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Notations

We use the standard (Bourbaki) notations: N = {0, 1,2, ...}, Z = ring of integers, R =
field of real numbers, C = field of complex numbers, IF,, = Z/ pZ = field of p elements, p
a prime number. Given an equivalence relation, [*] denotes the equivalence class containing
*. A family of elements of a set A indexed by a second set I, denoted (a;); ey, is a function
i—a;:l > A

A field k is said to be separably closed if it has no finite separable extensions of degree
> 1. We use k*°P and k?! to denote separable and algebraic closures of k respectively.

All rings will be commutative with 1, and homomorphisms of rings are required to map

1to 1. For aring A, A* is the group of units in A:
A* = {a € A | there exists a b € A such that ab = 1}.
We use Gothic (fraktur) letters for ideals:
abcmmungpgqgA B MNP Q
a b ¢c mnpgqg A B C M N P Q

o
<]
-

X =Y X isdefined to be Y, or equals Y by definition;

X CY X isasubsetof Y (not necessarily proper, i.e., X may equal Y);

X ~Y XandY areisomorphic;

X ~Y X andY are canonically isomorphic (or there is a given or unique isomorphism).
Prerequisites

The reader is assumed to be familiar with the basic objects of algebra, namely, rings, mod-
ules, fields, and so on, and with transcendental extensions of fields (FT, Section 8).
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Introduction

There is almost nothing left to discover in
geometry.
Descartes, March 26, 1619

Just as the starting point of linear algebra is the study of the solutions of systems of
linear equations,

n
Zainj:bi, i=1,...,m, (D)
j=1

the starting point for algebraic geometry is the study of the solutions of systems of polyno-
mial equations,

(X1 X)) =0, i=1,....m, fi €k[X1,...,Xn].

Note immediately one difference between linear equations and polynomial equations: the-
orems for linear equations don’t depend on which field k you are working over,' but those
for polynomial equations depend on whether or not & is algebraically closed and (to a lesser
extent) whether k has characteristic zero.

A better description of algebraic geometry is that it is the study of polynomial functions
and the spaces on which they are defined (algebraic varieties), just as topology is the study
of continuous functions and the spaces on which they are defined (topological spaces),
differential topology the study of infinitely differentiable functions and the spaces on which
they are defined (differentiable manifolds), and so on:

algebraic geometry | regular (polynomial) functions algebraic varieties
topology continuous functions topological spaces
differential topology | differentiable functions differentiable manifolds
complex analysis analytic (power series) functions | complex manifolds.

The approach adopted in this course makes plain the similarities between these different
areas of mathematics. Of course, the polynomial functions form a much less rich class than
the others, but by restricting our study to polynomials we are able to do calculus over any

field: we simply define
d . .
i d aix' =Y iai X'

For example, suppose that the system (1)) has coefficients a;j;j € k and that K is a field containing k. Then
has a solution in k" if and only if it has a solution in K", and the dimension of the space of solutions is the
same for both fields. (Exercise!)




2 INTRODUCTION

Moreover, calculations (on a computer) with polynomials are easier than with more general
functions.

Consider a nonzero differentiable function f(x, y,z). In calculus, we learn that the
equation

fx.y.2)=C @)
defines a surface S in R3, and that the tangent plane to S at a point P = (a,b,c) has
equation?
0 0 0
(—f) (x—a)+(l) (y—b)—i—(—f) (z—c)=0. 3)
dx P 8y P 0z P

The inverse function theorem says that a differentiable map a: S — S’ of surfaces is a local
isomorphism at a point P € § if it maps the tangent plane at P isomorphically onto the
tangent plane at P’ = «(P).

Consider a nonzero polynomial f(x, y, z) with coefficients in a field k. In this course,
we shall learn that the equation defines a surface in k3, and we shall use the equation
to define the tangent space at a point P on the surface. However, and this is one of the
essential differences between algebraic geometry and the other fields, the inverse function
theorem doesn’t hold in algebraic geometry. One other essential difference is that 1/X is
not the derivative of any rational function of X, and nor is X"~ in characteristic p # 0
— these functions can not be integrated in the ring of polynomial functions.

The first ten chapters of the notes form a basic course on algebraic geometry. In these
chapters we generally assume that the ground field is algebraically closed in order to be
able to concentrate on the geometry. The remaining chapters treat more advanced topics,
and are largely independent of one another except that chapter |1 1|should be read first.

The approach to algebraic geometry taken in these notes

In differential geometry it is important to define differentiable manifolds abstractly, i.e., not
as submanifolds of some Euclidean space. For example, it is difficult even to make sense
of a statement such as “the Gauss curvature of a surface is intrinsic to the surface but the
principal curvatures are not” without the abstract notion of a surface.

Until the mid 1940s, algebraic geometry was concerned only with algebraic subvarieties
of affine or projective space over algebraically closed fields. Then, in order to give substance
to his proof of the congruence Riemann hypothesis for curves an abelian varieties, Weil
was forced to develop a theory of algebraic geometry for “abstract” algebraic varieties over
arbitrary fields,? but his “foundations™ are unsatisfactory in two major respects:

¢ Lacking a topology, his method of patching together affine varieties to form abstract
varieties is clumsy.

o His definition of a variety over a base field k is not intrinsic; specifically, he fixes
some large “universal” algebraically closed field §2 and defines an algebraic variety
over k to be an algebraic variety over §2 with a k-structure.

In the ensuing years, several attempts were made to resolve these difficulties. In 1955,
Serre resolved the first by borrowing ideas from complex analysis and defining an algebraic

2Think of S as a level surface for the function f, and note that the equation is that of a plane through
(a, b, c¢) perpendicular to the gradient vector (V f)p of f at P.
3Weil, André. Foundations of algebraic geometry. American Mathematical Society, Providence, R.1. 1946.



variety over an algebraically closed field to be a topological space with a sheaf of functions
that is locally affine.* Then, in the late 1950s Grothendieck resolved all such difficulties by
introducing his theory of schemes.

In these notes, we follow Grothendieck except that, by working only over a base field,
we are able to simplify his language by considering only the closed points in the underlying
topological spaces. In this way, we hope to provide a bridge between the intuition given by
differential geometry and the abstractions of scheme theory.

4Serre, Jean-Pierre. Faisceaux algébriques cohérents. Ann. of Math. (2) 61, (1955). 197-278.



Chapter 1

Preliminaries

In this chapter, we review some definitions and basic results in commutative algebra and
category theory, and we derive some algorithms for working in polynomial rings.

Rings and algebras

Let A be aring. A subring of A is a subset that contains 14 and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together with a
homomorphismip: A — B. A homomorphism of A-algebras B — C is a homomorphism
of rings ¢: B — C such that ¢(ip(a)) = ic(a) forall a € A.

Elements x1, ..., x, of an A-algebra B are said to generate it if every element of B can
be expressed as a polynomial in the x; with coefficients inip(A), i.e., if the homomorphism
of A-algebras A[Xy,...,Xn] — B acting as i4 on A and sending X; to x; is surjective.
We then write B = (ipA)[x1,...,Xn].

A ring homomorphism A — B is said to be of finite-type, and B is a finitely generated
A-algebra if B is generated by a finite set of elements as an A-algebra.

A ring homomorphism A — B is finite, and B is a finite' A-algebra, if B is finitely
generated as an A-module.

Let k be a field, and let A be a k-algebra. When 14 # 0 in A, the map k — A is
injective, and we can identify k with its image, i.e., we can regard k as a subring of A.
When 14 = 0 in aring A, then A is the zero ring, i.e., A = {0}.

Let A[X] be the polynomial ring in the symbol X with coefficients in A. If A is an
integral domain, then deg( fg) = deg(f) + deg(g), and it follows that A[X] is also an
integral domain; moreover, A[X]* = A*.

Ideals

Let A be aring. An ideal a in A is a subset such that

(a) ais asubgroup of A regarded as a group under addition;
b)acareA=raca.

The ideal generated by a subset S of A is the intersection of all ideals a containing S
— it is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the

IThe term “module-finite” is also used.
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form > r;s; with r; € A, s; € S. The ideal generated by the empty set is the zero ideal
{0}. When S = {s1, 52, ...}, we shall write (s, 52, ...) for the ideal it generates.

Let a and b be ideals in A. The set{a + b | a € a, b € b} is an ideal, denoted by a + b.
The ideal generated by {ab | a € a, b € b} is denoted by ab. Clearly ab consists of all
finite sums ) _a;b; witha; € aand b; € b,and if a = (a1,...,a,) and b = (b1, ..., by),
then ab = (a1b1,...,a;ibj,...,amby). Note that

ab Canb. (@)

The kernel of a homomorphism A — B is an ideal in A. Conversely, for any ideal a
in A, the set of cosets of a in A forms a ring A/a, and ¢ — a + a is a homomorphism
¢: A — A/a whose kernel is a. The map b — ¢~ !(b) is a one-to-one correspondence
between the ideals of A/a and the ideals of A containing a.

An ideal p is prime if p # Aandab € p = a € por b € p. Thus p is prime if and only
if A/p is nonzero and has the property that

ab:O, b?éo:a:()v

i.e., A/p is an integral domain. Note that if p is prime and a1 ---a, € p, then at least one
of the a; € p.

An ideal m in A is maximal if it is maximal among the proper ideals of A. Thus m is
maximal if and only if 4/m is nonzero and has no proper nonzero ideals, and so is a field.
Note that

m maximal == m prime.

The ideals of A x B are all of the form a x b with a and b ideals in 4 and B. To see
this, note that if ¢ is an ideal in A x B and (a, b) € ¢, then (a¢,0) = (1,0)(a,b) € ¢ and
(0,b) = (0,1)(a, b) € c. Therefore, c = a x b with

a=1{a|@0)ec, b=1{bh]|(0b)ec.

THEOREM 1.1 (CHINESE REMAINDER THEOREM). Letay,...,a, be ideals in a ring A.
If a; is coprime to a; (i.e., a; + a; = A) wheneveri # j, then the map

A— Ajay x---x A/a, 5

is surjective, with kernel [Ja; = () a;.

PROOF. Suppose firstthatn = 2. As a; + a; = A, there exist a; € a; suchthata; +ap =
1. Then x = ajx2 4+ azx; maps to (x; moday, x2 mod ay), which shows that is
surjective.

For each i, there exist elements a; € a; and b; € a; such that

a; +b; =1,alli > 2.
The product [ [;5,(a; +b;) = 1, and lies in a + [[;5, a;, and so
ap + 1_[1,22 a; = A.
We can now apply the theorem in the case n = 2 to obtain an element y; of A4 such that

y1 =1moda;, y; =0mod l_[i>2 a;.
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These conditions imply

yi=1moda;, yir=0modaj,allj>1.
Similarly, there exist elements y», ..., y, such that

yi =1moda;, y; =0moda;forj #i.

The element x = ) x;y; maps to (x; moday,..., X, moda,), which shows that is
surjective.

It remains to prove that () a; = []a;. Obviously ()a; D []a;. First suppose that
n = 2,and let a; + ap = 1, as before. For ¢ € a; N a;, we have

c =aic+azc €ay-a

which proves that a; N a; = ajas. We complete the proof by induction. This allows us
to assume that [[;5, a; = [");5, a;. We showed above that a; and [];-, a; are relatively

prime, and so
a- ([ e =an(]_,

by the n = 2 case. Now ay -(]_[l-22 a;) = Hizl a; and a1 ﬁ(]_[l-22 a;) = aq ﬂ(ﬂizz a;) =
(i>1 % which completes the proof. 0

Noetherian rings

PROPOSITION 1.2. The following three conditions on a ring A are equivalent:

(a) every ideal in A is finitely generated;

(b) every ascending chain of ideals a1y C ay C --- eventually becomes constant, i.e., for
somem, Ay, = 41 = *°- .

(c) every nonempty set of ideals in A has a maximal element (i.e., an element not prop-
erly contained in any other ideal in the set).

PROOF. (a) = (b): If a; C ap C --- is an ascending chain, then a = | J a; is an ideal,
and hence has a finite set {a1, ..., a,} of generators. For some m, all the a; belong a, and
then

O = Qg1 =+ = 0.

(b) = (c): Let X' be a nonempty set of ideals in A. The (b) certainly implies that
every ascending chain of ideals in X has an upper bound in X', and so Zorn’s lemma shows
that X' has a maximal element.

(c) = (a): Let a be an ideal, and let X' be the set of finitely generated ideals
contained in a. Then X' is nonempty because it contains the zero ideal, and so it contains a

maximal element ¢ = (ay,...,a,). If ¢ # a, then there exists an element ¢ € a \ ¢, and
(a1,...,ar,a) will be a finitely generated ideal in a properly containing c. This contradicts
the definition of c. a]

A ring A is noetherian if it satisfies the equivalent conditions of the proposition. On
applying (c) to the set of all proper ideals containing a fixed proper ideal, we see that every
proper ideal in a noetherian ring is contained in a maximal ideal. This is, in fact, true for
any ring, but the proof for non-noetherian rings requires Zorn’s lemma (CA 2.1).

A ring A is said to be local if it has exactly one maximal ideal m. Because every nonunit
is contained in a maximal ideal, for a local ring A* = A ~ m.
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PROPOSITION 1.3 (NAKAYAMA’S LEMMA). Let A be a local ring with maximal ideal m,
and let M be a finitely generated A-module.

(a) If M = mM, then M = 0.
(b) If N is a submodule of M such that M = N +mM,then M = N.

PROOF. (a) Suppose that M # 0. Choose a minimal set of generators {e1,...,es},n > 1,
for M, and write
e1 =a1e1+---+aney, a; €m.

Then
(1—ay)ey =azes + -+ ayen
and, as (1 —ay) is aunit, ey, ..., e, generate M, contradicting the minimality of the set.
(b) The hypothesis implies that M/N = m(M/N), and so M/N = 0. o

Now let A be a local noetherian ring with maximal ideal m. When we regard m as an
A-module, the action of A on m/m? factors through k = A4/m.

COROLLARY 1.4. The elements ay,...,a, of m generate m as an ideal if and only if their
residues modulo m? generate m/m? as a vector space over k. In particular, the minimum
number of generators for the maximal ideal is equal to the dimension of the vector space

m/m?2.

PROOF. If ay,...,a, generate m, it is obvious that their residues generate m/m?. Con-
versely, suppose that their residues generate m/m?2, so thatm = (ay, ..., a,)+m?2. Because
A is noetherian, m is finitely generated, and Nakayama’s lemma, applied with M = m and
N = (ay,...,ay), shows thatm = (ay,...,an). o

DEFINITION 1.5. Let A be a noetherian ring.

(a) The height ht(p) of a prime ideal p in A is the greatest length d of a chain of distinct
prime ideals

P="Pa DPps—12+D Po- (0)
(b) The Krull dimension of A is sup{ht(p) | p C A, p prime}.

Thus, the Krull dimension of a ring A is the supremum of the lengths of chains of
prime ideals in A (the length of a chain is the number of gaps, so the length of (6] is d).
For example, a field has Krull dimension 0, and conversely an integral domain of Krull
dimension O is a field. The height of every nonzero prime ideal in a principal ideal domain
is 1, and so such a ring has Krull dimension 1 (provided it is not a field).

The height of any prime ideal in a noetherian ring is finite, but the Krull dimension of
the ring may be infinite because it may contain a sequence of prime ideals py, p2, p3,...
such that ht(p;) tends to infinity (see Nagata, Local Rings, 1962, Appendix A.1, p203).

DEFINITION 1.6. A local noetherian ring of Krull dimension d is said to be regular if its
maximal ideal can be generated by d elements.

It follows from Corollary [T.4] that a local noetherian ring is regular if and only if its
Krull dimension is equal to the dimension of the vector space m/m?.
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LEMMA 1.7. In a noetherian ring, every set of generators for an ideal contains a finite
generating subset.

PROOF. Let a be an ideal in a noetherian ring A4, and let S be a set of generators for a.
An ideal maximal in the set of ideals generated by finite subsets of S must contain every
element of S (otherwise it wouldn’t be maximal), and so equals a. o

THEOREM 1.8 (KRULL INTERSECTION THEOREM). In any noetherian local ring A with
maximal ideal m, (1,5, m" = {0}.

PROOF. Letay,...,a, generate m. Then m” consists of all finite sums

§ : i1 i
Ciyiy@y **a),  Ciji, € A.
i1 +etip=n

In other words, m” consists of the elements of A that equal g(ay,...,a,) for some homo-
geneous polynomial g(Xq,...,X;) € A[X1,..., X;] of degree n. Let S, be the set of
homogeneous polynomials f of degree m such that f(ay,....a,) € (),~; m", and let a
be the ideal in A[X1, ..., X,] generated by the set | J,, Sm. According to the lemma, there
exists a finite set { f1,..., fs} of elements of  J,, Sy, that generates a. Let d; = deg f;,
and let d = maxd;. Leth € (),.; m"; then b € mé*! andso b = f(ay,...,ay) for
some homogeneous polynomial f of degree d + 1. By definition, f € Sy C a, and so

f=a1fi+-+gsfs

for some g; € A[X1,..., Xn]. As f and the f; are homogeneous, we can omit from each
gi all terms not of degree deg f — deg f;, since these terms cancel out. Thus, we may
choose the g; to be homogeneous of degree deg f —deg f; = d + 1 —d; > 0. Then
gilay,...,ar) € m,and so

b= f(ay,...,ar) = Zi gilayr,....ay)- fi(ay,...,ar) em~ﬂ m”.

n>1

Thus, () m” = m - () m”, and Nakayama’s lemma implies that () m” = 0. o

Unique factorization

Let A be an integral domain. An element a of A is irreducible if it is not zero, not a unit,
and admits only trivial factorizations, i.e.,

a =bc = borcisaunit.
The element a is said to be prime if (a) is a prime ideal, i.e.,
albc = alboralc.

An integral domain A is called a unique factorization domain if every nonzero nonunit
in A can be written as a finite product of irreducible elements in exactly one way up to units
and the order of the factors. In such a ring, an irreducible element a can divide a product bc
only if it is an irreducible factor of b or ¢ (write bc = aq and express b, ¢, g as products of
irreducible elements).
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PROPOSITION 1.9. Let A be an integral domain, and let a be an element of A that is
neither zero nor a unit. If a is prime, then a is irreducible, and the converse holds when A
is a unique factorization domain.

PROOF. Assume that a is prime. If @ = bc then a divides bc, and so a divides b or c.
Suppose the first, and write b = aq. Now a = bc = aqc, which implies that gc = 1, and
that ¢ is a unit. Therefore a is irreducible.

For the converse, assume that a is irreducible. If a|bc, then (as we noted above) a|b or
alc, and so a is prime. o

PROPOSITION 1.10 (GAUSS’S LEMMA). Let A be a unique factorization domain with
field of fractions F. If f(X) € A[X] factors into the product of two nonconstant poly-
nomials in F[X], then it factors into the product of two nonconstant polynomials in A[X].

PROOF. Let f = gh in F[X]. For suitable ¢,d € A, the polynomials g = cg and
h1 = dh have coefficients in 4, and so we have a factorization
cdf = g1hy in A[X].

If an irreducible element p of A divides cd, then, looking modulo (p), we see that

0=gr-h1in (4/(p)) [X].

According to Proposition (p) is prime, and so (A/(p))[X] is an integral domain.
Therefore, p divides all the coefficients of at least one of the polynomials g1, i1, say g1, so
that g1 = pg» for some go € A[X]. Thus, we have a factorization

(cd/p)f = gah1in A[X].

Continuing in this fashion, we can remove all the irreducible factors of c¢d, and so obtain a
factorization of f in A[X]. o

Let A be a unique factorization domain. A nonzero polynomial
f=a+a1 X+ +anX"

in A[X] is said to be primitive if the coefficients a; have no common factor (other than
units). Every polynomial f in A[X] can be written f = c¢(f) - f1 with ¢(f) € A and
/1 primitive. The element c( f'), well-defined up to multiplication by a unit, is called the
content of f.

LEMMA 1.11. The product of two primitive polynomials is primitive.

PROOF. Let

f=a+a X+ - +anX"
g=bo+b1 X + -+ by X",

be primitive polynomials, and let p be an irreducible element of A. Let q;, be the first
coefficient of f not divisible by p and b, the first coefficient of g not divisible by p. Then
all the terms in ), J=io+Jjo a;b; are divisible by p, except a;,b j,, which is not divisible
by p. Therefore, p doesn’t divide the (ip + jo)th-coefficient of fg. We have shown that
no irreducible element of A divides all the coefficients of fg, which must therefore be
primitive. O
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LEMMA 1.12. For polynomials f,g € A[X],

c(fg) =c(f)-c(g)

hence every factor in A[X] of a primitive polynomial is primitive.

PROOF. Let f =c(f)- f1 and g = c(g) - g1 with f; and g primitive. Then
fg=c(f)-c(g) 1gr
with f1g1 primitive, and so c( fg) = c(f)c(g). o

PROPOSITION 1.13. If A is a unique factorization domain, then so also is A[X].

PROOF. From the factorization f = c(f') f1, we see that the irreducible elements of A[X]
are to be found among the constant polynomials and the primitive polynomials, but a con-
stant polynomial is irreducible if and only if a is an irreducible element of A (obvious)
and a primitive polynomial is irreducible if and only if it has no primitive factor of lower
degree (by[1.12). From this it is clear that every nonzero nonunit f in A[X] is a product of
irreducible elements.

From the factorization f = c(f) f1, we see that the irreducible elements of A[X] are
to be found among the constant polynomials and the primitive polynomials.

Let

f=ciemfi-fu=di-drgi-gs

be two factorizations of an element f of A[X] into irreducible elements with the ¢;, d;
constants and the f;, g; primitive polynomials. Then

c(f)=c1--cm =dy---dy (up to units in A),

and, on using that A4 is a unique factorization domain, we see that m = r and the c;’s differ
from the d;’s only by units and ordering. Hence,

fi1° fn = g1+ &s (up to units in A).

Gauss’s lemma shows that the f;, g; are irreducible polynomials in F[X] and, on using
that F[X] is a unique factorization domain, we see that n = s and that the f;’s differ from
the g;’s only by units in F and by their ordering. But if f; = % g; with a and b nonzero
elements of A4, then bf; = ag;. As f; and g; are primitive, this implies that b = a (up to
a unit in A), and hence that Z—’ is a unit in A. o

Polynomial rings
Let k be a field. A monomial in X1, ..., X, is an expression of the form
Xfl e Xgm, aj eN.

The total degree of the monomial is »_a;. We sometimes denote the monomial by X%,
a=(ay,...,ay) € N".
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The elements of the polynomial ring k[ X1, ..., X, ] are finite sums
anl...aanl e X3, Cqyea, €k, aj €N,

with the obvious notions of equality, addition, and multiplication. In particular, the mono-
mials form a basis for k[ X1, ..., X,] as a k-vector space.

The degree, deg( f), of a nonzero polynomial f is the largest total degree of a mono-
mial occurring in f* with nonzero coefficient. Since deg( fg) = deg(f)+deg(g), k[X1,..., Xn]
is an integral domain and k[X1, ..., X»]* = k*. Anelement f of k[X,..., X,] is irre-
ducible if it is nonconstant and f = gh = g or h is constant.

THEOREM 1.14. Thering k[X1, ..., Xy] is a unique factorization domain.

PROOF. Note that k[Xy,..., Xp—1][Xn] = k[X1,..., Xn]; this simply says that every
polynomial f in n variables X,..., X, can be expressed uniquely as a polynomial in
Xy with coefficients in k[ X1, ..., Xn—1],

f(le--an) :aO(Xla"'aXn—l)X:[. +'“+ar(X1s-'«an—1)'

Since k itself is a unique factorization domain (trivially), the theorem follows by induction
from Proposition[T.13] o

COROLLARY 1.15. A nonzero proper principal ideal () ink[X1, ..., X,] is prime if and
only f is irreducible.

PROOF. Special case of (I.9). O

Integrality

Let A be an integral domain, and let L be a field containing A. An element @ of L is said
to be integral over A if it is a root of a monic? polynomial with coefficients in 4, i.e., if it
satisfies an equation

" +ad” ' +...+a,=0, a €A.

THEOREM 1.16. The set of elements of L integral over A forms a ring.

PROOF. Let o and B integral over A. Then there exists a monic polynomial
hX)=X"4+c X"+ idem ¢ €A,

having « and B among its roots (e.g., take / to be the product of the polynomials exhibiting
the integrality of o and 8). Write

hX) =[x =)

i=1

2 A polynomial is monic if its leading coefficient is 1, i.e., f(X) = X"+ terms of degree < n.
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with the y; in an algebraic closure of L. Up to sign, the ¢; are the elementary symmetric
polynomials in the y; (cf. FT §5). I claim that every symmetric polynomial in the y;
with coefficients in A lies in A: let py, p2, ... be the elementary symmetric polynomials in
Xi,..., Xy if P € A[Xy, ..., Xin] is symmetric, then the symmetric polynomials theorem
(ibid. 5.30) shows that P(X1,..., Xm) = Q(p1,..., pm) for some Q € A[X1,..., Xm],
and so

P(yi,....ym) = OQ(—c1,c2,...) € A.

The coefficients of the polynomials

[[] @=wy) and ] X-0Gi£y))

1<i,j<m 1<i,j<m

are symmetric polynomials in the y; with coefficients in A, and therefore lie in A. As the
polynomials are monic and have o and o = B among their roots, this shows that these
elements are integral. o

For a less computational proof, see CA 5.3.

DEFINITION 1.17. The ring of elements of L integral over A is called the integral closure
of Ain L.

PROPOSITION 1.18. Let A be an integral domain with field of fractions F, and let L be a
field containing F. If o« € L is algebraic over F, then there exists ad € A such that do is
integral over A.

PROOF. By assumption, « satisfies an equation
o™ +a1 ™ '+ +a, =0, a €F.
Let d be a common denominator for the a;, so that da; € A, all i, and multiply through the

equation by d™:
d™oa™ + a1d™d™ ! + - 4 apd™ = 0.

We can rewrite this as
(do)™ + a1d(da)™ ' 4+ -+ + a,pd™ = 0.

Asaid,...,a,d™ € A, this shows that du is integral over A. O

COROLLARY 1.19. Let A be an integral domain and let L be an algebraic extension of the
field of fractions of A. Then L is the field of fractions of the integral closure of A in L.

PROOF. The proposition shows that every o € L can be written « = B/d with § integral
over Aand d € A. o

DEFINITION 1.20. An integral domain A is integrally closed if it is equal to its integral
closure in its field of fractions F, i.e., if

o€ F, ointegralover A — o € A.
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PROPOSITION 1.21. Every unique factorization domain (e.g. a principal ideal domain) is
integrally closed.

PROOF. Leta/b, a,b € A, be integral over A. If a/b ¢ A, then there is an irreducible
element p of A dividing b but not a. As a/b is integral over A, it satisfies an equation

(a/b)" +ari(a/b)" ' +---4+a, =0,a; € A.
On multiplying through by 5", we obtain the equation
a* +a1d" b+ -+ a,b™ = 0.

The element p then divides every term on the left except @”, and hence must divide a”.
Since it doesn’t divide a, this is a contradiction. O

PROPOSITION 1.22. Let A be an integrally closed integral domain, and let L be a finite
extension of the field of fractions F of A. An element @ of L is integral over A if and only
if its minimum polynomial over F has coefficients in A.

PROOF. Let « be integral over A4, so that
o™ +a1d™ '+ 4a, =0 somea; € A.

Let o’ be a conjugate of «, i.e., a root of the minimum polynomial f(X) of & over F. Then
there is an F-isomorphism?

o:Fla] — Fla], o(a) =d
On applying o to the above equation we obtain the equation
™ +ar@d™ 4t ay, =0,

which shows that o’ is integral over A. Hence all the conjugates of « are integral over A,
and it follows from that the coefficients of f(X) are integral over A. They lie in
F, and A is integrally closed, and so they lie in A. This proves the “only if” part of the
statement, and the “if” part is obvious. o

COROLLARY 1.23. Let A be an integrally closed integral domain with field of fractions F,
and let f(X) be a monic polynomial in A[X]. Then every monic factor of f(X) in F[X]
has coefficients in A.

PROOF. It suffices to prove this for an irreducible monic factor g of f in F[X]. Let « be a
root of g in some extension field of F. Then g is the minimum polynomial «, which, being
also aroot of f, is integral. Therefore g has coefficients in A4. 0

3Recall (FT §1) that the homomorphism X +— «: F[X] — Fla] defines an isomorphism F[X]/(f) —
Fla], where f is the minimum polynomial of «.
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Direct limits (summary)

DEFINITION 1.24. A partial ordering < on a set / is said to be directed, and the pair (1, <)
is called a directed set, if for all i, j € [ there existsak € [ such thati, j < k.

DEFINITION 1.25. Let (I, <) be a directed set, and let R be a ring.

(a) Andirect system of R-modules indexed by (/, <) is a family (M;);cy of R-modules
together with a family (0{3-: M; — Mj)i<; of R-linear maps such that &} = idyy;
andaioa}zaf{allifjfk. .

(b) An R-module M together with a family («': M; — M);es of R-linear maps satisfy-
inga' =a’ o a‘j alli < j is said to be a direct limit of the system in (a) if it has the
following universal property: for any other R-module N and family (B': M; — N)
of R-linear maps such that 8’ = 8/ o oe; all i < j, there exists a unique morphism

oa:M — N suchthate oo’ = B’ fori.

Clearly, the direct limit (if it exists), is uniquely determined by this condition up to a unique
isomorphism. We denote it h_r)n(Ml- , aij ), or just h_n>1 M;.

Criterion

An R-module M together with R-linear maps o't M; — M is the direct limit of a system
(M;, o) if and only if

(a) M = J;<; & (M;), and
(b) m; € M; maps to zero in M if and only if it maps to zero in M; for some j >i.

Construction

Let
M= M/M
iel

where M’ is the R-submodule generated by the elements
mj —oz;(mi) alli < j,m; € M;.

Let o (m;) = m; + M'. Then certainly o’ = o/ o oz; foralli < j. For any R-module N
and R-linear maps B/ : M j — N, there is a unique map

@M,- — N,
iel

namely, > m; — Y B%(m;), sending m; to B’ (m;), and this map factors through M and
is the unique R-linear map with the required properties.
Direct limits of R-algebras, etc., are defined similarly.
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Rings of fractions
A multiplicative subset of a ring A is a subset S with the property:
leS, abeS — abes.
Define an equivalence relation on A x S by
(a,s) ~ (b,t) <= u(at —bs) =0forsomeu € S.

Write £ for the equivalence class containing (a, s), and define addition and multiplication
of equivalence classes in the way suggested by the notation:

wv |Q

b _ at+bs ab _ ab
7= st

It is easy to check that these do not depend on the choices of representatives for the equiv-
alence classes, and that we obtain in this way a ring

S_lA:{%MeA,seS}

and a ring homomorphisma > $: 4 — § ~1 4, whose kernel is

{a € A|sa =0forsomes e S}.

For example, if A is an integral domain an 0 ¢ S, thena — ¢
then S~ 4 is the zero ring.

Write i for the homomorphisma — §: 4 — S —14.

is injective, but if 0 € S,

PROPOSITION 1.26. The pair (ST A,i) has the following universal property: every el-
ement s € S maps to a unit in S~' A, and any other homomorphism A — B with this
property factors uniquely through i :

A—"=5714
3!

v
B.

PROOF. If § exists,

s§=a = BB = pla) = B(§) = a@al(s) ™,

and so f is unique. Define
B(2) = a(@)a(s)™".
Then

2 = g — s(ad —bc) =0somes € S = a(a)a(d) —a(b)a(c) =0

because «(s) is a unit in B, and so § is well-defined. It is obviously a homomorphism.
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As usual, this universal property determines the pair (S~ A4, i) uniquely up to a unique
isomorphism.

When 4 is an integral domain and S = A . {0}, F = S~ 4 is the field of fractions of
A. In this case, for any other multiplicative subset 7' of A not containing 0, the ring 7~ A
can be identified with the subring {¢ € F |a € A,t € S}of F.

We shall be especially interested in the following examples.

EXAMPLE 1.27. Leth € A. Then S}, = {1,h,h?,.. }isa multiplicative subset of A, and
we let Ay = S, 1 4. Thus every element of A, can be written in the form a/h™, a € A,
and

o =1L < hN(@@h" —bh™) =0, some N.

If & is nilpotent, then Ay = 0, and if A4 is an integral domain with field of fractions F' and
h # 0, then Ay, is the subring of F of elements of the forma/h™,a € A, m € N.

EXAMPLE 1.28. Let p be a prime ideal in A. Then S, = A \ p is a multiplicative subset
of A4,and welet Ay = S 1 4. Thus each element of Ay can be written in the form %, cé&p,
and

= % < s(ad —bc) = 0,some s ¢ p.

The subset m = {$ | @ € p, s ¢ p} is a maximal ideal in Ay, and it is the only maximal
ideal, i.e., Ay is a local ring.4 When A is an integral domain with field of fractions F', A, is
the subring of F consisting of elements expressible in the form %, acA,sé¢p.

LEMMA 1.29. (a) For any ring A and h € A, the map > a; X' +— Y % defines an iso-
morphism
AIX]/(1 = hX) = Ay,

(b) For any multiplicative subset S of A, S7'4 ~ li_n)1Ah, where h runs over the
elements of S (partially ordered by division).

PROOF. (a) If h = 0, both rings are zero, and so we may assume £ # 0. In the ring A[x] =
A[X]/(1 —hX),1 = hx, and so /h is a unit. Let «: A — B be a homomorphism of rings
such that a(h) is a unit in B. The homomorphism 3" a; X' +— " a(a;)a(h)™': A[X] — B
factors through A[x] because 1 =7 X + 1—a(h)a(h)~! = 0, and, because o (/) is a unit in
B, this is the unique extension of « to A[x]. Therefore A[x] has the same universal property
as Ay, and so the two are (uniquely) isomorphic by an isomorphism that fixes elements of
A and makes h~! correspond to x.

(b) When h|h', say, h' = hg, there is a canonical homomorphism 7 +> ‘;l—é’: Ap —
Ay, and so the rings Ay form a direct system indexed by the set S. When & € S, the
homomorphism 4 — S~ 4 extends uniquely to a homomorphism % > %: Ap — S714
(T.26), and these homomorphisms are compatible with the maps in the direct system. Now
apply the criterion to see that S~ A is the direct limit of the Aj. O

Let S be a multiplicative subset of a ring A, and let S~! A be the corresponding ring of
fractions. Any ideal a in A, generates an ideal S~ 'a in S~ A. If a contains an element of

4First check m is an ideal. Next, if m = Ap, then 1 € m; butif 1 = % for some a € p and s ¢ p, then
u(s —a) = 0 some u ¢ p, and so ua = us ¢ p, which contradicts a € p. Finally, m is maximal because every
element of Ay not in m is a unit.
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S, then S~ 1a contains a unit, and so is the whole ring. Thus some of the ideal structure of
A is lost in the passage to S™! A, but, as the next lemma shows, some is retained.

PROPOSITION 1.30. Let S be a multiplicative subset of the ring A. The map
pr>STlp = (ST )p

is a bijection from the set of prime ideals of A disjoint from S to the set of prime ideals of
S~ A with inverse q > (inverse image of q in A).

PROOF. For an ideal b of S~1 A4, let b be the inverse image of b in A4, and for an ideal a of
A, let a® = (S~ A)a be the ideal in S~! A generated by the image of a.

For an ideal b of S™! A4, certainly, b D b®. Conversely, if febac A seS, then
€ b,andsoa € b¢. Thus § € b, and so b = b°°.

For an ideal a of A, certainly a C a®‘. Conversely, if a € a®®, then % € a, and so

= “T/ for some a’ € a,s € S. Thus, t(as —a’) = 0 forsome ¢t € S, and soast € a. If a
a prime ideal disjoint from S, this implies that a € a: for such an ideal, a = a®“.

If b is prime, then certainly b€ is prime. For any ideal a of A, S~14/a¢ ~ S~1(A/a)
where S is the image of S in A/a. If a is a prime ideal disjoint from S, then S~!(A4/a) is
a subring of the field of fractions of A/a, and is therefore an integral domain. Thus, a® is
prime.

We have shown that p — p¢ and q — (€ are inverse bijections between the prime ideals
of A disjoint from S and the prime ideals of S™!A. o

-

a
1
1S

LEMMA 1.31. Let m be a maximal ideal of a noetherian ring A, and letn = mA,,. For all
n, the map
a+m"—a+n"A/m" > Ay /0"

is an isomorphism. Moreover, it induces isomorphisms
m’ /m" — n" /n"
forallr < n.

PROOF. The second statement follows from the first, because of the exact commutative
diagram (r < n):

0 — m'/m" —— A/m" —— A/m’ — 0

L b

0 —— n/n* —— Ap/n" —— Ay/n" —— 0.

Let S = A~ m, so that A, = S~ 'A. Because S contains no zero divisors, the
map a — §:A — Ay is injective, and I'll identify A with its image. In order to show
that the map A/m” — A,/n”" is injective, we have to show that n” N A = m™. But
n = m"A, = S~ !m™, and so we have to show that m” = (S~ !m™) N 4. An element
of (S7!m™) N A can be written a = b/s withh € m™, s € S, and a € A. Then
sa € m™, and so sa = 0in A/m™. The only maximal ideal containing m” is m (because
m’ D m”™ =— w’ D m), and so the only maximal ideal in A/m™ is m/m™. As s is not
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in m/m™, it must be a unit in A/m™, and as sa = 0in A/m™, a must be 0 in A/m™, i.e.,
aem™,

We now prove that the map is surjective. Let & € An, a € A, s € A~ m. The only
maximal ideal of A containing m™ is m, and so no maximal ideal contains both s and m™; it
follows that (s) +m™ = A. Therefore, there exist b € A and g € m™ such thatsb+¢g = 1.
Because s is invertible in Ay /1™, € is the unique element of this ring such that s = a;
since s(ba) = a(1l — q), the image of ha in Ay, also has this property and therefore equals
a
a -

N

PROPOSITION 1.32. In any noetherian ring, only 0 lies in all powers of all maximal ideals.

PROOF. Leta be an element of a noetherian ring A. If a # 0, then {b | ba = 0} is a proper

ideal, and so is contained in some maximal ideal m. Then % is nonzero in Ay, and so

1 & (mAy)" for some n (by the Krull intersection theorem), which implies that a ¢ m”. o

NOTES. For more on rings of fractions, see CA §6.

Tensor Products

Tensor products of modules

Let R be aring. A map ¢: M x N — P of R-modules is said to be R-bilinear if

P(x +x'.y) =d(x,y) + o', y), x,x'€eM, yeN

px.y + ) =d(x.y) + p(x. ¥, xeM, y.y eN
p(rx,y) =reo(x,y), reR, xeM, yeN
d(x,ry) =ro(x,y), reR, xeM, yeN,

i.e., if ¢ is R-linear in each variable. An R-module T together with an R-bilinear map
¢: M x N — T is called the tensor product of M and N over R if it has the following
universal property: every R-bilinear map ¢’: M x N — T’ factors uniquely through ¢,

MxN2 T

K T
v

T/

As usual, the universal property determines the tensor product uniquely up to a unique
isomorphism. We write it M ® g N.

Construction Let M and N be R-modules, and let R“™*N) be the free R-module with
basis M x N. Thus each element R *N) can be expressed uniquely as a finite sum

Zri(xi,)h'), ri€R, xieM, y €N.

Let K be the submodule of R(M*N) generated by the following elements
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x+x,y)—(x,y)—(&",y), x,xeM, yeN

(x,y+y) =, ») = (x,)), xeM, y,y eN
(rx,y)—r(x,y), reR, xeM, yeN
(x,ry)—r(x,y), reR, xeM, yeN,

and define
M ®gr N = RM*N) /g

Write x ® y for the class of (x, y) in M ® g N. Then
X, V)P x®y:MxN —>MQ®grN

is R-bilinear — we have imposed the fewest relations necessary to ensure this. Every
element of M ® g N can be written as a finite sum

Zri(xi ®yi), ri€R, xieM, y €N,
and all relations among these symbols are generated by the following

x+x)®@y=x®y+x'Qy
X +Y)=x@y+x®)y
rx®y)=0x)®y =x®ry.

The pair (M ® g N, (x,y) — x ® y) has the following universal property:

Tensor products of algebras

Let A and B be k-algebras. A k-algebra C together with homomorphisms i: 4 — C
and j: B — C is called the tensor product of A and B if it has the following universal
property: for every pair of homomorphisms (of k-algebras) : 4 — R and 8: B — R,
there is a unique homomorphism y: C — R suchthatyoi =aandy o j = §:

A——>C<"—B8B

j J
2y
N2y
R

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this
property. We write it A @ B.

Construction Regard A and B as k-vector spaces, and form the tensor product A ®; B.
There is a multiplication map A @ B X A ®; B — A ®; B for which

(@a®b)d ®b) =ad @bb'.
This makes A ®; B into a ring, and the homomorphism

cHc(l®l)=c®l=1Qc
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makes it into a k-algebra. The maps
a—~a®l:A—->Candb—1®b:B - C

are homomorphisms, and they make A ®; B into the tensor product of 4 and B in the
above sense.

EXAMPLE 1.33. The algebra B, together with the given map k — B and the identity map
B — B, has the universal property characterizing k ®; B. In terms of the constructive
definition of tensor products, the map ¢ ® b + cb: k ®; B — B is an isomorphism.

EXAMPLE 1.34. The ring k[X1,..., Xm, Xm+1,..., Xm+n], together with the obvious
inclusions

k[Xl,...,Xm] — k[Xl,...,Xm+n] <~ k[Xm+1,...,Xm+n]

is the tensor product of k[X1,..., Xm] and k[Xm+1, ..., Xm+n]. To verify this we only
have to check that, for every k-algebra R, the map

Homk-alg(k[Xl’ ey Xm—l—n], R) — Homk_alg(k[Xl, .. .], R) X Homk-alg(k[Xm+l’ .. .], R)
induced by the inclusions is a bijection. But this map can be identified with the bijection
R™T™ — R™ x R".
In terms of the constructive definition of tensor products, the map
fRgr fgk[Xt,..., Xm] Qr k[ Xm+1,--s Xm+n] = k[X1, ..., X;ntn]

is an isomorphism.

REMARK 1.35. (a) If (by) is a family of generators (resp. basis) for B as a k-vector space,
then (1 ® by) is a family of generators (resp. basis) for A ®; B as an A-module.
(b) Let k — £2 be fields. Then

R k[X1,....Xn] 221 ® X1,...,1Q Xy] = 2[X1,..., Xn]
IftA=k[X1,...,Xn]/(g1,...,8m), then
Q@kA = Q[Xl,,Xn]/(gL’gm)

(c) If A and B are algebras of k-valued functions on sets S and T respectively, then
(f ®g)(x,y) = f(x)g(y) realizes A ®; B as an algebra of k-valued functionson § x T'.

For more details on tensor products, see CA §8.

Extension of scalars

Let R be a commutative ring and 4 an R-algebra (not necessarily commutative) such that
the image of R — A lies in the centre of A. Then we have a functor M > A ® g M from
left R-modules to left A-modules.
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Behaviour with respect to direct limits

PROPOSITION 1.36. Direct limits commute with tensor products:

lim M; @g lim N; =~ lim  (M; ®r Nj).
iel jeJ (i,j)elxJ

PROOF. Using the universal properties of direct limits and tensor products, one sees easily
that li_n>1(M,~ ®R N;) has the universal property to be the tensor product of li_I)an' and
li_I)n Nj. O

Flatness

For any R-module M, the functor N — M ®pg N is right exact, i.e.,
M®RN/—>M®RN—>M®RN”—>O

18 exact whenever
N - N—->N'"->0

isexact. f M @ g N — M ®pg N’ is injective whenever N — N’ is injective, then M is
said to be flat. Thus M is flat if and only if the functor N — M ® g N is exact. Similarly,
an R-algebra A is flatif N — A Qg N is flat.

PROPOSITION 1.37. To be added.

Categories and functors

A category C consists of

(a) aclass of objects ob(C);

(b) for each pair (a, b) of objects, a set Mor(a, b), whose elements are called morphisms
from a to b, and are written «:a — b;

(¢) for each triple of objects (a, b, ¢) a map (called composition)

(o, B) = B o a: Mor(a, b) x Mor(b, c) — Mor(a, ¢).

Composition is required to be associative, i.e., (y o 8)oa = y o (B o), and for each object
a there is required to be an element id, € Mor(a, a) such that id, oo = &, 0 id, = B,
for all « and B for which these composites are defined. The sets Mor(a, b) are required to
be disjoint (so that a morphism « determines its source and target).

EXAMPLE 1.38. (a) There is a category of sets, Sets, whose objects are the sets and whose
morphisms are the usual maps of sets.

(b) There is a category Aff; of affine k-algebras, whose objects are the affine k-algebras
and whose morphisms are the homomorphisms of k-algebras.

(c) In chapter 4 below, we define a category Vary of algebraic varieties over k, whose
objects are the algebraic varieties over k and whose morphisms are the regular maps.

The objects in a category need not be sets with structure, and the morphisms need not
be maps.
Let C and D be categories. A covariant functor F from C to D consists of
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(a) amap a — F(a) sending each object of C to an object of D, and,
(b) for each pair of objects a, b of C, a map

o — F(a):Mor(a,b) — Mor(F(a), F(b))

such that F(id4) = idp4) and F(Boa) = F(B) o F(a).

A contravariant functor is defined similarly, except that the map on morphisms is
a — F(a):Mor(a,b) — Mor(F(b), F(a))

A functor F:C — D is full (resp. faithful, fully faithful) if, for all objects a and b of
C, the map
Mor(a, b) — Mor(F(a), F (b))

is a surjective (resp. injective, bijective).

A covariant functor F: A — B of categories is said to be an equivalence of categories
if it is fully faithful and every object of B is isomorphic to an object of the form F(a),
a € ob(A) (F is essentially surjective). One can show that such a functor F has a quasi-
inverse, i.e., that there is a functor G: B — A, which is also an equivalence, and for which
there exist natural isomorphisms G(F(a)) ~ a and F(G(b)) ~ b.

Similarly one defines the notion of a contravariant functor being an equivalence of cat-
egories.

Any fully faithful functor F: C — D defines an equivalence of C with the full subcat-
egory of D whose objects are isomorphic to F(a) for some object a of C. The essential
image of a fully faithful functor F: C — D consists of the objects of D isomorphic to an
object of the form F(a), a € ob(C).

Let F and G be two functors C — D. A morphism (or natural transformation) o: F —
G is a collection of morphisms a(a): F(a) — G(a), one for each object a of C, such that,
for every morphism u:a — b in C, the following diagram commutes:

a  Fa) 2% G

lu lF(u) lG(u) (%)

b Eey 22 ).

With this notion of morphism, the functors C — D form a category Fun(C, D) (provided
that we ignore the problem that Mor(F, G) may not be a set, but only a class).
For any object V of a category C, we have a contravariant functor

hy:C — Set,

SFor each object b of B, choose an object G(b) of A and an isomorphism F(G(b)) — b. For each
morphism 8:b — b’ in B, let G(B) be the unique morphism such that

F(G(b)) —> b
lF(ﬂ) lﬂ
FG®D) — b

commutes. Then G is a quasi-inverse to F.
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which sends an object a to the set Mor(a, V') and sends a morphism «:a — b to
¢ = @oathy(b) — hy(a),

ie., hy(x) = Mor(x, V) and hy (o) = xoa. Leta: V — W be a morphism in C. The
collection of maps
ho(a):hy(a) > hw(a), ¢ aogp

is a morphism of functors.
PROPOSITION 1.39 (YONEDA LEMMA). For any functor F':C — Set,
Hom(hy, F) ~ F(V).
In particular, when F = hy,
Hom(hy, hw) ~ Hom(W, V)

— to give a natural transformation hy — hyw is the same as to give a morphism W — V.

PROOF. An element x of F (V') defines a natural transformation hy — F, namely,
ar F(a)(x):hy(T) - F(T), o€hy(T)=Hom(T,V).

Conversely, a natural transformation 7y — F defines an element of F (1), namely, the
image of the “universal” element idy under Ay (V) — F(V). It is easy to check that these
two maps are inverse. o

Algorithms for polynomials

As an introduction to algorithmic algebraic geometry, we derive some algorithms for working with
polynomial rings. This section is little more than a summary of the first two chapters of Cox et
al.1992 to which I refer the reader for more details. Those not interested in algorithms can skip the
remainder of this chapter. Throughout, & is a field (not necessarily algebraically closed).

The two main results will be:

(a) An algorithmic proof of the Hilbert basis theorem: every ideal in k[X1, ..., X,] has a finite
set of generators (in fact, of a special kind).

(b) There exists an algorithm for deciding whether a polynomial belongs to an ideal.

Division in k[ X]

The division algorithm allows us to divide a nonzero polynomial into another: let f and g be
polynomials in k[X] with g # 0O; then there exist unique polynomials ¢, r € k[X] such that f =
qg + r with either r = 0 or degr < deg g. Moreover, there is an algorithm for deciding whether
f € (g), namely, find r and check whether it is zero.
In Maple,
quo(f, g, X); computes g
rem(f, g, X); computes r

Moreover, the Euclidean algorithm allows you to pass from a finite set of generators for an ideal
in k[X] to a single generator by successively replacing each pair of generators with their greatest
common divisor.
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Orderings on monomials

Before we can describe an algorithm for dividing in k[X1, ..., X,], we shall need to choose a way
of ordering monomials. Essentially this amounts to defining an ordering on N”. There are two main
systems, the first of which is preferred by humans, and the second by machines.

(Pure) lexicographic ordering (lex). Here monomials are ordered by lexicographic (dictionary)
order. More precisely, let « = (ay,...,a,) and 8 = (by, ..., by,) be two elements of N”; then

a>fand X* > X B (lexicographic ordering)

if, in the vector difference « — B (an element of Z"), the left-most nonzero entry is positive. For
example,
Xy?>v3z*% Xx3v?z%> Xx3v?*Z.

Note that this isn’t quite how the dictionary would order them: it would put XXXYYZZZZ after
XXXYYZ.

Graded reverse lexicographic order (grevlex). Here monomials are ordered by total degree,
with ties broken by reverse lexicographic ordering. Thus, & > Bif Y a; > > b;,or Y a; = > b;
and in @ — B the right-most nonzero entry is negative. For example:

X4Y4Z7 > X°Y>Z* (total degree greater)
XY3z%> Xx*vz3, X°YZ> X*‘vz%

Orderings on k[ X1, ..., X,]

Fix an ordering on the monomials in k[ X1, ..., X;]. Then we can write an element f of k[ X1, ..., X,]
in a canonical fashion by re-ordering its elements in decreasing order. For example, we would write

f =4XY?Z +4Z7% -5x3 +7x%2?

as
f=-5X>4+7X%Z%4+4XY%Z 4+ 427 (lex)

or
=4XY%Z +7X%Z2% —5X3 + 477 (grevlex)
g

Let f =Y aqX* € k[Xy,..., Xy,]. Write it in decreasing order:
f=a0toXa0+aalXal+'“7 C(()>C(1>“', aao#o_

Then we define:

(a) the multidegree of f to be multdeg( f) = ap;

(b) the leading coefficient of f tobe LC(f) = day;
(c) the leading monomial of f tobe LM(f) = X0,
(d) the leading term of f to be LT(f) = ag,X°.

For example, for the polynomial f = 4XY?2Z + ---, the multidegree is (1,2,1), the leading
coefficient is 4, the leading monomial is XY2Z, and the leading term is 4X Y2 Z.
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The division algorithm in k[ X1, ..., X}]

Fix a monomial ordering in N”. Suppose given a polynomial f and an ordered set (g1, ..., gs) of
polynomials; the division algorithm then constructs polynomials a;, ..., as and r such that

f=agi+tasgs+r

where either » = 0 or no monomial in r is divisible by any of LT(g1), ..., LT(gs).
STEP 1: If LT(g1)|LT(f), divide g; into f to get
LT(f)

f=aig1+h a = e k[X1,.... X

LT(g1)
If LT(g1)|LT(h), repeat the process until
f=aig1+ fi
(different a;) with LT( f1) not divisible by LT(g1). Now divide g5 into f7, and so on, until
f=a1g1+ - +asgs+n

with LT (r1) not divisible by any of LT(g1),...,LT(gs).
STEP 2: Rewrite r; = LT(r;) + r», and repeat Step 1 with r, for f:

f=aig1+ - +asgs +LT(r1) +r3

(different a;’s).
STEP 3: Rewrite r3 = LT(r3) + r4, and repeat Step 1 with r4 for f:

f =a1g1+ -+ asgs +LT(r1) + LT(r3) + 13

(different a;’s).

Continue until you achieve a remainder with the required property. In more detail,® after di-
viding through once by g1, ..., g5, you repeat the process until no leading term of one of the g;’s
divides the leading term of the remainder. Then you discard the leading term of the remainder, and
repeat.

EXAMPLE 1.40. (a) Consider

fF=XY+XY24+Y2 g =XY-1, g=Y>-1.
First, on dividing g into f', we obtain

XY + XY 4+ Y2 =X +V)XY - D)+ X +Y247Y.

This completes the first step, because the leading term of Y2 — 1 does not divide the leading term of
the remainder X 4+ Y2 + Y. We discard X, and write

Y24Y=1-(Y2=1)+7Y + 1.
Altogether
XY +XY? 4V =X+Y)- XY -D+1-Y*-D+X+Y +1.
(b) Consider the same polynomials, but with a different order for the divisors
f=XY +XY?>4+Y2 g =Y?>—1, g=XY-1.
In the first step,
XY +XY24+Y2=X+1D)-Y>’—-D)+X- (XY —1)+2X + 1.

Thus, in this case, the remainder is 2X + 1.

6This differs from the algorithm in Cox et al. 1992, p63, which says to go back to g after every successful
division.
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REMARK 1.41. If r = 0, then f € (g1,...,&s), but, because the remainder depends on the
ordering of the g;, the converse is false. For example, (lex ordering)

XY2—-X=Y - XY +1D)4+0-Y*-1)+-X-Y
but
XY?-X=X-(Y2=1)4+0-(XY +1)+0.

Thus, the division algorithm (as stated) will not provide a test for f lying in the ideal generated by
g ) BN g S

Monomial ideals

In general, an ideal a can contain a polynomial without containing the individual monomials of the
polynomial; for example, the ideal a = (Y2 — X 3) contains Y2 — X3 but not Y2 or X 3.

DEFINITION 1.42. An ideal a is monomial if

anX“ €aandcy #0 — X% €a.

PROPOSITION 1.43. Let a be a monomial ideal, and let A = {a | X% € a}. Then A satisfies the
condition
a€A, BeN' = a+pBcAd *

and a is the k-subspace of k[ X1, . .., X,,] generated by the X, « € A. Conversely, if A is a subset of
N" satisfying (*), then the k-subspace a of k[ X1, ..., X,] generated by {X* | « € A} is a monomial
ideal.

PROOF. It is clear from its definition that a monomial ideal a is the k-subspace of k[X1, ..., Xu]
generated by the set of monomials it contains. If X* € a and XB e k[X1,...,X,], then X*x8 =
Xoth ¢ a, and so A satisfies the condition (*). Conversely,

(Z c,ﬂ("‘) Z dﬂXﬂ = andﬂX‘Hﬂ (finite sums),

aed Benn a,B

and so if A satisfies (*), then the subspace generated by the monomials X%, & € A, is anideal. g

The proposition gives a classification of the monomial ideals in k[ X1, ..., X,]: they are in one-
to-one correspondence with the subsets A of N” satisfying (*). For example, the monomial ideals in
k[X] are exactly the ideals (X"), n > 0, and the zero ideal (corresponding to the empty set A). We
write

(X% | a € A)

for the ideal corresponding to A (subspace generated by the X%, o € A).

LEMMA 1.44. Let S be a subset of N*. Then the ideal a generated by {X® | o € S} is the
monomial ideal corresponding to

Adéf{ﬂ eN'"|B—a€eS, someacsS}

In other words, a monomial is in a if and only if it is divisible by one of the X%, « € S.

PROOF. Clearly A satisfies (*), and a C (X# | B € A). Conversely, if B € A, then B — o € N” for
somea € S, and X = X®XB~® ¢ q. The last statement follows from the fact that X® | X b —
B —aeN", o
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Let A C N2 satisfy (*). From the geometry of A, it is clear that there is a finite set of elements
S ={uq,...,a5} of A such that

A={BeN?|B—a €N? somea; €S}

(The «;’s are the “corners” of A.) Moreover, the ideal (X% | « € A) is generated by the monomials
X% ,a; € S. This suggests the following result.

THEOREM 1.45 (DICKSON’S LEMMA). Let a be the monomial ideal corresponding to the subset
A C N". Then a is generated by a finite subset of {X* | « € A}.

PROOF. This is proved by induction on the number of variables — Cox et al. 1992, p70. o

Hilbert Basis Theorem

DEFINITION 1.46. For a nonzero ideal a in k[X1, ..., X,], we let (LT(a)) be the ideal generated

by {LT(f) | f € a}.

LEMMA 1.47. Let a be a nonzero ideal in k[ X1, ..., X,]; then (LT(a)) is a monomial ideal, and it
equals (LT(g1),...,LT(gy)) for some g1,...,8g, € a.

PROOF. Since (LT(«a)) can also be described as the ideal generated by the leading monomials (rather
than the leading terms) of elements of a, it follows from Lemma that it is monomial. Now
Dickson’s Lemma shows that it equals (LT(g1), ..., LT(gs)) for some g; € a. o

THEOREM 1.48 (HILBERT BASIS THEOREM). Every ideal a in k[X;,..., X,] is finitely gener-
ated; in fact, a is generated by any elements of a whose leading terms generate LT(a).

PROOF. Let gq,..., gy be as in the lemma, and let f € a. On applying the division algorithm, we
find
f=aig1+---+asgs+r, a,rek[X,..., X,

where either 7 = 0 or no monomial occurring in it is divisible by any LT(g;). Butr = f —
> ajgi € a, and therefore LT(r) € LT(a) = (LT(g1),...,LT(gs)), which, according to Lemma
1.44] implies that every monomial occurring in r is divisible by one in LT(g;). Thus r = 0, and

g€(g1, .. 8s) O

Standard (Grobner) bases

Fix a monomial ordering of k[X1, ..., X,].

DEFINITION 1.49. A finite subset S = {g1,..., gs} of an ideal a is a standard (Grobner, Groeb-
ner, Grobner) basis’ for a if

(LT(g1). . ... LT(gs)) = LT(a).

In other words, S is a standard basis if the leading term of every element of a is divisible by at least
one of the leading terms of the g;.

THEOREM 1.50. Every ideal has a standard basis, and it generates the ideal; if {g1,...,gs} is a
standard basis for an ideal a, then f € a <= the remainder on division by the g; is 0.

7Standard bases were first introduced (under that name) by Hironaka in the mid-1960s, and independently,
but slightly later, by Buchberger in his Ph.D. thesis. Buchberger named them after his thesis adviser Grobner.
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PROOF. Our proof of the Hilbert basis theorem shows that every ideal has a standard basis, and that
it generates the ideal. Let f € a. The argument in the same proof, that the remainder of f on
division by g1, ..., gs is 0, used only that {g1, ..., g5} is a standard basis for a. o

REMARK 1.51. The proposition shows that, for f € a, the remainder of f on divisionby {g1, ..., gs}
is independent of the order of the g; (in fact, it’s always zero). This is not true if f ¢ a — see the
example using Maple at the end of this chapter.

Leta = (f1,..., fs). Typically, { f1,..., fs} will fail to be a standard basis because in some
expression
cXfi —dXP f;, c.dek, (¥%)

the leading terms will cancel, and we will get a new leading term not in the ideal generated by the
leading terms of the f;. For example,

X2=X - (XY +X -2Y}) —-Y - (X3 -2XY)

is in the ideal generated by X2Y 4+ X —2Y 2 and X3 — 2XY but it is not in the ideal generated by
their leading terms.

There is an algorithm for transforming a set of generators for an ideal into a standard basis,
which, roughly speaking, makes adroit use of equations of the form (**) to construct enough new
elements to make a standard basis — see Cox et al. 1992, pp80-87.

We now have an algorithm for deciding whether f € (f1, ..., f+). First transform { f1, ..., fr}
into a standard basis {g1, ..., gs}, and then divide f by gy, ..., g5 to see whether the remainder is
0 (in which case f lies in the ideal) or nonzero (and it doesn’t). This algorithm is implemented in
Maple — see below.

A standard basis {g1, ..., gs} is minimal if each g; has leading coefficient 1 and, for all i, the
leading term of g; does not belong to the ideal generated by the leading terms of the remaining g’s.
A standard basis {g1, ..., gs} is reduced if each g; has leading coefficient 1 and if, for all i, no
monomial of g; lies in the ideal generated by the leading terms of the remaining g’s. One can prove
(Cox et al. 1992, p91) that every nonzero ideal has a unique reduced standard basis.

REMARK 1.52. Consider polynomials f, g1,...,gs € k[X1,..., Xy]. The algorithm that replaces
g1, ..., &s with a standard basis works entirely within k[X7,..., X,], i.e., it doesn’t require a field
extension. Likewise, the division algorithm doesn’t require a field extension. Because these opera-
tions give well-defined answers, whether we carry them out in k[X1q,..., X,] orin K[X1,..., X,],
K D k, we get the same answer. Maple appears to work in the subfield of C generated over Q by
all the constants occurring in the polynomials.

We conclude this chapter with the annotated transcript of a session in Maple applying the above
algorithm to show that
g =3x3yz2 —xz2+y3 4+ yz

doesn’t lie in the ideal
(x2 —2xz 4+ 5,xy% + yz3,3y% — 82%).

A Maple session
>with(grobner) :
This loads the grobner package, and lists the available commands:
finduni, finite, gbasis, gsolve, leadmon, normalf, solvable, spoly
To discover the syntax of a command, a brief description of the command, and an example, type
“?command;”
>G:=gbasis ([x"2-2*%x*z+5,x*y " 2+y*z"~3,3*%y"2-8%z"3], [x,y,2]);
G = [x? —2xz +5,-3y% 4+ 823,8xy? + 3y3,9y* 4 482y3 4 320y7?]
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This asks Maple to find the reduced Grobner basis for the ideal generated by the three polynomials
listed, with respect to the symbols listed (in that order). It will automatically use grevlex order unless
you add ,plex to the command.

> q:=3%x"3*y*z"2 - x*z272 + y~3 + y*z;

q:=3x3yz2 —xz2 +y3 4+ zy
This defines the polynomial q.

> normalf(q,G, [x,y,2]);

9z2y3 —15yz2x — 4L y3 + 60y2z — xz% + zy
Asks for the remainder when ¢ is divided by the polynomials listed in G using the symbols listed.
This particular example is amusing — the program gives different orderings for G, and different
answers for the remainder, depending on which computer I use. This is O.K., because, since g isn’t
in the ideal, the remainder may depend on the ordering of G.

Notes:

(a) To start Maple on a Unix computer type “maple”; to quit type “quit”.

6,9

(b) Maple won’t do anything until you type “;” or “:” at the end of a line.

(c) The student version of Maple is quite cheap, but unfortunately, it doesn’t have the Grobner
package.

(d) For more information on Maple:

i) There is a brief discussion of the Grobner package in Cox et al. 1992, Appendix C, §1.
ii) The Maple V Library Reference Manual pp469-478 briefly describes what the Grobner
package does (exactly the same information is available on line, by typing ?command).

iii) There are many books containing general introductions to Maple syntax.

(e) Grobner bases are also implemented in Macsyma, Mathematica, and Axiom, but for serious
work it is better to use one of the programs especially designed for Grobner basis computa-
tion, namely,

CoCoA (Computations in Commutative Algebra) http://cocoa.dima.unige.it/.
Macaulay 2 (Grayson and Stillman) http://www.math.uiuc.edu/Macaulay2/.

Exercises

1-1. Let k£ be an infinite field (not necessarily algebraically closed). Show that an f €
k[X1,..., Xn] that is identically zero on k" is the zero polynomial (i.e., has all its coeffi-
cients zero).

1-2. Find a minimal set of generators for the ideal
(X +2Y.3X +6Y +3Z,2X +4Y +32)

in k[X,Y,Z]. What standard algorithm in linear algebra will allow you to answer this
question for any ideal generated by homogeneous linear polynomials? Find a minimal set
of generators for the ideal

(X +2Y +1,3X +6Y +3X +2,2X +4Y +3Z + 3).


http://cocoa.dima.unige.it/
http://www.math.uiuc.edu/Macaulay2/

Chapter 2

Algebraic Sets

In this chapter, k is an algebraically closed field.

Definition of an algebraic set

An algebraic subset V(S) of k" is the set of common zeros of some set S of polynomials
in k[Xl, NN Xn]Z

V(S) = {(a1.....an) €k™ | f(ai,....an) =0 all f(X1,...,Xn) €S}

Note that
ScS = V(S) DV,

— more equations means fewer solutions.
Recall that the ideal a generated by a set S’ consists of all finite sums

> figi. fi€k[X1.....X]. gi €S

Such a sum ) f;g; is zero at any point at which the g; are all zero, and so V(S) C V(a),
but the reverse conclusion is also true because S C a. Thus V(S) = V(a) — the zero set
of § is the same as that of the ideal generated by S. Hence the algebraic sets can also be
described as the sets of the form V' (a), a an ideal in k[X71, ..., X,].

EXAMPLE 2.1. (a) If S is a system of homogeneous linear equations, then V' (.5) is a sub-
space of k. If S is a system of nonhomogeneous linear equations, then V(S) is either
empty or is the translate of a subspace of k”.

(b) If S consists of the single equation

Y2=X3+aX +b, 4a>+27b%#0,

then V' (.S) is an elliptic curve. For more on elliptic curves, and their relation to Fermat’s last
theorem, see my notes on Elliptic Curves. The reader should sketch the curve for particular
values of @ and b. We generally visualize algebraic sets as though the field k& were R,
although this can be misleading.

(c) For the empty set @, V(9) = k".

(d) The algebraic subsets of k are the finite subsets (including @) and k itself.

30
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(e) Some generating sets for an ideal will be more useful than others for determining
what the algebraic set is. For example, a Grobner basis for the ideal

a=(X24+Y24+2%—-1, X2 4+Y%2-Y, X-2)
is (according to Maple)
X—Z, Y22V +1, Z>—1+VY.

The middle polynomial has (double) root 1, and it follows easily that V' (a) consists of the
single point (0, 1, 0).

The Hilbert basis theorem

In our definition of an algebraic set, we didn’t require the set S of polynomials to be fi-
nite, but the Hilbert basis theorem shows that every algebraic set will also be the zero
set of a finite set of polynomials. More precisely, the theorem shows that every ideal in
k[X1,...,Xn] can be generated by a finite set of elements, and we have already observed
that any set of generators of an ideal has the same zero set as the ideal.

We sketched an algorithmic proof of the Hilbert basis theorem in the last chapter. Here
we give the slick proof.

THEOREM 2.2 (HILBERT BASIS THEOREM). The ring k[X1, ..., Xy] is noetherian, i.e.,
every ideal is finitely generated.

Since k itself is noetherian, and k[ X1, ..., Xn—1][X#n] = k[X1,..., X»], the theorem
follows by induction from the next lemma.

LEMMA 2.3. If A is noetherian, then so also is A[X].

