of Qp is not discrete, and Exerciseshows

that Q¥ is not complete. The completion of Q;‘,l is often de-
noted Cp, because it plays the same role for the p-adic valua-
tion on Q that C plays for the real valuation. (In fact Cp ~ C as
abstract fields because they are both algebraically closed, and
they both have a transcendence basis with cardinality equal to
that of R. The isomorphism is as far from being canonical as
it is possible to get — its construction requires the axiom of
choice.)
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COROLLARY 7.42 Let K and L be as in the theorem; then
n =ef wheren = [L : K], e is the ramification index, and f
is the degree of the residue field extension.

PROOF. We know from (3.34) that n = ) _e; f;. In this case,
there is only one prime dividing p and so the formula becomes
n=ef. |

When e = n, so that pB = PB", we say that L is fotally
ramified over K; when f = n, we say that L is unramified
over K.

Note that the valuation ring B of L is the integral closure
of the valuation ring A of K.

Many of the results proved above for complete discrete val-
uation rings hold also for Henselian local rings (see §4 of my
notes Lectures on Etale Cohomology).

REMARK 7.43 Let K be complete with respect to a discrete
valuation, and let L be a finite extension of K. Let ‘13 and p be
the maximal ideals in the rings of integers A and B of K and
L. Then pB = P¢ where e is the ramification index. Let 7 and
IT be generators of p and 3. The normalized valuations ordg
and ordz, on K and L are characterized by equations:

ordg () =1, ord;, (IT) = 1.
Note that w = IT¢ x unit, and so

ordg :e_lordL.
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If we denote the extension of ordg to L by ord, then
ord(LX) = e~ 1Z.

This characterizes the ramification index.

Newton’s polygon

Let K be complete with respect to a discrete valuation. Let
ord be the corresponding additive valuation ord: K* — Z, and
extend ord to a valuation ord : K** — Q. For a polynomial

fX)=X"+a; X" '+ 4a,, a €k,

define the Newton polygon® of f(X) to be the lower convex
hull of the set of points

P; “ (i,ord(a;)),i =0,...,n.

In more detail, rotate the negative y-axis counter-clockwise
about Py = (0,0) until it hits a P; — the first segment of the
Newton polygon is the line Py P;; where P;, is the point fur-
thest from Py on the rotated y-axis. Repeat the process rotating
about P;, etc.. The resulting polygon starts at Po and ends at
Py, ; each of its segments begins and ends at a P;; each P; either
lies on the polygon or is above it; any line joining two points
of the polygon has no point that is below the polygon (this is
what we mean by the Newton polygon being lower convex).

SMost people write the polynomial @ag +a1 X +---+ X" when they define
Newton polygons. This is slightly less convenient than the way I do it, but allows
you to define the Newton polygon of a power series.
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PROPOSITION 7.44 Suppose that the Newton polygon of
f(X) € K[X] has segments of x-length n; and slope s;. Then
f(X) has exactly n; roots a (in K with

ord(a) = s;.

Moreover, the polynomial f;(X) ) l_[ord(ai)=s,» (X —«;) has
coefficients in K.

PROOF. In proving the first part, we don’t have to assume that
f(X) has coefficients in K — any finite extension of K will do.
Thus it suffices to prove the following statement: let f(X) =
[1(X —«;); if exactly n; of the a;’s have ord(s;), then the
Newton polygon of f(X) has a segment of slope s; and x-
length n;.

We prove this by induction on n = deg(f). If n = 1, then it
is obvious. Assume it for n, and put

gX)=(X—a) f(X) = X" 4 by X"+ b X" oot by

Note that b; = a; —aa; 1.

CASE (i). ord(e) < s1. Recall ord(a + b) >
min{ord(a),ord(b)}, with equality if ord(a) # ord(b).
Using this, one finds that
the Newton polygon of g is obtained from that of f by adding a
segment of slope ord(cr) and x-length 1, and moving the New-
ton polygon of f to start at (1,ord(c)). This is what the propo-
sition predicts.

CASE (ii). ord(«) = s7. In this case, the initial segment of
slope s1 is lengthened by 1, and the rest of the polygon is as
before. This is what the proposition predicts.
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The remaining cases are similar.

We now prove the second statement. Let o be a root
of f(X), and let my(X) be the minimum polynomial of
a. As we saw in the proof of , ord(a’) = ord(a) for
all conjugates o’ of «, i.e., for all roots of my(X). Be-
cause f(a) =0, mg(X)|f(X), and the remark just made im-
plies that in fact mqy(X)| f; (X) where s; = ord(@). If B is
a root of f;(X)/my(X), then a similar argument shows that
mg(X)|(fi/mq). Continuing in this way, we find that f; (X)
is a product of polynomials with coefficients in K. !

EXAMPLE 7.45 Consider the polynomial®

def

f(Xx)=

By testing £1, £2, £4, £8 (actually, by asking PARI) one
sees that this polynomial is irreducible over Q. The Newton
polygon of f relative to ordp has slopes 0, 1,2, each with x-
length 1. Therefore f splits in Q2[X], and it has roots «, oz,
a3 with ords 0, 1, 2.

X3+ X242X-38.

6Keith Conrad suggests changing the polynomial to X3 — X2 —2X —8. As
he writes: The roots of this are the negatives of the roots of X3 + X2 42X —8,
so you don’t lose anything but you do gain simplicity of appearance: having all
signs past the leading term equal makes it easier to remember what the polyno-
mial is! Perhaps Dedekind himself even used the choice with all negative coeffi-
cients; I haven’t looked up his paper to be sure, but I did check in Hensel’s 1894
Crelle paper on extraordinary prime factors of the discriminant that he wrote the
polynomial as X3 — X2 —2X —8.
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Locally compact fields

We now look at the compactness properties of our fields.

PROPOSITION 7.46 Let K be complete with respect to a
nonarchimedean discrete valuation. Let A be the ring of in-
tegers in K and let m be the maximal ideal in A. Then A is
compact if and only if A/m is finite.

PROOE. Let S be a set of representatives for A/m. We have to
show that A4 is compact if and only if S is finite.

=:Clearlym={x € K| |x| < 1}isopenin K. As A is the
disjoint union of the open sets s +m, s € S, S must be finite if
A is compact.

<= Recall that a metric space X is compact if and only if it
is complete and totally bounded (this means that for any r > 0,
there is a finite covering of X by open balls of radius r). But
every element of A can be written

S0+ SIT+ 52w 2+ oA sum 4, s; ES.
For a fixed n, there are only finitely many sums
S0+ S1T4+som2+ - +sun™, s; €S,
and every element of A is within |7”%1| of such an element.q

COROLLARY 7.47 Assume that the residue field is finite.
Then p", 1 +p™, and A* are all compact.

PROOF. They are all closed subsets of A. o
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DEFINITION 7.48 A local field is a field K with a nontrivial
valuation | | (as defined at the start of this section) such that K
is locally compact (and hence complete).

REMARK 7.49 It is possible to give a complete classification
of local fields.

(a) Let K be a field that is complete with respect to an
archimedean valuation | |; then K is isomorphic to R or C,
and the valuation is equivalent to the usual absolute value (also
a theorem of Ostrowski).” Thus for archimedean valuations,
completeness implies local compactness.

(b) A nonarchimedean local field K of characteristic zero
is isomorphic to a finite extension of Qp, and the valuation is
equivalent to the (unique) extension of the p-adic valuation.
(To prove this, note that, by assumption, K contains Q. The
restriction of | | to Q can’t be the trivial valuation, because
otherwise 4™ wouldn’t be compact. Therefore (see ||
induces a valuation on Q equivalent to the p-adic valuation
for some prime number p. The closure of Q in K is therefore

THere is a sketch of the proof. The field K contains Q, and the restriction of
| | to Q is the usual absolute value. Therefore K contains R, and after adjoining
a square root of —1 (if necessary), we may assume K D C.

Let x € K\ C, and let ¢ be the closest element of C to x. Replace x with
Xx — ¢, so that now |x — z| > |x| for all z in C. It follows that

|x" —z"| = |x—z|lx = ¢zl|x — {2 z] - > |x —z||x|" T,

where ¢ is a primitive nth root of 1.

On choosing |z| < 1 and letting n — 0o, we find that |x| > |x — z|. Hence
|x —z| = |x| and so (taking x — z in place of x) |x —2z| = |x|, and thus
(repeating the argument) |[x —nz| = | x|, contradicting the archimedean property.
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Qp. If K has infinite degree over Qp, it will not be locally
compact.)

(¢) A nonarchimedean local field K of characteristic p # 0
is isomorphic to the field of formal Laurent series k((7")) over
a finite field k. The field k((T)) is the completion of k(T) for
the valuation defined by the ideal (T) C k[T]; it consists of
finite-tailed formal power series:

[e.]

ZaiTi.

i>—n

Unramified extensions of a local field

Again K is a field complete with respect to a discrete valuation
| |. To avoid problems with separability, we assume that K and
the residue field k are both perfect®— of course in the case we
are particularly interested in, K has characteristic zero and k is
finite. Let A be the discrete valuation ring in K corresponding
to||.

If L is an algebraic (possibly infinite) extension of K, we
can still define

B={ael|l|af <1}

p={aeeB|la| <1}
and call B/p the residue field of L.

8When k is not perfect, we should define L/K to be unramified if (a) the
ramification index is 1, and (b) the residue field extension is separable. These
conditions imply that L/ K is separable. With this definition, continues to
hold without K and k being assumed to be perfect

242



PROPOSITION 7.50 Let L be an algebraic extension of K, and
let | be the residue field of L. The map K' + k’ sending an
unramified extension K’ of K contained in L to its residue
field k' is a one-to-one correspondence between the sets

{K’ C L, finite and unramified over K} <> {k’ C I, finite over k}.

Moreover:

(a) ifK' ok’ and K" < k", then K' C K" < k' Ck";
(b) if K’ <> k’, then K’ is Galois over K if and only if k' is
Galois over k, in which case there is a canonical isomor-
phism
Gal(K'/K) — Gal(k'/ k).

