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Preface

For one who attempts to unravel the story, the
problems are as perplexing as a mass of hemp
with a thousand loose ends.

Dream of the Red Chamber, Tsao Hsueh-Chin.

Algebraic groups are groups defined by polynomials. Those that we shall be concerned
with in this book can all be realized as groups of matrices. For example, the group of
matrices of determinant 1 is an algebraic group, as is the orthogonal group of a symmetric
bilinear form. The classification of algebraic groups and the elucidation of their structure
were among the great achievements of twentieth century mathematics (Borel, Chevalley,
Tits and others, building on the work of the pioneers on Lie groups). Algebraic groups
are used in most branches of mathematics, and since the famous work of Hermann Weyl
in the 1920s they have also played a vital role in quantum mechanics and other branches
of physics (usually as Lie groups). Arithmetic groups are groups of matrices with integer
entries. They are a basic source of discrete groups acting on manifolds.

The first goal of the present work is to provide a modern exposition of the theory of al-
gebraic groups. It has been clear for fifty years, that in the definition of an algebraic group,
the coordinate ring should be allowed to have nilpotent elements,' but the standard exposi-
tions? do not allow this.> In recent years, the tannakian duality* between algebraic groups
and their categories of representations has come to play a role in the theory of algebraic
groups similar to that of Pontryagin duality in the theory of locally compact abelian groups.
Chapter [ develops the basic theory of algebraic groups, including tannakian duality.

Lie algebras are a essential tool in studying both algebraic groups and Lie groups. In
Chapter [T develops the basic theory of Lie algebras and discusses the functor from alge-
braic groups to Lie algebras.

As Cartier (1956) noted, the relation between Lie algebras and algebraic groups in char-
acteristic zero is best understood through their categories of representations. In Chapter [IT]
we review the classification of semisimple Lie algebras and their representations, and we

ISee, for example, [Cartier|1962, Without nilpotents the centre of SL p in characteristic p is visible only
through its Lie algebra. Moreover, the standard isomorphism theorems fail, and so the intuition provided by
group theory is unavailable. Consider, for example, the subgroups H = SL,, and N = Gy, (diagonal) of GLp,
over a field of characteristic p. If nilpotents are not allowed, then N N H = 1, and the map H/H NN —
HN/N is the homomorphism SL, — PGL, which is an inseparable isogeny of degree p; in particular, it is
injective and surjective but not an isomorphism. While it is true that in characteristic zero all algebraic groups
are reduced, this is a theorem that can only be stated when nilpotents are allowed.

2The only exceptions I know of are Demazure and Gabriel|[1970| Waterhouse|[1979| and SGA3. While the
first two do not treat the classification of semisimple algebraic groups over fields, the third assumes it.

3Worse, much of the expository literature is based, in spirit if not in fact, on the algebraic geometry of
Weil’s Foundations (Weil|1962). Thus an algebraic group over k is defined to be an algebraic group over some
large algebraically closed field together with a k-structure. This leads to a terminology in conflict with that of
modern algebraic geometry, in which, for example, the kernel of a homomorphism of algebraic groups over a
field k need not be an algebraic group over k. Moreover, it prevents the theory of split reductive groups being
developed intrinsically over the base field.

When Borel first introduced algebraic geometry into the study of algebraic groups in the 1950s, Weil’s
foundations were they only ones available to him. When he wrote his influential book|Borel|1969b\ he persisted
in using Weil’s approach to algebraic geometry, and, with the exceptions noted in the preceding footnote, all
subsequent authors have followed him.

4Strictly, this should be called the “duality of Tannaka, Krein, Milman, Hochschild, Grothendieck, Saave-
dra Rivano, Deligne, et al.,” but “tannakian duality” is shorter. In his Récoltes et Semailles, 1985-86, 18.3.2,

£

Grothendieck argues that “Galois-Poincaré” would be more appropriate than “Tannaka” .



exploit tannakian duality to deduce the classification of semisimple algebraic groups and
their representations in characteristic zero.> The only additional complication presented by
algebraic groups is that of determining the centre of the simply connected algebraic group
attached to a semisimple Lie algebra, but this centre can also be seen in the category of
representations of the Lie algebra.

Although there are many books on algebraic groups, and even more on Lie groups, there
are few that treat both. In fact it is not easy to discover in the expository literature what the
precise relation between the two is. In Chapter [IV] we show that all connected complex
semisimple Lie groups are algebraic groups,® and that all connected real semisimple Lie
groups arise as covering groups of algebraic groups. Thus the reader who understands the
theory of algebraic groups and their representations will find that he also understands much
of the basic theory of Lie groups. Realizing a Lie group as an algebraic group is the first
step towards understanding the discrete subgroups of the Lie group.

In Chapter [V which is largely independent of Chapters III and IV, we study split
reductive groups over arbitrary fields. It is a remarkable observation of Chevalley that, for
reductive groups containing a split maximal torus, the theory is independent of the ground
field (and, largely, even of the characteristic of the ground field). We define the root datum
of a split reductive and explain how this describes the structure of groups, and we prove the
fundamental isogeny theorem following the approach in|Steinberg||1999.

In Chapter we explain how descent theory and Galois cohomology allow one to
extend to study nonsplit reductive groups. In particular, we prove that the list of classical
semisimple algebraic groups in Chapter is complete, and we include Tits’s classifi-
cation of nonsplit groups (Tits||1966, Selbach|(1976).

For an algebraic group G over QQ, any subgroup of G(Q) commensurable with G(Z)
is said to be arithmetic. In Chapter [VII, we show that such a group I" is discrete in the
Lie group G(R) and that the quotient G(R)/I" has finite volume. Selberg conjectured,
and Margulis proved, that, except for SO(1,n) and SU(1,n), every discrete subgroup of
finite covolume in a semisimple Lie group is arithmetic. In combination with the results of
Chapter [VI and this gives a classification of Riemannian locally symmetric spaces up
to finite covers (with a few exceptions). 7

TERMINOLOGY

For readers familiar with the old terminology, as used for example in |Borell|1969b, [1991},
we point out some differences with our terminology, which is based on that of modern
(post-1960) algebraic geometry.

SThe classical proof of the classification theorems for semisimple groups in characteristic zero uses the
similar theorems for Lie algebras, deduces them for Lie groups, and then passes to algebraic groups (Borel
1975, §1). The only other proof in the expository literature that I know of is that of Chevalley, which works in
all characteristics, but is quite long and complicated and requires algebraic geometry. The proof presented here
requires neither analysis nor algebraic geometry.

6In other words, the convergent power series defining the group can be replaced by polynomials.

7Briefly, the universal covering space of such a space X is a Riemannian symmetric space X. The identity
component of Aut(X) is a real semisimple Lie group G, and X & I'\G/K with K a maximal compact subgroup
of G and I" a discrete subgroup of G of finite covolume. The pairs (G, K) can be classified in terms of Dynkin
diagrams. Except in SO(1,n) and SU(1,n), the group I" is commensurable with i (G(Z)) where G is an
algebraic group over Q and i: G(R) — G is a homomorphism of Lie groups with compact kernel and finite
cokernel. That a pair (G,i) exists over R is shown in Chapter III, and the pairs (G,i) over QQ giving rise to a
given pair over R are classified for the classical groups in Chapterw



o We allow our rings to have nilpotents, i.e., we don’t require that our algebraic groups
be reduced.

¢ We do not identify an algebraic group G with its points G (k) with in k, even when
the ground field & is algebraically closed. Thus, a subgroup of an algebraic group G
is an algebraic subgroup, not an abstract subgroup of G (k).

¢ An algebraic group G over a field k is intrinsically an object over k, and not an
object over some algebraically closed field together with a k-structure. Thus, for
example, a homomorphism of algebraic groups over k is truly a homomorphism over
k, and not over some large algebraically closed field. In particular, the kernel of such
a homomorphism is an algebraic subgroup over k. Also, we say that an algebraic
group over k is simple, split, etc. when it simple, split, etc. as an algebraic group
over k, not over some large algebraically closed field. When we want to say that G
is simple over k and remains simple over all fields containing k, we say that G is
geometrically (or absolutely) simple.

¢ For an algebraic group G over k and an extension field K, G(K) denotes the points
of G with coordinates in K and Gk denotes the algebraic group over K obtained
from G by extension of the base field.

Beyond its greater simplicity, there is another reason for replacing the old terminology with
the new: for the study of group schemes over bases more general than fields there is no old
terminology.



0a Notations; terminology

We use the standard (Bourbaki) notations: N = {0,1,2,...}; Z = ring of integers; Q =
field of rational numbers; R = field of real numbers; C = field of complex numbers; F,, =
7./ pZ = field with p elements, p a prime number. For integers m and n, m|n means that
m divides n, i.e., n € mZ. Throughout the notes, p is a prime number, i.e., p = 2,3,5,....

Throughout k is the ground ring (always commutative, and usually a field), and R
always denotes a commutative k-algebra. Unadorned tensor products are over k. Notations
from commutative algebra are as in my primer CA (see below). When k is a field, k%P
denotes a separable algebraic closure of k and k* an algebraic closure of k. The dual
Homy_j;, (V. k) of a k-module V' is denoted by V'V. The transpose of a matrix M is denoted
by M!.

We use the terms “morphism of functors” and “natural transformation of functors” in-
terchangeably. When F and F’ are functors from a category, we say that “a homomorphism
F(a) — F’(a) is natural in a”” when we have a family of such maps, indexed by the objects
a of the category, forming a natural transformation F — F’. For a natural transformation
a: F — F’, we often write ag for the morphism «(R): F(R) — F’(R). When its action on
morphisms is obvious, we usually describe a functor F' by giving its action R ~> F(R) on
objects. Categories are required to be locally small (i.e., the morphisms between any two
objects form a set), except for the category AV of functors A — Set. A diagram A — B = C
is said to be exact if the first arrow is the equalizer of the pair of arrows; in particular, this
means that A — B is a monomorphism (cf. EGA I, Chap. 0, 1.4).

Here is a list of categories:

Category Objects Page
Algy commutative k-algebras

AY functors A — Set

Comody (C) | finite-dimensional comodules over C p. |100|
Grp (abstract) groups

Repy (G) finite-dimensional representations of G | p.[95
Repy (9) finite-dimensional representations of g

Set sets

Vecy finite-dimensional vector spaces over k

In each case, the morphisms are the usual ones, and composition is the usual composition.
Throughout the work, we often abbreviate names. In the following table, we list the
shortened name and the page on which we begin using it.



Shortened name Full name Page
algebraic group affine algebraic group p-129
algebraic monoid affine algebraic monoid p-29
bialgebra commutative bi-algebra p.-I51
Hopf algebra bialgebra with an inversion p-p1
group scheme affine group scheme p- |60
algebraic group scheme | affine algebraic group scheme | p.|60)
group variety affine group variety p- (60
subgroup affine subgroup p-[94
representation linear representation p.197
root system reduced root system p. 297|

When working with schemes of finite type over a field, we typically ignore the nonclosed
points. In other words, we work with max specs rather than prime specs, and “point” means
“closed point”.

We use the following conventions:

X CY Xisasubsetof Y (not necessarily proper);

XEY X is defined to be Y, or equals Y by definition;

X ~Y X isisomorphicto Y;
X ~Y X andY are canonically isomorphic (or there is a given or unique isomorphism);

Passages designed to prevent the reader from falling into a possibly fatal error are sig-
nalled by putting the symbol ;@ in the margin.

ASIDES may be skipped; NOTES should be skipped (they are mainly reminders to the
author). There is some repetition which will be removed in later versions.

Ob Prerequisites

Although the theory of algebraic groups is part of algebraic geometry, most people who use
it are not algebraic geometers, and so I have made a major effort to keep the prerequisites
to a minimum.

All chapters assume the algebra usually taught in first-year graduate courses and in
some advanced undergraduate courses, plus the basic commutative algebra to be found in
my primer CA.

Chapter [[V| assumes the analysis usually taught in first-year graduate courses and in
some advanced undergraduate courses.

Chapter [V] assumes some knowledge of algebraic geometry (my notes AG suffice).

Chapter [VI| assumes familiarity with the main statements of algebraic number theory
(including class field theory, e.g., CFT, Chapter I §1; Chapter V).

0Oc References

In addition to the references listed at the end (and in footnotes), I shall refer to the following
of my notes (available on my website):

CA A Primer of Commutative Algebra (v2.22, 2011).
GT Group Theory (v3.11, 2011).
FT Fields and Galois Theory (v4.22, 2011).



AG Algebraic Geometry (v5.21, 2011).
CFT Class Field Theory (v4.00, 2008).

The links to CA, GT, FT, and AG in the pdf file will work if the files are placed in the same
directory.
Also, I use the following abbreviations:

Bourbaki A Bourbaki, Algebre.

Bourbaki AC Bourbaki, Algebre Commutative (I-IV 1985; V-VI 1975; VIII-IX 1983; X
1998).

Bourbaki LIE Bourbaki, Groupes et Algebres de Lie (I 1972; II-1II 1972; IV-VI 1981).

Bourbaki TG Bourbaki, Topologie Générale.

DG Demazure and Gabriel, Groupes Algébriques, Tome I, 1970.

EGA Eléments de Géométrie Algébrique, Grothendieck (avec Dieudonné).

SGA Séminaire de Géométrie Algébrique, Grothendieck et al.

monnnnn http://mathoverflow.net/questions/nnnnn/

§ Subsection (so II, §3c means Chapter II, Section 3, Subsection c).

0d Sources

I list some of the works that I have found particularly useful in writing this book, and which
may be useful also to the reader.

Chapter I [Demazure and Gabriel|[1970; Serre|1993; [Springer|1998; [Waterhouse][1979]

Chapters @’ [ILI]: Bourbaki|LIE; |Demazure and Gabriel|1970; Erdmann and Wildon|2006;
Humphreys|[1972; [Serre| 1965} |Serre|[1966.

Chapter [TV} Lee|2002.

Chapter [V [Conrad et al.|2010, Demazure and Gabriel[1970; SGA3;Springer|1979} [Springer
1989; [Springeri|1998|.

Chapter [VI: [Kneser|1969!

Chapter [VII: Borel|[1969a

History: [Borel 2001; [Hawkins|2000; [Helgason| 1990, |1994; chapter notes in Springer
1998.
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DRAMATIS PERSONAE

JACOBI (1804-1851). In his work on partial differential equations, he discovered the Jacobi
identity. Jacobi’s work helped Lie to develop an analytic framework for his geometric ideas.

RIEMANN (1826-1866). Defined the spaces whose study led to the introduction of local
Lie groups and Lie algebras.

LIE (1842-1899). Founded the subject that bears his name in order to study the solutions
of differential equations.

KILLING (1847-1923). He introduced Lie algebras independently of Lie in order to un-
derstand the different noneuclidean geometries (manifolds of constant curvature), and he
classified the possible Lie algebras over the complex numbers in terms of root systems. In-
troduced Cartan subalgebras, Cartan matrices, Weyl groups, and Coxeter transformations.

MAURER (1859-1927). His thesis was on linear substitutions (matrix groups). He charac-
terized the Lie algebras of algebraic groups, and essentially proved that group varieties are
rational (in characteristic zero).

ENGEL (1861-1941). In collaborating with Lie on the three-volume Theorie der Transfor-
mationsgruppen and editing Lie’s collected works, he helped put Lie’s ideas into coherent
form and make them more accessible.

E. CARTAN (1869-1951). Corrected and completed the work of Killing on the classifi-
cation of semisimple Lie algebras over C, and extended it to give a classification of their
representations. He also classified the semisimple Lie algebras over R, and he used this to
classify symmetric spaces.

WEYL (1885-1955). Proved that the finite-dimensional representations of semisimple Lie
algebras and Lie groups are semisimple (completely reducible).

NOETHER (1882-1935).
HASSE (1898-1979).
BRAUER (1901-1977).
ALBERT (1905-1972).
HoPF (1894-1971). Observed that a multiplication map on a manifold defines a comultipli-
cation map on the cohomology ring, and exploited this to study the ring. This observation
led to the notion of a Hopf algebra.

They found a classification of semisimple algebras
over number fields, which gives a classification of the
classical algebraic groups over the same fields.

VON NEUMANN (1903-1957). Proved that every closed subgroup of a real Lie group is
again a Lie group.

WEIL (1906-1998). Classified classical groups over arbitrary fields in terms of semisimple
algebras with involution (thereby winning the all India cocycling championship for 1960).
CHEVALLEY (1909-1984). He proved the existence of the simple Lie algebras and of their
representations without using the classification. One of the initiators of the systematic study
of algebraic groups over arbitrary fields. Classified the split semisimple algebraic groups
over any field, and in the process found new classes of finite simple groups.

KOLCHIN (1916-1991). Obtained the first significant results on matrix groups over arbi-
trary fields as preparation for his work on differential algebraic groups.

IwASAWA (1917-1998). Found the Iwasawa decomposition, which is fundamental for the
structure of real semisimple Lie groups.

HARISH-CHANDRA (1923-1983). Independently of Chevalley, he showed the existence of
the simple Lie algebras and of their representations without using the classification. With
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Borel he proved some basic results on arithmetic groups. Was one of the founders of the
theory of infinite-dimensional representations of Lie groups.

BOREL (1923-2003). He introduced algebraic geometry into the study of algebraic groups,
thereby simplifying and extending earlier work of Chevalley, who then adopted these meth-
ods himself. Borel made many fundamental contributions to the theory of algebraic groups
and of their arithmetic subgroups.

T1TS (1930-). His theory of buildings gives an geometric approach to the study of algebraic
groups, especially the exceptional simple groups. With Bruhat he used them to study the
structure of algebraic groups over discrete valuation rings.

MARGULIS (1946-). Proved fundamental results on discrete subgroups of Lie groups.
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CHAPTER I

Basic Theory of Affine Groups

The emphasis in this chapter is on affine algebraic groups over a base field, but, when it
requires no extra effort, we often study more general objects: affine groups (not of finite
type); base rings rather than fields; affine algebraic monoids rather than groups; affine
algebraic supergroups (very briefly); quantum groups (even more briefly). The base field
(or ring) is always denoted k, and R is always a commutative k-algebra.

NOTES Most sections in this chapter are complete but need to be revised. The main exceptions are
Sections 18 and 19, which need to be completed, and Section 20, which needs to be written.

11 Introductory overview|. . . . . . . ... o o 14
2 Definitions|. . . . . . ... 18
.................................... 29
4 Some basic constructions| . . . . .. ..o oo 34
5 Affine groups and Hopf algebras| . . . . . .. ... .. ... .. ....... 41
|6 Affine groups and affine group schemes| . . . . . . .. ... ... ... .. 53
{7 Group theory: subgroups and quotient groups.| . . . . . . . .. ... ... .. 73
18 Representations of affine groups| . . . . . . . ... ... oL, 94
5 Group theory: the isomorphism theorems| . . . . ... .. ... ....... 121
{10 Recovering a group from its representations; Jordan decompositions| . . . . . 128
1T Characterizations of categories of representations| . . . . . . . .. ... ... 137
{12 Finite flat affine groups| . . . . . . . . . ... o 144
|13 The connected components of an algebraic group| . . . . . . ... ... ... 152
{14 Groups of multiplicative type; tor1] . . . . . . .. . .. ... ... 163
{15 Unipotent affine groups| . . . . . . . . . . .. Lo oo 176
[16  Solvable affine groups|. . . . . . ... ... ... ... ... ... . ..., 183
|17 The structure of algebraic groups| . . . . . . . ... ... ... ... ... 194
[18  Example: the spingroups| . . . . . . .. ... ... ... ... 203
[19  The classical semisimple groups| . . . . . . . .. ... L. 217
20 The exceptional semisimple groups|. . . . . . . . ... ... ... ... ... 232
21~ Tannakian categories| . . . . . . . . . .. ... 233
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14 I. Basic Theory of Affine Groups

1 Introductory overview

Loosely speaking, an algebraic group over a field k is a group defined by polynomials. Be-
fore giving the precise definition in the next section, we look at some examples of algebraic
groups.

Consider the group SL;, (k) of n x n matrices of determinant 1 with entries in a field k.
The determinant of a matrix (a;; ) is a polynomial in the entries a;; of the matrix, namely,

det(a;j) = desn sign(0) -a14(1)***dno(m) (Sp = symmetric group),

and so SL;, (k) is the subset of M}, (k) = k™ defined by the polynomial condition det(a;;) =
1. The entries of the product of two matrices are polynomials in the entries of the two
matrices, namely,

(aij)(bij) = (cij) withcij =ajbyj+-+ainbnj.

and Cramer’s rule realizes the entries of the inverse of a matrix with determinant 1 as poly-
nomials in the entries of the matrix, and so SL,, (k) is an algebraic group (called the special
linear group). The group GL, (k) of n x n matrices with nonzero determinant is also an
algebraic group (called the general linear group) because its elements can be identified
with the n? 4 1-tuples ((@ij)1<i,j<n.d) such that det(a;;)-d = 1. More generally, for a
finite-dimensional vector space V', we define GL(V') (resp. SL(V)) to be the group of au-
tomorphisms of V' (resp. automorphisms with determinant 1). These are again algebraic
groups.

To simplify the statements, for the remainder of this section, we assume that the base
field k has characteristic zero.

la The building blocks

We now list the five types of algebraic groups from which all others can be constructed
by successive extensions: the finite algebraic groups, the abelian varieties, the semisimple
algebraic groups, the tori, and the unipotent groups.

FINITE ALGEBRAIC GROUPS

Every finite group can be realized as an algebraic group, and even as an algebraic subgroup
of GL, (k). Let o be a permutation of {1,...,n} and let /(o) be the matrix obtained from
the identity matrix by using o to permute the rows. For any n x n matrix A, the matrix
I(0)A is obtained from A by using o to permute the rows. In particular, if o and o’ are two
permutations, then I(0)I(0’) = I(o0’). Thus, the matrices /(o) realize S, as a subgroup
of GL,. Since every finite group is a subgroup of some S, this shows that every finite
group can be realized as a subgroup of GL,,, which is automatically defined by polynomial
conditions. Therefore the theory of algebraic groups includes the theory of finite groups.
The algebraic groups defined in this way by finite groups are called constant finite algebraic
groups.

More generally, to give an étale finite algebraic group over k is the same as giving a
finite group together with a continuous action of Gal(k®/k) — all finite algebraic groups
in characteristic zero are of this type.

An algebraic group is connected if its only finite quotient group is trivial.
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ABELIAN VARIETIES

Abelian varieties are connected algebraic groups that are projective when considered as
algebraic varieties. An abelian variety of dimension 1 is an elliptic curve, which can be
described by a homogeneous equation

Y?Z=X>+bXZ*+cZ>.
Therefore, the theory of algebraic groups includes the theory of abelian varieties. We shall
ignore this aspect of the theory. In fact, we shall study only algebraic groups that are affine
when considered as algebraic varieties. These are exactly the algebraic groups that can be

realized as a closed subgroup of GL,, for some #n, and, for this reason, are often called linear
algebraic groups.

SEMISIMPLE ALGEBRAIC GROUPS

A connected affine algebraic group G is simple if it is not commutative and has no normal
algebraic subgroups (other than 1 and G), and it is almost-simple' if its centre Z is finite
and G/Z is simple. For example, SL, is almost-simple for n > 1 because its centre

()]

is finite and the quotient PSL,, = SL,, /Z is simple.
An isogeny of algebraic groups is a surjective homomorphism G — H with finite ker-
nel. Two algebraic groups H; and H> are isogenous if there exist isogenies

H1<—G—>H2.

7 =

This is an equivalence relations. When k is algebraically closed, every almost-simple alge-
braic group is isogenous to exactly one algebraic group on the following list:

Ap (n > 1), the special linear group SL;,+1;

B, (n > 2), the special orthogonal group SO, 41 consisting of all 2n + 1 x2n + 1 matrices

A such that AT - A = I and det(A4) = 1;

Cy, (n > 3), the symplectic group Sp,,, consisting of all invertible 2n X 2n matrices A such
that A*-J-A=J where J = (_91);
Dy, (n > 4), the special orthogonal group SO3,;

Ee¢, E7,Eg, F4,G, the five exceptional groups.

We say that an algebraic group G is an almost-direct product of its algebraic subgroups
Gi1,...,Gy if the map

(g1,.-,8r )~ g18r:G1 X+ xGr > G

is an isogeny. In particular, this means that each G; is a normal subgroup of G and that the
G; commute with each other. For example,

G =SLyxSLo /N, N ={(I,1),(~1,—1I)} )

is the almost-direct product of SL, and SL,, but it is not a direct product of two almost-
simple algebraic groups.

A connected algebraic group is semisimple if it is an almost-direct product of almost-
simple subgroups. For example, the group G in (I) is semisimple. Semisimple algebraic
groups will be our main interest.

IOther authors say “quasi-simple” or “simple”.
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GROUPS OF MULTIPLICATIVE TYPE; ALGEBRAIC TORI

An affine algebraic subgroup T’ of GL(V)) is said to be of multiplicative type if, over k%,
there exists a basis of V' relative to which T is contained in the group D, of all diagonal
matrices

£ 0 - 0 0
0 % - 0 0
00 - % 0
0 0 -+ 0 =

In particular, the elements of an algebraic torus are semisimple endomorphisms of V. A
connected algebraic group of multiplicative type is a forus.
UNIPOTENT GROUPS

An affine algebraic subgroup G of GL(V) is unipotent if there exists a basis of V relative
to which G is contained in the group U, of all n x n matrices of the form

1 % - % %
0O 1 - % %
Do Do (2)
0 0 - 1 =x
0O 0 --- 0 1

In particular, the elements of a unipotent group are unipotent endomorphisms of V.

1b Extensions

We now look at some algebraic groups that are nontrivial extensions of groups of the above
types.

SOLVABLE GROUPS

An affine algebraic group G is solvable if there exists a sequence of algebraic subgroups
G=GyD:-DG;iD---DGy=1

such that each G; 41 is normal in G; and G;/G;+1 is commutative. For example, the group
U, is solvable, and the group T,, of upper triangular n x n matrices is solvable because it
contains U, as a normal subgroup with quotient isomorphic to D,,. When k is algebraically
closed, a connected subgroup G of GL(V) is solvable if and only if there exists a basis of
V relative to which G is contained in T, (Lie-Kolchin theorem [16.31)).

REDUCTIVE GROUPS

A connected affine algebraic group is reductive if it has no connected normal unipotent
subgroup other than 1. According to the table below, they are extensions of semisimple
groups by tori. For example, GL, is reductive. It is an extension of the simple group PGL,
by the torus Gy,

l1— G, - GL, —-PGL, — 1.
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Here G, = GL; and the map G, — GL, sends it onto the subgroup of nonzero scalar
matrices.

NONCONNECTED GROUPS

We give some examples of naturally occurring nonconnected algebraic groups.

The orthogonal group. For an integer n > 1, let O, denote the group of n x n matrices A
such that A’ A = I. Then det(4)? = det(A?)det(A4) = 1, and so det(A4) € {&1}. The matrix
diag(—1,1,...) lies in O, and has determinant —1, and so Oy, is not connected: it contains

e d . . . .
SO, & Ker Oy i {:I:l}) as a normal algebraic subgroup of index 2 with quotient the

constant finite group {£1}.

The monomial matrices. Let M be the group of monomial matrices, i.c., those with ex-
actly one nonzero element in each row and each column. This group contains both the
algebraic subgroup D, and the algebraic subgroup §; of permutation matrices. Moreover,
for any diagonal matrix diag(ay,...,a,),

I(0)-diag(az,...,an) - 1(0)~" = diag(ag(1y - - do(m))- (3)

As M =1D,S,, this shows that D, is normal in M. Clearly DN S, = 1, and so M is the
semi-direct product
M =D, x9Sy

where 6: S, — Aut(D,) sends o to the automorphism in (3).

1c Summary

Recall that we are assuming that the base field k& has characteristic zero. Every algebraic
group has a composition series whose quotients are respectively a finite group, an abelian
variety, a semisimple group, a torus, and a unipotent group. More precisely:

(a) An algebraic group G contains a unique normal connected subgroup G° such that
G/G" is a finite étale algebraic group (see[13.17).

(b) A connected algebraic group G contains a largest> normal connected affine algebraic
subgroup N; the quotient G/N is an abelian variety (Barsotti, Chevalley, Rosen-
licht).?

(c) A connected affine algebraic group G contains a largest normal connected solvable
algebraic subgroup N (see §17a); the quotient G/ N semisimple.

(d) A connected solvable affine algebraic group G contains a largest connected normal
unipotent subgroup N ; the quotient G/ N is a torus (see [17.2} [16.33).

In the following tables, the group at left has a subnormal series whose quotients are the
groups at right.

2This means that it contains all other such algebraic subgroups; in particular, it is unique.

3The theorem is proved in |Barsotti1955bjand in Rosenlicht|1956, Rosenlicht (ibid.) notes that it had been
proved earlier with a different proof by Chevalley in 1953, who only published his proof in|Chevalley|1960l A
modern proof can be found in|Conrad|2002]
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General algebraic group Affine algebraic group  Reductive algebraic groups
general @
| finite étale affine o
connected @ | finite étale
| abelian variety connected ® reductive @
connected affine @ |  semisimple | semisimple
|  semisimple solvable @ torus @
solvable ® | torus | torus
| torus unipotent ® {1} e
unipotent ® | unipotent
|  unipotent {1} e
{1 e

When k is perfect of characteristic p # 0 and G is smooth, the same statements hold.
However, when k is not perfect the situation becomes more complicated. For example, the
algebraic subgroup N in (b) need not be smooth even when G is, and its formation need
not commute with extension of the base field. Similarly, a connected affine algebraic group
G without a normal connected unipotent subgroup may acquire such a subgroup after an
extension of the base field — in this case, the group G is said to be pseudo-reductive (not
reductive).

1d Exercises

EXERCISE 1-1 Let f(X,Y) € R[X,Y]. Show thatif f(x,e*) =0 forall x € R, then f is
zero (as an element of R[X, Y]). Hence the subset {(x,e*) | x € R} of R? is not the zero-set
of a family of polynomials.

EXERCISE 1-2 Let T be a commutative subgroup of GL(}V') consisting of diagonalizable
endomorphisms. Show that there exists a basis for V relative to which T C D,.

EXERCISE 1-3 Let ¢ be a positive definite bilinear form on a real vector space V', and let
SO(¢) be the algebraic subgroup of SL(V') of maps « such that ¢ (ax,ay) = ¢(x,y) for all
x,y € V. Show that every element of SO(¢) is semisimple (but SO(¢) is not diagonalizable
because it is not commutative).

EXERCISE 1-4 Let k be a field of characteristic zero. Show that every element of GL,, (k)
of finite order is semisimple. (Hence the group of permutation matrices in GL,, (k) consists
of semisimple elements, but it is not diagonalizable because it is not commutative).

2 Definitions

What is an affine algebraic group? For example, what is SL,? We know what SL, (R) is
for any commutative ring R, namely, it is the group of n x n matrices with entries in R and
determinant 1. Moreover, we know that a homomorphism R — R’ of rings defines a homo-
morphism of groups SL,(R) — SL,(R’). So what is SL,, without the “(R)”? Obviously, it
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is a functor from the category of rings to groups. Essentially, this is our definition together
with the requirement that the functor be “defined by polynomials”.
Throughout this section, k is a commutative ring.

2a Motivating discussion

We first explain how a set of polynomials defines a functor. Let S be a subset of k[ X71,..., X;].
For any k-algebra R, the zero-set of S in R" is

S(R) ={(ay,....an) € R" | f(ay,...,an) =0forall f €S}.

A homomorphism of k-algebras R — R’ defines a map S(R) — S(R’), and these maps
make R ~~» S(R) into a functor from the category of k-algebras to the category of sets.

This suggests defining an affine algebraic group to be a functor Alg; — Grp that is
isomorphic (as a functor to sets) to the functor defined by a set of polynomials in a finite
number of symbols. For example, the functor R ~» SL, (R) satisfies this condition because
it is isomorphic to the functor defined by the polynomial det(X;;) — 1 where

det(X;j) = Zaesn sign(0) - X15(1) - Xno(n) € k[X11. X12..... Xnnl. (4)

The condition that G can be defined by polynomials is very strong: it excludes, for example,
the functor with
7/27 itR=k

G(R) = ,
{1} otherwise.

Now suppose that k is noetherian, and let S be a subset of k[X7,..., X,]. The ideal a
generated by S consists of the finite sums

Y gifi. gi€k[Xi....Xa]. fies.

Clearly S and a have the same zero-sets for any k-algebra R. According to the Hilbert
basis theorem (CA [3.6), every ideal in k[X1,..., X,] can be generated by a finite set of
polynomials, and so an affine algebraic group is isomorphic (as a functor to sets) to the
functor defined by a finite set of polynomials.

We have just observed that an affine algebraic group G is isomorphic to the functor
defined by an ideal a of polynomials in some polynomial ring k[Xy,..., X,]. Let A =
k[X1,...,Xn]/a. For any k-algebra R, a homomorphism A — R is determined by the
images a; of the X;, and the n-tuples (ay,...,a,) that arise from a homomorphism are
exactly those in the zero-set of a. Therefore the functor R ~~ a(R) sending a k-algebra R
to the zero-set of a in R” is canonically isomorphic to the functor

R ~~ Homy_y,(A, R).

Since the k-algebras that can be expressed in the form k[X1,..., X,]/a are exactly the
finitely generated k-algebras, we conclude that the functors Alg;, — Set defined by a set
of polynomials in a finite number of symbols are exactly the functors R ~» Homy_,,(4, R)
defined by a finitely generated k-algebra A.

Before continuing, it is convenient to review some category theory.
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2b Some category theory

An object A of a category A defines a functor

h4(R) =Hom(A,R), R eob(A),

A.

A morphism «: A’ — A of objects defines a map f > f oa:h4(R) — h4 (R) which is
natural in R (i.e., it is a natural transformation of functors ht - hA/).

THE YONEDA LEMMA

Let F:A — Set be a functor from A to the category of sets, and let A be an object of A. A
natural transformation 7: 14 — F defines an element a7 = T4(id4) of F(A).

2.1 (YONEDA LEMMA) The map T +— ar is a bijection
Hom(h4, F) ~ F(A) (5)
with inverse a — T,, where
(Ta)R(f) = F()(@). [ €h*(R)=Hom(4,R).

The bijection is natural in both A and F (i.e., it is an isomorphism of bifunctors).

PROOF. Let T be a natural transformation 24 — F. For any morphism f:A4 — R, the
commutative diagram

h4(A) m hA(R) idg | f
F(f)
F(A) — F(R) ar = F(f)(ar) =Tr(f)

shows that

Tr(f) = F(f)(ar). (6)

Therefore T is determined by a7, and so the map T + ar is injective. On the other hand,
fora € F(A),
(Ta) a(id4) = F(id4)(a) = a,

and so the map T+ ar is surjective.
The proof of the naturality of (3)) is left as an (easy) exercise for the reader. O

2.2 When we take F = h® in the lemma, we find that
Hom(h4,h8) ~ Hom(B, 4).

In other words, the contravariant functor 4 ~» h4:A — AV is fully faithful.
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REPRESENTABLE FUNCTORS

2.3 A functor F:A — Set is said to be representable if it is isomorphic to 14 for some
object A. A pair (4,a), a € F(A), is said to represent F if T,:hd — F is an isomorphism.
Note that, if F' is representable, say F' hA, then the choice of an isomorphism 7': - F
determines an element ar € F(A) such that (4,ar) represents F' —in fact, T = Ty, —
and so we sometimes say that (A, T') represents F.

2.4 Let F; and F> be functors A — Set. In general, the natural transformations F; — F;
will form a proper class (not a set), but the Yoneda lemma shows that Hom(F1, F>) is a set
if F is representable (because it is isomorphic to a set).

There are similar statements for the contravariant functors Hom(—, A) defined by ob-
jects.

GROUP OBJECTS IN CATEGORIES

Let C be a category with finite products (including a final object *).

2.5 A group object in C is an object G of C together with a morphism m:G xG — G
such that the induced map G(T') x G(T) — G(T') makes G(T') into a group for every T in
C. Here G(T') = Hom(T, G).

2.6 A pair (G, m) is a group object if and only if there exist maps e: * — G and inv:G — G
making the diagrams (35) and (36), p. 46 commute. (Exercise!).

2.7 Let (G, m) be a group object in C. For every map T — T’ of objects in C, the map
G(T) — G(T’) is a homomorphism, and so (G, m) defines a functor C — Grp. Conversely,
suppose that for each object T in C we are given a group structure on G(7'), and that
for each morphism 7' — T in C the map G(T') — G(T’) is a homomorphism of groups.
According to the Yoneda lemma, the product maps G(T') x G(T) — G(T) arise from a
(unique) morphism m: G x G — G, and clearly (G, m) is a group object in C. We conclude
that to give a group object in C is the same as giving a functor C — Grp such that the
underlying functor to Set is representable. (For more details, see, for example, Tate|[1997,

§L)

2.8 A monoid object in C is an object M of C together with a morphismm: M x M — M
and a map e: * — G such that the induced map G(T) x G(T) — G(T') makes G(T) into a
monoid with identity element Im(e) for every 7" in C. Remarks similar to (2.6 and (2.7)

apply.

2¢ Definition of an affine (algebraic) group

Recall (CA that the tensor product of two k-algebras A and A is their direct sum in the
category Algy. In other words, if f1:4; — R and f2: A2 — R are homomorphisms of k-
algebras, there is a unique homomorphism ( 1, f2): A1 ® A» — R such that (f1, f2)(a1 ®
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1) = fi(ay) and (f1, f2)(1 ®as) = fa(az) forall ay € Ay and a; € Ay:

Al — > A Q@ Ay «—— Ay
Nﬁ,f?/ )
R.

Now consider a k-algebra A together with a k-algebra homomorphism A: 4 — A ® A.
For any k-algebra R, the map

def

fiifa fi f2 = (f1.f2) 0 Atk (R) x A (R) — W™ (R), ®)
is a binary operation on 44 (R), which is natural in R.

DEFINITION 2.9 An affine group over k is a k-algebra A together with a homomorphism
A such that (8) makes 74 (R) into a group for all R. A homomorphism of affine groups
(A,A) — (A’, A’) is ahomomorphism «: A" — A of k-algebras such that Ao = (¢ ® &) o
A

A << u

lA lA/ ©

AA 2% 4o A

Let G = (A, A) be an affine group. The ring A is called the coordinate ring (or coordinate
algebra) of G, and is denoted O(G), and A is called the comultiplication of G. When
O(G) is finitely presented*, G is called an affine algebraic group.

EXAMPLE 2.10 Let A = k[X]. Then #4(R) is isomorphic to R by f + f(X). Let A be
the homomorphism k[X] — k[X]|® k[X] = k[X ® 1,1 ® X] such that

AX)=XQ1+10X.
For fl,fz S hA(R),

(f1- 2)X)=(f1, D)X ®1+1®X) = f1(X) + f2(X),

and so the binary operation on h14(R) ~ R defined by A is just addition. Hence (k[X], A)
is an affine algebraic group, called the additive group. 1t is denoted by G,.

EXAMPLE 2.11 Let M be a (multiplicative) commutative group, and let A be its group
algebra, so the elements of A are the finite sums

Y mamm, ame€k, meM,

and
(S amm) (S bn) = X ambpmn.

“Recall (CA[3.11) that a k-algebra A4 is finitely presented if it is isomorphic to the quotient of a polynomial
ring k[X1,..., Xn] by a finitely generated ideal. The Hilbert basis theorem (CA says that, when k is
noetherian, every finitely generated k-algebra is finitely presented.
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Set
Am)=m®m (meM).

Then h4(R) ~ Homgroup(M, R*) with its natural group structure,
(f1- f2)(m) = fr(m)- f2(m).

2.12 Let A:A — A® A be a homomorphism of k-algebras. In we shall see that
(A, A) is an affine group if and only if there exist homomorphism €: 4 — k and S: 4 — A4
such that certain diagrams commute. In particular, this will give a finite definition of “affine
group” that does not require quantifying over all k-algebras R.

2.13 Let G = (A, A) be an affine algebraic group. Then
Ark[X1,....Xml/(f1,-os fn)

for some m,n. The functor hA:Ang — Grp is that defined by the set of polynomials
{f1,..., fu}. The tensor product

KIX1,... Xa] @ Kk[X1,.... Xn]

is a polynomial ring in the symbols X1 ® 1,..., X, ® 1,1 ® X1,...,1 ® X},. Therefore A,
and hence the multiplication on the groups 24 (R), is also be described by polynomials,
namely, by any set of representatives for the polynomials A(X7),..., A(X;).

AFFINE GROUPS AS FUNCTORS
Because A1 ® A, is the direct sum of A; and A3 in Algy, we have
pAI®A2 ~ ALy A (10)

In particular, h4®4 ~ p4 x b4, and so we can regard 14, for A a homomorphism A4 —
A® A, as a functor h4 x h4 — h4. When (A, A) is an affine group,

h2(R):h4(R) x h4(R) = h™(R)

is the group structure in 14 (R) defined by A.

For an affine group G = (4, A), we let G(R) = h“(R) when R a k-algebra. Then
R ~» G(R) is a functor Alg; — Grp.

Let G' = (A’, A’) be a second affine group, and let o: (4, A) — (A’, A’) be a homomor-
phism of k-algebras. Because of the Yoneda lemma, the diagram (9) commutes if and only
if .

hA ——h———> hA

s I (11)

h%xh® ’ ’
A xpA 220 pA A
commutes. This says that, under the bijection

7

Homk_alg(A/, A) ~ Hom(G,G")

provided by the Yoneda lemma, homomorphisms of algebraic groups correspond to natural
transformations preserving the group structure, i.e., to natural transformations from G to
G’ as functors to Grp (rather than Set).
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THEOREM 2.14 The functor A ~» h* defines an equivalence from the category of affine
groups over k to the category of functors G:Alg; — Grp such that underlying functor to
Set is representable. Under the equivalence, affine algebraic groups correspond to functors
representable by finitely presented k -algebras.

PROOF. We have just seen that the functor is fully faithful. Let G¢ be a functor Alg; — Set.
To give a functor G: Alg;, — Grp such that Gy = (forget) o G is the same as giving a natural
transformation Go x Go — Gy that makes G,(R) into a group for all k-algebras R. If
Gy is representable by A, then Go x Gy is representable by A ® A (see (10)), and so such
a natural transformation corresponds (by the Yoneda lemma) to a homomorphism of k-
algebras A: A — A ® A. Hence such a G arises from an affine group (A4, A), and so the
functor is essentially surjective. This proves the first statement, and the second statement is
obvious. o

We now construct a canonical quasi-inverse to the functor in the theorem. Let A! be
the functor sending a k-algebra R to its underlying set,

Al:Alg, — Set, (R,x,4.1)~ R,
and let G be a functor from the category of k-algebras to groups,
G:Alg; — Grp.

Let Go = (forget) o G be the underlying functor to Set, and let A be the set of natural
transformations from Gg to Al,

A =Hom(Gg,A").
Thus an element f of A is a family of maps of sets
frR:G(R) - R, R ak-algebra,

such that, for every homomorphism of k-algebras R — R’, the diagram

G(R) IR, R

l l

GR) —I5 R
commutes. For f, f' € A and g € G(R), define
(f £ fr(g) = fr(g) £ fr(g)
(ffr() = fr(2) fr(8)-

With these operations, A becomes a commutative ring, and even a k-algebra because each
¢ € k defines a constant natural transformation

cr:Go(R) —> R, cpr(g)=cforall g € Go(R).

An element g € G(R) defines a homomorphism f +— fgr(g): A — R of k-algebras. In this
way, we get a natural transformation a: Go — h4 of functors to sets.
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PROPOSITION 2.15 The functor Gy is a representable if and only if « is an isomorphism.

PROOF. If « is an isomorphism, then certainly G¢ is representable. Conversely, suppose
that Gy is represented by (B,b). Then

T, ne
A% Hom(Go, AY) = Hom(hB, A1) "X A1(B) ~ B,

where the last isomorphism uses that A! = #¥[X]. Thus 4 ~ B, and one checks that
a:hB — h4 is the natural transformation defined by this isomorphism; therefore « is an
isomorphism. This proves the statement. O

SUMMARY 2.16 We have shown that it is essentially the same to give

(a) ak-algebra A together with a homomorphism A: 4 — A ® A that makes 24 (R) into
a group for all R, or
(b) a functor G:Alg; — Grp such that forgeto G is representable.

To pass from (a) to (b), take G = h4 endowed with the multiplication h4:GxG —G.
To pass from (b) to (a), take A = Hom(A!, Gy) endowed with the homomorphism 4 —
A ® A corresponding (by the Yoneda lemma) to G x G — G.

We adopted (a), rather than (b), as the definition of an affine group because it is more
elementary. Throughout, we shall use the two descriptions of an affine algebraic group
interchangeably.

Let G be an affine group, and let A be its coordinate ring. When we regard A as
Hom(G,Al), an element f € A is a family of maps fgr:G(R) — R (of sets) indexed by
the k-algebras R and natural in R. On the other hand, when we regard A as a k-algebra
representing G, an element g € G(R) is a homomorphism of k-algebras g: 4 — R. The
two points of views are related by the equation

fr(@) =¢g(f), feA geG(R). (12)

Moreover,
(Af)r(g1.82) = fR(g1-82)- (13)

According to the Yoneda lemma, a homomorphism «: G — H defines a homomorphism of
rings a*: O(H) — O(G). Explicitly,

(@ f)r(g) = fr(arg). f€O(H), gecG(R). (14)

When G is a functor Alg; — Grp such that Gy is representable, we shall loosely refer
to any k-algebra A that represents Go (with an implicit isomorphism h4 ~ Gg) as the
coordinate ring of G, and denote it by O(G).

NOTES Consider the categories with the following objects and the obvious morphisms:
(a) a functor G:Alg, — Grp together with a representation (4,a) of the underlying functor to
Set;
(b) a functor G:Alg; — Grp such that the underlying functor to Set is representable;

(c) ak-algebra A together with a homomorphism A: A — A ®j A that makes 44 (R) into a group
for all k-algebras R.



26 I. Basic Theory of Affine Groups

There are canonical “forgetful” functors a—b and a—c which are equivalences of categories. There
are even canonical quasi-inverse functors b—a (take 4 = Hom(G,A!) ...) and c—a (take G = h4
...). However, the functors are not isomorphisms of categories. In the previous version of the notes,
I took (b) as the definition of affine group. In this version, I took (c) as the definition because it more
obviously gives a reasonable category (no set theory problems). Perhaps (a) is the best.

2d Affine monoids

Recall that a monoid is a set M together with an associative binary operation M x M — M
and an identity element (usually denoted 0, 1, or ). In other words, it is a “group without
inverses”. A homomorphism of monoids is a map ¢: M — M’ such that

(@) ¢(epm) =epm, and
() ¢(xy) =p(x)p(y) forall x,y € M.

When M’ is a group, (a) holds automatically because a group has only one element such
that ee = e. For any monoid M, the set M * of elements in M with inverses is a group (the
largest subgroup of M).

An affine monoid is a k-algebra A together with homomorphisms A:4 — A® A and

€: A — k such that A makes 44 (R) into a monoid with identity element A sk —> R for
each k-algebra R. Essentially, this is the same as a functor from the category of k-algebras
to monoids that is representable (as a functor to sets). When A is finitely presented, the
affine monoid is said to be algebraic.

EXAMPLE 2.17 For a k-module V, let Endy be the functor
R~ (Endpin(R®g V), 0).

When V is finitely generated and projective, we saw in that, as a functor to sets, Endy
is represented by Sym(V ®; V), and so it is an algebraic monoid. When V is free, the
choice of a basis eq,...,e, for V, defines an isomorphism of Endy with the functor

R ~~» (M, (R),x) (multiplicative monoid of n X n matrices),

which is represented by the polynomial ring k[X11, X12,..., Xnn].

PROPOSITION 2.18 For any affine monoid M over k, the functor R ~ M(R)* is an affine
group M ™ over k; when M is algebraic, so also is M ™.

PROOF. For an abstract monoid M, let M1 = {(a,b) € M x M | ab = 1}; then
MX = {((a,b),(a/,b’)) S Ml XMI | a = b/}

This shows that M * can be constructed from M by using only fibred products:

M, — {1} M* —— M,
Jv Jv J{ l(a,b)|—>b
,b
Mx M (a,b)—ab M M, (a,b)—>a

It follows that, for an affine monoid M, the functor R ~ M(R)™ can be obtained from M
by forming fibre products, which shows that it is representable (see §4b|below). o
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EXAMPLE 2.19 An associative k-algebra B with identity (not necessarily commutative)
defines a functor R ~~ (R ®j B, x) from the category of k-algebras to monoids. When
B is finitely generated and projective as a k-module, this is an affine algebraic monoid
For example, if B = Endj_;,(V), then G,IZ = GLy. When B is also free, the choice of a
basis for B identifies it (as a functor to sets) with R > RY™x B which is represented by
k[X1....,Xdim, B]- For the general case, seeor DGII, §1, 2.3, p.149.

We let Gft denote the corresponding affine algebraic group

R+ (R® B)*.

2e Affine supergroups

The subject of supersymmetry was introduced by the physicists in the 1970s as part of their
search for a unified theory of physics consistent with quantum theory and general relativity.
Roughly speaking, it is the study of Z/27Z-graded versions of some of the usual objects
of mathematics. We explain briefly how it leads to the notion of an affine “supergroup”.
Throughout, k is a field of characteristic zero.

A superalgebra over a field k is a Z/27Z-graded associative algebra R over k. In other
words, R is an associative k-algebra equipped with a decomposition R = Ry @ R; (as a
k-vector space) such that k C Ro and R;R; C R;y; (i,j € Z/27Z). An element a of R is
said to be even, and have parity p(a) = 0, if it lies in Ry; it is odd, and has parity p(a) =1,
if it lies in Ry. The homogeneous elements of R are those that are either even or odd. A
homomorphism of super k-algebras is a homomorphism of k-algebras preserving the parity
of homogeneous elements.

A super k-algebra R is said to be commutative if ba = (—1)?@P®)gp forall a,b € R.
Thus even elements commute with all elements, but for odd elements a, b,

ab+ba =0.

The commutative super k-algebra k[ X1, ..., X, Y1,..., Y] in the even symbols X; and the
odd symbols Y; is defined to be the quotient of the k-algebra of noncommuting polynomials
in X1,...,Y, by the relations

XiXir = X" X;, Xl'Yj=Yle', YjY/'/=—Y/'/Yj, 1§i,i’§m, lfj,j/fl’l.

When 1 = 0, this is the polynomial ring in the commuting symbols X1, ..., X,,, and when
m = 0, it is the exterior algebra of the vector space with basis {Y1,..., Y} provided 2 # 0
ink.

A functor from the category of commutative super k-algebras to groups is an affine
supergroup if it is representable (as a functor to sets) by a commutative super k-algebra.
For example, for m,n € N, let GL,;,|,, be the functor

R~ {(& B)|A€GLn(Ry). BEMpnn(R1), C€EMym(R1), DeGLy(Ro)}.

It is known that such a matrix ( é g) is invertible (Varadarajan|2004} 3.6.1), and so GL,,,

is a functor to groups. It is an affine supergroup because it is represented by the commutative

super k-algebra obtained from the commutative super k-algebra k[X11, X12,.... Xm+4n,m+n. Y. Z]
in the even symbols

Y, Z, Xij (1<i,j<m, m+1<i,j<m+n)
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and the odd symbols
X;; (remaining pairs (7, j ))

by setting

Y - (det(Xij)1<i,j<m =1,
Z -det(Xij)m+1<i.j<m+n = 1.

Much of the theory of affine groups extends to affine supergroups (see, for example,
Fioresi and Gavarinil[2008)).

2f A representability criterion

When £k is not a field, the following criterion will sometimes be useful in showing that a
functor to groups is an affine group.

THEOREM 2.20 Let F:Alg;, — Set be a functor. If I is representable, then it satisfies the
condition:
(*) for every faithfully flat homomorphism R — R’ of k -algebras, the sequence

F(R)— F(R) = F(R'®r R

is exact (i.e., the first arrow maps F(R) bijectively onto the set on which the

pair of arrows coincide).
Conversely, if F satisfies (*) and there exists a faithfully flat homomorphism k — k'’ such
that Fy is representable, then F itself is representable.

PROOF. Suppose F is representable, say F = h4. For any faithfully flat homomorphism
of rings R — R/, the sequence

R — R/ j R/ ®R R/
is exact (CA[9.6). From this it follows that
Homk—alg(Av R) — Homk—alg(A7 R,) = Homk—alg(Aa R’ QR R,)

is exact, and so F' satisfies (*).
Conversely, suppose that F satisfies (*), and let k’ be a faithfully flat extension of k.
For every k-algebra R, the map R — Ry is faithfully flat, and so

F(R) = F(Rp) = F(Ry ® Ry)

is exact. In particular, F is determined by its restriction F) to k’-algebras. Now suppose
that Fy/ is representable by a k’-algebra A’. The fact that Fj, comes from a functor over
k means that it is equipped with a descent datum. This descent datum defines a descent
datum on A’, which descent theory shows arises from a k-algebra A, which represents F
(Waterhouse 1979, Chapter 17). o

EXAMPLE 2.21 Let fi,..., fr be elements of k such that ( f1,..., f;) = k. Then k —
[ 1k #, is faithfully flat because the condition means that no maximal ideal of k contains all
Ji. Therefore a functor F satisfying (*) and such that Fj /; is representable for each i is
itself representable.
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2g Terminology

From now on “algebraic group” will mean “affine algebraic group” and “algebraic monoid”
will mean “affine algebraic monoid”.

3 Examples

In this section, we list some examples of affine groups and of homomorphisms of affine
groups. Throughout this section, k is a commutative ring.

3a Examples of affine groups

3.1 We can now describe G, more simply as the functor R ~~ (R, +). It is represented by
k[X].

3.2 Let G, be the functor R ~~ R* (multiplicative group). Each @ € R* has a unique
inverse, and so

Gm(R) ~ {(a,b) € R* | ab = 1} ~ Homy o (k[X, Y]/ (XY —1), R).

Therefore G, is an affine algebraic group, called the multiplicative group. Let k(X ) be the
field of fractions of k[X], and let k[ X, X ~!] be the subring of polynomials in X and X ~!.
The homomorphism

KX Y] = k[X.X7!, XX, Y>Xx!
defines an isomorphism k[X,Y]/(XY —1) ~ k[X, X '], and so
Gm(R) ~ Homy_yo(k[X, X '], R).
Thus O(G,) = k[X, X ']; for f €k[X,X 1] anda € G,,(R) = R,
fr@) = f(a.a™).

3.3 Let G be the functor such that G(R) = {1} for all k-algebras R. Then
G(R) = Homy_yg (k. R).

and so G is an affine algebraic group, called the trivial algebraic group. More generally, for
any finite group G, let O(G) =[] geG kg (product of copies of k indexed by the elements
of G). Then R ~~ Homy_4(O(G), R) is an affine algebraic group (G )i over k such that
(G) (R) = G for any k-algebra R with no nontrivial idempotents (see [5.23|below). Such
an affine algebraic group is called a constant finite algebraic group.

3.4 For an integer n > 1,
un(Ry={reR|r" =1}

is a multiplicative group, and R ~~ i, (R) is a functor. Moreover,
Hn(R) =~ Homk—alg(k[X]/(Xn - l)a R),

and so , is an affine algebraic group with O(u,) = k[X]/(X" —1).



30 I. Basic Theory of Affine Groups

3.5 In characteristic p # 0, the binomial theorem takes the form (a + b)? = a? + bP.
Therefore, for any k-algebra R over a field k of characteristic p # 0,

ap(R)={reR|r’ =0}
is an additive group, and R ~ a,(R) is a functor. Moreover,
ap(R) > Homp.ag (K[T]/(T7), R).

and so «, is an affine algebraic group with O(ap) = k[T]/(T?).

3.6 For any k-module V, the functor of k-algebras’
Dy(V): R ~ Homy _j,(V,R) (additive group) (15)
is represented by the symmetric algebra Sym(V') of V:
Homy_j,(Sym(V), R) >~ Homy_j;,(V, R), R a k-algebra,

(see CA §8). Therefore Do(V') is an affine group over k (and even an affine algebraic group
when V is finitely presented).
In contrast, it is known that the functor

Va:R~~ R®V (additive group)

is not representable unless V is finitely generated and projective.® Recall that the finitely
generated projective k-modules are exactly the direct summands of free k-modules of finite
rank (CA §{10), and that, for such a module,

Homk_lin(VV, R) ~R R %4

(CA|10.8). Therefore Vj is an affine algebraic group with coordinate ring Sym(V) when
V is finitely generated and projective.
When V is finitely generated and free, the canonical maps

Endgiin(R® V) <~ RQEndj;n(V) - RQ(VV V),

are obviously isomorphisms, and it follows that they are isomorphisms when V is a finitely
generated and projective. Therefore, when V' is finitely generated and projective, the functor

R ~~ Endgin(R® V) (additive group)

is an algebraic group with coordinate ring Sym(V ® V'V).

When V is free and finitely generated, the choice of a basis ey, ..., e, for V' defines iso-
morphisms Endg.jin(R® V) ~ M, (R) and Sym(V @ VV) ~ k[X11, X12...., Xnn] (poly-
nomial algebra in the n? symbols (X;j)1<i,j<n). For f € k[X11,X12,...,Xnn] and a =
(aij) € Mn(R),

Sfr(a) = f(ai1,a12,...,ann).

SNotations suggested by those in DG II, §1, 2.1.

SThis is stated without proof in EGA 1 (1971) 9.4.10: “on peut montrer en effet que le foncteur 7 +—
I'(T,&Ty) .. n’est représentable gue si £ est localement libre de rang fini”.
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3.7 For n xn matrices M and N with entries in a k-algebra R,
det(MN) = det(M)-det(N) (16)

and
adj(M)-M =det(M)-1 = M -adj(M) (Cramer’s rule) (17)

where I denotes the identity matrix and
adj(M) = ((—1)f+f dethl-) e My(R)

with M;; the matrix obtained from M by deleting the ith row and the jth column. These
formulas can be proved by the same argument as for R a field, or by applying the principle
of permanence of identities (Artin|1991} 12.3). Therefore, there is a functor SL,, sending a
k-algebra R to the group of n x n matrices of determinant 1 with entries in R. Moreover,

k(X11, X125 Xnnl )
(det(X;;)—1) )’

SL, (R) >~ Homy_y, (

where det(X;;) is the polynomial , and so SL,, is an affine algebraic group with O(SL,) =

k[X11,X12,...,Xnn]
(det(X,'j)—l)

SL,(R),

. It is called the special linear group. For f € O(SL;) and a = (a;;) €

fR(a) = f(all,...,a,m).

3.8 Similar arguments show that the n x n matrices with entries in a k-algebra R and
with determinant a unit in R form a group GL,(R), and that R ~~ GL,(R) is a functor.
Moreover,

K[X11, X120 Xnn, Y
GLn(R):Homk_alg( X1 X12 nn ],R),

(det(X;)Y —1)

and so GL, is an affine algebraic group with coordinate ring’ k [X(‘ d‘e’f)}?f')';}_(’{;”y]
ij

called the general linear group. For f € O(GL,) and a = (a;;) € GL,(R),

fr(aij) = f(air,....ann, det(a;;) ™).

Alternatively, let A be the k-algebra in 2n? symbols, X11, X12,..., Xun, Y11,..., Ynn mod-
ulo the ideal generated by the n? entries of the matrix (X;;)(Y;;) — I. Then

. It is

Homy._ug(4, R) = {(A, B) | A, B € My(R), AB=1}.

The map (A4, B) — A projects this bijectively onto {4 € M, (R) | A is invertible} (because
a right inverse of a square matrix is unique if it exists, and is also a left inverse). Therefore
A ~ O(GLy).

"In other words, O(GLy,) is the ring of fractions of k[X11,X12...., Xnn] for the multiplicative subset
generated by det(X;;),
O(GLp) = k[X11,X12,-.., Xnn]det(X,»j)'

See CA,
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3.9 Let C be an invertible n x n matrix with entries in k, and let
G(R)={T eGL,(R)|T"-C-T =C)}.

If C = (cij), then G(R) consists of the invertible matrices (#;;) such that

thicjktkl =iy, i,l =1,...,n,
j.k

and so
G(R) = Homy._(4. R)

with A equal to the quotient of k[X11, X12,..., Xnn, Y] by the ideal generated by the poly-

nomials
det(Xij )Y —1

Zj,kaiCijkl —Cil, i,l = 1,...,)1.
Therefore G is an affine algebraic group. When C = I, it is the orthogonal group O, and
when C = (_? 6), it is the symplectic group Sp,,.

3.10 There are abstract versions of the last groups. Let V' be a finitely generated projective
k—module, let ¢ be a nondegenerate symmetric bilinear form V x V — k, and let ¥ be a
nondegenerate alternating form V' x V' — k. Then there are affine algebraic groups with

SLy (R) = {R-linear automorphisms of R ®j V' with determinant 1},

GLy (R) = {R-linear automorphisms of R ®j V'},

O(@)(R)={x e GLy(R) | p(av,aw) = ¢p(v,w) forall v,w € R V},
Sp(¥)(R) = {a € GLy(R) | ¥ (av,acw) = ¥ (v,w) forall v,w € R V}.

When V is free, the choice of a basis for V' defines an isomorphism of each of these functors
with one of those in (3.7), (3.8), or (3.9), which shows that they are affine algebraic groups
in this case. For the general case, use (2.21).

3.11 Let k be a field, and let K be a separable k-algebra of degree 2. This means that
there is a unique k-automorphism a — a of K such that a = a if and only if a € k, and that
either

(a) K is a separable field extension of k of degree 2 and a > a is the nontrivial element
of the Galois group, or
(b) K =k xk and (a,b) = (b,a).

For an n X n matrix A = (a;;) with entries in K, define A to be (a;;) and A* to be the
transpose of A. Then there is an algebraic group G over k such that

Gk)={AeMy(K)| A*A=1)}.

More precisely, for a k-algebra R, definea ® r =a®r fora ® r € K ®j R, and, with the
obvious notation, let

G(R)={AecM,(K®yR)| A*A=1}.
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Note that A* A = I implies det(A)det(A) = 1. In particular, det(A) is a unit, and so G(R)
is a group.
In case (b),
G(R)={(A,B) e M,,(R) | AB =1}

and so (A, B) — A is an isomorphism of G with GL,,.

In case (a), let e € K \ k. Then e satisfies a quadratic polynomial with coefficients
in k. Assuming char(k) # 2, we can “complete the square” and choose e so that e € k
and e = —e. A matrix with entries in K ®; R can be written in the form A 4+ eB with
A, B € M,(R). Itlies in G(R) if and only if

(A" —eB")(A+eB)=1
i.e., if and only if

A'-A—e?*B"-B=1, and
A""B—B'-A=0.
Evidently, G is represented by a quotient of k[..., X;;,...]®x k[...,Yij,...].
In the classical case k = R and K = C. Then G(R) is the set of matrices in M, (C) of
the form A +iB, A, B € M, (R), such that
A"“A+B'"-B=1, and
A'-B—B'-A=0.

3.12 There exists an affine algebraic group G, called the group of monomial matrices,
such that, when R has no nontrivial idempotents, G(R) is the group of invertible matrices
in M, (R) having exactly one nonzero element in each row and column. For each o € S,
(symmetric group), let

As = O(GLn)/(Xij | j # 0 (i)

and let O(G) = [[,¢s, Ao Then

Ag k[XIO'(l)? cees Xna(n): Y]/(sign(a) ’ Xlo(l) "'Xno(n)Y - 1),

and so
G(R) ~ |_|(r Homy_ye(Ag, R) =~ Homy_,(O(G), R).

3.13 Letk =k x---Xkyp, and write | = ey +---+e¢e5,. Then {ey,...,e,} is a complete set
of orthogonal idempotents in k. For any k-algebra R,

R:Rlx---an

where R; is the k-algebra Re;. To give an affine group G over k is the same as giving an
affine group G; over each k;. If G <> (G;)1<;<n, then

G(R) =[] Gi(R)

for all k-algebras R = Ry X --- X Ry,.
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3b Examples of homomorphisms

3.14 The determinant defines a homomorphism of algebraic groups

det:GL,, — Gy,.
3.15 The homomorphisms

R — SL,(R), ar—>((1) 611),

define a homomorphism of algebraic groups G, — SL,.

4 Some basic constructions

Throughout this section, k is a commutative ring.

4a Products of affine groups

Let G and G, be affine groups over k. The functor
R~ G1(R)x G2(R)
is an affine group G x G, over k with coordinate ring
O(G1 xG2) = 0(G1) ® O(G2), (13)
because, for any k-algebras A, A,, R,

Homk—alg (A1 ® A2, R) =~ Homk—alg(Al , R) x Homk—alg (A2, R) (19)

(see (@), p-[22).
More generally, let (G;);er be a (possibly infinite) family of affine groups over k, and
let G be the functor

R ~~ ]‘[iel Gi(R).

Then G is an affine group with coordinate ring X),.; O(G;) (in the infinite case, apply
Bourbaki A, 111, §5, Prop. 8). Moreover, G together with the projection maps is the product
of the G; in the category of affine groups. If [ is finite and each G; is an algebraic group,
then [[;c; G is an algebraic group

4b Fibred products of affine groups
Let G1, G, and H be functors from the category of k-algebras to sets, and let
Gy — H <« Gy (20)

be natural transformations. We define the fibred product functor G| xg G, to be the
functor
R~ G1(R) Xg(r) G2(R).

Obviously G x g G5 is the fibred product of G and G5 over H in the category of functors
from Algy, to Set.
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Let B be a k-algebra, and let A7 and A, be B-algebras. For any k-algebra R and
choice of a k-algebra homomorphism B — R (i.e., of a B-algebra structure on R), there is
a canonical isomorphism

Homp_4:(A1 ® p A2, R) ~ Homp_45(A1, R) x Homp_4:(A42, R).
On taking the union over the different k-algebra homomorphisms B — R, we find that
Homk-alg (Al ®p A2, R) =~ Homk—alg (Al s R) ><Homk_ﬂ]g(B,R) Homk—alg (AZ, R)- (21)

Therefore, if the functors G1, G,, and H in are represented by k-algebras Ay, A,, and
B, then G x g7 G5 is represented by the k-algebra A; ® p A».
When the natural transformations G; — H < G, are homomorphisms of affine groups,
G1 x g G3 is a functor to Grp, and the above remark shows that it is an affine group with
coordinate ring
O(G1 xH G2) = O(G1) ®oa) O(G2). (22)

It is called the fibred product of G, and G, over H.
For example, let H be an affine group and let * — H be the unique homomorphism
from the trivial group to H. For any homomorphism «: G — H,

(G xg *)(R) = Ker(¢(R):G(R) —> H(R)).
The affine group (G X g *) is called the kernel of «, and is denoted Ker(c). Note that
O(Ker(G — H)) = O(G) ®oa) k- (23)
Similarly, the equalizer of a pair of homomorphisms can be realized as a fibred product.
Therefore, all finite direct limits exist in the category of affine groups.
4c Extension of the base ring (extension of scalars)

Let k’ be a k-algebra. A k’-algebra R can be regarded as a k-algebra through k — k’ — R,
and so a functor G of k-algebras “restricts” to a functor

G: R ~ G(R)

of k’-algebras. If G is an affine group, then Gy is an affine group with coordinate ring
O(Gyr) = O(G)y because

Homy: 4 (k' ® O(G), R) ~ Homy 4 (O(G), R) (R a k’-algebra)

(in (7), take A1 = k', A2 = O(G), and f; equal to the given k’-algebra structure on R).
The affine group Gy is said to have been obtained from G by extension of the base ring
or by extension of scalars. If G is an algebraic group, so also is Gi. Clearly G ~~» Gy is
a functor.

EXAMPLE 4.1 Let V be a k-module and let W be a k’-module. A k-linear map V — W’
extends uniquely to a k’-linear map Vi, — W:

Homy_jin (V, W) >~ Homyp/ iy (Vir, W).



36 I. Basic Theory of Affine Groups

On applying this with W a k’-algebra R, we see that
Do(V)r = Da(Vier).
Similarly, if V' is finitely generated and projective, then

(Vo)kr = (Vi)

EXAMPLE 4.2 Let G be the unitary group defined by a separable k-algebra K of degree 2
(see[3.11)). For any field extension k — k', Gy is the unitary group defined by the k’-algebra
K ®p k', and so, for example, Gya =~ GL,,.

4d Restriction of the base ring (restriction of scalars)

Throughout this subsection, k’ is a k-algebra that is finitely generated and projective as a
k-module. We shall show that there is a right adjoint to the functor G ~~ Gp,. We first
explain this for functors to sets.

From a functor F:Alg; — Set we obtain a functor Fy:Alg,, — Set by setting Fy/(R) =
F(R). On the other hand, from a functor F’: Alg;, — Set we obtain a functor (F”)/,x: Algy —
Set by setting (F')g//x(R) = F'(k’ ® R). Let ¢ be a natural transformation ¢: Fjr — F'.
The homomorphisms

F
F(R) (r—>1Qr)

def

¢(k’®R)
——> F'(K'® R) = (F')ir/k(R)

F(k'®R)

are natural in the k-algebra R, and so their composite is a natural transformation F —
(F")k+/k- Thus, we have a morphism

Hom(Fy/, F') — Hom(F, (F)g//k)-

This has an obvious inverse®, and so it is a bijection. We have shown that the extension of
scalars functor F ~» Fy/ has a right adjoint F’ ~~ (F')g/x:

Hom(Fy/, F') >~ Hom(F, (F ")k /1)- (24)

Because it is a right adjoint, F’ ~» (F')z//x preserves inverse limits. In particular, it takes
(fibred) products to (fibred) products. This can also be checked directly.

LEMMA 4.3 If F:Alg;, — Set is represented by a (finitely-presented) k -algebra, then so
also is (F)g/k-

PROOF. We prove this first in the case that k’ is free as a k-module, say,

k' =kei®---Dkey, e;ick’.

8Given F — (F)k’/k» weneed Fir — F'. Let R be a k’-algebra, and let Rg be R regarded as a k-algebra.
The given k-algebra map &’ — R and the identity map Ry — R define a map k' ® Ro — R (of k’-algebras).
Hence we have
F(Ro) — F'(K' ®¢ Ro) — F'(R),

and F(Ro) = Fr/(R).
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Consider first the case that F = A", so that F(R) = R" for all k’-algebras R. For any
k-algebra R,

REKQ®R~Re,® - ®Rey,

and so there is a bijection

(ai)i<i<n = (bij) 1<i<n :R™ — R
1<j=<d

which sends (a;) to the family (b;;) defined by the equations
ai:Z?zlbijej, i=1,...,n. (25)

The bijection is natural in R, and shows that (F)g//x ~ A" (the isomorphism depends
only on the choice of the basis ey, ...,eq).

Now suppose that F is the subfunctor of A" defined by a polynomial f(X1,...,X,) €
k'[X1,...,Xy]. On substituting

X; = Y4 Vije,
into f, we obtain a polynomial g(Y11,Y12,..., Y,q) with the property that
flay,....an) =0 <= g(b11.b12,....bpa) =0

when the a’s and b’s are related by (25). The polynomial g has coefficients in k’, but we
can write it (uniquely) as a sum

g=gie1+--+gaeq. g €k[Y11.,Y12,....Ynql.
Clearly,
g(b11,b12,....byq) =0 < gi(b11,b12,...,b,q) =0fori =1,...,d,

and so (F)gs/k is isomorphic to the subfunctor of A defined by the polynomials g1,...,84.
This argument extends in an obvious way to the case that F' is the subfunctor of A"
defined by a finite set of polynomials, and even to the case that it is a subfunctor of an
infinite dimensional affine space defined by infinitely many polynomials.
We deduce the general case from the free case by applying Theorem For any
faithfully flat homomorphism R — R’ of k-algebras, Ry — R/, is a faithfully flat homo-
morphism of k’-algebras (CA , and so

F(Ry)) = F(R},)) = F(R,, ®R,, R}
is exact. But this equals
(F)ir/k(R) = (Fgr k(R = (F)r k(R ®R R),

and so (F')gs/k satisfies the condition (*) of the theorem. According to (CA[10.4), there ex-

istelements f1,..., fr of k such that (f1,..., f;) =k and k}i is a free k £, -module for each

i. It follows that ((F k) k) k. is representable for each i, and so (F')y// is representable

(cf. Example[2.21]). l a]
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If G is a functor Algg, — Grp, then (G)g//k is a functor Algy — Grp. The lemma
shows that if G is an affine (algebraic) group, then so also is (G )x//, and shows that
the functor G’ ~~ (G')x/ is right adjoint to the functor “extension of scalars”:

Hom(G. (G')//x) ~ Hom(Gy/, G').

The affine group (G )i/ is said to have been obtained from G by (Weil) restriction of
scalars (or by restriction of the base ring). It is sometimes denoted Resg//x G or Iy G,
and called the Weil restriction of G.

PROPERTIES OF THE RESTRICTION OF SCALARS FUNCTOR

4.4 For any homomorphisms k — k" — k”" of rings such that k' (resp. k") is finitely
generated and projective over k (resp. k'),

Hk’/k on///k/ >~ Hk”/k-
Indeed, for any affine group G over k" and k-algebra R,

(M 0 My i) (G)) (R) = (M (Mg 10 G)) (R)
=G(k" Qr k' @k R)
~ G(k" ® R)
= (Mxr/xG) (R)

because k" Qi k' @ R ~ k" Qi R.

4.5 For any k-algebra K and any affine group G over k’,

(M /xG) x =~ Moy k/k (GK): (26)
in other words, Weil restriction commutes with base extension. Indeed, for a K-algebra R,

def

(I )k G)  (R) =

because k' ®; R ~ k' ®; K ®k R.

G(k'®k R) ~ G(k'®; K 9k R) = Mg, k/x(Gx)(R)

4.6 Let k' be a product of k-algebras, k' = k1 x --- x k,, with each k; finitely generated
and projective as a k-module. Let G be the affine group over k” corresponding to a family
(Gy); of affine groups over the k; (see(3.13). Then

Gy =Gy sk XX (G /K- (27)

Indeed, for any k-algebra R,

def

(G /k(R) =Gk ®R)
= G1(k1 ® R) x--- X Gp(kn ® R)

def

= ((GDry /%% (Gn)p k) (R)

because K’ ® R ~ k1 ® Rx---xk, ® R and G is representable.
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4.7 There is a homomorphism i: G — (ITy:/x G )y of affine groups over k' such that, for
all k’-algebras R, i (R) is the map G(R) — G(k’ ® R) definedbya +— 1®a:R — k' ® R.
Then i is injective (obviously), and has the following universal property: let H be an affine
group over k; then any homomorphism G — Hj/ (over k) factors uniquely through i .

4.8 Let k' be a finite separable field extension of a field k, and let K be a field containing
all k-conjugates of k', i.e., such that |Homy (k’, K)| = [k’:k]. Then

(Hk//kG)K = Ha:k’—)K Ga

where Gy is the affine group over K obtained by extension of scalars with respect to a: k" —
K. Indeed

(Hk//kG)K ~ Hk’®K/KGK >~ Ha:k’—)KGa

because k' @ K ~ KHomk (*".K)

4.9 Let k' = k[e] where ¢2 = 0. For any algebraic group G over k’, there is an exact
sequence
0— Va_>(G)k’/k -G —>0

where V is the tangent space to G at 1, i.e., V = Ker(G(k[¢]) — G(k)). This is proved in
I1, [1.29] below.

4.10 We saw in that, when k' is a separable field extension of k, (G)z//x becomes
isomorphic to a product of copies of G over some field containing k’. This is far from true
when k’/k is an inseparable field extension. For example, let k be a nonperfect field of
characteristic 2, so that there exists a nonsquare a in k, and let k" = k[+/a]. Then

K@rk' ~k'le]l, e=a®l—-1®a, &>=0.

According to (4.3),
(M /kG) = Mirtey /1 G

which is an extension of G by a vector group (4.9).

4e Galois descent of affine groups

In this subsection, k is a field. Let §2 be a Galois extension of the field k, and let " =
Gal(£2/ k). When £2 is an infinite extension of k, we endow I" with the Krull topology. By
an action of I" on an §2-vector space V' we mean a homomorphism I — Autg (V') such
that each o € I acts o-linearly, i.e., such that

o(cv)y=o0(c)-o(w)forallocel",c e 2,andv e V.

We say that the action is continuous if every element of V is fixed by an open subgroup of
I ie.,if

V= UF’ I (union over the open subgroups I"’ of I').
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PROPOSITION 4.11 For any §2-vector space V equipped with a continuous action of I,
the map
Y iCi QUi Y i civii2 vl v

is an isomorphism.
PROOF. See Chapter VI, [I.2]below or AG,[16.15](the proof is quite elementary). O

For any vector space V over k, the group I" acts continuously on £2 ® V according to
rule:
o(c®v)=oc®uforalloel',ce2,andveV.

PROPOSITION 4.12 The functor V ~~ 2 Qi V from vector spaces over k to vector spaces
over §2 equipped with a continuous action of I" is an equivalence of categories.

PROOF. When we choose bases for V and V', then Homy_;, (V, V’) and Homg i (2 ®
V,82 ® V') become identified with with certain sets of matrices, and the fully faithfulness
of the functor follows from the fact that 27" = k. That the functor is essentially surjective
follows from (4.11]). o

Let G be an affine group over §2. By a continuous action of I" on G we mean a
continuous action of I" on O(G) preserving A and the k-algebra structure on A; thus

olf-f) = of-of
ol = 1 forallo eI, f, f € A.
(0®0)(A(f) = A(of)

PROPOSITION 4.13 The functor G ~~ G from affine groups over k to affine groups over
§2 equipped with a continuous action of I' is an equivalence of categories.

PROOF. Immediate consequence of Proposition 4.12] 0

EXAMPLE 4.14 Let k' be a finite separable field extension of k, and let £2 be a Galois
extension of k containing all conjugates of k’. Let G = (A, A) be an affine group over k’,

and let
l_[t:k’—>.Q (TA’ TA)

where t runs over the k-homomorphisms k” — 2. There is an obvious continuous action

of 'Y Gal(£2/k) on G, and the corresponding affine group over k is (G)gs/. This is

essentially the original construction of (G)gs/x in Weil 1960, 1.3.

def

Gy = (Ax, Ay) &

4f The Greenberg functor

Let A be a local artinian ring with residue field k. For example, A could be the ring W, (k)
of Witt vectors of length m. In general, A is a W, (k)-module for some m. For an affine
group G over A, consider the functor G(G):

R~ G(A®w,,k) Wm(R)).

Then G(G) is an affine group over k. See Greenberg| 1961, |Greenberg|1963|
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4g Exercises

EXERCISE 4-1 Let k' be a finite separable extension of a field k. Let A! be the functor
Alg; — Set sending R to R, and let U;, i € k, be the subfunctor of Al such that U; (R) =
{a € R|a#i}. Show that Al = Uy U U; but Hk//kAl # (Hk//kUO) U (Hk//kUl) if
k' #k.

EXERCISE 4-2 Let k’/k be a finite field extension. Let «: Gy — H be a homomorphism
of algebraic groups over k', and let 8: G — ITy//; H be the corresponding homomorphism
over k. Show that Ker(f) is the unique affine subgroup of G such that Ker()x, = Ker(«).

S Affine groups and Hopf algebras

Un principe général: tout calcul relatif aux
cogebres est trivial et incompréhensible.
Serre|1993] p. 39.

In this section, we examine the extra structure that the coordinate ring of an affine group
G acquires from the group structure on G. Throughout k is a commutative ring.

5a Algebras

Recall that an associative algebra over k£ with identity is a module A over k together with a
pair of k-linear maps’
mARA— A ek— A

such that the following diagrams commute:

A A A
ARARA 22", An A kod -2 Ao 2% Aok

|
Jm@A lm \TI/ (28)
A4 —2—— 4 A

associativity identity
On reversing the directions of the arrows, we obtain the notion of a coalgebra.

5b Coalgebras

DEFINITION 5.1 A co-associative coalgebra over k with co-identity (henceforth, a coal-
gebra over k) is a module C over k together with a pair of k-linear maps

AC—->CQC eC—>k

9Warning: I sometimes also use “e” for the neutral element of G(R) (a homomorphism O(G) — R).
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such that the diagrams

cC®A
cRCeC 2% cwcC kC <2 coc -2 cok

EUR N

CRKC «——C

co-associativity co-identity

commute, i.e., such that

(30)

(C®A)oA = (ARC)oA
{ (CR®€)oA = ide¢ = (e®C)oA.

A homomorphism of coalgebras over k is a k-linear map f:C — D such that the diagrams

coc 224 pebp c - .p
TAC TAD lec J,ED (D
f

by

—— k

cC — D

commute, i.e., such that
(f®f)oAc =Apof
epo f =e¢c.

5.2 Let S be a set and let C be the k-vector space with basis S (so C = 0if S is empty).
Then C becomes a coalgebra over k with A and € defined by

A(s) = s®s

s) = 1 }allseS.

This shows that every vector space admits the structure of a coalgebra.

5.3 Let (C, A,¢€) be a coalgebra over k. A k-subspace D of C is called a sub-coalgebra if
A(D)C D®D. Then (D, A|D,€|D) is a coalgebra (obvious), and the inclusion D — C
is a coalgebra homomorphism.

5.4 Let (C,Ac,ec) and (D, Ap,ep) be coalgebras over k; define Acgp to be the com-

posite

A A C®t®D
CoD2® coceDoD X CeD@C®D

where ¢ is the transposition map ¢ ® d — d ® c, and define ecgp to be the composite

ecQep

C®D —— kQ®k ~k;

then (C ® D,Acep.€ceDp) is a coalgebra over k. On taking D = C, we see that C @ C
is a coalgebra over k.
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5c¢ The duality of algebras and coalgebras

Recall that V'V denotes the dual of a k-module V. If V and W are k-modules, then the
formula

(fegvew) = f)Rgw), fecVV geW veV,weW,

defines a linear map
VYWY — (VW)Y (32)

which is always injective, and is an isomorphism when at least one of V' or W is finitely
generated and projective (CA [10.8).
If (C,A,¢) is a co-associative coalgebra over k with a co-identity, then C becomes

A\/
an associative algebra over k with the multiplication C¥ ® C¥ — (C ® C)¥ — C" and

the identity k ~ kv ‘L cv. Similarly, if (A,m,e) is an associative algebra over k with

an identity and A is finitely generated and projective as a k-module, then AY becomes a
v
co-associative coalgebra over k with the co-multiplication AV 2o A®A)Y ~ AV @AY

and the co-identity k ~ k" < AV. These statements are proved by applying the functor v
to one of the diagrams (28)) or (29).

EXAMPLE 5.5 Let X be a set, and let C be the free k-module with basis X. The k-linear
maps

AC—>CRC, Ax)=x®x, xe€eX,

€:.C —k, e(x)=1, x € X,

endow C with the structure of coalgebra over k. The dual algebra CV can be identified
with the k-module of maps X — k endowed with the k-algebra structure

m(f.g)(x) = f(x)g(x)

e(c)(x) =cx.

5d Bi-algebras
For k-algebras A and B, A ® B becomes a k-algebra with the maps

maep(a@b)Q (@ ®@b') =my(a®a’)@ma(b@b")
eagB(c) =eq(c)®1=1Qep(c).

DEFINITION 5.6 A bi-algebra over k is a k-module with compatible structures of an asso-
ciative algebra with identity and of a co-associative coalgebra with co-identity. In detail, a
bi-algebra over k is a quintuple (4,m, e, A,€) where

(a) (A,m,e) is an associative algebra over k with identity e;

(b) (A, A,¢) is a co-associative coalgebra over k with co-identity «;
(c) A:A— A® A is a homomorphism of algebras;

(d) €: A — k is a homomorphism of algebras.

A homomorphism of bi-algebras (A,m,...) — (A’,m’,...) is a k-linear map A — A’ that
is both a homomorphism of k-algebras and a homomorphism of k-coalgebras.
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The next proposition shows that the notion of a bi-algebra is self dual.

PROPOSITION 5.7 For a quintuple (A,m,e, A, ¢€) satisfying (a) and (b) of (5.6), the fol-
lowing conditions are equivalent:

(a) A and € are algebra homomorphisms;
(b) m and e are coalgebra homomorphisms.

PROOF Consider the diagrams:

A4 —" A 4 A®A
lA@A ng)m
ARARAR A 19184 ARARAR A
ARA— 2 4 A4 —" 4 A
k@k =k k@k ——k Kk

The first and second diagrams commute if and only if A is an algebra homomorphism, and
the third and fourth diagrams commute if and only if € is an algebra homomorphism. On the
other hand, the first and third diagrams commute if and only if m is a coalgebra homomor-
phism, and the second and fourth commute if and only if e is a coalgebra homomorphism.
Therefore, each of (a) and (b) is equivalent to the commutativity of all four diagrams. g

DEFINITION 5.8 A bi-algebra is said to be commutative, finitely generated, finitely pre-
sented, etc., if its underlying algebra is this property.

Note that these notions are not self dual.

DEFINITION 5.9 An inversion (or antipodal map'®) for a bi-algebra A is a k-linear map
S: A — A such that

(a) the diagram

o(S®id o(id®S
4 B8 o g WS,

[e [4 [ e
koo A . k
commutes, 1.e.,

mo(S®id)oA=eoe=mo(id®S)o A. (34)

and
(b) S(ab) = S(ba) for all a,b € A and S(1) =1 (so S is a k-algebra homomorphism
when A is commutative).

10Usually shortened to “antipode”.
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ASIDE 5.10 In fact, condition (a) implies condition (b) (Dascalescu et al.[2001} 4.2.6).

EXAMPLE 5.11 Let X be a monoid, and let 4 be the k-module with basis X . The k-linear
maps

mAQA— A, mx®x)=xx", xx e€X,
ek — A, e(c)=cly, cek,

endow A with the structure of a k-algebra. When combined with the coalgebra structure in
(5.5), this makes A into a bi-algebra over k. When X is a group, the map

SiA— A, (SN)x) = f(x7)

is an inversion.

PROPOSITION 5.12 Let A and A’ be bi-algebras over k. If A and A’ admit inversions S
and S’, then, for any homomorphism f:A — A,

foS=Sof

In particular, a bi-algebra admits at most one inversion.

PROOF. For commutative bi-algebras, which is the only case of interest to us, we shall
prove this statement in (5.16)) below. The general case is proved in [Déscélescu et al.|2001],
4.2.5. o

DEFINITION 5.13 A bi-algebra over k that admits an inversion is called a Hopf algebra
over k. A homomorphism of Hopf algebras is a homomorphism of bi-algebras.

A sub-bi-algebra B of a Hopf algebra A4 is a Hopf algebra if and only if it is stable under
the (unique) inversion of A4, in which case it is called a Hopf subalgebra.

The reader encountering bi-algebras for the first time should do Exercise below
before continuing.

ASIDE 5.14 To give a k-bialgebra that is finitely generated and projective as a k-module is the same
as giving a pair of finitely generated projective k-algebras A and B together with a nondegenerate
k-bilinear pairing

(,):BxA—k

satisfying compatibility conditions that we leave to the reader to explicate.

Se Affine groups and Hopf algebras

Recall that a commutative bi-algebra over k is a commutative k-algebra A equipped with a
coalgebra structure (A, €) such that A and € are k-algebra homomorphisms.

THEOREM 5.15 (a) Let A be a k-algebra, and let A:A — A® A and €: A — k be homo-
morphisms. The triple (A, A, €) is an affine monoid if and only if (A, A,¢€) is a bi-algebra
overk.

(b) Let A be a k-algebra, and let A:A — A ® A be a homomorphism. The pair (A, A)
is an affine group if and only if there exists a homomorphism €: A — k such that (A, A, €)
is a Hopf algebra.
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PROOF. (a) Let M = h4, and let m: M x M — M and e:* — M be the natural transfor-
mations defined by A and € (here * is the trivial monoid represented by k). Then m and e
define a monoid structure on M (R) for each k-algebra R if and only if the diagrams

idps Xm e Xidpas idys Xe
MxMxM —— > MxM *XM%MXM%MX*

meidM Jm ~ m ~
. 2
M

MxM —— M

(35)
commute. As A ~» h4 sends tensor products to products 1 L p. i the Yoneda lemma,
shows that these diagrams commute if and only if the diagrams (29) commute.

(b) An affine monoid M is an affine group if and only if there exists a natural transfor-
mation inv: M — M such that

i) (inv,id) Mxy i) (id,inv)

M
Lol
* —> M <— *

commutes. Here (id, inv) denotes the morphism whose composites with the projection maps
are id and inv. Such a natural transformation corresponds to a k-algebra homomorphism
S: A — A satisfying (34), i.e., to an inversion for A. o

Thus, as promised in (2.12)), we have shown that a pair (A4, A) is an affine group if and
only if there exist homomorphisms € and S making certain diagrams commute.

PROPOSITION 5.16 Let A and A’ be commutative Hopf algebras over k. A k-algebra
homomorphism f:A — A’ is a homomorphism of Hopf algebras if

(f®floA=Aof; (37)

moreover, then f oS = S’ o f for any inversions S for A and S’ for A'.

PROOF. According to (5.15b), G = (A, A) and G’ = (A’, A') are affine groups. A k-
algebra homomorphism f:A — A’ defines a morphism of functors #/:G — G'. If .
holds, then this morphism sends products to products, and so is a morphism of group valued
functors. Therefore f is a homomorphism of Hopf algebras. As h/ commutes with the
operation g+ g~ !, foS =S80 f. o

COROLLARY 5.17 For any commutative k-algebra A and homomorphism A: A — A® A,
there exists at most one pair (€, S) such that (A,m,e, A,¢€) is a Hopf algebra and S is an
inversion.

PROOF. Apply to the identity map. o

THEOREM 5.18 The forgettul functor (A, A,€) ~ (A, A) is an isomorphism from the cat-
egory of commutative Hopf algebras over k to the category of affine groups over k.
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PROOF. It follows from (5.15p) and (5.17) that the functor is bijective on objects, and it is
obviously bijective on morphisms. O

EXAMPLE 5.19 Let G be the functor sending a k-algebra R to R x R x R with the (non-
commutative) group structure

(x.y.2) (. 2y = (x+x" .y +y 2+ +x)").

This is an algebraic group because it is representable by k[ X, Y, Z]. The map

1
(x,y,2)~ |0
0

S = =
—t< N

is an injective homomorphism of G into GL3. Note that the functor R ~> R x R x R also
has an obvious commutative group structure (componentwise addition), which shows that
the k-algebra k[X, Y, Z] has more than one Hopf algebra structure.

5f Abstract restatement

Let C be a category with finite products and, in particular, a final object * (the product over
the empty set). A monoid object in C is an object M together with morphisms m: M x M —
M and e:* — M such that the diagrams commute. A morphism of monoid objects is
a morphism of the objects compatible with the maps m and e.

Let A be a category, and let AV be the category of functors A — Set. For any finite
family (F;);es of functors, the functor A ~ [[.c; Fi(A) is the product of the F;, and so
AY has finite products. To give the structure of a monoid object on a functor M :A — Set is
the same as giving a factorization of M through Mon.

Now assume that A has finite direct sums. It follows from the definitions of direct sums
and products, that the functor A ~» 14 sends direct sums to direct products. According to
the Yoneda lemma , A~ hA: A%PP s AV s fully faithful. Its essential image is (by
definition) the subcategory of representable functors. Therefore A ~ h4 is an equivalence
from the category of monoid objects in A°PP to the category of monoid objects in AY whose
underlying functor to sets is representable (equivalently, to the category of functors A —
Mon whose underlying functor to sets is representable).

Now take A = Alg,. Tensor products in this category are direct sums (in the sense
of category theory), and so the above remarks show that A ~» 14 is an equivalence from
the category of monoid objects in Algzpp to the category of affine monoids over k. On
comparing the diagrams and li we see that a monoid object in Algzpp is just a
commutative bi-algebra.

Similarly, a group object in a category C with finite products is defined to be an object
M together with morphisms m: M x M — M, e:x — M, and inv: M — M such that the
diagrams and commute.!" The same arguments as above show that A ~» h4
is an equivalence from the category of group objects in Algzpp to the category of affine
groups over k. Moreover, a group object in Algzp P is just a commutative bi-algebra with an
inversion.

"For any object T of C, the maps m, e, and inv define a group structure on Hom(7, M ). The Yoneda lemma
shows that inv is uniquely determined by m and e. Thus, one can also define a group object to be a monoid
object for which there exists a morphism inv such that the diagram @ commutes.
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In summary: the functor 4 ~» h“ defines an equivalence from the category of com-
mutative bi-algebras (resp. commutative Hopf algebras) to the category of affine monoids
(resp. groups). Under the equivalence, finitely presented bi-algebras (resp. Hopf algebras)
correspond to algebraic monoids (resp. groups).

Sg Explicit description of A, €, and S

Let G be an affine group over k. Recall that an element f of the coordinate ring
O(G) is a family of functions fr:G(R) — R of sets compatible with homomorphisms of
k-algebras. An element f1 ® f> of O(G)® O(G) defines a function (f; ® f2)r: G(R) x
G(R) — R by the rule:

(/1® f2)r(a.b) = (fOr@)-(2)r(D).

In this way, O(G) ® O(G) becomes identified with the coordinate ring of G X G.
For f € O(G), A(f) is the (unique) element of O(G) ® O(G) such that

(Af)r(a,b) = fr(ab), forall Randalla,b € G(R). (38)

Moreover,
€f = f(1) (constant function), (39)

and Sf is the element of O(G) such that
(Sf)r(a) = fr(a™'), forall R andalla € G(R). (40)

EXAMPLE 5.20 Recall that G, has coordinate ring k[ X ] with f(X) € k[X] acting as
ar> f(a)on G4(R) = R. Thering k[X] ® k[X] is a polynomial ring in X; = X ® 1 and
X=1Q®X,

k[X] ®k[X] ~ k[Xl,Xz],

and so G4 X G4 has coordinate ring k[ X1, X3] with F (X1, X») € k[ X1, X2] acting as (a,b) —
F(a,b) on G(R)x G(R). As (Af)r(a,b) = fr(a+b) (see (38)), we find that

(Af)(X1.X2) = f(X1+X2), [fe€OGy) =k[X];

in other words, A is the homomorphism of k-algebras k[X] — k[X] ® k[X] sending X to
X®1+1® X. Moreover,

€f = f(0) (= constant term of f),
and (Sf)r(a) = fr(—a), so that
(S/)IX) = f(=X).

EXAMPLE 5.21 For G = G,,, O(G) = k[X, X 1], A is the homomorphism of k-algebras
k[X, X 1= k[X, X 1®k[X, X !]sending X to X ® X, € is the homomorphism k[X] —
k sending f(X,X!) to f(1,1), and S is the homomorphism k[X, X~ !] — k[X,X!]
sending X to X 1.
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EXAMPLE 5.22 For G = GL,,
k(X11.X12,.... Xnn, Y]

O(G) = = k[X11,. s Xnns
@ =" aatx,) -1 LX)
and
Axig = ._12 Xij ® X jk é(xff) = S(xij) = yaji
Jj=1,...n e(xjj) = 0,i#] S(y) = det(x;;)
Ay = y®y ) =1 !

where a j; is the cofactor of x ;; in the matrix (x ;). Symbolically, we can write the formula
for A as
Alx) = (x) ® (x)

where (x) is the matrix with ij th entry x;;. We check the formula for A(x;):

(Axi)r ((@if), (b)) = (xi) g ((@if) (i) definition (38)
=2 aijbjk as (xx1) g ((¢i))) = cr
= (X j=1,..n%ij ®XK)R ((@if). (bij)) as claimed,

EXAMPLE 5.23 Let F be afinite group, and let A be the set of maps F' — k with its natural
k-algebra structure. Then A is a product of copies of k indexed by the elements of F'. More
precisely, let e; be the function that is 1 on ¢ and 0 on the remaining elements of F'. The
es’s are a complete system of orthogonal idempotents for A:

2

e; =eg, eger=0foro#7t, Y es=1.

The maps

1 ifo=1
0 otherwise

Alep)= Y eo®er, eleg) =

0,7 withot=p

. S(eg) =eym1.

define a bi-algebra structure on A with inversion S. Let (F); be the associated algebraic
group, so that
(F)k (R) = Homk—alg(A’ R).

If R has no idempotents other than 0 or 1, then a k-algebra homomorphism A — R must
send one ey to 1 and the remainder to 0. Therefore, (F); (R) >~ F, and one checks that
the group structure provided by the maps A, €, S is the given one. For this reason, (F);
is called the constant algebraic group defined by F (even though for k-algebras R with
nontrivial idempotents, (F); (R) may be bigger than F).

5h Commutative affine groups

A monoid or group G (resp. an algebra A) is commutative if and only if the diagram at
left (resp. the middle diagram) commutes, and a coalgebra or bi-algebra C is said to be
co-commutative if the diagram at right commutes:

t

GxG ——5GxG ARA — S A®A C®C - Cc®C
G A C

(41)
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In each diagram, ¢ is the transposition map (x,y) — (¥, X) or x® y > y @ x.

On comparing the first and third diagrams and applying the Yoneda lemma, we see
that an affine monoid or group is commutative if and only if its coordinate ring is co-
commutative.

5i Finite flat algebraic groups; Cartier duality

If (A,m,e, A €) is a bi-algebra over k and A is finitely generated and projective as a k-
module, then (4Y,AY,e¥,m",eV) is also a k-bialgebra (see and Proposition [5.7). If
moreover (A,m, e, A, €) is commutative (resp. co-commutative), then (4Y, AV, eV, m",e")
is co-commutative (resp. commutative).

An algebraic group G over k is said to be finite(resp. flat) if the k-algebra O(G) is
a finite (resp. flat). Thus G is finite and flat if and only if O(G) is finitely generated
and projective as a k-module (CA The coordinate ring O(G) of a commutative finite flat
algebraic monoid is a commutative co-commutative bi-algebra, and so its dual O(G)V is the
coordinate ring of a commutative finite flat algebraic monoid GV, called the Cartier dual
of G. If O(G) admits an inversion S, then SV is an algebra homomorphism, and so GV is
an algebraic group. To check that SV is an algebra homomorphism, we have to check that
AVo(SY®SY)=S8YoAY, or equivalently, that Ao S = (§ ® §) o A. In other words,
we have check the diagram at left below commutes. This corresponds (under a category
equivalence) to the diagram at right, which commutes precisely because G is commutative
(the inverse of a product is the product of the inverses):

0G) —25 0(G)®OG) G <™ GxG

lS lS@S Tinv Tinvxinv

0G) —2 0(G)®0G) G <2 GxG.
Note that GVY ~ G.

5j Quantum groups

Until the mid-1980s, the only Hopf algebras seriously studied were either commutative
or co-commutative. Then Drinfeld and Jimbo independently discovered noncommutative
Hopf algebras in the work of physicists, and Drinfeld called them quantum groups. There is,
at present, no definition of “quantum group”, only examples. Despite the name, a quantum
group does not define a functor from the category of noncommutative k-algebras to groups.

One interesting aspect of quantum groups is that, while semisimple algebraic groups
can’t be deformed (they are determined up to isomorphism by a discrete set of invariants),
their Hopf algebras can be. For g € k™, define A, to be the free associative (noncommuta-
tive) k-algebra on the symbols a, b, c,d modulo the relations

ba = qab, bc=cb, ca=gqac, dc=qcd,
db=qbd, da=ad+(q—q Ybc, ad=q 'bc=1.
This becomes a Hopf algebra with A defined by
Aa) = a®a+b®c
Aab_ab@abie Ab) = a®b+b®d
c d) \c d c d)’77 ) Ale) = c®a+d®c

Ad) = c®b+d®d
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and with suitable maps € and S. When ¢ = 1, A; becomes O(SL>), and so the A, can
be regarded as a one-dimensional family of quantum groups that specializes to SL, when
g — 1. The algebra A, is usually referred to as the Hopf algebra of SL;(2).

For bi-algebras that are neither commutative nor cocommutative, many statements in
this section become more difficult to prove, or even false. For example, while it is still true
that a bi-algebra admits at most one inversion, the composite of an inversion with itself need
not be the identity map (Dascalescu et al.|2001}, 4.27).

5k Terminology

From now on, “bialgebra” will mean “commutative bi-algebra” and “Hopf algebra” will
mean ‘“‘commutative bi-algebra that admits an inversion (antipode)” (necessarily unique).
Thus, the notion of a bialgebra is not self dual.'?

51 Exercises

To avoid possible problems, in the exercises assume k to be a field.

EXERCISE 5-1 For a set X, let R(X) be the k-algebra of maps X — k. For a second set
Y,let R(X)® R(Y) acton X xY by therule (f ® g)(x,y) = f(x)g(»).

(a) Show that the map R(X)® R(Y) — R(X xY) just defined is injective. (Hint:
choose a basis f; for R(X) as a k-vector space, and consider an element »_ f; ® g;.)

(b) Let I' be a group and define maps

A:R(I')— R(I'xT), (Af)(g.8) = f(gg)
€:R(I')—k, ef = f(1)

S:R(I") — R(I'), (S/)&) = flg™h.

Show that if A maps R(I") into the subring R(I") ® R(I") of R(I" x I'), then A, €, and S
define on R(I") the structure of a Hopf algebra.
(¢) If I is finite, show that A always maps R(I") into R(I") ® R(I").

EXERCISE 5-2 We continue the notations of the last exercise. Let I be an arbitrary group.
From a homomorphism p:I” — GL,(k), we obtain a family of functions g — p(g)i,;,
1<i,j <n,onG. Let R'(I') be the k-subspace of R(I") spanned by the functions arising
in this way for varying n. (The elements of R’(I") are called the representative functions
onl.)

(a) Show that R'(I') is a k-subalgebra of R(I").

(b) Show that A maps R’(I") into R'(I") ® R'(I").

(c) Deduce that A, €, and S define on R'(I") the structure of a Hopf algebra.
(Cft. |Abe|[1980, Chapter 2, §2; Cartier| 2007} 3.1.1.)

EXERCISE 5-3 Let G be the constant algebraic group over k defined by a finite commuta-
tive group I". Let n be the exponent of I, and assume that k contains n distinct nth roots
of 1 (so, in particular, n is not divisible by the characteristic of k). Show that the Cartier
dual of G is the constant algebraic group defined by the dual group Hom(/I",Q/Z).

1211 the literature, there are different definitions for “Hopf algebra”. Bourbaki and his school (Dieudonné,
Serre, ...) use “cogebre” and “bigebre” for “co-algebra” and “bi-algebra”.
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EXERCISE 5-4 If k has characteristic p # 0, show that o) ~ a;, and (Z/pZ); ~ pp
(hence 1) >~ (Z/pZ)y) (here (Z/pZ)k, |tp, and a)p are the groups in (3.3), (3.4), and
B3).

EXERCISE 5-5 Let A be a Hopf algebra. Prove the following statements by interpreting
them as statements about affine groups.

(a) SoS =idy.
(b) AoS=toS®SoAwheret(a®b) =b®a.
(c) €o0S =e.

(d) Themapa®b+> (a®1)AMD):A® A — AR A is a homomorphism of k-algebras.

Hints: (@)1 =e; (ab) L =b~la ;e ! =e.

EXERCISE 5-6 Show that there is no algebraic group G over k such that G(R) has two
elements for every k-algebra R.

EXERCISE 5-7 Verify directly that O(G,) and O(G,,) satisfy the axioms to be a Hopf
algebra.

EXERCISE 5-8 Verify all the statements in[5.23]

EXERCISE 5-9 A subspace V of a k-coalgebra C is a coideal it Ac(V)CVRC+CRV
and ec (V) =0.

(a) Show that the kernel of any homomorphism of coalgebras is a coideal and its image
is a sub-coalgebra.

(b) Let V be a coideal in a k-coalgebra C. Show that the quotient vector space C/V
has a unique k-coalgebra structure for which C — C/V is a homomorphism. Show
that any homomorphism of k-coalgebras C — D whose kernel contains V' factors
uniquely through C — C/ V.

(c) Deduce that every homomorphism f:C — D of coalgebras induces an isomorphism
of k-coalgebras

C/Ker(f)— Im(f).

Hint: show thatif f:V — V' and g: W — W' are homomorphisms of k-vector spaces, then

Ker(f ® g) =Ker(f)@W + V ® Ker(g).

EXERCISE 5-10 (cf. Sweedler 1969, 4.3.1). A k-subspace a of a k-bialgebra A is a bi-
ideal if it is both an ideal and a co-ideal. When A admits an inversion S, a bi-ideal a is a
Hopf'ideal if S(a) C a. In other words, an ideal a C A is a bi-ideal if

Ala) Ca® A+ A®a and
€(a) =0,

and it is a Hopf ideal if, in addition,

S(a) C a.
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(a) Show that the kernel of any homomorphism of bialgebras (resp. Hopf algebras) is a
bi-ideal (resp. Hopf ideal), and that its image is a bialgebra (resp. Hopf algebra).

(b) Let a be a bi-ideal in a k-bialgebra A. Show that the quotient vector space A/a has
a unique k-bialgebra structure for which A — A/a is a homomorphism. Show that
any homomorphism of k-bialgebras A — B whose kernel contains a factors uniquely
through A — A /a. Show that an inversion on A4 induces an inversion on A /a provided
that a is a Hopf ideal.

(c) Deduce that every homomorphism f:A — B of bialgebras (resp. Hopf algebras)
induces an isomorphism of bialgebras (resp. Hopf algebras),

A/Ker(f) — Im(f).

In this exercise it is not necessary to assume that A is commutative, although it becomes
simpler you do, because then it is possible to exploit the relation to affine groups in (5.15)).

6 Affine groups and affine group schemes

In the last section, we saw that affine groups over k correspond to group objects in the
opposite of the category of k-algebras (see §51). In this section we interpret this opposite
category as the category of affine schemes over k. Thus algebraic groups over k correspond
to group objects in the category of affine schemes over k. When k is a field, we use this
geometric interpretation to obtain additional insights.

In the first three subsections, k is a commutative ring, but starting in we require it
to be a field.

6a Affine schemes

Let A be commutative ring, and let V' be the set of prime ideals in A. The principal open
subsets of V are the sets of the form

D(f)y=1peVI|fép [feA

They form a base for a topology on V' whose closed sets are exactly the sets
Vie)={peV |pDa}, aanidealin A.

This is the Zariski topology, and the set V endowed with the Zariski topology is the (prime)
spectrum spec(A) of A.

Let ¢: A — B be a homomorphism commutative rings. For any prime ideal p in B, the
ideal 9 ~!(p) is prime because A /¢! (p) is a subring of the integral domain B/p. Therefore
@ defines a map

spec(g):spec B — spec A, p> @~ L(p),

which is continuous because the inverse image of D(f) is D(¢(f)). In this way, spec
becomes a contravariant functor from the category of commutative rings to topological
spaces.

Let A be a commutative ring. Let V' = spec A, and let BB be the set of principal open
subsets. Then B is closed under finite intersections because

D(fl"'fr):D(fl)ﬂ---mD(fr)-
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For a principal open subset D of V, define O4(D) = SEI A where Sp is the multiplicative
subset A \ Upe ppof A. If D = D(f), then Sp is the smallest saturated multiplicative
subset of A containing f, and so O4(D) >~ Ay (see CA . If D > D/, then Sp C
Sp’, and so there is a canonical “restriction” homomorphism O 4(D) — O 4(D’). These
restriction maps make D ~~ O 4(D) into a functor on B satisfying the sheaf condition: for
any covering D = | J;; D; of a principal open subset D by principal open subsets D;, the
sequence

0a(D) ~ 1., 0400 =]

is exact.!® For an open subset U of V, define O 4(U) by the exactness of

G,/ elxI Oa(DiNDj)

0aU) =[], 04 =]] Oa(DN D) (42)

(D,D")elIxI
where I ={D € B| D C U}. Clearly, U ~~ O 4(U) is a functor on the open subsets of V/,
and it is not difficult to check that it is a sheaf. The set / in (42)) can be replaced by any
subset of B covering U without changing O 4(U). In particular, if U = D(f), then

O4U) = O04(D(f)) = Ay.

Therefore, the stalk of O 4 at a pointp € V is

def

0, Elim,_ 04U)=lm _ O4(D(f)=lm  As= 4,

(for the last isomorphism, see CA [7.3)). In particular, the stalks of O 4 are local rings.

Thus from A we get a locally ringed space Spec(A) = (spec 4,0 4). An affine scheme
(V,Opy) is a ringed space isomorphic to Spec(A4) for some commutative ring A. A mor-
phism of affine schemes is morphism of locally ringed spaces, i.e., a morphism of ringed
spaces such that the maps of the stalks are local homomorphisms of local rings. A homo-
morphism A — B defines a morphism Spec B — Spec A of affine schemes.

PROPOSITION 6.1 The functor Spec is a contravariant equivalence from the category of
commutative rings to the category of affine schemes, with quasi-inverse (V,O) ~ O(V).

PROOF. Straightforward. O

We often write V for (V, ), and we call O(V) the coordinate ring of V. The reader
should think of an affine scheme as being a topological space V' together with the structure
provided by the ring O(V).

NOTES The above is only a sketch. A more detailed account can be found, for example, in|Mumford
1966, 11 §1.

6b Affine groups as affine group schemes

We now fix commutative ring k. An affine scheme over k (or an affine k-scheme) is an
affine scheme V together with a morphism V' — Speck. As a k-algebra is a commutative
ring together with a homomorphism k — A, we see that Spec defines a contravariant equiv-
alence from the category of k-algebras to the category of affine k-schemes. For any finite

13Recall that this means that the first arrow is the equalizer of the pair of arrows.
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family (A;);er of k-algebras, ;s A; is the direct sum of the A4; in the category of k-
algebras, and so Spec(®);<; 4;) is the direct product!* of the affine k-schemes Spec(4;).
It follows that finite products exist in the category of affine k-schemes, and so we can define
an affine group scheme over k to be a group object in this category (see [2.3).

THEOREM 6.2 The functor Spec defines an equivalence from the category of affine groups
over k to the category of affine group schemes over k.

PROOF. The functor Spec sends a k-algebra A equipped with a homomorphism A: A —
A ® A to an affine k-scheme V equipped with a morphism m: V x V — V. The pair (A4, A)
is an affine group if and only if there exist homomorphisms k-algebrae: A — k and S: 4 —
A such that the diagrams and commute (see [5.15). But such a pair (e, S) gives
rise to morphisms e:* — V and inv: V' — V such that the diagrams and commute
(and conversely).

