
Chapter 13

Coherent Sheaves and Vector
Bundles

In this chapter, 𝑘 is an arbitrary field.

a. Coherent sheaves

13.1. Let 𝑉 be a 𝑘-ringed space. Suppose that, for each open subset 𝑈 of 𝑉, we have an
𝒪𝑉(𝑈)-moduleℳ(𝑈) and, for each pair of open subsets 𝑈′ ⊂ 𝑈, a “restriction” map
res𝑈′,𝑈 ∶ ℳ(𝑈) → ℳ(𝑈′) compatible with the module structures. The system is a sheaf
of𝒪𝑉-modules if (a)𝑈 ⇝ℳ(𝑈) is a functor from the category of open subsets of 𝑉 and
(b)ℳ satisfies the sheaf condition. The first condition means that

{ res𝑈,𝑈 is the identity map for 𝑈 ⊂ 𝑈,
res𝑈′′,𝑈′ ◦ res𝑈′◦𝑈 = res𝑈′′,𝑈 for 𝑈′′ ⊂ 𝑈′ ⊂ 𝑈.

The second condition means that, for any open covering 𝑈 =
⋃
𝑈𝑖 of an open subset 𝑈,

ℳ(𝑈) ≃ {(𝑚𝑖) ∈
∏

ℳ(𝑈𝑖) ∣ res𝑈𝑖∩𝑈𝑗 ,𝑈𝑖 (𝑚𝑖) = res𝑈𝑖∩𝑈𝑗 ,𝑈𝑗 (𝑚𝑗) for all 𝑖, 𝑗}.

With the obvious notion of morphism, the sheaves of 𝒪𝑉-modules become a category.

13.2. Now let 𝑉 = Spm𝐴 be an affine algebraic scheme over 𝑘, and let𝑀 be a finitely
generated 𝐴-module. There is a unique sheaf of 𝒪𝑉-modulesℳ on 𝑉 such that, for all
𝑓 ∈ 𝐴,

𝛤(𝐷(𝑓),ℳ) = 𝑀𝑓 (= 𝐴𝑓 ⊗𝐴 𝑀)

(apply 10.5). Such an 𝒪𝑉-moduleℳ is said to be coherent. A homomorphism𝑀 → 𝑁
of 𝐴-modules defines a homomorphismℳ →𝒩 of 𝒪𝑉-modules, and𝑀 ⇝ℳ is a fully
faithful functor from the category of finitely generated 𝐴-modules to the category of
coherent 𝒪𝑉-modules, with quasi-inverseℳ ⇝ 𝛤(𝑉,ℳ). We sometimes write 𝑀̃ for
the coherent 𝒪𝑉-module defined by𝑀.

Now consider an algebraic scheme𝑉 over 𝑘. An𝒪𝑉-moduleℳ is said to be coherent
if, for every open affine subset𝑈 of𝑉,ℳ|𝑈 is coherent. It suffices to check this condition
for the sets in some open affine covering of 𝑉.
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2 13. Coherent Sheaves and Vector Bundles

For example, 𝒪𝑛
𝑉 is a coherent 𝒪𝑉-module. An 𝒪𝑉-moduleℳ is said to be locally

free of rank 𝑛 if it is locally isomorphic to 𝒪𝑛
𝑉 , i.e., if every point 𝑃 ∈ 𝑉 has an open

neighbourhood such thatℳ|𝑈 ≈ 𝒪𝑛
𝑉 . A locally free 𝒪𝑉-module of rank 𝑛 is coherent.

13.3. For two coherent 𝒪𝑉-modulesℳ and𝒩, there is a unique coherent 𝒪𝑉-module
ℳ ⊗𝒪𝑉 𝒩 such that

𝛤(𝑈,ℳ ⊗𝒪𝑉 𝒩) = 𝛤(𝑈,ℳ) ⊗𝛤(𝑈,𝒪𝑉) 𝛤(𝑈,𝒩) (*)

for all open affines 𝑈 in 𝑉. Indeed, let 𝑈 =
⋃
𝑈𝑖 with the 𝑈𝑖 open affines, and define

𝛤(𝑈,ℳ ⊗𝒪𝑉 𝒩) to be the kernel of
∏

𝑖
𝛤(𝑈𝑖,ℳ ⊗𝒪𝑉 𝒩) ⇉

∏

𝑖,𝑗
𝛤(𝑈𝑖𝑗,ℳ ⊗𝒪𝑉 𝒩), 𝑈𝑖𝑗

def= 𝑈𝑖 ∩ 𝑈𝑗.