PROOF. Recall that for a polynomial
fX)=aoX"+a1 X" '+ 4a,, a €A, ag#0,

r is called the degree of f, and ay is its leading coefficient.
Let a be a proper ideal in A[X], and let a; be the set of elements of A that occur as the
leading coefficient of a polynomial in a of degree < i. Then q; is an ideal in A4, and

aaCaC--Caq; C---

Because A is noetherian, this sequence eventually becomes constant, say ag = ag41 = ...
(and a4 consists of the leading coefficients of all polynomials in a).

For each i < d, choose a finite set f;1, fi2,... of polynomials in a of degree i such
that the leading coefficients a;; of the f;;’s generate q;.

Let f € a; we shall prove by induction on the degree of f that it lies in the ideal
generated by the f;;. When f has degree 0, it is zero, and so lies in ( f;;).

Suppose that f has degree s > d. Then f = aX’s + --- witha € a4, and so

a= Zj bjag;, someb; € A.
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Now
/= Zj bj fa; X4

has degree < deg( /'), and so lies in (f;;) by induction.
Suppose that f has degree s < r. Then a similar argument shows that

f=Y bifs

has degree < deg( /') for suitable b; € A, and so lies in (f;;) by induction. o

ASIDE 2.4. One may ask how many elements are needed to generate a given ideal a in
k[X1,...,Xn], or, what is not quite the same thing, how many equations are needed to
define a given algebraic set V. When n = 1, we know that every ideal is generated by a
single element. Also, if V' is a linear subspace of k", then linear algebra shows that it is the
zero set of n —dim(}V') polynomials. All one can say in general, is that at least n — dim(V')
polynomials are needed to define V' (see [0.7), but often more are required. Determining
exactly how many is an area of active research — see (9.14)).

The Zariski topology

PROPOSITION 2.5. There are the following relations:

(a) aCcb = V(a) D V(b);

() V(0) =k"; V(k[X1,...,Xn]) =0;

(¢) V(ab) =V(anb) =V(a) U V(b);

(d) V(O ;esai) = \jer V(a;) for any family of ideals (a;);ej -

PROOF. The first two statements are obvious. For (c), note that
abCanbCab = V(ab) D V(anb) D V(a) UV(b).

For the reverse inclusions, observe that if a ¢ V(a) U V(b), then there exist f € a, g € b
such that f(a) # 0, g(a) # 0; but then (fg)(a) # 0, and so a ¢ V(ab). For (d) recall
that, by definition, ) a; consists of all finite sums of the form ) f;, f; € a;. Thus (d) is
obvious. o

Statements (b), (c), and (d) show that the algebraic subsets of k" satisfy the axioms to be
the closed subsets for a topology on k”: both the whole space and the empty set are closed;
a finite union of closed sets is closed; an arbitrary intersection of closed sets is closed. This
topology is called the Zariski topology on k™. The induced topology on a subset V' of k"
is called the Zariski topology on V.

The Zariski topology has many strange properties, but it is nevertheless of great impor-
tance. For the Zariski topology on k, the closed subsets are just the finite sets and the whole
space, and so the topology is not Hausdorff. We shall see in (2.29) below that the proper
closed subsets of k2 are finite unions of (isolated) points and curves (zero sets of irreducible
f € k[X,Y]). Note that the Zariski topologies on C and C? are much coarser (have many
fewer open sets) than the complex topologies.
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The Hilbert Nullstellensatz

We wish to examine the relation between the algebraic subsets of k" and the ideals of
k[X1,...,Xn], but first we consider the question of when a set of polynomials has a com-
mon zero, i.e., when the equations

g(Xl,...,Xn)=0, gea,
are “consistent”. Obviously, the equations
gi(X1,....X,,) =0, i=1,....m

are inconsistent if there exist f; € k[X1,...,Xp] such that ) figi = 1, ie,if 1 €
(g1,...,gm) or, equivalently, (g1,...,gm) = k[X1,..., Xn]. The next theorem provides
a converse to this.

THEOREM 2.6 (HILBERT NULLSTELLENSATZ). ' Every proper ideal a in k[X1, ..., Xp]
has a zero in k™.

A point P = (ay,...,a,) in k" defines a homomorphism “evaluate at P”
k[X1,....Xn] =k, f(X1,....Xn) > f(a1,...,an),

whose kernel contains a if P € V(a). Conversely, from a homomorphism ¢: k[ X1, ..., Xn] —
k of k-algebras whose kernel contains a, we obtain a point P in V' (a), namely,

P = (p(X1),....0(Xn)).

Thus, to prove the theorem, we have to show that there exists a k-algebra homomorphism
k(X1,...,Xn]/a — k.

Since every proper ideal is contained in a maximal ideal, it suffices to prove this for a

maximal ideal m. Then K & k[X1,...,Xn]/mis a field, and it is finitely generated as an

algebra over k (with generators X; + m,..., X, + m). To complete the proof, we must
show K = k. The next lemma accomplishes this.

Although we shall apply the lemma only in the case that k is algebraically closed, in
order to make the induction in its proof work, we need to allow arbitrary k’s in the statement.

LEMMA 2.7 (ZARISKI’S LEMMA). Letk C K be fields (k is not necessarily algebraically

closed). If K is finitely generated as an algebra over k, then K is algebraic over k. (Hence
K = k ifk is algebraically closed.)

PROOF. We shall prove this by induction on r, the minimum number of elements required
to generate K as a k-algebra. The case r = 0 being trivial, we may suppose that K =
k[x1,...,x,] with r > 1. If K is not algebraic over k, then at least one x;, say xi, is not
algebraic over k. Then, k[x1] is a polynomial ring in one symbol over k, and its field of
fractions k(x1) is a subfield of K. Clearly K is generated as a k(x;)-algebra by x», ..., xr,
and so the induction hypothesis implies that x5, . .., x, are algebraic over k(x1). According
to (L.I8), there exists a d € k[x1] such that dx; is integral over k[x;] for all i > 2. Let
f € K = k[x1,...,x,]. For a sufficiently large N, de € k[x1,dx2,...,dx,], and so

'Nullstellensatz = zero-points-theorem.
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dV f isintegral over k[x] . When we apply this statement to an element f of k(x7),
shows that dV f € k[x;]. Therefore, k(x;) = Un d~Nk[x1], but this is absurd,
because k[x1] (=~ k[X]) has infinitely many distinct monic irreducible polynomials® that
can occur as denominators of elements of k(x1). O

The correspondence between algebraic sets and ideals
For a subset W of k", we write (W) for the set of polynomials that are zero on W':
IW)={f ek[X1,....Xn]| f(P)=0all P € W}

Clearly, it is an ideal in k[ X1, ..., X]. There are the following relations:

@ VCW = I(V)DIW);
(b) 1(9) = k[Xy,.... Xu]; I(k") = 0;
© IUW) =NIW).

Only the statement /(k™) = 0 is (perhaps) not obvious. It says that, if a polynomial is
nonzero (in the ring k[X1, ..., X,]), then it is nonzero at some point of k”. This is true
with k any infinite field (see Exercise[I-1]). Alternatively, it follows from the strong Hilbert
Nullstellensatz (cf. below).

EXAMPLE 2.8. Let P be the point (ay,...,a). Clearly I(P) D (X1 —ai,..., Xn—an),
but (X1 —ai, ..., Xn —ay) is a maximal ideal, because “evaluation at (ay, ..., ay)” defines

an isomorphism
k[Xl,...,Xn]/(Xl —al,...,X,, —an) — k.

As I(P) is a proper ideal, it must equal (X1 —a1,..., Xn —an).

PROPOSITION 2.9. For any subset W C k", VI(W) is the smallest algebraic subset of k"
containing W. In particular, VI(W) = W if W is an algebraic set.

PROOF. Let V be an algebraic set containing W, and write V = V(a). Then a C I(W),
and so V(a) D VI(W). &)

The radical rad(a) of an ideal a is defined to be
{f|f"€asomer €N, r > 0}.

PROPOSITION 2.10. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad(rad(a)) = rad(a).

PROOF. (a)Ifa € rad(a), then clearly fa € rad(a) forall f € A. Suppose a,b € rad(a),
with say a” € a and b* € a. When we expand (a + b)"** using the binomial theorem, we
find that every term has a factor a” or *, and so lies in a.

(b) If a” € rad(a), then a™s = (a")® € a for some s. o

2If k is infinite, then consider the polynomials X —a, and if k is finite, consider the minimum polynomials
of generators of the extension fields of k. Alternatively, and better, adapt Euclid’s proof that there are infinitely
many prime numbers.
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An ideal is said to be radical if it equals its radical, i.e., if f©" € a = f € a.
Equivalently, a is radical if and only if A/a is a reduced ring, i.e., a ring without nonzero
nilpotent elements (elements some power of which is zero). Since integral domains are
reduced, prime ideals (a fortiori maximal ideals) are radical.

If a and b are radical, then a N b is radical, but a 4 b need not be: consider, for example,
a=(X2-Y)and b = (X2 + Y); they are both prime ideals in k[X, Y], but X2 € a + b,
X ¢a+b.

As f"(P) = f(P)", f7 is zero wherever f is zero, and so I(W) is radical. In
particular, / V(a) D rad(a). The next theorem states that these two ideals are equal.

THEOREM 2.11 (STRONG HILBERT NULLSTELLENSATZ). Foranyidealaink|[Xy,..., X,],

1V (a) is the radical of a; in particular, [ V(a) = a if a is a radical ideal.

PROOF. We have already noted that / V(a) D rad(a). For the reverse inclusion, we have
to show that if / is identically zero on V(a), then 1"V € a for some N > 0; here h €

k[X1,...,Xn]. We may assume i # 0. Let g1,...,gm generate a, and consider the
system of m + 1 equations in n + 1 variables, X1,..., X, 7Y,
gi(X1,....X,) = 0, i=1,...,m
1—-Yh(Xq,....X,) = O.
If (ay,...,a,, b) satisfies the first m equations, then (aq,...,a,) € V(a); consequently,
h(ay,...,an) = 0, and (ay,...,a,,b) doesn’t satisfy the last equation. Therefore, the

equations are inconsistent, and so, according to the original Nullstellensatz, there exist
fi € k[X1,..., Xn, Y] such that

m
1=Y"figi+ fmt1-(1=Yh)
i=1
(in the ring k[ X1, ..., X, Y]). On applying the homomorphism

Xi— X;
{ er—> h—ll kX1, .. X0, Y] = k(X1,..., Xn)

to the above equality, we obtain the identity
m
=" fi(X1, ... X0 h7Y) - gi (X1, ... Xp) (*)
i=1

ink(X1y,...,Xy). Clearly

polynomial in Xq,..., X},
hNi

fi(X1,.... Xy, hhH =

for some N;. Let N be the largest of the N;. On multiplying (*) by 4" we obtain an
equation
N = Z(polynomial inXq,...,X) - gi(X1,...,Xy),

which shows that AV € a. o



36 CHAPTER 2. ALGEBRAIC SETS

COROLLARY 2.12. The map a +—> V(a) defines a one-to-one correspondence between the
set of radical ideals in k[X1, ..., X,] and the set of algebraic subsets of k™ ; its inverse is I .

PROOF. We know that I V(a) = aif a is a radical ideal (2.11)), and that VI(W) = W if W
is an algebraic set (2.9). Therefore, / and V' are inverse maps. O

COROLLARY 2.13. The radical of an ideal in k[X1, ..., X,] is equal to the intersection of
the maximal ideals containing it.

PROOF. Let a be an ideal in k[X1,..., X,]. Because maximal ideals are radical, every
maximal ideal containing a also contains rad(a):
rad(a) C () m.
mDa
Foreach P = (ay,...,an) € k", mp = (X1 —ay, ..., Xy —ay) is a maximal ideal in

k[X1,...,Xn], and
femp < f(P)=0
(see2.8). Thus
mp Da < P e V(a).
If f € mp forall P € V(a), then f is zero on V(a), and so f € IV(a) = rad(a). We
have shown that

rad(a) D ﬂ mp.

PeV(a) 0O

REMARK 2.14. (a) Because V(0) = k",
(k") = I'V(0) = rad(0) = 0;

in other words, only the zero polynomial is zero on the whole of k”.

(b) The one-to-one correspondence in the corollary is order inverting. Therefore the
maximal proper radical ideals correspond to the minimal nonempty algebraic sets. But
the maximal proper radical ideals are simply the maximal ideals in k[ X1, ..., X,], and the
minimal nonempty algebraic sets are the one-point sets. As

I((ay,....an)) = X1 —ai,....Xn—ay)

(see[2.8), this shows that the maximal ideals of k[X1, ..., X,] are exactly the ideals of the
form (X1 —ay,..., Xn —an).
(c) The algebraic set V(a) is empty if and only if a = k[X1, ..., X,], because

V(a) = 0 = rad(a) = k[X1,..., Xy] = 1 €rad(a) = 1 € a.

(d) Let W and W’ be algebraic sets. Then W N W' is the largest algebraic subset con-
tained in both W and W', and so I(W N W') must be the smallest radical ideal containing
both I(W) and I(W'). Hence I(W N W') = rad(I(W) + I(W)).

For example, let W = V(X2 —Y) and W = V(X2 + Y); then IW N W') =
rad(X2,Y) = (X,Y) (assuming characteristic # 2). Note that W N W’ = {(0,0)}, but
when realized as the intersection of ¥ = X2 and Y = —X?2, it has “multiplicity 2”. [The
reader should draw a picture.]
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ASIDE 2.15. Let P be the set of subsets of k” and let O be the set of subsets of k[ X1, ..., Xj].
Then I: P — Q and V:(Q — P define a simple Galois correspondence (cf. FT 7.17).
Therefore, I and V' define a one-to-one correspondence between /P and VQ. But the
strong Nullstellensatz shows that I P consists exactly of the radical ideals, and (by defini-
tion) VQ consists of the algebraic subsets. Thus we recover Corollary [2.12]

Finding the radical of an ideal

Typically, an algebraic set V' will be defined by a finite set of polynomials {g1, ..., gs}, and
then we shall need to find /(V) = rad((g1,...,gs)).

PROPOSITION 2.16. The polynomial h € rad(a) if and only if 1 € (a,1 — Y h) (the ideal
ink[Xy,..., X,,Y] generated by the elements of a and 1 — Y h).

PROOF. We saw that 1 € (a,1 — Yh) implies & € rad(a) in the course of proving (2.11).
Conversely, if 4V € a, then

1=Y¥pN 4+ -y Vp)
=YVN + (1—=Yh)- A+ Yh+---+ YNV
ca+ (1 -Yh). o

Since we have an algorithm for deciding whether or not a polynomial belongs to an
ideal given a set of generators for the ideal — see Section |I|— we also have an algorithm
deciding whether or not a polynomial belongs to the radical of the ideal, but not yet an
algorithm for finding a set of generators for the radical. There do exist such algorithms
(see Cox et al. 1992, p177 for references), and one has been implemented in the computer
algebra system Macaulay 2 (see p29).

The Zariski topology on an algebraic set

We now examine more closely the Zariski topology on k" and on an algebraic subset of
k™. Proposition says that, for each subset W of k”, VI(W) is the closure of W, and
(2.12)) says that there is a one-to-one correspondence between the closed subsets of k” and
the radical ideals of k[X1, ..., X]. Under this correspondence, the closed subsets of an
algebraic set V' correspond to the radical ideals of k[ X1, ..., X;] containing I(V).

PROPOSITION 2.17. Let V be an algebraic subset of k™.

(a) The points of V are closed for the Zariski topology (thus V' is a T} -space).

(b) Every ascending chain of open subsets Uy C U, C --- of V eventually becomes
constant, i.e., for some m, Uy, = Uy +1 = ---; hence every descending chain of closed
subsets of V' eventually becomes constant.

(c) Every open covering of V has a finite subcovering.

PROOF. (a)Clearly {(ay,...,an)}is the algebraic set defined by the ideal (X;—ay, ..., X;—
an).

(b) A sequence V1 D V, D --- of closed subsets of V' gives rise to a sequence of radical
ideals 1(V7) C I(V») C ..., which eventually becomes constant because k[ X1, ..., X,] is
noetherian.
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(c)LetV = Uie[ U; with each U; open. Choose an ig € I; if U;, # V, then there
exists an i; € [ such that U;, g Ui, UU;,. If Ui, U U;, # V, then there exists an i € [
etc.. Because of (b), this process must eventually stop. O

A topological space having the property (b) is said to be noetherian. The condition
is equivalent to the following: every nonempty set of closed subsets of V' has a minimal
element. A space having property (c) is said to be quasicompact (by Bourbaki at least;
others call it compact, but Bourbaki requires a compact space to be Hausdorff). The proof
of (c) shows that every noetherian space is quasicompact. Since an open subspace of a
noetherian space is again noetherian, it will also be quasicompact.

The coordinate ring of an algebraic set
Let V be an algebraic subset of k", and let /(V') = a. The coordinate ring of V is
k[V] = k[X1,..., Xn]/a.

This is a finitely generated reduced k-algebra (because a is radical), but it need not be an
integral domain.
A function V' — k of the form P — f(P) for some f € k[Xy,..., X,] is said to

be regular.’ Two polynomials f,g € k[X1,..., X,] define the same regular function on
V if only if they define the same element of k[V]. The coordinate function x;:V — k,
(ai,...,an) — a; isregular, and k[V] >~ k[x1,..., xz].

For an ideal b in k[V], set
V() ={P eV | f(P)=0,all f €b}.
Let W = V(b). The maps

K[X1.... Xn] k]
. kW=

k[X1,...,Xn] = k[V] =
send a regular function on k" to its restriction to V', and then to its restriction to W.

Write 7 for the map k[X1, ..., X,] — k[V]. Then b — 7 ~1(b) is a bijection from the
set of ideals of k[V] to the set of ideals of k[ X1, ..., X,] containing a, under which radical,
prime, and maximal ideals correspond to radical, prime, and maximal ideals (each of these
conditions can be checked on the quotient ring, and k[X1,..., X,]/7~1(b) ~ k[V]/b).
Clearly

V(r~l(b) = V(b),

and so b — V/(b) is a bijection from the set of radical ideals in k[V'] to the set of algebraic
sets contained in V.
For h € k[V], set
D(h) ={a €V | h(a) # 0}.

It is an open subset of 1/, because it is the complement of V((h)), and it is empty if and

only if & is zero (2.14p).

3In the next chapter, we’ll give a more general definition of regular function according to which these are
exactly the regular functions on V, and so k[V'] will be the ring of regular functions on V.
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PROPOSITION 2.18. (a) The points of V' are in one-to-one correspondence with the maxi-
mal ideals of k[V].

(b) The closed subsets of V' are in one-to-one correspondence with the radical ideals of
k[V].

(c) The sets D(h), h € k[V], are a base for the topology on V , i.e., each D(h) is open,
and every open set is a union (in fact, a finite union) of D(h)’s.

PROOF. (a) and (b) are obvious from the above discussion. For (c), we have already ob-
served that D(h) is open. Any other open set U C V is the complement of a set of the form
V(b), with b an ideal in k[V], and if f1,..., fm generate b, then U = | D(f;). o

The D(h) are called the basic (or principal) open subsets of V. We sometimes write
Vy, for D(h). Note that

D(h) C D() —> V(h) > V()
<= rad((h)) C rad((h"))
<= h" € (h)somer
& h" = Hh'g, some g.

Some of this should look familiar: if V' is a topological space, then the zero set of a
family of continuous functions f:V — R is closed, and the set where such a function is
nonzero is open.

Irreducible algebraic sets

A nonempty topological space is said to be irreducible if it is not the union of two proper
closed subsets; equivalently, if any two nonempty open subsets have a nonempty intersec-
tion, or if every nonempty open subset is dense.

If an irreducible space W is a finite union of closed subsets, W = W U ... U W,, then
W = Wy or WaU...UW,;if the latter, then W = W, or W3 U ... U W,, etc.. Continuing
in this fashion, we find that W = W, for some i.

The notion of irreducibility is not useful for Hausdorff topological spaces, because the
only irreducible Hausdorff spaces are those consisting of a single point — two points would
have disjoint open neighbourhoods contradicting the second condition.

PROPOSITION 2.19. An algebraic set W is irreducible and only if I(W) is prime.
PROOF. == : Suppose fg € I(W). At each point of W, either f is zero or g is zero,
andso W C V(f) U V(g). Hence

W=Wnv()umwnvg)).

As W is irreducible, one of these sets, say W N V( f), must equal W. But then f € I(W).
This shows that /(W) is prime.

<=: Suppose W = V(a) U V(b) with a and b radical ideals — we have to show that
W equals V(a) or V(b). Recall that V(a) U V(b) = V(a N b) and that a N b is radical;
hence I(W) =anb. If W # V(a), thenthereisan f € a~ I(W). Forall g € b,

fgeanb=I1(W).
Because /(W) is prime, this implies that b C I(W); therefore W C V(b). o
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Thus, there are one-to-one correspondences

radical ideals <> algebraic subsets
prime ideals <> irreducible algebraic subsets

maximal ideals <> one-point sets.

These correspondences are valid whether we mean ideals in k[ X7, ..., X;] and algebraic
subsets of k™, or ideals in k[V] and algebraic subsets of V. Note that the last correspon-
dence implies that the maximal ideals in k[V'] are those of the form (x1 —aq, ..., x, —ay),
(ai,...,an) V.

EXAMPLE 2.20. Let f € k[X1,...,X,]. As we showed in (I.14), k[X1,..., X,] is a
unique factorization domain, and so (f) is a prime ideal if and only if f is irreducible

(1.15). Thus
V(f) isirreducible <= f is irreducible.

On the other hand, suppose f factors,
f = 1_[ fimi , fi distinct irreducible polynomials.
Then

(f) = ﬂ(]‘imi), (™) distinct primary*ideals,
rad((f)) = ﬂ( fi), (fi) distinct prime ideals,
V(f) = U V(fi), V(f;) distinct irreducible algebraic sets.

PROPOSITION 2.21. Let V be a noetherian topological space. Then V is a finite union
of irreducible closed subsets, V = Vi U ... U V,,. Moreover, if the decomposition is
irredundant in the sense that there are no inclusions among the V;, then the V; are uniquely
determined up to order.

PROOF. Suppose that V' can not be written as a finite union of irreducible closed subsets.
Then, because V' is noetherian, there will be a closed subset W of V' that is minimal among
those that cannot be written in this way. But W itself cannot be irreducible, and so W =
W1 UW,, with each W; a proper closed subset of . From the minimality of W, we deduce
that each W; is a finite union of irreducible closed subsets, and so therefore is . We have
arrived at a contradiction.

Suppose that
V:VIU...UVm:WIU...UWn
are two irredundant decompositions. Then V; = j(V,- N W;), and so, because V; is
irreducible, V; = V; N W; for some j. Consequently, there is a function f:{1,...,m} —

{1,...,n} such that V; C Wy for each i. Similarly, there is a function g:{1,...,n} —
{1,...,m} such that W; C Vj;) for each j. Since V; C Wy C Vg r(), we must have
gf(i) = iand V; = Wp); similarly fg = id. Thus f and g are bijections, and the
decompositions differ only in the numbering of the sets. O

31In a noetherian ring A, a proper ideal q is said to primary if every zero-divisor in A/q is nilpotent.
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The V; given uniquely by the proposition are called the irreducible components of V.
They are the maximal closed irreducible subsets of V. In Example [2.20] the V( f;) are the
irreducible components of V( f).

COROLLARY 2.22. A radical ideal a in k[X1, ..., Xy] is a finite intersection of prime ide-
als, a = py N ... N py; if there are no inclusions among the p;, then the p; are uniquely
determined up to order.

PROOF. Write V'(a) as a union of its irreducible components, V(a) = |JV;, and take
pi = 1(Vi). o

REMARK 2.23. (a) An irreducible topological space is connected, but a connected topo-
logical space need not be irreducible. For example, V(X1X>2) is the union of the coor-
dinate axes in k2, which is connected but not irreducible. An algebraic subset V of k"
is not connected if and only if there exist ideals a and b such that aN'b = I(V) and
a+b#k[X1,..., Xnl

(b) A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

(¢) In k[X], (f(X)) is radical if and only if f is square-free, in which case f is a
product of distinct irreducible polynomials, f = fi... fr,and (f) = (f1))N...N(fy) (a
polynomial is divisible by f if and only if it is divisible by each f;).

(d) In a noetherian ring, every proper ideal a has a decomposition into primary ideals:
a = [\ q; (see CA §13). For radical ideals, this becomes a simpler decomposition into
prime ideals, as in the corollary. For an ideal ( /) with f =[] fimi , it is the decomposition

(f) = N(f"") noted in Example

Dimension

We briefly introduce the notion of the dimension of an algebraic set. In chapter [9] we shall
discuss this in more detail.

Let V be an irreducible algebraic subset. Then /(1) is a prime ideal, and so k[V] is
an integral domain. Let k(1) be its field of fractions — k(1) is called the field of rational
Sfunctions on V. The dimension of V is defined to be the transcendence degree of k(1)
over k (see FT §8).

EXAMPLE 2.24. (a)Let V = k" then k(V) = k(X1,..., X,), and so dim(V) = n.

(b) If V is a linear subspace of k™ (or a translate of such a subspace), then it is an easy
exercise to show that the dimension of V' in the above sense is the same as its dimension
in the sense of linear algebra (in fact, k[V] is canonically isomorphic to k[Xj,, ..., X;,]
where the X;; are the “free” variables in the system of linear equations defining V' — see
5.12).

In linear algebra, we justify saying V' has dimension n by proving that its elements
are parametrized by n-tuples. It is not true in general that the points of an algebraic set
of dimension n are parametrized by n-tuples. The most one can say is that there exists a
finite-to-one map to k" (see [8.12).

5 According to CA, 12.8, the transcendence degree of k(') is equal to the Krull dimension of k[V]; cf.

below.
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(c) An irreducible algebraic set has dimension O if and only if it consists of a single
point. Certainly, for any point P € k", k[P] = k, and so k(P) = k. Conversely, suppose
V = V(p), p prime, has dimension 0. Then k(V) is an algebraic extension of k, and so
equals k. From the inclusions

k Ck[V]Ck(V)=k

we see that k[V] = k. Hence p is maximal, and we saw in (2.14b) that this implies that
V(p) is a point.

The zero set of a single nonconstant nonzero polynomial f(Xi,...,X,) is called a
hypersurface in k.

PROPOSITION 2.25. An irreducible hypersurface in k" has dimensionn — 1.

PROOF. An irreducible hypersurface is the zero set of an irreducible polynomial f (see

[2.20). Let
klxi,....xn] = k[X1,.... Xal/(f),  xi = Xi +p,

and let k(x1, ..., xy) be the field of fractions of k[xy,...,x,]. Since f is not zero, some
Xi, say, Xp, occurs in it. Then X, occurs in every nonzero multiple of f, and so no
nonzero polynomial in Xy,..., X,—1 belongs to (f). This means that xq,...,x,—1 are
algebraically independent. On the other hand, x,, is algebraic over k(xy, ..., X;—1), and so
{X1,...,xn—1} is a transcendence basis for k(xy,...,x,) over k. o

For a reducible algebraic set V', we define the dimension of V' to be the maximum of
the dimensions of its irreducible components. When the irreducible components all have
the same dimension d, we say that V has pure dimension d .

PROPOSITION 2.26. If V is irreducible and Z is a proper algebraic subset of V', then
dim(Z) < dim(V).

PROOF. We may assume that Z is irreducible. Then Z corresponds to a nonzero prime
ideal p in k[V], and k[Z] = k[V']/p.
Write
k[V] =k[X1,....Xul/I(V) = k[x1,...,xn].

Let f € k[V]. The image f of f in k[V]/p = k[Z] is the restriction of f to Z. With
this notation, k[Z] = k[X1,...,X,]. Suppose that dim Z = d and that the X; have been
numbered so that x1, ..., x; are algebraically independent (see FT 8.9 for the proof that
this is possible). I will show that, for any nonzero f € p, the d + 1 elements x1,..., x4, f
are algebraically independent, which implies that dim V' > d + 1.

Suppose otherwise. Then there is a nontrivial algebraic relation among the x; and f,
which we can write

ao(xl,...,xd)fm-1—511(x1,...,xd)fm_1 +-tam(xy, ..., xq) =0,

with a; (x1,...,xq) € k[x1,...,x4] and not all zero. Because V is irreducible, k[V] is an
integral domain, and so we can cancel a power of f if necessary to make @, (x1,...,x7)
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nonzero. On restricting the functions in the above equality to Z, i.e., applying the homo-
morphism k[V] — k[Z], we find that

am(X1,...,Xq) =0,

which contradicts the algebraic independence of X1, ..., X . O

PROPOSITION 2.27. Let V be an irreducible variety such that k[V] is a unique factoriza-
tion domain (for example, V = Ad). If W C V is a closed subvariety of dimension
dimV — 1, then (W) = (f) for some f € k[V].

PROOF. We know that /(W) = () I(W;) where the W; are the irreducible components of
W, and so if we can prove I(W;) = (f;) then I(W) = (f1--- f). Thus we may suppose
that W is irreducible. Let p = I(W); itis a prime ideal, and it is nonzero because otherwise
dim(W) = dim(V). Therefore it contains an irreducible polynomial f. From we
know (f') is prime. If (f) # p , then we have

W=VpSV/NeV.

and dim(W) < dim(V(f)) < dim V (see[2.26)), which contradicts the hypothesis. o

EXAMPLE 2.28. Let F(X,Y) and G(X, Y) be nonconstant polynomials with no common
factor. Then V(F(X,Y)) has dimension 1 by (2.25), and so V(F(X,Y)) N V(G(X,Y))
must have dimension zero; it is therefore a finite set.

EXAMPLE 2.29. We classify the irreducible closed subsets V' of k2. If VV has dimension
2, then (by it can’t be a proper subset of k2, so it is k2. If VV has dimension 1, then
V # k2, and so I(V) contains a nonzero polynomial, and hence a nonzero irreducible
polynomial f (being a prime ideal). Then V' DO V(f'), and so equals V( /). Finally, if V
has dimension zero, it is a point. Correspondingly, we can make a list of all the prime ideals
in k[X, Y]: they have the form (0), (f) (with f irreducible), or (X —a,Y — b).

ASIDE 2.30. Later (9.4]) we shall show that if, in the situation of (2.26), Z is a maximal
proper irreducible subset of V, then dim Z = dim V — 1. This implies that the dimension
of an algebraic set V' is the maximum length of a chain

Vo2 Vi 22 Vy

with each V; closed and irreducible and Vjy an irreducible component of V. Note that
this description of dimension is purely topological — it makes sense for any noetherian
topological space.

On translating the description in terms of ideals, we see immediately that the dimension
of V is equal to the Krull dimension of k[V]—the maximal length of a chain of prime

ideals,
Pa 2Pa—1 2 £ bo
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Exercises

2-1. Find (W), where V = (X2, XY ?). Check that it is the radical of (X2, XY ?2).

2-2. Identify k’”2 with the set of m x m matrices. Show that, for all r, the set of matrices
with rank < r is an algebraic subset of km.

2-3. Let V = {(z,...,t") | t € k}. Show that V is an algebraic subset of k", and that
k[V] = k[X] (polynomial ring in one variable). (Assume k has characteristic zero.)

2-4. Using only that k[X, Y] is a unique factorization domain and the results of §§1,2,
show that the following is a complete list of prime ideals in k[ X, Y]:

(a) (0);
(b) (f(X,Y)) for f an irreducible polynomial;
(¢) (X —a,Y —b)fora,b k.

2-5. Let A and B be (not necessarily commutative) QQ-algebras of finite dimension over Q,
and let Q¥ be the algebraic closure of Q in C. Show that if Homc_aigebras (4 ®g C, B ®q
C) # 0, then Homgan_jgehras (4 @@ Q*, B®g Q™) # @. (Hint: The proof takes only a few
lines.)



Chapter 3

Affine Algebraic Varieties

In this chapter, we define the structure of a ringed space on an algebraic set, and then we
define the notion of affine algebraic variety — roughly speaking, this is an algebraic set with
no preferred embedding into k”. This is in preparation for §4} where we define an algebraic
variety to be a ringed space that is a finite union of affine algebraic varieties satisfying a
natural separation axiom.

Ringed spaces

Let V be a topological space and k a field.

DEFINITION 3.1. Suppose that for every open subset U of V' we have a set Oy (U) of
functions U — k. Then Oy is called a sheaf of k-algebras if it satisfies the following
conditions:

(a) Oy (U) is a k-subalgebra of the algebra of all k-valued functions on U, i.e., Oy (U)
contains the constant functions and, if f, g lie in Oy (U), then so also do f + g and
/8.

(b) If U’ is an open subset of U and f € Oy (U), then f|U’ € Oy (U’).

(¢) A function f:U — k on an open subset U of V is in Oy (U) if f|U; € Oy (U;) for
all U; in some open covering of U'.

Conditions (b) and (c) require that a function f on U lies in Oy (U) if and only if each
point P of U has a neighborhood Up such that f|Up lies in Oy (Up); in other words, the
condition for f to lie in Oy (U) is local.

EXAMPLE 3.2. (a) Let V' be any topological space, and for each open subset U of V' let
Oy (U) be the set of all continuous real-valued functions on U. Then Oy is a sheaf of
R-algebras.

(b) Recall that a function f:U — R, where U is an open subset of R”, is said to
be smooth (or infinitely differentiable) if its partial derivatives of all orders exist and are
continuous. Let V' be an open subset of R”, and for each open subset U of V let Oy (U)
be the set of all smooth functions on U. Then Oy is a sheaf of R-algebras.

(c) Recall that a function f:U — C, where U is an open subset of C", is said to be
analytic (or holomorphic) if it is described by a convergent power series in a neighbourhood
of each point of U. Let V' be an open subset of C", and for each open subset U of V let
Oy (U) be the set of all analytic functions on U. Then Oy is a sheaf of C-algebras.

45
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(d) Nonexample: let V' be a topological space, and for each open subset U of V' let
Oy (U) be the set of all real-valued constant functions on U ; then Oy is not a sheaf, unless
V is irreducible!" When “constant” is replaced with “locally constant”, Oy becomes a
sheaf of R-algebras (in fact, the smallest such sheaf).

A pair (V, Oy ) consisting of a topological space V' and a sheaf of k-algebras will be
called a ringed space. For historical reasons, we often write I" (U, Oy) for Oy (U) and call
its elements sections of Oy over U.

Let (V, Oy) be a ringed space. For any open subset U of V, the restriction Oy |U of
Oy to U, defined by

rU,0y|U)y=TU'Oy),alopen U C U,

is a sheaf again.

Let (V,Oy) be ringed space, and let P € V. Consider pairs (f,U) consisting of
an open neighbourhood U of P and an f € Oy (U). We write (f,U) ~ (f’,U’) if
flU" = f'|U” for some open neighbourhood U” of P contained in U and U’. This is
an equivalence relation, and an equivalence class of pairs is called a germ of a function at
P (relative to Oy ). The set of equivalence classes of such pairs forms a k-algebra denoted
Oy,p or Op. In all the interesting cases, it is a local ring with maximal ideal the set of
germs that are zero at P.

In a fancier terminology,

Op = h_r)n Oy (U), (direct limit over open neighbourhoods U of P).

A germ of a function at P is defined by a function f on a neigbourhood of P (section of
Oy ), and two such functions define the same germ if and only if they agree in a possibly
smaller neighbourhood of P.

EXAMPLE 3.3. Let Oy be the sheaf of holomorphic functions on V = C, and let ¢ € C.
A power series ), .o an(z — ¢)*, ap, € C, is called convergent if it converges on some
open neighbourhood of ¢. The set of such power series is a C-algebra, and I claim that it is
canonically isomorphic to the C-algebra of germs of functions O,.

Let f be a holomorphic function on a neighbourhood U of ¢. Then f has a unique
power series expansion f = Y a,(z—c¢)" in some (possibly smaller) open neighbourhood
of ¢ (Cartan 19632, I1 2.6). Moreover, another holomorphic function f1 on a neighbourhood
U, of ¢ defines the same power series if and only if f; and f agree on some neighbourhood
of ¢ contained in U N U’ (ibid. 14.3). Thus we have a well-defined injective map from the
ring of germs of holomorphic functions at ¢ to the ring of convergent power series, which
is obviously surjective.

UIf V is reducible, then it contains disjoint open subsets, say Uy and Us. Let f be the function on the union
of U; and Us taking the constant value 1 on U; and the constant value 2 on U,. Then f is notin Oy (U; UU,),
and so condition 3.Tk fails.

2Cartan, Henri. Elementary theory of analytic functions of one or several complex variables. Hermann,
Paris; Addison-Wesley; 1963.
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The ringed space structure on an algebraic set

We now take k to be an algebraically closed field. Let V be an algebraic subset of k. An
element 4 of k[V] defines functions

P h(P).V —>k,and P — 1/h(P): D(h) — k.
Thus a pair of elements g, h € k[V] with i # 0 defines a function

g(P)
P h(P).D(h) — k.

We say that a function f:U — k on an open subset U of V' is regular if it is of this form
in a neighbourhood of each of its points, i.e., if for all P € U, there exist g, h € k[V] with
h(P) # 0 such that the functions f and % agree in a neighbourhood of P. Write Oy (U)
for the set of regular functions on U'.

For example, if V' = k", then a function f:U — k is regular at a point P € U
if there exist polynomials g(X1,...,Xy) and A(Xq,..., X,) with A(P) # O such that

f(Q) = % for all Q in a neighbourhood of P.

PROPOSITION 3.4. The map U — Oy (U) defines a sheaf of k-algebras on V.

PROOF. We have to check the conditions (3.T)).

(a) Clearly, a constant function is regular. Suppose f and f” are regular on U, and let
P € U. By assumption, there exist g, g’, h,h’ € k[V], with h(P) # 0 # h’(P) such that
f and f’ agree with § and ‘Z—: respectively near P. Then f + f’ agrees with & h;;l‘,g/h
near P, and so f + f’isregular on U. Similarly ff” is regular on U. Thus Oy (U) is a
k-algebra.

(b,c) It is clear from the definition that the condition for f to be regular is local. o

Let g,h € k[V] and m € N. Then P + g(P)/h(P)™ is a regular function on D(h),
and we’ll show that all regular functions on D(h) are of this form, i.e., I'(D(h),Oy) ~
k[V]p. In particular, the regular functions on V itself are exactly those defined by elements
of k[V].

LEMMA 3.5. The function P + g(P)/h(P)™ on D(h) is the zero function if and only if
and only if gh = 0 (in k[V']) (and hence g/ h™ = 0 in k[V]p).

PROOF. If g/ h™ is zero on D(h), then gh is zero on V because 4 is zero on the comple-
ment of D(h). Therefore gh is zero in k[V]. Conversely, if gh = 0, then g(P)h(P) =0
forall P € V,and so g(P) = 0 forall P € D(h). o

The lemma shows that the canonical map k[V], — Oy (D(h)) is well-defined and
injective. The next proposition shows that it is also surjective.

PROPOSITION 3.6. (a) The canonical map k[V], — I'(D(h), Oy) is an isomorphism.
(b) For any P € V, there is a canonical isomorphism Op — k[V |, where mp is the
maximal ideal I1(P).
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PROOF. (a) It remains to show that every regular function f on D(h) arises from an el-
ement of k[V],. By definition, we know that there is an open covering D(h) = |JV;
and elements g;, h; € k[V] with h; nowhere zero on V; such that f|V; = i—i We may
assume that each set V; is basic, say, V; = D(a;) for some a; € k[V]. By assumption
D(a;) C D(h;), and so al¥ = h; g} forsome N € Nand g/ € k[V] (see . On D(a;),

B 8i& _ &i&
hi  higi aV’

1

Note that D(alN ) = D(a;). Therefore, after replacing g; with g; g/ and h; with alN , we
can assume that V; = D(h;).

We now have that D(h) = |J D(h;) and that f|D(h;) = i—j Because D(h) is qua-
sicompact, we can assume that the covering is finite. As ‘Z’—j = i—j on D(hj) N D(hj) =
D(hihj), we have (by Lemma 3.5) that

hihj(gihj —gjh;) =0,ie., hihigi = hl‘zhjgj. (*)

Because D(h) = |J D(hi) = |J D(h?), the set V((h)) = V((h%.....h%)), and so h €
rad(h?,...,h2): there exist a; € k[V] such that

m
WY = "a;h}. (**)

i=1

for some N. I claim that f is the function on D (/) defined by %.
Let P be a point of D(h). Then P will be in one of the D(h;), say D(h ;). We have the
following equalities in k[V]:

m m
h% Y aigihi = aigjhih; by (¥)
i=1 i=1

=gihihN by (%)

But f|D(hj) = Z—j, i.e., fhj and g; agree as functions on D(/ ;). Therefore we have the
following equality of functions on D(h):

m
W2y aigihi = fh3h".

i=1

Since h? is never zero on D(h;), we can cancel it, to find that, as claimed, the function
fh" on D(h ) equals that defined by > a; gih;.

(b) In the definition of the germs of a sheaf at P, it suffices to consider pairs (f, U) with

U lying in a some basis for the neighbourhoods of P, for example, the basis provided by

the basic open subsets. Therefore,
a 1.29(b
Op = tm rD®.0p) L tm k1 2 kY],
h(P)#0 h¢mp o
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REMARK 3.7. Let V be an affine variety and P a point on V. Proposition [I1.30] shows
that there is a one-to-one correspondence between the prime ideals of k[V] contained in
mp and the prime ideals of Op. In geometric terms, this says that there is a one-to-one
correspondence between the prime ideals in Op and the irreducible closed subvarieties of
V passing through P.

REMARK 3.8. (a) Let V be an algebraic subset of k", and let A = k[V']. The proposition
and (2.18)) allow us to describe (V, Oy ) purely in terms of A:

¢V is the set of maximal ideals in A; for each f € A,let D(f) = {m | f ¢ m};
¢ the topology on V is that for which the sets D( /) form a base;
¢ Oy is the unique sheaf of k-algebras on V' for which I'(D(f),Oy) = Ay.

(b) When V is irreducible, all the rings attached to it are subrings of the field k(V). In
this case,

r(D(h), Oy) = {g/hN ck(V)|gek[V], Ne N}
Op ={g/h €kV) | h(P) # 0}

r'y.oy) = ﬂPeUOP

= (D). Oy)if U =) D(hy).

Note that every element of k(1) defines a function on some dense open subset of V. Fol-
lowing tradition, we call the elements of k(1) rational functions on V.3 The equalities
show that the regular functions on an open U C V are the rational functions on V' that are
defined at each point of U (i.e., lie in O p for each P € U).

EXAMPLE 3.9. (a) Let V = k”". Then the ring of regular functions on V, I'(V, Oy), is
k[X1,...,Xn]. For any nonzero polynomial 4(X1,..., X;), the ring of regular functions
on D(h) is

{g/hN e k(X1,.... Xn) | g €k[X1,..., Xnl, NeN}.

For any point P = (ay, ..., ay), the ring of germs of functions at P is

Op ={g/h€k(X1,....Xn) | h(P) # 0} = k[X1,.... Xul(xX\=a1,.... Xn—an)

and its maximal ideal consists of those g/ with g(P) = 0.

(b)Let U = {(a,b) € k? | (a,b) # (0,0)}. It is an open subset of k2, but it is not a
basic open subset, because its complement {(0, 0)} has dimension 0, and therefore can’t be
of the form V((f)) (see[2.25). Since U = D(X) U D(Y), the ring of regular functions on
U is

Ou(U) =k[X.Y]x Nk[X,Y]y
(intersection inside k (X, Y)). A regular function f on U can be expressed

g(X.Y) h(X.Y)
=8 =—ym

3The terminology is similar to that of “meromorphic function”, which also are not functions on the whole
space.
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where we can assume X { g and Y { 4. On multiplying through by X NyM  we find that
gX. VHYM = p(x, v)xV.

Because X doesn’t divide the left hand side, it can’t divide the right hand side either, and
so N = 0. Similarly, M = 0, and so f € k[X, Y]: every regular function on U extends
uniquely to a regular function on k2.

Morphisms of ringed spaces

A morphism of ringed spaces (V, Oy) — (W, Ow) is a continuous map ¢: V — W such
that
ferU.0w) = fopel(p~'U.Oy)

for all open subsets U of W. Sometimes we write ¢*( ) for fog. If U is an open subset of
V, then the inclusion (U, Oy |V) < (V, Oy ) is a morphism of ringed spaces. A morphism
of ringed spaces is an isomorphism if it is bijective and its inverse is also a morphism of
ringed spaces (in particular, it is a homeomorphism).

EXAMPLE 3.10. (a) Let V and V' be topological spaces endowed with their sheaves Oy
and Oy of continuous real valued functions. Every continuous map ¢:V — V'’ is a
morphism of ringed structures (V, Oy) — (V’, Oy).

(b) Let U and U’ be open subsets of R” and R™ respectively, and let x; be the coordi-
nate function (ay,...,a,) + a;. Recall from advanced calculus that a map

o:U - U CcR"

is said to be smooth (infinitely differentiable) if each of its component functions ¢; =
x; o ¢:U — R has continuous partial derivatives of all orders, in which case f o ¢ is
smooth for all smooth f:U’ — R. Therefore, when U and U’ are endowed with their
sheaves of smooth functions, a continuous map ¢: U — U’ is smooth if and only if it is a
morphism of ringed spaces.

(c) Same as (b), but replace R with C and “smooth” with “analytic”.

REMARK 3.11. A morphism of ringed spaces maps germs of functions to germs of func-
tions. More precisely, a morphism ¢: (V, Oy) — (V’, Oy/) induces a homomorphism

OV’P < OV/,(p(P)v

for each P € V, namely, the homomorphism sending the germ represented by ( f, U) to the
germ represented by (f o ¢, ¢~ 1(U)).

Affine algebraic varieties

We have just seen that every algebraic set V' C k" gives rise to a ringed space (V, Oy ). A
ringed space isomorphic to one of this form is called an affine algebraic variety over k. A
map f:V — W of affine varieties is regular (or a morphism of affine algebraic varieties)
if it is a morphism of ringed spaces. With these definitions, the affine algebraic varieties
become a category. Since we consider no nonalgebraic affine varieties, we shall sometimes
drop “algebraic”.
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In particular, every algebraic set has a natural structure of an affine variety. We usually
write A" for k™ regarded as an affine algebraic variety. Note that the affine varieties we
have constructed so far have all been embedded in A”. I now explain how to construct
“unembedded” affine varieties.

An affine k-algebra is defined to be a reduced finitely generated k-algebra. For such
an algebra A, there exist x; € A such that A = k[xy,..., x,], and the kernel of the homo-
morphism

Xit xitk[X1,...,Xn] = A

is a radical ideal. Therefore (2.13)) implies that the intersection of the maximal ideals in A
is 0. Moreover, Zariski’s lemma implies that, for any maximal ideal m C A, the map
k — A — A/m is an isomorphism. Thus we can identify A/m with k. For f € A, we
write f(m) for the image of f in A/m = k,i.e., f(m) = f (mod m).
We attach a ringed space (V, Oy ) to A by letting V' be the set of maximal ideals in A.
For f € A let
D(f) ={m| f(m) #0} ={m | f ¢ mj.

Since D(fg) = D(f) N D(g), there is a topology on V for which the D( f) form a base.
A pair of elements g, h € A, h # 0, gives rise to a function

g(m)
m—= —=:D(h k,
) (h) —
and, for U an open subset of V', we define Oy (U) to be any function f:U — k that is of
this form in a neighbourhood of each point of U.

PROPOSITION 3.12. The pair (V, Oy ) is an affine variety with I'(V, Oy ) = A.

PROOF. Represent A as a quotient k[X1,..., Xu]/a = k[x1,...,xn]. Then (V,Oy) is
isomorphic to the ringed space attached to V(a) (see[3.8(a)). =

We write spm(A) for the topological space V', and Spm(A) for the ringed space (V, Oy ).

PROPOSITION 3.13. A ringed space (V, Oy ) is an affine variety if and only it I'(V, Oy)
is an affine k-algebra and the canonical map V — spm(I"(V, Oy)) is an isomorphism of
ringed spaces.

PROOF. Let (V, Oy ) be an affine variety, andlet A = I'(V, Oy ). Forany P € V, mp =gt
{f € A| f(P) = 0} is a maximal ideal in A, and it is straightforward to check that
P +— mp is an isomorphism of ringed spaces. Conversely, if I'(V,Oy) is an affine k-
algebra, then the proposition shows that Spm(I"(V, Oy)) is an affine variety. o

The category of affine algebraic varieties

For each affine k-algebra A, we have an affine variety Spm(A), and conversely, for each
affine variety (V, Oy ), we have an affine k-algebra k[V] = I'(V, Oy). We now make this
correspondence into an equivalence of categories.
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Leta: A — B be a homomorphism of affine k-algebras. For any & € A, a(h) is invert-
ible in By p), and so the homomorphism 4 — B — By ;) extends to a homomorphism

g ., a(g)

e a(hym

Ah —> Ba(h)'

For any maximal ideal n of B, m = «~!(n) is maximal in 4 because A/m — B/n = k is
an injective map of k-algebras which implies that A/m = k. Thus « defines a map

¢:spm B —spm A, ¢n) =a '(n) =m.
Form = o~ !(n) = ¢(n), we have a commutative diagram:
A -2, B
A/m —— B/n.

Recall that the image of an element f of A in A/m =~ k is denoted f(m). Therefore, the
commutativity of the diagram means that, for f € A,

flem) =a(f)(m),ie, fop =a. (*)
Since ¢ ' D(f) = D(f o ¢) (obviously), it follows from (*) that

o Y (D(f)) = D(a(f)).

and so ¢ is continuous.

Let f be aregular function on D(h), and write f = g/h™, g € A. Then, from (*) we
see that f o is the function on D(«(h)) defined by «(g)/c(h)™. In particular, it is regular,
and so f +— f o ¢ maps regular functions on D () to regular functions on D(«(h)). It
follows that f +— f o ¢ sends regular functions on any open subset of spm(A) to regular
functions on the inverse image of the open subset. Thus « defines a morphism of ringed
spaces Spm(B) — Spm(A4).

Conversely, by definition, a morphism of ¢: (V, Oy) — (W, Ow) of affine algebraic
varieties defines a homomorphism of the associated affine k-algebras k[W] — k[V]. Since
these maps are inverse, we have shown:

PROPOSITION 3.14. For any affine algebras A and B,
Homy.g(4, B) = Mor(Spm(B), Spm(4));
for any affine varieties V and W,

Mor(V, W) = Homy o (k[W], k[V]).

In terms of categories, Proposition can now be restated as:

PROPOSITION 3.15. The functor A — Spm A is a (contravariant) equivalence trom the
category of affine k -algebras to that of affine algebraic varieties with quasi-inverse (V, Oy ) +
r'w,Oy).
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Explicit description of morphisms of affine varieties

PROPOSITION 3.16. Let V = V(a) C k™, W = V(b) C k". The following conditions
on a continuous map ¢: V — W are equivalent:

(a) ¢ is regular;
(b) the components ¢1, ..., ¢y of ¢ are all regular;
© f ek[W] = fogekl[V]

PROOF. (a) = (b). By definition ¢; = y; o ¢ where y; is the coordinate function
(b1,....by) > b W — k.

Hence this implication follows directly from the definition of a regular map.

(b) = (c). Themap f — f o ¢ is a k-algebra homomorphism from the ring of all
functions W — k to the ring of all functions V' — k, and (b) says that the map sends the
coordinate functions y; on W into k[V]. Since the y;’s generate k[W] as a k-algebra, this
implies that it sends k[W] into k[V].

(¢c) = (a). The map f + f o ¢ is a homomorphism «: k[W] — k[V]. It therefore
defines a map spmk[V] — spmk[W], and it remains to show that this coincides with ¢
when we identify spm k[V] with V and spm k[W] with W. Let P € V, let Q = ¢(P),
and let mp and mg be the ideals of elements of k[V'] and k[W] that are zero at P and Q
respectively. Then, for f € k[W],

a(f)emp = f(p(P)) =0 < f(Q)=0 < [femp.

Therefore ! (mp) = mg, which is what we needed to show. o

REMARK 3.17. For P € V, the maximal ideal in Oy, p consists of the germs represented
by pairs (f,U) with f(P) = 0. Clearly therefore, the map Oy ,(p) — Oy, p defined by
¢ (see[3.T1) maps my(p) into mp, i.e., it is a local homomorphism of local rings.

Now consider equations

Yi=fiX1...., Xm)

Yo = fuX1,..., Xm).
On the one hand, they define a regular map ¢: k" — k", namely,
(@i, ....am) — (fitar,....am), ..., falai,...,am)).

On the other hand, they define a homomorphism «: k[Y1,...,Y,] — k[X1,..., Xu] of
k-algebras, namely, that sending

Yi = fl(Xl,,Xn)
This map coincides with g — g o ¢, because

a(@)(P) =g(.... fi(P)....) = g(e(P)).
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Now consider closed subsets V(a) C k™ and V(b) C k" with a and b radical ideals. I claim
that ¢ maps V'(a) into V(b) if and only if o(b) C a. Indeed, suppose ¢(V(a)) C V(b), and
let g € b; for Q € V(b),

a(g)(Q) = g(@(Q)) =0,

and so a( f) € IV(b) = b. Conversely, suppose a(b) C a, and let P € V(a); for f € a,

fp(P)) = a(f)(P) =0,

and so ¢(P) € V(a). When these conditions hold, ¢ is the morphism of affine varieties
V(a) — V(b) corresponding to the homomorphism k[Y1,...,Y,]/b — k[X1,..., Xs]/a
defined by «.

Thus, we see that the regular maps

V(a) — V(b)
are all of the form

P (fi(P),..., fm(P)), fi €klX1,...,Xn]

In particular, they all extend to regular maps A” — A™,

EXAMPLE 3.18. (a) Consider a k-algebra R. From a k-algebra homomorphism o: k[X] —
R, we obtain an element (X ) € R, and «(X) determines o completely. Moreover, o(X)
can be any element of R. Thus

o > a(X): Homy e (k[X], R) —> R.

According to (3.14)
Mor(V, A') = Homy_yq (k[X]. k[V]).

Thus the regular maps ¥V — A! are simply the regular functions on V' (as we would hope).
(b) Define A to be the ringed space (Vo, Oy, ) with Vj consisting of a single point, and
I'(Vo, Oy,) = k. Equivalently, A® = Spm k. Then, for any affine variety V/,

Mor(A°, V) ~ Homy_yg(k[V],k) =V

where the last map sends « to the point corresponding to the maximal ideal Ker(c).
(c) Consider ¢ — (¢2,13): Al — AZ. This is bijective onto its image,

V: Y?2=X3,

but it is not an isomorphism onto its image — the inverse map is not regular. Because of
, it suffices to show that ¢ — (¢2,¢3) doesn’t induce an isomorphism on the rings of
regular functions. We have k[A!] = k[T]and k[V] = k[X,Y]/(Y? — X3) = k[x, y]. The
map on rings is

x> T2 yw— T3 klx,y]—k[T],

which is injective, but its image is k[T2, T3] # k[T]. In fact, k[x, y] is not integrally
closed: (y/x)? —x = 0, and so (y/x) is integral over k[x, y], but y/x ¢ k[x, y] (it maps
to T under the inclusion k(x, y) < k(T)).
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(d) Let k£ have characteristic p # 0, and consider x +— x?:A" — A". This is a
bijection, but it is not an isomorphism because the corresponding map on rings,

Xl' = Xipik[Xl,...,Xn] — k[Xl,...,Xn],

is not surjective.

This is the famous Frobenius map. Take k to be the algebraic closure of IF ,, and write
F for the map. Recall that for each m > 1 there is a unique subfield F ,» of k of degree m
over [F,, and that its elements are the solutions of X =X (FT 4.18). Therefore, the fixed
points of F™ are precisely the points of A" with coordinates in F,m. Let f(X1q,..., Xy)
be a polynomial with coefficients in I ,m, say,

_ o i1 i L
f= E Ciyin Xy - X', Ciyeipy € Fpm.

Let f(ay,...,an) = 0. Then

; - \P" m; e
— 3 1 — JZ2Ra l
0= (E Caly ---an”) = E cqay eeealn,

and so f (af m, ...,al m) = 0. Here we have used that the binomial theorem takes the
simple form (X + Y)?" = X?" + YP?" in characteristic p. Thus F™ maps V(f) into
itself, and its fixed points are the solutions of

f(X1,....Xn) =0

inlFpm.

In one of the most beautiful pieces of mathematics of the second half of the twentieth
century, Grothendieck defined a cohomology theory (étale cohomology) and proved a fixed
point formula that allowed him to express the number of solutions of a system of polynomial
equations with coordinates in [F,» as an alternating sum of traces of operators on finite-
dimensional vector spaces, and Deligne used this to obtain very precise estimates for the
number of solutions. See my course notes: Lectures on Etale Cohomology.

Subvarieties
Let A be an affine k-algebra. For any ideal a in A, we define

V(a) = {P € spm(4) | f(P)=0all f € al

= {m maximal ideal in A | a C m}.

This is a closed subset of spm(A), and every closed subset is of this form.
Now assume a is radical, so that A/a is again reduced. Corresponding to the homomor-
phism A — A/a, we get a regular map

Spm(A/a) — Spm(A)

The image is V(a), and spm(A4/a) — V(a) is a homeomorphism. Thus every closed subset
of spm(A) has a natural ringed structure making it into an affine algebraic variety. We call
V(a) with this structure a closed subvariety of V.
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ASIDE 3.19. If (V,Oy) is a ringed space, and Z is a closed subset of I/, we can define
a ringed space structure on Z as follows: let U be an open subset of Z, and let f be a
function U — k; then f € I'(U,Ogz) if for each P € U there is a germ (U’, f’) of a
function at P (regarded as a point of V) such that f'|Z N U’ = f. One can check that
when this construction is applied to Z = V/(a), the ringed space structure obtained is that
described above.

PROPOSITION 3.20. Let (V, Oy ) be an affine variety and let h be a nonzero element of
k[V]. Then
(D(h), Oy |D(h)) ~ Spm(4p);

in particular, it is an affine variety.

PROOF. The map A — Ay, defines a morphism spm(A4y) — spm(A). The image is D(h),
and it is routine (using (1.29)) to verify the rest of the statement. O

If V =V(a) C k™, then
(@i,....an) — (ar.....an. h(ar,...,an,)"Y): D(h) — K"+,

defines an isomorphism of D(h) onto V(a,1 — hX,+1). For example, there is an isomor-
phism of affine varieties

a (a,1/a): A1 < {0} > V C A2,
where V is the subvariety XY = 1 of A? — the reader should draw a picture.

REMARK 3.21. We have seen that all closed subsets and all basic open subsets of an affine
variety V' are again affine varieties with their natural ringed structure, but this is not true
for all open subsets U. As we saw in (3.13)), if U is affine, then the natural map U —
spm I'(U, Oy ) is a bijection. But for U = A2 ~ (0,0) = D(X) U D(Y), we know that
I'(U,0y2) = k[X,Y] (see[3.9p), but U — spmk[X,Y] is not a bijection, because the
ideal (X, Y) is not in the image. However, U is clearly a union of affine algebraic varieties
— we shall see in the next chapter that it is a (nonaffine) algebraic variety.

Properties of the regular map defined by specm(w)
PROPOSITION 3.22. Letw: A — B be a homomorphism of affine k -algebras, and let
¢:Spm(B) — Spm(A)

be the corresponding morphism of affine varieties (so thatw(f) = ¢ o f).

(a) The image of ¢ is dense for the Zariski topology if and only if « is injective.
(b) ¢ defines an isomorphism of Spm(B) onto a closed subvariety of Spm(A) if and
only if o is surjective.

PROOF. (a) Let f € A. If the image of ¢ is dense, then

fop=0 = f=0.
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On the other hand, if the image of ¢ is not dense, then the closure of its image will be a
proper closed subset of Spm(A), and so there will be a nonzero function f* € A that is zero
onit. Then f o = 0.

(b) If « is surjective, then it defines an isomorphism A/a — B where a is the kernel
of . This induces an isomorphism of Spm(B) with its image in Spm(A). O

A regular map ¢:V — W of affine algebraic varieties is said to be a dominant (or
dominating) if its image is dense in W. The proposition then says that:

@ isdominant <= f+— foe:['(W,Ow) — I'(V,Oy) is injective.

Affine space without coordinates

Let E be a vector space over k of dimension n. The set A(E) of points of £ has a natural
structure of an algebraic variety: the choice of a basis for E defines an bijection A(E) —
A", and the inherited structure of an affine algebraic variety on A(FE) is independent of
the choice of the basis (because the bijections defined by two different bases differ by an
automorphism of A").

We now give an intrinsic definition of the affine variety A(E). Let V be a finite-
dimensional vector space over a field k (not necessarily algebraically closed). The tensor

algebra of V is
v = ve®
i>0

with multiplication defined by
VI ®®v) (V® - ®V)=v1® Qv OV @ } V).

It is noncommutative k-algebra, and the choice of a basis eq,...,e, for V defines an
isomorphism to T*V from the k-algebra of noncommuting polynomials in the symbols
e1,...,en. The symmetric algebra S* (V') of V is defined to be the quotient of 7*V by the
two-sided ideal generated by the relations

VW -—w®v, v,wel.

This algebra is generated as a k-algebra by commuting elements (namely, the elements of
V = V@) and so is commutative. The choice of a basis eq,...,e, for V defines an
isomorphism of k-algebras

e1--ef >e1 Q- ®eikler,....en] = S*(V)

(here kleq, ..., en] is the commutative polynomial ring in the symbols ey, ..., e;). In par-
ticular, S*(V) is an affine k-algebra. The pair (S*(V'),i) consisting of S*(V') and the
natural k-linear map i: V' — S™*(V) has the following universal property: any k-linear
map V' — A from V into a k-algebra A extends uniquely to a k-algebra homomorphism
S*(V) — A:

vV —=5*(V) (M

J! k—algebra
k—linear ; g

D <
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As usual, this universal propery determines the pair (S*(V'),i) uniquely up to a unique
isomorphism.
We now define A(E) to be Spm(S*(EY)). For an affine k-algebra A,

Mor(Spm(A), A(E)) = I—I()Ink—algebra(S>‘< (EV)’ A) (3.14)
= Homk—linear(Ev s A) "
~EQ®, A (linear algebra).
In particular,
A(E)(k) ~ E.
Moreover, the choice of a basis ey, . . . , e, for E determines a (dual) basis f1,..., fpof EV,

and hence an isomorphism of k-algebras k[ f1, ..., fu] = S*(EY). The map of algebraic
varieties defined by this homomorphism is the isomorphism

A(E) — A"

whose map on the underlying sets is the isomorphism £ — k" defined by the basis of E.

NOTES. We have associated with any affine k-algebra A an affine variety whose underlying topo-
logical space is the set of maximal ideals in A. It may seem strange to be describing a topological
space in terms of maximal ideals in a ring, but the analysts have been doing this for more than 60
years. Gel’fand and Kolmogorov in 1939* proved that if S and T are compact topological spaces,
and the rings of real-valued continuous functions on S and 7" are isomorphic (just as rings), then S
and T are homeomorphic. The proof begins by showing that, for such a space S, the map

Pompif:S 5R| f(P) =0

is one-to-one correspondence between the points in the space and maximal ideals in the ring.

Exercises

3-1. Show that a map between affine varieties can be continuous for the Zariski topology
without being regular.

3-2. Let g be a power of a prime p, and let F; be the field with g elements. Let S be a
subset of Fy[X1,..., Xp], and let V' be its zero set in k", where k is the algebraic closure
of F,. Show that the map (ai,...,a,) — (a‘{, ...,a}) is aregular map ¢: V — V (i.e.,
(V) C V). Verify that the set of fixed points of ¢ is the set of zeros of the elements of S
with coordinates in [Fy. (This statement enables one to study the cardinality of the last set
using a Lefschetz fixed point formula — see my lecture notes on étale cohomology.)

3-3. Find the image of the regular map
(x, ) > (x,xy): A2 — A?

and verify that it is neither open nor closed.

40n rings of continuous functions on topological spaces, Doklady 22, 11-15. See also Allen Shields,
Banach Algebras, 1939—-1989, Math. Intelligencer, Vol 11, no. 3, p15.
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3-4. Show that the circle X2+ Y2 = 1 is isomorphic (as an affine variety) to the hyperbola
XY = 1, but that neither is isomorphic to A!.

3-5. Let C be the curve Y2 = X2 4 X3, and let ¢ be the regular map
t—> (2 =1t = 1) Al > C.

Is ¢ an isomorphism?



Chapter 4

Algebraic Varieties

An algebraic variety is a ringed space that is locally isomorphic to an affine algebraic va-
riety, just as a topological manifold is a ringed space that is locally isomorphic to an open
subset of R”; both are required to satisfy a separation axiom. Throughout this chapter, k is
algebraically closed.

Algebraic prevarieties

As motivation, recall the following definitions.

DEFINITION 4.1. (a) A topological manifold of dimension n is a ringed space (V, Oy)
such that V' is Hausdorff and every point of V' has an open neighbourhood U for which
(U, Oy |U) is isomorphic to the ringed space of continuous functions on an open subset of
R” (cf. [3.2h)).

(b) A differentiable manifold of dimension n is a ringed space such that V' is Hausdorff
and every point of V' has an open neighbourhood U for which (U, Oy |U) is isomorphic to
the ringed space of smooth functions on an open subset of R” (cf. [3.2b).

(c) A complex manifold of dimension n is a ringed space such that V' is Hausdorff and
every point of V' has an open neighbourhood U for which (U, Oy |U) is isomorphic to the
ringed space holomorphic functions on an open subset of C" (cf. [3.2).

These definitions are easily seen to be equivalent to the more classical definitions in
terms of charts and atlases.! Often one imposes additional conditions on V, for example,
that it be connected or that it have a countable base of open subsets.

DEFINITION 4.2. An algebraic prevariety over k is a ringed space (V, Oy) such that V is
quasicompact and every point of V' has an open neighbourhood U for which (U, Oy |U) is
an affine algebraic variety over k.

Thus, a ringed space (V, Oy ) is an algebraic prevariety over k if there exists a finite
open covering V' = [ V; such that (V;, Oy |V;) is an affine algebraic variety over k for
all i. An algebraic variety will be defined to be an algebraic prevariety satisfying a certain
separation condition.

IProvided the latter are stated correctly, which is frequently not the case.

60
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An open subset U of an algebraic prevariety V' such that (U, Oy |U) is an affine alge-
braic variety is called an open affine (subvariety) in V. Because V is a finite union of open
affines, and in each open affine the open affines (in fact the basic open subsets) form a base
for the topology, it follows that the open affines form a base for the topology on V.

Let (V, Oy) be an algebraic prevariety, and let U be an open subset of V. The functions
f:U — k lying in I'(U, Oy ) are called regular. Note that if (U;) is an open covering of
V by affine varieties, then f:U — k is regular if and only if f|U; N U is regular for all
(byB.1(c)). Thus understanding the regular functions on open subsets of ¥ amounts to un-
derstanding the regular functions on the open affine subvarieties and how these subvarieties
fit together to form V.

EXAMPLE 4.3. (Projective space). Let P denote k" ! \ {origin} modulo the equivalence
relation

(ag,...,an) ~ (bo,....by) < (ao.....an) = (chy,...,ch,)somec € k™.

Thus the equivalence classes are the lines through the origin in "+ (with the origin omit-
ted). Write (ao:... : ay) for the equivalence class containing (ao,...,a,). For each i,
let

U ={(ag:...:a; :...:ap) € P" | a; #0}.

Then P" = J U;, and the map

(the term @; /a; is omitted) is a bijection. In chapter [6] we shall show that there is a unique
structure of a (separated) algebraic variety on P” for which each U; is an open affine sub-
variety of P and each map u; is an isomorphism of algebraic varieties.