[Alternatively, the functor Spec maps a pair (4,A), A:A - A® A, to a pair (V,m),
m:V xV — V. As h4(B) = (Spec A)(Spec B), we see that A defines a group structure on
h4(B) for all k-algebras B if and only if m defines a group structure on V(T') for all affine
k-schemes T. Therefore (A, A) is an affine group over k if and only if (V,m) is a group
object in the category of affine schemes over k.] O

We have constructed a realization of the category (Algy )°PP, and hence a realization of
affine k-groups as groups in a category. This construction has two main applications.

(a) A scheme is defined to be a locally ringed space that admits an open covering by
affine schemes, and a scheme V over k is a scheme together with a morphism V —
Speck. A group scheme over k is a group object in the category of schemes over
k. Therefore, our construction embeds the category of affine groups over k into the
much larger category of group schemes over k. This is important, but will not be
pursued here. The interested reader is referred to SGA3.

(b) When £k is a field, the affine scheme attached to an affine algebraic group can be
regarded as a variety over k (perhaps with nilpotents in the structure sheaf). This
gives us a geometric interpretation of the algebraic group, to which we can apply
algebraic geometry. This we explain in the remainder of this section.

6¢c The topology of an affine scheme

6.3 A topological space V is noetherian if every ascending chain of open subsets U; C
U, C --- eventually becomes constant. A topological space is irreducible if it is nonempty
and not the union of two proper closed subsets. Every noetherian topological space V' can
be expressed as the union of a finite collection I of irreducible closed subsets:

v=Jw|wer.

Among such collections I there is exactly one that is irredundant in the sense that no sub-
set in / contains a second (CA [12.10). The elements of this / are called the irreducible
components of V.

14Fibred product over Speck in the category of all schemes.



56 I. Basic Theory of Affine Groups

6.4 When A is a noetherian ring, every descending chain of closed subsets in spec(A4)
eventually becomes constant, and so spec(A) is noetherian. Moreover, the map a — V' (a)
defines one-to-one correspondences

radical ideals <> closed subsets
prime ideals <> irreducible closed subsets

maximal ideals <> one-point sets.

The ideal corresponding to a closed set W is I(W) = ({p | p € W}. The nilradical 9 of
A is the smallest radical ideal, and so it corresponds to the whole space spec(A). Therefore
spec(A) is irreducible if and only if 9% is prime.

For the remainder of this section, we assume that k is a field.

6d Affine k-algebras

An affine k-algebra is a finitely generated k-algebra A such that k¥ ®j A is reduced. If
A is affine, then K ®j A is reduced for all fields K containing k; in particular, A itself
is reduced (CA [18.3). When k is perfect, every reduced finitely generated k-algebra is an
affine k-algebra (CA [18.1)). The tensor product of two affine k-algebras is again an affine

k-algebra (CA[18.4).

6e Schemes algebraic over a field

Let k be a field, and let V be an affine k-scheme. When Oy (V) is a finitely generated
k-algebra (resp. an affine k-algebra), V is called an affine algebraic scheme over k (resp.
an affine algebraic variety over k).

For schemes algebraic over a field it is convenient to ignore the nonclosed points and
work only with the closed points. What makes this possible is that, for any homomorphism
¢: A — B of algebras finitely generated over a field, Zariski’s lemma shows that the pre-
image of a maximal ideal in B is a maximal ideal in 4.1

For a finitely generated k-algebra A, define spm(A) to be the set of maximal ideals in
A endowed with the topology for which the closed sets are those of the form

V(a) o {m maximal | m D a}, aanidealin A.

The inclusion map spm(A) < spec(A) identifies spm(A) with the set of closed points of
spec(A), and the map S — S Nspm(A) is a bijection from the open (resp. closed) subsets
of spec(A) onto the open (resp. closed) subsets of spm(A4). As noted, Zariski’s lemma
shows that spm is a contravariant functor from the category of finitely generated k -algebras
to topological spaces. On V' = spm(A) there is a sheaf Oy such that Oy (D(f)) >~ A s for

Recall (CA that Zariski’s lemma says that a field K that is finitely generated as an algebra over a
subfield k is, in fact, finitely generated as a vector space over k. Let ¢: A — B be a homomorphism of finitely
generated k-algebras. For any maximal ideal m in B, B/m is a field, which Zariski’s lemma shows to be finite
over k. Therefore the image of 4 in B/m is finite over k. As it is an integral domain, this implies that it is a
field, and so ¢~ (m) is a maximal ideal.
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all f € A. It can be defined the same way as for spec(A), or as the restriction to spm(A4) of
the sheaf on spec(A). When working with affine algebraic schemes (or varieties), implicitly
we use max specs. In other words, all points are closed.

When £ is algebraically closed, the definition of an affine algebraic variety over k that
we arrive at is essentially the same as that in AG, Chapter 3 — see the next example.

EXAMPLE 6.5 Let k be an algebraically closed field, and endow k" with the topology for
which the closed sets are the zero-sets of families of polynomials. Let V' be a closed subset
of k™, let a be the set of polynomials that are zero on V, and let

k[V]=k[X1,...,Xn]/a=k[x1,...,Xn].
A pair of elements g,/ € k[V] with h #£ 0 defines a function
P %:D(h)—wc

on the open subset D (k) of V' where & is nonzero. A function f:U — k on an open subset
U of V is said to be regular if it is of this form in a neighbourhood of each point of U. Let
O(U) be the set of regular functions on U. Then U ~~ O(U) is a sheaf of k-algebras on V,
and (V, O) is an affine algebraic scheme over k with O(V) = k[V]. See AG[3.4— the map

(ai,....,ap) > (x1—ai,....,.xp—ay):V — spm(k[V])

is a bijection because of the Nullstellensatz. When V = k", the scheme (V,O) is affine
n-space A".

EXAMPLE 6.6 Let k be an algebraically closed field. The affine algebraic scheme Spm(k[X,Y]/(Y))
can be identified with the scheme attached to the closed subset Y = 0 of k x k in (6.5). Now

consider Spm(k[X,Y]/(Y?)). This has the same underlying topological space as before

(namely, the x-axis in k x k), but it should now be thought of as having multiplicity 2, or as

being a line thickened in another dimension.

6.7 Let K be a field containing k. An affine algebraic scheme V over k defines an affine
algebraic scheme Vg over K with O(Vk) = K ®; O(V).

6.8 An affine algebraic scheme V over a field k is said to be reduced if O(V) is reduced,
and it is said to be geometrically reduced if Vja is reduced. Thus V is geometrically
reduced if and only if O(V) is an affine k-algebra, and so a “geometrically reduced affine
algebraic scheme” is another name for an “affine algebraic variety”. Let 91 be the nilradical
of O(V). Then

V is reduced <= 91 = 0;
V is irreducible <= 91is prime;
V is reduced and irreducible <= O(V) is an integral domain.

The first statement follows from the definitions, the second statement has already been noted
(p-[56), and the third statement follows from the first two.



58 I. Basic Theory of Affine Groups

6.9 Recall (CA [3.12) that the height ht(p) of a prime ideal p in a noetherian ring A is the
greatest length d of a chain of distinct prime ideals

POP1D-DPg,
and that the Krull dimension of A is

sup{ht(m) | m € spm(A4)}.

6.10 The dimension of an affine algebraic scheme V is the Krull dimension of O(V) —

this is finite (CA [I3.11). When V is irreducible, the nilradical 91 of O(V) is prime, and
so O(V)/M is an integral domain. In this case, the dimension of V' is the transcendence
degree over k of the field of fractions of O(V)/M, and every maximal chain of distinct
prime ideals in O(V) has length dim V' (CA [13.8). Therefore, every maximal chain of
distinct irreducible closed subsets of V' has length dim V. For example, the dimension of
A" is the transcendence degree of k(X1,..., X,) over k, which is n.

6f Algebraic groups as groups in the category of affine algebraic schemes

Finite products exist in the category of affine algebraic schemes over k. For example, the
product of the affine algebraic schemes V' and W is Spec(O(V) ® O(W)), and * = Spm(k)
is a final object. Therefore monoid objects and group objects are defined. A monoid (resp.
group) in the category of affine algebraic schemes over k is called an affine algebraic
monoid scheme (resp. affine algebraic group scheme) over k.

As the tensor product of two affine k-algebras is again affine (§6d), the category of
affine algebraic varieties also has products. A monoid object (resp. group object) in the
category of affine algebraic varieties is called an affine monoid variety (resp. affine group
variety).

An affine algebraic scheme V' defines a functor

def

R~ V(R) = Homy 5 (O(V). R), (43)

from k-algebras to sets. For example, A”(R) ~ R" for all k-algebras R. Let V' be the
functor defined by V. It follows from and the Yoneda lemma that V' ~ V' is an
equivalence from the category of algebraic schemes over k to the category of functors from
k-algebras to sets representable by finitely generated k-algebras. Group structures on V
correspond to factorizations of V'’ through the category of groups. Thus V ~» V' is an
equivalence from the category of affine algebraic group schemes over k to the category
of functors Alg;, — Grp representable by finitely generated k-algebras, with quasi-inverse
G ~ Spm(O(G)).

The functor V ~» O(V') is an equivalence from the category of algebraic schemes over k
to the category of finitely generated k-algebras (cf. [6.1). Group structures on V' correspond
to Hopf algebra structures on O(V'). Thus V ~» O(V) is a contravariant equivalence from
the category of affine algebraic group schemes over k to the category of finitely generated
Hopf algebras over k.

SUMMARY 6.11 Let k be a field. There are canonical equivalences between the following
categories:

(a) the category of affine algebraic groups over k;
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(b) the category of functors Alg;, — Grp representable by finitely generated k-algebras;
(c) the opposite of the category of finitely generated Hopf algebras over k;
(d) the category of affine algebraic group schemes over k.

There is a similar statement with “group” and “Hopf algebra” replaced by “monoid” and
“bi-algebra”.

For an affine algebraic group G, we let (|G|, O(G)), or just |G|, denote the correspond-
ing affine group scheme (or group variety); thus |G| = Spm(O(G)). The dimension of an
algebraic group G is defined to be the Krull dimension of O(G). When O(G) is an integral
domain, this is equal to the transcendence degree of O(G) over k (CA[13.8).

IS THE SET |G| A GROUP?

Not usually. The problem is that the functor spm does not send sums to products. For
example, when k; and k, are finite field extensions of k, the set spm(k; ®p k2) may have
several points'® whereas spm(k1) x spm(k») has only one. For an algebraic group G, there
is a canonical map |G x G| — |G| x |G|, but the map

|G xG|— |G|

defined by m need not factor through it.

However, |G| is a group when k is algebraically closed. Then the Nullstellensatz shows
that |G| >~ G(k), and so |G| inherits a group structure from G (k). To put it another way,
for finitely generated algebras A; and A, over an algebraically closed field k,

spm(A; ® Az) ~ spm(A1) X spm(42) (44)

(as sets, not as topological spaces'”), and so the forgetful functor (V,0) ~ V sending an
affine algebraic scheme over k to its underlying set preserves finite products, and hence also
monoid objects and group objects.

Assume k is perfect, and let I' = Gal(k®/k). Then |G| ~ I'\G(k¥) and G(k) ~
G(k™T. In other words, |G| can be identified with the set of I'-orbits in G(k?') and
G (k) with the set of I"-orbits consisting of a single point. While the latter inherits a group
structure from G (k), the former need not.

The situation is worse with spec. For example, fails for spec even when k is
algebraically closed.

16For example, if k1/k is separable, then
ky = kla] ~ k[X]/(f)

for a suitable element a and its minimum polynomial f. Let f = fj--- fr be the factorization of f into its
irreducible factors in k, (they are distinct because k1 /k is separable). Now

ki @ ko = ko [X)/ (i fr) = [T kalX1/(fi)

by the Chinese remainder theorem. Therefore spm(k; ®y k2) has r points.

7When regarded as a functor to topological spaces, (V,0) ~» V does not preserve finite products: the
topology on V' x W is not the product topology. For an affine algebraic group G, the map m: |G| x |G| — |G|
is not usually continuous relative to the product topology, and so |G| is not a topological group for the Zariski

topology.
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6g Terminology

From now on “group scheme” and “algebraic group scheme” will mean “affine group
scheme” and “affine algebraic group scheme”; similarly for “group variety”, “monoid

variety”, “monoid scheme” and “algebraic monoid scheme”.

6h Homogeneity

Let G be an algebraic group over a field k. An element a of G(k) defines an element of
G(R) for each k-algebra R, which we denote ag (or just a). Let e denote the identity
element of G (k).

PROPOSITION 6.12 For each a € G(k), the natural map
L,:G(R) — G(R), gr>agg,
is an isomorphism of set-valued functors. Moreover,
L, =idg and Loo Ly = L,p, alla,b € G(k).
Here e is the neutral element in G (k).
PROOF. The second statement is obvious, and the first follows from it, because the equali-

ties
La oLa—l = Le = ldG

show that L, is an isomorphism. o

The homomorphism O(G) — O(G) defined by L, is the composite of the homomor-

phisms

0(G) 2 0(6)20G) 2229 k 8 0(G) ~ 0(G). 45)

For a € G(k), we let m, denote the kernel of a: O(G) — k; thus

mg ={f € 0(G) | fk(a) =0}

(see the notations[2.16)). Then O(G)/m, =~ k, and so m, is a maximal ideal in O(G). Note
that O(G ), is the ring of fractions obtained from O(G) by inverting the elements of the
multiplicative set { f € O(G) | fx(a) # 0}.

PROPOSITION 6.13 For eacha € G(k), O(G)m, =~ O(G)m,-

PROOF. The isomorphism £,: O(G) — O(G) corresponding (by the Yoneda lemma) to L,
is defined by £,(f)r(g) = fr(arg), all g € G(R). Therefore, {;'m, = m,, and so £,
extends to an isomorphism O(G)m, — O(G)n, (because of the universal property of rings
of fractions; CA[6.1). O

COROLLARY 6.14 When k is algebraically closed, the local rings O(G ), at maximal ide-
als m of O(G) are all isomorphic.
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PROOF. When £ is algebraically closed, the Nullstellensatz (CA [11.6)) shows that all max-
imal ideals in O(G) are of the form m, for some a € G (k). o

6.15 The corollary fails when k is not algebraically closed. For example, for the algebraic
group 3 over Q,

KIX)  kIX] kLX)
(X3—-1) (X-1) (X24+X+1)

O(u3) = ~ QxQ[v-3],

and so the local rings are Q and Q[+ —3].

6i Reduced algebraic groups
An algebraic group G is reduced if |G| is reduced, i.e., if O(G) has no nilpotents.

PROPOSITION 6.16 Let G be a reduced algebraic group over a field k. If G(K) = {1} for
some algebraically closed field K containing k, then G is the trivial algebraic group, i.e.,
OG) =k.

PROOF. Every maximal ideal of O(G) arises as the kernel of a homomorphism O(G) —
K (Nullstellensatz, CA [I1.5), and so O(G) has only one maximal ideal m. As O(G) is
reduced, the intersection of its maximal ideals is zero (CA [I1.8)), and so m = 0. Therefore
O(G) is afield. It contains k, and the identity element in G is a homomorphism O(G) — k,
and so O(G) =k. o

6.17 The proposition is false for nonreduced groups. For example, o, (K) = {1} for every
field K containing k, but c, is not the trivial group.

PROPOSITION 6.18 Let G be an algebraic group over a perfect field k, and let )t be
the nilradical of O(G). There is a unique Hopf algebra structure on O(G)/M such that
O(G) = O(G) /M is a homomorphism of Hopf algebras. Let Greg — G be the correspond-
ing homomorphism of algebraic groups. Every homomorphism H — G with H a reduced
algebraic group factors uniquely through Gq — G.

PROOF. Let A = O(G) and Areq = O(G)/IN. Then Areq is a finitely generated reduced
algebra over a perfect field, and so it is an affine k-algebra (. Hence Areq ®p Areq 18
also an affine k-algebra. In particular, it is reduced, and so the map

A
A— AR A — Ared @ Ared

factors through A.q. Similarly, S and € are defined on A4, and it follows that there exists a
unique structure of a Hopf algebra on A;eq such that A — Aeq is @ homomorphism of Hopf
algebras. Every homomorphism from A to a reduced k-algebra factors uniquely through
A — Apeq, from which the final statement follows. o

The algebraic group Giq is called the reduced algebraic group attached to G.

)G
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6.19 When k is not perfect, a Hopf algebra structure on 4 need not pass to the quotient
A /M. For example, let k be a field of characteristic 2, and let @ be a nonsquare in k. Then
R~ G(R) = {x € R| x* = ax?} is an additive commutative algebraic group, but O(G)/N
is not a Hopf algebra quotient of O(G) (see Exercise[13-7]below).

NOTES Geq is an affine subgroup of G if A;eq ® Areq is reduced.

6j Smooth algebraic schemes
We review some definitions and results in commutative algebra.

6.20 Let m be a maximal ideal of a noetherian ring A4, and let n = mA,, be the maximal
ideal of the local ring Ay,; for all natural numbers r < s, the map

a+m®—a+n*:m"/m® —n"/n’
is an isomorphism (CA [6.7).

6.21 Let A be a local noetherian ring with maximal ideal m and residue field k. Then
m/m? is a k-vector space of dimension equal to the minimum number of generators of
m (Nakayama’s lemma, CA . Moreover, ht(m) < dimy (m/m?) (CA , and when
equality holds A is said to be regular. Every regular noetherian local ring is an integral

domain (CA[I7.3).

6.22 A point m of an affine algebraic scheme V is said to be regular if the local ring
O(V)m is regular, and V is said to be regular if all of its closed points are regular.'® A reg-
ular affine algebraic scheme is reduced. To see this, let f be a nilpotent element of O(V);
as f maps to zero in O(V )y, sf = 0 for some s € O(V) \ m; therefore the annihilator of
f is an ideal O(V') not contained in any maximal ideal, and so it equals O(V).

6.23 An affine algebraic scheme V' over k is said to be smooth if Vi is regular. If V is
smooth, then Vi is regular for all fields K containing k; in particular, V itself is regular
(CA[18.14). If V is smooth, then it follows from that O(V) is an affine k-algebra,
and so V is an algebraic variety. Every affine algebraic variety contains a regular point (CA

[18.15).

6k Smooth algebraic groups

An algebraic group G is said to be smooth if |G| is smooth, and it is connected if |G| is
connected (as a topological space).

PROPOSITION 6.24 Let H be an algebraic subgroup of an algebraic group G. Thendim H <
dimG, and dim H < dim G if G is smooth and connected and H # G.

PROOF. Because O(H) is a quotient of O(G), dim(O(H)) < dim(O(G)). If G is smooth
and connected, then O(G) is an integral domain; if H # G, then dim H < dimG by (CA
[13.3). 0

18This then implies that local ring at every (not necessarily closed) point is regular (for a noetherian ring A,
if Am is regular for all maximal ideals, then Ay, is regular for all prime ideals (CA[I7.5p).
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PROPOSITION 6.25 An algebraic group G over an algebraically closed field k is smooth if
and only if O(G ), is regular, where m, = Ker(e: O(G) — k).

PROOF. If O(G)y, is regular for m = m,, then O(G),, is regular for all m by homogeneity
(6.13). Hence G is smooth. .

PROPOSITION 6.26 (a) An algebraic group G is smooth if and only if |G| is geometrically
reduced (i.e., an algebraic variety).
(b) An algebraic group G over a perfect field is smooth if and only if |G| is reduced.

PROOF. (a) If G is smooth, then |G| is an algebraic variety by (6.23). For the converse, we
have to show that G is regular. According to (6.23), Gy has a regular point, and so, by
homogeneity (6.13)), all of its points are regular.

(b) When k is perfect, a finitely generated k-algebra A is reduced if and only if k¥ ® A
is reduced (see CA [I8.1)). Thus (b) follows from (a). o

COROLLARY 6.27 An algebraic group G over an algebraically closed field k is smooth if
every nilpotent element of O(G) is contained in m2.

PROOF. Let G be the reduced algebraic group attached to G (see , and let e be the
neutral element of G (k). By definition, O(G) = O(G)/M where N is the nilradical of
O(G). Every prime ideal of O(G) contains 91, and so the prime ideals of O(G) and O(G)
are in natural one-to-one correspondence. Therefore m, and mz have the same height, and

SO
dimO(G)m; = dimO(G),

(Krull dimensions). The hypothesis on O(G) implies that
me/ mﬁ —mg/ mé

is an isomorphism of k-vector spaces. Because |G| is a reduced, G is smooth (6.26); in
particular, O(G ), is regular, and so

dimy (mz/m2) = dim O(G ),
Therefore
dimy (me/m3) = dim O(G ), .
and so O(G ), is regular. This implies that G is smooth (6.25)). o

6.28 A reduced algebraic group over a nonperfect field need not be smooth. For example,
let k be such a field, so that char(k) = p # 0 and there exists an element a of k that is not
a pth power. Then the subgroup G of G, x G, defined by Y? = aX? is reduced but not
smooth. Indeed,

OG)=k[X,Y]/(YP —aX?P),

which is an integral domain because Y ? —a X ? is irreducible in k[ X, Y], but

O(Gya) = kX, Y]/(YP —aX?P) = k¥[x, y]
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contains the nilpotent element y — a%x. The reduced subgroup (Gga)red Of Gga is the
subgroup of G4 x G, is defined by ¥ = a%X , which is not defined over k (as a subgroup
of G4 x Gyp).

Note that G is the kernel of (x,y) — y? —ax?:G, x G, 2 Gg. Therefore, although
Ker(otga) is (of course) defined over k, Ker(otja)req is not.

61 Algebraic groups in characteristic zero are smooth (Cartier’s theorem)
We first prove two lemmas.

LEMMA 6.29 Let V and V' be vector spaces over a field,' and let W be a subspace of V.
ForxeV,yeV/,
XRyeWV' < xeWory=0.

PROOF. The element x ® y lies in W ® V'’ if and only if its image in V@ V'/W ® V' is
zero. But
VRV /WRV ~(V/W)V’,

and the image X ® y of x ® y in (V/ W) ® V' is zero if and only if X = 0 or y = 0. o

LEMMA 6.30 Let (A, A,€) be a Hopf algebra over k, and let I = Ker(¢).

(a) Asak-vector space, A=ke&®I.
(b) Foranya €1,
Ald)=a®1+1®a modl Q1.

PROOF. (a) The maps k — A > k are k-linear, and compose to the identity. Therefore
A=k®I anda € A decomposes asa =€(a)+ (a—¢€(a)) €k D 1.
(b)Fora € A, writtea = a’ +a” witha’ = €(a) €k and a” € I. Let

Al@) =) b®c, b,ceA.
From the commutativity of the second diagram in (29)), p.[42] we find that

I®a=)YbQ®c ink®A
a®l=>Ybh®c inAQk.

Therefore
Ala)—a®1-1Qa=>.(b®@c—-b' ®c—bR)
— Z(b”@c”—b’@c/)
=-—>b®c modl®I.
Now

((e,€)0 ) (a) = (€,6)(X_b®c) =3 b'®’
((e.€)oA)(a) = (e-€)(a) =€(a)  (ase-e = (e.e)o0 A, @), p.2).
andso Y b’ ®c =0ifael. o

191t suffices to require V and V’ to be modules over a ring with V/ faithfully flat.
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THEOREM 6.31 (CARTIER||1962) Every algebraic group over a field of characteristic zero
is smooth.

PROOF. We may replace k with its algebraic closure. Thus, let G be an algebraic group
over an algebraically closed field k of characteristic zero, and let A = O(G). Letm =m, =
Ker(€). Let a be a nilpotent element of A; according to (6.27), it suffices to show that a lies
in m?.

If @ maps to zero in Ay, then it maps to zero in Ay /(mAy)?, and therefore in A/m? by
(6.20), and so a € m2. Thus, we may suppose that there exists an 7 > 2 such that ¢” = 0 in
A but a1 #£0in Ay,. Now sa” = 0 in A for some s ¢ m. On replacing a with sa, we
find that a” = 0in A but a”~! # 0 in Ay,

Now a € m (because A/m = k has no nilpotents), and so (see [6.30)

Ala)=a®@1+1®a+y with yem®;m.
Because A is a homomorphism of k-algebras,
0=A@") =(Aa)"=(@R1+1®a+y)". (46)
When expanded, the right hand side becomes a sum of terms
a"®1, n@'@l)-(1®a+y), @D'A®a)y’ (h+i+j=ni+j=>2).
As a" = 0 and the terms with i 4 j > 2 lie in 4 ® m?, equation (46)) shows that
na" '@a+n@" '®1)y e AQm?,

and so
na" '®aeca" 'm®A+A®m?* (inside A ®j A).

In the quotient A ® (4/m?) this becomes
na" '®aca" 'm®A/m? (inside A ® A/m?). (47)

Note that a”~! ¢ a"!'m, because if a”~! = a”"~'m with m € m, then (1 —m)a"" ' =0
and, as 1 —m is a unit in Ay, this would imply a”~! = 0 in A, which is a contradiction.
Moreover 7 is a unit in 4 because it is a nonzero element of k. We conclude that na” ! ¢
a™ 'm, and so (see[6.29) @ = 0. In other words, @ € m?, as required. o

COROLLARY 6.32 Let G be an algebraic group over a field of characteristic zero. If
G(K) = {1} for some algebraically closed field K, then G is the trivial algebraic group.

PROOF. According to the theorem, G is reduced, and so we can apply Proposition[6.16]

ASIDE 6.33 Let k be an arbitrary commutative ring. A functor F: Alg, — Set is said to be formally

smooth if, for any k-algebra A and nilpotent ideal n in A, the map F(A) — F(A/n) is surjective.

A k-scheme X is smooth over k if it is locally of finite presentation and the functor A ~~ X(A4) &t

Homyg (Spec A, X) is formally smooth. There is the following criterion (SGA1, II):

a finitely presented morphism is smooth if it is flat and its geometric fibres are nonsin-
gular algebraic varieties.

Therefore, when the ring k contains a field of characteristic zero, Cartier’s theorem (6.31) shows
that every flat affine group scheme of finite presentation over k is smooth.
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6m Smoothness in characteristic p # 0

THEOREM 6.34 An algebraic group G over an algebraically closed field k of characteristic
p # 0 is smooth if O(G) has the following property:

acO(G), a? =0 = a=0. (48)

PROOF. Let a be a nilpotent element of O(G). As in the proof of Theorem we may
suppose that @ = 0 in O(G) but a”~! # 0 in O(G)n,. If p|n, then (a%)p =0, and so
ar = 0, which is a contradiction. Therefore » is nonzero in k, and the argument in the
proof of Theorem shows that a € mg. o

COROLLARY 6.35 For all r > 1, the image of a — a? :O(G) — O(G) is a Hopf subal-
gebra of O(G), and for all sufficiently large r, it is a reduced Hopf algebra.

PROOF. Let k be a field of characteristic p # 0. For a k-algebra R, we let fg denote the
homomorphism a — a?: R — R. When R = k, we omit the subscript. We let s R denote

the ring R regarded as a k-algebra by means of the map k i) k — R. Let G be an
algebraic group over k, and let G(P) be the functor R ~» G( #R). This is represented by
k ® rx O(G) (tensor product of O(G) with k relative to the map f:k — k),

O(G) — k® 11 O(G)

L

k —— k,

and so it is again an algebraic group. The k-algebra homomorphism fg:R — s R de-
fines a homomorphism G(R) — GP)(R), which is natural in R, and so arises from a
homomorphism F: G — G (P of algebraic groups. This homomorphism corresponds to the
homomorphism of Hopf algebras

c®a > cal:0(GP) > O(G).

When k is perfect, this has image O(G)?, which is therefore a Hopf subalgebra of O(G)
(Exercise[5-10). On repeating this argument with f and F replaced by f” and F”, we find
that O(G)?" is a Hopf subalgebra of O(G).

Concerning the second part of the statement, because the nilradical 9t of O(G) is
finitely generated, there exists an exponent n such that a” = 0 for all @ € 0. Let r be
such that p” > n; then a?” = 0 for all a € M. With this r, O(G)?" satisfies lml Asitisa
Hopf algebra, it is reduced. O

NOTES The first part of (6.35) only requires that k be perfect (probably the same is true of the
remaining statements).



6. Affine groups and affine group schemes 67

6n Transporters

Recall that an action of a monoid G on a set X is a map

(g.x)>gx:GxX > X

such that

(@) (8182)x = g1(g2x) forall g1,82 € G, x € X, and
(b) ex = x for all x € X (here e is the identity element of G).

Now let G be an affine monoid over k, and let X be a functor from the category of k-
algebras to sets, i.e., an object of Alg,\c’. An action of G on X is a natural transformation
G x X — X such that G(R) x X(R) — X(R) is an action of the monoid G(R) on the set
X(R) for all k-algebras R. Let Z and Y be subfunctors of X. The transporter Tg(Y,Z)
of Y into Z is the functor

R~ {geG(R)|gY CZ},

where the condition gY C Z means that gY(R’) C Z(R’) for all R-algebras R/, i.e., that
gY C Z as functors on the category of R-algebras.

In the remainder of this subsection, we shall define the notion of a closed subfunctor,
and prove the following result.

THEOREM 6.36 Let G x X — X be an action of an affine monoid G on a functor X, and
let Z and Y be subfunctors of X such that Z is closed in X. If' Y is representable, then
T (Y, Z) is represented by a quotient of O(G).

CLOSED SUBFUNCTORS

A subfunctor Z of a functor Y from Alg; to Set is said to be closed if, for every k-algebra
A and map of functors 14 — Y, the fibred product Z xy h“ is represented by a quotient of
A. The Yoneda lemma identifies a map 44 — Y with an element « of Y(A), and, for any
k-algebra R,

(z Xy hA) (R) = {p: A — R | ¢(a) € Z(A)).

Thus, Z is closed in Y if and only if, for every k-algebra A and o € Y(A), the functor of
k-algebras
R~~{p:A— R|p(a) e Z(A)}

is represented by a quotient of A4; i.e., there exists an ideal a C A such that, for a homomor-
phism ¢: A — R of k-algebras,

aRr € Z(R) < ¢(a) =0,
where o g is the image of @ under Y (A4) — Y(R).

EXAMPLE 6.37 Let Z be a subfunctor of ¥ = h® for some k-algebra B. For the identity
map hB — Y, the functor Z xy h® = Z. Therefore, if Z is closed in A5, then it represented
by a quotient of B. Conversely, let Z C h® is the functor defined by an ideal b C B, i.e.,

Z(R) = {¢: B — R | ¢(b) = 0}.
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Then Z is closed because, for any a: B — A, the functor Z x5 h4 is
R~~{p:A— R|poa € Z(R)},
which is represented by A4 /a(b).%°
EXAMPLE 6.38 Let Y be the functor A" = (R ~» R"). A subfunctor of A" is closed if

and if it is defined by a finite set of polynomials in k[X7,..., X,] in the sense of This
is the special case B = k[X1,..., X,] of Example[6.37]

For a k-algebra B and functor X:Algp — Set, we let ITg,; X denote the functor R ~
X(B ® R) (cf. §d).
LEMMA 6.39 If Z is a closed subfunctor of X, then, for any k-algebra B, Ig/Z is a
closed subfunctor of I1g ;. X .

PROOF. Let A be a k-algebra, and o € X (B ® A). To prove that ITp,; Z is closed in
I1p/i X we have to show that there exists an ideal a C 4 such that, for every homomorphism
¢: A — R of k-algebras,

(BRg)(@) € Z(BRR) < ¢(a) =0.
Because Z is closed in X, there exists an ideal b C B ® A such that
(BRo)a)e Z(B®R) <— (B®y)(b) =0. (49)

Choose a basis (e;);ey for B as k-vector space. Each element b of B ® A can be expressed
uniquely as b =) ;c;e; ® b;, b; € A, and we let a be the ideal in A generated by the
coordinates b; of the elements b € b. Then b C B ® a, and a is the smallest ideal in 4 with
this property, i.e.,

aCad & bCB®d (d anidealin A). (50)

On applying with @’ = Kerg, we see that
a C Ker(p) <= b C B®Ker(¢p) =Ker(BQ¢).

Combined with (#9)), this shows that a has the required property. o

LEMMA 6.40 If Z is a closed subfunctor of X, then, for any map T — X of functors,
T xx Z is a closed subfunctor of T .

PROOF. Let h4 — T be a map of functors. Then h4 xr T xx Z >~ hA Xy Z, and so the
statement is obvious. O

LEMMA 6.41 LetZ andY be subfunctors of a functor X, and let G x X — X be an action
of an affine monoid G on X. Assume Y = h®. For a k-algebra R, let yg € Y(R® B) be
the homomorphism b +— 1®b: B — R® B. Then

Te(Y.Z)(R) ={g € G(R) | gyr € Z(R® B)}.

20More generally, if Y is the functor of k-algebras defined by a scheme Y, then the closed subfunctors of
Y are exactly those defined by closed subschemes of Y.
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PROOF. Certainly, LHSDRHS. For the reverse inclusion, let R’ be an R-algebra, and let
a € Y(R') = Hom(B, R’). Then yg maps to & under the map Y(R ® B) — Y(R’) defined

byR—>R’andBi>R’, and so

gYRE€EZ(R®B) = ga € Z(R'). -

We now prove Theorem We may suppose that ¥ = 2. Lemma shows that
T(Y,Z) =G xmp, x gk Z,

where G — I, X is the natural transformation g — gygr:G(R) — X(R ® B). Lemma
[6-39] shows that [Tg/x Z is a closed subfunctor of [T/ X, and so it follows from (6.40)
that 7 (Y, Z) is a closed subfunctor of 29 . This means that it is represented by a quotient
of O(G).

ASIDE 6.42 The assumption that k is a field was used in this subsection only to deduce in the proof
of Lemmal6.39|that B is free as a k-module. Thus Theorem [6.36]is true over a commutative ring k
when Y is a representable by a k-algebra B that is free as a k-module (or, more generally, locally
free; cf. DG, §2, 7.7, p. 65).

60 Appendix: The faithful flatness of Hopf algebras

In this subsection, we prove the following very important technical result.

THEOREM 6.43 For any Hopf algebras A C B over a field k, B is faithfully flat over A.

For any field k¢’ D k, the homomorphism A — k’ ® A is faithfully flat, and so it suffices
to show that k' ® B is faithfully flat over k' ® A (CA [0.4). Therefore we may suppose that
k is algebraically closed.

Let 9:H — G be a homomorphism of affine groups such that O(H — G) = B <« A.

CASE THAT A 1S REDUCED AND A AND B ARE FINITELY GENERATED.

We begin with a remark. Let V' be an algebraic scheme over an algebraically closed field.
Then V is a finite union V = V; U--- UV, of its irreducible components . Assume
that V' is homogeneous, i.e., for any pair (a,b) of points of V, there exists an isomorphism
V — V sending a to b. Then V is a disjoint union of the V;. As each V; is closed, this
means that the V; are the connected components of V. In particular, they are open. When
V; is reduced, the ring O(V;) is an integral domain.

We now regard H and G as algebraic group schemes, i.e., we write H and G for
|H| and |G|. Then H and G are disjoint unions of their connected components, say H =
Llies Hiand G = |;c; G;. Because G is reduced, each ring O(G;) is an integral domain,
and O(G) =[] jes O(G ). Each connected component H; of H maps into a connected
component G ;) of G. Themap i — i(;j): I — J is surjective, because otherwise O(G) —
O(H) would not be injective (any f € O(G) such that f|G; = 0 for j # jo would have
foa=0).

Let H° and G° be the connected components of H and G containing the identity ele-
ments. Then H° maps into G°. Because G is reduced, O(G°) is an integral domain, and so
the generic flatness theorem (CA[9.12} CA[16.9) shows that there exists a b € H° such that
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O(H ), is faithfully flat over O(H ), Homogeneity, more precisely, the commutative
diagrams

H -2 u O(H)m, < O(H)m,
| | I I
¢ X, ¢ OG)m, e OG)m,

(see , now implies that O(H ), is faithfully flat over O(G ), for all b € H. Hence
O(H) is flat over O(G) (CA[.9), and it remains to show that the map (of sets) ¢: H — G is
surjective (CA[9.10k). According to (CA[12.14), the image of H — G contains a nonempty
open subset U of G°. For any g € G°, the sets U ~! and Ug ™! have nonempty intersection.
This means that there exist u,v € U such that u=! = vg™!, and so g = uv € U. Thus the
image of ¢ contains G°, and the translates of G° by points in the image cover G (because
I maps onto J).

CASE THAT THE AUGMENTATION IDEAL OF A IS NILPOTENT

We begin with a remark. For any homomorphism «: H — G of abstract groups, the map
(n,h)— (nh,h):Ker(e) x H > H xg H (51

is a bijection — this just says that two elements of H with the same image in G differ by an
element of the kernel. Similarly, for any homomorphism «: H — G of affine groups, there
is an isomorphism

Ker(o) x H - H xg H (52)

which becomes the map for each k-algebra R. Because of the correspondence between
affine groups and Hopf algebras, this implies that, for any homomorphism A — B of Hopf
algebras, there is a canonical isomorphism

b1 ®by > (Ab1)(1®b2): BR4 B — (B/I4B) ®y B (53)

where [ 4 is the augmentation ideal Ker(A LN k) of A.
Let I = I4, and assume that / is nilpotent, say /" = 0. Choose a family (e;)jes of
elements in B whose image in B/IB is a k-basis and consider the map

(aj)jGJHZjajej:A(J)eB (54)

where AY) is a direct sum of copies of A indexed by J. We shall show that 1} is an
isomorphism (hence B is even free as an A-module).
Let C be the cokernel of (54). A diagram chase in

A . B C 0

! !

onto

(4/1HY) — B/IB

shows that every element of C is the image of an element of B mapping to zero in B/IB,
i.e., lying in /B. Hence C = IC, and so C = IC = I?C =-.- = ]"C = 0. Hence
AY) 5 Bis surjective.
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For the injectivity, consider diagrams

A 0 p k= B/IB

| ! ! !

BY) ™. pe,B  (B/IB)Y) —— (B/IB)®y (B/IB)

in which the bottom arrows are obtained from the top arrows by tensoring on the left with
B and B/IB respectively. If b € B) maps to zero in B ® 4 B, then it maps to zero in
B/IB ®j B/IB, which implies that it maps to zero in (B/IB)). Therefore the kernel M
of BY) - B® 4 B is contained in (/B)) = 1-BW).
Recall that
B®4B~BQR®; B/IB.

As B/IB is free as a k-module (k is a field), B ®; B/IB is free as a left B-module, and so
B ® 4 B is free (hence projective) as a left B-module. Therefore there exists a B-submodule
N of BY) mapping isomorphically onto B ® 4 B, and

B =MaeN (direct sum of B-submodules).

‘We know that
McI-BY=IMg@IN,

andso M C IM.Hence M C IM C I>M =--- = 0. We have shown that BY) — B®y4B
is injective, and this implies that AY/) — B is injective because A) ¢ BW).
CASE THAT A AND B ARE FINITELY GENERATED
We begin with a remark. For any homomorphisms of abstract groups
H
It
G — G,

the map
(n,h)+—> (n-B(h),h):Ker(e) x H—> G xg' H

is a bijection. This implies a similar statement for affine groups:
Ker(G — G')x H ~ G xg H. (55)

After Theorem [6.31} we may suppose that k has characteristic p # 0. According to
(6.35), there exists an n such that O(G)?" is a reduced Hopf subalgebra of O(G). Let G’
be the algebraic group such that O(G’) = O(G)?", and consider the diagrams

faithfully
| N H G' O(N) «—— O(H) ——— 0(G)
at

Lol ficie |

1 M G G OM) «—— OG) «—— OG")
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where N and M are the kernels of the homomorphisms H — G" and G — G’ respectively.
Because O(G’) is reduced, the homomorphism O(G’) — O(H) is faithfully flat, and so

O(G) — O(H) injective = (O(G) — O(H))®p ) O(H) injective.

As k is a direct summand of O(H ), this implies that (O(G) — O(H)) ® o(G’yk is injective.
From the diagram

O(TN) 2 O(H) ®o(n k
om 2 O(G) ®oan k

we see that O(M') — O(N) is injective, and hence is faithfully flat (because the augmenta-
tion ideal of O(M) is nilpotent). From the diagrams

NxH @ HXG/H O(N)@O(H) =~ O(H)@@(G/)O(H)
Mxt B Gxgn OMROH) = O0G)®oc)OH).

we see that (O(G) — O(H)) ®o gy O(H) is faithfully flat. As O(G') — O(H) is faith-
fully flat, this implies that O(G) — O(H)) is faithfully flat (CA 0.4).

GENERAL CASE

We show in (8.25) below that A and B are directed unions of finitely generated Hopf sub-
algebras A; and B; such that A; C B;. As B; is flat as an A;-module for all i, B is flat as
an A-module (CAQ.13). For the faithful flatness, we use the statement (CA [9.10p):

A — B faithfully flat& mB # B, all maximal ideals m C A < aB # B, all
proper ideals a C A.

Let m be a maximal ideal in A. If 1 e mB, then 1 € (m N A;)B; for some i. ButmnN A4; #
Aj, and so this contradicts the faithful flatness of B; over A;. Hence mB # B, and B is
faithfully flat over A.

COROLLARY 6.44 Let A C B be Hopf algebras with B an integral domain, and let K C L
be their fields of fractions. Then BN K = A; in particular, A= B it K = L.

PROOF. Because B is faithfully flat over A, cBN A = cA for any ¢ € A. Therefore, if
a/ceB,a,ce A,thenaecBNA=cA,andsoa/c € A. o

ASIDE 6.45 Some statements have easy geometric proofs for smooth algebraic groups. In extend-
ing the proof to all algebraic groups, one often has to make a choice between a nonelementary
(sometimes difficult) proof using algebraic geometry, and an elementary but uninformative proof
using Hopf algebras. In general, we sketch the easy geometric proof for smooth algebraic groups,
and give the elementary Hopf algebra proof in detail.

NOTES In most of the literature, for example, [Borel|| 1991, Humphreys| 1975] and Springer| 1998,
“algebraic group” means “smooth algebraic group” in our sense. Our approach is similar to that in
Demazure and Gabriel|[I970] and [Waterhouse|[1979, The important Theorem [6.31] was announced
in a footnote to |Cartier||1962; the direct proof presented here follows |Oort||1966. Theorem is
proved entirely in the context of Hopf algebras in [Takeuchi||1972; the proof presented here follows
Waterhouse| 1979, Chapter 14.
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7 Group theory: subgroups and quotient groups.

In this section and in Section 9] we show how the basic definitions and theorems in the
theory of abstract groups can be extended to affine groups. Throughout, k is a field.

7a A criterion to be an isomorphism

PROPOSITION 7.1 A homomorphism of affine groups a: H — G is an isomorphism if and
only if

(a) the map a(R): H(R) — G(R) is injective for all k-algebras R, and

(b) the homomorphism a*:O(G) — O(H) is injective.

PROOF. The conditions are obviously necessary. For the sufficiency, note that the maps
HxgH=H->G
give rise to homomorphisms of Hopf algebras
O(G) - O(H) = O(H) ®o(c) ®(H).
In particular, the homomorphisms

X x®1

s 1@ :O(H) - O(H)®p) O(H) (56)

agree on O(G), and so define elements of H(O(H) ® () O(H)) mapping to the same
element in G(O(H) ®p ) O(H)). Now,

¢ condition (a) with R = O(H) ® oGy O(H) implies that the two homomorphisms
(506) are equal, and

o condition (b) implies that O(H) is a faithfully flat O(G)-algebra (see [6.43), and so
the subset of O(H ) on which the two homomorphisms agree is a*(O(G)) by

(CAPH).

On combining these statements, we find that ™ is surjective, and so it is an isomorphism.g

7b Injective homomorphisms

DEFINITION 7.2 A homomorphism H — G of affine groups is injective if the map H(R) —

G(R) is injective for all k-algebras R. An injective homomorphism is also called an em-
bedding.

PROPOSITION 7.3 A homomorphism a: H — G of affine groups is injective if and only if
the map «*: O(G) — O(H) is surjective.

In other words, a: H — G is injective if and only if the map |«|:|H| — |G| of affine
schemes is a closed immersion.
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PROOF. =: The homomorphism a* factors into homomorphisms of Hopf algebras
O(G) — a*(O(G)) — O(H)

(see Exercise [5-10). Let H' be the affine group whose Hopf algebra is «*(O(G)). Then «
factors into
H—> H -G,

and the injectivity of « implies that H(R) — H'(R) is injective for all k-algebras R. Be-
cause O(H') — O(H) is injective, Proposition shows that the map H — H' is an
isomorphism, and so «*(O(G)) = O(H).

«: If o™ is surjective, then any two homomorphisms O(H) — R that become equal
when composed with «* must already be equal, and so H(R) — G(R) is injective. O

PROPOSITION 7.4 Let a: H — G be a homomorphism of affine groups. If « is injective,
then so also is ay: Hyr — Gy for any field k' containing k. Conversely, if oy is injective
for one field k' containing k, then « is injective.

PROOF. For any field k&’ containing k, the map O(G) — O(H) is surjective if and only if
the map k' ® O(G) — k' ®; O(H) is surjective (this is simply a statement about vector
spaces over fields). O

7.5 When k is a perfect field, Gyeq is an affine subgroup of G (see[6.18)). However, it need

not be normal. For example, over a field k of characteristic 3, let G = w3 x (Z/27);, for
the nontrivial action of (Z/27Z);, on j3; then Geq = (Z/27Z)}, which is not normal in G
(see SGA3 VI, 0.2).

7¢ Affine subgroups

DEFINITION 7.6 An affine subgroup (resp. normal affine subgroup) of an affine group
G is a closed subfunctor H of G such that H(R) is a subgroup (resp. normal subgroup) of
G(R) for all R.

In other words, a subfunctor H of an affine group G is an affine subgroup of G if

o H(R) is a subgroup of G(R) for all k-algebras R, and
o H isrepresentable (in which case it is represented by a quotient of O(G) — see|7.3).

REMARK 7.7 An affine subgroup H of an algebraic group G is an algebraic group, because
O(H) is a quotient of the finitely generated k-algebra O(G).

PROPOSITION 7.8 The affine subgroups of an affine group G are in natural one-to-one
correspondence with the Hopft ideals on O(G).

PROOF. For an affine subgroup H of G,

I(H)={f €0O(G)| fr(h) =1forall h € H(R) and all R}
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is a Hopf ideal in G (it is the kernel of O(G) — O(H); see Exercise [5-10)). Conversely, if
a is a Hopf ideal in G, then the functor

R~~{geG(R)| fr(g) =0forall f €a}

is an affine subgroup G(a) of O(G) (it is represented by O(G)/a). The maps H — I(H)
and a — G(a) are inverse. o

COROLLARY 7.9 Every set of affine subgroups of an algebraic group G has a minimal
element (therefore every descending chain of affine subgroups becomes stationary).

PROOF. The ring O(G) is noetherian (Hilbert basis theorem, CA [3.6). 0

PROPOSITION 7.10 For any affine subgroup H of an algebraic group G, the algebraic
scheme |H | is closed in |G |.

PROOF. If ais the kernel of O(G) — O(H), then | H | is the subspace V(a) o {m|m>Da}
of |G|. D

PROPOSITION 7.11 For any family (H ) jey of affine subgroups of an affine group G, the
functor
R ~~ ﬂje] H;(R) (intersection inside G(R))

is an affine subgroup ﬂjGJ H; of G, with coordinate ring O(G)/I where I is the ideal
generated by the ideals I(H ;).

PROOF. We have

H;(R)=1{g € G(R) | fr(g) =0 forall f € I(H;)}.

Therefore,

H(R)={g€G(R)| fr(g) =0forall f | JI(H;)}
=Hom(O(G)/I, R). o

EXAMPLE 7.12 The intersection of the affine subgroups SL,, and G, (scalar matrices) of
GL,, is i, (matrices diag(c,...,c) with ¢ = 1).

We sometimes loosely refer to an injective homomorphism «: H — G as an affine sub-
group of G.

DEFINITION 7.13 An affine subgroup H of algebraic group G is said to be characteristic
if, for all k-algebras R and all automorphisms « of Gg, «(Hgr) = Hpg (cf. DG, §1, 3.9).
If the condition holds only when R is a field, we say that H is characteristic in the weak
sense.

Both conditions are stronger than requiring that o (H) = H for all automorphisms of G

(see[T6.13).
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7.14 In the realm of not necessarily affine group schemes over a field, there can exist non-
affine (necessarily nonclosed) subgroup schemes of an affine algebraic group. For example,
the constant subgroup scheme (Z); of G, over Q is neither closed nor affine. Worse, the
(truly) constant subfunctor R ~ Z C R of G, is not representable. Over an algebraically
closed field k consider the discrete (nonaffine) group scheme with underlying set k; the
obvious map k — G, of nonaffine group schemes is a homomorphism, and it is both mono
and epi, but it is not an isomorphism.

7d Kernels of homomorphisms

The kernel of a homomorphism «: H — G of affine groups is the functor
R~ N(R) € Ker(a(R): H(R) — G(R)).

Let e: O(G) — k be the identity element of G (k). Then an element 2: O(H) — R of H(R)
lies in N(R) if and only if its composite with a*: O(G) — O(H) factors through e:

O(H) <% — 0(G)

Let Ig be the kernel of €: O(G) — k (this is called the augmentation ideal), and let
Ig - O(H) denote the ideal generated by its image in O(H ). Then the elements of N(R)
correspond to the homomorphisms O(H ) — R that are zero on Ig-O(H), i.e.,

N(R) = Homy_q,(O(H)/IcO(H).R).
We have proved:

PROPOSITION 7.15 For any homomorphism H — G of affine groups, there is an affine
subgroup N of H (called the kernel of the homomorphism) such that

N(R) = Ker(H(R) — G(R))

for all R; its coordinate ring is O(H)/IgO(H).

Alternatively, note that the kernel of « is the fibred product of H — G < *, and so it
is an algebraic group with coordinate ring

O(H) ®o(6) (0(G)/16) ~O(H)/IcO(H)
(see §4D).

EXAMPLE 7.16 Consider the map g — g": Gy, — Gy,. This corresponds to the map on
Hopf algebras Y + X":k[Y,Y '] — k[X, X 1] because

X"(g)=g¢"=Y(g")
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(cf. , p. The map e:k[Y,Y 1] — k sends f(Y) to f(1), and so the augmentation
ideal for Gy, is (Y —1). Thus, the kernel has coordinate ring

KX, X7/ (X" =1) ~k[X]/ (X" —1).

In other words, the kernel is the algebraic group u,, as we would expect.

EXAMPLE 7.17 Let N be the kernel of the determinant map det: GL,, — G,. This corre-
sponds to the map on Hopf algebras

X > det(X;;):k[X, X' = k[..., Xij,....det(X;;) "]

because
det(X;;)(a;;j) = det(a;;) = X(det(a;;)).

As we just noted, the augmentation ideal for G, is (X — 1), and so

[...,X,‘j,...,det(Xl'j)_l] - k[...,Xij,...]

k
O =T =) @t — 1)

In other words, the kernel of det is the algebraic group SL,,, as we would expect.

PROPOSITION 7.18 When k has characteristic zero, a homomorphism G — H is injective
if and only if G(k®) — H (k™) is injective.

PROOF. If G(k*) — H (k™) is injective, the kernel N of the homomorphism has the prop-
erty that N (k) = 0, and so it is the trivial algebraic group (by[6.32). o

7.19 Proposition is false for fields k of characteristic p # 0. For example, the ho-
momorphism x — x?:G, — G, has kernel «, and so it is not injective, but the map =%
x = xP:G4(R) — G4 (R) is injective for every reduced k-algebra R.

REMARK 7.20 Let A be an object of some category A. A morphism u:S — A is a
monomorphism if f — uo f:Hom(T,S) — Hom(T, A) is injective for all objects 7. Two
monomorphisms u: S — A and u’: S” — A are said to be equivalent if each factors through
the other. This is an equivalence relation on the monomorphisms with target A, and an
equivalence class of monomorphisms is called a subobject of A.

A homomorphism of affine groups is a injective if and only if it is a monomorphism
in the category of affine groups. To see this, let «: H — G be a homomorphism of affine
groups. If « is injective and the homomorphisms f,y: H' — H agree when composed
with o, then (7.1p) with R = O(H’) shows that 8 = y. Suppose, on the other hand, that
« is not injective, so that its kernel N is nontrivial. Then the homomorphisms n 1,
n+— n:N — N are distinct, but they agree when composed with «, and so « is not a
monomorphism.

Let G be an affine group. Two monomorphisms u: H — G and u: H' — G are equiv-
alent if and only if Im(u g) = Im(u’) for all k-algebras R. It follows that, in each equiva-
lence class of monomorphisms with target G, there is exactly one with H an affine subgroup
of G and with u the inclusion map.
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ASIDE 7.21 Inany category, the equalizer of a pair of morphisms is a monomorphism. A monomor-
phism that arises in this way is said to be regular. In Grp, every monomorphism is regular (see, for
example, van Oosten, Basic Category Theory, Exercise 42, p.21). For example, the centralizer of
an element a of a group A (which is not a normal subgroup in general) is the equalizer of the ho-
momorphisms x > x, x —> axa”': A — A. Is it true that every monomorphism in the category of
affine (or algebraic) groups is regular?

7e Dense subgroups

Let G be an algebraic group over a field k. By definition, a point a € G(k) is a homomor-
phism O(G) — k, whose kernel we denote m, (a maximal ideal in O(G)). As we discussed
the map a — m,:G(k) — |G| is injective with image the set of maximal ideals m of
O(G) such that O(G)/m = k. We endow G (k) with the subspace topology.

PROPOSITION 7.22 Let G be an algebraic group over a field k, and let I" be a subgroup
of G(k). There exists an affine subgroup H of G such that H(k) = I if and only if I
is closed, in which case there exists a unique smallest H with this property. When k is
algebraically closed, every smooth affine subgroup of G arises in this way.

PROOF. If I' = H(k) for an affine subgroup H of G, then I' = |H|N G(k), which is
closed by (7.10). Conversely, let I" be a closed subgroup of G (k). Each f € O(G) defines
a function I — k, and, for x,y € I', (Af)(x,y) = f(x-y) (see (13), p.[25). Therefore,
when we let R(I") denote the k-algebra of maps I" — k and define Ap: R(I") x R(I") —
R(I" x I') as in Exercise we obtain a commutative diagram

O(G) —2%5 0(G)® O(G)

l l

R(I) -2 R(I'xI),

which shows that Ap maps into R(I") ® R(I"), and so (R(I"),Ar) is a Hopf algebra
(ibid.). Because I is closed, it is the zero set of the ideal

def

a = Ker(O(G) — R(I")),

which is a Hopf ideal because (O(G),Ag) — (R(I"), Ar) is a homomorphism of Hopf
algebras (5.16). The affine subgroup H of G with O(H) = O(G)/a C R(I") has H(k) =
I'. Clearly, it is the smallest subgroup of G with this property. When k is algebraically
closed and H is a smooth subgroup of G, then the group attached to I = H(k) is H
itself. o

REMARK 7.23 For any subgroup I" of G(k), the closure I" of I" in G(k) C |G| is a closed
subgroup of G(k).2! The smallest affine subgroup H of G such that H(k) = I’ is often
called the “Zariski closure” of I" in G.

2ltisa general fact that the closure of a subgroup I" of a topological group is a subgroup. To see this, note
that for a fixed ¢ € I', the maps x — cx and x — x~! are continuous, and hence are homeomorphisms because
they have inverses of the same form. For ¢ € I, we have I'c = I', and so Fe=T.Ascis arbitrary, this says
that - =1I.Ford e I',dI' C I",and so dI" C I". We have shown that I"-I" C I". Because x — x ! isa
homeomorphism, it maps I” onto (I"~1)~. Therefore ’'~! = (r"H~ =r".
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REMARK 7.24 When k is not algebraically closed, not every smooth algebraic subgroup
of G arises from a closed subgroup of G (k). Consider, for example, the algebraic subgroup
Un C Gy over Q. If n is odd, then p, (Q) = {1}, and the algebraic group attached to {1} is
the trivial group.

REMARK 7.25 Itis obvious from its definition that R(I") has no nonzero nilpotents. There-
fore the affine subgroup attached to a closed subgroup I of G (k) is reduced, and hence
smooth if k is perfect. In particular, no nonsmooth subgroup arises in this way.

DEFINITION 7.26 Let G be an algebraic group over a field k, and let k' be a field contain-
ing k. We say that a subgroup I" of G(k') is dense in G if the only affine subgroup H of G
such that H(k") D I is G itself.

7.27 If I C G(k') is dense in G, then, for any field k” D k/, I’ C G(k”) is dense in G.
7.28 If G(k) is dense in G, then G is reduced, hence smooth if k is perfect (see[7.25)).

7.29 It follows from the proof of (7.22) that G (k) is dense in G if and only if
f€O(G), f(P)=0forall P € G(k) = f =0. (57)

In other words, G (k) is dense in G if and only if no nonzero element of O(G) maps to zero
under all homomorphisms of k-algebras O(G) — k:

ﬂ Ker(a) = 0.

a:0(G)—k

7.30 For an affine algebraic variety V over a field k, any f € O(V) such that f(P) =10
for all V(k¥) is zero (Nullstellensatz; CA ; better, any f € O(V) such that f(P) =0
for all P € V(k*P) is zero (AG[11.15). Therefore, if G is smooth, then G (k**P) (a fortiori,
G(k¥))is dense in G.

7.31 If G(k) is finite, for example, if the field k is finite, and dimG > 0, then G(k) is
never dense in G.

PROPOSITION 7.32 Ifk is infinite, then G (k) is dense in G when G = G, GL,,, or SL,,.

PROOF. We use the criterion (7.29). Because k is infinite, no nonzero polynomial in
k[X1,...,Xy] can vanish on all of k” (FT, proof of [5.18). This implies that no nonzero
polynomial f can vanish on a set of the form

D(h)E{a k" |h(@) #0}. h#0.
because otherwise 4 f would vanish on k”. As

GLy (k) = {a € k" | det(a) # O,

this proves the proposition for GL,,.
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The proposition is obvious for G, and it can be proved for SL, by realizing O(SL;)
as a subalgebra of O(GL,). Specifically, the natural bijection

A,r — A-diag(r,1,...,1):SL,(R) X Gy (R) — GL,(R)
(of set-valued functors) defines an isomorphism of k-algebras
O(GLy) =~ O(SLy) ® O(Gpm).

and the algebra on the right contains O(SLj). Hence

ﬂ Ker(x) C m Ker(ax) = 0.

a:O(SL,)—k a:O(GL,)—k O

PROPOSITION 7.33 Let G be an algebraic group over a perfect field k, and let I' =
Gal(k¥/k). Then I" acts on G(k¥), and H <> H(k) is a one-to-one correspondence
between the smooth subgroups of G and the closed subgroups of G (k) stable under I'.

PROOF. Combine (7.22)) with (4.13)). (More directly, both correspond to radical Hopf ideals
a in the k¥-bialgebra k! ® O(G) stable under the action of I'; see AG[16.7,[16.8). o

ASIDE 7.34 Letk be an infinite field. We say that a finitely generated k-algebra has “enough maps
to k™ if (). 41 Ker(a) = 0 (intersection over k-algebra homomorphisms A — k). We saw in the
proof of that k[X1,..., X,], has enough maps to k for any & # 0. Obviously, any subalgebra
of an algebra having enough maps to k also has enough maps to k. In particular, any subalgebra
of k[X1,..., Xu]n has enough maps to k. A connected affine variety V is said to unirational if
O(V) can be realized as a subalgebra k[X1,..., X,]s in such a way that the extension of the fields
of fractions is finite. Geometrically, this means that there is a finite map from an open subvariety
of A" onto an open subvariety of V. Clearly, if V' is unirational, then O(}V') has enough maps to
k. Therefore, if a connected algebraic group G is unirational, then G (k) is dense in G. So which
algebraic groups are unirational? In SGA3, XIV 6.11 we find:

One knows (Rosenlicht) examples of forms of G, over a nonperfect field, which have
only finitely many rational points, and therefore a fortiori are not unirational. More-
over Chevalley has given an example of a torus over a field of characteristic zero which
is not a rational variety. On the other hand, it follows from the Chevalley’s theory of
semisimple groups that over an algebraically closed field, every smooth connected
affine algebraic group is a rational variety.

Borel 1991, 18.2, proves that a connected smooth algebraic group G is unirational if k is perfect or if
G is reductive. For a nonunirational nonconnected algebraic group, Rosenlicht gives the example of
the group of matrices (_“b Z ) over R with a? 4+ b? = +1. For a nonunirational connected algebraic
group, Rosenlicht gives the example of the subgroup of G, x G, definedby Y” —Y =1 X? over the
field k = ko(t) (¢ transcendental). On the other hand, if k[ /a, ~/b] has degree 4 over k, then the
norm torus>? associated with this extension is a three-dimensional torus that is not a rational variety.

Proofs of these statements will be given in a future version of the notes.

21et T = (Gm) kL@, bl k" The norm map defines a homomorphism 7' — G, and the norm torus is the
kernel of this homomorphism.
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ASIDE 7.35 (mo056192) Rosenlicht’s subgroup Y? —Y =tX? of G, x G, (p # 2) and the sub-
group Y? =1t X? of G, x G, are examples of algebraic groups G over k such that G (k) is not dense
in G (the first is smooth; the second is reduced but not smooth).

A smooth, connected unipotent group is said to be k-split if there is a filtration by k-subgroups
for which the successive quotients are isomorphic to G,. The examples in the above paragraph
are non-split unipotent groups. Any smooth connected k-split unipotent group U is even a rational
variety (in fact, k-isomorphic as a variety to A™), and so it is clear that U(k) is Zariski dense in U
when is infinite. More generally, let G be a smooth connected affine algebraic group over k and
assume that the unipotent radical of Ga is defined and split over k (both of these conditions can
fail). Then as a k-variety, G is just the product of its reductive quotient (G/R, G ) and its unipotent
radical (result of Rosenlicht). In particular, is G is unirational, and if k is infinite, then G (k) is dense
in G (George McNinch)

A necessary condition when k is imperfect: if G(k) is dense in G, then G,¢q is a smooth alge-
braic group over k. Proof: the regular locus of G4 is open and non-empty, so contains a rational
point. This point is then smooth. By translation, Geq is smooth at origin, hence smooth everywhere.
This implies that it is an algebraic group because it is geometrically reduced (Qing Liu).

ASIDE 7.36 Let k be a commutative ring. |Waterhouse||1979, 1.2, p. 5 defines an affine group
scheme to be representable functor from k-algebras to groups. He defines an affine group scheme to
be algebraic if its representing algebra is finitely generated (ibid. 3.3, p. 24) . Now assume that k is
a field. He defines an algebraic matrix group over k to be a Zariski-closed subgroup of SL,, (k) for
some n (ibid., 4.2, p. 29), and he defines an affine algebraic group to be a closed subset of k" some
n with a group law on it for which the multiplication and inverse are polynomial maps (ibid. 4.2, p.
29). Algebraic matrix groups and affine algebraic groups define (essentially the same) affine group
schemes.

*Waterhouser 1979 This work

affine group scheme affine group

algebraic affine group scheme | affine algebraic group (or just algebraic group)

algebraic matrix group affine subgroup G of GL,, x such that G(k) is dense in G

affine algebraic group algebraic group G such that G(k) is dense in G.

We shall sometimes use algebraic matrix group to mean an affine subgroup G of GL,,
such that G (k) is dense in G.

ASIDE 7.37 Before Borel introduced algebraic geometry into the theory of algebraic groups in a
more systematic way, Chevalley defined algebraic groups to be closed subsets of k" endowed with a
group structure defined by polynomial maps. In other words, he studied affine algebraic groups and
algebraic matrix groups in the above sense. Hence, effectively he studied reduced algebraic groups
G with the property that G (k) is dense in G.

ASIDE 7.38 In the literature one finds statements:

When k is perfect, any algebraic subgroup of GL,, defined by polynomials with coef-
ficients in k is automatically defined over k (e.g., Borel|1991} Humphreys|1975).

What is meant is the following:

When k is perfect, any smooth algebraic subgroup G of GL,, za such the subset G (k™)
of GL, (k%) is defined by polynomials with coefficients in k arises from a smooth
algebraic subgroup of GL,, .

From our perspective, the condition on G(k?) (always) implies that G arises from a reduced alge-
braic subgroup of GL,, x, which is smooth if k is perfect.
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7f Normalizers; centralizers; centres

For a subgroup H of an abstract group G, we let Ng(H) (resp. Cg(H)) denote the nor-
malizer (resp. centralizer) of H in G, and we let Z(G) denote the centre of G. In this
subsection, we extend these notions to an affine subgroup H of an affine group G over a
field k.

For g € G(R), let & H be the functor of R-algebras

R ~g-H(R)-g~' (subset of G(R')).
Define N to be the functor of k-algebras
R~{geG(R) | H =H}.
Thus, for any k-algebra R,
N(R)={geG(R)|g-H(R)-g~! = H(R') for all R-algebras R’}
=G(R)N(),, Now)(H(R)).

PROPOSITION 7.39 The functor N is an affine subgroup of G.

PROOF. Clearly N(R) is a subgroup of G(R), and so it remains to show that N is repre-
sentable by a quotient of O(G). Clearly

g-H(R)-g' =H(R) < g-H(R)-g~' CHR)and g~ ' - H(R)-g C H(R),
and so, when we let G act on itself by conjugation,
N =Tg(H.H)NTg(H.H)™!

(notations as in §6n). Proposition shows that T (H, H) is representable, and it follows
from (7.11)) that N is representable by a quotient of O(G). o

The affine subgroup N of G is called the normalizer Ng(H) of H in G. It is obvious
from its definition that the formation of Ng(H ) commutes with extension of the base field:
for any field k' D k,

Ng(H)p =~ Ng,,(Hy).

PROPOSITION 7.40 If H is an affine subgroup of an algebraic group G, and H (k') is dense
in H for some field k' O k, then

Ng(H) (k) = G(k) N N (H(K)).

PROOF. Let g € G(k) N Ngx)(H(k')). Because g € G(k), € H is an algebraic subgroup
of G, and so & H N H is an algebraic subgroup of H. Because g € Ng ) (H (k')),

(5H) (k") = H(K'),

andso 8 HNH) (k') = H(k"). As H(k') is dense in H, this implies that S H N H = H,
andso8H = H. a]
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COROLLARY 7.41 Let H be a smooth affine subgroup of a smooth algebraic group G. If
H (k*°P) is normal in G (k*°P), then H is normal in G.

PROOF. Because H is smooth, H (k*P) is dense in H, and so (7.40) shows that Ng (H ) (k*P) =

G(k*P),and so Ng(H) =G. o

7.42 The corollary is false without the smoothness assumptions, even with k% for k5P,
For example, let H be the subgroup of SL; in characteristic p # 0 such that

-l 1)

(so H ~ ap). Then H (k™) = 1, but H is not normal in SL;.

pazO}

PROPOSITION 7.43 Let H be an affine subgroup of an algebraic group G.

(a) H isnormal in G if and only if Ng(H) = G.
(b) Letig denote the inner automorphism of G defined by g € G(k); if G(k) is dense in
G andig(H) = H forall g € G(k), then H is normal in G.

PROOF. (a) This is obvious from the definitions.
(b)Let N = Ng(H) CG. Ifig(H) = H, then g € N(k). The hypotheses imply that
G(k) C N(k),andso N = G. o

Let H be an affine subgroup of an affine group G, and let N be the normalizer of H.
Each n € N(R) defines a natural transformation i,

hnhn~':H(R') - H(R)

of H regarded as a functor from the category of R-algebras to sets, and we define C to be
the functor of k-algebras
R~{neN(R)|i, =1idg}.

Thus,
C(R) = GR)N(,, Cowr)(H(R)).

PROPOSITION 7.44 The functor C is an affine subgroup of G.

PROOF. We have to show that C is representable. Let G act on G x G by
2(g1,82) = (21,2287 "), £.81.82€ G(R),
and embed H diagonally in G X G,
H—GxG, h+ (hh)forhe H(R).

Then
C =Tgxg(H,H),

which is representable by (6.36)). O
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The affine subgroup C of G is called the centralizer Cg(H) of H in G. It is obvious
from its definition that the formation of Cg (H) commutes with extension of the base field:
for any field k' D k,

Ce(H) ~ Cg,,(Hy).

PROPOSITION 7.45 If H is an affine subgroup of an algebraic group G, and H (k') is dense
in H for some field k' D k, then

Cg(H)(k) = G(k) N Cgery (H(K')).

PROOF. Let n € G(k) N Cgkry(H(k")). According to (7.40), n € Ng(H)(k). The maps
in and idg coincide on an affine subgroup of H, which contains H(k’), and so equals H .
Therefore n € Cg(H) (k). O

COROLLARY 7.46 Let H be a smooth affine subgroup of a smooth algebraic group G. If
H (k*%P) is central in G (k*°P), then H is central in G.

PROOF. Because H is smooth, H(k*P) is dense in H, and so (7.45)) shows that Cg (H ) (k5P) =
G(k%P), and so Cg(H) = G. 0

The centre Z(G) of an affine group G is defined to be Cg (G). It is an affine subgroup
of G, and if G is algebraic and G (k') is dense in G, then

Z(G)(k) = G(k) N Z(G(K")).

® 7.47 Even when G and H are smooth, Cg(H ) need not be smooth. For example, it is
#= possible for C (H) to be nontrivial but for Cg (H ) (k') to be trivial for all fields k' D k. To
see this, let G be the functor
R~ Rx R*

with the multiplication (a,u)(b,v) = (a + bu?,uv); here 0 # p = char(k). This is an
algebraic group because, as a functor to sets, it is isomorphic to G, x G,,. For a pair
(a,u) € Rx R*, (a,u)(b,v) = (b,v)(a,u) for all (b,v) if and only if u? = 1. Therefore,
the centre of G is 1 p, and so Z(G)(k’) =1 for all fields k" containing k. Another example
is provided by SL,, over a field of characteristic p. The centre of SL, is u,, which is not
smooth.

EXAMPLE 7.48 For a k-algebra R, the usual argument shows that the centre of GL, (R) is
the group of nonzero diagonal matrices. Therefore

Z(GL,) =G, (embedded diagonally).
More abstractly, for any finite-dimensional vector space V,

Z(GLy) =G, (a € Gy(R)actson Vg as v — av).

EXAMPLE 7.49 Let G = GL,, over a field k. For an integer N, let Hy be the subfunctor

R~ Hy(R) = {diag(a1,....an) € GLy(R) |aV =---=aly =1}.
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of G. Then Hy ~ (un)", and so it is an affine subgroup of G. For N sufficiently large
Co(HNn) =Dy
(group of diagonal matrices) (see (14.35])). We consider two cases.
(a) k =Qand N odd. Then Hy (k) = {1}, and

Cok)(Hn (k) = GLy (k) # Dn (k) = Co (Hn) (k).

(b) k is algebraic closed of characteristic p # 0 and N is a power of p. Then Hy (k) =1
and

Cok)(Hn (k) = GLy (k) # Dn (k) = Co (Hn) (k).

An affine subgroup H of an affine group G is said to normalize (resp. centralize) an
affine subgroup N of G if H(R) normalizes (resp. centralizes) N(R) for all k-algebras R;
equivalently, if H C Ng(N) (resp. H C Cg(N)).

7g Quotient groups; surjective homomorphisms

What does it mean for a homomorphism of algebraic groups G — Q to be surjective? One
might guess that it means that G(R) — Q(R) is surjective for all R, but this condition is
too stringent. For example, it would say that x — x":G,, — G, is not surjective even
though x > x": Gy, (k) — Gy, (k) is surjective whenever k is algebraically closed. In fact,

Gm — Gy, is surjective according to the following definition.

DEFINITION 7.50 A homomorphism G — Q is said to be surjective (and Q is called a
quotient of G) if for every k-algebra R and g € Q(R), there exists a faithfully flat R-
algebra R’ and a g € G(R’) mapping to the image of ¢ in Q(R'):

G(R)) —— Q(R) Jg — *
G(R) — O(R) q-

In other words, a homomorphism G — @ is surjective if every ¢ € Q (R) lifts to G after
a faithfully flat extension. A surjective homomorphism is also called a quotient map.

THEOREM 7.51 A homomorphism G — Q is surjective if and only it O(Q) — O(G) is

injective.

PROOF. =: Consider the “universal” elementidp(g) € Q(O(Q)). If G — Q is surjective,
there exists a ¢ € G(R’) with R’ faithfully flat over O(Q) such that g and idy(p) map to
the same element of Q(R’), i.e., such that the diagram

OG) «— 0(Q)

Jg Jido@
faithfully flat

fe———0(Q)
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commutes. The map O(Q) — R, being faithfully flat, is injective (CA[9.6), which implies
that O(Q) — O(G) is injective.

&: According to O(Q) — O(G) is faithfully flat. Let ¢ € Q(R). Regard ¢ as a
homomorphism O(Q) — R, and form the tensor product R = O(G) ® (o) R:

faithfully flat

0(G) «—— 0(0Q)
g=1®qJ q’/ Jq (58)
/

R'=0(G)®p@)R «— R

Then R’ is a faithfully flat R-algebra because O(G) is a faithfully flat O(H )-algebra (apply
CA . The commutativity of the square in means that g € G(R’) maps to the image
q' of g in Q(R'). o

PROPOSITION 7.52 Leta: H — G be a homomorphism of affine groups. If « is surjective,
then so also is ay: Hyr — Gy for any field k” containing k. Conversely, if oy is surjective
for one field k' containing k, then « is surjective.

PROOF. Because k — k' is faithfully flat, the map O(G) — O(H) is injective if and only
if kK’ ® O(G) — k' ®; O(H) is injective (see CA[9.2). O

PROPOSITION 7.53 A homomorphism of affine groups that is both injective and surjective
is an isomorphism.

PROOF. The map on coordinate rings is both surjective and injective, and hence is an iso-
morphism. o

PROPOSITION 7.54 Let G — Q be a homomorphism of algebraic groups. If G — Q is a
quotient map, then G (k™) — Q (k™) is surjective; the converse is true if Q is smooth.

PROOF. Let g € Q(k¥). For some finitely generated k-algebra R, the image of ¢ in
O (R) lifts to an element g of G(R). Zariski’s lemma (CA [11.1) shows that there exists a
k®-algebra homomorphism R — k%, and the image of g in G (k*) maps to g € Q (k?):

G(R) —— G(k¥) g gpa
Q™) —— Q(R) —— 0(k*) g gR | q
id

kal /;\ kal

For the converse, we may suppose that k is algebraically closed. Recall (2.16) that
an element f of O(Q) is a family (fg)g with fgr a map Q(R) — R. Because Q is
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smooth, O(Q) is reduced, and so f is determined by f; (CA[11.8). As G(k) — Q(k) is

surjective, f is determined by the composite G (k) — Q (k) & k,and so O(Q) — O(G)
is injective. o

More generally, a homomorphism «: G — H of algebraic groups is surjective if, for
some field k' containing k, the image of G (k) in H (k') is dense in H (see[9.8|below).

7.55 The smoothness condition in the second part of the proposition is necessary. Let k be
a field of characteristic p # 0, and consider the homomorphism 1 — «, where 1 denotes
the trivial algebraic group. The map 1(k*) — o, (k) is {1} — {1}, which is surjective,
but 1 — «, is not a quotient map because the map on coordinate rings is k[X]/(X?) — k,
which is not injective.

THEOREM 7.56 Let G — Q be a quotient map with kernel N. Then any homomorphism
G — Q' whose kernel contains N factors uniquely through Q:

PROOF. Note that, if g and g’ are elements of G(R) with the same image in Q(R), then
g 'g’ lies in N and so maps to 1 in Q’(R). Therefore g and g’ have the same image in
Q’(R). This shows that the composites of the homomorphisms

GxgG=2G—Q
are equal. Therefore, the composites of the homomorphisms
O(G) ®o(0) O(G) = O(G) < O(Q")

are equal. The subring of O(G) on which the two maps coincide is O(Q) (CA .6), and
so the map O(Q’) — O(G) factors through uniquely through O(Q) <> O(G). Therefore
G — Q' factors uniquely through G — Q. o

COROLLARY 7.57 If0:G — Q and 0':G — Q' are quotient maps with the same kernel,
then there is a unique homomorphism «: Q — Q' such that « o 0 = 6’; moreover, « is an
isomorphism.

PROOF. From the theorem, there are unique homomorphisms @: Q — Q' and «’: Q' — Q
such thatwof = 6" and o’ 0§’ = 6. Now o’ oor = id g, because both have the property that
pof = 6. Similarly, oo’ =idg’, and so « and &’ are inverse isomorphisms. =

DEFINITION 7.58 A surjective homomorphism G — Q with kernel N is called the quo-
tient of G by N, and Q is denoted by G/N.

)&
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When it exists, the quotient is uniquely determined up to a unique isomorphism by the
universal property in (7.56). We shall see later (8.77) that quotients by normal subgroups
always exist.

DEFINITION 7.59 A sequence
1> N->G—>0—>1

is exact if G — Q is a quotient map with kernel N.
PROPOSITION 7.60 If

l1>N—->G—>0—1
is exact, then

dimG =dim N +dim Q.

PROOF. For any homomorphism «: G — Q of abstract groups, the map
(n,g+ (ng.g):Ker(a) xG — GxpG

is a bijection — this just says that two elements of G with the same image in Q differ by
an element of the kernel. In particular, for any homomorphism «: G — Q of affine groups
and k-algebra R, there is a bijection

Ker(a)(R) X G(R) — (G xg G) (R),
which is natural in R. Therefore N x G >~ G x¢ G, and so
ON)®O(G) =~ O(G xg G).

Recall that the dimension of an algebraic group G has the following description: accord-
ing to the Noether normalization theorem (CA [5.T1), there exists a finite set S of ele-
ments in O(G) such that k[S] is a polynomial ring in the elements of S and O(G) is
finitely generated as a k[S]-module; the cardinality of S is dimG. Since O(G xg G) =
O(G) ®o(g) O(G), it follows from this description that

dim(G xg G) = 2dimG —dim Q.
Therefore 2dim G —dim Q = dim N + dim G, from which the assertion follows. O

ASIDE 7.61 Propositioncan also be proved geometrically. First make a base extension to k%
For a surjective map ¢: G — Q of irreducible algebraic schemes, the dimension of the fibre over
a closed point P of Q is equal dim(G) —dim Q for P in a nonempty open subset of Q (cf. AG
[10.9b). Now use homogeneity (I, to see that, when G — Q is a homomorphism of algebraic
group schemes, all the fibres have the same dimension.

23This duplicates , p-
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ASIDE 7.62 A morphism u: A — B in a category A is said to be an epimorphism if Hom(B,T) —
Hom(A, T) is injective for all objects T'.

It is obvious from Theorem [7.51|that a surjective homomorphism of affine groups is an epimor-
phism. The converse is true for groups (MacLane|[1971, Exercise 5 to I 5), but it is false for affine
groups. For example, the embedding

T T R

is a nonsurjective epimorphism (any two homomorphisms from GL, that agree on B are equal).?*

7h Existence of quotients

PROPOSITION 7.63 Let G be an algebraic group, and let H be an affine subgroup of G.
There exists a surjective homomorphism G — Q containing H in its kernel and universal
among homomorphisms with this property.

PROOF. For any finite family (G KN 0Oi)ier of surjective morphisms such that H C
Ker(g;) all i, let Hy = ();¢; Ker(g;). According to (7.9), there exists a family for which
H; is minimal. For such a family, I claim that the map from G to the image of (¢;): G —
[lies Qi is universal. If it isn’t, then there exists a homomorphism ¢: G — Q containing
H in its kernel but not Hy. But then Hy¢,y = Hy NKer(q) is properly contained in Hy .o

Later (8.70), we shall show that, when H is normal, the kernel of the universal homo-
morphism G — Q is exactly H.

7i  Semidirect products

DEFINITION 7.64 An affine group G is said to be a semidirect product of its affine sub-
groups N and Q, denoted G = N x Q, if N isnormal in G and the map (n,q) > nq: N(R) x
O(R) — G(R) is a bijection of sets for all k-algebras R.

In other words, G is a semidirect product of its affine subgroups N and Q if G(R) is a
semidirect product of its subgroups N(R) and Q(R) for all k-algebras R (cf. GT[3.7).
For example, let T, be the algebraic group of upper triangular matrices, so

Tn(R) ={(a;j) € GLy(R) |a;; =0fori > j}.
Then T, is the semidirect product of its (normal) subgroup U, and its subgroup Dy,.

PROPOSITION 7.65 Let N and Q be affine subgroups of an affine group G. Then G is the
semidirect product of N and Q if and only if there exists a homomorphism G — Q whose
restriction to Q is the identity map and whose kernel is N .

24This follows from the fact that GL, /B ~ P!, Let f, f’ be two homomorphisms GL, — G. If f|B =
f'|B, then g — f'(g)- f(g)~! defines a map P! — G, which has image 15 because G is affine and P! is
complete (see AG[7.3).

Alternatively, in characteristic zero, one can show that any homomorphism of B N SLy has at most one
extension to SLy because any finite dimensional representation of sl can be reconstructed from the operators
hand y. Specifically, if hv = mv and y™ 1y = 0, then xv = 0; if hv = mv and u = y™ v, then xy™v can be
computed as usual using that [x, y] = h.
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PROOF. =: By assumption, the product map is a bijection of functors N x Q@ — G. The
composite of the inverse of this map with the projection N x Q — Q has the required
properties.

&: Let ¢: G — Q be the given homomorphism. For each k-algebra R, ¢(R) realizes
G(R) as a semidirect product G(R) = N(R) x Q(R) of its subgroups N(R) and Q(R). o

Let G be an affine group and X a functor from the category of k-algebras to sets. Recall
that an action of G on X is a natural transformation 6: G x X — X such that each map
G(R) x X(R) — X(R) is an action of the group G(R) on the set X(R). Now let N and Q
be algebraic groups and suppose that there is given an action of Q on N

(q,n) = Or(q.,n): Q(R) x N(R) - N(R)
such that, for each ¢, the map n +— 0g(g,n) is a group homomorphism. Then the functor
R~ N(R) g, Q(R)

(cf. GT[3.9) is an affine group because, as a functor to sets, itis N x Q, which is represented
by O(N)® O(G). We denote it by N xg O, and call it the semidirect product of N and
O defined by 6.

7j Smooth algebraic groups

PROPOSITION 7.66 Quotients and extensions of smooth algebraic groups are smooth.

PROOF. Let Q be the quotient of G by the affine subgroup N. Then Qja is the quotient
of Gra by Npa. If G is smooth, O(Gpa) is reduced; as O(Qpa) C O(Gga), it also is
reduced, and so Q is smooth. For extensions, we (at present) appeal to algebraic geometry:
let W — V be a regular map of algebraic varieties; if V' is smooth and the fibres of the map
are smooth subvarieties of W with constant dimension, then W is smooth (?; tba). o

7.67 The kernel of a homomorphism of smooth algebraic groups need not be smooth. For
example, in characteristic p, the kernels of x > x?: G, — Gy, and x — xP: G, — G, are
not smooth (they are ., and o, respectively).

7k Algebraic groups as sheaves

Some of the above discussion simplifies when regard affine groups as sheaves.

PROPOSITION 7.68 Let F be a functor from the category of k-algebras to sets. If F is
representable, then

(F1) forevery finite family of k -algebras (R; ); 1, the canonical map F ([ [; R;) = [[; F(R;)
is bijective;
(F2) for every faithfully flat homomorphism R — R’ of k -algebras, the sequence

F(R)— F(R)= F(R'®rR')

is exact (i.e., the first arrow realizes F (R) as the equalizer of the pair of arrows).
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PROOF. (F1). For any k-algebra A, it follows directly from the definition of product that
Hom(A,[[;c; Ri) ~ [ ;e Hom(4, R;),
(F2). If R — R’ is faithfully flat, then it is injective, and so
Hom(A4, R) — Hom(A, R')
is injective for any k-algebra A. According to (CA[9.5), the sequence
R— R =R ®rR
is exact, and it follows that
Homy_yio (A, R) — Homy_5,(A, R") = Homy (4, R' ®R R')

1s exact. o

A functor satisfying the conditions (F1) and (F2) is said to be a sheaf for the flat topol-

Ogy25 .

PROPOSITION 7.69 A functor F':Alg;, — Set is a sheaf if and only if it satisfies the fol-
lowing condition:

(S) for every k-algebra R and finite family (R;);ey of k-algebras such that R — []; R; is
faithfully flat, the sequence

F(R) = [lier F(Ri) = [inerxs F(Ri ® Riv)

is exact.

PROOF. Easy exercise (cf. Milne|1980, II 1.5). o

We sometimes use (S1) to denote the condition that F(R) — [[.c; F(R;) is injective
and (S2) for the condition that its image is subset on which the pair of maps agree.

PROPOSITION 7.70 For any functor F:Alg; — Set, there exists a sheaf aF' and a natural
transformation F' — a F that is universal among natural transformations from F to sheaves.

PROOF. For a,b € F(R), set a ~ b if a and b have the same image in F(R’) for some
faithfully flat R-algebra R’. Then ~ is an equivalence relation on F(R), and the functor
R ~ F(R)/~ satisfies (S1). Moreover, any natural transformation from F to a sheaf will
factor uniquely through F — F/ ~.

Now let F be a functor satisfying (S1). For any k-algebra R, define

F'(R) = limKer(F(R') = F(R' ®g R')).

where R’ runs over the faithfully flat R-algebras. One checks easily that F’ is a sheaf, and
that any natural transformation from F to a sheaf factors uniquely through F — F’. =

25 Strictly, for the fpqc (fidelement plat quasi-compacte) topology.
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The sheaf a F is called the associated sheaf of F'.

PROPOSITION 7.71 Let S be a sheaf, and let F be a subfunctor of S. If
J— /
S(R) = UR’ a faithfully flat R-algebra (S(R) NF(R ))

(intersection inside S(R')), then S is the sheaf associated with F .

PROOF. Obviously any natural transformation F — F’ with F’ a sheaf extends uniquely
to S. O

Let P be the category of functors Alg; — Set, and let S be the full subcategory of P
consisting of the sheaves.

PROPOSITION 7.72 The inclusion functor i:S — P preserves inverse limits; the functor
a:P — S preserves direct limits and finite inverse limits.

PROOF. By definition Hom(a(—),—) >~ Hom(—,i(—)), and so a and i are adjoint functors.
This implies (immediately) that i preserves inverse limits and a preserves direct limits. To
show that a preserves finite inverse limits, it suffices to show that it preserves finite products
and equalizers, which follows from the construction of a. o

PROPOSITION 7.73 Let G — Q be a surjective homomorphism of affine groups with ker-
nel N. Then Q represents the sheaf associated with the functor

R ~ G(R)/N(R).

PROOF. Let P be the functor R ~~ G(R)/N(R). Then P commutes with products, and we
shall show:

(a) For any injective homomorphism R — R’ of k-algebras, the map P(R) — P(R’) is
injective.
(b) Let
P'(R) = limKer(P(R) = P(R' ®& R'))
R

where the limit is over all faithfully flat R-algebras; then P’ ~ Q.
For (a), we have to prove that
N(R) = N(R')NG(R) (intersection inside G(R")).

For some index set 7, N(R) is the subset of R! defined by some polynomial conditions

f](le,)z()

and N(R’) is the subset of R’/ defined by the same polynomial conditions. But if an
element of R satisfies the conditions when regarded as an element of R'Z, then it already
satisfies the conditions in R? (because R — R’ is injective).
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For (b), consider the diagram

K(R) — P(R) = PR ®gR)

l l

O(R) — QO(R) = O(R'®rR)

where K(R’) is the equalizer of the top pair of maps — we know that Q (R) is the equalizer
of the bottom pair of maps. For any k-algebra R’, the map P(R’) — Q(R’) is injective,
and so the two vertical arrows induce an injective homomorphism K(R’) — Q(R). When
we pass to the limit over R, it follows directly from the definition of “surjective’ (see
that this map becomes surjective. O

NOTES (a) Explain why it is useful to regard the affine groups as sheaves rather than presheaves.
(b) Explain the set-theoretic problems with (7.70) (limit over a proper class), and why we don’t
really need the result (or, at least, we can avoid the problems). See|Waterhouse|1975|

71 Limits of affine groups

Recall (MacLane|1971] III 4, p.68) that, for a functor F': I — C from a small category I to
a category C, there is the notion of an inverse limit of F (also called a projective limit, or
just limit). This generalizes the notions of a limit over a directed set and of a product.

THEOREM 7.74 Let F be a functor from a small category I to the category of affine groups
over k ; then the functor
R ~~1lim F(R) (59)
<«

is an affine group, and it is the inverse limit of F in the category of affine groups.

PROOF. Denote the functor 1i by (Ii ; thus (Ii (R) is the inverse limit of the functor i ~~
F;(R) from I to the category of (abstract) groups. It is easy to see that (Ii = l(iLnF in the
category of functors from k-algebras to groups, and it will follow that (Ii is the inverse limit
in the category of affine groups once we show that it is an affine group. But (Ii is equal to
the equalizer of two homomorphisms

[ i = Lcury Frarzerco (60)
(MacLane||1971, V 2 Theorem 2, p.109). Both products are affine groups, and we saw in
(§4D)) that equalizers exist in the category of affine groups. O

In particular, inverse limits of algebraic groups exist as affine groups. Later (8.23) we
shall see that every affine group arises in this way.

THEOREM 7.75 Let F be a functor from a finite category I to the category of algebraic
groups over k; then the functor
R ~~ 1(1111 Fi(R) (61)

is an algebraic group, and it is the inverse limit of F in the category of algebraic groups.

PROOF. Both products in are algebraic groups. o
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Direct limits, even finite direct limits, are more difficult. For example, the sum of
two groups is their free product, but when G and G, are algebraic groups, the functor
R ~» G1(R) * G2(R) will generally be far from being an algebraic group. Moreover, the
functor R ~~ li_r)nl F;(R) need not be a sheaf. Roughly speaking, when the direct limit of
a system of affine groups exists, it can be constructed by forming the naive direct limit in
the category of functors, and then forming the associated sheaf. For example, when N is a
normal subgroup of an affine group G, the quotient affine group G/ N is the sheaf associated
with the functor R ~» G(R)/N(R) (cf.[1.73).

7m Terminology

From now on, “subgroup” of an affine group will mean “affine subgroup”. Thus, if G is
an affine (or algebraic) group, a subgroup H of G is again an affine (or algebraic) group,
whereas a subgroup H of G(k) is an abstract group.

Tn Exercises

EXERCISE 7-1 Let A and B be subgroups of the affine group G, and let AB be the sheaf
associated with the subfunctor R ~» A(R)- B(R) of G.

(a) Show that AB is representable by O(G)/a where a is the kernel of homomorphism
O(G) - O(A) ® O(B) defined by the map a,b + ab: A x B — G (of set-valued
functors).

(b) Show that, for any k-algebra R, an element G(R) lies in (AB) (R) if and only if its
image in G(R’) lies in A(R’)- B(R’) for some faithfully flat R-algebra R’, i.e.,

(AB)(R) = ﬂR/ G(R)N (A(R))- B(R")).

(c) Show that AB is a subgroup of G if B normalizes A.

EXERCISE 7-2 Let A, B, C be subgroups of an affine group G such that A4 is a normal
subgroup of B. Show:

(a) C N A isanormal subgroup of C N B;
(b) CA is anormal subgroup of CB.

EXERCISE 7-3 (Dedekind’s modular laws). Let A, B, C be subgroups of an affine group
G such that A is a subgroup of B. Show:

(a) BNAC = A(BNC);
(b) if G = AC, then B = A(BNC).

8 Representations of affine groups

One of the main results in this section is that all algebraic groups can be realized as sub-
groups of GL,, for some n. At first sight, this is a surprising result, because it says that all
possible multiplications in algebraic groups are just matrix multiplication in disguise.

In this section, we often work with algebraic monoids rather than groups since this
forces us to distinguish between “left” and “right” correctly. Note that for a commutative
ring R, the only difference between a left module and a right module is one of notation: it
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is simply a question of whether we write rm or mr (or better 17r1). In this section, it will
sometimes be convenient to regard R-modules as right modules, and write V ®; R instead
of R®; V. Throughout, k is a field.

8a Finite groups

We first look at how to realize a finite group G as a matrix group. A representation of G on
a k-vector space V is a homomorphism of groups G — Auty_;,(V), or, in other words, an
action G XV — V of G on V in which each y € G acts k-linearly. Let X XxG — X be a
right action of G on a finite set X. Define V to be the k-vector space of maps X — k, and
let G act on V according to the rule:

(gfH)x)= f(xg) forgeG, feV,xelX.

This defines a representation of G on V', which is faithful if G acts effectively on X. The
vector space V' has a canonical basis consisting of the maps that send one element of X to
1 and the remainder to 0, and so this gives a homomorphism G — GL, (k) where n is the
order of X. For example, for the symmetric group S, acting on {1,2,...,n}, this gives the
map o > 1(0): S, — GL, (k) in (§1a). When we take X = G, the vector space V is the k-
algebra O(G) of maps G — k, and the representation is called the regular representation.

8b Definition of a representation

Let V be a vector space over k. For a k-algebra R, we let

V(R) =V ®R, (R-module)
Endy (R) = Endgin(V(R)), (monoid under composition)
Auty (R) = Autgin(V(R)), (group under composition).

Then R ~~ Endy (R) is a functor from the category of k-algebras to monoids and R ~~
Auty (R) is a functor from the category of k-algebras to groups. With the terminology of
, Auty = Endy.

Let G be an affine monoid or group over k. A linear representation of G on a k-vector
space V is a natural transformation r: G — Endy of functors Alg; — Mon. In other words,
it is a family of homomorphisms of monoids

rr:G(R) = Endgin(V(R)), R ak-algebra, (62)
such that, for every homomorphism R — R’ of k-algebras, the diagram

G(R) —%> Endgn(V(R))

l |

G(R) —2 Endgs(V(R')

commutes. When G is an affine group, r takes values in Auty and is a natural transfor-
mation of group-valued functors. A linear representation is said to be finite-dimensional if
V is finite-dimensional as a k-vector space, and it is faithful if all the homomorphisms rg
are injective. A subspace W of V is a subrepresentation if rg(g)(W(R)) C W(R) for all
k-algebras R and all g € G(R).
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A homomorphism of linear representations (V,r) — (V',r’) is a k-linear map a: V —
V' such that

a(R) ,
V(R) —— V'(R)

er(g) lr}e(g)

vR) L vir)

commutes for all g € G(R) and all k-algebras R.
We write V' also for the functor R ~~ V(R) defined by V. Then a linear representation
of G on V can also be defined as an action of G on V,

GxV -V, (63)

such that each g € G(R) acts R-linearly on V(R).

When V = k", Endy is the monoid R ~~ (M, (R),x) and Auty = GL,. A linear
representation of an affine monoid (resp. group) G on V' is a homomorphism G — (M,,, X)
(resp. G — GLy).

EXAMPLE 8.1 Let G = G,. Let V be a finite-dimensional k-vector space, and let pg, ..., pi,...

be a sequence of endomorphisms V' such that all but a finite number are zero. For ¢ € R, let
_ i
rr) =), pit' €End(V(R)

(sorrt)(v®c) =Y pi(v) ®ct). If
po = idy
Vo o (64)
{ Piopj = (ZTJ)Pi—i-j alll,] ZO,

then

rr(t+1t)=rr@)+rgr(t’) forallt,t’ € R,
and so rg is a representation. We shall see later (8.15) that all finite-dimensional repre-
sentations of G, are of this form. Note that implies that p; o p; = (i + 1)p;+1, and
so p§ = n!p,. When k has characteristic zero, this implies that p; is nilpotent and that
pn = p}/n!, and so

rr() =) (o11)"/n! = exp(p11).

When k has nonzero characteristic, there are more possibilities. See Abe 1980, p. 185.

EXAMPLE 8.2 Let G = GL,, and let M}, denote the vector space of all n x n matrices with
entries in k. The actions

(P, A) > PAP ':G(R) x M, (R) — My,(R)

define a linear representation of G on M,,. The orbits of G(k) acting on M, (k) are the
similarity classes, which are represented by the Jordan matrices when k is algebraically
closed.

EXAMPLE 8.3 There is a unique linear representation » of G on O(G) (regarded as a k-
vector space) such that

(8/)r(x) = fr(xg), forallg € G(R), f € O(G), x € G(R). (65)
This is called the regular representation. In more detail: the formula defines a map
G(R) x O(G) — R ® O(G), which extends by linearity to a map G(R) x R® O(G) —
R® O(G).
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8¢ Terminology

From now on, “representation” will mean “linear representation”.

8d Comodules

Let (A,m,e) be a k-algebra, not necessarily commutative. Recall that a left A-module is a
k-vector space V together with a k-linear map u: A ® V' — V such that the diagrams

vy o< Ay v < AV

Tu Tm@V H Te@V (66)

A® ~
AV < A@AQV V «— k®V

commute. On reversing the directions of the arrows, we obtain the notion of comodule over
a coalgebra.

DEFINITION 8.4 Let (C, A,€) be a k-coalgebra. A right C-comodule®® is a k-linear map
p:V — V ® C (called the coaction of C on V') such that the diagrams

v 2, vec vy 2 . vecC

lp lV@A “ lV@E (67)

®C ~
vec 225 yecec  V —s Vek
commute, i.e., such that

{(V®A)0p = (p®C)op
(V®e)op = V.

A homomorphism o:(V,p) — (V', p’) of C-comodules is a k-linear map «:V — V' such
that the diagram

y 2

bk
vec 225 vec

commutes. A comodule is said to be finite-dimensional if it is finite-dimensional as a k-
vector space.

EXAMPLE 8.5 (a) The pair (C, A) is a right C-comodule (compare (29), p. 42} with (67)).
More generally, for any k-vector space V,

VA Vel —->VeCeCl

261t would be more natural to consider left comodules, except that it is right comodules that correspond
to left representations of monoids. Because we consider right comodules we are more-or-less forced to write
V ® R where elsewhere we write R@ V.
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is aright C -comodule (called the free comodule on V'). The choice of a basis for V' realizes
this as a direct sum of copies of (C, A):

A
vec 224 yececC

At
cn 2, (ceo)

(b) Let (V1, p1) and (V2, p2) be comodules over coalgebras Cy and C; respectively. The
map
P1®P2
Nern ——VNeCiehneC:=1e1heCiC;
provides V1 ® V> with the structure of a C; ® Ca-comodule.
(c) Let (V, p) be a right C-comodule, and let «: C — C’ be a homomorphism of coal-
gebras. The map

Vv
v S vec 2% vec

provides V with the structure of a right C’-comodule.
(d) Let V be a k-vector space, and let p: V' — V ® C be a k-linear map. Choose a basis
(ei)ies for V, and write
plej) =) ei®cij. cijeC, (68)
iel
(finite sum, so, for each j, almost all ¢;;’s are zero). Then (V, p) is a right comodule if and
only if?’
Aleij) = dec*®6”% alli,j el. (69)
e(cij) = &ij

For a module V over an algebra A, there is a smallest quotient of 4, namely, the image
of A in Endg(V'), through which the action of A on V factors. In the next remark, we
show that for a comodule V over a coalgebra C, there is a smallest subcoalgebra Cy of C
through which the co-action of C on V' factors.

REMARK 8.6 Let (V, p) be a C-comodule.

(a) When we choose a k-basis (e;);ey for V, the equations show that the k-
subspace spanned by the ¢;; is a subcoalgebra of C, which we denote Cy. Clearly, Cy
is the smallest subspace of C such that p(V) C V ® Cy, and so it is independent of the
choice of the basis. When V is finite dimensional over k, so also is Cy .

(b) Recall that for a finite-dimensional k-vector space V,

Homk_hn(V, Ve C) ~ Homk_hn(V ® VV, C)
If p <> p’ under this isomorphism, then

p(v)=ZieIe,~®ci = (v® f) =Zielf(ei)ci-

2T The first equality can be written symbolically as

(A(cij)) = (cir) ® (ck;)-
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In particular, p’(e; ® el.v ) = ¢;j (notation as in ). Therefore Cy is the image of p": V ®
VY —C.

(c) If (V,p) is a sub-comodule of (C, A), then V' C Cy. To see this, note that the
restriction of the co-identity € of C to V is an element € of V' and that p'(v @ €y) = v
for all v € V because

pllej®ey) = Zie[ €(ej)cij

= (e ®idc)A(e))

= (idc ®¢€)A(ej) (by (29). p.
- Ziel ejelcij)

=ej (by (69)).

REMARK 8.7 Recall (§5¢) that the linear dual of a coalgebra (C, A, €) is an algebra (CY, A, eV)
(associative with identity). Let V be a k-vector space, and let p: V — V ® C be a k-linear
map. Define p to be the composite of

CV® V Qev
VeV =2 cVereC~TRCYeC 2N Vek~V

where ev:CY ® C — k is the evaluation map. One can check that (V,p) is a right C-
comodule if and only if (V, i) is a left CY-module. When C and V are finite-dimensional,
p > [ is a bijection

Homy;u (V. V ® C) ~ Homy;,(CY @ V. V),

and so there is a one-to-one correspondence between the right C-comodule structures on
V and the left CY-module structures on V. In the general case, not every C¥-module
structure arises from a C-comodule structure, but it is known which do (Dascalescu et al.
2001} 2.2;|Sweedler||1969, 2.1).

A k-subspace W of V is a subcomodule if p(W) C W ® C. Then (W, p|W) is itself a
C-comodule.

PROPOSITION 8.8 Every comodule (V, p) is a filtered union of its finite-dimensional sub-
comodules.

PROOF. As a finite sum of (finite-dimensional) sub-comodules is a (finite-dimensional)
sub-comodule, it suffices to show that each element v of V' is contained in a finite-dimensional
sub-comodule. Let (e;);e be a basis for C as a k-vector space, and let

o(v) = Zi Vi ®e;, vieV,
(finite sum, i.e., only finitely many v; are nonzero). Write
A(el-):zjkr,-jk(ej ®€k), r,-jkek.

We shall show that
po) =) ik (vi®ej) (70)
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from which it follows that the k-subspace of V' spanned by v and the v; is a subcomodule
containing v. Recall from that

(V@A)op=(p®C)op.
On applying each side of this equation to v, we find that

Zi,j,k rijk(vi ®e; Qeg) = Zk p(vp)®er (inside VRC R C).

On comparing the coefficients of 1 ® 1 ® e in these two expressions, we obtain (70). o

COROLLARY 8.9 A coalgebra C is a union of its sub-coalgebras Cy, where V runs over
the finite-dimensional sub-comodules of C'.

PROOF. For any finite-dimensional sub-comodule V of C,
VcCyccC
(see[8.6), and so this follows from the proposition. o

ASIDE 8.10 The main definitions in this subsection require only that k be a commutative ring.
When k is noetherian, every comodule over a k-coalgebra C is a filtered union of finitely generated
subcoalgebras (Serre|[1993} 1.4).

8¢ The category of comodules

Let (C, A, €) be a coalgebra over k. With the obvious definitions, the standard isomorphism
theorems (cf. 9.4]below) hold for comodules over C. For example, if (W, pw)
is a sub-comodule of (V, py’), then the quotient vector space '/ W has a (unique) comodule
structure py,w for which (V, py) — (V/ W, py;w) is a homomorphism. In particular, the
sub-comodules are exactly the kernels of homomorphism of comodules. The category of
comodules over C is abelian and the forgetful functor to k-vector spaces is exact.

A bialgebra structure (m,e) on C defines a tensor product structure on the category of
comodules over C: when (V1,p1) and (V2, p2) are C-comodules, V; ® V> has a natural
structure of a C ® C-comodule (see [8.3b), and the homomorphism of coalgebras m:C ®
C — C turns this into a C-comodule structure (see[8.5f). The tensor product of the empty
family of comodules is the #rivial comodule (k,k . C~k®C ). The forgetful functor

preserves tensor products.
Assume that V is finite dimensional. Under the canonical isomorphisms

Homk_lin(V, Ve C) ~ HOl’I’lk_]in(V ® VV, C) ~ Homk_]in(VV, C® VV), (71)
a right coaction p on V corresponds to left coaction p’ on VV¥. When C is a Hopf algebra,
the inversion can be used to turn p’ into a right coaction p"': define pV to be the composite
/ VVes
Ay Lvved B vvea. (72)
The pair (V'V,p") is called the dual or contragredient of (V,p). The forgetful functor
preserves duals.

SUMMARY 8.11 Let C be a k-coalgebra.

¢ The finite-dimensional comodules over C form an abelian category Comod(C).
¢ A bialgebra structure on C provides Comod(C) with a tensor product structure.
¢ A Hopf algebra structure on C provides Comod(C) with a tensor product structure

and duals.
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8f Representations and comodules

A comodule over a bialgebra (A,m,e, A, ¢) is defined to be a comodule over the coalgebra
(A4,A,¢).

PROPOSITION 8.12 Let G be an affine monoid over k. For any k-vector space V , there is
a natural one-to-one correspondence between the linear representations of G on V' and the
O(G)-comodule structures on V' .

We first describe the correspondence in the case that V is finite dimensional. The choice
of a basis (e;);ey for V identifies Endy with M,, and morphisms r: G — Endy of set-
valued functors with the matrices (r;;);, j)erx of regular functions on G,

rr(g) = (rij) (&)
ijel
The map r is a morphism of affine monoids if and only if (r;;) (1) = 6;; (i, j € I) and
(rij) g (€8) = Yker iR (®) - (rkj) g (&), allg.g’ € G(R), i.jel. (73)

On the other hand, to give a k-linear map p: V — V ® O(G) is the same as giving a matrix
(rij)i,jer of elements of O(G),

plej) =2 ierei ®rij,
and p is a co-action if and only if €(r;;) = d;; (i,j € ) and
A(rij):Zkelrik®rkj’alli,j el, (74)

(see (69), p.[98). But
Arij)r(g.8") = (rij) g (g &)
and
Ckerrie®rij) g (8.8) =Y ker rit) R (€) - (rkj) g (&)
(cf. §5¢), and so holds if and only if holds. Therefore

r<(rij)<p

gives a one-to-one correspondence between the linear representations of G on V' and the
O(G)-comodule structures on V.

SUMMARY 8.13 Let V' = k" with its canonical basis (e;);er; a matrix (r;;);, jer of ele-
ments of O(G) satisfying

A(rij) = D kerlik ®Tkj
€(rij) = &

defines a coaction of O(G) on V by
plej) =2 jerei ®rij,
and a homomorphism r: G — GL, by

alli,j el,

r(g) = (rij(g))i,jer.
which corresponds to the homomorphism O(GL,) — O(G) sending X;; to r;;.
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In the more formal proof of Proposition[8.12|below, we construct a canonical correspon-
dence between the representations and the comodule structures, and in Proposition [8.18|we
show that, once a basis has been chosen, the correspondence becomes that described above.

PROOF (OF PROPOSITION[8.12)) Let A = O(G). We prove the following more precise
result:
Let r:G — Endy be a representation; the “universal” element ¥ = id4 in
G(A) ~ Homy_y,(A, A) maps to an element of Endy (A4) o End 4.5i,(V(A))
whose restriction to V' C V(A) is a comodule structure p:V — V ® A on V.
Conversely, a comodule structure p on V' determines a representation r such
that, for R a k-algebra and g € G(R), the restriction of rg(g): V(R) — V(R)
to V C V(R)is

V®
V25 ved S VR,

These operations are inverse.
Let V be a vector space over k, and let r:G — Endy be a natural transformation of
set-valued functors. Let g € G(R) = Homy_y,(A, R), and consider the diagram:

v U1

VRg
V———V®A4A—VQ®R

pdéfmm Jm(u) JVR(A’)
Ve

V®A4——£%V®R

The k-linear map p determines rg(g) because r4(u) is the unique A-linear extension of p
to V ® A and rgr(g) is the unique R-linear map making the right hand square commute.
Thus the map p determines the natural transformation ». Moreover, the diagram can be
used to extend any k-linear map p:V — V ® A to a natural transformation r of set-valued
functors, namely, for g € G(R) = Homy_,4(A, R) and define rg(g) to be the linear map
V(R) — V(R) whose restriction to V is (V ® g) o p. Thus,

rr(g)(v®c) =(V®g)(cp(v)), forallge G(R),veV,ceR. (75)

In this way, we get a one-to-one correspondence r <> p between natural transformations of
set-valued functors r and k-linear maps p, and it remains to show that r is a representation
of G if and only if p is a comodule structure on V.

Recall that the identity element 1g) of G(k) is A <5 k. To say that rp(1g)) =
idy g% means that the following diagram commutes,

v U1

. T
V==V

A ———> V®k

v UQ®1 V®e
\ lV@k

VRA———— VK
V®e

i.e., that the right hand diagram in commutes.
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Next consider the condition that rg(g)rg(h) = rr(gh) for g,h € G(R). By definition

(see (8)), gh is the map
A (g.h)
A— A®A — R,
and so rr(gh) acts on V as

VeA VR(g.h
VAVA A Ve a4 L2 o R, (76)

On the other hand, rg(g)rg(h) acts as

VQh ®R V®(g,id
VA eal " ver 2R ve 4o R 229 v ok,

i.e., as

®A VRl(g,h
Vv 0d B vea04 L2, o R, (77)

The maps and agree for all g, i if and only if the first diagram in commutes.
EXAMPLE 8.14 Recall (8.5) that, for any k-bialgebra A, the map A:4 — A® A is a co-

module structure on A. When A = O(G), this comodule structure on A corresponds to the
regular representation of G on O(G) (8.3).

EXAMPLE 8.15 Let p:V — V ® O(G,) be a finite-dimensional O(G,)-comodule. The
k-vector space O(Gg4) ~ k[X] has basis 1, X, X?2,... and so we can write

p(v) = Zi>0pi(v)®Xi, velV.

As p is k-linear, so also is each map v — p; (v), and as the sum is finite, for each v, p; (v) is
zero except for a finite number of i. As V is finite-dimensional, this means that only finitely
many of the p; are nonzero. It follows that the representations constructed in form a
complete set.

PROPOSITION 8.16 Letr:G — Endy be the representation corresponding to a comodule
(V,p). A subspace W of V is a subrepresentation if and only if it is a subcomodule.

PROOF. Routine checking. O

PROPOSITION 8.17 Every representation of G is a union of its finite-dimensional subrep-
resentations.