PROOF. Let k’ be a finite extension of k. We can write it kK’ =
kla]. Let fo(X) be the minimum polynomial of a over k, and
let f(X) be any lifting of fo(X) to A[X]. As a is a simple
root of fo(X), Newton’s lemma shows that there is a
(unique) @ € L such that f(o) =0 and ¢ = a mod p. Now
K’ £ K[a] has residue field k’. Thus K’ > k’ is surjective.
Suppose that K’ and K" are unramified extensions of K in L
with the same residue field k’. Then K’- K" is an unramified
extension’ of K (seeand ) with residue field k". Hence

[K'-K":K] = [K':k] = [K": K],

9The results and ) express the discriminant of the composite of
K’ and K" in terms of the discriminants of K’ and K"/, from which it follows
that if a prime does not divide the discriminant of K’ or of K", then it doesn’t
divide the discriminant of their composite.
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andso K" = K'.

Statement (a) is obvious.

Assume K’ is Galois over K; then Gal(K’/K) preserves
A’ (the valuation ring in K’) and its maximal ideal, and so
we get a map Gal(K'/K) — Aut(k’/ k). Write k’ = k[a], and
let g(X) € A[X] be such that g(X) € k[X] is the minimum
polynomial of a. Let « € A’ be the unique root of g(X) such
that @ = a. Because K’ is Galois over K, g(X) splits in 4’[X],
and this implies that g(X) splits in k’[X], and so k’ is Galois
over k. Let f = [k":k] = [K":K], and let a1,...,af be the
roots of g(X). Then

{ar,....ar} ={oa|o € Gal(L/K)}.

Because g(X) is separable, the «; are distinct modulo p, and
this shows that the image of the map Gal(K’/K) — Gal(k'/ k)
has order f, and hence is an isomorphism. Conversely, suppose
k'/k is Galois. Again write k' = k[a], and o € A’ lift a. It
follows from Hensel’s lemma that A’ contains the conjugates
of «, and hence that K’ is Galois over K. O

COROLLARY 7.51 There is a field Ko C L containing all un-
ramified extensions of K in L (called the largest unramified
extension of K in L). In fact, it is obtained from K by adjoin-
ing all roots of 1 of order prime to the characteristic of k.

PROOF. This is an obvious consequence of the theorem. o

COROLLARY 7.52 The residue field of K is k#; there is a
subfield K" of K such that a subfield L of K, finite over
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K, is unramified if and only if L C K"". (Recall that we are
assuming k and K to be perfect.)

PROOEF. Let fo(X) be any polynomial in k[X], and let f(X)
be any lift of fo(X) to A[X]. Then K¥ contains all the roots of
f(X), and so the residue field k” of K¥ contains all the roots
of fo(X). Hence k' is algebraic over k, and every polynomial
in k[X] splits in k’, and so it must be the algebraic closure of
k. o

REMARK 7.53 For those familiar with the language of cate-
gory theory, we can be a little more precise: there is an equiv-
alence between the category of finite unramified extensions of
K and the category of finite (separable) extensions of k.

EXAMPLE 7.54 Let K be a local field of characteristic zero
(hence a finite extension of Q5 for some p), and let ¢ be the
order of the residue field k of K.

Recall from (FT [f.19) that, for each n, there is an exten-
sion k, of k of degree n, and that k; is unique up to k-
isomorphism; it is the splitting field of X4" — X . The Galois
group Gal(ky,, / k) is a cyclic group of order n, having as canon-
ical generator the Frobenius element x — x4.

Therefore, for each n, there is an unramified extension Ky
of K of degree n, and it is unique up to K-isomorphism; it is
the splitting field of X 4" _ X the Galois group Gal(K,/K)
is a cyclic group of order n, having as canonical generator the
Frobenius element o which is determined by the property

o = B? (mod p),
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all B € B. (Here B is the discrete valuation ring in K, and p
is the nonzero prime ideal in B.)

Totally ramified extensions of K

Let K be a complete discretely-valued nonarchimedean field,
and let 7 be a local uniformizing parameter for K. A polyno-
mial f(X) € K[X] is said to be Eisenstein if it is Eisenstein
for the maximal ideal of the ring of integers in K, i.e., if

f(X)=aoX" +a1 X" +---+an, with [ag| =1, |a;| <1,
Equivalently,
ord(ap) =0, ord(a;) >0, ord(ay) =1,

for the normalized additive valuation. Equivalently, the Newton

polygon of f(X) has only one segment, which has slope %,
n = deg f . Eisenstein polynomials allow us to give an explicit

description of all totally ramified extensions of K.

PROPOSITION 7.55 Let L be a finite extension of K. Then
L/K is totally ramified if and only if L = K[«] with « a root
of an Eisenstein polynomial.

PROOF. <«: Suppose L = K] with « a root of an Eisen-
stein polynomial f(X) of degree n. If ord is the extension of
the normalized discrete (additive) valuation on K to L, then
ord(ew) = 1/n. This implies that the ramification index of L/K
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is > n. But it can’t be greater than n, and so it is exactly n —
L is totally ramified over K. (Compare the proof of [6.2])

= : Suppose L is a totally ramified extension of K of degree
n. Let o be a generator of the maximal ideal in the ring of
integers in L; thus ord(a) = 1/n if ord extends the normalized
discrete valuation on K. The elements 1,c, ‘..,oc”_l represent
different cosets of ord(K*) in ord(L>), and so it is impossible
to have a nontrivial relation

ag +a1a+~~~+an_1an_l =0, a €K

(because of [7.11). Hence L = KJ[a]. The elements
la,...,a” 1 o™ are linearly dependent over K, and so

we have a relation:
o +ad" 14+ 4a,=0, a; €Kk.

Applying again, we see that the minimum ord of a sum-
mand must be attained for two terms. The only way this can
happen is if ord(a;) > O for all i and ord(a,) = ord(a") =1,
ie.,if Y a; X' is an Eisenstein polynomial. !

REMARK 7.56 Let L be a finite totally ramified extension of
K. Let A and B be the discrete valuation rings in K and L,
and let 7 and IT be a prime elements in A and B. I claim that
B = A[IT]. The argument is the same as in the proof of[6.2(see
also Exercise [6-T). Because B and A have the same residue
field,

A[]+1IB = B.
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The discriminant of 1, IT, T2, ... is a unitxz™ for some m, and
SO
p’BC A[lI]C B

for some c. As before, these two conditions suffice to imply
that B = A[IT].

Ramification groups

Let L be a finite Galois extension of K, and assume that
the residue field k of K is perfect. As we have noted, G «
Gal(L/K) preserves the valuation on L. In particular, it pre-

serves
B={ael||le|<1}, p={ael]||a|<l1}.

Let IT be a prime element of L (so that p = (I7)). We define a
sequence of subgroups G D Gg D G1 D :-- by the condition:

0€G; < |oa—a|< ||, alla € B.

The group Gg is called the inertia group, the group Gi is
called the ramification group, and the groups G;, i > 1, are
called the higher ramification groups of L over K.

LEMMA 7.57 The G; are normal subgroups of G, and G; =
{1} fori large enough.
PROOF. Foro,t € G,

-1

[tT7'ota—a| =lo(ra) — (ta)|
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(because |x| = |tx|). As « runs through B, so also does 7a,
and so t~loT € G; exactly when o does. This proves that G;
is normal.

If 0 # 1, then o # « for some @ € B. Hence 0 ¢ G; as
soon as oo —«| > [IT]'. o

THEOREM 7.58 Let L/K be a Galois extension, and assume
that the residue field extension [ / k is separable.

(a) The fixed field of Gy is the largest unramified extension
Ko of K in L, and

G/Go = Gal(Ko/K) = Gal(l/ k).
(b) Fori > 1, the group
G ={o€Go||ol—1II| < |I|'}.

PROOF. (a) Let Ko be the largest unramified extension in L
(see [I51). Then oKy is also unramified, and so it is con-
tained in Kgy. Thus K¢ is Galois over K, and the canonical
map Gal(Ko/K) — Gal(//k) is an isomorphism (see [7.50).
By definition Gy is the kernel of G — Gal(// k), and so Ko is
its fixed field.

(b) Let Ag be the discrete valuation ring in K¢. Then B =
Ap[M] (by[7:56). Since G leaves Ay fixed, in order to check
that o € G; it suffices to check that oo — | < |IT|' for the
element o = I1. o
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COROLLARY 7.59 We have an exhaustive filtration G D Gg D
-+ such that

G/Go =Gal(l/k);

Go/G1 — 1%

Gi/Giy1 = 1.
Therefore, if k is finite, then Gal(L /K) is solvable.

PROOF. Let 0 € Go; then o1 is also a prime element and so
ol = ull with u a unit in B. The map ¢ — u mod p is a
homomorphism Go — [* with kernel G1.

Let 0 € G;. Then |61 —IT| < [[I|'T!, and so oIl =
I +all'*! some a € B. The map o — a (mod p) is a ho-
momorphism G; — [ with kernel G; 4. o

An extension L/ K is said to be wildly ramified if p|e where
p = char(k). Otherwise it is said to be tamely ramified. Hence
for a Galois extension

L/K is unramified <= Go = {1},
and
L/K is tamely ramified < G; = {1}.
Krasner’s lemma and applications
Again let K be complete with respect to a discrete nonar-
chimedean valuation | |, and extend the valuation (uniquely)

to a valuation on K. It is clear from our discussion of unram-
ified extensions of K that roots of distinct polynomials f(X)
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and g(X) will often generate the same extension of K in fact,
this will be true if f = g and both are irreducible in k[X].
Krasner’s lemma and its consequences show that the roots of
two polynomials will generate the same extension if they are
sufficiently close.

PROPOSITION 7.60 (KRASNER’S LEMMA) Let «,f € K4,
and assume that « is separable over K[B]. If « is closer to 8
than to any conjugate of « (over K), then K[o] C K[B].

PROOF. Let ¢ be an embedding of K[w, 8] into K2 fixing
K [B]. By Galois theory, it suffices to show that cox = «. But

loa —B| = loa—op| = |a—p]
because o8 = 8 and |o * | = | *|. Hence
low —a| =loa—f+f—af <|a—pl

Since o« is a conjugate of o over K, the hypothesis now im-
plies that oor = . i

Now assume K has characteristic zero (to avoid compli-
cations). As before, for h(X) = ZciXi, we define ||k =
max{|c; |}. Note that if #(X) varies in a family of monic poly-
nomials for which ||| remains bounded, then the maximum
value of a root of /4 is bounded; in fact, if

Y b =0,
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we must have |8"| < |cjﬂj| for some j <, and so |B|" 7 <
lejl-
Fix a monic irreducible polynomial f(X) in K[X], and let

fO) =X =), o ek

The «; must be distinct. Let g(X) be a second monic polyno-
mial in K[X], and suppose that || f — g|| is small. For any root

B of g(X), [f(B) = |(f —&)(B)] is small (because || f —g||

small implies that ||g|| is bounded, and hence |8] is bounded).