Regular maps

In each of the examples ,b,c), a morphism of manifolds (continuous map, smooth
map, holomorphic map respectively) is just a morphism of ringed spaces. This motivates
the following definition.

Let (V, Oy) and (W, Ow) be algebraic prevarieties. A map ¢: V — W is said to be
regular if it is a morphism of ringed spaces. A composite of regular maps is again regular
(this is a general fact about morphisms of ringed spaces).

Note that we have three categories:

(affine varieties) C (algebraic prevarieties) C (ringed spaces).

Each subcategory is full, i.e., the morphisms Mor(V, W) are the same in the three cate-
gories.

PROPOSITION 4.4. Let (V,Oy) and (W, Ow) be prevarieties, and let ¢:V — W be a
continuous map (of topological spaces). Let W = | JW; be a covering of W by open
affines, and let o~ 1 (W;) = |J V;; be a covering of 9~ 1(W;) by open affines. Then ¢ is
regular if and only if its restrictions

(p|le': Vj,' — Wj

are regular for all i, j.
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PROOF. We assume that ¢ satisfies this condition, and prove that it is regular. Let f be
a regular function on an open subset U of W. Then f|U N W; is regular for each W;
(sheaf condition b)), and so f o ¢~ (U) N Vi is regular for each j,i (this is our
assumption). It follows that f o ¢ is regular on ¢~ (U) (sheaf condition c)). Thus ¢ is
regular. The converse is even easier. o

ASIDE 4.5. A differentiable manifold of dimension 7 is locally isomorphic to an open
subset of R”. In particular, all manifolds of the same dimension are locally isomorphic.
This is not true for algebraic varieties, for two reasons:

(a) We are not assuming our varieties are nonsingular (see chapter 5 below).

(b) The inverse function theorem fails in our context. If P is a nonsingular point on
variety of dimension d, we shall see (in the next chapter) that there does exist a neighbour-
hood U of P and a regular map ¢:U — A< such that map (d¢)p:Tp — Ty(p) on the
tangent spaces is an isomorphism, but also that there does not always exist a U for which ¢
itself is an isomorphism onto its image (as the inverse function theorem would assert).

Algebraic varieties

In the study of topological manifolds, the Hausdorff condition eliminates such bizarre pos-
sibilities as the line with the origin doubled (see .10/ below) where a sequence tending to
the origin has two limits.

It is not immediately obvious how to impose a separation axiom on our algebraic va-
rieties, because even affine algebraic varieties are not Hausdorff. The key is to restate the
Hausdorff condition. Intuitively, the significance of this condition is that it prevents a se-
quence in the space having more than one limit. Thus a continuous map into the space
should be determined by its values on a dense subset, i.e., if ¢; and ¢, are continuous
maps Z — U that agree on a dense subset of Z then they should agree on the whole
of Z. Equivalently, the set where two continuous maps @1, ¢2: Z = U agree should be
closed. Surprisingly, affine varieties have this property, provided ¢; and ¢, are required to
be regular maps.

LEMMA 4.6. Let ¢1 and ¢, be regular maps of affine algebraic varieties Z = V. The
subset of Z on which ¢ and @, agree is closed.

PROOF. There are regular functions x; on V such that P +— (x1(P),...,x,(P)) identifies
V with a closed subset of A" (take the x; to be any set of generators for k[V] as a k-algebra).
Now x; o ¢1 and x; o ¢, are regular functions on Z, and the set where ¢; and ¢, agree is
=1 V(xi o o1 — xi o @), which is closed. o

DEFINITION 4.7. An algebraic prevariety V is said to be separated, or to be an algebraic
variety, if it satisfies the following additional condition:

Separation axiom: for every pair of regular maps ¢1,¢2: Z =2 V with Z an
affine algebraic variety, the set {z € Z | ¢1(z) = ¢2(z)}is closed in Z.
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The terminology is not completely standardized: some authors require a variety to be
irreducible, and some call a prevariety a variety.?

PROPOSITION 4.8. Let ¢ and @5 be regular maps Z = V from an algebraic prevariety Z
to a separated prevariety V. The subset of Z on which ¢1 and ¢, agree is closed.

PROOF. Let W be the set on which ¢ and ¢; agree. For any open affine U of Z, W N U
is the subset of U on which ¢1|U and ¢|U agree, and so W N U is closed. This implies
that W is closed because Z is a finite union of open affines. O

EXAMPLE 4.9. The open subspace U = AZ ~ {(0,0)} of A% becomes an algebraic variety
when endowed with the sheaf O,2|U (cf. [3.21).

EXAMPLE 4.10. (The affine line with the origin doubled.) Let V; and V5 be copies of A!.
Let V* = V7 UV, (disjoint union), and give it the obvious topology. Define an equivalence
relation on V'* by

x(@nVy)~y(@nl,) < x =yandx #0.

Let V be the quotient space V = V*/~ with the quotient topology (a set is open if and only
if its inverse image in V* is open). Then V7 and V5 are open subspaces of V, V = V; U V5,
and V; NV, = Al —{0}. Define a function on an open subset to be regular if its restriction
to each V; is regular. This makes V' into a prevariety, but not a variety: it fails the separation
axiom because the two maps

Al=1, VY Al=V,V*

agree exactly on A! — {0}, which is not closed in A!.

Let Var; denote the category of algebraic varieties over k and regular maps. The functor
A + Spm A is a fully faithful contravariant functor Aff, — Varg, and defines an equiva-
lence of the first category with the subcategory of the second whose objects are the affine
algebraic varieties.

Maps from varieties to affine varieties

Let (V, Oy) be an algebraic variety, and let «: A — I'(V, Oy) be a homomorphism from
an affine k-algebra A to the k-algebra of regular functions on V. Forany P € V, f
a(f)(P) is a k-algebra homomorphism A — k, and so its kernel ¢(P) is a maximal ideal
in A. In this way, we get a map

@:V — spm(A)

which is easily seen to be regular. Conversely, from a regular map ¢: V — Spm(A4), we get
a k-algebra homomorphism f +— f o@: A — I'(V,Oy). Since these maps are inverse,
we have proved the following result.

2Qur terminology is agrees with that of J-P. Serre, Faisceaux algébriques cohérents. Ann. of Math. 61,
(1955). 197-278.
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PROPOSITION 4.11. For an algebraic variety V and an affine k -algebra A, there is a canon-
ical one-to-one correspondence

Mor(V, Spm(A4)) ~ Homk-algebra(A9 r'(V,0y)).

Let V be an algebraic variety such that I"(V, Oy ) is an affine k-algebra. Then propo-
sition shows that the regular map ¢: V' — Spm(I"(V, Oy)) defined by idr(y,0,,) has the
following universal property: any regular map from V' to an affine algebraic variety U
factors uniquely through ¢:

y 25 Spm(I"(V. Oy))

3
v

Subvarieties

Let (V, Oy ) be aringed space, and let W be a subspace. For U open in W, define Ow (U)
to be the set of functions f:U — k such that there exist open subsets U; of V and f; €
Oy (Uj) suchthat U = WN(JU;)and f|W NU; = fi|WNU; foralli. Then (W, Ow)
is again a ringed space.

We now let (V, Oy ) be a prevariety, and examine when (W, Ow ) is also a prevariety.

Open subprevarieties. Because the open affines form a base for the topology on V, for
any open subset U of V, (U, Oy |U) is a prevariety. The inclusion U < V is regular, and
U is called an open subprevariety of V. A regular map ¢: W — V' is an open immersion
if (W) is open in V' and ¢ defines an isomorphism W — @(W) (of prevarieties).

Closed subprevarieties. Any closed subset Z in V' has a canonical structure of an al-
gebraic prevariety: endow it with the induced topology, and say that a function f on an
open subset of Z is regular if each point P in the open subset has an open neighbourhood
U in V such that f extends to a regular function on U. To show that Z, with this ringed
space structure is a prevariety, check that for every open affine U C V, the ringed space
(UNZ,0z|U N Z) isisomorphic to U N Z with its ringed space structure acquired as a
closed subset of U (see pd6). Such a pair (Z, Oz) is called a closed subprevariety of V.
A regular map ¢: W — V is a closed immersion if ¢(W) is closed in V' and ¢ defines an
isomorphism W — ¢ (W) (of prevarieties).

Subprevarieties. A subset W of a topological space V' is said to be locally closed if
every point P in W has an open neighbourhood U in V' such that W N U is closed in U.
Equivalent conditions: W is the intersection of an open and a closed subset of V; W is
open in its closure. A locally closed subset W of a prevariety V' acquires a natural structure
as a prevariety: write it as the intersection W = U N Z of an open and a closed subset;
Z is a prevariety, and W (being open in Z) therefore acquires the structure of a prevariety.
This structure on W has the following characterization: the inclusion map W — V is
regular, and a map ¢: V' — W with V' a prevariety is regular if and only if it is regular
when regarded as a map into V. With this structure, W is called a sub(pre)variety of V.
A morphism ¢: V' — V is called an immersion if it induces an isomorphism of V'’ onto
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a subvariety of V. Every immersion is the composite of an open immersion with a closed
immersion (in both orders).
A subprevariety of a variety is automatically separated.

Application.

PROPOSITION 4.12. A prevariety V is separated if and only if two regular maps from a
prevariety to V agree on the whole prevariety whenever they agree on a dense subset of it.

PROOF. If V is separated, then the set on which a pair of regular maps ¢1,¢2: Z = V
agree is closed, and so must be the whole of the Z.

Conversely, consider a pair of maps ¢1,¢2: Z = V, and let S be the subset of Z on
which they agree. We assume V' has the property in the statement of the proposition, and
show that S is closed. Let S be the closure of S in Z. According to the above discussion,
S has the structure of a closed prevariety of Z and the maps ¢;|S and ¢;|S are regular.
Because they agree on a dense subset of S they agree on the whole of S, andso S = S is
closed. o

Prevarieties obtained by patching

PROPOSITION 4.13. Let V' = |J;¢; Vi (finite union), and suppose that each V; has the
structure of a ringed space. Assume the following “patching” condition holds:

foralli, j, V; NV; is openin both V; and V; and Oy;|V; N V; = Oy, [Vi N V.
Then there is a unique structure of a ringed space on V' for which

(a) each inclusion V; < V' is a homeomorphism of V; onto an open set, and
(b) foreachi € I, Oy|V; = Oy,.

If every V; is an algebraic prevariety, then so also is V, and to give a regular map from
V to a prevariety W amounts to giving a family of regular maps ¢;:V; — W such that
eilVinVy=g;|VinV;.

PROOF. One checks easily that the subsets U C V' such that U N V; is open for all i are the
open subsets for a topology on V satisfying (a), and that this is the only topology to satisfy
(a). Define Oy (U) to be the set of functions f: U — k suchthat f|UNV; € Oy, (UNV;)
for all i. Again, one checks easily that Oy is a sheaf of k-algebras satisfying (b), and that
it is the only such sheaf.

For the final statement, if each (V;, Oy;) is a finite union of open affines, so also is
(V, Oy). Moreover, to give amap ¢: V — W amounts to giving a family of maps ¢;: V; —
W such that ¢;|V; N V; = ¢;|V; N V; (obviously), and ¢ is regular if and only ¢|V; is
regular for each i. o

Clearly, the V; may be separated without V' being separated (see, for example, 4.10).
In below, we give a condition on an open affine covering of a prevariety sufficient to
ensure that the prevariety is separated.
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Products of varieties

Let V and W be objects in a category C. A triple
VW, p VW=V, qaVxW-—=>W)

is said to be the product of V and W if it has the following universal property: for every
pair of morphisms Z — V, Z — W in C, there exists a unique morphism Z — V x W

making the diagram
z
/a! \
p ¥V g

V<—VxXW—W

commute. In other words, it is a product if the map
o= (poy,qop)Hom(Z,V x W) - Hom(Z, V) x Hom(Z, W)

is a bijection. The product, if it exists, is uniquely determined up to a unique isomorphism
by this universal property.

For example, the product of two sets (in the category of sets) is the usual cartesion
product of the sets, and the product of two topological spaces (in the category of topological
spaces) is the cartesian product of the spaces (as sets) endowed with the product topology.

We shall show that products exist in the category of algebraic varieties. Suppose, for
the moment, that V x W exists. For any prevariety Z, Mor(A®, Z) is the underlying set of
Z; more precisely, for any z € Z, the map A® — Z with image z is regular, and these are
all the regular maps (cf. [3.18p). Thus, from the definition of products we have

(underlying set of V x W) =~ Mor(A%, V x W)
~ Mor(A°, V) x Mor(A°, W)
>~ (underlying set of V') x (underlying set of W).
Hence, our problem can be restated as follows: given two prevarieties V' and W, define on

the set V' x W the structure of a prevariety such that

(a) the projection maps p,q: V x W == V, W are regular, and
(b) amap ¢: T — V x W of sets (with 7" an algebraic prevariety) is regular if its com-
ponents p o @, g o ¢ are regular.

Clearly, there can be at most one such structure on the set V' x W (because the identity map
will identify any two structures having these properties).

Products of affine varieties

EXAMPLE 4.14. Let a and b be ideals in k[ X1, ..., X;n] and k[ Xm+1, - - - » Xm—+n] respec-
tively, and let (a, b) be the ideal in k[ X1, ..., X;n+n] generated by the elements of a and b.
Then there is an isomorphism

k[Xl,...,Xm] k[Xm+1,...,Xm+n] k[Xl,...,XmJ,—n]
Rk —
a b (a,b)

Again this comes down to checking that the natural map from

f®gm fg:

Homk-alg(k[Xb ey Xm+n]/(a, b), R)
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to
Homy g0 (k[ X1, ..., Xml]/a, R) x Homp_go (K[ Xm+1, ..., Xm+nl/b, R)

is a bijection. But the three sets are respectively
V(a,b) = zero-set of (a, b) in R™*",
V(a) = zero-set of ain R™,
V(b) = zero-set of b in R",

and so this is obvious.

The tensor product of two k-algebras A and B has the universal property to be a product
in the category of k-algebras, but with the arrows reversed. Because of the category anti-
equivalence (3.13)), this shows that Spm(A4 ®j B) will be the product of Spm A and Spm B
in the category of affine algebraic varieties once we have shown that A ®; B is an affine
k-algebra.

PROPOSITION 4.15. Let A and B be k-algebras with A finitely generated.

(a) If A and B are reduced, then so also is A ®;, B.
(b) If A and B are integral domains, then so alsois A ® B.

PROOF. Letax € A ®; B. Thena = Z?:l a;i ® b;, some a; € A, bj € B. If one of the
e

b;’s is a linear combination of the remaining b’s, say, b, = Zi=1l ¢ibi, ¢i € k, then, using

the bilinearity of ®, we find that

n—1 n—1 n—1
a=>ai®bi+ Y cian®b; =) (4 + cian) ® b;.

i=1 i=1 i=1

Thus we can suppose that in the original expression of «, the b;’s are linearly independent
over k.

Now assume A and B to be reduced, and suppose that « is nilpotent. Let m be a
maximal ideal of A. Froma — a: A — A/m = k we obtain homomorphisms

a®br>a@brs>ab:A®; B—k®; B> B

The image ) _ a;b; of o under this homomorphism is a nilpotent element of B, and hence
is zero (because B is reduced). As the b;’s are linearly independent over k, this means that
the a; are all zero. Thus, the a;’s lie in all maximal ideals m of A, and so are zero (see
[2.13). Hence o = 0, and we have shown that A ®; B is reduced.

Now assume that A and B are integral domains, and let o, @' € A ®; B be such that
aa’ = 0. As before, we can write @ = Y a; ® b; and &' = Y a ® b with the sets
{b1,b,...} and {b], D}, ...} each linearly independent over k. For each maximal ideal m
of A, we know (}_a;b;)(3_a;b;) = 0in B, and so either (3_a;b;) = 0or (3_a}b]) = 0.
Thus either all the a; € m or all the a ; € m. This shows that

spm(A) = V(ai,...,am) U V(ay,...,a,).

As spm(A) is irreducible (see|2.19), it follows that spm(A) equals either V(ay,...,an) or
V(ay,...,ay). Inthe first case o = 0, and in the second o’ = 0. O
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EXAMPLE 4.16. We give some examples to illustrate that k must be taken to be alge-
braically closed in the proposition.

(a) Suppose k is nonperfect of characteristic p, so that there exists an element « in an
algebraic closure of k such that & ¢ k but «? € k. Let kK’ = k||, and let «” = a. Then
(@®1—1Q®a)#0ink’ ®; k' (in fact, the elements &' ® /,0 <i,j < p—1,forma
basis for k' ®j k' as a k-vector space), but

@R1-1a))=@®1-1Qa)
=(1®a—1®a) (becausea € k)
=0.

Thus k” ® k’ is not reduced, even though k' is a field.

(b) Let K be a finite separable extension of k and let £2 be a second field containing k.
By the primitive element theorem (FT 5.1),

K = ko] = k[X]/(f(X)),

for some o € K and its minimal polynomial f(X). Assume that £2 is large enough to split
Sfosay, f(X) =]]; X —o; witho; € 2. Because K/ k is separable, the o; are distinct,
and so

2 Qr K ~ Q2[X]/(f(X)) (L.35(b))
~ [[2X1/(X —a) (1.1

and so it is not an integral domain. For example,

C®g C ~ C[X]/(X —i) x C[X]/(X +i) ~ C x C.

The proposition allows us to make the following definition.
DEFINITION 4.17. The product of the affine varieties V and W is
(VX W, Oyxw) = Spm(k[V] @k k[W])

with the projection maps p,q:V x W — V, W defined by the homomorphisms f >
fFRLK[V] = k[V]Qkk[W]and g — 1 ® g:k[W] — k[V] @k k[W].

PROPOSITION 4.18. Let V and W be affine varieties.

(a) The variety (V x W, Oy xw) is the product of (V, Oy ) and (W, Oy ) in the category
of affine algebraic varieties; in particular, the set V x W is the product of the sets V

and W and p and q are the projection maps.
(b) If V and W are irreducible, then so alsois V x W.

PROOF. (a) As noted at the start of the subsection, the first statement follows from (4.13p),
and the second statement then follows by the argument on

(b) This follows from (@.15p) and (2.19). o

COROLLARY 4.19. LetV and W be affine varieties. For any prevariety T, amap ¢: T —
V x W isregular if p o ¢ and g o ¢ are regular.
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PROOF. If p o ¢ and ¢ o ¢ are regular, then (4.18)) implies that ¢ is regular when restricted
to any open affine of 7', which implies that it is regular on 7. o

The corollary shows that V' x W is the product of V' and W in the category of prevarieties
(hence also in the categories of varieties).

EXAMPLE 4.20. (a) It follows from (1.34) that A™*" endowed with the projection maps
A (p_Am—f—ni)An plar,....amsn) = (a1, ....am)
’ Q(al,---,am—i-n) = (am+1’---’am+n)v
is the product of A™ and A".
(b) It follows from (1.35F) that
p q
V(a) < V(a,b) = V(b)

is the product of V(a) and V(b).

@ The topology on V' x W is not the product topology; for example, the topology on
A% = A x Al is not the product topology (see [2.29).

Products in general

We now define the product of two algebraic prevarieties V' and W.

Write V' as a union of open affines V' = [ J V;, and note that V' can be regarded as the
variety obtained by patching the (V;, Oy, ); in particular, this covering satisfies the patching
condition (4.13). Similarly, write W as a union of open affines W = | W;. Then

Vxw = Jvixw;

and the (V; x Wj, Oy, xw, ) satisfy the patching condition. Therefore, we can define (V' x
W, Oy xw) to be the variety obtained by patching the (Vi x Wj, Oy, xw,).

PROPOSITION 4.21. With the sheaf of k-algebras Oy xw just defined, V x W becomes the
product of V and W in the category of prevarieties. In particular, the structure of prevariety
on V x W defined by the coverings V = |JV; and W = |J W; are independent of the
coverings.

PROOF. Let T be a prevariety, and let o: T — V x W be a map of sets such that p o ¢ and
q o ¢ are regular. Then 1b implies that the restriction of ¢ to ¢~ 1(V; x W;) is regular.
As these open sets cover T, this shows that ¢ is regular. 0

PROPOSITION 4.22. If V and W are separated, then so alsois V x W.

PROOF. Let ¢1, ¢ be two regular maps U — V x W. The set where @1, ¢, agree is the
intersection of the sets where p o ¢1, p o 3 and g o 1, g o ¢, agree, which is closed.
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EXAMPLE 4.23. An algebraic group is a variety G together with regular maps

mult: G x G — G, inverse:G — G, A0 s G
that make G into a group in the usual sense. For example,
SLn, = Spm(k[X11, X12,..., Xun)/(det(X;;) — 1))

and

become algebraic groups when endowed with their usual group structure. The only affine
algebraic groups of dimension 1 are

Gm = GL; = Spmk[X, X1

and
Ggq = Spm k[X].
Any finite group N can be made into an algebraic group by setting
N = Spm(A)

with A the set of all maps f: N — k.

Affine algebraic groups are called linear algebraic groups because they can all be re-
alized as closed subgroups of GL, for some n. Connected algebraic groups that can be
realized as closed algebraic subvarieties of a projective space are called abelian varieties
because they are related to the integrals studied by Abel (happily, they all turn out to be
commutative; see below).

The connected component G° of an algebraic group G containing the identity compo-
nent (the identity component) is a closed normal subgroup of G and the quotient G/G° is a
finite group. An important theorem of Chevalley says that every connected algebraic group
G contains a unique connected linear algebraic group G such that G/ G is an abelian va-
riety. Thus, we have the following coarse classification: every algebraic group G contains
a sequence of normal subgroups

GD>G°D Gy D{e}

with G/G° a finite group, G°/ G an abelian variety, and G a linear algebraic group.

The separation axiom revisited

Now that we have the notion of the product of varieties, we can restate the separation axiom
in terms of the diagonal.
By way of motivation, consider a topological space V' and the diagonal A C V x V,

AL {(x,x) | x eV}
If A is closed (for the product topology), then every pair of points (x, y) ¢ A has a neigh-
bourhood U x U’ such that U x U'N A = &. In other words, if x and y are distinct points in
V, then there are neighbourhoods U and U’ of x and y respectively such that U N U’ = &.
Thus V' is Hausdorff. Conversely, if V' is Hausdorff, the reverse argument shows that A is
closed.
For a variety V', we let A = Ay (the diagonal) be the subset {(v,v) |[v € V}of V x V.
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PROPOSITION 4.24. An algebraic prevariety V is separated if and only if Ay is closed.?

PROOF. Assume Ay is closed. Let ¢; and ¢, be regular maps Z — V. The map

(01, 92): Z >V XV, z (p1(2),92(2))

is regular because its composites with the projections to V' are ¢; and ¢,. In particular, it
is continuous, and so (@1, ¢2) "1 (A) is closed. But this is precisely the subset on which ¢;
and ¢, agree.

Conversely, suppose V' is separated. This means that for any affine variety Z and regular
maps @1, @2: Z — V, the set on which ¢ and @5 agree is closed in Z. Apply this with ¢
and ¢, the two projection maps V' x V' — V/, and note that the set on which they agree is
Ay. |

COROLLARY 4.25. For any prevariety V, the diagonal is a locally closed subset of V x V.

PROOF. Let P € V, and let U be an open affine neighbourhood of P. Then U x U is an
open neighbourhood of (P, P)in V x V,and Ay N (U x U) = Ay, which is closed in
U x U because U is separated (4.6). o

Thus Ay is always a subvariety of V' x V, and it is closed if and only if V is separated.
The graph I'y, of a regular map ¢: V' — W is defined to be

{(v,p(w)) eV xW |veV}.
At this point, the reader should draw the picture suggested by calculus.

COROLLARY 4.26. For any morphism ¢:V — W of prevarieties, the graph I, of ¢ is
locally closed in V x W, and it is closed if W is separated. The map v +— (v, ¢(v)) is an
isomorphism of V' onto Iy, (as algebraic prevarieties).

PROOF. The map
w,w) = (p(v),w): VW —>WxW

is regular because its composites with the projections are ¢ and idy which are regular.
In particular, it is continuous, and as I, is the inverse image of Ay, under this map, this
proves the first statement. The second statement follows from the fact that the regular map

F(p%VxW£>Visaninversetov|—>(v,(p(v)):V—>F¢. O

THEOREM 4.27. The following three conditions on a prevariety V are equivalent:

(a) V is separated;
(b) for every pair of open affines U and U’ in V, U N U’ is an open affine, and the map

f®gr flunu - glunu kU] @ k[U'] = k[U N U’

is surjective;

3Recall that the topology on V x V is not the product topology. Thus the statement does not contradict the
fact that V' is not Hausdorff.
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(c) the condition in (b) holds for the sets in some open affine covering of V.

PROOF. Let U and U’ be open affines in V. We shall prove that
(i) if A is closed then U N U’ affine,
(ii) when U N U’ is affine,

(UxU')Nn Aisclosed <= k[U] ® k[U'] = k[U N U’] is surjective.

Assume (a); then these statements imply (b). Assume that (b) holds for the sets in an
open affine covering (U;);er of V. Then (U; x U;)(;, jyerx1 is an open affine covering of
V xV,and Ay N (U; x Uj) is closed in U; x U; for each pair (7, j), which implies (a).
Thus, the statements (i) and (ii) imply the theorem.

Proof of (i): The graph of the inclusion U N U’ < V is the subset (U x U’) N A of
(UNU') x V.If Ay is closed, then (U x U’) N Ay is a closed subvariety of an affine
variety, and hence is affine (see . Now implies that U N U’ is affine.

Proof of (ii): Assume that U N U’ is affine. Then

(UxU"YN Ay isclosedin U x U’

& vi> (v,v):UNU" — U x U’is a closed immersion
< k[U x U'] = k[U N U] is surjective (3:22).

Since k[U x U’] = k[U] ®x k[U’], this completes the proof of (ii). 0

In more down-to-earth terms, condition (b) says that U N U’ is affine and every regular
function on U N U’ is a sum of functions of the form P > f(P)g(P) with f and g regular
functions on U and U’.

EXAMPLE 4.28. (a) Let V = P!, and let Uy and U; be the standard open subsets (see

. Then Uy N U; = A! < {0}, and the maps on rings corresponding to the inclusions
Ui — Uy NUj are

fX) > f(X):k[X] = k[X, X!

fX) > f(XTYk[X] — k[X. X7,

—_

Thus the sets Uy and U; satisfy the condition in (b).

(b) Let V be A! with the origin doubled (see 4.10)), and let U and U’ be the upper and
lower copies of Al in V. Then U N U’ is affine, but the maps on rings corresponding to the
inclusions U; — Uy N Uj are

X > X:k[X] — k[X, X!
X > X:k[X] — k[X, X7,
Thus the sets Uy and U fail the condition in (b).

(c) Let V be A2 with the origin doubled, and let U and U’ be the upper and lower copies
of AZin V. Then U N U’ is not affine (see|3.21)).
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Fibred products
Consider a variety S and two regular maps ¢: V — § and ¢: W — S. Then the set
Vixs WE{(vw) e Vx W o) =y W)

is a closed subvariety of V' x W (because it is the set where ¢ o p and { o g agree). It is
called the fibred product of V and W over S. Note that if S consists of a single point, then
VxsW=VxW.

Write ¢’ for the map (v, w) — w:V xg W — W and ¢’ for the map (v, w)
v:V xg W — V. We then have a commutative diagram:

VXSWL) w

o

V LS.

The fibred product has the following universal property: consider a pair of regular maps
a:T - V,B: T — W;then

t— (@), B@): T >V xW

factors through V' xg W (as a map of sets) if and only if g« = 8, in which case («, f) is
regular (because it is regular as a map into V' x W);

N2
ﬂ\ xs W ——>W

N, b

V———m3=S§

The map ¢’ in the above diagram is called the base change of ¢ with respect to V.
For any point P € S, the base change of ¢: V' — S with respect to P < § is the map
¢ 1(P) — P induced by ¢, which is called the fibre of V over P.

EXAMPLE 4.29. If f:V — S is a regular map and U is an open subvariety of S, then
V xg U is the inverse image of U in S.

EXAMPLE 4.30. Since a tensor product of rings A ® g B has the opposite universal prop-
erty to that of a fibred product, one might hope that

Spm(A) Xgpm(r) SPm(B) = Spm(A ®g B).

This is true if A ® g B is an affine k-algebra, but in general it may have nilpotent* elements.
For example, let R = k[X], let A = k with the R-algebra structure sending X to a, and
let B = k[X] with the R-algebra structure sending X to X?. When k has characteristic
p # 0, then

AQr B~k ®k[Xp] k[X] ~ k[X]/(Xp —a).

4By this, of course, we mean nonzero nilpotent elements.
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The correct statement is
Spm(A) Xgpm(r) Spm(B) >~ Spm(A g B/N) (3)

where 1 is the ideal of nilpotent elements in A ® g B. To prove this, note that for any
variety T,

Mor(T, Spm(A ® g B/MN)) >~ Hom(4A ®g B/N, I'(T,OT1))
~ Hom(A ®r B, I'(T,O7))
~ Hom(A, I'(T, OT)) XHom(R,(T,07)) Hom(B, I'(T, Or))
~ Mor(V, Spm(A4)) Xnior(v,Spm(R)) Mor(V, Spm(B)).

For the first and fourth isomorphisms, we used (4.T1)); for the second isomorphism, we used
that I' (T, Or) has no nilpotents; for the third isomorphism, we used the universal property
of AQRr B.

Dimension

In an irreducible algebraic variety V, every nonempty open subset is dense and irreducible.
If U and U’ are open affines in V, then so also is U N U’ and

k[U] C k[U NU'] C k(U)

where k(U) is the field of fractions of k[U], and so k(U) is also the field of fractions of
k[U NU’] and of k[U’]. Thus, we can attach to V a field k(V), called the field of rational
Junctions on V, such that for every open affine U in V, k(V') is the field of fractions of
k[U]. The dimension of V is defined to be the transcendence degree of k(V') over k. Note
the dim(V') = dim(U) for any open subset U of V. In particular, dim(}V') = dim(U) for
U an open affine in V. It follows that some of the results in §2 carry over — for example,
if Z is a proper closed subvariety of V, then dim(Z) < dim(V).

PROPOSITION 4.31. Let V and W be irreducible varieties. Then

dim(V x W) = dim(V) + dim(W).

PROOF. We may suppose V and W to be affine. Write

k[V] = k[x1, ... Xm]
kW] =k[y1,...,yn]

where the x’s and y’s have been chosen so that {xy,...,xz} and {y1,..., Y.} are maxi-
mal algebraically independent sets of elements of k[V] and k[W]. Then {xy,...,x;} and
{¥1,..., ye} are transcendence bases of k (V') and k(W) (see FT 8.12), and so dim(V) = d
and dim(W) = e. Then’

def

kVXW] = k[VIQrk[W] D klx1.....xqg]l®kk[y1.....yel >~ k[x1.....Xg.y1..... yel.

SIn general, it is not true that if M’ and N’ are R-submodules of M and N, then M’ ® g N’ is an R-
submodule of M ® g N. However, this is true if R is a field, because then M’ and N’ will be direct summands
of M and N, and tensor products preserve direct summands.
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Therefore {x; ® 1,..., x4 ® 1,1 ® y1,...,1 ® y.} will be algebraically independent in
k[V] ® k[W]. Obviously k[V x W] is generated as a k-algebra by the elements x; ® 1,
1®yj,1<i<m,1=<j =<n,andall of them are algebraic over

kix1,....xq] ®x k[y1,..., Vel

Thus the transcendence degree of k(V x W) is d + e. O

We extend the definition of dimension to an arbitrary variety V' as follows. An algebraic
variety is a finite union of noetherian topological spaces, and so is noetherian. Consequently
(see , V' is a finite union V = (JV; of its irreducible components, and we define
dim(V) = max dim(V;). When all the irreducible components of V' have dimension n, V
is said to be pure of dimension n (or to be of pure dimension n).

Birational equivalence

Two irreducible varieties V and W are said to be birationally equivalent if k(V') ~ k(W).

PROPOSITION 4.32. Two irreducible varieties V and W are birationally equivalent if and
only if there are open subsets U and U’ of V and W respectively such that U ~ U’.

PROOF. Assume that V' and W are birationally equivalent. We may suppose that V' and W
are affine, corresponding to the rings A and B say, and that A and B have a common field
of fractions K. Write B = k[x1,...,X,]. Thenx; = a;/b;,a;,b; € A,and B C Ap, _p,.
Since Spm(A4yp, .. p,) is a basic open subvariety of V', we may replace A with Ay, 5., and
suppose that B C A. The same argument shows that there exists ad € B C A such
A C Bg. Now

BCACB; = B; CAg C(Bg)g = By,

and so A; = By. This shows that the open subvarieties D(b) C V and D(b) C W are
isomorphic. This proves the “only if” part, and the “if” part is obvious. O

REMARK 4.33. Proposition [4.32|can be improved as follows: if V' and W are irreducible
varieties, then every inclusion k (V) C k(W) is defined by a regular surjective map ¢: U —
U’ from an open subset U of W onto an open subset U’ of V.

PROPOSITION 4.34. Every irreducible algebraic variety of dimension d is birationally
equivalent to a hypersurface in A9 +1.

PROOF. Let V be an irreducible variety of dimension d. According to FT 8.21, there exist
algebraically independent elements x1, ..., x; € k(V) such that k(V') is finite and separa-
ble over k(x1, ..., xg). By the primitive element theorem (FT 5.1), k(V) = k(x1,..., X4, Xg+1)
for some x441. Let f € k[X1,..., X441] be an irreducible polynomial satisfied by the x;,
and let H be the hypersurface f = 0. Then k(V) ~ k(H). o

REMARK 4.35. An irreducible variety V' of dimension d is said to rational if it is bira-
tionally equivalent to A?. It is said to be unirational if k (V') can be embedded in k(A%) —
according to (4.33), this means that there is a regular surjective map from an open subset of
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A4V onto an open subset of V. Liiroth’s theorem (cf. FT 8.19) says that every unirational
curve is rational. It was proved by Castelnuovo that when k has characteristic zero every
unirational surface is rational. Only in the seventies was it shown that this is not true for
three dimensional varieties (Artin, Mumford, Clemens, Griffiths, Manin,...). When k has
characteristic p # 0, Zariski showed that there exist nonrational unirational surfaces, and
P. Blass showed that there exist infinitely many surfaces V', no two birationally equivalent,
such that k(X?,YP) C k(V) C k(X,Y).

Dominant maps

As in the affine case, a regular map ¢: V — W is said to be dominant (or dominating)
if the image of ¢ is dense in W. Suppose V and W are irreducible. If V' and W' are
open affine subsets of V and W such that o(V') C W', then implies that the map
f = fo@:k[W'] — k[V'] is injective. Therefore it extends to a map on the fields of
fractions, k(W) — k(V), and this map is independent of the choice of V' and W’.

Algebraic varieties as a functors

Let A be an affine k-algebra, and let V' be an algebraic variety. We define a point of V with
coordinates in A to be a regular map Spm(A) — V. For example, if V' = V(a) C k", then

V(A) = {(ay,...,an) € A" | f(a1,...,ay) =0all f € a},

which is what you should expect. In particular V(k) = V (as a set), i.e., V (as a set) can be
identified with the set of points of V' with coordinates in k. Note that

(VxW)(A) =V(A) x W(A)
(property of a product).

REMARK 4.36. Let V' be the union of two subvarieties, V= V1 U V,. If V] and V, are
both open, then V(A) = V;(A4) U V,(A), but not necessarily otherwise. For example, for
any polynomial f(Xq,...,Xn),

A" = DsU V(f)
where D ¢y >~ Spm(k[X1,..., X, T]/(1 = Tf)) and V(f) is the zero set of f, but
A" #£{ae A" | f(a) e A"} U{ae A" | f(a) = 0}

in general.

THEOREM 4.37. A regular map ¢:V — W of algebraic varieties defines a family of maps
of sets, p(A): V(A) — W(A), one for each affine k-algebra A, such that for every homo-
morphism a: A — B of affine k-algebras,

A vid) 2L wa

Ja lV(A) lV(B) (*)

B ve) 22 vip)
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commutes. Every family of maps with this property arises from a unique morphism of
algebraic varieties.

For a variety V, let h‘;ﬁf be the functor sending an affine k-algebra A4 to V(A). We can
restate as Theorem follows.

THEOREM 4.38. The functor
V > hif: Var;, — Fun(Aff;, Sets)

if fully faithful.

PROOF. The Yoneda lemma (1.39) shows that the functor
V + hy:Vary — Fun(Varg, Sets)

is fully faithful. Let ¢ be a morphism hf’l‘,ff — h’i‘,ﬂ;, and let 7" be a variety. Let (U;);es be a
finite affine covering of 7. Each intersection U; N U is affine (#.27)), and so ¢ gives rise to
a commutative diagram

0 — hy(T) — [l = Il wUinUj)
) )
0 — hy(T) — [lihv(U) = Tl;;hv(UNU;)

in which the pairs of maps are defined by the inclusions U; N U; < U;, U;. As the rows
are exact (4.13), this shows that ¢y extends uniquely to a functor Ay — hy, which (by the
Yoneda lemma) arises from a unique regular map V' — V. O

COROLLARY 4.39. To give an affine algebraic group is the same as to give a functor
G: Affy, — Gp such that for some n and some finite set S of polynomials ink[X1, X5, ..., Xu],
G(A) is the set of zeros of S in A".

PROOF. Certainly an affine algebraic group defines such a functor. Conversely, the con-
ditions imply that G = hy for an affine algebraic variety V' (unique up to a unique iso-
morphism). The multiplication maps G(A4) x G(A) — G(A) give a morphism of functors
hy x hy — hy. As hy x hy ~ hyxy (by definition of V' x V'), we see that they arise
from a regular map V x V — V. Similarly, the inverse map and the identity-element map
are regular. O

It is not unusual for a variety to be most naturally defined in terms of its points functor.
REMARK 4.40. The essential image of & +— hy: Variff — Fun(Aff;, Sets) consists of the

functors F' defined by some (finite) set of polynomials.

We now describe the essential image of & — hy:Var, — Fun(Aff;, Sets). The fibre
product of two maps «y: F1 — F3, ap: F» — F3 of sets is the set

F1 xpy Fo = {(x1,x2) | a1(x1) = a2(x2)}.
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When Fy, F», F3 are functors and a7, o2, a3 are morphisms of functors, there is a functor
F = F1 xF; F> such that

(F1 XFy F2)(A) = F1(A) XFpy4) F2(A)

for all affine k-algebras A.
To simplify the statement of the next proposition, we write U for hy when U is an
affine variety.

PROPOSITION 4.41. A functor F: Affy, — Sets is in the essential image of Vary if and
only if there exists an affine scheme U and a morphism U — F such that

(a) the functor R Ly x r U is a closed affine subvariety of U x U and the maps R == U
defined by the projections are open immersions;

(b) the set R(k) is an equivalence relation on U(k), and the map U(k) — F (k) realizes
F (k) as the quotient of U(k) by R(k).

PROOF. Let F = hy for V an algebraic variety. Choose a finite open affine covering
V =U of V,and let U = | |U;. It is again an affine variety (Exercise . The
functor R is hys where U’ is the disjoint union of the varieties U; N U;. These are affine
, and so U’ is affine. As U’ is the inverse image of Ay in U x U, it is closed .
This proves (a), and (b) is obvious.

The converse is omitted for the present. O

REMARK 4.42. A variety V defines a functor R + V(R) from the category of all k-
algebras to Sets. For example, if V' is affine,

V(R) = Homk-algebra(k[v]v R)

More explicitly, if V' C k" and I(V) = (f1,..., fm), then V(R) is the set of solutions in
R" of the system equations

fi(X1,....Xp) =0, i=1,....,m.

Again, we call the elements of V' (R) the points of V with coordinates in R.
Note that, when we allow R to have nilpotent elements, it is important to choose the f;
to generate I(V) (i.e., a radical ideal) and not just an ideal a such that V(a) = V.6

Exercises

4-1. Show that the only regular functions on P! are the constant functions. [Thus P! is not
affine. When k = C, P! is the Riemann sphere (as a set), and one knows from complex
analysis that the only holomorphic functions on the Riemann sphere are constant. Since
regular functions are holomorphic, this proves the statement in this case. The general case
is easier. |

SLet a be an ideal in k[X1,...]. If 4 has no nonzero nilpotent elements, then every k-algebra homomor-
phism k[X1,...] = A thatis zero on a is also zero on rad(a), and so

Homy (k[X1,...]/a, A) ~ Homy (k[X1,...]/rad(a), A).

This is not true if A has nonzero nilpotents.
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4-2. Let V be the disjoint union of algebraic varieties Vi, ..., V}. This set has an obvious
topology and ringed space structure for which it is an algebraic variety. Show that V is
affine if and only if each V; is affine.

4-3. Show that every algebraic subgroup of an algebraic group is closed.



Chapter 5

Local Study

In this chapter, we examine the structure of a variety near a point. We begin with the
case of a curve, since the ideas in the general case are the same but the formulas are more
complicated. Throughout, k is an algebraically closed field.

Tangent spaces to plane curves

Consider the curve

V:iF(X,Y)=0
in the plane defined by a nonconstant polynomial F(X,Y). We assume that F(X,Y) has
no multiple factors, so that (F(X,Y)) is a radical ideal and (V) = (F(X,Y)). We can
factor F into a product of irreducible polynomials, F(X,Y) = [][ Fi(X,Y), and then
V = |JV(F;) expresses V as a union of its irreducible components. Each component
V(F;) has dimension 1 (see[2.25]) and so V' has pure dimension 1. More explicitly, suppose
for simplicity that F(X, Y) itself is irreducible, so that

k[V] = k[X, Y]/(F(X,Y)) = k[x, y]

is an integral domain. If F £ X — ¢, then x is transcendental over k and y is algebraic over
k(x), and so x is a transcendence basis for k(V') over k. Similarly, if ' # Y — ¢, then y is
a transcendence basis for k (V') over k.

Let (a,b) be a point on V. In calculus, the equation of the tangent at P = (a, b) is
defined to be

oF oF
ﬁ(a,b)()(_a)JrW(a,b)(Y—b) =0. )

This is the equation of a line unless both g—f;(a, b) and g—{,(a, b) are zero, in which case it
is the equation of a plane.

DEFINITION 5.1. The tangent space TpV to V at P = (a,b) is the space defined by
equation (9).

When g—§(a, b) and g—l;(a, b) are not both zero, Tp (V) is a line, and we say that P is
a nonsingular or smooth point of V. Otherwise, Tp (V') has dimension 2, and we say that
P is singular or multiple. The curve V is said to be nonsingular or smooth when all its
points are nonsingular.

We regard Tp (V) as a subspace of the two-dimensional vector space Tp (A?), which is

the two-dimensional space of vectors with origin P.

80
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EXAMPLE 5.2. For each of the following examples, the reader (or his computer) is invited
to sketch the curve.! The characteristic of k is assumed to be # 2, 3.

(a) X™ 4+ Y™ = 1. All points are nonsingular unless the characteristic divides m (in
which case X" + Y™ — 1 has multiple factors).

(b) Y2 = X3. Here only (0, 0) is singular.

(¢c) Y2 = X?(X + 1). Here again only (0, 0) is singular.

(d) Y2 = X3+ aX + b. In this case,

V is singular <= Y2—Xx3—aXx - b,2Y, and 3X? + a have a common zero
< X3+ aX + b and 3X? + a have a common zero.

Since 3X2 + q is the derivative of X3 + aX + b, we see that V is singular if and
only if X3 + aX + b has a multiple root.

(e) (X2 +Y?)2+3X2Y — Y3 = 0. The origin is (very) singular.

(f) (X% +Y?)3 —4X2Y? = 0. The origin is (even more) singular.

(g) V = V(FG) where FG has no multiple factors and F and G are relatively prime.
Then V = V(F) U V(G), and a point (a, b) is singular if and only if it is a singular
point of V(F'), a singular point of V(G), or a point of V(F) N V(G). This follows
immediately from the equations given by the product rule:

IFG) . G OF IFG) . G OF
x T T Ty TPar Tare

PROPOSITION 5.3. Let V be the curve defined by a nonconstant polynomial F without
multiple factors. The set of nonsingular points® is an open dense subset V.

PROOF. We can assume that F is irreducible. We have to show that the set of singular
points is a proper closed subset. Since it is defined by the equations

aF_O 8F_O
39X 7 3y

it is obviously closed. It will be proper unless 0F/0X and dF /dY are identically zero on V,
and are therefore both multiples of F, but, since they have lower degree, this is impossible
unless they are both zero. Clearly dF/dX = 0 if and only if F is a polynomial in ¥ (k
of characteristic zero) or is a polynomial in X? and Y (k of characteristic p). A similar
remark applies to dF/dY. Thus if dF/dX and 0F/dY are both zero, then F is constant
(characteristic zero) or a polynomial in X7, Y 7, and hence a p™ power (characteristic p).
These are contrary to our assumptions. O

The set of singular points of a variety is called the singular locus of the variety.

TFor (b,e,f), see p57 of: Walker, Robert J., Algebraic Curves. Princeton Mathematical Series, vol. 13.
Princeton University Press, Princeton, N. J., 1950 (reprinted by Dover 1962).

2In common usage, “singular” means uncommon or extraordinary as in “he spoke with singular shrewd-
ness”. Thus the proposition says that singular points (mathematical sense) are singular (usual sense).
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Tangent cones to plane curves
A polynomial F(X,Y) can be written (uniquely) as a finite sum

where Fy, is a homogeneous polynomial of degree m. The term F; will be denoted F; and
called the linear form of F, and the first nonzero term on the right of (the homogeneous
summand of F of least degree) will be denoted F and called the leading form of F .

If P = (0,0) is on the curve V defined by F, then Fyp = 0 and becomes

F = aX + bY + higher degree terms;
moreover, the equation of the tangent space is

aX +bY =0.

DEFINITION 5.4. Let F(X,Y) be a polynomial without square factors, and let V' be the
curve defined by F. If (0,0) € V, then the geometric tangent cone to V at (0,0) is the
zero set of Fy. The tangent cone is the pair (V(Fx), Fy). To obtain the tangent cone at any
other point, translate to the origin, and then translate back.

EXAMPLE 5.5. (a) Y2 = X3: the tangent cone at (0, 0) is defined by ¥ 2 — it is the X -axis
(doubled).

(b) Y2 = X2(X + 1): the tangent cone at (0,0) is defined by Y2 — X? — it is the pair
of lines Y = +X.

(c) (X?24+Y?)243X2Y —Y3 = 0: the tangent cone at (0, 0) is defined by 3X2Y —Y3
—itis the union of the lines Y =0, Y = +./3X.

(d) (X2 4+Y?)3 —4X2Y? = 0: the tangent cone at (0, 0) is defined by 4X?Y? = 0 —
it is the union of the X and Y axes (each doubled).

In general we can factor Fi as
Fe(X.Y) = [[ XY —a; X)"".

Then deg Fix = ) _r; is called the multiplicity of the singularity, multp (V). A multiple
point is ordinary if its tangents are nonmultiple, i.e., 7; = 1 all 7. An ordinary double point
is called a node, and a nonordinary double point is called a cusp. (There are many names
for special types of singularities — see any book, especially an old book, on curves.)

The local ring at a point on a curve

PROPOSITION 5.6. Let P be a point on a curve V, and let m be the corresponding maximal
ideal in k[V]. If P is nonsingular, then dimy (m/m?) = 1, and otherwise dimy (m/m?) =
2.
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PROOF. Assume first that P = (0,0). Thenm = (x, y) in k[V] = k[X, Y]/(F(X,Y)) =
k[x7 y] Note that m2 = (xz’ Xy, y2)’ and

m/m? = (X,Y)/(m> + F(X,Y)) = (X,Y)/(X2, XY, Y2 F(X,Y)).

In this quotient, every element is represented by a linear polynomial cx + dy, and the only
relation is Fy(x,y) = 0. Clearly dimg(m/m?) = 1 if F; # 0, and dimg(m/m?) = 2
otherwise. Since Fy = 0 is the equation of the tangent space, this proves the proposition in
this case.

The same argument works for an arbitrary point (a, b) except that one uses the variables
X' =X —aand Y’ =Y — b; in essence, one translates the point to the origin. O

We explain what the condition dimy (m/m?) = 1 means for the local ring Op =
k[V]m. Let n be the maximal ideal mk[V], of this local ring. The map m — n induces an
isomorphism m/m? — n/n? (see|1.31), and so we have

P nonsingular <= dimy m/m? =1 <= dimg n/n? = 1.

Nakayama’s lemma shows that the last condition is equivalent to n being a principal
ideal. Since Op is of dimension 1, n being principal means O p is a regular local ring of
dimension 1 (I.6), and hence a discrete valuation ring, i.e., a principal ideal domain with
exactly one prime element (up to associates) (CA 16.4). Thus, for a curve,

P nonsingular <= Op regular <= Op is a discrete valuation ring.

Tangent spaces of subvarieties of A"

Before defining tangent spaces at points of closed subvarietes of A™ we review some ter-
minology from linear algebra.

Linear algebra

For a vector space k™, let X; be the i th coordinate function a — a;. Thus X, ..., X, is
the dual basis to the standard basis for k. A linear form ) a; X; can be regarded as an
element of the dual vector space (k)Y = Hom(k™, k).

Let A = (a;;j) be an n x m matrix. It defines a linear map a: k™ — k", by

m
ai ai > _jaija;
— A : = :
m
am m D j=10njd;
Write X1, ..., X,, for the coordinate functions on k™ and Y7, ..., Y, for the coordinate

functions on k™. Then

m
Yioa = Zainj.
Jj=1

This says that, when we apply « to a, then the i" coordinate of the result is

m m
Za,-j(Xja) = Zaijaj.
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Tangent spaces

Consider an affine variety V' C k™, and let a = I(V). The tangent space To(V) to V

ata = (ai,...,an) is the subspace of the vector space with origin a cut out by the linear
equations
y OF X =0 F 11
Za_}(ia(l_al)_’ € a. (11)

Thus T,(A™) is the vector space of dimension m with origin a, and T,(V) is the subspace
of To(A™) defined by the equations (TT).

Write (dX;), for (X; — a;); then the (dX;), form a basis for the dual vector space
Ta(A™)Y to To(A™) — in fact, they are the coordinate functions on T,(A™)". As in ad-
vanced calculus, we define the differential of a polynomial F € k[Xq, ..., X;,] at a by the
equation:

n
@Fa=3 2| @xo.
lla

i=1

It is again a linear form on 7,(A’). In terms of differentials, T,(V') is the subspace of
T.(A™) defined by the equations:

(dF)a =0, F ea, (12)

I claim that, in and (I2)), it suffices to take the F in a generating subset for a. The
product rule for differentiation shows that if G = ) j HjFj, then

(dG)a=) Hj(@)-(dF))a+ Fj(a) - (dH,)a.
J

If Fy,..., F, generate a and a € V(a), so that F;(a) = O for all j, then this equation
becomes

(dG)a =) Hj(@-(dF))a
J

Thus (dF1)a, - - ., (dFy)a generate the k-space {(dF), | F € a}.

When V is irreducible, a point a on V is said to be nonsingular (or smooth) if the
dimension of the tangent space at a is equal to the dimension of V'; otherwise it is singular
(or multiple). When V is reducible, we say a is nonsingular if dim T,(1) is equal to the
maximum dimension of an irreducible component of V' passing through a. It turns out then
that a is singular precisely when it lies on more than one irreducible component, or when it
lies on only one component but is a singular point of that component.

Leta = (F1...., Fy), and let

aFl 8F1

X1’ " 09X

aF 1 m

J =Jac(Fy,..., Fp) = (BXI- = : :
Y oF oF,

Xyc X

Then the equations defining 7,(1') as a subspace of T,(A™) have matrix J(a). Therefore,
linear algebra shows that

dimy Ta(V) = m —rank J(a),
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and so a is nonsingular if and only if the rank of Jac(Fy, ..., F;)(a) is equal to m —dim(V).
For example, if V' is a hypersurface, say I(V) = (F(X1,..., Xm)), then

oF oF
Jac(F)(a) = (m(a), ceeh 87(3)) ,

and a is nonsingular if and only if not all of the partial derivatives {?TF vanish at a.
1

We can regard J as a matrix of regular functions on V. For each r,
{ae V |rank J(a) < r}

is closed in V', because it the set where certain determinants vanish. Therefore, there is an
open subset U of V' on which rank J(a) attains its maximum value, and the rank jumps
on closed subsets. Later we shall show that the maximum value of rank J(a) is
m — dim V', and so the nonsingular points of V' form a nonempty open subset of V.

The differential of a regular map

Consider a regular map
p: A" > A" ar (Pi(ay,....am), ..., Py(ay,...,am)).
We think of ¢ as being given by the equations
Yi=Pi(X1,....,Xm),i =1,...n.

It corresponds to the map of rings ¢*:k[Y1,...,Y,] — k[X1,..., X;n] sending Y; to
Pi(X1,....Xm),i =1,...n.

Leta € A", and let b = @(a). Define (d@)a: Ta(A™) — T, (A") to be the map such
that

oP;
@Yy 0 (dp)a =D | o] (dX))a,
J la
i.e., relative to the standard bases, (d¢), is the map with matrix
@, ...
Jac(Pq,..., Pp)(a) = : :
@, ... 5@

For example, suppose a = (0,...,0) and b = (0,...,0), so that T,(A™) = k™ and
Ty (A™) = k", and

P = Zcinj + (higher terms), i = 1,...,n.
Jj=1
Then Y; o (dg)a = }_; ¢ij Xj, and the map on tangent spaces is given by the matrix (c;;),
i.e., itis simply t — (c;;)t.
Let F € k[X1,...,Xu]. We can regard F as a regular map A™ — A, whose differ-
ential will be a linear map

(dF)q: To(A™) — Typ(AY), b = F(a).

When we identify T3,(A!) with k, we obtain an identification of the differential of F (F
regarded as a regular map) with the differential of F' (F regarded as a regular function).
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LEMMA 5.7. Letg: A™ — A" be as at the start of this subsection. If p maps V = V(a) C
k™ into W = V(b) C k", then (dg), maps To(V) into T,(W), b = ¢(a).

PROOF. We are given that
feb= foypea,

and have to prove that
feb= (df)po(dp)aiszeroon T,(V).

The chain rule holds in our situation:

L Y= Pi(Xe o Xm), f = [V V),

If ¢ is the map given by the equations
Yj:Pj(Xl,...,Xm), j:l,...,m,
then the chain rule implies

d(fo@)a=(df)po(dp)a, b=g(a).

Lett € Ta(V); then
(df )b o (d@)a(t) = d(f o @)alt),
which is zero if f € b because then f o ¢ € a. Thus (d@)a(t) € Ty,(W). o

We therefore get a map (d¢)a: Ta(V) — Ty, (W). The usual rules from advanced calcu-
lus hold. For example,

(dY)po(dp)a=d(ogla. b=g¢(a).

The definition we have given of T,(V) appears to depend on the embedding V <
A”". Later we shall give an intrinsic of the tangent space, which is independent of any
embedding.

EXAMPLE 5.8. Let V be the union of the coordinate axes in A3, and let W be the zero set
of XY(X —Y)in A?. Each of V and W is a union of three lines meeting at the origin. Are
they isomorphic as algebraic varieties? Obviously, the origin o is the only singular point on
V or W. An isomorphism V' — W would have to send the singular point to the singular
point, i.e., 0 — 0, and map 7T, (V') isomorphically onto 7,(W). But V = V(XY,YZ, X Z),
and so T,(V) has dimension 3, whereas T, W has dimension 2. Therefore, they are not
isomorphic.

Etale maps

DEFINITION 5.9. A regular map ¢: V' — W of smooth varieties is étale at a point P of V
if (dp)p:Tp(V) — Typy(W) is an isomorphism; ¢ is étale if it is étale at all points of V.
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EXAMPLE 5.10. (a) A regular map
o: A" — A", aw (Pi(ay,....an),..., Py(ay,....ay))

is étale at a if and only if rank Jac(Py, ..., Py)(a) = n, because the map on the tangent
spaces has matrix Jac(Py, ..., Py)(a)). Equlvalent condition: det ( (a)) #0

(b) Let V' = Spm(A) be an affine variety, and let f = Y ¢; X’ € A[X] be such that
A[X]/(f (X)) is reduced. Let W = Spm(A[X]/(f (X)), and consider the map W — V
corresponding to the inclusion A < A[X]/(f). Thus

A[X]/(f)HA[TX] W<—\\>V>1A1
\A V.

The points of W lying over a point a € V are the pairs (a, b) € V x A! such that b is a root
of Y ¢;(a)X". I claim that the map W — V is étale at (a, b) if and only if b is a simple
root of ¥ ¢;(a)X'.

To see this, write A = Spm k[X1,..., Xn]/a,a = (f1,..., fr), so that

A[XT/(f) = kX1, ... Xal/(f1oeoos fro 1)

The tangent spaces to W and V at (a,b) and a respectively are the null spaces of the
matrices

af1 9f1
1 (a) . 1 (a) 0 afi

3X1 BX,,, m( ) afl (a)
0f, afn

iy @ @O o, Bfn
3X1 (a) e aXm (a) g—{((a, b) 0X | @ ... (a)

and the map T(, ) (W) — Ta(V) is induced by the projection map k"t — k™ omitting
the last coordinate. This map is an isomorphism if and only 1f (a b)# 0, because then
any solution of the smaller set of equations extends uniquely to a solutlon of the larger set.

. af d(Y; e (@)X
;ci(@)X!
ﬁ(a,b) = T(b)’

which is zero if and only if b is a multiple root of ) ; ¢;(a) X !, The intuitive picture is that
W — V is a finite covering with deg( f) sheets, which is ramified exactly at the points
where two or more sheets cross.

(c) Consider a dominant map ¢: W — V' of smooth affine varieties, corresponding to a
map A — B of rings. Suppose B can be written B = A[Y1,...,Ys]/(P1,..., Py) (same
number of polynomials as variables). A similar argument to the above shows that ¢ is étale

if and only if det (gTP;(a)) is never zero.
(d) The example in (b) is typical; in fact every étale map is locally of this form, provided

V' is normal (in the sense defined below p94). More precisely, let o: W — V be étale at
P € W, and assume V to normal; then there exist a map ¢": W' — V' with k[W'] =
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k[V'][X]/(f(X)), and a commutative diagram

w D) Up ~ Ull C w’

S R R

Vv > U =~ U c V

with the U’s all open subvarieties and P € Uj.

@ In advanced calculus (or differential topology, or complex analysis), the inverse
function theorem says that a map ¢ that is étale at a point a is a local isomorphism
there, i.e., there exist open neighbourhoods U and U’ of a and ¢(a) such that ¢ induces an
isomorphism U — U’. This is not true in algebraic geometry, at least not for the Zariski
topology: a map can be étale at a point without being a local isomorphism. Consider for
example the map
e: Al {0y > AL {0}, a > d?

This is étale if the characteristic is # 2, because the Jacobian matrix is (2X), which has
rank one for all X # 0 (alternatively, it is of the form ) with f(X) = X?>—T, where
T is the coordinate function on A!, and X2 — ¢ has distinct roots for ¢ # 0). Nevertheless,
I claim that there do not exist nonempty open subsets U and U’ of Al — {0} such that
¢ defines an isomorphism U — U’. If there did, then ¢ would define an isomorphism
k[U’] — k[U] and hence an isomorphism on the fields of fractions k(A!) — k(A!). But
on the fields of fractions, ¢ defines the map k(X) — k(X), X — X2, which is not an
isomorphism.

ASIDE 5.11. There is an old conjecture that any étale map ¢: A" — A" is an isomorphism.
If we write ¢ = (P, ..., Pp), then this becomes the statement:

oP;
if det (ﬁ(a)) is never zero (for a € k™), then ¢ has a inverse.
J

.. oP; . . P\ -
The condition, det le(a)) never zero, implies that det (ﬁ) is a nonzero constant (by

the Nullstellensatz[2.6|applied to the ideal generated by det (%)). This conjecture, which
J

is known as the Jacobian conjecture, has not been settled even for k = C and n = 2, despite
the existence of several published proofs and innumerable announced proofs. It has caused
many mathematicians a good deal of grief. It is probably harder than it is interesting. See
Bass et al. 1982°.

Intrinsic definition of the tangent space

The definition we have given of the tangent space at a point used an embedding of the
variety in affine space. In this section, we give an intrinsic definition that depends only on
a small neighbourhood of the point.

3Bass, Hyman; Connell, Edwin H.; Wright, David. The Jacobian conjecture: reduction of degree and
formal expansion of the inverse. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287-330.
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LEMMA 5.12. Let ¢ be an ideal in k[Xy, ..., X,] generated by linear forms £1,...,4,,
which we may assume to be linearly independent. Let X;,, ..., X;,_, be such that
TR R, CRD. €
is a basis for the linear forms in X1, ..., X,. Then
k[X1,....Xnl/c ~k[Xiy,.... Xi,_, ]
PROOF. Thisis obvious if the forms are X7, ..., X;. In the general case, because { X1, ..., X,}

and {{1,...,4r, X;,,..., X,,_,} are both bases for the linear forms, each element of one
set can be expressed as a hnear combination of the elements of the other. Therefore,

k[ X1,....Xn] =kll1,.... 0. Xiyy oo, Xiy o, ],
and so

k[X1,....Xul/c=kll1,.... 4r, Xiyyooo, Xip /¢
~k[Xi, ..., Xi,_, ] O

Let V = V(a) C k", and assume that the origin o lies on V. Let a; be the ideal
generated by the linear terms f; of the f € a. By definition, 7,(V) = V(ay). Let Ay =
k[X1,...,Xn]/ag, and let m be the maximal ideal in k[V] consisting of the functions zero
at o; thus m = (x,...,xp).

PROPOSITION 5.13. There are canonical isomorphisms
Homk—]inear(m/mz, k) — Homk—alg(AZ, k) — TO(V)-

PROOF. First isomorphism: Letn = (X1,..., X;) be the maximal ideal at the origin in
k[X1,....X,]. Thenm/m? ~ n/(n? + a), and as f — fy € n? forevery f € a, it follows
that m/m? ~ n/(n? 4 ay). Let Sf1.6: .., fru be abasis for the vector space ay. From linear
algebra we know that there are n — r linear forms X;,,..., Xj,_ a forming with the f; 4 a
basis for the linear forms on k”. Then X;, + m?2, ..., Xin—r + m? form a basis for m/m?
as a k-vector space, and the lemma shows that Ay ~ k[X;, ..., X;,_,]. A homomorphism
o: Ay — k of k-algebras is determined by its values a(X;, ), . .. ,oz(X,n_r), and they can be
arbitrarily given. Since the k-linear maps m/m? — k have a similar description, the first
isomorphism is now obvious.

Second isomorphism: To give a k-algebra homomorphism Ay — k is the same as to
give an element (ay,...,a,) € k™ such that f(ay,...,a,) = 0 forall f € ay, which is
the same as to give an element of Tp (V). O

Let n be the maximal ideal in O, (= Ay). According to (1.31), m/m? — n/n?, and so
there is a canonical isomorphism

To(V) —> Homy i (n/n2, k).

We adopt this as our definition.
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DEFINITION 5.14. The tangent space Tp (V') at a point P of a variety V is defined to be
Homy jipear(np / n%) ,k), where np the maximal ideal in Op.

The above discussion shows that this agrees with previous definition* for P =0 € V C
A", The advantage of the present definition is that it obviously depends only on a (small)
neighbourhood of P. In particular, it doesn’t depend on an affine embedding of V.

Note that implies that the dimension of 7p (V) is the minimum number of ele-
ments needed to generate np C Op.

A regular map o: V' — W sending P to Q defines a local homomorphism Ogp — Op,
which induces maps np — np, nQ/nZQ — np/n%), and Tp(V) — To(W). The last
map is written (da) p. When some open neighbourhoods of P and Q are realized as closed
subvarieties of affine space, then (do) p becomes identified with the map defined earlier.

In particular, an f € np is represented by a regular map U — A! on a neighbourhood
U of P sending P to 0 and hence defines a linear map (df)p: Tp(V) — k. This is just
the map sending a tangent vector (element of Homy jjpear(np/ n%,,k)) to its value at f
mod n%,. Again, in the concrete situation V' C A™ this agrees with the previous definition.
In general, for f € Op,i.e., for f a germ of a function at P, we define

df)p = f—f(P) modn?

The tangent space at P and the space of differentials at P are dual vector spaces.
Consider for example, a € V(a) C A", with a a radical ideal. For f € k[A"] =
k[X1,..., Xn], we have (trivial Taylor expansion)

f= f(P)—l—Zci(Xi—ai)—i-terms of degree > 2 inthe X; — a;,

that is,
f - f(P) = ch’(X,' —ai) mod m%,
Therefore (df) p can be identified with

of
Y oaXi—a) =) X,

which is how we originally defined the differential.’ The tangent space T, (V (a)) is the zero
set of the equations

(Xi —aj),

a

df)p =0,  fea,
and the set {(df ) p|T,o) | f € k[X1...., Xy]} is the dual space to T,(V).

REMARK 5.15. Let E be a finite dimensional vector space over k. Then

T,(A(E)) ~ E.

“More precisely, define Tp (V) = Homyp_jipear(n/n2, k). For V = A™, the elements (dX;)o = X; + n?
for 1 <i < m form a basis for n/ n2, and hence form a basis for the space of linear forms on Tp (V). A closed
immersion i:V — A™ sending P to o maps Tp (V) isomorphically onto the linear subspace of T,(A™)
defined by the equations

> (i) (dX;), =0, [ elIiV).

: 9X;
1<i<m

5The same discussion applies to any f € Op. Such an f is of the form % with /(a) # 0, and has a (not
quite so trivial) Taylor expansion of the same form, but with an infinite number of terms, i.e., it lies in the power
series ring k[[ X1 — a1, ..., Xn — an]].
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Nonsingular points

DEFINITION 5.16. (a) A point P on an algebraic variety V is said to be nonsingular if it
lies on a single irreducible component V; of V, and dimy Tp (V) = dim V;; otherwise the
point is said to be singular.

(b) A variety is nonsingular if all of its points are nonsingular.

(c) The set of singular points of a variety is called its singular locus.

Thus, on an irreducible variety V' of dimension d,

P is nonsingular <= dimy Tp(V) =d
& dimg(np/n3) =d
<= np can be generated by d functions.

PROPOSITION 5.17. Let V be an irreducible variety of dimension d. If P € V is nonsin-
gular, then there exist d regular functions f1,..., f; defined in an open neighbourhood U
of P such that P is the only common zero of the f; on U

PROOF. Let f1,..., fz generate the maximal ideal np in Op. Then fi,..., fy are all
defined on some open affine neighbourhood U of P, and I claim that P is an irreducible
component of the zero set V(f1,..., fg) of fi,..., f4 in U. If not, there will be some
irreducible component Z # P of V(f1,..., fz) passing through P. Write Z = V(p) with
p a prime ideal in k[U]. Because V(p) C V(f1,..., fg) and because Z contains P and is
not equal to it, we have

(fi.....fa)CpGmp (ideals in k[U]).

On passing to the local ring Op = k[U ], we find (using|1.30) that

(fi..... fa) CpOp G np (ideals in Op).

This contradicts the assumption that the f; generate np. Hence P is an irreducible compo-
nentof V(f1,..., f47). Onremoving the remaining irreducible components of V( f1,..., fz)
from U, we obtain an open neighbourhood of P with the required property. O

THEOREM 5.18. The set of nonsingular points of a variety is dense and open.