PROOF. In view of (8.12)) and (8.16), this is simply a restatement of Proposition [3.8] o

PROPOSITION 8.18 Letr:G — Endy be the representation corresponding to a comodule
(V,p). Choose a basis (e;)iey for V, and write

plej) = Zi ei®ajj, aij €O(G). (78)
Then, for each g € G(R),

"R(g)(ej ®1) = Zie[ €i ®g(aij) = Zie] € ®ain(g) (79)

(equality in V(R); recall that a;;g is a map G(R) — R and that rg(g) is a map V(R) —
V(R)).
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PROOF. According to (75)),

rr(g)(e; ® 1) = (idy ®g)(p(e;))
= (idy ®¢)(2_; ei ®aij)
=) e ®glai)
=Y ;¢ ®a;ijr(g).

In the last step, we used that g(f) = fr(g) for f € O(G) and g € G(R) (see[2.16). o

COROLLARY 8.19 Let (G,r) be the representation corresponding to a comodule (V, p).
Choose a basis (e;);ey for V. Then O(Endy ) is a polynomial ring in variables X;; (i, ] €
I) where X;; acts by sending an endomorphism of V' to its (i, j)th matrix entry. The
homomorphism O(Endy) — O(G) defined by r sends X;; to a;; where a;; is given by

PROOF. Restatement of the proposition. O

COROLLARY 8.20 Let r:G — Endy be the representation corresponding to a comodule
(V,p). Let H be a subgroup of G, and let O(H) = O(G)/a. The following conditions on
a vector v € V are equivalent:

(a) forall k-algebras R and allg € H(R), rr(g)(vR) = VR;
) p(v) =v®1 modV Qa.

PROOF. We may suppose that v # 0, and so is part of a basis (e;);ey for V, say v =e;.
Let (aij)i,jer be as in (78); then (b) holds for e; if and only if a;; —§;; € a for all i. On
the other hand, shows that (a) holds for ¢; if and only if the same condition holds on

(aif)- 0

We say that v € V is fixed by H if it satisfies the equivalent conditions of the corollary,
and we let VH denote the subspace of fixed vectors in V. If H(k) is dense in H, then
v e VH if and only if r(g)v = v for all g € H(k) (because there is a largest subgroup of G
fixing v).

LEMMA 8.21 Let G, r,V, p, and H be as in the corollary, and let R be a k-algebra. The
following submodules of V(R) are equal:

@ VE®R;
(b) {ve V(R)|rr(g)(vr)) = vg forall R-algebras R and g € H(R')};
@) {veVR)|p(v)=v®]1 modV ®a® R}.

PROOF. Nothing in this subsection requires that k be a field (provided one assumes V' to be
free). Therefore the equality of the sets in (b) and (c) follows by taking k = R in Corollary
The condition

p()=v®] modV®a

is linear in v, and so if W is the solution space over k, then W &, R is the solution space
over R. This proves the equality of the sets in (a) and (c). o
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8g The category of representations of G

Let G be an affine monoid over k, and let Rep(G) be the category of representations of
G on finite-dimensional k-vector spaces. As this is essentially the same as the category of
finite-dimensional O(G)-comodules (see [8.12)), it is an abelian category and the forgetful
functor to k-vector spaces is exact and faithful.

The tensor product of two representations (V,r) and (V’,r’) is defined to be (V ®
V.r®r') where (r @ )R (g) = rr(g) ® rig(g).

When G is a group, the contragredient (or dual) of a representation (V,r) is defined to
be (VV,rV) where,

(rg(@ ()W) = forr(g ), g€G(R), feV'(R), veV(R)

(more succinctly, (gf)(v) = f(g~v)).

PROPOSITION 8.22 Let (V,r) and (V',r’) be representations of G, and let p and p’ be the

corresponding comodule structures on V and V'. The comodule structures on V ® V' and
VY defined by r @ r’ and r" are those described in

PROOF. Easy exercise for the reader. o

8h Affine groups are inverse limits of algebraic groups

It is convenient at this point to prove the following theorem.

THEOREM 8.23 Every affine monoid (resp. group) is an inverse limit of its algebraic quo-
tients.

In particular, every affine monoid (resp. group) is an inverse limit of algebraic monoids
(resp. groups) in which the transition maps are quotient maps.
We prove Theorem in the following equivalent form.

THEOREM 8.24 Every bialgebra (resp. Hopf algebra) over k is a directed union of its
finitely generated sub-bialgebras (resp. Hopt subalgebras) over k.

PROOF. Let A4 be a k-bialgebra. By (8.8)), every finite subset of A is contained in a finite-
dimensional k-subspace V such that A(V) C V ® A. Let (e;) be a basis for V, and write
Aej) =) ;ei ®a;j. Then A(a;;) = ) aix @ag; (see , p., and the subspace L
of A spanned by the e; and a;; satisfies A(L) C L @ L. The k-subalgebra A’ generated by
L satisfies A(A") C A’ ® A’, and so it is a finitely generated sub-bialgebra of A. It follows
that A is the directed union A = | J A" of its finitely generated sub-bialgebras.

Suppose that A4 has an inversion S. If A(a) =) _b; ®c;, then A(Sa) =) Sc; ® Sb;
(Exercise [5-5p). Therefore, the k-subalgebra A’ generated by L and SL satisfies S(A’) C
A’, and so it is a finitely generated Hopf subalgebra of A. It follows that A is the directed
union of its finitely generated Hopf subalgebras. O

COROLLARY 8.25 Let A be a Hopf subalgebra of the Hopt algebra B. Then A and B are
directed unions of finitely generated Hopf subalgebras A; and B; such that A; C B;.



106 I. Basic Theory of Affine Groups

PROOF. Since each finitely generated Hopf subalgebra of A is contained in a finitely gen-
erated Hopf subalgebra of B, this follows easily from the theorem. O

COROLLARY 8.26 Let A be a Hopf algebra over a field k. If A is an integral domain and
its field of fractions is finitely generated (as a field) over k, then A is finitely generated.

PROOF. Any finite subset S of A is contained in a finitely generated Hopf subalgebra A’ of
A. When S is chosen to generate the field of fractions of A4, then A’ and A have the same
field of fractions, and so they are equal (6.44])). o

COROLLARY 8.27 A Hopf algebra whose augmentation ideal is finitely generated is itself
finitely generated.

PROOF. Let A be a Hopf algebra. If 14 is finitely generated, then there exists a finitely
generated Hopf subalgebra A’ of A containing a set of generators for I4. The inclusion
A" — A corresponds to a quotient map G — G’ whose kernel has Hopf algebra 4 ® 4/
A'JT14 >~ AJ14A= A/I4 =~ k. Proposition[7.1]shows that G ~ G’,and so A’ ~ A. g

PROPOSITION 8.28 Every quotient of an algebraic group is itself an algebraic group.

PROOF. We have to show that a Hopf subalgebra A of a finitely generated Hopf algebra
B is finitely generated. Because B is noetherian, the ideal /4 B is finitely generated, and
because B is flat over A, the map I4 ® 4 B —> A® 4 B >~ B is an isomorphism of /4 ® 4 B
onto /4 B. Therefore 4 ® B is a finitely generated as a B-module, and as B is faithfully
flat over A, this implies that 4 is finitely generated.?® O

ASIDE 8.29 Proposition is not obvious because subalgebras of finitely generated k-algebras
need not be finitely generated. For example, the subalgebra k[X, XY, X Y2,..] of k[X,Y] is not
even noetherian. There are even subfields K of k(X71,..., X;,) containing k such that K Nk[X71,..., X, ]
is not finitely generated as a k-algebra (counterexamples to Hilbert’s fourteenth problem; Nagata and
others).

ASIDE 8.30 Theorem [8.23]is also true for nonaffine group schemes: every quasicompact group
scheme over a field k is a filtered inverse limit of group schemes of finite type over k (Perrin/1976).

8i Algebraic groups admit finite-dimensional faithful representations

In fact, every sufficiently large finite-dimensional subrepresentation of the regular represen-
tation will be faithful.

THEOREM 8.31 For any algebraic group G, the regular representation of G has faithful
finite-dimensional subrepresentations; in particular, the regular representation itself is faith-
ful.

28 As a B-module, 14 ® 4 B has a finite set of generators {c; ® b1,..., ¢m ® b }, and the map
(ay,..., am) = Yajci: A" — 14

is surjective because it becomes surjective when tensored with B.
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PROOF. Let A = O(G), and let V be a finite-dimensional subcomodule of A containing a
set of generators for A as a k-algebra. Let (e;)1<;<n be a basis for V', and write A(e;) =
> i ei®ajj. According to (8.19), the image of O(GLy ) — A contains the a;;. But, because

€: A — k is a co-identity (see (29), p.[42),

ej = (€®idg)Ale;) = ) e(enai.

i

and so the image contains V’; it therefore equals A. We have shown that O(GLy) — A4 is
surjective, which means that G — GLy is injective (7.2)). [Variant: Ay D V (see[8.6c), and
so Ay = A; this implies that the representation on V is faithful.] o

COROLLARY 8.32 Every affine group admits a faithful family of finite-dimensional repre-
sentations.

PROOF. Write G as an inverse limit G = 1(i£1ie] G; of algebraic groups, and, for each
i € I, choose a faithful finite-dimensional representation (V;,r;) of G;. Each (V;,r;) can
be regarded as a representation of G, and the family is faithful. =

The theorem says that every algebraic group can be realized as an algebraic subgroup
of GL, for some n. This does not mean that we should consider only subgroups of GL;,
because realizing an algebraic group in this way involves many choices.

PROPOSITION 8.33 Let (V,r) be a faithful representation of an algebraic group G. Then
V' is a union of its finite-dimensional faithful subrepresentations.

PROOF. Let (¢;);er be a basis for V, and write p(e;) =) ;<€ ®aij, a;j € A. Because
(V.r) is faithful, the k-algebra A is generated by the a;; (8.19). Because A is finitely
generated as a k-algebra, only finitely many a;;’s are need to generate it, and so there exists
a finite subset J of I such that the g;;’s appearing in p(e;) for some j € J generate A.
Every finite-dimensional subrepresentation of (V,r) containing {e; | j € J} is faithful. g

ASIDE 8.34 Does every affine group of finite type over a commutative ring admit an injective ho-
momorphism into GL,, for some n? Apparently, this is not known even when k is the ring of dual
numbers over a field and G is smooth (mo022078, Brian Conrad). Using (8.10), one sees by the
above arguments that an affine group scheme G of finite type over a noetherian ring k has a faithful
representation on a finitely generated submodule M of the regular representation. If M is flat over
k, then it is projective, and hence a direct summand of a free finitely generated k-module L, and
s0 G = GLyuk(z)- When k is a Dedekind domain and G is flat, the module M is torsion-free,
and hence automatically flat. Thus, every flat affine group scheme of finite type over a Dedekind
domain admits an embedding into GL,, for some n. As every split reductive group scheme over a
ring k arises by base change from a similar group over Z (Chevalley), such group schemes admit
embeddings into GL,. Since every reductive group splits over a finite étale extension of the base
ring (SGA3), an argument using restriction of scalars proves the statement for every reductive group
(mo22078).
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8j The regular representation contains all

Let (V,ry) be a representation of G. For v € V(R) and u € VY (R), let {(u,v) = u(v) € R.
For a fixed v € V and u € V'V, the maps

x> (u,ry(x)v):G(R) > R

are natural in R, and so define an element of O(G), i.e., there exists a ¢, (v) € O(G) such
that
du(V)R(x) = (u,ry(x)v) (in R) for all x € G(R).

Let A = O(G), and let r 4 be the regular representation of G on A.

PROPOSITION 8.35 The map ¢,, is a homomorphism of representations (V,ry) — (A,r4).

PROOF. We have to show that

(Pu)rorv(g) =ra(g)o(Pu)r
for all k-algebras R and all g € G(R). For any v € V(R) and x € G(R),

(LHS(v)) (x) = ¢ulrv(gv)r(x)
= {(u,ry(x)ry(g)v) (definition of ¢,)
= (u,ry(xg)v) (ry is a homomorphism)
= ¢u(V)Rr(xg) (definition of ¢y,)
= (ra(@)¢u(v))r(x) ((€3). p.P6)
= (RHS(v)) (x),
as required. o

PROPOSITION 8.36 Ifuy,...,u, span V", then the k-linear map
V> (Pu, (V). Py, (V) V — A" (80)
is injective.
PROOF. Note that ¢, (v)(1) = (u, v), and so the composite
V(R) - A"(R) —> R"
of (80) with the map “evaluate at 1 is

v ((ug,v),..., (un,v)),

which is injective by our choice of the u;’s. O

Thus, V' embeds into a finite sum of copies of the regular representation. We give a
second proof of this.

PROPOSITION 8.37 Let (V, p) be a finite-dimensional representation of G. Let V, denote
V regarded as a vector space, and let Vo ® O(G) be the free comodule on Vy (see[8.3).
Then

oV =>Vo®0O(G)

is an injective homomorphism of representations.
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PROOF. The coaction on Vo ® O(G) is
Vo ®A: Vo ® O(G) — Vo ® O(G) ® O(G).

The commutative diagram (see (67)), p.

1% LN Vo ® O(G)

J'p lVo@A
RO(G
v206) 220 18 06)806)
says exactly that the map p:V — Vp ® O(G) is a homomorphism of comodules. It is
obviously injective. O

8k Every faithful representation generates Rep(G)

Let (C,A,¢€) be a coalgebra over k, and let (V,p) be a comodule over C. Recall
that Cy denotes the smallest subspace of C such that p(V) C V ® Cy. The space Cy is
a sub-coalgebra of C, and, for any basis (¢;);ey of V, it is spanned by the elements c;;
determined by the equation

plej) = Ziel e ®cij.
Note that
Cov, = Z Cy;  (sum of subspaces of C).
1

Any Cy-comodule (W, py) can be regarded as a C-comodule with the coaction

w2 wecycwec.

LEMMA 8.38 Let (V,p) be a finite dimensional C -comodule. Every finite-dimensional
Cy -comodule (considered as a C -comodule) is isomorphic to a quotient of a sub-comodule
of V™ for some n.

PROOF. We may replace C with Cy, and so assume that C is finite dimensional. Let
A = CV. Because of the correspondence between right C-comodule structures and left
A-module structures (8.7), it suffices to prove the following statement:

let A be a finite k-algebra and let V' be a finite-dimensional faithful left A-

module; then every finite-dimensional A-module W is isomorphic to a quotient

of a submodule of V" for some n.
Every module W is isomorphic to a quotient of the free module A™ for some m, and
so it suffices to prove that A itself is isomorphic to a submodule of V" for some n. But if
e1,...,en span V as a k-vector space, then a — (aeq,...,ae,): A — V" is injective because
V is faithful. o

Now assume that A is a bialgebra over k. Then the tensor product of two A-comodules
has a natural A-comodule structure (§8¢).

LEMMA 8.39 Let A be a bialgebra over k, and let V and V' be finite-dimensional A-
comodules. Then Ay gy = Ay - Ay.



110 I. Basic Theory of Affine Groups

PROOF. Choose k-bases (e;);er and (e});e;’ for V and V', and write
prie)) =) ei®aij. pyi(€)) =) ¢®aj;.
iel iel’
Then (e; ® ¢;7)(i,inerer is abasis for V ®; V', and
pvev(ej®ej) =) /(e ®eir) ® (aij-aj ;)
(see §8e)). As

Ay =(ajj |i,j €I)
AV/= (a,-j |i,j E]/)
AV®V’ = (a,-j-al’-/j,|i,j el, i/,j/el’),

the statement is clear. (Alternatively, note that Ay ® Ay~ is the sub-coalgebra attached to
the A ® A-comodule V' ® V', and that Ay gy is the image of this by the multiplication map
mARA—A) o

Now assume that A is a Hopf algebra over k. Then the dual of an A-comodule has a
natural A-comodule structure (§8¢)).

LEMMA 8.40 Let A be a Hopf algebra over k, and let S: A — A be its inversion. For any
finite-dimensional A-comodule (V,p), Ayv = SAy.

PROOF. Under the isomorphisms (71)), the right co-action p: ¥V — V ® A corresponds to
a left co-action p: VY — A® V"V, and Ay is also the smallest subspace of A such that
o' (VYY) C Ay ® VV. It follows from the definition of pV (see ) that SAy is the smallest
subspace of A such that p¥V (V) C V'V ® A. o

LEMMA 8.41 LetV be a finite-dimensional comodule over a k -bialgebra A. Then

ZnZO Ayen C A

is the smallest sub-bialgebra of A containing Ay and 1.

def

A(V)E

PROOF. It follows from Lemma that
Ayen = Ay --- Ay (n factors),

and so it is clear that A(1) is the subalgebra of A generated by Ay and 1. 0

Note that A = | Jy, A(V) because A = |y Ay (see[8.9).

LEMMA 8.42 Let V be a finite-dimensional comodule over a Hopf k-algebra A. Then
A(V @ VV) is the smallest sub-bialgebra of A containing Ay and 1 and stable under S (in
other words, it is the smallest Hopf subalgebra of A containing Ay and 1).
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PROOF. From Lemma [8.41, A(V @ V') is the smallest sub-bialgebra of A containing
Aygyv and 1. But

Avery = Ay + Ay "= Ay, 1S4y,

and so it is the smallest sub-bialgebra of A containing Ay, SAy, and 1. O

Let G be an algebraic group over k, and let A = O(G).

LEMMA 8.43 Let (V,r) be a finite-dimensional representation of G, and let (V, p) be the
corresponding A-comodule. The representation r is faithful if and only if A(V & V) = A.

PROOF. Choose a basis (¢;);es for V, and write p(e;) = > _e; ® a;j. Then A(V & V) is
the smallest sub-bialgebra of A4 containing the @;; and 1 and stable under S (by [8.42). On
the other hand, the image of O(GLy) — O(G) = A is the k-subalgebra generated by the
ajj . As this image is a sub-bialgebra stable under S, we see that O(GLy) — O(G)
is surjective (so r is faithful) if and only if A(V & V) = A. O

THEOREM 8.44 Let G — GLy be a representation of G. If V' is faithful, then every finite-
dimensional representation of G is isomorphic to a quotient of a sub-representation of a
direct sum of representations Q" (V & VV) .

PROOF. Let W be the direct sum of the representations X" (V & V). By definition,
AV ®VY) = Aw. According to Lemma [8.38] every finite-dimensional Ay -comodule
is isomorphic to a quotient of a sub-comodule of W. When V is faithful, Ay = A. O

COROLLARY 8.45 Every simple G-module is a Jordan-Hélder quotient of Q" (V & V')
for somen.

PROOF. Immediate consequence of the theorem. o

We close this subsection with some remarks.

8.46 When M is an affine monoid with coordinate ring O(M) = A, we let My denote
the quotient affine monoid of M with coordinate ring A(V'). Similarly, when G is an affine
group, we let Gy denote the quotient affine group of G with coordinate ring A(V & V).
Both My and Gy act faithfully on V. Moreover,

M =limMy, G=1limGy

because A = JA(V).

8.47 Let (V, p) be a finite-dimensional comodule over a Hopf k-algebra A. Choose a basis
(ei)ier for V and define the matrix (a;;) by p(e;) =) ;c;ei ®a;j. Let 5y = det(a;;).
Then 8y is an invertible element of A, contained in A(V'), and

AV @VY)=AV) [%} :



112 I. Basic Theory of Affine Groups

8.48 The quotient My of M is the smallest affine submonoid of Endy containing the
image of r, and the quotient Gy of G is the smallest affine subgroup of GLy containing
the image of r.

8.49 Letdet(V) = /\dimV V. Then every simple G-module is a Jordan-Holder quotient
of ®"V @ Q™ det(V)V for some m,n.

8.50 It sometimes happens that O(Gy ) is a quotient of O(Endy ) (and not just of O(GLy)),
i.e., that A(V) = A(V @ V). This is the case, for example, if Gy is contained in SLy .
In this case, Theorem and its corollary simplify: the tensor powers of V & V" can be
replaced by those of V.

ASIDE 8.51 Our exposition of Theorem [8.44] follows [Serre|1993|

81 Stabilizers of subspaces

PROPOSITION 8.52 Let G — GLy be a representation of G, and let W be a subspace of
V. The functor
R~ {g €G(R) | gWr = Wr}

is a subgroup of G (denoted Gy, and called the stabilizer of W in G).

PROOF. Let (¢;);c; be a basis for W, and extend it to a basis (e;) yi;7 for V. Write
plej) = ijcure ®aij, aij € O(G).
Let g € G(R) = Homy_44(O(G), R). Then (see([8.18)
gej =Y iesur i ®gaij).

Thus, g(W®R) C W ®@Rifandonlyif g(a;;) =0for j € J,i €. Asg(a;;) = (aij)r(g)
(see [2.16), this shows that the functor is represented by the quotient of O(G) by the ideal
generated by {a;; | j € J,i € I'}. 0

We say that an affine subgroup H of G stabilizes W it H C Gy, i.e., it iWgr = Wg
for all k-algebras R and & € H(R).

COROLLARY 8.53 Let H be an algebraic subgroup of G such that H (k) is dense in H. If
hW =W forallh € H(k), then H stabilizes W .

PROOF. As hW = W forall h € H(k), wehave (H NGw)(k) = H(k),andso HNGwy =
H. o

PROPOSITION 8.54 Let G actonV and V', and let W and W' be nonzero subspaces of V
and V'. Then the stabilizerof W @ W/ in V @ V' is Gw N Gw.
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PROOF. Clearly Gw N Gw’ C Gwgw-. Conversely, if g is an element of G(R) not in
Gw (R), then there exists a nonzero w € W such that gw ¢ Wg. For any nonzero element
w’ of W/, the element g(w @ w’) = gw ® gw’ of Vg ® V}, is not in Wg ® W§,* and so
g ¢ Gwew (R). o
PROPOSITION 8.55 Let G — GLy be a representation of G, and let v € V. The functor

def

R~ Gy(R)={gecG(R) | gv®1)=v®1 (in V§)}

is a subgroup of G (denoted G, and called the isotropy or stability group of v in G).

PROOF. If v =0, then G, = G and there is nothing to prove. Otherwise, choose a basis
(ei)ier for V with e;, = v for some ig € /. Write

plej) =2 jesurei ®aij, aij € O(G).
An element g € G(R) fixes v ® 1 if and only if

1 if i=ip

&(@io) =1 ) otherwise.

Therefore G, is represented by the quotient of O(G) by the ideal generated by {a;;, — ;i |
i€ I} O

DEFINITION 8.56 For a representation r: G — GLy of G,
yo = {veV|gv=uw(in VR) for all k-algebras R and and g € G(R)}.

It is largest subspace of V' on which the action of G is trivial. If p denotes the corresponding
coaction, then

Ve ={veV|pv)=v®l}.
8m Chevalley’s theorem

THEOREM 8.57 (CHEVALLEY) Every subgroup of an algebraic group G is the stabilizer
of a one-dimensional subspace in a finite-dimensional representation of G.

PROOF. Let H be a subgroup of G, and let a be the kernel of O(G) — O(H). According
to (8.8), there exists a finite-dimensional k-subspace V' of O(G) containing a generating
set of a as an ideal and such that

A(V) CV®O(G).

291 et e and e’ be nonzero elements of V and V';ife® e’ € Wr ® WI’e for some k-algebra R, then ee W
and e’ € W’. To see this, write V = W @ W1, so that

VeV =weVew eV

Lete = eg+eq witheg € W and e; € Wy. If ey #0,theney ®e’ #A0in Wi @ V' C (W1 ® V)R, and so
e®e ¢(WRV/')g.
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Let W =anVin V. Let (¢;);cs be a basis for W, and extend it to a basis (e;) yiuy for V.
Let

Aej=Yicjurei®aij. aij € 0(G).

As in the proof of[8.52] Gy is represented by the quotient of O(G) by the ideal a’ generated
by {a;; | j € J,i € I}. Because O(G) — O(H) is a homomorphism of coalgebras®’

A(a) CKer(O(G)®0(G) - O(H)®O(H)) =0(G)®a+a® O(G),
€(a) =0.

The first of these applied to e, j € J, shows that a’ C a, and the second shows that
ej = (e,id)A(ej) =) ;s €lei)aij.

Asthe ej, j € J, generate a (as an ideal), so do the a;;, j € J, and so o =a. Thus H =
Gw . The next (elementary) lemma shows that W can be taken to be one-dimensional.

LEMMA 8.58 Let W be a finite-dimensional subspace of a vector space V, and let D =
D= /\dlmW W C /\dlmW V. Let o be an automorphism of Vg for some k-algebra R. Then
aWgr = Wg ifand only if a Dg = DRg.

PROOF. Let (e;);es be a basis for W, and extend it to a basis (e;)jur of V. Let w =
/\jeJ e;. For any k-algebra R,

Wr={veVgr|vAw =0 (in /\d+1 VR)}.
To see this, let v € Vg and write v =) ;. ;7 ai€i, a; € R. Then
VAW =) jcraiei A Aeg Aej.
As the elements ey A---Aeg Aej, i € 1, are linearly independent in /\d+1 V', we see that
VAW =0 < q; =0foralli € 1.

Let @ € GL(VR). If aWg = Wg, then obviously (/\d @)(DR) = Dpg. Conversely,

suppose that (/\d a)(DR) = Dg, so that (/\d a)w = cw for some ¢ € R*. When v € Wg,
vAw = 0, and so

0= (/\d+1 a)(VAW) =av A (/\d a)w =c ((av) Aw),

which implies that cv € Wg. O

COROLLARY 8.59 A subgroup H of an algebraic group G is the subgroup of G fixing a
vector in some faithful finite-dimensional representation of G in each of the following two
cases:

(a) all the representations of H are semisimple;

30We use the following elementary fact: for any subspace W of a vector space V, the kernel of V @ V —
V/IWQV/Wis VW + W V. To prove this, write V =W @ W’.
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(b) a nonzero multiple of each character of H defined over k extends to a similar char-
acter of G.

PROOF. According to Chevalley’s theorem, H is the stabilizer of a line D in a finite-
dimensional representation V of G. Let DV be the dual of D with H acting contragre-
diently. If we can find a representation V' of G containing D" as an H -stable subspace,
then H will be the subgroup of G fixing any nonzero vectorin D @ DV C V @ V'3

Certainly DV occurs as a quotient of V'V, and so, in case (a), it also occurs as a direct
summand of V'V (regarded as an H-module). In this case, we can take V' = V'V,

The action of H on D defines a character of H, which in case (b) extends to a character
of G. In this case, we can take V' = DV. o

8n Sub-coalgebras and subcategories

Let C be a coalgebra over k. As before, Comod(C') denotes the category of finite-dimensional
right C-comodules. Let D be a sub-coalgebra of C. Any D-comodule (V, p) becomes a
C-comodule with the coaction

v ZveDcvec.

In this way, we get an exact fully faithful functor Comod(D) — Comod(C). We let DV
denote the full subcategory of Comod(C') whose objects are isomorphic to a comodule in
the image of this functor.

DEFINITION 8.60 A full subcategory of an abelian category is replete if it is closed under
the formation of finite direct sums, subobjects, and quotient objects.

In particular, every object isomorphic to an object in a replete subcategory also lies in
the subcategory. A replete subcategory is an abelian category, and the inclusion functor is
exact.

THEOREM 8.61 The map D — DV is a bijection from the set of sub-coalgebras of C onto
the set of replete subcategories of Comod(C).

PROOF. Itis obvious that DV is replete. Let S be a replete subcategory of Comod(C), and
let
C(S) = ZV&S Cy  (sub-coalgebra of C).

To prove the theorem, we have to show that:

o C(DY) = D for all sub-coalgebras D of C, and
¢ C(S)Y = S for all replete subcategories S of Comod(C). o

The first statement follows from Corollary and the second follows from Lemma 8.38

311 et v be a nonzero vector in D. Then

H C Gygyv CGpgpv =GpNGpv =Gp = H.



116 I. Basic Theory of Affine Groups

PROPOSITION 8.62 Let A be a bialgebra over k.

(a) A sub-coalgebra D of A is a sub-bialgebra of A if and only if DV is stable under
tensor products and contains the trivial comodule.

(b) Assume A has an inversion S. A sub-bialgebra D is stable under S if and only if DV
is stable under the contragredient functor.

PROOF. (a) If D is a sub-bialgebra of A, then certainly D" is stable under tensor products
and contains the trivial comodule (see . For the converse, recall that D = | J Dy and
that Dy - Dy = Dy gy’ (see , and so D is closed under products. Because DY
contains Vo = k, D contains Dy, = k.

(b) Use the formula Ayv = SAy (8.40). o

80 Quotient groups and subcategories

For an affine group G over k, Rep(G) denotes the category of finite-dimensional G-modules.
Let G — Q be a quotient of G. A representation r: 0 — GLy defines a representation
G—Q N GLy of G. We get in this way an exact fully faithful functor Rep(Q) —
Rep(G). The essential image of the functor consists of the representations of G containing
Ker(G — Q) in their kernel. We let OV denote this subcategory of Rep(G).

THEOREM 8.63 The map Q — QV is a bijection from the set of isomorphism classes of
quotients of G to the set of replete subcategories of Rep(G) closed under the formation of
tensor products (including the empty tensor product) and under passage to the contragredi-
ent.

PROOF. Obvious from (8.61)), (8.62), and the dictionary between Hopf algebras and their
comodules and affine groups and their representations. O

8p Characters and eigenspaces

A character of an affine group G is a homomorphism G — G,. As O(G,,) = k[X,X!]
and A(X) = X ® X, we see that to give a character y of G is the same as giving an
invertible element a = a(y) of O(G) such that A(a) = a ® a; such an element is said to
be group-like. A one-dimensional representation L of G defines a character of G (because
GL; >~ Gy).

A character y: G — Gy, defines a representation of G on any finite-dimensional space
V: let g € G(R) act on Vg as multiplication by y(g) € R*. For example, y defines a
representation of G on V = k" by

x(g) 0
g , g2€G(R).

0 x(g)

Let r: G — GLy be a representation of G. We say that G acts on V' through a character y
if

r(g)v=yx(g)vall g e G(R),v € Vpg.
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More precisely, this means that the image of r is contained in the centre G, of GLy and is
the composite of

75 G,y GLy. (81)

More generally, we say that G acts on a subspace W of V through a character y if W
is stable under G and G acts on W through y. Note that this means, in particular, that
the elements of W are common eigenvectors for the g € G(k): if w € W, then for every
g € G(k), r(g)w is a scalar multiple of w. If G acts on subspaces W and W' through a
character y, then it acts on W + W’ through y. Therefore, there is a largest subspace V;, of
V on which G acts through y, called the eigenspace for G with character y.

LEMMA 8.64 Let (V,r) be a representation of G, and let (V, p) be the corresponding co-
module. For any character y of G,

Vi={veV|p)=v®a(x)}

PROOF. Let W be a subspace of V. Then G acts on W through y if and only if p| W factors

as

X
W 2K 2 OGyy) LEEENWD o 0(6). .

THEOREM 8.65 Letr:G — GL (V) be a representation of an algebraic group on a vector
space V. If V is a sum of eigenspaces, V = erE Vy, then it is a direct sum of the
eigenspaces

V= @XGE Vy.

PROOF. We first prove this when G is smooth. We may replace k with a larger field, and
so assume that k is algebraically closed. If the sum is not direct, there exists a finite subset
{X1,...» Xm}» m > 2, of Z and a relation

Vi 4+ vm =0,v; € Vy,, v #0. (82)
On applying g € G(k) to (82)), we get a relation

x1(@v1+-+ xm—1(&)vm—1+ xm(g)vm = 0. (83)

AS Ym # xm—1 and G is smooth, there exists a g € G(k) such that y,,,(g) # xm—-1(g).
Multiply by xm(g)~! and subtract it from . This will give us a new relation of the
same form but with fewer terms. Continuing in this fashion, we arrive at a contradiction.

For the proof of the general case, we shall make use of the elementary lemma [14.2]
which says that any set of units a in O(G) satisfying A(a) = a ®a is linearly independent.
From the relation (82)), we get a relation

0=2"esP(Vi) =Y eyvi ®al(xi)

which contradicts the linear independence of the a(y;). O

In §T4 we shall show that when G is a split torus, V' is always a sum of the eigenspaces
V. In general, this will be far from true. For example, SL;, has no nontrivial characters.
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8q Every normal affine subgroup is a kernel

LEMMA 8.66 Letv and w be nonzero vectors in vector spaces V and W respectively, and
let & and B be endomorphisms of Vg and Wy for some k-algebra R. If v ® w is fixed by
o ® B, then there exists a ¢ € R* such that «(v) = cv and B(w) = ¢~ 'w.

PROOF. Write
V=@waeV, W=Wwaew.

Then
VW =@wew) ® QW' & V'e(w) & VW',

where (v ® w) = (v) ® (w) # 0. Write
av=av+v', Bw=bw+w', abeR, vVeVy weW

Then
@B (vRw)=ab(v@w)+av@w +v @bw+v Quw’.

fe®pB)(vw)=v®w,thenab = 1 and
a(v®w/) =O=b(v’®w).
Asa,b € R* and v # 0 # w, this implies that w’ = 0 = v’, as required. o

LEMMA 8.67 For any normal subgroup N of an affine group G and representation (V,r)
of G, the subspace V' is stable under G.

PROOF. Let w € (V) g and let g € G(R) for some k-algebra R. For any R-algebra R’
andn € N(R')

r(n)(r(g)w) =rmg)w =r(gnw =r(@rmw =r(guw,

because n’ = g~ 'ng € N(R’). Therefore, r(g)w € (VN )g, as required. 0

LEMMA 8.68 Let G be an affine group over k, and let (V,r) be a representation of G. If
V' is a sum of simple subrepresentations, say V =) ;.; S; (the sum need not be direct),
then for any subrepresentation W of V , there is a subset J of I such that

V:W@@iEJSi.

In particular, V' is semisimple.

PROOF. Let J be maximal among the subsets of / such the sum S e > jes S 1s direct
and W NSy =0. Iclaim that W + S8y =V (hence V is the direct sum of W and the S
with j € J). For this, it suffices to show that each S; is contained in W + Sy. Because S;
is simple, S; N (W 4 Sy) equals S; or 0. In the first case, S; C W + S, and in the second
SyNS; =0and WN(Sy+ S;) =0, contradicting the definition of /. O

LEMMA 8.69 Suppose that k is algebraically closed. Every normal subgroup of an alge-
braic group G over k occurs as the kernel of representation of G.
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PROOF. Let N be a normal subgroup of G. According to Chevalley’s theorem N is
the stabilizer of a line L in a representation V of G. Let N act on L through the character
x. After possibly replacing (V, L) with a second pair, we shall find a G-module U and
aline L" in U such that N acts on L’ through y and L’ is a direct summand of U as an
N-module. Then UV contains a line LY on which N acts through the character y~!, and
LRLY C(VUY)N. If an element « of G(R) acts trivially on (V ® Uv)g, then it acts
trivially on (L ® L"), and so it stabilizes L g in Vg (by([8.66); hence & € N(R). Therefore
N is the kernel of the representation of G on (V Q UY)™ .

It remains to construct U. Suppose first that G is smooth. In this case, we take U to
be the smallest G-stable subspace of V' containing L. The subspace ) geGk) 8L of V'is
stable under G (k), hence under G (8.53)), and so equals U. According to Lemma U
decomposes into a direct sum U = @ie 7 L; of lines L; stable under N, one of which can
be taken to be L.

If G is not smooth, then the characteristic of k is p # 0, and there exists an n such that
O(G)?" is a reduced Hopf subalgebra of O(G) (see . In this case, we replace V' by
V®P" and L by L®?" — Proposition|[8.54shows that N is still the stabilizer of L. Let G’
be the quotient of G such that O(G’) = O(G)?". Choose a basis (e;); ey for V containing
a nonzero element e of L. Write

ple)=e®a+ Ze-;ée ei®ai, aj €a=ZKer(O(G)—> O(N)). (84)

In replacing L with L®P" we replaced the original a with a?", which now lies in O(G’).
Let L' = (a) € O(G’), and consider the representation

G — G/ — GLO(G’)

of G on O(G’). The character y of N corresponds to the element a of O(N), where a is
the image of b in O(N) = O(G)/a (see (84)). As

Ala) =a®a mod O(G) ® O(G)/a,

N acts on the line L’ through the same character y. Because G’ is smooth, we can take U
to be the smallest G’-stable subspace of O(G’) containing L’, as in the paragraph above. o

THEOREM 8.70 Let N be a normal subgroup of an algebraic group G. The universal
surjective homomorphism G — Q containing N its kernel (see[7.63)) has kernel exactly N .

PROOF. Lemma show that, over some finite extension k’ of k, there exists a homo-
morphism G, — H with kernel Ny. The kernel of G — I1y+/x H is N. From the universal
property of G — Q, we see that Ker(G — Q) C N, and hence the two are equal. O

COROLLARY 8.71 For any distinct normal subgroups N C N' of an affine group G, there
exists a representation of G on which N acts trivially but N’ acts nontrivially.

PROOF. Let O = G/N be the quotient of G by N, and let 0 — GLy be a faithful repre-
sentation of Q. The composite G — Q — GLy is the required representation. O
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8r Variant of the proof of the key Lemma 8.69)

LEMMA 8.72 Let (V,r) be a finite-dimensional faithful representation of an algebraic
group G, and let N be the kernel of the representation of G on VY ® V. Then

N(R) = {a € G(R) | there exists ac € R such thatax = cv forallv € V'}.

In other words, for any subgroup G of GLy, the subgroup of G acting trivially on
VY ® V is the subgroup acting on V' by scalars.

PROOF. Let (e;)1<i<n be a basis for V, and let ¢;; = ¢, ® e;. Let o be endomorphism of
Vg for some k-algebra R. A direct calculation shows that «(e;;) = e;; for all i, j if and
only if there exists a ¢ € R such that «e; = ce; for all i. o

LEMMA 8.73 Let G be an algebraic group, and let H be a subgroup of G. The following
are equivalent:

(a) H isnormal in G;

(b) for each representation V of G and k-character y of H, the subspace VX of V on
which H acts through y is stable under G;

(c) every H -isotypic component of a representation of G is stable under G .

PROOF. See|André|1992, Lemma 1. (We sketch the proof of (a) = (b). Forany g € G (k),
gVX = VE&X but the action of G on the set of k-characters of H is trivial, because G is
connected and the set is discrete. When G is smooth, this is shown in the proof of (16.31).)

We now prove that every normal subgroup N of a connected algebraic group G occurs
as the kernel of a representation of G (without assumption on the field k). Let L be a line
in a representation V' of G such that G;, = N. Then N acts on L through a character y.
Let W be the smallest G-stable subspace of V' containing L. Then W C VX by (8.73)), and
so N is contained in the kernel H of G — GLwvgw. According to (8.72), H acts on W
through a k-character. In particular, it stabilizes L, and so H C N.

8s Applications of Corollary 8.71]

LEMMA 8.74 Let Ny and N, be normal subgroups of an affine group G. If Rep(G)N1 =
Rep(G)N2 then N1 = Ns.

PROOF. If Nj # N,, then Corollary shows that there exists a representation (V,r) of
G and a v € V fixed by Ny but not by Ny N,. Then V™ is an object of Rep(G)™! but not
of Rep(G)N2, which contradicts the hypothesis. O

THEOREM 8.75 Let N be a normal subgroup of an affine group G, and let Q be a quotient
of G. Then N = Ker(G — Q) if and only if Rep(G)N = QV.

PROOF. =: According to Theorem[7.56] a representation 7: G — GLy factors through Q
(and so lies in Q) if and only if 7 maps N to 1 (and so (V,r) lies in Rep(G)™).

«<: Let N’ be the kernel of G — Q. Then Rep(G)Y = QV, and so Rep(G)N =
Rep(G)N'. This implies that N = N'. o
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COROLLARY 8.76 The map N — Rep(G)N is a bijection from the set of normal sub-
groups of G to the set of replete subcategories of Rep(G) closed under tensor products and
passage to the contragredient.

PROOF. Let S be a replete subcategory of Rep(G) closed under tensor products and pas-
sage to the contragredient. The S = QV for some quotient Q of G, well-defined up to
isomorphism, and the kernel N of G — Q is a normal subgroup of G. The maps S +— N
and N — Rep(G)" are inverse. a)

THEOREM 8.77 For any normal subgroup N of an affine group G, there exists a quotient
map with kernel N .

PROOF. The subcategory Rep(G)V of Rep(G) is replete and closed under tensor products
and passage to the contragredient. Therefore Rep(G)" = QV for some quotient Q of G,
and the Theorem [8.75]implies that N is the kernel of G — Q. o

NOTES Add a discussion of the correspondence between normal subgroups of an affine group G
and the normal Hopf ideals in O(G) (Abe||1980, p. 179), and also of the correspondence between
normal Hopf ideals and Hopf subalgebras (ibid. 4.4.7, p. 207, in the case that k is algebraically
closed and the Hopf algebras are assumed to be reduced).

NOTES Add a discussion of the general theorem on the existence of quotients of group schemes
over artinian rings (SGA3, VI4).

9 Group theory: the isomorphism theorems

In this section, we show that the (Noether) isomorphism theorems in abstract group theory
hold also for affine groups.

9a Review of abstract group theory

For a group G (in the usual sense), we have the notions of subgroup, a normal subgroup, an
embedding (injective homomorphism), and of a quotient map (surjective homomorphism).
Moreover, there are the following basic results, which are often referred to collectively as
the isomorphisms theorems.??

9.1 (Existence of quotients). The kernel of a quotient map G — Q is a normal subgroup
of G, and every normal subgroup N of G arises as the kernel of a quotient map G — G/N.

9.2 (Homomorphism theorem). The image of a homomorphism a: G — G’ is a subgroup
aG of G', and « defines an isomorphism from G/Ker(«) onto aG; in particular, every
homomorphism is the composite of a quotient map and an embedding.

32Statements (9.2), (9.3), and (9.4) are sometimes called the first, second, and third isomorphism theorems,
but the numbering varies. InNoether|[1927, the first isomorphism theorem is (9.4) and the second is (9.3).
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9.3 (Isomorphism theorem). Let H and N be subgroups of G such that H normalizes N;
then HN is a subgroup of G, N is a normal subgroup of HN, H N N is a normal subgroup
of H, and the map

h(HNN)—hN:H/HNN — HN/N

is an isomorphism.

9.4 (Correspondence theorem). Let N be a normal subgroup of G. The map H +— H/N
defines a one-to-one correspondence between the set of subgroups of G containing N and
the set of subgroups of G/N. A subgroup H of G containing N is normal if and only if
H/N is normal in G/ N, in which case the map

G/H — (G/N)/(H/N)

defined by the quotient map G — G/ N is an isomorphism.

In this section, we shall see that, appropriately interpreted, all these notions and state-
ments extend to affine groups (in particular, to algebraic groups).

9b The existence of quotients

See Theorem [8.70

EXAMPLE 9.5 Let PGL, be the quotient of GL,, by its centre, and let PSL,, be the quotient
of SL,, by its centre:

PGL, = GL, /Gy, PSL, =SL, /itn.

The homomorphism SL,, — GL,, — PGL,, contains i, in its kernel, and so defines a ho-
momorphism
PSL, — PGL,, . (85)

Is this an isomorphism? Note that
SLn(k)/ pn (k) = GLn (k) /G (k) (86)

is injective, but not in general surjective: not every invertible n X n matrix can be written
as the product of a matrix with determinant 1 and a scalar matrix (such a matrix has de-
terminant in k*™). Nevertheless, I claim that is an isomorphism of algebraic groups.
In characteristic zero, this follows from the fact that is an isomorphism when k = k?
(apply and [7.54). In the general case, we have to check the conditions (7.2h) and
(7.50).

Let g # 1 € PSL, (R). For some faithfully flat R-algebra R’, there exists a g € SL,,(R’)
mapping to ¢ in PSL, (R’). The image of g in GL, (R’) is not in G, (R’) (because g # 1);
therefore, the image of g in PGL,, (R’) is # 1, which implies that the image of ¢ in PGL(R)
is # 1:

PSL,(R’) —— PGL,(R’)

T Tinjective

PSL,(R) ——> PGL,(R).
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We have checked condition (7.2h).

Let g € PGL, (R). For some faithfully flat R-algebra R’, there exists a g € GL, (R’)
mapping to g. If a o det(g) is an nth power, say a = t", then g = got with det(go) = 1,
and the image of g in GL,(R’)/G,,(R’) is in the image of SL, (R’)/un(R’). Hence, the
image of ¢ in PGL,(R’) is in the image of PSL,(R’). If a is not an nth power in R’, we
replace R’ by the faithfully flat (even free) algebra R'[T]/(T™ —a) in which it does become
an nth power. We have checked condition (7.50).

9¢ The homomorphism theorem

A homomorphism «a:G — G’ of affine groups defines a homomorphism o*: O(G') —
O(G) of Hopf algebras, whose kernel a is a Hopf ideal in O(G’).** Thus

a=1{f €0O(G") | fr(ar(P)) = 0 for all k-algebras R and all P € G(R)}.

The subgroup H of G’ corresponding to a (see is called the image of « (and often
denoted aG). Thus

H(R) ={g € G(R) | fr(g) =0for f €a}.

THEOREM 9.6 (Homomorphism theorem) For any homomorphism «:G — G’ of affine
groups, the kernel N of « is a normal subgroup of G, the image oG of « is a subgroup of
G’, and « factors in a natural way into the composite of a surjection, an isomorphism, and
an injection:
G —> 5 @
surjectivel Tinjective

isomorphism
G/ N ——— aG.

If G is an algebraic group, then so also are G/N and oG

PROOF. The factorization
O(G) < O(G")/a < O(G")

of a™* defines a factorization
G—>aG—G'

of o into a surjection followed by an injection. As G — G/N and G — oG are both
quotient maps with kernel N, there is a unique isomorphism G/N — « G such that the
composite

is G — oG (apply.

The final statement follows from (8.28). o

G —->G/N - aG

3B fact, we don’t need to use that a is a Hopf ideal, just that it is an ideal.
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COROLLARY 9.7 For any k-algebra R,
(@G)(R) = UR/ G(R)NIma(R) (R’ runs over the R-algebras).
Therefore a G represents the sheaf associated with
R ~~Im(a(R)).

Moreover, a G is the intersection of the subgroups H of G’ with the property that Ima(R) C
H(R) for all k-algebras R.

PROOF. The map G — G is a quotient map, and so the first statement follows from (7.73).
If H is a subgroup of G’ such that H(R) D Ima/(R) for all k-algebras R, then, for any fixed
k-algebra R,

H(R) D UR, G(R)NIma(R') = (¢G)(R),

and so H D aG. o

COROLLARY 9.8 A homomorphism «:G — G’ of algebraic groups is surjective if, for
some field K containing k, the image of G(K) in G'(K) is dense in G'.

PROOF. As a(G(K)) C (@G)(K) C G'(K), the condition implies that G = G. o
Let «: G — G’ be a homomorphism of algebraic groups. Then G (k) — («G) (k) is
surjective (see[7.54)), and so
(@G)(k) = G'(k) N (@G) (k™)

— G'() Nim(G (k™ "% 67k,

9d The isomorphism theorem

Let H and N be algebraic subgroups of G such that H normalizes N. The natural ac-
tion of H(R) on N(R) defines an action 6§ of H on N by group homomorphisms, and
multiplication defines a homomorphism

NN@H—)G.

We define NH = HN to be the image of this homomorphism. The following statements
are obvious from

9.9 For any k-algebra R, (H N )(R) consists of the elements of G(R) that lie in H(R')N(R')
for some finitely generated faithfully flat R-algebra R’. Therefore H N represents the sheaf
associated with the functor

R~ H(R)-N(R) C G(R).

Moreover, HN is the intersection of the subgroups G’ of G such that, for all k-algebras R,
G’(R) contains both H(R) and N(R).
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9.10 We have
(HN)(K™) = H(K™)- N (k™).

and so
(HN)(k) = G(k) N (H (k™) N (k™).

9.11 Tt is not true that (HN)(R) = H(R)N(R) for all k-algebras R. For example,
consider the algebraic subgroups SL, and G, (nonzero scalar matrices) of GL,. Then
GL, = SL, -G, but a matrix A € GL,(R) whose determinant is not an nth power is not
the product of a scalar matrix with a matrix of determinant 1.

THEOREM 9.12 (Isomorphism theorem) Let H and N be algebraic subgroups of the alge-
braic group G such that H normalizes N . The natural map

H/HNN — HN/N (87)

is an isomorphism.

PROOF. We have an isomorphism of group-valued functors
H(R)/(HNN)(R) — H(R)N(R)/N(R) C (HN)(R)/N(R).
The statement now follows from (7.73)), or by passing to the associated sheaves. O

EXAMPLE 9.13 Let G = GL,,, H = SL,,, and N = Gy, (scalar matrices in G). Then
N N H = p, (obviously), HN = GL,, (by the arguments in [9.3), and becomes the
isomorphism

SL,, /un — GL,, /Gy,

9e¢ The correspondence theorem

THEOREM 9.14 (Correspondence theorem). Let N be a normal algebraic subgroup of G.
The map H — H/N defines a one-to-one correspondence between the set of algebraic
subgroups of G containing N and the set of algebraic subgroups of G/N. An algebraic
subgroup H of G containing N is normal if and only if H/ N is normal in G/ N, in which
case the map

G/H — (G/N)/(H/N) (88)

defined by the quotient map G — G/ N is an isomorphism.

PROOF. The first statement follows from the fact that the analogous statement holds for
Hopf algebras (cf. Exercise[5-10). For the second statement, note that the map

G(R)/H(R) — (G(R)/N(R))/(H(R)/N(R))

defined by the quotient map G(R) — G(R)/N(R) is an isomorphism. This isomorphism
is natural in R, and when we pass to the associated sheaves, we obtain the isomorphism

(88). o

ASIDE 9.15 Letg:G — G/ N be the quotient map. For any subgroup H of G, gH is a subgroup of
G/ N, which corresponds to HN . Deduce that if H’ is normal in H, then H’N is normal in HN .

NOTES Need to discuss how much of the isomorphism theorems hold for smooth groups. Should
move the smoothness part of (17.1)) here.
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9f The Schreier refinement theorem

LEMMA 9.16 (BUTTERFLY LEMMA) Let Hy D Ny and H, D N, be algebraic subgroups
of an algebraic group G with N1 and N, normal in H; and H,. Then N1(H; N N») and
N2 (N1 N Hy) are normal algebraic subgroups of the algebraic groups N1(H1 N H) and
N> (H» N Hy) respectively, and there is a canonical isomorphism of algebraic groups

Ni(HiNHy) Na(HiNH>)
Ni(HiNN2) — Na(N1NH>)

PROOF. The algebraic group Hy N N, isnormal in H; N H, and so N1 (H; N H>) is normal
in N1(H1 N N3) (see Exercise. Similarly, N»(H» N Ny) is normal in Ny (H, N Hyp).
The subgroup H; N H, of G normalizes N1 (H1 N N3), and so the isomorphism Theo-
rem [9.12] shows that
HiNHy _(HiNH>)-Ni(HiNN>)
(HiNH)NNi(HiNN2) N1(Hy N N>)

As Hi NN, C Hy N Hy, we have that Hy N Hy, = (Hy N Hy) (Hy N N3), and so

(89)

Ni-(Hi N Hy) = Ny-(Hy N Hy)-(H; N N,).

The first of Dedekind’s modular laws (Exercise [7-3p) with A = H1 N Na, B = H; N H»,
and C = Nj becomes

(H1 ﬂHz)ﬂNl (H1 ﬂNz) = (H1 ﬂNz)(Hl ﬂHzﬂNl)
= (HiNN2) (N1 N Hy).
Therefore (89) is an isomorphism

HyN Hy _ Ni(HiNHy)
(HiNN2)(NtNHy) — Ni(HiNNy)

A symmetric argument shows that

Hi{NH, NNz(HlmHZ)
(Hl ﬂNz)(Nl ﬂHz) o Nz(HzﬂNl)’

and so
Ni(HiNHy) Na(HiNHy)

Ni(HiNNz) — No(H N Ny)' o

A subnormal series in an affine group G is a finite sequence of subgroups, beginning
with G and ending with 1, such that each subgroup is normal in the preceding subgroup.

PROPOSITION 9.17 Let H be a subgroup of an affine group G. If
G=GoDG1D:--DGs={1}
is a subnormal series for G, then
H=HNGyDHNG; D--DHNGsz={l}
is a subnormal series for H, and

HNGi/HNGjt1 = Gi/Gjy1.
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PROOF. Obvious. o

Two subnormal sequences

G=GpDG1D--DGs={1}
G=HoDHD--DH;={1}
are said to be equivalent if s =t and there is a permutation & of {1,2,...,s} such that
Gi/Giv1~ Hy(i)/Hr(i)+1-

THEOREM 9.18 Any two subnormal series in an algebraic group have equivalent refine-
ments.

PROOF. Let G;; = G;+1(H; NG;) and let H;; = H;11(G; N H;). According to the
butterfly lemma
Gij/Gij+1 = Hji/Hjit1,

and so the refinement (G;;) of (G;) is equivalent to the refinement (H ;) of (H;). o

A subnormal series is a composition series if no quotient group G; has a proper non-
trivial normal subgroup.

THEOREM 9.19 For any two composition series

G=GyDG1D--DGs={l}
G=HyD>DH{D--DH;={l1},

s =t and there is a permutation w of {1,2,...,s} such that G;/G;+1 is isomorphic to
Hyiy/Hz(i)+1 foreachi.

PROOF. Use that, for each 7, only one of the quotients G; +1(H; NG;)/Gi+1(H;+1NG;)
is nontrivial o

An algebraic group is strongly connected if it has no finite quotient. An algebraic
group G with dimG > 0 is almost-simple if for any proper normal subgroup N we have
dim N <dimG. An almost-simple group is strongly connected.

THEOREM 9.20 Let G be a strongly connected algebraic group. There exists a subnormal
sequence
G=GoDG1 D DGy ={l1}

such that each G; is strongly connected and G; / G;+1 is almost-simple. If
G=HyDH;D--DH; ={l}

is a second such sequence, then s =t and there is a permutation 7w of {1,2,...,s} such that
G;/Gi+1 is isogenous to Hy(;)/Hy ()41 foreachi.
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9g¢ The category of commutative algebraic groups

THEOREM 9.21 The commutative algebraic groups over a field form an abelian category.

PROOF. The Hom sets are commutative groups, and the composition of morphisms is bilin-
ear. Moreover, the product G X G5 of two commutative algebraic groups is both a product
and a sum of G and G5. Thus the category of commutative algebraic groups over a field is
additive. Every morphism in the category has both a kernel and cokernel [8.70), and
the canonical morphism from the coimage of the morphism to its image is an isomorphism
(homomorphism theorem, [9.6). Therefore the category is abelian. O

COROLLARY 9.22 The finitely generated co-commutative Hopf algebras over a field form
an abelian category.

ASIDE 9.23 Theorem[9.21]is generally credited to Grothendieck but, as we have seen, it is a fairly
direct consequence of allowing the coordinate rings to have nilpotent elements. See SGA3, Vg4,
5.4; DG III §3, 7.4, p. 355.

Corollary is proved purely in the context of Hopf algebras in Sweedler||1969, Chapter
XVI, for finite-dimensional co-commutative Hopf algebras, and in|Takeuchi|[1972} 4.16, for finitely
generated co-commutative Hopf algebras.

9h Exercises

EXERCISE 9-1 Let H and N be subgroups of the algebraic group G such that H normal-
izes N. Show that the kernel of O(G) — O(H N) is equal to the kernel of the composite

0(G) 5 0(G) 8 O(G) - O(H) & O(N).

ASIDE 9.24 As noted earlier, in much of the expository literature (e.g., Borel {1991, |[Humphreys
1975}, Springer||1998), “algebraic group” means “smooth algebraic group”. With this terminology,
many of the results in this section become false.>**> Fortunately, because of Theorem [6.31 this
is only a problem in nonzero characteristic. The importance of allowing nilpotents was pointed
out by Cartier (1962) more than forty years ago, but, except for Demazure and Gabriel|[1970] and
‘Waterhouse|1979| this point-of-view has not been adopted in the expository literature. Contrast our
statement and treatment of the isomorphism theorems and the Schreier refinement theorem with
those in [Barsottil|1955al and [Rosenlicht/|1956L

10 Recovering a group from its representations; Jordan

decompositions

By a character of a topological group, I mean a continuous homomorphism from the group
to the circle group {z € C | zZ = 1}. A finite commutative group G can be recovered

34For example, in the category of smooth groups, the homomorphism H/H NN — HN/N is a purely
inseparable isogeny of degree g where ¢ is the multiplicity of H N N in the intersection product H e N.

35The situation is even worse, because these books use a terminology based on Weil’s Foundations, which
sometimes makes it difficult to understand their statements. For example, in Humphreys|1975| p. 218, one finds
the following statement: “for a homomorphism ¢: G — G’ of k-groups, the kernel of ¢ need not be defined
over k.” By this, he means the following: form the kernel N of gga: Gra — Gl/ca‘ (in our sense); then Nyeq need
not arise from a smooth algebraic group over k. Of course, with our (or any reasonable) definitions, the kernel
of a homomorphism of algebraic groups over k is certainly an algebraic group over k.
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from its group GV of characters because the canonical homomorphism G — GYV is an
isomorphism.

More generally, a locally compact commutative topological group G can be recovered
from its character group because, again, the canonical homomorphism G — GV is an
isomorphism (Pontryagin duality). Moreover, the dual of a compact commutative group
is a discrete commutative group, and so, the study of compact commutative topological
groups is equivalent to that of discrete commutative groups.

Clearly, “commutative” is required in the above statements, because any character will
be trivial on the derived group. However, Tannaka showed that it is possible to recover a
compact noncommutative group from its category of unitary representations.

In this section, we prove the analogue of this for algebraic groups. Initially, & is allowed
to be a commutative ring.

10a Recovering a group from its representations

Let G be an affine monoid with coordinate ring A, and let r 4: G — End4 be the regular
representation. Recall that g € G(R) acts on f € A according to the rule:

(&/)r(x) = fr(x-g) all x € G(R). (90)

LEMMA 10.1 Let G be an affine monoid over a ring k, and let A = O(G). Let o be an
endomorphism of A (as a k-algebra) such that the diagram

A2 Am4
b L
A2, Ae4

commutes. Then there exists a unique g € G (k) such that o = r4(g).

PROOF. According to the Yoneda lemma, there exists morphism ¢: G — G of set-valued
functors such that

(f)r(x) = fr(¢rx)all f €A, xeG(R). oD
The commutativity of the diagram says that, for f € 4,
(Aoa)(f) = ((1®w)oA)(f).
Recall that (Af)g(x,y) = fr(x-y) for f € A (see (38), p.[48). Therefore, for x,y € G(R),

(LHS)r(x,y) = (f)r(x-y) = frR(PR(X-Y))
(RHS)r(x,y) = (Af)rR(x,9rY) = fR(x-PRY).*
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Hence
$r(x-y) =x-¢r(y)., allx,y € G(R).

On setting y = e in the last equation, we find that ¢pg(x) = x - g with g = ¢g(e). Therefore,
for f € Aand x € G(R),

@ )r@) D frx-9) @ (gf)r(x).

Hence o = r4(g).
The uniqueness of g follows from the faithfulness of the regular representation (8.31).o

THEOREM 10.2 Let G be an affine monoid (or group) over a field k, and let R be a k-
algebra. Suppose that we are given, for each finite-dimensional representation ry:G —
Endy of G, an R-linear map Ay: Vg — Vg. If the family (Ay ) satisfies the conditions,

(a) for all representations V, W,
Avew = Ay @ Aw,

(b) Ay is the identity map (here 1 = k with the trivial action)
(c) forall G-equivariant mapsa:V — W,

AW oaR =aRroAy,

then there exists a unique g € G(R) such that Ay = ry(g) forall V.

PROOF. Recall that every representation of G is a filtered union of finite-dimensional
representations. It follows from (c) that, for each representation ry: G — GLy of G (possi-
bly infinite dimensional), there exists a unique R-linear endomorphism Ay of Vg such that
Ay |W = Aw for each finite-dimensional subrepresentation W C V. The conditions (a,b,c)
will continue to hold for the enlarged family.

Let A= O(G)R, and let A 4: A — A be the R-linear map corresponding to the regular
representation r of G on O(G). The map m: A ® A — A is equivariant for the represen-
tations r ® r and r,> and so the first two diagrams in commute with & and o ®
replaced by A4 and A g9 4 = A4 @ A4 respectively. Similarly, the map A:4 — AR A is

361n detail, let Af =Y f; ® g;; then

(RHS)g (x,y) = (X; /i ®agi) g (x.y)
=) fir(x)-(agi)rR(Y)
=) Jir(x)-&R(PRY)
=(X; fi®g&i) g (x.0rY)
= (Af)R(x,9RY).

3TWe check that, for x € G(R),

(r(g)om) (f ® f)(x) = (r(@)([fNx) = (ff)(xg) = f(xg)- f'(xg)
(mor(g)®r(@) (f ® f)(x) = ((r(g) ) (r(e) f)(x) = f(xg)- f'(xg).
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equivariant for the representation 1 ® r on A ® A, and so the third diagram in (10.1) com-
mutes with o replaced by A 4. Now Lemma [10.1] applied to the affine monoid G g over R,
shows that there exists a g € G(R) such A 4 = r(g).

Let (V,ry) be a finite-dimensional representation of G. For any u € V'V, the linear map
¢u:V — A is equivariant (see[8.35), and so

Puody =Agody =r(g)ody =Pyory(g).

As the family of maps ¢y, (u € V') is injective (8.36)), this implies that Ay = ry (g).
This proves the existence of g, and the uniqueness follows the fact that G admits a
faithful family of finite-dimensional representations (see [8.32)). O

We close this subsection with a series of remarks.

10.3 Each g € G(R) of course defines such a family. Thus, from the category Rep(G) of
representations of G on finite-dimensional k-vector spaces we can recover G(R) for any
k-algebra R, and hence the group G itself. For this reason, Theorem is often called
the reconstruction theorem.

10.4 Let (Ay) be a family satisfying the conditions (a,b,c) of Theorem When G
is an affine group (rather than just a monoid), each Ay is an isomorphism, and the family
satisfies the condition Ayv = (Ay)Y (because this is true of the family (ry (g))).

10.5 Let wg be the forgetful functor Repg(G) — Modg, and let End® (wg) be the set
of natural transformations A:wr — wgr commuting with tensor products — the last con-
dition means that A satisfies conditions (a) and (b) of the theorem. The theorem says that
the canonical map G(R) — End® (wg) is an isomorphism. Now let End® (w) denote the
functor R — End®(wg); then G ~ End®(w). When G is a group, this can be written
G ~ Aut®(w).

10.6 Suppose that k is algebraically closed and that G is reduced, so that O(G) can be
identified with a ring of k-valued functions on G (k). It is possible to give an explicit de-
scription description of O(G) in terms of the representations of G. For each representation
(V,ry) of G (over k) and u € V'V, we have a function ¢, on G(k),

bu(g) = (u.rv(g)) € k.

Then ¢, € O(G), and every element of O(G) arises in this way (cf. |Springer||1998|, p.39,
and Exercise [5-2)).

10.7 Let H be a subgroup of an algebraic group G. For each k-algebra R, let H'(R) be
the subgroup of G(R) fixing all tensors in all representations of G fixed by H. The functor
R ~~ H'(R) is representable by a subgroup H’ of G, which clearly contains H. It follows
from the theorem that H' = H.

10.8 In (10.7), instead of all representations of G, it suffices to choose a faithful represen-
tation V' and take all quotients of subrepresentations of a direct sum of representations of

the form Q™ (V @ V') (by [8.44).
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10.9 In general, we can’t omit “quotients of”” from (10.8).>® However, we can omit it if
some nonzero multiple of every homomorphism H — G, extends to a homomorphism

G — Gy (839).

10.10 Lemma and its proof are valid with k a commutative ring. Therefore (using
B.10), one sees that Theorem[10.2]holds with k a noetherian ring and Repy (G) the category
of representations of G on finitely generated k-modules, or with k a Dedekind domain, G a
flat group scheme, and Repy (G) the category of representations of G on finitely generated
projective k-modules (or even finitely generated free k-modules).

10b Application to Jordan decompositions

We now require k to be a field.

THE JORDAN DECOMPOSITION OF A LINEAR MAP

In this subsubsection, we review some linear algebra.

Recall that an endomorphism « of a vector space V is diagonalizable if V' has a basis of
eigenvectors for o, and that it is semisimple if it becomes diagonalizable after an extension
of the base field k. For example, the linecar map x — Ax:k"™ — k" defined by an n x n
matrix A is diagonalizable if and only if there exists an invertible matrix P with entries in k
such that PAP ™! is diagonal, and it is semisimple if and only if there exists such a matrix
P with entries in some field containing k.

From linear algebra, we know that « is semisimple if and only if its minimum polyno-
mial my (T) has distinct roots; in other words, if and only if the subring k[o] ~ k[T]/ (mq(T))
of Endy (V') generated by « is separable.

Recall that an endomorphism « of a vector space V is nilpotent if o' = 0 for some
m > 0, and that it is unipotent if idy —« is nilpotent. Clearly, if « is nilpotent, then its
minimum polynomial divides 7" for some m, and so the eigenvalues of « are all zero, even
in k¥, From linear algebra, we know that the converse is also true, and so « is unipotent if
and only if its eigenvalues in k2! all equal 1.

Let o be an endomorphism of a finite-dimensional vector space V' over k. We say that
« has all of its eigenvalues in k if the characteristic polynomial Py (7T) of « splits in k[ X]:

Po(T)=(T —ar)" (T —ay)", a;€k.
For each eigenvalue a of « in k, the generalized eigenspace is defined to be:

Vo={veV]|(x —a)¥v=0, N sufficiently divisible®*}.

38 Consider for example, the subgroup B = { (3 i)} of GLj acting on V' = k x k and suppose that a vector
ve (V@ VV)® s fixed by B. Then g — gv is a regular map GLy /B — (V & V'V)®” of algebraic varieties
(not affine). But GL; /B ~ P!, and so any such map is trivial. Therefore, v is fixed by GLy, and so B’ = B.
Cf

By this I mean that there exists an Ng such that the statement holds for all positive integers divisible by
No, i.e., that N is sufficiently large for the partial ordering

M <N <= M divides N.
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PROPOSITION 10.11 If @ has all of its eigenvalues in k, then V is a direct sum of its
generalized eigenspaces:
V=0D, Va

PROOF. Let P(T) be a polynomial in k[T'] such that P(«) = 0, and suppose that P(T) =
Q(T)R(T) with Q and R relatively prime. Then there exist polynomials a(7") and b(T)
such that

a(T)Q(T)+b(T)R(T) = 1.

Forany v € V,
a(@)Q(x)v +b(@)R(@)v =, (92)

which implies immediately that Ker(Q (o)) NKer(R(«)) = 0. Moreover, because Q (@) R(«) =
0, expresses v as the sum of an element of Ker(R(«)) and an element of Ker(Q(«)).
Thus, V is the direct sum of Ker(Q(«)) and Ker(P(x)).

On applying this remark repeatedly, we find that

V =Ker(T —a;)™ @ Ker((T —az)"? (T —a,)") = - = EBI_ Ker(T —a;)",

as claimed. o

THEOREM 10.12 Let V be a finite-dimensional vector space over a perfect field. For any
automorphism « of V', there exist unique automorphisms oy and oy, of V' such that

(a) o = agoay = oy o, and
(b) oy is semisimple and oy, is unipotent.

Moreover, each of ag and oy, is a polynomial in «.

PROOF. Assume first that o has all of its eigenvalues in k, so that V is a direct sum of the
generalized eigenspaces of «, say, V = @, -; <, Va;, Where the a; are the distinct roots of
Py, . Define oy to be the automorphism of V' that acts as a; on V,; for each i. Then oy is a

.. . def _ . .
semisimple automorphism of V', and oy, = ooy ! commutes with a5 (because it does on

each V,) and is unipotent (because its eigenvalues are 1). Thus o« and o, satisfy (a) and
(b).

Because the polynomials (7" —a; )" are relatively prime, the Chinese remainder theo-
rem shows that there exists a Q(T') € k[T] such that

O(T)=a; mod (T —a;)", i=1....m.

Then Q(«) acts as a; on Vy; for each i, and so oy = Q(a), which is a polynomial in o.
Similarly, a;! € k[a], and s0 o, o oa; ! € ko]

It remains to prove the uniqueness of s and «y,. Let @ = 50 B, be a second decom-
position satisfying (a) and (b). Then S5 and 8, commute with ¢, and therefore also with o
and o, (because they are polynomials in e). It follows that B; oy is semisimple and that
By, 1 is unipotent. Since they are equal, both must equal 1. This completes the proof in
this case.

In the general case, because k is perfect, there exists a finite Galois extension k" of
k such that « has all of its eigenvalues in k’. Choose a basis for V, and use it to attach
matrices to endomorphisms of V and k' ® V. Let A be the matrix of «. The first part of
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the proof allows us to write A = AsA, = Ay As with Ay a semisimple matrix and A, a
unipotent matrix with entries in k’; moreover, this decomposition is unique.
Let o € Gal(k’/ k), and for a matrix B = (b;;), define 0B to be (0b;;). Because A has
entries in k, 04 = A. Now
A = (0As5)(0Aw)

is again a decomposition of 4 into commuting semisimple and unipotent matrices. By
the uniqueness of the decomposition, 04y = As and 04, = Ay. Since this is true for all
o € Gal(K/ k), the matrices A5 and A, have entries in k. Now o = o 0 oy, where oy and
oy, are the endomorphisms with matrices As and A,,, is a decomposition of « satisfying (a)
and (b).

Finally, the first part of the proof shows that there exist a; € k’ such that

As=ao+a1A+-+a,_1 A1 (n=dimV).
The a; are unique, and so, on applying o, we find that they lie in k. Therefore,
oy =ag+ara+--+ap_1a" 1 € klal.

Similarly, oy, € k[e]. O

The automorphisms «; and «,, are called the semisimple and unipotent parts of «, and
O =0UgO00y = Uy Ol
is the (multiplicative) Jordan decomposition of «.

PROPOSITION 10.13 Let o and 8 be automorphisms of vector spaces V and W over a
perfect field, and let ¢:V — W be a linear map. If poa = o, then p ooy = Bs o and

poay = fPyop.

PROOF. It suffices to prove this after an extension of scalars, and so we may suppose that
both « and B have all of their eigenvalues in k. Recall that a5 acts on each generalized
eigenspace V, a € k, as multiplication by a. As ¢ obviously maps V, into W, it follows
that p oy = Bs 0 @. Similarly, poa; ! = Bl og, and so p oy, = By 0. o

COROLLARY 10.14 Every subspace W of V stable under « is stable under oy and oy, and
a|W = oas|W ooy |W is the Jordan decomposition of o|W.

PROOF. It follows from the proposition that W is stable under «y and «y,, and it is obvious
that the decomposition «|W = oz |W ooy, |W has the properties to be the Jordan decompo-
sition. o

PROPOSITION 10.15 For any automorphisms « and 8 of vector spaces V and W over a
perfect field,

(@®PB)s = as ® Bs
(@® By = ay ® Bu.
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PROOF. It suffices to prove this after an extension of scalars, and so we may suppose that
both @ and B have all of their eigenvalues in k. Forany a,b €k, Vo Qx Wy, C(V Q1 W)ap,
and so oy ® B and (¢ ® B) both act on V,; ®; Wj, as multiplication by ab. This shows that
(@®B)s = a5 ® Bs. Similarly, (a; ! @ B;1) = (@« ®B); 1, and so (¢ ® B)y = o ® By ©

10.16 Let k be a nonperfect field of characteristic 2, so that there exists an a € k that is
not a square in k, and let M = (2 ). Ink[/a], M has the Jordan decomposition

M= Ja 0 0 1/a
=\lo val\lya o )
These matrices do not have coefficients in k, and so, if M had a Jordan decomposition in

M (k), it would have two distinct Jordan decompositions in M5 (k[+/a]), contradicting the
uniqueness.

INFINITE-DIMENSIONAL VECTOR SPACES

Let V be a vector space, possibly infinite dimensional, over a perfect field k. An endomor-
phism o of V is locally finite if V is a union of finite-dimensional subspaces stable under
a. A locally finite endomorphism is semisimple (resp. locally nilpotent, locally unipotent)
if its restriction to each stable finite-dimensional subspace is semisimple (resp. nilpotent,
unipotent).

Let o be a locally finite automorphism of V. By assumption, every v € V' is contained
in a finite-dimensional subspace W stable under «, and we define a(v) = (a|W)s(v).
According to (10.12)), this is independent of the choice of W, and so in this way we get a
semisimple automorphism of V. Similarly, we can define ;. Thus:

THEOREM 10.17 For any locally finite automorphism o of V, there exist unique automor-
phisms ag and o, such that

(a) 0 = agoay = ay oo, and
(b) oy is semisimple and oy, is locally unipotent.

For any finite-dimensional subspace W of V' stable under o,
a|W = (as|W)o(au|W) = (| W) o (as|W)

is the Jordan decomposition of a|W .

JORDAN DECOMPOSITIONS IN ALGEBRAIC GROUPS

Finally, we are able to prove the following important theorem.

THEOREM 10.18 Let G be an algebraic group over a perfect field k. For any g € G(k)
there exist unique elements g, g, € G(k) such that, for all representations (V,ry) of G,

rv(gs) =rv(g)s and ry (gu) = ry (g)u. Furthermore,

8 = 8s8u = 8ufs- 93)
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PROOF. In view of (10.13) and (T0.15), the first assertion follows immediately from (10.2)
applied to the families (ry(g)s)y and (ry(g)y)y . Now choose a faithful representation ry .
Because

rv(g) =rv(gs)rv(gu) = rv(gu)rv(gs).

©3) follows. o

The elements g and g, are called the semisimple and unipotent parts of g, and g =
gs8u is the Jordan decomposition of g.

10.19 To check that a decomposition g = gsgy, is the Jordan decomposition, it suffices
to check that r(g) = r(gs)r(gy) is the Jordan decomposition of r(g) for a single faithful
representation of G.

10.20 Homomorphisms of groups preserve Jordan decompositions. To see this, leta: G —
G’ be a homomorphism and let g = g5gy, be a Jordan decomposition in G (k). For any rep-
resentation ¢:G’ — GLy, ¢ o« is a representation of G, and so (poa)(g) = ((poa)(gs))-
((poa)(gu)) is the Jordan decomposition in GL(V'). If we choose ¢ to be faithful, this
implies that & (g) = a(gs) - @ (gy) is the Jordan decomposition of v (g).

NOTES Our proof of the existence of Jordan decompositions (Theorem [10.18]) is the standard one,
except that we have made Lemma [I0.1] explicit. As Borel has noted (1991, p. 88; 2001, VIII 4.2,
p- 169), the result essentially goes back to|Kolchin/|[1948| 4.7.

10c Homomorphisms and functors

NOTES This section needs to be reworked. The proof of [I0.22] requires the semisimplicity of the
category of representations of a reductive group in characteristic zero, and so needs to be moved.

Throughout this subsection, & is a field.

PROPOSITION 10.21 Let f:G — G’ be a homomorphism of affine groups over k, and let
w” be the corresponding functor Repy (G') — Repy (G).

(a) f is faithfully flat if and only if w” is fully faithful and every subobject of v/ (X),
for X' € ob(Repy (G)), is isomorphic to the image of a subobject of w” (X').

(b) f is a closed immersion if and only if every object of Repy (G) is isomorphic to a
subquotient of an object of the form of w/ (X’), X' € ob(Repy (G)).

PROOF. (a) If G 1) G’ is faithfully flat, and therefore an epimorphism, then Repy (G’)
can be identified with the subcategory of Repy (G) of representations G — GL(W) fac-
toring through G’. It is therefore obvious that o’ has the stated properties. Conversely,
if w/ is fully faithful, it defines an equivalence of Repy (G') with a full subcategory of
Repy (G), and the second condition shows that, for X’ € ob(Repy (G’)), (X'} is equivalent
to (w/ (X)). Let G = Spec B and G’ = Spec B'; then ( shows that

B’ = limEnd(o'[(X")" = li_r)nEnd(w|(a)f(X')))V C limEnd(w|(X))" = B,

and B — B’ being injective implies that G — G’ is faithfully flat (6.43]).
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(b) Let C be the strictly full subcategory of Repy (G) whose objects are isomorphic to
subquotients of objects of the form of w/ (X). The functors

Repk (G/) —-C— Repk (G)
correspond to homomorphisms of k-coalgebras
B'— B" - B

where G = Spec B and G’ = Spec B’. An argument as in the above above proof shows that
B” — B is injective. Moreover, for X’ € ob(Repy (G')), End(w|{w/ (X))) — End(’|(X"))
is injective, and so B’ — B” is surjective. If f is a closed immersion, then B’ — B is sur-
jective and it follows that B” = B, and C = Repg(G). Conversely, if C = Repy(G),
B” = B and B’ — B is surjective. [Take a faithful representation of G'; it is also a faithful
representation of G, etc..] o

PROPOSITION 10.22 Let G and G’ be algebraic groups over a field k of characteristic zero,
and assume G° is reductive. Let f:G — G’ be a homomorphism, and let o’ :Rep(G') —
Rep(G) be the functor (r,V) +> (ro A, V). Then:

(a) f is a quotient map if and only if o’ is fully faithful;
(b) f is an embedding if and if every object of Repy (G) is isomorphic to a direct factor
of an object of the form w” (V).

PROOF. Omiitted for the present (Deligne and Milne|1982, 2.21, 2.29). O

11 Characterizations of categories of representations

Pontryagin duality has two parts. First it shows that a locally compact abelian group G can
be recovered from its dual G V. This it does by showing that the canonical map G — GV is
an isomorphism. Secondly, it characterizes the abelian groups that arise as dual groups. For
example, it shows that the duals of discrete abelian groups are exactly the compact abelian
groups, and that the duals of locally compact abelian groups are exactly the locally compact
abelian groups.

In §10] we showed how to recover an algebraic group G from its “dual” Rep(G) (recon-
struction theorem). In this section, we characterize the categories that arise as the category
of representations of an algebraic or affine group (description theorem).

Throughout, & is a field. In Theorems |1 1.1}{11.5}[11.13} and[11.14} C is a small category
(or, at least, admits a set of representatives for its isomorphism classes of objects).

11a Categories of comodules

An additive category C is said to be k-linear if the Hom sets are k-vector spaces and com-
position is k-bilinear. Functors of k-linear categories are required to be k-linear, i.e., the
maps Hom(a,b) — Hom(Fa, Fb) defined by F are required to be k-linear. Recall that
Vecy, denotes the category of finite-dimensional vector spaces over k.

THEOREM 11.1 Let C be a k-linear abelian category, and let w:C — Vecy be an exact
faithtul k-linear functor. Then there exists a coalgebra C such that C is equivalent to the
category of C -comodules of finite dimension.
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The proof will occupy the rest of this subsection.

For an object X in C, w(idx) = w(0) if and only if idy = 0. Therefore, X is the zero
object if and only if w(X) is the zero object. It follows that, if w(c) is a monomorphism
(resp. an epimorphism, resp. an isomorphism), then so also is «. For objects X, Y of C,
Hom(X,Y) is a subspace of Hom(w X, ®wY), and hence has finite dimension.

For monomorphisms X 5 ¥ and X' 5 Y with the same target, write x < x’ if there
exists a morphism X — X’ (necessarily unique) giving a commutative triangle. The lattice
of subobjects of Y is obtained from the collection of monomorphisms by identifying two
monomorphisms x and x” if x < x" and x’ < x. The functor @ maps the lattice of subobjects
of Y injectively*® to the lattice of subspaces of wY . Hence X has finite length.

Similarly @ maps the lattice of quotient objects of Y injectively to the lattice of quotient
spaces of wY .

For X in C, we let (X ) denote the full subcategory of C whose objects are the quotients
of subobjects of direct sums of copies of X. For example, if C is the category of finite-
dimensional comodules over a coalgebra C, and then (V') = Comod(Cy ) for any comodule
V (see[8.38).

Let X be an object of C. For any subset S of w(X), there exists a smallest subobject Y
of X such that w(Y) D S, namely, the intersection of all such subobjects, which we call the
subobject of X generated by S':

YcX — Scol)CowlX).

An object Y is monogenic if it is generated by a single element, i.e., there exists a y € w(Y')
such that the only subobject Y/ of ¥ such y € w(Y”') is Y itself.

PROOF IN THE CASE THAT C IS GENERATED BY A SINGLE OBJECT

In the next three lemmas, we assume that C = (X) for an object X, and we let n =
dimy w(X).

LEMMA 11.2 For any monogenic object Y of C,

dimg w(Y) < n?.

PROOF. By hypothesis, Y = Y;/Y> where Y is isomorphic to a subobject of X" for some
m. Let y € w(Y) generate Y, and let y; be an element of w(Y;) whose image in w(Y) is
y. Let Z be the subobject of Y7 generated by y;. The imageof ZinY =Y;/Y,is Y, and
so it suffices to prove the lemma for Z, i.e., we may suppose that Y C X™ for some m. We
shall show that it is possible to take m < n, from which the statement follows.

Suppose that m > n. We have y € w(Y) C wo(X™) = w(X)™. Let y = (y1,..., Ym) in
w(X)™. Since m > n, there exist a; € k, not all zero, such that > a;y; = 0. The a; define
a surjective morphism X — X whose kernel N is isomorphic to X”*~1.4! As y € w(N),

AOIf »(X) = w(X’), then the kernel of
(3):XxX' >Y

projects isomorphically onto each of X and X’ (because it does after @ has been applied).

al...dm

41et A be an m — 1 x m matrix such that ( 4

) is invertible. Then 4: X™ — X™~1 defines an

isomorphism of N onto X"~ (because w(A) does).
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we have Y C N. We have shown that Y embeds into X L. Continue in this fashion until
Y c X™ withm <n. o

As dimg w(Y') can take only finitely many values when Y is monogenic, there exists a
monogenic P for which dimy w(P) has its largest possible value. Let p € w(P) generate
P.

LEMMA 11.3  (a) The pair (P, p) represents the functor .
(b) The object P is a projective generator*” for C.

PROOF. (a) Let X be an object of C, and let x € w(X); we have to prove that there exists
a unique morphism f: P — X such that w( f) sends p to x. The uniqueness follows from
the fact p generates P. To prove the existence, let O be the smallest subobject of P x X
such that w(Q) contains (p,x). The morphism Q — P defined by the projection map is
surjective because P is generated by p. Therefore,

dimg 0(Q) = dimg (P),

but because dimy (w( P)) is maximal, equality must hold, and so Q — P is an isomorphism.
The composite of its inverse with the second projection Q — X is a morphism P — X
sending p to x.

(b) The object P is projective because w is exact, and it is a generator because w is
faithful. O

Let A = End(P) — it is a k-algebra of finite dimension as a k-vector space (not neces-
sarily commutative) — and let 2 be the functor X ~» Hom(P, X).

LEMMA 11.4 The functor h* is an equivalence from C to the category of right A-modules
of finite dimension over k. Its composite with the forgetful functor is canonically isomor-
phic to w.

PROOF. Because P is a generator, the A% is fully faithful, and because P is projective, it
is exact. It remains to prove that it is essentially surjective.
Let M be a finite-dimensional right A-module, and choose a finite presentation for M,

A" E A S M S0

where o is an m x n matrix with coefficients in A. This matrix defines a morphism P”* —
P" whose cokernel X has the property that 1¥ (X) ~ M.
For the second statement,

o(X) ~Hom(P, X) ~ Hom(h¥ (P),h? (X)) = Hom(4, 1T (X)) ~ h? (X). 5

As A is a finite k-algebra, its linear dual C = AV is a k-coalgebra, and to give a right
A-module structure on a k-vector space is the same as giving a left C-comodule structure
(see[8.7). Together with (11.4)), this completes the proof in the case that C = (X). Note that

def

A= End(P) ~ End(h?) ~ End(w),

and so
C ~End(w)".

4ZAn object P of a category is a generator of the category if the functor Hom(P,—) is faithful, and an
object P of an abelian category is projective if Hom(P,—) is exact.
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PROOF IN THE GENERAL CASE

We now consider the general case. For an object X of C, let Ax be the algebra of endo-
morphisms of w|(X), and let Cy = AY,. For each Y in (X), Ax acts on w(Y) on the left,
and so w(Y) is a right C-comodule; moreover, Y ~» w(Y) is an equivalence of categories

{(X) — Comod(Cy).
Define a partial ordering on the set of isomorphism classes of objects in C by the rule:
[X] = [Y]if (X) C ().

Note that [X],[Y] <[X @Y, so that we get a directed set, and that if [X] < [Y], then restric-
tion defines a homomorphism Ay — Ay. When we pass to the limit over the isomorphism
classes, we obtain the following more precise form of the theorem.

THEOREM 11.5 Let C be a k-linear abelian category and let w:C — Vecy be a k-linear
exact faithful functor. Let C = limEnd(w|(X))Y. For each object Y in C, the vector
space w(Y') has a natural structure of right C -comodule, and the functor Y ~» w(Y') is an
equivalence of categories C — Comod(C).

EXAMPLE 11.6 Let A be a finite k-algebra (not necessarily commutative). Because A is
finite, its dual AV is a coalgebra (, and we saw in that left A-module structures on
k-vector space correspond to right A -comodule structures. If we take C to be Mod(A4), @
to the forgetful functor, and X to be 4 A in the above discussion, then

End(w|(X))Y ~ 4",

and the equivalence of categories C — Comod(AY) in (11.5)) simply sends an A-module V'
to V with its canonical A -comodule structure.

ASIDE 11.7 Let C be a k-linear abelian category with a tensor product structure (see [[1.13). A
coalgebra in C is an object C of C together with morphisms A:C — C ® C and €:C — k such
that the diagrams commute. Similarly, it is possible to define the notion of C-comodule in C.
Assume that there exists an exact faithful k-linear functor preserving tensor products. Then there
exists a coalgebra C in C together with a coaction of C on each object of C such that, for every
exact faithful k-linear functor w to Vecy preserving tensor products, w(C) =~ lir_>nEnd(a)| (X)) (as
coalgebras) and w preserves the comodule structures. Moreover, the tensor product makes C into a
bialgebra in C, and if C has duals, then C is a Hopf algebra.

ASIDE 11.8 For the proof of Theorem [I1.5] we have followed [Serre|[1993] 2.5. For a slightly
different proof, see|Deligne and Milne| 1982, §2, or|Saavedra Rivano| 1972 It is also possible to use
Grothendieck’s theorem that a right exact functor is pro-representable. Let P pro-represent w, and
let A be the endomorphism ring of P.

11b Categories of comodules over a bialgebra

Let C be a coalgebra over k. We saw in (§8¢)), that a bialgebra structure on C defines a
tensor product structure on Comod(C), and that an inversion on C defines duals. In this
section we prove the converse: a tensor product structure on Comod(C) defines a bialgebra
structure on C, and the existence of duals implies the existence of an inversion.
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11.9 Let A be a finite k-algebra (not necessarily commutative), and let R be a commuta-
tive k-algebra. Consider the functors

Mod(4) —— Vec(k) —2%— Mod(R).
forget V=>R®rV

For M € ob(Mod(A)), let My = w(M). An element A of End(¢g o w) is a family of R-
linear maps
kMIR@k My — R®j My,

functorial in M. An element of R ®; A defines such a family, and so we have a map
a:R®; A— End(¢gow),

which we shall show to be an isomorphism by defining an inverse 8. Let B(1) = A 4(1®1).
Clearly f oo = id, and so we only have to show « o 8 = id. The A-module A ®; My is a
direct sum of copies of A, and the additivity of A implies that A y@p, = A4 ®idpg,. The
mapa @m +—>am: Ay Mo — M is A-linear, and hence

R®, AQr My —— R M
l)&A®idMO lAM
R A®r My —— R M
commutes. Therefore
Av(A@m)=A4(1)@m = (xoBA)p(1R@m)forl®me R M,

ie,aof =id.

11.10 Let C be a k-coalgebra, and let wc be the forgetful functor on Comod(C). Then
~ 11 \4
C~ h_n)lEnd(a)c|(X)) . (94)
For a finite k-algebra A, (11.9) says that A >~ End(w). Therefore, for any finite k-coalgebra
C, we have C >~ End(wc)". On passing to the limit, we get (94).

Let @:C — C’ be a homomorphism of k-coalgebras. A coaction V — V ® C de-
fines a coaction V — V ® C’ by composition with idy ®«. Thus, « defines a functor
F:Comod(C) — Comod(C’) such that

wc'oF =wc. (95)
LEMMA 11.11 Every functor F:Comod(C) — Comod(C’) satistying (93) arises, as above,
from a unique homomorphism of k -coalgebras C — C’.
PROOF. The functor F' defines a homomorphism
11r_)nEnd(wo|(FX)) — liglEnd(a)cHX)),

and h_r)nEnd(wc/ [{F X)) is a quotient of 1i_n>1End(a)c/ [{X)). On passing to the duals, we get
a homomorphism

. \V2 . \

limEnd(oc|{X))" — limEnd(wc’[(X))

and hence a homomorphism C — C’. This has the required property. O
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Again, let C be a coalgebra over k. Recall (5.4) that C ® C is again a coalgebra over
k. A coalgebra homomorphism m:C ® C — C defines a functor

¢™:Comod(C) x Comod(C) — Comod(C)
sending (V, W) to V ® W with the coaction

® VW
vew 2 veceaweC~vewecel 2" veweC

(cf. 3. D).

PROPOSITION 11.12 The map m — ¢™ defines a one-to-one correspondence between the
set of k-coalgebra homomorphisms m:C ® C — C and the set of k-bilinear functors

¢:Comod(C) x Comod(C) — Comod(C)

such that (V,W) =V Q W as k-vector spaces.

(a) The homomorphism m is associative (i.e., the left hand diagram in (28) commutes) if
and only if the canonical isomorphisms of vector spaces

URVRW)—H URV)QW:UR(VRIW)>(URQV)QW

are isomorphisms of C -comodules for all C -comodules U, V, W.
(b) The homomorphism m is commutative (i.e., m(a,b) = m(b,a) for all a,b € C) if
and only if the canonical isomorphisms of vector spaces

VRIWHHWRUV:VRIW ->WRV

are isomorphisms of C -comodules for all C-comodules W,V .

(¢) There is an identity map e:k — C (i.e., a k-linear map such that the right hand dia-
gram in (28) commutes) if and only if there exists a C -comodule U with underlying
vector space k such that the canonical isomorphisms of vector spaces

UQV~V~VU

are isomorphisms of C -comodules for all C -comodules V' .

PROOF. The pair (Comod(C) x Comod(C),w @ w), with (w0 @ w)(X,Y) = w(X) @ w(Y)
(as a k-vector space), satisfies the conditions of (11.5), and li_n)lEnd(a) RQw[{(X,Y))Y =
C ® C. Thus the first statement of the proposition follows from (IL.TT). The remaining
statements are easy. o

Let w: A — B be a faithful functor. We say that a morphism wX — Y lives in A if it
lies in Hom(X,Y) C Hom(wX,wY).
For k-vector spaces U, V, W, there are canonical isomorphisms

vy wUQVRW)—>UV)QW, uv@w)— uU®v)@w
duyv: UV - VU, URV > VR U.

THEOREM 11.13 Let C be a k-linear abelian category, and let ®:C x C — C be k -bilinear
functor. Let w:C — Vecy, be a k-linear exact faithful functor such that
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@ o(XQRY)=w(X)Qw(Y) forall X,Y;
(b) the isomorphisms ¢y, x,wY,0z and ¢y x oy live in C forall XY, Z;
(c) there exists an (identity) object 1 in C such that w(1) = k and the canonical isomor-
phisms
() Rw(X) ~w(X) ~w(X)Rw(l)

live in C.

Let B =limEnd(w|(X))VY, so that w defines an equivalence of categories C — Comod(B)
(Theorem . Then B has a unique structure (m,e) of a commutative k-bialgebra such

that ® = ¢™ andw(]l)=(ki>B ~k®B).

PROOF. To give a bi-algebra structure on a coalgebra (A4, A, €), one has to give coalgebra
homomorphisms (m, ) that make A into an algebra (5.7), and a bialgebra is a commutative
bi-algebra (§5k). Thus, the statement is an immediate consequence of Proposition [I1.12] o

11c¢ Categories of representations of affine groups

THEOREM 11.14 Let C be a k-linear abelian category, let ®:C x C — C be a k-bilinear
functor. Let w be an exact faithful k -linear functor C — Vecy, satisfying the conditions (a),
(b), and (c) of (11.13). For each k-algebra R, let G(R) be the set of families

(Av)veob(c): Av €Endpr.inear(@(V)R),
such that

o Ayew = Ay ® Aw forall V,W € ob(C),
¢ Ay =idg(n) for every identity object of 1 of C, and
o Awow(a)r = w(a)goAy for all arrows o in C.

Then G is an affine monoid over k, and w defines an equivalence of tensor categories over
k,
C — Rep(G).

When w satisfies the following condition, G is an affine group:

(d) for any object X such that w(X) has dimension 1, there exists an object X~ in C
suchthat X ® X! ~ 1.

PROOF. Theorem|I1.13|allows us to assume that C = Comod(B) for B a k-bialgebra, and
that ® and w are the natural tensor product structure and forgetful functor. Let G be the
monoid corresponding to B. Using (11.9) we find that, for any k-algebra R,

End(@)(R) £ End(¢g 0 @) = lim Homy iy (Bx , R) = Homyjin (B, R).

Anelement A € Homy_j;,(Bx , R) corresponds to an element of End(w)(R) commuting with
the tensor structure if and only if A is a k-algebra homomorphism; thus

End® (0)(R) = Homy (B, R) = G(R).

We have shown that End® () is representable by an affine monoid G = Spec B and that @
defines an equivalence of tensor categories
C — Comod(B) — Repy (G).

On applying (d) to the highest exterior power of an object of C, we find that End® (w) =
Aut®(w), which completes the proof. O
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REMARK 11.15 Let (C,w) be (Repy (G),forget). On following through the proof of (11.14))
in this case one recovers Theorem Aut®(w9) is represented by G.

NOTES Add discussion of how much of this section extends to base rings k. (Cf. mo3131.)

12 Finite flat affine groups

In this section, we allow k to be a commutative ring, but we emphasise the case of a field.
As usual, unadorned tensor products are over k. In the remainder of this chapter, we shall
need to use only the results on étale affine groups over a field.

12a Definitions

Let k be a commutative ring. Recall (CA [10.4)) that the following conditions on a k-module
M are equivalent: M is finitely generated and projective; M is “locally free” over k (ibid.
(b) or (¢)); M is finitely presented and flat.

DEFINITION 12.1 A finite flat affine group over k is an affine group G such that O(G)
satisfies these equivalent conditions.**>** For such an affine group, the function

p > dimg ) M ® k(p):Spec(k) — N

is locally constant; here k (p) is the field of fractions of k /p. It is called the order of G over
k.

When £ is a field, the flatness is automatic, and we usually simply speak of a finite affine
group over k. Thus a finite affine group over k is an affine group such that dimg O(G) is
finite (and dimy O(G) is then the order of G over k). We say that an affine group is an
affine p-group if it is finite and its order is a power of p.

12b Etale affine groups
ETALE k-ALGEBRAS (k A FIELD)

Let k be a field, and let A be a finite k-algebra. For any finite set S of maximal ideals in A4,
the Chinese remainder theorem (CA says that the map A — [[ e 4/m is surjective
with kernel (),,cg m. In particular, |S| < [A:k], and so A has only finitely many maximal
ideals. If S is the set of all maximal ideals in A, then (), cg m is the nilradical 91 of A4 (CA
[11.8), and so A/ is a finite product of fields.

PROPOSITION 12.2 The following conditions on a finite k-algebra A are equivalent:

(a) A is a product of separable field extensions of k ;
(b) A® k¥ is a product of copies of k*;

43 A finite flat group scheme over a ring is affine, and so

finite flat affine group = finite flat group scheme.

40One can define a finite affine group G over k to be an affine group such that O(G) is of finite presentation,
but these groups are of little interest.
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(c) A®k? is reduced.

PROOF. (a)=(b). We may suppose that A itself is a separable field extension of k. From
the primitive element theorem (FT[5.1), we know that A = k[«] for some «. Because k[o]
is separable over k, the minimum polynomial f(X) of « is separable, which means that

f(X) = H(X—Oéi), a; #ojfori # j,
in k[ X]. Now
A®pk™ = (k[X]/(f) @k = K [X]/(f).
and, according to the Chinese remainder theorem (CA [2.12)),

KX/ (f) ~ 1_[,- KX/ (X —o) >~ k¥ e x k3

(b)=(c). Obvious.

(c)=(a). Themapa > a®1: A — AQ; k¥ is injective, and so A is reduced. Therefore
the above discussion shows that it is a finite product of fields. Let kK’ one of the factors of
A. If k' is not separable over k, then k has characteristic p # 0 and there exists an element
a of k' whose minimum polynomial is of the form f(X?) with f € k[X] (see FT et
seq.). Now

ko] ® k™ ~ (k[X]/(f(XP) @ k™ ~ kM[X]/(f(XP)),

which is not reduced because f(X?) is a pth power in k¥[X]. Hence 4 ® k* is not re-
duced. o

DEFINITION 12.3 A k-algebra is étale if it is finite and it satisfies the equivalent conditions
of the proposition.*?

PROPOSITION 12.4 Finite products, tensor products, and quotients of étale k -algebras are
étale.

PROOF. This is obvious from the condition (b). o

COROLLARY 12.5 The composite of any finite set of étale subalgebras of a k-algebra is
étale.

PROOF. Let A; be étale subalgebras of B. Then A;--- A, is the image of the map
a1® - Qapt>ar-an: A1 @ ® Ay — B,

and so is a quotient of 41 ®--- Q@ Aj. o

PROPOSITION 12.6 If A is étale overk, then A ®y k' is étale over k' for any field extension
k' of k.

4This agrees with Bourbaki’s terminology (Bourbaki| AL V §6): Let A be an algebra over a field k. We say
that A is diagonalizable if there exists an integer n > 0 such that A is isomorphic to the product algebra k™. We
say that A is étale if there exists an extension L of k such that the algebra L ®j, A deduced from A by extension
of scalars is diagonalizable.
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PROOF. Let k¥ be an algebraic closure of k’, and let k! be the algebraic closure of k in

k. Then
k / k /al

[

k —— kA
18 commutative, and so

(A ®k k/) ®k/ k/a] ~ (A ®k kal) ®kal klal
~ (kY xx kY) @ pa k'

Zk,alX---Xk/al. O

CLASSIFICATION OF ETALE k-ALGEBRAS (k A FIELD)

Let k%P be the composite of the subfields k’ of k' separable over k. If k is perfect, for
example, of characteristic zero, then k%P = k2. Let I" be the group of k-automorphisms of
k%P For any subfield K of k*°P, finite and Galois over k, an easy Zorn’s lemma argument*®
shows that

o—o|K:I' - Gal(K/k)

is surjective. Let X be a finite set with an action of I,
I'xX — X.

We say that the action is*’ continuous if it factors through I" — Gal(K/ k) for some subfield
K of k*P finite and Galois over k.
For an étale k-algebra A, let

F(A) = Homy_yo(A. k™) = Homy_yo (A k*P).
Then I" acts on F'(A) through its action on k5°P:
(of)a)=0(f(a)), oel, feF(A),acA.

The images of all homomorphisms A — kP will lie in some finite Galois extension of k,
and so the action of I" on F(A) is continuous.

THEOREM 12.7 The map A ~» F(A) defines a contravariant equivalence from the category
étale k-algebras to the category of finite sets with a continuous action of I".

PROOF. This is a restatement of the fundamental theorem of Galois theory (FT §3), and is
left as an exercise to the reader (the indolent may see Waterhouse| 1979, 6.3). o

461 et o € Gal(K/k). Apply Zorn’s lemma to the set of all pairs (E,«) where E is a subfield of k%P
containing k and « is homomorphism E — k%P whose restriction to K is 0g.

4TEquivalently, the action is continuous relative to the discrete topology on X and the Krull topology on I”
(FT §7).
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12.8 We explain the theorem in more detail. Let k = kP, and let I" = Gal(k/k). Then
I" actson F(A) 4 Homy_y, (A,k) through its action on k:

yo =yoo foryel,oe F(A).
For any étale k-algebra A, there is a canonical isomorphism
a®cn—>(0a~c)geF(A):A®l€—>l€F(A), (96)

where

ko', ko’zlg.

P F(A) def () =
KA = Hom(F(A). ) =TT .00

In other words, k¥ (A)_is a product of copies of k indexed by the elements of F'(4). When
we let I" act on A ® k through its action of k and on k¥4 through its actions on both k
and F(A),

N @) =y(f(y~o). yvel. [:F(A)—>k. oecF(A),
then the becomes equivariant. Now:

(a) for any étale k-algebra A, )
A=Ak
(b) for any finite set S with a continuous action of I, (k$)T is an étale k-subalgebra of
kS, and .
F((kSHT) ~ .

Therefore, A ~~ F(A) is an equivalence of categories with quasi-inverse S — kS$HT.

12.9 Suppose that A is generated by a single element, say, A = ko] >~ k[X]/(f(X)).
Then A is étale if and only if f(X) has distinct roots in k. Assume this, and choose f'(X)
to be monic. A k-algebra homomorphism A — k% is determined by the image of ¢, which
can be any root of f in k%P, Therefore, F'(A) can be identified with the set of roots of f in
k5P, Suppose F(A) decomposes into r orbits under the action of I", and let fi,..., fr be
the monic polynomials whose roots are the orbits. Then each f; is stable under I", and so
has coefficients in k (FT[7.8). It follows that f = fj--- f; is the decomposition of f into
its irreducible factors over k, and that

AxT] KXV (fi(X)
is the decomposition of A into a product of fields.

ETALE AFFINE GROUPS OVER A FIELD

Let k be a field. An affine group G over k is étale if O(G) is an étale k-algebra; in particular,
an étale affine group is finite (hence algebraic).*®

48 Algebraic geometers will recognize that an affine group G is étale if and only if the morphism of schemes
|G| — Speck is étale.
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REMARK 12.10 Recall that an algebraic group G over k is smooth if and only if
O(G) ® k¥ is reduced. Therefore, a finite affine group G over k is étale if and only if it
is smooth. If k has characteristic zero, then every finite affine group is étale (6.31)). If & is
perfect of characteristic p # 0, then O(G)? " is a reduced Hopf algebra for some r (6.35));
as the kernel of the map x — x? :O(G) — O(G)?" has dimension a power of p, we see
that a finite affine group of order n is étale if p does not divide n.

Let A be the category of étale k-algebras. The functor G ~» O(G) is an equivalence
from the category of étale affine groups over k to the category of group objects in the cate-
gory A°PP (see . As G (k*P) = Homy_y1,(O(G), k*P), when we combine this statement
with Theorem [I2.7] we obtain the following theorem.

THEOREM 12.11 The functor G ~~ G (k*%P) is an equivalence from the category of étale
algebraic groups over k to the category of finite groups endowed with a continuous action
of I'.

Let K be a subfield of k%P containing k, and let I"’ be the subgroup of I" consisting of
the o fixing the elements of K. Then K is the subfield of k*°P of elements fixed by I’ (see
FT(7.10), and it follows that G(K) is the subgroup G (k*P) of elements fixed by I"’.

EXAMPLES

For an étale algebraic group G, the order of G is the order of the (abstract) group G (k).

Since Aut(X) = 1 when X is a group of order 1 or 2, there is exactly one étale algebraic
group of order 1 and one of order 2 over k (up to isomorphism).

Let X be a group of order 3. Such a group is cyclic and Aut(X) = Z/27. Therefore
the étale algebraic groups of order 3 over k correspond to homomorphisms I” — Z /27
factoring through Gal(K/ k) for some finite Galois extension K of k. A separable quadratic
extension K of k defines such a homomorphism, namely,

o—0o|K:I' > Gal(K/k)~7/27Z

and all nontrivial such homomorphisms arise in this way (see FT §7). Thus, up to isomor-
phism, there is exactly one étale algebraic group GX of order 3 over k for each separa-
ble quadratic extension K of k, plus the constant group Gg. For Gg, Go(k) has order 3.
For GK, GX(k) has order 1 but GX(K) has order 3. There are infinitely many distinct
quadratic extensions of Q, for example, Q[v/—1], Q[v/2], Q[v/3], ..., Q[/p] ... Since
w3(Q) = 1 but 3(Q[¥/1]) = 3, 3 must be the group corresponding to Q[/1].

FINITE ETALE AFFINE GROUPS OVER RING

DEFINITION 12.12 A k-algebra A is étale if it is flat of finite presentation over k and
A ®k(p) is étale over the field k(p) for all prime ideals p in k.

Assume that Speck is connected, and let x be a homomorphism from k into an alge-
braically closed field §2. For a finite étale k-algebra A, let F'(A) denote the set Homy,_y14 (4, £2).
Then A ~~ F(A) is a functor, and we let I" be its automorphism group. Then I is a profi-
nite group, which is called the fundamental group 71 (Speck, x) of Speck. It acts on each
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set F'(A), and the functor F is a contravariant equivalence from the category of finite étale
k-algebras to the category of finite sets with a continuous action of I
An affine group G over k is étale it O(G) is an étale k-algebra. As in the case that k is
a field, the functor
G~ G(£2)

is an equivalence from the category of étale affine groups over k to the category of finite
groups endowed with a continuous action of I".

12¢ Finite flat affine groups in general

Recall that the augmentation ideal /¢ of an affine group G is the kernel of €: O(G) — k.

PROPOSITION 12.13 Let G be a finite affine group over a field k of characteristic p # 0,

and suppose that x? = 0 for all x € Ig. For any basis x1,..., Xy Oflg/fz, the monomials
x;'” cexyr, 0<m;<p

form a basis for O(G) as a k-vector space (and so [O(G):k] = p").
PROOF. Omitted for the moment (see Waterhouse||1979, 11.4). o

The proposition says that O(G) ~ k[X1,..., X ]/(X?,...,X}). This generalizes.

THEOREM 12.14 Let G be a finite group scheme over a perfect field k of characteristic
p # 0 such that |G| is connected. For any basis x1,...,x, of Ig /12, there exist integers
e1,...,ey > 1 such that

OG) ~k[X1,.... X, )/ (XF™ ... X,
PROOF. Omitted for the moment (see |Waterhouse|[1979, 14.4). o

Let k& be nonperfect, and let a € k . k?. The subgroup G of G, x G, defined by

the equations xP* =0, y? = axP? is finite and connected, but O(G) is not a truncated
polynomial algebra, i.e., (12.14) fails for G (Waterhouse| 1979, p. 113).

CLASSIFICATION OF FINITE COMMUTATIVE AFFINE GROUPS OVER A PERFECT
FIELD (DIEUDONNE MODULES)

Let k be a perfect field of characteristic p. A finite group scheme over k of order prime to
p is étale, which can be understood in terms of the Galois group of k, and so it remains to
classify the p-groups.

Let W be the ring of Witt vectors with entries in k. Thus W is a complete discrete
valuation ring with maximal ideal generated by p = ply and residue field k. For example,
ifk =F,, then W = Z,,. The Frobenius automorphism o of W is the unique automorphism
such that ca = a? (mod p).
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THEOREM 12.15 There exists a contravariant equivalence G ~ M(G) from the category
of commutative finite affine p-groups to the category of triples (M, F, V') in which M is a
W -module of finite length and F and V are endomorphisms of M satistying the following
conditions (c e W, m e M ):

F(c-m)=o0c-Fm
V(icc-m)=c-Vm
FV = p-idy = VF.
The order of G is p'enehM(G)) - For any perfect field k' containing k, there is functorial

isomorphism
M(Gyr) ~ W(k/) QW (k) M(G).

PROOF. The proof is quite long, and will not be included. See|Demazure|[1972, Chap. III,
or |Pink 2005, o

For example:

M(Z/pZ)=W/pW, F=1, V=0
M(up)=W/pW, F =0, V =p;
M(ap,)=W/pW, F=0, V=0.

The module M (G) is called the Dieudonné module of G.

The theorem is very important since it reduces the study of commutative affine p-groups
over perfect fields to semi-linear algebra. There are important generalizations of the theo-
rem to discrete valuation, and other, rings.

12d Cartier duality

In this subsection, we allow k to be a ring.

Let G be a finite flat commutative affine group with bialgebra (O(G),m,e, A, ¢). Recall
(§5i) that the Cartier dual G of G is the affine group with bialgebra (O(G)Y, AV, €Y, m" eV).
The functor G ~ G is a contravariant equivalence of the category of finite flat commuta-
tive affine groups with itself, and (GY)Y ~ G. Our goal in this subsection is to describe the
affine group GV as a functor.

For k-algebra R, let Hom(G, G;,)(R) be the set of homomorphisms of a: Gg — Gr
of affine groups over R. This becomes a group under the multiplication

(a1-@2)(g) = a1(g)-@2(g), g€ G(R), R an R-algebra.

In this way,
R ~~ Hom(G,G;,)(R)

becomes a functor Alg;, — Grp.

THEOREM 12.16 There is a canonical isomorphism
G ~ Hom(G,G,,)

of functors Alg;, — Grp.
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PROOF. Let R be a k-algebra. We have
G(R) = Homp1,(O(G), R) = Hompg.jin(O(G), R) = O(G")Rr. 97)

The multiplication in O(G) corresponds to comultiplication in O(G"), from which it fol-
lows that the image of consists of the group-like elements in O(GY)g. On the other
hand, we know that Hom(G };, G,,) also consists of the group-like elements in O(GY)g.
Thus,

G(R) ~Hom(G",Gp)(R).

This isomorphism is natural in R, and so we have shown that G ~ Hom(G",G,,). To
obtain the required isomorphism, replace G with GV and use that (GY)Y ~ G. 0

NOTES For more on Cartier duality, see Pink[2005, §24, and the notes on Cartier duality on Ching-
Li Chai’s website

EXAMPLE 12.17 Let G = o p, so that O(G) = k[X]/(XP) =k[x]. Let 1,y,y2,....yp—1
be the basis of O(GY) = O(G)Y dual to 1,x,...,x?~1. Then y’ =ily;; in particular,
y? =0. In fact, GV ~ ), and the pairing is

a,b > exp(ab):ap(R) xap(R) —> R™

where 5 .

ab  (ab) (ab)?P~
S I T e U e A

exp(ab) + T + 2 + (=D

ASIDE 12.18 The theory of finite flat affine groups, or finite flat group schemes to use the more
common term, is extensive. See|Tatel1997|for a short introduction.