If the restrictions ofℳ and𝒩 to some open affine𝑈 = Spm𝐴 correspond to𝐴-modules
𝑀 and 𝑁, thenℳ ⊗𝒪𝑉 𝒩|𝑈 corresponds to𝑀 ⊗𝐴 𝑁. The reader should be careful not
to assume that (*) holds for nonaffine open subsets 𝑈 (see example 13.10 below).

13.4. For coherent 𝒪𝑉-modulesℳ and𝒩, defineℋ𝑜𝑚𝒪𝑉 (ℳ,𝒩) to be the presheaf
on 𝑉 such that

𝛤(𝑈,ℋ𝑜𝑚𝒪𝑉 (ℳ,𝒩)) =Hom𝒪𝑈 (ℳ|𝑈,𝒩|𝑈)
for all open 𝑈 in 𝑉. It is easy to see that this is a sheaf. If the restrictions of ℳ
and 𝒩 to some open affine 𝑈 = Spm𝐴 correspond to 𝐴-modules 𝑀 and 𝑁, then
ℋ𝑜𝑚𝒪𝑉 (ℳ,𝒩)|𝑈 is the sheaf of 𝒪𝑈-modules defined by the 𝐴-module Hom𝐴(𝑀,𝑁).
Hence,ℋ𝑜𝑚(ℳ,𝒩) is again a coherent 𝒪𝑉-module.

13.5. Let 𝑣 ∈ 𝑉, and letℳ be a coherent 𝒪𝑉-module. We define a 𝜅(𝑣)-moduleℳ(𝑣)
as follows: after replacing 𝑉 with an open neighbourhood of 𝑣, we can assume that it is
affine; hence we may suppose that 𝑉 = Spm(𝐴), that 𝑣 corresponds to a maximal ideal
𝔪 in 𝐴 (so that 𝜅(𝑣) = 𝐴∕𝔪), and thatℳ corresponds to the 𝐴-module𝑀; we then
define

ℳ(𝑣) = 𝑀 ⊗𝐴 𝜅(𝑣) = 𝑀∕𝔪𝑀.
It is a finitely generated vector space over 𝜅(𝑣). Do not confuseℳ(𝑣) with the stalkℳ𝑣
ofℳ which, with the above notation, is𝑀𝔪 = 𝑀 ⊗𝐴 𝐴𝔪. Thus

ℳ(𝑣) = ℳ𝑣∕𝔪ℳ𝑣 = 𝜅(𝑣) ⊗𝐴𝔪 ℳ𝔪.

Nakayama’s lemma (1.3) shows that

ℳ(𝑣) = 0 ⇒ ℳ𝑣 = 0.

The support of a coherent 𝒪𝑉-moduleℳ is

Supp(ℳ) = {𝑣 ∈ 𝑉 ∣ ℳ(𝑣) ≠ 0} = {𝑣 ∈ 𝑉 ∣ ℳ𝑣 ≠ 0}.

Suppose that 𝑉 is affine, and thatℳ corresponds to the 𝐴-module 𝑀. Let 𝔞 be the
annihilator of𝑀:

𝔞 def= {𝑓 ∈ 𝐴 ∣ 𝑓𝑀 = 0}.
Then 𝑀∕𝔪𝑀 ≠ 0 ⇐⇒ 𝔪 ⊃ 𝔞 (for otherwise 𝐴∕𝔪𝐴 contains a nonzero element
annihilating𝑀∕𝔪𝑀), and so

Supp(ℳ) = 𝑉(𝔞).
Thus the support of a coherent module is a closed subset of 𝑉.



b. Invertible sheaves. 3

Note that ifℳ is locally free of rank 𝑛, thenℳ(𝑣) is a vector space of dimension 𝑛
for all 𝑣. There is a converse of this.

Proposition 13.6. Assume that 𝑉 is reduced. Ifℳ is a coherent 𝒪𝑉-module such that
ℳ(𝑣) has constant dimension 𝑛 for all 𝑣 ∈ 𝑉, thenℳ is a locally free of rank 𝑛.