PROOF. We have to show that the singular points form a proper closed subset of every
irreducible component of V.

Closed: We can assume that V is affine, say V' = V(a) C A", Let Pq,..., P, generate
a. Then the set of singular points is the zero set of the ideal generated by the (n—d ) x(n—d)
minors of the matrix

@ ... @
Jac(Py,..., Pr)(a) = : :
@ @

Proper: According to (4.32) and (4.34) there is a nonempty open subset of V' isomor-
phic to a nonempty open subset of an irreducible hypersurface in A%+ and so we may
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suppose that V' is an irreducible hypersurface in A% *1, i.e., that it is the zero set of a single

nonconstant irreducible polynomial F(Xq,..., Xz41). By (2.25), dim V' = d. Now the
- Cie OF i oia OF

proof is the same as that of li if 7x; s identically zero on V(F'), then 7x; must be

divisible by F, and hence be zero. Thus F' must be a polynomial in X5, ... X741 (charac-

teristic zero) or in X lp ,X2,...,Xg+1 (characteristic p). Therefore, if all the points of V
are singular, then F is constant (characteristic 0) or a p power (characteristic p) which
contradict the hypothesis. O

COROLLARY 5.19. An irreducible algebraic variety is nonsingular if and only if its tangent
spaces Tp(V), P € V, all have the same dimension.

PROOF. According to the theorem, the constant dimension of the tangent spaces must be
the dimension of V', and so all points are nonsingular. O

COROLLARY 5.20. Any algebraic group G is nonsingular.

PROOF. From the theorem we know that there is an open dense subset U of G of nonsin-
gular points. For any g € G, a — ga is an isomorphism G — G, and so gU consists
of nonsingular points. Clearly G = | J gU. (Alternatively, because G is homogeneous, all
tangent spaces have the same dimension.) O

In fact, any variety on which a group acts transitively by regular maps will be nonsin-
gular.

ASIDE 5.21. Note that, if V is irreducible, then

dimV = n}gn dim Tp (V)

This formula can be useful in computing the dimension of a variety.

Nonsingularity and regularity

In this section we assume two results that won’t be proved until §9

5.22. For any irreducible variety V and regular functions fi, ..., f; onV, the irreducible
components of V(f1, ..., fr) have dimension > dim V —r (see[9.7).

Note that for polynomials of degree 1 on k", this is familiar from linear algebra: a
system of r linear equations in n variables either has no solutions (the equations are incon-
sistent) or its solutions form an affine space of dimension at least n — r.

5.23. IfV is an irreducible variety of dimension d, then the local ring at each point P of
V has dimension d (see[9.6).

Because of (1.30)), the height of a prime ideal p of a ring A is the Krull dimension of
Ap. Thus (5.23) can be restated as: if V is an irreducible affine variety of dimension d, then
every maximal ideal in k[V'] has height d.
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Sketch of proof of li IfV = A9 then A = k[X1,...,X4], and all maximal ideals
in this ring have height d, for example,

(X1—a1,....Xg—ag) D (X1—ay,....Xy_1—ag_1)D...0(X1—a1) D0

is a chain of prime ideals of length d that can’t be refined, and there is no longer chain. In the
general case, the Noether normalization theorem says that k[V] is integral over a polynomial
ring k[x1,...,x4], xi € k[V]; then clearly x1, ..., x4 is a transcendence basis for k(V),
and the going up and down theorems show that the local rings of k[V] and k[x1, ..., x4]
have the same dimension.

THEOREM 5.24. Let P be a point on an irreducible variety V. Any generating set for the
maximal ideal np of Op has at least d elements, and there exists a generating set with d
elements if and only if P is nonsingular.

PROOF. If fi,..., fr generate np, then the proof of (5.17) shows that P is an irreducible
component of V( f1,..., fr) in some open neighbourhood U of P. Therefore (5.22)) shows
that 0 > d — r, and so r > d. The rest of the statement has already been noted. o

COROLLARY 5.25. A point P on an irreducible variety is nonsingular if and only if O p is
regular.

PROOF. This is a restatement of the second part of the theorem. O

According to CA 16.3, a regular local ring is an integral domain. If P lies on two
irreducible components of a V, then Op is not an integral domain,’ and so Op is not
regular. Therefore, the corollary holds also for reducible varieties.

Nonsingularity and normality

An integral domain that is integrally closed in its field of fractions is called a normal ring.

LEMMA 5.26. An integral domain A is normal if and only if Ay, is normal for all maximal
ideals m of A.

PROOF. =>: If A is integrally closed, then so is S ~! A4 for any multiplicative subset S (not
containing 0), because if

"+ ceb" M4, =0, ¢ e STA,
then there is an s € S such that s¢; € A for all i, and then

(sb)" + (sc1)(sh)" L+ 4 5"c, =0,

6Suppose that P lies on the intersection Z; N Z; of the distinct irreducible components Z; and Z5. Since
Z1 N Z, is a proper closed subset of Z1, there is an open affine neighbourhood U of P suchthat U N Z1 N Z>
is a proper closed subset of U N Z1, and so there is a nonzero regular function f1 on U N Z that is zero on
U N Z1 N Z,. Extend f7 to a neighbourhood of P in Z1 U Z; by setting f1(Q) = 0 for Q € Z,. Then f1
defines a nonzero germ of regular function at P. Similarly construct a function f; that is zero on Z1. Then f}
and f> define nonzero germs of functions at P, but their product is zero.
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demonstrates that sb € A, whence b € S™1A.

«:If c is integral over A, it is integral over each Ay, hence in each Ay, and A = () A,
(if ¢ € (") Am, then the set of a € A such that ac € A is an ideal in A4, not contained in any
maximal ideal, and therefore equal to A itself). o

Thus the following conditions on an irreducible variety V' are equivalent:

(a) forall P € V, Op is integrally closed;

(b) for all irreducible open affines U of V, k[U] is integrally closed;

(c) thereisacovering V = | J V; of VV by open affines such that k[V;] is integrally closed
forall i.

An irreducible variety V satisfying these conditions is said to be normal. More generally,
an algebraic variety V is said to be normal if Op is normal for all P € V. Since, as
we just noted, the local ring at a point lying on two irreducible components can’t be an
integral domain, a normal variety is a disjoint union of irreducible varieties (each of which
is normal).

A regular local noetherian ring is always normal (cf. CA 16.3); conversely, a normal
local integral domain of dimension one is regular. Thus nonsingular varieties are normal,
and normal curves are nonsingular. However, a normal surface need not be nonsingular: the
cone

X*+Y*-27%>=0

is normal, but is singular at the origin — the tangent space at the origin is k3. However, it is
true that the set of singular points on a normal variety V' must have dimension < dim V —2.
For example, a normal surface can only have isolated singularities — the singular locus
can’t contain a curve.

Etale neighbourhoods

Recall that a regular map «: W — V is said to be étale at a nonsingular point P of W if the
map (da)p: Tp(W) — Ty(p)y(V) is an isomorphism.

Let P be a nonsingular point on a variety V of dimension d. A local system of pa-
rameters at P is a family { f1,..., fz} of germs of regular functions at P generating the
maximal ideal np C Op. Equivalent conditions: the images of f1,..., fz;innp/ n%, gen-
erate it as a k-vector space (see [L.4); or (df1)p.,...,(dfg)p is a basis for dual space to
Tp(V).

PROPOSITION 5.27. Let {fi,..., f4} be a local system of parameters at a nonsingular
point P of V. Then there is a nonsingular open neighbourhood U of P suchthat f1, f2,..., f4
are represented by pairs (f1,U),...,(fz,U) and the map (f1,..., f1): U — A% is étale.

PROOF. Obviously, the f; are represented by regular functions f, defined on a single open
neighbourhood U’ of P, which, because of , we can choose to be nonsingular. The
map o = (fl, e fd): U’ — A is étale at P, because the dual map to (da), is (dX; ) +—>
(d fi)a. The next lemma then shows that « is étale on an open neighbourhood U of P. g

LEMMA 5.28. Let W and V be nonsingular varieties. If «: W — V is étale at P, then it
is étale at all points in an open neighbourhood of P .
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PROOF. The hypotheses imply that W and V have the same dimension d, and that their
tangent spaces all have dimension d. We may assume W and V to be affine, say W C A™
and V C A", and that « is given by polynomials Py (X1,..., Xm), ..., Pa(X1,..., Xm).
Then (da)a: Ta(A™) — Ty(a)(A") is a linear map with matrix (E?ij(a))’ and « is not étale
at a if and only if the kernel of this map contains a nonzero vector in the subspace T,(V') of
Ta(A™). Let f1,..., fr generate I(W). Then « is not étale at a if and only if the matrix

af;
aaTfj(a)
Pi
X, (a)
has rank less than m. This is a polynomial condition on a, and so it fails on a closed subset
of W, which doesn’t contain P. o

Let V be a nonsingular variety, and let P € V. An étale neighbourhood of a point P
of V is pair (Q,w: U — V) with r an étale map from a nonsingular variety U to V and Q
a point of U such that 7 (Q) = P.

COROLLARY 5.29. Let V be a nonsingular variety of dimension d, and let P € V. There
is an open Zariski neighbourhood U of P and a map n:U — A? realizing (P,U) as an
étale neighbourhood of (0, ..., 0) € A4,

PROOF. This is a restatement of the Proposition. o

ASIDE 5.30. Note the analogy with the definition of a differentiable manifold: every point
P on nonsingular variety of dimension d has an open neighbourhood that is also a “neigh-
bourhood” of the origin in A?. There is a “topology” on algebraic varieties for which the
“open neighbourhoods” of a point are the étale neighbourhoods. Relative to this “topol-
ogy”’, any two nonsingular varieties are locally isomorphic (this is not true for the Zariski
topology). The “topology” is called the étale topology — see my notes Lectures on Etale
Cohomology.

The inverse function theorem

THEOREM 5.31 (INVERSE FUNCTION THEOREM). If a regular map of nonsingular vari-
etiesp: V — W is étale at P € V, then there exists a commutative diagram

open
V «—— Up

[ER—

étale
W <—— Uy(p)

with Up an open neighbourhood U of P, U s(py an étale neighbourhood ¢(P), and ¢" an
isomorphism.

PROOF. According to (5.38), there exists an open neighbourhood U of P such that the
restriction ¢|U of ¢ to U is étale. To get the above diagram, we can take Up = U, Uy (p)
to be the étale neighbourhood ¢|U: U — W of ¢(P), and ¢’ to be the identity map. =
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The rank theorem

For vector spaces, the rank theorem says the following: let «: V' — W be a linear map of
k-vector spaces of rank r; then there exist bases for V' and W relative to which o has matrix

(Ior 8) In other words, there is a commutative diagram

A similar result holds locally for differentiable manifolds. In algebraic geometry, there is
the following weaker analogue.

THEOREM 5.32 (RANK THEOREM). Let ¢:V — W be a regular map of nonsingular va-
rieties of dimensions m and n respectively, and let P € V. If rank(Tp(¢)) = n, then there
exists a commutative diagram

olUp
Up Up(p)

létale léta]e

(X150, X)) (X150 X0)

A" A"

in which Up and U,(p) are open neighbourhoods of P and ¢(P) respectively and the
vertical maps are étale.

PROOF. Choose a local system of parameters gi,...,g, at @(P), and let f; = gj o
@,..., fn = gno@. Then df,...,df, are linearly independent forms on 7p(V), and
there exist fy+1,..., fm such dfy,...,dfm is a basis for Tp(V)Y. Then fi,..., fmisa
local system of parameters at P. According to (5.28), there exist open neighbourhoods Up
of P and U,(p) of ¢(P) such that the maps

(f1.-vs fm):Up — A"
(gl,...,gn):U(p(p) — A"

are étale. They give the vertical maps in the above diagram. O

Smooth maps
DEFINITION 5.33. A regular map ¢: V' — W of nonsingular varieties is smooth at a point

Pof Vif(de)p:Tp(V) — T,p)(W) is surjective; ¢ is smooth if it is smooth at all points
of V.

THEOREM 5.34. A map ¢:V — W is smooth at P € V if and only if there exist open
neighbourhoods Up and Uy, (p) of P and ¢(P) respectively such that ¢|Up factors into

al . :
Up étale AdimV—dimW Uy(p) N Upcp)y.
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PROOF. Certainly, if ¢|Up factors in this way, it is smooth. Conversely, if ¢ is smooth at
P, then we get a diagram as in the rank theorem. From it we get maps

UP — A" X An U(p(P) — U(p(P)-

The first is étale, and the second is the projection of A"~ x U, (py onto Uy, (p). O

COROLLARY 5.35. Let V and W be nonsingular varieties. If ¢: V. — W is smooth at P,
then it is smooth on an open neighbourhood of V.

PROOF. In fact, it is smooth on the neighbourhood Up in the theorem. o

Dual numbers and derivations

In general, if A is a k-algebra and M is an A-module, then a k-derivation is amap D: A —
M such that

(@) D(c) =0forallc € k;

(b) D(f +g) = D(f) + D(g);
(¢c) D(fg)=f -Dg+ f - Dg (Leibniz’s rule).

Note that the conditions imply that D is k-linear (but not A-linear). We write Dery (A4, M)

for the space of all k-derivations A — M.
def

For example, the map f +— (df)p = f — f(P) mod n%, is a k-derivation Op —
np/n%.

PROPOSITION 5.36. There are canonical isomorphisms
Del‘k (OP s k) — Homk-linear(nP /1‘1%3 s k) — TP (V)

P
PROOF. The composite k 75 0 P m k is the identity map, and so, when re-

garded as k-vector space, O p decomposes into

Op=k®np, [f < (f(P)f—[f(P)).

A derivation D: Op — k is zero on k and on u%, (by Leibniz’s rule). It therefore defines
a k-linear map np / n%, — k. Conversely, a k-linear map np / n%, — k defines a derivation
by composition

Sf=@f)p
p———>

(@) np/n% — k. O

The ring of dual numbers is k[¢] = k[X]/(X?) where ¢ = X + (X?). As a k-vector
space it has a basis {1, ¢}, and (a + be)(a’ + b'e) = ad’ + (ab’ + a’'b)e.

PROPOSITION 5.37. The tangent space to V at P is canonically isomorphic to the space
of local homomorphisms of local k -algebras O p — kle]:

Tp(V) ~ Hom(Op, ke]).
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PROOF. Let a: Op — k[e] be a local homomorphism of k-algebras, and write a(a) =
ag + Dy(a)e. Because o is a homomorphism of k-algebras, a > ag is the quotient map
Op — Op/m = k. We have
a(ab) = (ab)o + Dy(ab)e, and
a(a)a(b) = (ao + Dqa(a)e)(bo + Da(b)e) = aobo + (aoDu(b) + boDa(a))e.

On comparing these expressions, we see that D, satisfies Leibniz’s rule, and therefore is a
k-derivation Op — k. Conversely, all such derivations D arise in this way. o

Recall (4.42) that for an affine variety V' and a k-algebra R (not necessarily an affine
k-algebra), we define V(R) to be Homy_y,(k[V], A). For example, if V' = V(a) C A"
with a radical, then

V(A) = {(a1,....an) € A" | f(a1,...,an) =0all f € al.

Consider an o € V(k[e]), i.e., a k-algebra homomorphism «: k[V] — k[e]. The composite
k[V] — k[e] — k is apoint P of V, and

mp = Ker(k[V] = k[e] = k) = a1 ((¢)).

Therefore elements of k[}'] not in m p map to units in k[e], and so « extends to a homomor-
phism «’: Op — k[e]. By construction, this is a local homomorphism of local k-algebras,
and every such homomorphism arises in this way. In this way we get a one-to-one corre-
spondence between the local homomorphisms of k-algebras Op — k[e] and the set

{P’' € V(k[e]) | P’ — P under the map V(k[g]) — V(k)}.

This gives us a new interpretation of the tangent space at P.
Consider, for example, V = V(a) C A", a a radical ideal in k[Xq,..., X], and let
a € V. In this case, it is possible to show directly that

T.(V) = {a’ € V(k[e]) | a’ maps to a under V(k[e]) — V(k)}

Note that when we write a polynomial F (X1, ..., Xp) in terms of the variables X; —a;, we
obtain a formula (trivial Taylor formula)

oF
F(Xl,--.,Xn)=F(al,...,az,,)-|-z:ﬁ
l

(Xi —ai) + R
a

with R a finite sum of products of at least two terms (X; — a;). Now let a € k" be a point
on V, and consider the condition for a + ¢b € k[g]" to be a point on V. When we substitute
a; + eb; for X; in the above formula and take F' € a, we obtain:

oF
b,-) |

X
Consequently, (ay + &by,...,an + eby) lies on V if and only if (by,...,b,) € Ta(V)
(original definition p84).
Geometrically, we can think of a point of V' with coordinates in k[] as being a point
of V with coordinates in k (the image of the point under V(k[e]) — V(k)) together with a
“tangent direction”

F(a; +8b1,...,an+€bn)=8(z
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REMARK 5.38. The description of the tangent space in terms of dual numbers is particu-
larly convenient when our variety is given to us in terms of its points functor. For example,
let M, be the set of n x n matrices, and let / be the identity matrix. Write e for / when it
is to be regarded as the identity element of GL,,.

(a) A matrix I +¢A has inverse I —¢ A in M, (k[¢]), and so lies in GL, (k[¢]). Therefore,

To(GLp) = {1 + eA | A € My}
~ M, (k).

(b) Since
det(I + cA) = I + etrace(A)

(using that &2 = 0),

Te(SLy) = {1 4+ A | trace(A) = 0}
~ {A € M, (k) | trace(A) = 0}.

(c) Assume the characteristic # 2, and let O, be orthogonal group:
O, ={AeGL, | A" -A=1}.

(A" denotes the transpose of A). This is the group of matrices preserving the quadratic form
X 12 +--+ X ,% The determinant defines a surjective regular homomorphism det: O, —
{1}, whose kernel is defined to be the special orthogonal group SO,. For I + ¢A €
My (k[g]),

(I +eA)" - (I +eA)=1+cA" + €A,

and so

Te(On) = Te(SOy,) = {I + A € My (kle]) | A is skew-symmetric}
~ {A € M,(k) | Aisskew-symmetric}.

Note that, because an algebraic group is nonsingular, dim 7, (G) = dim G — this gives
a very convenient way of computing the dimension of an algebraic group.

ASIDE 5.39. On the tangent space T, (GL,) ~ M, of GL,, there is a bracket operation

def

[M,N]¥ MN - NM

which makes T, (GL,) into a Lie algebra. For any closed algebraic subgroup G of GL,,
Te(G) is stable under the bracket operation on 7, (GL;) and is a sub-Lie-algebra of M,
which we denote Lie(G). The Lie algebra structure on Lie(G) is independent of the em-
bedding of G into GL;, (in fact, it has an intrinsic definition in terms of left invariant deriva-
tions), and G — Lie(G) is a functor from the category of linear algebraic groups to that of
Lie algebras.

This functor is not fully faithful, for example, any étale homomorphism G — G’ will
define an isomorphism Lie(G) — Lie(G’), but it is nevertheless very useful.

Assume k has characteristic zero. A connected algebraic group G is said to be semisim-
ple if it has no closed connected solvable normal subgroup (except {e}). Such a group G
may have a finite nontrivial centre Z(G), and we call two semisimple groups G and G’
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locally isomorphic if G/ Z(G) ~ G'/Z(G’). For example, SLj, is semisimple, with centre
Mn, the set of diagonal matrices diag(¢,...,¢), (" = 1, and SL,, /u, = PSL,. A Lie
algebra is semisimple if it has no commutative ideal (except {0}). One can prove that

G is semisimple <= Lie(G) is semisimple,

and the map G — Lie(G) defines a one-to-one correspondence between the set of local
isomorphism classes of semisimple algebraic groups and the set of isomorphism classes of
Lie algebras. The classification of semisimple algebraic groups can be deduced from that of
semisimple Lie algebras and a study of the finite coverings of semisimple algebraic groups
— this is quite similar to the relation between Lie groups and Lie algebras.

Tangent cones

In this section, I assume familiarity with parts of Atiyah and MacDonald 1969, Chapters
11, 12.

Let V = V(a) C k™, a = rad(a), and let P = (0,...,0) € V. Define a4 to be the
ideal generated by the polynomials Fi for F' € a, where F is the leading form of F (see
p82). The geometric tangent cone at P, Cp (V) is V(ax), and the tangent cone is the pair
(V(ax),k[X1,..., Xn]/ax). Obviously, Cp(V) C Tp(V).

Computing the tangent cone

If a is principal, say a = (F), then ax = (Fx), butif a = (Fy,..., Fy), then it need not
be true that ayx = (Fi«, ..., Fr«). Consider for example a = (XY, XZ + Z(Y? — Z?)).
One can show that this is a radical ideal either by asking Macaulay (assuming you believe
Macaulay), or by following the method suggested in Cox et al. 1992, p474, problem 3 to
show that it is an intersection of prime ideals. Since

YZ(Y?-Z%)=Y - (XZ+Z(Y*-2Z?)—-Z-(XY)€a

and is homogeneous, it is in ax, but it is not in the ideal generated by XY, X Z. In fact, a4
is the ideal generated by
XY, XZ, YZ(Y?-2Z>.

This raises the following question: given a set of generators for an ideal a, how do you
find a set of generators for a,? There is an algorithm for this in Cox et al. 1992, p467. Let
a be an ideal (not necessarily radical) such that V' = V/(a), and assume the origin is in V.
Introduce an extra variable 7" such that 7“>" the remaining variables. Make each generator
of a homogeneous by multiplying its monomials by appropriate (small) powers of 7', and
find a Grobner basis for the ideal generated by these homogeneous polynomials. Remove
T from the elements of the basis, and then the polynomials you get generate ax.

Intrinsic definition of the tangent cone

Let A be a local ring with maximal ideal n. The associated graded ring is
— iyqitl
gr(4) = @izon /nitl,

Note that if 4 = By, and n = mA, then gr(4) = @ m’ /m’*1 (because of (1.31)).
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PROPOSITION 5.40. The map k[X1,..., Xu]/ax — gr(Op) sending the class of X; in
k[X1,...,Xn]/ax to the class of X; in gr(Op) is an isomorphism.

PROOF. Let m be the maximal ideal in k[X1, ..., X,]/a corresponding to P. Then

gr(Op) = Zn‘ti/mi"'1
= Z(Xl,...,Xn)i/(Xl,...,Xn)i+1 +an (X1,~--,Xn)i
= Z(Xl’“"Xn)i/(Xl,--.,Xn)i+l +q

where a; is the homogeneous piece of a4 of degree i (that is, the subspace of ax consisting
of homogeneous polynomials of degree i). But

(X1q,.. .,Xn)i/(Xl, .. .,X,,)i'H +a; =i" homogeneous piece of k[X1,..., Xn]/0x.

O

For a general variety V and P € V, we define the geometric tangent cone Cp (V) of
V at P to be Spm(gr(Op )req), where gr(O p)req is the quotient of gr(O p) by its nilradical,
and we define the tangent cone to be (Cp(V), gr(Op)).

Recall (Atiyah and MacDonald 1969, 11.21) that dim(A4) = dim(gr(A4)). Therefore
the dimension of the geometric tangent cone at P is the same as the dimension of V' (in
contrast to the dimension of the tangent space).

Recall (ibid., 11.22) that gr(Op) is a polynomial ring in d variables (d = dim V) if
and only if Op is regular. Therefore, P is nonsingular if and only if gr(Op) is a polynomial
ring in d variables, in which case Cp (V) = Tp (V).

Using tangent cones, we can extend the notion of an étale morphism to singular va-
rieties. Obviously, a regular map a: V' — W induces a homomorphism gr(Oy(p)) —

gr(Op).

@ The map on the rings k[X1, ..., X,]/a* defined by a map of algebraic varieties is

not the obvious one, i.e., it is not necessarily induced by the same map on polyno-
mial rings as the original map. To see what it is, it is necessary to use Proposition[5.40] i.e.,
it is necessary to work with the rings gr(Op).

We say that « is étale at P if this is an isomorphism. Note that then there is an iso-
morphism of the geometric tangent cones Cp (V) — Cy(p)(W), but this map may be an
isomorphism without o being étale at P. Roughly speaking, to be étale at P, we need the
map on geometric tangent cones to be an isomorphism and to preserve the “multiplicities”
of the components.

It is a fairly elementary result that a local homomorphism of local rings ¢: 4 — B
induces an isomorphism on the graded rings if and only if it induces an isomorphism on the
completions (ibid., 10.23). Thus a: V' — W is étale at P if and only if the map @a( P) —
Op isan isomorphism. Hence shows that the choice of a local system of parameters
f1,..., fq at anonsingular point P determines an isomorphism Op — k([ X1,..., Xqll-

We can rewrite this as follows: let 71, ..., f; be alocal system of parameters at a nonsin-
gular point P; then there is a canonical isomorphism Op - k(lt1,...,t4]]- For f € Op,
the image of f € k[[t1,...,?4]] can be regarded as the Taylor series of f.
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For example, let V = A!, and let P be the pointa. Thent = X —a is a local parameter
at a, Op consists of quotients f(X) = g(X)/h(X) with h(a) # 0, and the coefficients
of the Taylor expansion ), an(X —a)" of f(X) can be computed as in elementary

calculus courses: a, = f®(a)/n!.

Exercises

5-1. Find the singular points, and the tangent cones at the singular points, for each of

(@ Y3—-Y?24+ X3 - X2+4+3Y2X +3X?%Y +2XY;
(b) X*+Y*—-Xx2y?2 (assume the characteristic is not 2).

5-2. Let V' C A" be an irreducible affine variety, and let P be a nonsingular point on V.
Let H be a hyperplane in A” (i.e., the subvariety defined by a linear equation Y a; X; =
d with not all a; zero) passing through P but not containing 7p (V). Show that P is
a nonsingular point on each irreducible component of V' N H on which it lies. (Each
irreducible component has codimension 1 in V' — you may assume this.) Give an example
with H D Tp(V) and P singularon VN H. Must P be singularon VNH it H D Tp(V)?

5-3. Let P and Q be points on varieties IV and W. Show that

Tp,o)(VxW)=Tp(V) @ To(W).

5-4. For each n, show that there is a curve C and a point P on C such that the tangent
space to C at P has dimension n (hence C can’t be embedded in AP,

1 .
7 0). The symplectic
group Sp,, is the group of 2n x 2n matrices 4 with determinant 1 such that A" -J - A = J.
(It is the group of matrices fixing a nondegenerate skew-symmetric form.) Find the tangent

space to Sp,, at its identity element, and also the dimension of Sp,,.

5-5. Let I be the n x n identity matrix, and let J be the matrix ( 0

5-6. Find a regular map «:V — W which induces an isomorphism on the geometric
tangent cones Cp (V) — Cy(p)(W) but is not étale at P.

5-7. Show that the cone X2 + Y2 = Z?2 is a normal variety, even though the origin is
singular (characteristic # 2). See

5-8. Let V = V(a) C A". Suppose that a # I(V), and for a € V, let T} be the subspace
of T,(A") defined by the equations (df)a = 0, f € a. Clearly, 7, D T,(V), but need they
always be different?



Chapter 6

Projective Varieties

Throughout this chapter, k will be an algebraically closed field. Recall (4.3) that we defined
IP" to be the set of equivalence classes in k"1 \ {origin} for the relation

(ag,....an) ~ (bo,...,by) < (ag....,an) = c(by,...,by,) for somec € k*.
Write (ag : ... : an) for the equivalence class of (ao, ..., ay,), and 7 for the map

k"t {origin}/~ — P".

Let U; be the set of (ag : ... : ay) € P" such that a; # 0, and let u; be the bijection
(aop:...:an) (2—?‘;—’:)% — A" (%omitted).

In this chapter, we shall define on P” a (unique) structure of an algebraic variety for which
these maps become isomorphisms of affine algebraic varieties. A variety isomorphic to
a closed subvariety of P is called a projective variety, and a variety isomorphic to a lo-
cally closed subvariety of P" is called a quasi-projective variety.! Every affine variety is
quasiprojective, but there are many varieties that are not quasiprojective. We study mor-
phisms between quasiprojective varieties.

Projective varieties are important for the same reason compact manifolds are important:
results are often simpler when stated for projective varieties, and the “part at infinity” often
plays a role, even when we would like to ignore it. For example, a famous theorem of
Bezout (see [6.34] below) says that a curve of degree m in the projective plane intersects a
curve of degree n in exactly mn points (counting multiplicities). For affine curves, one has
only an inequality.

Algebraic subsets of P

A polynomial F(Xy, ..., Xp) is said to be homogeneous of degree d if it is a sum of terms
dig,...in Xo -+ Xy With ig + -+ + in = d; equivalently,

F(tXo,....tXn) = t*F(Xo. ..., Xn)

1A subvariety of an affine variety is said to be quasi-affine. For example, A2 <. {(0,0)} is quasi-affine but
not affine.

103
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for all t € k. Write k[Xo, ..., Xu]g for the subspace of k[Xy, ..., X,] of polynomials of
degree d. Then
k[Xo.....Xn] = @Pk[Xo.. ... Xnla:
d>0

that is, each polynomial F can be written uniquely as a sum F = »_ F; with F; homoge-
neous of degree d.

Let P = (ag : ... : ay) € P". Then P also equals (cag : ... : cay,) forany ¢ € k*,
and so we can’t speak of the value of a polynomial F(Xo,..., X,) at P. However, if F is
homogeneous, then F(cay, ..., can) = ¢® F(ao, ...,an), and so it does make sense to say
that F' is zero or not zero at P. An algebraic set in P" (or projective algebraic set) is the
set of common zeros in P” of some set of homogeneous polynomials.

EXAMPLE 6.1. Consider the projective algebraic subset E of P? defined by the homoge-
neous equation
Y?Z = X>+aXZ*+bZ3 (13)

where X 34-a X +b is assumed not to have multiple roots. It consists of the points (x : y : 1)
on the affine curve £ N Us
Y2=X>+aX +b,

together with the point “at infinity” (0 : 1 : 0).

Curves defined by equations of the form are called elliptic curves. They can also
be described as the curves of genus one, or as the abelian varieties of dimension one. Such
a curve becomes an algebraic group, with the group law such that P + Q + R = 0 if and
only if P, Q, and R lie on a straight line. The zero for the group is the point at infinity.
(Without the point at infinity, it is not possible to make E into an algebraic group.)

When a, b € QQ, we can speak of the zeros of (*) with coordinates in Q. They also form
a group E(Q), which Mordell showed to be finitely generated. It is easy to compute the
torsion subgroup of E(Q), but there is at present no known algorithm for computing the
rank of E(Q). More precisely, there is an “algorithm” which always works, but which has
not been proved to terminate after a finite amount of time, at least not in general. There is
a very beautiful theory surrounding elliptic curves over Q and other number fields, whose
origins can be traced back 1,800 years to Diophantus. (See my book on Elliptic Curves for
all of this.)

Anideal a C k[Xo, ..., Xn] is said to be homogeneous if it contains with any polyno-
mial F all the homogeneous components of F', i.e., if

Fea = F;eaalld.

It is straightforward to check that

¢ an ideal is homogeneous if and only if it is generated by (a finite set of) homogeneous
polynomials;

¢ the radical of a homogeneous ideal is homogeneous;

¢ an intersection, product, or sum of homogeneous ideals is homogeneous.

For a homogeneous ideal a, we write V' (a) for the set of common zeros of the homoge-
neous polynomials in a. If Fi,..., F, are homogeneous generators for a, then V(a) is the
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set of common zeros of the F;. Clearly every polynomial in a is zero on every representa-
tive of a point in V(a). We write V2 (a) for the set of common zeros of a in k1. It is
cone in k"1 i.e., together with any point P it contains the line through P and the origin,
and

V(a) = (V¥(a) ~ (0,...,0))/~.

The sets V(a) have similar properties to their namesakes in A",
PROPOSITION 6.2. There are the following relations:

(a) aC b= V(a) DV(b);

(b) V() =P"; V(a) =0 <= rad(a) D (Xo....,Xn);
(c) V(ab) =V(anb)=V(a)UV(b);

@ V) =N V(a).

PROOF. Statement (a) is obvious. For the second part of (b), note that
V(a) =0 < V¥ (a) C {(0,...,0)} < rad(a) D (Xo....,Xn),

by the strong Nullstellensatz (2.11)). The remaining statements can be proved directly, or
by using the relation between V(a) and V2 (q). o

If C isaconein k"1, then I(C) is ahomogeneous ideal in k[ Xy, . .., Xp]: if F(cao, ...

0 for all ¢ € k*, then
ZFd(ao,...,an)~cd = F(cayp,...,cay) =0,
d
for infinitely many ¢, and so ) F;(ao,...,an)X 4 is the zero polynomial. For a subset S
of P", we define the affine cone over S in k" *1 to be

C = 77 1(S) U {origin}

and we set

I1(S) = I(C).
Note that if S is nonempty and closed, then C is the closure of 7~ 1(S) = @, and that /(S)
is spanned by the homogeneous polynomials in k[ X, ..., X;] that are zero on S.

PROPOSITION 6.3. The maps V and I define inverse bijections between the set of alge-
braic subsets of P" and the set of proper homogeneous radical ideals of k[Xo, ..., Xn].
An algebraic set V in P" is irreducible if and only if (V') is prime; in particular, P"* is
irreducible.

PROOF. Note that we have bijections

S—=C

{algebraic subsets of P"} {nonempty closed cones in k" T1}

V 1

{proper homogeneous radical ideals in k[ X, ..., X,]}

,Can) =
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Here the top map sends S to the affine cone over S, and the maps V' and [ are in the sense
of projective geometry and affine geometry respectively. The composite of any three of
these maps is the identity map, which proves the first statement because the composite of
the top map with [ is I in the sense of projective geometry. Obviously, V is irreducible if
and only if the closure of 7! (V) is irreducible, which is true if and only if 7(V') is a prime
ideal. O

Note that (Xo, ..., X,) and k[Xo, ..., X,] are both radical homogeneous ideals, but
V(Xo,...,Xn) =0 =V(k[Xo,..., Xn])
and so the correspondence between irreducible subsets of P” and radical homogeneous
ideals is not quite one-to-one.
The Zariski topology on P

Proposition [6.2]shows that the projective algebraic sets are the closed sets for a topology on
P". In this section, we verify that it agrees with that defined in the first paragraph of this
chapter. For a homogeneous polynomial F, let

D(F) ={P €P" | F(P) # 0}.

Then, just as in the affine case, D(F') is open and the sets of this type form a base for the
topology of P,

To each polynomial f(Xq,...,X,), we attach the homogeneous polynomial of the
same degree

de
f*(Xo,..., Xn) = X g(f)f(%””’%»

and to each homogeneous polynomial F(Xp, ..., X;), we attach the polynomial
Fe(X1,....Xn)=F(1,X1,...,Xn).

PROPOSITION 6.4. For the topology on P" just defined, each U; is open, and when we
endow it with the induced topology, the bijection

U< A" (ap:...:1:...:a,) < (ag,....ai—1,ai+1,...,an)

becomes a homeomorphism.

PROOF. It suffices to prove this with i = 0. The set Uy = D(Xy), and so it is a basic open
subset in P”. Clearly, for any homogeneous polynomial F € k[Xo, ..., X»],

D(F(Xo,...,Xn)NUy=D(F(1,X1,...,Xpn)) = D(Fx)
and, for any polynomial f € k[Xy,..., X,],
D(f) = D(f*) N Up.

Thus, under Uy <> A”, the basic open subsets of A" correspond to the intersections with
U; of the basic open subsets of P”, which proves that the bijection is a homeomorphism. o



CLOSED SUBSETS OF AN AND PV 107

REMARK 6.5. It is possible to use this to give a different proof that P” is irreducible. We
apply the criterion that a space is irreducible if and only if every nonempty open subset is
dense (see p@) Note that each U; is irreducible, and that U; N U; is open and dense in
each of U; and U; (as a subset of U, it is the set of points (ag : ...: 1:...:a; :...:an)
with a; # 0). Let U be a nonempty open subset of P"; then U N U; is open in U;. For
some i, U N U; is nonempty, and so must meet U; N U, . Therefore U meets every U, and
so is dense in every U . It follows that its closure is all of P"*.

Closed subsets of A" and P

We identify A" with Up, and examine the closures in IP” of closed subsets of A”. Note that
P" = A" U Hoo, Hoo = V(Xp).

With eachideal ain k[ X7, ..., X,], we associate the homogeneous ideal a* in k[ Xy, . .., X;]
generated by { /* | f € a}. For a closed subset V of A", set V* = V(a*) witha = I(V).
With each homogeneous ideal a in k[Xo, X1,..., X,], we associate the ideal a4 in
k[X1,...,Xn] generated by {Fx | F € a}. When V is a closed subset of P”, we set
Ve = V(ax) with a = I(V).

PROPOSITION 6.6. (a) Let V be a closed subset of A™. Then V* is the closure of V in P",
and (V*)s = V. If V = |JV; is the decomposition of V into its irreducible components,
then V* = | J V;* is the decomposition of V'* into its irreducible components.

(b) Let V be a closed subset of P"*. Then V, = V N A", and if no irreducible component
of V lies in Hy, or contains Heo, then Vi is a proper subset of A", and (V)* = V.

PROOF. Straightforward. o

EXAMPLE 6.7. (a) For
V:Y?=X34aX +0,

we have
V*Y?Z = X® +aXZ?+bZ3,
and (V*)e = V.

(b)Let V = V(f1,..., fm); then the closure of V in P” is the union of the irreducible
components of V(f,¥, ..., f,¥) not contained in He. For example, let V = V(X1, X? +
X5) = {(0,0)}; then V(Xo X1, X12 + X0 X>) consists of the two points (1: 0: 0) (the closure
of V) and (0: 0: 1) (which is contained in Hyo).2

(b) For V = Heo = V(Xo), Ve =0 = V(1) and (Vi)* = 0 £ V.

The hyperplane at infinity

It is often convenient to think of P" as being A" = Uy with a hyperplane added “at infinity”.
More precisely, identify the Uy with A", The complement of Uy in P” is

Hoo ={(0:ay:...:ap) CP"},

20f course, in this case a = (X1, X2), a* = (X1, X2), and V* = {(1:0: 0)}, and so this example doesn’t
contradict the proposition.
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which can be identified with P" 1.
For example, P! = Al LI Hy, (disjoint union), with Hy, consisting of a single point,
and P? = A% U H, with Hy a projective line. Consider the line

l+aX1+bX,=0
in A2 Tts closure in P2 is the line
Xo+aXi +bX, =0.

This line intersects the line Hs, = V(Xp) at the point (0 : —b : a), which equals (0 : 1 :
—a/b) when b # 0. Note that —a /b is the slope of the line 1 + aX; + bX> = 0, and so
the point at which a line intersects Ho, depends only on the slope of the line: parallel lines
meet in one point at infinity. We can think of the projective plane P? as being the affine
plane A? with one point added at infinity for each direction in AZ.

Similarly, we can think of P” as being A" with one point added at infinity for each
direction in A” — being parallel is an equivalence relation on the lines in A”, and there is
one point at infinity for each equivalence class of lines.

We can also identify A” with Uy, as in Example Note that in this case the point at
infinity on the elliptic curve Y2 = X3 4 aX + b is the intersection of the closure of any
vertical line with Ho.

P" is an algebraic variety

For each i, write O; for the sheaf on U; C P" defined by the homeomorphism u;: U; — A",

LEMMA 6.8. Write U;; = U; N U;; then O;|U;; = O,|U;;. When endowed with this
sheaf U;; is an affine variety; moreover, I'(U;j, O;) is generated as a k-algebra by the
functions (f|U;;)(g|U;j) with f € I'(U;, O;), g € I'(U;, O;).

PROOF. It suffices to prove this for (7, j) = (0, 1). All rings occurring in the proof will be
identified with subrings of the field k(Xo, X1, ..., X»).

Recall that
Uo=1{(ag:ay:...:an) |ao #0};(ap:ay:...:ay) < (%,Z—ﬁ,...,i—g) € A",
Let k[& X &] be the subring of k(Xg, X X,) generated by the quotients Xi
XO’XO"'.’XO g 07X17"'7Xl1 g y Xq ¥ XO
—; is the;)olynomlal ring in the n symbols X—(‘) ---» X% An element f(X—(l), cee, X—g) €
21 an
k[Xo’ e, O] defines a map
(ag :ay: ...:an)Hf(Z—é,...,Z—g):erk,
and in this way k[§—(‘), ))g—(z), e, X—g] becomes identified with the ring of regular functions on
Uy, and Uy with Spm (k[%, e §—g])

Next consider the open subset of Uy,

Uo1 ={(ao:...:an) lao #0,a; # 0}.
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It is D(§—(‘)), and is therefore an affine subvariety of (Up, Op). The inclusion Uy; —

Uy corresponds to the inclusion of rings k[§l s §—g] s k[& . ;‘;—:’) —] An ele-
ment f(%,...,%, §—‘l’) of k[%,...,iﬁ—g XO] defines the function (ag : ... : an) —

a a, a
f(%., . e ﬁ) on U01.

Similarly,

Up={(ao:ar:...:an) a1 # 0} (ao:ar:...:an) < (3,...,2%) € A",

and we identify U; with Spm (k[§—?§—§ % ]) A polynomial f(¥o,.... %) in
k[§—‘l’,...,%]deﬁnesthemap(ao : ...:an)»—>f(a, “’al) U, —> k.

When regarded as an open subset of Uy, Upy = D( X(l’), and is therefore an affine
subvariety of (U, (’)1) and the inclusion Uy; < Uj corresponds to the inclusion of rings

X, X, X X X, X X X, X

k[X—?,...,Xl]L)k[ ..,X—I,X—é].Anelementf( 0 e X X_(l))Ofk[X_?""’X_l’X_(l)]

defines the function (ao ..:an)»—>f(a° Z’l’ “‘)on U01
Thetwosubringsk[%—é,...,% Xl]andk[ X—" X ]ofk(Xo,Xl,...,Xn)are

equal, and an element of this ring defines the same functlon on Uy regardless of which of
the two rings it is considered an element. Therefore, whether we regard Uy as a subvariety
of Up or of Uj it inherits the same structure as an affine algebralc variety (3.8p). This

proves the first two assertions, and the third is obvious: k[ Yoo ‘)X(—g, Xo 1] is generated by
X Xo X X
its subrmgsk[ oo xaland k[52, 22, F2 °

PROPOSITION 6.9. There is a unique structure of a (separated) algebraic variety on P" for
which each U; is an open affine subvariety of P" and each map u; is an isomorphism of
algebraic varieties.

PROOF. Endow each U; with the structure of an affine algebraic variety for which u; is
an isomorphism. Then P" = | J U;, and the lemma shows that this covering satisfies the
patching condition (4.13), and so P” has a unique structure of a ringed space for which
U; — P" is a homeomorphism onto an open subset of P" and Op» |U; = Oy,. Moreover,
because each U; is an algebraic variety, this structure makes P” into an algebraic prevariety.
Finally, the lemma shows that P" satisfies the condition (4.27k) to be separated. o

EXAMPLE 6.10. Let C be the plane projective curve
C:Y’z=x>
and assume char(k) # 2. For each a € k*, there is an automorphism
(x:y:z)|—>(ax:y:a3z):Cﬁ>C.

Patch two copies of C x A! together along C x (A! — {0}) by identifying (P, u) with
(@a(P),a™ 1), P € C,a € A' ~ {0}. One obtains in this way a singular 2-dimensional
variety that is not quasiprojective (see Hartshorne 1977, Exercise 7.13). It is even complete
— see below — and so if it were quasiprojective, it would be projective. It is known
that every irreducible separated curve is quasiprojective, and every nonsingular complete
surface is projective, and so this is an example of minimum dimension. In Shafarevich
1994, VI 2.3, there is an example of a nonsingular complete variety of dimension 3 that is
not projective.
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The homogeneous coordinate ring of a subvariety of "

Recall (page that we attached to each irreducible variety V a field k(V') with the prop-
erty that k(1) is the field of fractions of k[U] for any open affine U C V. We now describe
this field in the case that IV = P". Recall that k[Up] = k[§—(‘), cees X—g] We regard this as a
subring of k(Xy, ..., Xy), and wish to identify the field of fractions of k[Up] as a subfield
of k(Xo, ..., Xn). Any nonzero F € k[Up] can be written

F*(Xo, ..., Xn)
Xl XI’I _ 0, ) n
F(xt..... %% = ey

0

with F* homogeneous of degree deg(F'), and it follows that the field of fractions of k[Up]

is

G(Xo,...,Xn)

H(Xo,...,Xn)

Write k(Xo, ..., Xn)o for this field (the subscript O is short for “subfield of elements of

degree 07), so that k(P") = k(Xo, ..., X»n)o. Note that for F = % ink(Xo,..., Xn)o,
G(ap,...,an)

(Cl():...:an)l—>]_](a0"—”’an):D(H)—)k,

k(Up) = G, H homogeneous of the same degree, U {0}.

is a well-defined function, which is obviously regular (look at its restriction to Uj;).

We now extend this discussion to any irreducible projective variety V. Such a V' can be
written V' = V(p) with p a homogeneous radical ideal in k[ Xy, ..., Xy], and we define the
homogeneous coordinate ring of V (with its given embedding) to be

khom[V] = k[XO’ B Xn]/p

Note that knom[V] is the ring of regular functions on the affine cone over V; therefore its
dimension is dim(V) 4 1. It depends, not only on V, but on the embedding of V into
P", i.e., it is not intrinsic to V (see below). We say that a nonzero f € kpom[V] is
homogeneous of degree d if it can be represented by a homogeneous polynomial F of
degree d in k[Xo, ..., X,] (we say that 0 is homogeneous of degree 0).

LEMMA 6.11. Each element of kyom[V] can be written uniquely in the form

f=tott ta

with f; homogeneous of degreei.

PROOF. Let F represent f; then F can be written F = Fy 4 --- + F; with F; homo-
geneous of degree i, and when reduced modulo p, this gives a decomposition of f of the
required type. Suppose f also has a decomposition f = > g;, with g; represented by
the homogeneous polynomial G; of degree i. Then FF — G € p, and the homogeneity of p
implies that F; — G; = (F — G); € p. Therefore f; = g;. o

It therefore makes sense to speak of homogeneous elements of k[V']. For such an ele-
ment /i, we define D(h) = {P € V | h(P) # 0}.
Since kpom[V] is an integral domain, we can form its field of fractions kpom (V). Define

khom(V)o = {% € knom (V) g and h homogeneous of the same degree} U {0}.
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PROPOSITION 6.12. The field of rational functions on V is k(V') o khom(V)o.

PROOF. Consider Vjy o UpNV. Asin the case of P, we can identify k[V}] with a subring
of kpom[V], and then the field of fractions of k[Vp] becomes identified with kpom(V)o. o

Regular functions on a projective variety

Let V be an irreducible projective variety, and let f € k(V'). By definition, we can write
f = % with g and & homogeneous of the same degree in kpom[V] and 2 # 0. For any
P =(ao:...:ay) with h(P) # 0,

g(aO’---,an)
f(P) =qt 77—
h(ag,...,an)
is well-defined: if (ao, ..., ay) is replaced by (cay, ..., cay), then both the numerator and

denominator are multiplied by ¢d¢8(8) = ¢deg(h),
We can write f in the form % in many different ways,’ but if
g _8&
/= s (in k(V)o),
then
gh' —g'h  (in knom[V])

and so
glag,...,an) - h(ao,...,an) = g'(aog,...,an) - hiag,...,an).

Thus, of h’(P) # 0, the two representions give the same value for f(P).

PROPOSITION 6.13. Foreach f € k(V) =4t knom(V)o, there is an open subset U of V
where f(P) is defined, and P +— f(P) is a regular function on U ; every regular function
on an open subset of V' arises from a unique element of k(V').

PROOF. From the above discussion, we see that f defines a regular function on U =
\J D(h) where h runs over the denominators of expressions [ = % with g and 4 homoge-
neous of the same degree in knom[V].

Conversely, let f be a regular function on an open subset U of V', and let P € U. Then
P lies in the open affine subvariety V N U; for some i, and so f coincides with the function
defined by some fp € k(V NU;) = k(V) on an open neighbourhood of P. If f coincides
with the function defined by fo € k(V') in a neighbourhood of a second point Q of U, then
Jfp and fp define the same function on some open affine U’, and so fp = fp as elements
of k[U’] C k(V). This shows that f is the function defined by fp on the whole of U.

REMARK 6.14. (a) The elements of k(V) = knom(V)o should be regarded as the alge-
braic analogues of meromorphic functions on a complex manifold; the regular functions on
an open subset U of V are the “meromorphic functions without poles” on U. [In fact, when
k = C, this is more than an analogy: a nonsingular projective algebraic variety over C de-
fines a complex manifold, and the meromorphic functions on the manifold are precisely the

3Unless knom[V] is a unique factorization domain, there will be no preferred representation f = %.
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rational functions on the variety. For example, the meromorphic functions on the Riemann
sphere are the rational functions in z.]

(b) We shall see presently that, for any nonzero homogeneous & € kpom[V],
D(h) is an open affine subset of V. The ring of regular functions on it is

k[D(h)] = {g/h™ | g homogeneous of degree m deg(h)} U {0}.

We shall also see that the ring of regular functions on V itself is just k, i.e., any regular
function on an irreducible (connected will do) projective variety is constant. However, if U
is an open nonaffine subset of V, then the ring I" (U, Oy ) of regular functions can be almost
anything — it needn’t even be a finitely generated k-algebra!

Morphisms from projective varieties

We describe the morphisms from a projective variety to another variety.

PROPOSITION 6.15. The map
A" Jorigin} — P", (ag, ....an) —> (ao : ... an)

is an open morphism of algebraic varieties. A map «:P" — V with V a prevariety is
regular if and only if o o 7 is regular.

PROOF. The restriction of 7 to D(X;) is the projection
(ag,...,an) — (Z—? S fz—’l_’):k”Jrl V(X)) = Ui,
which is the regular map of affine varieties corresponding to the map of k-algebras

k[Fe 3] > kX, Xl
(In the first algebra % is to be thought of as a single symbol.) It now follows from 1i
that 7 is regular. l

Let U be an open subset of k"1~ {origin}, and let U’ be the union of all the lines
through the origin that meet U, that is, U’ = 7~ '7(U). Then U’ is again open in k1 <
{origin}, because U’ = | JcU, ¢ € k*,and x +> cx is an automorphism of k" !\ {origin}.
The complement Z of U’ in k1 < {origin} is a closed cone, and the proof of shows
that its image is closed in P”; but 7 (U) is the complement of 7 (Z). Thus 7 sends open
sets to open sets.

The rest of the proof is straightforward. O

Thus, the regular maps P” — V are just the regular maps A”+! < {origin} — V
factoring through P” (as maps of sets).

REMARK 6.16. Consider polynomials Fo(Xg, ..., Xm),..., Fn(Xo,..., X;) of the same
degree. The map

(ap:...:am)— (Folao,....,am):...: Fy(ao,...,am))
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obviously defines a regular map to P” on the open subset of P where not all F; vanish,
that is, on the set | J D(F;) = P" . V(F}, ..., Fy). Its restriction to any subvariety V of
P will also be regular. It may be possible to extend the map to a larger set by representing
it by different polynomials. Conversely, every such map arises in this way, at least locally.
More precisely, there is the following result.

PROPOSITION 6.17. LetV = V(a) C P" and W = V(b) C P*. Amap ¢:V — W is
regular if and only if, for every P € V, there exist polynomials

Fo(Xo. . Xm) oo Fa(Xou .o Xom),

homogeneous of the same degree, such that

©((bo:...:bn)) = (Folbo,....bm): ...  Fy(bo,...,bm))
for all points (bg : ... : by,) in some neighbourhood of P in V(a).
PROOF. Straightforward. O

EXAMPLE 6.18. We prove that the circle X? + Y2 = Z2 is isomorphic to P!. This
equation can be rewritten (X +iY)(X —iY) = Z2, and so, after a change of variables, the
equation of the circle becomes C : XZ = Y 2. Define

¢:P!' — C, (a :b) — (a? : ab : b?).
For the inverse, define

(a@a:b:c)—>(a:b) ifa#0

. 1
V=P Y by (bie) ifh£0°
Note that,
5 c b
a#0+#b, ac=b" = —=—
b a

and so the two maps agree on the set where they are both defined. Clearly, both ¢ and v
are regular, and one checks directly that they are inverse.

Examples of regular maps of projective varieties

We list some of the classic maps.

EXAMPLE 6.19. Let L = ) ¢; X; be a nonzero linear form in n 4 1 variables. Then the
map

( ) ao An
ap:...:an) >\ ——,...,——
0 ¢ L(a) L(a)
is a bijection of D(L) C P" onto the hyperplane L(Xg, X1,...,X,) = 1 of A"t with
inverse
(ag,....an) > (ao :...:an).
Both maps are regular — for example, the components of the first map are the regular
functions Z)cfj v - As V(L — 1) is affine, so also is D(L), and its ring of regular functions
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is k[zfioXi s Z)C(i”xi ]. In this ring, each quotient % is to be thought of as a single
symbol, and ) c; Z}c(—jX = 1; thus it is a polynomial ring in n symbols; any one symbol

Z}c(zj x; for which ¢; # 0 can be omitted (see Lemmal|5.12).

L(P)E Zciai # 0
is a nonempty open subset of P” (n > 0). Therefore, for any finite set S of points of P”,
{ceP"|S C DL}

is a nonempty open subset of P"* (because P” is irreducible). In particular, S is contained
in an open affine subset D(L.) of P"*. Moreover, if S C V where V is a closed subvariety
of P", then S C V N D(L.): any finite set of points of a projective variety is contained in
an open affine subvariety.

EXAMPLE 6.20. (The Veronese map.) Let
I = {(io,...,in) e N"t1 | le =mj}.

Note that / indexes the monomials of degree m in n + 1 variables. It has ("f" ) elements®.
Write vy, = (m,jl‘ ”) — 1, and consider the projective space P whose coordinates are

indexed by /; thus a point of PY7” can be written (... : bj,..;, : ...). The Veronese
mapping is defined to be

v:P" > P (agc..ian) > (ot bigiy o)y bigi, = aé(’ .. .ai,".
In other words, the Veronese mapping sends an n + 1-tuple (ag:... : an) to the set of

monomials in the a; of degre m. For example, when n = 1 and m = 2, the Veronese map
is

P! - P2, (ag : a1) — (a% taopdy a%).
Its image is the curve v(P!) : XoX, = X2, and the map

(b2,0 1 b1,1)ifbap # 1
b b11:b ’ Ry ’
(b2,0 2 b1,1 2 bo2) = (b1,1 : bo,2) if bo 2 # 0.

is an inverse v(P!) — P!. (Cf. Example|6.19]) 3

“4This can be proved by induction on m 4+ n. If m = 0 = n, then (8) = 1, which is correct. A general
homogeneous polynomial of degree m can be written uniquely as

F(Xo,Xl,...,Xn) = Fl(Xl,.,.,Xn) +XOF2(X0,X1,...,Xn)
with F; homogeneous of degree m and F» homogeneous of degree m — 1. But

(") = (") + ()

m—1

because they are the coefficients of X in
(X 4+ D" = (X + 1)(X + 1)yl

and this proves the induction.

SNote that, although P! and v(P!) are isomorphic, their homogeneous coordinate rings are not. In fact
knhom[P] = k[Xo, X1], which is the affine coordinate ring of the smooth variety A2, whereas kpom [v(P1)] =
k[Xo, X1, X2]/(Xo X2 — Xlz) which is the affine coordinate ring of the singular variety Xo X, — X12.
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When n = 1 and m is general, the Veronese map is
P! — P, (ap :a1) — (@ :al tay i ... a™).

I claim that, in the general case, the image of v is a closed subset of P¥7-7 and that v
defines an isomorphism of projective varieties v: P* — v(P").

First note that the map has the following interpretation: if we regard the coordinates a;
of a point P of P" as being the coefficients of a linear form L = ) a; X; (well-defined up
to multiplication by nonzero scalar), then the coordinates of v(P) are the coefficients of the
homogeneous polynomial L with the binomial coefficients omitted.

As L # 0 = L™ = 0, the map v is defined on the whole of P, that is,

(@0 ... an) # (0,....0) = (... .big.in....) % (0,....0).

Moreover, Ly # cLy = LT # cL%, because k[Xo, ..., Xy] is a unique factorization
domain, and so v is injective. It is clear from its definition that v is regular.

We shall see later in this chapter that the image of any projective variety under a regular
map is closed, but in this case we can prove directly that v (IP") is defined by the system of
equations:

big...inbjo..jn = bko..knPlo..t, - in+ jn=kp+Ly,allh  (%).

Obviously P" maps into the algebraic set defined by these equations. Conversely, let

Vi=A{(C... big..in : --.) | bo...omo...0 # 0}.

Then v(U;) C Vi and v=1(V;) = U;. Itis possible to write down a regular map V; — U;
inverse to v|U;: for example, define Vo — P” to be

(- Dig.iy + o) > (bmoo,....0 : bm—1,1,0,...,0 : bm—1,0,1,0,...,0 * - -+ : bm—1,0,...,0,1)-

Finally, one checks that v(P"*) C | V;.
For any closed variety W C P", v|W is an isomorphism of W onto a closed subvariety
v(W) of v(IP") C PVr.m,

REMARK 6.21. The Veronese mapping has a very important property. If F' is a nonzero
homogeneous form of degree m > 1, then V(F) C P” is called a hypersurface of degree m
and V(F) N W is called a hypersurface section of the projective variety W. Whenm = 1,
“surface” is replaced by “plane”.

Now let H be the hypersurface in P" of degree m

Zaio...inx(i)o e X,i," =0,
and let L be the hyperplane in PV7- defined by
Zaio...in Xig..in-
Thenv(H) = v(P*) N L, ie.,

H(a) =0 < L(v(a)) =0.
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Thus for any closed subvariety W of P, v defines an isomorphism of the hypersurface
section W N H of V onto the hyperplane section v(W)N L of v(W). This observation often
allows one to reduce questions about hypersurface sections to questions about hyperplane
sections.

As one example of this, note that v maps the complement of a hypersurface section of
W isomorphically onto the complement of a hyperplane section of v(W'), which we know
to be affine. Thus the complement of any hypersurface section of a projective variety is an
affine variety—we have proved the statement in (6.14p).

EXAMPLE 6.22. Anelement A = (a;;) of GL,1 defines an automorphism of P":

(X0 :...ixp) > (o) oaijxj ..

clearly it is a regular map, and the inverse matrix gives the inverse map. Scalar matrices act
as the identity map.

Let PGL,4+1 = GLj4+1 /k*1, where I is the identity matrix, that is, PGLy 41 is the
quotient of GLj 41 by its centre. Then PGL; 4 is the complement in PO+D?=1 of the
hypersurface det(X;;) = 0, and so it is an affine variety with ring of regular functions

K[PGLpy1] = {F(.... Xij,...)/ det(X;;))" | deg(F) = m - (n + 1)} U {0}.

It is an affine algebraic group.
The homomorphism PGL,+7 — Aut(IP?) is obviously injective. We sketch a proof
that it is surjective. Consider a hypersurface

H:F(Xo,...,Xn) =0

in P" and a line
L=A{(tag:...:tay) |t €k}

in P". The points of H N L are given by the solutions of
F(tag,...,tay) =0,

which is a polynomial of degree < deg(F') in ¢ unless L C H. Therefore, H N L contains
< deg(F) points, and it is not hard to show that for a fixed H and most L it will contain
exactly deg(F') points. Thus, the hyperplanes are exactly the closed subvarieties H of P”
such that

(a) dm(H) =n —1,
(b) #(H N L) =1 for all lines L not contained in H.

These are geometric conditions, and so any automorphism of P” must map hyperplanes to
hyperplanes. But on an open subset of P, such an automorphism takes the form

(bo:...:by) > (Fo(bo,....by):...: Fy(bg,...,by))

where the F; are homogeneous of the same degree d (see [6.17). Such a map will take
hyperplanes to hyperplanes if only if d = 1.

SThis is related to the fundamental theorem of projective geometry — see E. Artin, Geometric Algebra,
Interscience, 1957, Theorem 2.26.
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EXAMPLE 6.23. (The Segre map.) This is the mapping
(@o:...:am),(bo:...:bp)) > ((...:aibj :...)): P x P" — pmntmtn,

The index set for P""+m+7 js £(i j) | 0 < i <m, 0 < j < n}. Note that if we
interpret the tuples on the left as being the coefficients of two linear forms L1 = ) a; X;
and L, = )_b;Y;, then the image of the pair is the set of coefficients of the homogeneous
form of degree 2, L1 L,. From this observation, it is obvious that the map is defined on the
whole of P x P" (Ly # 0 # L, = L1L, # 0) and is injective. On any subset of the
form U; x U; it is defined by polynomials, and so it is regular. Again one can show that it
is an isomorphism onto its image, which is the closed subset of P T™+7 defined by the
equations
Wij Wk — WijjWkj =0

— see Shafarevich 1994, 1 5.1. For example, the map
((ag : ar), (by : b1)) = (apbo : apby : aiby : albl):}P’l x P! — p3

has image the hypersurface
H: WZ=XY.

The map
(w:x:y:z2)=> (w:y),(w:x))

is an inverse on the set where it is defined. [Incidentally, P! x P! is not isomorphic to
P2, because in the first variety there are closed curves, e.g., two vertical lines, that don’t
intersect. ]

If V and W are closed subvarieties of P and IP”, then the Segre map sends V x W
isomorphically onto a closed subvariety of P+ Thus products of projective varieties
are projective.

There is an explicit description of the topology on P x P" : the closed sets are the sets
of common solutions of families of equations

F(Xo,....Xm:Yo,....Yn) =0
with F' separately homogeneous in the X’s and in the Y’s.

EXAMPLE 6.24. Let Ly, ..., L,_g4 be linearly independent linear forms in n 4 1 variables.
Their zero set E in k"1 has dimension d + 1, and so their zero set in P” is a d -dimensional
linear space. Define 7:P" — E — P" 4=l by n(a) = (L1(a) : ... : Ly_g(a)); such a
map is called a projection with centre E. If V is a closed subvariety disjoint from E, then
7 defines a regular map V' — P*=4=1_ More generally, if Fy,..., F, are homogeneous
forms of the same degree, and Z = V(Fy,..., Fy), thena — (Fi(a) : ... : Fy(a))isa
morphism P* — Z — P~ 1L,

By carefully choosing the centre E, it is possible to linearly project any smooth curve
in P isomorphically onto a curve in P, and nonisomorphically (but bijectively on an open
subset) onto a curve in P2 with only nodes as singularities.” For example, suppose we have

7 A nonsingular curve of degree d in P? has genus (d_l)zﬁ Thus, if g is not of this form, a curve of
genus g can’t be realized as a nonsingular curve in P2
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a nonsingular curve C in P3. To project to P2 we need three linear forms Lg, L1, L, and
the centre of the projection is the point Py where all forms are zero. We can think of the
map as projecting from the centre Py onto some (projective) plane by sending the point P
to the point where Py P intersects the plane. To project C to a curve with only ordinary
nodes as singularities, one needs to choose Py so that it doesn’t lie on any tangent to C, any
trisecant (line crossing the curve in 3 points), or any chord at whose extremities the tangents
are coplanar. See for example Samuel, P., Lectures on Old and New Results on Algebraic
Curves, Tata Notes, 1966.

PROPOSITION 6.25. Every finite set S of points of a quasiprojective variety V is contained
in an open affine subset of V.

PROOF. Regard V as a subvariety of P", let V be the closure of V inP*, andlet Z = V. V.
Because S N Z = @, for each P € § there exists a homogeneous polynomial Fp € [(Z)
such that Fp(P) # 0. We may suppose that the Fp’s have the same degree. An elementary
argument shows that some linear combination F' of the Fp, P € S, is nonzero at each P.
Then F is zeroon Z, and so V N D(F) is an open affine of V', but F is nonzero at each P,
and so V' N D(F) contains S. 0

Projective space without coordinates

Let E be a vector space over k of dimension n. The set P(E) of lines through zero in £ has
a natural structure of an algebraic variety: the choice of a basis for £ defines an bijection
P(E) — P", and the inherited structure of an algebraic variety on P(E) is independent of
the choice of the basis (because the bijections defined by two different bases differ by an au-
tomorphism of P"). Note that in contrast to P"*, which has n + 1 distinguished hyperplanes,
namely, Xo = 0, ..., X = 0, no hyperplane in P(E) is distinguished.

Grassmann varieties

Let E be a vector space over k of dimension n, and let G4 (E) be the set of d-dimensional
subspaces of E. When d = 0 or n, G;(F) has a single element, and so from now on we
assume that 0 < d < n. Fix a basis for F, and let S € G4 (E). The choice of a basis for S
then determines a d x n matrix A(S) whose rows are the coordinates of the basis elements.
Changing the basis for S multiplies A(.S) on the left by an invertible d xd matrix. Thus, the
family of d x d minors of A(S) is determined up to multiplication by a nonzero constant,
and so defines a point P(S) in ]P’(Z )_1.

n
PROPOSITION 6.26. The map S + P(S):G4(E) — P(d)_l is injective, with image a
n
closed subset ofIF’<d )_1.

We give the proof below. The maps P defined by different bases of E differ by an

n
. -1 o . .
automorphism of ]P’<d) , and so the statement is independent of the choice of the basis

— later (6.31)) we shall give a “coordinate-free description” of the map. The map realizes
G4(E) as a projective algebraic variety called the Grassmann variety of d-dimensional
subspaces of E.
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EXAMPLE 6.27. The affine cone over a line in P? is a two-dimensional subspace of k4.
Thus, G, (k*) can be identified with the set of lines in P3. Let L be a line in P3, and let
Xx=(xp:x1:x2:x3)andy = (yo : y1 : y2 : ¥3) be distinct points on L. Then

def

Xi Xj
P(L) = (po1: po2:po3:pi2:pisz:pa)elP’, py=|"" "/

Yi Yj

’

depends only on L. The map L — P (L) is a bijection from G, (k*) onto the quadric
IT: Xo1X23 — X02X13 + X03X12 =0

in P>, For a direct elementary proof of this, see (10.20}[{10.21) below.

REMARK 6.28. Let S’ be a subspace of E of complementary dimension n — d, and let
G,i(E)s  bethe set of S € G4(V) such that S N'S” = {0}. Fix an Sg € G4(E)s, so that
E=So® S’ . Forany S € G;(V)s, the projection S — Sy given by this decomposition
is an isomorphism, and so S is the graph of a homomorphism Sy — S:

st>s < (s,5) €S.
Conversely, the graph of any homomorphism Sg — S’ lies in G4 (V)s’. Thus,
G4(V)s: ~ Hom(Sp, S") ~ Hom(E/S’', S). (14)

The isomorphism G;(V)s/ =~ Hom(E/S’,S’) depends on the choice of So — it is the
element of G4(V)s’ corresponding to 0 € Hom(E/S’, S’). The decomposition E =

So @ S’ gives a decomposition End(E) = ( ,,dtS0) Hom(S7,50) ) "and the bijections
g Hom(So,S’) End(S’)

lb show that the group (Hom(g 0.5") (1)) acts simply transitively on G4 (E)s-.

REMARK 6.29. The bijection identifies G4 (E) s+ with the affine variety A(Hom(Syg, S”))
defined by the vector space Hom(So, S’) (cf. g57). Therefore, the tangent space to G4 (E)
at So,

Ts,(G4(E)) ~ Hom(So, S") >~ Hom(So, E/So). (15)

Since the dimension of this space doesn’t depend on the choice of Sp, this shows that

G, (E) is nonsingular (5.19).