PROPOSITION 12.19 An algebraic group G over a field is finite if and only if there exists a
representation (V,r) such that every representation of G is a subquotient*® of V" for some
n>0.

PROOF. If G is finite, then the regular representation X of G is finite-dimensional, and
(8.36) says that it has the required property. Conversely if, with the notations of (§11a),
Repy (G) = (X), then G = Spec B where B is the linear dual of the finite k-algebra Ay .o

12e Exercises

EXERCISE 12-1 Show that A is étale if and only if there are no nonzero k-derivations
D: A — k. [Regard A as a left A-module by left multiplication. Let A be a k-algebra and
M an A-module. A k -derivation is a k-linear map D: A — M such that

D(fg)= f-D(g)+g-D(f) (Leibnizrule).]

EXERCISE 12-2 How many finite algebraic groups of orders 1,2, 3,4 are there over R (up
to isomorphism)?

49Here V" is a direct sum of n copies of ¥, and subquotient means any representation isomorphic to a
subrepresentation of a quotient (equivalently, to a quotient of a subrepresentation).
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EXERCISE 12-3 (Waterhouse|[1979, Exercise 9, p. 52). Let G be a finite group scheme.
Show that the following are equivalent:

(a) O(Greq) is étale;
(b) Greq is a subgroup of G;
(¢) G is isomorphic to the semi-direct product of G° and 7¢G.

13 The connected components of an algebraic group

Recall that a topological space X is connected if it is not the union of two disjoint nonempty
open subsets. This amounts to saying that, apart from X itself and the empty set, there is
no subset of X that is both open and closed. For each point x of X, the union of the
connected subsets of X containing x is again connected, and so it is the largest connected
subset containing x — it is called the connected component of x. The set of the connected
components of the points of X is a partition of X by closed subsets. Write wo(X) for the
set of connected components of X .

In a topological group G, the connected component of the neutral element is a closed
normal connected subgroup G° of G, called the neutral (or identity) component of G.
Therefore, the quotient 79(G) = G/G° is a separated topological group. For example,
GL>(R) has two connected components, namely, the identity component consisting of the
matrices with determinant > 0 and another connected component consisting of the matrices
with determinant < 0.

In this section, we discuss the identity component G° of an affine group and the (étale)
quotient group o (G) of its connected components. Throughout, k is a field.

13a Some commutative algebra

Throughout this subsection, A is a commutative ring. An element e of A is idempotent if

e? = e. For example, 0 and 1 are both idempotents — they are called the trivial idempo-
tents. Idempotents ey, ..., e, are orthogonal if e;e; = 0 for i # j. Any sum of orthogonal
idempotents is again idempotent. A finite set {ey,...,e,} of orthogonal idempotents is
complete if e1 +--- + e, = 1. Any finite set of orthogonal idempotents {e1,...,e,} can be

completed by adding the idempotent e = 1 —(e1 + -+ ep).
If A= Ay x---x A, (direct product of rings), then the elements

e1 =(1,0,...),e2 =(0,1,0,...), ..., en = (0,...,0,1)

form a complete set of orthogonal idempotents. Conversely, if {e1,...,e,} is a complete set
of orthogonal idempotents in A, then Ae; becomes a ring with the addition and multiplica-
tion induced by that of A (but with the identity element ¢;), and A >~ Ae; x--- X Aey,.

LEMMA 13.1 The space spec A is disconnected if and only if A contains a nontrivial idem-
potent.

PROOF. Let e be a nontrivial nilpotent, and let f = 1 —e. For a prime ideal p, the map
A — A/p must send exactly one of ¢ or f to a nonzero element. This shows that spec 4
is a disjoint union of the sets®® D(e) and D( f), each of which is open. If D(e) = spec 4,

50The set D(e) consists of the prime ideals of A not containing e, and V(a) consists of all prime ideals
containing a.
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then e would be a unit (CA [2.2), and hence can be cancelled from ee = e to give e = 1.
Therefore D(e) # spec A, and similarly, D( f) # spec A.

Conversely, suppose that spec A4 is disconnected, say, the disjoint union of two nonempty
closed subsets V(a) and V(b). Because the union is disjoint, no prime ideal contains both
aand b, and soa+b=A. Thusa+b =1forsomea €caand b €b. Asab canh,
all prime ideals contain ab, which is therefore nilpotent (CA [2.3), say (ab)™ = 0. Any
prime ideal containing a” contains «; similarly, any prime ideal containing 5™ contains b;
thus no prime ideal contains both @™ and ™, which shows that (a™,b™) = A. Therefore,
1 =ra™ + sb™ for some r,s € A. Now

(ra™)(sb™) = rs(ab)™ =0,
(ra™? = (ra™)(1—sb™) = ra™,
(sb™)? = sb™
ra™ +sb™ =1,
and so {ra™,sb™} is a complete set of orthogonal idempotents. Clearly V(a) C V(ra™)

and V(b) C V(sb™). As V(ra™)NV(sb™) = @, we see that V(a) = V(ra™) and V(b) =
V(sb™), and so each of ra™ and sb™ is a nontrivial idempotent. o

PROPOSITION 13.2 Let {ey,...,en} be a complete set of orthogonal idempotents in A.
Then
specA = D(ep)U...UD(ey)

is a decomposition of spec A into a disjoint union of open subsets. Moreover, every such

decomposition arises in this way.

PROOF. Let p be a prime ideal in A. Because A/ is an integral domain, exactly one of the
e;’s maps to 1 in A/p and the remainder map to zero. This proves that spec A4 is the disjoint
union of the sets D(e;).

Now consider a decomposition

spmA=U;U...UU,

each U; open. We use induction on 7 to show that it arises from a complete set of orthogonal
idempotents. When n = 1, there is nothing to prove, and when n > 2, we write

spmA =U;U(UaU...uUy).

The proof of the lemma shows that there exist orthogonal idempotents e, €] € A such that
e1+e; =1and

Ui = D(e1)
U U...uU, = D(e}) = spec Ae].
By induction, there exist orthogonal idempotents es, ..., e, in Ae] such thatey +---+e, =
ey and U; = D(e;) fori =2,...,n. Now {eq,...,e,} is a complete set of orthogonal

idempotents in A such that U; = D(e;) for all i. O
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13.3 Recall that a ring A is said to be Jacobson if every prime ideal is an intersection of
maximal ideals, and that every finitely generated algebra over a field is Jacobson (see CA
et seq.). In a Jacobson ring, the nilradical is an intersection of maximal ideals. When
A is Jacobson, “prime ideal” can be replaced by “maximal ideal” and “spec” with “spm”
in the above discussion. In particular, for a Jacobson ring A, there are natural one-to-one
correspondences between

¢ the decompositions of spm(A) into a finite disjoint union of open subspaces,
¢ the decompositions of A into a finite direct products of rings, and
¢ the complete sets of orthogonal idempotents in A.

Now consider aring A = k[X1,..., X,]/a. When k is algebraically closed
spm A ~~ the zero set of a in k"

as topological spaces (Nullstellensatz, CA[11.6), and so spm A is connected if and only if
the zero set of a in k" is connected.

LEMMA 13.4 Let A be a finitely generated algebra over a separably closed field k. The
number of connected components of spm A is equal to the largest degree of an étale k-
subalgebra of A (and both are finite).

PROOF. Because spm A is noetherian, it is a finite disjoint union of its connected compo-
nents, each of which is open (CA[12.12). Let E be an étale k-subalgebra of A. Because k
is separably closed, E is a product of copies of k. A decomposition of E corresponds to
a complete set (e;)1<;<m of orthogonal idempotents in E, and m = [E:k]. Conversely, a
complete set (e;)1<;<m of orthogonal idempotents in A defines an étale k-subalgebra of A
of degree m, namely, ) ke;. Thus the statement follows from the above remark. O

LEMMA 13.5 Let A be a finitely generated k-algebra. Assume that k is algebraically
closed, and let K be an algebraically closed field containing k. If spm A is connected,
so also is spm Ak .

PROOF. Write A = k[X1,...,Xn]/a, so that Ax = K[X1,..., X,]/b where b is the ideal
generated by a. By assumption, the zero set V(a) of a in k” is connected. As the closure
of a connected set is connected, it suffices to show that the zero set V(b) of b in K” is the
Zariski closure of V(a). Let f € K[X1,...,X,] be zero on V(a). Choose a basis (¢;);ers
for K over k, and write

f =Zia,~fi (fi € k[X1,...,Xy], finite sum).

As f is zero on V(a), so also is each f;. By the Strong Nullstellensatz (CA [11.7)), this
implies that each f; lies in the radical of a, which implies that f" is zero on V(b). O

LEMMA 13.6 Let A and B be finitely generated algebras over an algebraically closed field
k. If spm A and spm B are connected, then so also is spm A ® B.
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PROOF. Because of the Nullstellensatz, we can identify spm A ® B with spm A x spm B (as
aset). Let my € spm A. The k-algebra homomorphisms

B~(A/m)®B« A®B

give continuous maps

losed
n— (my,n):spm(B) >~ spm(4/m; ® B) i spm(4A ® B).

Similarly, for n, € spm B, we have

m e (m,ny):spm(A4) >~ spm(4A R B/ny) Ck)f—s>ed spm(A ® B).

As spm A and spm B are connected, this shows that (mj,n;) and (m3,ny) lie in the same
connected component of spm A X spm B for every n; € spm B and m;, € spm A. o

ASIDE 13.7 On C” there are two topologies: the Zariski topology, whose closed sets are the zero
sets of collections of polynomials, and the complex topology. Clearly Zariski-closed sets are closed
for the complex topology, and so the complex topology is the finer than the Zariski topology. It
follows that a subset of C” that is connected in the complex topology is connected in the Zariski
topology. The converse is false. For example, if we remove the real axis from C, the resulting space
is not connected for the complex topology but it is connected for the topology induced by the Zariski
topology (a nonempty Zariski-open subset of C can omit only finitely many points). Thus the next
result is a surprise:

If V' C C" is closed and irreducible for the Zariski topology, then it is connected for
the complex topology.

For the proof, see|Shafarevich| 1994, VII 2.

13b Etale subalgebras

Let A be a finitely generated k-algebra. An étale k-subalgebra of A will give an étale
k?-subalgebra of the same degree of Aza, and so its degree is bounded by the number of
connected components of spm Aga (I3.4). The composite of two étale subalgebras of A is
étale (12.3), and so there is a largest étale k-subalgebra 7o(A) of A, containing all other
étale subalgebras.

Let K be a field containing k. Then 79(A) ®j K is an étale subalgebra of A ®j K (see
[12.6). We shall need to know that it is the largest étale subalgebra.

PROPOSITION 13.8 Let A be a finitely generated k -algebra, and let K be a field containing
k. Then

mo(A) @k K = mo(A R K).

PROOF. If mp(A) ® K is not the largest étale subalgebra of A ® K, then 7¢(A4) ® L will not
be the largest étale subalgebra in A ® L for any field L containing K. Therefore, it suffices
to prove the proposition for a field L containing K.

We first prove the statement with K = k*P. It follows from that the étale k-
algebras in A are in canonical one-to-one correspondence with the étale k°P-algebras in
A ® k*°P stable under the action of I" = Gal(k*°P/ k) (acting on the second factor). Because
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it is the (unique) largest étale k*°P-algebra in A ® k%P, mo(A ® k*°°P) is stable under the
action of I". Under the correspondence

70(A ® k*P) <> mo(A @ k*P)T
710(A) Q k*P <> 19 (A).

As 79(A) ® k%P C mo(A ® k*P), we have m9(A) C mo(A ® k*P)I. But mg(A) is the
largest étale k-algebra in A, and so 7o(A) = mo(A ® k*P)!". Therefore mo(A) @ k5P =
7o(A @ k5°P).

We next prove the statement when k = k%P and K = k. If K # k, then k has charac-
teristic p # 0 and K is purely inseparable over it. Let ey,..., e, be a basis of idempotents
for mo(A® K). Writee; = ) a; ® ¢; witha; € A and ¢; € K. For some r, all the elements

clp’ lie in k, and then ej.’r = Zalpr ®clpr € A. Bute; = ej.’r, and so mp(A ® K) has a
basis in A.

Finally, we prove the statement when k and K are both algebraically closed. We may
suppose that A4 is not a product of k-algebras, and so has no nontrivial idempotents. We
have to show that then A ® K also has no nontrivial idempotents, but this follows from

o

COROLLARY 13.9 Let A be a finitely generated k -algebra. The degree [7o(A): k] of to(A)
is equal to the number of connected components of spm(A ® k).

PROOF. We have
[0 (A):k] = [mo(A) ®k™: k"] = [mo(A®k™):k™],

and so this follows from [13.4] O

Let A and A’ be finitely generated k-algebras. Then mo(A4) ® mo(A’) is an étale subal-
gebra of A ® A’ (see|12.4). We shall need to know that it is the largest étale subalgebra.

PROPOSITION 13.10 Let A and A’ be finitely generated k -algebras. Then
mo(A® A’) =1m9(A) ® JT()(A/).

PROOF. As mo(A) ® mo(A’) C mo(A ® A”), we may suppose that k is algebraically closed
(13.8), and we may replace each of A and A’ with a direct factor and so suppose that
79(A) = 1 = mo(A’). We then have to show that mo(A ® A’) = 1, but this follows from
13.6 o

ASIDE 13.11 Let V be an algebraic variety over a field k, and let 7 (Vs ) be the set of connected
components of V over k*P. Then mo(Vgsp) is a finite set with an action of Gal(k*P/k), and so
defines an étale k-algebra B. Let (V') = spm B. Then 7o(V) is an algebraic variety, (finite and)
étale over k, and there is a canonical morphism V — (V') of algebraic varieties whose fibres are
connected.’! For a projective variety, this is the Stein factorization of the morphism V — Spmk (cf.
Hartshorne| 1977, II1, 11.5). For an affine variety V = spm 4, 7o(V) = spm(m(A4)).

S More precisely, let m be a point of spm(7o(V')), and let k (m) be the residue field at m (finite extension of
k). Then the fibre over m is a geometrically connected algebraic variety over k(m).
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13¢ Algebraic groups

Let G be an algebraic group with coordinate ring A = O(G). The map A:4 - AR A

is a k-algebra homomorphism, and so sends 7¢(A) into 7p(A @ A) o (A) @ mo(A).

Similarly, S: 4 — A sends 7o(A4) into wo(A), and we can define € on wp(A4) to be the
restriction of € on A. Therefore 9(A) is a Hopf subalgebra of A.

DEFINITION 13.12 Let G be an algebraic group over a field k.

(a) The group of connected components 7y(G) of G is the quotient algebraic group
corresponding to the Hopf subalgebra 7o (O(G)) of O(G).
(b) The identity component G° of G is the kernel of the homomorphism G — 7o(G).

PROPOSITION 13.13 The following four conditions on an algebraic group G are equiva-
lent:

(a) the étale affine group o (G) is trivial;

(b) the topological space spm(O(G)) is connected,;
(c) the topological space spm(QO(G)) is irreducible;
(d) the ring O(G)/M is an integral domain.

PROOF. (b)=>(a). Remark [I3.3|implies that 7o(O(G)) has no nontrivial idempotents, and
so is a field. The existence of the k-algebra homomorphism €:O(G) — k implies that
m0(O(G)) = k.

(c)=(b). Trivial.

(d)<(c). In general, spm A is irreducible if and only if the nilradical of A is prime (see
)

(@)=(d). If 7o(G) is trivial, so also is (G ga) (Lemma[13.8). Write spm O(Ga) as a
union of its irreducible components. No irreducible component is contained in the union of
the remainder. Therefore, there exists a point that lies on exactly one irreducible component.
By homogeneity (6.12), all points have this property, and so the irreducible components are
disjoint. As spmO(Gya) is connected, there must be only one, and so Gga is irreducible.
Let 9V be the nilradical of O(Ga) = k¥ ®) O(G) — we have shown that O(Ga)/MN is
an integral domain. As the canonical map O(G)/M — O(Gya) /M is injective, we obtain
(d). O

PROPOSITION 13.14 The fibres of the map |G| — |mo(G)| are the connected components
of the topological space |G |.

PROOF. The connected components of |G| and the points of |7o(G)| are both indexed by
the elements of a maximal complete set of orthogonal idempotents. O

PROPOSITION 13.15 Every homomorphism from G to an étale algebraic group factors
uniquely through G — 7 (G).

PROOF. Let G — H be a homomorphism from G to an étale algebraic group H. The
def

image of O(H) in O(G) is étale (see , and so is contained in 7o (O(G)) = O(7oG).0
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PROPOSITION 13.16 The subgroup G° of G is connected, and every homomorphism from
a connected algebraic group to G factors through G° — G.

PROOF. The homomorphism of k-algebras €: O(moG) — k decomposes O(oG) into a
direct product
O(moG) =k x B.

Let e = (1,0). Then the augmentation ideal of O(moG) is (1 —e), and
O(G) =eO(G) x (1 —e)O(G)

with eO(G) >~ O(G)/(1 —e)O(G) = O(G®) (see [1.15). Clearly, k = 79(eO(G)) ~
70(O(G®)). Therefore 71oG° = 1, which implies that G° is connected.
If H is connected, then the composite H — G — mo(G) has trivial image. o

PROPOSITION 13.17 The subgroup G° is the unique connected normal affine subgroup of
G such that G/ G° is étale.

PROOF. The subgroup G° is normal with étale quotient by definition, and we have shown
it to be connected. Suppose that H is a second normal algebraic subgroup of G. If G/H is
étale, then (by (a)) the homomorphism G — G/H factors through 7o(G), and so we get a
commutative diagram

1 G° G 700G — 1
| | |
1 H G G/H — 1

with exact rows. The similar diagram with each * replaced with x(R) gives, for each k-
algebra R, an exact sequence

1 - G°(R) —> H(R) — (m0G) (R). (98)
Since this functorial in R, it gives a sequence of algebraic groups
1> G°—> H — n¢G.

The exactness of shows that G° is the kernel of H — oG . This map factors through
moH , and so if mg H = 1, its kernel is H : therefore G° ~ H. O

Proposition|13.17|says that, for any algebraic group G, there is a unique exact sequence
1> G°—>G—mp(G) > 1

such that G° is connected and 7o (G) is étale. This is sometimes called the connected-étale
exact sequence.

The next proposition says that the functors G ~» 79G and G ~» G° commute with
extension of the base field.
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PROPOSITION 13.18 For any field extension k' D k,

7wo(Gyr) >~ o (G) g
(Gr)° =~ (G)p-

In particular, G is connected if and only if Gy is connected.
PROOF. As O(Gy/) ~ O(G) ®y k', this follows from (13.8). O

PROPOSITION 13.19 For any algebraic groups G and G,

10(G x G') >~ mo(G) x mo(G”)
(GxGH° ~G°xG”.

In particular, G x G’ is connected if and only if both G and G’ are connected.

PROOF. The coordinate ring O(G x G') ~ O(G) ® O(G’), and so this follows from (13.10).o

REMARK 13.20 Let G be an algebraic group over k. For any field k" containing k, Propo-
sition [I3.18] shows that G is connected if and only if G- is connected. In particular, if an
algebraic group G over a field is connected, then so also is Gpa. In other words, a con-
nected algebraic group is geometrically connected. This is false for algebraic varieties: for
example,

X*+Y?=0

is connected over R (even irreducible), but becomes a disjoint union of the two lines
X+£iY =0
over C — the ring R[X, Y]/(X? + Y ?) is an integral domain, but
CIX,Y]/(X?*+Y?) ~C[X,Y]/(X+iY)xC[X,Y]/(X —iY).

The reason for the difference is the existence of the homomorphism €: O(G) — k (the neu-
tral element of G(k)). An integral affine algebraic variety V over a field k is geometrically
connected if and only if k is algebraically closed in O(V'), which is certainly the case if
there exists a k-algebra homomorphism O(V) — k (AG[IL.5).

PROPOSITION 13.21 Let
l1>N—->G—0—1

be an exact sequence of algebraic groups. If N and Q are connected, so also is G; con-
versely, if G is connected, so also is Q.

PROOF. Assume N and Q are connected. Then N is contained in the kernel of G —
70(G), so this map factors through G — Q (see(7.56), and therefore has image {1}. Con-
versely, since G maps onto 7o (Q), it must be trivial if G is connected. O
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EXAMPLES

13.22 Let G be finite. When k has characteristic zero, G is étale, and so G = mo(G) and
G° = 1. Otherwise, there is an exact sequence

1> G°— G — m(G) = 1.

When £k is perfect, the homomorphism G — 7¢(G) has a section, and so G is a semidirect
product
G = G° xmo(G).

To see this, note that the homomorphism G.q — 7o(G) is an isomorphism because both
groups are smooth, and it is an isomorphism on k?-points:

Grea(k™) = G (k™) => 70(G) (k™).

13.23 The groups G,, GL,, T, (upper triangular), Uy, (strictly upper triangular), D,, are
connected because in each case O(G) is an integral domain. For example,

k[Tn] = k[GLAl/(Xij |1 > j),

which is isomorphic to the polynomial ring in the symbols X;;, 1 <i < j < n, with the
product X1 --- X, inverted.

13.24 For the group G of monomial matrices (3.12)), 7o(O(G)) is a product of copies of
k indexed by the elements of S,. Thus, 719G = S, (regarded as a constant algebraic group

(5.23)), and G° = D,,.

13.25 The group SL, is connected. As we noted in the proof of (7.32)), the natural iso-
morphism
A,r — A-diag(r,1,...,1):SLy(R) X G, (R) — GL,(R)

(of set-valued functors) defines an isomorphism of k-algebras
O(GL,) ~ O(SL,) ® O(G,),

and the algebra on the right contains O(SL,,). In particular, O(SL,) is a subring of O(GL,),
and so is an integral domain.

13.26 Assume char(k) # 2. For any nondegenerate quadratic space (V,¢q), the algebraic
group SO(q) is connected. It suffices to prove this after replacing k with k2, and so we
may suppose that g is the standard quadratic form X 12 4+ 4+ X ,%, in which case we write
SO(q) = SOy. The latter is shown to be connected in Exercise [13-4] below.

The determinant defines a quotient map O(q) — {£1} with kernel SO(¢q). Therefore
0(q)° = SO(q) and (O(q)) = {£1} (constant algebraic group).

13.27 The symplectic group Sp,,, is connected (for some hints on how to prove this, see
Springer|1998| 2.2.9).
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ASIDE 13.28 According to and (13.13)), an algebraic group G over C is connected if and
only if G(C) is connected for the complex topology. Thus, we could for example deduce that GL,,
is a connected algebraic group from knowing that GL, (C) is connected for the complex topology.
However, it is easier to deduce that GL, (C) is connected from knowing that GL,, is connected (of
course, this requires the serious theorem stated in ).

13.29 An algebraic group G over R may be connected without G(IR) being connected,
and conversely. For example, GL, is connected as an algebraic group, but GL,(R) is not
connected for the real topology, and i3 is not connected as an algebraic group, but (3 (R) =
{1} is certainly connected for the real topology.

13d Affine groups

Let G be an affine group, and write G = 1(i£1i€1 G; where (Gj);ey is the family of algebraic
quotients of G (see(8.23)). Define
6" =lm,, Gi,
JT()G = Lﬁliel 7T()Gi.

PROPOSITION 13.30 Assume k has characteristic zero. An algebraic group G is connected
if and only if, for every representation V on which G acts nontrivially, the full subcategory
of Rep(G) of subquotients of V", n > 0, is not stable under ®.

PROOF. In characteristic zero, all finite groups are étale. Therefore, a group G is connected
if and only if there is no non-trivial epimorphism G — G’ with G’ finite. According to
(8.63), this is equivalent to Repy (G) having no non-trivial subcategory of the type described
in (12.19). O

NOTES Discuss connectedness over a base ring (or scheme). Not of much interest. More important
is to look at the connectedness of the fibres. The strong connectedness condition is that the geometric
fibres are connected, i.e., that for an algebraic group G over a commutative ring R, the algebraic
group G is connected for every homomorphism R — K from R into an algebraically closed field
K.

13e Exercises

EXERCISE 13-1 Showthatif 1 - N — G — Q — lisexact, soalsois mo(N) — mo(G) —
1o(Q) — 1 (in an obvious sense). Give an example to show that 7¢(N) — 7o(G) need not
be injective.

EXERCISE 13-2 What is the map O(SL,) — O(GL,,) defined in example [13.25]
EXERCISE 13-3 Prove directly that 79(O(0y)) = k x k.

EXERCISE 13-4 (Springer||1998, 2.2.2). Assume k has characteristic # 2. For any k-
algebra R, let V(R) be the set of skew-symmetric matrices, i.e., the matrices A such that
At = —A.
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(a) Show that the functor R — V(R) is represented by a finitely generated k-algebra A,
and that 4 is an integral domain.

(b) Show that A — (I, + A)~' (I, — A) defines a bijection from a nonempty open subset
of SO, (k) onto an open subset of V (k).

(c) Deduce that SO,, is connected.

EXERCISE 13-5 Let A be a product of copies of k indexed by the elements of a finite set
S. Show that the k-bialgebra structures on A are in natural one-to-one correspondence with
the group structures on S.

EXERCISE 13-6 Let G be a finite affine group. Show that the following conditions are
equivalent:

(a) the k-algebra O(Greq) is étale;

(b) O(Gred) @ O(Greq) is reduced,;

(¢) Greq is a subgroup of G;

(d) G is isomorphic to the semi-direct product of G° and 7¢G.

EXERCISE 13-7 Let k be a nonperfect field of characteristic 2, so that there exists an a € k
def

that is not a square. Show that the functor R ~» G(R) = {x € R | x* = ax?} becomes a
finite commutative algebraic group under addition. Show that G (k) has only one element
but 779(G) has two. Deduce that G is not isomorphic to the semi-direct product of G°® and

mo(G). (Hence shows that O(G) /91 is not a Hopf algebra.)

EXERCISE 13-8 Let k be a field of characteristic p. Show that the extensions
0= up—>G—->7%Z/pZ—0

with G a finite commutative algebraic group are classified by the elements of k™ /k*? (the
split extension G = 1, X Z/ pZ corresponds to the trivial element in k> / k7). Show that
Gieq is not a subgroup of G unless the extension splits.

13f Where we are

As discussed in the first section, every affine algebraic group has a composition series with
the quotients listed at right:

affine G
| finite étale

connected G°
| semisimple
solvable .
| torus
unipotent ]
unipotent

|
{13
We have constructed the top segment of this picture. Next we look at tori and unipotent

groups. Then we study the most interesting groups, the semisimple ones, and finally, we
put everything together.
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14 Groups of multiplicative type; tori

In this section we study the affine groups that become diagonalizable over an extension
field. Through £ is a field.
We state for reference:

Gm(R) = R* OGp) =k[X. X7 AX)=X®X eX)=1 SX)=Xx"!
un(R)={L€R|E" =1} O(un) = ropy =klx] A =x®x  e)=1 S@)=x""

14a Group-like elements

DEFINITION 14.1 Let A = (A, A,€) be a k-coalgebra. An element a of A is group-like if
A(a) =a®aand €(a) = 1.

LEMMA 14.2 The group-like elements in A are linearly independent.

PROOF. If not, it will be possible to express one group-like element e as a linear combina-
tion of other group-like elements e; # e:

e=Y ;ciej, ci€k. (99)

We may even suppose that the e¢; occurring in the sum are linearly independent. Now

Ale) =e®e @)Zi’j cicje; ®ej
A0 @ 2iciAlei) =) ;ciei Qe;.
The e; ® e are also linearly independent, and so this implies that

cici=c; alli
cic; =0 ifi #j.

We also know that
ele) =1
e(e) =) ciele;) =) ci.

On combining these statements, we see that the ¢; form a complete set of orthogonal idem-
potents in the field k, and so one of them equals 1 and the remainder are zero, which
contradicts our assumption that e is not equal to any of the e;. O

Let A be a k-bialgebra. If ¢ and b are group-like elements in A, then

A(ab) = A(a)A(D) = (a®@a)(b®b) =ab®ab
e(ab) =€e(a)e(b) =1
because A and € are k-algebra homomorphisms. Therefore the group-like elements form a

submonoid of (A4, x).
Let A be a Hopf algebra, and let a € A. If a is group-like, then

| = (eoe)(a) 2 (multo (S ®idg) o A)(a) = S(a)a,
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and so a is a unit in A with a~! = S(a). Conversely, if a is a unit in 4 such that A(a) =
a ®a, then

0D ((e.ida) 0 A)(@) = e(@)a.

and so €(a) = 1. Thus the group-like elements of A are exactly the units such that A(a) =
a®a.

14b The characters of an affine group

Recall that a character of an affine group G is a homomorphism y:G — G,,. To give a
character y of G is the same as giving a homomorphism of k-algebras O(G,,) — O(G)
respecting the comultiplications, and this is the same as giving a unit a(y) of O(G) (the
image of X) such that A(a(y)) = a(y) ® a(y). Therefore, y <> a() is a one-to-one cor-
respondence between the characters of G and the group-like elements of O(G).

For characters y, x’, define

x+x:G(R) - R*

by
(x+ 1)@ =x©- 1.

Then y + y’ is again a character, and the set of characters is an abelian group, denoted
X(G). The correspondence y <> a(y) between characters and group-like elements has the
property that

a(x+x)=a()-ax).
ASIDE 14.3 Recall that an element f* of O(G) can be regarded as a natural transformation
f:G — A'. Suppose that

f(lg) =1, for 1 the identity element in G(R), and
f(xy)= f(x)f(y), forx,ye G(R), R ak-algebra.

Then f(R) takes values in R* C A'(R) and is a homomorphism G(R) — R*. In other words, f is
a character of G. One can see directly from the definitions that the condition (I00) holds if and only
if f is group-like.

(100)

14c The affine group D(M)

Let M be a commutative group (written multiplicatively), and let k[M] be the k-vector
space with basis M. Thus, the elements of k[M] are finite sums

Ziaimi, a; ek, m; € M.
When we endow k[M ] with the multiplication extending that on M,
(Zi aimi) (Z] bjnj) = Zi,j al-bjminj,

then k[M] becomes a k-algebra, called the group algebra of M . It becomes a Hopf algebra
when we set

Am)y=m@m, em)=1, Sm)=m~'  (meM)
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because, for m an element of the basis M,

MdRA)(Am) =mQR(mOm) = (mm)dm = (A®id)(A(m)),
(e®id)(A(m)) =1Q@m, (d®e)(A(m)) =m®1,
(multo (S ®id))(m @m) =1 = (multo Id®S))(m @ m).

Note that k[M] is generated as a k-algebra by any set of generators for M, and so it is
finitely generated if M is finitely generated.

EXAMPLE 14.4 Let M be a cyclic group, generated by e.

(a) Case e has infinite order. Then the elements of k[M] are the finite sums Y ;. a;e’
with the obvious addition and multiplication, and A(e) = e ®e, €(e) =1, S(e) =
e~ . Therefore, k[M] ~ k[G,].

(b) Case e is of order n. Then the elements of k[M ] are sums ag +aje+---+an—1e
with the obvious addition and multiplication (using e” = 1), and A(e) = e®e, €(e) =
1, and S(e) = e" 1. Therefore, k[M] =~ k[in].

n—1

EXAMPLE 14.5 Recall that if W and V' are vector spaces with bases (e;);es and (f})jes,
then W ®j V' is a vector space with basis (¢; ® f;),j)erxs- Therefore, if My and M5 are
commutative groups, then

(my1.m2) < my @ma:k[My x Ma] < k[M1]® k[M>]

is an isomorphism of k-vector spaces, and one checks easily that it respects the Hopf k-
algebra structures.

PROPOSITION 14.6 For any commutative group M , the functor D(M)
R ~~»Hom(M,R*) (homomorphisms of abelian groups)

is an affine group, with coordinate ring k[M]. When M is finitely generated, the choice of
a basis for M determines an isomorphism of D(M) with a finite product of copies of G,
and various [Ly’S.

PROOF. To give a k-linear map k[M] — R is the same as giving a map M — R. The map
k[M] — R is a k-algebra homomorphism if and only if M — R is a homomorphism from
M into R*. This shows that D(M ) is represented by k[M], and it is therefore an algebraic

group.
A decomposition of commutative groups
M~7& - SLBL/nZ&---D7L/n, 7,
defines a decomposition of k-bialgebras

k[M] %k[Gm]®"'®k[Gm]®k[ﬂn1]®"'®k[ﬂnr]

(14.4[T4.5). Since every finitely generated commutative group M has such a decomposi-
tion, this proves the second statement. o
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LEMMA 14.7 The group-like elements of k[ M| are exactly the elements of M .

PROOF. Let e € k[M] be group-like. Then
e=) cje; forsomec; €k,e; € M.

The argument in the proof of Lemma shows that the ¢; form a complete set of orthog-
onal idempotents in k, and so one of them equals 1 and the remainder are zero. Therefore
e = ¢; for some i. o

Thus
X(D(M)) ~ M.

The character of D(M) corresponding to m € M is

def

D(M)(R) & L2000, e o

Hom(M, R™) Gm(R).

SUMMARY 14.8 Let p be the characteristic exponent of k. Then:

D(M) is algebraic <= M is finitely generated

D(M) is connected <= M has only p-torsion

D(M) is algebraic and smooth <= M is finitely generated and has no p-torsion
D(M) is algebraic, smooth, and connected <= M is free and finitely generated.

14d Diagonalizable groups

DEFINITION 14.9 An affine group G is diagonalizable if the group-like elements in O(G)
span it as a k-vector space.

THEOREM 14.10 An affine group G is diagonalizable if and only if it is isomorphic to
D (M) for some commutative group M .

PROOF. The group-like elements of k[M] span it by definition. Conversely, suppose the
group-like elements M span O(G). Lemma|14.2|shows that they form a basis for O(G) (as
a k-vector space), and so the inclusion M — O(G) extends to an isomorphism k[M] —
O(G) of vector spaces. That this isomorphism is compatible with the bialgebra structures
(m,e, A,€) can be checked on the basis elements m € M, where it is obvious. o

ASIDE 14.11 When we interpret the characters of G as elements of O(G) satisfying (100), we can
say that G is diagonalizable if and only if O(G) is spanned by characters.

THEOREM 14.12 (a) The functor M ~~ D(M) is a contravariant equivalence from the
category of commutative groups to the category of diagonalizable affine groups (with quasi-
inverse G ~» X(G)).
(b) If

l-M —>M-—>M'—1

is an exact sequence of commutative groups, then
1—-DM"y— DM)—> DM —1

is an exact sequence of affine groups.
(c) Subgroups and quotient groups of diagonalizable affine groups are diagonalizable.
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PROOF. (a) Certainly, we have a contravariant functor
D:{commutative groups} ~~ {diagonalizable groups}.
We first show that D is fully faithful, i.e., that
Hom(M,M') — Hom(D(M'), D(M)) (101)

is an isomorphism for all M, M’. Tt sends direct limits to inverse limits and direct sums to
products, and so it suffices to prove that (101)) is an isomorphism when 2M, M’ are cyclic.
If, for example, M and M’ are both infinite cyclic groups, then

Hom(M,M'") = Hom(Z,Z) ~ 7Z,
Hom(D(M'), D(M)) = Hom(Gn,Gp) ={X' |i € Z} ~ Z,

and (T0I) is an isomorphism. The remaining cases are similarly easy.

Theorem [I4.10| shows that the functor is essentially surjective, and so it is an equiva-
lence.

(b) The map k[M'] — k[M] is injective, and so D(M) — D(M’) is a quotient map
(by definition). Its kernel is represented by k[M ]/ I [as:], Where I[ps1] is the augmentation
ideal of k[M'] (see . But 7x[p) is the ideal generated the elements m — 1 for m €
M', and so k[M]/Ix[p is the quotient ring obtained by putting m = 1 for all m € M'.
Therefore M — M" defines an isomorphism k[M]/ Ixprq — k[M"].

(c) If H is a subgroup of G, then O(G) — O(H) is surjective, and so if the group-like
elements of O(G) span it, the same is true of O(H).

Let D(M) — Q be a quotient map, and let H be its kernel. Then H = D(M") for
some quotient M of M. Let M’ be the kernel of M — M”. Then D(M) — D(M') and
D(M) — Q are quotient maps with the same kernel, and so are isomorphic (7.57). 0

ASIDE 14.13 Our definition of a diagonalizable group agrees with that in SGA3, VIII 1.1: a group
scheme is diagonalizable if it is isomorphic to a scheme of the form D(M) for some commutative
group M.

DIAGONALIZABLE REPRESENTATIONS

DEFINITION 14.14 A representation of an affine group is diagonalizable if it is a sum
of one-dimensional representations. (According to [8.68] it is then a direct sum of one-
dimensional representations.)

Recall that D, is the group of invertible diagonal n x n matrices; thus
n > Gy x o x Gy, >~ D(Z).
—_———
n copies
A finite-dimensional representation (V,r) of an affine group G is diagonalizable if and
only if there exists a basis for V' such that 7(G) C D,. In more down-to-earth terms, the
representation defined by an inclusion G C GL,, is diagonalizable if and only if there exists
an invertible matrix P in My, (k) such that, for all k-algebras R and all g € G(R),
* 0
PgP le
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A character y: G — G, defines a representation of G on any finite-dimensional space
V: let g € G(R) act on Vg as multiplication by y(g) € R*. For example, y defines a
representation of G on k" by

x(g) 0
g+ '

0 x(g)

Let (V,r) be a representation of G. We say that G acts on V through y if
r(g)v=yx(g)vall g e G(R),v € Vpg.

This means that the image of r is contained in the centre G, of GLy and that r is the
composite of

G % Gp—>GLy.
Let p: V — V ® O(G) be the coaction defined by r. Then G acts on V' through the character
x if and only if
p(v) =v®a(y), allvel.
When V is 1-dimensional, GLy = G, and so G always acts on V through some character.
Let (V,r) be a representation of G. If G acts on subspaces W and W’ through the

character y, then it acts on W + W’ through the character y. Therefore, for each y € X(G),
there is a largest subspace V) (possibly zero) such that G acts on V) through y. We have

(8:64
Vi={veV]p)=v®a(x)}

THEOREM 14.15 The following conditions on an affine group G are equivalent:

(a) G is diagonalizable;

(b) every finite-dimensional representation of G is diagonalizable;
(c) every representation of G is diagonalizable;

(d) for every representation (V,r) of G,

V= @XEX(T) Vy.

PROOF. (a)=(c): Let p:V — V ® O(G) be the comodule corresponding to a representa-
tion of G (see[8.12)). We have to show that V' is a sum of one-dimensional representations
or, equivalently, that V' is spanned by vectors u such that p(u) € (u) ® O(G).

Let v € V. As the group-like elements form a basis (e;);e7 for O(G), we can write

p(v) =D jc ui®e;, u;eV.
On applying the identities (p.

(idy ®A)op = (p®idg)op
(idy ®¢€)op = idy.

to v, we find that

Yo ui®ei®e =y plu)®e
V=) u;.
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The first equality shows that
p(ui) =u; ®e; € (u;) @ A,

and the second shows that the set of u;’s arising in this way span V.

(¢)=(a): In particular, the regular representation of G is diagonalizable, and so O(G) is
spanned by its eigenvectors. Let f € O(G) be an eigenvector for the regular representation,
and let y be the corresponding character. Then

f(hg)= f(h)x(g) forh,g € G(R), R a k-algebra.

In particular, f(g) = f(e)x(g),and so f is a multiple of y. Hence O(G) is spanned by its
characters.

(b)=(c): As every representation is a sum of finite-dimensional subrepresentations
(8-33), (b) implies that every representation is a sum of one-dimensional subrepresentations.

(¢)=(b): Trivial.

(c)=(d): Certainly, (c) implies that V' =) YEX(G) Vy, and Theorem implies that
the sum is direct.

(d)=(c): Clearly each space V) is a sum of one-dimensional representations. o

NOTES Part of this subsection duplicates §7p.

NOTES Explain that to give a representation of D(M) on V is the same as giving a gradation
(grading) on V (for a base ring, see CGP A.8.8.) Better, Rep(D(M)) = ...

SPLIT TORI

14.16 A split torus is an algebraic group isomorphic to a finite product of copies of G,.
Equivalently, it is a connected diagonalizable algebraic group. Under the equivalence of
categories M ~» D(M) (see[14.12h), the split tori correspond to free abelian groups M of
finite rank. A quotient of a split torus is again a split torus (because it corresponds to a
subgroup of a free abelian group of finite rank), but a subgroup of a split torus need not
be a split torus. For example, i, is a subgroup of G, (the map u, — G, corresponds to
7 — 7./ nZ).

EXAMPLE 14.17 Let T be the split torus G, X G,. Then X(T') >~ Z @ Z, and the character
corresponding to (m1,ms) € Z® 7 is

(t1,12) = 11" 15"*: T(R) = G (R).

A representation V' of 7" decomposes into a direct sum of subspaces V(;,, m,), (m1,m2) €
Z x Z, such that (t1,t2) € T (k) acts on Vi, my) as 1] 152, In this way, the category
Rep(T') acquires a gradation by the group Z x Z.

14e Groups of multiplicative type

DEFINITION 14.18 An affine group G is of multiplicative type if Gy is diagonalizable.
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Let M be an abelian group, and let I' = Gal(k*P/k). A continuous action of I" on
M is a homomorphism I” — Aut(M) such that every element of M is fixed by an open

subgroup of I, i.e.,
_ Gal(k*?/K)
M = l lK M

where K runs through the finite Galois extensions of k contained in k*P.
For an affine group G, we define

X*(G) - HOm(Gksep, Gm).

LEMMA 14.19 The canonical action of I' on X *(G) is continuous.

PROOF. When G is algebraic, X *(G) is finitely generated, and each of its generators is de-
fined over a finite separable extension of k; therefore the action factors through Gal(K/ k)
for some finite Galois extension K of k. In the general case, every homomorphism Gysep —
G factors through an algebraic quotient of G, and so X*(G) = | X *(Q) with Q alge-
braic. u]

THEOREM 14.20 The functor X * is a contravariant equivalence from the category of affine
groups of multiplicative type over k to the category of commutative groups with a contin-
uous action of I'. Under the equivalence, short exact sequences correspond to short exact
sequences.

PROOF. To give a continuous semilinear action of I" on k*P[M] is the same as giving a
continuous action of I" on M (because M is the set of group-like elements in k*P[M] and
M is a k*P-basis for k5P[M]), and so this follows from Theorem [14.12] and Proposition
O

Let G be a group of multiplicative type over k. For any K C k5P,
G(K) = Hom(X *(G), k*P) Tk

where Ik is the subgroup of I" of elements fixing K, and the notation means the G(K)
equals the group of homomorphisms X *(G) — k*P* commuting with the actions of I'k.

EXAMPLE 14.21 Take k = R, so that I" is cyclic of order 2, and let X*(G) = Z. Then
Aut(Z) = 7 = {£1}, and so there are two possible actions of I" on X *(G).
(a) Trivial action. Then G(R) = R*, and G >~ G,,.
(b) The generator ¢ of I" acts on Z as m — —m. Then G(R) = Hom(Z,C*)!" consists
of the elements of C* fixed under the following action of ¢,
=—1
iz=z"".

Thus G(R) = {z € C* | zZ = 1}, which is compact.

EXAMPLE 14.22 Let K be a finite separable extension of k, and let 7 be the functor
R~ (R® K)*. Then T is the group of multiplicative type corresponding to the I"-module
ZHomk (K-k*?) (families of elements of Z indexed by the k-homomorphisms K — k*¢P).

ASIDE 14.23 SGA3, IX 1.1, defines a group scheme to be of multiplicative type if it is locally
diagonalizable group for the flat (fpqc) topology. Over a field k, this amounts to requiring the group
scheme to become diagonalizable over some field extension of k. Because of Theorem[14.28|below,
this is equivalent to our definition.
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TORI

DEFINITION 14.24 A torus is an algebraic group 7 such that Ty is a split torus.

In other words, the tori are the algebraic groups T of multiplicative type such that
X*(T) is torsion free.

PROPOSITION 14.25 For a torus T, there exist (unique) subtori Ty, ..., T, such that

o T=T1---Tp,
¢ T;NT; is finite for all i # j, and
o X*(T;)q is a simple I"-module for all i.

PROOF. Let I' = Gal(k*?/ k). Because X *(T) is finitely generated, I" acts on it through a
finite quotient. Therefore Maschke’s theorem (GT shows that X*(T')q is a direct sum
of simple I'-modules, say,

X*T)g=Vi & V.

Let M; be the image of X*(T') in V;. Then there is an exact sequence
0—X*(T)—> My x--xM, - F —0

of continuous I'-modules with F' finite. On applying the functor D, we get an exact se-
quence of algebraic groups of multiplicative type

0— D(F) — D(My) x+++x D(My) — T — 0.

Take T; = D(M;). O

A torus is anisotropic if X(T) =0, i.e., X*(T)! =0.

COROLLARY 14.26 Every torus has a largest split subtorus Ty and a largest anisotropic
subtorus T,. The intersection T¢ N\ T, is finiteand T - T, = T .

PROOF. In fact Ty is the product of the 7; in the proposition such that I" act trivially on
X*(T;) and T is the product of the remainder. O

REPRESENTATIONS OF A GROUP OF MULTIPLICATIVE TYPE

When G is a diagonalizable affine group, Rep(G) is a semisimple abelian category whose

simple objects are in canonical one-to-one correspondence with the characters of G. When

G is of multiplicative type, the description of Rep(G) is only a little more complicated.
Let k%P be a separable closure of k, and let I = Gal(k*P/ k).

THEOREM 14.27 Let G be an affine group of multiplicative type. Then Rep(G) is a
semisimple abelian category whose simple objects are in canonical one-to-one correspon-
dence with the orbits of I' acting on X *(G).
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PROOF. It suffices to prove this in the case that G is algebraic, and so is split be a finite Ga-
lois extension £2 of k with Galois group I". Let I" act on O(Gg) ~ 2 ® O(G) through its
action on £2. By a semilinear action of I" on a representation (V,r) of G, we mean a semi-
linear action of I on V such that yp = p where p is the coaction of O(G) on V. It follows
from Proposition that the functor V ~ Vg from Repy (G) to the category of objects
of Repg (G ) equipped with a semilinear action of I is an equivalence of categories.

Let V be a finite-dimensional representation of G equipped with a semilinear action

of I". Then
V= @XGX(GQ) £

An element y of I" acts on V' by mapping V), isomorphically onto V,,,. Therefore, as a
representation of G equipped with a semilinear action of I, V' decomposes into a direct
sum of simple objects corresponding to the orbits of I” acting on X(Gg). As these are also
the orbits of I" acting on X *(Gps») >~ X(Gg), the statement follows. 0

CRITERIA FOR AN AFFINE GROUP TO BE OF MULTIPLICATIVE TYPE

Recall that if C is a finite-dimensional cocommutative coalgebra over k, then its linear
dual CV is a commutative algebra over k (§5¢). We say that C is coétale if C"V is étale.
More generally, we say that a cocommutative coalgebra over k is coétale if every finite-
dimensional subcoalgebra is coétale (cf. [8.9).

THEOREM 14.28 The following conditions on an affine group G over k are equivalent:

(a) G is of multiplicative type (i.e., G becomes diagonalizable over k*P);
(b) G becomes diagonalizable over some field K D k;

(¢) G is commutative and Hom(G,G,) = 0;

(d) G is commutative and O(G) is coétale.

PROOF. (a)=>(b): Trivial.
(b)=(c): Clearly
Hom(G,Gg) ~{f € OG) |A(f)=fQ1+1® f}.
The condition on f is linear, and so, for any field K D k,
Hom(Gg,Ggx) >~ Hom(G,G,) ® K.

Thus, we may suppose that G is diagonalizable. If «:G — G, is a nontrivial homomor-

phism, then
1 a(g)
oo )

is a nonsemisimple representation of G, which contradicts (14.15]).

(c)=(d): We may assume that k is algebraically closed. Let C be finite-dimensional
subcoalgebra of O(G), i.e., a finite-dimensional k-subspace such that A(C) C C ® C. Let
A = CV. Then 4 is a finite product of local Artin rings with residue field k (CA [15.7).
If one of these local rings is not a field, then there exists a surjective homomorphism of
k-algebras

A—kle], €2=0.
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This can be written x — (x,a) + (x,b)e for some a,b € C withb # 0. For x,y € A,
(xy,a)+ (xy,b)e = (xy,Aa) + (x ® y, Ab)e
and
((x.a) + (x.b)e) (y.a) + (y.D)e = (x.a)(y.a) + ({x.a)(y.b) + (x.D)(y.a)) &
=(xQ®y,a)+(x®y.a®@b+b®b)e.
It follows that

Aa=a®ua
Ab=a®b+b®a.

On the other hand, the structure map k — A is (¢|C)V, and so €(a) = 1. Therefore a is a
group-like element of O(G), and so it is a unit (see §14a). Now

Aba™ )Y =Ab-Aa ' =@®b+bRa) (@ ®a™))
=1Qba ' +ba ' ®1,

and so Hom(G, G,) # 0, which contradicts (c). Therefore A is a product of fields.

(d)=-(a): We may suppose that k is separably closed. Let C be a finite-dimensional
subcoalgebra of O(G), and let A = CV. By assumption, 4 is a product of copies of k. Let
ai,...,an be elements of C such that

x> ((x,a1),....(x,ay)): A —> k"

is an isomorphism. Then {a1,...,a,} spans C and the argument in the above step shows
that each a; is a group-like element of C. As O(G) is a union of its finite-dimensional
subcoalgebras (8.9), this shows that O(G) is spanned by its group-like elements. o

COROLLARY 14.29 An affine group G is of multiplicative type if and only if Gja is diag-
onalizable.

PROOF. Certainly, Gja is diagonalizable if G is of multiplicative type, and the converse
follows the theorem. o

COROLLARY 14.30 A commutative affine group G is of multiplicative type if and only if
Rep(G) is semisimple.

PROOF. We saw in [14.27| that Rep(G) is semisimple if G is of multiplicative type. Con-
versely, if Rep(G) is semisimple, then Hom(G,G,) = 0, and so G is of multiplicative

type. O

ASIDE 14.31 In nonzero characteristic, the groups of multiplicative type are the only algebraic
groups whose representations are all semisimple.>? In characteristic zero, the reductive groups also
have semisimple representations (see 5).

52More precisely, for an algebraic group over a field k of characteristic p # 0, Rep(G) is semisimple if and
only if G° is of multiplicative type and G/G® has order prime to p (Nagata’s theorem, DG IV §3 3.6, p. 509).
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14f Rigidity
Later we shall need the following result.

THEOREM 14.32 Every action of a connected affine group G on an algebraic group H of
multiplicative type is trivial.

Clearly, it suffices to prove the theorem for an algebraically closed base field k.

PROOF OF THE THEOREM WHEN H IS FINITE.

When H = uy,, an action of G on M defines a map

G — Aut(uy) C Hom(pup, in) = Hom(pup, Gm) >~ Z/nZ

(see §12d), which is trivial, because G is connected. A similar argument proves the theorem
when H is finite (hence a finite product of groups of the form ).
PROOF OF THE THEOREM IN THE CASE THAT G IS SMOOTH.

We shall use that G (k) is dense in G. We may suppose that H is a torus 7. The kernel
of x = x"™:T — T is a product of copies of i, and so G acts trivially on it. Because
of the category equivalence T ~~ X(T), it suffices to show that g € G(k) acts trivially
on the X(7T), and because g acts trivially on the kernel of m:T — T it acts trivially on
X(T)/mX(T). We can now apply the following elementary lemma.

LEMMA 14.33 Let M be a finitely generated commutative group, and letw: M — M be a

homomorphism such that
M — M

! !

M/mM —<s M/mM

commutes for all m. Then o = id.

PROOF. We may suppose that M is torsion-free. Choose a basis e; for M, and write
a(ej) =) ;ajje;,a;; € Z. The hypothesis is that, for every integer m,

(aij) =1, modm,
i.e., that m|a;; fori # j and m|a;; — 1. Clearly, this implies that (a;;) = I,. o

PROOF OF THE THEOREM IN THE GENERAL CASE.

This doesn’t use the smooth case.

LEMMA 14.34 Let V be a k-vector space, and let M be a finitely generated commutative
group. Then the family of homomorphisms

V@k[M]— V®k[M/nM], n=>2,

is injective.



14. Groups of multiplicative type; tori 175

PROOF. An element f of VV ® k[M] can be written uniquely in the form

f= ZmeM Jm®m, fmeV.

Assume f # 0,andlet I ={m € M | f,, # 0}. As [ is finite, for some 7, the elements
of I will remain distinct in M/n M, and for this n, the image of f in V ®; k[M/nM] is
nonzero. o

As k is algebraically closed, the group H is diagonalizable. We saw above, that G acts
trivially on H, for all n. Let H = D(M) with M a finitely generated abelian group. Then
O(H) =k[M] and O(H,) = k[M/nM]. Let

p:k[M]— O(G)@k[M]
give the action. We have to show that p(x) = 1 ® x for each x € k[M], but this follows
from the fact that G acts trivially on Hj, for all n > 2, and the family of maps
O(G)®rk[M] — O(G) r k[M/nM], n=2,

is injective.

DENSITY OF THE TORSION POINTS

PROPOSITION 14.35 Let T be an algebraic group of multiplicative type, and let Ty, be the
kernel of n:T — T. Let a:T — T be a homomorphism whose restriction to Ty, is the
identity map for all n. Then « is the identity map.

PROOF. It suffices to show that X™*(a): X*(T) — X*(T) is the identity map, but the
hypothesis says that X *(«) induces the identity map on the quotient X*(7')/nX*(T) =
X*(Ty) for all n, and so this follows from Lemma|[14.33 o

14g Exercises
EXERCISE 14-1 Show that the functor
C ~ {group-like elements in C ® k*P}

is an equivalence from the category of coétale finite cocommutative k-coalgebras to the
category of finite sets with a continuous action of Gal(k*P/ k). (Hint: use )

EXERCISE 14-2 Show that Aut(u,,) =~ (Z/mZ)* (constant group defined by the group of
invertible elements in the ring Z/mZ). Hint: To recognize the elements of Aut(u,,)(R) as
complete systems of orthogonal idempotents, see the proof of (14.2).

EXERCISE 14-3 Let k’/k be a cyclic Galois extension of degree n with Galois group I”
generated by o, and let G = (G g/ k-
(a) Show that X*(G) ~ Z[I'] (group algebra Z + Zo +--- 4+ Zo" =L of I).
(b) Show that
ay dz ... dp
anp ai ... ap
Endr(X™(G)) = - e €z

az a3 e al
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15 Unipotent affine groups

Recall that an endomorphism of a finite-dimensional vector space V' is unipotent if its char-
acteristic polynomial is (7 — 1)4™V" For such an endomorphism, there exists a basis of V
relative to which its matrix lies in

1 =* *

0 1
Un(b)E 1[0 01

000 1

Let G be an algebraic group over a perfect field k. We say that g € G(k) is unipotent if
r(g) is unipotent for all finite-dimensional representations (V,r) of G. It suffices to check
that r(g) is unipotent for some faithful representation (V,r), or that g = g, (see(10.18).

By definition, a smooth algebraic group G over a field k is unipotent if the elements of
G (k™) are all unipotent. However, not all unipotent groups are smooth, and so we adopt
a different definition equivalent to requiring that the group be isomorphic to a subgroup of
U,.

Throughout this section, & is a field.

15a Preliminaries from linear algebra

LEMMA 15.1 Let G — GL(W) be a simple linear representation of an abstract group G
on a finite-dimensional vector space W over an algebraically closed field k. Let G act on
End(W) by the rule:

&Nw)=g(f(w)), geG. feEndW), weW.

Then every nonzero G -subspace X of End(W) contains an element fo: W — W such that
fo(W) has dimension one.

PROOF. We may suppose that X is simple. Then the k-algebra of G-endomorphisms of X
is a division algebra, and hence equals k (Schur’s lemma, GT|[7.24] [7.29). For any w € W,
the map ¢y,

fefw):X—->Ww

is a G-homomorphism. As X # 0, there exists an f € X and a wg € W such that f(wg) #
0. Then ¢y, # 0, and so it is an isomorphism (because X and W are simple). Let fo € X
be such that ¢y, ( fo) = wo.

Letw € W. Then (p;(} oy is a G-endomorphism of X, and so ¢y, = c(w)e@y,, for some
c(w) € k. On evaluating this at fy, we find that fo(w) = c¢(w)wo, and so fo(W) C {(wo).o

PROPOSITION 15.2 Let V' be a finite-dimensional vector space, and let G be a subgroup
of GL(V') consisting of unipotent endomorphisms. Then there exists a basis of V' for which
G is contained in U,,.
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PROOF. It suffices to show that VG # 0, because then we can apply induction on the di-
mension of ' to obtain a basis of V with the required property>>.

Choose a basis (e;)1<i<n for V. The condition that a vector v = > _a;e; be fixed by
all g € G is linear in the a;, and so has a solution in k" if and only if it has a solution in
(k®)™ >* Therefore we may suppose that k is algebraically closed.

Let W be a nonzero subspace of V' of minimal dimension among those stable under G.

Clearly W is simple. For each g € G, Try(g) = dim W, and so

Trw (g(g' —1)) = Trw (gg') — Trw (g) = 0.

LetU ={f €eEnd(W) | Trw(gf) =0 forall g € G}. If G acts nontrivially on W, then U
is nonzero because (g’ —1)|W € U for all g’ € G. The lemma then shows that U contains
an element fy such that fo(WW) has dimension one. Such an fy has Try fo # 0, which
contradicts the fact that fo € U. We conclude that G acts trivially on W. =

15b Unipotent affine groups

DEFINITION 15.3 An affine group G is unipotent if every nonzero representation of G has
a nonzero fixed vector (i.e., a nonzero v € V such that p(v) = v ® 1 when V is regarded as
a O(G)-comodule).

Equivalently, G is unipotent if every simple object in Rep(G) is trivial. We shall see
that the unipotent algebraic groups are exactly the algebraic groups isomorphic to affine
subgroups of U, for some n. For example, G, and its subgroups are unipotent.

PROPOSITION 15.4 An algebraic group G is unipotent if and only if, for every finite-
dimensional representation (V,r) of G, there exists a basis of V for which the image of
G is contained in Uy, .

PROOF. =>: This can be proved by induction on the dimension of V (see footnote|53).
«: If eq,...,ey, is such a basis, then {e;) is fixed by G. o

DEFINITION 15.5 A Hopf algebra A is said to be coconnected if there exists a filtration
Co C Cy C Cy C -+ of Aby subspaces C; such that>?

Co =k, Urzo Cr = A, and A(Cy) C Zogsr Ci®Cr_i. (102)

53We use induction on the dimension of V. Let e1,...,e;, be a basis for VG. The induction hypothesis
applied to G acting on V/ V@ shows that there exists a basis em+1,-..,en for V/ VY such that

a(emyi) =cC1im+1+ - +ci—1iemti—1+emny; foralli <n—m.

Let eyt = emyi + VG with em+i € V. Theneq,..., ey is a basis for V relative to which G C Uy, (k).
>4For any representation (V,r) of an abstract group G, the subspace VG of V is the intersection of the
kernels of the linear maps
vi>gv—uv:V >V, geG.

It follows that (V' ®l€)G1€ ~ VY ®k,and so
Vek) £0 = VG £0.

33This definition is probably as mysterious to the reader as it is to the author. Basically, it is the condition
you arrive at when looking at Hopf algebras with only one group-like element (so the corresponding affine
group has only one character). See Sweedler, Moss Eisenberg. Hopf algebras with one grouplike element.
Trans. Amer. Math. Soc. 127 1967 515-526.
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THEOREM 15.6 The following conditions on an algebraic group G are equivalent:

(a) G is unipotent;
(b) G is isomorphic to an algebraic subgroup of U,, for some n;
(¢) the Hopf algebra O(G) is coconnected.

PROOF. (a)=(b). Apply Proposition[I5.4]to a faithful finite-dimensional representation of

G (which exists by [8.31).
(b)=(c). Any quotient of a coconnected Hopf algebra is coconnected (the image of a

filtration satisfying (102)) will still satisfy (102))), and so it suffices to show that O(U,) is
coconnected. Recall that O(U,) >~ k[X;; | i < j], and that

AXi) =X ®@1+1®X;;+ > Xir®X,).

i<r<j

Assign a weight of j —i to X;;, so that a monomial [ | Xl-nj"‘/ will have weight > "n;; (j —1i),
and let C, be the subspace spanned by the monomials of weight < r. Clearly, Cop = k,
UrZO C, = A, and C;C; C C;4 ;. It suffices to check the third condition in |D on the
monomials. For the X;; it is obvious. We proceed by induction on weight of a monomial.
If the condition holds for monomials P, Q of weights r, s, then A(PQ) = A(P)A(Q) lies
in

(ZCi ®Cr—i) (ZCJ' ®Cr—j> Y (GCi®CriCsy)
- Zci+j Q Cris—i—j-

(c)=(a). Now assume that O(G) is a coconnected Hopf algebra, and let p:V — V ®
O(G) be a comodule. Then V is a union of the subspaces

Vi={veV]|p)eVCh.

If Vy contains a nonzero vector v, then p(v) = v’ ® 1 for some vector v’; on applying €, we
find that v = v’, and so v is fixed. We complete the proof by showing that

Vr:() E Vr+l =0.
By definition, p(V;4+1) C V ® Cr+1, and so
(d®A)p(Vyry1) C V®Zi Ci®Cr_j.

Hence V,4; mapstozeroin V® A/C, ® A/ C,. We now use that (id®A)op = (p®id)op.
The map V — V ® A/C, defined by p is injective because V; = 0, and on applying p ® id
we find that V — (V ® A/C,) ® A/ Cy is injective. Hence V; 41 = 0. 0

NOTES The exposition of follows [Waterhouse/[1979], 8.3.

COROLLARY 15.7 Subgroups, quotients, and extensions of unipotent groups are unipo-
tent.
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PROOF. If G is isomorphic to a subgroup of U, then so also is a subgroup of G.

A representation of a quotient of G can be regarded as a representation of G, and so has
a nonzero fixed vector if it is nontrivial and G is unipotent.

Suppose that G contains a normal subgroup N such that both N and G/ N are unipotent.
For any representation (V,r) of G, the subspace V¥ is stable under G (see , and so it
defines a representation of G/N. If V # 0, then VN £ 0, and so V¢ = (VN)G/N £¢. 4

COROLLARY 15.8 Let G be an algebraic group. If G is unipotent, then all elements of
G (k) are unipotent, and the converse is true when G (k) is dense in G.

PROOF. Let G be unipotent, and let (V,r) be a finite-dimensional representation of V. For
some basis of V, the r(G) C U, and so r(G(k)) C U, (k); in particular, the elements of
r(G(k)) are unipotent. For the converse, choose a faithful representation G — GLy of
G and let n = dim V. According to Proposition there exists a basis of V' for which
G(k) C U, (k). Because G(k) is dense in G, this implies that G C U,,. o

15.9 For an algebraic group G, even over an algebraically closed field k, it is possible for
all elements of G (k) to be unipotent without G being unipotent. For example, in character-
istic p, the algebraic group 1, has u, (k) = 1, but it is not unipotent.

COROLLARY 15.10 Letk’ be a field containing k. An algebraic group G over k is unipo-
tent if and only if G/ is unipotent.

PROOF. If G is unipotent, then O(G) is coconnected. But then k' ® O(G) is obviously
coconnected, and so G/ unipotent. Conversely, suppose that G- is unipotent. For any
representation (V,r) of G, the subspace VG of V is the kernel of the linear map

v p(v)—v LV - VRO(G).
It follows that
(V ®k/)Gk/ ~ VG ®k,,

and so G G
/ ’
(VoK) #£0 = VS #o0. §

EXAMPLE 15.11 Let k be a nonperfect field of characteristic p # 0, and let a € k \ kP.
The affine subgroup G of G, x G, defined by the equation

YP =X —aX?

becomes isomorphic to G, over k[a%], but it is not isomorphic to G, over k. To see this,
let C be the complete regular curve with function field k(C) the field of fractions of O(G).
Then G C C, and one checks that the complement consists of a single point whose residue
field is k[a%]. The inclusion G C C is canonical, and if G >~ G, then the complement
would consist of a single point with residue field k.

COROLLARY 15.12 A smooth algebraic group G is unipotent if G (k') consists of unipo-
tent elements.

) )



180 I. Basic Theory of Affine Groups

PROOF. If G (k™) consists of unipotent elements, then Gy is unipotent (15.8)), and so G is
unipotent (15.10). a)

15.13 A unipotent group need not be smooth. For example, in characteristic p, the sub-
group of U, consisting of matrices ((1) ‘1’) with a? = 0 is not smooth (it is isomorphic to

ap).

COROLLARY 15.14 An algebraic group is unipotent if and only if it admits a subnormal
series whose quotients are isomorphic to affine subgroups of G,.

PROOF. The group U, has a subnormal series whose quotients are isomorphic to G, — for
example, the following subnormal series

Uy = D) D1

— % % ¥
S o = O
S = O *
—_— O ¥ ¥
S O O =
S O = O
S = O O
—_ o O ¥

1
0
0
0

S OO =
S O = ¥
O = ¥ ¥

has quotients G, X G4 X Gg, G4 X G4, G,. Therefore any affine subgroup of U, has a
subnormal series whose quotients are isomorphic to affine subgroups of G, (see[9.17). For
the converse, note that (g, is unipotent, and so we can apply (15.7). O

COROLLARY 15.15 Every homomorphism from a unipotent algebraic group to an alge-
braic group of multiplicative type is trivial.

PROOF. A nontrivial homomorphism U — H over k gives rise to a nontrivial homomor-
phism over k. Over an algebraically closed field, every algebraic group H of multiplica-
tive type is a subgroup of GJ!, for some n (because every finitely generated commutative
group is a quotient of Z" for some n), and so it suffices to show that Hom(U, G,,) = 0 when
U is unipotent. But a homomorphism U — Gy, is a one-dimensional representation of G,
which is trivial by definition. o

COROLLARY 15.16 The intersection of a unipotent affine subgroup of an algebraic group
with a subgroup of multiplicative type is trivial.

PROOF. The intersection is unipotent (15.7)), and so the inclusion of the intersection into
the group of multiplicative type is trivial. 0

For example, U, NID, = 1 (which, of course, is obvious).

PROPOSITION 15.17 An algebraic group G is unipotent if and only if every nontrivial
affine subgroup of it admits a nonzero homomorphism to G,.

PROOF. We use the criterion (I5.14). Assume that G is unipotent. Then G has a subnormal
series
GG >->Gr=1
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whose quotients G; / G;+1 are isomorphic to affine subgroups of G,. Let H be a nontrivial
affine subgroup of G. As H # 1, there exists an 7 such that H C G; but H ¢ G; 4. Now

H—)G,’/G,‘_H %Ga

is a nontrivial homomorphism.>®

For the converse, let G be the kernel of a nontrivial homomorphism G — G,. If
Gy # 1, let G, be the kernel of a nontrivial homomorphism G; — G,. Continuing in
this fashion, we obtain a subnormal series whose quotients are affine subgroups of G, (the
series terminates in 1 because the topological space |G| is noetherian and only finitely many
G; can have the same underlying topological space). O

COROLLARY 15.18 Every homomorphism from a group of multiplicative type to a unipo-
tent algebraic group is trivial.

PROOF. Leta:T — U be such a homomorphism. If «7" # 1, then it admits a nontrivial ho-
momorphism to G, but this contradicts the fact that «T is of multiplicative type (14.28).o

EXAMPLE 15.19 Let k£ be a nonperfect field characteristic p. For any finite sequence
ao,...,am of elements of k with ag # 0 and n > 1, the affine subgroup G of G, x G,
defined by the equation

Y2 =aoX +a X+ +apx?”

is a form of G, and every form of G, arises in this way (Russell[1970] 2.1; or apply[15.24).
Note that G is the fibred product

G —— Gy

l laoF+-~-+amF1’m

G, —— G,

In particular, G is an extension of G, by a finite subgroup of G, (so it does satisfy [15.14).
There is a criterion for when two forms are isomorphic (ibid. 2.3). In particular, any form
becomes isomorphic to G, over a purely inseparable extension of k.

DEFINITION 15.20 A unipotent algebraic group is said to be split if it admits a subnormal
series whose quotients are isomorphic to G, (and not just subgroups of G).>’

Such a group is automatically smooth and connected (13.21)).

36 Alternatively, use that every algebraic subgroup H of G is unipotent. Therefore H contains a normal
affine subgroup N such that H/N is isomorphic to a subgroup of G,. Now the composite

H— H/N — Gq

is a nontrivial homomorphism from N to G4.

S7Cf. SGA3, XVIL, 5.10: Let k be a field and G an algebraic k-group. Following the terminology introduced
by Rosenlicht (Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura
Appl. (4) 61 1963 97-120), we say that G is “k-résoluble” if G has a composition series whose successive
quotients are isomorphic to G ...
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PROPOSITION 15.21 Every smooth connected unipotent algebraic group over a perfect
field is split.

PROOF. tba (cf. Borel|[1991] 15.5G1)). |

In particular, every smooth connected unipotent algebraic group splits over a purely
inseparable extension.

Although the definition of “unipotent” applies to all affine groups, we have stated most
of the above results for algebraic groups. The next statement shows how to extend them to
affine groups.

PROPOSITION 15.22 (a) An inverse limit of unipotent affine groups is unipotent.
(b) An affine group is unipotent if and only if all of its algebraic quotients are unipotent.

PROOF. Obvious from the definitions. o

ASIDE 15.23 The unipotent algebraic groups over a field of characteristic zero are classified by
their Lie algebras; more precisely, over a field k of characteristic zero, the functor G ~~ Lie(G) is
an equivalence from the category of unipotent algebraic groups over k to the category of nilpotent
Lie algebras over k (see[l} [4.7] or DG IV §2 4.5, p. 499).

ASIDE 15.24 The unipotent algebraic groups over a field of characteristic p # 0 are more compli-
cated than in characteristic zero. However, those isomorphic to a subgroup of G}, for some n are
classified by the finite-dimensional k[F]-modules (polynomial ring with Fa = a? F). See DG IV
§3, 6.6 et seq., p. 521.

ASIDE 15.25 We compare the different definitions of unipotent in the literature.

(a) In SGA3, XVII 1.3, an algebraic group scheme G over a field & is defined to be unipotent if
there exists an algebraically closed field k containing k such that G; admits a composition
series whose quotients are isomorphic to algebraic subgroups of G,. It is proved ibid. 2.1
that such a group is affine, and so[I5.10] and [I5.14] show that this definition is equivalent to
our definition.

(b) In DG 1V, §2, 2.1, p. 485, a group scheme G over a field is defined to be unipotent if it is
affine and, for every nontrivial affine subgroup H, there exists a nontrivial homomorphism
H — G,. Statement [I5.17] shows that this is equivalent to our definition. (They remark that
an algebraic group scheme satisfying the second condition is automatically affine. However,
the constant group scheme (Z) satisfies the second condition but is not affine.)

(c) In|Conrad et al. 2010, A.1.3, p. 393, a group scheme U over a field is defined to be unipotent
if it is affine of finite type and Uga admits a finite composition series over k% with successive
quotients isomorphic to a k*-subgroup of G,. This is equivalent to our definition, except that
we don’t require the group scheme to be algebraic.

(d) In|Springer||1998| p. 36, a linear algebraic group is defined to be unipotent if all its elements
are unipotent. Implicitly, the group G is assumed to be a smooth affine algebraic group over
an algebraically closed field, and the condition is that all the elements of G (k) are unipotent.
For such groups, this is equivalent to our definition because of (I5.8) (but note that not all
unipotent groups are smooth).
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ASIDE 15.26 Unipotent groups are extensively studied in Tits||1967. For summaries of his results,
see |Oesterlé|| 1984, Chap. V, and [Conrad et al.|2010/IV Appendix B. ( A unipotent group is said to
be wound if every map of varieties A! — G is constant. Every smooth unipotent algebraic group
G has unique largest split affine subgroup Gy, called the split part of G. It is normal in G, and the
quotient G/ Gy is wound. The formation of Gy commutes with separable extensions.)

16 Solvable affine groups

Let G be an abstract group. Recall that the commutator of x,y € G is

1

oyl =xyx~ 'y = (y)(rx)~h

Thus, [x,y] = 1 if and only if xy = yx, and G is commutative if and only if every com-
mutator equals 1. The (first) derived group G’ (or DG) of G is the subgroup generated by
commutators. Every automorphism of G maps commutators to commutators, and so G’ is
a characteristic subgroup of G (in particular, it is normal). In fact, it is the smallest normal
subgroup such that G/ G’ is commutative.

The map (not a group homomorphism)

(X1, Y15+ s Xns ) B> [X1,91] - [Xn, yu): G** — G

has image the set of elements of G that can be written as a product of at most # commutators,
and so DG is the union of the images of these maps. Note that the map G2>"~2 — G factors
through G* - @G,

(xl,ylw--’xn—l»yn—l) = (xlvylv"'vxl’l—17yl’l—1’ 1’ 1) = [xl:yll"'[xn—layn—ll-
A group G is said to be solvable if the derived series
GD>DGDOD*GD -

terminates with 1. For example, if n > 5, then S, (symmetric group on n letters) is not
solvable because its derived series S, D A, terminates with A4,,.
In this section we extend this theory to algebraic groups. Throughout, k is a field.

16a Trigonalizable affine groups

DEFINITION 16.1 An affine group G is trigonalizable® if every nonzero representation
of G has a one-dimensional subrepresentation (i.e., there exists a nonzero v € V such that
p(v) =v®a,ac OG)).

Equivalently, G is trigonalizable if every simple object in Rep(G) is one-dimensional.
We shall see that the trigonalizable algebraic groups are exactly the algebraic groups iso-
morphic to affine subgroups of T, for some n. Diagonalizable and unipotent groups are
both trigonalizable, and every trigonalizable group is an extension of one by the other.

PROPOSITION 16.2 An algebraic group G is trigonalizable if and only if, for every finite-
dimensional representation (V,r) of G, there exists a basis of V' for which the image of G
is contained in T,,.

381 follow Borel||[1991| p. 203, and DG IV §2 3.1. Other names: triangulable (Waterhouse|[1979| p. 72);
triagonalizable.
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PROOF. =>: This can be proved by induction on the dimension of V.
«<: Ifeq,...,ey, is such a basis, then {e1) is stable by G. O

THEOREM 16.3 The following conditions on an algebraic group G are equivalent:

(a) G is trigonalizable;

(b) G is isomorphic to an algebraic subgroup of T, for some n;

(¢c) there exists a normal unipotent atfine subgroup U of G such that G/ U is diagonaliz-
able.

PROOF. (a)=(b). Apply Proposition to a faithful finite-dimensional representation of
G (which exists by [8.31).

(b)=(c). Embed G into T, and let U = U, NG.

(c)=(a). Let U be as in (c), and let (V, r) be a representation of G. The subspace V'Y
is stable under U (8.67)), and so it defines a representation of G/ U. If V # 0, then VY #£0,
and so it contains a stable line. o

COROLLARY 16.4 Subgroups and quotients of trigonalizable algebraic groups are trigo-
nalizable.

PROOF. If G is isomorphic to a subgroup of T, then so also is every affine subgroup of
G. If every nontrivial representation of G has a stable line, then the same is true of every
quotient of G (because a representation of the quotient can be regarded as a representation
of G). |

COROLLARY 16.5 If an algebraic group G over a field k is trigonalizable, then so also is
Gy for any extension field k'.

PROOF. If G C Ty, then the same is true of Gg. O

PROPOSITION 16.6 (a) An inverse limit of trigonalizable affine groups is trigonalizable.
(b) An affine group is trigonalizable if and only if all of its algebraic quotients are
trigonalizable.

PROOF. Obvious from the definitions. o

THEOREM 16.7 Let G be a trigonalizable algebraic group, and let U be a normal unipotent

subgroup such that G/ U is diagonalizable. Then the exact sequence
1-U—->G—>G/U—1

splits in each of the following cases: k is algebraically closed; k has characteristic zero; k

is perfect and G/ U is connected; U is split.

PROOF. See DGV §2 3.5, p. 494; SGA3, X VI, 5.1.1. =

ASIDE 16.8 In DG IV §3 3.1, a group scheme G over a field is defined to be trigonalizable if it is
affine and has a normal unipotent subgroup U such that G/ U is diagonalizable. Because of Theorem
[16.3] this is equivalent to our definition.
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16b Commutative algebraic groups

SMOOTH COMMUTATIVE ALGEBRAIC GROUPS ARE GEOMETRICALLY
TRIGONALIZABLE

Let « be an endomorphism of a finite-dimensional vector space V over k. If all the eigen-
values of « lie in k, then there exists a basis for V relative to which the matrix of « lies
in

* % *
0 = *
o =1l 0
0O 0 - x

We extend this elementary statement to sets of commuting endomorphisms.

LEMMA 16.9 LetV be a finite-dimensional vector space over an algebraically closed field
k, and let S be a set of commuting endomorphisms of V. There exists a basis of V for
which S is contained in the group of upper triangular matrices, i.e., a basis ey, ..., e, such
that

a({er,...,e)) C{e1,...,e;) foralli. (103)

In more down-to-earth terms, let S be a set of commuting n X n matrices; then there
exists an invertible matrix P such that PAP ™! is upper triangular for all A € S.

PROOF. We prove this by induction on the dimension of V. If every @ € S is a scalar
multiple of the identity map, then there is nothing to prove. Otherwise, there exists an
o € S and an eigenvalue a for « such that the eigenspace V,; # V. Because every element
of S commutes with «, V; is stable under the action of the elements of S: for 8 € S and
x € Vg,

a(fx) = plax) = plax) = a(Bx).

The induction hypothesis applied to S acting on V, and V/V, shows that there exist bases
€1,...,em for Vg and éy,41,...,e, for V/V, such that

a({ey,....e;)) C(e1,...,e;) foralli <m

a({m+1s---r6m+i) C{em+1,...,ém+i) foralli <n—m.

Let i = em+i + Vg with ey ; € V. Then ey, ..., e, is a basis for V satisfying (103)). o

PROPOSITION 16.10 Let V' be a finite-dimensional vector space over an algebraically
closed field k, and let G be a smooth commutative affine subgroup of GLy . Then there
exists a basis of V for which G is contained in T,.

PROOF. According to the lemma, there exists a basis of V' for which G(k) C T, (k). Now
G NTy, is a subgroup of G such that (G NT,)(k) = G(k). As G(k) is dense in G (see
[7.30), this implies that G N T, = G, and so G C T,,. o
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DECOMPOSITION OF A SMOOTH COMMUTATIVE ALGEBRAIC GROUP

DEFINITION 16.11 Let G be an algebraic group over a perfect field k. An element g of
G (k) is semisimple (resp. unipotent) if g = g5 (resp. g = g,,) with the notations of [10.18

Thus, g is semisimple (resp. unipotent) if r(g) is semisimple (resp. unipotent) for one
faithful representation (V,r) of G, in which case r(g) is semisimple (resp. unipotent) for
all representations r of G.

Theorem [10.18 shows that

G(k) = G(k)s x G(k),, (cartesian product of sets) (104)

where G(k)s (resp. G(k),) is the set of semisimple (resp. unipotent) elements in G (k).
However, this will not in general be a decomposition of groups, because Jordan decompo-
sitions do not respect products, for example, (gh), # guhy in general. However, if G is
commutative, then
multiplication

GxG—
is a homomorphism of groups, and so it does respect the Jordan decompositions ((10.20)).
Thus, in this case (104) realizes G (k) as a product of subgroups. We can do better.

PROPOSITION 16.12 Every smooth commutative algebraic group G over a pertect field is
a direct product of two algebraic subgroups

G ~ Gy x Gy

such that G4 (k™) = G(k¥), and Gy (k™) = G (k™). The decomposition is unique.

PROOF. The uniqueness allows us to assume that k = k. First note that the subgroups I,
and U, of T, have trivial intersection, because

Dp(R)NUn(R) ={In} (inside T,(R))

for all R (alternatively, apply [15.16).
On applying (16.10) to a faithful representation of G, we obtain an embedding G — T,

for some n. Let Gy = G N, and G,, = G NU,. Because G is commutative,
GsxGy, — G (105)

is a homomorphism with kernel Gy N Gy,. Because D, N U, = 1 as algebraic groups, G5 N
Gy, = 1, and so (105)) is injective; because G4(k)Gy (k) = G(k) and G is smooth, (105)) is
surjective (7.54); therefore it is an isomorphism. The uniqueness is obvious. O

REMARK 16.13 Let G be a smooth algebraic group over an algebraically closed field k&
(not necessarily commutative). In general, G (k) will not be closed for the Zariski topology.
However, G(k), is closed. To see this, embed G in GL, for some n. A matrix A4 is
unipotent if and only if its characteristic polynomial is (T — 1)". But the coefficients of
the characteristic polynomial of A are polynomials in the entries of A, and so this is a
polynomial condition.
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DECOMPOSITION OF A COMMUTATIVE ALGEBRAIC GROUP
THEOREM 16.14 Let G be a commutative algebraic group over a field k.

(a) There exists a largest affine subgroup G5 of G of multiplicative type; this is a char-
acteristic subgroup (in the weak sense) of G, and the quotient G/ Gy is unipotent.

(b) If k is perfect, there exists a largest unipotent affine subgroup G, of G, and G =
G x Gy,. This decomposition is unique.

PROOF. (a) Let Gy be the intersection of the affine subgroups H of G such that G/H
is unipotent. Then G/Gs — [[G/H is injective, and so G/Gy is unipotent (15.7). A
nontrivial homomorphism Gy — G, would have a kernel H such that G/H is unipotent
but Gy ¢ H, contradicting the definition of G. Therefore G is of multiplicative type
(14.28). If H is a second affine subgroup of G of multiplicative type, then the map H —
G/ Gy is zero (15.18), and so H C Gy. Therefore Gy is the largest affine subgroup of G of
multiplicative type. From this description, it is clear that « Gy = G for any automorphism
aof G.

(b) Assume k is perfect. Then it suffices to show that G = T x U with T of multi-
plicative type and U unipotent because, for any other unipotent affine subgroup U’ of G,
the map U’ — G/U =~ T is zero (15.15), and so U’ C U similarly any other subgroup 7"
of multiplicative type is contained in 7'; therefore T (resp. U) is the largest subgroup of
multiplicative type (resp. unipotent subgroup), and so the decomposition is unique. O

ASIDE 16.15 In fact, Gy is characteristic in the strong sense, but this requires a small additional
argument (DG 1V, §2, 2.4, p. 486; §3, 1.1, p. 501); in general, G,, is not (ibid. IV §3, 1.2).

REMARK 16.16 Itis necessary that k be perfect in (b). Let k be a separably closed field of
characteristic p, and let G = (G, )’/ x Where k’ is an extension of k of degree p (necessar-
ily purely inseparable). Then G is a commutative smooth connected algebraic group over
k. The canonical map G,, — G realizes G,, as Gy, and the quotient G/Gy,, is unipotent.
Over k¥, G decomposes into (G, )ga X (G/Gp)ga, and so G is not reductive. However, G
contains no unipotent subgroup because G (k) = k’* has no p-torsion, and so G,, = 1. See
17.22

16¢ The derived group of algebraic group
Let G be an algebraic group over a field k.
DEFINITION 16.17 The derived group DG (or G’ or Gy of G is the intersection of the

normal algebraic subgroups N of G such that G/N is commutative.

PROPOSITION 16.18 The quotient G/DG is commutative (hence DG is the smallest nor-
mal subgroup with this property).

PROOF. For any normal affine subgroups Ny, ..., N, of G, the canonical homomorphism
G — G/Nyx---xG/N,

has kernel Ny N...N N,. Therefore, if each of the algebraic groups G/ N; is commutative,
soalsois G/ (N1 N...NN;). o
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We shall need another description of DG, which is analogous to the description of the
derived group as the subgroup generated by commutators. As for abstract groups, there
exist maps of functors

G?—>G*—> ... -G > G.

Let I, be the kernel of the homomorphism O(G) — O(G?") of k-algebras (not Hopf
algebras) defined by G2* — G. Then

LDoLD---DI; D
and we let I = () 1,.

PROPOSITION 16.19 The coordinate ring of DG is O(G)/ 1.

PROOF. From the diagram of set-valued functors

G2n % G2n N G4n
! l l
¢ x ¢ ™ ¢

we get a diagram of k-algebras

0G)/In ® 0OG)/In < 0O(G)/I2n

I I I

0G) ® 0G) & 00)
(because O(G)/ I, is the image of O(G) in O(G*") ). It follows that
A:0(G) - 0(G)/ 1 R0O(G)/1

factors through O(G) — O(G)/ 1, and defines a Hopf algebra structure on O(G)/ I, which
corresponds to the smallest algebraic subgroup G’ of G such that G’(R) contains all the
commutators for all R. Clearly, this is also the smallest normal subgroup such that G/ G’ is
commutative. o

COROLLARY 16.20 For any field K D k, DGx = (DG)k.

PROOF. The definition of / commutes with extension of the base field. o
COROLLARY 16.21 IfG is connected (resp. smooth), then DG is connected (resp. smooth).
PROOF. Recall that an algebraic group G is connected (resp. smooth) if and only if O(G)
has no nontrivial idempotents (resp. nilpotents). If O(G)/I had a nontrivial idempotent
(resp. nilpotent), then so would O(G)/1, for some n, but (by definition) the homomor-

phism of k-algebras O(G)/I, — O(G?") is injective. If G is connected (resp. smooth),
then so also is G2", and so O(G>") has no nontrivial idempotents (resp. nilpotents). o
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COROLLARY 16.22 Let G be a smooth connected algebraic group. Then O(DG) = O(G)/ I,

for some n, and (DG)(k*) = D(G(kY)).

PROOF. As G is smooth and connected, so also is G2 . Therefore, each ideal
I,, is prime, and a descending sequence of prime ideals in a noetherian ring terminates. This
proves the first part of the statement (CA [I6.5).

Let V,, be the image of G2" (k) in G(k¥). Its closure in G (k) is the zero-set of I,,.
Being the image of a regular map, V,, contains a dense open subset U of its closure (CA
. Choose n as in the first part, so that the zero-set of I, is DG (k). Then

U-U'CVy-Vy CVapn € DGKY)) = Um Vm C DG (kY).

It remains to show that U -U~1 = DG (k™). Let g € DG(k). Because U is open and
dense DG (k¥), sois gU ™!, which must therefore meet U, forcing g to lie in U - U. o

COROLLARY 16.23 The derived group DG of a smooth algebraic group G is the unique
smooth affine subgroup such that (DG)(k¥) = D(G(k¥)).

PROOF. The derived group has these properties by (16.21)) and (16.22)), and it is the only
affine subgroup with these properties because (DG)(k%) is dense in DG. o

16.24 For an algebraic group G, the group G (k) may have commutative quotients without
G having commutative quotients, i.e., we may have G (k) #% D(G(k)) but G = DG. This is
the case for G = PGL,, over nonperfect separably closed field of characteristic p dividing
n.

16d Solvable algebraic groups

Write DG for the second derived group D(DG), D3G for the third derived group D(D?G),
and so on.

DEFINITION 16.25 An algebraic group G is solvable if the derived series
G>DGDOD*G D

terminates with 1.

LEMMA 16.26 An algebraic group G is solvable if and only if it admits a subnormal series
G=GyDG1D---DGy=1 (106)

whose quotients G; / G;41are commutative.

PROOF. If G is solvable, then the derived series is such a sequence. Conversely, given a
sequence as in (106), G; D DG, so G, D D?G, ...,s0 G, D D"G. Hence D"G = 1. ¢

A sequence of algebraic subgroups such that G; 4 is normal in G; for each i and
G;/Gj+1 is commutative is called solvable series.

)G



190 I. Basic Theory of Affine Groups

PROPOSITION 16.27 Subgroups, quotients, and extensions of solvable algebraic groups
are solvable.

PROOF. Obvious. o

EXAMPLE 16.28 Let G be a finite group, and let (G); be the algebraic group such that
(G)r(R) = G for all k-algebras R with no nontrivial idempotents. Then D(G); = (DG )y,
D?(G)i = (D?*G)y, and so on. Therefore (G)y is solvable if and only if G is solvable.
In particular, the theory of solvable algebraic groups includes the theory of solvable finite
groups, which is already quite complicated. For example, all finite groups with no element
of order 2 are solvable.

EXAMPLE 16.29 The group T, of upper triangular matrices is solvable. For example, the
subnormal series

* % % 1 * x% 1 0 x
T; = 0 *x x D 0 1 =x D 010 D1
0 0 =« 0 0 1 0 0 1

has quotients G, X Gy X Gy, G4 X Gg, and Gg.
More generally, the functor

def

R ~ Go(R) ={(ajj) | ai; =1foralli}

is an algebraic subgroup of T, because it is represented by O(Ty,)/(T11 —1,...,Tpn —1).
Similarly, there is an algebraic subgroup G, of Go of matrices (a;;) such that a;; = 0 for
0 < j —i <r. The functor

(aij) — (a1’r+2,..- sAir+i+1,-- )

is a homomorphism from G, onto G, x G, X --- with kernel G, 1. Thus the sequence of
algebraic subgroups
T,DGyDGyD-DGy={1}

exhibits T, as a solvable group.

Alternatively, we can work abstractly. A flag in a vector space V is a set of subspaces
of V, distinct from {0} and V, ordered by inclusion. When we order the flags in V' by
inclusion, the maximal flags are the families {V1,...,V,—1} with dimV; =i, n =dimV/,
and

ViC--CVy_1.

For example, if (e;)1<i<n is a basis for V, then we get a maximal flag by taking V; =
(e1,....e;).

Let F = {V1,...,Vy—1} be a maximal flag in V, and let T be the algebraic subgroup
of GLy such that T(R) consists of the automorphisms preserving the flag, i.e., such that
a(V; ® R) C V; ® R for all k-algebras R. When we take F to be the maximal flag in k"
defined by the standard basis, G = T,. Let G be the algebraic subgroup of G of « acting
as id on the quotients V; / V;_;; more precisely,

Go = Ker(G — [ [GLy, v,_,)-
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Then Gy is a normal algebraic subgroup of T with quotient isomorphic to G,. Now de-
fine G, to be the algebraic subgroup of Gg of elements « acting as id on the quotients
Vi/Vi—r—1. Again, G4 is a normal algebraic subgroup of G, with quotient isomorphic
to a product of copies of G.

EXAMPLE 16.30 The group of n x n monomial matrices is solvable if and only if n < 4
(because Sy, is solvable if and only if n < 4; GT 4.33).

THE LIE-KOLCHIN THEOREM

THEOREM 16.31 Let G be a subgroup of GLy . If G is connected, smooth, and solvable,
and k is algebraically closed, then it is trigonalizable.

PROOF. It suffices to show that there exists a basis for V' such that G(k) C T, (k) (because
then (G NTy) (k) = G(k), and so G N'T, = G, which implies that G C T). Also, it suffices
to show that the elements of G (k) have a common eigenvector, because then we can apply
induction on the dimension of V' (cf. the proof of [16.9). We prove this by induction on the
length of the derived series G. If the derived series has length zero, then G is commutative,
and we proved the result in (I6.10). Let N = DG. Its derived series is shorter than that of
G, and so we can assume that the elements of N have a common eigenvector, i.e., for some
character y of N, the space V) (for N) is nonzero.

Let W be the sum of the nonzero eigenspaces Vy for N. According to (8.65), the sum
is direct, W = @V, and so the set {V,} of nonzero eigenspaces for N is finite.

Let x be a nonzero element of V), for some y, and let g € G(k). Forn € N(k),

ngx =g(g 'ng)x =g-x(g 'ng)x = x(g " 'ng)-gx

For the middle equality we used that N is normal in G. Thus, gx lies in the eigenspace for
the character Y& = (n — y(g~'ng)) of N. This shows that G(k) permutes the finite set
Wy
Choose a y and let H C G(k) be the stabilizer of V), so H consists of the g € G(k)
such that
x(n) = y(g 'ng) forall n € N(k). (107)

Then, H is a subgroup of finite index in G(k), and it is closed for the Zariski topology on
G (k) because is a polynomial condition on g for each n. Therefore H = G(k), oth-
erwise its cosets would disconnect G (k). This shows that W = V,, and so G(k) stabilizes
V.

An element n € N(k) acts on V) as the homothety x — y(n)x, x(n) € k. But each
element n of N(k) is a product of commutators [x, y] of elements of G (k) (see[16.22)), and
so n acts on V) as an automorphism of determinant 1. This shows that y(n)4™Vx =1, and
so the image of y: G — Gy, is finite. Because NV is connected, this shows that N (k) in fact
acts trivially> on V. Hence G(k) acts on V), through the quotient G(k)/N(k), which is
commutative. In this case, we know there is a common eigenvalue . o

3%n more detail, the argument shows that the character y takes values in j;; C G,, where m = dim Vy. If
k has characteristic zero, or characteristic p and p Jm, then u;, is étale, and so, because N is connected, y
is trivial. If p|m, the argument only shows that y takes values in i p,r for p” the power of p dividing m. But
ppr (k) =1, and so the action of N(k) on V is trivial, as claimed.
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16.32 All the hypotheses in the theorem are needed (however, if k is algebraically closed
and G is solvable, then the theorem applies to G ;, which is a subgroup of G with the same
dimension).

CONNECTED: The group G of monomial 2 x 2 matrices is solvable but not trigonalizable.
The only common eigenvectors of D, (k) C G(k) are ey = ((1)) and e; = ((1)), but the
monomial matrix (‘1) (1)) interchanges e; and e5, and so there is no common eigenvec-
tor for the elements of G (k).

SMOOTH: (Waterhouse|[1979, 10, Exercise 3, p. 79.) Let k have characteristic 2, and let G
be the affine subgroup of SL; of matrices (‘g 3) suchthata? =1=d?and b> =0 =
2. There is an exact sequence

w(§8) ()b

0 1%%) G Oy X0y —> 1.

Moreover, 1y C Z(G), and so G is connected and solvable (even nilpotent), but no
line is fixed in the natural action of G on k2. Therefore G is not trigonalizable.
SOLVABLE: As T, is solvable and a subgroup of a solvable group is obviously
solvable, this condition is necessary.

k ALGEBRAICALLY CLOSED: If G(k) C T, (k), then the elements of G (k) have a common
eigenvector, namely, e; = (10 ... 0)". Unless k is algebraically closed, an endomor-
phism need not have an eigenvector, and, for example,

{(42) | abeR, a*+bp*=1}

is an commutative algebraic group over R that is not trigonalizable over R.

16e Structure of solvable groups

THEOREM 16.33 Let G be a connected solvable smooth group over a perfect field k. There
exists a unique connected normal algebraic subgroup G, of G such that

(a) Gy, is unipotent;
(b) G/G,, is of multiplicative type.

The formation of G,, commutes with change of the base field.

PROOF. We first prove this when k = k2. Embed G into T}, for some n, and construct

1 Un Ty Dy 1
| | I
1 Gy G T 1

where T is the image of G in D, and G,, = U, N G. Certainly G, is a normal algebraic
subgroup of G satisfying (a) and (b). We next prove that G,, is connected.
Let Q = G/DG. Tt is commutative, so that (16.12))

0 >~ QuxQs.
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This shows that Q,, is connected (if it had an étale quotient, so would Q). As G/ Gy, is
commutative, DG C G, and the diagram

| !

1 DG G 0 — 1

shows that T ~ Q/mo(Gy). Since 7(Gy) C Qy, this shows that mo(G,) = @y, and so

(13.21)

Qu, DG connected —> Gy, connected.

For the uniqueness, note that G,, is the largest connected normal unipotent subgroup
of G, or that Gy (k™) consists of the unipotent elements of G(k) (and apply a previous
result).

When k is only perfect, the uniqueness of (Gpa ), implies that it is stable under I" =
Gal(k?/k), and hence arises from a unique algebraic subgroup G, of G , which
clearly has the required properties. O

16f Split solvable groups
DEFINITION 16.34 A solvable algebraic group is split if it admits subnormal series whose

quotients are G4 or G,.

Such a group is automatically smooth (7.66) and connected (13.21). This agrees with
our definition of split unipotent group. Any quotient of a split solvable group is again a split
solvable group.

16g Tori in solvable groups

PROPOSITION 16.35 Let G be a connected smooth solvable group over an algebraically
closed field. If T and T' are maximal tori in G, then T' = gTg~"' for some g € G(k).

PROOF. Omiitted for the present (cf. [Springeri|1998] 6.3.5). O

PROPOSITION 16.36 The centralizer of any torus in a connected smooth solvable group G
is connected.

PROOF. Omitted for the present (cf. [Springeri|1998| 6.3.5). O
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16h Exercises

EXERCISE 16-1 Give a geometric proof that G connected implies DG connected. [Show
that the image of connected set under a continuous map is connected (for the Zariski topol-
ogy, say), the closure of a connected set is connected, and a nested union of connected sets
is connected sets is connected; then apply the criterion (13.13]).]

EXERCISE 16-2 Show that an algebraic group G is trigonalizable if and only if there exists
a filtration Co C C; C C C -+ of O(G) by subspaces C; such that Cy is spanned by group-
like elements, ), Cr = A, and A(C;) C D y<j<, Ci @ Cr—; (Waterhouse||1979, Chap.
9,Ex. 5,p.72). o

17 The structure of algebraic groups
Throughout this section, k is a field.

17a Radicals and unipotent radicals

LEMMA 17.1 Let N and H be algebraic subgroups of G with N normal. If H and N
are solvable (resp. unipotent, resp. connected, resp. smooth), then HN is solvable (resp.
unipotent, resp. connected, resp. smooth).

PROOF. We use the exact sequence

1 N HN —— HN/N — 1.
@T:
H/HNN

Because H is solvable, so also is its quotient H/H N N; hence HN/N is solvable, and
H N is solvable because it is an extension of solvable groups (16.27). The same argument
applies with “solvable” replaced by “unipotent” (use[I5.7)), or by “connected” (use[I3.21)),

or by “smooth” (use[7.66). o

PROPOSITION 17.2 Let G be a smooth algebraic group over a field k.

(a) There exists a largest®® smooth connected normal solvable subgroup of G (called the
radical RG of G).

(b) There exists a largest smooth connected normal unipotent subgroup (called the unipo-
tent radical R,,G of G).

PROOF. Immediate consequence of the lemma. o

The formation of the radical and the unipotent radical each commute with separable
extensions of the base field: let K be a Galois extension of k with Galois group I"; by
uniqueness, RG g is stable under the action of I", and therefore arises from a subgroup R'G
of G (by; now (RG)g C RGg, and so RG C R'G; as RG is maximal, RG = R'G,
and so (RG)x = (R'G)x = RGk.

60Recall that “largest” means “unique maximal”.
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PROPOSITION 17.3 Let G be a smooth algebraic group over a perfect field k. For any
extension field K of k,

RGg = (RG)k and RyGg = (RyG)k.

Moreover, R,,G = (RG),, (notations as in .
PROOF. See the above discussion. o

DEFINITION 17.4 Let G be a smooth algebraic group over a field k. The geometric radical
of G is RGa, and the geometric unipotent radical of G is R, G.a.

17b Definition of semisimple and reductive groups
DEFINITION 17.5 Let G be an algebraic group over a field k.

(a) G is semisimple if it is smooth and connected and its geometric radical is trivial.

(b) G is reductive if it is smooth and connected and its geometric unipotent radical is
trivial.

(c) G is pseudoreductive if it is smooth and connected and its unipotent radical is trivial.

Thus
semisimple = reductive =—> pseudoreductive.

For example, SL,, SOy, and Sp,, are semisimple, and GL,, is reductive (but not semisim-
ple). When k is perfect, Ry Gra = (RyG)ya, and so reductive and pseudoreductive are
equivalent.

PROPOSITION 17.6 Let G be a smooth connected algebraic group over a perfect field k.

(a) G is semisimple if and only if RG = 1.
(b) G isreductive if and only if R,G =1 (i.e., G is pseudoreductive).

PROOF. Obvious from (17.3). o

PROPOSITION 17.7 Let G be a smooth connected algebraic group over a field k.

(a) If G is semisimple, then every smooth connected normal commutative subgroup is
trivial; the converse is true if k is perfect.

(b) If G is reductive, then every smooth connected normal commutative subgroup is a
torus; the converse is true if k is perfect.

PROOF. (a) Suppose that G is semisimple, and let H be a smooth connected normal com-
mutative subgroup of G. Then Hia C RGpa = 1, and so H = 1. For the converse, we
use that RG and DG are stable for any automorphism of G. This is obvious from their
definitions: RG is the largest connected normal solvable algebraic subgroup and DG is the
smallest normal algebraic subgroup such that G/DG is commutative. Therefore the chain

G D RG D D(RG) D> D*(RG)D---D>D"(RG) D 1,
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is preserved by every automorphism of G, and, in particular, by the inner automorphisms
defined by elements of G(k). This remains true over k%, and so the groups are normal in G
by ([7.43). As D" (RG) is commutative, it is trivial.

(b) Let H be a smooth connected normal commutative subgroup of G; then Hya C
RGy.a, which has no unipotent subgroup. Therefore H is a torus. For the converse, we
consider the chain

G D R,G D D(R,G) D D*(RyG) D - DD"(RyG) D 1.

Then D’ (R, G) is a commutative unipotent subgroup, and so is trivial. O

A smooth connected algebraic group G is pseudoreductive but not reductive if it con-
tains no nontrivial normal smooth unipotent affine subgroup but Gra does contain such a
subgroup.

REMARK 17.8 If one of the conditions, smooth, connected, normal, commutative, is dropped,
then a semisimple group may have such a subgroup:

Group subgroup smooth? | connected? | normal? | commutative?
SL,, char(k) #2 | {+1} yes no yes yes

SL, Uo={(3 %)} | yes yes no yes

SL, xSLp {1} xSL, yes yes yes no

SLy, char(k) =2 | up no yes yes yes

PROPOSITION 17.9 Let G be a smooth connected algebraic group over a pertect field. The
quotient group G/ RG is semisimple, and G/ R, G is reductive.

PROOF. One sees easily that R(G/RG) =1 and R, (G/R,G) = 1. o

EXAMPLE 17.10 Let G be the group of invertible matrices (61 g) with A of size m xm
and C of size n x n. The unipotent radical of G is the subgroup of matrices ((I) 119 ) The
quotient of G by R, G is isomorphic to the reductive group of invertible matrices of the
form (61 8), i.e., to GL,, x GL,,. The radical of this is G, X Gy,.

PROPOSITION 17.11 Let G be a connected algebraic group, and let N be a normal unipo-
tent subgroup of G. Then N acts trivially on every semisimple representation of G.

PROOF. Let N be a normal affine subgroup of G, and let (V,r) be a semisimple represen-
tation of G. I claim that (V,r|N) is also semisimple. To prove this, it suffices to show that
(V,r|N) is a sum of simple representations of N (8.68). We may suppose that V' is simple
as a representation of G. Let S be an N -simple subrepresentation of (V,r|N), and let W
be the sum of all subrepresentations of (V,r|N) isomorphic to S (i.e., W is the N -isotypic
component of V' of type S). Then W is stable under G (see [8.73), and so equals V. This
proves the claim (in characteristic zero, the proof is simpler — see[[l] [6.13). If N is unipo-
tent, then every semisimple representation is trivial (by definition [I5.3). This proves the
proposition. O



17. The structure of algebraic groups 197

COROLLARY 17.12 Let G be a smooth connected algebraic group. If Rep(G) is semisim-
ple, then G is reductive.

PROOF. Apply the proposition to N = R, G and to a faithful representation of G. O

The proposition shows that, for a smooth connected algebraic group G,

RuG = ﬂ(V,r) semisimple Ker(r).

In Chapter [[I, we shall prove that, in characteristic zero, R, G is equal to the intersection
of the kernels of the semisimple representations of G; thus G is reductive if and only if
Rep(G) is semisimple. This is false in nonzero characteristic.

ASIDE 17.13 In SGA3, XIX, it is recalled that the unipotent radical of a smooth connected affine
group scheme over an algebraically closed field is the largest smooth connected normal unipotent
subgroup of G (ibid. 1.2). A smooth connected affine group scheme over an algebraically closed
field is defined to be reductive if its unipotent radical is trivial (ibid. 1.6). A group scheme G over
a scheme S is defined to be reductive if it is smooth and affine over S and each geometric fibre
of G over S is a connected reductive group (2.7). When § is the spectrum of field, this definition
coincides with our definition.

17¢ The canonical filtration on an algebraic group

THEOREM 17.14 Let G be an algebraic group over a field k.

(a) G contains a unique connected normal subgroup G° such that G/ G° is an étale alge-
braic group.

(b) Assume that k is perfect; then G contains a largest smooth subgroup.

(c) Assume that k is perfect and that G is smooth and connected; then G contains a
unique smooth connected normal solvable subgroup N such that G/ N is a semisim-
ple group.

(d) Assume that k is perfect and that G is smooth connected and solvable; then G con-
tains a unique connected unipotent subgroup N such that G/N is of multiplicative

type.

PROOF. (a) See

(b) Because k is perfect, there exists a subgroup Greq of G with O(Greq) = O(G)/N
(see[6.18). This is reduced, and hence smooth (6.26b). This is the largest smooth subgroup
of G because O(Greq) is the largest reduced quotient of O(G).

(c) The radical RG of G has these properties. Any other smooth connected normal
solvable subgroup N of G is contained in RG (by the definition of RG), and if N # RG
then G/ N is not semisimple.

(c) See[16.33] 0
NOTES Perhaps (or perhaps not):

(a) Explain the connected components for a nonaffine algebraic group, at least in the smooth
case. Also discuss things over a ring k.

(b) Explain the Barsotti-Chevalley-Rosenlicht theorem.
(c) Explain anti-affine groups.

(d) Explain what is true when you drop “smooth” and “perfect”, and maybe even allow a base
ring.
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17d Semisimple groups

An algebraic group G is simple if it is connected, noncommutative, and its only proper
normal subgroups is 1, and it is almost-simple if it is connected, noncommutative, and
all its proper normal subgroups are finite. Thus, for n > 1, SL, is almost-simple and
PSL, = SL, /un is simple. A subgroup N of an algebraic group G that is minimal
among the nonfinite normal subgroups of G is either commutative or almost-simple; if
G is semisimple, then it is almost-simple.

An algebraic group G is said to be the almost-direct product of its algebraic subgroups
G1,...,G, if the map

(&1,---.8r) > 81 gr:G1 X+ xGr > G

is a surjective homomorphism with finite kernel. In particular, this means that the G; com-
mute and each G; is normal in G.

PROPOSITION 17.15 Let G be a simple algebraic group over an algebraically closed field.
Then the group of inner automorphisms of G has finite index in the full group of automor-
phisms of G.

Alas, the usual proof of this shows that Aut(G) = Inn(G)- D where D is group of auto-
morphisms leaving stable a maximal torus and a Borel subgroup containing the torus, uses
the conjugacy of Borel subgroups and the conjugacy of maximal tori in solvable groups, and
then shows that D/ D NInn(G) is finite by letting it act on the roots. Unless, we can find
a more elementary proof, we shall include a reference to Chapter III for the characteristic
zero case, and to Chapter V for the general case.

THEOREM 17.16 A semisimple algebraic group G has only finitely many almost-simple
normal subgroups G1,..., G, and the map

(&15---.8) > 8181 G1 X xGr > G (108)

is surjective with finite kernel. Each connected normal algebraic subgroup of G is a product
of those G; that it contains, and is centralized by the remaining ones.

In particular, an algebraic group is semisimple if and only if its an almost-direct product
of almost-simple algebraic groups. The algebraic groups G; are called the almost-simple
factors of G.

PROOF. (This proof needs to be rewritten.) When k has characteristic zero, this is proved
in[II, using Lie algebras. We give the proof for a general field assuming (17.15).
Let G1,Ga,..., G, be distinct minimal smooth connected normal subgroups of G. For
i #J,(Gi,Gj) is a connected normal subgroup contained in both G; and G (tba), and so
it is trivial. Thus, the map
a:Gyx-xG, > G

is a homomorphism of algebraic groups, and H £ G1 - G, is a connected normal subgroup
of G (hence semisimple). The kernel of « is finite, and so

dimG > dimN = ZdimGi.



17. The structure of algebraic groups 199

This shows that r is bounded, and we may assume that our family contains them all.
It remains to show that H = G. For this we may assume that k = k. Let H' =
Cg(H);4. Then Cg (H)(k) is the kernel of

G(k) > Aut(H),

and its image is Inn(H ). As Inn(H) has finite index in Aut(H) (see[I7.13)), it follows that
H - H' has finite index in G, and hence equals G because G is connected. As H' is normal
in G, it is also semisimple. A minimal smooth connected normal subgroup of H’ is a
minimal smooth connected normal subgroup of G (because G = H - H' and H centralizes

H’). A nontrivial such group would contradict the definition of H — we deduce that
H =1. o

COROLLARY 17.17 All nontrivial connected normal subgroups and quotients of a semisim-
ple algebraic group are semisimple.

PROOF. Any such group is an almost-product of almost-simple algebraic groups. O

COROLLARY 17.18 If G is semisimple, then DG = G, i.e., a semisimple group has no
commutative quotients.

PROOF. This is obvious for almost-simple algebraic groups, and hence for any almost-
product of such algebraic groups. O

SIMPLY CONNECTED SEMISIMPLE GROUPS

(This section need to be rewritten.) An semisimple algebraic group G is simply connected
if every isogeny G’ — G is an isomorphism.

Let G be a simply connected semisimple group over a field k, and let I" = Gal(kP/ k).
Then Gpsep decomposes into a product

Gksep = Gl Xeee X Gr (109)

of its almost-simple subgroups G;. The set {Gq,...,G;} contains all the almost-simple
subgroups of G. When we apply o € I" to (I87), it becomes

Gksep :OGksep :UGl X"'XUGr

with {oG1,...,0G,} apermutation of {G1,...,G,}. Let Hy,..., Hg denote the products of
G; in the different orbits of I". Then 0 H; = H;, and so H; is defined over k (I,[4.13), and

G = Hy x---x Hy

is a decomposition of G into a product of its almost-simple subgroups.
Now suppose that G itself is almost-simple, so that I" acts transitively on the G; in

(109). Let
A={0€F|0G1=G1},

and let K = (k>P)4.
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PROPOSITION 17.19 We have G ~ (G1) gk (restriction of base field).