Proof. We may assume that 𝑉 is affine, say, 𝑉 = Spm(𝐴), and thatℳ corresponds to
the finitely generated 𝐴-module𝑀. Fix a maximal ideal𝔪 of 𝐴, and let 𝑥1, … , 𝑥𝑛 be
elements of𝑀 whose images in𝑀∕𝔪𝑀 form a basis for it over 𝜅(𝑣). Consider the map

𝛾∶ 𝐴𝑛 →𝑀, (𝑎1, … , 𝑎𝑛) ↦
∑

𝑎𝑖𝑥𝑖.

Its cokernel is a finitely generated𝐴-modulewhose support does not contain 𝑣. Therefore
there is an element 𝑓 ∈ 𝐴, 𝑓 ∉ 𝔪, such that 𝛾 defines a surjection 𝐴𝑛

𝑓 → 𝑀𝑓. After
replacing 𝐴 with 𝐴𝑓 we may assume that 𝛾 itself is surjective. For every maximal ideal
𝔫 of 𝐴, the map (𝐴∕𝔫)𝑛 → 𝑀∕𝔫𝑀 is surjective, and hence (because of the condition on
the dimension ofℳ(𝑣)) bijective. Therefore, the kernel of 𝛾 is contained in 𝔫𝑛 (meaning
𝔫 ×⋯ × 𝔫) for all maximal ideals 𝔫 in 𝐴, and Corollary 10.211 shows that this implies
that the kernel is zero. 2

13.7. In the above proof, we showed the following (without assume 𝑉 to be reduced):
let 𝑣 ∈ |𝑉|; if 𝑈 is an open neighbourhood of 𝑣 and 𝑥1, … , 𝑥𝑛 ∈ 𝛤(𝑈,ℳ) are such that
their images inℳ(𝑣) generate it, then there is an open neighbourhood𝑈′ ⊂ 𝑈 of 𝑣 such
that 𝑥1|𝑈′, … , 𝑥𝑛|𝑈′ generateℳ|𝑈′.

13.8. With a little more effort, it is posssible to prove the following more precise result.
Letℳ be a coherent 𝒪𝑉-module on an algebraic scheme 𝑉 over 𝑘. The function

𝑣 ↦ dim𝜅(𝑣)ℳ(𝑣)∶ |𝑉| → ℤ

is upper semicontinuous, i.e., the sets

𝑈𝑟
def= {𝑣 ∣ dim𝜅(𝑣)ℳ(𝑣) ≤ 𝑟}

are open for all 𝑟 ∈ ℕ (so the dimension is constant on an open subset, and jumps on
closed subsets). Let 𝑟0 be the smallest value such that 𝑈𝑟0 is nonempty. If 𝑉 is reduced,
thenℳ|𝑈𝑟0 is locally constant of rank 𝑟0 (by 13.5).

b. Invertible sheaves.

An invertible sheaf on 𝑉 is a locally free 𝒪𝑉-module ℒ of rank 1. The tensor product of
two invertible sheaves is again an invertible sheaf. In this way, we get a product structure
on the set of isomorphism classes of invertible sheaves:

[ℒ] ⋅ [ℒ′]
def
= [ℒ⊗ℒ′].

The product structure is associative and commutative (because tensor products are
associative and commutative, up to isomorphism), and [𝒪𝑉] is an identity element.
Define

ℒ∨ = ℋ𝑜𝑚(ℒ,𝒪𝑉).
1For a reduced 𝑘-algebra, the intersection of the maximal ideals is zero.
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Clearly, ℒ∨ is free of rank 1 over any open set where ℒ is free of rank 1, and so ℒ∨ is
again an invertible sheaf. Moreover, the canonical map

ℒ∨ ⊗ℒ → 𝒪𝑉 , (𝑓, 𝑥) ↦ 𝑓(𝑥)

is an isomorphism (because it is an isomorphism over any open subset where ℒ is free).
Thus

[ℒ∨][ℒ] = [𝒪𝑉].

For this reason, we often write ℒ−1 for ℒ∨.
From these remarks, we see that the set of isomorphism classes of invertible sheaves

on 𝑉 is a group — it is called the Picard group, Pic(𝑉), of 𝑉.
We say that an invertible sheaf ℒ is trivial if it is isomorphic to 𝒪𝑉 — then ℒ

represents the zero element in Pic(𝑉).