But
fB)=]]IB-al.

In order for this to be small, at least one term |8 — ¢; | must be
small. By taking || f — g|| small enough, we can force § to be
closer to one root «; than ¢; is to any other «;. That is, we can
achieve:
|B—oj| <o —ajl,all j #i.

In this case, we say that 3 belongs to «; . Krasner’s lemma then
says that K[o;] C K[f], and because f and g have the same
degree, they must be equal. We have proved:

PROPOSITION 7.61 Let f(X) be a monic irreducible poly-
nomial of K[X]. Then any monic polynomial g(X) € K[X]
sufficiently close to f(X) is also irreducible, and each root
B of g(X) belongs to some root & of f(X). For such a root
Klo] = K[B].

COROLLARY 7.62 Let K be a finite extension of Qp. Then
there is a finite extension L of Q contained in K such that
[L:Q] =[K:Qpland L-Qp = K.
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PROOF. Write K = Qp[«], and let f(X) be the minimum
polynomial of & over Q. Choose g(X) € Q[X] sufficiently
close to f(X), and let L = Q[B] for B a root of g(X) belong-
ing to «. o

Fix a monic polynomial f in K[X], and let @1,a2,... be
its roots in K?!. As a second monic polynomial g in K[X] ap-
proaches f', eachroot ; of g approaches some root oy of f,
and the function i > j(i) doesn’t change once g is close. Let
Js(X) be the polynomial with roots the a;(;) (possibly with
repetitions). Then, when g is close to f, it is close to f be-
cause each of its roots is close to the corresponding root of f;.
But if we choose g to be closer to f than f is to any possible
fs, this will be impossible. We have proved:

PROPOSITION 7.63 Assume K is of characteristic zero. If two
monic irreducible polynomials f and g are sufficiently close,
then each root of g will belong to exactly one root of f, and so

{K[a] | arootof f}={K[B]| B arootof g}.

PROPOSITION 7.64 Assume K has characteristic zero and has
finite residue field. Then, up to isomorphism, there are only
finitely many totally ramified extensions of Qp of a given de-
gree.

PROOF. We fix an n and show that there are only finite many
extensions of degree < n. Each point of

(@y,...an) Epxpxpx--x A%m
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defines an Eisenstein polynomial of degree n, namely,
fEO=X"+a1 X"+ +ap,

and hence a finite set of totally ramified extensions of degree
n, namely, those generated by the roots of f(X). According
to the last proposition, each point of p X p X p x -+--x A* 7 has
a neighbourhood such that the points in the neighbourhood all
give the same extensions of K. In we showed that the
factors of p x p X p x---x AX 7 are compact, hence the product
is compact, and so a finite number of these neighbourhoods
will cover it. O

REMARK 7.65 We proved above that

(a) every finite extension L of K contains a largest unrami-
fied extension of K;

(b) for each m > 1, there is an unramified extension of
degree m of K, and any two such extensions are K-
isomorphic.

Fix an n; then each extension L of K of degree n can be re-
alized as a totally ramified extension of degree n/m of the
(unique) unramified extension of degree m, some m dividing
n. Clearly there are only finitely many such L’s (up to K-
isomorphism).

Exercises
7-1 Let|-|1, ..., |- |n be the valuations on a number field K
corresponding to distinct prime ideals p;, and letay,...,a, be
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elements of K. Let d be a common denominator for the a; (so
that da; € Og). Show that, for any & > 0, there is an element
a € K such that |a —a;|; <efori =1,...,nand |a| < 1/|d|
for all valuations | - | corresponding to prime ideals other than
the p;.

Hint: Apply the Chinese Remainder Theorem to the da; .

7-2 Let | | be nonarchimedean valuation on a field K.
(a) Define an open disk with radius r and centre a to be

D(@a,r)y={xeK||x—a|<r}.

Prove that D(a,r) = D(b,r) for any b € D(a,r). Deduce that
if two disks meet, then the large disk contains the smaller.

(b) Assume K to be complete. Show that the series Y _aj
converges if and only if a;, — 0.
(This problem illustrates the weirdness of the topology defined
by a nonarchimedean valuation.)

7-3 For which a € Z is 7X? = a solvable in Z7? For which
a € Qs it solvable in Q7?

7-4 (a) Show that (X2 —2)(X? —17)(X? —34) has a root in
Zp for every p.

(b) Show that 5X3—7X2% 43X + 6 has a root « in Z7 with
| —1|7 < 1. Find an a € Z such that |o —aly < 77%.

7-5 Find all the quadratic extensions of Q. Hint: there are
exactly 7 (up to isomorphism).
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7-6 Let p1,..., pm be distinct prime numbers, and let o; =
JP- Let K = Qlay,...,0,]. Show that [K:Q] = 2. Let
y = Y_ ;. Show that K = Q[y], and deduce that the minimum
polynomial f(X) of y over Q has degree 2™. Show that f(X)
factors in Zp[X] into a product of polynomials of degree < 4
(p #2) or of degree <8 (p =2).

7-7 Fix an algebraic closure Q;] of Qp, and for each n prime
to p, let £, be a primitive nth root of 1. Show that a finite exten-
sion K of Q can contain only finitely many {;’s. Deduce that
the Cauchy sequence Y &, p™ does not converge to an element

of Q;‘,l.

7-8 (a) Find two monic polynomials of degree 3 in Qs5[X]
with the same Newton polygon, but with one irreducible and
the other not.

(b) Find a monic irreducible polynomial in Z[X] of degree
6 which factors in Qs[X] into a product of 3 irreducible poly-
nomials of degree 2.
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Chapter 8

Global Fields

A global field is an algebraic number field (finite extension of
Q) or a function field in one variable over a finite field (finite
extension of F, (T') for some ¢). We are mainly interested in
the number field case.

Extending valuations

Let K be a field with a valuation | | (archimedean or discrete
nonarchimedean), and let L be a finite separable extension of
K. When K is complete, we know that there is a unique exten-
sion of | | to L (see[7.38] [7.39), and we want to understand the
extensions when K is not complete.
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Write L = K|«], and let f(X) be the minimum polynomial
of a over K. Let | |" be an extension of | | to L. Then we can
form the completion L of L with respect to | |/, and obtain a
diagram:

[

N> b~
Ny——> o

—

Then L = K [a] because K [a] is complete, being finite over
K, and contains L. Let g(X) be the minimum polynomial of «
over K. Since f(a) =0, g(X)| f(X), and so with each exten-
sion of | |, we have associated an irreducible factor of f(X) in
K[X].

Conversely, let g(X) be a monic irreducible factor of f(X)
in Ie[X], and let K[x] = k[X]/(g(X)). Then we obtain a dia-
gram:

L <220 R

|

K——K

—

According to 1, , the valuation on K extends uniquely
to K[x], and this induces a valuation on L extending | |.
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These two operations are inverse, and so we have proved
the following result:

PROPOSITION 8.1 Let L = KJ«] be a finite separable exten-
sion of K, and let f(X) be the minimum polynomial of o over
K. Then there is a natural one-to-one correspondence between
the extensions of | | to L and the irreducible factors of f(X) in
K[X].

There is a more canonical way of obtaining the completions
of L for the various extensions of | |.

PROPOSITION 8.2 Let | | be a valuation on K (archimedean
or discrete nonarchimedean) and let L be a finite separable ex-
tension of K. Let K be the completion of K with respect to | |.
Then | | has finitely many extensions | |1,...,| |g to L; if L;
denotes the completion of L with respect to the valuation | |;,
then

Lexg K~TI5 L;. (18)
PROOF. Since L is separable over K, L = Klo] ~
K[X]/(f (X)) for a primitive element & € L and its minimum
polynomial f(X). Suppose f(X) factors in K[X] as
J(X) = fiX)- f2(X)-- fg(X)
with f; (X) monic and irreducible. Then (see[T.18))
Lok K =Kla]®g K ~ K[X)/((f(X)) = [TKIX])/(f;(X))
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and so the proposition follows from (8. Denote the canonical
map from L into its completion by a — a;, and denote the
canonical extension of K — L; to K by b — b; then the map
(18)isa®b > (arb,...,agh). o

REMARK 8.3 Suppose now that K is a number field, that
Or, = Okla], and that | | = | |, for some prime ideal p in Ok
Because f; (X) is irreducible in K [X], Hensel’s lemma shows
that, modulo p, f; (X) is a power of an irreducible polynomial,
say,

fiX) = gi(X)“.
Then _
fX) =TT & (),
and (3:47) tells us that

pOL =TIB;, B = (b, gi(@)).

The valuations extending | |, correspond to the primes 3;, and
so the two descriptions of the extensions agree.

COROLLARY 8.4 In the situation of the Proposition, for any
elemento € L,

Nmp g (@) =[INm;  p(@), Trp/g(@)=3Tr  p(@).
(in the i th factor or summand on the right, « is regarded as an

element of L;).
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PROOF. By definition the norm and trace of « are the deter-
minant and trace of the K-linear map x > ax: L — L. These

don’t change when L is tensored with K, and it easy to see that
norms and traces in products break up into products and sums
respectively. o

EXAMPLE 8.5 According to PARI
f(X)=X%4+5X+5X34+25X +125
is irreducible in Q[X]. Its Newton polygon for ords has three
segments of x-lengths 3, 2, 1 respectively, and so it has at least
three factors in Q5. The discriminant of f(X) is
24511(59)(365587),

and so according to (7.37), to find the number of factors of
f(X) in Qs[X], it suffices to factor in modulo 5'!. Better,

according to Pari, f(X) has exactly 3 irreducible factors in
Qs[X], namely,

x+(5+4.52+2.53)+0(54)
X2+(3-52)X+(5+52+3-53)+0(54)
X3+(3~52+53)X2+(4~5+3~52)X+5+ 0(5%)

(Type factorpadic(f,p,r) where r is the precision re-
quired.)
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Suppose have a factorization

J(X) = fi(X) f2(X) f3(X)

(to whatever degree of accuracy we wish). To compute |8];,

map 8 = cha-/ to B; = chaij € L; = Qsla;], o a root
of f;(X), and use that

1Bl = |Bili = INmz,; /g5 ﬂ|i1/degfi.