REMARK 6.30. Let B be the set of all bases of E. The choice of a basis for E identifies
B with GL,, which is the principal open subset of A™ where det # 0. In particular,
B has a natural structure as an irreducible algebraic variety. The map (ej,...,e,) —
(e1,...,eq): B — G4(E) is a surjective regular map, and so G4 (E) is also irreducible.

REMARK 6.31. The exterior algebra \ E = P 50 /\dE of E is the quotient of the

tensor algebra by the ideal generated by all vectors e ® e, ¢ € E. The elements of /\d E are
called (exterior) d-vectors.The exterior algebra of E is a finite-dimensional graded algebra
over k with /\0 E =k, /\1 E = E;if eq,...,e, form an ordered basis for V, then the

(7) wedge products ej; A ... Aej, (i1 < -+ < ig) form an ordered basis for /\dE. In
particular, /\" E has dimension 1. For a subspace S of E of dimension d, /\dS is the
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one-dimensional subspace of /\dE spanned by e; A ... A ey for any basis e, ...,eq of S.
Thus, there is a well-defined map

S+> AN?S:G4(E) > P(N\E) (16)

which the choice of a basis for E identifies with § +— P(S). Note that the subspace
spanned by ey, ..., e, can be recovered from the line through e; A ... A e; as the space of
vectors v such that v A ey A ... A eg = 0 (cf. [6.32] below).

First proof of Proposition|6.26, Fix abasiseq,...,e, of E,andlet Sy = (e1,...,e4)

n
: . -1
and S’ = (eg41,-..,en). Order the coordinates in P(d) so that

P(S)=(ao:...:ajj:...:...)

where ag is the left-most d x d minor of A(S), andq;;, 1 <i <d,d < j < n,is
the minor obtained from the left-most d x d minor by replacing the i*® column with the

7t column. Let Uy be the (“typical”) standard open subset of ]P’<Zr )_1 consisting of the
points with nonzero zero" coordinate. Clearly, P(S) € Uy if and only if S € G4(E)s'.
We shall prove the proposition by showing that P: G;(E)s’ — Uy is injective with closed
image.

For S € G4(E)gs/, the projection S — Sy is bijective. Foreachi, 1 <i < d, let

el/- =e¢; +Zd<j§naijej (17)

denote the unique element of S projecting to e;. Then ef,... ,e& is a basis for S. Con-
versely, for any (a;;) € k4= the e;’s defined by spanan S € G4(E)s’ and project
to the ¢;’s. Therefore, S <> (a;;) gives a one-to-one correspondence G4 (E)s/ < kd(n—d)
(this is a restatement of (14) in terms of matrices).

Now, if § <> (a;;), then

P(S):(l:...:a,-j:...:...:fk(a,-j):...)

where fi(a;;) is a polynomial in the a;; whose coefficients are independent of S. Thus,
P(S) determines (a;;) and hence also S. Moreover, the image of P: G4(E)s’ — Up is the
graph of the regular map

n
(. i, .. ) = ( cey fk(aij), .. ) Ad(n_d) — A(d)_d(n_d)_l,
which is closed (4.26)).
Second proof of Proposition An exterior d-vector v is said to be pure (or de-

composable) if there exist vectors eq,...,eg € V suchthatv = e; A ... A e;. According
to 1} the image of G4 (E) in IP( /\d E) consists of the lines through the pure d -vectors.

8If e € § N S is nonzero, we may choose it to be part of the basis for S, and then the left-most d x d
submatrix of A(S) has a row of zeros. Conversely, if the left-most d x d submatrix is singular, we can change
the basis for S so that it has a row of zeros; then the basis element corresponding to the zero row liesin S’ N S.
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LEMMA 6.32. Let w be a nonzero d -vector and let
Mw)={veE|vArw=0}

then dimy M (w) < d, with equality if and only if w is pure.

PROOF. Leteyq,...,en, be abasis of M(w), and extend it to a basis ey, ..., ¢ep,...,e, of
V. Write
w = Z Aiy.igCiy N N€iyy Qi iy k.
1<i|<...<ig
If there is a nonzero term in this sum in which e; does not occur, then e; A w # 0.
Therefore, each nonzero term in the sum is of the form aeq A ... A ey, A .. .. It follows that
m <d,andm = d ifand only if w = ae; A ... Aeg witha # 0. o

For a nonzero d-vector w, let [w] denote the line through w. The lemma shows that
[w] € G4(F) if and only if the linear map v — v A w: E +— /\CH1 E hasrank <n —d
(in which case the rank is n — d). Thus G;(E) is defined by the vanishing of the minors of
order n — d + 1 of this map. °

Flag varieties

The discussion in the last subsection extends easily to chains of subspaces. Let d =
(dy,...,d,) be a sequence of integers with 0 < d; < --- < d; < n, and let G4(E) be
the set of flags

F: EDE'D---2E">0 (18)

with E’ a subspace of E of dimension d;. The map

Ga(E) 20 11,64 (E) € TLEAY E)

realizes G4(E) as a closed subset!’ [1; G4, (E), and so it is a projective variety, called a
flag variety. The tangent space to G4(FE) at the flag F consists of the families of homomor-
phisms

¢ E' > V/E', 1<i<r (19)

9In more detail, the map

d d+1
w|—>(v»—>v/\w):/\ E—>Homk(E,/\ E)

is injective and linear, and so defines an injective regular map
d d+1
P(/\ E)<— PHom(E./\ ' E)).

The condition rank < n—d defines a closed subset W of P(Homy, (E, /\‘H'1 E)) (once a basis has been chosen
for E, the condition becomes the vanishing of the minors of order n — d + 1 of a linear map £ — /\d+1 E),
and

Ga(E)=P(\YE)nW.

10For example, if u; is a pure d;-vector and u i+1 18 a pure d;41-vector, then it follows from 1! that
M(u;) C M(u;j41) if and only if the map

di+1 di41+1
v|—>(v/\ui,v/\u,-+1):V—>/\’ V@/\ HTy

has rank < n —d; (in which case it has rank n — d;). Thus, Gq(V') is defined by the vanishing of many minors.
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that are compatible in the sense that
@' |ET = o't mod ETTL.

ASIDE 6.33. Abasisey,...,ey, for E isadapted to the flag F if it contains a basis eq, ..., ej;

for each E*. Clearly, every flag admits such a basis, and the basis then determines the flag.

As in (6.30)), this implies that Gq(E) is irreducible. Because GL(E) acts transitively on

the set of bases for E, it acts transitively on Gq(E). For a flag F, the subgroup P(F)

stabilizing F is an algebraic subgroup of GL(E), and the map

g = gFo: GL(E)/ P(Fo) — Ga(E)

is an isomorphism of algebraic varieties. Because G4(FE) is projective, this shows that
P(Fp) is a parabolic subgroup of GL(V).

Bezout’s theorem

Let V be a hypersurface in P (that is, a closed subvariety of dimension n — 1). For such
a variety, I(V) = (F(Xo,..., X)) with F a homogenous polynomial without repeated
factors. We define the degree of V' to be the degree of F.

The next theorem is one of the oldest, and most famous, in algebraic geometry.

THEOREM 6.34. Let C and D be curves in P? of degrees m and n respectively. If C and
D have no irreducible component in common, then they intersect in exactly mn points,
counted with appropriate multiplicities.

PROOF. Decompose C and D into their irreducible components. Clearly it suffices to
prove the theorem for each irreducible component of C and each irreducible component of
D. We can therefore assume that C and D are themselves irreducible.

We know from that C N D is of dimension zero, and so is finite. After a change
of variables, we can assume that a # 0 for all points (@ : b : ¢c) € C N D.

Let F(X,Y,Z) and G(X, Y, Z) be the polynomials defining C and D, and write

F=50Z" 412" 4 iidsm,  G=0Z"+0Z"""1 4+ +1,

with s; and ¢; polynomials in X and Y of degrees i and j respectively. Clearly s, # 0 #
tn, for otherwise F and G would have Z as a common factor. Let R be the resultant of
F and G, regarded as polynomials in Z. It is a homogeneous polynomial of degree mn
in X and Y, or else it is identically zero. If the latter occurs, then for every (a, b) € k2,
F(a,b,Z) and G(a, b, Z) have a common zero, which contradicts the finiteness of C N D.
Thus R is a nonzero polynomial of degree mn. Write R(X,Y) = X m”R*(§) where

sh

R.(T) is a polynomial of degree < mn in T =

Suppose first that deg R« = mn, and let oy, . . ., &y, be the roots of Ry (some of them
may be multiple). Each such root can be written «; = %, and R(a;, b;) = 0. According to
this means that the polynomials F(a;, b;, Z) and G(a;, b;, Z) have a common root
¢i. Thus (a; : b; : ¢j)isapointon C N D, and conversely, if (a : b : ¢) isapointon C N D
(so a # 0), then % is a root of R« (7). Thus we see in this case, that C N D has precisely
mn points, provided we take the multiplicity of (a : b : ¢) to be the multiplicity of g asa
root of R..
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Now suppose that Ry has degree r < mn. Then R(X,Y) = X" " P(X,Y) where
P(X,Y) isahomogeneous polynomial of degree r not divisible by X. Obviously R(0, 1) =
0, and so there is a point (0 : 1 : ¢) in C N D, in contradiction with our assumption. O

REMARK 6.35. The above proof has the defect that the notion of multiplicity has been too
obviously chosen to make the theorem come out right. It is possible to show that the theorem
holds with the following more natural definition of multiplicity. Let P be an isolated point
of C N D. There will be an affine neighbourhood U of P and regular functions f and g
onU suchthat CNU = V(f)and D NU = V(g). We can regard f and g as elements
of the local ring Op, and clearly rad( f, g) = m, the maximal ideal in Op. It follows that
Op/(f, g) is finite-dimensional over k, and we define the multiplicity of P in C N D to
be dimg (Op/(f, g)). For example, if C and D cross transversely at P, then f and g will
form a system of local parameters at P — ( f, g) = m — and so the multiplicity is one.

The attempt to find good notions of multiplicities in very general situations motivated
much of the most interesting work in commutative algebra in the second half of the twenti-
eth century.

Hilbert polynomials (sketch)
Recall that for a projective variety V C P”,
khom[V] = k[Xo, ..., Xn]l/b = k[xo0, ..., xnl,

where b = (V). We observed that b is homogeneous, and therefore kpom[V] is a graded
ring:

khom[V] = @m>0 khom[V]m,

where kpom [V ]m is the subspace generated by the monomials in the x; of degree m. Clearly
knhom[V ]m is a finite-dimensional k-vector space.

THEOREM 6.36. There is a unique polynomial P(V, T) such that P(V,m) = dimy k[V |m
for all m sufficiently large.

PROOF. Omitted. o

EXAMPLE 6.37. For V = P", khom[V¥ = k[Xo, ..., Xn], and (see the footnote on page
, dim knom [V]m = (M) = (mtn)-m+1) 4n4 50

n!

_ (T 4m-(T+1)

PP, T)=(T;}m) -

The polynomial P(V, T) in the theorem is called the Hilbert polynomial of V. Despite
the notation, it depends not just on V' but also on its embedding in projective space.

THEOREM 6.38. Let V be a projective variety of dimension d and degree §; then

)
PV, T)= ﬁTd + terms of lower degree.

PROOF. Omitted. o
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The degree of a projective variety is the number of points in the intersection of the
variety and of a general linear variety of complementary dimension (see later).
EXAMPLE 6.39. Let V be the image of the Veronese map
(ap :a1) ~ (ad :al tay ;... a%): P! - P9,

Then kpom[V]m can be identified with the set of homogeneous polynomials of degree m - d
in two variables (look at the map A2 — A4+ given by the same equations), which is a
space of dimension dm + 1, and so

P(V,T)=dT + 1.

Thus V has dimension 1 (which we certainly knew) and degree d .

Macaulay knows how to compute Hilbert polynomials.
References: Hartshorne 1977, 1.7; Atiyah and Macdonald 1969, Chapter 11; Harris
1992, Lecture 13.

Exercises

6-1. Show that a point P on a projective curve F(X, Y, Z) = 0 is singular if and only if
dF/0X, 0F/dY, and 0F /0Z are all zero at P. If P is nonsingular, show that the tangent
line at P has the (homogeneous) equation

(OF/3X)p X + (OF/dY)pY + (3F/dZ)pZ = 0.

Verify that Y2Z = X3 + aXZ? + bZ3 is nonsingular if X3 4+ aX + b has no repeated
root, and find the tangent line at the point at infinity on the curve.

6-2. Let L be alineinP2 and let C be a nonsingular conic in P2 (i.e., a curve in P? defined
by a homogeneous polynomial of degree 2). Show that either

(a) L intersects C in exactly 2 points, or
(b) L intersects C in exactly 1 point, and it is the tangent at that point.

6-3. Let V =V(Y — X2, Z — X3) C A3. Prove

@ I(V)=(Y —X2%2,Z—-X3),

(b) ZW — XY e I(V)* Ck[W,X,Y,Z],but ZW — XY ¢ (Y — X>)*,(Z — X3)*).
(Thus, if Fy, ..., F, generate a, it does not follow that F}*, ..., F* generate a*, even
if a*is radical.)

6-4. Let Py,..., Py be points in P?. Show that there is a hyperplane H in P" passing
through Py but not passing through any of Py, ..., Pr.
6-5. Is the subset
{a:b:c)la#0, b#0}U{(1:0:0)}
of P? locally closed?

6-6. Show that the image of the Segre map P x P" — P™"Hm+7 (see |6.23) is not
contained in any hyperplane of P +m+n,



Chapter 7

Complete varieties

Throughout this chapter, k is an algebraically closed field.

Definition and basic properties

Complete varieties are the analogues in the category of algebraic varieties of compact topo-
logical spaces in the category of Hausdorff topological spaces. Recall that the image of a
compact space under a continuous map is compact, and hence is closed if the image space
is Hausdorff. Moreover, a Hausdorff space V' is compact if and only if, for all topological
spaces W, the projection g: V x W — W is closed, i.e., maps closed sets to closed sets (see
Bourbaki, N., General Topology, I, 10.2, Corollary 1 to Theorem 1).

DEFINITION 7.1. An algebraic variety V' is said to be complete if for all algebraic varieties
W, the projection g: V x W — W is closed.

Note that a complete variety is required to be separated — we really mean it to be a
variety and not a prevariety.

EXAMPLE 7.2. Consider the projection
(x,y) > y: Al x Al — Al

This is not closed; for example, the variety V : XY = 1 is closed in A? but its image in A!
omits the origin. However, if we replace V with its closure in P! x A, then its projection
is the whole of A

PROPOSITION 7.3. Let V be a complete variety.

(a) A closed subvariety of V' is complete.

(b) If V' is complete, so alsois V x V',

(c) For any morphism ¢:V — W, ¢(V) is closed and complete; in particular, if V is a
subvariety of W, then it is closed in W'.

(d) IfV is connected, then any regular map ¢: V — P! is either constant or onto.

(e) IfV is connected, then any regular function on V' is constant.

125
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PROOF. (a) Let Z be a closed subvariety of a complete variety V. Then for any variety W,
Z x W is closed in V' x W, and so the restriction of the closed map g: V x W — W to
Z x W is also closed.

(b) The projection V x V' x W — W is the composite of the projections

VXV xW >V xW —>W,

both of which are closed.

(c) Let I’y = {(v,¢(v))} C V x W be the graph of ¢. It is a closed subset of V' x W
(because W is a variety, see 4.26), and ¢(V') is the projection of I, into W. Since V is
complete, the projection is closed, and so ¢(V) is closed, and hence is a subvariety of W
(see pb3)). Consider

T xW —o(V)xW — W.

The variety I, being isomorphic to V' (see , is complete, and so the mapping I, x
W — W is closed. As I}, — ¢(V) is surjective, it follows that (V) x W — W is also
closed.

(d) Recall that the only proper closed subsets of P! are the finite sets, and such a set is
connected if and only if it consists of a single point. Because ¢ (1) is connected and closed,
it must either be a single point (and ¢ is constant) or P! (and @ is onto).

(e) A regular function on V is a regular map f:V — A! C P!, which (d) shows to be
constant. o

COROLLARY 7.4. A variety is complete if and only if its irreducible components are com-
plete.

PROOF. It follows from (a) that the irreducible components of a complete variety are com-
plete. Conversely, let V' be a variety whose irreducible components V; are complete. If Z
isclosedin V x W, then Z; =4t Z N (V; x W) is closed in V; x W. Therefore, g(Z;) is
closed in W, and so ¢(Z) = | ¢q(Z;) is also closed. 0

COROLLARY 7.5. A regular map ¢:V — W from a complete connected variety to an
affine variety has image equal to a point. In particular, any complete connected affine
variety is a point.

PROOF. Embed W as a closed subvariety of A", and write ¢ = (¢1,...,¢pn) Where @;
is the composite of ¢ with the coordinate function A” — A!. Then each ¢; is a regular
function on V, and hence is constant. (Alternatively, apply the remark following [@.11])
This proves the first statement, and the second follows from the first applied to the identity
map. a]

REMARK 7.6. (a) The statement that a complete variety V' is closed in any larger variety
W perhaps explains the name: if V' is complete, W is irreducible, and dim V = dim W,
then V = W — contrast A" C P".

(b) Here is another criterion: a variety V' is complete if and only if every regular map
C ~ {P} — V extends to aregular map C — V'; here P is a nonsingular point on a curve
C. Intuitively, this says that Cauchy sequences have limits in V.
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Projective varieties are complete

THEOREM 7.7. A projective variety is complete.

Before giving the proof, we shall need two lemmas.

LEMMA 7.8. A variety V is complete it g:V x W — W is a closed mapping for all
irreducible affine varieties W (or even all affine spaces A" ).

PROOF. Write W as a finite union of open subvarieties W = |JW;. If Z is closed in
VxW,then Z; =q¢ Z N (V x W;)isclosedin V x W;. Therefore, g(Z;) is closed in W;
foralli. As g(Z;) = q(Z) N W;, this shows that ¢(Z) is closed. o

After (7.3p), it suffices to prove the Theorem for projective space P" itself; thus we
have to prove that the projection P” x W — W is a closed mapping in the case that W is an
irreducible affine variety. We shall need to understand the topology on W x P in terms of
ideals. Let A = k[W], and let B = A[Xy, ..., Xp]. Note that B = A ®; k[Xo, ..., Xn],
and so we can view it as the ring of regular functions on W x A"T1: for f € A and
g € k[Xo, ..., Xn], f ® g is the function

(w,a) — f(w)-ga): W x A"t - k.

The ring B has an obvious grading — a monomial aX(i)O X ,’;”, a € A, has degree ) i
— and so we have the notion of a homogeneous ideal b C B. It makes sense to speak of
the zero set V(b) C W x P" of such an ideal. For any ideal a C A, aB is homogeneous,
and V(aB) = V(a) x P".

LEMMA 7.9. (a) For each homogeneous ideal b C B, the set V(b) is closed, and every
closed subset of W x P" is of this form.

(b) The set V(b) is empty if and only ifrad(b) D (X, ..., Xy).

(c) It W is irreducible, then W = V(b) for some homogeneous prime ideal b.

PROOF. In the case that A = k, we proved this in and (6.2), and similar arguments
apply in the present more general situation. For example, to see that V(b) is closed, cover
P" with the standard open affines U; and show that V(b) N U; is closed for all 7.

The set V(b) is empty if and only if the cone VT(b) c W x A"*! defined by b is
contained in W x {origin}. But

Zaio...inxéo ~--Xrl.,n’ Aig...ip, € k[W]v
is zero on W x {origin} if and only if its constant term is zero, and so
I¥(W x {origin}) = (Xo, X1, ..., Xn).

Thus, the Nullstellensatz shows that V(b) = @ = rad(b) = (Xy, ..., X,). Conversely, if
X I.N € b for all i, then obviously V(b) is empty.

For (c), note that if V(b) is irreducible, then the closure of its inverse image in W x A1
is also irreducible, and so / V' (b) is prime. a)
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PROOF (OF[7.7)). Write p for the projection W xP" — W. We have to show that Z closed
in W x P" implies p(Z) closed in W. If Z is empty, this is true, and so we can assume it
to be nonempty. Then Z is a finite union of irreducible closed subsets Z; of W x P", and it
suffices to show that each p(Z;) is closed. Thus we may assume that Z is irreducible, and
hence that Z = V/(b) with b a homogeneous prime ideal in B = A[Xo, ..., X»].

If p(Z) is contained in some closed subvariety W’ of W, then Z is contained in W' x
P, and we can replace W with W’. This allows us to assume that p(Z) is dense in W, and
we now have to show that p(Z) = W.

Because p(Z) is dense in W, the image of the cone V*T(b) under the projection W x
A"l 5 W is also dense in W, and so (see ) the map A — B/b is injective.

Let w € W: we shall show thatif w ¢ p(Z), i.e., if there does not exista P € P" such
that (w, P) € Z, then p(Z) is empty, which is a contradiction.

Let m C A be the maximal ideal corresponding to w. Then mB + b is a homogeneous
ideal, and V(mB +b) = V(mB) N V(b) = (w xP") N V(b), and so w will be in the image
of Z unless V(mB + b) # @. Butif V(mB + b) = @, thenmB + b D (Xo...., X,)V
for some N (by[7.9p), and so mB + b contains the set By of homogeneous polynomials of
degree N. Because mB and b are homogeneous ideals,

By CmB+b — By =mBy + Bynb.

In detail: the first inclusion says thatan f € By canbe written f = g+h with g € mB and
h € b. On equating homogeneous components, we find that fy = gy + hy. Moreover:
v = fiifg=>Y mibj,m; € m, b € B,then gy = > m;b;y;and hy € b because b
is homogeneous. Together these show f € mBy + By N b.

Let M = By /By N b, regarded as an A-module. The displayed equation says that
M = mM . The argument in the proof of Nakayama’s lemma shows that (1+m)M =
0 for some m € m. Because A — B/b is injective, the image of 1 4+ m in B/b is nonzero.
But M = By/By Nb C B/b, which is an integral domain, and so the equation (1 +
m)M = 0 implies that M = 0. Hence By C b, and so XZ.N € b for all i, which contradicts
the assumption that Z = V/(b) is nonempty. o

REMARK 7.10. In Example [6.19] above, we showed that every finite set of points in a
projective variety is contained in an open affine subvariety. There is a partial converse to
this statement: let V' be a nonsingular complete irreducible variety; if every finite set of
points in V' is contained in an open affine subset of V' then V is projective. (Conjecture of
Chevalley; proved by Kleiman.')

Elimination theory

We have shown that, for any closed subset Z of P"”* x W, the projection g(Z) of Z in W is
closed. Elimination theory? is concerned with providing an algorithm for passing from the
equations defining Z to the equations defining ¢(Z). We illustrate this in one case.

IKleiman, Steven L., Toward a numerical theory of ampleness. Ann. of Math. (2) 84 1966 293-344.
See also,
Hartshorne, Robin, Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics, Vol. 156 Springer,
1970, I §9 p45.

ZElimination theory became unfashionable several decades ago—one prominent algebraic geometer went
so far as to announce that Theorem[7.7]eliminated elimination theory from mathematics, provoking Abhyankar,
who prefers equations to abstractions, to start the chant “eliminate the eliminators of elimination theory”. With
the rise of computers, it has become fashionable again.
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Let P = soX™ + 51 X" 1 4+ ... 4 5and O = toX" + 1, X" L+ ... + 1, be
polynomials. The resultant of P and Q is defined to be the determinant

S0 S1 ... Sm 11 TOWS
SO . e Sm

to 11 ... I
t t
0 " m rows

There are n rows of s’s and m rows of ¢’s, so that the matrix is (m + n) x (m + n); all blank
spaces are to be filled with zeros. The resultant is a polynomial in the coefficients of P and

0.
PROPOSITION 7.11. The resultant Res(P, Q) = 0 if and only if

(a) both sg and tq are zero; or
(b) the two polynomials have a common root.

PROOF. If (a) holds, then Res(P, Q) = 0 because the first column is zero. Suppose that o
is a common root of P and @, so that there exist polynomials P; and Q; of degrees m — 1
and n — 1 respectively such that

P(X) =X -a)P1(X), Q) =(X-a)01(X).
Using these equalities, we find that
P(X)01(X) — Q(X)Pi(X) = 0. (20)

On equating the coefficients of X mn—1 " "X 1in li to zero, we find that the coef-
ficients of P; and Q; are the solutions of a system of m + n linear equations in m + n
unknowns. The matrix of coefficients of the system is the transpose of the matrix

S0 S1 ... Sm

S0 . e Sm
to 1 ... Iy

tO oo tn

The existence of the solution shows that this matrix has determinant zero, which implies
that Res(P, Q) = 0.

Conversely, suppose that Res(P, Q) = 0 but neither s¢ nor fg is zero. Because the
above matrix has determinant zero, we can solve the linear equations to find polynomials
Py and Qg satisfying (20). A root o of P must be also be a root of P or of Q. If the
former, cancel X — « from the left hand side of (20), and consider a root 8 of P;/(X —«).
As deg P; < deg P, this argument eventually leads to a root of P that is not a root of P,
and so must be a root of Q. O

The proposition can be restated in projective terms. We define the resultant of two
homogeneous polynomials

PX,Y)=s50X" 4+ 51 X" 4+ 45,7, OX,Y)=10X" +---+1,Y",

exactly as in the nonhomogeneous case.
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PROPOSITION 7.12. The resultant Res(P, Q) = 0 if and only if P and Q have a common
zero in P1.

PROOF. The zeros of P(X,Y) in P! are of the form:

(a) (1 :0) in the case that s9 = 0;
(b) (a: 1) witha arootof P(X,1).

Since a similar statement is true for Q (X, Y), (7.12) is a restatement of (7.11]. o

Now regard the coefficients of P and Q as indeterminates. The pairs of polynomials
(P, Q) are parametrized by the space A1 x A"+t1 = A™+7+2  Consider the closed
subset V (P, Q) in A™T"+2 x Pl The proposition shows that its projection on A™+7+2
is the set defined by Res(P, Q) = 0. Thus, not only have we shown that the projection
of V(P, Q) is closed, but we have given an algorithm for passing from the polynomials
defining the closed set to those defining its projection.

Elimination theory does this in general. Given a family of polynomials

Pi(Tl,...,Tm;X(),...,Xn),

homogeneous in the X;, elimination theory gives an algorithm for finding polynomials
R;(T1,...,Ty) suchthat the P;(ai,...,am; Xo, ..., Xn) have a common zero if and only
if Rj(ay,...,ap) = Oforall j. (Theorem shows only that the R; exist.) See Cox et
al. 1992, Chapter 8, Section 5..

Maple can find the resultant of two polynomials in one variable: for example, entering
“resultant((x + @), (x 4+ b)>, x)” gives the answer (—a + b)?>. Explanation: the polyno-
mials have a common root if and only if @ = b, and this can happen in 25 ways. Macaulay
doesn’t seem to know how to do more.

The rigidity theorem

The paucity of maps between complete varieties has some interesting consequences. First
an observation: for any point w € W, the projection map V' x W — V defines an isomor-
phism V x {w} — V with inverse v — (v, w): V — V x W (this map is regular because
its components are).

THEOREM 7.13 (RIGIDITY THEOREM). Letp: VW — Z be aregular map, and assume
that V' is complete, that V and W are irreducible, and that Z is separated. If there exist
pointsvg € V,wo € W, zg € Z such that

e(V x {wo}) = {zo} = ¢({vo} x W),

then p(V x W) = {zp}.

PROOF. Because V' is complete, the projection map g: V x W — W is closed. Therefore,
for any open affine neighbourhood U of zo,

T =q(@ ' (Z\U))
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is closed in W . Note that
WNT={weW |V, w)CU},

and so wg € W\ T. In particular, W ~\. T is nonempty, and so it is dense in W. As V x {w}
is complete and U is affine, ¢(V x {w}) must be a point whenever w € W ~. T in fact,

e(V,w) = ¢(vo, w) = {zo}.

We have shown that ¢ takes the constant value zy on the dense subset V' x (W — T') of
V x W, and therefore on the whole of V' x W. o

In more colloquial terms, the theorem says that if ¢ collapses a vertical and a horizontal
slice to a point, then it collapses the whole of V' x W to a point, which must therefore be
“rigid”.

An abelian variety is a complete connected group variety.

COROLLARY 7.14. Every regular map o: A — B of abelian varieties is the composite
of a homomorphism with a translation; in particular, a regular map o: A — B such that
«(0) = 0 is a homomorphism.

PROOF. After composing o with a translation, we may suppose that &(0) = 0. Consider
the map
p:AxA— B, ela,a)y=a(a+a)—a(a)—a(d).

Then ¢(A x 0) = 0 = ¢(0 x A) and so ¢ = 0. This means that ¢ is a homomorphism. o
COROLLARY 7.15. The group law on an abelian variety is commutative.

PROOF. Commutative groups are distinguished among all groups by the fact that the map
taking an element to its inverse is a homomorphism: if (gh)~! = g~ !A~!, then, on taking
inverses, we find that gh = hg. Since the negative map, a — —a: A — A, takes the
identity element to itself, the preceding corollary shows that it is a homomorphism. O

Theorems of Chow

THEOREM 7.16. For every algebraic variety V, there exists a projective algebraic variety
W and a regular map ¢ from an open dense subset U of W to V whose graph is closed in
V x W;thesetU = W if and only if V is complete.

PROOF. To be added. o

See:

Chow, W-L., On the projective embedding of homogeneous varieties, Lef-
schetz’s volume, Princeton 1956.

Serre, Jean-Pierre. Géométrie algébrique et géométrie analytique. Ann.
Inst. Fourier, Grenoble 6 (1955-1956), 1-42 (p12).
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THEOREM 7.17. For any complete algebraic variety V, there exists a projective algebraic
variety W and a surjective birational map W — V.

PROOF. To be added. (See Mumford 1999, p60.) O

Theorem [/.17]is usually known as Chow’s Lemma.

Nagata’s Embedding Theorem

A necessary condition for a prevariety to be an open subvariety of a complete variety is that
it be separated. A theorem of Nagata says that this condition is also sufficient.

THEOREM 7.18. For every variety V, there exists an open immersion V. — W with W
complete.

PROOF. To be added. O

See:

Nagata, Masayoshi. Imbedding of an abstract variety in a complete variety. J. Math.
Kyoto Univ. 2 1962 1-10.

Nagata, Masayoshi. A generalization of the imbedding problem of an abstract variety
in a complete variety. J. Math. Kyoto Univ. 3 1963 89-102.

Liitkebohmert, W. On compactification of schemes. Manuscripta Math. 80 (1993), no.
1,95-111.

Deligne, P., Le théoréme de plongement de Nagata, personal notes.

Conrad, B., Deligne’s notes on Nagata compactifications, 1997, 26pp, http://www.
math.lsa.umich.edu/~bdconrad/.

Exercises

7-1. Identify the set of homogeneous polynomials F(X,Y) = ) a;; XY/, 0<i, j<m,
with an affine space. Show that the subset of reducible polynomials is closed.

7-2. Let V and W be complete irreducible varieties, and let A be an abelian variety. Let
P and Q be points of V and W. Show that any regular map h: V x W — A such that
h(P,Q) = 0 can be written h = f op + goq where f:V — Aand g:W — A are
regular maps carrying P and Q to 0 and p and g are the projections V x W — V, W.


http://www.math.lsa.umich.edu/~bdconrad/
http://www.math.lsa.umich.edu/~bdconrad/

Chapter 8
Finite Maps

Throughout this chapter, k is an algebraically closed field.

Definition and basic properties

Recall that an A-algebra B is said to be finite if it is finitely generated as an A-module. This
is equivalent to B being finitely generated as an A-algebra and integral over A. Recall also
that a variety V' is affine if and only if I"(V, Oy ) is an affine k-algebra and the canonical
map (V, Oy) — Spm(I"(V, Oy)) is an isomorphism (3.13).

DEFINITION 8.1. A regular map ¢: W — V is said to be finite if for all open affine subsets
U of V, ¢~ 1(U) is an affine variety and k[~ ! (U)] is a finite k [U]-algebra.

For example, suppose W and V' are affine and k[W] is a finite k[V]-algebra. Then ¢ is
finite because, for any open affine U in V, ¢~ 1(U) is affine with

klp™'(U)] = kW] @y k(U] 21
(see[d.29] [4.30); in particular, the canonical map
¢~ (U) — Spm(I' (¢~ (U). Ow) (22)
is an isomorphism.

PROPOSITION 8.2. It suffices to check the condition in the definition for all subsets in one
open affine covering of V.

Unfortunately, this is not as obvious as it looks. We first need a lemma.

LEMMA 8.3. Let o: W — V be a regular map with V affine, and let U be an open affine
in V. There is a canonical isomorphism of k -algebras

I (W, 0w) @k kU1 = L@~ (U), Ow).

PROOF. Let U’ = ¢~ !(U). The map is defined by the k[V/]-bilinear pairing
(£.8) = (flur.goplu): LW, Ow) xk[U] = I'(U', Ow).

133
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When W is also affine, it is the isomorphism (21).
Let W = | J W; be a finite open affine covering of W, and consider the commutative
diagram:

0 — I'(W,0w) vy kU] — [T (Wi, Ow) kv kIU] = [T T (Wij. Ow) @iy kU]
1 1,]

i i \
0— rw’,ow) -  [[rWw'nwi.ow) = JII'UNW; Ow)
i i,j
Here W;; = W; N W;. The bottom row is exact because O is a sheaf, and the top row
is exact because Oy is a sheaf and k[U] is flat over k[V] (see Section 1. The varieties
W; and W; N W; are all affine, and so the two vertical arrows at right are products of
isomorphisms (21I). This implies that the first is also an isomorphism. O

PROOF (OF THE PROPOSITION). Let V; be an open affine covering of V' (which we may
suppose to be finite) such that W; =gt ¢~ 1(V;) is an affine subvariety of W for all i and
k[W;] is a finite k[V;]-algebra. Let U be an open affine in V', and let U’ = ¢~ (U). Then
I'(U',Ow) is a subalgebra of [ [; I'(U’ N W;, Ow), and so it is an affine k-algebra finite
over k[U].2 We have a morphism of varieties over V/

U ———Spm(I"(U’, Ow))

(23)

Vv

which we shall show to be an isomorphism. We know (see (22))) that each of the maps
U'nW; — Spm(I"(U’' N W;, Ow))

is an isomorphism. But (8.2)) shows that Spm(I" (U’ N W;, Ow)) is the inverse image of
Vi in Spm(I"(U’, Ow)). Therefore can is an isomorphism over each V;, and so it is an
isomorphism. o

PROPOSITION 8.4. (a) For any closed subvariety Z of V, the inclusion Z — V is
finite.
(b) The composite of two finite morphisms is finite.
(c) The product of two finite morphisms is finite.

PROOF. (a) Let U be an open affine subvariety of V. Then Z N U is a closed subvariety
of U. It is therefore affine, and the map Z N U — U corresponds to a map A — A/a of
rings, which is obviously finite.

TA sequence 0 > M’ — M — M" isexactifand onlyif 0 &> A @ 4 M’ - A @4 M — A @4 M"
is exact for all maximal ideals m of A. This implies the claim because k[Ulnp, >~ Oy,p ~ Oy,p = k[V]mp
forall P € U.

2Recall that a module over a noetherian ring is noetherian if and only if it is finitely generated, and that
a submodule of a noetherian module is noetherian. Therefore, a submodule of a finitely generated module is
finitely generated.
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(b) If B is a finite A-algebra and C is a finite B-algebra, then C is a finite A-algebra.
To see this, note that if {b; } is a set of generators for B as an A-module, and {c; } is a set of
generators for C as a B-module, then {b;c } is a set of generators for C as an A-module.

(c) If B and B’ are respectively finite A and A’-algebras, then B ®; B’ is a finite
A ®j A’-algebra. To see this, note that if {b;} is a set of generators for B as an A-module,
and {b;} is a set of generators for B’ as an A-module, the {b; ® b;} is a set of generators
for B ® 4 B’ as an A-module. o

By way of contrast, an open immersion is rarely finite. For example, the inclusion
Al — {0} — Al is not finite because the ring k[T, T~1] is not finitely generated as a k[T']-
module (any finitely generated k[T ]-submodule of k[T, T~!] is contained in 7"k [T] for
some n).

The fibres of a regular map ¢: W — V are the subvarieties ¢ ~1(P) of W for P € V.
When the fibres are all finite, ¢ is said to be quasi-finite.

PROPOSITION 8.5. A finite map ¢: W — V is quasi-finite.

PROOF. Let P € V; we wish to show ¢~ 1(P) is finite. After replacing V with an affine
neighbourhood of P, we can suppose that it is affine, and then W will be affine also. The
map ¢ then corresponds to a map a: A — B of affine k-algebras, and a point Q of W
maps to P if and only oc_l(mQ) = mp. But this holds if and only if mgp D a(mp),
and so the points of W mapping to P are in one-to-one correspondence with the maximal
ideals of B/a(m)B. Clearly B/a(m)B is generated as a k-vector space by the image of
any generating set for B as an A-module, and the next lemma shows that it has only finitely
many maximal ideals. o

LEMMA 8.6. A finite k-algebra A has only finitely many maximal ideals.

PROOF. Letmy,...,m, be maximal ideals in A. They are obviously coprime in pairs, and
so the Chinese Remainder Theorem (1.1)) shows that the map

A— A/my XX A/my, ar (...,a; modm;,...),
is surjective. It follows that dimy A > > dimg(A/m;) > n (dimensions as k-vector
spaces). O

THEOREM 8.7. A finite map ¢: W — V is closed.

PROOF. Again we can assume V' and W to be affine. Let Z be a closed subset of W. The
restriction of ¢ to Z is finite (by and b), and so we can replace W with Z; we then
have to show that Im(g) is closed. The map corresponds to a finite map of rings A — B.
This will factors as A — A/a < B, from which we obtain maps

Spm(B) — Spm(A/a) — Spm(A).

The second map identifies Spm(A/a) with the closed subvariety V(a) of Spm(A4), and so it
remains to show that the first map is surjective. This is a consequence of the next lemma. o

LEMMA 8.8 (GOING-UP THEOREM). Let A C B be rings with B integral over A.
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(a) For every prime ideal p of A, there is a prime ideal q of B such thatq N A = p.
(b) Letp = q N A; then p is maximal if and only if q is maximal.

PROOF. (a) If S is a multiplicative subset of a ring A, then the prime ideals of S™1A4
are in one-to-one correspondence with the prime ideals of A not meeting S (see [[.30). It
therefore suffices to prove (a) after A and B have been replaced by S !4 and S~! B, where
S = A —p. Thus we may assume that A is local, and that p is its unique maximal ideal. In
this case, for all proper ideals b of B, b N A C p (otherwise b D A > 1). To complete the
proof of (a), I shall show that for all maximal ideals nof B,n N A = p.

Consider B/n D A/(n N A). Here B/n is a field, which is integral over its subring
A/(mN A), and n N A will be equal to p if and only if A/(n N A) is a field. This follows
from Lemma [8.9] below.

(b) The ring B/q contains A/p, and it is integral over A/p. If q is maximal, then
Lemma shows that p is also. For the converse, note that any integral domain integral
over a field is a field because it is a union of integral domains finite over the field, which
are automatically fields (left multiplication by an element is injective, and hence surjective,
being a linear map of a finite-dimensional vector space). o

LEMMA 8.9. Let A be a subring of a field K. If K is integral over A, then A is also a field.

PROOF. Let a be a nonzero element of A. Then a~! € K, and it is integral over A:
@Y +ai(@ )" '+ +a, =0, a; €A
On multiplying through by a”*~!, we find that
al+a+--+apa" ' =0,

from which it follows thata=! € A. O
COROLLARY 8.10. Letg: W — V be finite; if V is complete, then so also is W .

PROOF. Consider
WxT—->VxT—->T, (wt)er(eWw)),t)—t.

Because W x T' — V x T is finite (see [8.4f), it is closed, and because V' is complete,
V xT — T is closed. A composite of closed maps is closed, and therefore the projection
W x T — T is closed. o

EXAMPLE 8.11. (a) Project XY = 1 onto the X axis. This map is quasi-finite but not
finite, because k[X, X ~!] is not finite over k[X].

(b) The map A% — {origin} < A? is quasi-finite but not finite, because the inverse

image of A? is not affine (3.21).

(c) Let
V=VX"+T1 X" '+ 4+ T,) c A",

and consider the projection map

(ai,....an,x)— (ay,....ay):V — A"
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The fibre over any point (ay,...,a,) € A" is the set of solutions of
X"+ X" '+ 4a,=0,

and so it has exactly n points, counted with multiplicities. The map is certainly quasi-finite;
it is also finite because it corresponds to the finite map of k-algebras,

k[Ti,....Ty] = k[T1, ..., Tn. X]/(X" + i X" ' + -+ Tp).

(d) Let
V=V(IoX"+ 1 X" '+ +T,) Cc A"2.
The projection
(@o,....an,x) > (ay,...,an):V £, antt
has finite fibres except for the fibre above 0 = (0,...,0), which is Al. The restriction

¢|V ~ ¢~ 1(0) is quasi-finite, but not finite. Above points of the form (0,...,0, *, ..., %)
some of the roots “vanish off to co”. (Example (a) is a special case of this.)

(e) Let
P(X,Y)=ToX"+ W X" 'Y + ...+ T,Y",
and let V be its zero set in P! x (A"*! < {0}). In this case, the projection map V —
AL {0} is finite. (Prove this directly, or apply below.)

(f) The morphism A! —— A2t > (¢2,¢3) is finite because the image of k[X, Y] in
k[T]is k[T?, T3], and {1, T} is a set of generators for k[T'] over this subring.

(g) The morphism A! ——= A, a > a™ is finite (special case of (c)).

(h) The obvious map
(A! with the origin doubled ) — Al

is quasi-finite but not finite (the inverse image of A! is not affine).

The Frobenius map ¢ + t?:A! — Al in characteristic p # 0 and the map ¢ >
(t2,13): Al — V(Y% — X3) C A? from the line to the cuspidal cubic (see ) are
examples of finite bijective regular maps that are not isomorphisms.

Noether Normalization Theorem

This theorem sometimes allows us to reduce the proofs of statements about affine varieties
to the case of A”.

THEOREM 8.12. For any irreducible affine algebraic variety V of a variety of dimension
d, there is a finite surjective map ¢: V — A4,

PROOF. This is a geometric re-statement of the following theorem. O

THEOREM 8.13 (NOETHER NORMALIZATION THEOREM). Let A be a finitely generated
k -algebra, and assume that A is an integral domain. Then there exist elements y1, ..., yq €
A that are algebraically independent over k and such that A is integral over k[yy, ..., yq].
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PROOF. Let xj1,...,x, generate A as a k-algebra. We can renumber the x; so that
X1,...,Xxq are algebraically independent and x4 41, ..., x, are algebraically dependent on
X1,...,xq (FT, 8.12).

Because xj, is algebraically dependent on x1, . . ., X4, there exists a nonzero polynomial

S(X1.....Xq,T)suchthat f(x1,...,xq,x,) = 0. Write
f(X1,....X4,T) =aoT" +a1T™ ' + -+ ay,

with a; € k[X1,...,Xg4] (= k[x1,...,x4]). If ap is a nonzero constant, we can divide
through by it, and then x, will satisfy a monic polynomial with coefficients in k[xy, ..., x4],
that is, x, will be integral (not merely algebraic) over k[x1, ..., x4]. The next lemma sug-
gest how we might achieve this happy state by making a linear change of variables.

LEMMA 8.14. If F(Xy,..., X4, T) is a homogeneous polynomial of degree r, then

F(X1+MT,....,Xqg +AgT,T) = F(A1,...,Aq, 1)T" + terms of degree < r in T.

PROOF. The polynomial F(Xy + AT, ..., Xg + A4 T, T) is still homogeneous of degree
r (in Xq,...,X4,T), and the coefficient of the monomial 7" in it can be obtained by
substituting O for each X; and 1 for T'. O

PROOF (OF THE NORMALIZATION THEOREM (CONTINUED)). Note thatunless F(X1,...,X4z,7T)
is the zero polynomial, it will always be possible to choose (A1,...,A4) sothat F(A1,...,A4,1) #
0 — substituting 77 = 1 merely dehomogenizes the polynomial (no cancellation of terms
occurs), and a nonzero polynomial can’t be zero on all of k" (Exercise|[I-I)).

Let F be the homogeneous part of highest degree of f, and choose (A1, ...,A4) so that
F(A1,...,Ag,1) # 0. The lemma then shows that

FXy+MT,....Xg +AgT.T)=cT" +b,T" 1 +... 4 by,

withc = F(Aq,...,Ag, 1) € K, b; € k[X1,...,Xy4], degb; < r. On substituting x,, for
T and x; — A; x,, for X; we obtain an equation demonstrating that x is integral over k[x —

MXn, ..., Xqg —AgXxp]. Put x! = x; — Ajx,, 1 <i < d. Then x, is integral over the ring
klx{,...,x}], and it follows that A is integral over A" = k[x{,..., X/, Xg41,. .., Xn—1]-
Repeat the process for A’, and continue until the theorem is proved. O

REMARK 8.15. The above proof uses only that k is infinite, not that it is algebraically
closed (that’s all one needs for a nonzero polynomial not to be zero on all of k™). There are
other proofs that work also for finite fields (see CA 5.11), but the above proof is simpler and
gives us the additional information that the y;’s can be chosen to be linear combinations of
the x;. This has the following geometric interpretation:

let V be a closed subvariety of A" of dimension d; then there exists a linear

map A" — A% whose restriction to V is a finite map V — A%.

Zariski’s main theorem

An obvious way to construct a nonfinite quasi-finite map W — V is to take a finite map
W' — V and remove a closed subset of W’. Zariski’s Main Theorem shows that, when W
and V are separated, every quasi-finite map arises in this way.
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THEOREM 8.16 (ZARISKI’S MAIN THEOREM). Any quasi-finite map of varieties ¢: W —

. L ¢’ . . . .
V factors into W < W' — V with ¢’ finite and « an open immersion.
PROOF. Omitted — see the references below (140). o

REMARK 8.17. Assume (for simplicity) that V' and W are irreducible and affine. The
proof of the theorem provides the following description of the factorization: it corresponds
to the maps

k[V] = k[W'] = k[W]

with k[W’] the integral closure of k[V] in k[W].

A regular map ¢: W — V of irreducible varieties is said to be birational if it induces
an isomorphism k (V') — k(W) on the fields of rational functions (that is, if it demonstrates
that W and V are birationally equivalent).

REMARK 8.18. One may ask how a birational regular map ¢: W — V can fail to be an
isomorphism. Here are three examples.

(a) The inclusion of an open subset into a variety is birational.

(b) The map Al 5> C,t > (t2, t3), is birational. Here C is the cubic Y2 = X3, and
the map k[C] — k[A!'] = k[T] identifies k[C] with the subring k[T2, T3] of k[T].
Both rings have k(T') as their fields of fractions.

(c) For any smooth variety V and point P € V, there is a regular birational map ¢: V' —
V such that the restriction of ¢ to V/ — ¢~ 1(P) is an isomorphism onto V — P, but
¢~ 1(P) is the projective space attached to the vector space Tp (V).

The next result says that, if we require the target variety to be normal (thereby excluding
example (b)), and we require the map to be quasi-finite (thereby excluding example (c)),
then we are left with (a).

COROLLARY 8.19. Let ¢: W — V be a birational regular map of irreducible varieties.
Assume

(a) V is normal, and
(b) ¢ is quasi-finite.

Then ¢ is an isomorphism of W onto an open subset of V.

PROOF. Factor ¢ as in the theorem. For each open affine subset U of V, k[¢’~1(U)] is the
integral closure of k[U] in k(W). But k(W) = k(V) (because ¢ is birational), and k[U]
is integrally closed in k(V') (because V is normal), and so U = ¢'~1(U) (as varieties). It
follows that W/ = V. O

COROLLARY 8.20. Any quasi-finite regular map ¢: W — V with W complete is finite.

PROOF. In this case, i: W < W' must be an isomorphism (7.3). O
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REMARK 8.21. Let W and V be irreducible varieties, and let ¢: W — V be a dominant
map. It induces a map k(V) — k(W), and if dim W = dim V, then k(W) is a finite
extension of k(V'). We shall see later that, if n is the separable degree of k(V') over k(W),
then there is an open subset U of W such that g isn : 1 on U, i.e., for P € ¢(U), ¢~ ' (P)
has exactly n points.

Now suppose that ¢ is a bijective regular map W — V. We shall see later that this
implies that W and V' have the same dimension. Assume:

(a) k(W) is separable over k(V);
(b) V is normal.

From (a) and the preceding discussion, we find that ¢ is birational, and from (b) and
the corollary, we find that ¢ is an isomorphism of W onto an open subset of V'; as it is
surjective, it must be an isomorphism of W onto V. We conclude: a bijective regular map
¢: W — V satistying the conditions (a) and (b) is an isomorphism.

NOTES. The full name of Theorem[8.16]is “the main theorem of Zariski’s paper Transactions AMS,
53 (1943), 490-532”. Zariski’s original statement is that in (8.19). Grothendieck proved it in the
stronger form (8.16) for all schemes. There is a good discussion of the theorem in Mumford 1999,
II1.9. For a proof see Musili, C., Algebraic geometry for beginners. Texts and Readings in Mathe-
matics, 20. Hindustan Book Agency, New Delhi, 2001, §65.

The base change of a finite map

Recall that the base change of a regular map ¢: V' — S is the map ¢’ in the diagram:

’

VxsW — s v

o b

w LS.

PROPOSITION 8.22. The base change of a finite map is finite.

PROOF. We may assume that all the varieties concerned are affine. Then the statement
becomes: if A is a finite R-algebra, then AQ g B/ is a finite B-algebra, which is obvious.n

Proper maps

A regular map ¢: V' — § of varieties is said to be proper if it is “universally closed”, that is,
if for all maps T — S, the base change ¢": V xg T — T of ¢ is closed. Note that a variety
V is complete if and only if the map V' — {point} is proper. From its very definition, it is
clear that the base change of a proper map is proper. In particular, if ¢: V' — S is proper,
then ¢~ (P) is a complete variety for all P € S.

PROPOSITION 8.23. If W — V is proper and V' is complete, then W is complete.
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PROOF. Let T be a variety, and consider

W «——— WxT

J{ J{closed

V «~—— VT

l lclosed

{point} «—— T

ASW XT ~W xy (VxT)and W — V isproper, W x T — V x T is closed, and as V
is complete, V x T — T is closed. Therefore, W x T — T is closed. o

PROPOSITION 8.24. A finite map of varieties is proper.
PROOF. The base change of a finite map is finite, and hence closed. o

The next result (whose proof requires Zariski’s Main Theorem) gives a purely geometric
criterion for a regular map to be finite.

PROPOSITION 8.25. A proper quasi-finite map ¢: W — V of varieties is finite.

. L o . . . . .
PROOF. Factor ¢ into W < W’ — W with « finite and ¢ an open immersion. Factor ¢ into

w(w,lw) (w,w)—>w’

W ——5 Wxy W |48

The image of the first map is I}, which is closed because W’ is a variety (see [4.26} W' is
separated because it is finite over a variety — exercise). Because ¢ is proper, the second
map is closed. Hence ¢ is an open immersion with closed image. It follows that its image is
a connected component of W', and that W is isomorphic to that connected component. o

If W and V are curves, then any surjective map W — V is closed. Thus it is easy to
give examples of closed surjective quasi-finite nonfinite maps. For example, the map

aa®: A~ {0} — Al
which corresponds to the map on rings
k[T] - k[T, T™Y, Tw~—T",

is such a map. This doesn’t violate the theorem, because the map is only closed, not uni-
versally closed.

Exercises

8-1. Prove that a finite map is an isomorphism if and only if it is bijective and étale. (Cf.
Harris 1992, 14.9.)
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8-2. Give an example of a surjective quasi-finite regular map that is not finite (different
from any in the notes).

8-3. Let ¢:V — W be a regular map with the property that ¢! (U) is an open affine
subset of W whenever U is an open affine subset of V. Show that if V is separated, then so

alsois W.

8-4. For every n > 1, find a finite map ¢: W — V with the following property: for all
1<i<n,
def

Vi ={P eV | ¢ }(P)has <i points}

is a closed subvariety of dimension i.



Chapter 9

Dimension Theory

Throughout this chapter, k is an algebraically closed field. Recall that to an irreducible
variety V, we attach a field k(1) — it is the field of fractions of k[U] for any open affine
subvariety U of V, and also the field of fractions of Op for any point P in V. We defined
the dimension of V' to be the transcendence degree of k (V') over k. Note that, directly from
this definition, dim V' = dim U for any open subvariety U of V. Also, thatif W — V is
a finite surjective map, then dim W = dim V (because k(W) is a finite field extension of
k(V)).

When V is not irreducible, we defined the dimension of V' to be the maximum dimen-
sion of an irreducible component of V', and we said that V is pure of dimension d if the
dimensions of the irreducible components are all equal to d.

Let W be a subvariety of a variety V. The codimension of W in V is

codimy W = dim V — dim W.
In §3|and §6] we proved the following results:

9.1. (a) The dimension of a linear subvariety of A" (that is, a subvariety defined by
linear equations) has the value predicted by linear algebra (see[2.24b,[5.12). In par-
ticular, dim A" = n. As a consequence, dim P" = n.

(b) Let Z be a proper closed subset of A"; then Z has pure codimension one in A" if
and only if 1(Z) is generated by a single nonconstant polynomial. Such a variety is

called an affine hypersurface (see and 1 .

(c) If'V is irreducible and Z is a proper closed subset of V, then dim Z < dim V' (see

Affine varieties

The fundamental additional result that we need is that, when we impose additional poly-
nomial conditions on an algebraic set, the dimension doesn’t go down by more than linear
algebra would suggest.

THEOREM 9.2. LetV be an irreducible affine variety, and let f a nonzero regular function.
If f has a zero on V, then its zero set is pure of dimension dim(V) — 1.

IThe careful reader will check that we didn’t use or in the proof of’

143
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In other words: let I be a closed subvariety of A” and let F € k[X1, ..., X]; then
|4 if F is identically zero on V
VAV(F)=414 0 if F has no zeros on V

hypersurface otherwise.

where by hypersurface we mean a closed subvariety of pure codimension 1.
We can also state it in terms of the algebras: let A be an affine k-algebra; let f € A
be neither zero nor a unit, and let p be a prime ideal that is minimal among those containing

(f); then
trdeg; A/p = trdeg; A — 1.

LEMMA 9.3. Let A be an integral domain, and let L be a finite extension of the field of
fractions K of A. If a € L is integral over A, then so also is Nmp  xa. Hence, if A is
integrally closed (e.g., if A is a unique factorization domain), then Nmy ;g € A. In this
last case, a divides Nmy /g « in the ring Alo].

PROOF. Let g(X) be the minimum polynomial of « over K,
gX)=X"4+a, 1 X" 4. 4 ao.
In some extension field E of L, g(X) will split
gX) =[liei(X —ei), a1 =0, T[]y = *ao.

Because « is integral over A, each «; is integral over A (see the proof of [I.22)), and it follows

that Nmy /g o P28 (]_[;=1ai)[L:K(“)] is integral over A (see|1.16).
Now suppose A is integrally closed, so that Nm«a € A. From the equation

0=a(@ ' +ar—1&" 2+ - +ay) +ag

n
r

we see that o divides ag in A[«], and therefore it also divides Nma = *ag . O

PROOF (OF THEOREM[9.2]). We first show that it suffices to prove the theorem in the case
that V(f) is irreducible. Suppose Zy, ..., Z, are the irreducible components of V( f).
There exists a point P € Zj that does not lie on any other Z; (otherwise the decomposition
V(f) = U Z; would be redundant). As Zi,...,Z, are closed, there is an open neigh-
bourhood U of P, which we can take to be affine, that does not meet any Z; except Zy.
Now V(f|U) = Zo N U, which is irreducible.

As V(f) is irreducible, rad( f) is a prime ideal p C k[V]. According to the Noether
normalization theorem , there is a finite surjective map 7: V — A which realizes
k(V) as a finite extension of the field k(A?). We shall show that p N k[A?] = rad( fo)
where fo = Nmy /g aa) f- Hence

k[A4]/rad( fo) — k[V]/p

is injective. As it is also finite, this shows that dim V() = dim V(fp), and we already
know the theorem for A4 ).
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By assumption k[V] is finite (hence integral) over its subring k[A?]. According to the
lemma, fp lies in k[A%], and I claim that p N k[A¢] = rad( fo). The lemma shows that f
divides fo in k[V], and so fo € (f) C p. Hence (fy) C p N k[A?], which implies

rad(fo) C p Nk[AY]

because p is radical. For the reverse inclusion, let g € p N k[A%]. Then g € rad(f), and
so g™ = fhforsome h € k[V], m € N. Taking norms, we find that

g™ =Nm(fh) = fo-Nm(h) € (o),

where e = [k(V) : k(A™)], which proves the claim.
The inclusion k[A?] <> k[V] therefore induces an inclusion

k[A?)/ rad(fo) = k[A9]/p O K[AY] < K[V]/p.
which makes k[V]/p into a finite algebra over k[A?]/ rad( fp). Hence
dim V(p) = dim V(fo).

Clearly f # 0 = fo # 0, and fo € p = fo is not a nonzero constant. Therefore
dim V( fo) = d — 1 by (9.1p). o

COROLLARY 9.4. Let V be an irreducible variety, and let Z be a maximal proper closed
irreducible subset of V. Then dim(Z) = dim(V') — 1.

PROOF. For any open affine subset U of V meeting Z, dim U = dimV anddimU NZ =
dim Z. We may therefore assume that V itself is affine. Let f be a nonzero regular function
on V vanishing on Z, and let V( f) be the set of zeros of f (in V). Then Z C V(f) C V,
and Z must be an irreducible component of V( f) for otherwise it wouldn’t be maximal in
V. Thus Theorem [9.2]implies that dim Z = dim V — 1. o

COROLLARY 9.5 (TOPOLOGICAL CHARACTERIZATION OF DIMENSION). Suppose V is
irreducible and that
VoViD---DVg#0

is a maximal chain of distinct closed irreducible subsets of V. Then dim(V) = d. (Maxi-
mal means that the chain can’t be refined.)

PROOF. From (9.4) we find that

dimV =dimV;+1=dimV,+2=---=dimV; +d =d. o

REMARK 9.6. (a) The corollary shows that, when V is affine, dim V' = Krull dim k[V],
but it shows much more. Note that each V; in a maximal chain (as above) has dimension
d — i, and that any closed irreducible subset of V' of dimension d — i occurs as a V; in a
maximal chain. These facts translate into statements about ideals in affine k-algebras that
do not hold for all noetherian rings. For example, if A is an affine k-algebra that is an
integral domain, then Krull dim Ay, is the same for all maximal ideals of A — all maximal
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ideals in A have the same height (we have proved[5.23). Moreover, if p is an ideal in k[V]
with height i, then there is a maximal (i.e., nonrefinable) chain of distinct prime ideals

(0) Cp1 Cpa C-- Cpg #k[V]

with p; = p.

(b) Now that we know that the two notions of dimension coincide, we can restate (9.2))
as follows: let A be an affine k-algebra; let f € A be neither zero nor a unit, and let p be a
prime ideal that is minimal among those containing ( f); then

Krull dim(A4/p) = Krull dim(A4) — 1.

This statement does hold for all noetherian local rings (CA 15.3), and is called Krull’s
principal ideal theorem.

COROLLARY 9.7. Let V be an irreducible variety, and let Z be an irreducible component
of V(f1,... fr), where the f; are regular functions on V. Then

codim(Z) <r,ie., dim(Z) > dimV —r.

PROOF. As in the proof of (9.4), we can assume V' to be affine. We use induction on
r. Because Z is a closed irreducible subset of V(f1,... fr—1), it is contained in some
irreducible component Z’ of V( f1, ... fr—1). By induction, codim(Z’) < r — 1. Also Z is
an irreducible component of Z’ N V( f;) because

ZCZ' V() CV(fi,..i fr)

and Z is a maximal closed irreducible subset of V(f1,..., f;). If f» vanishes identically
on Z’, then Z = Z’ and codim(Z) = codim(Z’) < r — 1, otherwise, the theorem shows
that Z has codimension 1 in Z’, and codim(Z) = codim(Z’) +1 < r. o

PROPOSITION 9.8. Let V and W be closed subvarieties of A"; for any (nonempty) irre-
ducible component Z of V N W,

dim(Z) > dim(V) + dim(W) — n;

that is,
codim(Z) < codim(V) 4 codim(W).

PROOF. In the course of the proof of (4.27), we showed that V' N W is isomorphic to
AN (V x W), and this is defined by the n equations X; = Y; in V' x W. Thus the statement
follows from (9.7). o

REMARK 9.9. (a) The example (in A3)

X*4+y? =22
Z =0

shows that Proposition 0.8 becomes false if one only looks at real points. Also, that the
pictures we draw can mislead.
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(b) The statement of is false if A” is replaced by an arbitrary affine variety. Con-
sider for example the affine cone V/

X1X4—X2X3=0.
It contains the planes,
Z: X, =0= Xy Z ={(x,0,%,0)}

Z' X1 =0= X3; Z' ={(0,%,0, %)}

and Z N Z' = {(0,0,0,0)}. Because V is a hypersurface in A%, it has dimension 3, and
each of Z and Z’ has dimension 2. Thus

codmZNZ =3 g 1+ 1 = codim Z + codim Z’.

The proof of (9.8) fails because the diagonal in V' x V' cannot be defined by 3 equations
(it takes the same 4 that define the diagonal in A%) — the diagonal is not a set-theoretic
complete intersection.

REMARK 9.10. In (9.7), the components of V(f1,..., fr) need not all have the same di-
mension, and it is possible for all of them to have codimension < r without any of the f;
being redundant.

For example, let V be the same affine cone as in the above remark. Note that V(X1)NV
is a union of the planes:

V(Xl) nyv = {(0’ 0, *, *)} U {(O’ *’0’ *)}

Both of these have codimension 1 in V' (as required by (9.2))). Similarly, V(X3) N V is the
union of two planes,

V(X2) NV ={(0,0,x, %)} U{(x,0,x*,0)},

but V (X1, X2) NV consists of a single plane {(0, 0, *, *)}: it is still of codimension 1 in V,
but if we drop one of two equations from its defining set, we get a larger set.

PROPOSITION 9.11. Let Z be a closed irreducible subvariety of codimension r in an affine
variety V. Then there exist regular functions f1, ..., fr onV such that Z is an irreducible
component of V( fi,..., fr) and all irreducible components of V( f1,..., fr) have codi-
mension r.

PROOF. We know that there exists a chain of closed irreducible subsets

Vo>Z1>--DZ,=Z

with codim Z; = i. We shall show that there exist fi,..., fr € k[V] such that, for all
s <r, Zg is an irreducible component of V( f1, ..., fs) and all irreducible components of
V(fi,..., fs) have codimension s.

We prove this by induction on s. For s = 1, take any f1 € 1(Z1), f1 # 0, and apply
Theorem Suppose f1,..., fs—1 have been chosen, and let Y1 = Zs_1,..., Yy, be the
irreducible components of V( f1,..., fs—1). We seek an element fs that is identically zero
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on Zg but is not identically zero on any Y;—for such an fy, all irreducible components of
Y; NV ( f5) will have codimension s, and Zg will be an irreducible component of Y1 NV ( f;).
But ¥; ¢ Z; for any i (Zs has smaller dimension than Y;), and so I(Zs) ¢ 1(Y;). Now
the prime avoidance lemma (see below) tells us that there is an element f; € I(Z;) such
that fs ¢ I(Y;) for any i, and this is the function we want. o

LEMMA 9.12 (PRIME AVOIDANCE LEMMA). If an ideal a of a ring A is not contained in
any of the prime ideals p1, . .., p,, then it is not contained in their union.

PROOF. We may assume that none of the prime ideals is contained in a second, because
then we could omit it. Fix an i¢ and, for each i # io, choose an f; € p;, fi ¢ p;,, and

choose f;, € a, fiy, ¢ pi,- Then h;, o [1 /i lies in each p; with i # i and a, but not in p;,,
(here we use that p;, is prime). The element Zf=1 h; is therefore in a but not in any p;. o

REMARK 9.13. The proposition shows that for a prime ideal p in an affine k-algebra, if p
has height r, then there exist elements f1,..., fr € A such that p is minimal among the
prime ideals containing ( f1, ..., fr). This statement is true for all noetherian local rings.

REMARK 9.14. The last proposition shows that a curve C in A3 is an irreducible compo-
nent of V(f1, f2) for some fi, f>» € k[X,Y, Z]. In fact C = V(f1, f2, f3) for suitable
polynomials f7, f>, and f3 — this is an exercise in Shafarevich 1994 (I 6, Exercise 8; see
also Hartshorne 1977, I, Exercise 2.17). Apparently, it is not known whether two polynomi-
als always suffice to define a curve in A3 — see Kunz 1985, p136. The union of two skew
lines in P3 can’t be defined by two polynomials (ibid. p140), but it is unknown whether
all connected curves in P can be defined by two polynomials. Macaulay (the man, not the
program) showed that for every r > 1, there is a curve C in A3 such that /(C) requires
at least r generators (see the same exercise in Hartshorne for a curve whose ideal can’t be
generated by 2 elements).

In general, a closed variety V' of codimension r in A" (resp. P") is said to be a set-

theoretic complete intersection if there exist r polynomials f; € k[X1,..., X,] (resp.
homogeneous polynomials f; € k[Xo, ..., X»]) such that
V=V(fi,..., fr)

Such a variety is said to be an ideal-theoretic complete intersection if the f; can be chosen
so that I(V) = (f1,..., fr). Chapter V of Kunz’s book is concerned with the question of
when a variety is a complete intersection. Obviously there are many ideal-theoretic com-
plete intersections, but most of the varieties one happens to be interested in turn out not
to be. For example, no abelian variety of dimension > 1 is an ideal-theoretic complete
intersection (being an ideal-theoretic complete intersection imposes constraints on the co-
homology of the variety, which are not fulfilled in the case of abelian varieties).

Let P be a point on an irreducible variety V' C A”. Then shows that there
is a neighbourhood U of P in A" and functions f1,..., fr on U such that U NV =
V(fi,..., fr) (zero set in U). Thus U N V is a set-theoretic complete intersection in
U. One says that V is a local complete intersection at P € V if there is an open affine
neighbourhood U of P in A" such that I(V N U) can be generated by r regular functions
on U. Note that

ideal-theoretic complete intersection = local complete intersection at all p.
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It is not difficult to show that a variety is a local complete intersection at every nonsingular

point (cf. [5.17).

PROPOSITION 9.15. Let Z be a closed subvariety of codimension r in variety V', and let
P be a point of Z that is nonsingular when regarded both as a point on Z and as a point on
V. Then there is an open affine neighbourhood U of P and regular functions fi,..., fr on
Usuchthat ZNU =V(f1,..., fr).

PROOF. By assumption
dimg Tp(Z) =dimZ =dimV —r = dimg Tp(V) — 1.

There exist functions fi,..., fr contained in the ideal of O p corresponding to Z such that
Tp(Z) is the subspace of Tp (V') defined by the equations

(dfl)P = Os"'s(dfr)P =0.