PROOF. We can rewrite (I09) as

G = [ [0 G 1o

where o runs over a set of cosets for A in I". On comparing this with (4.8), we see that
there is a canonical isomorphism

Gksep ~ ((GI)K/k)ksep .

In particular, it commutes with the action of I”, and so is defined over k (see|4.13). o

The group G; over K is geometrically almost-simple, i.e., it is almost-simple and re-
mains almost-simple over K.

17e¢ Reductive groups

THEOREM 17.20 If G is reductive, then the derived group DG of G is semisimple, the
connected centre Z(G)° of G is a torus, and Z(G) N'DG is the (finite) centre of DG;
moreover,

G = Z(G)°-DG.

PROOF. It suffices to prove this with k = k?'. By definition, (RG), = 0, and so (16.33)
shows that RG is a torus T'. Rigidity (14.32)) implies that the action of G on RG by inner
automorphisms is trivial, and so RG C Z(G)°. Since the reverse inclusion always holds,
this shows that

R(G) = Z(G)° = torus.

We next show that Z(G)° NDG is finite. Choose an embedding G < GLy, and write
V as a direct sum
V=rno-ol
of eigenspaces for the action of Z(G)° (see|14.15)). When we choose bases for the V;, then
Z(G)°(k) consists of the matrices

A1 0 O
0O . 0
0 0 A4,

with each A4; nonzero and scalar,®! and so its centralizer in GLy consists of the matrices of
this shape with the A; arbitrary. Since (DG)(k) consists of commutators (16.22)), it consists
of such matrices with determinant 1. As SL(V;) contains only finitely many scalar matrices,
this shows that Z(G)° NDG is finite.

Note that Z(G)° - DG is a normal algebraic subgroup of G such that G/(Z(G)°-DG)
is commutative (being a quotient of G/DG) and semisimple (being a quotient of G/ R(G)).
Hence®

G =Z(G)°-G%*.

61That is, of the form diag(a, ..., a) witha # 0.
62Because G = DG if G is semisimple. In other words, a semisimple group has no commutative quotients.
At the moment this is only proved at the end of [[I} §4.
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Therefore
G% — G/R(G)

is surjective with finite kernel. As G/R(G) is semisimple, so also is G,
Certainly Z(G) N G € Z(G%), but, because G = Z(G)°-G%" and Z(G)°® is com-
mutative, Z(G%") C Z(G). a)

REMARK 17.21 From a reductive group G, we obtain a semisimple group G’ (its derived
group), a group Z of multiplicative type (its centre), and a homomorphism ¢: Z(G') — Z.
Moreover, G can be recovered from (G’, Z, ¢): the map

2 (p(2) 1 2):Z(G") > Zx G’

is an isomorphism from Z(G’) onto a central subgroup of Z x G’, and the quotient is G.
Clearly, every reductive group arises from such a triple (G’,Z,¢) (and G’ can even be
chosen to be simply connected).

17f Pseudoreductive groups

We briefly summarize Conrad, Gabber, and Prasad 2010.

17.22 Letk be a separably closed field of characteristic p, and let G = (G, )x’/x Where k'
is an extension of k of degree p (necessarily purely inseparable). Then G is a commutative
smooth connected algebraic group over k. The canonical map G,, — G realizes G, as the
largest subgroup of G of multiplicative type, and the quotient G/G,y, is unipotent. Over k2,
G decomposes into (G )ga X (G/Gm)ga (see[16.12), and so G is not reductive. However,
G contains no unipotent subgroup because G (k) = k’*, which has no p-torsion. Therefore
G is pseudo-reductive.

17.23 Let k' be a finite field extension of k, and let G be a reductive group over k’. If k’
is separable over k, then (G )/, is reductive, but otherwise it is only pseudoreductive.

17.24 Let C be a commutative connected algebraic group over k. If C is reductive, then
C is a torus, and the tori are classified by the continuous actions of Gal(k*P/k) on free
abelian groups of finite rank. By contrast, “it seems to be an impossible task to describe
general commutative pseudo-reductive groups over imperfect fields” (Conrad et al.|2010,

p. XV).

17.25 Letky,...,ky be finite field extensions of k. For each i, let G; be a reductive group
over k;, and let 7; be a maximal torus in G;. Define algebraic groups

G<«~T— T
by
G = Hi(Gi)k,-/k
r :Hi(Ti)k;/k

T =1_L.(Ti/Z(Gi))ki/k‘



202 I. Basic Theory of Affine Groups

Let ¢:7 — C be a homomorphism of commutative pseudoreductive groups that factors
through the quotient map 77 — T':

T2 c LT

Then i defines an action of C on G by conjugation, and so we can form the semi-direct
product
G xC.

The map
t— " to@):T—>GxC

is an isomorphism from 7" onto a central subgroup of G x C, and the quotient (G x C)/T
is a pseudoreductive group over k. The main theorem (5.1.1) of |Conrad et al.[2010| says
that, except possibly when k has characteristic 2 or 3, every pseudoreductive group over k
arises by such a construction (the theorem also treats the exceptional cases).

17.26 The maximal tori in reductive groups are their own centralizers. Any pseudoreduc-
tive group with this property is reductive (except possibly in characteristic 2; |Conrad et al.
2010, 11.1.1).

17.27 If G is reductive, then G = DG - Z(G)° where DG is the derived group of G and
Z(G)° is the largest central connected reductive subgroup of G. This statement becomes
false with “pseudoreductive” for “reductive” (Conrad et al.[2010, 11.2.1).

17.28 For a reductive group G, the map
RG =Z(G)° - G/DG

is an isogeny, and G is semisimple if and only if one (hence both) groups are trivial. For
a pseudoreductive group, the condition RG = 1 does not imply that G = DG. |Conrad
et al.[2010} 11.2.2, instead adopt the definition: an algebraic group G is pseudo-semisimple
if it is pseudoreductive and G = DG. The derived group of a pseudoreductive group is
pseudo-semisimple (ibid. 1.2.6, 11.2.3).

17.29 A reductive group G over any field k is unirational, and so G (k) is dense in G if k
is infinite. This fails for pseudoreductive groups: over every nonperfect field k there exists a
commutative pseudoreductive group that it not unirational; when k is a nonperfect rational
function field ko (T'), such a group G can be chosen so that G (k) is not dense in G (Conrad
et al 2010, 11.3.1).

17g Properties of G versus those of Rep, (G)

We summarize.

17.30 An affine group G is finite if and only if there exists a representation (r, V) such
that every representation of G is a subquotient of V" for some n > 0 (12.19).
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17.31 A affine group G is strongly connected if and only if if and only if, for every rep-
resentation V' on which G acts nontrivially, the full subcategory of Rep(G) of subquotients
of V™, n > 0, is not stable under ® (apply[17.30). In characteristic zero, a group is strongly
connected if and only if it is connected.

17.32 An affine group G is unipotent if and only if every simple representation is trivial
(this is essentially the definition|15.3).

17.33 An affine group G is trigonalizable if and only if every simple representation has
dimension 1 (this is the definition|16.1)).

17.34 An affine group G is algebraic if and only if Rep(G) = (V)® for some representa-
tion (V,r) (8.44).

17.35 Let G be a smooth connected algebraic group. If Rep(G) is semisimple, then G is
reductive (17.12), and the converse is true in characteristic zero (11, [6.14)).

18 Example: the spin groups

Let ¢ be a nondegenerate bilinear form on a k-vector space V. The special orthogonal
group SO(¢) is connected and almost-simple, and it has a 2-fold covering Spin(¢) which
we now construct.

Throughout this section, k is a field not of characteristic 2 and “k-algebra” means “as-
sociative (not necessarily commutative) k-algebra containing k in its centre”. For example,
the n x n matrices with entries in k become such a k-algebra M, (k) once we identify an
element ¢ of k with the scalar matrix ¢ /.

NOTES This section is OK as far as it goes, but it needs to be revised and completed. Also, should
explain in more detail that not all representations of so, come from SO,, but they do from some
semisimple algebraic group.

18a Quadratic spaces

Let k be a field not of characteristic 2, and let V' be a finite-dimensional k-vector space. A
quadratic form on V is a mapping
q:V —k

such that ¢(x) = ¢4 (x, x) for some symmetric bilinear form ¢,: V' x V — k. Note that

g(x+y) =q(x)+q(y) +2¢4(x,y), (110)

and so ¢, is uniquely determined by q. A quadratic space is a pair (V,q) consisting of
a finite-dimensional vector space and a quadratic form ¢. Often I'll write ¢ (rather than
¢4) for the associated symmetric bilinear form and denote (V,q) by (V,¢4) or (V,¢). A
nonzero vector x in V' is isotropic if ¢(x) = 0 and anisotropic if q(x) # 0. Note that ¢ is
zero (i.e., ¢(V) = 0) if and only if ¢ is zero (i.e., ¢(V,V) = 0).

The discriminant of (V,q) is the determinant of the matrix (¢(e;,e;)) where eq,...,ep
is a basis of V. The choice of a different basis multiplies det(¢ (e;,e;)) by a nonzero square,
and so the discriminant is an element of k / k*2.
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Let (V1,41) and (V3,¢») be quadratic spaces. An isometry is an injective k-linear map
0: V1 — Vs such that g>(0x) = g1 (x) for all x € V (equivalently, ¢ (ox,0y) = ¢(x,y) for
all x,y € V). By (V1,491) ® (V2.¢2) we mean the quadratic space (V,q) with
V=Viel,
g(x1+x2) =q(x1) +q(x2), x1 €V, x2€ Vs
Let (V,q) be quadratic space. A basis eq,...,e, for V is said to be orthogonal if
¢(ej,ej)=0foralli # j.

PROPOSITION 18.1 Every quadratic space has an orthogonal basis (and so is an orthogonal
sum of quadratic spaces of dimension 1).

PROOF. If g(V') = 0, then every basis is orthogonal. Otherwise, let ¢ € V' be such that
q(e) # 0, and extend it to a basis e, e3,...,e, for V. Then

e.or ¢(€’62)e, e ¢le.en)
q(e) q(e)
is again a basis for V', and the last n — 1 vectors span a subspace W for which ¢ (e, W) = 0.
Apply induction to W. O

An orthogonal basis defines an isometry (V,q) =, (k",q"), where
g (x1,....%p) = Cle +"'+Cnx3, ci =q(ei) €k.

If every element of k is a square, for example, if k is algebraically closed, we can even scale
the e¢; so that each ¢; is O or 1.

18b Theorems of Witt and Cartan-Dieudonné

A quadratic space (V,q) is said to be regular® (or nondegenerate,. . .) if for all x # 0 in
V', there exists a y such that ¢(x, y) # 0. Otherwise, it is singular. Also, (V,q) is

o isotropic if it contains an isotropic vector, i.e., if ¢g(x) = 0 for some x # 0,
o totally isotropic if every nonzero vector is isotropic, i.e., if ¢(x) = 0 for all x, and
¢ anisotropic if it is not isotropic, i.e., if g(x) = 0 implies x = 0.

Let (V,q) be a regular quadratic space. Then for any nonzero a € V,
(@)t E {x eV | pla.x) =0}

is a hyperplane in V (i.e., a subspace of dimension dim V' —1). For an anisotropic a € V,
the reflection in the hyperplane orthogonal to a is defined to be

B 2¢(a,x)a‘

Raboy=x== &)

Then R, sends a to —a and fixes the elements of W & (a)L. Moreover,

2¢(a,x 4¢(a,x)?
B ) A

q(a) q(a)
and so R, is an isometry. Finally, relative to a basis a, ez, ...,e, with e, ..., e, a basis for
W, its matrix is diag(—1,1,...,1), and so det(R;) = —1.

q(Ra(x)) = q(x) =2 q(a) = q(x),

63With the notations of the last paragraph, (V,q) is regular if ¢y ...cp # 0.
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THEOREM 18.2 Let (V,q) be a regular quadratic space, and let o be an isometry from a
subspace W of V into V. Then there exists a composite of reflections V — V extending .

PROOF. Suppose first that W = (x) with x anisotropic, and let cx = y. Geometry in the
plane suggests that we should reflect in the line x + y. In the plane this is the line orthogonal
to x — y, and, if x — y is anisotropic, then

Ry—y(x) =y

as required. To see this, note that

p(x—y.x) =—p(x—y.y)
because ¢(x) = ¢g(y), and so

$p(x—y,x+y)=0
$(x—y,x—y)=2¢(x—y,x);
hence
2¢(x —y,x)

—¢(x_y’x_y)(x—y) =x—(x—y)=y.

Ry_y(x)=x
If x — y is isotropic, then

dq(x) =q(x+y)+q(x—y)=q(x+y)

and so x 4 y is anisotropic. In this case,

Ry4y o Rx(x) = Ry—(—y)(—=Xx) = y.

d64

We now proceed® by induction on

m(W) = dimW +2dim(W N W),

CASE W NOT TOTALLY ISOTROPIC: In this case, the argument in the proof of (18.1)
shows that there exists an anisotropic vector x € W, and we let W’ = (x) N W. Then,
forweW, w— %x € W', and so W = (x) @ W’ (orthogonal decomposition). As
m(W') = m(W) — 1, we can apply induction to obtain a composite X’ of reflections such
that X'|W’ = o|W’. From the definition of W', we see that x € W'L; moreover, for any
w e W',
d( 2 lox,w)=¢p(x.07 1 Z'W) = p(x,w') =0,

and so y L sr-1gx e W't By the argument in the first paragraph, there exist reflections

(one or two) of the form R, z € W'+, whose composite X" maps x to y. Because X" acts
as the identity on W/, X’ o X" is the map sought:

(X' o X" ex+w) =X (cy+w')=cox+ow'.

CASE W TOTALLY ISOTROPIC: Let V'V = Homy_;,(V, k) be the dual vector space, and
consider the surjective map

x>¢(x,—) Vv Sfefw

aV wY

%4Following|Scharlau|1985, Chapter 1, 5.5.
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(so x € V is sent to the map y > ¢(x,y) on W). Let W’ be a subspace of ¥V mapped
isomorphically onto WVY. Then W N W’ = {0} and we claim that W + W’ is a regular
subspace of V. Indeed, if x + x" € W 4+ W’ with x” # 0, then there exists a y € W such
that

0#p(x",y) =¢(x+x",y);

if x # 0, there exists a y € W’ such that ¢(x, y) # 0.
Endow W @& W with the symmetric bilinear form

. ). ) = D)+ ().
Relative to this bilinear form, the map
x+x' = xa(xX))W+W > WwewY (111)

is an isometry.
The same argument applied to o W gives a subspace W’ and an isometry

x+x"=(x,..):oW+W' > oW (W)". (112)

Now the map

v—1
waw B wawy 2 swaow)y Bow+w cv
is an isometry extending 0. As
m(W@ W) =2dimW < 3dimW =m(W)

we can apply induction to complete the proof. 0
COROLLARY 18.3 Every isometry of (V,q) is a composite of reflections.
PROOF. This is the special case of the theorem in which W = V. o

COROLLARY 18.4 (WITT CANCELLATION) Suppose (V,q) has orthogonal decompositions

V.q) = (V1.91) & (V2.92) = (V{.q1) & (V3.43)

with (V1,q1) and (V{,q}) regular and isometric. Then (V2,q2) and (V,,q5) are isometric.

PROOF. Extend an isometry V7 — V] C V to an isometry of V. It will map V» = VIJ-
isometrically onto V, = V|*. 0

COROLLARY 18.5 All maximal totally isotropic subspace of (V,q) have the same dimen-
sion.

PROOF. Let W and W, be maximal totally isotropic subspaces of V', and suppose that
dim W1 < dimW,. Then there exists an injective linear map o: W1 — W, C V, which is
automatically an isometry. Therefore, by Theorem|[I8.2]it extends to an isometry o: V — V.
Now o~ W, is a totally isotropic subspace of V containing W;. Because W is maximal,
Wi = 0~ W, and so dimW; = dimo 1 W, = dim W. o
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REMARK 18.6 In the situation of Theorem Witt’s theorem says simply that there
exists an isometry extending o to V' (not necessarily a composite of reflections), and the
Cartan-Dieudonné theorem says that every isometry is a composite of at most dim V' reflec-
tions. When V is anisotropic, the proof of Theorem|[18.2|shows this, but the general case is
considerably more difficult — see|Artinl/[1957.

DEFINITION 18.7 The (Witt) index of a regular quadratic space (V,q) is the maximum
dimension of a totally isotropic subspace of V.

DEFINITION 18.8 A quadratic space (V,q) is a hyperbolic plane if it satisfies one of the
following equivalent conditions:

(a) (V,q) is regular and isotropic of dimension 2;
(b) for some basis of V, the matrix of the form is (§ §);

(c) V has dimension 2 and the discriminant of g is —1 (modulo squares).

THEOREM 18.9 (WITT DECOMPOSITION) A regular quadratic space (V,q) with Witt in-
dex m has an orthogonal decomposition

V=H1® - SH,BV, (113)

with the H; hyperbolic planes and V,; anisotropic; moreover, V, is uniquely determined up
to isometry.

PROOF. Let W be a maximal isotropic subspace of V', and let ey,...,e; be a basis for W.
One easily extends the basis to a linearly independent set ey, ...,em,€m+1,...,€2m such
that ¢ (e;,em+ ;) = 6;; (Kronecker delta) and g (e +;) = 0 fori < m. Then V decomposes
as with® H; = (e;,emi) and V, = (el,...,eZm)J-. The uniqueness of V; follows
from the Witt cancellation theorem (18.4). o

18¢ The orthogonal group

Let (V,g) be a regular quadratic space. Define O(q) to be the group of isometries of (V,¢q).
Relative to a basis for V', O(g) consists of the automorphs of the matrix M = (¢(e;,e;)),
i.e., the matrices T such that

T"-M-T =M.

Thus, O(g) is an algebraic subgroup of GLy (see[3.9), called the orthogonal group of q (it
is also called the orthogonal group of ¢, and denoted O(¢)).

Let T € O(q). As detM # 0, det(T)? = 1, and so det(T) = £1. The subgroup of
isometries with det = +1 is an algebraic subgroup of SLy, called the special orthogonal

group SO(q).

%5We often write (S for the k-space spanned by a subset S of a vector space V.
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18d Super algebras

Recall (§2¢)) that a superalgebra (or Z/27-graded algebra) over k is k-algebra C together
with a decomposition C = Co @ C; of C as a k-vector space such that

kCC(), C()C()CC(), CQC1 c Cq, C1C()CC1, Ci1Cy CC().

Note that Cy is a k-subalgebra of C. A homomorphism of super k-algebras is a homomor-
phism ¢:C — D of algebras such that ¢(C;) C D; fori =0,1.

EXAMPLE 18.10 Letcy,...,cy € k. Define C(cy,...,cp) to be the k-algebra with genera-
tors ey, ...,e, and relations

2 .,
e =ci, ejej=—eie;(i#J).

As a k-vector space, C(cy,...,c,) has basis {ei1 ...ef,” |i; €{0,1}}, and so has dimension
2. When we set Cy and Cp equal to the subspaces

Co= (ei‘ ...elm iy 4 +1i, even)
Ci = (e} ...eln | i1+ +iy odd),
of C(cy,...,cn), then it becomes a superalgebra.
Let C =Cop@d Cy and D = Dy @ D; be two super k-algebras. The super tensor prod-

uct of C and D, C®D, is defined to be the k-vector space C ®; D endowed with the
superalgebra structure

(C&D), = (Co® Do) ®(C1® D1)
(CQAQD)1 = (Co®D1)®(C1® Do)
(ci ®d;)(c,®d)) = (1) (cic} ®d;d]) ¢;eCi,djeDjetc.
The maps
ic:C >C®D, cr—c®l
ip:D—>C&®D, d—1®d
have the following universal property: for any homomorphisms of k-superalgebras
f:C—->T, gD—>T
whose images anticommute in the sense that
fleng(dj) = (=1)V g(d)) f(ci), ¢i€Cidj €Dy,

there is a unique superalgebra homomorphism h:C®D — T such that f = hoic, g =
hoip.

EXAMPLE 18.11 As a k-vector space, C(c1)®C(cz) hasbasis I1®1,e®1, 1 Qe, e®e,
and
(e@)?=e?Ql=c;-1®1
(1®e)’=1®e>=c-191
e®R1N)(1Qe)=e®Re=—(1Re)(e®1).
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Therefore,
C(c1)®C(c2) ~ C(cy,c2)
e®1 < e
1®e < e5.
Similarly,

C(ct,...,cim1)®C(c;) = C(cy,...,ci),
and so, by induction,

C(c1)®---®C(cn) ~C(ct,...,cn).

EXAMPLE 18.12 Every k-algebra A can be regarded as a k-superalgebra by setting Ag =
Aand Ay = 0. If A, B are both k-algebras, then A ® B = A®y B.

EXAMPLE 18.13 Let X be a manifold. Then H(X) 4 D; H!(X,R) becomes an R-
algebra under cup-product, and even a superalgebra with H(X)o = @; H 2I(X,R) and
HX)h =@, H 2i+l1 (X,R). If Y is a second manifold, the Kiinneth formula says that

HXxY)=HX)®H(Y)

(super tensor product).

18e Brief review of the tensor algebra

Let V be a k-vector space. The tensor algebra of V is T(V) = @nzo V®" where
ye0 _ k.
yel _ .
Ve =V ®-..-®V (n copies of V)

with the algebra structure defined by juxtaposition, i.e.,

V1 ® Qua) (V+1® - QUipgn) =V1 Q- QVUpptn-

It is a k-algebra.

If V has a basis ey,...,en, then T (V) is the k-algebra of noncommuting polynomials
inei,...,en.

There is a k-linear map V — T(V), namely, V = V®! «— @ _, V®", and any other
k-linear map from V to a k-algebra R extends uniquely to a k-algebra homomorphism
T(V)— R.

18f The Clifford algebra

Let (V,q) be a quadratic space, and let ¢ be the corresponding bilinear form on V.

DEFINITION 18.14 The Clifford algebra C(V,q) is the quotient of the tensor algebra
T (V) of V by the two-sided ideal /(g) generated by the elements x @ x —g(x) (x € V).



210 I. Basic Theory of Affine Groups

Let p: V — C(V,q) be the composite of the canonical map V — T (V') and the quotient
map T(V) — C(V,q). Then p is k-linear, and®®

p(x)?> =q(x),all x € V. (114)

Note that if x is anisotropic in V, then p(x) is invertible in C(V,q), because (114)) shows
that

p(x)
NUAAEA |
p(x) /()

EXAMPLE 18.15 If V is one-dimensional with basis e and g(e) = ¢, then T (V) is a poly-
nomial algebra in one symbol e, (V) = k[e], and I1(g) = (e?> —c). Therefore, C(V,q) ~
C(c).

EXAMPLE 18.16 If ¢ = 0, then C(V,q) is the exterior algebra on V, i.e., C(V,q) is the
quotient of T(V) by the ideal generated by all squares x2, x € V. In C(V,q),

0= (p(x) + p(»)? = p(x)* + p(x)p(¥) + p(¥)p(x) + p(¥)? = p(x)p(¥) + p(¥)p(x)

and so p(x)p(y) = —p(y)p(x).

PROPOSITION 18.17 Let r be a k-linear map from V to a k-algebra D such that r (x)? =
q(x). Then there exists a unique homomorphism of k-algebras r:C(V,q) — D such that
rop=r:

PROOF. According to the universal property of the tensor algebra, r extends uniquely to a
homomorphism of k-algebras r’: T(V) — D, namely,

F(x1®-®xp) =r(x1)-1(xn).

As
r(x®x—q(x)) =r(x)*>—q(x) =0,

r’ factors uniquely through C(V,q). o

As usual, (C(V,q), p) is uniquely determined up to a unique isomorphism by the uni-
versal property in the proposition.

6For a k-algebra R, we are regarding k as a subfield of R. When one regards a k-algebra R as a ring with
ak — R, it is necessary to write (114)) as

p(x)* = q(x) lew.g)-
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THE MAP C(cy,...,cn) — C(V,q)

Because p is linear,

p(x + )% = (p(x) + p(»))* = p(x)* + p(x)p(y) + p(¥)p(x) + p(¥)*.

On comparing this with

o+ )2 B g(x + ) = g(x) + 4 (y) + 20 (x. y).

we find that
p(x)p(y) + p(y)p(x) = 2¢(x,y).

In particular, if f1,..., f, is an orthogonal basis for V, then

p(fD)*=a(fi).  p(fDp(fi) = —p(fi)p(f)) (i # )).

Let ¢; = ¢q( f;). Then there exists a surjective homomorphism
ei > p(fi):C(ct,....cn) = C(V.9).

THE GRADATION (SUPERSTRUCTURE) ON THE CLIFFORD ALGEBRA

Decompose

TWV)=T(V)e®T(V)

T(V)o= @ V&
m even

T(V) = ven
m odd

As I(q) is generated by elements of T'(V)o,

Ig) = T(@NTV))@U(@NTV)1),

and so
C(V,q)=CodCy with C;=TWV);/I(g)NTV);.

Clearly this decomposition makes C(V,q) into a super algebra.

(115)

(116)

In more down-to-earth terms, Cy is spanned by products of an even number of vectors

from V', and C; is spanned by products of an odd number of vectors.

THE BEHAVIOUR OF THE CLIFFORD ALGEBRA WITH RESPECT TO DIRECT

SUMS

Suppose
V.q) = (V1.91) ® (V2.42).

Then the k-linear map

Vo= eV, —  C(.q)&C(Va.q2)
x = (nLx) > )1+ 1® pa(x2).
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has the property that
r(x)? = (p1(x1) ® 1 +1® p2(x2))?
=(q(x1) +q(x2)(A 1)
=q(x),
because
(Pp1(x1) ® D1 ® p2(x2)) = p1(x1) ® p2(x2) = —(1 @ p2(x2)) (p1(x1) ® 1)).
Therefore, it factors uniquely through C(V,q):

C(V,q) > C(V1,q1)®C(V2,q2). (117)

EXPLICIT DESCRIPTION OF THE CLIFFORD ALGEBRA

THEOREM 18.18 Let (V,q) a quadratic space of dimension n.

(a) For every orthogonal basis for (V,q), the homomorphism (116))
C(cry....cn) = C(V,q)

is an isomorphism.
(b) For every orthogonal decomposition (V,q) = (V1,q1) ® (V2,42), the homomorphism

(117
C(V,Q) - C(VI’Q1)®C(V2,‘12)
is an isomorphism.

(¢) The dimension of C(V,q) as a k-vector space is 2",

PROOF. If n = 1, all three statements are clear from (I8.15). Assume inductively that they
are true for dim(V') < n. Certainly, we can decompose (V,q) = (V1,41) & (V2,¢>) in such
a way that dim(V;) < n. The homomorphism is surjective because its image contains
p1(V1) ® 1 and 1 ® p»(V>) which generate C(Vy,q1)®C (Va,q>), and so

dim(C (V. q)) = 24mpdim(2) = om,
From an orthogonal basis for (V,g), we get a surjective homomorphism (I16). Therefore,
dim(C(V,q)) <2".
It follows that dim(C(V,q)) = 2"*. By comparing dimensions, we deduce that the homo-

morphisms (I16) and (I17) are isomorphisms. o

COROLLARY 18.19 The map p:V — C(V,q) is injective.

From now on, we shall regard V' as a subset of C(V,q) (i.e., we shall omit p).

REMARK 18.20 Let L be a field containing k. Then ¢ extends uniquely to an L-bilinear
form
¢V xV' > L, V' =L®V,
and
C(V'.q") =~ L®cC(V.q9)

where ¢’ is quadratic form defined by ¢’.
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THE CENTRE OF THE CLIFFORD ALGEBRA

Assume that (V, q) is regular, and that n = dim V' > 0. Let ey, ..., e, be an orthogonal basis
for (V,q), and let g(e;) = c;. Let

n(n—1) nn—1)
2

A=(=1)"2 cien=(=-1 det(¢(ei,e;)).

We saw in (18.18) that
C(cyy...,cn) = C(V,q).

Note that, in C(cy,...,cn), (e1-+-ep)?> = A. Moreover,

ei-(e1-en) = (=1)""ci(er--ei1eiy1-+-en)

(e1-en) e = (~1)" ejler---eireist - en).
Therefore, e; --- e, lies in the centre of C(V,q) if and only if # is odd.

PROPOSITION 18.21 (a) If n is even, the centre of C(V,q) is k; if n is odd, it is of degree
2 over k, generated by e ---e,. In particular, Cy N Centre(C(V,q)) = k.
(b) No nonzero element of Cy centralizes Cy.

PROOF. First show that a linear combination of reduced monomials is in the centre (or cen-
tralizes Cp) if and only if each monomial does, and then find the monomials that centralize
the e; (or the e;e;). o

In Scharlau![1985, Chapter 9, 2.10, there is the following description of the complete
structure of C(V,q):

If n is even, C(V,q) is a central simple algebra over k, isomorphic to a tensor
product of quaternion algebras. If n is odd, the centre of C(V,q) is generated
over k by the element e; ---e, whose square is A, and, if A is not a square in
k, then C(V,q) is a central simple algebra over the field k[/A].

THE INVOLUTION *

An involution of a k-algebra D is a k-linear map *: D — D such that (ab)* = b*a™ and
a** = 1. For example, M +— M (transpose) is an involution of M, (k).
Let C(V,q)°PP be the opposite k-algebra to C(V,q), i.e., C(V,q)°?* = C(V,q) as a
k-vector space but
abin C(V,q)®® = ba in C(V,q).

The map p: V — C(V,q)°PP is k-linear and has the property that p(x)? = g(x). Thus, there
exists an isomorphism *x: C(V,g) — C(V, q)°PP inducing the identity map on V', and which
therefore has the property that

(xl...xr)* =Xy X1

for x1,...,xr € V. We regard * as an involution of A. Note that, for x € V, x*x = ¢(x).
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18g The Spin group
Initially we define the spin group as an abstract group.

DEFINITION 18.22 The group Spin(g) consists of the elements ¢ of Co(V,q) such that
(a) t*r =1,

b) tVitl=v,
(c) the map x > txt~!:V — V has determinant 1.

REMARK 18.23 (a) The condition (a) implies that ¢ is invertible in Co(V,q), and so (b)

makes sense.
(b) We shall see in below that the condition (c) is implied by (a) and (b).

THE MAP Spin(g) — SO(q)

Let ¢ be an invertible element of C(V,q) such that tV¢t~! = V. Then the mapping x
txt~1:V — V is an isometry, because

gxt™) = (e =17 = 1g (01! = g ().

Therefore, an element ¢ € Spin(g) defines an element x > txt~'of SO(gq).

THEOREM 18.24 The homomorphism

Spin(g) — SO(q)

just defined has kernel of order 2, and it is surjective if k is algebraically closed.

PROOF. The kernel consists of those ¢ € Spin(g) such that txt~! = x forallx € V. As V
generates C(V,¢q), such a ¢t must lie in the centre of C(V,g). Since it is also in Cp, it must
lie in k. Now the condition ¢*¢ = 1 implies that = £1.

For an anisotropic a € V, let R, be the reflection in the hyperplane orthogonal to a.
According to Theorem each element o of SO(g) can be expressed 0 = Ry, -+- Ry,
for some a;. Asdet(Ry, -+ Rq,,) = (—1)™, we see that m is even, and so SO(q) is generated
by elements R, R, with a, b anisotropic elements of V. If k is algebraically closed, we can
even scale a and b so that g(a) = 1 = q(b).

Now
axa”! = (—xa+2¢p(a.x))a"! as (ax + xa = 2¢(a, x), see (113))
(- _2¢(“’x)a) as a® = 4(a)
q(a)
= —R;(x).
Moreover,

(ab)*ab = baab = q(a)q(b).

Therefore, if g(a)q(b) = 1, then R, Ry, is in the image of Spin(g) — SO(g). As we noted
above, such elements generate SO(¢) when k is algebraically closed. 0

In general, the homomorphism is not surjective. For example, if k = R, then Spin(g)
is connected but SO(g) will have two connected components when ¢ is indefinite. In this
case, the image is the identity component of SO(g).
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18h The Clifford group
Write y for the automorphism of C(V, q) that acts as 1 on Cy(V,q) and as —1 on Cy(V,q).

DEFINITION 18.25 The Clifford group is

I'(q) ={t € C(V,q) | t invertible and y(t) V™! =V }.

Fort € I'(q), let a(t) denote the homomorphism x > y(t)xt~1:V — V.

PROPOSITION 18.26 Forallt € I'(q), «(t) is an isometry of V, and the sequence
1 = k™ = I'(q) — 0(q) — 1

is exact (no condition on k).

PROOF. Lett € I'(g). On applying y and = to y(t)V = Vi, we find that y(t*)V = Vt*,
and so t* € I'(q). Now, because * and y actas 1 and —1 on V,

y(@)-x-t7 = —y(y@)-x 17 = —p(* T Txy () = y(e* T Hxt,

and so
y(@H)y(t)x = xt™t. (118)

We use this to prove that «(¢) is an isometry:

q(a(1)(x) = (@()(x)* - (@) (x)) = " xy(@)* -y (O)xr ™! T lexe* i = g(x).

As k is in the centre of I'(q), k™ is in the kernel of a. Conversely, let t = fg + 1 be an
invertible element of C(V,q) such that y(¢)xt~! = x for all x € V, i.e., such that

fox = Xtg, X =—XN

for all x € V. As V generates C(V,q) these equations imply that 7o lies in the centre of
C(V,q), and hence in k (18.2Th), and that 7; centralizes Co, and hence is zero (18.21p). We
have shown that

Ker(a) = k*.

It remains to show that « is surjective. For r € V, a(t)(y) = —tyt~! and so (see the
proof of (18.24)), «(t) = R;. Therefore the surjectivity follows from Theorem o

COROLLARY 18.27 For an invertible element t of Co(V,q) such that tVt—! =V, the
determinant of x — txt~1:V — V is one.

PROOF. According to the proposition, every element ¢ € I'(g) can be expressed in the form
t=cay-am

with ¢ € kK and the a; anisotropic elements of V. Such an element acts as Ry, -+- Rq,, On
V, and has determinant (—1)". If t € Co(V, q), then m is even, and so det(z) = 1. o

Hence, the condition (c) in the definition of Spin (g) is superfluous.
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18i Action of O(g) on Spin(g)

18.28 An element o of O(gq) defines an automorphism of C(V,q) as follows. Consider
poo:V — C(V,q). Then (p(c(x))? = ¢(0(x))-1 = ¢(x)-1 for every x € V. Hence, by
the universal property, there is a unique homomorphism ¢: C(V,q) — C(V,q) rendering

V L> Cc(V,q)

lo l&

v 25 cw.q)

commutative. Clearly 0100, = G 065 and id = id, and so (;2/1 =671, and so & is an
automorphism. If 0 € SO(¢), it is known that & is an inner automorphism of C(V,g) by an
invertible element of C*(V,q).

18j Restatement in terms of algebraic groups

Let (V,q) be quadratic space over k, and let g ¢ be the unique extension of ¢ to a quadratic
form on K ®; V. As we noted in (18.20), C(V,qg) = K @i C(V,q).

THEOREM 18.29 There exists a naturally defined algebraic group Spin(q) over k such that

Spin(¢)(K) >~ Spin(¢k)

for all fields K containing k. Moreover, there is a homomorphism of algebraic groups

Spin(g) — SO(q)

giving the homomorphism in (18.24) for each field K containing k. Finally, the action of
O(g) on C(V,q) described in 1 defines an action of O(g) on Spin(g).

PROOF. Show that, when £ is infinite, the algebraic group attached to the subgroup Spin(q)
of GL(V) (see[7.22) has these properties. Alternatively, define a functor R ~~ Spin(gr) that
coincides with the previous functor when R is a field. o

In future, we shall write Spin(gq) for the algebraic group Spin(g).

ASIDE 18.30 A representation of a semisimple algebraic group G gives rise to a representation of
its Lie algebra g, and all representations of g arise from G only if G has the largest possible centre.
“When E. Cartan classified the simple representations of all simple Lie algebras, he discovered
a new representation of the orthogonal Lie algebra [not arising from the orthogonal group]. But
he did not give a specific name to it, and much later, he called the elements on which this new
representation operates spinors, generalizing the terminology adopted by physicists in a special case
for the rotation group of the three dimensional space” (C. Chevalley, The Construction and Study of
Certain Important Algebras, 1955, III 6). This explains the origin and name of the Spin group.
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19 The classical semisimple groups

Over an algebraically closed field, the classical semisimple algebraic groups are those
whose almost-simple factors are isogenous to a group on the following list: SL,, 1 (n > 1),
SO2p41 (n > 2), Sp,,, (n = 3), SOy, (n > 4); these are said to be, respectively, of type
Apn, By, Cy, or Dy,. Over an arbitrary field &, they are the semisimple algebraic groups that
become classical over k. We shall call 4,, By, Cy, and D,, the classical types.

In this section, we describe the classical semisimple groups over a field k in terms of
the semisimple algebras with involution over k.%” Then we explain how class field theory
allows us describe the semisimple algebras over the algebraic number fields (e.g., Q), the
p-adic fields (e.g., Qp), and R.

In this section, by a k-algebra A, we mean a ring (not necessarily commutative) con-
taining k in its centre and of finite dimension as a k-vector space (the dimension is called
the degree [A:k] of A). Throughout this section, vector spaces and modules are finitely
generated.

Throughout this section, k is a field. In the second part of the section, k is assumed to
have characteristic zero.

NOTES This section is OK as far as it goes, but needs to be completed (proofs added; condition on
the characteristic removed). I think it can be made elementary (no root systems etc.) except that we
need to know what the groups of outer automorphisms are — in particular, that they are finite mod
inner automorphisms (perhaps this can be proved directly case by case).

19a Nonabelian cohomology

Let I" be a group. A I'-set is a set A with an action
(o,a)>oa:I'xA— A

of I" on A (so (0t)a = o(ra) and la = a). If, in addition, A has the structure of a group
and the action of I respects this structure (i.e., 0(aa’) = oa-oa’), then we say A is a
I'-group.

DEFINITION OF H%(T, A)

Fora I'-set A, H%(I", A) is defined to be the set A of elements left fixed by the operation
of " on A, ie.,

HO(I',A)=AT ={ac A|oa=aforallo e I'}.

If Ais a I"-group, then H°(I", A) is a group.

DEFINITION OF H!(I", A)

Let A be a I'-group. A mapping o — ag of I" into A is said to be a crossed homomorphism
or a 1-cocycle I' in A if the relation a5 = ay -0a; holds for all o, v € I'. Two 1-cocycles
(ag) and (by) are said to be equivalent if there exists a ¢ € A such that

bs =cl.a,-0c foralloerl.

67Except for the algebraic groups of type 3 D4, which seem to be neither classical nor exceptional.
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This is an equivalence relation on the set of 1-cocycles of I" in A, and H1(I", A) is defined
to be the set of equivalence classes of 1-cocycles.

In general H!(I", A) is not a group unless A is commutative, but it has a distinguished
element, namely, the class of 1-cocycles of the form o b=l.0b, b € A (the principal
1-cocycles).

COMPATIBLE HOMOMORPHISMS

Let A be a second group. Let A be I'-group and B an A-group. Two homomorphisms
f:A— Band g: A — I' are said to be compatible if

f(g(o)a) =0(f(a))forallo € A,a € A.
If (as) is a 1-cocycle for A, then

b = f(ag(o))

is a I-cocycle of A in B, and this defines a mapping H (I, A) — H'(A, B), which is a
homomorphism if A and B are commutative.
When A = I', a homomorphism f: A — B compatible with the identity map, i.e., such
that
floa)=0a(f(a)) forallo e I',a € A,

f is said to be a I"-homomorphism (or be I"-equivariant).

EXACT SEQUENCES
PROPOSITION 19.1 An exact sequence
-4 —>4-4">1
of I'-groups gives rise to an exact sequence of cohomology sets
1—->HY(IA)— H(I'A) - H (I A"y - H'\(I'A') > HY(I' A) > HY\(I", A")

Exactness at H°(I", A”) means that the fibres of the map H%(I", A”) — H'(I", A) are
the orbits of the group H°(I', A) acting on H°(I", A”). Exactness at H(I", A’) means that
fibre of H1(I", A’y — H'(I', A) over the distinguished element is the image of H%(I", A”).

We now define the boundary map H%(I", A”) — H(I", A’). For simplicity, regard A’
as a subgroup of A with quotient A”. Let a” be an element of A” fixed by I, and choose
an a in A mapping to it. Because a” is fixed by I, a~! -0a is an element of A’, which we
denote a,. The map o — a, is a 1-cocycle whose class in H!(I", A’) is independent of the
choice of a. To define the remaining maps and check the exactness is now very easy.

PROFINITE GROUPS

For simplicity, we now assume k to be perfect. Let I' = Gal(k®/k) where k¥ is the
algebraic closure of k. For any subfield K of k2! finite over k, we let

I'k ={cel|ox=xforall x € K}.
We consider only I"-groups A for which
A=Ak (119)
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and we define H 1 (I, A) to be the set of equivalence classes of 1-cocycles that factor through
Gal(K/ k) for some subfield K of k¥ finite and Galois over k. With these definitions,®

HY(I A) = l_ingl(Gal(K/k),AFK) (120)

where K runs through the subfields K of k? finite and Galois over k.

THE GALOIS COHOMOLOGY OF ALGEBRAIC GROUPS
When G is an algebraic group over k,
G(k*) =UG(K), G(K)=G(k™x,

and so G (k) satisfies (119). We write H' (k,G) for H (Gal(k®/ k), G(k™)).
An exact sequence
1-G -G—->G"—1

of algebraic groups over k gives rise to an exact sequence
1 - G'(R)— G(R) — G"(R)
for any k-algebra R; when R = k?, we get a short exact sequence
1—G'(k") > G(k™) > G" (k") - 1

(7.54)), and hence an exact sequence
1— G'(k) = G(k) = G"(k) > H'(k,G') > H'(k,G) — H'(k,G").

CLASSIFYING VECTOR SPACES WITH TENSORS

Let K be a finite Galois extension of k with Galois group I". Let V' be a finite-dimensional
K-vector space. A semi-linear action of I’ on V is a homomorphism I" — Auty_j, (V)
such that

o(cv)=o0c-ov allcel,ceK,velV.

If V = K ® Vo, then there is a unique semi-linear action of I" on V for which VI =
1 ® Vp, namely,
o(c®v)=0c®v oel,ceK,veV.

PROPOSITION 19.2 The functor V — K Q@ V from k-vector spaces to K-vector spaces
endowed with a semi-linear action of I is an equivalence of categories with quasi-inverse
ViV

PROOF. The proof is elementary. See AG[16.14] O

%8Equivalently, we consider only I"-groups A for which the pairing I" x A — A is continuous relative to the
Krull topology on I" and the discrete topology on A, and we require that the 1-cocycles be continuous for the
same topologies.
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BILINEAR FORMS AND COHOMOLOGY SETS

Let V be a k-vector space equipped with a bilinear form ¢o: V x V — k, and write (Vy, ¢o) x
for the pair over K obtained from (Vj, ¢p9) by extension of scalars. Let A(K) denote the set
of automorphisms of (Vy,¢o) x.%°

THEOREM 19.3 The cohomology set H'(I', A(K)) classifies the isomorphism classes of
pairs (V,¢) over k that become isomorphic to (Vy, o) over K.

PROOF. Suppose (V,¢)x ~ (Vo,d0) &, and choose an isomorphism

f:(Vo.90)k — (V.¢)k.
Let
ag = f"'oof.
Then

ag-oa; = (f"'eaf)o(af " ootf)
=dgr,

and so ay(f) is a 1-cocycle. Moreover, any other isomorphism f': (Vo,¢0)x — (V. 9)k
differs from f by a g € A(K), and

ac(fog)=g '-as(f)-0g.

Therefore, the cohomology class of aq( f) depends only on (V,¢). It is easy to see that,
in fact, it depends only on the isomorphism class of (V,¢), and that two pairs (V,¢) and
(V',¢’) giving rise to the same class are isomorphic. It remains to show that every coho-
mology class arises from a pair (V,¢). Let (ag)ser be a 1-cocycle, and use it to define a

. def
new action of I" on Vg = K Q@ V:
°x=as-0x, oe€l, x¢cVkg.
Then
%(cv)=o0c-v,forcel',ceK,veV,

and

U(l'v) — U(ar-”)) =4y 0dy 0TV = oty

and so this is a semilinear action. Therefore,

Vi Eix eV | % =x)

is a subspace of Vi such that K ®; V1 >~ Vg (by[19.2). Because ¢k arises from a pairing
over k,

¢ox(ox,0y) =0¢(x,y), allx,yelVk.
Therefore (because a, € A(K)),

ok (°x,%y) = pok (0x,0y) = ook (x,y).

If x,y € V1, then ¢ox (°x,%y) = ¢ox (x,y), and so ¢ox (x,y) = ook (x,y). By Galois
theory, this implies that ¢pox (x,y) € k, and so ¢gx induces a k-bilinear pairing on V;. o

1n more detail: (Vo,¢0)x = (Vok.Pox) Where Vog = K ®; Vo and ¢g is the unique K-bilinear map
Vok X Vog — K extending ¢¢; an element of A(K) is a K-linear isomorphism «: Vyg — Vg such that

dok (ax,ay) = ok (x,y) forall x,y € Vok.



19. The classical semisimple groups 221

APPLICATIONS

Again let K be a finite Galois extension of k with Galois group I".

PROPOSITION 19.4 Foralln, HY(I',GL,(K)) = 1.

PROOF. Apply Theorem with Vo = k™ and ¢ the zero form. It shows that H 1 (I, GL,, (K))
classifies the isomorphism classes of k-vector spaces V' such that K ®; V' & K". But such
k-vector spaces have dimension 7, and therefore are isomorphic. O

PROPOSITION 19.5 Foralln, H'(I",SL,(K)) =1
PROOF. Because the determinant map det: GL,,(K) — K is surjective,

| — SL,(K) — GLy (K) 5 K% — 1

is an exact sequence of I'-groups. It gives rise to an exact sequence

GL, (k) ~% kX — H(I',SLy,) — H'(I',GLy)

from which the statement follows. o

PROPOSITION 19.6 Let ¢pg be a nondegenerate alternating bilinear form on Vy, and let Sp
be the associated symplectic group’®. Then H(I",Sp(K)) = 1.

PROOF. According to Theorem H(I',Sp(K)) classifies isomorphism classes of pairs
(V,¢) over k that become isomorphic to (Vp,¢o) over K. But this condition implies that
¢ is a nondegenerate alternating form and that dim V' = dim V. All such pairs (V, ¢) are
isomorphic. O

REMARK 19.7 Let ¢9 be a nondegenerate bilinear symmetric form on Vp, and let O be
the associated orthogonal group. Then H1(I',O(K)) classifies the isomorphism classes of
quadratic spaces over k that become isomorphic to (V,¢) over K. This can be a very large
set.

19b Classifying the forms of an algebraic group (overview)

Again let K be a finite Galois extension of & with Galois group I". Let G¢ be an algebraic
group over k, and let A(K) be the group of automorphisms of (Go)x. Then I" acts on
A(K) in a natural way:

ca=coaoco !, ocel, acAK).

THEOREM 19.8 The cohomology set H1(I', A(K)) classifies the isomorphism classes of
algebraic groups G over k that become isomorphic to Gg over K.

70S0 Sp(R) = {a € Endgiin(R®y V) | $(ax,ay) = ¢(x.y)}
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PROOF. Let G be such an algebraic group over k, choose an isomorphism
f:Gox — Gk,

and write
a0:=tf_looji
As in the proof of Theorem [19.3| (a¢)ser is a 1-cocycle, and the map

G > class of (ag)ger in HY(I', A(K))

is well-defined and its fibres are the isomorphism classes.

In proving that the map is surjective, it is useful to identify A(K) with the auto-
morphism group of the Hopf algebra O(Gog) = K ®x O(Gyp). Let Ag = O(Gp) and
A = K ® Ag. As in the proof of Theorem we use a 1-cocycle (ag)ger to twist
the action of I" on A; specifically, we define

°a=as00a, o€l, acA.

Proposition|19.2]in fact holds for infinite dimensional vector spaces V' with the same proof,

and so the k-subspace
B={acA|%a=a}

of A has the property that
K®; B ~A.

It remains to show that the Hopf algebra structure on A induces a Hopf algebra structure on
B. Consider for example the comultiplication. The k-linear map

Ag:Ag = Ao ®p Ao
has a unique extension to a K-linear map
AA—> AQk A.
This map commutes with the action of I':
A(oca) =0(A(a)), alloel,acA.
Because a4 is a Hopf algebra homomorphism,
A(aga) =agA(a), alloel,acA.

Therefore,
A(Ca)=%(A(a)), alloel,acA.

In particular, we see that A maps B into (4 ® x A)T, which equals B ®; B because the
functor in preserves tensor products. Similarly, all the maps defining the Hopf alge-
bra structure on A preserve B, and therefore define a Hopf algebra structure on B. Finally,
one checks that the 1-cocycle attached to B and the given isomorphism K ®j B — A is

(ag). O
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EXAMPLES
19.9 Foralln, H'(k,GL,) = 1.

This follows from ((19.4)) and (120).
19.10 Foralln, H'(k,SL,) = 1.

19.11 Foralln, H'(k,Sp,) = 1.

19.12 Let (V,¢) be a nondegenerate quadratic space over k. Then H ' (k, O(¢)) classifies
the isomorphism classes of quadratic spaces over k with the same dimension as V.

PROOF. Over k%, all nondegenerate quadratic spaces of the same dimension are isomor-
phic. O

19.13 Let G be an algebraic group of k. The isomorphism classes of algebraic groups
over k that become isomorphic to Gya over k% are classified by H'(I", A(k™)). Here
I' = Gal(k¥/ k) and A(k™) is the automorphism group of G ..

This can be proved by passing to the limit in (19.8) over all K C k? that are finite and
Galois over k, or by rewriting the proof of (19.8)) for infinite extensions.

19.14 Let G« = (G)k/k. We have

H'(k,Gx) ~ H (K,G) fori = 0,1 (and for all i >0 when G is commutative).

PROOF. Combine (I86) with Shapiro’s lemma (CFT II, 1.11 for the commutative case;
need to add the proof for the noncommutative case). o

An algebraic group G over a field k is said to be geometrically almost-simple (or abso-
lutely almost-simple) if it is almost-simple, and remains almost-simple over k.7!

From now on, we assume that k£ has characteristic zero.

Every semisimple algebraic group over a field k has a finite covering by a simply con-
nected semisimple algebraic group over k; moreover, every simply connected semisimple
algebraic group over k is a direct product of almost-simple algebraic groups over k (when G
is simply connected, the map in is an isomorphism); finally, every simply connected
almost-simple group over k is of the form (G) g/, where G is geometrically almost-simple
over K (T7.19). Thus, to some extent, the problem of listing all semisimple algebraic groups
comes down to the problem of listing all simply connected, geometrically almost-simple,
algebraic groups.

A semisimple group G over a field k is said to be split if it contains a split torus 7" such
that Tja is maximal in Gya.

"IThe term “absolutely almost-simple” is more common, but I prefer “geometrically almost-simple”.



224 I. Basic Theory of Affine Groups

SIMPLY CONNECTED, GEOMETRICALLY ALMOST-SIMPLE, ALGEBRAIC
GROUPS

For an algebraic group G, let G = G/Z(G). We shall need a description of the full
automorphism group of G. This is provided by the following statement, which will be
proved in a later chapter.

19.15 Let G be a simply connected semisimple group G, and let A(k®) be the group of
automorphisms of Ga. There is an exact sequence

1 - G¥k™) > A(k™) - Sym(D) — 1

where Sym(D) is the (finite) group of symmetries of the Dynkin diagram of G. When G
is split, I' acts trivially on Sym(D), and the sequence is split, i.e., there is a subgroup of
A(k®) on which I" acts trivially and which maps isomorphically onto Sym(D).

An element of G (k¥) = G(k¥)/Z (k™) acts on Ga by an inner automorphism. The
Dynkin diagrams of almost-simple groups don’t have many symmetries: for D4 the sym-
metry group is S3 (symmetric group on 3 letters), for A,, Dy, and Eg it has order 2, and
otherwise it is trivial. Later in this section, we shall explicitly describe the outer automor-
phisms arising from these symmetries.

19.16 For each classical type and field k, we shall write down a split, geometrically
almost-simple, algebraic group G over k such that Gra is of the given type (in fact, G
is unique up to isomorphism). We know (19.13) that the isomorphism classes of algebraic
groups over k becoming isomorphic to G over k% are classified by H!(k, A(k¥)) where
A(k®) is the automorphism group of Gga. The Galois group I” acts trivially on X *(Z(G));
for the form G’ of G defined by a 1-cocycle (ag), Z(G')ga = Z(G)ga but with I' acting
through a..

For example, for A, the split group is SL,. This has centre p,, which is the group of
multiplicative type corresponding to Z/nZ with the trivial action of I". Let Go and G be
groups over k, and let f: Gora — Gpa be an isomorphism over k. Write ay, = f oo f.
Then f defines an isomorphism

f:Zo(k™) — Z(k™)
on the points of their centres, and

flagox) = o (f(x)).
When we use f to identify Zo(k) with Z(k¥), this says that I" acts on Z(k?') by the

twisted action “x = as0x.

REMARK 19.17 Let Gg be the split simply connected group of type X, and let G be a
form of Gg. Let ¢ be its cohomology class. If ¢ € H!(k,G%), then G is called an inner
Jorm of G. In general, ¢ will map to a nontrivial element of

Hl(k, Sym(D)) = Homeonginuous (1, Sym(D)).

Let A be the kernel of this homomorphism, and let L be the corresponding extension field
of k. Let z = (I": A). Then we say G is of type ?X,,. For example, if G is of type 3Dy,
then it becomes an inner form of the split form over a



19. The classical semisimple groups 225

19¢ The forms of M, (k)

DEFINITION 19.18 A k-algebra A is central if its centre is k, and it is simple if it has no
2-sided ideals (except 0 and A). If all nonzero elements have inverses, it is called a division
algebra (or skew field).

EXAMPLE 19.19 (a) The ring M, (k) is central and simple.
(b) For any a,b € k*, the quaternion algebra H(a, b) is central and simple. It is either a
division algebra, or it is isomorphic to M» (k).

THEOREM 19.20 (WEDDERBURN) For any division algebra D over k, M, (D) is a simple
k -algebra, and every simple k -algebra is of this form.

PROOF. See GT or CFT, IV 1.9. o

COROLLARY 19.21 When k is algebraically closed, the only central simple algebras over
k are the matrix algebras M, (k).

PROOF. Let D be a division algebra over k, and let « € D. Then k[«] is a commutative
integral domain of finite dimension over k, and so is a field. As k is algebraically closed,
kla] = k. 0

PROPOSITION 19.22 The k-algebras becoming isomorphic to M,, (k) over k* are the cen-

tral simple algebras over k of degree n?.

PROOF. Let A be a central simple algebra over k of degree n2. Then k¥ ®; A is again
central simple (CFT IV, 2.15), and so is isomorphic to M, (k) by (19.21)). Conversely, if A
is a k-algebra that becomes isomorphic to My, (k¥) over k¥, then it is certainly central and

simple, and has degree n2. O

PROPOSITION 19.23 All automorphisms of the k -algebra M, (k) are inner, i.e., of the form
X —YXY~! forsomeY.

PROOF. Let S be k™ regarded as an M, (k)-module. It is simple, and every simple M, (k)-
module is isomorphic to it (see AG . Let « be an automorphism of My, (k), and let S’
denote S, but with X € M, (k) acting as a(X). Then S’ is a simple M,, (k)-module, and so
there exists an isomorphism of M, (k)-modules f:S — S’. Then

a(X)f¥= fXX, allX € My(k),X€S.

Therefore,
a(X)f = fX, alXeM,k).

As f is k-linear, it is multiplication by an invertible matrix Y, and so this equation shows

that
a(X)=YXxy L 5
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COROLLARY 19.24 The isomorphism classes of k -algebras becoming isomorphic to M, (k)
over k? are classified by H'(k,PGL,).

PROOF. The proposition shows that
Autga_yg (M (k™)) = PGL, (k™).

Let A be a k-algebra for which there exists an isomorphism f: M, (k¥) — k¥ ®; A, and
let

dg =f_1°0f

Then a4 is a 1-cocycle, depending only on the k-isomorphism class of A.
Conversely, given a 1-cocycle, define

X =ay-0X, oel,XeM,Kk").
This defines an action of I" on M, (k) and M,,(k™)T" is a k-algebra becoming isomorphic

to M, (k) over k* (cf. the proof of[19.3). D

REMARK 19.25 Let A be a central simple algebra over k. For some 7, there exists an

isomorphism f:k* ®; A — M, (k*), unique up to an inner automorphism (19.22} [19.23)).
Let a € A, and let Nm(a) = det( f(a)). Then Nm(a) does not depend on the choice of f.
Moreover, it is fixed by I", and so lies in k. It is called the reduced norm of a.

19d The inner forms of SL,,

Consider
X — X:SL, (k™) — M, (k™).

The action of PGL,, (k¥) on M, (k*) by inner automorphisms preserves SL, (k), and is
the full group of inner automorphisms of SL,,.

THEOREM 19.26 The inner forms of SL,, are the groups SL,, (D) for D a division algebra
of degreen/m.

PROOF. The inner forms of SL,, and the forms of M, (k) are both classified by H ! (k,PGL,,),
and so correspond. The forms of M, (k) are the k-algebras M, (D) (by(19.22][19.20), and
the form of SL,, is related to it exactly as SL,, is related to M,,. o

Here SL,, (D) is the group

R {ae My, (R®; D) |Nm(a) =1}
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19¢ Involutions of k-algebras

DEFINITION 19.27 Let A be a k-algebra. An involution of k is a k-linear map a +—
a*: A — A such that

(ab)* =b*a™ alla,b € A,

a** =a.

The involution is said to be of the first or second kind according as it acts trivially on the
elements of the centre of k£ or not.

EXAMPLE 19.28 (a) On M,, (k) there is the standard involution X + X’ (transpose) of the
first kind.

(b) On a quaternion algebra H(a, b), there is the standard involution i — —i, j > —j
of the first kind.

(¢) On a quadratic field extension K of k, there is a unique nontrivial involution (of the
second kind).

LEMMA 19.29 Let (A, *) be an k-algebra with involution. An inner automorphism x +—

axa~' commutes with x if and only if a*a lies in the centre of A.

PROOF. To say that inn(a) commutes with * means that the two maps

x> axa e (@*) x*a*
x = x> ax*a!

coincide, i.e., that
x* = (a*a)x*(a*a)™!

for all x € A. As x — x™ is bijective, this holds if and only if a*a lies in the centre of a. o
REMARK 19.30 Let A have centre k. We can replace a with ca, ¢ € k>, without changing
inn(a). This replaces a*a with c*c -a*a. When  is of the first kind, c*c = ¢2. Therefore,
when k is algebraically closed, we can choose ¢ to make a*a = 1.
19f The outer forms of SL,
According to (I9.15)), there is an exact sequence

1 — PGL, (k™) = Aut(SL,za) — Sym(D) — 1,

and Sym(D) has order 2. In fact, X — (X 1)’ = (X*)~! is an outer automorphism of SL,,.
Now consider the k-algebra with involution of the second kind

My(k)x M, (k), (X,Y)* =" X").

Every automorphism of M, (k) x M, (k) is either inner, or is the composite of an inner
automorphism with (X,Y) — (Y, X).”? According to (19.29), the inner automorphism by

72This isn’t obvious, but follows from the fact that the two copies of M, (k) are the only simple subalgebras
of My (k) x My (k) (see Farb and Dennis, Noncommutative algebra, GTM 144, 1993, 1.13, for a more general
statement).
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a € A commutes with * if and only if a*a € k x k. But (a*a)* = a*a, and so a*a € k.
When we work over k¥, we can scale a so that a*a = 1 (19.30): if a = (X,Y), then

l=a*a= "X, X"Y),

and so a = (X, (X")™!). Thus, the automorphisms of (M, (k*) x M, (k), *) are the in-
ner automorphisms by elements (X, (X?)~!) and composites of such automorphisms with
(X,Y)— (Y, X). When we embed

X > (X, (X)7:SL, (k) — M, (k™) x M, (k™), (121)

the image it is stable under the automorphisms of (M (k™) x M,, (k), %), and this induces
an isomorphism
Aut(My, (k™) x My, (k™), %) ~ Aut(SL,, ja).

Thus, the forms of SL,, correspond to the forms of (M, (k) x My (k),=). Such a form is a
simple algebra A over k with centre K of degree 2 over k and an involution * of the second
kind.
The map (121) identifies SL, (k*') with the subgroup of My, (k*) x M,, (k™) of elements
such that
a*a=1, Nm(a)=1.

Therefore, the form of SL, attached to the form (A, *) is the group G such that G(R)
consists of the a € R ® A such that

a*a=1, Nm(a)=1.
There is a commutative diagram

Aut(SL, ;) _— Sym(D)

| |

Aut(M, (k) x My (k), %) ——> Autg_yq(k x k).

The centre K of A is the form of k% x k2 corresponding to the image of the cohomology
class of G in Sym(D). Therefore, we see that G is an outer form if and only if K is a field.

19¢ The forms of Sp,,,

Here we use the k-algebra with involution of the first kind

Ms,(k), X*=SX'S7! §= (_? (I))

The inner automorphism defined by an invertible matrix U commutes with * if and only if
U*U €k (see|19.29). When we pass to k%, we may suppose U*U = I, i.e., that

sutsT'u =1.

Because S~! = —S, this says that
U'su =8



19. The classical semisimple groups 229

i.e., that U € Sp,, (k). Since there are no symmetries of the Dynkin diagram C,, we see
that the inclusion
X > X:Sp,, (k™) = Mon (k™) (122)

induces an isomorphism
Aut(Sp,,, ) =~ Aut(Ma, (k¥), *).

Therefore, the forms of Sp,,correspond to the forms of (Mz,(k),*). Such a form is a
central simple algebra A over k with an involution * of the first kind.
The map identifies Sp,,, (k%) with the subgroup of M, (k¥) of elements such
that
a*a=1.

Therefore, the form of Sp,,, attached to (4, ) is the group G such that G(R) consists of
the a € R ®j, A for which

a*a=1.

19h The forms of Spin(¢)

Let (V,¢) be a nondegenerate quadratic space over k with largest possible Witt index. The
action of O(¢) on itself preserves SO(¢), and there is also an action of O(¢) on Spin(¢)
(see §181). These actions are compatible with the natural homomorphism

Spin(¢) — SO(¢)

and realize O(¢) modulo its centre as the automorphism group of each. Therefore, the
forms of Spin(¢) are exactly the double covers of the forms of SO(¢).

The determination of the forms of SO(¢) is very similar to the last case. Let M be the
matrix of ¢ relative to some basis for V. We use the k-algebra with involution of the first
kind

M,(k), X*=MX'M1.

The automorphism group of (M (k),*) is O(¢) modulo its centre, and so the forms of
SO(¢) correspond to the forms of (M, (k),*). Such a form is a central simple algebra A
over k with an involution * of the first kind, and the form of SO(¢) attached to (A4, *) is the
group G such that G(R) consists of the @ € R ®, A for which

a*a=1.

19i Algebras admitting an involution

To continue, we need a description of the algebras with involution over a field k. For an
arbitrary field, there is not much one can say, but for one important class of fields there is a
great deal.

PROPOSITION 19.31 If a central simple algebra A over k admits an involution of the first
kind, then
AQr A~ My2(k), n?=][A:k]. (123)
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PROOF. Recall that the opposite algebra A°PP of A equals A as a k-vector space but has its
multiplication reversed:
a®PPpOPP = (hq)OPP.

Let Ag denote A regarded as a k-vector space. There are commuting left actions of 4 and
AP on A, namely, A acts by left multiplication and A°PP by right multiplication, and
hence a homomorphism

A ®j A°PP — Endy i, (4,).

This is injective, and the source and target have the same dimension as k-vector spaces, and
so the map is an isomorphism. Since an involution on A is an isomorphism A — A°PP, the
proposition follows from this. O

Over all fields, matrix algebras and quaternion algebras admit involutions. For many
important fields, these are essentially the only such algebras. Consider the following con-
dition on a field k:

19.32 The only central division algebras over k or a finite extension of k satisfying (123
are the quaternion algebras and the field itself (i.e., they have degree 4 or 1).

THEOREM 19.33 The following fields satisty (19.32): algebraically closed fields, finite
fields, R, Q, and its finite extensions, and Q and its finite extensions.

PROOF. The proofs become successively more difficult: for algebraically closed fields
there is nothing to prove (19.21)); for Q it requires the full force of class field theory (CFT).q

19j The involutions on an algebra

Given a central simple algebra admitting an involution, we next need to understand the set
of all involutions of it.

THEOREM 19.34 (NOETHER-SKOLEM) Let A be a central simple algebra over K, and let
x and 1 be involutions of A that agree on K ; then there exists an a € A such that

x*=axTa™!, allxeA. (124)
PROOF. See CFT 1V, 2.10. |

Let 1 be an involution (of the first kind, and so fixing the elements of K, or of the
second kind, and so fixing the elements of a subfield k of K such that [K:k] = 2). For
which invertible a in A does (124)) define an involution?

Note that

x** = (aTa ™) Tx(@a™)

andsoa’a™! € K, say
at = ca, cekK.

Now,
aft = c(cTaT) =ccta
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and so
cel =1.

If + is of the first kind, this implies that ¢> = 1, and so ¢ = +1.

If 1 is of the second kind, this implies that ¢ = d/d T for some d € K (Hilbert’s theorem
90, FT[5.24). Since * is unchanged when we replace a with a/d, we see that in this case
holds with a satisfying a = a.

19k Hermitian and skew-hermitian forms
We need some definitions. Let

& (D, *) be a division algebra with an involution s,

oV be aleft vector space over D, and

o ¢:V xV — D aform on V that is semilinear in the first variable and linear in the
second (so

¢(ax,by)=a*¢(x,y)b, a,be D).

Then ¢ is said to hermitian if

o(x.y) =¢(y.x)", x.yeV,
and skew hermitian if
d(x,y) =—¢(y.x)", x,yeV.

EXAMPLE 19.35 (a) Let D = k with x = idg. In this case, the hermitian and skew hermi-
tian forms are, respectively, symmetric and skew symmetric forms.

(b) Let D = C with * =complex conjugation. In this case, the hermitian and skew
hermitian forms are the usual objects.

To each hermitian or skew-hermitian form, we attach the group of automorphisms of
(V, ), and the special group of automorphisms of ¢ (the automorphisms with determinant
1, if this is not automatic).

191 The groups attached to algebras with involution
We assume that the ground field k satisfies the condition (19.32), and compute the groups
attached to the various possible algebras with involution.

CASE A = M, (k); INVOLUTION OF THE FIRST KIND.

In this case, the involution * is of the form
X*=aX'a !

where a’ = ca with ¢ = %1. Recall that the group attached to (M, (k), *) consists of the
matrices X satisfying
X*X =1, det(X)=1,

ie.,
aX'a'X =1, det(X)=1,
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or,
Xa 'X=a"1, det(X)=1.

Thus, when ¢ = +1, we get the special orthogonal group for the symmetric bilinear form
attached to @~ !, and when ¢ = —1, we get the symplectic group attached to the skew
symmetric bilinear form attached to a~!.

CASE A = M,,(K); INVOLUTION OF THE SECOND KIND

Onmitted for the present.

CASE A = M,,(D); D A QUATERNION DIVISION ALGEBRA.

Omitted for the present.

19m Conclusion.

Let k be a field satisfying the condition (19.32)). Then the absolutely almost-simple, simply
connected, classical groups over k are the following:

(A) The groups SL,, (D) for D a central division algebra over k (the inner forms of SL;);
the groups attached to a hermitian form for a quadratic field extension K of k (the
outer forms of SL;,).

(BD) The spin groups of quadratic forms, and the spin groups of skew hermitian forms
over quaternion division algebras.

(C) The symplectic groups, and unitary groups of hermitian forms over quaternion division
algebras.

It remains to classify the quaternion algebras and the various hermitian and skew her-
mitian forms. For the algebraically closed fields, the finite fields, R, Q,, Q and their finite
extensions, this has been done, but for Q and its extensions it is an application of class field
theory.

20 The exceptional semisimple groups

Let k be an algebraically closed field. Beyond the four infinite families of classical algebraic
groups described in the last section, there are five exceptional algebraic groups, namely, the
groups of type F4, E¢, E7, Eg, and G;. In this section, I should describe them explicitly,
even over arbitrary fields. However, it is unlikely that this section will ever consist of more
than a survey, for the following reasons:

(a) This is at least as difficult for exceptional groups as for the classical groups, but there
are only five exceptional families whereas there are four infinite classical families.

(b) As for the classical groups, the exceptional groups can be constructed from their Lie
algebras (characteristic zero) or from their root systems (all characteristics).

(c) Traditionally, results have been proved case by case for the classical groups; in ex-
tending the result to all groups a uniform proof involving roots and weights has been
found. So perhaps one shouldn’t learn explicit descriptions of the exceptional groups
for fear that one will be tempted to prove all results by case by case arguments.
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20a The group G,

Let k be a field of characteristic zero. A Hurwitz algebra over k is a finite k-algebra A (not
necessarily commutative) together with a nondegenerate quadratic form N: A — k such that

N(xy) = N(x)N(y) forall x,y € A.

The possible dimensions of A are 1, 2, 4, and 8. A Hurwitz algebra of dimension 8 is also
known as an octonion or Cayley algebra. For such an algebra A4, the functor

R~ Autp (R®y A)

is an algebraic group over k of type G,. (To be continued).

21 Tannakian categories

In the first subsection, we define the abstract notion of a category with a tensor product
structure. If the tensor category admits a fibre functor, it is a neutral Tannakian category. In
the third subsection, we explain how to interpret the centre of the affine group attached to a
fibre functor on Tannakian category in terms of the gradations on the category. This will be
used in Chapter III to compute the centre of the algebraic group attached to a semisimple
Lie algebra.

21a Tensor categories

21.1 A k-linear category is an additive category in which the Hom sets are finite-dimensional
k-vector spaces and composition is k-bilinear. Functors between such categories are re-
quired to be k-linear, i.e., induce k-linear maps on the Hom sets.

21.2 A tensor category over k is a k-linear category together with a k-bilinear functor
®:C x C — C and compatible associativity and commutativity constraints ensuring that the
tensor product of any unordered finite set of objects is well-defined up to a well-defined
isomorphism. An associativity constraint is a natural isomorphism

vy w UV IW)—>UV)QW, UV, W €ob(C),
and a commutativity constraint is a natural isomorphism
Yyw: VW —->WeV, V,W eob(C).
Compatibility means that certain diagrams, for example,

du.v.w Yuev.w

U(VeW) —— UQV)QW — WUKV)
lidu Vv.w l¢w,u,v

®id
vewev) LY vewev XY weu)ev.
commute, and that there exists a neutral object (tensor product of the empty set), i.e., an
object U together with an isomorphism u:U — U ® U such that V — V ® U is an equiv-
alence of categories. For a complete definition, see |Deligne and Milne 1982, §1. We use 1
to denote a neutral object of C.
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21.3 An object of a tensor category is frivial if it is isomorphic to a direct sum of neutral
objects.

EXAMPLE 21.4 The category of finitely generated modules over a ring R becomes a tensor
category with the usual tensor product and the constraints

URRW)— UV)Qw: UQ(VRIW)->UQV)W

VW —o>wv: VW ->WV. (125)

Any free R-module U of rank one together with an isomorphism U — U ® U (equivalently,
the choice of a basis for U) is a neutral object. It is trivial to check the compatibility
conditions for this to be a tensor category.

EXAMPLE 21.5 The category of finite-dimensional representations of a Lie algebra or of
an algebraic (or affine) group G with the usual tensor product and the constraints (125)) is a
tensor category. The required commutativities follow immediately from (21.4).

21.6 Let (C,®) and (C’, ®) be tensor categories over k. A tensor functor C — C' is a pair
(F,c) consisting of a functor F:C — C’ and a natural isomorphism cy,y: F (V) ® F(W) —
F(V ® W) compatible the associativity and commutativity constraints and sending neutral
objects to a neutral objects. Then F commutes with finite tensor products up to a well-
defined isomorphism. See |Deligne and Milne|[1982] 1.8.

21.7 Let C be a tensor category over k, and let V' be an object of C. A pair
vV vVev 51)
is called a dual of V if there exists a morphism 8y : 1 — V ® V'V such that the composites

V Qev

Sy ®V
DEL vevver 2%y
pv 8 pvgyery S8 pv

are the identity morphisms on V and V'V respectively. Then §y is uniquely determined, and
the dual (V'V,ev) of V is uniquely determined up to a unique isomorphism. For example, a
finite-dimensional k-vector space V has as dual V' défHornk( V,k) withev(f ®v) = f(v)
— here dy is the k-linear map sending 1 to Y _e; ® f; for any basis (e;) for V and its dual
basis ( f;). More generally, a module M over a ring admits a dual if and only if M is finitely
generated and projective (CA[10.9][10.10). Similarly, the contragredient of a representation
of a Lie algebra or of an algebraic group is a dual of the representation.

21.8 A tensor category is rigid if every object admits a dual. For example, the category
Vecy, of finite-dimensional vector spaces over k and the category of finite-dimensional rep-
resentations of a Lie algebra (or an algebraic group) are rigid.
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21b Neutral tannakian categories

21.9 A neutral tannakian category over k is an abelian k-linear category C endowed with
arigid tensor structure for which there exists an exact tensor functor w:C — Vecg. Such a
functor w is called a fibre functor over k.

We refer to a pair (C,®) consisting of a tannakian category over k and a fibre functor
over k as a neutral tannakian category.

THEOREM 21.10 Let (C,w) be a neutral tannakian category over k. For each k-algebra
R, let G(R) be the set of families

A= (AV)Veob(C)v Ay € EndR-linear(a)(V)R)’

such that

o Ayew = Ay ® Aw forall V,W € ob(C),
¢ Ay = idy(n) for every neutral object of 1 of C, and
O Awoar =agroly forall arrowso:V — W inC.

Then R ~~ G(R) is an affine group over k, and w defines an equivalence of tensor categories
overk,
C — Rep(G).

PROOF. This is a restatement of Theorem [I1.14] o

21.11 Let wpg be the functor V ~» (V) ® R; then G(R) consists of the natural transfor-
mations A:wg — wp such that the following diagrams commute

wRr(u)

OR(V)BOR(W) —> wp(VOW)  wr(l) == 0r(181)
|rvorw vew  |a |2uen
wr(V)@0r(W) — wr(VOW)  wr(l) 22 wre1)

for all objects V, W of C and all identity objects (1,u).

21.12 T explain the final statement of (2I.10). For each V' in C, there is a representation
rv:G — GL,(y) defined by

ry(gv=Ay(v)if g =(Ay) € G(R) and v € V(R).

The functor sending V' to w(V) endowed with this action of G is an equivalence of cate-
gories C — Rep(G).

21.13 A tannakian category C is said to be algebraic if there exists an object V' such that
every other object is a subquotient of P(V, V) for some P € N[X,Y]. If G is an algebraic
group, then (8.31)) and show that Rep(G) is algebraic. Conversely, if Rep(G) is
algebraic, with generator V, then G is algebraic because G C GLy .



236 I. Basic Theory of Affine Groups

21.14 Tt is usual to write Aut® () (functor of tensor automorphisms of w) for the affine
group G attached to the neutral tannakian category (C,w) — we call it the Tannaka dual
or Tannaka group of (C,w). We sometimes denote it by 7(C, w).

EXAMPLE 21.15 If C is the category of finite-dimensional representations of an algebraic
group H over k and w is the forgetful functor, then G(R) >~ H(R) by (10.2), and C —
Rep(G) is the identity functor.

EXAMPLE 21.16 Let N be a normal subgroup of an algebraic group G, and let C be the
subcategory of Rep(G) consisting of the representations of G on which N acts trivially.
The group attached to C and the forgetful functor is G/ N (alternatively, this can be used as
a definition of G/ N).

21.17 Let (C,w) and (C’,w’) be neutral tannakian categories with Tannaka duals G and
G’. An exact tensor functor F:C — C’ such that o’ o F = @ defines a homomorphism
G’ — G, namely,

(AV)veobc’) = (AFV)Veon(c):G'(R) = G(R).

21.18 Let C = Rep(G) for some algebraic group G.

(a) For an algebraic subgroup H of G, let C¥ denote the full subcategory of C whose
objects are those on which H acts trivially. Then C¥ is a neutral tannakian category
whose Tannaka dual is G/ N where N is the smallest normal algebraic subgroup of
G containing H (intersection of the normal algebraic subgroups containing H ).

(b) (Tannaka correspondence.) For a collection S of objects of C = Rep(G), let H(S)
denote the largest subgroup of G acting trivially on all V' in §; thus

H(S) = () Ker(ry:G — Aut(V)).
VveS

Then the maps S — H(S) and H — CH form a Galois correspondence
{subsets of ob(C)} = {algebraic subgroups of G},

i.e., both maps are order reversing and C(5) 5 § and H(CH) > H forall S and H.
It follows that the maps establish a one-to-one correspondence between their respec-
tive images. In this way, we get a natural one-to-one order-reversing correspondence

{tannakian subcategories of C} P {normal algebraic subgroups of G}

(a tannakian subcategory is a full subcategory closed under the formation of duals,
tensor products, direct sums, and subquotients).

21c Gradations on tensor categories

21.19 Let M be a finitely generated abelian group. An M -gradation on an object X of an
abelian category is a family of subobjects (X™),,epm such that X =P, cp X An M-
gradation on a tensor category C is an M -gradation on each object X of C compatible with
all arrows in C and with tensor products in the sense that (X ® V)" = 5 X"® XS,

r+s=m
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Let (C,w) be a neutral tannakian category, and let G be its Tannaka dual. To give an
M -gradation on C is the same as to give a central homomorphism D(M) — G(w): a
homomorphism corresponds to the M -gradation such that X™ is the subobject of X on
which D(M) acts through the character m (Saavedra Rivano||1972; Deligne and Milne
1982, §5).

21.20 Let C be a semisimple k-linear tensor category such that End(X) = k for every
simple object X in C, and let /(C) be the set of isomorphism classes of simple objects in
C. For elements x, x1,..., X, of I(C) represented by simple objects X, X1,..., X;,, write
X <X1®:-®xpy if X is a direct factor of X; ® ---® X,,. The following statements are
obvious.

(a) Let M be a commutative group. To give an M -gradation on C is the same as to give
amap f:1(C) — M such that

X <x1®x2 = f(x) = f(x1)+ f(x2).

A map from /(C) to a commutative group satisfying this condition will be called a
tensor map. For such a map, f(1) = 0, and if X has dual XV, then f([XV]) =
—f([X]).

(b) Let M(C) be the free abelian group with generators the elements of /(C) modulo the
relations: x = x1 4+ x2 if x < x1 ® x5. The obvious map /(C) — M (C) is a universal
tensor map, i.e., it is a tensor map, and every other tensor map /(C) — M factors
uniquely through it. Note that /(C) — M(C) is surjective.

21.21 Let (C,w) be a neutral tannakian category such that C is semisimple and End(V') =

k for every simple object in C. Let Z be the centre of G o Aut®(w). Because C is semisim-
ple, G° is reductive (II, ), and so Z is of multiplicative type. Assume (for simplicity)
that Z is split, so that Z = D(N) with N the group of characters of Z. According to
(21.19), to give an M -gradation on C is the same as giving a homomorphism D(M) — Z,
or, equivalently, a homomorphism N — M. On the other hand, (21.20) shows that to
give an M -gradation on C is the same as giving a homomorphism M (C) — M. Therefore
M(C) >~ N. In more detail: let X be an object of C; if X is simple, then Z acts on X
through a character n of Z, and the tensor map [X ]+ n: I(C) — N is universal.

21.22 Let (C,w) be as in (21.21), and define an equivalence relation on /(C) by
a~a <= thereexist xy,...,X,; € I(C) suchthata,a’ < x1 ® -+ ® Xp,.

A function f from /(C) to a commutative group defines a gradation on C if and only if
f(a) = f(a’) whenever a ~ a’. Therefore, M(C) >~ I(C)/~ .

ASIDE 21.23 Discuss the prehistory: Tannaka (cf. Serre 1973, p. 71, remark), Krein (cf. Breen),
Chevalley (book), Hochschild and Mostow 1969, §4 (AIM 91, 1127-1140).

EXERCISES

EXERCISE 21-1 Use the criterion (I2.19) to show that the centralizer of a torus in a con-
nected algebraic group is connected.






CHAPTER I I

Lie Algebras and Algebraic Groups

The Lie algebra of an algebraic group is the (first) linear approximation to the group. The
study of Lie algebras is much more elementary than that of algebraic groups. For example,
most of the results on Lie algebras that we shall need are proved already in the undergrad-
uate text Erdmann and Wildon|2006.

Throughout this chapter k is a field.

NOTES Most sections in this chapter are complete, but need to be revised (especially Section 4,
which, however, can be skipped).

(1 The Lie algebra of an algebraic group| . . . ... ... ... .. .. ..... 239
2~ Lie algebras and algebraic groups| . . . . . . . ... ... ... 255
[3 Nilpotent and solvable Lie algebras|. . . . . ... ... ... ... ... ... 264
¥ Unipotent algebraic groups and nilpotent Lie algebras| . . . . . ... ... .. 273
[5 Semisimple Lie algebras and algebraic groups| . . . . . . ... ... ... 277
[6 Semisimplicity of representations|. . . . . . . . ... ... 287

1 The Lie algebra of an algebraic group

An algebraic group is a functor R ~» G(R): Alg; — Grp. The Lie algebra of G depends only
on the value of the functor on the k-algebra of dual numbers, but it nevertheless contains a
surprisingly large amount of information about the group, especially in characteristic zero.

la Lie algebras: basic definitions
DEFINITION 1.1 A Lie algebra' over a field k is a vector space g over k together with a
k-bilinear map
[.]:gxg—g
(called the bracket) such that

'Bourbaki LIE, Historical Notes to Chapter I to III writes:

The term “Lie algebra” was introduced by H. Weyl in 1934; in his work of 1925, he had used the
expression “infinitesimal group”. Earlier mathematicians had spoken simply of the “infinitesi-
mal transformations X1 f,..., X, f” of the group, which Lie and Engel frequently abbreviated

by saying “the group X1 f,..., X, f.

239
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(a) [x,x]=0forall x € g,
®) [x.[v.z2]] +[y.[z,x]] + [z.[x,y]] =0 for all x,y,z € g.

A homomorphism of Lie algebras is a k-linear map «: g — g’ such that

a([x,y]) = [a(x),a(y)] forallx,y €g.

A Lie subalgebra of a Lie algebra g is a k-subspace s such that [x, y] € s whenever x,y € s
(i.e., such that [s,s] C s).

Condition (b) is called the Jacobi identity. Note that (a) applied to [x + y, x + y] shows
that the Lie bracket is skew-symmetric,

[x,y] =—[y,x], forall x,y € g, (126)
and that (126) allows the Jacobi identity to be rewritten as

[x.[y.zl] = [[x. y]. 2] + [y. [x.2]] (127)

or
[,y 2] =[x, [y, 2]l = [y, [, 2] (128)

An injective homomorphism is sometimes called an embedding, and a surjective homo-
morphism is sometimes called a quotient map.
We shall be mainly concerned with finite-dimensional Lie algebras.

EXAMPLE 1.2 For any associative k-algebra A, the bracket [a,b] = ab — ba is k-bilinear.
It makes A into a Lie algebra because [a,a] is obviously 0 and the Jacobi identity can be
proved by a direct calculation. In fact, on expanding out the left side of the Jacobi identity
for a,b,c one obtains a sum of 12 terms, 6 with plus signs and 6 with minus signs; by
symmetry, each permutation of a, b, c must occur exactly once with a plus sign and exactly
once with a minus sign. When A is the endomorphism ring Endy_;;, (V') of a k-vector space
V', this Lie algebra is denoted gly, and when A = M, (k), it is denoted gl,,. Let ¢;; be the
matrix with 1 in the ij th position and 0 elsewhere. These matrices form a basis for gl,;, and

leij.eirjr] =68 ireijr —bijreirj  (8;; = Kronecker delta).

EXAMPLE 1.3 Let A be a k-algebra (not necessarily associative). A derivation of A is a
k-linear map D: A — A such that

D(ab) = D(a)b+aD(b) foralla,b € A.

The composite of two derivations need not be a derivation, but their bracket

def

[D.E]¥DoE—EoD

is, and so the set of k-derivations A — A is a Lie subalgebra Dery (A) of gl4.
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EXAMPLE 1.4 For x € g, let adg x (or adx) denote the map y — [x, y]:g — g. Then ady x
is a k-derivation because (127)) can be rewritten as

ad(x)[y.z] = [ad(x)y.z] + [y, ad(x)z].

In fact, adg is a homomorphism of Lie algebras g — Der(g) because (128)) can be rewritten
as

ad([x, y])z = ad(x)(ad(y)z) —ad(y)(ad(x)z).
The kernel of ady: g — Derg (g) is the centre of g,

def
z(g) = {x € g|[x.g] = 0}.
The derivations of g of the form adx are said to be inner (by analogy with the automor-
phisms of a group of the form inn g).

1b The isomorphism theorems

An ideal in a Lie algebra g is a subspace a such that [x,a] € aforall x eganda eca
(i.e., such that [g,a] C a). When a is an ideal, the quotient vector space g/a becomes a Lie
algebra with the bracket

[x+a,y+a=][xy]+a

The following statements are straightforward consequences of the similar statements for
vector spaces.

1.5 (Existence of quotients). The kernel of a homomorphism g — q of Lie algebras is an
ideal, and every ideal a is the kernel of a quotient map g — g/a.

1.6 (Homomorphism theorem). The image of a homomorphism «:g — g’ of Lie algebras
is a Lie subalgebra ag of ¢/, and « defines an isomorphism of g/ Ker(«) onto ag; in partic-
ular, every homomorphism of Lie algebras is the composite of a surjective homomorphism
with an injective homomorphism.

1.7 (Isomorphism theorem). Let § and a be Lie subalgebras of g such that [h, a] C a; then
b+ ais a Lie subalgebra of g, h N a is an ideal in h, and the map

x+hNar>x+ah/hNa— (h+a)/a

is an isomorphism.

1.8 (Correspondence theorem). Let a be an ideal in a Lie algebra g. The map h +— h/a is
a one-to-one correspondence between the set of Lie subalgebras of g containing a and the
set of Lie subalgebras of g/a. A Lie subalgebra h containing a is an ideal if and only if h/a
is an ideal in g/a, in which case the map

g/b— (g/a)/(h/a)

is an isomorphism
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1c The Lie algebra of an algebraic group
Let G be an algebraic group over a field k, and let k[¢] be the ring of dual numbers:

def

kle] = k[X1/(X?).
Thus k[e] = k @ ke as a k-vector space and £2 = 0. There is a homomorphism
w:kle] — k, m(a+eb)=a.
DEFINITION 1.9 For an algebraic group G over k,

Lie(G) = Ker(G(k[¢]) — G (k)).

Following a standard convention, we often write g for Lie(G), h for Lie(H ), and so on.

EXAMPLE 1.10 Let G = GL,, and let I, be the identity n X n matrix. An n X n matrix A
gives an element I, + ¢A of M, (k[e]), and

(In +eA)(In —€A) = Ip;

therefore I, + ¢A € Lie(GL,). Clearly every element of Lie(GL,) is of this form, and so

the map
def

A E(A)=1,+¢A: M, (k) — Lie(GL,)
is a bijection. Note that
E(A)E(B)=Un+e¢A), +¢eB)

=1, +e(A+ B)
= E(A+ B).

In the language of algebraic geometry, Lie(G) is the tangent space to |G| at 1 (see CA
§18).

PROPOSITION 1.11 Let Ig be the augmentation ideal in O(G), i.e., Ig = Ker(e: O(G) —
k). Then
Lie(G) ~ Homy_j,(Ig /I, k). (129)

PROOF. By definition, an element x of Lie(G) gives a commutative diagram

O(G) —= kle]
5 -
k —— k,
and hence a homomorphism /g — Ker(w) >~ k on the kernels. That this induces an iso-

morphism (129) is proved in CA[18.9] o

From (129), we see that Lie(G) has the structure of k-vector space, and that Lie is a
functor from the category of algebraic groups over k to k-vector spaces.
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THEOREM 1.12 There is a unique way of making G ~ Lie(G) into a functor to Lie alge-
bras such that Lie(GL,) = gl (as Lie algebras).

Without the condition on Lie(GL,), we could, for example, take the bracket to be zero.
It is clear from the definition of the Lie algebra that an embedding of algebraic groups
G — H defines an injection Lie G — Lie H of k-vector spaces. On applying this remark
to an embedding of G into GL,,, we obtain the uniqueness assertion. The existence assertion
will be proved later in this section.

REMARK 1.13 Ifa # 0, thena +be = a(l + 28) has inverse a =1 (1 — gs) in k[¢], and so
kle]* ={a+be|a #0}.

An element of Lie(G) is a k-algebra homomorphism «: O(G) — k[¢] whose composite
with € — 0 is €. Therefore, elements of O(G) not in the kernel m of € map to units in k[e],
and so « factors uniquely through the local ring O(G)y,. This shows that Lie(G) depends
only on O(G)y,. In particular, Lie(G°) ~ Lie(G).

REMARK 1.14 There is a more direct way of defining the action of k£ on Lie(G): an ele-
ment ¢ € k defines a homomorphism of k-algebras

Uc:kle] = kle], ucla+eb)=a+ceh
such that 7 ou, = 7, and hence a commutative diagram

Gkle) ~2 Gke)

lG(n) lG(n)
Gkk)y —s Gk),

which induces a homomorphism of groups Lie(G) — Lie(G). For example, when G =
GLI’M
Guc)E(A) =Guc)(In+eA)=1,+ceA = E(cA).

This defines a k-vector space structure on Lie G, which agrees that given by (129).

NOTES The definition (1.9) is valid for any functor G:Alg; — Grp. See DG I, §4, 1.

1d Examples
1.15 By definition

Lie(SL,) = {I + Ae € My (k[e]) | det({ + Ae) = 1}.
When we expand det(/ + ¢A) as a sum of n! products, the only nonzero term is
[Tiei (A +eai) =1+eY ) ai.
because every other term includes at least two off-diagonal entries. Hence

det(/ +eA) = 1+ etrace(A)
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and so
sl & Lie(SLy) = {I + A | trace(4) = 0}
~{A e My (k) | trace(A) = 0}.

For n xn matrices A = (a;;) and B = (b;;),

trace(AB) = Z aijbj; = trace(BA). (130)

1<i,j<n

Therefore [A, B] = AB — BA has trace zero, and sl,, is a Lie subalgebra of gl,,.

1.16 Recall (I, that T, (resp. Uy, resp. D) is the group of upper triangular (resp.
upper triangular with 1s on the diagonal, resp. diagonal) invertible matrices. As

1+ ec11 £C12 &C1n—1 ECln
0 1+ecry - ECopn—1 £Cop
Lie(T,) = : : : : ,
0 0 oo l4+ecp—1n—1 ECn—1n
0 0 b 0 1+8Cnn
we see that

by o Lie(T,) >~ {(cij) | ¢;j =0ifi > j} (upper triangular matrices).

Similarly,

1y, &ef Lie(U,) >~ {(cij) | cij =0if i > j} (strictly upper triangular matrices)
o def Lie(Dn) >~ {(cij) | cij =0ifi # j} (diagonal matrices).

These are Lie subalgebras of gl,,.

1.17 Assume that the characteristic # 2, and let O, be orthogonal group:
O, ={AecGL,|A"-A=1} (A" =transpose of A).
For I +¢A € M, (k[¢]),
(I+eA) - (I+eAd)=U+eA")-(I+eA)=1+cA +¢A,
and so

Lie(O,) ={I +sA € My(k[e]) | A"+ A =0}
~{A € My (k)| A is skew symmetric}.

Similarly, Lie(SO,) consists of the skew symmetric matrices with trace zero, but obviously
the second condition is redundant, and so

Lie(SO,) = Lie(0,).

This also follows from the fact that SO,, = O;, (see|1.13).
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1.18 Let G be a finite étale algebraic group. Then O(G) is a separable k-algebra, and
every quotient of O(G) is separable (I, [12.4). The only separable subalgebra of k[e] is k,
and so G(k[e]) = G(k) and Lie(G) = 0. This also follows from the fact that

Lie(G) = Lie(G°) = Lie(1) =0
(see[l.13).

1.19 Let k have characteristic p # 0, and let G = o, so that &, (R) ={r € R | r? =0}
(see[lL 3.3). Then ap (k) = {0} and a, (k[¢]) = {ae | a € k}. Therefore,

Lie(ap) ={ac|ack} ~k.

Similarly,
Lie(up) ={l+ae|ack}~k.

As the bracket on a one-dimensional Lie algebra must be trivial, this shows that o, and
have the same Lie algebra.

1.20 Let V be a vector space over k. Every element of V() < k[e] ®x V can be written
uniquely in the form x + ¢y with x,y € V, i.e.,, V(e) =V @ eV. The k[e]-linear maps
V(e) — V(e) are the maps « + ¢, v, B € Endg i, (V'), where

(a+ef)(x +ey) = a(x)+e(a(y) +B(x)). (131

To see this, note that Endy_j;,(V (¢)) >~ M>(Endg_j;, (1)), and that & acts as ((1’ 8) € M»(Endg (V)).
p

Thus
Endgpepiin(V(€)) = { (;)f 8) € My (Endy (V) (;‘j ’2) ((1) 8) _ ((1) 8) (;‘j g)}

- { (g 2) € Mz(Endk(V))} .

It follows that
GLy (k[e]) = {« + &f | « invertible}

and that
Lie(GLy) = {idy +ea | @ € End(V)} >~ End(V) = gly.
1.21 Let V be a finite-dimensional k-vector space, and let D,(V') denote the algebraic
group R ~» Homyg y;,, (V. R) (seell} [3.6). Then
Lie(Da(V)) =~ Homy yi (V. k)
(as a k-vector space). Similarly,

Lie(Vy) ~ V.

1.22 Let ¢:V x V — k be a k-bilinear form, and let G be the subgroup of GLy of «
preserving the form, i.e., such that

G(R) ={a € GLy(R) | ¢p(ax,ax’) = ¢(x,x") forall x,x" € V(R)}.
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Then Lie(G) consists of the endomorphisms id +s« of V() such that
o ((id+ea)(x +ey), ([d+ea)(x +ey)) =p(x +ey,x" +&y"), allx,y,x',y eV.
The left hand side equals
d(x+ey+e-ax,x' +ey +e-ax’)=¢(x+ey,x +ey) +e(@(ax,x’) +o(x,ax’)),
and so

Lie(G) ~ {o € Endg_jin(V) | ¢ (ax,x’) + ¢(x,ax’) =0all x,x" € V}.

1.23 Let G be the unitary group defined by a quadratic extension K of k (I, [3.11)). The
Lie algebra of G consists of the A € M,,(K) such that

(I +eA)*(I +ed) =1

i.e., such that
A*+A=0.

Note that this is not a K-vector space, reflecting the fact that G is an algebraic group over
k,not K.

1.24 Let G = D(M) (see [, §14c), so that G(R) = Hom(M, R*) (homomorphisms of
abelian groups). On applying Hom(M,—) to the split-exact sequence of commutative
groups

ar—~>1+ae e—>0

0 k kle]* k* 0,

we find that
Lie(G) ~ Hom(M,k) ~ Hom(M,Z) ®z k.

A split torus 7T is the diagonalizable group associated with M = X(T'). For such a group,
Lie(T) ~ Hom(X(T),Z) ®z k

and
Homy, j;,(Lie(T),k) ~ k ®z X(T).

le Description of Lie(G) in terms of derivations

DEFINITION 1.25 Let A be a k-algebra and M an A-module. A k-linear map D: A — M
is a k-derivation of A into M if

D(fg)=f-D(g)+g-D(f) (Leibnizrule).

For example, D(1) = D(1x1) = D(1) + D(1) and so D(1) = 0. By k-linearity, this
implies that
D(c) =0forall ¢ € k. (132)

Conversely, every additive map A — M satisfying the Leibniz rule and zero on k is a k-
derivation.
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Let a: A — k|e] be a k-linear map, and write

a(f)=ao(f)+ear(f).

Then
a(fg) =a(f)a(g)

if and only if

ao(fg) = ao(f)ao(g) and
a1(fg) = ao(f)a1(g) +ao(g)ar(f).

The first condition says that g is a homomorphism A — k and, when we use o to make k
into an A-module, the second condition says that o is a k-derivation A — k.

Recall that O(G) has a co-algebra structure (A,€). By definition, the elements of
Lie(G) are the k-algebra homomorphisms O(G) — k|[g] such that the composite

0
O(G) -5 k[e] =5 k
is €, 1.e., such that g = €. Thus, we have proved the following statement.

PROPOSITION 1.26 There is a natural one-to-one correspondence between the elements of
Lie(G) and the k -derivations O(G) — k (where O(G) acts on k through €), i.e.,

Lie(G) ~ Derg ((O(G).k). (133)

The correspondence is € +&D <> D, and the Leibniz condition is
D(fg) =€(f)-D(g)+€(g)-D(f) (134)

1f Extension of the base field
PROPOSITION 1.27 For any field K containing k, Lie(Gg) ~ K ®j Lie(G).

PROOF. We use the description of the Lie algebra in terms of derivations (I33). Let ¢; be a
basis for O(G) as a k-vector space, and let

ejej = Zaijkek, aijk € k.

In order to show that a k-linear map D:A — k is a k-derivation, it suffices to check the
Leibniz condition on the elements of the basis. Therefore, D is a k-derivation if and only
if the scalars ¢; = D(e;) satisfy

Zkal—jkck =e€(ej)cj +e(ej)ci

for all i, j. This is a homogeneous system of linear equations in the ¢;, and so a basis for
the solutions in k is also a basis for the solutions in K (see the next lemma).
(Alternatively, use that

Lie(G) ~ Homy_i,(Ig /1. k)

and that /g, ~ K ®¢ IG.) o
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LEMMA 1.28 Let S be the space of solutions in k of a system of homogeneous linear
equations with coefficients in k. Then the space of solutions in any k-algebra R of the
system of equations is R ®y, S.

PROOF. The space S is the kernel of a linear map

0>S—>V-SWw.

Tensoring this sequence with R gives a sequence

id
0> RS — R,V 28" Re W,

which is exact because R is flat. Alternatively, for a finite system, we can put the matrix of
the system of equations in row echelon form (over k), from which the statement is obvious.n

REMARK 1.29 Let G be an algebraic group over k. For a k-algebra R, define
9(R) = Ker(G(R[¢e]) = G(R))

where R[] = k[¢] ®x R ~ R[X]/(X?). Then, as in (1.26), g(R) can be identified with the
space of k-derivations A — R (with R regarded as an A-module through ¢), and the same
proof shows that

g(R) ~ R®y g(k) (135)
where g(k) = Lie(G). In other words, the functor R ~~ g(R) is canonically isomorphic to
ga-
1g The adjoint map Ad: G — Aut(g)

For any k-algebra R, we have homomorphisms

R—5 Rle] 55 R, i(@)=a+e0, n(ateb)=a, moi=idg.

For an algebraic group G over k, they give homomorphisms
G(R) — G(R[e]) = G(R), moi =idg(r)

where we have written i and 7 for G(i) and G (7). Let g(R) = Ker(G(R]¢]) N G(R)),
so that
g(R) ~ R®y g(k)

(see|l.29). We define
Ad: G(R) — Aut(g(R))

by
Ad(g)x =i(g)-x-i(g)"". geG(R), xeg(R)CG(Rle].

The following formulas hold:

Ad(g)(x +x") = Ad(g)x +Ad(g)x’, g€ G(R), x,x €g(R)
Ad(g)(cx) =c(Ad(g)x), g€G(R), ceR, xeg(R).
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The first is clear from the definition of Ad, and the second follows from the description of
the action of ¢ in (1.14). Therefore Ad maps into Autg.;in(g(R)). All the constructions are
clearly natural in R, and so we get a natural transformation

Ad:G — Aut(gq)

of group-valued functors on Algy,.
Let f:G — H be a homomorphism of algebraic groups over k. Because f is a functor,
the diagrams

G(R[e) —— G(R) G(R[]) «—— G(R)
lf(R[s]) Jf(R) lf(R[s]) lf(R)
H(R[e]) —— H(R) H(R[e]) «—— H(R)

commute. Thus f defines a homomorphism of functors

Lie(f):ga = ba.
and the diagrams

G(R) x g(R)—— g(R)

lf lLie(f) TLie(f)

H(R) x  Bh(R) —— g(R)

commute for all R, i.e.,
Lie(f)(Adg(g)-x) = Adu(f(g))-x, g€G(R), x€g(R). (136)

1h First definition of the bracket

The idea of the construction is the following. In order to define the bracket [, ]:gx g — g,
it suffices to define the map ad: g — glg, ad(x)(y) = [x, y]. For this, it suffices to define a
homomorphism of algebraic groups ad: G — GL, or, in other words, an action of G on g.
But G acts on itself by inner automorphisms, and hence on its Lie algebra.

In more detail, in the last subsection, we defined a homomorphism of algebraic groups

Ad:G — GL,.
Specifically,
Ad(g)x =i(g)-x-i(g)~", ge€G(R). xeg(R)CG(R[e).

On applying the functor Lie to the homomorphism Ad, we obtain a homomorphism of
k-vector spaces

1.20)
ad:LieG — LieGL, Endy ;0 (9).

DEFINITION 1.30 For a, x € Lie(G),

[a,x] = ad(a)(x).
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LEMMA 1.31 For G = GL,, the construction gives [A, X] = AX — XA.

PROOF. An element / + ¢A € Lie(GL,) acts on M,,(k[¢]) as
X+eY > +eA) (X +eY)I —eA)=X+¢eY +e(AX — XA).
On comparing this with (1.20)), we see that ad(A4) acts as id +e« where ¢ (X) = AX — XA.g

LEMMA 1.32 The construction is functorial in G, i.e., the map Lie G — Lie H defined by
a homomorphism of algebraic groups G — H is compatible with the two brackets.

PROOF. This follows from (136). o

Because the bracket [4, X] = AX — XA on gl,, satisfies the conditions in (1.1]) and every
G can be embedded in GL, (I, [8.31)), the bracket on Lie(G) makes it into a Lie algebra.
This completes the first proof of Theorem 1.1

1i Second definition of the bracket

Let A = O(G), and consider the space Dery (A, A) of k-derivations of A into A (with A
regarded as an A-module in the obvious way). The bracket

(D,.D1¥ DoD' —D'oD

of two derivations is again a derivation. In this way Dery (A4, A) becomes a Lie algebra.
Let G be an algebraic group. A derivation D:O(G) — O(G) is left invariant if

AoD =(id®D)o A. (137)
If D and D’ are left invariant, then
Ao[D,D'l|=Ao(DoD'—D"oD)
= ({d®(D o D')—id®(D’ o D))
= (id®[D,D'])o A
and so [D, D] is left invariant.
PROPOSITION 1.33 The map D + € o D:Der (O(G),O(G)) — Deri (O(G), k) defines

an isomorphism from the subspace of left invariant derivations onto Dery (O(G), k).

PROOF. If D is a left invariant derivation O(G) — O(G), then
D "E (id@e)o a0 D B (ld@e) o (([d®D) o A = (id® (c 0 D))o A

and so D is determined by € o D. Conversely, if d:O(G) — k is a derivation, then D =
(id®d) o A is a left invariant derivation O(G) — O(G). o

Thus, Lie(G) is isomorphic (as a k-vector space) to the space of left invariant deriva-
tions O(G) — O(G), which is a Lie subalgebra of Dery (O(G), O(G)). In this way, Lie(G)
acquires a Lie algebra structure, which is clearly natural in G.

It remains to check that, when G = GL,,, this gives the bracket [A, B] = AB — BA (left
as an exercise for the present).
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1j The functor Lie preserves fibred products

PROPOSITION 1.34 For any homomorphisms G — H < G’ of algebraic groups,

Lie(G xg G') ~ Lie(G) x;e(sr) Lie(G). (138)

PROOF. By definition (I §4D)),
(G X H G/) (R)=G(R)xpr)G'(R), R ak-algebra.
Therefore,

Lie(G XH G/) = Ker (G(k[é‘]) X H(k[e]) G/(k[é‘]) —> G(k) X H (k) G/(k))
={(g,g") € G(k[g]) x G'(k[e]) | g.&" have the same image in H (k[¢]), G(k), and G'(k)}
= Ker(G(k[e]) — G(k)) X H(k[e]) Ker (G/(k[s]) — G/(k))
= Lie(G) Xpe(m) Lie(G). O

EXAMPLE 1.35 Letk be a field of characteristic p # 0. There are fibred product diagrams:

id

wp —  Gm k —— &

l lyH(y" y)  Lie | lid lc'—>(0,6)

Gm ——— G xGp k —— kxk.
x—(1,x) e (0,¢)

EXAMPLE 1.36 Recall (I,[7.15)) that the kernel of a homomorphism «: G — H of algebraic
groups can be obtained as a fibred product:

Ker(e) —— {1y}
G —>s H
Therefore (138)) shows that
Lie(Ker(«)) = Ker(Lie(x)).

In other words, an exact sequence of algebraic groups 1 — N — G — H gives rise to an
exact sequence of Lie algebras

0 — LieN — LieG — Lie H.

For example, the exact sequence (cf. [1.35)

p
5w, x—>(x,x) Gy % Gy x,)=>»?,x/y) G,y % Gy

gives rise to an exact sequence

O_}k .X'_)(x,x) k@k (x,y)l—)(O,x—y) k@k
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EXAMPLE 1.37 Let H and H’ be algebraic subgroups of an algebraic group G. The al-
gebraic subgroup H N H' with (H N H')(R) = H(R) N H'(R) (inside G(R)) is the fibred
product of the inclusion maps, and so

Lie(H N H') = Lie(H) NLie(H’) (inside Lie(G)).
More generally,
Lie(ﬂiel H;) = ﬂieILie H; (inside Lie(G)) (139)

for any family of subgroups H; of G.
For example, the homomorphisms in (1.35) realize G, in two ways as subgroups of
Gm x Gy, which intersect in 4, and so

Lie(up) = Lie(G,;) NLie(G,,)  (inside Lie(Gy x Gi)).

1.38 The examples|1.35H1.37|show that the functor Lie does not preserve fibred products,
left exact sequences, or intersections in the category of smooth algebraic groups.

1.39 The sequence

p
151, x>(x,x) Gy % Gy (x,»)>(?,x/y) Gy % Gy — 1

is exact in the category of algebraic groups over k, but

0o k x> (x,x) ke k (x,y)~(0,x—y) K@k -0

is not exact, and so functor Lie is not right exact.

1k Abelian Lie algebras

A Lie algebra g is said to be abelian (or commutative) if [x, y] = 0 for all x,y € g. Thus,
to give an abelian Lie algebra amounts to giving a finite-dimensional vector space.

If G is commutative, then Lie(G) is commutative. This can be seen directly from the
first definition of the bracket because the inner automorphisms are trivial if G is commuta-
tive. Alternatively, observe that if G is a commutative subgroup of GL,, then Lie(G) is a
commutative subalgebra of Lie(GLj,). See also below.

11 Normal subgroups and ideals

A normal algebraic subgroup N of an algebraic group G is the kernel of a quotient map
G — Q (seell}[8.70); therefore, Lie(N) is the kernel of a homomorphism of Lie algebras
LieG — Lie Q (see[I.36), and so is an ideal in Lie G. Of course, this can also be proved
directly.
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Im Algebraic Lie algebras

A Lie algebra is said to be algebraic if it is the Lie algebra of an algebraic group. A sum of
algebraic Lie algebras is algebraic Let g = Lie(G), and let h) be a Lie subalgebra of g. The
intersection of the algebraic Lie subalgebras of g containing § is again algebraic (see (139))
— it is called the algebraic envelope or hull of |y.

Let h be a Lie subalgebra of gly,. A necessary condition for h to be algebraic is that the
semisimple and nilpotent components of each element of ) (as an endomorphism of gly)
lie in h. However, this condition is not sufficient, even in characteristic zero.

Let h be a Lie subalgebra of gly over a field k of characteristic zero. We explain how to
determine the algebraic hull of ). For any X € b, let g(X) be the algebraic hull of the Lie
algebra spanned by X. Then the algebraic hull of § is the Lie subalgebra of gly, generated
by the g(X), X € b. In particular, b is algebraic if and only if each X is contained in an
algebraic Lie subalgebra of ). Write X as the sum S + N of its semisimple and nilpotent
components. Then g(N) is spanned by N, and so we may suppose that X is semisimple.
For some finite extension L of k, there exists a basis of L ® V' for which the matrix of X is
diag(aq,...,0n). Let W be the subspace M,, (L) consisting of the matrices diag(ay,...,a,)

such that
Zi ciaj=0,ci e L — Zi cia; =0,
i.e., such that the g; satisfy every linear relation over L that the o; do. Then the map
gly > L®gly ~ M, (L)

induces maps
g(X) > LRg(X) =W

See |Chevalley|1951]| (also|Fieker and de Graaf|2007|where it is explained how to implement
this as an algorithm).

1.40 The following rules define a five-dimensional solvable Lie algebra g = € .; <5 kx;:
[x1,x2] = x5, [x1,x3] = X3, [x2, x4] = x4, [x1,x4] = [x2,x3] = [x3,x4] = [x5,9] =0

(Bourbaki|LIE, I, §5, Exercise 6). For every injective homomorphism g < gly, there exists
an element of g whose semisimple and nilpotent components (as an endomorphism of V')
do not lie in g (ibid., VII, §5, Exercise 1). It follows that the image of g in gly is not the Lie
algebra of an algebraic subgroup of GLy (ibid., VII, §5, 1, Example).