The product formula

Before proving the product formula for a number field, we need
one extra fact for local fields.

Let K be a local field with normalized valuation | |. Recall
that this means that | | is the usual absolute value if K is R, the
square of the usual valuation if K is C, and |a| = (1/Np)°d(@
if the valuation is defined by a prime ideal p.

Let L be a finite separable extension of K, and let | | be the
unique extension of | | to L. Let || || be the normalized valuation
on L corresponding to | |. What is the relation of || || to | |?

LEMMA 8.6 In the above situation, ||a|| = |a|”, where n =
[L:K].

PROOF. When K is archimedean, there are only two cases
to consider, and both are obvious. Thus, assume K is nonar-
chimedean. Since, by assumption, || || = | | for some ¢, we
only have to check that the formula holds for a prime element
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7 of K. Let IT be a prime element of L, and let 3 = (I7) and
p = (7); then = = (unit) x [7¢, and so
Il = 1781l = (1/NP)° = (1/Np)*/ = | ",

as required.
Alternatively, use (7.43). For a € K, we have

Jal & ngortra B gy ymeordia _gjef P,

PROPOSITION 8.7 Let L/K be a finite extension of number
fields. For any prime v of K ando € L,

[ [lleelhw = INmz g allo.
wlv
Here || ||w and || ||y denote the normalized valuations for the

primes w and v.

PROOEF. Let||;,i =1,2,...,g,be the extensions of || || to L,
and let || ||; be the normalized valuation corresponding to | |;.
Then
B4
[Nmp gals = IIH,3=1NmLi/Iea|Iv
_ g N
= l_[i=1||Nle./KO‘”v
Z38l i
=15 el

| Y 7
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where n; :[Li:k]. |

THEOREM 8.8 (PRODUCT FORMULA) Let K be an algebraic
number field; for all nonzero o € K,

[T, lellw=1.

where the product is over the primes of K and || | is the
normalized valuation for the prime w.

PROOF. We have

[T, el =TT, (Mo llet) € TT, iNmg gy

where v runs through the primes 2,3,5,7,...,00 of Q. The last
product is 1 by (7.13). o

ASIDE 8.9 E. Artin and Whaples (1946)! proved that global fields can
be characterized axiomatically. Let K be a field with a set ¥ of primes
(equivalence classes of valuations) satisfying the following axioms.
AXIOM I. There is a set of representatives | |, for the primes such
that, for any nonzero a € K, |a|, # 1 for only finitely many v and

l_[v laly = 1 (product over all v € ).

! Artin, Emil; Whaples, George. Axiomatic characterization of fields by the
product formula for valuations. Bull. Amer. Math. Soc. 51, (1945). 469-492.
Reprinted in: Artin, Emil. Exposition by Emil Artin: a selection. Edited by
Michael Rosen. History of Mathematics, 30. American Mathematical Society,
Providence, RI; London Mathematical Society, London, 2007. x+346 pp.
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AXx10M II. There exists at least one prime v for which Ky is a

local field.
Then K is a global field, and U consists of all the primes for K. They
then derived the main theorems (unit theorem and finiteness of the class
number) directly from the axioms, thereby avoiding the use of either
ideal theory or the Minkowski theory of lattice points.

Throughout his career, E. Artin promoted the idea that if only one
could understand the similarities between function fields and number
fields sufficiently well, then one could transfer proofs from function
fields to number fields (e.g. the proof of the Riemann hypothesis!). This
hasn’t worked as well as he hoped, but the analogy has still been very
fruitful. In the above paper, he suggested one should develop number
theory and class field theory as much as possible working only from
the axioms.

Decomposition groups

Let L be a finite Galois extension of a number field K, and let
G = Gal(L/K). For a valuation w of L, we write ocw for the
valuation such that |oot|gw = |a]w, 1.€. |¢]|ow = |07 at|w.
For example, if w is the prime defined by a prime ideal i3, then
ow is the prime defined by the prime ideal o3, because

llow <1 <= 0 laeP < acoP.
The group G acts on the set of primes of L lying over a fixed
prime v of K, and we define the decomposition (or splitting)

group of w to be the stabilizer of w in G; thus

Gy ={0eG|ow=uw}.
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Equivalently, Gy, is the set of elements of G that act contin-
uously for the topology defined by | |. Each 0 € Gy, ex-
tends uniquely to a continuous automorphism of L, . Note that
Grw =1Gypt L.

PROPOSITION 8.10 The homomorphism Gy —
Gal(Ly /Ky) just defined is an isomorphism.

PROOE. Clearly the map is injective, and so (Gy : 1) <[Ly :
Ky]. The valuation ow has decomposition group 6 Gyo =1,
which has the same order as G, and so we also have (Gy, :
1) < [Low : Ky]. The number of distinct ws dividing v is (G :
Gy), and so

<

G )=(G:6u)Gu: D= Y [Low: K] = [L:K].

0eG/Gy

Hence equality holds: (G : 1) = [Ly : Ky] (and G acts tran-
sitively on the primes dividing v, which we knew already from

the proof of [3.34). 0

Let D(B) (or G(P)) be the decomposition group of B, so
that D(B) = Gal(Lsz/Kp), and let /() C D() be the iner-
tia group. We have the following picture:
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By LICB) LI RY) i
i f S| DE/IR)
Bp LDO®) Ky k
g /
p K

Here:

Pr=POLI® Bp =PnLP® p = P K;

the fields in the second column are the completions of those
in the first;

the fields in the third column are the residue fields of those
in the second.

PROPOSITION 8.11 (a) The only prime ideal of L lying over
PBp is P.
(b) The prime ideal ‘Bp is unramified in LT, and

JB1/Bp) = f(B/p).
(c) The prime ideal *P; is totally ramified in L, and

e(P/Br) = e(P/p).
(d) If D(B) is normal in G, then

pOrp =[10%Dp

267



where the product is over a set of representatives for G/ D ().

PROOF. (a) Because L is Galois over LL®) its Galois group

D(B) acts transitively on the set of prime ideals of L lying

over B p. Thus (a) is obvious from the definition of D (3).
(b), (¢), (d) are similarly straightforward. o

The diagram, and the proposition, show that we can con-
struct a chain of fields

Lo>LI>1LP 5k

such that all the ramification of 3 over p takes place in the top
extension, all the residue field extension takes place in the mid-
dle extension, and, when LD is normal over K , all the splitting
takes place in the bottom extension. One should be a little care-
ful about the last assertion when D(*}3) is not normal in G; all
we know in general is that

p-Opp =[]B, P1=Fp

withe; = 1 = fi (i.e., in general p will not split completely in
LD).

REMARK 8.12 Let L be a Galois extension of QQ, with Galois
group G. Suppose that Oy = Z[«] for some « € L. Let f(X)
be the minimum polynomial of « over Q, and write f(X) for
f(X) modulo p. Choose an irreducible factor g1 (X) of f (X),

and let g1 (X)®! be the largest power of g1 (X) dividing f (X).
According to Hensel’s lemma, g1 (X)¢! lifts to an irreducible
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factor f1(X) of f(X) in Qp[X], which can be found to any
desired degree of accuracy by factoring f(X) modulo a high
power of p (essentially using the method of proof of Hensel’s
lemma). Let 31 = (p, h1(«)) for any lifting /1 of g1 to Z[X].

Then
D(P1) =1{0 € G | oPB1 ="P1},

which can be computed easily (provided G has been found ex-
plicitly as a subgroup of the symmetric group on the set of roots
of f(X)). Let & be the image of  in O, /PB1 = Fp[&]. Then
g1(X) is the minimum polynomial of & over Fp, and (1)
is the subgroup of D(®B;) fixing «. Finally D(B1)/1(P1) =
Gal(Fp[a]/Fp).

Consider a tower of fields

M B
H

G L qu
K p

Assume M is Galois over K with Galois group G, and that H
is the subgroup of G fixing L. (Recall D(]3) and G (*]3) are two
notations for the same object.)
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PROPOSITION 8.13 Let B be a prime ideal in Oy, and let
B =PNL.

(a) The decomposition group H(B) of P over L is G(P) N
H.

(b) Suppose further that H is a normal subgroup of G, so
that G/H is the Galois group of L/K. The decomposition
group of B, over K is the image of G(P) in G/H.

PROOF. (a) Clearly
H®B)={oeG|oeH, oL =P}=HNGEP).

(b) This is equally obvious. |

The Frobenius element

Let L/K be a Galois extension of number fields with Galois
group G. Given an ideal 3 of L that is unramified in L/K
we define the Frobenius? element o = (B, L/K) to be the ele-

2Here is a direct proof of the existence of the Frobenius element. Let L/ K
be a finite Galois extension of number fields with Galois group G, and let 3
be a prime ideal of Oy (not necessarily unramified). By the Chinese remain-
der theorem, there exists an element o of Oy, such that & generates the group
(Or/PB)™ and lies in TP for all T ¢ G(P). Let F(X) =[[req (X — ).
Then F (o) = 0 mod B, and so F(a?) = F(x)? = 0 mod B. Therefore
a9 = oo mod P for some o € G. If o ¢ G(P), then 1P # P, and so
a € o~ 19B; but then @? = oo = 0 mod ‘B, which is a contradiction. Thus
o € G(R). Every element y of Oy can be written y = &’ + B, with B € B,
and so . .

oy=o0(a')=a'?=y? modp.
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ment of G () that acts as the Frobenius automorphism on the
residue field. Thus o is uniquely determined by the following
two conditions:

(a) 0 € G(P), i.e., P =P;
(b) foralla € Op, oa = a? mod B, where ¢ is the number
of elements the residue field Og /p, p =P N K.

We now list the basic properties of (3, L/K).