All the f; will be defined on some open affine neighbourhood U of P (in V'), and clearly

Z is the only component of Z’ o V(fi,..., fr) (zero set in U) passing through P. Af-
ter replacing U by a smaller neighbourhood, we can assume that Z’ is irreducible. As
fi,..., fr € I(Z'), we must have Tp(Z’') C Tp(Z), and therefore dim Z’ < dim Z. But
I(Z'YcI(ZNU),andso Z' D Z N U. These two facts imply that Z' = Z N U. o

PROPOSITION 9.16. Let V be an affine variety such that k[V'] is a unique factorization

domain. Then every pure closed subvariety Z of V of codimension one is principal, i.e.,
1(Z) = (f) for some f € k[V].

PROOF. In (2.27) we proved this in the case that IV = A", but the argument only used that
k[A"] is a unique factorization domain. o

EXAMPLE 9.17. The condition that k[V'] is a unique factorization domain is definitely
needed. Again let V' be the cone

X1Xa—X2X3=0
in A% and let Z and Z’ be the planes
Z = {(x,0,%,0)} Z" = {(0,*,0,%)}.

Then Z N Z' = {(0,0,0,0)}, which has codimension 2 in Z’'. If Z = V() for some
regular function f on V, then V(f|Z’) = {(0,...,0)}, which is impossible (because it has
codimension 2, which violates[9.2). Thus Z is not principal, and so

k[X1, X2, X3, X4]/(X1X4 — X2X3)

is not a unique factorization domain.
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Projective varieties

The results for affine varieties extend to projective varieties with one important simplifica-
tion: if V' and W are projective varieties of dimensions r and s in P” and r 4+ s > n, then
Vnw#Q.

THEOREM 9.18. Let V = V(a) C P" be a projective variety of dimension > 1, and let
f € k[Xo, ..., Xn] be homogeneous, nonconstant, and ¢ a; then V N V(f) is nonempty
and of pure codimension 1.

PROOF. Since the dimension of a variety is equal to the dimension of any dense open affine
subset, the only part that doesn’t follow immediately from is the fact that V N V(f)
is nonempty. Let V2 (a) be the zero set of a in A”*! (that is, the affine cone over V).
Then V2 (a) N V() is nonempty (it contains (0, .. ., 0)), and so it has codimension 1 in
vV (q). Clearly V2 (a) has dimension > 2, and so V*f(a) N V2 ( £) has dimension > 1.
This implies that the polynomials in a have a zero in common with f* other than the origin,
andso V(a) N V(f) # @. o

COROLLARY 9.19. Let f1,---, fr be homogeneous nonconstant elements of k[ Xy, . . ., Xn];
and let Z be an irreducible component of V N V(f1,... fr). Then codim(Z) < r, and if
dim(V) > r, then V N V(f1,... fr) is nonempty.

PROOF. Induction on r, as before. o

COROLLARY 9.20. Leta:P" — P be regular; if m < n, then « is constant.

PROOF. Let : A"T! — {origin} — P" be the map (aq, ...,an) — (ao : ... : ay). Then
« o 7 is regular, and there exist polynomials Fy, ..., Fy, € k[Xo,..., Xn] such that @ o 7w
is the map

(ag,....an) — (Fo(a) :...: Fy(a)).

As o o 7 factors through P”, the F; must be homogeneous of the same degree. Note that
alag :...:an) = (Fo(a) :...: Fp(a)).

If m < n and the F; are nonconstant, then (9.18) shows they have a common zero and so «
is not defined on all of P”*. Hence the F;’s must be constant. o

PROPOSITION 9.21. Let Z be a closed irreducible subvariety of V; it codim(Z) = r,
then there exist homogeneous polynomials fi,..., fr in k[Xo, ..., Xy] such that Z is an
irreducible component of V NV (f1,..., fr).

PROOF. Use the same argument as in the proof (9.1T). O

2Lars Kindler points out that, in this proof, it is not obvious that the map « o 7 is given globally by a
system of polynomials (rather than just locally). It is in fact given globally, and this is not too difficult to prove:
a regular map from a variety V to P” corresponds to a line bundle on V and a set of global sections, and all line
bundles on A" are trivial (see, for example, Hartshorne I1 7.1 and II 6.2). I should fix this in a future version.
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PROPOSITION 9.22. Every pure closed subvariety Z of P" of codimension one is princi-
pal,ie., I(Z) = (f) for some f homogeneous element of k[Xy, ..., Xp].

PrROOF. Follows from the affine case. o

COROLLARY 9.23. LetV and W be closed subvarieties of P" ; if dim(V') + dim(W) > n,
then VNW = @, and every irreducible component of it has codim(Z) <codim(V )+ codim(W).

PROOF. Write V' = V(a) and W = V(b), and consider the affine cones V' = V(a) and
W' = W(b) over them. Then

dim(V') + dim(W’) = dim(V) + 1 + dim(W) + 1 > n + 2.

As V' N W' # @, V' N W' has dimension > 1, and so it contains a point other than the
origin. Therefore VN W # @. The rest of the statement follows from the affine case. o

PROPOSITION 9.24. Let V be a closed subvariety of P"* of dimension r < n; then there
is a linear projective variety E of dimension n — r — 1 (that is, E is defined by r + 1
independent linear forms) such that E NV = @.

PROOF. Induction on r. If r = 0, then V is a finite set, and the next lemma shows that
there is a hyperplane in k1 not meeting V. o

LEMMA 9.25. Let W be a vector space of dimension d over an infinite field k, and let
E1,..., E; be a finite set of nonzero subspaces of W. Then there is a hyperplane H in W
containing none of the E;.

PROOF. Pass to the dual space V' of W. The problem becomes that of showing V' is not
a finite union of proper subspaces E. Replace each E” by a hyperplane H; containing
it. Then H; is defined by a nonzero linear form L;. We have to show that [[ L is not
identically zero on V. But this follows from the statement that a polynomial in # variables,
with coefficients not all zero, can not be identically zero on k" (Exercise[1-1).

Suppose r > 0, and let V7, ..., Vs be the irreducible components of V. By assumption,
they all have dimension < r. The intersection E; of all the linear projective varieties
containing V; is the smallest such variety. The lemma shows that there is a hyperplane
H containing none of the nonzero E;; consequently, H contains none of the irreducible
components V; of V', and so each V; N H is a pure variety of dimension < r—1 (or is empty).
By induction, there is an linear subvariety E’ not meeting V N H. Take E = E'NH. ¢

Let V and E be as in the theorem. If E is defined by the linear forms Ly, ..., L, then
the projection @ — (Lo(a) : ---: Ly(a)) defines amap V — P". We shall see later that this
map is finite, and so it can be regarded as a projective version of the Noether normalization
theorem.



Chapter 10

Regular Maps and Their Fibres

Throughout this chapter, k is an algebraically closed field.
Consider again the regular map ¢: A2 — A2, (x,y) — (x,xy) (Exercise [3-3). The
image of ¢ is

C ={(ab)eA?|a#00ra=0=bhb}
= (A%~ {y-axis}) U {(0,0)},

which is neither open nor closed, and, in fact, is not even locally closed. The fibre

{(a,b/a)} ifa+#0
¢ Ya,b) ={ Y-axis if (a, b) = (0,0)
4 ifa=0,b0.

From this unpromising example, it would appear that it is not possible to say anything about
the image of a regular map, nor about the dimension or number of elements in its fibres.
However, it turns out that almost everything that can go wrong already goes wrong for this
map. We shall show:

(a) the image of a regular map is a finite union of locally closed sets;

(b) the dimensions of the fibres can jump only over closed subsets;

(c) the number of elements (if finite) in the fibres can drop only on closed subsets, pro-
vided the map is finite, the target variety is normal, and £ has characteristic zero.

Constructible sets

Let W be a topological space. A subset C of W is said to constructible if it is a finite union
of sets of the form U N Z with U open and Z closed. Obviously, if C is constructible and
V C W, then C N V is constructible. A constructible set in A" is definable by a finite
number of polynomials; more precisely, it is defined by a finite number of statements of the
form

f(X1,-+, Xp) =0, g(X1,--+, Xn) #0

combined using only “and” and “or” (or, better, statements of the form f = 0 combined
using “and”, “or”, and “not”). The next proposition shows that a constructible set C that
is dense in an irreducible variety V' must contain a nonempty open subset of V. Contrast
Q, which is dense in R (real topology), but does not contain an open subset of R, or any
infinite subset of A! that omits an infinite set.

152
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PROPOSITION 10.1. Let C be a constructible set whose closure C is irreducible. Then C
contains a nonempty open subset of C.

PROOF. We are given that C = | J(U; N Z;) with each U; open and each Z; c_losed. We
may assume that each set U; N Z; in this decomposition is nonempty. Clearly C C U Zi,
and as C is irreducible, it must be contained in one of the Z;. For this i

CO>UNZD>UNCO>UNCOUNU NZ)=UNZ.

Thus U; N Z; = U; N C is a nonempty open subset of C contained in C. O

THEOREM 10.2. A regular map ¢: W — V sends constructible sets to constructible sets.
In particular, it U is a nonempty open subset of W, then ¢(U) contains a nonempty open
subset of its closure in V.

The key result we shall need from commutative algebra is the following. (In the next
two results, A and B are arbitrary commutative rings—they need not be k-algebras.)

PROPOSITION 10.3. Let A C B be integral domains with B finitely generated as an alge-
bra over A, and let b be a nonzero element of B. Then there exists an element a # 0 in A
with the following property: every homomorphism «: A — §2 from A into an algebraically
closed field 2 such that a(a) # 0 can be extended to a homomorphism 8: B — £2 such

that B(b) # 0.

Consider, for example, the rings k[X] C k[X, X~!]. A homomorphism o:k[X] — k
extends to a homomorphism k[X, X~'] — k if and only if «(X) # 0. Therefore, for
b = 1, we can take @ = X. In the application we make of Proposition we only really
need the case b = 1, but the more general statement is needed so that we can prove it by
induction.

LEMMA 10.4. Let B O A be integral domains, and assume B = A[t] ~ A[T]/a. Let
¢ C A be the set of leading coefficients of the polynomials in a. Then every homomorphism
a: A — $2 from A into an algebraically closed field §2 such that «(¢) # 0 can be extended
to a homomorphism of B into §2.

PROOF. Note that ¢ is an ideal in A. If a = 0, then ¢ = 0, and there is nothing to prove
(in fact, every o extends). Thus we may assume a # 0. Let f = a,,T™ +---+ap be a
nonzero polynomial of minimum degree in a such that a(a,) # 0. Because B # 0, we
have that m > 1.

Extend « to a homomorphism &: A[T] — £2[T] by sending T to T. The §2-submodule
of £2[T] generated by &(a) is an ideal (because T - Y _ c;@(g;) = >_c;i@(giT)). Therefore,
unless &(a) contains a nonzero constant, it generates a proper ideal in £2[7"], which will
have a zero c¢ in §2. The homomorphism

AT] S Q[T > 2, ToTreec

then factors through A[T]/a = B and extends «.
In the contrary case, a contains a polynomial

g(T)=b,T" +---+ by, abi)=0 (i >0), a(b) #0.
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On dividing f(T) into g(T') we find that
ale(T)=q(T)f(T)+r(T), deN, gq.reA[T], degr <m.
On applying & to this equation, we obtain

a(am)?a(bo) = @(q)a(f) +a(r).

Because @( f) has degree m > 0, we must have &(¢) = 0, and so @(r) is a nonzero
constant. After replacing g(7T') with r(T'), we may assume n < m. If m = 1, such a g(T)
can’t exist, and so we may suppose m > 1 and (by induction) that the lemma holds for
smaller values of m.

For i(T) = ¢;T" + ¢, 1 T" "V + - 4 ¢co, let W(T) = ¢, + --- + coT". Then the
A-module generated by the polynomials T*A'(T), s > 0, h € a, is an ideal a’ in A[T].
Moreover, a’ contains a nonzero constant if and only if a contains a nonzero polynomial
¢T”, which implies t = 0 and A = B (since B is an integral domain).

If o’ does not contain nonzero constants, then set B’ = A[T]/a’ = A[t']. Then o
contains the polynomial g’ = b, + --- + boT", and a(bg)# 0. Because deg g’ < m, the
induction hypothesis implies that & extends to a homomorphism B” — §2. Therefore, there
isac e 2 suchthat, forall /(T) = ¢, T" + c,1T" 1 +---4+co€a,

h(c) =alcy) + alcr—1)c + -+ 4+ coc” = 0.

On taking 7 = g, we see that ¢ = 0, and on taking 4 = f, we obtain the contradiction
a(am) = 0. O

PROOF (OF[10.3) Suppose that we know the proposition in the case that B is generated by
a single element, and write B = A[xy,...,x,]. Then there exists an element b,,_; such
that any homomorphism o: A[xq,...,Xs—1] — £2 such that a(b,—1) # 0 extends to a
homomorphism : B — 2 such that 8(b) # 0. Continuing in this fashion, we obtain an
element a € A with the required property.

Thus we may assume B = A[x]. Let a be the kernel of the homomorphism X — x,
A[X] — Alx].

Case (i). The ideal a = (0). Write

b= f(x)=aox" +a1x" ' +---+a, a;€A,

and take a = ag. If @: A — £2 is such that a(ag) # 0, then there exists a ¢ € §2 such that
f(c) # 0, and we can take B to be the homomorphism 3" d; x' — 3" a(d;)c'.

Case (ii). The ideal a # (0). Let f(T) = amT™ + ---, am # 0, be an element of
a of minimum degree. Let h(T) € A[T] represent b. Since b # 0, h ¢ a. Because f is
irreducible over the field of fractions of A, it and & are coprime over that field. Hence there
exist u,v € A[T] and ¢ € A — {0} such that

uh+vf =c.

It follows now that cay, satisfies our requirements, for if a(ca,) # 0, then o can be
extended to B: B — §2 by the previous lemma, and S(u(x) - b) = B(c) # 0, and so

B(b) # 0. o
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ASIDE 10.5. In case (ii) of the above proof, both b and 5~! are algebraic over A, and so
there exist equations

aobm+...+am:0, a; € A, aO#O;

agh™ +---+an =0, a, €A, ay#0.

One can show that @ = agay, has the property required by the Proposition—see Atiyah and
MacDonald, 5.23.

PROOF (OF[10.2) We first prove the “in particular” statement of the Theorem. By consid-
ering suitable open affine coverings of W and V, one sees that it suffices to prove this in
the case that both W and V are affine. If W1y, ..., W, are the irreducible components of W,
then the closure of @(W) in V, o(W)™ = o(W1)~ U... U @(W,)™, and so it suffices to
prove the statement in the case that W is irreducible. We may also replace V' with o(W)~,
and so assume that both W and V are irreducible. Then ¢ corresponds to an injective ho-
momorphism A — B of affine k-algebras. For some b # 0, D(b) C U. Choose a as in
the lemma. Then for any point P € D(a), the homomorphism f — f(P): A — k extends
to a homomorphism B: B — k such that §(b) # 0. The kernel of § is a maximal ideal
corresponding to a point Q € D(b) lying over P.

We now prove the theorem. Let W; be the irreducible components of W. Then C N W;
is constructible in W;, and ¢(W) is the union of the ¢(C N W;); it is therefore constructible
if the ¢(C N W;) are. Hence we may assume that W is irreducible. Moreover, C is a
finite union of its irreducible components, and these are closed in C; they are therefore
constructible. We may therefore assume that C also is irreducible; C is then an irreducible
closed subvariety of W.

We shall prove the theorem by induction on the dimension of W. If dim(W') = 0, then
the statement is obvious because W is a point. If C # W, then dim(C) < dim(W), and
because C is constructible in C, we see that ¢(C) is constructible (by induction). We may
therefore assume that C = W. But then C contains a nonempty open subset of W, and so
the case just proved shows that ¢(C) contains an nonempty open subset U of its closure.
Replace V be the closure of ¢(C), and write

@(C)=UUp(CNne ' (V-U)).
Then ¢~ 1(V — U) is a proper closed subset of W (the complement of ¥V — U is dense
in V and ¢ is dominant). As C N ¢~ (VV — U) is constructible in ¢ =1 (V — U), the set
¢(C N~ (V = U)) is constructible in V' by induction, which completes the proof. o
Orbits of group actions
Let G be an algebraic group. An action of G on a variety V is a regular map
(g, P)—~>gP:GxV =V

such that

() 1gP = P,all P € V;
(b) g(g’P)=(ggP,allg,g’ e G,PeV.
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PROPOSITION 10.6. Let G x V — V be an action of an algebraic group G on a variety V.

(a) Each orbit of G in X is open in its closure.
(b) There exist closed orbits.

PROOF. (a) Let O be an orbit of G in V andlet P € O. Then g — gP:G — Visa
regular map with image O, and so O contains a nonempty set U open in O . As
O = UgeGx) gU., itis open in 0.

(b) Let S = O be minimal among the closures of orbits. From (a), we know that O is
open in S. Therefore, if S . O were nonempty, it would contain the closure of an orbit,
contradicting the minimality of S. Hence S = O. O

Let G be an algebraic group acting on a variety V. Let G\ V denote the quotient topo-
logical space with the sheaf Og\y such that I'(U, Og\y) = I'(z~'U, Oy)%, where
7:G — G/V is the quotient map. When (G\V, Og\y) is a variety, we call it the geo-
metric quotient of V' under the action of G.

PROPOSITION 10.7. Let N be a normal algebraic subgroup of an affine algebraic group
G. Then the geometric quotient of G by N exists, and is an affine algebraic group.

PROOF. Omitted for the present. o

A connected affine algebraic group G is solvable if there exist connected algebraic
subgroups
G=G;D2Gy_1D:--DGy={l}

such that G; is normal in G; 1, and G;/G;+1 is commutative.

THEOREM 10.8 (BOREL FIXED POINT THEOREM). A connected solvable affine algebraic
group G acting on a complete algebraic variety V has at least one fixed point.

PROOF. We prove this by induction on the dim G. Assume first that G is commutative, and
let O = Gx be aclosed orbit of G in V (see[I0.6). Let N be the stabilizer of x. Because G
is commutative, N is normal, and we get a bijection G/N — O. As G acts transitively on
G/N and O, the map G/N — O is proper (see Exercise[10-4); as O is complete (7.3p), so
also is G/ N (see[8.23), and as it is affine and connected, it consists of a single point (7.5).
Therefore, O consists of a single point, which is a fixed point for the action.

By assumption, there exists a closed normal subgroup H of G such that G/H is a
commutative. The set X ¥ of fixed points of H in X is nonempty (by induction) and closed
(because it is the intersection of the sets

X"={xeX|hx=x}

for h € H). Because H is normal, X H g stable under G, and the action of G on it factors
through G/H . Every fixed point of G/H in X 7 is a fixed point for G acting on X. 0
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The fibres of morphisms

We wish to examine the fibres of a regular map ¢: W — V. Clearly, we can replace V' by
the closure of (W) in V and so assume ¢ to be dominant.

THEOREM 10.9. Letp: W — V be a dominant regular map of irreducible varieties. Then

(a) dim(W) > dim(V);
(b) if P € (W), then

dim(e~1(P)) > dim(W) — dim(V)

for every P € V, with equality holding exactly on a nonempty open subset U of V.
(c) The sets
Vi={P eV |dm(e ' (P) =i}

are closed (W).

EXAMPLE 10.10. Consider the subvariety W C V x A" defined by r linear equations
m
Za,‘ij =0, ajeck[V], i=1,...,r
j=1
and let ¢ be the projection W — V. For P € V, ¢~ !(P) is the set of solutions of
m
> ai(P)X; =0, aj(P)ek, i=1...r
j=1

and so its dimension is m — rank(a;; (P)). Since the rank of the matrix (a;; (P)) drops on
closed subsets, the dimension of the fibre jumps on closed subsets.

PROOF. (a) Because the map is dominant, there is a homomorphism k(V) < k(W), and
obviously tr deg;k(V) < trdeg; k(W) (an algebraically independent subset of k(') re-
mains algebraically independent in k(W)).

(b) In proving the first part of (b), we may replace V by any open neighbourhood of
P. In particular, we can assume V to be affine. Let m be the dimension of V. From
we know that there exist regular functions f1,..., f;; such that P is an irreducible
component of V(f1,..., fm). After replacing V by a smaller neighbourhood of P, we can
suppose that P = V(f1,..., fm). Then ¢~ 1(P) is the zero set of the regular functions
fio@,.... fmo ¢, and so (if nonempty) has codimension < m in W (see[0.7). Hence

dime ' (P) > dim W —m = dim(W) — dim(V).

In proving the second part of (b), we can replace both W and V with open affine subsets.
Since ¢ is dominant, k[V] — k[W] is injective, and we may regard it as an inclusion
(we identify a function x on V with x o ¢ on W). Then k(V) C k(W). Write k[V] =
kl[x1,...,xpm] and k[W] = k[y1,..., yn], and suppose V and W have dimensions m and
n respectively. Then k(W) has transcendence degree n —m over k(V'), and we may suppose
that y1,..., yn—m are algebraically independent over k[x1, ..., X;;], and that the remaining
y; are algebraic over k[x1,...,Xm, V1,---, Yn—m]- There are therefore relations

Fi(x1,....Xm, Y1, » Yn-m,yi) =0, i=n—m+1,...,N. (24)
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with F; (X1,..., Xm, Y1,-.., Yn—m, Yi) anonzero polynomial. We write y; for the restric-
tion of y; to ¢~ (P). Then

klp™ (P)] = k[31,.... w1,

The equations (24)) give an algebraic relation among the functions x1, ..., y; on W. When
we restrict them to ¢! (P), they become equations:

E(XI(P)77xm(P)7,)71”_)7n—m’)71) - 0, l =n-m + 1,...,N.
If these are nontrivial algebraic relations, i.e., if none of the polynomials
E(XI(P)’vxm(P)’ Yl,---,Yn—m» Yl)

is identically zero, then the transcendence degree of k(y1,..., V) over k will be < n —m.

Thus, regard Fj(x1,...,Xm, Y1,..., Yn—m, Yi) as a polynomial in the Y’s with coeffi-
cients polynomials in the x’s. Let V; be the closed subvariety of V' defined by the simul-
taneous vanishing of the coefficients of this polynomial—it is a proper closed subset of V.
Let U = V — | V;—it is a nonempty open subset of V. If P € U, then none of the poly-
nomials F;(x1(P),...,xm(P),Y1,..., Yn—m, Y;) is identically zero, and so for P € U,
the dimension of ¢ "1 (P) is < n — m, and hence = n — m by (a).

Finally, if for a particular point P, dim¢~!(P) = n — m, then one can modify the
above argument to show that the same is true for all points in an open neighbourhood of P.

(c) We prove this by induction on the dimension of V' —it is obviously true if dim V' =
0. We know from (b) that there is an open subset U of V' such that

dimg Y (P)=n—-m <= P eU.

Let Z be the complement of U in V; thus Z = V,,_,4+1. Let Zy, ..., Z; be the irreducible
components of Z. On applying the induction to the restriction of ¢ to the map ¢~ 1(Z ;) —
Z j for each j, we obtain the result. o

PROPOSITION 10.11. Let : W — V be a regular surjective closed mapping of varieties
(e.g., W complete or ¢ finite). If V is irreducible and all the fibres ¢~ (P) are irreducible
of dimension n, then W is irreducible of dimension dim(V') + n.

PROOF. Let Z be a closed irreducible subset of W, and consider the map ¢|Z: Z — Vit
has fibres (¢|Z)~'(P) = ¢~ 1(P) N Z. There are three possibilities.

(a) ¢(Z) # V. Then p(Z) is a proper closed subset of V.
(b) ¢(Z) =V,dim(Z) < n+dim(V). Then (b) of (10.9) shows that there is a nonempty
open subset U of V such that for P € U,
dim(p~1(P) N Z) = dim(Z) — dim(V) < n;
thus for P € U, " 1(P) ¢ Z.
(c) ¢(Z) =V,dim(Z) = n + dim(V'). Then (b) of (10.9) shows that
dim(e~"(P) N Z) > dim(Z) — dim(V) > n
for all P;thus ¢! (P) C Z forall P € V,and so Z = W; moreover dim Z = n.

Now let Z1, ..., Z, be the irreducible components of W. I claim that (iii) holds for at
least one of the Z;. Otherwise, there will be an open subset U of V' such that for P in U,
¢ Y (P) ¢ Z; for any i, but ¢ "1 (P) is irreducible and 1 (P) = J(p~1(P) N Z;), and
so this is impossible. O
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The fibres of finite maps

Let ¢: W — V be a finite dominant morphism of irreducible varieties. Then dim(W) =
dim(V), and so k(W) is a finite field extension of k (V). Its degree is called the degree of
the map ¢.

THEOREM 10.12. Letg: W — V be a finite surjective regular map of irreducible varieties,
and assume that V' is normal.

(@) Forall P € V,#¢ 1(P) < deg(p).
(b) The set of points P of V such that #¢~(P) = deg(¢) is an open subset of V, and
it is nonempty if k(W) is separable over k(V').

Before proving the theorem, we give examples to show that we need W to be separated
and V' to be normal in (a), and that we need k(W) to be separable over k(1) for the second
part of (b).

EXAMPLE 10.13. (a) Consider the map
{A! with origin doubled } — A!.

The degree is one and that map is one-to-one except at the origin where it is two-to-one.
(b) Let C be the curve Y2 = X3 + X2, and consider the map

t—> 2 =112 -1):A' > C.

It is one-to-one except that the points # = =+1 both map to 0. On coordinate rings, it
corresponds to the inclusion

k[x,y] = k[T],x = T?> =1,y = t(t? — 1),

and so is of degree one. The ring k[x, y] is not integrally closed; in fact k[T] is its integral
closure in its field of fractions.
(c) Consider the Frobenius map ¢: A" — A", (ay,...,an) — (af, ...,ar), where
p = chark. This map has degree p” but it is one-to-one. The field extension corresponding
to the map is
k(X1,...,Xn) Dk(XP, ..., XP)

which is purely inseparable.

LEMMA 10.14. Let Oy, ..., Q, be distinct points on an affine variety V. Then there is a
regular function f onV taking distinct values at the Q;.

PROOF. We can embed V as closed subvariety of A", and then it suffices to prove the
statement with V' = A" — almost any linear form will do. o

PROOF (OF[I0.12). In proving (a) of the theorem, we may assume that V' and W are
affine, and so the map corresponds to a finite map of k-algebras, k[V] — k[W]. Let
¢ Y (P) = {0Q1,...,0,}. According to the lemma, there exists an f € k[W] taking
distinct values at the Q;. Let

FT)=T" +a;T" '+ +an
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be the minimum polynomial of f over k(V'). It has degree m < [k(W) : k(V)] = deg o,
and it has coefficients in k[V] because V is normal (see [1.22). Now F(f) = 0 implies
F(f(Qi)) =0,ie.,

SO +ai(P)- ()" 4+ + am(P) = 0.

Therefore the f(Q;) are all roots of a single polynomial of degree m, and so r < m <
deg(e).

In order to prove the first part of (b), we show that, if there is a point P € V such that
@~ 1(P) has deg(¢) elements, then the same is true for all points in an open neighbourhood
of P. Choose f as in the last paragraph corresponding to such a P. Then the polynomial

T™ +a;(P)-T™ ' 4 dan(P)=0 (¥

has r = deg¢ distinct roots, and so m = r. Consider the discriminant disc F' of F.
Because (*) has distinct roots, disc(F)(P) # 0, and so disc(F) is nonzero on an open
neighbourhood U of P. The factorization

T—f
k[V] = k[V]IT]/(F) — k[W]

gives a factorization
W — Spm(k[V][T]/(F)) — V.

Each point P’ € U has exactly m inverse images under the second map, and the first map is
finite and dominant, and therefore surjective (recall that a finite map is closed). This proves
that ¢ ~1(P’) has at least deg(p) points for P’ € U, and part (a) of the theorem then implies
that it has exactly deg(¢) points.

We now show that if the field extension is separable, then there exists a point such
that #¢~1(P) has deg ¢ elements. Because k(W) is separable over k(V), there exists a
f € k[W]such that k(V)[ f] = k(W). Its minimum polynomial F has degree deg(¢) and
its discriminant is a nonzero element of k[V']. The diagram

W —— Spm(A[T]/(F)) =V

shows that #¢~1(P) > deg(p) for P a point such that disc( f)(P) # 0. o

When k(W) is separable over k(V), then ¢ is said to be separable.

REMARK 10.15. Letg: W — V beasinthe theorem, andlet V; = {P € V | #¢~1(P) <
i}. Letd = deg ¢. Part (b) of the theorem states that V;_; is closed, and is a proper subset
when ¢ is separable. I don’t know under what hypotheses all the sets V; will closed (and V;
will be a proper subset of V;_1). The obvious induction argument fails because V;_; may
not be normal.

Flat maps

A regular map ¢: V' — W is flat if for all P € V, the homomorphism Oy,py — Op
defined by ¢ is flat. If ¢ is flat, then for every pair U and U’ of open affines of V and
W such that o(U) C U’ the map I'(U’,Ow) — I'(U,Oy) is flat; conversely, if this
condition holds for sufficiently many pairs that the U’s cover V and the U’’s cover W, then
@ is flat.
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PROPOSITION 10.16. (a) An open immersion is flat.
(b) The composite of two flat maps is flat.
(c) Any base extension of a flat map is flat.

PROOF. To be added. O

THEOREM 10.17. A finite map ¢:V — W is flat if and only if

Z dimg Og/mpOg
O—P

is independent of P € W.
PROOF. To be added. o

THEOREM 10.18. LetV and W be irreducible varieties. If : V — W is flat, then
dime™1(Q) = dim V — dim W (25)

forall Q € W. Conversely, if V and W are nonsingular and holds for all Q € W, then
@ is flat.

PROOF. To be added. o

Lines on surfaces

As an application of some of the above results, we consider the problem of describing the
set of lines on a surface of degree m in 3. To avoid possible problems, we assume for the
rest of this chapter that k has characteristic zero.

We first need a way of describing lines in P3. Recall that we can associate with each
projective variety ¥V C P” an affine cone over V in k”T1. This allows us to think of points
in P3 as being one-dimensional subspaces in k*, and lines in P3 as being two-dimensional
subspaces in k*. To such a subspace W C k*, we can attach a one-dimensional subspace
/\2 W in /\2 k* ~ k®, that is, to each line L in P3, we can attach point p(L) in P°. Not
every point in P> should be of the form p(L)—heuristically, the lines in P3 should form a
four-dimensional set. (Fix two planes in P3; giving a line in P corresponds to choosing a
point on each of the planes.) We shall show that there is natural one-to-one correspondence
between the set of lines in P? and the set of points on a certain hyperspace IT C P°. Rather
than using exterior algebras, I shall usually give the old-fashioned proofs.

Let LbealineinP3 andletx = (xo : x1 : X2 : x3)andy = (yo : y1 : y2 : y3) be
distinct points on L. Then

def

X;i Xj
p(L) = (po1: po2:pos:piz:piz:pa3)€P’, py =" 7/

Yi Vj

’

depends only on L. The p;; are called the Pliicker coordinates of L, after Pliicker (1801-
1868).

In terms of exterior algebras, write eg, €1, €2, e3 for the canonical basis for k*, so that
x, regarded as a point of k* is " xje;, and y = Y y;e;; then /\2k4 is a 6-dimensional
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vector space with basis ejre;, 0 <i < j <3,andxry = ) p;je;~e; with p;; given by
the above formula.
We define p;; foralli, j,0 < i, j < 3 by the same formula — thus p;; = —p;;.

LEMMA 10.19. The line L can be recovered from p(L) as follows:

L={(C;ajpoj: > jajpij:2;a;py > a;p3) | (ao:ar:az:as) e P}

PROOF. Let L be the cone over L in k*—it is a two-dimensional subspace of k*—and let
x = (x0,X1,X2,x3) and y = (Yo, V1, 2, ¥3) be two linearly independent vectors in L.
Then

L={f(y)x— f&)y| f:k* — k linear}.
Write f = ) a;X;; then

fy)x— f&®y = Q_a;poj.)_a;pij,)_a;pzj,.) a;psj). o

LEMMA 10.20. The point p(L) lies on the quadric IT C P defined by the equation
X01X23 — X02X13 + Xo3X12 = 0.

PROOF. This can be verified by direct calculation, or by using that

Xo X1 X2 X3

0=|Y0 Y1 V2 )3
Xo X1 X2 X3

Yo Y1 Y2 )3

(expansion in terms of 2 X 2 minors). O

= 2(po1p23 — Po2p13 + Po3P12)

LEMMA 10.21. Every point of I is of the form p(L) for a unique line L.

PROOF. Assume pg3 # 0; then the line through the points (0 : po1 : po2 : po3) and
(po3 : p13 : p23 : 0) has Pliicker coordinates

(—Po1P03 : —Po2Po3 : —P(2)3 : Po1P23 — P02P13 : —P03P13 : — P03 P23)
—DPo3P12
= (po1: Po2 : P03 : P12 : P13 : P23).

A similar construction works when one of the other coordinates is nonzero, and this way
we get inverse maps. O

Thus we have a canonical one-to-one correspondence

{lines in P?} <> {points on IT};

that is, we have identified the set of lines in P> with the points of an algebraic variety. We
may now use the methods of algebraic geometry to study the set. (This is a special case of
the Grassmannians discussed in §6.)

We next consider the set of homogeneous polynomials of degree m in 4 variables,

F(Xo, X1, X2, X3) = Z aioi1i2i3X(§0"'X;3'

io+i1+ix+iz=m
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LEMMA 10.22. The set of homogeneous polynomials of degree m in 4 variables is a vector
space of dimension (3}™)

PROOF. See the footnote g114] o

Letv = (3-rtlm) 1 = (m+1)(m:2)(m+3) B

1, and regard PV as the projective space
attached to the vector space of homogeneous polynomials of degree m in 4 variables (pI18].
Then we have a surjective map

P” — {surfaces of degree m in P>},
(oot iginigis 1--) > VF).,  F =" aiiininXg X' X2 X3

The map is not quite injective—for example, X2Y and XY ? define the same surface—
but nevertheless, we can (somewhat loosely) think of the points of PV as being (possibly
degenerate) surfaces of degree m in P3.

Let I},, C IT x P C P> x P” be the set of pairs (L, F) consisting of a line L in P3
lying on the surface F(Xp, X1, X2, X3) = 0.

THEOREM 10.23. The set Iy, is a closed irreducible subset of IT x PV; it is therefore a
projective variety. The dimension of I, is w + 3.

EXAMPLE 10.24. For m = 1, I}, is the set of pairs consisting of a plane in P> and a line
on the plane. The theorem says that the dimension of I' is 5. Since there are co> planes in
P3, and each has co? lines on it, this seems to be correct.

PROOF. We first show that I, is closed. Let
p(L) =(po1:po2:...) F= Zaz‘oiliziax(i)o“'x?-
From (10.19) we see that L lies on the surface F(Xo, X1, X2, X3) = 0 if and only if

F(Cbjpoj 2 bjpijt 3bjpajt 3objpaj) = 0,all (bo,....bs) € k*.

Expand this out as a polynomial in the b;’s with coefficients polynomials in the a;y;,i,is
and p;;’s. Then F(...) = O for all b € k% if and only if the coefficients of the polynomial
are all zero. But each coefficient is of the form

P(...,Qigiyinizs---3 P01, P02 "5 - )

with P homogeneous separately in the a’s and p’s, and so the set is closed in IT x PV (cf.
the discussion in[7.9).
It remains to compute the dimension of I3,. We shall apply Proposition to the
projection map
(L,F) I C ITxPY

bk

L II
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For L € I1, ¢~ (L) consists of the homogeneous polynomials of degree m such that
L C V(F) (taken up to nonzero scalars). After a change of coordinates, we can assume

that L is the line
Xo=0
X1 =0,

ie., L = {(0,0,%,%)}. Then L lies on F(Xop, X1, X2, X3) = 0 if and only if X or X
occurs in each nonzero monomial term in F, i.e.,

F e §0_1(L) < dajyi iri; = 0 whenever ip = 0 =ij.

Thus ¢! (L) is a linear subspace of P”; in particular, it is irreducible. We now compute its
dimension. Recall that F" has v + 1 coefficients altogether; the number withig = 0 =iy is
m + 1, and so ¢~ (L) has dimension

(m 4+ 1)(m + 2)(m + 3) B
6

We can now deduce from (I0.1T)) that I3, is irreducible and that

m(@m + 1)(m + 5) B
6

l—(m+1) = 1.

dim(,) = dim(IT) + dim(p~ (L)) = m(m + 16)(m +5) La

as claimed. o

Now consider the other projection By definition
v~ Y(F) = {L | L lies on V(F)}.

EXAMPLE 10.25. Letm = 1. Thenv = 3 and dim I'} = 5. The projection ¥: I'} — P3is
surjective (every plane contains at least one line), and (10.9)) tells us that dim ¢~ (F) > 2.
In fact of course, the lines on any plane form a 2-dimensional family, and so ¥ 1 (F) = 2
for all F.

THEOREM 10.26. When m > 3, the surfaces of degree m containing no line correspond
to an open subset of PV

PROOF. We have

m(m + 16)(m +5) +3_(m + 1)(m : 2)(m + 3) +

dim I, —dimP¥ = =4—(m+1).
Therefore, if m > 3, then dim I, < dimP", and so vy ([},) is a proper closed subvariety
of PY. This proves the claim. O

We now look at the case m = 2. Here dim I}, = 10, and v = 9, which suggests that
¥ should be surjective and that its fibres should all have dimension > 1. We shall see that
this is correct.

A quadric is said to be nondegenerate if it is defined by an irreducible polynomial of
degree 2. After a change of variables, any nondegenerate quadric will be defined by an
equation

XW =YZ.
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This is just the image of the Segre mapping (see[6.23))
(ao . al), (b() : bl) (g (a()bo . a0b1 . a1b0 . albl) . Pl X ]Pl —> ]P3.

There are two obvious families of lines on P! x P!, namely, the horizontal family and the
vertical family; each is parametrized by P!, and so is called a pencil of lines. They map to
two families of lines on the quadric:

X =17z toX =Y
toY =nWw and toZ = W.

Since a degenerate quadric is a surface or a union of two surfaces, we see that every quadric
surface contains a line, that is, that ¥: [ — P2 is surjective. Thus tells us that all
the fibres have dimension > 1, and the set where the dimension is > 1 is a proper closed
subset. In fact the dimension of the fibre is > 1 exactly on the set of reducible F’s, which
we know to be closed (this was a homework problem in the original course).

It follows from the above discussion that if F is nondegenerate, then ¥~ (F) is iso-
morphic to the disjoint union of two lines, ¥ ~!(F) ~ P! U P!. Classically, one defines a
regulus to be a nondegenerate quadric surface together with a choice of a pencil of lines.
One can show that the set of reguli is, in a natural way, an algebraic variety R, and that,
over the set of nondegenerate quadrics, Y factors into the composite of two regular maps:

I —y~1(S) = npairs, (F, L) with L on F;
{
R = set of reguli;
l
P’-S = set of nondegenerate quadrics.

The fibres of the top map are connected, and of dimension 1 (they are all isomorphic to
P1), and the second map is finite and two-to-one. Factorizations of this type occur quite
generally (see the Stein factorization theorem below).

We now look at the case m = 3. Here dim I3 = 19; v = 19 : we have a map

VI3 — P19,

THEOREM 10.27. The set of cubic surfaces containing exactly 27 lines corresponds to an
open subset of P1°; the remaining surfaces either contain an infinite number of lines or a
nonzero finite number < 27.

EXAMPLE 10.28. (a) Consider the Fermat surface
Xg+X; +X5+X3=0.

Let ¢ be a primitive cube root of one. There are the following lines on the surface, 0 <
i, j<2

Xo+¢'X1=0 Xo+X2=0 Xo+¢X3=0
X+ X3=0 X1+ X3=0 X1+ X2=0

There are three sets, each with nine lines, for a total of 27 lines.
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(b) Consider the surface
X1X2X3 = X3,

In this case, there are exactly three lines. To see this, look first in the affine space where
Xo # 0—here we can take the equation to be X1 X2 X3 = 1. Aline in A3 can be written in
parametric form X; = a;t + b;, but a direct inspection shows that no such line lies on the
surface. Now look where Xo = 0, that is, in the plane at infinity. The intersection of the
surface with this plane is given by X; X» X3 = 0 (homogeneous coordinates), which is the
union of three lines, namely,

X1:0;X2:O;X3:0.

Therefore, the surface contains exactly three lines.
(c) Consider the surface
X;+ X3 =0.

Here there is a pencil of lines:
toX1 = 11 Xo
toX> = —11 Xp.

(In the affine space where X # 0, the equation is X3 + Y3 = 0, which contains the line
X=tY =—tallt)

We now discuss the proof of Theorem [10.27). If v: I’ — P! were not surjective,
then v (I'3) would be a proper closed subvariety of P1°, and the nonempty fibres would all
have dimension > 1 (by[10.9), which contradicts two of the above examples. Therefore the
map is surjective!, and there is an open subset U of P1° where the fibres have dimension 0;
outside U, the fibres have dimension > 0.

Given that every cubic surface has at least one line, it is not hard to show that there is
an open subset U’ where the cubics have exactly 27 lines (see Reid, 1988, pp106-110); in
fact, U’ can be taken to be the set of nonsingular cubics. According to , the restriction
of ¥ to Y~ 1(U) is finite, and so we can apply to see that all cubics in U — U’ have
fewer than 27 lines.

REMARK 10.29. The twenty-seven lines on a cubic surface were discovered in 1849 by
Salmon and Cayley, and have been much studied—see A. Henderson, The Twenty-Seven
Lines Upon the Cubic Surface, Cambridge University Press, 1911. For example, it is known
that the group of permutations of the set of 27 lines preserving intersections (that is, such
that LN L # @ <= o(L)No(L") # @) is isomorphic to the Weyl group of the root
system of a simple Lie algebra of type E¢, and hence has 25920 elements.

It is known that there is a set of 6 skew lines on a nonsingular cubic surface V. Let L
and L’ be two skew lines. Then “in general” a line joining a point on L to a point on L’ will
meet the surface in exactly one further point. In this way one obtains an invertible regular
map from an open subset of P! x P! to an open subset of V, and hence V is birationally
equivalent to P2.

! According to Miles Reid (1988, p126) every adult algebraic geometer knows the proof that every cubic
contains a line.
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Stein factorization

The following important theorem shows that the fibres of a proper map are disconnected
only because the fibres of finite maps are disconnected.

THEOREM 10.30. Let ¢: W — V be a proper morphism of varieties. It is possible to
factor ¢ into W A w E v owith @1 proper with connected fibres and ¢, finite.

PROOF. This is usually proved at the same time as Zariski’s main theorem (if W and V are
irreducible, and V is affine, then W’ is the affine variety with k[W’] the integral closure of
k[V]ink(W)). o

Exercises

10-1. Let G be a connected algebraic group, and consider an action of G on a variety V,

i.e., aregular map G x V — V such that (gg’)v = g(g’v) forall g,¢g’ € Gandv € V.
Show that each orbit O = Gv of G is nonsingular and open in its closure O, and that
O . O is a union of orbits of strictly lower dimension. Deduce that there is at least one
closed orbit.

10-2. Let G = GL, = V, and let G act on V' by conjugation. According to the theory of
Jordan canonical forms, the orbits are of three types:

(a) Characteristic polynomial X2 + aX + b; distinct roots.

(b) Characteristic polynomial X2 4+ aX + b; minimal polynomial the same; repeated
roots.

(c) Characteristic polynomial X2 + aX + b = (X — «)?; minimal polynomial X — «.

For each type, find the dimension of the orbit, the equations defining it (as a subvariety of
V), the closure of the orbit, and which other orbits are contained in the closure.

(You may assume, if you wish, that the characteristic is zero. Also, you may assume the
following (fairly difficult) result: for any closed subgroup H of an algebraic group G, G/H
has a natural structure of an algebraic variety with the following properties: G — G/H is
regular, and a map G/H — V is regular if the composite G — G/H — V is regular;
dim G/H = dim G —dim H.)

[The enthusiasts may wish to carry out the analysis for GL;,.]

10-3. Find 3d? lines on the Fermat projective surface

Xg + X{i + Xg + Xgi =0, d=>3, (p,d)=1, p thecharacteristic.

10-4. (a) Let o: W — V be a quasi-finite dominant regular map of irreducible varieties.
Show that there are open subsets U’ and U of W and V such that ¢(U’) C U and ¢: U’ —
U is finite.

(b) Let G be an algebraic group acting transitively on irreducible varieties W and V,
and let : W — V be G-equivariant regular map satisfying the hypotheses in (a). Then ¢
is finite, and hence proper.



Chapter 11

Algebraic spaces; geometry over an
arbitrary field

In this chapter, we explain how to extend the theory of the preceding chapters to a nonalge-
braically closed base field. One major difference is that we need to consider ringed spaces
in which the sheaf of rings is no longer a sheaf of functions on the base space. Once we
allow that degree of extra generality, it is natural to allow the rings to have nilpotents. In
this way we obtain the notion of an algebraic space, which even over an algebraically closed
field is more general than that of an algebraic variety.

Throughout this chapter, k is a field and k2! is an algebraic closure of k.

Preliminaries

Sheaves

A presheaf F on a topological space V is a map assigning to each open subset U of V' a
set F(U) and to each inclusion U’ C U a “restriction” map

aralU:FU)— FU):;
when U = U’ the restriction map is required to be the identity map, and if
U'cu’'cu,
then the composite of the restriction maps
FU)— FU"Y - FWU"

is required to be the restriction map F(U) — F(U"”). In other words, a presheaf is a
contravariant functor to the category of sets from the category whose objects are the open
subsets of V' and whose morphisms are the inclusions. A homomorphism of presheaves
a: F — F'is a family of maps

a(U): F(U) - F(U)

commuting with the restriction maps, i.e., a morphism of functors.
A presheaf F is a sheaf if for every open covering {U;} of an open subset U of V
and family of elements a; € F(U;) agreeing on overlaps (that is, such that a; |U; N U; =

168
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a;j|U;i NU; forall i, j), there is a unique element a € F(U) such that a; = a|U; for all i.
A homomorphism of sheaves on V' is a homomorphism of presheaves.

If the sets F(U) are abelian groups and the restriction maps are homomorphisms, then
the sheaf is a sheaf of abelian groups. Similarly one defines a sheaf of rings, a sheaf of
k-algebras, and a sheaf of modules over a sheaf of rings.

For v € V, the stalk of a sheaf F (or presheaf) at v is

Fy = h_n)1 F(U) (limit over open neighbourhoods of v).

In other words, it is the set of equivalence classes of pairs (U, s) with U an open neighbour-
hood of v and s € F(U); two pairs (U, s) and (U’, s’) are equivalent if s|U"” = s|U" for
some open neighbourhood U” of v contained in U N U”.

A ringed space is a pair (V, O) consisting of topological space V together with a sheaf
of rings. If the stalk O, of O at v is a local ring for all v € V, then (V, O) is called a locally
ringed space.

A morphism (V, 0) — (V', O’) of ringed spaces is a pair (¢, {) with ¢ a continuous
map V — V' and ¢ a family of maps

v(U): O (U - O~ ' (U"), U’ openin V',

commuting with the restriction maps. Such a pair defines homomorphism of rings v,,: (’)(’p )
Oy forall v € V. A morphism of locally ringed spaces is a morphism of ringed space such
that v, is a local homomorphism for all v.

In the remainder of this chapter, a ringed space will be a topological space V together
with a sheaf of k-algebras, and morphisms of ringed spaces will be required to preserve
the k-algebra structures.

Extending scalars (extending the base field)
Nilpotents

Recall that a ring A is reduced if it has no nilpotents. The ring A may be reduced without
A ®p k?! being reduced. Consider for example the algebra A = k[X,Y]/(X? + Y? + a)
where p = char(k) and a is not a p*"-power in k. Then A is reduced (even an integral
domain) because X? + Y ? + a is irreducible in k[ X, Y], but

AQp kM ~ kM[X,Y]/(XP +Y? 4 q)
=KX Y]/(X +Y +a)P), o =aq,

which is not reduced because x + y +a # Obut (x + y + «)? = 0.
In this subsection, we show that problems of this kind arise only because of insepara-
bility. In particular, they don’t occur if k is perfect.
Now assume k has characteristic p # 0, and let £2 be some (large) field containing k2.
Let
1 al /]
kr ={oa e k™ |a?f €k}.

It is a subfield of k%, and k7 = k if and only if k is perfect.

DEFINITION 11.1. Subfields K, K’ of §2 containing k are said to be linearly disjoint over
k if the map K ®j K’ — £2 is injective.
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Equivalent conditions:

o ifey,...,em € K are linearly independent over k and ef,... e, , € K’ are lin-
early independent over k, then the elements ele’l, ele’z, el emer/n, of §2 are linearly
independent over k;

o ifeq,...,e,m € K are linearly independent over k, then they are also linearly inde-

pendent over K.
(*) The following statements are easy to prove.

(a) Every purely transcendental extension of & is linearly disjoint from every algebraic
extension of k.

(b) Every separable algebraic extension of k is linearly disjoint from every purely insep-
arable algebraic extension of k.

(c) Let K D kand L D E D k be subfields of £2. Then K and L are linearly disjoint
over k if and only if K and E are linearly disjoint over k and K E and L are linearly
disjoint over k.

LEMMA 11.2. LetK = k(x1,...,Xg4+1) C £2 withxy, ..., x4 algebraically independent

over F,andlet f € k[Xy,..., X441] be anirreducible polynomial such that f(x1,...,Xg+1) =
1
0. Ifk is linearly disjoint from k7 , then f ¢ k[X?,..., X5+1].
PROOF. Suppose otherwise, say, f = g(Xp, e, X5+1). Let My, ..., M, be the mono-
mialsin X1, ..., Xz41 thatactually occurin g(X71, ..., Xg4+1), andletm; = M;(x1,...,X441)-
Then my, ..., m, are linearly independent over k (because each has degree less than that of
f). However, mf, ....m?F are linearly dependent over k, because g(xf’, ... ,x5+1) = 0.
But ) .
1 1 1
Zaimf =0 (g €k) = Zai"mi =0 (a/ €kvr)

and we have a contradiction. O

A separating transcendence basis for K D k is a transcendence basis {x1,...,xg}
such that K is separable over k(x1,...,xg4). The next proposition is improves Theorem
8.21 of FT.

PROPOSITION 11.3. Let K be a finitely generated field extension k, and let §2 be an alge-
braically closed field containing K. The following statements are equivalent:

(a) K/k admits a separating transcendence basis;
(b) for any purely inseparable extension L of k in K, the fields K and L are linearly
disjoint over k ;

(c) the fields K and k7 are linearly disjoint over k.

PROOF. (a)=-(b). This follows easily from (*).
(b)=(c). Trivial.
(¢)=(a). Let K = k(x1,...,Xxn), and let d be the transcendence degree of K/k. After

renumbering, we may suppose that x1, ..., xg are algebraically independent (FT 8.12). We
proceed by induction on n. If n = d there is nothing to prove, and so we may assume
that n > d + 1. Then f(xi1,...,x4541) = 0 for some nonzero irreducible polynomial

f(X1,..., Xg4+1) with coefficients in k. Not all df/dX; are zero, for otherwise f would
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be a polynomial in X f yers X 5 1> Which contradicts the lemma. After renumbering again,
we may suppose that df/0X 41 # 0, and so {x1,...,Xxg} is a separating transcendence
basis for k(x1,...,xg4+1) over k, which proves the proposition when n = d + 1. In the
general case, k(X1, ..., X441, X4+2) is algebraic over k(x1, ..., Xxg) and x4 is separable
over k(x1,...,Xxg), and so, by the primitive element theorem (FT 5.1) there is an element y
such that k(x1,...,xg42) = k(x1,...,Xx4,y). Thus K is generated by the n — 1 elements
X1,...Xq,Y,Xd+3,---»Xn, and we apply induction. O

A finitely generated field extension K D k is said to be regular if it satisfies the equiv-
alent conditions of the proposition.

PROPOSITION 11.4. Let A be a reduced finitely generated k -algebra. The following state-
ments are equivalent:

(a) k% ®p A is reduced;
(b) k¥ ®p A is reduced;
(¢) K ® A isreduced for all fields K D k.

1
When A is an integral domain, they are also equivalent to A and k » being linearly disjoint
overk.

PROOF. The implications c=>b=—>a are obvious, and so we only have to prove a =>c.
After localizing A at a minimal prime, we may suppose that it is a field. Let eq,..., e,
1
be elements of A linearly independent over k. If they become linearly dependent over k 7,
1

then ef, R e,f are linearly dependent over k, say, Y aielp =0,a; € k. Now )_ al.; ® e;

is a nonzero element of k% Qr A, but
1 p
(Zai”@)ei) =Ya®e’ =Y 1Qaiel =18 Y ajel =0.

This shows that A and k% are linearly disjoint over k, and so A has a separating transcen-
dence basis over k. From this it follows that K ®j A is reduced for all fields K D k. 0

Idempotents

Even when A is an integral domain and 4 ®j k? is reduced, the latter need not be an
integral domain. Suppose, for example, that A is a finite separable field extension of k.
Then A ~ k[X]/(f(X)) for some irreducible separable polynomial f(X), and so

A® k™ ~ kMX1/(f(X)) =k /(TT(X —ai) = [T,/ (X —a)

(by the Chinese remainder theorem). This shows that if A contains a finite separable field
extension of k, then 4 ® k?! can’t be an integral domain. The next proposition provides a
converse.

PROPOSITION 11.5. Let A be a finitely generated k -algebra, and assume that A is an inte-
gral domain, and that A ®j k? is reduced. Then A ®j k! is an integral domain if and only
if k is algebraically closed in A (i.e., ifa € A is algebraic over k, then a € k).
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LEMMA: Let k be algebraically closed in an extension field K, and let a be an element
of K?! that is algebraic over k. Then K and k[a] are linearly disjoint over k, and [K[a] :
K] = [k[a] : k].

PROOF: Let f(X) be the minimum polynomial of a over k. Then f(X) is irreducible
over K, because the coefficients of any factor of f(X) in K[X] are algebraic over k, and
hence lie in k. It follows that the map

K ®p kla] — K]la]
is an isomorphism, because both rings are isomorphic to K[X]/( f(X)).

PROOF (OF THE PROPOSITION) Let K be the field of fractions of A — it suffices to show
that K is linearly disjoint from L where L is any finite algebraic extension of k in K?
(because then K ®; L ~ KL, which is an integral domain). If L is separable over k, then
it can be generated by a single element, and so this follows from the lemma. In the general
case, we let E be the largest subfield of L separable over k. From (*)(c), we see that it
suffices to show that KE and L are linearly disjoint over E. From (11.4)), we see that K
and k1P are linearly disjoint over k, and so K is a regular extension of k (see [11.3). It
follows easily that K E is a regular extension of £, and K E is linearly disjoint from L by

()(b). o

After these preliminaries, it is possible rewrite all of the preceding sections with k not
necessarily algebraically closed. I indicate briefly how this is done.

Affine algebraic spaces

For a finitely generated k-algebra A, we define spm(A) to be the set of maximal ideals in
A endowed with the topology having as basis the sets D(f), D(f) = {m | f ¢ m}. There
is a unique sheaf of k-algebras O on spm(A) such that I'(D(f),0)) = Ay forall f € A
(recall that A ¢ is the ring obtained from A by inverting f), and we denote the resulting
ringed space by Spm(A4). The stalk at m € V' is li_H)lf Ap >~ An.

Let m be a maximal ideal of A. Then k(m) =4t A/m is field that is finitely generated
as a k-algebra, and is therefore of finite degree over k (Zariski’s lemma, [2.7).

The sections of O are no longer functions on V' = spm A. Form € spm(A) and f € A
we set f(m) equal to the image of f in k(m). It does make sense to speak of the zero set
of finV,and D(f) = {m| f(m) # 0}. For f, g € A,

f(m) =g(m)forallme A < f — g is nilpotent.

When £k is algebraically closed and A is an affine k-algebra, k(m) ~ k and we recover the
definition of Spm 4 in
An affine algebraic space' over k is a ringed space (V, Oy ) such that
o I'(V,Opy) is a finitely generated k-algebra,

o foreach P € V, I(P) =4t {f € '(V,Oy) | f(P) = 0} is a maximal ideal in
r'v,Oy), and

'Not to be confused with the algebraic spaces of, for example, of J-P. Serre, Espaces Fibrés Algébriques,
1958, which are simply algebraic varieties in the sense of these notes, or with the algebraic spaces of M. Artin,
Algebraic Spaces, 1969, which generalize (!) schemes.
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¢ themap P+ I(P):V — Spm(I'(V, Oy)) is an isomorphism of ringed spaces.

For an affine algebraic space, we sometimes denote I"(V, Oy) by k[V]. A morphism of
algebraic spaces over k is a morphism of ringed spaces — it is automatically a morphism
of locally ringed spaces. An affine algebraic space (V,Oy) is reduced if I"'(V,Oy) is
reduced.

Let o: A — B be a homomorphism of finitely generated k-algebras. For any maximal
ideal m of B, there is an injection of k-algebras A/a~!(m) < B/m. As B/m is a field of
finite degree over k, this shows that @ =1 (m) is a maximal ideal of A. Therefore « defines
a map spm B — spm A, which one shows easily defines a morphism of affine algebraic
k-spaces

Spm B — Spm A,

and this gives a bijection
Homy 4 (A, B) ~ Homg (Spm B, Spm A4).

Therefore A + Spm(A) is an equivalence of from the category of finitely generated

k-algebras to that of affine algebraic spaces over k; its quasi-inverse is V' +— k[V] £

I'(V,Oy). Under this correspondence, reduced algebraic spaces correspond to reduced
algebras.
Let V be an affine algebraic space over k. For an ideal a in k[V],

spm(A/a) ~ V(a) 2 {P eV | f(P)=0forall f € al.
We call V(a) endowed with the ring structure provided by this isomorphism a closed al-
gebraic subspace of V. Thus, there is a one-to-one correspondence between the closed
algebraic subspaces of V' and the ideals in k[V]. Note that if rad(a) = rad(b), then V(a) =
V(b) as topological spaces (but not as algebraic spaces).
Let ¢: Spm(B) — Spm(A) be the map defined by a homomorphism a: A — B.

¢ The image of ¢ is dense if and only if the kernel of « is nilpotent.
¢ The map ¢ defines an isomorphism of Spm(B) with a closed subvariety of Spm(A)
if and only if « is surjective.

Affine algebraic varieties.

An affine k-algebra is a finitely generated k-algebra A such that A ® k?! is reduced. Since
A C A® k¥, Aitself is then reduced. Propositionhas the following consequences:
if A is an affine k-algebra, then A ®; K is reduced for all fields K containing k; when k is
perfect, every reduced finitely generated k-algebra is affine.

Let A be a finitely generated k-algebra. The choice of a set {xy, ..., x,} of generators
for A, determines isomorphisms

A= k[x1,....xn] = k[ X1, ..., Xul/(f1soes fim)s

and
AQp k™ — k¥ [X1, ... Xu1/(fi. e fin)-

Thus A is an affine algebra if the elements fi,..., fin of k[X1, ..., X;] generate a radical
ideal when regarded as elements of k*[X1, ..., X,;]. From the above remarks, we see that
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this condition implies that they generate a radical ideal in k[X1, ..., X;], and the converse
implication holds when k is perfect.

An affine algebraic space (V, Oy ) such that I'(V, Oy ) is an affine k-algebra is called
an affine algebraic variety over k. Thus, a ringed space (V, Oy ) is an affine algebraic
variety if I"(V, Oy ) is an affine k-algebra, /(P) is a maximal ideal in I"(V, Oy) for each
PeV,and P +— I(P):V — spm(I'(V,Oy)) is an isomorphism of ringed spaces.

Let

A = k[X1, ..., Xm]/a,
B = k[Y1, ..., Yn]/b.

A homomorphism A — B is determined by a family of polynomials, P; (Y1, ..., Y,), i =
1, ..., m; the homomorphism sends x; to P;(y1, ..., ¥»); in order to define a homomorphism,
the P; must be such that

Fea= F(Py,..., Py) €b;

two families Py, ..., Py, and Q1q, ..., O, determine the same map if and only if P; = Q;
mod b foralli.

Let A be a finitely generated k-algebra, and let V' = Spm A. For any field K D k,
K ®j A is afinitely generated K -algebra, and hence we get a variety Vg =4¢ Spm(K ®j A)
over K. We say that Vg has been obtained from V by extension of scalars or exten-
sion of the base field. Note that if A = k[Xq,..., Xu]/(f1, .-, fm) then A @ K =
K[X1,..., Xn]/(f1, ..., fm). The map V +— Vg is a functor from affine varieties over k
to affine varieties over K.

Let Vo = Spm(Ap) be an affine variety over k, and let W = V(b) be a closed subvari-

ety of VV £ Vo k1. Then W arises by extension of scalars from a closed subvariety Wy of
Vo if and only if the ideal b of Ag ® k¥ is generated by elements Ag. Except when k is
perfect, this is stronger than saying W is the zero set of a family of elements of A.

The definition of the affine space A(E) attached to a vector space E works over any
field.

Algebraic spaces; algebraic varieties.

An algebraic space over k is a ringed space (V, O) for which there exists a finite covering
(U;) of V by open subsets such that (U;, O|U;) is an affine algebraic space over k for all
i. A morphism of algebraic spaces (also called a regular map) over k is a morphism
of locally ringed spaces of k-algebras. An algebraic space is separated if for all pairs of
morphisms of k-spaces o, 8: Z — V, the subset of Z on which « and 8 agree is closed.

Similarly, an algebraic prevariety over k is a ringed space (V, O) for which there exists
a finite covering (U;) of V by open subsets such that (U;, O|U;) is an affine algebraic
variety over k for all i. A separated prevariety is called a variety.

With any algebraic space V over k we can associate a reduced algebraic space Vieq such
that

¢ Viea = V as a topological space,
o forallopen affinesU C V, I"'(U, Oy,

For example, if V = Spmk[X1,..., X,]/a, then Vieq = Spmk[X1,..., X,]/rad(a). The
identity map Vieq — V is a regular map. Any closed subset of V' can be given a unique
structure of a reduced algebraic space.

.4) is the quotient of I" (U, Oy ) by its nilradical.
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Products.

If A and B are finitely generated k-algebras, then 4 ®;, B is a finitely generated k-algebra,
and Spm(A ®j B) is the product of Spm(A4) and Spm(B) in the category of algebraic
k-spaces, i.e., it has the correct universal property. This definition of product extends in a
natural way to all algebraic spaces.

The tensor product of two reduced k-algebras may fail to be reduced — consider for
example,

A=k[X.Y]/(X? +Y? +a), B=k[Z])/(ZP —a), a¢kP.

However, if A and B are affine k-algebras, then A ®; B is again an affine k-algebra. To see
this, note that (by definition), 4 ®x k* and B ®j k! are affine k-algebras, and therefore
so also is their tensor product over k2! (4.15)); but

(A Qp k) Qpal (k¥ Rk B) ~ (A Rk k™) Qpar k) @1 B ~ (A @1 B) ®y k.

Thus, if V and W are algebraic (pre)varieties over k, then so also is their product.
Just as in (4.24] [4.25), the diagonal A is locally closed in V' x V/, and it is closed if and
only if V' is separated.

Extension of scalars (extension of the base field).

Let V be an algebraic space over k, and let K be a field containing k. There is a natural
way of defining an algebraic space Vi over K, said to be obtained from V by extension of
scalars (or extension of the base field): if V is a union of open affines, V = | U;, then
Vk = |J Ui k and the U; g are patched together the same way as the U;. If K is algebraic
over k, there is a morphism (Vg , Oy, ) — (V, Oy) that is universal: for any algebraic K-
space W and morphism (W, Oyw) — (V, Oy ), there exists a unique regular map W — Vg
giving a commutative diagram,

E|

woFt-ve K
Vv k.

The dimension of an algebraic space or variety doesn’t change under extension of
scalars.

When V is an algebraic space (or variety) over k2! obtained from an algebraic space
(or variety) V over k by extension of scalars, we sometimes call Vy a model for V' over k.
More precisely, a model of V over k is an algebraic space (or variety) Vg over k together
with an isomorphism ¢: V' — V} gal.

Of course, V need not have a model over k — for example, an elliptic curve

E:Y?Z=X3*+aXZ*+b73
over k* will have a model over k C k®! if and only if its j -invariant j(E) £ %
lies in k. Moreover, when V' has a model over k, it will usually have a large number of
them, no two of which are isomorphic over k. Consider, for example, the quadric surface
in P3over Q¥,

V:X24+Y24+Z2+W?=0.
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The models over V' over Q are defined by equations
aX? +bY? +c¢Z?>+dW?=0,a,b,c,d € Q.

Classitying the models of V' over Q is equivalent to classifying quadratic forms over Q in
4 variables. This has been done, but it requires serious number theory. In particular, there
are infinitely many (see Chapter VIII of my notes on Class Field Theory).

Let V be an algebraic space over k. When k is perfect, V;¢q is an algebraic prevariety
over k, but not necessarily otherwise, i.e., (Vieq)xa1 need not be reduced. This shows that
when k is not perfect, passage to the associated reduced algebraic space does not commute
with extension of the base field: we may have

(Vred)K 7é (VK)red-

PROPOSITION 11.6. Let V' be an algebraic space over a field k. Then V is an algebraic

prevariety if and only if Vk 1 is reduced, in which case Vi is reduced for all fields K D k.

PROOF. Apply[11.4] O

Connectedness

A variety V over a field k is said to be geometrically connected if Vi is connected, in
which case, Vg, is connected for every field £2 containing k.

We first examine zero-dimensional varieties. Over C, a zero-dimensional variety is
nothing more than a finite set (finite disjoint union of copies A?). Over R, a connected
zero-dimensional variety V is either geometrically connected (e.g., A]%) or geometrically
nonconnected (e.g., V : X2 + 1; subvariety of A!), in which case V(C) is a conjugate pair
of complex points. Thus, one sees that to give a zero-dimensional variety over R is to give
a finite set with an action of Gal(C/R).

Similarly, a connected variety V' over R may be geometrically connected, or it may
decompose over C into a pair of conjugate varieties. Consider, for example, the following
subvarieties of A

L :Y + 1is a geometrically connected line over R;

L’ : Y2 41 is connected over R, but over C it decomposes as the pair of conjugate lines
Y = +4i.

Note that R is algebraically closed? in

R[L] = R[X,Y]/(Y + 1) = R[X]
but not in
R[L]=R[X,Y]/(Y? + 1) = (R[Y]/(Y? + 1)) [X] = C[X].

PROPOSITION 11.7. A connected variety V over a field k is geometrically connected if
and only if k is algebraically closed in k(V').

PROOF. This follows from the statement: let A be a finitely generated k-algebra such that
A is an integral domain and A ®j k? is reduced; then A ® k* is an integral domain if and
only if k is algebraically closed in A4 (11.5). o

2A field k is algebraically closed in a k-algebra A if every a € A algebraic over k lies in k.
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PROPOSITION 11.8. To give a zero-dimensional variety V over a field k is to give (equiv-
alently)

(a) a finite set E plus, for each e € E, a finite separable field extension Q(e) of Q, or
(b) a finite set S with a continuous® (left) action of ¥ ] Gal(k®eP/k).*

PROOF. Because each point of a variety is closed, the underlying topological space V' of
a zero-dimensional variety (V, Oy ) is finite and discrete. For U an open affine in V, A =
I'(U, Oy) is a finite affine k-algebra. In particular, it is reduced, and so the intersection of
its maximal ideals [ \m = 0. The Chinese remainder theorem shows that 4 ~ [[ A/m.
Each A /m is a finite field extension of k, and it is separable because otherwise (A /m)® k!
would not be reduced. The proves (a).