NOTES Need to prove the statements in this subsection (not difficult). They are important in

In The exponential notation

Let S be an R-algebra, and let a be an element of S such that a> = 0. There is a unique
R-algebra homomorphism R[¢] — S sending ¢ to a. Following DG, II §4, 3.7, p.209, we
denote the image of x € Lie(G)(R) under the composite

Lie(G)(R) — G(R[e]) — G(S)
by e?*. For example, x = e®* in G(R[¢]). For x,y € Lie(G)(R),

e@XHY) = XY (in G(S)).
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The action of @ € R on x € Lie(G)(R) is described by
DX — o8@x) (i G(R[e])).
If f:G — H is a homomorphism of algebraic groups and x € Lie(G)(R), then
f(eaX) — ea(Lie(f)(x)).
The adjoint map Ad is described by
ge®Tg = f AN (in G(R[e]),
(g € G(R), x € Lie(G)(R)). Moreover,
Ad(e®*) =id+ead(x) (in Autgn(Lie(G)(R)).
Let x,y € Lie(G)(R) and let a,b € S be of square 0. Then
9% by p—ax p;=by _ ,ablx.y] (in G(S))

(ibid. 4.4).

lo Arbitrary base rings

Now let k be a commutative ring, and let k[¢] = k[X]/(X?). For any smooth affine group
G over k, define g = Lie(G) to be

Lie(G) = Ker(G(k[¢]) 225 G (k).
This is a finitely generated projective k-module, and for any k-algebra R,
Lie(GR) = R®ag.

Therefore, the functor R ~~» Lie(GR) is equal to g,. The action of G on itself by inner
automorphisms defines an action of G on g, and, in fact, a homomorphism

Ad:G — GL4
of affine groups over k. On applying the functor Lie to this, we get the adjoint map
ad:g — Homy_jin (9. 9).
Now we can define a bracket operation on g by
[x,y] =ad(x)y.

Equipped with this bracket, g is a Lie algebra over k. Most of the material in this subsection
extends to smooth affine groups over rings.

NOTES Perhaps should rewrite this subsection for smooth algebraic groups over rings.
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2 Lie algebras and algebraic groups

In this subsection, we apply some algebraic geometry (actually, just commutative algebra
CA) to study the relation between Lie algebras and algebraic groups. The strongest results
require that k have characteristic zero.

2a The dimension of Lie(G) versus the dimension of G

In Chapter [, we defined the dimension of an algebraic group G to be the dimension of the
associated algebraic scheme |G |.

2.1 We list some alternative descriptions of dimG.

(a) According to the Noether normalization theorem (CA , there exists a finite set
S of elements in O(G) such that k[S] is a polynomial ring in the elements of S and
O(G) is finitely generated as a k[S]-module. The cardinality of S is dimG.

(b) Let G° be the identity component of G (see [} [13.12)). The algebraic variety |G°|
is irreducible, and so O(G°)/MN is an integral domain (I} [13.13). The transcendence
degree of its field of fractions is dimG.

(c) Let m be a maximal ideal of O(G). The height of m is dimG.

PROPOSITION 2.2 For an algebraic group G, dimLie G > dim G, with equality if and only
if G is smooth.

PROOF. Because Lie(Gya) ~ Lie(G) ® k* (see|1.27), we may suppose k = k¥, Accord-
ing to (I.TT),

Lie(G) ~ Homy_j;,(m/m?, k)

where m = Ker(O(G) = k). Therefore, dimLie(G) > dim G, with equality if and only if
the local ring O(G)y, is regular (1,16.22), but O(G )y, is regular if and only if G is smooth
(L[6.25). o

EXAMPLE 2.3 We have
dimLieG, = 1 = dimG,
dimLiea, = 1> 0 =dima,
dimLieSL, = n?>—1=dimSL,.
PROPOSITION 2.4 If
l1>N—->G—>0—1
is exact, then

dimG =dim N +dim Q.

PROOF. See o
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2b Applications

PROPOSITION 2.5 Let H be a smooth algebraic subgroup of a connected algebraic group
G. IfLie H = Lie G, then G is smooth and H = G.

PROOF. We have
dim# 2 dimLic H = dimLie G 2 dimG.
Because H is a subgroup of G, dim H < dimG (see[l] [6.24). Therefore
dim H = dimLie(G) = dimG,

and so G is smooth (2.2)) and H = G (see[l} [6.24). o

COROLLARY 2.6 Assume char(k) = 0 and that G is connected. A homomorphism H — G
is a surjective if Lie H — Lie G is surjective.

PROOF. We know (I, that H — G factors into
H—-H-—>G

with H — H surjective and H — G injective. Correspondingly, we get a diagram of Lie
algebras )
Lie H — Lie H — LieG.

Because H — G is injective, Lie H — LieG is injective (1.36). If Lie H — Lie G is surjec-
tive, then Lie H — Lie G is an isor_norphism. As we are in characteristic zero, H is smooth
(1,16.31), and so (2.5)) shows that H = G. O

COROLLARY 2.7 Assume char(k) = 0. If
l1->N—->G—>0—1

is exact, then
0 — Lie(N) — Lie(G) — Lie(Q) — 0

is exact.

PROOF. The sequence 0 — Lie(N) — Lie(G) — Lie(Q) is exact (by|1.36)), and the equal-
ity

dimG & dim N + dim
implies a similar statement for the Lie algebras (by [2.2] as the groups are smooth). This
implies (by linear algebra) that Lie(G) — Lie(Q) is surjective. o

COROLLARY 2.8 The Lie algebra of G is zero if and only if G is étale; in particular, a
connected algebraic group with zero Lie algebra is trivial.
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PROOF. We have seen that the Lie algebra of an étale group is zero (I.18). Conversely, if
Lie G = 0 then G has dimension 0, and so O(G) is a finite k-algebra; moreover, I/ CZ; =0,
which implies that O(G) is étale. o

COROLLARY 2.9 In characteristic zero, a homomorphism G — H of connected algebraic
groups is an isogeny if and only if Lie(G) — Lie(H) is an isomorphism.

PROOF. Apply (2.6), (2.7), and [2.8). o
2.10 The smoothness and connectedness assumptions are necessary in (2.5) because

Lie(ap) = Lie(G,) but ap # G4 and
Lie(SO,) = Lie(0,) but SO, # O,.

The same examples show that the characteristic and connectedness assumptions are neces-
sary in (2.6). The characteristic assumption is necessary in (2.7) because

xt>x?
0=ap—>G;, — G;—0

is exact, but the sequence
0 — Lieap — LieG, — LieG, — 0

is
0k >k -k 0.

which is not exact.

THEOREM 2.11 Assume that char(k) = 0 and that G is connected. The map H + Lie H
from connected algebraic subgroups of G to Lie subalgebras of Lie G is injective and in-
clusion preserving.

PROOF. Let H and H' be connected algebraic subgroups of G. Then (see[1.37)
Lie(H N H') = Lie(H) NLie H').
If Lie(H) = Lie(H’), then
Lie(H) = Lie(H N H') = Lie(H'),
and so (2.5) shows that
H=HNH =H' o

EXAMPLE 2.12 Let k be a field of characteristic zero, and consider GL,, as an algebraic
group over k. According to every algebraic group over k can be realized as a
subgroup of GL, for some n, and, according to (2.11), the algebraic subgroups of GL,
are in one-to-one correspondence with the algebraic Lie subalgebras of gl,. This suggests
two questions: find an algorithm to decide whether a Lie subalgebra of gl, is algebraic
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(i.e., arises from an algebraic subgroup)?; given an algebraic Lie subalgebra of gl,,, find an
algorithm to construct the group. For a recent discussion of these questions, see, de Graaf,
Willem, A. Constructing algebraic groups from their Lie algebras. J. Symbolic Comput. 44
(2009), no. 9, 1223-1233.3

PROPOSITION 2.13 Assume char(k) = 0. Let «, 8 be homomorphisms of algebraic groups
G — H. IfLie(a) = Lie(B) and G is connected, then a = B.

PROOF. Let A denote the diagonal in G x G — it is an algebraic subgroup of G x G
isomorphic to G. The homomorphisms « and 8 agree on the algebraic group

G'E€ANG xyG.
The hypothesis implies Lie(G’) = Lie(A), and so G’ = A. o

Thus, when char(k) = 0, the functor G ~ Lie(G) from connected algebraic groups to
Lie algebras is faithful and exact. It is not fully faithful, because

End(G,,) = Z # k = End(Lie(Gp,)).
Moreover, it is trivial on étale algebraic groups.

2.14 Even in characteristic zero, infinitely many nonisomorphic connected algebraic groups
can have the same Lie algebra. For example, let g be the two-dimensional Lie algebra
(x,¥ | [x,y] =), and, for each nonzero n € N, let G, be the semidirect product G, x Gy,
defined by the action (¢,a) — t"a of G, on G,. Then Lie(G,) = g for all n, but no two
groups G, are isomorphic.

2¢ Representations; stabilizers; isotropy groups

A representation of a Lie algebra g on a k-vector space V is a homomorphism p: g — gly.
Thus p sends x € g to a k-linear endomorphism p(x) of V', and

p(lx.y]) = p(x)p(y) — p(y)p(x).
We often call V' a g-module and write xv for p(x)(v). With this notation
[x.y]v = x(yv) — y(xv). (140)

A representation p is said to be faithful if it is injective. The representation x — adx:g —
gl is called the adjoint representation of g (see[1.4).
Let W be a subspace of V. The stabilizer of W in g is

aw Elxeg|xW C WL

2See

3de Graaf (ibid.) and his MR reviewer write: “A connected algebraic group in characteristic 0 is uniquely
determined by its Lie algebra.” This is obviously false — for example, SL, and its quotient by {£7} have
the same Lie algebra. What they mean (but didn’t say) is that a connected algebraic subgroup of GL; in
characteristic zero is uniquely determined by its Lie algebra (as a subalgebra of gl ).
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It is clear from (I40) that gy is a Lie subalgebra of g.
Let v € V. The isotropy algebra of v in g is

gvdéf{xeglxv:O}.

It is a Lie subalgebra of g. The Lie algebra g is said to fix v if g = gy, i.e., if gv = 0.
Let r:G — GLy be a representation of G on a k-vector space V. Then Lie(r) is a
representation of Lie(G) on V. Recall (I,|8.52) that, for any subspace W of V, the functor

R~ Gw(R) £ {gcG(R) | §(WRR) =W ®R)
is an algebraic subgroup of G, called the stabilizer of W in G .

PROPOSITION 2.15 For any representation G — GLy and subspace W C V,

LieGwy = (LieG)w.

PROOF. By definition, Lie Gy consists of the elements id +ea of G(k[¢]), « € End(V),
such that
(id+ex)(W +eW)C W +eW,

(cf. [1.20)), i.e., such that (W) C W. o

COROLLARY 2.16 If W is stable under G, then it is stable under Lie(G), and the converse
is true when char(k) = 0 and G is connected.

PROOF. To say that W is stable under G means that G = Gy, but if G = Gy, then
LieG = LieGw = (Lie G)y , which means that W is stable under Lie G. Conversely, to
say that W is stable under Lie G, means that LieG = (Lie G)w. But if LieG = (Lie G)w,
then Lie G = Lie Gy, which implies that Gy = G when char(k) = 0 and G is connected

@.3). o

Let 7:G — GLy be a representation of G on a k-vector space V. Recall (I, [8.55)) that,
for any v € V, the functor

def

R~ Gy(R)={geCGR)[gv®]) =vR1}
is an algebraic subgroup of G, called the isotropy group of v in G .
PROPOSITION 2.17 For any representation G — GLy andv € V,

Lie Gv == (Lie G)U .

PROOF. By definition, Lie G, consists of the elements id +ca of G(k[¢]) such that
id(v) + ea(v) = v+ Oe,

i.e., such that a(v) = 0. O
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COROLLARY 2.18 Ifv is fixed by G, then it is fixed by Lie(G), and the converse holds
when char(k) = 0 and G is connected. In other words, V¢ C V9, with equality when
char(k) = 0 and G is connected.

PROOF. The proof is the same as that of Corollary o

2.19 Let V be a one-dimensional vector space over Q, and let x3 act on V' through the
inclusion 3 <> G, = GLy; thus ¢ € u3(C) acts on V(C) as v + {v. Then

VM3 =0

but
3@ — y — plie(us)

For a representation G — GL(V') of G and subspace W of V, the functor

def

R~ Cg(W)(R)={geG(R)|gw=wforallwe W}

is an algebraic subgroup of G because

CG(W) = ﬂ Gy

wesS

for any set S spanning W. It is called the centralizer of W in G. When Cg (W) = G, the
algebraic group G is said to centralize W .
Similarly, for a representation g — gly of g and subspace W of V,

cg(W)déf{xeg|xw:0f0rallweW}

is a Lie subalgebra of g, called the centralizer of W in g. When cy(W) = g, the Lie algebra
g is said to centralize W .

As Lie commutes with intersections (I.37)), Proposition[2.17]implies the following state-
ment.

COROLLARY 2.20 For a representation G — GL(V') of G and subspace W of V,
Lie(Cg(W)) = cg(W).

If G centralizes W, then g centralizes W, and the converse holds when char(k) = 0 and G
is connected.

COROLLARY 2.21 Let G be an algebraic group with Lie algebra g. If G is connected and
k has characteristic zero, then the functor Repy (G) — Repy (g) is fully faithful.

PROOF. Let V and W be representations of G. Let « be a k-linear map V — W, and let
B be the element of V'V ® W corresponding to « under the isomorphism Homy (V, W) =~
VY ® W. Then « is a homomorphism of representations of G if and only if f is fixed by
G. Since a similar statement holds for g, the claim follows from (2.18]). o

)G
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COROLLARY 2.22 Letr:G — GLy be a representation of an algebraic group G, and let
W' C W be subspace of V. There exists an algebraic subgroup Gy w of G such that
Gw .w(R) consists of the elements of G(R) stabilizing each of W/(R) and W(R) and
acting trivially on W(R)/W'(R); its Lie algebra is

Lie(Gw',.w) = gw'.w déf{x € g | Lie(r)(x) maps W into W'}.
PROOF. Apply (2.15) twice, and then (2.20). (See also DG 11, §2, 1.3; §5, 5.7). o

2d Normalizers and centralizers

Clearly z(g) is an ideal in g. For a subalgebra ) of g, the normalizer and centralizer of ) in
g are

ng(h) ={xegl[x.h] Ch}
cg(h) = {x e g|[x.h] = 0}.

Thus ng4(h) is the largest subalgebra of g containing b as an ideal. The centralizer is a
subalgebra; when f is abelian, it is the largest subalgebra of g containing b in its centre.

PROPOSITION 2.23 Let G be an algebraic group, and let H be a connected subgroup of
G.

(a) Then

Lie(Ng(H)) C ng(h)
Lie(Cg(H)) C c4(h)

with equalities when char(k) = 0.

(b) If H is normal in G, then  is an ideal in Lie(G), and the converse holds when
char(k) = 0 and G is connected.

(c) If H lies in the centre of G, then b lies in the centre of g, and the converse holds
when char(k) = 0 and G is connected.

PROOF. (a) We prove this below.

(b) If H is normal in G, then NG (H) = G, and so ng(h) = g by (a); hence b is an ideal
in g. Conversely, if char(k) = 0 and ng4(h) = g, then Lie(Ng (H)) = Lie(G) by (a), which
implies that Ng(H) = G when G is connected (see[2.5).

(c) If H lies in the centre of G, then Cg(H) = G, and so c4(h) = g by (a); hence b lies
in the centre of g. Conversely, if char(k) = 0 and c4(h) = g, then Lie(Cg (H)) = Lie(G),
which implies that Cg (H) = G when G is connected (see[2.5). o

COROLLARY 2.24 For any connected algebraic group G, Lie Z(G) C z(g), with equality
when char(k) = 0. If an algebraic group G is commutative, then so also is its Lie algebra,
and the converse holds when char(k) = 0 and G is connected.

PROOF. Since Z(G) = Cg(G) and z(g) = c4(g), the first statement follows from (a) of the
proposition, and the second follows from the first. O
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PROOF OF PROPOSITION a)

Let H:Alg; — Grp and X:Alg;, — Set be functors, and let # x X — X be an action of H
on X (cf. Let X H be the subfunctor of X,

R~ X" (R)={x e X(R) | hxs = xg forall h € H(S) with S an R-algebra}. (141)
LEMMA 2.25 For all k-algebras R,

XH(R)={x e X(R) | hreSXReS = XRes forallh € H(S) with S a k-algebra}.

PROOF. Let S be a R-algebra, and let So denote S regarded as a k-algebra. The k-algebra
maps R — S and id: So — S define a homomorphism R ®j So — S of k-algebras:

R—— R®; S —— S

A

k — So.

Lethe H(S) = H(Sp), and let x € X(R). If hR®S0xR®S0 = XR®S, iIn X(R® S,), then
hxs = xg in X(S). o

Let H x G — G be an action of an algebraic group H on an algebraic group G by
group automorphisms. Let g = Lie(G). Then H acts on the functor

def

R~ g(R) = R®g(k) ~ Ker(G(R[e]) > G(R))
(see[1.29). By definition (I41)),
g (k) = {x egk) | hxs = x5 (in g(S)) forall h € H(S), S a k-algebra}. (142)
On the other hand, Lemma [2.23]says that
GH(k[s]) ={x € G(kle]) | hs[e1xs[e] = Xs[¢] (in G(S[e])) forall h € H(S), S a k-algebra},
and so

Lie(GH) = {x € Lie(G) | hxs = x5 (in Lie(G7)(S)) for all h € H(S), S a k-algebra}.
(143)
Thus we have proved the following statement.

LEMMA 2.26 Let H xG — G be an action of an algebraic group H on an algebraic group
G by group automorphisms. Then

Lie(GT) ~ Lie(G)H.
LEMMA 2.27 Let G be an algebraic group, and let H be a subgroup of G. Let H act on g
vin H—> G A Aut(g). Then

Lie(Cg(H)) = Lie(G)?
Lie(Ng(H))/Lie(H) ~ (Lie(G)/Lie(H))?.
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PROOF. Recall (I, [7f) that Cg(H) = G (H acting on G by inner automorphisms), and
so the assertion concerning Cg (H) follows directly from Lemma|2.26
Let x € Lie(G). According to Lemma [2.25| x € Lie(Ng(H)) if and only if, for all
k-algebras R and all h € H(R),*
(14 exgpe)hrie) (1 —exprps) € H(R[¢])
(1 —exgrehrie) (1 +exrpg) € H(R[e]),

i.e., that

(1+ exrpe)hrie (1 — exRieDh Rl € H(R[E)
(1 —exrpe)hris) (1 + exrieDh (e € H(R[ED.
But this last condition can be written in the form
1 +e(xg—Ad(h)xgr) € H(R[¢]),

i.e., in the form
xgr—Ad(h)xgr € Lie(H)(R). (144a)

We have shown that x € Lie(Ng(H)) if and only if its image in Lie(G)/Lie(H) is
fixed by H. Therefore the subspace of Lie(G)/Lie(H) fixed by H is Lie Ng(H)/Lie(H).
(Cf. DG I §5,5.7). o

We now prove Proposition [2.23((a). We know (2.27) that
LieNg(H)/Lie H = (LieG/Lie H):

moreover (2.18)), _
(LieG/Lie H)" c (LieG/Lie H )" H

with equality when char(k) = 0 and H is connected. Since

ng(H)/b = (a/H)",

this implies the first statement.

We know that Lie(Cg (H)) = Lie(G) ; moreover , Lie(G)H c Lie(G)le(H)
with equality when char(k) = 0 and G is connected. Since Lie(G)He(H) = cq(h), this
proves the second statement. (Cf. DG II §6, 2.1.)

“4In the notation of this reads:
(€ )Ris1 hRIs) - (€7 ) RIe) € H(Re])
(e ) Rie] R[] (€ ) RIe) € H(R[e]),
i.e., that
() Ris] - hREe] (€ ) RIe] P R[g € H(RIED)
(€™ )Rie] 1R (€I R - rLey € H(RIED.
But this last condition can also be written

e:l:s(xR—Ad(h)xR) c H(R[E]),

ie.,
xg —Ad(h)xg € Lie(H)(R).
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2e A nasty example

2.28 Let k be a field of characteristic p # 0. The following simple example (already
encountered in [I} [7.47) illustrates some of the things that can go wrong in this case. Define
G to be the algebraic subgroup of GL3 such that

0 0
u? a
0 1

G(R) =

S O R

In other words, G is algebraic subgroup defined by the equations X5, = X f) > X33 =1,
X12 = X13 = X21 = X31 = X32 = 0. Note that G is isomorphic to G, x G, but with the
noncommutative group structure

(a,u)(b,v) = (a + bu?,uv).

In other words, G is the semi-direct product G, x G, with u € G, (R) acting on G, (R) as
multiplication by u”. The Lie algebra of G is the semi-direct product Lie(G,) x Lie(G,)
with the trivial action of Lie(Gy,) on Lie(G,) and so is commutative. The centre of G is
{(0,u) | u? = 1} =~ u,, and the centre of G (k™) is trivial. Thus,

Lie(Z(G)req) ; Lie(Z(G)) ;Cé Z(Lie(G)).
On the other hand
(Ad(a,u))(be, 1 +ve) = (buPe, 1+ ¢v)
and so the subset of Lie(G) fixed by Ad(G) is

0xk = Lie(Z(G)).

3 Nilpotent and solvable Lie algebras

We write {(a,b,...) for Span(a,b,...), and we write (a,b,...|R) for the Lie algebra with
basis a, b, ... and the bracket given by the rules R.

3a Definitions

DEFINITION 3.1 A Lie algebra g is said to be solvable (resp. nilpotent) if it admits a
filtration
g=apDa;D--Da,=0 (145)

by ideals such that a; /a;41 is abelian (resp. contained in the centre of a/a;+1). Such a
filtration is called a solvable series (resp. nilpotent series).

In other words, a Lie algebra is solvable (resp. nilpotent) if it can be obtained from
abelian Lie algebras by successive extensions (resp. successive central extensions).
For example,

0 0
b3 = D410 0 D {0}
0 0

o o %
o % %
* % %
U
c oo
o O %
S % %
o O %
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is solvable because [b3, b3] is contained in

0 00
0 0 0

S O *
S * ¥
S O ¥

which is nilpotent. More generally, for any maximal flag
F:V=VW>VN>--D2V,=0
in a vector space V, the Lie algebras
b(F) < {x egly |xV; C Vi
n(F) £ {x e gly | xV; C Vis1}
are respectively solvable and nilpotent.
PROPOSITION 3.2 A Lie algebra g is solvable if and only if its derived series
g0¢ =lg.02¢" =[g.g12-- 2" =[g".g"] >
terminates with zero, and it is nilpotent if and only if its descending central series

i+1

go¢' =[g90e*=g.¢']DDgt =[g.g]D

terminates with zero.

PROOF. If the derived (resp. descending central series) terminates with zero, then it is a
solvable (resp. nilpotent) series. Conversely, if there exists a solvable (resp. nilpotent)
series g D a; D az D -+, then g(i) C a; (resp. g C a;) and so the derived series (resp.
descending central series) terminates with zero. o

For example, the Lie algebra

(x,y | [x,y] =y)

is solvable but not nilpotent, and the Lie algebra

(x.y.z|x.yl =z.[x.z] =[y,z] = 0)
is nilpotent (hence also solvable).

PROPOSITION 3.3 (a) Subalgebras and quotient algebras of solvable Lie algebras are solv-
able.
(b) A Lie algebra g is solvable if it contains an ideal n such that n and g/n are solvable.
(c) Letn be an ideal in a Lie algebra g, and let ) be a subalgebra of g. If n and b are
solvable, then §) 4 n is solvable.

PROOF. (a) Let g D a; D ap D --- be solvable series for g. For any subalgebra h of g,
hbDODhNay DhNay D--- is a solvable series for §, and, for any quotient a: g — q of g,
qDa(ay) Dalay) D--- is solvable series for g.

(b) Because g/n is solvable, g C n for some m. Now g™+ < n™_ which is zero
for some n.

(c) This follows from (b) because h + n/n =~ h/h Nn, which is solvable by (a). o



266 II. Lie Algebras and Algebraic Groups

COROLLARY 3.4 Every finite-dimensional Lie algebra contains a largest solvable ideal.

PROOF. Let n be a maximal solvable ideal. If § is also a solvable subalgebra, then h + n is
solvable by (3.3k). Therefore, if b is a solvable ideal, then h + n is a solvable ideal, and so
hCn. O

DEFINITION 3.5 The largest solvable ideal in g is called the radical of g.

PROPOSITION 3.6 (a) Subalgebras and quotient algebras of nilpotent Lie algebras are nilpo-
tent.

(b) A nonzero Lie algebra g is nilpotent if and only if g/a is nilpotent for some ideal
aC z(g).

PROOF. Statement (a) follows directly from the definition. If g is nilpotent, then the last
nonzero term a in a nilpotent series is contained in z(g) and g/a is obviously nilpotent.
Conversely, for any ideal a C z(g), the inverse image of a nilpotent series for g/a becomes
a nilpotent series for g when extended by 0. O

3.7 An extension of nilpotent algebras is solvable, but not necessarily nilpotent. For ex-
ample, n, is nilpotent and b, /n, is abelian, but b, is not nilpotent when n > 3.

PROPOSITION 3.8 Let k' be a field containing k. A Lie algebra g over k is solvable (resp.
nilpotent) if and only if gy Cr® & @ is solvable (resp. nilpotent).

PROOF. Obviously, for any subalgebras h and b’ of g, [h, b']x- = [br, by ]. o

3b Nilpotent Lie algebras: Engel’s theorems
If the n + 1st term g” ! of the descending central series of g is zero, then
[x1,[x2,...[xn,¥]...]] =0

for all x1,...,x5,y € g; in other words, ad(x1) o---oad(x,) = 0; in particular, ad(x)"” = 0.
There is a converse statement.

THEOREM 3.9 A Lie algebra g is nilpotent if ad(x): g — g is nilpotent for every x € g.

The next two theorems are variants of (3.9).

THEOREM 3.10 Let V' be a finite-dimensional vector space, and let g be subalgebra of
gly . If g consists of nilpotent endomorphisms, then there exists a basis of V' for which g is
contained inn,,n =dimV.

In other words, there exists a basis eq,...,e, for IV such that

gei C{eq,...,ej—1), alli. (146)
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THEOREM 3.11 Leta:g — gly be a representation of a Lie algebra g on a nonzero finite-
dimensional vector space V. If «(x) is nilpotent for all x € g, then there exists a nonzero
vector v in such that gv = 0.

We note that, for a single x € g such that «(x) is nilpotent, there is no problem finding a
nonzero v such that xv = 0: choose any nonzero vector vg in V, and let v = x" vy with m
the greatest element of N such that x™vg # 0.

3.12 Let g be a subalgebra of gly . If there exists a basis of V' for which g C ngjy, i, then
g is nilpotent, but the converse statement is false. For example, if V' has dimension 1, then
g = gly is nilpotent (even abelian), but there is no basis for which the elements of g are
represented by strictly upper triangular matrices. Note that Theorem [3.9]says only that, for
an element x of a nilpotent algebra, ad(x) is nilpotent; it doesn’t say that x acts nilpotently
on every g-module V.

PROOF THAT (3.1T]) IMPLIES (3.9)

Assume that g satisfies the hypothesis of and is nonzero. On applying to the
homomorphism ad: g — gl,, we see there exists a nonzero x € g such that [g, y] = 0. There-
fore z(g) # 0. The quotient algebra g/z (g) satisfies the hypothesis of and has smaller
dimension than g. Using induction on the dimension of g, we find that g/z(g) is nilpotent,
which implies that g is nilpotent by (3.6b).

PROOF THAT (3.11]) IMPLIES (3.10].

Let g C gly satisfy the hypothesis of (3.10). If V # 0, then (3.11) applied to g — gly,
shows that there exists a vector e; # 0 such that ge; = 0; if V £ (eq), then applied
to g — gly/(e,) shows that there exists a vector e3 ¢ (e1) such that gex C (eq). Continuing
in this fashion, we obtain a basis ej,..., e, for V satisfying (146).

PROOF OF (3.T1))

LEMMA 3.13 Let V be a vector space, and let x:V — V be an endomorphism of V. If x
is nilpotent, then so also is ad x: gly — gly.

PROOF. Let y € gly = End(V). Then

(adx)(y) =[x.y] =xoy—yox
(adx)®(y) = [x.[x.y]] =x*0y—2xoyox+yox>
(adx)*(y) =x30y—3x2oyox+3xoyoxZ—yox?

In general, (adx)™(y) is a sum of terms x/ o y o x™~/ with 0 < j < m. Therefore, if
x™ = 0, then (adx)*" = 0. o

We now prove (3.11). By induction, we may assume that the statement holds for Lie
algebras of dimension less than dimg. Also, we may replace g with its image in gly, and
so assume that g C gly .

)G
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Let b be a proper subalgebra of g. We claim that n4(h) # h.° The lemma shows that
adx: gly — gly is nilpotent for all x € g. For any x € b, ad x preserves both g and b, and it
induces a nilpotent endomorphism on g/h. Therefore, by induction (dimh < dimg), there
exists nonzero element y + b of g/b such that [h, y +b] C h. Sucha y € ng(h) \ h.

This shows that, when b is a maximal proper subalgebra b of g, its normalizer ny(h) = g,
and so b is an ideal in g. Hence, for any x € g~ b, the subspace h + (x) of g is a Lie
subalgebra. Since it properly contains b, it equals g.

Let W = {v € V | hv = 0}; then W = 0 by induction (dim§ < dimg). Because x acts
nilpotently on W, there exists a nonzero v € W such that xv = 0. Now gv = (h + (x))v =
0.

3c Solvable Lie algebras: Lie’s theorem

THEOREM 3.14 Let V be a finite-dimensional vector space over an algebraically closed
field k of characteristic zero, and let g be a subalgebra of gly. If g is solvable, then there
exists a basis of V for which g is contained in bgin, v .

In other words, there exists a basis e1,...,e, for V' such that
gei C (eq,....,e;), alli.

COROLLARY 3.15 Assume k has characteristic zero. If g is solvable, then [g, g] is nilpo-
tent.

PROOF. We may suppose that k is algebraically closed (3.8). It suffices to show that ad(g)
is solvable, and so we may suppose that g C gly for some finite-dimensional vector space
V. According to Lie’s theorem, there exists a basis of V' for which g is contained in bgjp, .
Then [g, g] C ngimy, Which is nilpotent. o

In order for the map v — xv be trigonalizable, all of its eigenvalues must lie in k.
This explains why k is required to be algebraically closed. The condition that k have
characteristic zero is more surprising, but the following examples shows that it is necessary.

EXAMPLES IN NONZERO CHARACTERISTIC

® 3.16 In characteristic 2, sl5 is solvable but for no basis is it contained in b>.
=

5

® 3.17 Let k have characteristic p # 0, and consider the matrices

==
010 0 00 0 0
0 0 1 0 0 1 0 0
X=1: oo e o Y=o : :
000 - 1 00 - p=2 0
100 - 0 00 - 0 p-1

SCf.: Let H be a proper subgroup of a finite nilpotent group G; then H # Ng(H) (GT
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Then
010 0 0 0 0 0
0 0 2 0 0 0 1 0
[e,yl=1: + &+ -, : - : S : =X
000 -+ p—1 0 00 -+ p=-2
o0 o0 -- 0 p—1 0 0 - 0

(this uses that p = 0). Therefore, g = (x, y) is a solvable subalgebra of gl,. The matrices
x and y have the following eigenvectors:

1 0 0
0 1 0

X ’ y . 0 H O s s
1 0 0 1

Therefore g has no simultaneous eigenvector, and so Lie’s theorem fails.

3.18 Even the corollary fails in nonzero characteristic. Note that it implies that, for a solv-
able subalgebra g of gly, the derived algebra [g, g] consists of nilpotent endomorphisms.
Example (a), and example (b) in the case char(k) = 2, and show that this is false in char-
acteristic 2. For more examples in all nonzero characteristics, see Humphreys||[1972, §4,
Exercise 4.

PROOF OF LIE’S THEOREM

LEMMA 3.19 (INVARIANCE LEMMA) Let V be a finite-dimensional vector space, and let
g be a Lie subalgebra of gly . For any ideal a in g and linear map A:a — k, the eigenspace

Viy={veV]|av=A(a)v foralla € a} (147)

is invariant under g.

PROOF. Let x € g and let v € V). We have to show that xv € V), but fora € a,
a(xv) = x(av) + [a,x](v) = A(a)xv + A([a, x])v.
Thus a nonzero V), is invariant under g if and only if A([a, g]) = 0.

Fix an x € g and a nonzero v € V), and consider the subspaces

(v) C (v,xv) C--- C (v,xv,...,x' !

v) C e
of V. Let m be the first integer such that (v,...,x™ 1v) = (v,...,x™v). Then

Wdéf(v,xv,...,xm_lv)

has basis v, xv, ..., x™ 1v and contains x’v for all ;.
We claim that an element a of a maps W into itself and has matrix

Ala) * *
0 Aa)

0 0 - i@
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with respect to the given basis. We check this column by column. The equality
av = Ala)v
shows that the first column is as claimed. As [a,x] € a,
a(xv) = x(av) +la,x]v
= Aa)xv+ A([a, x])v,

and so that the second column is as claimed (with * = A([a, x])). Assume that the first
columns are as claimed, and consider

a(x'v) =ax(x'"") = (xa +[a, x])x' " tv. (148)

From knowing the i th column, we find that
a(x'"1v) = Aa)x' v +u (149)
[a,x](x" ") = A([a, x])x" Lo+’ (150)

with u,u’ € (v,xv,...,x'~2v). On multiplying (149) with x we obtain the equality
xa(x'~1) = A(a@)x"v + xu (151)

with xu € (v,xv,...,xi_lv). Now , , and 1i show that the (i + 1)st column
is as claimed.
This completes the proof that the matrix of a € a acting on W has the form claimed,
and shows that
Trwy (@) = mA(a). (152)

We now complete the proof of the lemma by showing that A([a,g]) = 0. Let a € a and
x € g. On applying (152)) to the element [a, x] of a, we find that

mA([a,x]) = Trw ([a,x]) = Trwy (ax —xa) =0,
and so A([a,x]) = 0 (because m # 0 in k). o

LEMMA 3.20 Under the hypotheses of Lie’s theorem, assume that V £ 0; then there exists
a nonzero vector v € V such that gv C (v).

PROOF. We use induction on the dimension of g. If dimg = 1, then g = ko for some
endomorphism o of V', and & has an eigenvector because k is algebraically closed. Because
g is solvable, its derived algebra g’ # g. The quotient g/g’ is abelian, and so is essentially
just a vector space. Write g/g’ as the direct sum of a subspace of codimension 1 and a
subspace of dimension 1. This decomposition corresponds to a decomposition g = a + (x)
with a and (x) ideals in g. By induction, there exists a nonzero w € V' such that aw C (w),
i.e., such that aw = A(a)w, all a € a, for some A:a — k. Let V) be the corresponding
eigenspace for a (I47). According to the Invariance Lemma, V), is stable under g. As it is
nonzero, it contains a nonzero eigenvector v for x. Now, for any element g =a +cx € g,

gv = Ala)v+c(xv) € (v). O

Lie’s theorem follows directly from Lemma (cf. the proof of (3.11)=-(3.10)).

ASIDE 3.21 The proof shows that Lie’s theorem holds when k has characteristic p provided that
dimV < p. This is a general phenomenon: for any specific problem, there will be a pg such that the
characteristic p case behaves as the characteristic 0 case provided p > po.
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3d Jordan decompositions

PROPOSITION 3.22 Let V' be a finite-dimensional vector space over a perfect field. For
any endomorphism o of V', there exist unique endomorphisms o and «,, of V' such that

(@) o =oas+ap,
(b) agoa, = o, 0y, and
(¢) ay is semisimple and «;, is nilpotent.

Moreover, each of ag and «,, is a polynomial in o.

PROOF. Assume first that @ has all of its eigenvalues in k, so that V is a direct sum of the
generalized eigenspaces of «, say, V = @, < Va where [ is the set of distinct eigenvalues
of o (see [I [I0.1T). Define oy to be the endomorphism of V' that acts as a on V, for
each a € I. Then oy is a semisimple endomorphism of V', and ¢, LY — oy commutes o/
(because it does on each V,) and is nilpotent (because it is so on each V,). Thus o and «y,
satisfy the conditions (a,b,c).

Let n, be the multiplicity of an eigenvalue a. Because the polynomials (T'—a)"¢,a €1,
are relatively prime, the Chinese remainder theorem shows that there exists a Q(T') € k[T]
such that

O(T)=amod (T —a)"**

for all a € I. Then Q(«) acts as @ on V, for each i, and so oy = Q(). Moreover,

ap =a—Q0(a).
The rest of the proof is similar to that of (I, {10.12)). O

REMARK 3.23 (a) If 0 € I, then Q(T') has no constant term. Otherwise, we can choose it
satisfy the additional congruence

O(T)=0mod T

in order to achieve the same result.
(b) Suppose k = C, and let a denote the complex conjugate of a. There existsa Q(T) €
C|[T] such that
QO(T)=amod (T —a)"*

for all @ € I. Then Q(«) is an endomorphism of V' that acts on V, as a. Again, we can
choose Q(T) to have no constant term.

The endomorphisms o5 and &y, are called the semisimple and nilpotent parts of o, and
o =05+ 0oy
is the (additive) Jordan decomposition of «.

PROPOSITION 3.24 Leta be an endomorphism of a finite-dimensional vector space V over
a perfect field. The Jordan decomposition of ad(«) in End(End(V)) is ad(«) = ad(ay) +
ad(op).
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PROOF. Suppose first that « is semisimple. After a field extension, there will exist a basis
(€i)1<i<dimv of V for which o has matrix diag(ay,a2,...). If (¢;j)1<i,j<dimv is the cor-
responding basis for End(V'), then ad(«)e;; = (a; —aj)e;; for all i, j. Therefore ad(w) is
semisimple.

For a general «, the decomposition o = a5 + ¢, gives a decomposition ado = adas +
ada,. We have just seen that ad(es) is semisimple, and Lemma [3.13| shows that ad () is
nilpotent. The two commute because

[ad o, ad oy | = ad[ag, o] = 0.

Therefore the decomposition ado = ad s 4 ad , satisfies the conditions (a,b,c) of (3.22).o

3e Cartan’s first criterion

THEOREM 3.25 (CARTAN’S CRITERION) Let g be a subalgebra of gly, where V is a
finite-dimensional vector space over a field k of characteristic zero. Then g is solvable
if Try(xoy) =0 forall x,y € g.

PROOF. We first observe that, if k” is a field containing k, then the theorem is true for
g C gly if and only if it is true for gz C gly,, (because, for example, g is solvable if and
only if gz~ is solvable). Therefore, we may assume that & is finitely generated over , hence
embeddable in C, and then that k = C.

We shall show that the condition implies that each x € [g, g] defines a nilpotent endo-
morphism of V. Then Engel’s theorem will show that [g, g] is nilpotent, and it will
follow that g is solvable (3.3p).

Let x € [g, g], and fix a basis of V' for which the matrix of x; is diagonal, say, diag(ai,...,d),
and the matrix of x, is strictly upper triangular. We have to show that x; = 0, and for this
it suffices to show that

aiay +---+ana, = 0.

Note that
TrV()ES Ox) =aia1+--+apan,

where X; = diag(ay,...,a,). By assumption, x is a sum of commutators [y, z], and so it
suffices to show that
Try(Xso[y,z]) =0, ally,zeg.

From the trivial identity (see[5.8]below)
Try(aolb,c]) =Try([a,b]oc), a,b,c € End(V),
we see that it suffices to show that
Try ([Xs,y]oz) =0, ally,zeg. (153)

This will follow from the hypothesis once we have shown that [xs, y] € g. According to

(.23(b),

Xy = c1x + cax2% + -, for some ¢; € k,

and so
[)_CS ’ g] C g
because [x,g] C g. a)
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COROLLARY 3.26 LetV be a finite-dimensional vector space over a field k of characteris-
tic zero, and let g be a subalgebra of gly . If g is solvable, then Try (xoy) =0 forallx € g
and y € [g,g]. Conversely, if Try(xoy) =0 for all x, y € [g,g], then g is solvable.

PROOF. Recall that g is solvable if and only if gz is solvable, and so we may suppose
that k is algebraically closed. According to Lie’s theorem [3.14] there exists a basis of V' for
which g C b,, n =dim V. Then [g, g] C [b,.bs] = n,, from which the statement follows.
For the converse, note that the condition implies that [g, g] is solvable by (3.23). But
this implies that g is solvable (because g™ = (g/)("—D). o

ASIDE 3.27 In the above proofs, it is possible to avoid passing to the case k = C. Roughly speak-
ing, instead of complex conjugation, one uses the elements of the dual of the subspace of k generated
by the eigenvalues of x,. See, for example, [Humphreys||1972| 4.3.

4 Unipotent algebraic groups and nilpotent Lie algebras

In characteristic zero, the functor Lie is an equivalence from the category unipotent alge-
braic groups to that of nilpotent Lie algebras. The purpose of this section is to extract the
proof of this from DG (see 1V, §2, 4.5). It may be skipped by the reader, since it is not used
later, and it exists only as a preliminary draft. (Cf. mo10730).

Throughout, k is a field of characteristic zero.

4a Preliminaries on Lie algebras
THE HAUSDORFF SERIES

For a nilpotent 7 x n matrix X,
exp(X) = T+ X +X2/21+ X3/31+ -
is a well defined element of GL, (k). Moreover, when X and Y are nilpotent,
exp(X)-exp(¥) = exp(W)

for some nilpotent W, and we may ask for a formula expressing W in terms of X and Y.
This is provided by the Hausdorff series®, which is a formal power series,

— n n
H(X,Y)= ano H"”(X,Y), H"(X,Y)homogeneous of degree n,
with coefficients in Q. The first few terms are
HY X, Y)=X+Y

H*(X,Y) = %[X,Y].

6 According to the Wikipedia, the formula was first noted in print by Campbell (1897); elaborated by
Henri Poincaré (1899) and Baker (1902); and systematized geometrically, and linked to the Jacobi identity by
Hausdorff (1906). I follow Bourbaki’s terminology — others write Baker-Campbell-Hausdorff, or Campbell-
Hausdorff, or ...
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If g is a nilpotent Lie algebra over a field k of characteristic zero, then H"(x,y) = 0 for
x,y € g and n sufficiently large; we therefore have a morphism

B:8a X g0 = Ja

such that, for all k-algebras R, and x,y € gR,
)= H"X.Y).
If x and y are nilpotent elements of GL, (k), then

exp(x) -exp(y) = exp(h(x,y)),

and this determines the power series H(X,Y) uniquely. See Bourbaki|LIE, II.

ADO’S THEOREM

THEOREM 4.1 Let g be a finite-dimensional Lie algebra over a field of characteristic zero,
and let n be its largest nilpotent ideal. Then there exists a faithful representation (V,r) of g
such that r (n) consists of nilpotent elements.

PROOF. |Bourbakil|LIE, I, §7, 3. o

4b Preliminaries on unipotent groups

We need to use a little algebraic geometry, but only over an algebraically closed field; in
fact, we only need the first ten chapters of AG.

NOTES The results in this subsection don’t require k to be of characteristic zero, and should be
moved to Chapter I.

LEMMA 4.2 Let U be a unipotent subgroup of an algebraic group G. Then G/ U is iso-
morphic to a subscheme of an affine scheme (DG IV 2 2.8, p. 489).

PROOF. Let (V,r) be a representation of G such that U is the stabilizer of a line L in V.
As U is unipotent, it acts trivially on L, and so LY = L. For any nonzero x € L, the map
g — gx is an injective regular map G/U — V. o

LEMMA 4.3 For any connected algebraic group G, the quotient Ker(Ad: G — GLg)/ Z(G)
is unipotent (DG 1V 2 2.12, p. 490).

PROOF. We may suppose that k is algebraically closed. Let O, = O(G), (the local ring
at the identity element), and let m, be its maximal ideal. Then G acts on k-vector space
O /m5+1 by k-algebra homomorphisms. By definition, Ker(Ad) acts trivially on m, /m2,
and so it acts trivially on each of the quotients mé / mé"‘l. Let C, be the centralizer of

O(G)e/m" Tl in G (see Section 2). We have shown that Ker(Ad)/C, is unipotent. It
remains to show that C, = Z(G) for r sufficiently large. o
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PROPOSITION 4.4 Let G be a smooth connected algebraic group over an algebraically
closed field k. If G contains no subgroup isomorphic to G, then it is unipotent (DG IV 2
3.11, p. 496).

PROOF. Let (V,r) be a faithful representation of G, and let F be the variety of maximal
flags in V. Then G acts on V, and according to AG[10.6] there exists a closed orbit, say
Gd ~ G/U. Then U is solvable, and so, by the Lie-Kolchin theorem|16.31) U2, C T, for

some choice of basis. By hypothesis, U2, NID, = 0, and so U, is unipotent. Now G/ U2,

red T
is affine and connected, and so its image in F is a point. Hence G = U,,. O

COROLLARY 4.5 Let G be a smooth connected algebraic group. The following conditions
are equivalent:

(a) G is unipotent;

(b) The centre of G is unipotent and Lie(G) is nilpotent;

(c) For every representation (V,r) of G, Lier maps the elements of Lie(G) to nilpotent
endomorphisms of V;

(d) Condition (c) holds for one faithful representation (V,r).

(DG 1V 2 3.12, p. 496.)

PROOF. (a)=(c). There exists a basis for I such that G maps into U, (see L, [I5.4).

(c)=(d). Trivial.

(a)=>(b). Every subgroup of a unipotent group is unipotent (I, [[5.7), and G has a
filtration whose quotients are isomorphic to subgroups of G, (I,[15.14).

(d)=(a). We may assume that k is algebraically closed (I, . If G contains a
subgroup H isomorphic to G, then V = &, c;, Vn where h € H(k) acts on Vj, as h".
Then x € Lie(H) acts on V,, as nx, which contradicts the hypothesis.

(b)=(a). The kernel of the adjoint representation unipotent (in characteristic zero, it
is Z(G) — see below; in general it is an extension of unipotent groups, and hence is
unipotent by [15.7). Suppose that G contains a subgroup H isomorphic to G,,. Then H
acts faithfully on g, and its elements act semisimply, contradicting the nilpotence of g.

PROOF OF THE MAIN THEOREM

Let H(X,Y) =) ,-0 H"(X,Y) denote the Hausdorff series. Recall (I, that, for a
finite-dimensional vector space V', V; denotes the algebraic group R ~» R ®y V.

PROPOSITION 4.6 Let G be a unipotent algebraic group. Then

exp(x)-exp(y) = exp(h(x,y)) (154)

for all x,y € gr and k -algebras R.

PROOF. We may identify G with a subgroup of GLy for some finite-dimensional vector
space V. Then g C gly, and, because G is unipotent, g is nilpotent. Now (154) holds in G
because it holds in GLy . o



276 II. Lie Algebras and Algebraic Groups

THEOREM 4.7 Assume char(k) = 0.
(a) For any finite-dimensional nilpotent Lie algebra over k, the maps

(X, )= > o H"(x,y):8(R) x g(R) — g(R)

(R a k-algebra) make g, into a unipotent algebraic group over k.

(b) The functor g ~~ g, is an equivalence from the category of finite-dimensional nilpo-
tent Lie algebras over k to the category of unipotent algebraic groups, with quasi-inverse
G ~~ Lie(G).

PROOF. (a) Ado’s theorem allows us to identify g with a Lie subalgebra of gly whose
elements are nilpotent endomorphisms of V. Now (3.10) shows that there exists a basis
of V for which g is contained in the Lie subalgebra n of gl, consisting of strictly upper
triangular matrices. Endow n, with the multiplication

(x.y) Zn H"(x,y), x,y € R®n,, R ak-algebra.

According to the above discussion, we obtain in this way an algebraic group isomorphic to
U,. It is clear that g, is an affine subgroup of n,. It remains to show that Lie(g,) = g (as a
Lie subalgebra of gl;), but this follows from the definitions.

(b) We saw in the proof of (a) that Lie(g,) =~ g, and it follows that G >~ (Lie G),. o

COROLLARY 4.8 Every Lie subalgebra of gly formed of nilpotent endomorphisms is al-
gebraic.

See also

REMARK 4.9 In the equivalence of categories in (b), commutative Lie algebras (i.e., finite-
dimensional vector spaces) correspond to commutative unipotent algebraic groups. In other
words, U ~~ Lie(U) is an equivalence from the category of commutative unipotent algebraic
groups over a field of characteristic zero to the category of finite-dimensional vector spaces,
with quasi-inverse V ~ V.

NONZERO CHARACTERISTIC

ASIDE 4.10 Unipotent groups over fields of nonzero characteristic are very complicated. For exam-
ple, if p > 2, then there exist many “fake Heisenberg groups” (connected noncommutative smooth
unipotent algebraic groups of exponent p and dimension 2) over finite fields.

ASIDE 4.11 The nilpotent Lie algebras in low dimension have been classified:

Many articles on the classification of low-dimensional Lie algebras do contain mis-
takes. To the best of my knowledge, the full detailed proof is provided in the disser-
tation of Ming-Peng Gong, where he classifies all algebras up to dimension 7 over
algebraically closed fields of any characteristics except 2, and also over R. (mo21114,
mathreader)

There is indeed a lot of work devoted to the classification of nilpotent Lie algebras
of low dimension ..., with numerous mistakes and omissions. Even worse, they use
different nomenclature and invariants to classify the algebras, and it is a nontrivial task
to compare different lists. Luckily, Willem de Graaf undertook the painstaking task to
make order out of this somewhat messy situation in “Classification of 6-dimensional
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nilpotent Lie algebras over fields of characteristic not 27, J. Algebra 309 (2007), 640-
653; arXiv:math/0511668 . Even better, he provides an algorithm for identifying any
given nilpotent Lie algebra with one in his list, and the corresponding code is available
as a part of GAP package. He builds on earlier work of Skjelbred-Sund and his own
method of identification of Lie algebras by means of Groebner bases. (mo21114, Pasha
Zusmanovich)

5 Semisimple Lie algebras and algebraic groups

Throughout this section, k has characteristic zero, and all Lie algebras are of finite dimen-
sion over k.

Sa Semisimple Lie algebras

DEFINITION 5.1 A Lie algebra g is said to be semisimple if its only abelian ideal is {0}
(Bourbaki|LIE|I, §6, 1).

5.2 The algebra {0} is semisimple, but no Lie algebra of dimension 1 or 2 is semisimple
(because they are all abelian). There exist semisimple Lie algebras of dimension 3, for

example, sl (see below).

5.3 A Lie algebra g is semisimple if and only its radical r(g) = 0. (Recall (3.5) that r(g)
is the largest solvable ideal in g. If r(g) # 0, then the last nonzero term of its derived series
is an abelian ideal in g; if (g) = 0, then every abelian ideal is zero because it is contained

inr(g).)

5.4 For any Lie algebra g, the quotient g/ (g) is semisimple. (A nonzero abelian ideal in
g/r(g) would correspond to a solvable ideal in g properly containing r(g).)

5.5 A product g = g; X--- X g, of semisimple Lie algebras is semisimple. (Let a be an
abelian ideal in g; the projection of a in g; is zero for each i, and so a is zero.)

5.6 A Lie algebra g is said to be reductive if its radical equals its centre; a reductive Lie
algebra g decomposes into a direct product of Lie algebras

g=rcx[g.g]

with ¢ commutative and [g, g] semisimple (Bourbaki LIE, I, §6, 4).

TRACE FORMS

Let g be a Lie algebra. A symmetric k-bilinear form B:gx g — k on g is said to be
associative’ if
B([x,y],z) = B(x,[y,z]) forallx,y,z€g.

LEMMA 5.7 Let B be an associative form on g, and let a be an ideal in g. The orthogonal
complement a of a with respect to B is again an ideal. If B is nondegenerate, then a N a--
is abelian.

TBourbaki LIE, 1, §3, 6, says “invariant” instead of “associative”.
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PROOF. By definition
at ={x eg| B(a,x) =0}

Leta’ € al and x € g. Then, fora € a,
B(a,[x,a']) = —B(a,[a’,x]) = —B([a,a’],x) =0

and so [x,a’] € at. This shows that at is an ideal.

Now assume that B is nondegenerate, and let b be an ideal in g such that B|pxp = 0.
For x,y e band z € g, B([x,y],z) = B(x,[y,z]), which is zero because [y,z] € b. Hence
[x,y] =0, and so b is abelian. o

Let p:g — gly be a representation of g on a finite-dimensional vector space V. For
x € g, write xy for p(x). The trace form fy:gx g — k defined by V is

(xvy)HTrV(xVoyV)v x7yeg

LEMMA 5.8 The trace form is a symmetric bilinear form on g, and it is associative:
Bv([x.yl.z) = By (x.[y.z]), allx,y.z€g.

PROOF. It is k-bilinear because p is linear, composition of maps is bilinear, and trace is
linear. It is symmetric because for any n x n matrices A = (a;;) and B = (b;;),

TI‘(AB) = Z a,-jbj,- = Tr(BA). (155)

i,j
It is associative because for x,y,z € g,

Bv(x,y].z) =Tr([x,y]oz) =Tr(xoyoz)—Tr(yoxoz) (definitions)
=Tr(xoyoz)—Tr(xozoy) (apply (I53))
=Tr(xo[y,z]) = Bv(x,[y,z]) (definitions). o

Therefore (see , the orthogonal complement a of an ideal a of g with respect to a
trace form is again an ideal.

PROPOSITION 5.9 If g — gly is faithful and g is semisimple, then By is nondegenerate.

PROOF. We have to show that g= = 0, but we know that it is an ideal (5.7), and Cartan’s
criterion (3.25]) shows that it is solvable because

Try (xyoyy) = Br(x,y) =0

for all x,y € g+. O
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THE CARTAN-KILLING CRITERION

The trace form for the adjoint representation ad: g — gl is called the Killing form?® kg on
g. Thus,
kg(x,y) =Trg(ad(x)oad(y)), allx,yeg.

In other words, «4(x, y) is the trace of the k-linear map

z[x,[y.z]lg— g

EXAMPLE 5.10 The Lie algebra s[, consists of the 2 x 2 matrices with trace zero. It has as

basis the elements’
‘= 0 1 (0 0 h— 1 0
o o) YT\ o) "Tlo 1)

and
[h.x]=2x, [h,y]=-2y, [x.y]=h.
Then
0 -2 0 2 0 0 0 00
adx=(0 0 1], adh=|0 0 O], ady=[|-1 0 O
0 00 0 0 =2 020

and so the top row (k(x,x),k(x,h),k(x,y)) of the matrix of k consists of the traces of

00 -2 00 O 2 0 0
00 0], 00 21, 02 0
00 O 00 O 00 0
0 0 4

In fact, x has matrix | O 8 O |, which has determinant —128.
4 0 0

Note that, for sl,,, the matrix of k is n2 — 1 xn? — 1, and so this is not something one
would like to compute.

LEMMA 5.11 Leta be an ideal in g. The Killing form on g restricts to the Killing form on
a,ie.,
Kg(X,y) = Ka(X,y) al]-x’y €a.

PROOF. Let« be an endomorphism of a vector space V such that (V) C W; then Try («) =
Trw («|W), because when we choose a basis for W and extend it to a basis for V', the ma-
trix for o takes the form (61 g ) where A is the matrix of ¢|W. If x,y € a, then adxoady
is an endomorphism of g mapping g into a, and so its trace (on g), k4(x, y), equals

Try(adx oady|q) = Tra(adg x cady y) = ka(x, ). O

8 Also called the Cartan-Killing form. According to Bourbaki (Note Historique to I, II, IIT), E. Cartan
introduced the “Killing form” in his thesis and proved the two fundamental criteria: a Lie algebra is solvable
if its Killing form is trivial (5.12); a Lie algebra is semisimple if its Killing form is nondegenerate (5.13).
According toHelgason[ 1990} Killing introduced the Killing form, but Cartan made much more use of it.

9Some authors write (7, e, f) for (h,x, y); Bourbaki LIE, 1, §6, 7, writes (H, X,Y); in VIII, §1, 1, Base

canonique de slp, he writes (H, X4+,—X_), i.e.,, he sets X _= (_(1) g).
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PROPOSITION 5.12 Ifky(g,[g,9]) = 0, then g is solvable.

PROOF. The map ad: g — gl has kernel the centre z(g) of g, and the condition implies that
the image is solvable (Cartan’s criterion, [3.26). O

THEOREM 5.13 (Cartan-Killing criterion). A nonzero Lie algebra g is semisimple if and
only if its Killing form is nondegenerate.

PROOF. =>: Because g is semisimple, the adjoint representation ad: g — gl is faithful, and

so this follows (5.9).

&: Let a be an abelian ideal of g — we have to show that a = 0. For any a € a and

g € g, we have that
adg ada adg ada
g—g—a—a—0,

and so (ada oad g)? = 0. But an endomorphism of a vector space whose square is zero has
trace zero (because its minimum polynomial divides X2, and so its eigenvalues are zero).
Therefore

Kg(a,g) « Tryg(adaocadg) =0,

and a C g+ = 0. 0

COROLLARY 5.14 Let g be a Lie algebra over a field k, and let k" be a field containing k.
(a) The Lie algebra g is semisimple if and only if gy is semisimple.

(b) The radical r(gg’) ~ k' Q¢ r(g).

PROOF. (a) The Killing form of g/ is obtained from that of g by extension of scalars.
(b) The exact sequence

0—=r(g—>g—>9/r(@—>0
gives rise to an exact sequence

0— (@i — g — (9/7(9)kr — 0.

As r(g)y is solvable (3.8) and (g/r(g))x- is semisimple, the sequence shows that r(g)x- is
the largest solvable ideal in gg-, i.e., that 7 (g)x = r (gr)- o

THE DECOMPOSITION OF SEMISIMPLE LIE ALGEBRAS

DEFINITION 5.15 A Lie algebra g is simple if it is nonabelian and its only ideals are {0}
and g.

Clearly a simple Lie algebra is semisimple, and so a product of simple Lie algebras is
semisimple (by [5.3).
Let g be a Lie algebra, and let ay,...,a, be ideals in g. If g is a direct sum of the q; as
k-subspaces,
g=a01b---Day,,
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then [a;,a;] Ca; Na; =0fori # j, and so gis a direct product of the a; as Lie subalgebras,
g=0a1 X Xa,.

The minimal nonzero ideals in a Lie algebra are either abelian or simple. Therefore, the
minimal nonzero ideals in a semisimple Lie algebra are exactly the ideals that are simple as
Lie algebras.

THEOREM 5.16 A semisimple Lie algebra g has only finitely many minimal nonzero ideals
ai,...,a,, and
g=0ay X - Xa.

Every ideal in a is a direct product of the a; that it contains.

In particular, a Lie algebra is semisimple if and only if it is isomorphic to a product of
simple Lie algebras.

PROOF. Let a be an ideal in g. Then the orthogonal complement at of a is also an ideal
(5.7), and so a N a is an ideal. By Cartan’s criterion (5.12), it is solvable, and hence zero.
Therefore, g = a® al.

If g is not simple, then it has a nonzero proper ideal a. Write g = a@® a™. If one of a or

a is not simple (as a Lie subalgebra), then we can decompose again. Eventually,

g=a1d---Day

with the a; simple (hence minimal) ideals.
Let a be a minimal nonzero ideal in g. Then [g, a] is an ideal contained in a, which is
nonzero because z(g) = 0, and so [g, a]= a. On the other hand,

[g.a] =[a1.a]D---D[ar,q],

and so a = [a;,a] C a; for exactly one i; then a = a; (simplicity of a;). This shows that
{ay,...a,} is a complete set of minimal nonzero ideals in g.

Let a be an ideal in g. A similar argument shows that a is a direct sum of the minimal
nonzero ideals contained in a. o

COROLLARY 5.17 All nonzero ideals and quotients of a semisimple Lie algebra are semisim-
ple.

PROOF. Any such Lie algebra is a product of simple Lie algebras, and so is semisimple. o
COROLLARY 5.18 Ifg is semisimple, then [g,g] = g.

PROOF. If g is simple, then certainly [g, g] = g, and so this is true also for direct sums of
simple algebras. O

REMARK 5.19 The theorem is surprisingly strong: a finite-dimensional vector space is a
sum of its minimal subspaces but is far from being a direct sum (and so the theorem fails for
abelian Lie algebras). Similarly, it fails for commutative groups: for example, if C9 denotes
a cyclic group of order 9, then

C9XC9 = {(x,x) € C9 XC9}X{(X,—X) S C9XC9}.

If a is a simple Lie algebra, one might expect that a embedded diagonally would be another
simple ideal in a & a. It is a simple Lie subalgebra, but it is not an ideal.
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DERIVATIONS OF A SEMISIMPLE LIE ALGEBRA

Recall that Der (g) is the space of k-linear endomorphisms of g satisfying the Leibniz
condition

D([x,y]) = [D(x).y] + [x. D(y)].
The bracket
[D,D']=DoD'—D"oD
makes it into a Lie algebra.

LEMMA 5.20 For any Lie algebra g, the space {ad(x) | x € g} of inner derivations of g is
an ideal in Dery (g).

PROOF. Let D be a derivation of g, and let x € g — we have to show that the derivation
[D,ad x] is inner. For any y € g,
[D,adx](y) = (D oadx —adxo D)(y)

= D([x.y]) = [x. D(y)]

= [D(x).y]+[x. D(y)] = [x. D(y)]

= [D(x).y].
Therefore

[D,ad(x)] = ad D(x), (156)

which is inner. o

THEOREM 5.21 Every derivation of a semisimple Lie algebra g is inner; therefore ad: g —
Der(g) is an isomorphism.

PROOF. Let adg denote the (isomorphic) image of g in Der(g), and let (adg)* denote its
orthogonal complement for the Killing form on Der(g). It suffices to show that (ad g)~ = 0.
We have
[(adg)t,adg] C (adg)* Nadg =0

because ad g and (ad g) are ideals in Der(g) and Kper(g)|ad g = Kadq is nonde-
generate (5.13). Therefore
ad(Dx) 2 D, ad(x)] = 0
if D € (adg)® and x € g. As ad: g — Der(g) is injective,
ad(Dx)=0 forallx = Dx =0 forallx = D =0. -

5b Semisimple algebraic groups and their Lie algebras
REVIEW
Recall that k has characteristic zero.

5.22 A connected algebraic group G contains a largest connected normal solvable sub-
group (I, [17.2), called the radical RG of G. The formation of RG commutes with exten-
sion of the base field (I, [I7.3). A connected algebraic group G is said to be semisimple if
its radical is trivial (I, [I7.6). A connected algebraic group is semisimple if and only if its
only connected normal commutative subgroup is {1} (I,[17.7).
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THE LIE ALGEBRA OF A SEMISIMPLE ALGEBRAIC GROUP

THEOREM 5.23 A connected algebraic group G is semisimple if and only if its Lie algebra
is semisimple.

PROOF. Suppose that Lie(G) is semisimple, and let N be a connected normal abelian sub-
group of G. Then Lie(N) is an abelian ideal in Lie(G) [2.24), and so is zero. This
implies that N = 1 (2.8).

Conversely, suppose that G is semisimple, and let n be an abelian ideal in g. When G
acts on g through the adjoint representation, the Lie algebra of H = Cg(n) is (see

h={xegl|[x.n]=0j},
which contains n. Because n is an ideal, so also is h: if h € h, x € g, and n € n, then
([, x].n] = [h.[x,n]] = [x,[h,n]] = O

and so [h, x] € . Therefore, H° is normal in G (2.23)), which implies that its centre Z(H °)
is normal in G. Because G is semisimple, Z(H °) is finite, and so z(h) = 0 (2.24). But
z(h) Dn,and son = 0. D

COROLLARY 5.24 For any connected algebraic group G, Lie(R(G)) = r(g).

PROOF. From the exact sequence
1-RG—G—G/RG —1
we get an exact sequence (1.36)
1 — Lie(RG) — g — Lie(G/RG) — 1

in which Lie(RG) is solvable (apply [2.23| [2.24) and Lie(G/RG) is semisimple (5.23).
Therefore Lie RG is the largest solvable ideal in g. o

THE LIE ALGEBRA OF Aut (C)

Let C be a finite-dimensional k-vector space with a k-bilinear pairing C x C — C (i.e., C
is a k-algebra, not necessarily associative or commutative).

PROPOSITION 5.25 The functor
R ~ Autk_a,g(R ®k C)A'gk —> Grp

is an algebraic subgroup of GL¢.

PROOF. Choose a basis for C. Then an element of Auty_j;,(R ® C) is represented by a
matrix, and the condition that it preserve the algebra product is a polynomial condition on
the matrix entries. o

Denote this algebraic group by Autc, so that

Autc (R) = Auty_go(R ®j C), all k-algebras R.
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PROPOSITION 5.26 The Lie algebra of Autc is glc N Dery (C).

PROOF. Letid+ewa € Lie(GL¢), and let a + ¢a’ and b + ¢b’ be elements of k[e] Q) C ~
C ®¢C. When we first apply id +-¢o to the two elements and then multiply them, we get

ab +e(ab’ +a'b +aa(b) + a(a)b);
when we first multiply them, and then apply id +ea we get
ab +e(ab’ +a’b + a(ab)).

These are equal if and only if « satisfies the Leibniz rule. O

THE MAP Ad
Let G be a connected algebraic group. Recall (§Ig) that there is a homomorphism
Ad:G — GL,.
Specifically, g € G(R) acts on g(R) C G(R][¢]) as inn(g),
X gxg_l.
On applying the functor Lie, we get a homomorphism

ad:Lie(G) — Lie(GL4) ~ End(g),

and we defined
[x,y] = ad(x)(y).

LEMMA 5.27 For all g € G(R), the automorphism Ad(g) of g(R) preserves the bracket.

PROOF. Because every algebraic group can be embedded in some GL,, (I,[8.31)), it suffices
to prove the statement for GL,. But A € GL,(R) acts on g(R) = M, (R) as

X > AXA™L
Now
AX, YA ' = A(XY —YX)A™!
= AXAT'AYAT —AYAT AXAT!
=[AXA7!, AvA7Y. g
Therefore Ad maps into Aut, (in the sense of the preceding subsubsection),
Ad:G — Auty,
and so ((5.26)) ad maps into Lie(Auty) = gl N Dery (g),

ad: g — gly N Derg (g).
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LEMMA 5.28 Let g € G(k). The functor Cg(g)

R~ {g' € G(R) | gg' = g'g}: Algy — Grp
is an algebraic subgroup of G with Lie algebra

co(g) = {x € g| Ad(g)(x) = x}.

PROOF. Embed G in GL,. If we can prove the statement for GL,, then we obtain it for G,

because Cg(g) = Cqr,(g) NG and c4(g) = cq1,(g) N g.
Let A € GL, (k). Then

CeL, (A)(R) ={B € GLn(R) | AB = BA}.
Clearly this is a polynomial (even linear) condition on the entries of B. Moreover,
Lie(CgL,(A)) ={I +eB €Lie(GL,) | A(Il +¢B) = (I +eB)A}
~{BeM,|AB = BA}. o

PROPOSITION 5.29 For a connected algebraic group G, the kernel of Ad is the centre
Z(G) of G.

PROOF. Clearly Z C N £ Ker(Ad). As the formation of kernels and centres commute with
extension of the base field, it suffices to prove that Z = N when k is algebraically closed.

For g € N(k), cg(g) = g, and so (by[5.28) LieCg(g) = g . Hence C(g) = G (2.5), and
S0 g € Z(k). We have shown that Z(k) = N(k), and this implies that Z = N (7.30). o

THEOREM 5.30 For any semisimple algebraic group G, the sequence

1—>Z(G)—>Gﬁ>Aut‘g’—>l

is exact.

PROOF. On applying Lie to Ad: G — Autg, we get the homomorphism
ad: g — Lie(Auty) C Der(g).

But, according to (5.21), the map g — Der(g) is surjective, which shows that ad:g —
Lie(Auty) is surjective, and implies that Ad: G — Autg is surjective lb o

Two semisimple algebraic groups G, G, are said to be isogenous if G1/Z(G1) ~
G,/ Z(G»); equivalently if there exists a semisimple algebraic group G and isogenies

G1 < G — Gy,
The theorem gives an inclusion
{semisimple algebraic groups}/isogeny < {semisimple Lie algebras}/isomorphism.

In III, Section 2 below, we classify the isomorphisms classes of semisimple Lie algebras
over an algebraically closed field of characteristic zero. Since all of them arise from al-
gebraic groups, this gives a classification of the isogeny classes of semisimple algebraic
groups over such fields. In III, Section 3, we follow a different approach which allows us to
describe the category of semisimple algebraic groups in terms of semisimple Lie algebras
and their representations.
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THE DECOMPOSITION OF SEMISIMPLE ALGEBRAIC GROUPS

An algebraic group G is simple if it is connected, noncommutative, and its only proper
normal subgroups is 1, and it is almost-simple if it is connected, noncommutative, and
all its proper normal subgroups are finite. Thus, for n > 1, SL, is almost-simple and
PSL, = SL, /un is simple. A subgroup N of an algebraic group G that is minimal
among the nonfinite normal subgroups of G is either commutative or almost-simple; if
G is semisimple, then it is almost-simple.

An algebraic group G is said to be the almost-direct product of its algebraic subgroups
G1,...,G, if the map

(&1,---.8r) > 81 gr:G1 X+ xGr > G

is a surjective homomorphism with finite kernel. In particular, this means that the G; com-
mute and each G; is normal in G.

THEOREM 5.31 A semisimple algebraic group G has only finitely many almost-simple
normal subgroups G1,...,G,, and the map

(&1:--,8r) > 81 8r:G1 X xGr > G

is surjective with finite kernel. Each connected normal algebraic subgroup of G is a product
of those G; that it contains, and is centralized by the remaining ones.

In particular, an algebraic group is semisimple if and only if its an almost-direct product
of almost-simple algebraic groups.

PROOF. Because Lie(G) is semisimple, it is a direct sum of its simple ideals

Lie(G) =g1®--- D gr.

Let G be the identity component of Cg (g2 - -- @ g, ) (notation as in|2.20). Then Lie(G)
cg(92®---Dgr) = g1, and soitis normalin G . If G had a proper normal connected
algebraic subgroup of dimension > 0, then g; would have an ideal other than g; and 0, con-
tradicting its simplicity. Therefore G; is almost-simple. Construct G»,...,G; similarly.
Then [g;,g;] = 0 implies that G; and G; commute (2.23). The subgroup G;---G, of G
has Lie algebra g, and so equals G (2.5). Finally,

Lie(G1n...nG) g0, .ng, =0

and so G1 N...N G, is étale (2.8)).

Let H be a connected algebraic subgroup of G. If H is normal, then Lie H is an ideal,
and so is a direct sum of those g; it contains and centralizes the remainder. This implies
that H is a product of those G; it contains, and is centralized by the remaining ones. O

COROLLARY 5.32 All nontrivial connected normal subgroups and quotients of a semisim-
ple algebraic group are semisimple.

PROOF. Any such group is an almost-product of almost-simple algebraic groups. O
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COROLLARY 5.33 If G is semisimple, then DG = G, i.e., a semisimple group has no
commutative quotients.

PROOF. This is obvious for almost-simple algebraic groups, and hence for any almost-
product of such algebraic groups. O

6 Semisimplicity of representations

The main theorem in this section is that the finite-dimensional representations of an alge-
braic group in characteristic zero are semisimple if and only if the identity component of
the group is connected. The starting point for the proof of this result is the theorem of Weyl
saying that the finite-dimensional representations of a semisimple Lie algebra in character-
istic zero are semisimple. Throughout this section (except the first subsection), k is a field
of characteristic zero.

6a Generalities on semisimple modules

Let k be a field, and let A be a k-algebra (either associative or a Lie algebra). An A-module
is simple if it does not contain a nonzero proper submodule.

PROPOSITION 6.1 The following conditions on an A-module M of finite dimension'°

k are equivalent:

over

(a) M is a sum of simple modules;
(b) M is a direct sum of simple modules;
(c) for every submodule N of M, there exists a submodule N" such that M = N @& N'.

PROOF. Assume (a), and let N be a submodule of M. Let I be the set of simple modules
of M. For J C I,let N(J) =) gy S. Let J be maximal among the subsets of / for
which

(i) the sum ) ¢ ;S is direct and
(i) N(J)NN = 0.

I claim that M is the direct sum of N(J) and N. To prove this, it suffices to show that
each S C N + N(J). Because S is simple, S N (N + N(J)) equals S or 0. In the first
case, S C N + N(J), and in the second J U {S} has the properties (i) and (ii). Because J
is maximal, the first case must hold. Thus (a) implies (b) and (c), and it is obvious that (b)
and (c) each implies (a). o

DEFINITION 6.2 An A-module is semisimple if it satisfies the equivalent conditions of the
proposition.

LEMMA 6.3 (SCHUR’S LEMMA) IfV is a simple A-module and k is algebraically closed,
then Endy (V) = k.

101 assume this only to avoid using Zorn’s lemma in the proof.
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PROOF. Let a:V — V be A-homomorphism of V. Because k is algebraically closed, o
has an eigenvector, say, «(v) = cv, ¢ € k. Now ¢ —c:V — V is an A-homomorphism with
nonzero kernel. Because V' is simple, the kernel must equal V. Hence o = c. O

NOTES Rewrite this section for a k-linear abelian category.

6b Reduction to the case of an algebraically closed field

Let g be a Lie algebra. We saw in that any associative k-algebra A becomes a Lie
algebra with the bracket [a,b] = ab —ba. Among pairs consisting of an associative k-
algebra A and a Lie algebra homomorphism g — A, there is one, g — U(g), that is universal
— U(g) is called the universal enveloping algebra of g. It can be constructed as the quotient
of the tensor algebra 7'(g) by the relations

X®y—y®x=I[x,y], x,yeg.

The map g — U(g) is injective, and so we may regard g as a subset of U(g). Any homomor-
phism g — gly of Lie algebras extends uniquely to a homomorphism U(g) — Endg_j, (V)
of associative algebras. Therefore the functor sending a representation p: U(g) — Endy_j;,(V)
of U(g) to p|g is an isomorphism(!) of categories

Repy (U(g)) — Repg (9). (157)

PROPOSITION 6.4 For a Lie algebra g over k, the category Repy (g) is semisimple if and
only if Repga (gga) is semisimple.

PROOF. Let g — gly be a finite-dimensional representation of g. Then V is semisimple as a
g-module if and only if it is semisimple as a U(g)-module (obviously), and it is semisimple
as a U(g)-module if and only if k! ®; V is semisimple as a k¥ ® U(g)-module (Bourbaki
A, VIII, §13, 4). As k¥ ®; U(g) ~ U(gga), this shows that

Repya (gra) semisimple = Repy (g) semisimple.

For the converse, let V be an object of Repga (gxa). There exists a finite extension k’
of k and a representation V' of gi- over k’ that gives V by extension of scalars k' — k.
When we regard V' as a vector space over k, we obtain a representation V of g over k.
By assumption, V' is semisimple and, as was observed above, this implies that k* ®j V is
semisimple. But V is a quotient of k%' ® V, and so it also is semisimple. O

COROLLARY 6.5 For a connected algebraic group G over k, the category Repy (G) is
semisimple if and only if Repya (Gya) is semisimple.

PROOF. Let g = Lie(G). For any finite-dimensional representation r: G — GLy, a sub-
space W of V is stable under G if and only if it is stable under g (see [2.16). It follows
that,

(V,r) is semisimple as a representation of G
<= (V,dr) is semisimple as a representation of g
<= (V.dr)ga is semisimple as a representation of gga (by [6.4)

<= (V,r)a is semisimple as a representation of Ga. o
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ASIDE 6.6 Let G be a connected algebraic group. It is not true that Rep(G) is semisimple if
and only if Rep(Lie(G)) is semisimple. For example, when G is reductive but not semisimple,
the first category is semisimple, but the second category is not, because there are nonsemisimple
representations of Lie(G) not arising from representations of G.

ASIDE 6.7 The following two statements give an alternative proof of (6.4) and (6.5).

Let A be a k-linear abelian category such that every object X has finite length and
Hom(X,Y) is finite-dimensional. Then A is semisimple if and and only if End(X) is
a semisimple k-algebra for all X.

Let A be a finite-dimensional k-algebra; if A is semisimple, then so also if k' ® A
for every field k' D k; conversely, if k&’ ® A is semisimple for some field k' D k, then
A is semisimple (Bourbaki A, VIII; CFT IV, 2.15).

To apply these statements, note that for any representations V' and W of a Lie algebra g, or of
an algebraic group G,

k' ®H0mg(V, W) ~ Homgk/ (Vier, Wir)
k' @ Homg (V, W) =~ Homg,, (Vir, Wyr),

because
k' @ Hom(V, W) ~ Hom(Vj/, Wi/)

and the condition that a linear map V' — W be g or G equivariant is linear (for G, regard V' and W
as comodules over O(G)).

6c Representations of Lie algebras.

CASIMIR OPERATOR

Let g be semisimple, and fix a faithful representation g — gl of g. Because the pairing
Bvigxg—k

is nondegenerate (5.9), for any basis ey, ...,e, for g as a k-vector space, there exists a dual
basis e/, ..., e;, for g such that ,BV(ei,e;.) =§;j. Letx € g, and let

lei, x] =" _jaije;

[x.ej] =1 bije];.
Then

Bv (i, x].e;) =3 _yaijBv(ej.e}) = ai
B (e [x,ei]) = 31 birjBv (ei.e);) = bii

and so a;j» = b;j» (because By is associative). In other words, for x € g,
n n
lei.x]=2"j_jaije; < [x.ef1=3_jaije}.
The Casimir operator attached to the representation g — gly is

n /
cv=2i_1€eivoe;,.
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PROPOSITION 6.8 (a) The element cy is independent of the choice of the basis ey, ..., ey,.
(b) The map cy:V — V is a g-module homomorphism.
(c) We have Try (cy) = n (dimg).

PROOF. (a) In fact, the element 5(1) & Y jei® e! of g® g is the image of id, under the
isomorphisms

Bv
Endyin(9) ~ g®¢" ~ g®g.

(b) This can be proved by a direct calculation (e.g., Erdmann and Wildon|2006, 17.3).
(c) We have

Try (cy) = Y j—; Try(e; oe))
= Z?:lﬁV(elael/)
=D i=18ii

=n. [m]

ASIDE 6.9 For any basis ej,...,e, of g, let

c=Y"r_¢-e €U(g).

Then ¢ maps to cy under every representation of g, and is the unique element of U(g) with this
property (the finite-dimensional representations of U(g) form a faithful family). In particular, it is
independent of the choice of the basis. Statement [6.8p is equivalent to the statement that ¢ lies in
the centre of U(g).

WEYL’S THEOREM

Let g — gly a representation of a Lie algebra g. If g is semisimple, then g = [g, g], and so

Try(gv) =Try([g1.82]v) =Try(g1vogay —gavogiv) =0, allgeg.

When V is one-dimensional, this implies that g acts trivially on V (i.e., xv =0forallx € g
andv eV).

THEOREM 6.10 (WEYL) A Lie algebra g is semisimple if and only if every finite-dimensional
representation g is semisimple.

PROOF. <=: For the adjoint representation ad: g — glg, the g-submodules of g are exactly
the ideals in g. Therefore, if the adjoint representation is semisimple, then every ideal in g
admits a complementary ideal, and so is a quotient of g. Hence, if g is not semisimple, then
it admits a nonzero abelian quotient, and therefore a quotient of dimension 1. But the Lie
algebra k of dimension 1 has nonsemisimple representations, for example, ¢ (2 8).

=: Let g be a semisimple Lie algebra, which we may suppose to be nonzero, and
let g — gly be a finite-dimensional representation of g. We have to show that every g-
submodule W of V admits a g-complement. This we do by induction on dimW. After
(6.4), we may suppose that k is algebraically closed.

Assume first that dim V/ W = 1 and that W is simple. The first condition implies that
g acts trivially on V/ W (see the above remark). We may replace g with its image in gly,
and so suppose that g C gly. Let cy: V — V be the Casimir operator. As g acts trivially
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on V/ W, so also does cy. On the other hand, ¢y acts on W as a scalar a (Schur’s lemma).
This scalar is nonzero, because otherwise Try ¢y = 0, contradicting (6.8)). Therefore, the
kernel of cy is a one-dimensional g-submodule of V' which intersects W trivially, and so is
a g-complement for W'.

Next assume only that dim V/W = 1. If W is simple, we have already proved that it
has a g-complement, and so we may suppose that there is a proper nonzero g-submodule
W' of W. Now W/ W' is a g-submodule of V/ W' of codimension 1, and so, by induction,

VIW =W/ W eV /W

for some g-submodule V'’ of V containing W’. Now W’ is a g-submodule of V' of codimen-
sion 1 and so, by induction, V' = W’ @ L for some line L. Now L is a g-submodule of V,
which intersects W trivially and has complementary dimension, and so is a g-complement
for W.

Finally, we consider the general case, W C V. The space Homy_j;,(V, W) of k-linear
maps has a natural g-module structure:

(xf)(w)=x-f(v)— f(x-v).
Let

Vi ={f € Homy_;, (V. W) | f|W = aidw for some a € k}
Wi ={f € Homy, (V. W) | fIW =0}.

One checks easily that W) and V; are g-submodules of Homy j;,(V, W). As Vi/Wj has
dimension 1, the first part of the proof shows that

Vi=W1 &L

for some one-dimensional g-submodule L of V7. Let L = (f). Because g acts trivially on
L!

0= )W) Ex- f(v)— f(x-v), allxeg, vev,
which says that f is a g-homomorphism V — W. As f|W = aidwy with a # 0, the kernel
of f is a g-complement to W. o

ASIDE 6.11 An infinite-dimensional representation of a semisimple Lie algebra, even of sl,, need
not be semisimple (see later, maybe).

ASIDE 6.12 Let V}, be the standard V,,;;-dimensional representation of SL, over F,. Then V}, is
simple for 0 <n < p—1, but V;, ® V; is not semisimple when n +n’ > p (mo57997).

ASIDE 6.13 In his original proof, Weyl showed that finite-dimensional representations of compact
groups are semisimple (because they are unitary), and deduced the similar statement for semisimple
Lie algebras over C by showing that such algebras all arise from the Lie algebras of compact real
Lie groups. The proof presented here follows that in|Serre| 1965}
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6d Representations of reductive groups

Let G be an algebraic group. The discussion in §6a carries over to G-modules.

THEOREM 6.14 The following conditions on a connected algebraic group G are equiva-
lent:

(a) G is reductive;
(b) every finite-dimensional representation of G is semisimple;
(c) some faithful finite-dimensional representation of G is semisimple.

We first prove two lemmas.

LEMMA 6.15 Let G be an algebraic group. The restriction to a normal subgroup N of a
semisimple representation of G is again semisimple.

PROOF. After (6.5), we may assume that k is algebraically closed. Let G — GLy be a
representation of G, which we may suppose to be simple. Let S be a simple N -submodule
of V. For any g € G(k), g$ is a simple N-submodule, and V' is a sum of the g§ (because
the sum is a nonzero G-submodule of V'); hence it is semisimple (cf. [6.1). o

LEMMA 6.16 All finite-dimensional representations of a semisimple algebraic group are
semisimple.

PROOF. If G is a semisimple algebraic group, then Lie(G) is a semisimple Lie algebra
(5.23). Hence the finite-dimensional representations of Lie(G) are semisimple by Weyl’s
theorem ([6.10), which implies the same statement for G (2.16). O

PROOF OF THEOREM [6.14|.

We may assume that k is algebraically closed.

(b) = (c¢): Every algebraic group has a faithful finite-dimensional representation (I,
8.31).

(c) = (a):Let G — GLy be a faithful finite-dimensional representation of G. Let
N be a normal unipotent subgroup of G. Because N is normal, V is semisimple as a
representation of N, say, V = € V; with V; simple (6.15)). Because N is unipotent, each
V; contains a fixed vector (I, [I5.6), which implies that it has dimension one and that N
acts trivially on it. Therefore, N acts trivially on V', but we chose V' to be faithful, and so
N =0.

(a) = (b): If G is reductive, then G = Z° -G’ where Z° is the connected centre of
G (atorus) and G’ is the derived group of G (a semisimple group) — see (I,17.20). Let
G — GLy be a representation of G. Then V = @, V; where V; is the subspace of V' on
which Z° acts through a character y; (I,{14.15). Because Z° and G’ commute, each space
V; is stable under G, and because G’ is semisimple, V; = P j Vi; with each V;; simple as a
G’-module (6.16). Now V = (P, ; V;; is a decomposition of V' into a direct sum of simple
G-modules.
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NONCONNECTED GROUPS

THEOREM 6.17 All finite-dimensional representations of an algebraic group G are semisim-
ple it and only if the identity component G° of G is reductive.

This follows from Theorem [6.14] and the next lemma.

LEMMA 6.18 All finite-dimensional representations of G are semisimple if and only if all
finite-dimensional representations of G° are semisimple

PROOF. We may assume that k is algebraically closed.

— : Since G° is a normal algebraic subgroup of G (I, [13.17), this follows from
Lemmal6.131

<= : Let V be a G-module, and let W be a subspace stable under G. Then W is
also stable under G°, and so there exists a G °-equivariant linear map p:V — W such that
p|W = idw . Define

1 _
¢V =W, qg=—3% epg",

where n = (G(k): G°(k)) and g runs over a set of coset representatives for G°(k) in G (k).
Then ¢ is independent of the choice of the coset representatives, and is a G-equivariant
linear map V — W such that g|W = idw (cf. the second proof of GT [7.4). Hence Ker(q)
is a G-stable complement for W'. O

REMARK 6.19 The lemma implies that the representations of a finite group are semisim-
ple. This would fail if we allowed the characteristic to be a prime dividing the order of the
finite group.

6e A criterion to be reductive

There is an isomorphism of algebraic groups GL, — GL,, sending an invertible matrix A
to the transpose (A1)’ of its inverse. The image of an algebraic subgroup H of GL,, under
this map is the algebraic subgroup H’ of GL,, such that H*(R) = {A’ | A € H(R)} for all
k-algebras R.

Now consider GLy . The choice of a basis for V' determines an isomorphism GLy ~
GL, and hence a transpose map on GLy-, which depends on the choice of the basis.

PROPOSITION 6.20 Every connected algebraic subgroup G of GLy such that G = G' for
all choices of a basis for V' is reductive.

PROOF. We have to show that RG = 0 is a group of multiplicative type. It suffices to check
this after an extension of scalars to the algebraic closure of k (because RGyra = (RG)ja
when k is perfect). Recall that the radical of G is the largest connected normal solvable
subgroup of G. It follows from (I7.1f) that RG is contained in every maximal connected
solvable subgroup of G. Let B be such a subgroup. According to the Lie-Kolchin theorem
there exists a basis of V for which B C T}, (upper triangular matrices). Then B is
also a maximal connected solvable subgroup of G, and so

RG c BNB' =D,.

This proves that RG is diagonalizable. O
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EXAMPLE 6.21 The group GLy itself is reductive.

EXAMPLE 6.22 Since the transpose of a matrix of determinant 1 has determinant 1, SLy
is reductive.

ASIDE 6.23 Prove (or disprove): a connected algebraic subgroup of GLy that is preserved by
conjugate transpose with respect to one basis is necessarily reductive.



CHAPTER I I I

The Structure of Semisimple Lie
Algebras and Algebraic Groups in
Characteristic Zero

To a semisimple Lie algebra, we attach some combinatorial data called a root system, from
which we can read off the structure of the Lie algebra and its representations. As every
root system arises from a semisimple Lie algebra and determines it up to isomorphism, the
root systems classify the semisimple Lie algebras. In the first section, we review the theory
of root systems and how they are classified in turn by Dynkin diagrams, and in the second
section we explain their application to the theory of semisimple Lie algebras.

The category of representations of a Lie algebra is a neutral tannakian category, and
so there exists an affine group G(g) such that Rep (G(g)) = Rep(g). We show that, when
g is semisimple and the base field has characteristic zero, G(g) is a connected algebraic
group with Lie algebra g that finitely covers every other connected algebraic group with
Lie algebra g. In other words, G(g) is the (unique) simply connected semisimple algebraic
group with Lie algebra g. Once we have determined the centre of G(g) in terms of g and
its root system, we are able to read off the structure and classification of the semisimple
algebraic groups and of their representations from the similar results for Lie algebras.

In the first three sections, we work over an arbitrary field of characteristic zero, but only
with semisimple Lie algebras and algebraic groups that are split over the field. In Section
4, we explain how the theory extends to arbitrary semisimple Lie algebras and algebraic
groups over R.

Finally, in Section 5 we explain how the theory extends to reductive groups.

NOTES Sections 1 and 2 omit some (standard) proofs, Section 3 needs to be extended, and Sections
4 and 5 are not yet available.

(1 Root systems and their classification| . . . . . . ... ... ... ... .... 296
[2 Structure of semisimple Lie algebras and their representations| . . . . . . .. 305
[3 Structure of semisimple algebraic groups and their representations| . . . . . . 317
4 Real Lie algebras and real algebraic groups| . . . . .. ... ... ... ... 325
[5 Reductive groups| . . . . . . . ... 326
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1 Root systems and their classification

At present, this section omits some proofs. For more detailed accounts, see: | Bourbakil|[LIE}
Chapter VI; [Erdmann and Wildon|[2006, 11,13; Humphreys| 1972, III; Serre|| 1966, Chapter
V; or Casselman’s notes roots.pdf on his website.

Throughout, F is a field of characteristic zero and V is a finite-dimensional vector space
over F. An inner product on a real vector space is a positive definite symmetric bilinear
form.

1a Reflections

A reflection of a vector space V is an endomorphism of V that fixes the vectors in a hy-
perplane and acts as —1 on a complementary line. Let o be a nonzero element of V. A
reflection with vector o is an endomorphism s of V such that s(o) = —« and the set of
vectors fixed by s is a hyperplane H. Then V = H & («) with s acting as 1 @ —1, and so
52 = —1. Let V'V be the dual vector space to V, and write (, ) for the tautological pairing

Vx VY —k.IfaV is an element of V' such that {(a,a") = 2, then
Saix = x —(x,aY)a (158)
is a reflection with vector «, and every reflection with vector « is of this form (for a unique
2
av).

LEMMA 1.1 Let R be a finite spanning set for V. For any nonzero vector « in V, there
exists at most one reflection s with vector o such that s(R) C R.

PROOF. Let s and s’ be such reflections, and let # = ss’. Then ¢ acts as the identity map on
both Fo and V/ Fa, and so

(t—12Vc(@t—1)Fa=0.

Thus the minimum polynomial of ¢ divides (7 — 1)2. On the other hand, because R is finite,
there exists an integer m > 1 such that t™(x) = x for all x € R, and hence for all x € V.
Therefore the minimum polynomial of ¢ divides 7" — 1. As (T —1)? and T™ — 1 have
greatest common divisor 7' — 1, this shows that t = 1. O

LEMMA 1.2 Let (, ) be an inner product on a real vector space V. Then, for any nonzero
vector « in V, there exists a unique symmetry s with vector « that is orthogonal for (, ),
i.e., such that (sx,sy) = (x,y) for all x,y € V, namely

(x, )
(o, )

s(x)=x-2 o. (159)

PROOF. Certainly, does define an orthogonal symmetry with vector @. Suppose s’
is a second such symmetry, and let H = (¢)L. Then H is stable under s’, and maps
isomorphically on V/ (). Therefore s’ acts as 1 on H. As V = H @ («) and 5" acts as —1
on (o), it must coincide with s. o

I'The composite of the quotient map V — V/H with the linear map V/H — F sending « + H to 2 is the
unique element «V of V'V such that «(H) = 0 and (a,a¥) = 2.
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1b Root systems
DEFINITION 1.3 A subset R of V over F is a root system in V if

RS1 R is finite, spans V, and does not contain 0;
RS2 foreach « € R, there exists a (unique) reflection s, with vector o such that 5o (R) C R;
RS3 forall @, B € R, so(B) — B is an integer multiple of «.

In other words, R is a root system if it satisfies RS1 and, for each o € R, there exists a
(unique) vector a¥ € V'V such that (a,a) = 2, (R,aV) € Z, and the reflection s4:x —
x —{x,a¥)a maps R in R.

We sometimes refer to the pair (V, R) as a root system over F. The elements of R are
called the roots of the root system. If @ is a root, then sy () = —« is also a root. The
dimension of V is called the rank of the root system.

EXAMPLE 1.4 Let V be the hyperplane in F"tl of n + 1-tuples (x;)1<i<n+1 such that
> x; =0, and let

RZ{al’jdéfei—er?éj, lfl.,].fn'i‘l}

where (e;)1<i<n+1 is the standard basis for F n+1 For each i # ], let sy ; be the linear
map V — V that switches the ith and jth entries of an n + 1-tuple in V. Then Sej; 18 @
reflection with vector ¢;; such that 54, (R) C R and sq,, (8) — B € Za;j; for all B € R. As
R obviously spans V, this shows that R is a root system in V.

For other examples of root systems, see §2h| below.

PROPOSITION 1.5 Let (V, R) be a root system over F, and let Vy be the Q-vector space
generated by R. Thenc @ v+ cv: F ®q Vo — V is an isomorphism, and R is a root system
in Vy (Bourbaki LIE, VI, 1.1, Pptn 1;|Serre|1987, V, 17, Thm 5, p. 41).

Thus, to give a root system over F' is the same as giving a root system over Q (or R or C).
In the following, we assume that F C R (and sometimes that F' = R).

PROPOSITION 1.6 If (V;, R;);ey is a finite family of root systems, then

def

Dicr Vi, Ri) = (Dier Vi, LURi)
is a root system (called the direct sum of the (V;, R;)).
A root system is indecomposable (or irreducible) if it can not be written as a direct sum
of nonempty root systems.

PROPOSITION 1.7 Let(V, R) be aroot system. There exists a unique partition R =| |;<; R;
of R such that
V.R) =@D._,(Vi.R)). Vi = spanof R;,

and each (V;, R;) is an indecomposable root system (Bourbaki LIE, VI, 1.2).
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Suppose that roots & and 8 are multiples of each other, say,
B=ca, ceF, O0<c<l.

Then (ca,a¥) =2c € Zand so ¢ = % For each root «, the set of roots that are multiples of
« is either {—a, o} or {—a,—a/2,0¢/2,}. When only the first case occurs, the root system
is said to be reduced.

From now on “root system” will mean “reduced root system”.

1c The Weyl group

Let (V,R) be a root system. The Weyl group W = W(R) of (V, R) is the subgroup of
GL(V) generated by the reflections s, for @ € R. Because R spans V, the group W acts
faithfully on R, and so is finite.

For o € R, we let Hy denote the hyperplane of vectors fixed by s,. A Weyl chamber is
a connected component of V \ |y cp Ha-

PROPOSITION 1.8 The group W(R) acts simply transitively on the set of Weyl chambers
(Bourbaki LIE, VI, §1, 5).
1d Existence of an inner product

PROPOSITION 1.9 For any root system (V, R), there exists an inner product (, ) on V such
the w € R, act as orthogonal transformations, i.e., such that

(wx,wy) =(x,y) forallwe W,x,y eV.

PROOF. Let (, )’ be any inner product V x V — R, and define

()= . (wxwy).

Then (, ) is again symmetric and bilinear, and

(x,x) = ZweW(wx,wx)/ >0

if x # 0, and so (, ) is positive-definite. On the other hand, for wo € W,

/
WX, Woy) = WWoX, WW
(wox, woy) ZweW( 0 0))
=(x.y)
because as w runs through W, so also does wwyg. o
In fact, there is a canonical inner product on V.
When we equip V' with an inner product ( , ) as in (1.9),

(x,a)
(o, )

Therefore the hyperplane of vectors fixed by « is orthogonal to «, and the ratio (x, o)/ (o, o)
is independent of the choice of the inner product:

o forallx e V.

Se(x)=x-2

(x.)

) = (x,a").
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le Bases

Let (V, R) be aroot system. A subset S of R is a base for R if it is a basis for V' and if each
root can be written B = ), ¢ Mmqa With the mg integers of the same sign (i.e., either all
mg > 0 or all my < 0). The elements of a (fixed) base are called the simple roots (for the
base).

PROPOSITION 1.10 There exists a base S for R (Bourbaki LIE, VI, §1, 5).

More precisely, let ¢ lie in a Weyl chamber, so 7 is an element of V' such that (z,a") # 0
ifao € R,andlet RT = {a € R | (a,t) > 0}. Say that o« € R is indecomposable if it can
not be written as a sum of two elements of R™. The indecomposable elements form a base,
which depends only on the Weyl chamber of 7. Every base arises in this way from a unique
Weyl chamber, and so (1.8) shows that W acts simply transitively on the set of bases for R.

PROPOSITION 1.11 Let S be a base for R. Then W is generated by the {sq | @ € S}, and
W .S = R (Serre|1987, V, 10, p. 33).

PROPOSITION 1.12 Let S be a base for R. If S is indecomposable, there exists a root
o= Zaes nqo such that, for any other root Zaes mqo, we have that ng > my, for all
(Bourbaki LIE, VI, §1, 8).

Obviously @ is uniquely determined by the base S. It is called the highest root (for the
base). The simple roots o with ng = 1 are said to be special.

EXAMPLE 1.13 Let (V, R) be the root system in (1.4), and endow V with the usual inner
product (assume F C R). When we choose

n
t=neit-ten— (et tentr),

then

RYE{a|(a.0) >0} =f{ei—ej|i>j}
Fori > j+1,

ei—e;=(ej—eit1)+--+(ejr1—ej),
and so e; —e; is decomposable. The indecomposable elements are e1 —e2,...,e, —€,41.
Obviously, they do form a base S for R. The Weyl group has a natural identification with
Su+1, and it certainly is generated by the elements sq, , ..., Sy, Where o; = e; —e;+1; more-

over, W .S = R. The highest root is

@=ej—ept1 =01+ oy

1If Reduced root systems of rank 2

The root systems of rank 1 are the subsets {&, —a}, & # 0, of a vector space V of dimension
1, and so the first interesting case is rank 2. Assume F = R, and choose an invariant inner
product. For roots «, B, we let

n(B,a) = 2('&—0[) = (B.av) €Z.
(2, )
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Write

n(B,a) = 2@ cos ¢
||

where | - | denotes the length of a vector and ¢ is the angle between « and 8. Then
n(B,a)-n(a,p) =4cos’¢ € Z.

When we exclude the possibility that B is a multiple of «, there are only the following
possibilities (in the table, we have chosen J to be the longer root):

n(B.a)-n(e.p) [ n(e.p) | n(f.a)y| ¢ ||Bl/le

0 0 0 /2

| 1 1 /3 1
~1 1 | 2x2/3
1 2 | w/4

s -1 -2 3r/4 V2
1 3 | 7/6

: -1 -3 5m/6 V3

If & and B are simple roots and n(«, ) and n(B, ) are strictly positive (i.e., the angle
between « and B is acute), then (from the table) one, say, n(f,«), equals 1. Then

Se(B) = p—n(p.0)a =p—a,

and so &(a — B) are roots, and one, say o — B, will be in R*. But then o = (« — ) + B,
contradicting the simplicity of «. We conclude that n(«, 8) and n(8,«) are both negative.
From this it follows that there are exactly the four nonisomorphic root systems of rank 2
displayed below. The set {«, 8} is the base determined by the shaded Weyl chamber.

p=1(0.2)
N 13 = (_1» \/g) o +/3
—o a=(2,0) —o o =\(2,0)
~a—p -f
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30+ 28

B=(-3,v3) a+p 200+ B 30+ B

—Ba—-f 20-p —a—p —pB

—3a—28

Note that each set of vectors does satisfy (RS1-3). The root system A; x A; is decom-
posable and the remainder are indecomposable.

We have
A1 x A1 | A, B; G»
se(B)—p O la 20 3
¢ /2 27/3 | 3x/4 | 57/6
W(R) D> D3 Dy D¢
(Aut(R): W(R)) 2 2 1 1

where D, denotes the dihedral group of order 2n.

1g Cartan matrices

Let (V, R) be a root system. As before, for o, 8 € R, we let

n(a,p) = (a,p") € Z,
so that
(a,B)
B.8)

for any inner form satisfying (1.9). From the second expression, we see that n(wa, wf) =
n(a,B) forallw e W.

Let S be a base for R. The Cartan matrix of R (relative to §) is the matrix (n(a, B))q,ges -
Its diagonal entries n (o, «) equal 2, and the remaining entries are negative or zero.

For example, the Cartan matrices of the root systems of rank 2 are,

o) () G )

A1 X Aq Ap B> G2

n(a.p) =2
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and the Cartan matrix for the root system in (I.4) is

2 -1 0 0 O
-1 2 -1 0 O
0o -1 2 0 O
0O 0 O 2 -1
0O 0 O -1 2

because

€i —€i41,€i1—Cit2
2( i i+ i+ i+ ) =1, etc..

(ei —ejyr1.,6; —€it1)

PROPOSITION 1.14 The Cartan matrix of (V, R) is independent of S, and determines
(V, R) up to isomorphism.

In fact, if S is a second base for R, then we know that S’ = wS for a unique w € W and
that n(wa, wpf) = n(a, B). Thus S and S’ give the same Cartan matrices up to re-indexing
the columns and rows. Let (V’, R’) be a second root system with the same Cartan matrix.
This means that there exists a base S’ for R’ and a bijection & — «’: S — S’ such that

n(e,B) =n(a’,p’) foralla,B € S. (160)

The bijection extends uniquely to an isomorphism of vector spaces V — V', which sends
Sq t0 so for all @ € S because of (I60). But the s, generate the Weyl groups (I.11)), and
so the isomorphism maps W onto W', and hence it maps R = W -S onto R' = W’. S’
(see[L.11). We have shown that the bijection S — S’ extends uniquely to an isomorphism
(V,R) — (V', R’) of root systems.

1h Classification of root systems by Dynkin diagrams

Let (V, R) be a root system, and let S be a base for R.

PROPOSITION 1.15 Let« and 8 be distinct simple roots. Up to interchanging o and B, the
only possibilities for n(«, B) are

n(a,p) | n(B,a) | n(a,fn(f,a)
0 0 0
~1 ~1 1
-2 ~1 2
-3 ~1 3

If W is the subspace of V' spanned by « and 8, then W N R is a root system of rank 2 in
W, and so (I.15) can be read off from the Cartan matrices of the rank 2 systems.

Choose a base S for R. Then the Coxeter graph of (V, R) is the graph whose nodes are
indexed by the elements of S; two distinct nodes are joined by n(a, 8) -n(B,«) edges. Up
to the indexing of the nodes, it is independent of the choice of S.
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PROPOSITION 1.16 The Coxeter graph is connected if and only if the root system is inde-
composable.

In other words, the decomposition of the Coxeter graph of (V, R) into its connected
components corresponds to the decomposition of (V, R) into a direct sum of its indecom-
posable summands.

PROOF. A root system is decomposable if and only if R can be written as a disjoint union
R = R; U R, with each root in Ry orthogonal to each root in R,. Since roots «, 8 are
orthogonal if and only n(a, B) -n(B.a) = 4cos?>¢ = 0, this is equivalent to the Coxeter
graph being disconnected. O

The Coxeter graph doesn’t determine the Cartan matrix because it only gives the number
n(a, B)-n(B,a). However, for each value of n(w, 8)-n(B,«) there is only one possibility
for the unordered pair

{n(a,B),n(B,a)} = ZM cos¢,2@ cos; .
1B |

Thus, if we know in addition which is the longer root, then we know the ordered pair.
To remedy this, we put an arrowhead on the lines joining the nodes indexed by « and S
pointing towards the shorter root. The resulting diagram is called the Dynkin diagram of
the root system. It determines the Cartan matrix and hence the root system.

For example, the Dynkin diagrams of the root systems of rank 2 are:

@«o g« g B ¢ B
O O O0—0 0O0==0 O0==0

A1 X Aq Ar B> G2

THEOREM 1.17 The Dynkin diagrams arising from indecomposable root systems are ex-
actly the diagrams A, m > 1), B, n >2),C, (n>3), D, n > 4), E¢, E7, Eg, F4, G3
listed at the end of the section — we have used the conventional (Bourbaki) numbering for
the simple roots.

PROOF. See, for example, Humphreys||1972, 11.4. O

For example, the Dynkin diagram of the root system in (1.4} [1.13)) is A,. Note that
Coxeter graphs do not distinguish B, from C,,.

1i The root and weight lattices
1.18 Let X be alattice in a vector space V over F. The dual lattice to X is
Y ={yeVV|(X,y)CZ}.

Ifey,...,en is abasis of V that generates X as a Z-module, then Y is generated by the dual
basis f1,..., fm (defined by (e;, f;) = di;).
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1.19 Let (V,R) be a root system in V. Recall that, for each o € R, there is a unique
a¥ € V such that (a,a") =2, (R,a") € 7Z, and the reflection x > x — (x,a" )« sends R

into R. The set RV £ {&V |« € R} is aroot system in V'V (called the inverse root system).

1.20 (Bourbaki LIE, VI, §1, 9.) Let (V, R) be a root system. The root lattice Q = Q(R)
is the Z-submodule of V' generated by the roots:

O(R)=7ZR = {Zaemea | my € Z}.
Every base for R forms a basis for Q. The weight lattice P = P(R) is the lattice dual to

Q(RY):
P={xeV|{(x,a¥)eZforalla € R}.

The elements of P are called the weights of the root system. We have P(R) D Q(R)
(because (R,a") C Z for all « € R), and the quotient P(R)/Q(R) is finite (because the
lattices generate the same Q-vector space).

1.21 (Bourbaki LIE, VI, §1, 10.) Let S be a base for R. Then SV £ {aV | & € S} is a base
for RY. For each simple root «, define wy € P(R) by the condition

(Wa.BY) =848, allBes.
Then {wy | @ € S} is a basis for the weight lattice P(R), dual to the basis SV. Its elements

are called the fundamental weights.

1.22 (Bourbaki LIE, VIII, §7.) Let S be a base for R, so that

Ry = {d mga|myg e N}JNR

R = Ry U R_ with
R_ = {d mga;|—my eN}NR

We let P+ = P4 (R) denote the set of weights that are positive for the partial ordering on
V defined by S'; thus

Pi(R)={>qesCa|ca =0, ¢o €Q}NP(R).

A weight A is dominant if (A,a") € N for all « € S, and we let P44 = P4 (R) denote
the set of dominant weights of R; thus

Pir(R)={xeV|{x,a¥)eNalla € S} C P+(R).

Since the w,, are dominant, they are sometimes called the fundamental dominant weights.

1.23 When we write S = {«1,...,0,}, the fundamental weights are w1, ..., w,, where
(wi.af) = 8.

Moreover

Ry = {d mjai|m eNJNR

R. = {3 mja;|-m;i eNYNR ’

Q(R) =Zo @ ®Zoy CV =Ra; @ D Ray;

PR)=Zw & ®Zw, CV =Rw & ®Rwy;

Pi4(S) = {Zmiwi | m; € N}.

R = Ry UR_ with §
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1j

An

By

E¢

Fy

G2

List of indecomposable Dynkin diagrams

o1 a2 a3 ap—2 Qp—1 (247
O O OoO——----- O O O
o1 a2 a3 p—2 Qp—1 On
O—O0—o0 - O——O0—0
o1 2%) o3 Up—2 Op-—1 Op
O—O0—O0—— - O——O0=<=0
On—1
o1 a2 o3 ap—3 Op—2
O O OoO——----- O
On

(0%)
(05} a3 (6%} (07 (07
O O O O O

(%%)
(05} (0%} (67} (07 (07 (0%}
O O O O O O

o2
o1 o3 04 05 Qg o7 og
O O O O O O O
(05} (0%) o3 04
O——O0—>—0—20
o1 2%)

(n nodes, n > 1)

(n nodes, n > 2)

(n nodes, n > 3)

(n nodes, n > 4)

2 Structure of semisimple Lie algebras and their
representations

This section is an introductory survey, based on |Bourbaki/|LIE, where the reader can find
omitted details. Most can also be found in Jacobson||1962| and, when the ground field k is

algebraically closed field, in[Humphreys| 1972 and [Serre|1966.
Throughout this section, & is a field of characteristic zero, and all representations of Lie
algebras are finite dimensional.
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2a Elementary automorphisms of a Lie algebra

2.1 Ifuis anilpotent endomorphism of a k-vector space V, then the sum e¥ =}, - o u" /n!
has only finitely many terms (it is a polynomial in %), and so it is also an endomorphism of
V. If v is another nilpotent endomorphism of V' that commutes with u, then

m n
u v
(L) (s
m=0 m' n>0 p!
Zmn>0 m'n!

r

=2 ot |22 uo"
rzOr! m+n=r \

= Zr>0 ;(u +v)"

—e

—u

In particular, e¥e ™ = ¢® = 1, and so ¥ an automorphism of V.

2.2 Now suppose that V' is equipped with a k-bilinear pairing V x V (i.e., it is a k-algebra)
and that u is a nilpotent derivation of V. Recall that this means that

u(xy) =x-u(y)+u(x)-y (x,yeV).
On iterating this, we find that
u"(x,y) = Z (r) u™(x)-u"(y) (Leibniz’s formula).
m4n=r \';;m
Hence

1
u — T .. u
e’ (xy) = E =0 1% (xy) (definition of e*)
_Zr 0 |Zm+n r( ) u™(x)-u"(y) (Leibniz’s formula)
>0 r

u™(x) u"(y)
:Zm,nzﬂ m! ol
=e"(x)-e"(y).

Therefore e¥ is an automorphism of the k-algebra V. In particular, a nilpotent derivation u
of a Lie algebra defines an automorphism of the Lie algebra.

2.3 The nilpotent radical of a Lie algebra g is the intersection of the kernels of the simple
representations of g. For any x in the nilpotent radical of g, ady x is a nilpotent derivation
of g, and so ¢®¥5(*) is an automorphism of g. Such an automorphism is said to be special.
(Bourbaki LIE, I, §6, 8.)

2.4 More generally, any element x of g such that adg(x) is nilpotent defines an automor-
phism of g. A finite products of such automorphisms is said to be elementary. The elemen-
tary automorphisms of g form a subgroup Aute(g) of Aut(g). As ue®d®)y~1 = adx) for
any automorphism u of g, Aut.(g) is a normal subgroup of Aut(g). (Bourbaki Lie, VII, §3,
1).
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2.5 Let g be a Lie algebra. According to Theorem there exists an affine group G
such that

Rep(G) = Rep(g).

Let x be an element of g such that p(x) is nilpotent for all representation (V, p) of g over k,
and let (¢¥)y = eP), Then

o (eM)vew = (€¥)y ® (eX)w for all representations (V, py) and (W, pw) of g;

o (e¥)y =idy if g acts trivially on V;

o (e¥)woar = ago(e®)y for all homomorphisms a: (V, py) — (W, pw) of repre-
sentations of g over k.

Therefore (Theorem[10.2), there exists a unique element e* in G (k) such that e* acts on V
as eP™) for all representations (V, p) of g.