8.14 Let P be a second prime dividing p, t € G. Then
G(@P) = tG(P)r ™!, and

(B, L/K) =t(P,L/K)c".
PROOF. Leta € Or; then
tot (@) = t((t7'@)? +a), some a € B, and
1(t7 ') +a) = a? + ra = «? mod TP. o
Thus if Gal(L/K) is abelian, then (3, L/K) = (', L/K)
for all primes 3, 3’ dividing p, and we write (p, L/K) for this
element. If Gal(L/K) is not abelian, then

(B L/K) [ Blp}

is a conjugacy class in G, which (by an abuse of notation) we
again denote (p, L/K). Thus, for a prime p of K, (p,L/K) is
either an element of Gal(L/K) or a conjugacy class depending
on whether Gal(L/K) is abelian or nonabelian.
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8.15 Consider a tower of fields

M 2
Ly
L

and assume that 9 is unramified over p; then
(Q.M/K)TF/P) = (@, M/L).

PROOF. Let k() D k() D k(p) be the corresponding se-
quence of residue fields. Then f(B/p) = [k(B) : k(p)], and the
Frobenius element in Gal(k(Q)/ k(%)) is the f(3/p)th power
of the Frobenius element in Gal(k(Q)/k(p)). O

8.16 In @), assume that L is Galois over K ; then
(Q.M/K)|L = (B.L/K).
PROOF. Obvious. m
Let L1 and L, be Galois extensions of K contained in some

field £2, and let M = L1 - L5. Then M is Galois over K, and
there is a canonical homomorphism

o (0|L1,0|L2):Gal(M/K) — Gal(L1/K) x Gal(L»/K)
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which is injective.
8.17 Under the above map,
(Q.M/K) = (B1.L1/K) x (B2, L2/K).
PROOF. This follows from (§8.16). O

Note that p splits completely in L if and only if (3, L/K) =
1 for one (hence all) primes I3 lying over it. Hence, in the situ-
ation of (8:17), p splits completely in M if and only if it splits
completely in L1 and L.

Examples

We find the Frobenius maps for quadratic and cyclotomic
fields, and obtain a surprisingly simple proof of the quadratic
reciprocity law.

EXAMPLE 8.18 Let K = Q[{,], where £, is a primitive nth
root of 1. If p|n then p ramifies in K, and (p, K/Q) is not
defined. Otherwise 0 = (p, K/Q) is the unique element of
Gal(K /Q) such that

oa=o® modp, foralla e Z[ty],

for any prime ideal p lying over p.

I claim that o is the element of the Galois group such that
0 (Zn) = &F : let p be a prime lying over p in Z[Zy]; then modulo
p, we have,

o(Xaitl) =Y aitlf =Y a’ el = (Caith)?
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as required.
Note that (p, K/Q) has order f where f is the smallest
integer such that n| pf — 1 (because this is the order of p in

(Z/(n))™).

EXAMPLE 8.19 Let K = Q[v/d], and let p be a prime that
is unramified in K. Identify Gal(K/Q) with {£1}. Then
(p,K/Q) = +1 or —1 according as p does, or does not, split
in K, i.e., according as d is, or is not, a square modulo p. Thus

(p.K/Q) = (4).

APPLICATION: THE QUADRATIC RECIPROCITY LAW

Let K = Q[¢], where ¢ is a primitive pth root of 1, p # 2. Be-
cause Gal(K /Q) ~ (Z/ pZ)™ is cyclic of order p —1, it con-
tains a unique subgroup of order (p — 1)/2 (consisting of the
elements of (Z/pZ)* that are squares), and hence K contains
a unique quadratic extension F of Q. If p =1 mod 4, then p
is the only prime ramifying in Q[,/p], and Q[,/p] is the only
quadratic field for which this is true. Similarly if p =3 mod 4,
then —p =1 mod 4, and —p is the only prime ramifying in
Q[/=P). Thus F = Q[/d] where d = (—1)(P=D/2. p,
If ¢ is an odd prime # p; then

(¢. K/Q)¢) = ¢2.

Thus (¢,K/Q) restricts to the identity element of
Gal(Q[v/d]/Q) or not according as ¢ is a square in (Z,/ pZ)*
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or not. Thus (¢, K/Q)|Q[/d] = (%). But we know that it is

also equal to (%). Hence

(p—1)/2
) _ (=L (2] = <1ye-va-v/a (2]
p p q q

Here we have used that —1 is square in [, if and only if 4|g —1,
so that (_71) = (- 1)(q /2 The displayed formula, together
with the equalities

-1} (_])(p,l)/z . 1 ifp=1mod4
r] ] -1 ifp=1mod4

E _(_1)(1)2—1)/8_ 1 if p=+1mod8
p - — ] =1 if p=45modS8§,

constitutes the quadratic reciprocity law. We have already
proved the first equality, and the second can be proved as fol-
lows. Let ¢ be a primitive 8th root of 1 in an algebraic closure
of Fp,andleta = ¢ + ¢~1. From ¢* = —1, we see that

X*+1=X2=)(X?2=¢72) inFp[X]

because the roots of both polynomials are &¢, ¢~ 1. There-
fore, {2 4+¢72=0,and soa? = 2. When p = +1mod 8, £? +
¢TP=t+¢lie,a? =a,andso 1 =aP~! =2(P=D/2 =
(%) When p==45mod 8, (P +{P =0 +07° = —(C+
1), ie,a? =—a,andso —1 = qP~1 =2(p~1/2 = (%)
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Computing Galois groups (the hard way)

Let f(X) be a polynomial over a field K, and let «q,...,0,
be the roots of f(X) in K2. We want to determine the Galois
group of f as a subgroup of the group of permutations S; of

{a1,...,an}.
Introduce variables f1,...,t,. For any o € S, and polyno-

mial f(1,...,1n), define o¢ ' = f(t5(1)s--- o)) Let 6 =
> w;t;, and define a polynomial

F(X,t) =[](X —0:0) (product over o € Sy).

The coefficients of this polynomial are symmetric polynomials
in the ¢;, and so lie in K. Now factor

F(X,t)= F1(X,t)---Fr(X,1)
in K[X,t1,...,ty].
THEOREM 8.20 Let G be the set of o € S;, such that o; fixes

F1(X,t); then G is the Galois group of f.

PROOF. See van der Waerden, Algebra, Vol 1, §61 (Calcula-
tion of the Galois group). o

This theorem gives an algorithm (unfortunately impracti-
cal) for computing the Galois group of a polynomial f(X) €
Q[X]. We may suppose f(X) to be monic with integer coeffi-
cients. First find the roots of f(X) to a high degree of accuracy.
Then compute F(X,t) exactly, noting that this has coefficients
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in Z. Factor F(X,t), and take one of the factors F(X,t). Fi-
nally list the elements o of S, such that o, fixes F1(X,?). The
problem with this approach is that F (X, ¢) has degree n!. It will
probably work (on a computer) if n < 5, but otherwise it is like
trying to compute a determinant directly from the definition as
a sum of products.

Computing Galois groups (the easy way)

We now give a more practical procedure (also largely in van
der Waerden with a more direct proof).

PROPOSITION 8.21 Let f(X) be a monic separable polyno-
mial of degree n over a field K, and suppose that the Galois
group G of f(X) has s orbits (as a group of permutations of
the roots of f) with ny,...,ng elements respectively (so that
ni+np—+---+ng = n); then there is a factorization

F(X) = fr(X)- fr(X)
with f; (X) an irreducible polynomial in K[X] of degree n; .

PROOF. Write f(X) =]](X —«;).For S C{1,2,...,n}, con-
sider fs = [[;cs (X —a;). This polynomial divides f(X), and
it is fixed under the action of G (and hence has coefficients in
K) if and only if S is stable under G. Therefore the irreducible
factors of f(X) are the polynomials fg with S a minimal sub-
set of {1,...,n} stable under G, but such sets S are precisely
the orbits of G in {1,2,...,n}. o
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Let o € Sp. In GTA.2€] it is proved that ¢ is a product of
disjoint cycles. More precisely, if
01 =1{M11,....,M1n,}, 02 ={M21,"*,M2p,},
are the orbits of (o) acting on {1,2,...,n}, numbered in such a
way that om;; = m; j+1, then
o= (m11 ...mlnl)-(m21 ...m2n2)~....
This remark, together with (8.21)), gives us the following result.

COROLLARY 8.22 Let f(X) be a monic separable polyno-
mial of degree n over a finite field k, and let £ be the split-
ting field of f(X). Suppose that the Frobenius element o €
Gal(¢/ k) (when regarded as a permutation of the roots of
f(X)) is a product of disjoint cycles 0 = c¢1---cs with ¢; of
length n; (so that _n; = n). Then f(X) factors as a product
of irreducible polynomials in k[X]

fX) = fiX) fr(X)
with f; of degree n;.
In other words, the type of the cycle decomposition of o
can be read off from the factorization of f(X).

THEOREM 8.23 (DEDEKIND) Let f(X) be a polynomial of
degree n over a number field K, and let G be the Galois group
of f. Assume f(X) € Ok[X] and is monic. Let p be a prime
ideal of K, and suppose that

SX) = fi(X)-- fr(X) mod p
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with the f; distinct irreducible polynomials in k[X] and f; of
degree n;, k = Ok /p. Then G contains a permutation ¢ that
is a product of disjoint cycles of length n; .

PROOF. Take o to be the Frobenius element of any prime lying
over p — the hypothesis on the factorization of f(X) mod p
implies that p is unramified in the splitting field (because it
implies that p doesn’t divide the discriminant of f°). !

REMARK 8.24 There is a similar statement for real primes,

namely, if
JX) = fi(X)- fr(X)

in R[X] with f1,..., f; of degree 2 and the remainder of the
degree 1, then G contains a permutation o that is a product of
disjoint j cycles of length 2.

This suggests the following strategy for factoring a polyno-
mial Q[X]: factor f(X) modulo many primes p; discard the
result if f(X) mod p has multiple factors; continue until a se-
quence of, say n, primes has yielded no new cycle types for the
elements. Then attempt to read off the type of the group from
tables. We discuss how effective this is later.