The set S in (b) is V(k®°P) with the natural action of X'. We can recover (V, Oy) from
S as follows: let V be the set X'\S of orbits endowed with the discrete topology, and, for
e =Xs e X\S,letk(e) = (k*°P)%s where Xy is the stabilizer of s in X; then, for U C V,
r(U.0y) = [Leyk(e). -

PROPOSITION 11.9. Given a variety V over k, there exists a map f:V — m from V
to a zero-dimensional variety m such that, for all e € =, the fibre V, is a geometrically
connected variety over k(e).

PROOF. Let 7 be the zero-dimensional variety whose underlying set is the set of connected
components of V over Q and such that, for eache = V; € m, k(e) is the algebraic closure of
k in Q(V;). Apply (11.7) to see that the obvious map f: V — m has the desired property.q

EXAMPLE 11.10. Let V be a connected variety over a k, and let k" be the algebraic closure
of k in k(V). The map f:V — Spmk realizes V as a geometrically connected variety
over k. Conversely, for a geometrically connected variety f:V — Spmk’ over a finite
extension of k, the composite of f with Spmk’ — Spm k realizes V' as a variety over k
(connected, but not geometrically connected if k' # k).

EXAMPLE 11.11. Let f:V — 7 be as in (11.9). When we regard 7 as a set with an action
of X, then its points are in natural one-to-one correspondence with the connected compo-
nents of Vgsep and its X'-orbits are in natural one-to-one correspondence with the connected
components of V. Lete € 7w andlet V' = fk_selp (e) — it is a connected component of Visep.
Let X, be the stabilizer of e; then V' arises from a geometrically connected variety over

k(e) & (ksep)Ze,

ASIDE 11.12. Proposition|11.9]is a special case of Stein factorization (10.30).

3This means that the action factors through the quotient of Gal(Q*/Q) by an open subgroup (all open
subgroups of Gal(Q? /Q) are of finite index, but not all subgroups of finite index are open).
4The cognoscente will recognize this as Grothendieck’s way of expressing Galois theory over Q.
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Fibred products

Fibred products exist in the category of algebraic spaces. For example, if R — A and
R — B are homomorphisms of finitely generated k-algebras, then A @ g B is a finitely
generated k-algebras and

Spm(A4) Xgpm(r) Spm(B) = Spm(A ®g B).

For algebraic prevarieties, the situation is less satisfactory. Consider a variety S and
two regular maps V — S and W — §. Then (V xg W).eq is the fibred product of V
and W over S in the category of reduced algebraic k-spaces. When k is perfect, this is a
variety, but not necessarily otherwise. Even when the fibred product exists in the category
of algebraic prevarieties, it is anomolous. The correct object is the fibred product in the
category of algebraic spaces which, as we have observed, may no longer be an algebraic
variety. This is one reason for introducing algebraic spaces.

Consider the fibred product:

Al «——— Al x,1 {a}

x|—>xpl l

Al {a}
In the category of algebraic varieties, A! x 1 {a} is a single point if @ is a pth power in k and

is empty otherwise; in the category of algebraic spaces, A! x 41 {a} = Spmk[T]/(T? —a),
which can be thought of as a p-fold point (point with multiplicity p).

The points on an algebraic space

Let V be an algebraic space over k. A point of V with coordinates in k (or a point of V
rational over k, or a k-point of V') is a morphism Spm k — V. For example, if V is affine,
say V' = Spm(A), then a point of V' with coordinates in k is a k-homomorphism A — k.
IfA=k[X1,...,Xn]l/(f1s ..., fn), then to give a k-homomorphism A — k is the same as
to give an n-tuple (a1, ..., a,) such that

filay,...,an) =0, i=1,..,m.
In other words, if V' is the affine algebraic space over k defined by the equations
fi(X1,...,Xn) =0, i=1,...,m

then a point of V' with coordinates in k is a solution to this system of equations in k. We
write V' (k) for the points of V' with coordinates in k.

We extend this notion to obtain the set of points V(R) of a variety V' with coordinates
in any k-algebra R. For example, when V' = Spm(A), we set

V(R) = Homy_4,(4, R).

Again, if
A=k[X1,... Xal/(f1, s fm)s

then
V(R) = {(ay,....,an) € R" | fi(ay,....,an) =0, =12, .. m}.
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What is the relation between the elements of V' and the elements of V(k)? Suppose V
is affine, say V' = Spm(A). Let v € V. Then v corresponds to a maximal ideal m, in A
(actually, it is a maximal ideal), and we write k(v) for the residue field O, /m,. Then k(v)
is a finite extension of k, and we call the degree of k(v) over k the degree of v. Let K be a
field algebraic over k. To give a point of V' with coordinates in K is to give a homomorphism
of k-algebras A — K. The kernel of such a homomorphism is a maximal ideal m, in 4,
and the homomorphisms A — k with kernel m, are in one-to-one correspondence with
the k-homomorphisms k(v) — K. In particular, we see that there is a natural one-to-one
correspondence between the points of V' with coordinates in k and the points v of V' with
k(v) = k, i.e., with the points v of V' of degree 1. This statement holds also for nonaffine
algebraic varieties.

Now assume k to be perfect. The k*-rational points of V' with image v € V are in
one-to-one correspondence with the k-homomorphisms k(v) — k¥ — therefore, there are
exactly deg(v) of them, and they form a single orbit under the action of Gal(k®!/k). The
natural map Via — V realizes V' (as a topological space) as the quotient of Via by the
action of Gal(k®'/k) — there is a one-to-one correspondence between the set of points of
V and the set of orbits for Gal(k¥/k) acting on V(k¥).

Local study

Let V= V(a) C A", and leta = (fi,..., fr). Letd = dim V. The singular locus Vs
of V is defined by the vanishing of the (n — d) x (n — d) minors of the matrix

0x1 dxo 0xy

2

8x1
Jac(fl,fz,...,fr)z .

iy .

0x1 0xy

We say that v is nonsingular if some (n — d) x (n — d) minor doesn’t vanish at v. We
say V is nonsingular if its singular locus is empty (i.e., Viing is the empty variety or,
equivalently, Ving (k) is empty) . Obviously V is nonsingular <=> Vja is nonsingular;
also the formation of Vg, commutes with extension of scalars. Therefore, if V' is a variety,
Viing is a proper closed subvariety of V' (Theorem [5.18).

THEOREM 11.13. Let V be an algebraic space over k.

(a) If P €V is nonsingular, then Op is regular.
(b) If all points of V' are nonsingular, then V' is a nonsingular algebraic variety.

PROOF. (a) Similar arguments to those in chapter [5] show that mp can be generated by
dim V elements, and dim V is the Krull dimension of O p.

(b) Tt suffices to show that V' is geometrically reduced, and so we may replace k with
its algebraic closure. From (a), each local ring O p is regular, but regular local rings are
integral domains (CA 16.3). 0

50ne shows that if R is regular, then the associated graded ring &b m! /mi*1 is a polynomial ring in dim R
symbols. Using this, one see that if xy = 0in R, then one of x or y lies in ("), m”, which is zero by the Krull

intersection theorem @
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THEOREM 11.14. The converse to (a) of the theorem fails. For example, let k be a field of
characteristic p # 0,2, and let a be a nonzero element of k that is not a p'"" power. Then
f(X.Y) =Y? + XP —a is irreducible, and remains irreducible over k. Therefore,

A =k[X.Y]/(f(X.Y)) = k[x,y]

is an affine k-algebra, and we let V' be the curve Spm A. One checks that V is normal, and
hence is regular by Atiyah and MacDonald 1969, 9.2. However,

af f
— =0, = =2Y,

0X Y
and so (a% ,0) € Viing (k®): the point P in V corresponding to the maximal ideal (y) of A
is singular even though O p is regular.

The relation between “nonsingular” and “regular” is examined in detail in: Zariski,
O., The Concept of a Simple Point of an Abstract Algebraic Variety, Transactions of the
American Mathematical Society, Vol. 62, No. 1. (Jul., 1947), pp. 1-52.

Separable points

Let V be an algebraic variety over k. Call a point P € V separable if k(P) is a separable
extension of k.

PROPOSITION 11.15. The separable points are dense in V' ; in particular, V (k) is dense in
V ifk is separably closed.

PROOF. It suffices to prove this for each irreducible component of V, and we may re-
place an irreducible component of V' by any variety birationally equivalent with it (4.32).
Therefore, it suffices to prove it for a hypersurface H in A9*+! defined by a polynomial
f(X1,...,Xg41) that is separable when regarded as a polynomial in X;4; with coeffi-

cients in k(X1,..., Xz) (.34, [11.3). Then aX"’de # 0 (as a polynomial in X1,..., Xy),

and on the nonempty open subset D(a)?df“) of A4, flay,...,ag, Xg+1) will be a sepa-

rable polynomial. The points of H lying over points of U are separable. O

Tangent cones

DEFINITION 11.16. The tangent cone at a point P on an algebraic space V is Spm(gr(Op)).

When V is a variety over an algebraically closed field, this agrees with the definition
in chapter[5] except that there we didn’t have the correct language to describe it — even in
that case, the tangent cone may be an algebraic space (not an algebraic variety).

Projective varieties.

Everything in this chapter holds, essentially unchanged, when k is allowed to be an arbitrary
field.

If Va1 is a projective variety, then so also is V. The idea of the proof is the following:
to say that V' is projective means that it has an ample divisor; but a divisor D on V' is ample
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if Dyar is ample on Via; by assumption, there is a divisor D on Via that is ample; any
multiple of the sum of the Galois conjugates of D will also be ample, but some such divisor
will arise from a divisor on V.

Complete varieties.

Everything in this chapter holds unchanged when k is allowed to be an arbitrary field.

Normal varieties; Finite maps.

As noted in (8.15), the Noether normalization theorem requires a different proof when the
field is finite. Also, as noted earlier in this chapter, one needs to be careful with the definition
of fibre. For example, one should define a regular map ¢: V' — W to be quasifinite if the
fibres of the map of sets V (k) — W (k) are finite.

Otherwise, k can be allowed to be arbitrary.

Dimension theory

The dimension of a variety V' over an arbitrary field k can be defined as in the case that k
is algebraically closed. The dimension of V' is unchanged by extension of the base field.
Most of the results of this chapter hold for arbitrary base fields.

Regular maps and their fibres

Again, the results of this chapter hold for arbitrary fields provided one is careful with the
notion of a fibre.

Algebraic groups

We now define an algebraic group to be an algebraic space G together with regular maps
mult: G x G, inverse:G — G, e:A’ - G

making G(R) into a group in the usual sense for all k-algebras R.

THEOREM 11.17. Let G be an algebraic group over k.

(a) If G is connected, then it is geometrically connected.

(b) If G is geometrically reduced (i.e., a variety), then it is nonsingular.

(¢) Ifk is perfect and G is reduced, then it is geometrically reduced.

(d) Ifk has characteristic zero, then G is geometrically reduced (hence nonsingular).

PROOF. (a) The existence of e shows that k is algebraically closed in k(G). Therefore (a)
follows from (11.7]).
(b) It suffices to show that Ga is nonsingular, but this we did in (5.20).

(c)Ask = k%, this follows from li
(d) See my notes, Algebraic Groups and Arithmetic Groups, Theorem 2.31. O
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Exercises

11-1. Show directly that, up to isomorphism, the curve X2 + Y2 = 1 over C has exactly
two models over R.



Chapter 12

Divisors and Intersection Theory

In this chapter, k is an arbitrary field.

Divisors

Recall that a normal ring is an integral domain that is integrally closed in its field of frac-
tions, and that a variety V' is normal if O, is a normal ring for all v € V. Equivalent
condition: for every open connected affine subset U of V, I'(U, Oy ) is a normal ring.

REMARK 12.1. Let V be a projective variety, say, defined by a homogeneous ring R.
When R is normal, V is said to be projectively normal. If V is projectively normal, then it
18 normal, but the converse statement is false.

Assume now that V' is normal and irreducible.

A prime divisor on V is an irreducible subvariety of V' of codimension 1. A divisor on
V is an element of the free abelian group Div(}V') generated by the prime divisors. Thus a
divisor D can be written uniquely as a finite (formal) sum

D = Znizi, n;i € Z, Z; aprime divisor on V.

The support |D| of D is the union of the Z; corresponding to nonzero n;’s. A divisor is
said to be effective (or positive) if n; > 0 for all i. We get a partial ordering on the divisors
by defining D > D’ to mean D — D’ > 0.

Because V is normal, there is associated with every prime divisor Z on V a discrete
valuation ring Oz. This can be defined, for example, by choosing an open affine subvariety
U of V such that U N Z # @; then U N Z is a maximal proper closed subset of U, and
so the ideal p corresponding to it is minimal among the nonzero ideals of R = I'(U, O);
s0 Ry is a normal ring with exactly one nonzero prime ideal p R — it is therefore a discrete
valuation ring (Atiyah and MacDonald 9.2), which is defined to be Oz. More intrinsically
we can define Oz to be the set of rational functions on V that are defined an open subset U
of VwithU N Z # 0.

Let ordz be the valuation of k(V)* — Z with valuation ring Oz. The divisor of a
nonzero element f of k(1) is defined to be

div(f) = ordz(f)- Z.

183
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The sum is over all the prime divisors of V, but in fact ordz(f) = 0 for all but finitely
many Z’s. In proving this, we can assume that V' is affine (because it is a finite union of
affines), say V' = Spm(R). Then k(V) is the field of fractions of R, and so we can write
f = g/h with g,h € R, and div(f) = div(g) — div(h). Therefore, we can assume
f € R. The zero set of f, V(f) either is empty or is a finite union of prime divisors,
V=% (see and ordz (/) = O unless Z is one of the Z;.
The map
f = div(f):k(V)* — Div(V)

is a homomorphism. A divisor of the form div( f) is said to be principal, and two divisors
are said to be linearly equivalent, denoted D ~ D/, if they differ by a principal divisor.

When V is nonsingular, the Picard group Pic(V) of V is defined to be the group of
divisors on V' modulo principal divisors. (Later, we shall define Pic(1') for an arbitrary va-
riety; when V is singular it will differ from the group of divisors modulo principal divisors,
even when V' is normal.)

EXAMPLE 12.2. Let C be a nonsingular affine curve corresponding to the affine k-algebra
R. Because C is nonsingular, R is a Dedekind domain. A prime divisor on C can be
identified with a nonzero prime divisor in R, a divisor on C with a fractional ideal, and
Pic(C) with the ideal class group of R.

Let U be an open subset of V', and let Z be a prime divisor of V. Then Z N U is either
empty or is a prime divisor of U. We define the restriction of adivisor D =) nzZ onV
to U to be

Dly= > nz-ZnU
ZNU 9

When V is nonsingular, every divisor D is locally principal, i.e., every point P has an
open neighbourhood U such that the restriction of D to U is principal. It suffices to prove
this for a prime divisor Z. If P is not in the support of D, we can take f = 1. The prime
divisors passing through P are in one-to-one correspondence with the prime ideals p of
height 1 in Op, i.e., the minimal nonzero prime ideals. Our assumption implies that Op is
a regular local ring. It is a (fairly hard) theorem in commutative algebra that a regular local
ring is a unique factorization domain. It is a (fairly easy) theorem that a noetherian integral
domain is a unique factorization domain if every prime ideal of height 1 is principal (Nagata
1962, 13.1). Thus p is principal in O, and this implies that it is principal in I"(U, Oy) for
some open affine set U containing P (see also|9.13).

If D|y = div(f), then we call f alocal equation for D on U.

Intersection theory.

Fix a nonsingular variety V' of dimension n over a field k, assumed to be perfect. Let
W1 and W, be irreducible closed subsets of V, and let Z be an irreducible component of
W1 N Wa,. Then intersection theory attaches a multiplicity to Z. We shall only do this in an
easy case.

Divisors.

Let V be a nonsingular variety of dimension 7, and let D, ..., D, be effective divisors on
V. We say that Dy, ..., D, intersect properly at P € |D{|N...N|D,|if P is an isolated
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point of the intersection. In this case, we define

(Dl '...'Dn)P = dimkop/(fl,...,fn)
where f; is a local equation for D; near P. The hypothesis on P implies that this is finite.

EXAMPLE 12.3. In all the examples, the ambient variety is a surface.
(a) Let Z; be the affine plane curve Y2 — X3, let Z, be the curve ¥ = X?2, and let
P = (0,0). Then

(Z1-Zo)p = dimk[X, Y]x.y)/(Y — X, Y? — X?) = dimk[X]/(X* - X°) = 3.

(b) If Z1 and Z, are prime divisors, then (Z; - Z)p = 1 if and only if f1, f> are local
uniformizing parameters at P. Equivalently, (Z; - Z»)p = 1 if and only if Z; and Z, are
transversal at P, thatis, Tz, (P) N Tz,(P) = {0}.

(c) Let D be the x-axis, and let D, be the cuspidal cubic Y2 — X3. For P = (0,0),
(D1-D3)p = 3.

(d) In general, (Z; - Z,) p is the “order of contact” of the curves Z; and Z5.

We say that Dy, ..., D, intersect properly if they do so at every point of intersection
of their supports; equivalently, if |[Dy| N ... N |Dy,| is a finite set. We then define the
intersection number

(D1-...-Dy) = > (D1-...-Dy)p.
Pe|Dq|N...0|Dy|

EXAMPLE 12.4. Let C be acurve. If D = ) n; P;, then the intersection number

(D) = Y nilk(Py) < K.

By definition, this is the degree of D.

Consider a regular map a: W — V of connected nonsingular varieties, and let D be a
divisor on V' whose support does not contain the image of W. There is then a unique divisor
a®D on W with the following property: if D has local equation f* on the open subset U
of V, then a* D has local equation f oo on ™ 'U. (Use to see that this does define a
divisor on W if the image of « is disjoint from |D|, then «*D = 0.)

EXAMPLE 12.5. Let C be a curve on a surface V, and let «: C’ — C be the normalization
of C. For any divisor D on V,

(C - D) =dega™D.

LEMMA 12.6 (ADDITIVITY). Let Dy,..., Dy, D be divisorson V. If (D1 -...- Dy)p
and (D1 -...- D)p are both defined, then so alsois (D1 -...- D, + D) p, and

(Dy-...Dy+D)p=(Dy1-...-Dy)p+(Dy1-...-D)p.

PROOF. One writes some exact sequences. See Shafarevich 1994, IV.1.2. O
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Note that in intersection theory, unlike every other branch of mathematics, we add first,
and then multiply.

Since every divisor is the difference of two effective divisors, Lemma|[I2.T]allows us to
extend the definition of (Dg -...- Dy) to all divisors intersecting properly (not just effective
divisors).

LEMMA 12.7 (INVARIANCE UNDER LINEAR EQUIVALENCE). Assume V is complete. If
D, ~ D, then

(Dy+...-Dp)=(Dy-...-Dy).
PROOF. By additivity, it suffices to show that (D1 -...-D,) = 0if D, is a principal divisor.
For n = 1, this is just the statement that a function has as many poles as zeros (counted
with multiplicities). Suppose n = 2. By additivity, we may assume that D is a curve, and
then the assertion follows from Example [I2.5|because

D principal = «* D principal.

The general case may be reduced to this last case (with some difficulty). See Shafare-

vich 1994, IV.1.3. o

LEMMA 12.8. For any n divisors D1, ..., D, on an n-dimensional variety, there exists n

divisors D', ..., D, intersect properly.

PROOF. See Shafarevich 1994, IV.1.4. o
We can use the last two lemmas to define (Dy -...- Dy) for any divisors on a complete

nonsingular variety V: choose D7, ..., D,’1 as in the lemma, and set

(Dy-...-Dy) = (D}-...-D.).

EXAMPLE 12.9. Let C be a smooth complete curve over C, and leta: C — C be aregular
map. Then the Lefschetz trace formula states that

(A-Ty) = Tr(e| H(C, Q)—Tr(a| H' (C, Q)+ Tr (x| H*(C, Q).

In particular, we see that (A - A) = 2 — 2g, which may be negative, even though A is an
effective divisor.

Leta: W — V be a finite map of irreducible varieties. Then k(W) is a finite extension
of k(V), and the degree of this extension is called the degree of «. If k(W) is separable
over k(V) and k is algebraically closed, then there is an open subset U of V such that
o~ !(u) consists exactly d = dega points for all u € U. In fact, @~ ! (u) always consists
of exactly deg o points if one counts multiplicities. Number theorists will recognize this as
the formula ) e; fi = d. Here the f; are 1 (if we take k to be algebraically closed), and e;
is the multiplicity of the i point lying over the given point.

A finite map o: W — V is flat if every point P of V' has an open neighbourhood U
such that I'(«~'U, Oy ) is a free I'(U, Oy )-module — it is then free of rank deg «.
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THEOREM 12.10. Leta: W — V be a finite map between nonsingular varieties. For any
divisors D1, ..., D, onV intersecting properly at a point P of V,

> (@*D;-...-a*Dy) =dega-(Dy-...-Dp)p.
a(Q)=P

PROOF. After replacing V by a sufficiently small open affine neighbourhood of P, we may
assume that o corresponds to a map of rings A — B and that B is free of rank d = deg«
as an A-module. Moreover, we may assume that D1, ..., D, are principal with equations
fi,..., fnon V, and that P is the only pointin |Dy| N ... N |Dy,|. Then mp is the only
ideal of A containing a = (f1,..., fn). Set S = A~ mp; then

S7'4/5 la=S"YA/a) = A/a
because A/a is already local. Hence

(D1-...-Dp)p = dim A/(f1, ..., fn).

Similarly,
(@*Dy-...-a*Dy)p =dimB/(fioa,..., fnoq).

But B is a free A-module of rank d, and

A/(fl,...,fn)®AB=B/(f100[,...,fn006).

Therefore, as A-modules, and hence as k-vector spaces,

B/(fiod,..., fuoa) ~ (A/(f1,..., )

which proves the formula. o

EXAMPLE 12.11. Assume k is algebraically closed of characteristic p # 0. Let a: Al —
Al be the Frobenius map ¢ + c?. It corresponds to the map k[X] — k[X], X — X7,
on rings. Let D be the divisor ¢. It has equation X — ¢ on A!, and «* D has the equation
X? —¢c=(X —y)?. Thus «*D = p(y), and so

deg(a@®D) = p = p - deg(D).

The general case.

Let V be a nonsingular connected variety. A cycle of codimension r on V is an element of
the free abelian group C” (V') generated by the prime cycles of codimension 7.

Let Z; and Z, be prime cycles on any nonsingular variety V', and let W be an irre-
ducible component of Z; N Z5. Then

dim Z; +dim Z, <dim V 4+ dim W,

and we say Z and Z; intersect properly at W if equality holds.

Define Oy, to be the set of rational functions on V' that are defined on some open
subset U of V with U N W # @ — it is a local ring. Assume that Z; and Z, intersect
properly at W, and let p; and p be the ideals in Oy, corresponding to Z1 and Z, (so
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pi = (f1, f2,.... fr) if the f; define Z; in some open subset of V' meeting W). The
example of divisors on a surface suggests that we should set

(Z1-Z2)w = dimg Oy,w/(p1,p2),

but examples show this is not a good definition. Note that

Oy,w/(1.92) = Oy,w/p1 ®oy w Ov,w/p2.
It turns out that we also need to consider the higher Tor terms. Set

dimV
2°(0/p1.0/p2) = Y (=1) dimy(Tor{ (O/p1.O/p2))

i=0

where O = Oy, w. Itis an integer > 0, and = 0 if Z; and Z» do not intersect properly at
W . When they do intersect properly, we define

(Z1-Zo)yw =mW, m = x°(O/p1,0/p2).

When Z; and Z, are divisors on a surface, the higher Tor’s vanish, and so this definition
agrees with the previous one.

Now assume that V' is projective. It is possible to define a notion of rational equivalence
for cycles of codimension r: let W be an irreducible subvariety of codimension r—1, and let
f € k(W)*; thendiv( f) is acycle of codimension r on V (since W may not be normal, the
definition of div( f') requires care), and we let C” (')’ be the subgroup of C” (V') generated
by such cycles as W ranges over all irreducible subvarieties of codimension r — 1 and f
ranges over all elements of k(W)*. Two cycles are said to be rationally equivalent if they
differ by an element of C"(V')’, and the quotient of C” (V) by C” (V') is called the Chow
group CH" (V). A discussion similar to that in the case of a surface leads to well-defined
pairings

CH"(V)x CHS(V) — CH"™5(V).

In general, we know very little about the Chow groups of varieties — for example, there
has been little success at finding algebraic cycles on varieties other than the obvious ones
(divisors, intersections of divisors,...). However, there are many deep conjectures concern-
ing them, due to Beilinson, Bloch, Murre, and others.

We can restate our definition of the degree of a variety in P" as follows: a closed
subvariety V' of P" of dimension d has degree (V' - H) for any linear subspace of P" of
codimension d. (All linear subspaces of P”of codimension r are rationally equivalent, and
so (V - H) is independent of the choice of H.)

REMARK 12.12. (Bezout’s theorem). A divisor D on P”" is linearly equivalent of §H,
where § is the degree of D and H is any hyperplane. Therefore

(Dl ..... Dn):518n

where §; is the degree of D ;. For example, if C; and C, are curves in P2 defined by irre-
ducible polynomials F; and F> of degrees §; and §; respectively, then C; and C5 intersect
in 816, points (counting multiplicities).



EXERCISES 189

References.

Fulton, W., Introduction to Intersection Theory in Algebraic Geometry, (AMS Publication;
CBMS regional conference series #54.) This is a pleasant introduction.

Fulton, W., Intersection Theory. Springer, 1984. The ultimate source for everything to
do with intersection theory.

Serre: Algebre Locale, Multiplicités, Springer Lecture Notes, 11, 1957/58 (third edition
1975). This is where the definition in terms of Tor’s was first suggested.

Exercises

You may assume the characteristic is zero if you wish.

12-1. Let V = V(F) C P", where F is a homogeneous polynomial of degree § without
multiple factors. Show that V' has degree § according to the definition in the notes.

12-2. Let C be acurve in A? defined by an irreducible polynomial F(X, Y), and assume C
passes through the origin. Then F' = Fy, + Fijp41 +--+, m > 1, with F, the homogeneous
part of F of degree m. Let 0: W — AZ be the blow-up of AZ at (0,0), and let C’ be the
closure of 6~ 1(C \ (0,0)). Let Z = 671(0,0). Write F,, = [[i=; (@ X + b;Y)"i, with
the (a;: b;) being distinct points of P!, and show that C’ N Z consists of exactly s distinct
points.

12-3. Find the intersection number of D1:Y2 = X" and D»: Y% = X5, r > s > 2, at the
origin.

12-4. Find Pic(V) when V is the curve Y2 = X 3.



Chapter 13

Coherent Sheaves; Invertible Sheaves

In this chapter, k is an arbitrary field.

Coherent sheaves

Let V = Spm A be an affine variety over k, and let M be a finitely generated A-module.
There is a unique sheaf of Oy -modules M on V such that, for all f € A4,

F(D(f).M)=M; (=47 ®4M).

Such an Oy -module M is said to be coherent. A homomorphism M — N of A-modules
defines a homomorphism M — N of Oy -modules, and M +— M is a fully faithful functor
from the category of finitely generated A-modules to the category of coherent Oy -modules,
with quasi-inverse M — I'(V, M).

Now consider a variety V. An Oy -module M is said to be coherent if, for every open
affine subset U of V, M|U is coherent. It suffices to check this condition for the sets in an
open affine covering of V.

For example, OF; is a coherent Oy -module. An Oy -module M is said to be locally
Jree of rank n if it is locally isomorphic to O}, i.e., if every point P € V has an open
neighbourhood such that M|U =~ OF,. A locally free Oy -module of rank 7 is coherent.

Let v € V, and let M be a coherent Oy -module. We define a k(v)-module M (v) as
follows: after replacing V' with an open neighbourhood of v, we can assume that it is affine;
hence we may suppose that V' = Spm(A4), that v corresponds to a maximal ideal m in 4
(so that k(v) = A/m), and M corresponds to the A-module M ; we then define

M) =M Q@4 k(v) = M/mM.

It is a finitely generated vector space over x (v). Don’t confuse M (v) with the stalk M, of
M which, with the above notations, is My, = M ® 4 Aw. Thus

M) = My/mMy = k() @4, Mu.
Nakayama’s lemma (1.3 shows that
M@)=0= M, =0.
The support of a coherent sheaf M is
Supp(M) ={v e V | M(v) # 0} ={v e V | My # 0}.

190
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Suppose V is affine, and that M corresponds to the A-module M. Let a be the annihilator
of M:
a={feA| fM =0}.

Then M/mM # 0 <= m D a (for otherwise A/mA contains a nonzero element annihi-
lating M /mM ), and so
Supp(M) = V(a).

Thus the support of a coherent module is a closed subset of V.
Note that if M is locally free of rank 7, then M (v) is a vector space of dimension 7 for
all v. There is a converse of this.

PROPOSITION 13.1. If M is a coherent Oy -module such that M(v) has constant dimen-
sionn for allv € V, then M is a locally free of rank n.

PROOF. We may assume that V is affine, and that M corresponds to the finitely generated
A-module M. Fix a maximal ideal m of A, and let x1,..., x, be elements of M whose
images in M/mM form a basis for it over x(v). Consider the map

y: A" — M, (ai.....a) Zaix,'.

Its cokernel is a finitely generated A-module whose support does not contain v. Therefore
there is an element f € A, f ¢ m, such that y defines a surjection A’} — My. After
replacing A with A y we may assume that y itself is surjective. For every maximal ideal
n of A, the map (4/n)" — M/nM is surjective, and hence (because of the condition on
the dimension of M (v)) bijective. Therefore, the kernel of y is contained in n” (meaning
n x --- x n) for all maximal ideals n in 4, and the next lemma shows that this implies that

the kernel is zero. o

LEMMA 13.2. Let A be an affine k -algebra. Then

ﬂ m = 0 (intersection of all maximal ideals in A ).

PROOF. When k is algebraically closed, we showed (4.13)) that this follows from the strong
Nullstellensatz. In the general case, consider a maximal ideal m of A ® k?!. Then

A/(mNA) = (A @ k) /m = k™,

and so A/m N A is an integral domain. Since it is finite-dimensional over k, it is a field,
and so m N A is a maximal ideal in A. Thus if f € A is in all maximal ideals of A, then its
image in A ® k?! is in all maximal ideals of A, and so is zero. o

For two coherent Oy -modules M and N, there is a unique coherent Oy -module
M ®p,, N such that

F(U,M ®OV N) = F(U,M) ®F(U,Ov) F(U’N)

for all open affines U C V. The reader should be careful not to assume that this formula
holds for nonaffine open subsets U (see example below). For a such a U, one writes
U = |J U; with the U; open affines, and defines I'(U, M ®,, N) to be the kernel of

[[rWi. M&o, N) =[] T'Uij. M &0, N).

i’j



192 CHAPTER 13. COHERENT SHEAVES; INVERTIBLE SHEAVES

Define Hom (M, N) to be the sheaf on V' such that
F(Ua HOm(M,N)) = HomOU (MyN)

(homomorphisms of Oy -modules) for all open U in V. It is easy to see that this is a sheaf.
If the restrictions of M and N to some open affine U correspond to A-modules M and N,
then

r'{U,Hom(M,N)) = Homy (M, N),

and so Hom(M, N) is again a coherent Oy -module.

Invertible sheaves.

An invertible sheaf on V is a locally free Oy -module £ of rank 1. The tensor product of
two invertible sheaves is again an invertible sheaf. In this way, we get a product structure
on the set of isomorphism classes of invertible sheaves:

def
[£]- L= £ ® L.

The product structure is associative and commutative (because tensor products are associa-

tive and commutative, up to isomorphism), and [Oy] is an identity element. Define

LY = Hom(L, Oy).

Clearly, £V is free of rank 1 over any open set where L is free of rank 1, and so £V is again
an invertible sheaf. Moreover, the canonical map

LY ®L— Oy, (fix)— f(x)

is an isomorphism (because it is an isomorphism over any open subset where L is free).
Thus
[£V][£] = [Oy].

For this reason, we often write £~ for £V.

From these remarks, we see that the set of isomorphism classes of invertible sheaves on
V is a group — it is called the Picard group, Pic(V), of V.

We say that an invertible sheaf £ is trivial if it is isomorphic to Oy — then L represents
the zero element in Pic(V).

PROPOSITION 13.3. An invertible sheaf L on a complete variety V is trivial if and only if
both it and its dual have nonzero global sections, i.e.,

r(V,L)#0# TV, LY).
PROOF. We may assume that V' is irreducible. Note first that, for any Oy -module M on
any variety V, the map
Hom(Oy, M) - I'(V,M), o+ a(l)

is an isomorphism.
Next recall that the only regular functions on a complete variety are the constant func-
tions (see [7.5)in the case that k is algebraically closed), i.e., I'(V,Oy) = k' where k' is
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the algebraic closure of k in k(). Hence Hom(Oy, Oy) = k’, and so a homomorphism
Oy — Oy is either 0 or an isomorphism.
We now prove the proposition. The sections define nonzero homomorphisms

51:0y = L, 52:0y = LY.

We can take the dual of the second homomorphism, and so obtain nonzero homomorphisms

Vv
S1 S2
Oy — L= Oy.

The composite is nonzero, and hence an isomorphism, which shows that s is surjective,
and this implies that it is an isomorphism (for any ring A4, a surjective homomorphism of
A-modules A — A is bijective because 1 must map to a unit). O

Invertible sheaves and divisors.

Now assume that V' is nonsingular and irreducible. For a divisor D on V, the vector space
L (D) is defined to be

L(D) ={f € k(V)* | div(f) + D = 0}.

We make this definition local: define £(D) to be the sheaf on V' such that, for any open set
U7

F'(U,L(D))={f €ek(V)*|div(f)+ D >0o0n U} U {0}.
The condition “div(f)+ D > 0on U” means that, if D = ) 'nzZ,thenordz(f)+nz >
0 for all Z with Z N U # @. Thus, I'(U, L(D)) is a I'(U, Oy )-module, and if U C U’,
then I'(U’, L(D)) C I'(U, L(D)). We define the restriction map to be this inclusion. In

this way, £(D) becomes a sheaf of Oy -modules.
Suppose D is principal on an open subset U, say D|U = div(g), g € k(V)*. Then

rU,.L(D)) ={f €k(V)*|div(fg) = 00on U} U{0}.

Therefore,
r',L(D))—Iw,0y), fw fg,

is an isomorphism. These isomorphisms clearly commute with the restriction maps for
U’ C U, and so we obtain an isomorphism £(D)|U — Oy. Since every D is locally
principal, this shows that £(D) is locally isomorphic to Oy, i.e., that it is an invertible
sheaf. If D itself is principal, then £(D) is trivial.

Next we note that the canonical map

L(D)® L(D') > LD+ D), fegr fg

is an isomorphism on any open set where D and D’are principal, and hence it is an isomor-
phism globally. Therefore, we have a homomorphism

Div(V) — Pic(V), D — [L(D)].

which is zero on the principal divisors.
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EXAMPLE 13.4. Let V be an elliptic curve, and let P be the point at infinity. Let D be the
divisor D = P. Then I'(V, L(D)) = k, the ring of constant functions, but I"(V, L(2D))
contains a nonconstant function x. Therefore,

[ (V,L(2D)) # I'(V,L£(D)) ® I'(V, L(D)),
—in other words, I'(V, L(D) ® L(D)) # I'(V, £(D)) & I'(V, L(D)).

PROPOSITION 13.5. For an irreducible nonsingular variety, the map D +— [L(D)] defines
an isomorphism
Div(V)/PrinDiv(V) — Pic(V).

PROOF. (Injectivity). If s is an isomorphism Oy — L(D), then g = s(1) is an element of
k(V)* such that

(a) div(g) + D = 0 (on the whole of V');
(b) if div(f) + D = 0on U, thatis, if f € I'(U, L(D)), then f = h(g|U) for some
he U, Oy).

Statement (a) says that D > div(—g) (on the whole of V). Suppose U is such that D|U
admits a local equation f = 0. When we apply (b) to — f , then we see that div(—f) <
div(g) on U, so that D|U + div(g) > 0. Since the U’s cover V, together with (a) this
implies that D = div(—g).

(Surjectivity). Define

k(V)* if U is open an nonempty

FU.x) = 0if U is empty.

Because V is irreducible, K becomes a sheaf with the obvious restriction maps. On any
open subset U where L|U ~ Oy, we have L|U ® K a~ K. Since these open sets form
a covering of V, V is irreducible, and the restriction maps are all the identity map, this
implies that £ ® K = K on the whole of V. Choose such an isomorphism, and identify £
with a subsheaf of . On any U where £ ~ Oy, L|U = gOy as a subsheaf of I, where
g is the image of 1 € I'(U, Oy). Define D to be the divisor such that, ona U, g~ ! is a
local equation for D. O

EXAMPLE 13.6. Suppose V is affine, say V' = Spm A. We know that coherent Oy -
modules correspond to finitely generated A-modules, but what do the locally free sheaves
of rank n correspond to? They correspond to finitely generated projective A-modules (Bour-
baki, Algebre Commutative, 1961-83, I11.5.2). The invertible sheaves correspond to finitely
generated projective A-modules of rank 1. Suppose for example that V' is a curve, so that
A is a Dedekind domain. This gives a new interpretation of the ideal class group: it is the
group of isomorphism classes of finitely generated projective A-modules of rank one (i.e.,
such that M ® 4 K is a vector space of dimension one).

This can be proved directly. First show that every (fractional) ideal is a projective A-
module — it is obviously finitely generated of rank one; then show that two ideals are
isomorphic as A-modules if and only if they differ by a principal divisor; finally, show that
every finitely generated projective A-module of rank 1 is isomorphic to a fractional ideal
(by assumption M ® 4 K ~ K; when we choose an identification M ® 4 K = K, then
M C M ® 4 K becomes identified with a fractional ideal). [Exercise: Prove the statements
in this last paragraph.]
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REMARK 13.7. Quite a lot is known about Pic(V), the group of divisors modulo linear
equivalence, or of invertible sheaves up to isomorphism. For example, for any complete
nonsingular variety V, there is an abelian variety P canonically attached to V', called the
Picard variety of V, and an exact sequence

0— P(k) - Pic(V) > NS(V) —> 0

where NS(V) is a finitely generated group called the Néron-Severi group.

Much less is known about algebraic cycles of codimension > 1, and about locally free
sheaves of rank > 1 (and the two don’t correspond exactly, although the Chern classes of
locally free sheaves are algebraic cycles).

Direct images and inverse images of coherent sheaves.

Consider a homomorphism A — B of rings. From an A-module M, we get an B-module
B ® 4 M, which is finitely generated if M is finitely generated. Conversely, an B-module
M can also be considered an A-module, but it usually won’t be finitely generated (unless
B is finitely generated as an A-module). Both these operations extend to maps of varieties.

Consider a regular map o: W — V, and let F be a coherent sheaf of Oy -modules.
There is a unique coherent sheaf of Oy -modules o* F with the following property: for any
open affine subsets U’ and U of W and V respectively such that «(U’) C U, a*F|U’ is
the sheaf corresponding to the I'(U’, Ow )-module I'(U’, Ow) ® rw.o,) I'(U, F).

Let F be a sheaf of Oy -modules. For any open subset U of V', we define I'(U, s F) =
I'(a~'U, F), regarded as a I'(U, Oy )-module via the map I'(U, Oy) — I'(a~'U, Ow).
Then U +— I'(U, axF) is a sheaf of Op-modules. In general, o, F will not be coherent,
even when F is.

LEMMA 13.8.  (a) For any regular maps U 7 i W and coherent Oy -module F on
W, there is a canonical isomorphism

(Ba)*F = a*(B*F).

(b) Foranyregularmap«:V — W, «™* maps locally free sheaves of rank n to locally free
sheaves of rank n (hence also invertible sheaves to invertible sheaves). It preserves
tensor products, and, for an invertible sheaf £, a* (L) ~ («*£)~!.

PROOF. (a) This follows from the fact that, given homomorphisms of rings A — B — T,
TR (BRIAM)=T @4 M.
(b) This again follows from well-known facts about tensor products of rings. O
See Kleiman.
Principal bundles

To be added.
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Differentials (Outline)

In this subsection, we sketch the theory of differentials. We allow k to be an arbitrary field.
Let A be a k-algebra, and let M be an A-module. Recall (from §5) that a k-derivation
is a k-linear map D: A — M satisfying Leibniz’s rule:

D(fg) = foDg+goDf, allfgceA.

A pair (.{21{1 Jk d) comprising an A-module .Q}l Ik and a k-derivation d: A — .le Jk is
called the module of differential one-forms for A over k?! if it has the following universal

property: for any k-derivation D: A — M, there is a unique k-linear map o: .Qil e M
suchthat D =« o d,

A 4‘1) Ql
Y ! k-linear
\
M

EXAMPLE 14.1. Let A = k[X1, ..., Xj]; then ‘le/k is the free A-module with basis the
symbols d X1, ..., d Xy, and

af
df = —dX;.
f=3 X
EXAMPLE 14.2. Let A = k[X1, ..., X»]/a; then “Q:l/k is the free A-module with basis the
symbols d X1, ..., d X, modulo the relations:

df =0forall f € a.

PROPOSITION 14.3. Let V be a variety. For eachn > 0, there is a unique sheaft of Oy -
modules .Qﬁ/k on V such that Qﬁ/k(U) = /\"Qi/k whenever U = Spm A is an open
affine of V.

PROOF. Omitted. o

The sheaf 2%

Vik is called the sheaf of differential n-forms on V .

EXAMPLE 14.4. Let E be the affine curve

Y2=X34+aX +b,
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and assume X3 + aX + b has no repeated roots (so that E is nonsingular). Write x and
y for regular functions on E defined by X and Y. On the open set D(y) where y # 0,
let w; = dx/y, and on the open set D(3x% + a), let w, = 2dy/(3x% + a). Since
y2=x34+ax+b,
2ydy = (3x2 + a)dx.

and so w; and w; agree on D(y) N D(3x2 + a). Since E = D(y) U D(3x2 + a), we see
that there is a differential  on E whose restrictions to D(y) and D(3x? + a) are w; and
wy respectively. It is an easy exercise in working with projective coordinates to show that
w extends to a differential one-form on the whole projective curve

Y?Z = X>+aXZ*+bZ°.
In fact, .Q(l: / £ (C) is a one-dimensional vector space over k, with @ as basis. Note that

w = dx/y = dx/(x3 + ax + b)%, which can’t be integrated in terms of elementary
functions. Its integral is called an elliptic integral (integrals of this form arise when one
tries to find the arc length of an ellipse). The study of elliptic integrals was one of the
starting points for the study of algebraic curves.

In general, if C is a complete nonsingular absolutely irreducible curve of genus g, then
.Qé Jk (C) is a vector space of dimension g over k.

PROPOSITION 14.5. If'V is nonsingular, then ‘Qll//k is a locally free sheaf of rank dim(V")
(that is, every point P of V has a neighbourhood U such that .QII,/k|U ~ (Oy|U)dim(V))y,

PROOF. Omitted. o

Let C be a complete nonsingular absolutely irreducible curve, and let @ be a nonzero
element of ‘Qli(C)/k' We define the divisor (w) of w as follows: let P € C; if ¢ is a uni-

formizing parameter at P, then dt is a basis for .Q,l(c) /K asa k(C)-vector space, and so we
can write w = fdt, f € k(V)*; define ordp(w) = ordp(f),and (w) = ) ordp(w)P.
Because k(C) has transcendence degree 1 over k, .Q]i(c) Ik is a k(C)-vector space of di-
mension one, and so the divisor () is independent of the choice of w up to linear equiv-
alence. By an abuse of language, one calls (w) for any nonzero element of .Q]i(c) Jk @
canonical class K on C. For a divisor D on C, let £(D) = dimy (L(D)).

THEOREM 14.6 (RIEMANN-ROCH). Let C be a complete nonsingular absolutely irre-
ducible curve over k.

(a) The degree of a canonical divisor is 2g — 2.
(b) For any divisor D on C,

¢D)— (K — D) =1+ g —deg(D).

More generally, if V' is a smooth complete variety of dimension d, it is possible to
associate with the sheaf of differential d-forms on V' a canonical linear equivalence class
of divisors K. This divisor class determines a rational map to projective space, called the
canonical map.

References

Shafarevich, 1994, IIL.5.

Mumford 1999, I11.4.



Chapter 15

Algebraic Varieties over the Complex
Numbers

This is only an outline.
It is not hard to show that there is a unique way to endow all algebraic varieties over C
with a topology such that:

(a) on A" = C" it is just the usual complex topology;
(b) on closed subsets of A” it is the induced topology;
(c) all morphisms of algebraic varieties are continuous;
(d) it is finer than the Zariski topology.

We call this new topology the complex topology on V. Note that (a), (b), and (c) deter-
mine the topology uniquely for affine algebraic varieties ((c) implies that an isomorphism
of algebraic varieties will be a homeomorphism for the complex topology), and (d) then
determines it for all varieties.

Of course, the complex topology is much finer than the Zariski topology — this can be
seen even on A!. In view of this, the next two propositions are a little surprising.

PROPOSITION 15.1. If a nonsingular variety is connected for the Zariski topology, then it
is connected for the complex topology.

Consider, for example, A!. Then, certainly, it is connected for both the Zariski topology
(that for which the nonempty open subsets are those that omit only finitely many points) and
the complex topology (that for which X is homeomorphic to R?). When we remove a circle
from X, it becomes disconnected for the complex topology, but remains connected for the
Zariski topology. This doesn’t contradict the theorem, because A(%: with a circle removed is
not an algebraic variety.

Let X be a connected nonsingular (hence irreducible) curve. We prove that it is con-
nected for the complex topology. Removing or adding a finite number of points to X will
not change whether it is connected for the complex topology, and so we can assume that X
is projective. Suppose X is the disjoint union of two nonempty open (hence closed) sets X
and X». According to the Riemann-Roch theorem (14.6)), there exists a nonconstant rational
function f on X having poles only in X;. Therefore, its restriction to X» is holomorphic.
Because X is compact, f is constant on each connected component of X5 (Cartan 1963!,

! Cartan, H., Elementary Theory of Analytic Functions of One or Several Variables, Addison-Wesley, 1963.
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VI1.4.5) say, f(z) = a on some infinite connected component. Then f(z) — a has infinitely
many zeros, which contradicts the fact that it is a rational function.

The general case can be proved by induction on the dimension (Shafarevich 1994,
VIL.2).

PROPOSITION 15.2. Let V be an algebraic variety over C, and let C be a constructible
subset of V (in the Zariski topology); then the closure of C in the Zariski topology equals
its closure in the complex topology.

PROOF. Mumford 1999, I 10, Corollary 1, p60. O

For example, if U is an open dense subset of a closed subset Z of V (for the Zariski
topology), then U is also dense in Z for the complex topology.

The next result helps explain why completeness is the analogue of compactness for
topological spaces.

PROPOSITION 15.3. Let V be an algebraic variety over C; then V' is complete (as an alge-
braic variety) if and only if it is compact for the complex topology.

PROOF. Mumford 1999, I 10, Theorem 2, p60. O

In general, there are many more holomorphic (complex analytic) functions than there
are polynomial functions on a variety over C. For example, by using the exponential func-
tion it is possible to construct many holomorphic functions on C that are not polynomials
in z, but all these functions have nasty singularities at the point at infinity on the Riemann
sphere. In fact, the only meromorphic functions on the Riemann sphere are the rational
functions. This generalizes.

THEOREM 15.4. Let V be a complete nonsingular variety over C. Then V is, in a natural
way, a complex manifold, and the field of meromorphic functions on V (as a complex
manifold) is equal to the field of rational functions on V.

PROOF. Shafarevich 1994, VIII 3.1, Theorem 1. o

This provides one way of constructing compact complex manifolds that are not alge-
braic varieties: find such a manifold M of dimension n such that the transcendence degree
of the field of meromorphic functions on M is < n. For a torus C& / A of dimension g > 1,
this is typically the case. However, when the transcendence degree of the field of meromor-
phic functions is equal to the dimension of manifold, then M can be given the structure, not
necessarily of an algebraic variety, but of something more general, namely, that of an alge-
braic space in the sense of Artin.> Roughly speaking, an algebraic space is an object that is
locally an affine algebraic variety, where locally means for the étale “topology” rather than
the Zariski topology.*

One way to show that a complex manifold is algebraic is to embed it into projective
space.

2Perhaps these should be called algebraic orbispaces (in analogy with manifolds and orbifolds).
3 Artin, Michael. Algebraic spaces. Whittemore Lectures given at Yale University, 1969. Yale Mathemati-
cal Monographs, 3. Yale University Press, New Haven, Conn.-London, 1971. vii+39 pp.
Knutson, Donald. Algebraic spaces. Lecture Notes in Mathematics, Vol. 203. Springer-Verlag, Berlin-New
York, 1971. vi+261 pp.
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THEOREM 15.5. Any closed analytic submanifold of P" is algebraic.
PROOF. See Shafarevich 1994, VIII 3.1, in the nonsingular case. o

COROLLARY 15.6. Any holomorphic map from one projective algebraic variety to a sec-
ond projective algebraic variety is algebraic.

PROOF. Let ¢: V' — W be the map. Then the graph I, of ¢ is a closed subset of V' x W,
and hence is algebraic according to the theorem. Since ¢ is the composite of the isomor-
phism V' — I, with the projection I, — W, and both are algebraic, ¢ itself is algebraic.o

Since, in general, it is hopeless to write down a set of equations for a variety (it is a
fairly hopeless task even for an abelian variety of dimension 3), the most powerful way we
have for constructing varieties is to first construct a complex manifold and then prove that
it has a natural structure as a algebraic variety. Sometimes one can then show that it has
a canonical model over some number field, and then it is possible to reduce the equations
defining it modulo a prime of the number field, and obtain a variety in characteristic p.

For example, it is known that C8 / A (A a lattice in C#) has the structure of an algebraic
variety if and only if there is a skew-symmetric form ¥ on C& having certain simple prop-
erties relative to A. The variety is then an abelian variety, and all abelian varieties over C
are of this form.

References

Mumford 1999, 1.10.

Shafarevich 1994, Book 3.



Chapter 16

Descent Theory

Consider fields k C £2. A variety V over k defines a variety Vg over §2 by extension of the
base field (§11)). Descent theory attempts to answer the following question: what additional
structure do you need to place on a variety over §2, or regular map of varieties over 2, to
ensure that it comes from k?

In this chapter, we shall make free use of the axiom of choice (usually in the form of
Zorn’s lemma).

Models

Let £2 D k be fields, and let V be a variety over §2. Recall (fI75) that a model of V over k
(or a k-structure on V') is a variety Vy over k together with an isomorphism ¢: V — Vy.
Recall also that a variety over §2 need not have a model over k, and when it does it typically
will have many nonisomorphic models.

Consider an affine variety. An embedding V' < A%, defines a model of V' over

k if I(V) is generated by polynomials in k[X1,..., Xy], because then [ & 1(V) N
k[X1,..., Xp] is aradical ideal, k[X1, ..., Xpn]/Io is an affine k-algebra, and V(Ip) C A}
is a model of V. Moreover, every model (Vj, ¢) arises in this way, because every model of
an affine variety is affine. However, different embeddings in affine space will usually give
rise to different models. Similar remarks apply to projective varieties.

Note that the condition that (V') be generated by polynomials in k[X7q,..., X,] is
stronger than asking that V' be the zero set of some polynomials in k[Xy,..., X,]. For
example, let V = V(X 4+ Y + «) where « is an element of £2 such that «? € k but o ¢ k.
Then V is the zero set of the polynomial X7 4+ Y? 4 «?, which has coefficients in k, but
I(V) = (X +Y + «) is not generated by polynomials in k[ X, Y].

Fixed fields

Let £2 D k be fields, and let I" be the group Aut(§2/k) of automomorphisms of £2 (as an
abstract field) fixing the elements of k. Define the fixed field 21 of I" to be

{aeR2|oa=aforalo e}

PROPOSITION 16.1. The fixed field of I" equals k in each of the following two cases:

(a) £2 is a Galois extension of k (possibly infinite);
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(b) £2 is a separably closed field and k is perfect.

PROOF. (a) See FT 7.8.
(b) See FT 8.23. O

REMARK 16.2. (a) The proof of Proposition [16.1] definitely requires the axiom of choice.
For example, it is known that every measurable homomorphism of Lie groups is continuous,
and so any measurable automorphism of C is equal to the identity map or to complex con-
jugation. Therefore, without the axiom of choice, I" e Aut(C/Q) has only two elements,
and CI' = R.

(b) Suppose that £2 is algebraically closed and k is not perfect. Then k has characteristic
p # 0 and £2 contains an element « such that o« ¢ k but ? = a € k. As « is the unique
root of X7 — a, every automorphism of £2 fixing k also fixes «, and so 27 # k.

The perfect closure of k in §2 is the subfield
kP~ ={a e 2| a?" €k for some n}

of 2. Then k7™~ is purely inseparable over k, and when 2 is algebraically closed, it is
the smallest perfect subfield of §2 containing k.

COROLLARY 16.3. If 2 is separably closed, then 2T is a purely inseparable algebraic
extension of k.

PROOF. When k has characteristic zero, ol = k, and there is nothing to prove. Thus,
we may suppose that k has characteristic p # 0. Choose an algebraic closure 22 of £2,
and let k7~ be the perfect closure of k in 221, As £22! is purely inseparable over £2,
every element o of I' extends uniquely to an automorphism & of £22!: let & € 22! and let
aP" € §2; then & («) is the unique root of X?" — o (?”") in £2. The action of I" on £22
identifies it with Aut(§22!/k?" ). According to the proposition, (£2*))1" = k7™, and so

kP o 2l Sk o

Descending subspaces of vector spaces

In this subsection, £2 D k are fields such that k is the fixed field of I = Aut(£2/k).
Let V' be a k-subspace of an £2-vector space V(£2) such that the map

cRUEcv: 2,V — V(2)

is an isomorphism. Equivalent conditions: V' is the k-span of an £2-basis for V(£2); every
k-basis for V is an £2-basis for V(§2). The group I" acts on £2 ®; V through its action on
£2:

o ci®u)=>o0ci®vi, oel, ¢ €, veVl. (26)

Correspondingly, there is a unique action of I" on V(£2) fixing the elements of V' and such
that each 0 € I acts o-linearly:

o(cv) =0o(c)o(w)allo e I',c € 2,v € V(£2). 27
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LEMMA 16.4. The following conditions on a subspace W of V(§2) are equivalent:

(a) W NV spans W;
(b) W NV contains an §2-basis for W ;
(c) themap 2 @ W NV)— W,c®v+> cv, is an isomorphism.

PROOF. (a) = (b,c) A k-linearly independent subset of V' is §2-linearly independent in
V(£2). Therefore, if W N V spans W, then any k-basis (e;)jey for W NV will be an
£2-basis for W. Moreover, (1 ® ¢;);e; will be an §2-basis for 2 ®; (W N V'), and since
the map 2 @ (W N V) - W sends 1 ® e; to e;, it is an isomorphism.

(c) = (a), (b) = (a). Obvious. O

LEMMA 16.5. For any k-vector space V,V = V().

PROOF. Let (¢;);c7 be a k-basis for V. Then (1 ® e;);es is an £2-basis for 2 ®; V, and
o €T actsonv = ) ¢; ® e; according to the rule . Thus, v is fixed by I" if and only
if each ¢; is fixed by /" and so lies in k. O

LEMMA 16.6. Let V be a k-vector space, and let W be a subspace of V(§2) stable under
the action of I'. IF W1 = 0, then W = 0.

PROOF. Suppose W # 0. As V contains an £2-basis for V(§2), every nonzero element w
of W can be expressed in the form

w=crer+---+cpen, ¢ €240}, e €V, n=>1.

Choose w to be a nonzero element for which »n takes its smallest value. After scaling, we
may suppose that c; = 1. For o € I', the element

ow—w = (0cy —cp)ex + -+ (0cy —cn)en

lies in W and has at most n — 1 nonzero coefficients, and so is zero. Thus, w € wl = {03},
which is a contradiction. o

PROPOSITION 16.7. A subspace W of V(£2) is of the form W = W, for some k-
subspace Wy of V' if and only if it is stable under the action of I".

PROOF. Certainly, if W = §£2W,, then it is stable under I" (and W = (W N V)).
Conversely, assume that W is stable under I", and let W’ be a complementto W NV in V,
so that
V=WwnV)ye w'.
Then
wnew) I =wln@ew) =wnv)ynw =o,

and so, by (16.6),
wnew =0. (28)

AsW D (W NV)and
V(2)=QWNnV)e QW
this implies that W = (W N V). o
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Descending subvarieties and morphisms

In this subsection, 2 D k are fields such that k is the fixed field of I = Aut(§2/k) and £2
is separably closed. Recall that for any variety V over £2, V(£2) is Zariski dense in
V. In particular, two regular maps V' — V' coincide if they agree on V(£2).

For any variety V over k, I acts on V(§2). For example, if V' is embedded in A" or P"
over k, then I" acts on the coordinates of a point. If V' = Spm A, then

V(§2) = Homk—algebra(A’ 2),
and I acts through its action on £2.

PROPOSITION 16.8. Let V' be a variety over k, and let W be a closed subvariety of Vg
such that W($2) is stable under the action of I' on V(£2). Then there is a closed subvariety
Wo of V such that W = Wyg.

PROOF. Suppose first that V is affine, and let /(W) C £2[Vg] be the ideal of regular
functions zero on W. Recall that 2[Vp] = 2 ®; k[V] (see §I1). Because W($2) is
stable under I”, so also is /(W), and Proposition [16.7] shows that (W) is spanned by
Io = I(W) N k[V]. Therefore, the zero set of Iy is a closed subvariety Wy of V' with the
property that W = Wyg,.

To deduce the general case, cover V with open affines V' = | J V;. Then W; & VioNnW
is stable under I', and so it arises from a closed subvariety W;¢ of V;; a similar statement
holds for W;; o W; 0 W;. Define Wy to be the variety obtained by patching the varieties
Wio along the open subvarieties W;;o. o

PROPOSITION 16.9. Let V and W be varieties over k, and let f: Vg — Wg be a regular
map. If f commutes with the actions of I' on V(§2) and W(S2), then f arises from a
(unique) regular map V — W over k.

PROOF. Apply Proposition [16.8]to the graph of f, I'r C (V x W)g. o

COROLLARY 16.10. A variety V over k is uniquely determined (up to a unique isomor-
phism) by the variety Vg together with action of I" on V(S2).

PROOF. More precisely, we have shown that the functor
V ~~» (Vg, action of I" on V(£2)) (29)

is fully faithful. O

REMARK 16.11. In Theorems [16.42] and [16.43]| below, we obtain sufficient conditions for
a pair to lie in the essential image of the functor (29).
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Galois descent of vector spaces

Let I" be a group acting on a field §2, and let k be a subfield of 27". By an action of I" on
an §2-vector space V we mean a homomorphism I — Autg (V) satisfying (27), i.e., such
that each o € I" acts o-linearly.

LEMMA 16.12. Let S be the standard M, (k)-module (i.e., S = k™ with M, (k) acting by
left multiplication). The functor V + S ®; V from k-vector spaces to left My (k)-modules
is an equivalence of categories.

PROOF. Let V and W be k-vector spaces. The choice of bases (e;);es and (f;) jes for V
and W identifies Homy (V, W) with the set of matrices (a;)(j,yesx1- ;i € k, such that,
for a fixed i, all but finitely many a ;; are zero. Because S is a simple M, (k)-module and
Endaz, k) (S) = k, the set Hompz, k) (S ®x V.S ® W) has the same description, and so
the functor V +— S ®p V is fully faithful.

The functor V +— S ®; V sends a vector space V' with basis (e;);es to a direct sum of
copies of S indexed by /. Therefore, to show that the functor is essentially surjective, we
have prove that every left M, (k)-module is a direct sum of copies of S.

We first prove this for M,, (k) regarded as a left M, (k)-module. For 1 <i < n,let L(i)
be the set of matrices in M, (k) whose entries are zero except for those in the i*"" column.
Then L(i) is a left ideal in M, (k), and L(i) is isomorphic to S as an My (k)-module.
Hence,

My(k) = @ L)~ S"  (asaleft My (k)-module).
1

We now prove it for an arbitrary left M, (k)-module M, which we may suppose to be
nonzero. The choice of a set of generators for M realizes it as a quotient of a sum of copies
of M, (k), and so M is a sum of copies of S. It remains to show that the sum can be made

direct. Let I be the set of submodules of M isomorphic to S, and let & be the set of subsets
def

J of I such that the sum N(J) = )y N is direct, i.e., such that for any Ng € J and
finite subset Jo of J not containing Ng, No N ZNeJo N =0.1IfJ; C J, C...isachain
of sets in &, then | J J; € &, and so Zorn’s lemma implies that = has maximal elements.
For any maximal J, M = N(J) because otherwise, there exists an element S’ of I not
contained in N(J); because S’ is simple, S’ N N(J) = 0, and it follows that J U {S’} € Z,
contradicting the maximality of J. O

ASIDE 16.13. Let A and B be rings (not necessarily commutative), and let S be A-B-
bimodule (this means that A acts on S on the left, B acts on S on the right, and the actions
commute). When the functor M — S ® p M:Modp — Mody is an equivalence of cat-
egories, A and B are said to be Morita equivalent through S. In this terminology, the
lemma says that M, (k) and k are Morita equivalent through S.

PROPOSITION 16.14. Let §2 be a finite Galois extension of k with Galois group I". The
functor V ~~ 2 Q. V from k-vector spaces to §2-vector spaces endowed with an action of
I' is an equivalence of categories.

PROOF. Let £2[I'] be the £2-vector space with basis {o € I'}, and make £2[I"] into a
k-algebra by setting

(ZoeFaUG) (Zrerbtf) = ZU,T(aa‘ -oby)ot.
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Then §2[I"] acts k-linearly on §2 by the rule

(ZUGFaUO)C = ZGGFaU(Gc)’

and Dedekind’s theorem on the independence of characters (FT 5.14) implies that the ho-
momorphism
2[I'l — Endg (£2)

defined by this action is injective. By counting dimensions over k, one sees that it is an iso-
morphism. Therefore, Lemma[16.12]shows that £2[I"] and k are Morita equivalent through
£, i.e., the functor V +— 2 ®; V from k-vector spaces to left £2[I"]-modules is an equiv-
alence of categories. This is precisely the statement of the lemma. O

When £2 is an infinite Galois extension of k, we endow I” with the Krull topology, and
we say that an action of I" on an §2-vector space V' is continuous if every element of V is
fixed by an open subgroup of I, i.e., if

V= UA yA (union over the open subgroups A of I").

For example, the action of I" on £2 is obviously continuous, and it follows that, for any
k-vector space V, the action of I" on £2 ®j V is continuous.

PROPOSITION 16.15. Let §2 be a Galois extension of k (possibly infinite) with Galois
group I'. For any §2-vector space V equipped with a continuous action of I", the map

dci ®@vi > Y civii 2 vl Sy

is an isomorphism.

PROOF. Suppose first that I” is finite. Proposition[T6.14]allows us to assume V' = 2 @ W
for some k-subspace W of V. Then VI = (2 ® W)I" = W, and so the statement is true.

When I is infinite, the finite case shows that 2 ®; (V4)T /A ~ yA for every open
normal subgroup A of I". Now pass to the direct limit over A, recalling that tensor products
commute with direct limits (CA 8.1). o

Descent data

For a homomorphism of fields o: F — L, we sometimes write oV for Vp, (the variety over
L obtained by base change). For example, if V' is embedded in affine or projective space,
then oV is the affine or projective variety obtained by applying o to the coefficients of the
equations defining V.

A regular map ¢: V' — W defines a regular map ¢r: V7, — Wy, which we also denote
op:0V — oW. Note that (6¢)(6Z) = a(¢(Z)) for any subvariety Z of V. The map o¢
is obtained from ¢ by applying o to the coefficients of the polynomials defining ¢.

Let 2 D k be fields, and let I = Aut(£2/k).
An §2/ k-descent system on a variety V over §2 is

a family (¢g)ger of isomorphisms ¢g:0V — V Yot

satisfying the following cocycle condition: R e

Yo 0 (0@r) = pgr forallo, T € I
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A model (Vy, ¢) of V over a subfield K of §2 con-
taining k splits (¢5)oer if

Yo
—_ //"M‘\\
Yo =¢ 00y oV gm0 (Vog) = Voo <, V.

for all o fixing K.
A descent system (¢g)ger is said to be continuous if it is split by some model over a

subfield K of £2 that is finitely generated over k. A descent datum is a continuous descent
system. A descent datum is effective if it is split by some model over k. In a given situation,
we say that descent is effective or that it is possible to descend the base field if every descent
datum is effective.

Let Vg be a variety over k, and let V = Vyg. Then V' = oV because the two varieties
are obtained from Vj by extension of scalars with respect to the maps k — L and k —

L L, which are equal. Write ¢, for the identity map oV — V'; then (¢g)oer is a
descent datum on V.

Let (9o )ger be an £2/k descent system on a variety V, and let I’ = Aut(£2%¢P/ k).
Every k-automorphism of £2 extends to a k-automorphism of §£2%P, and (¢q)oecr extends
to the £25°P/k descent system (¢} )ger’ on Veser with ¢, = (¢5|2) gsep+ A model of V
over a subfield K of §2 splits (¢5)ger if and only if it splits (¢ )ger. This observation
sometimes allows us to assume that §2 is separably closed.

PROPOSITION 16.16. Assume that k is the fixed field of I' = Aut(§2/ k), and that (Vy, ¢)
and (V{, ¢’) split descent data (¢s)ger and (¢, )ser on varieties V and V' over §2. To
give a regular map Yo: Vo — Vj; amounts to giving a regular map :V — V' such that
Vo, =@, o0y forallo € I, ie., such that

Yo
oV ——

lm/f l"’ (30)

’

oV’ Yo %44

commutes forallo € I".

PROOF. Given ¥, define ¥ to make the right hand square in

oV -2 Voo <2 v

lﬁ ¥ llﬁo.@ lw
oV’ 22 Voo BILANN, 77
commute. The left hand square is obtained from the right hand square by applying o, and
so it also commutes. The outer square is (30).
In proving the converse, we may assume that §2 is separably closed. Given , use ¢
and ¢ to transfer v to a regular map ¥": Voo — V. Then the hypothesis implies that v/’
commutes with the actions of I" on V(£2) and Vj(£2), and so is defined over k (16.9). o

COROLLARY 16.17. Assume that k is the fixed field of I' = Aut(§2/k), and that (Vp, ¢)
splits the descent datum (¢q)ger. Let W be a variety over k. To give a regular map W —
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Vo (resp. Vo — W) amounts to giving a regular map ¥: Wo — V (resp. ¥:V — Wgp)
compatible with the descent datum, i.e., such that

oV (resp. oV
T T
Yo Yo
Weo T> V V T Wea

commutes.

PROOF. Special case of the proposition in which Wy, is endowed with its natural descent
datum. o

REMARK 16.18. Proposition [16.16|implies that the functor taking a variety V' over k to
Vg over §2 endowed with its natural descent datum is fully faithful.

Let (¢g)oer be an £2/ k-descent system on V. For a subvariety W of V, we set° W =
¢s (0 W). Then the following diagram commutes:

GV—(’{'—»V

o v

Qo loW
oW ZZ— oW

~

LEMMA 16.19. The following hold.