ASIDE 2.6 Let Autg(g) denote the (normal) subgroup of Aut(g) consisting of automorphisms that
become elementary over k. If g is semisimple, then Aut,(g) is equal to its own derived group, and
when g is split, it is equal to the derived group of Auty(g) (Bourbaki LIE, VIII, §5, 2; §11, 2, Pptn
3).

2b Jordan decompositions in semisimple Lie algebras

Recall that every endomorphism of a vector space has a unique (additive Jordan) decom-
position into the sum of a semisimple endomorphism and a commuting nilpotent endomor-
phism (I} [3.22). For a Lie subalgebra g of gly, the semisimple and nilpotent components
of an element of g need not lie in g (00} [1.40).

DEFINITION 2.7 An element x of a semisimple Lie algebra is semisimple (resp. nilpotent)
if, for every g-module V', xy is semisimple (resp. nilpotent).

THEOREM 2.8 Every element of a semisimple Lie has a unique (Jordan) decomposition
into the sum of a semisimple element and a commuting nilpotent element.

PROOF. Omitted for the present (Bourbaki LIE, I, §6, 3, Thm 3) — the proof uses Weyl’s
theorem (II} [6.10]). O

Let x be an element of a semisimple Lie algebra g, and let x = x; 4 x5 be its decom-
position. For any g-module V, xyy = (x5)y + (x5)y is the Jordan decomposition of xy .

COROLLARY 2.9 In order to show that an element of a semisimple Lie algebra is semisim-
ple (resp. nilpotent), it suffices to check that it acts semisimply (resp. nilpotently) on one
faithful module.

PROOF. If (x,)y = O for one faithful g-module V, then x,, = 0, and so xy = (x5)w for
every g-module W. o

ASIDE 2.10 As noted earlier (§Tm), Theorem 2.8 holds for every algebraic Lie algebra. The theo-
rem may be regarded as the first step in the proof that all semisimple Lie algebras are algebraic.
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2¢ Split semisimple Lie algebras

DEFINITION 2.11 A Lie algebra b is toral if ady x is semisimple for every element x of b.
PROPOSITION 2.12 Every toral Lie algebra is abelian.

PROOF. Let x be an element of such an algebra. We have to show that adx = 0. If not,
then, after possibly passing to a larger base field, ad x will have an eigenvector with nonzero
eigenvalue, say ad(x)(y) =cy,c # 0, y # 0. Now ad(y)(x) = —ad(x)(y) = —cy # O but
ad(y)?(x) = ad(y)(—cy) = 0. Thus, ad(y) doesn’t act semisimply on the subspace of b
spanned by x and y, which contradicts its semisimplicity on b. O

DEFINITION 2.13 A Cartan subalgebra of a semisimple Lie algebra is a maximal toral
subalgebra.’

Because the adjoint representation of a semisimple Lie algebra is faithful, (2.9) shows
that the elements of toral subalgebra of a semisimple Lie algebra are semisimple (in the

sense of [2.7).

EXAMPLE 2.14 For any maximal torus 7" in a semisimple algebraic group G, Lie(7') is a
Cartan subalgebra of Lie(G).

PROPOSITION 2.15 A toral subalgebra of a semisimple Lie algebra is a Cartan subalgebra
if and only if it is equal to its own centralizer.

PROOF. If h = c4(h) then obviously b is maximal. For the converse, see Humphreys|1972,
8.2. o

DEFINITION 2.16 A Cartan subalgebra h of a semisimple Lie algebra g is said to be split-
ting if the eigenvalues of the linear maps ad(h): g — g lie in k for all & € . A split semisim-
ple Lie algebra is a pair (g, h) consisting of a semisimple Lie algebra g and a splitting Cartan
subalgebra h (Bourbaki LIE, VIII, §2, 1, Déf. 1).

More loosely, we say that a semisimple Lie algebra is split if it contains a splitting
Cartan subalgebra (Bourbaki says splittable).

EXAMPLE 2.17 (a) For any split maximal torus 7" in a semisimple algebraic group G,
Lie(T) is a splitting Cartan subalgebra of Lie(G) (see(3.15).
(b) The subalgebra of diagonal elements is a splitting Cartan subalgebra of sl (see

§2h).

The semisimple Lie algebra g determines the pair (g,h) up to isomorphism. More
precisely, there is the following important result.

THEOREM 2.18 Let b and b be splitting Cartan subalgebras of a semisimple Lie algebra
g. Then there exists an elementary automorphism e of g such that e(h) = b'.

2This is not the usual definition, but is equivalent to it when the algebra is semisimple (Bourbaki LIE, VII,
§2, 4, Th. 2).
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PROOF. Bourbaki LIE, VIII, §3, 3, Cor. to Prop. 10. o

DEFINITION 2.19 The common dimension of the splitting Cartan subalgebras of a split
semisimple Lie algebra is called the rank of the Lie algebra.

2d The roots of a split semisimple Lie algebra

Let (g,b) be a split semisimple Lie algebra. For each i € b, the action of adg /1 is semisim-
ple with eigenvalues in k, and so g has a basis of eigenvectors for ady/. Because b is
abelian, the ady s form a commuting family of diagonalizable endomorphisms of g, and so
there exists a basis of simultaneous eigenvectors. In other words, g is a direct sum of the
subspaces?

* E{xeg|lhx]=a)xforallh b}, acb” = Homp jmear(h.k).

The roots of (g, h) are the nonzero « such that g* # 0. Write R for the set of roots of (g, h).
Then the Lie algebra g decomposes into a direct sum

8= h@@(xeng'

Clearly the set R is finite, and (by definition) doesn’t contain 0. We shall see that R is a
reduced root system in bV, but first we look at the basic example of sl;.

2e The Lie algebra sl,

2.20 This is the Lie algebra of 2 x 2 matrices with trace 0. Let
01 1 0 00
X = , h= , Y= .
00 0 -1 1 0

[x.y]=h, [hx]=2x, [hy]==2y.

Then

Therefore {x, %, y} is a basis of eigenvectors for ad 2 with integer eigenvalues 2,0, —2, and

sh=g"®h®g™
=(x)® () & (y)

where ) = (h) and « is the linear map h — k such that «(h) = 2. The decomposition shows
that b is equal to its centralizer, and so it is a splitting Cartan subalgebra for g. Hence, sl
is a split simple Lie algebra of rank one; in fact, up to isomorphism, it is the only such Lie
algebra. Let R = {a} C hY. Then R is aroot system in " it is finite, spans b ,and doesn’t
contain 0; if we let " denote & regarded as an element of (hY)V, then (a,aV) = 2, the
reflection x — x — (x,a")a maps R to R, and («@,a") € Z. The root lattice Q = Za and
the weight lattice P = Z§.

3Elsewhere we write Vg rather than V'*. Which should it be?
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2f The root system attached to a split semisimple Lie algebra

Let (g.bh) be a split semisimple Lie algebra, and let R C " be the set of roots of (g,h), so

that
8= h © @WER g‘x‘

LEMMA 2.21 Fora,f bV, [g% gf] c g*th.

PROOF. Letx € g% and y € g#. Then, for i € h, we have

ad(h)[x, y] = [ad(h)x, y] +[x.ad(h)y]
= [a(h)x, y] + [x.B(h)y]
= (a(h) + B(n)[x. y]. o

THEOREM 2.22 Leta be a root of (g,h).

(a) The spaces g* and by, & [9%, g~%] are one-dimensional.
(b) There is a unique element hy € by such that a(hy) = 2.
(¢) For each nonzero element x, € g%, there is a unique yq € g~ % such that

[(Xq.Yal = ha,  [ha,Xa] = 2Xa, [ha:Ya]l = —2Ya.

Hence 54 £ g~ @ b @ g* is a subalgebra isomorphic to sly.
PROOF. Bourbaki LIE, VIII, §2, 2, Pptn 1, Thm 1. O

In particular, for each root « of (g, h), there is a unique one-dimensional k-subspace g*
of g such that
[h,x] = a(h)x forall h € b, x € g*.

The subalgebra s, is the centralizer of Ker(c).
An sly-triple in a Lie algebra g is a triple (x,/,y) # (0,0,0) of elements such that

[x,y]=h, [hx]=2x, [hy]=-2y.

There is a canonical one-to-one correspondence between sl,-triples in g and injective ho-
momorphisms slp — g. The theorem says that, for each root o of g and choice of x € g%,
there is a unique sl,-triple (x,%,y) such that a(h) = 2. Replacing x with cx replaces
(x,h,y) with (cx,h,c71y). 4

THEOREM 2.23 Foreacha € R, let ¥ denote hy, regarded as an element of ()" . Then
R is a reduced root system in bV ; moreover, oV is the unique element of (§Y)V such that
(a,aY) = 2 and the reflection x — x — (x,a")a preserves R.

PROOF. Bourbaki LIE, VIII, §2, 2, Thm 2. o

4Cf. Bourbaki LIE, §11, 1, where it is required that [x,y] = —h. In other words, Bourbaki replaces
everyone else’s y with —y.
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Note that, once we choose a base for R, the dominant weights (i.e., the elements of
P, ) are exactly the elements o of b such that (hg) € Nforall B € Ry.

ASIDE 2.24 Let x be an element of a semisimple Lie algebra g (not necessarily split). If x belongs
to an sl,-triple (x, 4, y), then x is nilpotent (apply [2.9). Conversely, the Jacobson-Morozov theorem
says that every nonzero nilpotent element x in a semisimple Lie algebra extends to an s[,-triple
(x,h,y) (Bourbaki LIE, VIIL, §11, 2).

2g Criteria for simplicity and semisimplicity

PROPOSITION 2.25 Let g be a Lie algebra, and let iy be an abelian Lie subalgebra. For
eacha € bV, let
g* ={xeg|hx=a(h)x all h € b},

and let R be the set of nonzero a € Y such that g% # 0. Suppose that:

(a) g= h@ @aeRga;

(b) foreacha € R, the space g% has dimension 1;

(c) for each nonzero h € by, there exists an o € R such that «(h) # 0; and
(d) ifa € R, then —a € R and [[g*%, g7 %], g%] # 0.

Then g is semisimple and b is a splitting Cartan subalgebra of g.

PROOF. Let a be an abelian ideal in g; we have to show that a = 0. As [h,a] C a, (a) gives
us a decomposition

a=aﬂh®@a€Raﬂg“.

If ang® # 0 for some o € R, then a D g* (by (b)). As a is an ideal, this implies that
a D [g¥ g7 %], and as [a,a] = 0, this implies that [[g*, g~ %], g*] = 0, contradicting (d).

Suppose anh # 0, and let & be a nonzero element of aNf. According to (¢), there exists
an o € R such that «(h) # 0. Let x be a nonzero element of g%. Then [, x] = a(h)x,
which is a nonzero element of g*. As [, x] € a, this contradicts the last paragraph.

Condition (a) implies that the elements of § act semisimply on g and that their eigen-
values lie in k and that § is its own centralizer. Therefore b is a splitting Cartan subalgebra
of g. O

PROPOSITION 2.26 Let (g,h) be a split semisimple algebra. A decomposition g = g1 & g»
of semisimple Lie algebras defines a decomposition (g,5) = (g1,b1) @ (g2, H2), and hence
a decomposition of the root system of (g, h).

PROOF. Let

8= h@@aeRga
g1 = hlGB@aeng?

g2 =h2 @@aeRz 9

be the eigenspace decompositions of g, g;, and g, respectively defined by the action of b.
Thenh =h; ®hy and R = Ry U R5. ]
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COROLLARY 2.27 If the root system of (g, ) is indecomposable (equivalently, its Dynkin
diagram is connected), then g is simple.

ASIDE 2.28 The converses of (2.26)) and (2.27) are also true: a decomposition of its root system
defines a decomposition of (g, h), and if g is simple then the root system of (g, h) is indecomposable

(232 below).

2h Examples

We first look at § = gl,,+1, even though this is not (quite) a semisimple algebra (its centre
is the subalgebra of scalar matrices). Let h be the Lie subalgebra of diagonal elements in
g. Let E;; be the matrix in g with 1 in the (7, j)th position and zeros elsewhere. Then

(Eij)1<i,j<n+1 is a basis for g and (E;;)1<;<n+1 is a basis for 6 Let (&;)1<i<n+1 be the
dual basis for hY; thus
gi(diag(ay,....an+1)) = a;.
An elementary calculation shows that, for 4 € 6,
(7, Eij] = (gi(h) —¢gj(h) Ejj.
Thus,
A0 A0
9= b @ 69oteR g
where R ={¢g; —¢; |i # j, 1 <i,j <n+1}and §° % =kE;;.

EXAMPLE (A,): sl,11

Let g = s[(W) where W is a vector space of dimension n + 1. Choose a basis (€;)1<i<n+1
for W, and use it to identify g with sl, 4, and let fh be the Lie subalgebra of diagonal
matrices in g. The matrices

Eij—FEit1i+1  (1<i<n)
form a basis for b, and, together with the matrices
Eij (1=<i,j<n,i#})),

they form a basis for g. A

Let V be the hyperplane in b consisting of the elements a = Z:l: 11 a;j&; such that
Z:’: 11 a; = 0. The restriction map A > A|h defines an isomorphism of V onto Y, which
we use to identify the two spaces.” Now

9= h@@aeRga

where R ={g; —¢; |i # j} C V and g* ™% = kE;;. We check the conditions of Proposi-
tion[2.25] We already know that (a) and (b) hold. For (c), let

h = diag(c1,...,cn+1), ».¢i =0,

5In more detail: 6 is a vector space with basis E11,..., Ex4+1,n+1, and b its the subspace {Y a; Ej; |
> a; = 0}. The dual of b is a vector space with basis £1,...,6,+1 Where &; (E ;) = §;;, and the dual of b is

the quotient of (G)V by the line (g1 + - + &, ). However, it is more convenient to identify dual of f) with the
orthogonal complement of this line, namely, with the hyperplane V in (h)V.
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be an element of h. If 1 # 0, then ¢; # c¢; for some i, j, and so (¢; —¢&;)(h) =c¢; —c; # 0.
For (d), let o« = &; —¢;. Then —«, is also a root and
[lg*. 97%]. %1 > [[Eij. E il kEij]
= [Eii — Ejj, Eij]
=2.

Therefore (g, h) is a split semisimple Lie algebra.
The family (o )1<i<n, @ = € —¢€i+1, is a base for R. Relative to the inner product

Oaiei, ) bigi) = Zaibz’,

we find that
( ) 2 ifj=i
oL, 0 e
n(og,oj) =2 St =(j,aj)=4q -1 ifj=i+1
(aj,aj) .
0 otherwise
and so
1 ifj=i+l1
n(aj,aj)-n(aj,o;) = . ] ..
0 ifj#i,i+l.

Thus, the Dynkin diagram of (g, h) is indecomposable of type A,. Therefore g is simple.

EXAMPLE (B;): 02,41

EXAMPLE (C,): sp,,

EXAMPLE (A,): 03,

See Bourbaki LIE, VIII, §13 (for the present). In fact, the calculations are almost the same
as those in

2i Subalgebras of split semisimple Lie algebras

Let (g, b) be a split semisimple Lie algebra with root system R C h¥. We wish to determine
the subalgebras a of g normalized by b, i.e., such that [h, a] C a.
For a subset P of R, we let

g =) o*andbhp =) be.

aeP aeP

DEFINITION 2.29 A subset P of R is said to be closed® if

a,peP, a+feR — a+pcP.

As [g%, g8 C g?th (see , in order for hp 4+ g¥ to be a Lie subalgebra of g, we
should expect to have to require P to be closed.

OThis is Bourbaki’s terminology, LIE VI, §1, 7.
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PROPOSITION 2.30 Forevery closed subset P of R and subspace by of b containingbhpn—p,
the subspace a = b’ + g¥ of g is a Lie subalgebra normalized by b, and every Lie subalgebra
of g normalized by b is of this form for some i)’ and P. Moreover,

(a) a is semisimple if and only if P = —P and b/ = bp;
(b) ais solvable if and only if
PNn(—P)=20. (161)

PROOF. SeeBourbaki|LIE, VIIL, §3, 1, Pptn 1, Pptn 2. o

EXAMPLE 2.31 For any root &, P = {a,—a} is a closed subset of R, and [g¥, g~*] + g*
is the Lie subalgebra s, of (2.22).

PROPOSITION 2.32 The root system R is indecomposable if and only if g is simple.

PROOF. Ibid., VIII, §3, 2, Pptn 6. o
In more detail, let Rq,..., Ry be the indecomposable components of R. Then hg, +
9R,>---»DR,, + 9R,, are the minimal ideals of g.

For base S of R, the set R of positive roots is a maximal closed subset of R satisfying
@, and every maximal such set arises in this way from a base (Bourbaki LIE, VI, §1,
7, Pptn 22). Therefore, the maximal solvable subalgebras of g containing b are exactly
subalgebras of the form

6(S)E hao EB(M g%, S abase of R.

The subalgebra b(S) determines R, and hence the base S (as the set of indecomposable
elements of R4).

DEFINITION 2.33 Let (g, h) be a split semisimple Lie algebra; a Borel subalgebra of (g,5)
is a maximal solvable subalgebra of g containing . Let g be a semisimple Lie algebra; a
Borel subalgebra of g is a Lie subalgebra of g that is a Borel subalgebras of (g, h) for some
splitting Cartan subalgebra b of g.

EXAMPLE 2.34 Let g = sl,41 and let h be the subalgebra of diagonal matrices. For the
base S = (®j)1<i<n, & = & — & +1, as in the positive roots are those of the form
e; —&j with i < j, and the Borel subalgebra b(S) consists of upper triangular matrices of
trace 0. More generally, let g = s[(W) with W a vector space of dimension n + 1. For any
maximal flag § in W, the set bg of elements of g leaving stable all the elements of § is a
Borel subalgebra of g, and the map § > by is a bijection from the set of maximal flags onto
the set of Borel subgroups of g (Bourbaki LIE, VIII, §13).

2j Classification of split semisimple Lie algebras

THEOREM 2.35 Every root system over k arises from a split semisimple Lie algebra over
k.
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For an indecomposable root system of type A,—D,, this follows from examining the stan-
dard examples (see §2h). In the general case, it is possible to define g by generators
(Xg»ha» Ya)aes and explicit relations (Bourbaki|LIE, VIII, §4, 3, Thm 1).

THEOREM 2.36 The root system of a split semisimple Lie algebra determines it up to
isomorphism.

In more detail, let (g,h) and (g’,b") be split semisimple Lie algebras, and let S and S’ be
bases for their corresponding root systems. For each o € S, choose a nonzero x, € g%,
and similarly for g’. For any bijection & +> «’: S — S’ such that (&, 8Y) = (&’, ") for all
a, B € S, there exists a unique isomorphism g — g’ such that x4 — x4 and hg +—> hgo for
all « € R; in particular, h maps into b’ (Bourbaki LIE, VIII, §4, 4, Thm 2).

2k Representations of split semisimple Lie algebras

Throughout this subsection, (g, ) is a split semisimple Lie algebra with root system R C
Y, and b is the Borel subalgebra of (g, h) attached to a base S for R. According to Weyl’s
theorem [6.10), g-modules, and so to classify them it suffices to classify the simple
representations.

Proofs of the next three theorems can found in [Bourbaki|LIE, VIII, §7 (and elsewhere).

THEOREM 2.37 LetV be a simple g-module.

(a) There exists a unique one-dimensional subspace L of V stabilized by b.

(b) The L in (a) is a weight space for b, i.e., L = Vg, for some wy € h".

(¢c) The wy in (b) is dominant, i.e., wy € P4y ;

(d) If w is also a weight forh in V, then @ = wy — ) _,cg Mot Withmg € N.

Lie’s theorem shows that there does exist a one-dimensional eigenspace for b —
the content of (a) is that when V' is a simple g-module, the space is unique. Since L is
mapped into itself by b, it is also mapped into itself by b, and so lies in a weight space. The
content of (b) is that it is the whole weight space.

Because of (d), wy is called the highest weight of the simple g-module V.

THEOREM 2.38 Every dominant weight occurs as the highest weight of a simple g-module.

THEOREM 2.39 Two simple g-modules are isomorphic if and only if their highest weights
are equal.

Thus V +— @y defines a bijection from the set of isomorphism classes of simple g-modules
onto the set of dominant weights Py 4.

COROLLARY 2.40 IfV is a simple g-module, then End(V,r) >~ k.

Let V = Vg with @ dominant. Every isomorphism Vg — Vg maps the highest weight

line L into itself, and is determined by its restriction to L because L generates V4 as a
g-module.
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EXAMPLE 2.41 Let g = sl(W), and choose a basis (e;)1<j<n+1 for W as in Recall
that
S ={uy,....an}, o =¢c —¢i+1, e&i(diaglay,....an)) =a;

is a base for the root system of (g, h); moreover hy; = E;; — Ej11,i+1. Let
‘(Ul/ =e1+--t¢&i.
Then

and so =]|h is the fundamental weight corresponding to o;. This is represented by the
element )
i
n+1
of V. Thus the fundamental weights corresponding to the base S are w1, ..., w,. We have

wi=¢e14+-+e&— (e1+-+ent+1)

Q(R) ={mie1+--+mpy16n4+1|mi €Z, my+--+mpy1 =0}
P(R)= O(R) +Z-w
P(R)/Q(R) ~Z/(n+1)Z.

The action of g on W defines an action of g on /\” W. The elements
er A Ae, i < <ip,
form a basis for /\" W, and h € b acts by
h-(e1, A---nej ) = (gi,(h) +---+¢.(h)(e1, A= Nei,).
Therefore the weights of b in /A" W are the elements
gyt tei, i< <ip,

and each has multiplicity 1. As the Weyl group acts transitively on the weights, A" W is a
simple g-module, and its highest weight is @, .

2.42 The category Rep(g) is a semisimple k-linear tensor category to which we can apply
(I 21.20). Statements (2.38] [2.39) allow us to identify the set of isomorphism classes of
Rep(g) with P4 . Let M(P+4) be the free abelian group with generators the elements of
P 4 and relations

w=w1+w I Vi C Vg, Vi,

Then P4y — M(P44) is surjective, and two elements @ and @’ of P4y have the same
image in M (P4+4) if and only if there exist @w1,..., @y € P++ such that Wy and Wy, are
subrepresentations of Wz ® -+ ® Wey,,, (IL[21.22)). Later we shall prove that this condition
is equivalent to w —w’ € Q, and so M(P++) ~ P/Q. In other words, Rep(g) has a
gradation by P44+ /Q N P44 >~ P/Q but not by any larger quotient.

For example, let g = sl3, so that Q = Za and P = Z%. Forn € N, let V(n) be a simple
representation of g with highest weight Za. From the Clebsch-Gordon formula (Bourbaki
LIE, VIII, §9), namely,

Vim)@ V)~ V(im+n)@V(im+n-2)®---@V(m—n), n<m,

we see that Rep(g) has a natural P /Q-gradation (but not a gradation by any larger quotient
of P).
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ASIDE 2.43 The above theorems are important, but are far from being the whole story. For exam-
ple, we need an explicit construction of the simple representation with a given highest weight, and
we need to know its properties, e.g., its character. Moreover, in order to determine Rep(g) as a tensor
category, it is is necessary to describe how the tensor product of two simple g-modules decomposes
as a direct sum of g-modules.

ASIDE 2.44 s it possible to prove that the kernel of P44+ — M(P4+4) is Q N P44 by using only
the formulas for the characters and multiplicities of the tensor products of simple representations
(cf. Humphreys| 1972, §24, especially Exercise 12)?

3 Structure of semisimple algebraic groups and their
representations

In this section, we classify the split semisimple algebraic groups and their representations
over a field of characteristic zero. Throughout, the ground field k has characteristic zero.

3a Basic theory

Recall (11, that the functor G ~ Lie(G) is exact and faithful on connected alge-
braic groups. However, it is not full, and infinitely many nonisomorphic connected alge-
braic groups may have the same Lie algebra (II, [2.14).

For any connected algebraic group G, the map H +— Lie(H ) is a bijection from the set
of connected algebraic subgroups of G onto the set of algebraic Lie subalgebras of Lie(G)
(IL 2.T1). As commutative subgroups (resp. normal subgroups) correspond to commutative
subalgebras (resp. ideals), we see G is semisimple if Lie(G) is semisimple; the converse
statement is also true (IL, [5.23).

Let G be a semisimple algebraic group, and let g be its Lie algebra. Then

g=91XxXXgn

where g1,...,9, are the minimal nonzero ideals in g; each a; is a simple Lie algebra.
Correspondingly, there is an isogeny

(g1,...,8n) > 81 8n:G1 X+ xGp —> G
where G; is the connected algebraic subgroup of G with Lie algebra g;; each G; is almost-

simple.

3b Rings of representations of Lie algebras

Let g be a Lie algebra over k. A ring of representations of g is a collection of representa-
tions of g that is closed under the formation of direct sums, subquotients, tensor products,
and duals. An endomorphism of such a ring R is a family

o= (aV)VGRv ay € Endk-linear(V)v
such that

o ayew =ay Qidy +idy Qo forall V,W e R,
o ay = 0if g acts trivially on V', and
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¢ for any homomorphism 8:V — W of representations in R,
awop =ayop.

The set gr of all endomorphisms of R becomes a Lie algebra over k (possibly infinite
dimensional) with the bracket

[, Bly = [ay . By].

EXAMPLE 3.1 (IWAHORI|[1954) Let k be an algebraically closed field, and let g be k re-
garded as a one-dimensional Lie algebra. To give a representation of g on a vector space V/
is the same as to give an endomorphism « of V, and so the category of representations of
g is equivalent to the category of pairs (k", A), n € N, with A an n x n matrix. It follows
that to give an endomorphism of the ring R of all representations of g is the same as to give
amap A — A(A) sending a square matrix A to a matrix of the same size and satisfying
certain conditions. A pair (g, c) consisting of an additive homomorphism g:k — k and an
element ¢ of k defines a A as follows:

o A(S)=Udiag(gay.,...,ga,)U~Vif A is the semisimple matrix Udiag(ay.,...,a,)U"";

¢ AMN) =cN if N is nilpotent;

o A(A) =A(S)+A(N) if A= S+ N is the decomposition of A into its commuting
semisimple and nilpotent parts.

Moreover, every A arises from a unique pair (g, ¢). Note that gr has infinite dimension.
Let R be a ring of representations of a Lie algebra g. For any x € g, (ry(x))yer is an

endomorphism of R, and x — (ry(x)) is a homomorphism of Lie algebras g — gr.

LEMMA 3.2 If'R contains a faithful representation of g, then the homomorphism g — gr

is injective.

PROOF. For any representation (V,ry ) of g, the composite

x—=(ry (x)) A=Ay

R gl(V).

is ry. Therefore, g — g is injective if ry is injective. O

PROPOSITION 3.3 Let G be an affine group over k, and let R be the ring of representations
of Lie(G) arising from a representation of G. Then gr >~ Lie(G); in particular, gr depends
only of G°.

PROOF. By definition, Lie(G) is the kernel of G(k[e]) — G(k). Therefore, to give an
element of Lie(G) is the same as to give a family of k[¢]-linear maps

idy +aye: Vie] - V]e]

indexed by V' € R satisfying the three conditions of (I,[10.2). The first of these conditions
says that
idygw +avgwe = (iddy +aye) @ (idw +awe),
1.e., that
ayew = idy Qo +ay Qidy .
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The second condition says that
og =0,

and the third says that the oy commute with all G-morphisms (= g-morphisms by [2.21]).
Therefore, to give such a family is the same as to give an element (ay)yer of gr. O

PROPOSITION 3.4 Let g be a Lie algebra, and let R be a ring of representations of g. The
canonical map g — gr is an isomorphism if and only if g is the Lie algebra of an affine
group G whose identity component is algebraic and ‘R is the ring of representations of g
arising from a representation of G.

PROOF. On applying to the full subcategory of Rep(g) whose objects are those
in R and the forgetful functor, we obtain an affine group such that Lie(G) ~ ggr (by
and R is the ring of representation of gg arising from a representation of G. If g — gr
is an isomorphism, then G° is algebraic because its Lie algebra is finite-dimensional. This
proves the necessity, and the sufficiency follows immediately from (3.3). O

COROLLARY 3.5 Letg— gl(V') be a faithful representation of g, and let R(V') be the ring
of representations of g generated by V. Then g — gr (v Is an isomorphism if and only if g
is algebraic, i.e., the Lie algebra of an algebraic subgroup of GLy .

PROOF. Immediate consequence of the proposition. O

3.6 Let R be the ring of all representations of g. When g — g is an isomorphism we
says that Tannaka duality holds for g. It follows from that Tannaka duality holds
for g if [g,g] = g. On the other hand, Example shows that Tannaka duality fails when
[g.9] # g, and even that g has infinite dimension in this case.

EXAMPLE 3.7 Let g be a one-dimensional Lie algebra over an algebraically closed field k.
The affine group attached to Rep(g) is D(M) x G, where M is k regarded as an additive
abelian group (cf. [} §14c). In other words, D(M ) represents the functor R ~» Hom(M, R*)
(homomorphisms of abelian groups). This follows from Iwahori’s result (3.1). Note that M
is not finitely generated as an abelian group, and so D (M) is not an algebraic group.

NOTES Let g — gl(}) be a faithful representation of g, and let R(V') be the ring of representations
of g generated by V. When is g — gr(y) an isomorphism? It follows easily from (I} 2.22) that it
is, for example, when g = [g, g]. In particular, g — g (y) is an isomorphism when g is semisimple.
For an abelian Lie group g, g — gr(v) is an isomorphism if and only if g — gl(}/) is a semisimple
representation and there exists a lattice in g on which the characters of g in V' take integer values.
For the Lie algebra in (II, [T.40), g — gr(v) is never an isomorphism.

3¢ An adjoint to the functor Lie

Let g be a Lie algebra, and let R be the ring of all representations of g . We define G(g)
to be the Tannaka dual of the neutral tannakian category (Rep(g), forget). Recall (I, [11.14)
that this means that G(g) is the affine group whose R-points for any k-algebra R are the
families

A= (AV)V€R7 AV € EndR-linear(V(R))a
such that
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o Ayew =Ay @Ay forall V e R;
o if V is the trivial representation of g (i.e., xyy = 0 for all x € g), then Ay = idy;
¢ for every g-homomorphism :V — W,

AwoB =pBoAy.
For each V' € R, there is a representation ry of G(g) on V defined by
ry(Mv=Apv, Ae€G(g)(R), veV(R), R ak-algebra,
and V ~» (V,ry) is an equivalence of categories

Rep(g) —> Rep(G(g)). (162)

LEMMA 3.8 The homomorphism n:g — Lie(G(g)) is injective, and the composite of the

functors
(V,r)~(V,Lie(r)) . nY
Rep(G(g)) —— > Rep(Lie(G(g))) — Rep(g) (163)

is an equivalence of categories.

PROOF. According to (3.3), Lie(G(g)) >~ gr, and so the first assertion follows from (3.2)
and Ado’s theorem. The composite of the functors in is a quasi-inverse to the functor

in (162). o
LEMMA 3.9 The affine group G(g) is connected.

PROOF. When g is one-dimensional, we computed G(g) in and found it to be con-
nected.

For a general g, we have to show that only a trivial representation of g has the property
that the category of subquotients of direct sums of copies of the representation is stable
under tensor products (see ). When g is semisimple, this follows from (2.37).

Let V be a representation of g with the property. It follows from the one-dimensional
case that the radical of g acts trivially on V, and then it follows from the semisimple case
that g itself acts trivially. o

PROPOSITION 3.10 The pair (G(g),n) is universal: for any algebraic group H and k-
algebra homomorphism a:g — Lie(H), there is a unique homomorphism b:G(g) — H
such that a = Lie(b) o n:

n .

G(9) g — Lie(G(g))
N Lie a | Lie(b)
s :

H Lie(H).

In other words, the map sending a homomorphism b: G(g) — H to the homomorphism
Lie(b) on:g — Lie(H) is a bijection

Homgine groups(G (g)’ H) — Homyp e algebras (g, Lle(H)) . (164)

If a is surjective and Rep(G(g)) is semisimple, then b is surjective.
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PROOF. From a homomorphism b:G(g) — H, we get a commutative diagram

b\/
Rep(H) —— Rep(G(g))
fully faithfull @21) :l a = Lie(h) on.
Rep(Lie(H)) ——>  Rep(g)

If a = 0, then a" sends all objects to trivial objects, and so the functor b does the
same, which implies that the image of b is 1. Hence (164)) is injective.
From a homomorphism a: g — Lie(H ), we get a tensor functor

Rep(H) — Rep(Lie(H)) > Rep(g) ~ Rep(G (g))

and hence a homomorphism G(g) — H, which acts as a on the Lie algebras. Hence
is surjective.

If a is surjective, then a" is fully faithful, and so Rep(H ) — Rep(G(g)) is fully faithful,
which implies that G(g) — G is surjective by (I,[10.2Th). 0

PROPOSITION 3.11 For any finite extension k' D k of fields, G(gr/) ~ G(g)x’.

PROOF. More precisely, we prove that the pair (G(g)z’,nx’) obtained from (G(g),n) by
extension of the base field has the universal property characterizing (G(gx/),n). Let H be
an algebraic group over k’, and let H be the group over k obtained from H by restriction
of the base field. Then

Homy/(G(g)x/, H) >~ Homy (G(g), H«) (universal property of Hy)
~ Homy (g, Lie(H4)) (3.10)
~ Homy/ (gg. Lie(H)).
For the last isomorphism, note that

def

Lie(H«) défKer(H* (k[e]) — Hx(k)) ~ Ker(H (k'[¢]) — H(k")) = Lie(H).

In other words, Lie(Hx) is Lie(H ) regarded as a Lie algebra over k (instead of k), and the
isomorphism is simply the canonical isomorphism in linear algebra,

Homk-linear(Vv W) = Homk’-linea.r(V (23 k/» W)

(V, W vector spaces over k and k' respectively). o

The next theorem shows that, when g is semisimple, G(g) is a semisimple algebraic
group with Lie algebra g, and any other semisimple group with Lie algebra g is a quotient
of G(g); moreover, the centre of G(g) has character group P/ Q.

THEOREM 3.12 Let g be a semisimple Lie algebra.

(a) The homomorphism n:g — Lie(G(g)) is an isomorphism.
(b) The affine group G(g) is a semisimple algebraic group.
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(c) For any algebraic group H and isomorphism a:g — Lie(H ), there exists a unique
isogeny b: G(g) — H° such thata = Lie(b) o n:

n .
T(g) g —— Lie(T'(9))
b a Lie(b)
H Lie(H).

(d) Let Z be the centre of G(g); then X*(Z) >~ P/ Q.

PROOF. (a) Because Rep(G(g)) is semisimple, G(g) is reductive (0] [6.14). Therefore
Lie(G(g)) is reductive, and so Lie(G(g)) = n(g) x a x ¢ with a is semisimple and ¢ commu-
tative ([T [5.6} [[1} [5.16). If a or ¢ is nonzero, then there exists a nontrivial representation r of
G (g) such that Lie(r) is trivial on g. But this is impossible because 1 defines an equivalence
Rep(G(g)) — Rep(g).

(b) Now G(g) is semisimple because its Lie algebra is semisimple (see[II} [5.23).

(c) Proposition shows that there exists a unique homomorphism b such that a =
Lie(b) o n, which is an isogeny because Lie(b) is an isomorphism (see I} 2.9).

(d) In the next subsection, we show that if g is split, then X*(Z) ~ P/Q (as abelian
groups). As g splits over a finite Galois extension, this implies (d). O

REMARK 3.13 The isomorphism X *(Z) >~ P/Q in (d) commutes with the natural actions
of Gal(k¥/ k).

3d Split semisimple algebraic groups

Let (g,bh) be a split semisimple Lie algebra, and let P and Q be the corresponding weight
and root lattices. The action of h on a g-module V' decomposes it into a direct sum V =
@D cp Vr of weight spaces. Let D(P) be the diagonalizable group attached to P
§14c). Thus D(P) is a split torus such that Rep(D(P)) has a natural identification with
the category of P-graded vector spaces. The functor (V,ry) — (V, (Vg )wep) is an exact
tensor functor Rep(g) — Rep(D(P)) compatible with the forgetful functors, and hence
defines a homomorphism D(P) —G(g). Let T'(h) be the image of this homomorphism.

THEOREM 3.14 With the above notations:

(a) The group T (b) is a split maximal torus in G(g), and 7 restricts to an isomorphism

h — Lie(T'(h)).
(b) The map D(P) — T (b) is an isomorphism; therefore, X * (T (h)) ~ P.
(¢) The centre of G(g) is contained in T () and equals

ﬂaeR Ker(a:T'(h) = Gp)

(and so has character group P/ Q).

PROOF. (a) The torus 7'(h) is split because it is the quotient of a split torus. Certainly,
n restricts to an injective homomorphism h — Lie(7°(h)). It must be surjective because
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otherwise ) wouldn’t be a Cartan subalgebra of g. The torus 7'(h) must be maximal because
otherwise fj wouldn’t be equal to its normalizer.

(b) Let V be the representation €P V of g where @ runs through a set of fundamental
weights. Then G(g) acts on V, and the map D(P) — GL(V) is injective. Therefore,
D(P) — T(b) is injective.

(c) A gradation on Rep(g) is defined by a homomorphism P — M (P4) (see 2.42),
and hence by a homomorphism D(M(P++)) — T(h). This shows that the centre of G(g)
is contained in 7'(h). The kernel of the adjoint map Ad: G(g) — GL, is the centre Z(G(g))
of G(g) (see[5.29), and so the kernel of Ad|T(h) is Z(G(g)) N T(h) = Z(G(g)). But

Ker(Ad|T(h)) = () Ker(a),

a€ER

so Z(G(g)) is as described. O

LEMMA 3.15 The following conditions on a subtorus T of a semisimple algebraic group
G are equivalent;

(a) T is a maximal torus in G;

(b) Tya is a maximal torus in Gya;
() T=Cg(T)°%;

(d) tis a Cartan subalgebra of g.

PROOF. (c)=>(a). Obvious.

(a)=(d). Let T be a torus in G, and let G — GLy be a faithful representation of
G. After we have extended k, V' will decompose into a direct sum B, ¢ x«(r) Vy, and
Lie(T') acts (semisimply) on each factor V), through the character Lie(y). As g — gly is
faithful, this shows that t consists of semisimple elements (2.9). Hence t is toral. Any toral
subalgebra of g containing t arises from a subtorus of G, and so t is maximal.

(d)=(c). Because tis a Cartan subalgebra, t = c4(t) (see . As Lie(Cg (T')) = c4(t)
(see [lI} 2.23), we see that T and Cg (T') have the same Lie algebra, and so T = Cg(T)°
(see2.T1).

(b)<>(a). This follows from the equivalence of (a) and (d) and the fact that t is a Cartan
subalgebra of g if and only if {;u is a Cartan subalgebra of gza. O

DEFINITION 3.16 A split semisimple algebraic group is a pair (G,T) consisting of a
semisimple algebraic group G and a split maximal torus 7.

More loosely, we say that a semisimple algebraic group is split if it contains a split
maximal torus.’

THEOREM 3.17 Let T and T’ be split maximal tori in a semisimple algebraic group G.
Then T’ = gTg ™! for some g € G(k).

TCaution: a semisimple algebraic group always contains a maximal split torus, but that torus may not be
maximal among all subtori, and hence not a split maximal torus.
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PROOF. We may set G = G(g) with g the semisimple Lie algebra Lie(G). Let x be a
nilpotent element of g. For any representation (V,ry) of g, e’V ™) e G(g)(k). According
to (2.16), there exist nilpotent elements x1,...,X,, in g such that

ead(xl) .. ead(xm) LIC(T) = LIC(T/)

Let g = (X1 ... 02d(¥m) . then ¢Tg~! = T because they have the same Lie algebra. ¢

3e Classification

We can now read off the classification theorems for split semisimple algebraic groups from
the similar theorems for split semisimple Lie algebras.

Let (G,T) be a split semisimple algebraic group. Because T is diagonalizable, the
k-vector space g decomposes into eigenspaces under its action:

o= P
aeX*(T)

The roots of (G, T') are the nonzero « such that g* £ 0. Let R be the set of roots of (G, T).

PROPOSITION 3.18 The set of roots of (G, T') is a reduced root system R in V Ly (TM®
Q; moreover,
O(R) C X*(T) C P(R). (165)

PROOF. Let g =LieG and h = LieT. Then (g,b) is a split semisimple Lie algebra, and,
when we identify V' with a Q-subspace of ¥ ~ X*(T') ® k, the roots of (G, T) coincide
with the roots of (g, h) and so (165]) holds. o

By adiagram (V, R, X), we mean a reduced root system (V, R) over Q and a lattice X
in V that is contained between Q(R) and P(R).

THEOREM 3.19 (EXISTENCE) Every diagram arises from a split semisimple algebraic
group over k.

More precisely, we have the following result.

THEOREM 3.20 Let (V, R, X) be a diagram, and let (g,h) be a split semisimple Lie alge-
bra over k with root system (V ® k, R) (see . Let Rep(g)¥X be the full subcategory
of Rep(g) whose objects are those whose simple components have highest weight in X .
Then Rep(g)X is a tannakian subcategory of Rep(g), and there is a natural tensor functor
Rep(g)X — Rep(D(X)) compatible with the forgetful functors. The Tannaka dual (G, T)
of this functor is a split semisimple algebraic group with diagram (V, R, X).

In more detail: the pair (Rep(g)¥ , forget) is a neutral tannakian category, with Tannaka
dual G say; the pair (Rep(D(X), forget) is a neutral tannakian category, with Tannaka dual
D(X); the tensor functor

(Rep(g)* , forget) — (Rep(D(X), forget)
defines an injective homomorphism
D(X) — G,

whose image we denote 7. Then (G, T') is split semisimple group with diagram (V, R, X).
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PROOF. When X = 0, (G,T) = (G(g),T(h)), and the statement follows from Theorem
For an arbitrary X, let

N = ﬂXGX/Q Ker(y: Z(G(g)) — Gp).

Then Rep(g)¥X is the subcategory of Rep(g) on which N acts trivially, and so it is a tan-
nakian category with Tannaka dual G(g)/N (see[l}[8.63). Now itis clear that (G(g)/N, T (h)/N)
is the Tannaka dual of Rep(g)¥ — Rep(D(X)), and that it has diagram (V, R, X). O

THEOREM 3.21 (ISOGENY) Let (G,T) and (G’,T’) be split semisimple algebraic groups
over k, and let (V,R,X) and (V,R’, X’) be their associated diagrams. Any isomorphism
V — V' sending R onto R and X into X' arises from an isogeny G — G’ mapping T onto
T'.

PROOF. Let (g,h) and (g’,b’) be the split semisimple Lie algebras of (G,T) and (G',T").
An isomorphism V' — V' sending R onto R’ and X into X’ arises from an isomorphism

(g.H) i) (¢, (see[2.36). Now B defines an exact tensor functor Rep(g)X — Rep(g)~¥,
and hence a homomorphism «: G — G’, which has the required properties. =

PROPOSITION 3.22 Let (G, T) be a split semisimple algebraic group. For each root a of
(G, T) and choice of a nonzero element of g%, there a unique homomorphism

¢:SL, > G
such that Lie(p) is the inclusion s — g of (2.22).

PROOF. From the inclusion s, — g we get a tensor functor Rep(g) — Rep(sy), and hence
a tensor functor Rep(G) — Rep(SL,); this arises from a homomorphism SL, — G. O

The image U, of U, under g is called the root group of «. It is uniquely determined by
having the following properties: it is isomorphic to G, and for any isomorphism uy: G, —
UC( )

1

t-ug(a)-t=" =ug(a(t)a), ack, teT(k).

NOTES To be continued — there is much more to be said. In particular, we need to determine the
algebraic subalgebras of g, so that we can read off everything about the algebraic subgroups of G in
terms of the subalgebras of g (and hence in terms of the root system of (G, T')).

4 Real Lie algebras and real algebraic groups

The statement (3.12)),

the affine group attached to the category of representations of a semisimple Lie
algebra g is the simply connected semisimple algebraic group with Lie algebra

9

holds over any field of characteristic zero, in particular, over R. Thus, we can read off the
whole theory of algebraic groups over R and their representations (including the theory of
Cartan involutions) from the similar theory for Lie algebras.

In this section, I’ll develop the theory of real Lie algebras, and then read off the similar
theory for algebraic groups.
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5 Reductive groups

Explain how everything extends to reductive algebraic groups (or perhaps rewrite the chap-
ter for reductive groups).

S5a Filtrations of Rep, (G)

Let V be a vector space. A homomorphism u:G,, — GL(V') defines a filtration

p p+1 Py — i
S FPV > FPHly 5., FV—@inV,

of V, where V = P, V' is the grading defined by .

Let G be an algebraic group over a field k of characteristic zero. A homomorphism
u: Gy — G defines a filtration F* on V for each representation (V,r) of G, namely, that
corresponding to r o . These filtrations are compatible with the formation of tensor prod-
ucts and duals, and they are exact in the sense that V + Gr% (V) is exact. Conversely,
any functor (V,r) — (V, F*®) from representations of G to filtered vector spaces compati-
ble with tensor products and duals which is exact in this sense arises from a (nonunique)
homomorphism p: G, — G. We call such a functor a filtration F* of Repy (G), and a ho-
momorphism w: G, — G defining F*® is said to split F*. We write Filt(u) for the filtration
defined by .

For each p, we define F?G to be the subgroup of G of elements acting as the identity
map on @; F'V/F'TPV for all representations V of G. Clearly F?G is unipotent for
p > 1, and FOG is the semi-direct product of F!G with the centralizer Z (i) of any p
splitting F°.

PROPOSITION 5.1 Let G be a reductive group over a field k of characteristic zero, and let
F'® be a filtration of Repy (G). From the adjoint action of G on g, we acquire a filtration of
g.

(a) FOG is the subgroup of G respecting the filtration on each representation of G ; it is
a parabolic subgroup of G with Lie algebra Fg.

(b) F'G is the subgroup of F°G acting trivially on the graded module @, F*V//FP*1y
associated with each representation of G ; it is the unipotent radical of F°G, andLie(F'G) =
Flg.

(c) The centralizer Z (1) of any ju splitting F*® is a Levi subgroup of F°G ; therefore,
Z(n) ~ F°G/F1G, and the composite ji of i with F°G — F°G/F1G is central.

(d) Two cocharacters p and (' of G define the same filtration of G if and only if they
define the same group F°G and ji = ji’; ju and ju’ are then conjugate under F'G.

PROOF. Omitted for the present (Saavedra Rivano|1972| especially IV 2.2.5). O

REMARK 5.2 It is sometimes more convenient to work with ascending filtrations. To turn
a descending filtration F* into an ascending filtration W,, set W; = F~*; if u splits F*®
then z > w(z)~! splits W. With this terminology, we have WoG = W_1G x Z ().



CHAPTER I V

Lie groups

The theory of algebraic groups can be described as that part of the theory of Lie groups that
can be developed using only polynomials (not convergent power series), and hence works
over any field. Alternatively, it is the elementary part that doesn’t require analysis. As we’ll
see, it does in fact capture an important part of the theory of Lie groups.

Throughout this chapter, kK = R or C. The identity component of a topological group
G is denoted by GT. All vectors spaces and representations are finite-dimensional. In this
chapter, reductive algebraic groups are not required to be connected.

NOTES Only a partial summary of this chapter exists. Eventually it will include an explanation of
the exact relation between algebraic groups and Lie groups; an explanation of how to derive the
theory of reductive Lie groups and their representations from the corresponding theory for real and
complex algebraic groups; and enough of the basic material to provide a complete introduction to
the theory of Lie groups. It is intended as introduction to Lie groups for algebraists (not analysts,
who prefer to start at the other end).

(1 Liegroups|. . . . . . . . e 327
2~ Lie groups and algebraic groups| . . . . . . . ... ... 328
[3 Compact topological groups| . . . . . . .. ... .. oL 331

1 Lie groups
In this section, we define Lie groups, and develop their basic properties.

DEFINITION 1.1 (a) A real Lie group is a smooth manifold G together with a group struc-
ture such that both the multiplication map G x G — G and the inverse map G — G are
smooth.

(b) A complex Lie group is a complex manifold G together with a group structure such
that both the multiplication map G X G — G and the inverse map G — G are holomorphic.

Here “smooth” means infinitely differentiable.

A real (resp. complex) Lie group is said to be linear if it admits a faithful real (resp.
complex) representation. A real (resp. complex) linear Lie group is said to be reductive if
every real (resp. complex) representation is semisimple.

327
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2 Lie groups and algebraic groups

In this section, we discuss the relation between Lie groups and algebraic groups (especially
those that are reductive).

2a The Lie group attached to an algebraic group

THEOREM 2.1 There is a canonical functor L from the category of real (resp. complex)
algebraic groups to real (resp. complex) Lie groups, which respects Lie algebras and takes
GL, to GL,(R) (resp. GL,(C)) with its natural structure as a Lie group. It is faithtul on
connected algebraic groups (all algebraic groups in the complex case).

According to taste, the functor can be constructed in two ways.

(a) Choose an embedding G < GL,. Then G(k) is a closed subgroup of GL,,(C), and
it is known that every such subgroup has a unique structure of a Lie group (it is real
or complex according to whether its tangent space at the neutral element is a real or
complex Lie algebra). See Hall|[2003] 2.33.

(b) For k = R (or C), there is a canonical functor from the category of nonsingular real
(or complex) algebraic varieties to the category of smooth (resp. complex) manifolds
(Shafarevich|[1994} [IT, 2.3, and VII, 1), which clearly takes algebraic groups to Lie
groups.

To prove that the functor is faithful in the real case, use (II, @]) In the complex case,
use that G(C) is dense in G (I, §7¢).

We often write G(R) or G(C) for L(G), i.e., we regard the group G(R) (resp. G(C))
as a real Lie group (resp. complex Lie group) endowed with the structure given by the
theorem.

2b Negative results

2.2 In the real case, the functor is not faithful on nonconnected algebraic groups.

Let G = H = 3. The real Lie group attached to 3 is 3 (R) = {1}, and so Hom(L(G), L(H)) =
1, but Hom(u s, i3) is cyclic of order 3.

2.3 The functor is not full.

For example, z > e?:C — C* is a homomorphism of Lie groups not arising from a homo-
morphism of algebraic groups G, — Gy,.

For another example, consider the quotient map of algebraic groups SLz — PSL3. It
is not an isomorphism of algebraic groups because its kernel is w3, but it does give an
isomorphism SL3(R) — PSL3(R) of Lie groups. The inverse of this isomorphism is not
algebraic.

2.4 A Lie group can have nonclosed Lie subgroups (for which quotients don’t exist).

This is a problem with definitions, not mathematics. Some authors allow a Lie subgroup
of a Lie group G to be any subgroup H endowed with a Lie group structure for which the
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inclusion map is a homomorphism of Lie groups. If instead one requires that a Lie sub-
group be a submanifold in a strong sense (for example, locally isomorphic to a coordinate
inclusion R™ — R"), these problems don’t arise, and the theory of Lie groups quite closely
parallels that of algebraic groups.

2.5 Not all Lie groups have a faithful representation.

For example, 71 (SL2(R)) & Z, and its universal covering space G has a natural structure
of a Lie group. Every representation of G factors through its quotient SL;(R). Another
(standard) example is the Lie group R! x R! x S! with the group structure

(X1, y1.u1) - (X2, y2,u2) = (X1 + X2, Y1 + V2. 172U u5).

This homomorphism

> (x,y,eia),

[
S = =
— < 9

~

realizes this group as a quotient of U3 (R), but it can not itself be realized as a matrix group

(see Hall|2003,, C.3).
A related problem is that there is no very obvious way of attaching a complex Lie group
to a real Lie group (as there is for algebraic groups).

2.6 Even when a Lie group has a faithful representation, it need not be of the form L(G)
for any algebraic group G.

Consider, for example, GL,(R) ™.

2.7 Let G be an algebraic group over C. Then the Lie group G(C) may have many more
representations than G .

1
Consider G, ; the homomorphisms z + ¢Z:C — C* =GL{(C) and z — 0 i :C—

GL,(C) are representations of the Lie group C, but only the second is algebraic.

2¢ Complex groups

A complex Lie group G is algebraic if it is the Lie group defined by an algebraic group
over C.
For any complex Lie group G, the category Repc(G) is obviously tannakian.

PROPOSITION 2.8 All representations of a complex Lie group G are semisimple (i.e., G is
reductive) if and only if G contains a compact subgroup K such that C-Lie(K) = Lie(G)
andG =K-Gt.

PROOF. |[Lee|2002, Proposition 4.22. o
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For a complex Lie group G, the representation radical N(G) is the intersection of the
kernels of all simple representations of G. It is the largest closed normal subgroup of G
whose action on every representation of G is unipotent. When G is linear, N(G) is the
radical of the derived group of G (Lee|2002, 4.39).

THEOREM 2.9 For a complex linear Lie group G, the following conditions are equivalent:

(a) the tannakian category Repc(G) is algebraic (i.e., admits a tensor generator[l,[21.13);

(b) there exists an algebraic group T (G) over C and a homomorphism G — T (G)(C)
inducing an equivalence of categories Repc (T (G)) — Repc(G).

(¢) G is the semidirect product of a reductive subgroup and N(G).

Moreover, when these conditions hold, the homomorphism G — T (G)(C) is an isomor-
phism.

PROOF. The equivalence of (a) and (b) follows from (I} [21.10) and (L [21.13]. For the
remaining statements, see|Lee|2002, Theorem 5.20. o

COROLLARY 2.10 LetV be a complex vector space, and let G be a complex Lie subgroup
of GL(V). If Repc(G) is algebraic, then G is an algebraic subgroup of GLy, and every
complex analytic representation of G is algebraic.

PROOF. |Lee|2002] 5.22. =

REMARK 2.11 The theorem shows, in particular, that every reductive Lie group G is al-
gebraic: more precisely, there exists a reductive algebraic group 7(G) and an isomor-
phism G — T (G)(C) of Lie groups inducing an isomorphism Rep¢(7(G)) — Repc(G).
Note that T(G) is reductive (6.14). Conversely, if G is a reductive algebraic group, then
Repc(G) >~ Repc(G(C)) (see|Lee|1999) 2.8); therefore G(C) is a reductive Lie group, and
T(G(C)) ~ G. We have shown that the functors T and L are quasi-inverse equivalences
between the categories of complex reductive Lie groups and complex reductive algebraic
groups.

EXAMPLE 2.12 The Lie group C is algebraic, but nevertheless the conditions in (2.9) fail

for it — see (2.7).

2d Real groups

We say that a real Lie group G is algebraic if G = H(R)™ for some algebraic group H
(here * denotes the identity component for the real topology).

THEOREM 2.13 For every real reductive Lie group G, there exists an algebraic group T (G)
and a homomorphism G — T (G)(R) inducing an equivalence of categories Repy (G) —
Repr (T (G)). The Lie group T(G)(R) is the largest algebraic quotient of G, and equals G
if and only if G admits a faithful representation.

PROOF. The first statement follows from the fact that Repp (G) is tannakian. For the second
statement, we have to show that 7(G)(R) = G if G admits a faithful representation, but
this follows from |Lee|1999, 3.4, and (2.9). o
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THEOREM 2.14 For every compact connected real Lie group K, there exists a semisimple
algebraic group T (K) and an isomorphism K — T (K)(R) which induces an equivalence
of categories Repr(K) — Repr(T(K)). Moreover, for any reductive algebraic group G’
over C,

Homc (T (K)c,G') ~ Homg (K, G'(C))

PROOF. See|Chevalley|[1957, Chapter 6, §§8—12, and [Serre|1993|. o

3 Compact topological groups

Let K be a topological group. The category Repr(K) of continuous representations of
K on finite-dimensional real vector spaces is, in a natural way, a neutral tannakian cate-
gory over R with the forgetful functor as fibre functor. There is therefore (I, a real
affine algebraic group G called the real algebraic envelope of K and a continuous homo-
morphism K — G(R) inducing an equivalence of tensor categories Repr(K) — Repgr(G).
The complex algebraic envelope of K is defined similarly.

LEMMA 3.1 Let K be a compact group, and let G be the real envelope of K. Each f €
O(G) defines a real-valued function on K, and in this way A becomes identified with the
set of all real-valued functions f on K such that

(a) the left translates of f form a finite-dimensional vector space;
(b) f is continuous.

PROOF. Serre 1993, 4.3, Ex. b), p. 67. O

Similarly, if G’ is the complex envelope of K, then the elements of O(G’) can be
identified with the continuous complex valued functions on K whose left translates form a
finite-dimensional vector space.

PROPOSITION 3.2 If G and G’ are the real and complex envelopes of a compact group K,
then G’ = Ge.

PROOF. Let 4 and A’ be the bialgebras of G and G’. Then it is clear from Lemma3.1] that
A/ = (C ®R A O

DEFINITION 3.3 An affine algebraic group G over R is said to be anisotropic (or compact)
if it satisfies the following conditions:

(a) G(R) is compact, and

(b) G(R) is dense in G for the Zariski topology.

As G(R) contains a neighbourhood of 1 in G, condition (b) is equivalent to the follow-
ing:
(b"). Every connected component (for the Zariski topology) of G contains a
real point.

In particular, (b) holds if G is connected.
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PROPOSITION 3.4 Let G be an algebraic group over R, and let K be a compact subgroup
of G(R) that is dense in G for the Zariski topology. Then G is anisotropic, K = G(R), and
G is the algebraic envelope of K.

PROOF. Serre 1993, 5.3, Pptn 5, p. 71. o

If K is a compact Lie group, then Repgr(K) is semisimple, and so its real algebraic
envelope G is reductive. Hence G¢ is a complex reductive group. Conversely:

THEOREM 3.5 Let G be a reductive algebraic group over C, and let K be a maximal com-
pact subgroup of G(C). Then the complex algebraic envelope of K is G, and so the real
algebraic envelope of K is a compact real form of G.

PROOF. Serre 1993, 5.3, Thm 4, p. 74. o

COROLLARY 3.6 There is a one-to-one correspondence between the maximal compact
subgroups of G(C) and the anisotropic real forms of G.

PROOF. Obvious from the theorem (see Serre 1993, 5.3, Rem., p. 75). o

THEOREM 3.7 Let K be a compact Lie group, and let G be its real algebraic envelope.
The map
H'(Gal(C/R), K) — H'(Gal(C/R),G(C))

defined by the inclusion K — G(C) is an isomorphism.
PROOF. Serre 1964, III, Thm 6. o

Since Gal(C/R) acts trivially on K, H1(Gal(C/R), K) is the set of conjugacy classes
in K consisting of elements of order 2.

ASIDE 3.8 A subgroup of an anisotropic group is anisotropic. Maximal compact subgroups of
complex algebraic groups are conjugate.



CHAPTER V

The Structure of Reductive Groups:
the split case

This chapter gives an exposition of the theory of split reductive groups and their repre-
sentations over arbitrary fields (potentially, over Z), including a proof of the classification
(isomorphism, existence, and isogeny theorems) along the lines of |Steinberg||1998[1999! It
assumes a knowledge of elementary algebraic geometry (varieties over algebraically closed
fields, as in my notes AG), and the basic theory of algebraic groups (Chapter[I| and [T} of
these notes). Except for §1 of Chapter III (Root systems and their classification), it is largely
independent of Chapters III and IV.

Throughout this section, k is a field (not necessarily of characteristic zero, or even per-
fect). Also, “semisimple group” and “reductive group” mean “semisimple affine algebraic
group” and “reductive affine algebraic group”.

NOTES At present, only the first 4 sections are more-or-less complete (but need even they need
revision).

(1 Split reductive groups: the program| . . . . .. .. .. ... L. 333
2 The root datum of a split reductive group|. . . . . . . . ... ... ... ... 338
[3 Borel fixed point theorem and applications|. . . . . . ... ... ... ... 351
@ Parabolic subgroups androots| . . . .. ... ... oL oL 363
[5___Root data and their classificationl . . . . . ... ... ... ......... 366
6 Construction of split reductive groups: the existence theorem| . . . . . . . . . 374
[7 Construction of isogenies of split reductive groups: the isogeny theorem| . . . 377
[8 Representations of split reductive groups|. . . . . . .. ... ... 378

1 Split reductive groups: the program

la Brief review of reductive groups

1.1 The unipotent radical R, G of smooth algebraic group G is the largest smooth con-
nected normal unipotent subgroup of G. The geometric unipotent radical of G is the unipo-

tent radical of Gya. (I, [I7.2])

333
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1.2 A reductive group is a smooth connected algebraic group whose geometric unipotent
radical is trivial. If G is reductive, then R, G = 0, and the converse is true when k is

perfect!. (I, )

1.3 Let G be a smooth connected algebraic group. If G is reductive, then every smooth
connected normal commutative subgroup is a torus; the converse is true if k is perfect. (I,
17.7D)

1.4 If G is reductive, then the derived group G of G is semisimple, the connected centre
Z(G)° of G is a torus equal to the radical RG of G, and Z(G) N G%" is the (finite) centre
of G9; moreover,

Z(G)o . Gder =G

(1, [T7.20).

1.5 Let G’ be a semisimple group, let Z be a torus, and let ¢: Z(G’) — Z be a homomor-
phism; the algebraic group G defined by the exact sequence

2> (p(2)71,2)
—_—

1 - Z(G) ZxG -G —1 (166)

is reductive, and every reductive group arises in this fashion (take Z to be the connected

centre of G). (L [I7.21])

1.6 Let G be an algebraic group over a field of characteristic zero. All representations of
G are semisimple if and only if G° is reductive. )
1b  Split tori

Recall that a split torus is a connected diagonalizable group. Equivalently, it is an algebraic
group isomorphic to a product of copies of G, (I,[I4.16). A torus over k is a connected
algebraic group that becomes diagonalizable over k. A torus in GLy is split if and only if
it is contained in ID,, for some basis of V.

Consider for example
a b
—b a

The characteristic polynomial of such a matrix is

T =

a2+b27é0}.

X% -2aX +a*>+b*= (X —a)* +b?

and so its eigenvalues are

A=axtbv-1.

It is easy to see that T is split (i.e., diagonalizable over k) if and only if —1 is a square in k.

IBut not when k is nonperfect, otherwise Conrad, Gabber, and Prasad wouldn’t have had to write their
book.
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Recall (I, that End(G,;,) ~ Z: the only group-like elements in k[G,,] = k[X, X 1]
are the powers of X, and the only homomorphisms G, — Gy, are the maps ¢ > " for
n € Z. For a split torus 7', we set

X*(T) = Hom(T,G,,) = group of characters of T,
X«(T) = Hom(Gyy,, T') = group of cocharacters of T.

There is a pairing
(,):X*(T)x X«(T) - End(Gy)) ~Z, (y,A) = yoA. (167)

Thus
y A1) =M fort € Gp(R) = R*.

Both X*(T') and X«(T) are free abelian groups of rank equal to the dimension of 7', and
the pairing ( , ) realizes each as the dual of the other.
For example, let
al 0

T =D, =

Then X *(T) has basis y1,..., xn, where
xi(diag(ay,...,an)) =a;,
and X« (7T') has basis Aq,...,A,, where
A (1) = diag(1,....1,....1).

Note that

1 if i=j
.7A’. = 9
(XJ i) {0 i it
ie.,
t=t! if i=j
(A () = .
xj(Ai()) % L=f0 if i4]

Some confusion is caused by the fact that we write X *(7) and X.(7T) as additive
groups. For example, if ¢ = diag(a,az,a3), then

Gxa+7x3)a = y2(a)° x3(a)’ = a3aj.

For this reason, some authors use an exponential notation y(a) = aX. With this notation,
the preceding equation becomes

a’X2t7x3 — 5x2,7%3 — aga;.



336 V. The Structure of Reductive Groups: the split case

1c Split reductive groups

Let G be an algebraic group over a field k. When k = k%, atorus T C G is maximal if it is
not properly contained in any other torus. In general, T C G is said to be maximal if Tso
is maximal in Ggsep. If a torus 7 in G is its own centralizer, then this remains true over kP
{, et seq.), and so T is maximal. For example, I, is a maximal torus in GL,, because
it is equal to own centralizer. A reductive group is split if it contains a split maximal torus.

A reductive group over a separably closed field is automatically split, as all tori over
such field are split (by definition I} [I4.24). As we discuss below, for any reductive group G
over a separably closed field k and subfield k¢ of k, there exists a split reductive group Go
over ko, unique up to isomorphism, that becomes isomorphic to G over k.

EXAMPLE 1.7 The group GL, is a split reductive group (over any field) with split maximal
torus D,. On the other hand, let H be the quaternion algebra over R. As an R-vector space,
H has basis 1,1, j,ij, and the multiplication is determined by

i“=-1, j°=-1, ij =—ji.
It is a division algebra with centre R. There is an algebraic group G over R such that
G(R) = (R®;H)"

for all R-algebras R (I,[2.19). In particular, G(R) = H*. As C®gH ~ M>(C), G becomes
isomorphic to GL; over C, but as an algebraic group over R it is not split, because its
derived group G’ is the subgroup of elements of norm 1, and as G’(R) is compact, it can’t
contain a split torus.

EXAMPLE 1.8 The group SL, is a split semisimple group, with split maximal torus the
diagonal matrices of determinant 1.

EXAMPLE 1.9 Let (V,q) be a nondegenerate quadratic space (see[l} §18b). Recall that this
means that V' is a finite-dimensional vector space and ¢ is a nondegenerate quadratic form
on V' with associated symmetric form ¢. Recall (I, that the Witt index of (V,q) is
the maximum dimension of an isotropic subspace of V. If the Witt index is r, then V' is an
orthogonal sum

V=HyLl..1lH 1LV (Wittdecomposition)

where each H; is a hyperbolic plane and V is anisotropic (I,[18.9). The associated algebraic
group SO(q) is split if and only if its Witt index is as large as possible.
(a) Case dimV = n is even, say, n = 2r. When the Witt index is as large as possible

0 7
there is a basis for which the matrix? of the form is (1 O)’ and so

G(X1,....Xn) = X1Xp41 + -+ Xp X2,

2Recall that SO(g) consists of the automorphs of this matrix with determinant 1, i.e., SO(g)(R) consists

0o I 0o I
of the n x n matrices A with entries in R and determinant 1 such that A’ (1 0) A= I ol
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Note that the subspace of vectors
(*,...,%,0,...,0)
is totally isotropic. The algebraic subgroup consisting of the diagonal matrices of the form
diag(al,...,ar,al_l,...,a,_l)

is a split maximal torus in SO(g).
(b) Case dim V = n is odd, say, n = 2r + 1. When the Witt index is as large as possible

1 0 O
there is a basis for which the matrix of the formis |0 0 [ |, and so
07 O
q(x0,X1,...,Xp) = x§ + X1 Xp41 + 0+ XpX2p.

The algebraic subgroup consisting of the diagonal matrices of the form
diag(1,ay,... ,ar,al_l,. ..,ar_l)

is a split maximal torus in SO(q).

Notice that any two nondegenerate quadratic spaces with largest Witt index and the
same dimension are isomorphic. In the rest of the notes, I'll refer to these groups as the
split SO, ’s.

0 I
EXAMPLE 1.10 Let V = k2", and let i be the skew-symmetric form with matrix ( / 0) ,

SO
V(X,Y) =X1Ynt1+ -+ XnYon —Xn+1Y1 =" — X2nVn.

The corresponding symplectic group Sp,, is split, and the algebraic subgroup consisting of
the diagonal matrices of the form

. -1 -1
diag(ay,...,ar,ay ,....a, ")

is a split maximal torus in Sp,,.

1d The program

1.11 A reductive group G over k is split if it contains a split maximal torus® T, i.e., a
split torus 7" C G such Tysep is maximal in Gpsep. A split reductive group is a pair (G, T)
consisting of a reductive group G and a split maximal torus 7.

1.12 Any two split maximal tori in G are conjugate by an element of G (k) (see(3.22)); in
particular, the isomorphism class of (G, T') depends only on G.

1.13 To each split reductive group (G, T') we attach a more elementary object, namely, its
root datum ¥(G,T) (see §2)). The root datum ¥(G,T) determines (G, T) up to isomor-
phism, and every root datum arises from a pair (G, T').

3Not to be confused with a maximal split torus in G, which is a torus that is maximal among the split tori
in G. A split maximal torus is a maximal split torus, but the converse need not be true.
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1.14 We study, and classify, the root data.

1.15 Since knowing the root datum of (G, T') is equivalent to knowing (G, T'), we should
be able to read off information about the structure of G and its representations from the root
datum. This is true.

1.16 The root data have nothing to do with the field! In particular, we see that for each
reductive group G over k%, there is (up to isomorphism) exactly one split reductive group
over k that becomes isomorphic to G over k. However, there will in general be many
nonsplit groups, and so we are left with the problem of understanding them (Chapter [VI).

In linear algebra and the theory of algebraic groups, one often needs the ground field to
be algebraically closed in order to have enough eigenvalues (and eigenvectors). By requir-
ing that the group contains a split maximal torus, we ensure that there are enough eigenval-
ues without having to make an assumption on the ground field.

2 The root datum of a split reductive group

2a Roots

Let (G, T) be a split reductive group. Then G acts on g = Lie(G) via the adjoint represen-
tation
Ad:G — GL,

11, gl_g[) In particular, 7" acts on g, and so it decomposes as

9=90@@X9x

where g is the subspace on which T" acts trivially, and g, is the subspace on which T acts
through the nontrivial character y (I,[I4.15). The nonzero y occurring in this decomposition
are called the roots of (G, T). They form a finite subset R of X *(T).

NOTES There is probably some inconsistency my notations for root data: R(G,T), ®(G,T), and
¥(G,T) all seem to be used. |Conrad et al. 2010\ write R = &(G,T) in 3.2.2, p. 94, and R(G,T) =
(X(T),®d(G,T),X«(T),®(G,T)V)in 3.2.5, p. 96.

2b Example: GL,

Here
g=gl, = M (k) with [A,B] = AB — BA,
and
0
T = <XI )xl)Cz?éO .
0 X2
Therefore,

0 x» X1Xy.

+b
X*(T) =Zy1 & Zy2, where (xl O)M a b
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The torus T acts on g by conjugation,

x1 0\ fa b x1_10 B a%b
0 x2/\c dJ\O xy ! i—fc d)’

Write E;; for the matrix with a 1 in the i; th-position, and zeros elsewhere. Then T acts
trivially on go = (E11, E22), through the character o« = y1 — y2 on go = (E12), and through
the character —a = yp — y1 on g—q = (E21).

Thus, R = {a,—a} where @ = y1 — y2. When we use y; and y; to identify X*(T)
with Z & Z, R becomes identified with {£(eq —e3)}.

2¢ Example: SL,

Here
b
g=sh = { (a ) € Ma(k) |a+d =0} .
c d
and
r=1(*° .
0 x!
Therefore,

0
X*(T) = Zy where x B s x
0 x7!

Again T acts on g by conjugation,

Gl 6 ) ()

Therefore, the roots are « = 2y and —a = —2y. When we use y to identify X *(7") with Z,
R becomes identified with {2, —2}.

2d Example: PGL,

Recall that this is the quotient of GL by its centre: PGL, = GL, /Gy,. For all fields R D k,
PGL,(R) = GL,(R)/R*. In this case,

g = pgly = glp/{scalar matrices},

x1 O x 0
(o o)y 4G )
* x1 O X X1
X (T)=Z)(Where<o )r—>—

and T acts on g by conjugation:

x1 O abxl_10_afc—;b
0 x2/\c d Oxz_l_;—?c d]’

Therefore, the roots are « = y and —a = —y. When we use y to identify X *(7T') with Z, R
becomes identified with {1,—1}.

T =

x;«éO}.

Therefore,
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2e Example: GL,

Here
g =glp, = M, (k) with [A, B] = AB — BA,
and
X1 0
T = ( ) ' xl...xn¢0 .
0 Xn
Therefore,

X1 0
* _ . . Xi .
X (T)_@lsianX“ ( . )&—))cl.

0 Xn

The torus T acts on g by conjugation:

ajg - - g,
ajq - - ain . Xn
(.X] 0 ) . . -x] 0 : X;
. : ajj . . — . Tjaij
0 Xn 0 x;! :
ani o Ann gl e ann

*1

Write E;; for the matrix with a 1 in the ij th-position, and zeros elsewhere. Then T acts
trivially on go = (E11,..., Enn) and through the character oj; = y; — x; on go;; = (Eij).
Therefore
RZ{O{ij|1§i,j <n, l;é]}
When we use the y; to identify X *(7") with Z", then R becomes identified with
lei—ej[1=i,j<n, i#]}

where e1,..., e, is the standard basis for Z".

2f Definition of a root datum
DEFINITION 2.1 A root datum is a quadruple ¥ = (X, R, XV, RV) where*

¢ X, XV are free Z-modules of finite rank in duality by a pairing (, ): X x XV — Z,
¢ R, RY are finite subsets of X and X in bijection by a map a <> ",

satisfying the following conditions

(rd1) (a,aV)=2foralla € R;
(rd2) sq(R) C R forall o € R, where sy is the homomorphism X — X defined by

se(X)=x—(x,a¥)a, x€X,a€R,

(rd3) the group of automorphisms W (¥) of X generated by the s, for o € R is finite.

4More accurately, it is an ordered sextuple,
X, XV,(,),®,0V,® - ®Y),

but everyone says quadruple.
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Note that (rd1) implies that
Sq (@) = —«a,

and that the converse holds if o # 0. Moreover, because sq (@) = —«,
Sa(sa(x)) = s (x — (x,0")a) = (x — (x,@")) — {x,a")sa (@) = x,

ie.,

2 _
sy = 1.

Clearly, also sq (x) = x if (x,a") = 0. Thus, s should be considered an “abstract reflection
in the hyperplane orthogonal to V.

The elements of R and RV are called the roots and coroots of the root datum (and oV
is the coroot of ). The group W = W(¥) of automorphisms of X generated by the s, for
o € R is called the Weyl group of the root datum.

We want to attach to each pair (G, T') consisting of a split reductive group G and split
maximal torus 7, a root datum ¥ (G, T') with

X = X*(),

R = roots,

XY = X«(T) with the pairing X *(T') x X«(T) — Z in (167), p.
RY = coroots (to be defined).

2g First examples of root data

EXAMPLE 2.2 Let G = SL,. Here

X = X*N)=Zx, (}°%)->x
A
XV = Xu(T)=2x t+— (%)
R = {o,—a}, a=2y
RY = {a¥,—aV}, a¥=A.
Note that N
2x
tl—)(é?_1)|—>t2
and so
(o, V) = 2;

in fact, we had only one choice for . As always,
Se(a) = —a, sq(—a) =«

etc., and so s+ (R) C R. Finally, sy has order 2, and so W(¥) = {1, 54} is finite. Hence
W (SL,,T) is a root system, isomorphic to

(Z,{2,-2},7,{1,—1})

with the canonical pairing (x, y) = xy and the bijection 2 <> 1, =2 <> —1.
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EXAMPLE 2.3 Let G = PGL,. Here
RY ={aV,—av}, oY =2A.
In this case ¥ (PGL;, T') is a root system, isomorphic to
(Z,{1,-1},7Z,{2,-2}).

REMARK 2.4 If & is a root, then so also is —c, and there exists an «" such that («,a") =
2. It follows immediately, that the above are the only two root data with X = Z and R
nonempty. There is also the root datum

(2,9,7,9).

which is the root datum of the reductive group Gy,.

EXAMPLE 2.5 Let G = GL,,. Here
. Xi
X =X*Dp) = @i Zyi, diag(xi,...,xn)— X;

Ai . i
XV =X,D,) = @imi, 1> diag(1,...,1,¢,1,...,1)

R=Aajj i #Jj}, wij=xi—xj
RV ={af i # j}. & =Ai—A;.
Note that .
zkrijdiag(l,...,;,...,til,...)Xrﬂjt2
and so

(Ol ijs Oll\;) =2.
Moreover, 5o (R) C R for all « € R. We have, for example,

Say; (ij) = —atij
Saryy (i) = ik — @ik, @ et
=ajp—(xi iy (fk#1i,))
= Xi =Xk — (i = %)
=ajg
Sop; (agg) =g (Ek #i,j,1#1,)).
Finally, let E(ij) be the permutation matrix in which the ith and jth rows have been

swapped. The action
A E(ij)-A-E@ij)~"
of E;; on GLj, by inner automorphisms stabilizes 7" and swaps x; and x ;. Therefore, it acts
on X = X*(T) as sq,,;. This shows that the group generated by the sg,; is isomorphic to
the subgroup of GL,, generated by the E(ij), which is isomorphic to S,. In particular, W
is finite.
Therefore, ¥(GL,,ID,) is a root datum, isomorphic to

(Z" {ei—ej|i # 12" {ei—ej|i #j}

equipped with the pairing (e;,e;) = §;; and the bijection (¢; —e;)" = e¢; —e;. Here, as
usual, e, ..., e, is the standard basis for Z".
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In the above examples we wrote down the coroots without giving any idea of how to
find (or even define) them. Before defining them, we need to state some general results on
reductive groups.

2h Semisimple groups of rank 0 or 1

The rank of a reductive group is the dimension of a maximal torus, i.e., it is the largest r
such that Gxa contains a subgroup isomorphic to G/,. Since all maximal tori in Gga are
conjugate (see[3.22]below), the rank is well-defined.

THEOREM 2.6 (a) Every semisimple group of rank O is trivial.
(b) Every semisimple group of rank 1 over an algebraically closed field is isomorphic
to SL, or PGL,5.

PROOF. (a) Let G be a semisimple group of rank 0. We may assume that k is algebraically
closed. If all the elements of G (k) are unipotent, then G is solvable (I, , and hence
trivial (being semisimple). Otherwise, G (k) contains a semisimple element (I, [10.18). The
smallest algebraic subgroup H of G such that H (k) contains the element is commutative,
and therefore decomposes into Hy x H,, (I,[16.12). If all semisimple elements of G (k) are
of finite order, then G is finite, and hence trivial (being connected). If G(k) contains a
semisimple element of infinite order, then H, is a nontrivial torus, and so G is not of rank
0.

(b) One shows that G contains a solvable subgroup B such that G/B ~ P!. From this
one gets a nontrivial homomorphism G — Aut(P') ~ PGL,. See Theorem below or
Springer| 1998 7.3.2. 0

2i Centralizers and normalizers

Let H be a subgroup of an algebraic group G. Recall (], that normalizer of H in G is
the algebraic subgroup N = Ng(H) of G such that, for any k-algebra R,

N(R)={geG(R)| g-H(R)-g~! = H(R') for all R-algebras R'},

and that the centralizer of H in G is the algebraic subgroup C = Cg (T') of G such that, for
any k-algebra R,

C(R)={g € G(R) | gh = hg for all h € H(R’) and all R-algebras R’}.
If H(k') is dense H for some field k' D k, then
N(k) = G(k) N Ng @y (H (k"))
C(k) = G(k) N Cour(H(K).
This last applies when H is smooth, for example a torus, and k” = k5P,

THEOREM 2.7 Let T be a torus in a reductive group G .

(a) The centralizer Cg(T) of T in G is a reductive group; in particular, it is smooth and
connected.

(b) The identity component of the normalizer Ng(T) of T in G is Cg(T); therefore,
Ng(T)/Cg(T) is a finite étale group.
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(c) The torus T is maximal if and only if T = Cg(T).

PROOF. (a) We defer the proof to the next section (and the next version of the notes; cf.
B.44).

(b) Certainly Ng(T)° D Cg(T)° = Cg(T). But Ng(T)°/Cg(T) acts faithfully on T,
and so is trivial by rigidity (I, [14.32). For any algebraic group H, the quotient H/H® is a
finite étale group (almost by definition; see I,[13.17).

(¢) Certainly, if Cg(T) = T, then T is maximal because any torus containing 7 is
contained in Cg(7T'). Conversely, Cg(T') is a reductive group containing 7" as a maximal
torus, and so Z(Cg(T))° is a torus containing 7" and therefore equal to it. Hence
Cg(T)/ T is a semisimple group of rank 0, and so is trivial (2.6). Thus Cg(T) =
Z(Cg(T))° =T. o

The quotient W(G,T) = Ng(T)/Cg(T) is called the Weyl group of (G,T). Itis a
constant étale algebraic group® when 7 is split, and so may be regarded simply as a finite
group.

2j Definition of the coroots
LEMMA 2.8 Let (G,T) be a split reductive group. The action of W(G,T) on X*(T)

stabilizes R.

PROOF. Take k = k. Let s normalize T (and so represent an element of W). Then s acts
on X *(T) (on the left) by

(520(1) = x(s™'15).
Let o be a root. Then, for x € g4 and ¢ € T'(k),

t(sx) = s(s 1ts)x = s(a(s 'ts)x) = (s 11s)sx,

and so T acts on sgq through the character s, which must therefore be a root. [This is at
least the third proof of this.] o

PROPOSITION 2.9 Let (G,T) be a split reductive group, and let R C X = X*(T) be its
root system.

(a) Foreacha € R, there exists a unique subgroup U, of G isomorphic to G, such that,
for any isomorphism uy: G4 — Uy,

tug(@) -t =ug(a(t)a), allt € T(kY), a € G(k™).

(b) For a root @ of (G, T), let T,, = Ker(«)®, and let Gy be centralizer of Ty. Then
W(Gg,T) contains exactly one nontrivial element sq, and there is a unique a” €
X«(T) such that

Se(x) = x—(x,aVa, forallx € X*(T). (168)

Moreover, {a,a") = 2.

SThat is, W(R) is the same finite group for all integral domains R. Roughly speaking, the reason for this
is that W (k) equals the Weyl group of the root datum, which doesn’t depend on the base field (or base ring).
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(¢) For each root « of (G,T), Gy is the affine subgroup of G generated by T, Uy, and
U—a .

We prove this after giving an application and some examples. The group U, in (a) is
called the root group of «.
THEOREM 2.10 For any split reductive group (G, T), the system
(X*(T), R, X«(T),R")
with RY = {a¥ | « € R} and the map o« — a:R — RY determined by is a root

datum.

PROOF. We noted in (2.9p) that (rd1) holds. The s, attached to « lies in W(Gy,T) C
W(G,T), and so stabilizes R by the lemma. Finally, all s, lie in the Weyl group W(G,T),
and so they generate a finite group (in fact, the generate exactly W (G, T); see[3.43). O

EXAMPLE 2.11 Let G = SL,, and let « be the root 2y. Then Ty, = 1 and G, = G. The
unique s # 1 in W(G, T) is represented by

0 1
-1 0)°
and the unique «¥ for which (168)) holds is A.
EXAMPLE 2.12 Let G = GL,, and let = 12 = y1 — x2. Then

To = {diag(x,x,x3,...,X5) | XXX3...X, # 1}

and G, consists of the invertible matrices of the form

* *x 0 0

* 0 0

* 0

0 0 0 *

Clearly

010 0
1 00 0
ng=10 0 1 0
000 - 1

represents the unique nontrivial element s, of W(Gy, T). It acts on T by
diag(x1,x2,x3,...,Xx,) —> diag(x2,X1,X3,...,Xn).
Forx =miy1+--+mpuyn,
SgX =ma)X1+mix2+m3xz+ - +muxn
=x—(x,A1 = A2)(r1— x2)-
Thus (168), p.[344] holds if and only if " is taken to be A1 — A».
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SKETCH OF THE PROOF OF PROPOSITION 2,91

The key point is that the derived group of G4 is a semisimple group of rank one and 7'

is a maximal torus of G,. Thus, we are essentially in the case of SL, or PGL,, where

everything is obvious (see above). Note that the uniqueness of o follows from that of s.
For GL,,, the coroot ai\; of ojj is

; J
t s diag(1,..., 1,6, 1, 1,e7 L1, 1),

Clearly (wijj. ;) = ajj o = 2.

LEMMA 2.13 Let G, be the subgroup of G of semisimple rank 1 generated by T', U, and
U_q, and let wy, € G, represent the nontrivial element of the Weyl group of (Gy,T). Then
there is a unique ¥ € X" such that

Wex = yx—{yx.aaall y€X. (169)

PROOF. Let y € X = X™*(T). We first show that there exists a Go-module V' such that
Vy # 0. To see this, regard y as an element of O(T), and let f be an element of O(Gg)
that restricts to it. Let V' be any finite-dimensional subspace of O(Gy) containing f and
stable under Gy (I, §8i). Forv € V,

Ug(a)v = Zi>0aiv,~, some v; € V, (170)

because uq(a) is a polynomial in a. If v € Vi, for some ¥ € X, then v; € Vi 4q. This
is a simple calculation using and the definition of Uy. We have that V, # 0 and that
Y iez Vy+ia is invariant under T, Uy, and U_q, and hence also under G and wy. Thus
Wy y = x +ia for some i € Z, and the map y +— —i defines an a” € X for which
holds; and clearly o is unique. O

It follows that {(a,«aV) = 2, either because wya = —a or because wg = 1, both of
which hold because the semisimple rank of G, is 1. If we extend scalars Z — R and XV is
identified with X via any wg-invariant positive definite bilinear form, then «V takes on the
familiar form (2/(, o)) so that the lemma implies that important fact that 2(8, o) / (o, ) €
Z for any two roots «, .

2k Computing the centre

PROPOSITION 2.14 (a) Every maximal torus T in a reductive algebraic group G contains
the centre Z = Z(G) of G.
(b) The kernel of Ad:T — GLg is Z(G).

PROOEF. (a) Clearly Z C Cg(T), but (see[2.7), Ca(T) =T.

(b) In characteristic zero, the kernel of Ad:G — GL4 is Z(G) (I} [5.29), and so the
kernel of Ad|T is Z(G)NT = Z(G). In general, Ker(Ad)/Z(G) is a unipotent group
[A.3). Therefore, the image of Ker(Ad|T') in Ker(Ad)/Z(G) is trivial, which implies that
Ker(Ad|T) C Z(G). The reverse inclusion follows from (a). o
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From the proposition,
Z(G) = Ker(Ad|T) = ﬂaeR Ker(c).

We can use this to compute the centres of groups. For example,

X1 0

Z(GLy) =), Ker(xi —xj) = X1 =Xxp ==X, #0p ,
i#] o x,

Z(SL,) = Ker(2y) = {(g g_,) | x2 = 1} = pa,
Z(PGL;) = Ker(y) = 1.
On applying X * to the exact sequence
> (ot (2),..2)
0— Z(G) —> T—>]_[aeRGm (171)

we get (I,[T4.20) an exact sequence

ooy )>Y Mg % %
P .z X*(T)— X*(Z(G)) - 0,
a®€ER

and so
X*(Z(G)) = X*(T)/{subgroup generated by R}. (172)

For example,

. o (arsee., ap)—>y a;
X*(Z(GLn)) = Z" [{ei —ej |i # j) ————=>

X*(Z(SLa)) ~ Z/(2),
X*(Z(PGLy)) ~Z/Z = 0.
21 Semisimple and toral root data
DEFINITION 2.15 A root datum is semisimple if R generates a subgroup of finite index in

X.

PROPOSITION 2.16 A split reductive group is semisimple if and only if its root datum is
semisimple.

PROOF. A reductive group is semisimple if and only if its centre is finite, and so this follows

from (I72), p. o
DEFINITION 2.17 A root datum is foral if R is empty.

PROPOSITION 2.18 A split reductive group is a torus if and only if its root datum is toral.
PROOF. If the root datum is toral, then (I72)), p. shows that Z(G) = T. Hence DG

has rank 0, and so is trivial. It follows that G = T'. Conversely, if G is a torus, the adjoint
representation is trivial and so g = go. O
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2m The main theorems

Let (G, T) be a split reductive group, with root datum ¥ (G, T).

THEOREM 2.19 Let T’ be a split maximal torus in G. Then T’ is conjugate to T by an
element of G (k).

PROOF. See [3.22] below. (When k has characteristic zero and G is semisimple, this
was proved in[II} ) 0

EXAMPLE 2.20 Let G = GLy, and let T be a split torus. A split torus is (by definition)
diagonalizable, i.e., there exists a basis for V' such that T C D,. Since T is maximal, it

equals D,. This proves the theorem for GLy since any two bases are conjugate by an
element of GLy (k).

It follows that the root datum attached to (G,T) depends only on G (up to isomor-
phism).

THEOREM 2.21 (EXISTENCE) Every reduced root datum arises from a split reductive group
(G, T).

PROOF. See Section|[6|below (or Springer 1998, 16.5). O

A root datum is reduced if the only multiples of a root « that can also be a root are «
and —o.

THEOREM 2.22 (ISOMORPHISM) Every isomorphism ¥ (G,T) — ¥ (G’,T") of root data
arises from an isomorphism (G, T) — (G',T").

PROOF. See Section[7|below Springer 1998, 16.3.2. =

In fact, with the appropriate definitions, every isogeny of root data (or even epimor-
phism of root data) arises from and isogeny (or epimorphism) of split reductive groups
(G.T)— (G, T).

Later we shall define the notion of a base for a root datum. If bases are fixed for (G, T)
and (G',T"), then ¢ can be chosen to send one base onto the other, and it is then unique up
to composition with a homomorphism inn(¢) such that ¢ € 7' (k) and «(t) € k for all a.

2n Examples

We now work out the root datum attached to each of the classical split semisimple groups.
In each case the strategy is the same. We work with a convenient form of the group G in
GL,,. We first compute the weights of the split maximal torus of G on gl,, and then check
that each nonzero weight occurs in g (in fact, with multiplicity 1). Then for each « we find
a natural copy of SL, (or PGL;) centralizing T, and use it to find the coroot .
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EXAMPLE (A,): SLy+1.
Let G be SL,, 41 and let T be the algebraic subgroup of diagonal matrices:
{diag(t1,....th+1) | t1-*thy+1 = 1}.
Then
diag(¢ t );ﬁ> ti
X=2Xi
Yaiki .
Xo(T)={>_airi| DY a;i =0}, tF+— diag(t?,...,t%), a; €,

with the obvious pairing (, ). Write y; for the class of y; in X*(7T'). Then all the characters
Xi—Xj»1 7 J,occurasroots, and their coroots are respectively A; —A j, i # j. This follows
easily from the calculation of the root datum of GL,,.

EXAMPLE (B,): SOz, +1.
Consider the symmetric bilinear form ¢ on k2"+1,

¢()_C>’J_}) =2Xx0Y0 +X1Yn+1+Xn+1Y1+ -+ XnY2n +X2nYn

Then SOzp41 = SO(¢) consists of the 2n + 1 x 2n + 1 matrices A of determinant 1 such

that
i.e., such that

1 0 0 1 00
Ao 0 1l4A=]0 0 I
07 0 0 1 0

The Lie algebra of SO5; 1 consists of the 2rn + 1 x 2n 4+ 1 matrices A of trace 0 such that
P(AX,Y) = —¢(X, AY),
(MM, [T.22)), i.e., such that

1 0 0 1 00
Alo o 1|l=-]0 0 1]4
01 0 01 0

Take T to be the maximal torus of diagonal matrices
diag(1,t1,....tn, 17, ..ot 1)
Then
. -1 —1,  Xi
X*(T) = @15i5nZXi’ diag(1,t1,...,tn, 17 .. 1, ) > 1

Ai . i+1
X*(T):@ISiSnZ/\i, t > diag(1,..., t ,...,1)

with the obvious pairing (, ). All the characters
txi, Exitxj, i#j
occur as roots, and their coroots are, respectively,

£2A;, EA XA, P # )
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EXAMPLE (C,): Sp,,-

Consider the skew symmetric bilinear form k2" x k2" — k,

A (X,¥) = X1Ynt1—Xn41V1 + -+ XnYan — X2nVn-

Then Sp,,, consists of the 2n x 2n matrices A such that

P(AX, Ay) = ¢(X.)).

)=

The Lie algebra of Sp,, consists of the 2n x 2n matrices A such that

i.e., such that

P(AX,5) = —¢p (X, AY),

o0

Take T to be the maximal torus of diagonal matrices

i.e., such that

diag(ty,....tn.t7 .. 1Y),
Then
X*(T):@lsisnzxi’ diag(ty,....tm.t7 e t7 ) s 1y
X =D, 2 ¢ 2 diag(1,.. 1. 1)

with the obvious pairing ( , ). All the characters
2y, Fritxj, i FJ
occur as roots, and their coroots are, respectively,
A, EA XA, P #
EXAMPLE (D,,): SO,,.
Consider the symmetric bilinear form k2" x k?"* — k,
$(X,¥) = X1Yn41+Xn+1Y1 + -+ XnY2n + X2nY2n-

Then SO, = SO(¢) consists of the n x n matrices A of determinant 1 such that

P(AX,Ay) = $(X.)).

“Ga)=()

i.e., such that
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The Lie algebra of SO,, consists of the n x n matrices A of trace 0 such that

o))

A B
‘When we write the matrix as (C D)’ then this last condition becomes

i.e., such that

A+D'=0, C+C'=0, B+B'=0.
Take T to be the maximal torus of matrices
: -1 -1
diag(ty,....th.t] ...t )
and let y;, 1 <i <r, be the character
diag(ty,....tn.t7 ..ot ) > 1.

All the characters

ity 1F]
occur, and their coroots are, respectively,

A £, P # )

REMARK 2.23 The subscript on A,, By, C,, D, denotes the rank of the group, i.e., the
dimension of a maximal torus.

3 Borel fixed point theorem and applications

3a Brief review of algebraic geometry

We need the notion of an algebraic variety (not necessarily affine). To keep things simple,
I assume that k is algebraically closed, and I use the conventions of my notes AG. Thus, an
algebraic variety over k is topological space X together with a sheaf O x such that Ox (U)
is a k-algebra of functions U — k; it is required that X admits a finite open covering
X = U; such that, for each i, (U;,Ox|U;) is isomorphic to Spm A; for some finitely
generated reduced k-algebra A;; finally, X is required to be separated.

3.1 A projective variety is a variety that can be realized as a closed subvariety of some
projective space P". In particular, any closed subvariety of a projective variety is projective.

3.2 Let V be a vector space of dimension n over k.

(a) The set P(V') of one-dimensional subspaces of V' is in a natural way a projective
variety: in fact the choice of a basis for V' defines a bijection P(V) < P"~1,

(b) Let G4 (V) be the set of d-dimensional subspaces of V. When we fix a basis for V,
the choice of a basis for S determines a d x n matrix A(S) whose rows are the coordinates of
the basis elements. Changing the basis for S multiplies A(S) on the left by an invertible d x
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d matrix. Thus, the family of d x d minors of A(S) is determined by S up to multiplication
by a nonzero constant, and so defines a point P(S) of P(@~1. One shows that S > P(S)
is a bijection of G4(V') onto a closed subset of p(a)-1 (called a Grassmann variety; AG
[6.26). For a d-dimensional subspace S of V, the tangent space

Ts(G4(V)) ~Hom(S,V/S)

(ibid. [6.29).

(c) For any sequence of integers n > dy > dyr—1 > --- > dy > 0 the set of flags
Vr DD Vl

with V; a subspace of V' of dimension d; has a natural structure of a projective algebraic
variety (called a flag variety; AG p.[131).

3.3 An algebraic variety X is said to be complete if, for all algebraic varieties T, the
projection map X x T — T is closed (AG [7.1)). Every projective variety is complete (AG
[7.7). If X is complete, then its image under any regular map X — Y is closed and complete
(AG[7.3). An affine variety is complete if and only if it has dimension zero, and so is a finite
set of points (AG[7.5).

3.4 Aregularmap f:X — S is proper if, for all regular maps T — S, the map X xs T —
T is closed. If f:X — § is proper, then, for any complete subvariety Z of X, the image
fZ of Z in S is complete (AG[8.26); moreover, X is complete if S is complete (AG [8.24).
Finite maps are proper because they are closed (AG[8.7) and the base change of a finite map
is finite.

3.5 A regular map ¢:Y — X is said to be dominant if its image is dense in X. If ¢
is dominant, then the map f + ¢ o f:Ox(X) — Oy (Y) is injective, and so, when X
and Y are irreducible, ¢ defines a homomorphism k(X) — k(Y) of the fields of rational
functions. A dominant map ¥ — X of irreducible varieties is said to be separable when
k(Y) is separably generated over k(X), i.e., it is a finite separable extension of a purely
transcendental extension of k(X). A regular map ¢:Y — X of irreducible varieties is
dominant and separable if and only if there exists a nonsingular point y € Y such x = ¢(y)
is nonsingular and the map d¢: T, (Y') — Tx(X) is surjective (in which case, the set of such
points y is open.

3.6 A bijective regular map of algebraic varieties need not be an isomorphism. For ex-
ample, x — x?:A! — Al in characteristic p corresponds to the map of k-algebras T
T?:k[T] — k[T], which is not an isomorphism, and

t> (2,03 A! - (1?2 =x3} C A?

corresponds to the map k[t2,13] < k[t], which is not an isomorphism. In the first example,
the map is not separable, and in the second the curve y? = x3 is not normal. Every separable
bijective map ¢:Y — X with X normal is an isomorphism (AG shows that ¢ is
birational, and AG then shows that it is an isomorphism).
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3.7 The set of nonsingular points of a variety is dense and open (AG [5.18). Therefore, an
algebraic variety on which an algebraic group acts transitively by regular maps is nonsin-
gular (cf. AG[5.20). As a nonsingular point is normal (i.e., Ox,x is integrally closed; see
CA , the same statements hold with “nonsingular” replaced by “normal”.®

3b Quotients

In Chapter [I, we defined the quotient of an algebraic group G by a normal algebraic sub-
group N. Now we need to consider the quotient of G by an arbitrary algebraic subgroup
H.

We continue with the conventions of the last subsection: k is algebraically closed, and
we consider only reduced (hence smooth) algebraic groups.

3.8 Let G be a smooth algebraic group. An action of G on a variety X is a regular map
G x X — X such that the underlying map of sets is an action of the abstract group G on
the set X. Every orbit for the action is open in its closure, and every orbit of minimum
dimension is closed. In particular, each orbit is a subvariety of X and there exist closed
orbits. The isotropy group G, at a point o of X is the pre-image of o under the regular map
g+ go:G — X, and so is an affine algebraic subgroup of G). (AG[10.6])

3.9 Let H be a smooth subgroup of the smooth algebraic group G. A quotient of G by
H is an algebraic variety X together with a transitive action G x X — X of G and a point
o fixed by H having the following universal property: for any variety X’ with action of G
and point o’ of X’ fixed by H, the regular map

(g.0)—>go:GxX — X'

factors through X (as a regular map). Clearly, a quotient is unique (up to a unique isomor-
phism) if it exists.

3.10 Let H be a smooth subgroup of a connected smooth algebraic group G, and consider
a transitive action G x X — X of G on a variety X. Suppose that there exists a point o in
X such that the isotropy group G, at o is H. The pair (X, 0) is a quotient of G by H if and
only if the map

g—>g-0.G 2ox
is separable. The fibres of the map ¢ are the conjugates of H. In particular, they all have

dimension dim H , and so
dimX =dimG —dim H
(AG[I0.9). The map
(d@)e:TeG —> T X

contains T, H in its kernel. As dim7,G = dimG and dim 7T, H = dim H (because G and
H are smooth), we see that (dg). is surjective if and only if its kernel is exactly T, H .
Therefore (X, 0) is a quotient of G by H if Ker((d¢). = Lie(H) (by (3.5) and (3.10)).

%The proof that nonsingular points are normal is quite difficult. It is possible to avoid it by showing directly
that the set of normal points in an algebraic variety is open and dense (Springer|1998| 5.2.11).
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PROPOSITION 3.11 A quotient exists for every smooth subgroup H of a smooth algebraic
group G. It is a quasi-projective algebraic variety, and the isotropy group of the distin-
guished point is H.

PROOF. As in the case of a normal subgroup, a key tool in the proof is Chevalley’s theorem
(I,[8.57): there exists a representation G — GLy and a one-dimensional subspace L in V'
such that H is the stabilizer of L. The action of G on V' defines a action

GxP(V)—=>P(V)

of the algebraic group G on the algebraic variety P(V). Let X be the orbit of L in P(V),
i.e., X = G-L. Then X is a subvariety of P(}'), and so it is quasi-projective (because P(V'))
is projective). Let ¢ be the map g+ gL:G — X. It follows from[I] that the kernel
of (dg)e is b, and so the map is separable. This implies that X is a quotient of G by H. g

We let G/H denote the quotient of G by H. Because H is the isotropy group at the
distinguished point,
(G/H)(k) = G(k)/H (k).

3.12 In the proof of the proposition, we showed that, for any representation (V,r) of G
and line L such that H is the stabilizer of L, the orbit of L in P(V') is a quotient of G by
H.

3.13 Let G = GLy and H = T, = {(§ *)}. Then G acts on k2, and H is the subgroup
fixing the line L = {({)}. The proof of the proposition shows that G/H is isomorphic to
the orbit of L, but G acts transitively on the set of lines, and so G/H ~ P!,

3.14 When H is normal in G, this construction of G/H agrees with that in (I{7.63). In
particular, when H is normal, G/H is affine.

3.15 Let G x X — X be a transitive action of a smooth algebraic G on a variety X, and let
o be a point of X. Let H be the isotropy group at 0. The universal property of the quotient
shows that the map g + go factors through G/H. The resulting map G/H — X is finite
and purely inseparable.

ASIDE 3.16 Quotients exist under much more general hypotheses. Let G be an affine algebraic
group scheme over an arbitrary field k, and let H be an affine subgroup scheme. Then then the
associated sheaf of the presheaf R ~> G(R)/H (R) is represented by an algebraic scheme G/H over
k. See DG, 111, §3, 5.4, p. 341.

For any homomorphism of k-algebras R — R’, the map G(R)/H(R) — G(R')/H(R’) is in-
jective. Therefore, the statement means that there exists a scheme G/H of finite type over k and a
morphism 7: G — G/H such that,

o for all k-algebras R, the nonempty fibres of the map 7 (R): G(R) — (G/H)(R) are cosets of
H(R);

o for all k-algebras R and x € (G/H)(R), there exists a finitely generated faithfully flat R-
algebra R’ and a y € G(R’) lifting the image of x in (G/H)(R').
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3¢ The Borel fixed point theorem

THEOREM 3.17 When a smooth connected solvable algebraic group acts on an algebraic
variety, no orbit contains a complete subvariety of dimension > 0.

PROOF. Let G be a connected solvable smooth algebraic group. If the statement fails for
G acting on X, then it fails for Gpa acting on X a, and so we may suppose that k is
algebraically closed. We use induction on the dimension of G.

It suffices to prove the statement for G acting on G/H where H is a smooth connected
subgroup of G (because any orbit of G acting on a variety has a finite covering by such a
variety G/H (3.15), and the inverse image of a complete subvariety under a finite map is
complete (3.4)).

Fix a smooth connected subgroup H of G with H # G. Either H maps onto G/DG
or it doesn’t. In the first case, DG acts transitively on G/H, and the statement follows by
induction (using [l [T6.21). In the second case, we let N be the subgroup of G containing
H corresponding to the image of H in G/DG (see |} [9.14); then N is normal in G and
G/N ~1Im(H)/DG.” Consider the quotient map 7:G/H — G/N. Let Z be a complete
subvariety of G/H, which we may assume to be connected. Because N is normal, G/N
is affine (see [3.14)), and so the image of Z in G/N is a point (see [3.3). Therefore Z is
contained in one of the fibres of the map 7, but these are all isomorphic to N/H, and so we
can conclude by induction again. O

THEOREM 3.18 (BOREL FIXED POINT THEOREM) Any smooth connected solvable alge-
braic group acting on a complete variety over an algebraically closed field has a fixed point.

PROOF. According to (3.8)), the action has a closed orbit, which is complete, and hence is
a finite set of points (Theorem[3.17). As the group is connected, so is the orbit. o

REMARK 3.19 It is possible to recover the Lie-Kolchin theorem (I, from the Borel
fixed point theorem. Let G be a smooth connected solvable subgroup of GLy, and let
X be the collection of maximal flags in V (i.e., the flags corresponding to the sequence
dimV =n>n—1>--->1>0). As noted in (3.2), this has a natural structure of a
projective variety, and G acts on it by a regular map

g F—gF:GxX - X

where
g(Vn DVp—1D ) =gVuDgVy_1D:--.
According to the theorem, there is a fixed point, i.e., a maximal flag such that gF' = F for

all g € G(k). Relative to a basis ey, ..., e, adapted to the flag.® G C T,.

NOTES The improvement, Theorem [3.17]of Borel’s fixed point theorem, is from [Allcock/[2009,

"The group N is connected bym and smooth bym

8That is, such that et,...,e; is a basis of V;.
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3d Borel subgroups

Throughout this subsection, G is a reductive group.

DEFINITION 3.20 A Borel subgroup of G is a smooth subgroup B such that Bja is a
maximal smooth connected solvable subgroup of Ga.

For example, T» 4 {(§ %)} is a Borel subgroup of GL, (it is certainly connected and
solvable, and the only connected subgroup properly containing it is GL,, which isn’t solv-
able).

THEOREM 3.21 Let G be a reductive group over k.

o If B is a Borel subgroup of G, then G/ B is projective.
o Any two Borel subgroups of G are conjugate by an element of k.

PROOF. We may assume k = k2.

We first prove that G/ B is projective when B is a Borel subgroup of largest possible
dimension. Apply the theorem of Chevalley (I, to obtain a representation G — GLy
and a one-dimensional subspace L such that B is the subgroup fixing L. Then B acts on
V/L, and the Lie-Kolchin theorem gives us a maximal flag in V/L stabilized by B. On
pulling this back to V', we get a maximal flag,

FV=Vy,D>Vp1D--DV1=LD>O0

in V. Not only does B stabilize F, but (because of our choice of V1), B is the isotropy
group at F, and so the map G/B — B - F is finite (see [3.15). This shows that, when we
let G act on the variety of maximal flags, G - F is the orbit of smallest dimension, because
for any other maximal flag F’, the stabilizer H of F’ is a solvable algebraic subgroup of
dimension at most that of B, and so

dimG - F' = dimG —dim H > dimG —dim B = dimG - F.

Therefore G - F is closed (3.8)), and hence projective variety of maximal flags in V, G - F
is projective. The map G/B — G - F is finite, and so G/B is complete (see[3.4). As it is
quasi-projective, this implies that it is projective.

To complete the proof of the theorems, it remains to show that for any Borel subgroups
B and B’ with B of largest possible dimension, B’ C gBg~! for some g € G (k) (because
the maximality of B’ will then imply that B’ = gBg~1). Let B’ acton G/B by b’,gB
b’gB. The Borel fixed point theorem shows that there is a fixed point, i.e., for some g €
G(k), B'’gB C gB. Then B'g C gB, and so B’ C gBg™! as required. 0

THEOREM 3.22 Let G be a smooth connected algebraic group. All maximal tori in G are
conjugate by an element of G (k™).

PROOF. Let T and T’ be maximal tori. Being smooth, connected, and solvable, they are
contained in Borel subgroups, say 7 C B, T’ C B’. For some g € G, gB’g™! = B, and
so gT’g~! Cc B. Now T and gT’g~! are maximal tori in the B, and we know that the
theorem holds for connected solvable groups (I,[16.35). O
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REMARK 3.23 We mention two stronger results.

(a) (Grothendieck): Let G be a smooth affine group over a separably closed field k.
Then any two maximal tori in G are conjugate by an element of G (k). In |Conrad
et al. 2010, Appendix A, 2.10, p. 401, it is explained how to deduce this from the
similar statement with k algebraically closed.

(b) (Borel-Tits): Let G be a smooth affine group over a field k. Then any two maximal
split tori in G are conjugate by an element of G (k). In|Conrad et al.| 2010, Appendix
C, 2.3, p. 506, it is explained how to deduce this from the statement that maximal tori
in solvable groups are G (k)-conjugate.

THEOREM 3.24 For any Borel subgroup B of G, G = UgeG(kal)ng_l.

SKETCH OF PROOF. Show that every element x of G is contained in a connected solvable
subgroup of G (sometimes the identity component of the closure of the group generated by
x is such a group), and hence in a Borel subgroup, which is conjugate to B (3.21). O

THEOREM 3.25 For any torus T in G, Cg(T) is connected.

PROOF. We may assume that k is algebraically closed. Let x € Cg(T)(k), and let B be
a Borel subgroup of G. Then x is contained in a connected solvable subgroup of G (see
[3.24), and so the Borel fixed point theorem shows that the subset X of G/B of cosets gB
such that xgB = gB is nonempty. It is also closed, being the subset where the regular maps
gB — xgB and gB — gB agree. As T commutes with Xx, it stabilizes X, and another
application of the Borel fixed point theorem shows that it has a fixed point in X. In other
words, there exists a g € G such that

xgB=gB
TgB =gB.

Thus, both x and T lie in gBg ™! and we know that the theorem holds for connected solvable
groups (I,{16.36)). Therefore x € Cg(T)°. o

3e Parabolic subgroups
In this subsection, assume that k is algebraically closed.

DEFINITION 3.26 An algebraic subgroup P of G is parabolic if G/ P is projective.

THEOREM 3.27 Let G be a connected algebraic group. An algebraic subgroup P of G is
parabolic if and only if it contains a Borel subgroup.

PROOF. = : Let B be a Borel subgroup of G. According to the Borel fixed point
theorem, the action of B on G/P has a fixed point, i.e., there exists a g € G such that
BgP = gP. Then Bg C gP and g"'Bg C P.

<= : Suppose P contains the Borel subgroup B. Then there is quotient map G/B —
G/ P. Recall that G/ P is quasi-projective, i.e., can be realized as a locally closed subvariety
of PV for some N. Because G/B is projective, the composite G/B — G/P — PV has
closed image (see[3.4), but this image is G/ P, which is therefore projective. O
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COROLLARY 3.28 Any connected solvable parabolic algebraic subgroup of a connected
algebraic group is a Borel subgroup.

PROOF. Because it is parabolic it contains a Borel subgroup, which, being maximal among
connected solvable groups, must equal it. O

3f Examples of Borel and parabolic subgroups
EXAMPLE: GLy

Let G = GLy with V of dimension n. Let F' be a maximal flag
FVy_1D2---DW
and let G(F) be the stabilizer of F, so
G(F)(R)={geGL(V®R)|g(Vi®R) CV;®R foralli}.

Then G (F) is connected and solvable (because the choice of a basis adapted to F' defines an
isomorphism G(F) — T,), and GLy /G(F) is projective (because GL (1) acts transitively
on the space of all maximal flags in V). Therefore, G(F) is a Borel subgroup (3.28). For
g € GL(V),

G(gF)=g-G(F)-g~".