EXAMPLE 8.25 Let f(X) = X° — X — 1. Modulo 2 this fac-
tors as (X2 + X 4+1)(X 3 + X2+ 1); modulo 3 it is irreducible.
Hence G contains (12345) and (ik)(¢mn) for some number-
ing of the roots. It also contains ((ik)(¢mn))3 = (ik), and this
implies that G = S5 (see[8.28|below).
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LEMMA 8.26 Let H be a subgroup of Sy; if H is transitive
(for example, contains an n-cycle) and contains an (n — 1)-
cycle and a transposition, then H = Sy,.

PROOF. After possibly renumbering, we may suppose that the
(n—1)-cycleis (123 ... n—1). By virtue of the transitivity,
the transposition can be transformed into (in), some i <n —
1. Now the (n — 1)-cycle and its powers will transform this
into (1n), (2n), ..., (n—1n), and these elements obviously
generate Sy, (because Sy, is generated by transpositions). g

EXAMPLE 8.27 Select monic polynomials of degree n, fi,
f2, f3 with coefficients in Z such that

(a) f1 is irreducible modulo 2;

(b) f> =(degree 1)(irreducible of degree n —1) mod 3;

(c) f3 =(irreducible of degree 2)(product of one or two
irreducible polynomials of odd degree) mod 5. We need to
choose f3 to have distinct roots modulo 5.

Take

f=-15f1+10f> +6f3,

and let G be the Galois group of f. Then

(@) G is transitive (it contains an n-cycle because of (a));

(b") G contains a cycle of length n — 1;

(/) G contains a transposition (because it contains the
product of a transposition with a commuting element of odd
order).

The above lemma shows that G = §j,.
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REMARK 8.28 There are other criteria for a subgroup H of
Sy to be all of Sy,. For example, a subgroup H of Sy, p prime,
that contains an element of order p and a transposition is equal
to S (FT, Lemma@]).

REMARK 8.29 In Pohst and Zassenhaus 1989, p73, there are
suggestions for constructing irreducible polynomials f(X) of
degree n in Fp[X]. A root of such a polynomial will generate
Fq,q = p", and so every such f(X) will divide X¢ — X. One
can therefore find all f(X)s by factoring X4 — X.

For example, consider X 12° — X e F5[X]. Its splitting field
is F125, which has degree 3 over Fs. The factors of X 125 _x
are the minimum polynomials of the elements of F125. They
therefore have degree 1 or 3. There are 5 linear factors, X, X —
1, X —2, X —3, X —4, and 40 cubic factors, which constitute
a complete list of all the monic irreducible cubic polynomials
in F5[X]. PARI has no trouble factoring X 12> — X modulo
5 (factormod(X~125-X,5)) or X 2% — X modulo 5, but for
X3125 _ X modulo 5, which gives a complete list of monic
irreducible polynomials of degree 1 or 5 in F5[X], I had to
increase the allocated memory (allocatemem(10000000)).

However, if you only want one irreducible polynomial of
degree n, it is easier to write down a polynomial at random,
and check whether it is irreducible.
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CUBIC POLYNOMIALS

The group S3 has the following subgroups:

order group group elements
1 1

2 Cy Ix1+1x2
3 A3 Ix1+2x3
6 S3 Ix1+3x242x3.

By the last row, I mean S3 has one 1-cycle, three 2-cycles, and
two 3-cycles.

Note that any subgroup of S3 containing cycles of length
2 and 3 is the whole of S3; thus if f is irreducible modulo
some prime and has an irreducible factor of degree 2 modulo a
second prime, then its Galois group is S3. On the other hand,
if factorizing f modulo many primes doesn’t turn up a factor
of degree 2, but f is irreducible, then expect the Galois group
of f tobe A3. This can be checked by seeing whether disc( f)
is a square. For example, the calculations on p. 61 show that
the polynomials X3 4+ 10X + 1 and X3 —8X + 15 both have
Galois group S3.

To make this more effective (in the technical sense), we
need the Chebotarev density theorem.

CHEBOTAREV DENSITY THEOREM

DEFINITION 8.30 Let S be a set of finite primes in a number
field K, and let P be the set of all finite primes. We say that S
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has natural density § if

i WPESINp =N} _
N—oo [{p|[Np =N}

THEOREM 8.31 (CHEBOTAREV DENSITY THEOREM) Let L
be a finite Galois extension of the number field K, with Ga-
lois group G, and let C be a conjugacy class in G. The set
of prime ideals p of K such that (p,L/K) = C has density
§=1[C|/IG].

PROOF. See my notes CFT (in fact, normally one proves this
result with a slightly weaker notion of density). !

For example, if G is abelian, then for each o € G, the set of
p such that (p, L/ K) = o has density 1/|G]|.

COROLLARY 8.32 The primes that split in L have density
1/[L : K]. In particular, there exist infinitely many primes of
K not splitting in L.

REMARK 8.33 There is a bound for the error in implicit in
(8.31) in terms of the discriminant of the polynomial, but it
is large. The existence of the bound has the following conse-
quence: given a polynomial f(X) € Q[X] (say), there exists
a bound B such that, if a given cycle type doesn’t occur as
the Frobenius element of some p < B, then it doesn’t occur at
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all. For a discussion of the effective version of the Chebotarev
density theorem, see Lagarias and Odlysko, 1977.3

EXAMPLE 8.34 Let K = Q[¢,]. Then Gal(K /Q) = (Z/nZ)*
and (p, K/Q) = [p]. The Chebotarev density theorem says that
the primes are equidistributed among the congruence classes.
In other words, each of the arithmetic progressions

k.k+n,k+2n,k+3n,... gcdlk,n)=1,

contains 1/¢(n) of the primes. In particular, each of the arith-
metic progressions contains infinitely many primes. This state-
ment was conjectured by Legendre and proved by Dirichlet
(using Dirichlet series). The proof of the Chebotarev density
theorem is a generalization of that of Dirichlet.

EXAMPLE 8.35 In a quadratic extension, half the primes split
and half the primes remain prime.

EXAMPLE 8.36 Let f be a cubic polynomial with coefficients
in Q. The Chebotarev density theorem implies the following
statements (see the above table):

G = 1: f splits modulo all primes.

G = C,: f splits for 1/2 of the primes and has an irre-
ducible factor of degree 2 for 1/2 of the primes.

3Lagarias, J. C.; Odlyzko, A. M. Effective versions of the Chebotarev den-
sity theorem. Algebraic number fields: L-functions and Galois properties (Proc.
Sympos., Univ. Durham, Durham, 1975), pp. 409—464. Academic Press, London,
1977.
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G = As: f splits for 1/3 of the primes and f remains irre-
ducible for 2/3 of the primes.

G = S3: f splits for 1/6 of the primes, has a factor of de-
gree 2 for 1/2 of the primes, and remains prime for 1/3 of the
primes.

EXAMPLE 8.37 Let f be a quartic polynomial with no linear
factor.
(a) When disc(f) is a square, the possible Galois groups
are:
order group elements

2 C> Ix141x22
4 Va I1x14+3x22
12 Ay Ix1+3%x224+8x3

(b) When disc(f) is not a square, the possible Galois
groups are:

order group elements

4 Cy Ix1+1x22+2x4
8 Dsg Ix14+2x2+43%x224+2x4
24 Sa I1x14+3%x224+6%x2+8x3+6x4

See FT, Chapter 4. Thus if f is a polynomial of degree 4 with
Galois group Dg, then it will split modulo p for 1/8 of the
primes, factor as the product of a quadratic and two linear poly-
nomials for 1/4 of the primes, factor as the product of two
quadratics for 3/8 of the primes, and remain irreducible for
1/4 of the primes.
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For a similar table for polynomials of degree 5, see [Pohst
and Zassenhaus|1989] p132.

One strategy for determining the Galois group of a polyno-
mial is

(a) test whether f is irreducible over Q;

(b) compute the discriminant of f';

(c) factor f modulo good primes (i.e., those not dividing the
discriminant) until you seem to be getting no new cycle
types;

(d) compute the orbit lengths on the r-sets of roots (these
are the degrees of the irreducible factors in Q[X] of the
polynomial whose roots are the sums of r roots of f);

(e) ad hoc methods.

As late as 1984, it had not been proved that the Mathieu group
M1 occurs as a Galois group over Q (M1 is subgroup of S11
of order 11!/5040 = 7920).
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Applications of the Chebotarev density theorem

We now discuss some other applications of the Chebotarev
density theorem.

For any extension L/K of number fields, write Spl(L/K)
for the set of primes that split completely in L, and write
Spl’'(L/K) for the set of primes that have at least one split fac-
tor. Then Spl(L/K) C Spl'(L/K) always, and equality holds if
L/K is Galois, in which case the Chebotarev density theorem
shows that Spl(L/K) has density 1/[L : K].

THEOREM 8.38 If L and M are Galois over K, then

LCM < Spl(L/K)> Spl(M/K).
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PROOF. =: This is obvious.
<: We have

Spl(LM/K) = Spl(L/K) N Spl(M/K).
To see this, note that
p e Spl(LM/K)
— (p,LM/K)=1
<~ (p,LM/K)|L=1and (p,LM/K)|M =1;

but (p.LM/K)|L = (p.L/K) and (p.LM/K)|M =
(. M/K). Now

Spl(M/K) C Spl(L/K)
= Spl(LM/K) = Spl(M/K)

= [LM :K]=[M : K]
=LCM. a

COROLLARY 8.39 If L and M are Galois over K, then
L=M < Spl(M/K) = Spl(L/K).

PROOF. Obvious from the Proposition. o

REMARK 8.40 (a) In fact, L = M if Spl(M/K) and

Spl(L/K) differ by at worst a finite set of primes (or if they
differ by at worst a set of primes of density zero).
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(b) The effective form of the Chebotarev density theorem
shows that (8.38) is effective: in order to show that L C M it
suffices to check that

p splits in M = p splitsin L

for all primes p less than some bound.

(c) Proposition [8:39]is not true without the Galois assump-
tions: there exist nonisomorphic extensions L and M of QQ such
that Spl(L/K) = Spl(M/ K). In fact there exist nonisomorphic
extensions L and M of QQ of the same degree such that

¢ L and M have the same discriminant;
¢ aprime p not dividing the common discriminant decom-
poses in exactly the same way in the two fields.