(a) Forallo,t € " and W C V,°(*W) =9"W.

(b) Suppose that (¢g)ser is split by a model (Vy,¢) of V over ko, and let W be a
subvariety of V. If W = ¢~ (W) for some subvariety Wy of Vi, then °W = W
for all 0 € I'; the converse is true if T =k.

PROOF. (a) By definition
TCW) = @o (0 (e (tW)) = (5 0 0@ ) (0TW) = @5 (0TW) = TTW.

In the second equality, we used that (cp)(c W) = a(eW).
(b) Let W = ¢~ ! (Wpg). By hypothesis ¢ = ¢! 0 5¢, and so

W= (" oop)oW) =9 (a(pW) = ¢~ (cWog) = ¢~ Wo) = W.
Conversely, suppose °W = W forall ¢ € I'. Then
e(W) =(°W) = (69)(cW) = o(p(W)).

Therefore, (W) is stable under the action of I" on Vg, and so is defined over k (see
16.8)). O
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For a descent system (¢g)ger on V and a regular function f on an open subset U of
V', we define  f to be the function (of) o ¢, on “U, so that ® f(° P) = o (f(P)) for all
P eU.Then?(* f) = °" f, and so this defines an action of I" on the regular functions.

The Krull topology on I is that for which the subgroups of I" fixing a subfield of 2
finitely generated over k form a basis of open neighbourhoods of 1 (see FT §8). An action
of I" on an §2-vector space V is continuous if

V= U yA (union over the open subgroups A of I').
A

For a subfield L of £2 containing k, let Ay, = Aut(§2/L).

PROPOSITION 16.20. Assume that §2 is separably closed. A descent system (¢g)ge On
an affine variety V is continuous if and only if the action of I" on §2[V'] is continuous.

PROOF. If (¢5)ser is continuous, it is split by a model of V' over a subfield K of §2 finitely
generated over k. By definition, Ag is open, and £2[V]4X contains a set {f1,..., fu}
of generators for £2[V] as an 2-algebra. Now [V] = |JL[f1,..., fn] where L runs
over the subfields of £2 containing K and finitely generated over k. As L[fi,..., fn] =
R[V]AL, this shows that 2[V] = | R2[V]A~L.

Conversely, if the action of I" on £2[V] is continuous, then for some subfield L of £2
finitely generated over k, £2[V]A~ will contain a set of generators fi, ..., f, for 2[V] as
an §2-algebra. According to , 4L is a purely inseparable algebraic extension of L,
and so, after replacing L with a finite extension, the embedding V' < A" defined by the
fi will determine a model of V' over L. This model splits (¢5)ser, Which is therefore
continuous. o

PROPOSITION 16.21. A descent system (¢q)ocr on a variety V over §2 is continuous if
there exists a finite set S of points in V(§2) such that

(a) any automorphism of V fixing all P € S is the identity map, and
(b) there exists a subfield K of §2 finitely generated over k such that ® P = P for all
o €I fixing K.

PROOF. Let (Vp, @) be amodel of V' over a subfield K of §2 finitely generated over k. After
possibly replacing K by a larger finitely generated field, we may suppose (i) that® P = P
for all 0 € I' fixing K and all P € S (because of (b)) and (ii) that ¢(P) € Vp(K) for all
P € § (because S is finite). Then, for P € S and every o fixing K,

poloP)Z P 2P
(ii)
(09)(0P) = 0(pP) = ¢P,

and so ¢y and ¢! o 0@ are isomorphisms 6V — V sending 6P to P. Therefore, ¢, and

¢~ ! o o¢ differ by an automorphism of V fixing the P € S, which implies that they are
equal. This says that (Vo, ¢) splits (¢g)ser- O

PROPOSITION 16.22. Let V be a variety over §2 whose only automorphism is the identity
map. A descent datum on V is effective if V has a model over k.
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PROOF. Let (V, @) be a model of V over k. For o € I', the maps ¢, and ¢! o0 o¢ are

both isomorphisms oV — V, and so differ by an automorphism of V. Therefore they are
equal, which says that (V, ¢) splits (¢5)ger- o

Of course, in Proposition [16.21] S doesn’t have to be a finite set of points. The propo-
sition will hold with § any additional structure on V' that rigidifies V' (i.e., is such that

Aut(V,S) = 1) and is such that (V, S) has a model over a finitely generated extension of
k.

Galois descent of varieties

In this subsection, §2 is a Galois extension of k& with Galois group I".

THEOREM 16.23. A descent datum (¢s)sc on a variety V' is effective if V' is covered by
open affines U with the property that°U = U forallo € I.

PROOF. Assume first that V is affine, and let A = k[V]. A descent datum (¢q )ge defines
a continuous action of I" on A (see[I6.20). From (16.13), we know that

c®a|—>ca:[2®kAF—>A 3D

is an isomorphism. Let Vy = SpmA®’, and let ¢ be the isomorphism V — V¢ defined by
(31). Then (Vy, ¢) splits the descent datum.

In the general case, write V as a finite union of open affines U; such that °U; = Uj; for
allo € I'. Then V is the variety over §2 obtained by patching the U; by means of the maps

U<~ U NU; — Uj. (32)

Each intersection U; N U; is again affine (4.27), and so the system descends to k. The
variety over k obtained by patching the descended system is a model of V over k splitting
the descent datum. o

COROLLARY 16.24. If each finite set of points of V(§2°°P) is contained in an open affine
subvariety of Vgsep, then every descent datum on V is effective.

PROOF. As we noted before, an £2/k-descent datum for V' extends in a natural way to an
§25°P [ k-descent datum for Vsep, and if a model (Vp, ¢) over k splits the second descent
datum, then it also splits the first. Thus, we may suppose that §2 is separably closed.

Let (95 )ger be a descent datum on V, and let U be a subvariety of V. By definition,
(¢s) is split by a model (V1, ¢) of V' over some finite extension k; of k. After possibly
replacing kq with a larger finite extension, there will exist a subvariety U; of V; such
that ¢(U) = Uj1p. Now (16.19p) shows that ?U depends only on the coset 0A where
A = Gal(£2/ky). In particular, {°U | o € I'} is finite. The subvariety (), ° U is stable
under I, and so (see "MNoer’U) =(ger°U) forallr e I'.

Let P € V. Because {° P | 0 € I'} is finite, it is contained in an open affine U of V.
Now U’ = (\,er ?U is an open affine in V containing P and such that U’ = U’ for all
o € I'. It follows that the variety V' satisfies the hypothesis of Theorem[16.23] O
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COROLLARY 16.25. Descent is effective in each of the following two cases:

(a) V is quasiprojective, or
(b) an affine algebraic group G acts transitively on V.

PROOF. (a) Apply (whose proof applies unchanged over any infinite base field).

(b) We may assume £2 to be separably closed. Let S be a finite set of points of V(£2),
and let U be an open affine in V. For each P € S, there is a nonempty open subvariety
Gp of G such that Gp - P C U. Because §2 is separably closed, there exists a g €

(MNpes Gp - P)(82) (see|l1.15). Now g~ 'U is an open affine containing S. O

Welil restriction

Let K/k be a finite extension of fields, and let V' be a variety over K. A pair (Vi, @)
consisting of a variety Vi over k and a regular map ¢: Viogx — V is called the K/ k-Weil
restriction of V if it has the following universal property: for any variety T over k and
regular map ¢’: Ty — V/, there exists a unique regular map ¥: T — V (of k-varieties)
such that p o Y = ¢/, i.e.,

given Tk T such that Tk commutes.
X [l ) WK\L X\
® v ®
Veik —V Vi Veik —=V

In other words, (Vx, ¢) is the K/ k-Weil restriction of V' if ¢ defines an isomorphism
Morg (T, Vi) — Morg (T, V)
(natural in the k-variety T); in particular,
Vi(A) ~ V(K Q@ A)

(natural in the affine k-algebra A). If it exists, the K/k-Weil restriction of V' is uniquely
determined by its universal property (up to a unique isomorphism).

When (Vi, @) is the K/k-Weil restriction of V, the variety Vi is said to have been
obtained from V by (Weil) restriction of scalars or by restriction of the base field.

PROPOSITION 16.26. If'V satisfies the hypothesis of (16.24)) (for example, if V' is quasipro-
jective) and K/ k is separable, then the K / k-Weil restriction exists.

PROOF. Let £2 be a Galois extension of k large enough to contain all conjugates of K, i.e.,
such that 2 ®; K ~ [[,.x_0 7K. Let V' = [[tV — this is a variety over §2. For
o € Gal(£2/k), define p5: 0V’ — V' to be the regular map that acts on the factor o (z V)
as the canonical isomorphism o (zV) >~ (o7)V. Then (¢s)secal(22/k) is @ descent datum,
and so defines a model (Vi, ¢«) of V' over k.

Choose a tg: K — £2. The projection map V' — 1oV is invariant under the action of
Gal(£2 /1K), and so defines a regular map (Vi)zox — 7oV (16.9), and hence a regular
map ¢: Vg — V. Itis easy to check that this has the correct universal property. O
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Generic fibres and specialization

In this subsection, k is an algebraically closed field.

Let ¢: V — U be a dominant map with U irreducible, and let K = k(U). Then there
is a regular map ¢k : Vxk — SpmK, called the generic fibre of ¢. For example, if V and U
are affine, so that ¢ corresponds to an injective homomorphism of rings f: A — B, then
g corresponds to A @ K — B ®j K. In the general case, we replace U with any open
affine and write V' as a finite union of affines V' = J; V;; then Vg = |J; Vik.

Let K be a field finitely generated over k, and let V be a variety over K. For any
irreducible k-variety U with k(U) = K, there will exist a dominant map ¢: V — U with
generic fibre V. For example, we can take U = Spm(A4) where A is any finitely generated
k-subalgebra of K containing a set of generators for K and containing the coefficients of
some set of polynomials defining V. Let P be a point in the image of ¢. Then the fibre of
V over P is a variety V(P) over k, called the specialization of V at P.

Similar statements are true for morphisms of varieties.

Rigid descent

LEMMA 16.27. LetV and W be varieties over an algebraically closed field k. If V and W
become isomorphic over some field containing k, then they are already isomorphic over k.

PROOF. The hypothesis implies that, for some field K finitely generated over k, there exists
an isomorphism ¢: Vxk — Wg. Let U be an affine k-variety such that k(U) = K. After
possibly replacing U with an open subset, we can ¢ extend to an isomorphism ¢y : U XV —
U x W. The fibre of ¢y at any point of U is an isomorphism V — W. =

Consider fields £2 D Ky, K D k. Recall (11.1) that Ky and K> are said to be linearly
disjoint over k if the homomorphism

>.ai ® bi = Y aibi: K1 @ Ko > K1+ K>
is injective.
LEMMA 16.28. Let §2 D k be algebraically closed fields, and let V be a variety over 2.

If there exist models of V' over subfields K, K» of §2 finitely generated over k and linearly
disjoint over k, then there exists a model of V over k.

PROOF. The model of V' over K1 extends to a model over an irreducible affine variety Uy
with k(U1) = Ky, i.e., there exists a surjective map V; — Uj of k-varieties whose generic
fibre is a model of V' over K. A similar statement applies to the model over K,. Because
K1 and K, are linearly disjoint, K; ®; K> is an integral domain with field of fractions
k(Uy x Up). From the map V, — Uy, we get amap V1 x Uy — U; x U,, and similarly for
Va.

Assume initially that V; x U, and Uy x V5 are isomorphic over U; x U, so that we
have a commutative diagram:

V1<—V1XU2§>U1XV2HV2

N/

U Ui xU, U,
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Let P be a point of U1. When we pull back the triangle to the subvariety P x U of Uy x U,,
we get the diagram at left below. Note that P x U, >~ U, and that P >~ Spm k (because k
is algebraically closed).

~ ~

V(P) x U, PxV, V(P)k,

N N

P x U, Spm K>

V2K2

The generic fibre of this diagram is the diagram at right. Here V;(P)g, is the variety over
K> obtained from V; (P) by extension of scalars k — K5. As Vg, is a model V' over K>,
it follows that V1 (P) is a model of V over k.

We now prove the general case. The varieties (V1 X U2) kv, xv,) and (U1 X V2) kw, xU,)
become isomorphic over some finite field extension L of k(U x U,). Let U be the normal-
ization! of Uy x U, in L, and let U be a dense open subset of U such that some isomorphism
of (V1 x Up), with (U; x V3>), extends to an isomorphism over U. The going-up theorem
(8.8) shows that U — U; x U, is surjective, and so the image U’ of U in U; x U, contains
a nonempty (hence dense) open subset of Uy x U, (see . In particular, U’ contains a
subset P x U, with Uj a nonempty open subset of U,. Now the previous argument gives
us varieties V1 (P)g, and Vg, over K5 that become isomorphic over k(U"”) where U” is
the inverse image of P x U, in U. As k(U") is a finite extension of K, this again shows
that V1 (P) is amodel of V over k. o

EXAMPLE 16.29. Let E be an elliptic curve over £2 with j-invariant j(E). There exists
a model of E over a subfield K of §2 if and only if j(E) € K. If j(FE) is transcendental,
then any two such fields contain k(j(E)), and so can’t be linearly disjoint. Therefore, the
hypothesis in the proposition implies j(E) € k, and so E has a model over k.

LEMMA 16.30. Let §2 be algebraically closed of infinite transcendence degree over k, and
assume that k is algebraically closed in §2. For any K C §2 finitely generated over k, there
exists ao € Aut(§2/k) such that K and oK are linearly disjoint over k.

PROOF. Let ay,...,a, be a transcendence basis for K/k, and extend it to a transcen-
dence basis a1,...,an,b1,...,by,... of 2/k. Let ¢ be any permutation of the tran-
scendence basis such that o(a;) = b; for all i. Then o defines a k-automorphism of
k(ay,...an,b1,...,by,...), which we extend to an automorphism of £2.

Let Ky = k(ay,...,an). Then 0Ky = k(by,...,by), and certainly K; and 0K are
linearly disjoint. In particular, K1 ® 0K is an integral domain. Because k is algebraically
closed in K, K Q@ oK is an integral domain (cf. [T1.5). This implies that K and oK are
linearly disjoint. O

LEMMA 16.31. Let 2 D k be algebraically closed fields such that §2 is of infinite tran-

scendence degree over k, and let V be a variety over 2. If V is isomorphic to oV for every
o € Aut(£2/k), then V has a model over k.

"Let Uy x Up = Spm C; then U = Spm C, where C is the integral closure of C in L.
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PROOF. There will exist a model Vp of V over a subfield K of §2 finitely generated over k.
According to Lemma|16.30] there exists a 0 € Aut(§2/k) such that K and 6K are linearly
disjoint. Because V =& oV, oVp is a model of V' over oK, and we can apply Lemma
16.28 a]

In the next two theorems, £2 D k are fields such that the fixed field of I' = Aut(§2/k)
is k and 2 is algebraically closed

THEOREM 16.32. LetV be a quasiprojective variety over §2, and let (95 )se be a descent
system for V. If the only automorphism of V' is the identity map, then V has a model over

k splitting (¢q).

PROOF. According to Lemma(16.31, V has a model (Vj, ) over the algebraic closure k?!

of k in £2, which (see the proof of |16.22)) splits (¢o) g e Aut(s2/ k1)

Now ¢, o ¢~ 0 @y 0 0@ is stable under Aut(§2/k?'), and hence is defined over k?!
(16.9). Moreover, ¢, depends only on the restriction of o to k™, and (¢})yeqakal/k) is 2
descent system for V. It is continuous by (16.21), and so Vy has a model (Vyo, ¢’) over k

splitting (¢})geGal(k=/k)- Now (Voo. ¢ © 9) splits (¢g)oeAut(2/k)- O

We now consider pairs (V, S) where V is a variety over §2 and S is a family of points
S = (Pi)1<i<n of V indexed by [1, n]. A morphism (V, (P;)1<i<n) = (W, (Qi)1<i<n) is
aregular map ¢: V' — W such that p(P;) = Q; foralli.

THEOREM 16.33. Let V be a quasiprojective variety over §2, and let (95 )gecAut(2/k) be a
descent system for V. Let S = (P;)1<i<n be a finite set of points of V such that

(a) the only automorphism of V fixing each P; is the identity map, and
(b) there exists a subfield K of §2 finitely generated over k such that ® P = P for all
o € I fixing K.

Then V has a model over k splitting (¢ ).

PROOF. Lemmas|[16.27H16.31|all hold for pairs (V, S) (with the same proofs), and so the
proof of Theorem [16.32| applies. O

EXAMPLE 16.34. Theorem [[6.33] can be used to prove that certain abelian varieties at-
tached to algebraic varieties in characteristic zero, for example, the generalized Jacobian
varieties, are defined over the same field as the variety.> We illustrate this with the usual
Jacobian variety J of a complete nonsingular curve C. For such a curve C over C, there is
a principally polarized abelian variety J(C) such that, as a complex manifold,

J(C)(C) =I'(C,2Y/H(C, 7).

The association C + J(C) is a functorial, and so a descent datum (@5 )seaut(s2/k) on C
defines a descent system on J(C). It is known that if we take S to be the set of points
of order 3 on J(C), then condition (a) of the theorem is satisfied (see, for example, Milne
19862, 17.5), and condition (b) can be seen to be satisfied by regarding J(C) as the Picard
variety of C.

2This was pointed out to me by Niranjan Ramachandran.
3Milne, J.S., Abelian varieties, in Arithmetic Geometry, Springer, 1986.
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Weil’s descent theorems

THEOREM 16.35. Let k be a finite separable extension of a field ko, and let I be the set of
k -homomorphisms k — kgl. Let V be a quasiprojective variety over k ; for each pair (o, T)
of elements of I, let ¢ o be an isomorphism oV — ©V (of varieties over kgl). Then there
exists a variety Vo over ko and an isomorphism ¢: Vo — V such that ;o = 1@ o (o¢)~!
for all o,v € I if and only if the ¢, are defined over k(s)ep and satisfy the following
conditions:

(@) @r.p = P16 © Po,p forall p,o, T € I;
(b) ¢Yrw,00 = @@r,o forallo, v € I and all ko-automorphisms @ of kgl over ko.

Moreover, when this is so, the pair (Vy, ¢) is unique up to isomorphism over kg, and Vj is
quasiprojective or quasi-affine if V' is.

PROOF. This is Theorem 3 of Weil 1956, p515. It is essentially a restatement of (a) of
Corollary [16.25[(and (Vy, ¢) is unique up to a unique isomorphism over ko). o

An extension K of a field k is said to be regular if it is finitely generated, admits a
separating transcendence basis, and k is algebraically closed in K. These are precisely
the fields that arise as the field of rational functions on geometrically irreducible algebraic
variety over k.

Let k be a field, and let k(¢), t = (¢1,...,1), be a regular extension of k (in Weil’s
terminology, ¢ is a generic point of a variety over k). By k(¢’) we shall mean a field
isomorphic to k(¢) by ¢ — ¢/, and we write k (¢, t') for the field of fractions of k (1) ®x k(¢').
When V4 is a variety over k(¢), we shall write V- for the variety over k(¢") obtained from V;
by base change with respect to ¢ + t": k() — k(¢’). Similarly, if f; denotes a regular map
of varieties over k(t), then f;r denotes the regular map over k(¢') obtained by base change.
Similarly, k(¢") is a second field isomorphic to k(¢) by ¢ + " and k(z,1’,t") is the field
of fractions of k(1) ®g k(t') @y k(t").

THEOREM 16.36. With the above notations, let V; be a quasiprojective variety over k(t);
for each pair (¢,1), let ¢y ¢ be an isomorphism V; — V; defined over k(t,t"). Then there
exists a variety V defined over k and an isomorphism ¢;: Vi) — V; (of varieties over
k(t)) such that ¢,y = @y o ;1 if and only if ¢,/ 4 satisfies the following condition:

@7t = @y 0@y (isomorphism of varieties over k(z,1',t").

Moreover, when this is so, the pair (V, ¢;) is unique up to an isomorphism over k, and V is
quasiprojective or quasi-affine if V' is.

PROOF. This is Theorem 6 and Theorem 7 of Weil 1956, p522. O

THEOREM 16.37. Let §2 be an algebraically closed field of infinite transcendence degree
over a perfect field k. Then descent is effective for quasiprojective varieties over §2.

4Weil, André, The field of definition of a variety. Amer. J. Math. 78 (1956), 509-524.
SIf k(t) and k(¢') are linearly disjoint subfields of some large field £2, then k(z,t’) is the subfield of £2
generated over k by ¢ and ¢’.
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PROOF. Let (¢s) be a descent datum on a variety V over §2. Because (¢4 ) is continuous, it
is split by a model of V' over some subfield K of §2 finitely generated over k. Let k' be the
algebraic closure of k in K; then k’ is a finite extension of k and K is a regular extension of
k. Write K = k(t), and let (V;, ¢’) be a model of V over k(¢) splitting (¢5). According to
Lemma|[16.30} there exists a 0 € Aut(§2/k) such that ok(¢) = k(') and k() are linearly
disjoint over k. The isomorphism

(p/ (p_l (0(0/)_1
Vt_Q—>Vi>O'V —> Vt/,.Q

is defined over k(z, t) and satisfies the conditions of Theorem|16.36| Therefore, there exists
amodel (W, ¢) of V over k' splitting (¢o)geAut(2/k(t)-
For o, 7 € Aut(£2/k), let ¢, be the composite of the isomorphisms

(2%} %) ©r T
oW — oV -5V -tV — tW.

Then ¢ is defined over the algebraic closure of k in £2 and satisfies the conditions of
Theorem (16.35] which gives a model of W over k splitting (¢5)geAut(2/k)- 0

Restatement in terms of group actions

In this subsection, £2 D k are fields such that k = £27" and £2 is algebraically closed. Recall
that for any variety V' over k, there is a natural action of I" on V(£§2). In this subsection, we
describe the essential image of the functor

{quasiprojective varieties over k} — {quasiprojective varieties over §2 + action of I"}.

In other words, we determine which pairs (V, x), with V' a quasiprojective variety over §2
and = an action of I" on V(£2),

(o,P)—>aoxP:. I xV(2) > V(£2),

arise from a variety over k. There are two obvious necessary conditions for this.

Regularity condition

Obviously, the action should recognize that V(§2) is not just a set, but rather the set of
points of an algebraic variety. For o € I', let oV be the variety obtained by applying ¢ to
the coefficients of the equations defining V', and for P € V(£2) let 6 P be the point on oV
obtained by applying o to the coordinates of P.

DEFINITION 16.38. We say that the action * is regular if the map
oP o x P:(aV)(2) - V(£2)

is regular isomorphism for all o.

A priori, this is only a map of sets. The condition requires that it be induced by a regular
map ¢g:0V — V. It V = Vyg for some variety Vp defined over k, then oV = V, and ¢4
is the identity map, and so the condition is clearly necessary.
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REMARK 16.39. The maps ¢, satisfy the cocycle condition g5 00 @; = @s¢. In particular,
@Yo © 0@s—1 = id, and so if * is regular, then each ¢, is an isomorphism, and the family
(¢o)oer is a descent system. Conversely, if (¢s)ser is a descent system, then

0% P =¢s(0P)

defines a regular action of I" on V(£2). Note that if * <> (¢g), theno x P = P.

Continuity condition

DEFINITION 16.40. We say that the action * is continuous if there exists a subfield L of
2 finitely generated over k and a model Vy of V over L such that the action of I"'(§2/L) is
that defined by Vj.

For an affine variety V, an action of I" on V gives an action of I" on £2[V], and one
action is continuous if and only if the other is.

Continuity is obviously necessary. It is easy to write down regular actions that fail it,
and hence don’t arise from varieties over k.

EXAMPLE 16.41. The following are examples of actions that fail the continuity condition
((b) and (c) are regular).

(a) Let V = A! and let  be the trivial action.

(b) Let 2/k = Q¥/Q, and let N be a normal subgroup of finite index in Gal(Q¥/Q)
that is not open,® i.e., that fixes no extension of Q of finite degree. Let V be the
zero-dimensional variety over Q% with V(Q¥) = Gal(Q¥/Q)/N with its natural
action.

(c) Let k be a finite extension of Q,, and let V' = Al. The homomorphism k* —
Gal(k®/ k) can be used to twist the natural action of I" on V(£2).

Restatement of the main theorems

Let £2 D k be fields such that k is the fixed field of I = Aut(£2/k) and £2 is algebraically
closed.

THEOREM 16.42. Let V' be a quasiprojective variety over §2, and let * be a regular action
of ' on V(§2). Let S = (P;)1<i<n be a finite set of points of V such that

(a) the only automorphism of V fixing each P; is the identity map, and
(b) there exists a subfield K of §2 finitely generated over k such thatc « P = P for all
o €I fixing K.

Then * arises from a model of V over k.
PROOF. This a restatement of Theorem[16.33] o

THEOREM 16.43. Let V be a quasiprojective variety over §2 with an action % of I". If
is regular and continuous, then * arises from a model of V over k in each of the following
cases:

SFor a proof that such subgroups exist, see FT 7.25.
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(a) £2 is algebraic over k, or
(b) £2 is has infinite transcendence degree over k.

PROOF. Restatements of (16.23] and of (16.37). o

The condition “quasiprojective” is necessary, because otherwise the action may not
stabilize enough open affine subsets to cover V.

Faithfully flat descent

Recall that a homomorphism f: A — B of rings is flat if the functor “extension of scalars”
M — B ®4 M is exact. It is faithfully flat if a sequence

0->M -M-—->M'—->0
of A-modules is exact if and only if
0B sM - BOM—>Bs4M' -0

is exact. For a field k, a homomorphism k — A is always flat (because exact sequences of
k-vector spaces are split-exact), and it is faithfully flat if A # 0.
The next theorem and its proof are quintessential Grothendieck.

THEOREM 16.44. If f: A — B is faithfully flat, then the sequence

f dO dr—l
0—>A—>B—B® ..., B® —_, g+l ...
is exact, where

B® =B®4BR®4-- Q4B (r times)
d" =3 (=1)e
eibg® - ®@b_1)=by R - b1 1 b; ® -+ ® by_1.

PROOF. It is easily checked that d” o d”~! = 0. We assume first that f admits a section,
i.e., that there is a homomorphism g: B — A such that g o f = 1, and we construct a
contracting homotopy k,: B®" T2 — B®"+1 Define

kr(bo @+ ®bri1) = g(bo)b1 ® -+~ ® bry1,  r=—L
It is easily checked that
krprod™ +d ok, =1, r>—1,

and this shows that the sequence is exact.

Now let A’ be an A-algebra. Let B = A’ ® 4 Bandlet /' =1® f: A — B’. The
sequence corresponding to f” is obtained from the sequence for f by tensoring with A’
(because B®" ® A’ =~ B'®/ etc.). Thus, if A’ is a faithfully flat A-algebra, it suffices to

prove the theorem for f’. Take A’ = B, and then b |£> b® 1: B — B ®4 B has a section,
namely, g(b ® b’) = bb’, and so the sequence is exact. o



FAITHFULLY FLAT DESCENT 219

THEOREM 16.45. If f: A — B is faithtully flat and M is an A-module, then the sequence

1 do dr—1
0M L Mo B2t Mo B®2 > ... > Moy B® '8 pert1_, .

1S exact.

PROOF. As in the above proof, one may assume that f has a section, and use it to construct
a contracting homotopy. O

REMARK 16.46. Let f: A — B be a faithfully flat homomorphism, and let M be an A-
module. Write M’ for the B-module fxM = B ® 4 M. The module epx M’ = (B ®4
B) ® g M’ may be identified with B ® 4 M’ where B ® 4 B acts by (b1 ® by)(b @ m) =
b1b ® bym, and e1« M’ may be identified with M’ ® 4 B where B ® 4 B acts by (b; ®
by)(m ® b) = bym ® byb. There is a canonical isomorphism ¢: ej« M’ — eg« M’ arising
from

el*M/ = (e1f)«sM = (eo f)+M = €0*M/2

explicitly, it is the map
bemb —bb @m):M' ®4B — B4 M.
Moreover, M can be recovered from the pair (M’, ¢) because
M=meM |1®m=¢(mx1)}.

Conversely, every pair (M’, ¢) satisfying certain obvious conditions does arise in this way
from an A-module. Given ¢: M’ ® 4 B — B ® 4 M’, define

$1:BRs4M' @4 B> B4 B4 M

$p2:M' ®4B®4B—>B®aB®sM,

$3:M' @4 BR4B > B4 M ®4B
by tensoring ¢ with idp in the first, second, and third positions respectively. Then a pair

(M’, ¢) arises from an A-module M as above if and only if ¢ = ¢ o ¢p3. The necessity is
easy to check. For the sufficiency, define

M=meM |1®@m=¢(m®1)}.

There is a canonical map b ® m — bm: B @ 4 M — M’, and it suffices to show that this
is an isomorphism (and that the map arising from M is ¢). Consider the diagram

a®1
M' ®4 B = B4 M ®4B
B®1
Lo 1o
eo®1
B4 M = BR4BR4 M
e1®1

in whicha(m) = 1 ® m and B(m) = ¢(m ® 1). As the diagram commutes with either the
upper of the lower horizontal maps (for the lower maps, this uses the relation ¢ = ¢ o 3),
¢ induces an isomorphism on the kernels. But, by defintion of M, the kernel of the pair
(@®1,®1)is M ® 4 B, and, according to (16.43)), the kernel of the pair (g ® 1,1 ® 1)
is M’. This essentially completes the proof.
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A regular map ¢: W — V of algebraic spaces is faithfully flat if it is surjective on the
underlying sets and O, py — Op is flat for all P € W, and it is affine if the inverse
images of open affines in V' are open affines in W.

THEOREM 16.47. Let: W — V be a faithfully flat map of algebraic spaces. To give an
algebraic space U affine over V is the same as to give an algebraic space U’ affine over V
together with an isomorphism ¢: pyU’" — p>U’ satisfying

P;;l () = P;2(¢) ° P>2kl (#).

Here p;; denotes the projection W x W x W — W x W such that p; (w1, wa, w3) =
(wj, w;).

PROOF. When W and V are affine, (16.46) gives a similar statement for modules, hence
for algebras, and hence for algebraic spaces. O

EXAMPLE 16.48. Let I" be a finite group, and regard it as an algebraic group of dimension
0. Let V be an algebraic space over k. An algebraic space Galois over V with Galois group
I' is a finite map W — V to algebraic space together with a regular map W x I' — W
such that

(a) for all k-algebras R, W(R) x I'(R) — W(R) is an action of the group I"(R) on
the set W(R) in the usual sense, and the map W(R) — V(R) is compatible with the
action of I'(R) on W(R) and its trivial action on V(R), and

(b) the map (w,0) — (w,wo): W x I' — W xy W is an isomorphism.

Then there is a commutative diagram’

V « W &= WxI << W x I'2
<«

I I b= } =~

V <« W & Wxy W b W xy W xy W

The vertical isomorphisms are

(w,0) ~ (w, wo)

(w,01,02) = (W, wo1, Wo102).

Therefore, in this case, Theorem says that to give an algebraic space affine over V
is the same as to give an algebraic space affine over W together with an action of I" on it
compatible with that on W. When we take W and V to be the spectra of fields, then this
becomes affine case of Theorem [16.23

EXAMPLE 16.49. In Theorem|16.47] let ¢ be the map corresponding to a regular extension
of fields k — k(). This case of Theorem [16.47|coincides with the affine case of Theorem
16.36|except that the field k(z, ¢') has been replaced by the ring k(¢) ®y k().

7See Milne, J. S., Etale cohomology. Princeton, 1980, p100.
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NOTES. The paper of Weil cited in subsection on Weil’s descent theorems is the first important
paper in descent theory. Its results haven’t been superseded by the many results of Grothendieck on
descent. In Milne 19998, Theorem was deduced from Weil’s theorems. The present more ele-
mentary proof was suggested by Wolfart’s elementary proof of the ‘obvious’ part of Belyi’s theorem
(Wolfart 1997%; see also Derome 2003'0).

8Milne, J. S., Descent for Shimura varieties. Michigan Math. J. 46 (1999), no. 1, 203-208.

9Wolfart, Jiirgen. The “obvious™ part of Belyi’s theorem and Riemann surfaces with many automorphisms.
Geometric Galois actions, 1, 97-112, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press,
Cambridge, 1997.

1ODerome, G., Descente algébriquement close, J. Algebra, 266 (2003), 418—426.



Chapter 17

Lefschetz Pencils (Outline)

In this chapter, we see how to fibre a variety over P! in such a way that the fibres have only
very simple singularities. This result sometimes allows one to prove theorems by induction
on the dimension of the variety. For example, Lefschetz initiated this approach in order to
study the cohomology of varieties over C.

Throughout this chapter, k is an algebraically closed field.

Definition

Alinear form H = ) ;- a; T; defines a hyperplane in P, and two linear forms define the
same hyperplane if and only if one is a nonzero multiple of the other. Thus the hyperplanes
in P form a projective space, called the dual projective space P

A line D in P™ is called a pencil of hyperplanes in P, If Hy and H are any two
distinct hyperplanes in D, then the pencil consists of all hyperplanes of the form aHg +
BH oo with (a: B) € P1(k). If P € Hy N Hyo, then it lies on every hyperplane in the pencil
— the axis A of the pencil is defined to be the set of such P. Thus

A= HyN Hoo = Nep H;.

The axis of the pencil is a linear subvariety of codimension 2 in P, and the hyperplanes of
the pencil are exactly those containing the axis. Through any point in P”* not on A, there
passes exactly one hyperplane in the pencil. Thus, one should imagine the hyperplanes in
the pencil as sweeping out P"”* as they rotate about the axis.

Let V be a nonsingular projective variety of dimension d > 2, and embed V' in some
projective space P*. By the square of an embedding, we mean the composite of V' — P™
with the Veronese mapping (6.20)

(m+2)(m+1)
(X0: ... Xm) > (X3 ixix i ix2) P P 2 .

DEFINITION 17.1. A line D in P is said to be a Lefschetz pencil for V. C P™ if

(a) the axis A of the pencil (H;);cp cuts V transversally;

(b) the hyperplane sections V; “yn H; of V are nonsingular for all # in some open
dense subset U of D;

(c) fort ¢ U, V; has only a single singularity, and the singularity is an ordinary double
point.

222
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Condition (a) means that, for every point P € ANV, Tgtp(A) N Tgtp(V) has codi-
mension 2 in Tgtp (V).

Condition (b) means that, except for a finite number of ¢, H; cuts V transversally, i.e.,
for every point P € H; NV, Tgtp(H;) N Tgtp (V) has codimension 1 in Tgt p (V).

A point P on a variety V' of dimension d is an ordinary double point if the tangent
cone at P is isomorphic to the subvariety of A+ defined by a nondegenerate quadratic
form Q(T1,...,T441), or, equivalently, if

Ov,p ~k[[Ti,..., Tas11)/(Q(T1, ..., Tas1)).

THEOREM 17.2. There exists a Lefschetz pencil for V (after possibly replacing the pro-
Jjective embedding of V' by its square).

PROOF. (Sketch). Let W C V xP™ be the closed variety whose points are the pairs (x, H)
such that H contains the tangent space to V' at x. For example, if V' has codimension 1 in
P then (x, H) € Y if and only if H is the tangent space at x. In general,

(x,H)y e W <= x € H and H does not cut V' transversally at x.

The image of W in P under the projection VxP™ — P is called the dual variety VofV.
The fibre of W — V over x consists of the hyperplanes containing the tangent space at x,
and these hyperplanes form an irreducible subvariety of P™ of dimension m — (dim V +1);
it follows that W is irreducible, complete, and of dimension m — 1 (see and that V
is irreducible, complete, and of codimension > 1 in P™ (unless V' = P™, in which case
it is empty). The map ¢: W — V is unramified at (x, H) if and only if x is an ordinary
double point on V N H (see SGA 7, XVII 3.7"). Either ¢ is generically unramified, or it
becomes so when the embedding is replaced by its square (so, instead of hyperplanes, we
are working with quadric hypersurfaces) (ibid. 3.7). We may assume this, and then (ibid.
3.5), one can show that for H € V Vsmg, V' N H has only a single smgularlty and the
singularity is an ordinary double point. Here VSlrlg is the singular locus of V.

By Bertini’s theorem (Hartshorne 1977, II 8.18) there exists a hyperplane Hy such that
Hy NV is irreducible and nonsingular. Since there is an (m — 1)-dimensional space of lines
through Hy, and at most an (m — 2)-dimensional family will meet Vj;ne, we can choose Heo
so that the line D joining Hy and H does not meet I%ing. Then D is a Lefschetz pencil
for V. O

THEOREM 17.3. Let D = (H;) be a Lefschetz pencil for V with axis A = NH;. Then
there exists a variety V* and maps

V< v*L D
such that:

(a) the map V* — V is the blowing up of V along ANV,

'Groupes de monodromie en géométrie algébrique. Séminaire de Géométrie Algébrique du Bois-Marie
1967-1969 (SGA 7). Dirigé par A. Grothendieck. Lecture Notes in Mathematics, Vol. 288, 340. Springer-
Verlag, Berlin-New York, 1972, 1973.
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(b) the fibre of V¥ — D overt isV; =V N H;.

Moreover, m is proper, flat, and has a section.

PROOF. (Sketch) Through each point x of V' . A N V, there will be exactly one Hy in D.
The map
0: VANV — D, x — Hy,

is regular. Take the closure of its graph I, in V' x D this will be the graph of 7. O

REMARK 17.4. The singular V; may be reducible. For example, if V' is a quadric surface
in IP3, then V} is curve of degree 2 in P2 for all ¢, and such a curve is singular if and only if
it is reducible (look at the formula for the genus). However, if the embedding V < P™ is
replaced by its cube, this problem will never occur.

References

The only modern reference I know of is SGA 7, Exposé XVII.



Chapter 18

Algebraic Schemes and Algebraic
Spaces

In this course, we have attached an affine algebraic variety to any algebra finitely generated
over a field k. For many reasons, for example, in order to be able to study the reduction
of varieties to characteristic p # 0, Grothendieck realized that it is important to attach a
geometric object to every commutative ring. Unfortunately, A — spm A is not functorial
in this generality: if ¢: A — B is a homomorphism of rings, then ¢ ~!(m) for m maximal
need not be maximal — consider for example the inclusion Z < Q. Thus he was forced to
replace spm(A) with spec(A), the set of all prime ideals in A. He then attaches an affine
scheme Spec(A) to each ring A, and defines a scheme to be a locally ringed space that
admits an open covering by affine schemes.

There is a natural functor V' +— V* from the category of algebraic spaces over k to
the category of schemes of finite-type over k, which is an equivalence of categories. The
algebraic varieties correspond to geometrically reduced schemes. To construct V* from V,
one only has to add one point pz for each irreducible closed subvariety Z of V. For any
open subset U of V, let U™* be the subset of V* containing the points of U together with
the points pz such that U N Z is nonempty. Thus, U + U* is a bijection from the set of
open subsets of V' to the set of open subsets of V*. Moreover, I'(U*, Oy+) = I'(U, Oy)
for each open subset U of V. Therefore the topologies and sheaves on V' and V* are the
same — only the underlying sets differ. For a closed irreducible subset Z of V, the local

ring Oy= p, = h—r>nUnZ 20 I'(U, Og). The reverse functor is even easier: simply omit the

nonclosed points from the base space.!

Every aspiring algebraic and (especially) arithmetic geometer needs to learn the basic
theory of schemes, and for this I recommend reading Chapters II and III of Hartshorne
1997.

'Some authors call a geometrically reduced scheme of finite-type over a field a variety. Despite their simi-
larity, it is important to distinguish such schemes from varieties (in the sense of these notes). For example, if W
and W' are subvarieties of a variety, their intersection in the sense of schemes need not be reduced, and so may
differ from their intersection in the sense of varieties. For example, if W = V(a) C A" and W’ = V(d) C A"

with a and o’ radical, then the intersection W and W' in the sense of schemes is Speck[X1, ..., X +n/]/(a, @)
while their intersection in the sense of varieties is Spec k[X1, ..., X, +n/]/rad(a, a’) (and their intersection in
the sense of algebraic spaces is Spmk[X1, ..., Xy4+n71/(a, @).
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Appendix A

Solutions to the exercises

[I-1) Use induction on n. For n = 1, use that a nonzero polynomial in one variable has only
finitely many roots (which follows from unique factorization, for example). Now suppose
n > 1 and write f = ZgiX,i with each g; € k[X1,..., Xy—1]. If f is not the zero
polynomial, then some g; is not the zero polynomial. Therefore, by induction, there exist
(@1,...,an—1) € k" Ysuchthat f(ay,...,an—1, X,) is not the zero polynomial. Now, by
the degree-one case, there exists a b such that f(ay,...,dn—1,b) # 0.

(X 4 2Y, Z); Gaussian elimination (to reduce the matrix of coefficients to row echelon
form); (1), unless the characteristic of k is 2, in which case the ideal is (X 4+ 1, Z + 1).

W = Y -axis, and so [(W) = (X). Clearly,
(X2,XY?) C (X) crad(X?, XY?)

and rad((X)) = (X). On taking radicals, we find that (X) = rad(X?2, XY ?2).

The d x d minors of a matrix are polynomials in the entries of the matrix, and the set
of matrices with rank < r is the set where all ( + 1) x (r + 1) minors are zero.

-3 Clearly V = V(X, — X}...., X2 — X?). The map
X+ Thk[Xq, ..., Xn] = k[T

induces an isomorphism k[V] — Al. [Hence ¢ + (¢, ...,t") is an isomorphism of affine
varieties Al — V]

2-4) We use that the prime ideals are in one-to-one correspondence with the closed irre-
ducible subsets Z of A2. For such a set, 0 < dim Z < 2.

Case dim Z = 2. Then Z = AZ, and the corresponding ideal is (0).

Case dim Z = 1. Then Z # A2, and so I(Z) contains a nonzero polynomial f(X,Y).

If I(Z) # (f), then dim Z = 0 by (2.25} 2.26). Hence I(Z) = (f).
Case dim Z = 0. Then Z is a point (a, b) (see[2.24c), and so [(Z) = (X —a,Y —b).

The statement Homy_,1gchras(A ®q k, B ®q k) # 0 can be interpreted as saying that
a certain set of polynomials has a zero in k. If the polynomials have a common zero in
C, then the ideal they generate in C[X1,...] does not contain 1. A fortiori the ideal they
generate in k[X1, ...] does not contain 1, and so the Nullstellensatz implies that the
polynomials have a common zero in k.
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Amap a: Al — Al is continuous for the Zariski topology if the inverse images of finite
sets are finite, whereas it is regular only if it is given by a polynomial P € k[T], so it is
easy to give examples, e.g., any map « such that @~ (point) is finite but arbitrarily large.

The argument in the text shows that, for any f € S,
flay,...,ap) =0 = f(a(f,...,a,‘{) =0.

This implies that ¢ maps V into itself, and it is obviously regular because it is defined by
polynomials.

B-3] The image omits the points on the Y -axis except for the origin. The complement of the
image is not dense, and so it is not open, but any polynomial zero on it is also zero at (0, 0),
and so it not closed.

B-5|No, because both +1 and —1 map to (0, 0). The map on rings is
klx,y] > k[T], x+—T?—1, yw— T(T?-1),

which is not surjective (7 is not in the image).

Let f be regular on P1. Then f|Uy = P(X) € k[X], where X is the regular function
(ap:ay) — ai/ap:Uy — k,and f|U; = Q(Y) € k[Y], where Y is (ag:a1) — ao/a1.
On Up NUj, X and Y are reciprocal functions. Thus P(X) and Q(1/X) define the same
function on Up N Uy = A! ~ {0}. This implies that they are equal in k(X ), and must both
be constant.

Note that I'(V,Oy) = [[I'(V;,Oy,) — to give a regular function on | |V; is the
same as to give a regular function on each V; (this is the “obvious” ringed space structure).
Thus, if V is affine, it must equal Specm([ [ 4;), where 4; = I'(V;,Oy;), and so V =
LISpecm(4;) (use the description of the ideals in 4 x B on lf). Etc..

M-3|Let H be an algebraic subgroup of G. By definition, H is locally closed, i.e., open in
its Zariski closure H. Assume first that H is connected. Then H is a connected algebraic
group, and it is a disjoint union of the cosets of H. It follows that H = H. In the general
case, H is a finite disjoint union of its connected components; as one component is closed,
they all are.

[5-1] (b) The singular points are the common solutions to
4X3 -2XY%2=0 = X =0o0rY?=2X2
4Y3 —2X2%Y =0 —> Y =0or X2 =2Y?
X*+v4-Xx2r2=0.

Thus, only (0, 0) is singular, and the variety is its own tangent cone.

Directly from the definition of the tangent space, we have that
Ta(V N H) C Toa(V) N Ta(H).

As
dmT,(VNH)>dmV NH =dimV —1 =dimTa(V) N Ta(H),

we must have equalities everywhere, which proves that a is nonsingular on V N H. (In
particular, it can’t lie on more than one irreducible component.)
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The surface Y2 = X2+ Z is smooth, but its intersection with the X-Y plane is singular.
No, P needn’t be singularon V N H it H D Tp(V) — for example, we could have
H D V or H could be the tangent line to a curve.

5-3]We can assume V and W to affine, say
I(V)y=aCk[X1,...,Xm]
I(W)=bC k[Xm+1,...,Xm+n].
Ifa=(f1,....fr)and b = (g1,...,8s), then I(V x W) = (f1...., fr.&1,-..,&s).
Thus, T, 1) (V x W) is defined by the equations
(dfl)a = 0, ey (dfr)a = 0, (dgl)b = 0, ey (dgs)b = O,

which can obviously be identified with T,(V') x Tp,(W).

Take C to be the union of the coordinate axes in A". (Of course, if you want C to be
irreducible, then this is more difficult. . .)

A matrix A satisfies the equations
(I+eA)"-J-(I+eA)=1

if and only if
A" J +J-A=0.

Such an A is of the form (AI/{ g) with M, N, P, Q n x n-matrices satisfying

Nter PtrzP Mtr=—Q.
The dimension of the space of A’s is therefore

—n(n + D (for N) + w (for P) 4 n? (for M, 0)= 2n* +n.

[5-6| Let C be the curve Y2 = X3, and consider the map A' — C, t — (t2,13). The
corresponding map on rings k[X, Y]/(Y?) — k[T] is not an isomorphism, but the map on
the geometric tangent cones is an isomorphism.

The singular locus Vg has codimension > 2 in V, and this implies that V' is normal.
[Idea of the proof: let f € k(V) be integral over k[V], f ¢ k[V], f = g/h, g, h € k[V];
forany P € V(h) . V(g), Op is not integrally closed, and so P is singular.]

No! Leta = (X2Y). Then V(a) is the union of the X and Y axes, and I V(a) = (XY).
Fora = (a, b),

(dX?Y)y = 2ab(X —a) + a*(Y —b)
(dXY)a =b(X —a) +a(Y —D).

If a # 0 and b = 0, then the equations

(dX?*Y)a=d’Y =0
(dXY)a=aY =0
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have the same solutions.

Let P = (a:b:c),and assume ¢ # 0. Then the tangent line at P = (%: lc—’: 1)is

(), (), - (), 0)- (2), () 2

Now use that, because F' is homogeneous,

oF oF oF
F = _ _— _— = .
(a,b,c) =0 = (BX)Pa+(8Y)P+(BZ)PC 0

(This just says that the tangent plane at (a, b, ¢) to the affine cone F (X, Y, Z) = 0 passes
through the origin.) The point at co is (0 : 1 : 0), and the tangent line is Z = 0, the line at
oo. [The line at co meets the cubic curve at only one point instead of the expected 3, and
so the line at co “touches” the curve, and the point at co is a point of inflexion.]

[6-2] The equation defining the conic must be irreducible (otherwise the conic is singular).
After a linear change of variables, the equation will be of the form X? + Y2 = Z?2 (this
is proved in calculus courses). The equation of the line in aX + bY = c¢Z, and the rest is
easy. [Note that this is a special case of Bezout’s theorem because the multiplicity is
2 in case (b).]

[6-3| (a) The ring
k[X,Y,Z])(Y —X2,Z — X3) = k[x,y.z] = k[x] ~ k[X],
which is an integral domain. Therefore, (Y — X2, Z — X 3) is a radical ideal.
(b) The polynomial F = Z — XY = (Z — X3) = X(Y — X?) € I(V) and F* =

ZW — XY.If
ZW —XY =YW —-X>)f +(ZW?-X3)g,

then, on equating terms of degree 2, we would find
ZW —XY =a(YW — X?),

which is false.

that the hyperplane L.: Y ¢; X; = 0 pass through P and not through Q is that
daici =0, Y bici #0.

The (n 4+ 1)-tuples (co, ..., cn) satisfying these conditions form a nonempty open subset
of the hyperplane H:) a; X; = 0in A", On applying this remark to the pairs (Po, P;),
we find that the (n + 1)-tuples ¢ = (co, . . ., cn) such that Py lies on the hyperplane L. but
not Pq,..., P, form a nonempty open subset of H.

[6-3] The subset
C={(a:b:c)|a#0, b#£0;U{(1:0:0)}

of P? is not locally closed. Let P = (1 : 0 : 0). If the set C were locally closed, then P
would have an open neighbourhood U in P? such that U N C is closed. When we look in
Up, P becomes the origin, and

C N U = (A% . {X-axis}) U {origin}.
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The open neighbourhoods U of P are obtained by removing from A? a finite number of
curves not passing through P. It is not possible to do this in such a way that U N C is closed
in U (U N C has dimension 2, and so it can’t be a proper closed subset of U ; we can’t have
U N C = U because any curve containing all nonzero points on X-axis also contains the
origin).

[7-2| Define f(v) = h(v, Q) and g(w) = h(P,w),andlet9p = h — (f o p + g o q). Then
p(v, Q) = 0 = ¢(P,w), and so the rigidity theorem (7.13)) implies that ¢ is identically
zero.

Let ) ¢;; X;j = 0 be a hyperplane containing the image of the Segre map. We then
have

Y cijaib; =0
foralla = (ag,...,am) € k™ landb = (by,...,b,) € k"1, In other words,
aCb' =0

foralla € k™*! and b € k"*!, where C is the matrix (c;;). This equation shows that
aC = 0 for all a, and this implies that C = 0.
[8-2] For example, consider

1 Xx—>x"

(Al {1) > AT S Al

for n > 1 an integer prime to the characteristic. The map is obviously quasi-finite, but it is
not finite because it corresponds to the map of k-algebras

X > X" k[X] = k[X, (X — )7}

which is not finite (the elements 1/(X — 1), i > 1, are linearly independent over k[X], and
so also over k[X"]).

Assume that V' is separated, and consider two regular maps f, g: Z = W. We have to
show that the set on which f and g agree is closed in Z. The set where g o f and p o g agree
is closed in Z, and it contains the set where f and g agree. Replace Z with the set where
@ o f and ¢ o g agree. Let U be an open affine subset of V, and let Z' = (¢ o f)"}(U) =
(¢ 0 )~ 1 (U). Then f(Z’) and g(Z’) are contained in ¢~!(U), which is an open affine
subset of W, and is therefore separated. Hence, the subset of Z’ on which f and g agree is
closed. This proves the result.

[Note that the problem implies the following statement: if ¢: W — V is a finite regular
map and V is separated, then W is separated.]

Let V = A", and let W be the subvariety of A” x A! defined by the polynomial

The fibre over (1, ...,1,) € A" is the set of roots of [ [(X — ;). Thus, V;, = A"; V,,_1 is
the union of the linear subspaces defined by the equations

T;=T;, 1<i,j<n, i#];
Vy—2 is the union of the linear subspaces defined by the equations

T, =T =T, 1=<i,j,k<n, 1, jJ, kdistinct,
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and so on.

[10-1] Consider an orbit O = Gv. The map g + gv: G — O is regular, and so O contains
an open subset U of O . Ifu € U, then gu € gU, and gU is also a subset of O
which is open in O (because P +— gP:V — V is an isomorphism). Thus O, regarded as
a topological subspace of O, contains an open neighbourhood of each of its points, and so
must be open in O.

We have shown that O is locally closed in V', and so has the structure of a subvariety.
From (5.18)), we know that it contains at least one nonsingular point P. But then gP is
nonsingular, and every point of O is of this form.

From set theory, it is clear that O ~. O is a union of orbits. Since O . O is a proper
closed subset of O, all of its subvarieties must have dimension < dim O = dim O.

Let O be an orbit of lowest dimension. The last statement implies that O = O.

[10-2] An orbit of type (a) is closed, because it is defined by the equations
Tr(A) = —a, det(A) = b,

(as a subvariety of V). It is of dimension 2, because the centralizer of (g (,3)) a # B, is

0
An orbit of type (b) is of dimension 2, but is not closed: it is defined by the equations

{ (* 2) } , which has dimension 2.

a 0

Tr(A) = —a, det(4) = b, A;ﬁ(o a), a = rootof X2 + aX + b.

An orbit of type (c) is closed of dimension O: it is defined by the equation 4 = (g 2)

An orbit of type (b) contains an orbit of type (c) in its closure.

Let ¢ be a primitive d th 190t of 1. Then, for each i, j, 1 <1i,j <d, the following
equations define lines on the surface

Il
o

X()—I-é‘i.Xl = 0 X()—i-é‘i.Xz = 0 Xo+§i‘X3
Xo2+8Xs = 0 X1+8X;s = 0 X1+8X, = 0.

There are three sets of lines, each with d? lines, for a total of 3d? lines.

(a) Compare the proof of Theorem
(b) Use the transitivity, and apply Proposition 8.24

Let H be a hyperplane in P" intersecting V' transversally. Then H ~ P"~!and VN H
is again defined by a polynomial of degree §. Continuing in this fashion, we find that

VNH N...NnHy

is isomorphic to a subset of P! defined by a polynomial of degree §.

We may suppose that X is not a factor of F,;,, and then look only at the affine piece of
the blow-up, 0: A2 — A2, (x, y) = (x,xy). Then 6 ~1(C ~ (0,0))is given by equations

X 40, F(X,XY)=0.
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But
F(X,XY) = X"([T(ai =b:Y)) + X" Fp iy (X, V) + -+,

and so 0~ 1(C ~ (0,0)) is also given by equations

X #0, [lai=biY)" + XFpy1(X,Y)+---=0.
To find its closure, drop the condition X # 0. It is now clear that the closure intersects
o~1(0,0) (the Y -axis) at the s points ¥ = a; /b;.

We have to find the dimension of k[ X, Y](X’Y)/(Y2 — X", Y? — X*%). In this ring,
X" = X®% and so X*(X"™° —1) = 0. As X"7® — 1 is a unit in the ring, this implies that
X’ = 0, and it follows that Y2 = 0. Thus (Y2 — X", Y2 — X%) D (Y2, X¥), and in fact
the two ideals are equal in k[X, Y](x,y). Itis now clear that the dimension is 2s.

[12-4 Note that .
k[V] = k[T2,T3] = {ZaiT’ la; = o} .

For each a € k, define an effective divisor D, on V as follows:

D, has local equation 1 —a?T? on the set where 1 + aT # 0;

D, has local equation 1 — @373 on the set where 1 4+ aT + aT? # 0.
The equations

(1—aT)(1 +aT)=1-a?T? (1 —aT)1 +aT +a*T?) =1-a°T3
show that the two divisors agree on the overlap where
(1+aT)(1 4+ aT +aT?) #0.
For a # 0, D, is not principal, essentially because
ged(1 —a?T?,1—aT3?) = (1 —aT) ¢ k[T?, T3]

—if D, were principal, it would be a divisor of a regular function on V, and that regular
function would have to be 1 — a7, but this is not allowed.

In fact, one can show that Pic(V) ~ k. Let V/ = V ~ {(0,0)}, and write P (x) for the
principal divisors on *. Then Div(V’) + P(V) = Div(V), and so

Div(V)/P(V) ~ Div(V')/Div(V') 0 P(V) ~ P(V")/P(V') N P(V) ~ k.
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Annotated Bibliography

Apart from Hartshorne 1977, among the books listed below, I especially recommend Sha-
farevich 1994 — it is very easy to read, and is generally more elementary than these notes,
but covers more ground (being much longer).

Commutative Algebra

Atiyah, M.F and MacDonald, 1.G., Introduction to Commutative Algebra, Addison-Wesley
1969. This is the most useful short text. It extracts the essence of a good part of Bourbaki
1961-83.

Bourbaki, N., Algebre Commutative, Chap. 1-7, Hermann, 1961-65; Chap 8-9, Masson,
1983. Very clearly written, but it is a reference book, not a text book.

Eisenbud, D., Commutative Algebra, Springer, 1995. The emphasis is on motivation.

Matsumura, H., Commutative Ring Theory, Cambridge 1986. This is the most useful medium-
length text (but read Atiyah and MacDonald or Reid first).

Nagata, M., Local Rings, Wiley, 1962. Contains much important material, but it is concise to
the point of being almost unreadable.

Reid, M., Undergraduate Commutative Algebra, Cambridge 1995. According to the author, it
covers roughly the same material as Chapters 1-8 of Atiyah and MacDonald 1969, but is
cheaper, has more pictures, and is considerably more opinionated. (However, Chapters 10
and 11 of Atiyah and MacDonald 1969 contain crucial material.)

Serre: Algebre Locale, Multiplicités, Lecture Notes in Math. 11, Springer, 1957/58 (third
edition 1975).

Zariski, O., and Samuel, P., Commutative Algebra, Vol. 1 1958, Vol II 1960, van Nostrand.
Very detailed and well organized.

Elementary Algebraic Geometry

Abhyankar, S., Algebraic Geometry for Scientists and Engineers, AMS, 1990. Mainly curves,
from a very explicit and down-to-earth point of view.

Reid, M., Undergraduate Algebraic Geometry. A brief, elementary introduction. The fi-
nal chapter contains an interesting, but idiosyncratic, account of algebraic geometry in the
twentieth century.

Smith, Karen E.; Kahanpai, Lauri; Kekéldinen, Pekka; Traves, William. An invitation to alge-
braic geometry. Universitext. Springer-Verlag, New York, 2000. An introductory overview
with few proofs but many pictures.

Computational Algebraic Geometry

Cox, D., Little, J., O’Shea, D., Ideals, Varieties, and Algorithms, Springer, 1992. This gives
an algorithmic approach to algebraic geometry, which makes everything very down-to-earth
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and computational, but the cost is that the book doesn’t get very far in 500pp.

Subvarieties of Projective Space

Harris, Joe: Algebraic Geometry: A first course, Springer, 1992. The emphasis is on exam-
ples.

Musili, C. Algebraic geometry for beginners. Texts and Readings in Mathematics, 20. Hin-
dustan Book Agency, New Delhi, 2001.

Shafarevich, I., Basic Algebraic Geometry, Book 1, Springer, 1994. Very easy to read.

Algebraic Geometry over the Complex Numbers

Griffiths, P., and Harris, J., Principles of Algebraic Geometry, Wiley, 1978. A comprehensive
study of subvarieties of complex projective space using heavily analytic methods.

Mumford, D., Algebraic Geometry I: Complex Projective Varieties. The approach is mainly
algebraic, but the complex topology is exploited at crucial points.

Shafarevich, 1., Basic Algebraic Geometry, Book 3, Springer, 1994.

Abstract Algebraic Varieties

Dieudonné, J., Cours de Géometrie Algébrique, 2, PUF, 1974. A brief introduction to abstract
algebraic varieties over algebraically closed fields.

Kempf, G., Algebraic Varieties, Cambridge, 1993. Similar approach to these notes, but is
more concisely written, and includes two sections on the cohomology of coherent sheaves.

Kunz, E., Introduction to Commutative Algebra and Algebraic Geometry, Birkhiuser, 1985.
Similar approach to these notes, but includes more commutative algebra and has a long
chapter discussing how many equations it takes to describe an algebraic variety.

Mumford, D. Introduction to Algebraic Geometry, Harvard notes, 1966. Notes of a course.
Apart from the original treatise (Grothendieck and Dieudonné 1960-67), this was the first
place one could learn the new approach to algebraic geometry. The first chapter is on
varieties, and last two on schemes.

Mumford, David: The Red Book of Varieties and Schemes, Lecture Notes in Math. 1358,
Springer, 1999. Reprint of Mumford 1966.

Schemes

Eisenbud, D., and Harris, J., Schemes: the language of modern algebraic geometry, Wadsworth,
1992. A brief elementary introduction to scheme theory.

Grothendieck, A., and Dieudonné, J., Eléments de Géométrie Algébrique. Publ. Math. IHES
1960-1967. This was intended to cover everything in algebraic geometry in 13 massive
books, that is, it was supposed to do for algebraic geometry what Euclid’s “Elements” did
for geometry. Unlike the earlier Elements, it was abandoned after 4 books. It is an extremely
useful reference.

Hartshorne, R., Algebraic Geometry, Springer 1977. Chapters II and III give an excellent
account of scheme theory and cohomology, so good in fact, that no one seems willing to
write a competitor. The first chapter on varieties is very sketchy.

Iitaka, S. Algebraic Geometry: an introduction to birational geometry of algebraic varieties,
Springer, 1982. Not as well-written as Hartshorne 1977, but it is more elementary, and it
covers some topics that Hartshorne doesn’t.

Shafarevich, ., Basic Algebraic Geometry, Book 2, Springer, 1994. A brief introduction to
schemes and abstract varieties.

History

Dieudonné, J., History of Algebraic Geometry, Wadsworth, 1985.

Of Historical Interest

Hodge, W., and Pedoe, D., Methods of Algebraic Geometry, Cambridge, 1947-54.

Lang, S., Introduction to Algebraic Geometry, Interscience, 1958. An introduction to Weil
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1946.

Weil, A., Foundations of Algebraic Geometry, AMS, 1946; Revised edition 1962. This is
where Weil laid the foundations for his work on abelian varieties and jacobian varieties
over arbitrary fields, and his proof of the analogue of the Riemann hypothesis for curves
and abelian varieties. Unfortunately, not only does its language differ from the current
language of algebraic geometry, but it is incompatible with it.
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cusp,[82]

cycle

algebraic, [I87]

degree
of a hypersurface, [122]

of a map, [T159] [186]
of a point,
of a projective variety, [124]

total, [T0]
derivation,
descent datum,

effective, 207]

descent system, 206
Dickson’s Lemma, [27]
differential, [84]
dimension,
Krull, @3]
of a reducible set, [{2]
of an irreducible set, ]
pure, @2 [73]
division algorithm, 23]
divisor, [183]
effective, [183]
local equation for, [T84]

locally principal, [T84]
positive, [I83]
prime, [183
principal, [T84]
restriction of, [[84]
support of, [T83)

dual projective space, 222]

dual variety, [223]

element

integral over a ring, [TT]

irreducible, [§]
equivalence of categories, 22]
extension

of base field, [T74]

of scalars, [[74} [T73]
of the base field,

fibre

generic, 212]
of a map, [T35]

field

fixed, 207]
field of rational functions, 41} [74]

form

leading, [82]
Frobenius map, 53]



INDEX

function
rational, [49]
regular, [38] {7} [61]
functor, 2]
contravariant, 22]
essentially surjective,
fully faithful,

generate, [4]
germ

of a function, [46]
graph

of a regular map, [71]
Groebner basis, see standard basis
group

symplectic, [102)

homogeneous,

homomorphism
finite, 4]
of algebras, []

of presheaves, [T68]
of sheaves, [T69]

hypersurface, @2} [TT3]

hypersurface section, [T13]

ideal,
generated by a subset, [4]
homogeneous, [T04]
maximal, 3]
monomial, 26]
prime, [3]
radical, 33]
immersion, [64]
closed, [64]
open, [64]
integral closure, [12]
intersect properly, [184] [I83] [187]
irreducible components, AT]
isomorphic

locally, [T00]

leading coefficient, 24]
leading monomial, [24]
leading term, 24]
Lemma
Gauss’s,[9]
lemma
Nakayama’s,
prime avoidance, [T4g]
Yoneda, 23|
Zariski’s,[33]
linearly equivalent, [T84]
local equation
for a divisor, [[84]
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local ring

regular,[7]
local system of parameters,
manifold

complex,

differentiable,
topological,

birational, [T39]
dominant, 57} [76]
dominating, [57]
étale,[86]
finite,[133]
flat, [T86]
quasi-finite, [T33]
Segre, [T17]
separable,
Veronese, [114]
model,

module
of differential one-forms, @
monomial, [T0]
Morita equivalent, 203]
morphism
of affine algebraic varieties, [50|
of functors,
of locally ringed spaces, [T69]
of ringed spaces, [50] [T69]
multidegree, 24]
multiplicity
of a point, [82]

neighbourhood

étale,[93]
nilpotent, [33]
node, 82]

nondegenerate quadric, [T64]
nonsingular, [T79]

ordering

grevlex, [24]
lex, [24]
ordinary double point,

pencil, 222]

Lefschetz, 222
pencil of lines, [163]
perfect closure, 202]

Picard group, [T84] [192]

Picard variety, [T93]

map

point
multiple, [84]
nonsingular, [80] [84]

ordinary multiple, [82]
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rational over a field, [T78)
singular, [84]
smooth, [80] [84]
with coordinates in a field, [T78]
with coordinates in a ring, |7_3|
polynomial
Hilbert, [123]
homogeneous, [T03|
primitive, [9]
presheaf, [T68]
prevariety, [[74]
algebraic,
separated, [62]
principal open subset, [39]
product
fibred, [73]
of algebraic varieties, [69]
of objects,
tensor, [19]
projection with centre,
projectively normal, [I83)]

quasi-inverse, [22]

radical

of an ideal, [34]
rationally equivalent, [T88]
regular field extension, [T71]

regular map, [61]
regulus, [I63]

resultant, [T29]
Riemann-Roch Theorem,

ring
coordinate, 38|
integrally closed,[T2]
noetherian, [6]
normal, 03]
of dual numbers, [07]
reduced, B3]

ringed space, {46} [169]
locally, [T69]

section of a sheaf, [46]

semisimple

group, 09

Lie algebra,
set

(projective) algebraic,[104]
constructible, [152]
sheaf, [T68]
coherent, [T90]
invertible,
locally free, [190]
of abelian groups, [T69]
of algebras, [43]

INDEX

of k-algebras,

of rings, [T69]

support of,[190]
singular locus, [8T] [T79]
specialization,
splits

a descent system, [207]
stalk, [T69]
standard basis,

minimal, 2§]

reduced, 28]
subring, [4]
subset

algebraic, [30]

multiplicative, [T3]
subspace

locally closed, [64]
subvariety, [64]

closed, 53]

open affine, [61]

tangent cone,

geometric, [82} [T00] [T0T]
tangent space, [80] [84] [00]
theorem

Bezout’s ,[122]
Chinese Remainder, [3]
going-up, [135]
Hilbert basis, 27} [B1]
Hilbert Nullstellensatz, 33|
Krull’s principal ideal, [T46]
Lefschetz pencils, 223]
Lefschetz pencils exist, 223]
Noether normalization,
Stein factorization, [T67]
strong Hilbert Nullstellensatz, |3;5|
Zariski’s main, [T39]
topological space
irreducible , 39
noetherian, 38|
quasicompact, [3§]
topology
étale,[93]
Krull, 209
Zariski, [32]

variety, [T74]
abelian, [70] [T37]
affine algebraic,
algebraic, [62]
complete, [123]
flag, [T21]
Grassmann, [T18]
normal, [94} [T83]
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projective, [T03]
quasi-projective, [T03|
rational,

unirational, [73]
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