Since all Borel subgroups are conjugate, we see that the Borel subgroups of GLy, are pre-
cisely the groups of the form G(F) with F' a maximal flag.

Now consider G(F) with F a (not necessarily maximal) flag. Clearly F can be re-
fined to a maximal flag F’, and G(F) contains the Borel subgroup G(F’). Therefore it is
parabolic. Later we’ll see that all parabolic subgroups of GLy are of this form.

EXAMPLE: SO,,

Let V' be a vector space of dimension 2n, and let ¢ be a nondegenerate symmetric bilinear
form on V' with Witt index n. By a totally isotropic flag we meanaflag---DV; D V;_1 D---
such that each V; is totally isotropic. We say that such a flag is maximal if it has the
maximum length 7.
Let
FVyDVp1D--D W1

be such a flag, and choose a basis eq,...,e, for V, such that V; = (eq,...,¢;). Then
(ez,...,en)l contains ¥, and has dimension® n + 1, and so it contains an x such that
(e1,x) #0. Scale x sothat (e7,x) = 1, and define e, 41 :x—%¢(x,x)e1. Then ¢(en+1,en+1) =
Oand ¢(e1,ex+1) = 1. Continuing in this fashion, we obtain a basis e1,...,en,€n+1,...,€22

(U
for which the matrix of ¢ is (I 0).

9Recall that in a nondegenerate quadratic space (V, ¢),

dim W +dim W+ = dim V.
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Now let F’ be a second such flag, and choose a similar basis e, ..., e, for it. Then the
linear map e; > e] is orthogonal, and maps F onto F'. Thus O(¢) acts transitively on the
set X of maximal totally isotropic flags of V. One shows that X is closed (for the Zariski
topology) in the flag variety consisting of all maximal flags V;; D --- D V1, and is therefore
a projective variety. It may fall into two connected components which are the orbits of
SO(¢)."

Let G = SO(¢). The stabilizer G(F) of any totally isotropic flag is a parabolic sub-
group, and one shows as in the preceding case that the Borel subgroups are exactly the
stabilizers of maximal totally isotropic flags.

EXAMPLE: Sp,,

Again the stabilizers of totally isotropic flags are parabolic subgroups, and the Borel sub-
groups are exactly the stabilizers of maximal totally isotropic flags.

EXAMPLE: SOy,

Same as the last two cases.

EXERCISE 3-1 Write out a proof that the Borel subgroups of SOz, Sp,,,, and SO3,11 are
those indicated above.

3g Algebraic groups of rank one

Throughout this section, we assume that k is algebraically closed (for the present).

PRELIMINARIES

Let G be a reductive algebraic group, and let B be a Borel subgroup of G. The following
are consequences of the completeness of the flag variety G/B.

3.29 All Borel subgroups, and all maximal tori, are conjugate (see[3.21} in fact, for any
maximal torus T, Ng(T) acts transitively on the Borel subgroups containing T ).

3.30 The group G is solvable if one of its Borel subgroups is commutative.

3.31 The connected centralizer Cg(T)° of any maximal torus T lies in every Borel sub-
group containing T .

3.32 The normalizer Ng(B) of a Borel subgroup B contains B as a subgroup of finite
index (and therefore is equal to its own normalizer).

3.33 The centralizer of a torus T in G has dimension equal dimg? .

10 et (V, ¢) be a hyperbolic plane with its standard basis ey, e5. Then the flags

Fy:{e1)
Fa:(e3)

fall into different SO(¢) orbits.
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According to (I 2.26
Lie(Cg (T)) = Lie(G)T.

As Cg(T) is smooth (see[2.7),
dim Cg (T) = dim(Lie(Cg (T))

(see [T, 2.2).

PROPOSITION 3.34 Let (V,r) be a representation of a torus T . In any closed subvariety of
dimension d in P(V') stable under T, there are at least d + 1 points fixed by T .

PROOF. (Borel||1991} TV, 13.5). Let Y be a closed subvariety of P(V') of dimension d. As
T is connected, it leaves stable each irreducible component of Y, and so we may suppose
that Y is irreducible. We use induction on the dimension of Y. If dimY = 0, the statement
is obvious.

Let y1,..., xn be the distinct characters of 7 on V. There exists a A € X, (T') such that
the integers (x;,A) are distinct. Now A(Gy,) and T have the same eigenvectors in V', and
hence the same fixed points, and so we may suppose that T = Gy,.

IfdimY7T > 0, then YT is infinite, so we may assume that this not so. The intersection
of the hyperplanes containing Y (i.e., the smallest affine space containing Y') is stable under
T, and so we may suppose that no hyperplane in P(V') contains Y.

Choose a basis {eq,...,e, } of eigenvectors for Gy, so A(t)e; = t™ie; for some m; € Z
and ¢ € Gy (k). We may suppose that m; < --- < m,. Since Y is not contained in a
hyperplane, there exists a v € V such that (v) € Y and

v=aje1+--+ane,, a;c€k,

with ay # 0. The map ¢ — A(¢)v:G,, — P(V) extends to A! — let A(0)v denote the image
of 0. Then (A(0)v) lies in Y and is fixed by G,,. Moreover, it doesn’t lie in the intersection
of Y with the hyperplane in P(V') defined by the condition a; = 0. This intersection has
dimension at most d — 1 (AG and is stable under G, and so, by induction, it has at
least d fixed points. Together with (1(0)v), this gives G, at least d + 1 fixed points in ¥ .g

COROLLARY 3.35 Let P be a parabolic subgroup of a smooth connected algebraic group
G,and let T be a torus in G. Then T fixes at least 1 +dim G/ P points of G/ P.

PROOF. There exists a representation (V,r) of G andano € P(V) such g+ go: G — P(V)
defines an isomorphism of G/ P onto the orbit G -0 (see[3.12). We can apply the proposition
withY =G-0>~G/P. o
PRELIMINARIES ON SOLVABLE GROUPS

Let G be a smooth connected algebraic group. Let A: G, — G be a cocharacter of G, and
for g € G(k), consider the regular map

t—>A)-g- A1) G — G.
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We let P(A) denote subgroup of G (k) consisting of those g for which the map extends to
Al = G,, U{0}. For g € P(A), lim;A(t)-g-A(z)~! denote the value of the extended
map at t = 0. We let

UML) ={geP)| tlgrg)w)-g-x(r)‘l =1}.

Both P(X) and U(A) are closed subgroups of G(k), and so may be regarded as smooth
algebraic subgroups of G (cf. Springer|1998, 13.4).

PROPOSITION 3.36 The subgroup G 4+ is unipotent, and every weight of G, on Lie(U(1))
is a strictly positive integer. If G is smooth, connected, and solvable, then Lie(U(1)) con-
tains all the strictly positive weight spaces for G, on Lie(G).

PROOF. Choose a faithful representation (V,r) of G. There exists a basis for V' such that
r(AM(Gp)) C Dy, say Aor(t) =diag(t™!,...,t"™"),my >my > --->my,. Then U(X) C U,,
and the first statement is obvious.

Now assume that G is smooth, connected, and solvable. Then there is a unique con-
nected normal unipotent subgroup G, of G such that G/ G, is a torus (I} [16.33). We use
induction on dim G,,. When dimG, = 0, G is a torus, and there are no nonzero weight
spaces.

Thus, we may assume that dim G,, > 0. Then there exists a surjective homomorphism
7:Gy — Gg4, and

n(A0)-g-A) ") =1"-7(g), g€Gulk), 1€Cmk),

for some n € Z.

Ifn <0, thent — w(A(t)-g-A(t)"1):G,, — G, doesn’t extend to A! unless 7(g) = 0.
Hence U(A) C Ker(sr), and we can apply induction.

If n > 0, then one shows that 7(U(A)) = G4, and we can again apply induction to
Ker(sr). See|Allcock 2009, Pptn 1. o

COROLLARY 3.37 If G is connected, smooth, and solvable, then G is generated its sub-
groups U(L), Cg (A(Gy,))°, and U(—2A).

PROOF. Their Lie algebras span g. O

ALGEBRAIC GROUPS OF RANK ONE

Let G be smooth connected algebraic group of rank 1, and assume that G is not solvable.
Let 7 be a maximal torus in G, and fix an isomorphism A: G, — T. Call a Borel subgroup
positive if it contains U(A) and negative if it contains U(—A).

LEMMA 3.38 With the above assumptions:

(a) T lies in at least two Borel subgroups, one positive and one negative.

(b) If B (resp. B') is a positive (resp. negative) Borel subgroup containing T , then every
Borel subgroup containing T lies in the subgroup generated by B and B’.

(c) No Borel subgroup containing T is both positive and negative.

(d) The normalizer of T in G contains an element acting on T ast >t~ 1.
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PROOF. (a) The subgroup U(}) is connected, unipotent, and normalized by T. Therefore
T U(M) lies in a Borel subgroup, which is positive (by definition). A similar argument
applies to U(—A).

(b) Apply Corollary[3.37

(c) Otherwise (b) would imply that every Borel subgroup is contained in a single Borel
subgroup, which contradicts (a).

(d) The normalizer Ng(T) acts transitively on the Borel subgroups containing T (see
[3.29). Any element taking a negative Borel subgroup to a positive Borel subgroup acts as
t—t"lonT. O

LEMMA 3.39 Each maximal torus of G lies in exactly two Borel subgroups, one positive
and one negative.

PROOF. Let T be a maximal torus, and choose an identification of it with G,,. We use
induction on the dimension of a Borel subgroup B. If dim B = 1, then it is commutative,
and so G is solvable (3.30), contradicting the hypothesis.

We next consider the case dim B = 2. We already know that 7" lies in a positive and
in a negative Borel subgroup, and we have to show that any two positive Borel subgroups
coincide. If not, their unipotent radicals would be distinct subgroups of U(A), and hence
would generate a unipotent subgroup of dimension > 1, contradicting dim B, = 1.

Now suppose that dim B > 3. We may suppose that B D T and is positive. Consider
the action of B on G/N where N = Ng(B). Because the only Borel subgroup that B
normalizes is itself, B has a unique fixed point in G/N. Let O be an orbit of B in G/N of
minimal dimension > 0. The closure of O in G/ N is a union of orbits of lower dimension,
and so O is either a projective variety or a projective variety with one point omitted. This
forces O to be a curve, because otherwise it would contain a complete curve, in contradic-
tion to Theorem Therefore, there exists a Borel subgroup B’ such that B N Ng(B’)
has codimension 1 in B.

Thus H £ (B N B’)° has codimension 1 in each of B and B’. Either H = B, = B,
or it contains a torus. In the first case, (B, B’) normalizes H, and a Borel subgroup in
(B, B’)/H has no unipotent part, and so (B, B’) is solvable, which is impossible.

Therefore H contains a torus. Conclude that B and B’ are the only Borel subgroups
of (B, B’) containing T', and one is positive and one negative. Then Lemma [3.38|d) shows
that B and B’ are interchanged by an element of N g g/ (T) that acts a t — t~Lon T. This
implies that B’ is negative as a Borel subgroup of G. Finally Lemma [3.38|b) implies that
every Borel subgroup of G containing 7 lies in (B, B'), hence equals B or B’ o

THEOREM 3.40 Let G be a connected smooth algebraic group of rank 1. Either G is
solvable or there exists an isogeny G/R,,G — PGL,.

PROOF. Let T be a maximal torus, let B be a Borel subgroup of G, and let N = Ng(B).
Since N is its own normalizer (3.32), it fixes only one point in B/N, and so the stabilizers
of distinct points of G/N are the normalizers of distinct Borel subgroups. The fixed points
of T in G/N correspond to the Borel subgroups that 7" normalizes, and hence contain 7.
Lemma |3.39| shows that 7" has exactly 2 fixed points in G/N. As G is nonsolvable, G/B
(hence also G/N) has dimension > 1. In fact, G/N has dimension 1, because otherwise
Corollary would show that 7" has more than 2 fixed points. Therefore G/N is a
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projective curve. Standard arguments show that it must be isomorphic to P! (tba; see Borel
1991, 10.7; Humphreys| /1975, p. 155). Choose an isomorphism G/N ~ P!. This gives
nontrivial homomorphism G — Aut(P!), and Aut(P!) ~ PGL, (k) (AG|6.22). o
3h Applications

Let G be a connected algebraic group, and let 7 be maximal torus in G. Let W be the
subgroup of Ng(T')/Cg(T) generated by reflections.

THEOREM 3.41 (Bruhat decomposition). For any Borel subgroup B of G, B = BWB.
PROOF. |Springer]|1998| 8.3.8. o
THEOREM 3.42 (Normalizer theorem). For any Borel subgroup B of G, Ng(B) = B.

PROOF. This follows from the Bruhat decomposition and the simple transitivity of W on
the Weyl chambers. o

COROLLARY 3.43 W = Ng(T)/Cg(T).

THEOREM 3.44 (Connectedness of torus centralizers). For any torus T in G, Cg(T) is
connected.

PROOF. This can be deduced from the Bruhat decomposition and a standard fact about
reflection groups: the pointwise stabilizer of a linear subspace is generated by the reflections
that fix it pointwise. O

ASIDE 3.45 Our proof of Theorem [3.40] follows [Allcock/ 2009, Unlike the standard proofs (e.g.,
Humphreys| 1975, §25), it avoids using the normalizer theorem (every Borel subgroup of a connected
group is its own normalizer).

4 Parabolic subgroups and roots

Throughout this section, k is algebraically closed of characteristic zero.

NOTES This needs to be rewritten for split reductive groups over arbitrary fields.
Recall (I, [14.15)) that for a representation 7 — GLy of a (split) torus 7,

V= @xeX*(T) Vi

where V) is the subspace on which T acts through the character y. The y for which V, # 0
are called the weights of T in V, and the corresponding V) are called the weight spaces.
Clearly

Ker(T — GLy) = ﬂx a weight Ker(y).

Therefore T acts faithfully on V' if and only if the weights generate X *(7") (by I, [14.12).
We wish to understand the Borel and parabolic subgroups in terms of root systems. We
first state a weak result.
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THEOREM 4.1 Let G be a connected reductive group, T a maximal torus in G, and (V, R)
the corresponding root system (so V = R®q Q where Q is the Z-module generated by R).
(a) The Borel subgroups of G containing T  are in one-to-one correspondence with the
bases of R.
(b) Let B be the Borel subgroup of G corresponding to a base S for R. The number of
parabolic subgroups of G containing B is 2181,

We examine this statement for G = GLy . Letn = dim V.

4.2 The maximal tori of G are in natural one-to-one correspondence with the decomposi-
tions of V' into a direct sum V = P jeyg Vj of one-dimensional subspaces.

Let T be a maximal torus of GLy . As the weights of T in V' generate X *(T'), there are
n of them, and so each weight space has dimension one. Conversely, given a decomposition
V=6 jeg Vj of V into one-dimensional subspaces, we take 7" to be the subgroup of g
such that gV; C V; forall ;.

Now fix a maximal torus 7" in G, and let V = P jes Vj be the corresponding weight
decomposition of V.

4.3 The Borel subgroups of G containing T are in natural one-to-one correspondence with
the orderings of J .

The Borel subgroups of V' are the stabilizers of maximal flags
FV=W,DW,_1D--

If T stabilizes F', then each W, is a direct sum of eigenspaces for 7', but the V; are the
only eigenspaces, and so W, is a direct sum of r of the V;’s. Therefore, from F we obtain a
unique ordering j, >---> jj of J such that W, =P, _, Vj,. Conversely, given an ordering
of J we can use this formula to define a maximal flag.

4.4 The bases for R are in natural one-to-one correspondence with the orderings of J .

The vector space V' has basis (x;)jes, and R = {y; — x; | i # j}. Recall that to
define a base, we choose at € V'V that is not orthogonal to any root, and let S be the set of
indecomposable elements in R = {y; — x, | (xi — xj.t) > 0}. Clearly, specifying R* in
this way amounts to choosing an ordering on J.!!

4.5 Fix a Borel subgroup B of G containing T, and hence a base S for R. The parabolic
subgroups containing B are in one-to-one correspondence with the subsets of S.

Having fixed a Borel subgroup, we have an ordering of J, and so we may as well write
J ={1,2,...,n}. From a sequence ai,...,a, of positive integers with sum n, we get a
parabolic subgroup, namely, the stabilizer of the flag

VoV,D>---DV1 D20

with V; = @, <4, 4. +a, Vi- Since the number of such sequences!? is 2”71, the theorem
implies that this is a complete list of parabolic subgroups.

et (f;);eg be the dual basis to (y;);er. We can take ¢ to be any vector > a; f; with the a; distinct. Then
R™ depends only on ordering of the a; (relative to the natural order on R), and it determines this ordering.

12Such sequences correspond to functions p: {1, ..., n} — {0, 1} with £(0) = 1 — the a; are the lengths of
the strings of zeros or ones.
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4a Lie algebras

Recall that sl consists of the 2 x 2 matrices with trace zero, and that for the basis

01 1 0 00
X = N h = 5 y = ’
(O ()) (O —1) (1 0)

[x.y]=h. [h.x]=2x, [h.y]==2y.

and

A Lie algebra g is said to be reductive if it is the direct sum of a commutative Lie algebra
and a semisimple Lie algebra. Let h be a maximal subalgebra consisting of elements x such
that ad x is semisimple. Then

s=000P__, 0

where g is the subspace of g on which b acts trivially, and g, is the subspace on which §
acts through the nonzero linear form «. The o occurring in the decomposition are called
the roots of g (relative to h).

THEOREM 4.6 For each o € R, the spaces g and hy 4 [ga.g—«] are one-dimensional.
There is a unique element hy, € by, such that «(hy) = 2. For each nonzero element xo € X,
there exists a unique y, such that

[(Xa» Yol = ha,  [ha.Xa] =2X4, [ha,Ya] = —2)a.

Hence go, = g—o D o D gq is isomorphic to sl;.
PROOF. See |Serre|(1987, Chapter VI. o

4b Algebraic groups

Let G be a reductive group containing a split maximal torus 7. Let Lie(G,T) = (g.h).
Then
Homyjin(h,k) ~ k @7 X*(T)

(I, |1.24), and so each « € R defines a linear form «’ on h. It can be shown that these are
the roots of g. Every vector space W defines an algebraic group R +— R ®; W (considered
as a group under addition).

THEOREM 4.7 Foreacha € R there is a unique homomorphism exp,,: go — G of algebraic
groups such that

texpa(x)t_1 =exp(a(t)x)
Lie(expy) = (ga — 9).
PROOF. Omitted. o

EXAMPLE 4.8 Let G = GLj, and let @ = «;;. Then
expy (x) = Z(inj)”/n!
=7 +xEl~j

where E;; is the matrix with 1 in the (7, j)-position, and zeros elsewhere.
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Let Uy denote the image of exp,,.

THEOREM 4.9 For any base S for R, the subgroup of G generated by T and the U, for
o € R is a Borel subgroup of G, and all Borel subgroups of G containing T arise in this
way from a unique base. The base corresponding to B is that for which

Rt ={aeR|U, € B}

is the set of positive roots (so S is the set of indecomposable elements in R™).
PROOF. Omitted. o

THEOREM 4.10 Let S be a base for R and let B be the corresponding Borel subgroup. For
each subset I of R, there is a unique parabolic subgroup P containing B such that

U_qCP <— «ael.
PROOF. Omitted. o

For example, the parabolic subgroup corresponding to the subset

X1 —x2:x2—x3. Xa— x5}

of the simple roots of GLs5 is

S O ¥ *x ¥
S O ¥ *x ¥
S O ¥ ¥ ¥
* X ¥ X X
* X ¥ X %

5 Root data and their classification

NOTES No algebraic groups in this section — only combinatorics. Need to rewrite this section to
remove overlap with III, §1. Then, include complete proofs assuming the results from that section.

Sa Generalities
The following is the standard definition.

DEFINITION 5.1 A root datum is an ordered quadruple ¥ = (X, R, X"V, RY) where

¢ X, XV are free Z-modules of finite rank in duality by a pairing (, ): X x XV — Z,
o R, RY are finite subsets of X and X in bijection by a correspondence « <> ",

satisfying the following conditions

RD1 (o,aV) =2,
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RD2 s4(R) C R, sy (RY) C RY, where
se(x) =x—(x,a0")a, forxeX,uacR,

sg(y)=y—{(a,y)a¥, forye X" ,aeR.

Recall that RD1 implies that sy (o) = —« and sé =1.
Set!3
O=ZRCX QV=ZRY CXV

V=Q®z0 V' =Q®z0".
Xo={xeX|(x,RY) =0}

By ZR we mean the Z-submodule of X generated by the o € R.

LEMMA 5.2 Fore € R,x € X,andy € X"V,

(s (x),y) = (x.55 (), (173)

and so
(sa(x).54 (¥)) = (x,y). (174)

PROOF. We have

(50 (x). y) = (x = {x, 0¥ )a, y) = (x,y) = (x,a" ), y)
(x84 (1)) = (x.y = (e, y)a”) = (x,y) — (x, 0" ) (e, y),
which gives the first formula, and the second is obtained from the first by replacing y with

Sy () o

In other words, as the notation suggests, s, (which is sometimes denoted s4v) is the
transpose of sy .

LEMMA 5.3 The following hold for the mapping

X —=XY, px)= Z(x,av)av.

o®€R
(a)Forall x € X,
_ V2
(xop)) =) (x.a¥)? =0, (175)
with strict inequality holding if x € R.
(b) Forallx e X andw € W,
{(wx, p(wx)) = (x, p(x)). (176)
(c) Foralla € R,
(o, p(@))aY =2p(ar), alla € R. (177)

13The notation QV is a bit confusing, because QV is not in fact the dual of Q.
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PROOF. (a) This is obvious.
(b) It suffices to check this for w = sy, but

(sex, 0y = (x,a") — (x, ") {a,a”) = —(x,a")

and so each term on the right of (175) is unchanged if x with replaced with sqx.
(c) Recall that, for y € XV,

Sa () =y —(e.y)ar”.
On multiplying this by (c, y) and re-arranging, we find that
(o, y)2aY = (@, y)y — (@ y)sy ().

But

—(a,y) = (sa(a),y)

= (,5¥ (7))

—]

and so
(o, )oY = (o, )y + {5y ()sy (9)-

As y runs through the elements of R, so also does s, (y), and so when we sum over
y € RY, we obtain (177). o

REMARK 5.4 Suppose ma is also a root. On replacing o with ma in (177) and using that
p is a homomorphism of Z-modules, we find that

m{a, p(a))(ma)Y =2p(a), alla € R.

Therefore,
(ma)Y =m™taV. (178)

In particular,
()Y = —(a”). (179)

LEMMA 5.5 The map p: X — X" defines an isomorphism
1@p:V—->VY.

In particular, dim V = dim V'V,

PROOF. As (o, p(@)) # 0, shows that p(Q) has finite index in QV. Therefore,
when we tensor p: Q — QY with Q, we get a surjective map 1 ® p:V — VV; in par-
ticular, dimV > dim V¥, The definition of a root datum is symmetric between (X, R) and
(XY, RY), and so the symmetric argument shows that dim VY < dim V. Hence

dimV =dim V",

and 1 ® p:V — V'V is an isomorphism. o
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LEMMA 5.6 The kernel of p: X — XV is Xj.
PROOF. Clearly, Xo C Ker(p), but (175) proves the reverse inclusion. o

PROPOSITION 5.7 We have

0NXep=0
0O + Xy is of finite index in X.

Thus, there is an exact sequence

(g,x)~>q+x )
0— Q0 &® X9 —— X — finite group — 0.

PROOF. The map
1 p: QX - VY

has kernel Q ® X¢ (see and maps the subspace V of Q ® X isomorphically onto V'V
(see[5.5). This implies that
Q®zXp)dV ~20® X,

from which the proposition follows. o
LEMMA 5.8 The bilinear form ( , ) defines a nondegenerate pairing V x V¥ — Q.
PROOF. Letx € X. If (x,a¥) =0foralla¥ € RY, then x € Ker(p) = Xp. 0
LEMMA 5.9 Foranyx € X andw € W, w(x)—x € Q.

PROOF. From (RD?2),
Sa(x)—x = —(x,a)a € 0.

Now
(SOll OSaz)(x) —X =S (Soez(x) —X) + Sa; (x)—x €0,

and so on. o

Recall that the Weyl group W = W(¥) of ¥ is the subgroup of Aut(X) generated by
the sq, @« € R. Welet w € W acton XV as (w¥) ™!, i.e., so that

(wx,wy) = (x,y), alweW,xeX,yeX".

Note that this makes sq act on XV as (sy) ™! = s (see|173).

PROPOSITION 5.10 The Weyl group W acts faithfully on R (and so is finite).
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PROOF. By symmetry, it is equivalent to show that W acts faithfully on RV. Let w be an
element of W such that w(a) = « forall « € RY. For any x € X,

(w(x) —x,a") = (w(x),a”) = (x,a”)
= (x,w (@) = (x,a")
=0.
Thus w(x) — x is orthogonal to RY. As it lies in O (see , this implies that it is zero
(3-8), and so w = 1. i

Thus, a root datum in the sense of (5.1)) is a root datum in the sense of (2.1)), and the
next proposition proves the converse.
PROPOSITION 5.11 Let¥ = (X,R, XY, RY) be a system satisfying the conditions (rd1),
(rd2), (rd3) of (2.1)). Then ¥ is a root datum.

PROOF. We have to show that
sy (RY) C RY where sy (y) =y — (o, y)a".

Asin Lemma[5.2] (s (x).sy (¥)) = (x, ).
Leta,B € R, and let 1 = s, (8)Sa585a- An easy calculation'* shows that

t(x) =x + ((x,54 (BY)) = (x.50(B)"))sa(B), allx €X.

Since

(sa(B),5q (BY)) — (s (B),5a(B)”) = (B.BY) — (sa(B),5(B)*) =2—2 =0,
we see that £ (s4(8)) = s¢(B). Thus,
(t—1)%=0,

and so the minimum polynomial of 7 acting on Q ®7 X divides (7 —1)2. On the other hand,
since ¢ lies in a finite group, it has finite order, say ¢ = 1. Thus, the minimum polynomial
also divides 7™ — 1, and so it divides

ged(T" —1,(T-1)>)=T—1.
This shows that f = 1, and so
(x,55 (BY)) —(x,50(B)") =0forall x € X.

Hence
sy (BY) = sa(B)" € R". .

REMARK 5.12 To give a root datum amounts to giving a triple (X, R, f) where

¢ X is a free abelian group of finite rank,
¢ R s a finite subset of X, and
¢ f is an injective map @ — «" from R into the dual XV of X

satisfying the conditions (rd1), (rd2), (rd3) of (2.1J.

140r so it is stated in[Springer|1979), 1.4.
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Sb Classification of semisimple root data

Throughout this section, F' is a field of characteristic zero, for example F = Q, R, or C.
An inner product on a real vector space is a positive-definite symmetric bilinear form.

GENERALITIES ON SYMMETRIES

See [T} §Tal p.[296]

GENERALITIES ON LATTICES

In this subsection V is a finite-dimensional vector space over F.

DEFINITION 5.13 A subgroup of V is a lattice in V if it can be generated (as a Z-module)
by a basis for V. Equivalently, a subgroup X is a lattice if the natural map F ®7 X — V is
an isomorphism.

REMARK 5.14 (a) When F = Q, every finitely generated subgroup of V' that spans V is a
lattice, but this is not true for ¥ = R or C. For example, Z1 + 7+/2 is not a lattice in R.

(b) When F = R, the discrete subgroups of V' are the partial lattices, i.e., Z-modules
generated by an R-linearly independent set of vectors for V' (see my notes on algebraic
number theory 4.13).

DEFINITION 5.15 A perfect pairing of free Z-modules of finite rank is one that realizes
each as the dual of the other. Equivalently, it is a pairing into Z with discriminant £1.

PROPOSITION 5.16 Let
() VxVY >k

be a nondegenerate bilinear pairing, and let X be a lattice in V. Then
Y={yeVY|(X.y)CZ}
is the unique lattice in V'V such that { , ) restricts to a perfect pairing

X xY — 7.

PROOF. Letey,...,e, be a basis for V' generating X, and let e’l, ... ,e; be the dual basis.
Then
Y =Ze|+-+Ze,,

and so it is a lattice, and it is clear that { , ) restricts to a perfect pairing X x Y — Z.

Let Y’ be a second lattice in V'V such that (x,y) € Z for all x € X, y € Y’. Then
Y’ C Y, and an easy argument shows that the discriminant of the pairing X x Y/ — Z is
+(Y:Y’), and so the pairing on X x Y is perfect if and only if Y/ =Y. 0

ROOT SYSTEMS

See[III}, §T6} 297}
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ROOT SYSTEMS AND SEMISIMPLE ROOT DATA

Compare (I} [T.3]and [5.12):

’ Semisimple root datum Root system (over Q) ‘

X, Ra—~aV:R— XV | V,R

R is finite R is finite
(X:ZR) finite R spans V
0¢R

(a,aY) =2,54(R) C R | 3sq such that so(R) C R
(B,aV)€eZ,alla, € R

Weyl group finite

For a root system (V, R), let Q = ZR be the Z-submodule of V' generated by R and let
Q" be the Z-submodule of V'V generated by the &V, & € R. Then, Q and QV are lattices'>
inV and V'V, and we let

P={xeV|{(x,QY)CZ}.

Then P is alattice in V' (see[5.16), and because of (RS3),
ocP. (180)

PROPOSITION 5.17 If (X, R,a — «V) is a semisimple root datum, then (Q ®z X, R) is a
root system over Q. Conversely, if (V, R) is root system over QQ, then for any choice X of a
lattice in V' such that

OQCcXcP (181)

(X,R,x > V) is a semisimple root datum.

PROOF. If (X,R,a — V) is a semisimple root datum, then 0 ¢ R because (a,a") = 2,
and (B,a") € Z because ¥ € X . Therefore (Q ®z X, R) is a root system.

Conversely, let (V, R) be a root system. Let X satisfy , and let X denote the
lattice in VY in duality with X (see[5.16). For each o € R, there exists an ¥ € V'V such
that (o,a¥) = 2 and s4(R) C R (because (V, R) is a root datum); moreover, «" is unique
(see . Therefore, we have a function o — a¥: R — V'V which takes its values in XV
(because X C P implies XV D RY), and is injective. The Weyl group of (X, R, o > ")
is the Weyl group of (V, R), which, as we noted above, is finite. Therefore (X, R,a > a)
is a semisimple root datum. O

THE BIG PICTURE

Recall that the base field k (for G) has characteristic zero.

5 They are finitely generated, and @ spans V'V by [Serre|1987, p28.
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Split reductive groups «——— Reduced root data

Split semisimple groups «—— Reduced semisimple root data

L

Lie algebras «—  Reduced root systems

5.18 As we discussed in §2, the reduced root data classify the split reductive groups over

k.

5.19 As we discussed in (1.4), from a reductive group G, we get semisimple groups DG
and G/ Z(G) together with an isogeny DG — G/Z(G). Conversely, every reductive group
G can be built up from a semisimple group and a torus (L.5).

5.20 As we discuss in the next section, the relation between reduced root data and reduced
semisimple root data is the same as that between split reductive groups and split semisimple
groups. It follows that to show that the reduced root data classify split reductive groups, it
suffices to show that reduced semisimple root data classify split semisimple groups.

5.21 From a semisimple group G we get a semisimple Lie algebra Lie(G) (see I} [5.23)),
and from Lie(G) we can recover G/ Z(G) (see[l}[5.30). Passing from G to Lie(G) amounts
to forgetting the centre of G.'°

5.22 From a semisimple root datum (X, R,a — «"), we get a root system (V = Q ®z
X, R). Passing from the semisimple root datum to the root system amounts to forgetting
the lattice X in V.

5.23 Take k = k%, and let g be a semisimple Lie algebra over k. A Cartan subalgebra
bh of g is a commutative subalgebra that is equal to its own centralizer. For example, the
algebra of diagonal matrices of trace zero in sl is a Cartan subalgebra. Then b acts on g
via the adjoint map ad: ) — End(g), i.e., for & € h, x € g, ad(h)(x) = [h,x]. One shows
that g decomposes as a sum

a=008CP, . e

where g is the subspace on which h acts trivially, and hence equals h, and g, is the subspace
on which b acts through the linear form «:h — k, i.e., for h € b, x € go, [h, x] = a(h)x. The
nonzero « occurring in the above decomposition form a reduced root system R in b (and
hence in the Q-subspace of §¥ spanned by R). In this way, the semisimple Lie algebras
over k are classified by the reduced root systems (see $3).

16perhaps this was accurate when first written, but, as we show in Chapter 11?2, it is possible to recover the
centre also from Lie(G) by looking at its representations.
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CLASSIFICATION OF THE REDUCED ROOT SYSTEM
See Chapter [Tl Section|I]

6 Construction of split reductive groups: the existence theorem

We show that, for any field k, every root datum arises from a split reductive group over k.

NOTES Show first that it suffices to prove the result for root systems and semisimple groups. Dis-
cuss three proofs.

(a) Construct a split almost simple group for each diagram, as in Chapter[I] Only the exceptional
case still requires work (from me).

(b) In characteristic zero, construct the Lie algebra; get the semisimple group as in Chapter [[TI}
Then discuss Chevalley bases and explain how to get the groups over Z, and hence over each
prime field. Also take a look at the Tannakian point of view; perhaps look at the Tannakian
category over Z.

(¢) Directly — see Springer (Chapter 10, 10 pages) in the case that k is algebraically closed, and
the notes at the end of his chapter. Better: do this directly of Z.

6a Preliminaries on root data/systems

Recall (5.17) that semisimple root data (hence semisimple algebraic groups) correspond to
reduced root systems (V, R) together with a choice of a lattice X,

gcXcP
where Q = ZR and P is the lattice in duality with ZR". Thus
P={xeV|{x,a¥)€Z, allacR)}.

When we take V' to be a real vector space and choose an inner product as in (III} [T.9), this
becomes
(x,a)

(o, )
Choose a base S = {a1,...,a} for R (see[lI} [I.10). Then

Q :ZWI@"‘@ZO{n,

P={er ‘ 2 ez, allaeR}.

and we want to find a basis for P. Let {A1,...,A,} be the basis of V' dual to the basis

{ 2 2 2 }
— 0]y Qs ——— Uy ¢
(a1,01) (i, ap) (W, 0tn)

i.e., (A;)1<i<n is characterized by

2()ti,otj) .

@na;) 8ij  (Kronecker delta).
Jr%j

PROPOSITION 6.1 The set{A1,...,A,} is a basis for P, i.e.,

P=7ZA&® - BZLA,.



6. Construction of split reductive groups: the existence theorem 375

PROOF. Let A € V, and let

(/\ ;)

,i=1,...,n.
(al’al)

Then
(A=Y midi.a)=0

ifa € S. Since S is a basis for V, this implies that A — > 'm;A; = 0 and

(A, i)
A= Zmlk _Zz(a,,a,

Hence,
A,
re@Pzi — AL R
o, 0
and so P C €D ZA;. The reverse inclusion follows from the next lemma. O

LEMMA 6.2 Let R be a reduced root system, and let R" be the root system consisting of
the vectors o' = ( 5 fora € R. For any base S for R, the set S’ = {a' | @ € S} is a base
for R'.

PROOF. See|Serre|1987, V 9, Proposition 7. O
PROPOSITION 6.3 For each j,

_ (0,0 f)
e 215"5”2 (o i) b

PROOF. This follows from the calculation in the above proof. o

Thus, we have
P :@iZAi D0 =@iZOﬁ

and when we express the ¢; in terms of the A;, the coefficients are the entries of the Cartan
matrix. Replacing the A;’s and «;’s with different bases amounts to multiplying the transi-
tion (Cartan) matrix on the left and right by invertible matrices. A standard algorithm allows
us to obtain new bases for which the transition matrix is diagonal, and hence expresses P/Q
as a direct sum of cyclic groups. When one does this, one obtains the following table:

A, B, C, Dp(modd) D, (neven) E¢ E; Eg Fi Gy
Cir1 G G Cy CoxCy C3 G Cp G G

In the second row, C;, denotes a cyclic group of order m.
Also, by inverting the Cartan matrix one obtains an expression for the A;’s in terms of
the «;’s. Cf.Humphreys|[1972} p. 69.
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6b Brief review of diagonalizable groups

Recall from that we have a (contravariant) equivalence M +— D(M) from the cate-
gory of finitely generated abelian groups to the category of diagonalizable algebraic groups.
For example, D(Z/mZ) = jim and D(Z) = G,y,. A quasi-inverse is provided by

D X(D) ¥ Hom(D,Gp).
Moreover, these functors are exact. For example, an exact sequence
0D —-D-D"—>0
of diagonalizable groups corresponds to an exact sequence
0— X(D"y— X(D)— X(D')—0
of abelian groups. Under this correspondence,

X
D’ = Ker(D —>D”L>l_[ Gm)

XEX(D")
ie.,

_ mox
D' = ﬂXGX(D”) Ker(D = Gp). (182)

6¢c Construction of all almost-simple split semisimple groups

Recall that the indecomposable reduced root systems are classified by the Dynkin diagrams,
and that from the Dynkin diagram we can read off the Cartan matrix, and hence the group

P/O.

THEOREM 6.4 For each indecomposable reduced Dynkin diagram, there exists an alge-
braic group G, unique up to isomorphism, with the given diagram as its Dynkin diagram
and equipped with an isomorphism X(ZG) >~ P/Q.

For each diagram, one can simply write down the corresponding group. For example,
for A, it is SLy41 and for Cy it Sp,,,. For B, and D, one tries SOz5,41 and SO2, (as
defined in [I.9), but their centres are too small. In fact the centre of O, is £1, and so
SO3;,+1 has trivial centre and O, has centre of order 2. The group one needs is the
corresponding spin group (see [, §18). The exceptional groups can be found, for example,
in|Springer| 1998,

The difficult part in the above theorem is the uniqueness. Also, one needs to know that
the remaining groups with the same Dynkin diagram are quotients of the one given by the
theorem (which has the largest centre, and is said to be simply connected).

Here is how to obtain the group G(X) corresponding to a lattice X,

POX>OQ.

As noted earlier ((172)), p. [347), the centre of G(X) has character group X/Q, so, for
example, the group corresponding to P is the simply connected group G. The quotient of
G by

N = ﬂxeX/Q Ker(y: Z(G) = Gy)

has centre with character group X/ Q (cf. (182)), p.[376)), and is G(X).
It should be noted that, because of the existence of outer automorphisms, it may happen

that G(X) is isomorphic to G(X’) with X # X'.
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6d Split semisimple groups.

These are all obtained by taking a finite product of split simply connected semisimple
groups and dividing out by a subgroup of the centre (which is the product of the centres
of the factor groups).

6e Split reductive groups

Let G’ be a split semisimple group, D a diagonalizable group, and Z(G’) — D a homo-
morphism from Z(G’) to D. Define G to be the quotient

Z(G)—= G xD — G —1.
All split reductive groups arise in this fashion (1.4).
ASIDE 6.5 With only minor changes, the above description works over fields of nonzero character-

istic.

6f Exercise

EXERCISE 6-1 Assuming Theorem [6.4] show that the split reductive groups correspond
exactly to the reduced root data.

7 Construction of isogenies of split reductive groups: the
isogeny theorem
In this section we (shall) rewrite Steinberg 1999 for split reductive groups over arbitrary
fields.
Let (G, T) be a split reductive group, and let R C X(T') be the root system of (G, T).

For each @ € R, let Uy, be the corresponding root group. Recall that this means that U,
Gg and, for any isomorphism uy: G, — Uy,

toug(@)-t7 ! =ug(a(t)a), teT(k),ack.
DEFINITION 7.1 Anisogeny of root data is a homomorphism ¢: X’ — X such that

(a) both ¢ and ¢ are injective (equivalently, ¢ is injective with finite cokernel);

(b) there exists a bijection @ + «’ from R to R’ and positive integers ¢(«), each an
integral power of the characteristic exponent p of k, such that ¢(a) = g(a)a and
oY (V) =q(a)(a) forall « € R.

Let f:(G,T) — (G’,T’) be an isogeny of split reductive groups. This defines a homo-
morphism ¢: X" — X of character groups:
o(x) =y o fIT forall y € X'.
Moreover, for each a € R, f(Uy) = Uy for some o’ € R’.

PROPOSITION 7.2 Let f:(G,T) — (G’,T’) be an isogeny. Then the associated map
@: X' — X is an isogeny. Moreover, for eacha € R,

Sfug(a)) = u(x’(caaq(a))

for some g(«) as in (b), some ¢, € k™, and all a € k.
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Thus, an isogeny (G,T) — (G’,T’') defines an isogeny of root data. The isogeny of
root data does not determine f', because an inner automorphism of (G, T') defined by an
element of 7' (k) induces the identity map on the root datum of (G,T). However, as the
next lemma shows, this is the only indeterminacy.

LEMMA 7.3 If two isogenies (G,T) — (G’,T') induce the same map on the root data,
then they ditfer by an inner automorphism by an element of (T /Z) (k).

PROOF. Let f and g be such isogenies. Then they agree on 7 obviously. Let S be a base
for R. For each « € S, it follows from ¢(a’) = g (ot)ex that f(ug(a)) = ug (cqa?®), and
similarly for g with ¢y replaced by dy. As S is linearly independent, there exists at € T
such a(7)7@ = dycy! foralla € S. Let h = f oi, where i; is the inner automorphism of
G defined by ¢. Then g and & agree on every Uy, o € S, as well as on T, and hence also on
the Borel subgroup B that these groups generate. It follows that they agree on G because
the map xB — h(x)g(x)~':G/B — G’ must be constant (the variety G/ B is complete and
G’ is affine). As h(e)g(e)™! =1, we see that i(x) = g(x) for all x. o

THEOREM 7.4 (Isogeny theorem). Let (G,T) and (G',T") be split reductive algebraic
groups over a field k, and let ¢: X(T') — X(T') be an isogeny of their root data. Then there
exists an isogeny f:(G,T) — (G',T') inducing ¢.

THEOREM 7.5 Let (G,T) and (G',T’) be split reductive algebraic groups over a field k,
and let fr:T — T’ be an isogeny. Then fr extends to an isogeny f:G — G’ if and only
if X( fT) is an isogeny of root data.

THEOREM 7.6 (Isomorphism theorem). Let (G,T) and (G’,T') be split reductive alge-
braic groups over a field k. An isomorphism f:(G,T) — (G’,T') defines an isomorphism
of root data, and every isomorphism of root data arises from an isomorphism f, which is
uniquely determined up to an inner automorphism by an element of T (k).

Immediate consequence of the isogeny theorem. The key point is that an isogeny
f:G — G’ that induces the identity map on root data is an isomorphism. The first step
is that it is an isomorphism 7" — T'.

To be continued.

8 Representations of split reductive groups

Throughout this section, k is algebraically closed of characteristic zero (get rid of that).

NOTES This needs to be rewritten for split reductive groups over arbitrary fields.

8a The dominant weights of a root datum
Let (X, R, X", RY) be aroot datum. We make the following definitions:

o Q =ZR (root lattice) is the Z-submodule of X generated by the roots;
o Xo={xeX|(x,aV)=0foralla € R};
o V=R®z0 CR®zX;
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o P={AeV|(A,aV)eZforall a € R} (weight lattice).
Now choose a base S = {«1,...,a,} for R, so that:

¢ R=RTUR™ where Rt = {3 m;a; |m; >0}and R~ = {> mja; | m; <0};
o Q=Za1®--DZan CV =Ra; & ®Ray,
o P =7ZA&- - -®ZA, where 1; is defined by ()Li,oz}/) = §ij.

The A; are called the fundamental (dominant) weights. Define
o Pt={leP|{X,aV)>0allac R}

An element A of X is dominant if (L,a") > 0 for all @ € RT. Such a A can be written
uniquely
A=) mikit Ao (183)

withm; e N, Y m;A; € X, and A9 € X).

8b The dominant weights of a semisimple root datum

Recall (5.17)) that to give a semisimple root datum amounts to giving a root system (V, R)
and a lattice X,
P>XDO.

Choose an inner product (, ) on V for which the s, act as orthogonal transformations
1.9). Then, for A € V
A’?
(V) =2t
()

Since in this case Xy = 0, the above definitions become:

o Q=ZR=Za1® - ®Zay,
o P={le V|2% €Zalla € R} =71 @ @ ZA, where A; is defined by

(i) _ o
2o =

o Pt ={1=Y,m;A; | mj >0} = {dominant weights}.

8¢ The classification of representations

Let G be a reductive group. We choose a maximal torus 7" and a Borel subgroup B con-
taining 7 (hence, we get a root datum (X, R,X"Y,RY) and a base S for R). As every
representation of G is (uniquely) a sum of simple representations (IL, [6.14), we only need
to classify them.

THEOREM 8.1 Letr:G — GLw be a simple representation of G.

(a) There exists a unique one-dimensional subspace L of W stabilized by B.
(b) The L in (a) is a weight space for T', say, L = W), .

(¢) The A, in (b) is dominant.

(d) IfA is also a weight for T in W, then A = A, — ) _mjo; withm; € N.

PROOF. Omitted. o
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Note that the Lie-Kolchin theorem (1, implies that there does exist a one-dimensional
eigenspace for B — the content of (a) is that when W is simple (as a representation of G),
the space is unique. Since L is mapped into itself by B, it is also mapped into itself by
T, and so lies in a weight space. The content of (b) is that it is the whole weight space.
Because of (d), A, is called the highest weight of the simple representation r.

THEOREM 8.2 The map (W,r) — A, defines a bijection from the set of isomorphism
classes of simple representations of G onto the set of dominant weights in X = X™*(T).

PROOF. Omitted. o

8d Example:

Here the root datum is isomorphic to {Z,{+2},Z,{+1}}. Hence Q = 27Z, P = Z, and
Pt = N. Therefore, there is (up to isomorphism) exactly one simple representation for
each m > 0. There is a natural action of SL; (k) on the ring k[ X, Y], namely, let

a b\ (X\ ([aX+DY
c dJ\Y) \ex+dy)
FAX.Y)= f(aX +bY,cX +dY).
This is a right action, i.e., (f4)8 = f48. We turn it into a left action by setting Af =

—1 . .
f47". Then one can show that the representation of SL, on the homogeneous polynomials
of degree m is simple, and every simple representation is isomorphic to exactly one of these.

In other words,

8¢ Example: GL,

As usual, let T be D, and let B be the standard Borel subgroup. The characters of T" are
X1,---, Xn- Note that GL; has representations

det >t

for each m, and that any representation can be tensored with this one. Thus, given any
simple representation of GL,we can shift its weights by any integer multiple of y; +--- +

Xn-
In this case, the simple roots are y1 — x2,..., Xn—1 — Xn, and the root datum is isomor-

phic to
(Z" fei—ej|i # jLZ" fei—ej|i # j}).
In this notation the simple roots are e; —e»,...,e,—1 — €5, and the fundamental dominant
weights are A1,...,A,_1with
Ai=ei+-4e—nti(er+-+en).
The dominant weights are the expressions
aiA+-t+an—1An—1+m(er+---+ey), ai €N, meZ.
These are the expressions
miey + -+ +mpep
where the m;are integers with my > --- > m,. The simple representation with highest

weight eyis the representation of GL, on k" (obviously), and the simple representation with
highest weight ej + --- + e;is the representation on A’ (k™) (Springer| 1998, 4.6.2).
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8f Example: SL,

Let Tybe the diagonal in SL,,. Then X*(T1) = X*(T)/Z(x1+ -+ yn)with T =D, The
root datum for SL,is isomorphic to (Z" /Z(e1 +---+en).{ei —€; | i # j},...) where g;is
the image of e¢;in Z" /Z(e1 + --- + ey). It follows from the GL, case that the fundamental
dominant weights are Aq,...,A,_jwith

Ai =e1+-+ e

Again, the simple representation with highest weight ¢is the representation of SL,on k",
and the simple representation with highest weight €1 + --- 4 ¢;is the representation SL,on

A (k™)(ibid.).
ASIDE 8.3 Including pinnings (épinglages) — cf. mo17594.






CHAPTER V I

The Structure of Reductive Groups:
general case

In this chapter, we study algebraic groups, especially nonsplit reductive groups, over arbi-
trary fields.

The algebraic groups over a field k that become isomorphic to a fixed algebraic group
over k¥ are classified by a certain cohomology group. In the first section, we explain this,
and discuss what is known about the cohomology groups.

Over an algebraically closed field, the classical semisimple groups are exactly those
described by central simple algebras equipped with an involution. In the second section, we
show that this remains true over an arbitrary field, roughly speaking, because the two are
classified by the same cohomology groups [this has been moved to Chapter I]

Root data are also important in the nonsplit case. For a reductive group G, one chooses a
torus that is maximal among those that are split, and defines the root datum much as before
— in this case it is not necessarily reduced. This is an important approach to describing
arbitrary algebraic groups, but clearly it yields no information about anisotropic groups
(those with no split torus). We explain this approach in the third section.

In this version of the chapter, we usually assume that k& has characteristic zero. Let A
be a set with an equivalence relation ~, and let B be a second set. When there exists a
canonical surjection A — B whose fibres are the equivalence classes, I say that B classifies
the ~-classes of elements of A.

NOTES This chapter is in disarray, since I moved part of it to Chapter I. Probably it should be split
into two parts, one on the cohomology of algebraic groups and one on the Tits-Selbach classification
of reductive groups and their representations over arbitrary fields.

(1 The cohomology of algebraic groups; applications|. . . . . . .. ... .... 384
[2 Classical groups and algebras with involution| . . . . .. .. ... ... ... 394
[3 Relative root systems and the anisotropic kernel|. . . . . . . ... ... ... 395

EXAMPLE: THE FORMS OF GL,.

What are the groups G over a field k such that Gga ~ GL,? For any a,b € k*, define
H(a,b) to be the algebra over k with basis 1,7, j,ij as a k-vector space, and with the

383
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multiplication given by
i?=a, j*=b, ij=—ji.

This is a k-algebra with centre k, and it is either a division algebra or is isomorphic to
M5 (k). For example, H(1,1) &~ M5,(k) and H(—1,—1) is the usual quaternion algebra
when k = R.

Each algebra H(a,b) defines an algebraic group G = G(a,b) with G(R) = (R ®
H(a,b))*. These are exactly the algebraic groups over k becoming isomorphic to GL;
over k¥, and

G(a,b) ~ G(da',b") < H(a,b) ~ H(d',b").

Over R, every H is isomorphic to H(—1,—1) or M»(R), and so there are exactly two
forms of GL, over R.
Over Q, the isomorphism classes of H’s are classified by the subsets of

{2,3,5,7,11,13,..., 00}

having a finite even number of elements. The proof of this uses the quadratic reciprocity
law in number theory. In particular, there are infinitely many forms of GL, over Q, exactly
one of which, GL,, is split.

1 The cohomology of algebraic groups; applications

Throughout this section, vector spaces and modules are finitely generated. In the early part
of the section, there is no need to assume & to be of characteristic zero.
la Non-commutative cohomology.

Let I' be a group. A I'-set is a set A with an action
(o,a)>oa:I'xA— A

of I" on A (so (0t)a = o(ra) and la = a). If, in addition, A has the structure of a group
and the action of I respects this structure (i.e., 0(aa’) = oa-oa’), then we say A is a
I'-group.

DEFINITION OF H%(T, A)

Fora I'-set A, H%(I", A) is defined to be the set AT of elements left fixed by the operation
of " on A, ie.,

HYIr' A)=AT ={ac A|loa=aforallo e I'}.

If Ais a I'-group, then HO(I", A) is a group.

DEFINITION OF H(I", A)

Let A be a I'-group. A mapping o + aq of I" into A is said to be a 1-cocycle of I" in A if
the relation aq; = aq -0a; holds for all o, € I'. Two 1-cocycles (aq) and (bs) are said
to be equivalent if there exists a ¢ € A such that

beg =c teag-oc¢ foralloerl.
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This is an equivalence relation on the set of 1-cocycles of I" in A, and H1(I", A) is defined
to be the set of equivalence classes of 1-cocycles.

In general H!(I", A) is not a group unless A is commutative, but it has a distinguished
element, namely, the class of 1-cocycles of the form o b=l.0b, b € A (the principal
1-cocycles).

COMPATIBLE HOMOMORPHISMS

Let A be a second group. Let A be I'-group and B an A-group. Two homomorphisms
f:A— Band g: A — I' are said to be compatible if

f(g(o)a) =0(f(a)) forallo € A, a € A.

If (as) is a 1-cocycle for A, then
bs = f(ag((r))

is a I-cocycle of A in B, and this defines a mapping H (I, A) — H'(A, B), which is a
homomorphism if A and B are commutative.
When A = I', ahomomorphism f: A — B compatible with the identity map, i.e., such
that
f(oa)=0a(f(a)) forallo e I',a € A,

f is said to be a I"-homomorphism (or be I -equivariant).

EXACT SEQUENCES
PROPOSITION 1.1 An exact sequence
l-A —->A4-4">1
of I'-groups gives rise to an exact sequence of cohomology sets
1> H'(IA)— H(I''A) - H(I'A"y > H'\(I'A') > H(I' A) - H'(I", A")

Exactness at H9(I", A”) means that the fibres of the map H°(I", A”) — H(I'", A’) are
the orbits of the group H°(I', A) acting on H°(I", A”). Exactness at H(I", A’) means that
fibre of H'(I", A’y — H(I', A) over the distinguished element is the image of H(I", A”).

We now define the boundary map H%(I", A”) — H'(I", A’). For simplicity, regard A’
as a subgroup of 4 with quotient A”. Let a” be an element of A” fixed by I", and choose
an a in A mapping to it. Because a” is fixed by I, a~! -0a is an element of A’, which we
denote a,. The map o — a, is a 1-cocycle whose class in H!(I", A’) is independent of the
choice of a. To define the remaining maps and check the exactness is now very easy.

PROFINITE GROUPS

For simplicity, we now assume k to be perfect. Let I' = Gal(k¥/k) where k? is the
algebraic closure of k. For any subfield K of k% finite over k, we let

I'k ={cel'|ox=xforall x € K}.
We consider only I"-groups A for which

A=|JaTx (184)
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and we define H 1 (I, A) to be the set of equivalence classes of 1-cocycles that factor through
Gal(K / k) for some subfield K of k¥ finite and Galois over k. With these definitions,'

HY(I A) = l_ingl(Gal(K/k),AFK) (185)

where K runs through the subfields K of k? finite and Galois over k.

THE GALOIS COHOMOLOGY OF ALGEBRAIC GROUPS

When G is an algebraic group over k,
Gk = JG(K), G(K)=GK")¥,

and so G (k™) satisfies (119). We write H' (k,G) for H! (Gal(k®/ k), G(k™)).
An exact sequence
1-G —-G—->G"—1

of algebraic groups over k gives rise to an exact sequence
1 — Gl(kal) — G(kal) N G//(kal) -1

@ 2, and hence (see (120)), p. [219) to an exact sequence

1 - G'(k) > G(k) —> G"(k)y > H (k,G') > H' (k,G) — H'(k,G").

1b Classifying bilinear forms

Let K be a finite Galois extension of k with Galois group I". Let V be a finite-dimensional
K-vector space. A semi-linear action of I" on V is a homomorphism I" — Auty_j;, (V)
such that

o(cv)=o0c-ov alloel,ceK,veV.

If V= K ® Vo, then there is a unique semi-linear action of I" on V for which V1 =
1 ® Vo, namely,
o(c®v)=0c®v ocel,ceK,veV.

PROPOSITION 1.2 The functor V +— K ®; V from k-vector spaces to K-vector spaces
endowed with a semi-linear action of I is an equivalence of categories with quasi-inverse
VsV

LEMMA 1.3 Let S be the standard My, (k)-module, namely, k" with M, (k) acting by left
multiplication. The functor V + S ®;. V is an equivalence from the category of k-vector
spaces to that of left My, (k)-modules.

'Equivalently, we consider only I"-groups A for which the pairing I" x A — A is continuous relative to the
Krull topology on I" and the discrete topology on A, and we require that the 1-cocycles be continuous for the
same topologies.

2In fact,

1 - G'(R) = G(R) = G"(R)

is exact for all k-algebras; only the surjectivity G(R) — G” (R) requires that R be an algebraically closed field

0.5,



1. The cohomology of algebraic groups; applications 387

PROOF. Note that S is a simple M}, (k)-module. Since
Endy jin (k) = k = Endpy,, (k) (k")

and every k-vector space is isomorphic to a direct sum of copies of k, the functor is obvi-
ously fully faithful (i.e., gives isomorphisms on Homs). It remains to show that every left
M, (k)-module is a direct sum of copies of S. This is certainly true of M, (k) itself:

M, (k) = @15@ L(i) (as aleft My (k)-module)

where L (i) is the set of matrices whose entries are zero except for those in the i th column.
Since every left M, (k)-module M is a quotient of a direct sum of copies of M, (k), this
shows that such an M is a sum of copies of S. Let I be the set of submodules of M
isomorphic to S, and let J be a subset that is maximal among those for which )y, N is

direct. Then M = P yc; N (see . o

LEMMA 1.4 For any k-vector space W, the functor V +— W &y V is an equivalence from
the category of k -vector spaces to that of left Endy (W')-modules.

PROOF. When we choose a basis for W, this becomes the previous lemma. O

PROOF OF PROPOSITION

Let K[I'] be the K-vector space with basis the elements of I", made into a k-algebra by the
rule
(ac)-(bt)=a-ob-ot, a,beK, o,tel.

Then K[I'] acts k-linearly on K by
> aso)c =) aqoc,
and the resulting homomorphism
K[I'l - Endg (K)

is injective by Dedekind’s theorem on the independence of characters (FT [5.14). Since
K|[I'] and End;(K) have the same dimension as k-vector spaces, the map is an isomor-
phism. Therefore, the corollary shows that

Vi K® k | %4
is an equivalence from the category of k-vector spaces to that of left modules over Endy (K) =~
K|[I']. This is the statement of the proposition.
BILINEAR FORMS AND COHOMOLOGY SETS

Let V be a k-vector space equipped with a bilinear form ¢g: V x V — k, and write (Vy, ¢o) x
for the pair over K obtained from (Vj, ¢) by extension of scalars. Let A(K) denote the set
of automorphisms of (Vy, o) x>

3In more detail: (Vo,¢0)x = (Vok.Pox) where Vox = K ®p Vo and ¢gk is the unique K-bilinear map
Vok X Vog — K extending ¢¢; an element of A(K) is a K-linear isomorphism «: Vyg — Vg such that
$ok (ex,ay) = gok (x,y) forall x,y € Vog.
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THEOREM 1.5 The cohomology set H'(I", A(K)) classifies the isomorphism classes of
pairs (V,¢) over k that become isomorphic to (Vy, o) over K.

PROOF. Suppose (V,¢)x =~ (Vo,®0) K, and choose an isomorphism

f:(Vo.90)k — (V.¢)k.
Let
ag = f"loof.
Then

ag-oar = (f"'oaf)o(of toorf)
=dor,

and so ay(f) is a 1-cocycle. Moreover, any other isomorphism f’: (Vo,d0)x — (V.9)k
differs from f by a g € A(K), and

ac(fog)=g '-as(f)-0g.

Therefore, the cohomology class of as( f) depends only on (V,¢). It is easy to see that,
in fact, it depends only on the isomorphism class of (V,¢), and that two pairs (V,¢) and
(V’,¢’) giving rise to the same class are isomorphic. It remains to show that every coho-
mology class arises from a pair (V,¢). Let (as)gser be a 1-cocycle, and use it to define a

. def
new action of I" on Vg = K @ V:
°x =ags-0x, o€l, xeVkg.
Then
9(cv)=0c-°v,forocel,ce K,veV,

and

T(*v) =%a;tv) =ag-0az-otv =%v,

and so this is a semilinear action. Therefore,

Vl(g{erKV’x:x}

is a subspace of Vi such that K ®; V1 >~ Vi (by[1.2). Because ¢k arises from a pairing
over k,

¢ok(ox,0y) =0¢(x,y), allx,yeVk.
Therefore (because a, € A(K)),

ok (°x,7y) = pok (0x,0y) = ook (x,y).

If x,y € V1, then ¢pox (°x,%y) = pox (x,y), and so ¢ox (x,y) = 6¢ox (x,y). By Galois
theory, this implies that ¢ox (x,y) € k, and so ¢gx induces a k-bilinear pairing on V;. o
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APPLICATIONS

Again let K be a finite Galois extension of k with Galois group I".

PROPOSITION 1.6 Foralln, H'(I',GL,(K)) = 1.

PROOF. Apply Theoremwith Vo = k™ and ¢y the zero form. It shows that H ' (I, GL, (K))
classifies the isomorphism classes of k-vector spaces V' such that K ®; V' & K". But such
k-vector spaces have dimension 7, and therefore are isomorphic. O

PROPOSITION 1.7 Foralln, H'(I',SL,(K)) = 1
PROOF. Because the determinant map det: GL,,(K) — K is surjective,

| — SL,(K) — GLy (K) <5 K% — 1

is an exact sequence of I'-groups. It gives rise to an exact sequence

GL (k) ~% kX — H(I',SL,) — H'(I',GLy)

from which the statement follows. o

PROPOSITION 1.8 Let ¢p9 be a nondegenerate alternating bilinear form on Vy, and let Sp
be the associated symplectic group*. Then H'(I",Sp(K)) = 1.

PROOF. According to Theorem H(I',Sp(K)) classifies isomorphism classes of pairs
(V,¢) over k that become isomorphic to (Vp,¢o) over K. But this condition implies that
¢ is a nondegenerate alternating form and that dim V' = dim V. All such pairs (V, ¢) are
isomorphic. O

REMARK 1.9 Let ¢p9 be a nondegenerate bilinear symmetric form on Vp, and let O be
the associated orthogonal group. Then H1(I',O(K)) classifies the isomorphism classes of
quadratic spaces over k that become isomorphic to (V,¢) over K. This can be a very large
set.

1c Classifying the forms of an algebraic group

Again let K be a finite Galois extension of & with Galois group I". Let G be an algebraic
group over k, and let A(K) be the group of automorphisms «: Gg — Gg. Then I” acts on
A(K) in a natural way:

ca=coaoo L

THEOREM 1.10 The cohomology set H'(I', A(K)) classifies the isomorphism classes of
algebraic groups G over k that become isomorphic to Gy over K.

#So Sp(R) = {a € Endpujin(R®; V) | ¢ (ax,ay) = ¢(x, )}
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PROOF. Let G be such an algebraic group over k, choose an isomorphism

f:Gox — Gk,

and write
ag = f ! oo f.
As in the proof of Theorem|[I.5] (a4)ger is a 1-cocycle, and the map

G > class of (ag)ger in HY(I', A(K))

is well-defined and its fibres are the isomorphism classes.

In proving that the map is surjective, it is useful to identify A(K) with the auto-
morphism group of the Hopf algebra O(Gog) = K ®x O(Gyp). Let Ag = O(Gp) and
A = K ®j Ag. As in the proof of Theorem (1.5 we use a 1-cocycle (dg)ger to twist
the action of I" on A; specifically, we define

°a=as00a, o€l, acA.

Propositionin fact holds for infinite dimensional vector spaces V with the same> proof,
and so the k-subspace
B={acA|%a=a}

of A has the property that
K®; B~ A.

It remains to show that the Hopf algebra structure on A induces a Hopf algebra structure on
B. Consider for example the comultiplication. The k-linear map

Ag:Ag = Ao ®p Ao
has a unique extension to a K-linear map
AA—> AQk A.
This map commutes with the action of I':
A(oca) =0(A(a)), alloel,acA.
Because a4 is a Hopf algebra homomorphism,
A(aga) =agA(a), alloel,acA.

Therefore,
A(Ca)=%(A(a)), alloel,acA.

In particular, we see that A maps B into (4 ® x A)T', which equals B ®; B because the
functor in preserves tensor products. Similarly, all the maps defining the Hopf algebra
structure on A preserve B, and therefore define a Hopf algebra structure on B. Finally, one
checks that the 1-cocycle attached to B and the given isomorphism K ®; B — A is (ag).0

SExcept that the last step of the proof of 1} requires Zorn’s lemma.
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EXAMPLES
1.11 Foralln, H'(k,GL,) = 1.

This follows from and (120).
1.12 Foralln, H'(k,SL,) = 1.

1.13 Foralln, H'(k,Sp,) = 1.

1.14 Let (V,¢) be a nondegenerate quadratic space over k. Then H!(k, O(¢)) classifies
the isomorphism classes of quadratic spaces over k with the same dimension as V.

PROOF. Over k%, all nondegenerate quadratic spaces of the same dimension are isomor-
phic. O

1.15 Let G be an algebraic group of k. The isomorphism classes of algebraic groups
over k that become isomorphic to Gya over k% are classified by H'(I", A(k™)). Here
I' = Gal(k"/ k) and A(k™) is the automorphism group of Gya.

(WEIL) RESTRICTION OF THE BASE FIELD

Let K be a finite extension of k, and let G be an algebraic group over K. Recall (I,
that the functor
R~ G«(R) =G(K ®k R)

from k-algebras to groups is an algebraic group over k.

PROPOSITION 1.16 There is a canonical isomorphism
G = Hp:K—)kﬂl pG. (186)

PROOF. The product is over the k-homomorphisms K — k¥, and by pG, we mean the
algebraic group over k¥ such that, for a k¥-algebra R,

(PG)(R) = G(R)
— on the right, R is regarded as a k-algebra via p. For a k¥-algebra R,
K ®i R~ K ® (k¥ Qga R)
~ (K Qi k) @pa R

= (HP:K—>kal kal) ®pa R.

Thus, Gypa >~ [ ] p:K—ka PG as functors, and therefore as algebraic groups. O

COROLLARY 1.17 We have

Hi(k,Gy)~ H'(K,G) fori = 0,1 (and for alli > 0 when G is commutative).

PROOF. Combine with Shapiro’s lemma (CFT II, 1.11 for the commutative case;
need to add for the noncommutative case). o

From now on, we assume that k has characteristic zero.
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1d Reductive algebraic groups

According to (I,[17.21), to give a reductive algebraic group G over a field k amounts to giv-
ing a simply connected semisimple group G over k, an algebraic group Z of multiplicative
type over k, and homomorphism Z(G) — Z. Because k has characteristic zero, Z(G) is
of multiplicative type (even étale), and according to|Il, Theorem the functor sending
an algebraic group of multiplicative type to its character group is an equivalence to the cat-
egory finitely generated Z-modules with a continuous action of I". If we suppose this last
category to be known, then describing the reductive algebraic groups amounts to describing
the simply connected semisimple groups together with their centres.

TORI

A torus T over a field k is said to be quasi-trivial if it is a product of tori of the form
(Gm)k’/x with k' a finite field extension of k. If T = [ [, (G )x; / k- then

H%hnqpﬂﬁﬂmmﬁﬂga

If T is quasi-trivial over k, then Ty is quasi-trivial over k’ for any field k" D k, and so
H(k',Ty/) = 0. There is a converse to this.

THEOREM 1.18 A torus T over k has the property that H'(k', T}/) = 0 for all fields k’
containing k if and only if T is a direct factor of a quasi-trivial torus.

PROOF. Omiitted for the present. o

SIMPLY CONNECTED SEMISIMPLE GROUPS

Let G be a simply connected semisimple group over k. Then, according to II, Theorem
[5.31] Gga decomposes into a product

Gkal = G1 Xeee X Gr (187)

of its almost-simple subgroups G;. The set {G,...,G,} contains all the almost-simple
subgroups of G. When we apply o € I" to (I87), it becomes

Gra =0Gpa =0Gy x---x0Gy

with {cdG1,...,0G,} apermutation of {G1,...,G,}. Let Hy,..., Hy denote the products of
G; in the different orbits of I". Then 0 H; = H;, and so H; is defined over k (I,[4.13), and

G = Hy x---x Hy

is a decomposition of G into a product of its almost-simple subgroups.
Now suppose that G itself is almost-simple, so that I" acts transitively on the G; in

(T87). Let
A={OGF|0G1=G1}.

Then G is defined over the subfield K = k84 of k2! (1, 4.13).

PROPOSITION 1.19 We have G ~ G4 (and so H'(k,G) ~ H'(K,G1)).
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PROOF. We can rewrite as

Gkal = l_[O'leal

where o runs over a set of cosets for A in I". On comparing this with (I86), we see that
there is a canonical isomorphism

Gkal ~ (Gl*)kd] .

In particular, it commutes with the action of I", and so is defined over k (I, 4.13). o

The group G; over K is geometrically almost-simple, i.c., it is almost-simple and re-
mains almost-simple over k. The discussion in this section shows that it suffices to con-
sider such groups.

ABSOLUTELY ALMOST-SIMPLE SIMPLY-CONNECTED SEMISIMPLE GROUPS
For an algebraic group G, let G = G/ Z(G).

PROPOSITION 1.20 For any simply connected semisimple group G, there is an exact se-
quence
1 — G* (k") — A(k™) — Sym(D) — 1.

When G is split, I' acts trivially on Sym(D), and the sequence is split, i.e., there is a sub-
group of A(k™) on which I' acts trivially and which maps isomorphically onto Sym(D).

PROOF. An element of G* (k%) = G(k™)/Z (k™) acts on Gga by an inner automorphism.
Here D is the Dynkin diagram of G, and Sym(D) is the group of symmetries of it. This
description of the outer automorphisms of G, at least in the split case, is part of the full
statement of the isomorphism theorem (V] [2.22). O

The indecomposable Dynkin diagrams don’t have many symmetries: for D4 the sym-
metry group is S3 (symmetric group on 3 letters), for A,, D,, and E¢ it has order 2, and
otherwise it is trivial.

THEOREM 1.21 For each indecomposable Dynkin diagram D, there is a split, geomet-
rically almost-simple, simply connected algebraic group G over k such that Ga has the
type of the Dynkin diagram; moreover G is unique up to isomorphism. The isomorphism
classes of algebraic groups over k becoming isomorphic to G over k% are classified by
H(k, A(k™)) where A(k™) is the automorphism group of Gya. For the split group G,
X*(Z(G)) = P(D)/Q(D) with I' acting trivially. For the form G’ of G defined by a
1-cocycle (ag), Z(G') = Z(G) but with I" acting through a .

For example, for A, the split group is SL,. This has centre p,, which is the group of
multiplicative type corresponding to Z/nZ with the trivial action of I". Let Go and G be
groups over k, and let f: Gora — Gpa be an isomorphism over k. Write ay, = f oo f.
Then f defines an isomorphism

f:Zo(k™ — Z(kY)
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on the points of their centres, and

flagox) =a(f(x)).

When we use f to identify Zo(k®) with Z(k¥), this says that I" acts on Z(k) by the
twisted action “x = as0x.

REMARK 1.22 Let Gg be the split simply connected group of type Xy, and let G be a form
of Gy. Let ¢ be its cohomology class. If ¢ € H!(k, G*), then G is called an inner form of
G. In general, ¢ will map to a nontrivial element of

H! (k, Sym(D)) = Homcontinuous(Fv Sym(D))
Let A be the kernel of this homomorphism, and let L be the corresponding extension field
of k. Let z = (I": A). Then we say G is of type X ,.

le The main theorems on the cohomology of groups

To complete the classification of algebraic groups, it remains to compute the cohomology
groups. This, of course, is an important problem. All I can do here is list some of the main
theorems.

1.23 Letk be finite. If G is connected, then H'(k,G) = 1.

1.24 Let k be a finite extension of the field of p-adic numbers Qp. If G is simply con-
nected and semisimple, then H'(k,G) = 1.

1.25 Letk = Q, and let G be a semisimple group over Q.
(a) If G is simply connected, then

HY(Q.G)~ H'(R,G).

(b) If G is an adjoint group (i.e., has trivial centre), or equals O(¢) for some nondegen-
erate quadratic space (V,¢), then

H'(Q,G) — 1‘[p=2,3 ]

9D geney

Hl (Qpa G)
o0
is injective.

Note that the last result implies that two quadratic spaces over Q are isomorphic if and
only if they become isomorphic over Q, for all p (including p = oo, for which we set
Qp =R). This is a very important, and deep result, in number theory.

Statement [I.25]extends in an obvious way to finite extensions of Q.

NOTES For more on the cohomology of algebraic groups, see Kneser||1969| or |Platonov and Rap-
inchuk|[1994.

2 Classical groups and algebras with involution

Moved to Chapter 1.
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3 Relative root systems and the anisotropic kernel.

The aim of this section is to explain Tits’s strategy for classifying nonsplit groups and their
representations. Here is a brief overview.

The isomorphism classes of split semisimple algebraic groups are classified over any
field. Given a semisimple algebraic group G over a field k, one knows that G splits over
the separable algebraic closure K of k, and so the problem is to determine the isomorphism
classes of semisimple algebraic groups over k corresponding to a given isomorphism class
over K. Tits (1966) sketches a program for doing this. Let 7y be a maximal split subtorus
of G, and let T be a maximal torus containing 7. The derived group of the centralizer
of Ty is called the anisotropic kernel of G — it is a semisimple algebraic group over k
whose split subtori are trivial. Let S be a simple set of roots for (Gg,Tk), and let So be
the subset vanishing on Ty. The Galois group of K/ k acts on S, and the triple consisting of
S, So, and this action is called the index of G. Tits sketches a proof (corrected in the MR
review of the article) that the isomorphism class of G is determined by the isomorphism
class of Gg, its anisotropic kernel, and its index. It remains therefore to determine for
each isomorphism class of semisimple algebraic groups over k (a) the possible indices, and
(b) for each possible index, the possible anisotropic kernels. Tits (ibid.) announces some
partial results on (a) and (b).

Problem (b) is related to the problem of determining the central division algebras over
a field, and so it is only plausible to expect a solution to it for fields k for which the Brauer
group is known.

Tits’s work was continued by his student Selbach. To quote the MR review of Selbach
1976, (slightly edited):

This booklet treats the classification of quasisimple algebraic groups over ar-
bitrary fields along the lines of [Tits|1966| Tits had shown that each such group
is described by three data: the index, the anisotropic kernel and the connect-
edness type. For his general results Tits had given or sketched proofs, but not
for the enumeration of possible indices, whereas the classification of possible
anisotropic kernels was not dealt with at all. The booklet under review starts
with an exposition with complete proofs of the necessary general theory. Some
proofs are simplified using results on representation theory over arbitrary fields
from another paper by Tits (Crelle 1971), and a different proof is given for the
main result, viz., that a simply connected group is determined by its index and
anisotropic kernel, because Tits’s original proof contained a mistake, as was in-
dicated in the review of that paper. Then it presents the detailed classifications
with proofs of all possible indices, and of the anisotropic kernels of exceptional
type. Questions of existence over special fields (finite, reals, p-adic, number)
are dealt with only in cases which fit easily in the context (Veldkamp).

It is interesting to note that, while Tits’s article has been cited 123 times, Selbach’s has been
cited on twice (MR April 2010).
Here is the MR review of Tits 1971 (my translation).

The author proposes to study the linear irreducible k-representations of a re-
ductive algebraic group G over k, where k is any field. When k is algebraically
closed, Chevalley showed that the irreducible representations of G are charac-
terized, as in the classical case, by the weights of G (characters of a maximal
torus of G), every weight “dominant relative to a Borel subgroup” being the
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dominant weight of an irreducible representation. The author first shows that
this correspondence continues when G is split over k. In the general case, it is
necessary to start with a maximal k-torus 7 in G and a Borel subgroup B of
G containing 7" in order to define the weights (forming a group A) and the set
A4 of dominant weights with respect to B; let Ao denote the subgroup of A
generated by the roots and by the weights zero on the intersection 7N D(G);
the quotient C* = A/ Ay is the dual of the centre of G. The Galois group I”
of the separable closure k5P of k over k acts canonically on A, Ay, and Ay;
the central result attaches to each dominant weight A € A invariant under
I' an absolutely irreducible representation of G in a linear group GL(m, D),
well determined up to equivalence, D being a skew field with centre k, well
determined up to isomorphism; moreover, if A € Ag or if G is quasi-split (in
which case the Borel group B is defined over k), then D = k. One attaches
in this way to any weight A of A invariant by I" an element [D] = ag x (1)
of the Brauer group Br(k), and one shows that o ; extends to a homomor-
phism of the group AT of weights invariant under I" into Br(k); moreover,
the kernel of a x contains Ao, and so there is a fundamental homomorphism
BG.i:C*T' — Br(k) (where C*I' is the subgroup of C* formed of the ele-
ments invariant under I"). The author shows that this homomorphism can be
defined cohomologically, in relation with the “Brauer-Witt invariant” of the
group G. A good part of the memoir is concerned with the study of the ho-
momorphism f, notably the relations between B¢ x and Bg, k, where Gy is
a reductive subgroup of G, as well as with majorizing the degree of B(c) in
Br(k) when G is an almost-simple group and c is the class of the minuscule
dominant weight. He examines also a certain number of examples, notably the
groups of type E¢ and E'7. Finally, he shows how starting from a knowledge of
o, one obtains all the irreducible k-representations of G: start with a dominant
weight A € A4, and denote by k) the field of invariants of the stabilizer of A in
I';thenif ag g, (A) = [D,], one obtains a k  -representation G — GL(m, D),
whence one deduces canonically a k-representation k 0., which is irreducible;
every irreducible k-representation is equivalent to a k P, and k P, and k P,/ are
k-equivalent if and only if A and A’ are transformed into one another by an
element of I" (Dieudonné).
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Arithmetic Subgroups

We study discrete subgroups of real Lie groups that are large in the sense that the quotient
has finite volume. For example, if the Lie group equals G(R)™ for some algebraic group
G over Q, then G(Z) is such a subgroup of G(R)™. The discrete subgroups of a real Lie
group G arising in (roughly) this way from algebraic groups over Q are called the arithmetic
subgroups of G (see for a precise definition). Except when G is SL»(IR) or a similarly
special group, no one was able to construct a discrete subgroup of finite covolume in a
semisimple Lie group except by this method. Eventually, Selberg conjectured that there are
no others, and this was proved by Margulis.

NOTES At present this chapter is only an introductory survey. My intention is to expand it by
adding, for example, a more detailed discussion of Margulis’s theorem and its applications, and by
adding more proofs (but not, of course, all proofs).
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1 Commensurable groups

Subgroups H; and H; of a group are said to be commensurable if H; N H, is of finite
index in both Hy and H>.

397
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The subgroups aZ and bZ of R are commensurable if and only if a /b € Q. For example,
67 and 47 are commensurable because they intersect in 127, but 17 and ~/27Z are not
commensurable because they intersect in {0}. More generally, lattices L and L’ in a real
vector space V' are commensurable if and only if they generate the same Q-subspace of V.

Commensurability is an equivalence relation: obviously, it is reflexive and symmetric,
and if H;, H» and H», H3 are commensurable, one shows easily that H; N H, N Hj is of
finite index in Hq, H,, and H3.

2 Definitions and examples

Let G be an algebraic group over Q. Let p: G — GLy be a faithful representation of G on
a finite-dimensional vector space V', and let L be a lattice in V. Define

GQL=1{gcGQ|p(ge)L =L}

An arithmetic subgroup of G(Q) is any subgroup commensurable with G(Q)z. For an
integer N > 1, the principal congruence subgroup of level N is

I'(N)L ={g€G(@Q)r |gactsaslon L/NL}.
In other words, I"(N ) is the kernel of
G(Q)r — Aut(L/NL).

In particular, it is normal and of finite index in G(Q)z. A congruence subgroup of G(Q)
is any subgroup containing some I"(N) as a subgroup of finite index, so congruence sub-
groups are arithmetic subgroups.

EXAMPLE 2.1 Let G = GL,, with its standard representation on Q" and its standard lattice
L =7". Then G(Q), consists of the A € GL,,(Q) such that

A7 =7".

On applying A to ey, ..., ey, we see that this implies that 4 has entries in Z. Since A717Z" =
7", the same is true of A~1. Therefore, G(Q) is

GLn(Z) = {A € My(Z) | det(A) = £1}.

The arithmetic subgroups of GL, (Q) are those commensurable with GL,, (Z).
By definition,

I'(N)={AeGL,(Z)|A=1 mod N}
= {(a;j) € GL,(Z) | N divides (a;; —dij)}.

which is the kernel of
GL,(Z) - GL,(Z/N 7).

EXAMPLE 2.2 Consider a triple (G, p, L) as in the definition of arithmetic subgroups. The
choice of a basis for L identifies G with a subgroup of GL,, and L with Z". Then

G(QrL =GQNGCLy(Z)
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and I'L, (N) for G is
G@Q)NI(N).

For a subgroup G of GL,,, one often writes G(Z) for G(Q) NGL,(Z). By abuse of notation,
given a triple (G, p, L), one often writes G(Z) for G(Q)f..

EXAMPLE 2.3 The group

Spon(Z) = {A € GLan(Z) | A" (7 ) A= (_75)}

is an arithmetic subgroup of Sp,,(Q), and all arithmetic subgroups are commensurable
with it.

EXAMPLE 2.4 Let (V,®) be aroot system and X alattice P O X D Q. Chevalley showed
that (V,®, X) defines an “algebraic group G over Z” which over (Q becomes the split
semisimple algebraic group associated with (V, ®, X), and G(Z) is a canonical arithmetic

group in G(Q).

EXAMPLE 2.5 Arithmetic groups may be finite. For example G,,(Z) = {£1}, and the
arithmetic subgroups of G(Q) will be finite if G(R) is compact (because arithmetic sub-
groups are discrete in G(R) — see later).

EXAMPLE 2.6 (for number theorists). Let K be a finite extension of (@, and let U be the
group of units in K. For the torus T = (G;) g /¢ over Q, T(Z) = U.

3 Questions

The definitions suggest a number of questions and problems.

¢ Show the sets of arithmetic and congruence subgroups of G(Q) do not depend on the
choice of p and L.

¢ Examine the properties of arithmetic subgroups, both intrinsically and as subgroups
of G(R).

o Give applications of arithmetic subgroups.

When are all arithmetic subgroups congruence?

¢ Are there other characterizations of arithmetic subgroups?

<

4 Independence of p and L.

LEMMA 4.1 Let G be a subgroup of GL,,. For any representation p: G — GLy and lattice
L C V, there exists a congruence subgroup of G(Q) leaving L stable (i.e., for some m > 1,
p(g)L = L forall g € I'(m)).

PROOF. When we choose a basis for L, p becomes a homomorphism of algebraic groups
G — GL,’. The entries of the matrix p(g) are polynomials in the entries of the matrix
g = (gij), i.e., there exist polynomials Py g € Q]..., Xj;,...] such that

0(ap = Pop(....&gij,--.)



400 VIIL. Arithmetic Subgroups

After a minor change of variables, this equation becomes

0(8)ap —0a,p = Qu,p(....81 —8ij,...)

with Q4 g € Q[..., Xj;,...] and § the Kronecker delta. Because p(/) = I, the Q, g have
zero constant term. Let m be a common denominator for the coefficients of the Q, g, so
that

mQa,ﬂ S Z[...,X,‘j,...].
If g = I mod m, then
Qa.p(....8ij —6ij....) € L.
Therefore, p(g)Z" C Z"', and, as g ! also lies in I"(m), p(g)Z" = 7" . o

PROPOSITION 4.2 For any faithful representations G — GLy and G — GLy~ of G and
lattices L and L' in V and V', G(Q)1, and G(Q) - are commensurable.

PROOF. According to the lemma, there exists a subgroup I" of finite index in G(Q)z, such
that I" C G(Q) /. Therefore,

(GQL:6@QLNGQL) = (GQL:T) < oo
Similarly,

(GQr:6@QLNGQL) < oo. o

Thus, the notion of arithmetic subgroup is independent of the choice of a faithful rep-
resentation and a lattice. The same is true for congruence subgroups, because the proof of
(4.1) shows that, for any N, there exists an m such that I'(Nm) C I',(N).

5 Behaviour with respect to homomorphisms

PROPOSITION 5.1 Let I' be an arithmetic subgroup of G(Q), and let p:G — GLy be a
representation of G. Every lattice L of V' is contained in a lattice stable under I".

PROOF. According to (4.1), there exists a subgroup I'” leaving L stable. Let

L'=> p(g)L
where g runs over a set of coset representatives for I'” in I". The sum is finite, and so L’ is
again a lattice in V, and it is obviously stable under I". 0

PROPOSITION 5.2 Let ¢:G — G’ be a homomorphism of algebraic groups over Q. For
any arithmetic subgroup I' of G(Q), ¢(I") is contained in an arithmetic subgroup of G'(Q).

PROOF. Let p:G' — GLy be a faithful representation of G’, and let L be a lattice in V.
According to (5.1)), there exists a lattice L’ D L stable under (po¢)(I"), and so G'(Q)z D
o(I). o

REMARK 5.3 If 9:G — G’ is a quotient map and I” is an arithmetic subgroup of G(Q),
then one can show that ¢(I") is of finite index in an arithmetic subgroup of G’(Q) (Borel
19694, 8.9, 8.11). Therefore, arithmetic subgroups of G(Q) map to arithmetic subgroups of
G'(Q). (Because ¢(G(Q)) typically has infinite index in G’(Q), this is far from obvious.)
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6 Adelic description of congruence subgroups

In this subsection, which can be skipped, I assume the reader is familiar with adeles. The
ring of finite adeles is the restricted topological product

Ay =1]@¢Zy

where £ runs over the finite primes of Q. Thus, A f is the subring of[ [ Q; consisting of the
(ag) such that ay € Zjy for almost all £, and it is endowed with the topology for which []Z;
is open and has the product topology.
Let V' = Spm A be an affine variety over Q. The set of points of V' with coordinates in
a Q-algebra R is
V(R) = Homg(A4, R).

When we write
A=Q[X1,....Xm]/a=Q[x1,...,Xm],

the map P — (P (x1),..., P(xy)) identifies V(R) with
{(ay,....am) € R™| f(ai,....am) =0, V[ ea}.
Let Z[x1,...,Xm] be the Z-subalgebra of A generated by the x;, and let
V(Zg) = Homz(Z[x1,...,Xm].Zg) = V(Qg) N Z}' (inside Q}").

This set depends on the choice of the generators x; for 4, butif A = Q[y1,..., y,], then the
y;i’s can be expressed as polynomials in the x; with coefficients in Q, and vice versa. For
some d € Z, the coefficients of these polynomials lie in Z[%], and so

ZI3x1s e xm] = ZI 1, el (inside A),
It follows that for £ t d, the y;’s give the same set V' (Zy) as the x;’s. Therefore,
V(A ) =T1(V(Qe): V(Ze))

is independent of the choice of generators for A.
For an algebraic group G over QQ, we define

G(Ar) =TI(G(Qe):G(Ze))
similarly. Now it is a topological group.! For example,
Gm(Ay) = [1QZY) = A%

PROPOSITION 6.1 For any compact open subgroup K of G(A y), KN G(Q) is a congru-
ence subgroup of G(Q), and every congruence subgroup arises in this way.>

IThe choice of generators determines a group structure on G(Z) for almost all £, etc..

2To define a basic compact open subgroup K of G(A £), one has to impose a congruence condition at
each of a finite set of primes. Then I” = G(Q) N K is obtained from G(Z) by imposing the same congruence
conditions. One can think of I as being the congruence subgroup defined by the “congruence condition” K.
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PROOF. Fix an embedding G — GL,,. From this we get a surjection Q[GL,] — Q[G] (of
(Q-algebras of regular functions), i.e., a surjection

Q[X11,.... Xnn, T1/(det(X;;)T — 1) - Q[G],
and hence Q[G] = Q[x11,...,Xnn,t]. For this presentation of Q[G],
G(Zg) = G(Q¢) NGLr(Zg)  (inside GL,(Qy)).

For an integer N > 0, let

G(Z if £{N
K(N)=T],Ke. where K;= (Z) if £
{g€G(Zy)| g=I,modl"} if ry=ordy(N).
Then K(N) is a compact open subgroup of G(A r), and
K(N)NG(Q) =T'(N).

It follows that the compact open subgroups of G(A y) containing K(N) intersect G(Q)
exactly in the congruence subgroups of G(Q) containing I"(N). Since every compact open
subgroup of G (A ¢) contains K(N) for some N, this completes the proof. 0

7 Applications to manifolds

Clearly 7" is a discrete subset of IR{”Z, i.e., every point of 7"* has an open neighbourhood
(for the real topology) containing no other point of 7. Therefore, GL,,(Z) is discrete in
GL, (R), and it follows that every arithmetic subgroup I" of a group G is discrete in G(R).

Let G be an algebraic group over Q. Then G(R) is a Lie group, and for every compact
subgroup K of G(R), M = G(R)/K is a smooth manifold (Lee[2003} 9.22).

THEOREM 7.1 For any discrete torsion-free subgroup I' of G(R), I" acts freely on M, and
I'\M is a smooth manifold.

PROOF. Standard; see for example [Lee|[2003), Chapter 9, or [Milne|2005] 3.1. O

Arithmetic subgroups are an important source of discrete groups acting freely on man-
ifolds. To see this, we need to know that there exist many torsion-free arithmetic groups.

8 Torsion-free arithmetic groups

Note that SL,(Z) is not torsion-free. For example, the following elements have finite order:

2 2 3

-1 0y (10 0 -1y (-1 0} (0 -1

o -1/ \o 1)\t of \o ) \1 1)
THEOREM 8.1 Every arithmetic group contains a torsion-free subgroup of finite index.

For this, it suffices to prove the following statement.
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LEMMA 8.2 For any prime p > 3, the subgroup I'(p) of GL, (Z) is torsion-free.

PROOF. If not, it will contain an element of order a prime £, and so we will have an equation
(I+p" )t =1

with m > 1 and A a matrix in M, (Z) not divisible by p (i.e., not of the form pB with B
in M, (Z)). Since I and A commute, we can expand this using the binomial theorem, and

obtain an equation
L Y4 o
m _ mi 4i
Ip™A = Zi=2<i)p A",

In the case that £ # p, the exact power of p dividing the left hand side is p™, but p?™
divides the right hand side, and so we have a contradiction.

In the case that £ = p, the exact power of p dividing the left hand side is p”*1, but,
for2 <i < p, p>™t1 (f)p”” because p|(§’), and p?™+1| p™P because p > 3. Again we
have a contradiction. u]

9 A fundamental domain for SL,
Let H be the complex upper half plane

H=1{zeC|3(z) >0l

b
For (a ) € GLy(R),
c d

N (az +b) _ (ad —bc)3(2)

= . 188
cz+d lcz +d|? (188)

Therefore, SL,(IR) acts on H by holomorphic maps

a b az+b
SL,> (R , = .
2(R)xH =3 (c d)z cz+d

The action is transitive, because

and the subgroup fixing 7 is

(compact circle group). Thus
H >~ (SL(R)/0)-i

as a smooth manifold.
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PROPOSITION 9.1 Let D be the subset
{zeC|-1/2=0R()=1/2, [z[=z1}

of H. Then
H =SL(Z)- D,

and if two points of D lie in the same orbit then neither is in the interior of D.

PROOF. Let zg € H. One checks that, for any constant A, there are only finitely many
¢,d € Z such that |czg + d| < A, and so (see (188))) we can choose a y € SL,(Z) such that

11
I(y(zo)) is maximal. As T = 01 acts on H as z > z + 1, there exists an m such that
—1/2=R(T"y(z0)) = 1/2.

0 -1
I claim that T™y(zo) € D. To see this, note that S = (1 0) acts by S(z) = —1/z, and

SO 32)
3(S(2) = 28
zI?
If T™y(z9) ¢ D, then [Ty (z9)| < 1, and I(S(T"y(20))) > I(T™y(zp)), contradicting
the definition of y.
The proof of the second part of the statement is omitted. O

10 Application to quadratric forms
Consider a binary quadratic form:
q(x,y) =ax?>+bxy+cy? a,b,ceR.

Assume g is positive definite, so that its discriminant A = b —4ac < 0.

There are many questions one can ask about such forms. For example, for which in-
tegers N is there a solution to g(x,y) = N with x,y € Z? For this, and other questions,
the answer depends only on the equivalence class of g, where two forms are said to be
equivalent if each can be obtained from the other by an integer change of variables. More
precisely, g and ¢’ are equivalent if there is a matrix A € SL,(Z) taking ¢ into ¢’ by the
change of variables,

In other words, the forms
q(x,y)=(x,y)-Q-<)yc), q’(x,y):(x,y).Q/.C)

are equivalent if Q = A’- Q' A for A € SL»(Z).
Every positive-definite binary quadratic form can be written uniquely

q(x,y) =a(x —wy)(x—wy),a € Ryg, w € H.
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If we let Q denote the set of such forms, there are commuting actions of R~ and SL,(Z)
on it, and

Q/R>0 ~H

as SLy(Z)-sets. We say that g is reduced if
1
o] >1and — = < R(w) < 27 0r

|w| =1and — = <N(w) <0.

N0 = N =

More explicitly, g(x, y) = ax?> + bxy + cy? is reduced if and only if either

—a<b<a<cor

0<b<a=c.

Theorem [9.1] implies:

Every positive-definite binary quadratic form is equivalent to a reduced form;
two reduced forms are equivalent if and only if they are equal.

We say that a quadratic form is integral if it has integral coefficients, or, equivalently, if
X, y€eZ = q(x,y) € Z.

There are only finitely many equivalence classes of integral definite binary
quadratic forms with a given discriminant.

Each equivalence class contains exactly one reduced form ax? 4 bxy + cy2. Since
4a®> <dac=b>-A<da’-A

we see that there are only finitely many values of a for a fixed A. Since |b| < a, the same
is true of b, and for each pair (a,b) there is at most one integer ¢ such that b2 —4ac = A.

This is a variant of the statement that the class number of a quadratic imaginary field is
finite, and goes back to Gauss (cf. my notes on Algebraic Number Theory, 4.28, or, in more
detail, |Borevich and Shafarevich|[1966| especially Chapter 3, §6).

11 “Large” discrete subgroups

Let I" be a subgroup of a locally compact group G. A discrete subgroup 1" of a locally
compact group G is said to cocompact (or uniform) if G/I" is compact. This is a way
of saying that I" is “large” relative to G. There is another weaker notion of this. On
each locally compact group G, there exists a left-invariant Borel measure, unique up to a
constant, called the left-invariant Haar measure®, which induces a measure 1 on I'\G. If
w(I"'\G) < oo, then one says that I" has finite covolume, or that I" is a lattice in G. If K is
a compact subgroup of G, the measure on G defines a left-invariant measure on G/ K, and
w(I'\G) < oo if and only if the measure u(1"\G/K) < oo.

EXAMPLE 11.1 Let G = R”, and let I = Zey + -+ + Ze;. Then I'\G(R) is compact if
and only if i =n. If i <n, I' does not have finite covolume. (The left-invariant measure
on R” is just the usual Lebesgue measure.)

3For real Lie groups, the proof of the existence is much more elementary than in the general case (cf.
Boothby|1975| VI 3.5).
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EXAMPLE 11.2 Consider, SL,(Z) C SL,(R). The left-invariant measure on SL,(R)/O ~

His d;gy, and

dxdy dxdy > 12 gxdy © dy
> — > E ) = —2 < 0oQ.
\x Y D VY J3/20-1/2 Y J3/2)
Therefore, SL,(Z) has finite covolume in SL, (R) (but it is not cocompact — SL; (Z)\H is
not compact).

EXAMPLE 11.3 Consider G = G,,. The left-invariant measure* on R* is de’ and

/ dx /°° dx
— = — =o00.
RX/{*1} X o X

Therefore, G(Z) is not of finite covolume in G(R).

EXERCISE

EXERCISE 11-1 Show that, if a subgroup I" of a locally compact group is discrete (resp. is
cocompact, resp. has finite covolume), then so also is every subgroup commensurable with
r.

12 Reduction theory

In this section, I can only summarize the main definitions and results from Borel||[1969al
Any positive-definite real quadratic form in n variables can be written uniquely as

Q()_C)) =t1(x1+uxy+--- ‘|‘Mlnxn)2 +o 1 (Xp—1 + un—lnxn)z + tnx;%

=5
where
Jti 0 0 1 uiz -+ U X1
;= 0 Vi ) 0 0 1 u?n x:2 . (159)
0 0 | V) \0 0 | 1 x,,

Let Q, be the space of positive-definite quadratic forms in n variables,
Q={0eM;[R)| Q" =0, X'QX>0}
Then GL, (R) acts on Q, by

B.,Q + B"QB:GL,(R) x Q, — Q.

4Because 99X — dx. alternatively,

ax ~ x
2 dx atx Jx
75 = oty togten) = [

31 at) X
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The action is transitive, and the subgroup fixing the form 7 is®> O, (R) = {4 | A’A = I}, and
so we can read off from a set of representatives for the cosets of O, (R) in GL,(R).
We find that

GL,(R)~A-N-K

where

¢ K is the compact group Oy (R),
o A =T(R)" for T the split maximal torus in GL,, of diagonal matrices,® and
¢ N is the group U, (R).

Since A normalizes N, we can rewrite this as
GL,(R)~N-A-K.
For any compact neighbourhood @ of 1 in N and real number ¢ > 0, let
Srw=w-4:-K
where
Ar={a€Alaj; <tajy1,i+1. 1=<i=<n-—1}. (190)
Any set of this form is called a Siegel set.
THEOREM 12.1 Let I" be an arithmetic subgroup in G(Q) = GL, (Q). Then
(a) for some Siegel set S, there exists a finite subset C of G(Q) such that
GR)=T-C-6G;
(b) forany g € G(Q) and Siegel set G, the set of y € I" such that
g6 NyG #£4d

is finite.

Thus, the Siegel sets are approximate fundamental domains for I” acting on G(R).

Now consider an arbitrary reductive group G over Q. Since we are not assuming G to
be split, it may not have a split maximal torus, but, nevertheless, we can choose a torus 7'
that is maximal among those that are split. From (G, T'), we get a root system as before (not
necessarily reduced). Choose a base S for the root system. Then there is a decomposition
(depending on the choice of 7" and §)

GR)=N-A-K

where K is again a maximal compact subgroup and A = T'(R)™ (Borel|1969a, 11.4, 11.9).
The definition of the Siegel sets is the same except now’

Ar={aecA|la(a) <tforalla € S}. (191)
Then Theorem @ continues to hold in this more general situation (Borel/|{1969a, 13.1,
15.4).

35S0 we are reverting to using Oy, for the orthogonal group of the form x% +-t x,zl.
5The * denotes the identity component of 7' (R) for the real topology. Thus, for example,

Gm@®"HT =R = R>0)".

TRecall that, with the standard choices, X1—X2s---» Xn—1— Xn is a base for the roots of T in GL, so this
definition agrees with that in (T90).
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EXAMPLE 12.2 The images of the Siegel sets for SL, in H are the sets

Sru={zeM|[J() =1, [R()|=u}
THEOREM 12.3 IfHomy (G, Gy,) = 0, then every Siegel set has finite measure.
PROOF. [Borel|[19694, 12.5. o

THEOREM 12.4 Let G be a reductive group over Q, and let I" be an arithmetic subgroup
of G(Q).

(a) The volume of I'\G(R) is finite if and only if G has no nontrivial character over Q
(for example, if G is semisimple).

(b) The quotient I'\ G (R) is compact if and only if it G has no nontrivial character over
Q and G(Q) has no unipotent element # 1.

PROOF. (a) The necessity of the conditions follows from (I1.3). The sufficiency follows

from (12.2) and (12.3).
(b) See Borel|[19694, 8.4. o

EXAMPLE 12.5 Let B be a quaternion algebra, and let G be the associated group of ele-
ments of B of norm 1 (we recall the definitions in[15.2]below).

(a) If B =~ M>(R), then G = SL,(R), and G(Z)\G(R) has finite volume, but is not
compact ((§ 1) is a unipotent in G(Q)).

(b) If B is a division algebra, but R ®g B ~ M>(R), then G(Z)\G(R) is compact (if
g € G(Q) is unipotent, then g — 1 € B is nilpotent, and hence zero because B is a
division algebra).

(c) If R®q B is a division algebra, then G(R) is compact (and G(Z) is finite).

EXAMPLE 12.6 Let G = SO(g) for some nondegenerate quadratic form ¢ over Q. Then
G(Z)\G(R) is compact if and only if ¢ doesn’t represent zero in Q, i.e., ¢(X) = 0 does not
have a nontrivial solution in Q" (Borel|1969a, 8.6).

13 Presentations

In this section, I assume some familiarity with free groups and presentations (see, for ex-
ample, GT, Chapter 2).

PROPOSITION 13.1 The group SLy(Z)/{=£1} is generated by S = (9 1) and T = (} }).

PROOF. Let I'’ be the subgroup of SL,(Z)/{%1} generated by S and T'. The argument in
the proof of shows that I'- D = H.

Let zg lie in the interior of D, and let y € I". Then there exist y’ € I'’ and z € D such
that yzg = y’z. Now y'~lyzq lies in D and zg lies in the interior of D, and so y’ "1y = £/

(see[.1). o
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In fact SL,(Z)/{%1} has a presentation (S,T|S2,(ST)3). It is known that every
torsion-free subgroup I" of SL,(Z) is free on 1 + % generators (thus the subgroup
may be free on a larger number of generators than the group itself). For example, the com-
mutator subgroup of SL;(Z) has index 12, and is the free group on the generators (% %) and
(12)-

For a general algebraic group G over QQ, choose & and C as in (12.1), and let
D= Ugec g6 /K.
Then D is a closed subset of G(R)/K such that I'- D = G(R)/K and
lvel|yDND #0}

is finite. One shows, using the topological properties of D, that this last set generates I,
and that, moreover, I" has a finite presentation.

14 The congruence subgroup problem

Consider an algebraic subgroup G of GL,,. Is every arithmetic subgroup congruence? That
is, does every subgroup commensurable with G(Z) contain

def

I'(N) € Ker(G(Z) — G(Z/NZ))

for some N.

That SL»(Z) has noncongruence arithmetic subgroups was noted by Klein as early as
1880. For a proof that SL»(Z) has infinitely many subgroups of finite index that are not
congruence subgroups see|Sury|2003|, 3-4.1. The proof proceeds by showing that the groups
occurring as quotients of SL(7Z) by principal congruence subgroups are of a rather special
type, and then exploits the known structure of SL,(Z) as an abstract group (see above)
to construct many finite quotients not of his type. It is known that, in fact, congruence
subgroups are sparse among arithmetic groups: if N(m) denotes the number of congruence
subgroups of SL(Z) of index < m and N’(m) the number of arithmetic subgroups, then
N(m)/N'(m) — 0as m — oo.

However, SL; is unusual. For split simply connected almost-simple groups other than
SL,, for example, for SL,, (n > 3), Sp,,, (n > 2), all arithmetic subgroups are congruence.

In contrast to arithmetic subgroups, the image of a congruence subgroup under an
isogeny of algebraic groups need not be a congruence subgroup.

Let G be a semisimple group over Q. The arithmetic and congruence subgroups of
G (Q) define topologies on it, namely, the topologies for which the subgroups form a neigh-
bourhood base for 1. We denote the corresponding completions by G and G. Because
every congruence group is arithmetic, the identity map on G(Q) gives a surjective homo-
morphism G — G, whose kernel C (G) is called the congruence kernel. This kernel is
trivial if and only if all arithmetic subgroups are congruence. The modern congruence sub-
group problem is to compute C(G). For example, the group C(SL5) is infinite. There is a
precise conjecture predicting exactly when C(G) is finite, and what its structure is when it
is finite.
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Now let G be simply connected, and let G’ = G/N where N is a nontrivial subgroup
of Z(G). Consider the diagram:

1 —— C(G) G G 1
.
1 —— C(G) G’ G’ 1.

It is known that G = G(A #), and that the kernel of 7 is N(Q), which is finite. On
the other hand, the kernel of 7 is N(A r), which is infinite. Because Ker(7) # N(Q),
7:G(Q) - G'(Q) doesn’t map congruence subgroups to congruence subgroups, and be-
cause C(G’) contains a subgroup isomorphic to N(A )/ N(Q), G'(Q) contains a noncon-
gruence arithmetic subgroup.

It is known that C(G) is finite if and only if is contained in the centre of G/(\@) For
an geometrically almost-simple simply connected algebraic group G over QQ, the modern
congruence subgroup problem has largely been solved when C(G) is known to be central,
because then C(G) is the dual of the so-called metaplectic kernel which is known to be a
subgroup of the predicted group (except possibly for certain outer forms of SL,;) and equal
to it many cases (work of Gopal Prasad, Raghunathan, Rapinchuk, and others).

15 The theorem of Margulis

Already Poincaré wondered about the possibility of describing all discrete
subgroups of finite covolume in a Lie group G. The profusion of such sub-
groups in G = PSL;(R) makes one at first doubt of any such possibility. How-
ever, PSL, (R) was for a long time the only simple Lie group which was known
to contain non-arithmetic discrete subgroups of finite covolume, and further ex-
amples discovered in 1965 by Makarov and Vinberg involved only few other
Lie groups, thus adding credit to conjectures of Selberg and Pyatetski-Shapiro
to the effect that “for most semisimple Lie groups” discrete subgroups of finite
covolume are necessarily arithmetic. Margulis’s most spectacular achievement
has been the complete solution of that problem and, in particular, the proof of
the conjecture in question.

Titsl[1980

DEFINITION 15.1 Let H be a semisimple algebraic group over R. A subgroup I" of H(R)
is arithmetic if there exists an algebraic group G over Q, a surjective map Gg — H such
that the kernel of ¢(R): G(R) — H (R) is compact, and an arithmetic subgroup I’ of G(R)
such that ¢(I"’) is commensurable with I".

EXAMPLE 15.2 Let B be a quaternion algebra over a finite extension F of Q,

B=F+Fi+Fj+Fk

i?=a, j =b, ij=k=—ji.

The norm of an element w + xi 4+ yj +zk of R@q B is

(W4 xi +yj +zk)(w—xi —yj —zk) = w? —ax?—by? +abz?.
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Then B defines an almost-simple semisimple group G over QQ such that, for any (Q-algebra
R,
G(R) =1{b € R®q B |Nm(b) = 1}.

Assume that F' is totally real, i.e.,
FQpR~Rx---xR,
and that correspondingly,
BRgR~ M>(R)xH x---xH
where H is the usual quaternion algebra over R (corresponding to (a,b) = (—1,—1)). Then

G(R) ~ SL,(R) x H! x --- x H!
H' = {w+4xi+yj+zk e H|w>+x2+y2+22 =1}

Nonisomorphic B’s define different commensurability classes of arithmetic subgroups of
SL;(RR), and all such classes arise in this way.

Not every discrete subgroup in SLy(R) (or SL,(R)/{£1}) of finite covolume is arith-
metic. According to the Riemann mapping theorem, every compact Riemann surface of
genus g > 2 is the quotient of 7{ by a discrete subgroup of Aut(#) = SLy(R)/{x1} acting
freely on H. Since there are continuous families of such Riemann surfaces, this shows that
there are uncountably many discrete cocompact subgroups in SL, (R)/{%1} (therefore also
in SL, (R)), but there only countably many arithmetic subgroups.

The following amazing theorem of Margulis shows that SL; is exceptional in this re-
gard:

THEOREM 15.3 Let I' be a discrete subgroup of finite covolume in a noncompact almost-
simple real algebraic group H ; then I' is arithmetic unless H is isogenous to SO(1,n) or
SU(1,n).

PROOF. For the proof, see Margulis||1991| or |[Zimmer||1984, Chapter 6. For a discussion of
the theorem, see Witte Morris| 2008, §5B. o

Here

SO(1,n) correspond to x% et x2 —x,f_H

SU(1,n) corresponds to 2121 + -+ ZnZn — Zn+1Zn-+1-

Note that, because SL, (R) is isogenous to SO(1,2), the theorem doesn’t apply to it.

16 Shimura varieties

Let Uy = {z € C| zZ = 1}. Recall that for a group G, G* = G/Z(G) and that G is said to
be adjoint if G = G¥ (i.e., if Z(G) = 1).

THEOREM 16.1 Let G be a semisimple adjoint group over R, and let u:U; — G(R) be a
homomorphism such that

(a) only the characters z~1.1,z occur in the representation of Uy on Lie(G)c;
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(b) the subgroup
Kc ={g € G(C) | g=inn(u(-1))(@)}
of G(C) is compact; and
(c) u(—1) does not project to 1 in any simple factor of G.
Then,
K =KcNGR)"T

is a maximal compact subgroup of G(R)™, and there is a unique structure of a complex
manifold on X = G(R)™ /K such that G(R)™ acts by holomorphic maps and u(z) acts on
the tangent space at p = 1K as multiplication by z. (Here G(R)™" denotes the identity for
the real topology.)

PROOF. SeeHelgason|1978| VIII; see also Milne|2005, 1.21. o

The complex manifolds arising in this way are the hermitian symmetric domains. They
are not the complex points of any algebraic variety, but certain quotients are.

THEOREM 16.2 Let G be a simply connected semisimple algebraic group over Q having
no simple factor H with H (R) compact. Let u: Uy — G*(R) be a homomorphism satisfy-
ing (a) and (b) of , and let X = G*(R)" /K with its structure as a complex manifold.
For each torsion-free arithmetic subgroup I" of G(Q), I'\X has a unique structure of an
algebraic variety compatible with its complex structure.

PROOF. This is the theorem of Baily and Borel, strengthened by a theorem of Borel. See
Milne/2005 3.12, for a discussion of the theorem. o

EXAMPLE 16.3 Let G = SL;. For z € C, choose a square root a +i b, and map z to (_“b 2)
in SL>(R)/{=£1}. For example, u(—1) = (% ), and

Ke=1{( %) eSLa(©) | |aP + b = 1},

which is compact. Moreover,

def

K = KeNSLy(R) = {(_42) e SLy(R) [a® + b = 1}.
Therefore G(R)/ K ~ H.

THEOREM 16.4 Let G, u, and X be as in (16.2). If I" is a congruence subgroup, then
I'\ X has a canonical model over a specific finite extension Q of Q.

PROOF. For a discussion of the theorem, see Milne| 2005, §§12-14. O

The varieties arising in this way are called connected Shimura varieties. They are very
interesting. For example, let IH(N) be the congruence subgroup of SL,(Q) consisting of

b
matrices the a 4 in SL>(Z) with ¢ divisible by N. Then Qr,v) = Q, and so the
c

algebraic curve I'o(/N)\H has a canonical model Yo (N ) over Q. It is known that, for every
elliptic curve E over Q, there exists a nonconstant map Yo(N) — E for some N, and that
from this Fermat’s last theorem follows.
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