(d) It is clear from (8.39) that if a separable polynomial
f(X) e K[X] splits into linear factors mod p for all but finitely
many primes p of K, then f(X) splits into linear factors in
K[X]. With a little more work, one can show that an irre-
ducible polynomial f(X) € K[X] can not have a root mod p
for all but a finite number of primes. This last statement is false
for reducible polynomials — consider for example,

(X%2=2)(X2=3)(x?%-6).

For more on these questions, see Exercise 6, p361, of Algebraic
number theory. Proceedings of an instructional conference or-
ganized by the London Mathematical Society. Edited by J. W.
S. Cassels and A. Frohlich Academic Press, London; Thomp-
son Book Co., Inc., Washington, D.C. 1967.
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(e) It is easy to give examples of polynomials f(X) that
are irreducible over QQ but become reducible over Qp for all
p, including p = oo. Since the Galois group of any extension
of local fields is solvable, one only has to chose f to have
nonsolvable Galois group, for example, S forn > 5.

EXAMPLE 8.41 Fix a number field K. According to (8:39), a
Galois extension L of K is determined by the set Spl(L/K).
Thus, in order to classify the Galois extensions of K, it suffices
to classify the sets of primes in K that can occur as Spl(L/K).
For abelian extensions of K, class field theory does this —
see CFT (they are determined by congruence conditions). For
nonabelian extensions the sets are still a mystery — it is known
that they are not determined by congruence conditions — but
Langlands’s conjectures shed some light.

Exercises

8-1 Let K = Q[a] where « is a root of X3 — X2 —-2X —8.
Show that there are three extensions of the 2-adic valuation to
K. Deduce that 2| disc(Z[«]/Z) but not disc(Og /Z).

8-2 Let L be a finite Galois extension of the local field K,
and let G;, i > 0, be the ith ramification group. Let IT gen-
erate the maximal ideal in Oy . For o € G;, write oIl =
IT 4 a(o)IT'+1, and consider the map G; — I, o + a(o)
mod (IT), where /| = Oy, /(IT). Show that this is a homomor-
phism (additive structure on /) if and only if i > 0.
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8-3 * “It is a thought-provoking question that few graduate
students would know how to a%proach the question of deter-
mining the Galois group of, say,

X0 +2X° +3X*+4X34+5X2+6X+7.7

(a) Can you find it?
(b) Can you find it without using a computer?

8-4 Let K = k(X) where k is a finite field. Assume that every
valuation of K comes from a prime ideal of k[X] or k[X 1],
and prove the product formula.

And after the first year [as an undergradu-
ate at Gottingen] I went home with Hilbert’s
Zahlbericht under my arm, and during the sum-
mer vacation [ worked my way through it — with-
out any previous knowledge of elementary num-
ber theory or Galois theory. These were the hap-
piest months of my life, whose shine, across years
burdened with our common share of doubt and
failure, still comforts my soul.

Hermann Weyl, Bull. Amer. Math. Soc. 50
(1944), 612-654.

I don’t remember where this quote is from.
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Appendix A

Solutions to the Exercises

. 1| Use that @ = m +n+/d is an algebralc integer if and only
if Tr(e) = —2m € Z and Nm(ot) = m? —n2d € Z.

[0-21 Similar to Exercise =] below.
[1-1] (a) <: Let S = A~ U, p; with the p; prime ideals.
x,yeS<=Vi, x,yé¢pi<Vi, xy¢p < xyeSs.

=:Leta ¢ S. Then (¢) NS = @ because S is saturated. Let
I be maximal among the ideals of A containing a and disjoint
from S — exists by Zorn’s Lemma. I'll show that [ is prime.
Suppose xy € I.

If x ¢ I, then I + (x) properly contains /, and so (I +
(x))N S is nonempty — let c +ax € S withc € [ anda € A4.
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Similarly, if y ¢ I, there exists ¢’ +a’y € S.

But (¢ +ax)(c’ +a’y) € I, which is not possible because
S is multiplicative. Therefore x or y € I, and so / is prime.

(b) Given S, let S’ ={x € A|3y € Asuchthatxy € S} —
verify that it is multiplicative and saturated, and is the smallest
such set containing S; moreover, it is a union of the prime ide-
als not meeting S, and S™IM =~ S"~1M for all A-modules.
For the final statement, use that p remains prime in S~!4 if
and only if SNp = 0.

[Cf. Bourbaki, Alg. Comm., 1961, II, Ex. §2, no. 1, and
Atiyah and MacDonald, Chapt. 3, no. 7.]

By inspection, 4 = 2-2 = (34 +/3)(3 — +/3). We have to
show that 2, 3 + «@, and 3 — +/5 are irreducible, and 2 is not
an associate of the other two.

If 2 = aff then 4 = Nm(2) = Nm(«) - Nm(f), from which
it follows that Nm(«) = +1, +£2, or £4. If Nm(«) = £1, v is
unit (with inverse =+ its conjugate); by looking mod 5, one sees
that Nm(a) = %2 is impossible; if Nm(«) = %4, then f is a
unit. Hence 2 can’t be factored into a product of nonunits. The
same argument applies to the other two elements.

If 2 and 3 + /5 were associates, then there would be a unit
m +n+/5 in Z[/5] such that 3 4+ /5 = 2(m +n~/5), but this
is impossible.

Suppose f(X) = []gi(X) with g;(X) irreducible in
K[X]. Let o be a root of g;(X) in some extension field. Then
gi (X) is the minimum polynomial of & over K. Because « is
aroot of f(X), itis integral over A, and so g; (X) has coeffi-
cients in A (by 2.9).
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Consider first the case that L = K[a],a? =a € K.

Clearly 2 does not divide 1 + +/—3 in Z[+/=3], and so
a # (2), but

02 = (4.242V=3,-242V=3) = (4.242vV—3) = () (2. 1 + V-

If there were unique factorization into products of prime ideals,
then
ab=ac, a#£0=b=c.

We have shown that the ring Z[+/—3] doesn’t have this prop-
erty.

Let a € A[B] N A[B~1]. By hypothesis, we can write

a=ap+arfp+--+amp™
a=bo+b1f 4t by

Let M be the A-submodule of B generated by
{7",....1,....,8™}. From the first equation, we find
that o8 TeMm , 0 <i <n, and from the second equation we
find that «B/ € M, 0 < j < m. We can apply to deduce
that « is integral over A.

(a) Check easily that the products a;a;, i # j, are divis-
ible by 3, and this implies that (3_«;)" = )« mod 3. The
rest is easy.

(b) Using Gauss’s Lemma, one finds that X + «:Z[X] —
Z|] defines an isomorphism Z[X]/( f(X)) ~ Z|«]. Hence

3lgla) <= FheZ[X]st flg—3h < 3|g.
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(¢) O.K.
(d) Since F3 has only 3 elements, there are only 3 monic
polynomials of degree 1.

[3-1} 1t is not a Dedekind domain because it has a chain of prime
ideals
(X,Y) D (X) D(0).

[3-2} From Galois theory (or playing around, or from PARI) find
that (+/3 + +/7)/2 is a root of the polynomial X4 —5X2 4 1.

B-d) Let A = k[X2, X3 C k[X]. Ask[X] =k[X2]-14+k[X?]-
X, it is a Noetherian k[X2]-module. Therefore, an ideal in A
is finitely generated when regarded as a k[X %]-module, and a
fortiori as an A-module. Thus A Noetherian. If p is nonzero
prime ideal of A, then p contains a nonzero polynomial, and
so A/p is a finite-dimensional vector space over k. Since it is
an integral domain, it must be a field (see 3:30), and so p is
maximal. The element X of k(X) is integral over A because
it is a root of the polynomial T2 — X2 € A[T], but X ¢ A.
Therefore A is not integrally closed.

[d-1} For example, take B = k[X,Y] D k[X] = Aand p = (Y),
or B=k[X]Dk=Aandp = (X).

42 Write pB = [TPFF1/P) and ;¢ = l—[QfJFQij/Pi).
Then

i i Qi [Bi
pC — H(mic)e(%/tﬂ) — l_[Qlej(% /p)e( j/q3 )’
! L]
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and Q;; # Qs ;s unless (i, j) = (i’, j'). For the second part of
the problem, see the start of §4 of the notes.

The possibilities are determined by Y _e; f; = 3. Since the
discriminant is —31, only 31 ramifies, and X3 + X +1= (X +
28)(X + 17)% mod 31. All possibilities except (p) = p> occur.

[d-4} Compute the Minkowski bound to find a small set of gen-
erators for the class group. In order to show that two ideals a
and b are equivalent, it is often easiest to verify that a- 6”1 is
principal, where m is the order of b in the class group.

[@-5} Let ay,...,a; be a set of representatives of the ideal
classes. It suffices to find a field L such that each a; becomes
principal in L. Because the ideal class group is finite, each of
the a; is of finite order, say al’."[ = (a;),a; € K.Let L be a fi-
nite extension of K such that each a; becomes an m;th power
in L,say a; = almi ,a; € L. In the group of fractional ideals of
L, we have

Q' = (a;) = (") = (o)™

Since the group of fractional ideals is torsion-free, this equation
implies that a; - O7, = (). [In fact, every ideal of K becomes
principal in the Hilbert class field of K (see 4.9), but this is
very difficult to prove — it is the Principal Ideal Theorem (see
CFT).]

The discriminant of X3 — X + 2 is (—26)22, and Stickle-
berger’s lemma shows —26 is not a possible discriminant, and
so Og = Z|«]. To show that the class number is 1, it is only
necessary to show that the ideals dividing (2) are principal.
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To show that Og = Z[i][y], y = 1+2«/§’ observe that
D(1,y) =5, and 5 is not a square in Z[i]; now apply Lemma
The prime 2 ramifies in Q[i], but not in Q[+/5], and so
it ramifies in K with ramification index 2 (this follows from
the multiplicativity of the e’s). Similarly, 5 ramifies in K with
ramification index 2. Since disc(Og /Z[i]) = (5), only the di-
visors of (5) (in Z[i]) can ramify in g, and hence only 2 and
5 can ramify in K. The proof that Q[+/—5] has class number
2 is sketched in @ [Of course, this problem becomes much
easier once one has (6.3).]

No! Some infinite sets:
{m~2—[m~/2] | m,n € Z}, [*] =integer part;
{(V2-1)" |neN};
{vVn2+1—n|neN}

{o | & is the smaller root of X2 +mX +1=0, meZ}
[5-2} The period is 10, and the fundamental unit is

48842+ 5967/ 67.

[5-3} No! One way to obtain a counterexample is to note that, if
a prime p factors as p = 71 - 7w (7r; nonassociate primes) in a
quadratic extension of @, then Nmm; = £ p = Nm 3, and so
71 /72 has norm %1. For example 5 = (2+4i)(2—i) in Q[7],
and so (2+1i)/(2—1i) has norm 1, but it is not an algebraic
integer. Alternatively, note that any root of an irreducible poly-
nomial X* + a1 X" 1 4+... 41, a; € Q, not all a; € Z, will
have norm %1, but will not be an algebraic integer.
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Let o be a root of X3 —3X + 1. Then disc(Z[«]/Z) = 81.
Since its sign is (—1)%, we must have s = 0, r = 3 — three
real embeddings. From their minimum polynomials, one sees
that o and « + 2 are algebraic integers with norms 1 and —1
respectively. From (o + 1)3 = 3a(a +2) we find (¢ +1)3 =
(3) in Og. From the formula ) e; f;i = 3, we find that there
can be no further factorization, and e = 3, f = 1. The second
equality implies that Og /(¢ +1) = Z/(3), and so g = Z +
(o + 1)g. The proof that Og = Z|[«] proceeds as in the proof
of 6.2. The Minkowski bound is 2, and 2- Ok is prime, because
X3 —3X + 1 is irreducible modulo 2.

First solution: Let o be an algebraic integer in Q[¢ + ¢~ 1].
We can write it

a=Ya; ¢+, 0<i<em)/2, a;cQ.

Suppose ay is the last coefficient not in Z. Then o =
S _oai (¢ + 1) is also an algebraic integer. On expanding
this out, and multiplying through by ", we find that

"o’ = apt®" + terms of lower degree in &, an ¢ Z.
This contradicts the fact that ("’ is in Z[¢].

Second solution: Clearly, Og;1¢—17 = Ogpe) N Q¢ +

¢~ 1t follows that the algebraic integers in Q¢ +¢ 1] are
those elements that can be expressed } a; (§' +{7"), a; € Z.
Now prove inductively that ¢ + ¢~ € Z[¢ +¢71].

(a) Easy. (b) Show s, = Y7, a; is Cauchy if and only if

a[—>0.
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If a = 0, there is a solution, and so we now take a # 0. To
have a solution in Z7, clearly it is necessary that a = 72"+ 1.p,
m > 0, with b an integer that is not divisible by 7 but is a square
modulo 7 (hence b = 1,2,4 mod 7). Newton’s lemma shows
that this condition is also sufficient.

For a € Q, 7X? = a has a solution in Q7 if and only if
a=7"""bmeZ beZ b=124 mod7.

(a) Because the product of two nonsquares in Z/(p) is a
square, and least one of X2 —2, X2 —17, X% —34 has a root
modulo p, and if p # 2,17, the root is simple and hence lifts
to aroot in Zp (by Newton’s lemma). The polynomial X2-2
has 6 as a simple root modulo 17, and so it has a root in Z17.
Let g(X) = X2 —17 and ag = 1. Then |g(aq)|» = 1/16 and
|g’(a9)?|2 = 1/4 and so Newton’s lemma again shows
that it has a root in Z,.
(b) Apply the method of proof of to find

a=14574+74+2.7* 4577 ...

If k is a field of characteristic # 2, a quadratic extension
of k is of the form k[,/a] for some a € k, a ¢ k2, and two
nonsquare elements a and b of k define the same quadratic
extension if and only if they differ by a square (FT,[5.27). Thus
the quadratic extensions of k are in one-to-one correspondence
with the cosets of k2 in k* other than k>? itself.

We have to find a set of representatives for Q;z in Q3.
Clearly an element u-2" of QF, u € Z3, is a square if and
only if 7 is even and u is a square in Z,, and Newton’s lemma
shows that u is a square in Z; if (and only if) it is a square
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inZ>/(8) = Z/(8). The elements +1,£5 form a set of repre-
sentatives for (Z/(8))*, and of these only 1 is a square. Hence
{£1,£5+2, 10} is a set of representatives for Q5 /Q32, and
so the distinct quadratic extensions of Q, are the fields Q[+/a]
fora =—1,+2,45,£10.

There is a description of the structure of Q; in Serre,
Course..., I1.3. Let U = Z; and let U; be the subgroup 1 +
pi Zp of U; we know from (7.27) that @ contains the group
p—1 of (p— 1) roots of 1, and one shows that

Qp ~Zx pup—1xUy, Ur~Zp, PF2

Q; ~ZxUy, Up={xl}xUs, Uy=Z,.

There is a general formula,

(K K™y = (i : 1)
m]

for any finite extension K of Qp; here jip, is the group of m’ h
roots of 1 in K. See CFT VII.

[7-6 If 2 occurs among the «;, number it o;. Then
o; ¢ Qoy,a2,....,a;—1] because p; does not ramify in
Q[ay, @2, ...,a;—1]. Therefore the degree is 2™ (alternatively,
use Kummer theory). The element y is moved by every element
of Gal(K/Q), and so it generates K. The group Gal(K/Q) is
abelian of exponent 2 (i.e., every element has square 1). The
same is true of the decomposition groups of the primes lying
over p. Write K ®g Qp =[] K;, so that K; ~ K[X]/(fi (X))
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where f; (X) is the i " irreducible factor of f(X)in Qp[X] (cf.
8.2). Kummer theory and the description of Q; given above
show that [K; : Qp] < 4if p # 2 and [K; : Q2] < 8 (because
their Galois groups are abelian of exponent 2). This implies
that f(X) factors as stated.

The degree of Qp[¢x], p does not divide 7, is f, where f

is the smallest integer such that n|pf —1.Asn — o0, f — o0,
and so a finite extension K of Qp can contain only finitely

many {,’s. Suppose Y _ ¢, p™ converges to 8 € Q;‘,l. Then K =

Qpl[B] is afinite extension of Qp. Let oy = Z;:l Cn p™. Then
«a; is further from its conjugates than it is from S, and so Kras-
ner’s lemma implies that Qp [et;] C Qp[B]. It follows (by
induction) that Q,[B] contains all the {y, and this is impossi-
ble.

[7-8} (a) The polynomial

X+ X2+ X +1
has the factor X — 1, but

X34+ X2+X-1

is irreducible because it is irreducible modulo 5.
(b) Consider

f=X04+3x5X>+3x5Xx*
+3x5*X3 +3x5% X2 +3x57°X +3x5°.
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It is Eisenstein for 3, and hence is irreducible over Q. Its New-
ton polygon for 5 has slopes 1/2, 3/2, and 5/2, each of length
2. Correspondingly, in Qs [X] it is a product of three polynomi-
als f = f1 /> f3. Each of the f; is irreducible because the field
generated by a root of it is ramified (because the slope isn’t an
integer).

The Newton polygon of f(X) = X3— X2 —2X —8 has
three distinct slopes 1,2, 3, and so it splits over Q2. Now (8.1)
shows that | |, has three distinct extensions to K. Using that
> e; fi =3, we see that 2 doesn’t ramify in K, and so 2 does
not divide disc Ok /Z. On the other hand 2|disc(f (X)) be-
cause f(X) has multiple roots modulo 2 (according to PARI,
its discriminant is —2012).

[8-2} Straightforward.

[8-3} (a) In PARI, type
polgalois (X" 6+2*X 5+3*X~4+4*X"3+5*%X " 2+6+X+7).
(b) There are the following factorizations:

mod 3, irreducible;
mod 5, (deg 3) x (deg 3),
mod 13, (deg 1) x (deg 5);
mod 19, (deg 1)? x (deg 4);
mod 61, (deg 1)% x (deg 2)2;
mod 79, (deg 2)3.
Thus the Galois group of f has elements of type:
6, 3+3, 145 1+1+4, 1+14242, 24242,
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No element of type 2, 3, 342, or 4 + 2 turns up by factoring
modulo any of the first 400 primes (so I’'m told). Thus it is the
group 7'14 in the tables in Butler and McKay (see p141) of the
notes. It has order 120, and is isomorphic to PGL (F5) (group
of invertible 2 x 2 matrices over IF5 modulo the scalar matrices
aly,a € F7).

Prime ideals of k[X] and k[X ~!] define the same valua-
tion of k(X) if and only if they generate the same prime ideal
of k[X, X ~1]. Thus there is one valuation ord, for each monic
irreducible polynomial p(X) of k[X], and one for the polyno-
mial X! in k[X ~1]. The normalized valuation corresponding
to p(X) is

1 ordy g—ordp h
le(X)/h0)] = (q )

deg p

where ¢ = #k and ordp(g) is the power of p(X) dividing
g(X), and the normalized valuation corresponding to X ~1 is

) degh—degg

1

I/l = (7

q

Thus the product formula is equivalent to the formula,

Z deg p(ordy g —ordy h) = degg —degh,
p(X)

which is obvious.
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Appendix B

Two-hour examination

Prove (or, at least, explain) your answers.

1. (a) Is (1 +1)/+/2 an algebraic integer?
(b) Is Z[+/29] a principal ideal domain?

2. Let K = Q[«] where « is aroot of X —2,n > 2.

(a) Find [K : Q].

(b) In how many ways can the usual archimedean valuation
on Q be extended to K?

(c) Same question for the 2-adic valuation.

(d) Find the rank of the group of units in Ok and the order
of its torsion subgroup.
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3. Let ¢ be a primitive 81 root of 1. Show that Q[¢] contains
exactly 3 subfields of degree 2 over Q, and they are Q[v/—1],
QIV2l, Qlv-2l.

4. Let o and 7 be nonzero elements of the ring of integers Og
of a number field K with 7 irreducible (i.e., 1 = ab = a or
b a unit). If a3, can you conclude that 7 |o? What condition
on the class group would allow you to conclude this?

5.Let K = Q3[¢], where ¢ is a primitive 3rd root of 1. Find the
Galois group of K over Q3 and its ramification groups.

6. Let K be a finite Galois extension of Q with Galois group G.
For each prime ideal %3 of O, let I(}3) be the inertia group.
Show that the groups /(*[3) generate G.
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