Proposition 13.9. An invertible sheaf ℒ on a complete variety 𝑉 is trivial if and only if
both it and its dual have nonzero global sections, i.e.,

𝛤(𝑉,ℒ) ≠ 0 ≠ 𝛤(𝑉,ℒ∨).

Proof. We may assume that 𝑉 is irreducible. Note first that, for any 𝒪𝑉-moduleℳ on
any variety 𝑉, the map

Hom(𝒪𝑉 ,ℳ) → 𝛤(𝑉,ℳ), 𝛼 ↦ 𝛼(1)

is an isomorphism.
Next recall that the only regular functions on a complete variety are the constant func-

tions (10.142), i.e., 𝛤(𝑉,𝒪𝑉) = 𝑘′ where 𝑘′ is the algebraic closure of 𝑘 in 𝑘(𝑉). Hence
ℋ𝑜𝑚(𝒪𝑉 , 𝒪𝑉) = 𝑘′, and so a homomorphism 𝒪𝑉 → 𝒪𝑉 is either 0 or an isomorphism.

We now prove the proposition. The sections define nonzero homomorphisms

𝑠1∶ 𝒪𝑉 → ℒ, 𝑠2∶ 𝒪𝑉 → ℒ∨.

We can take the dual of the second homomorphism, and so obtain nonzero homomor-
phisms

𝒪𝑉
𝑠1→ ℒ

𝑠∨2→ 𝒪𝑉 .

The composite is nonzero, and hence an isomorphism, which shows that 𝑠∨2 is surjective,
and this implies that it is an isomorphism (for any ring 𝐴, a surjective homomorphism
of 𝐴-modules 𝐴 → 𝐴 is bijective because 1must map to a unit). 2

c. Invertible sheaves and divisors.

Now assume that 𝑉 is nonsingular and irreducible. For a divisor 𝐷 on 𝑉, the vector
space 𝐿(𝐷) is defined to be

𝐿(𝐷) = {𝑓 ∈ 𝑘(𝑉)× ∣ div(𝑓) + 𝐷 ≥ 0}.

We make this definition local: define ℒ(𝐷) to be the sheaf on 𝑉 such that, for any open
set 𝑈,

𝛤(𝑈,ℒ(𝐷)) = {𝑓 ∈ 𝑘(𝑉)× ∣ div(𝑓) + 𝐷 ≥ 0 on 𝑈} ∪ {0}.
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The condition “div(𝑓) +𝐷 ≥ 0 on𝑈” means that, if 𝐷 =
∑
𝑛𝑍𝑍, then ord𝑍(𝑓) + 𝑛𝑍 ≥ 0

for all 𝑍 with 𝑍 ∩ 𝑈 ≠ ∅. Thus, 𝛤(𝑈,ℒ(𝐷)) is a 𝛤(𝑈,𝒪𝑉)-module, and if 𝑈 ⊂ 𝑈′, then
𝛤(𝑈′, ℒ(𝐷)) ⊂ 𝛤(𝑈,ℒ(𝐷)).We define the restriction map to be this inclusion. In this
way, ℒ(𝐷) becomes a sheaf of 𝒪𝑉-modules.

Suppose 𝐷 is principal on an open subset 𝑈, say 𝐷|𝑈 = div(𝑔), 𝑔 ∈ 𝑘(𝑉)×. Then

𝛤(𝑈,ℒ(𝐷)) = {𝑓 ∈ 𝑘(𝑉)× ∣ div(𝑓𝑔) ≥ 0 on 𝑈} ∪ {0}.

Therefore,
𝛤(𝑈,ℒ(𝐷)) → 𝛤(𝑈,𝒪𝑉), 𝑓 ↦ 𝑓𝑔,

is an isomorphism. These isomorphisms clearly commute with the restriction maps
for 𝑈′ ⊂ 𝑈, and so we obtain an isomorphism ℒ(𝐷)|𝑈 → 𝒪𝑈 . Since every 𝐷 is locally
principal, this shows that ℒ(𝐷) is locally isomorphic to 𝒪𝑉 , i.e., that it is an invertible
sheaf. If 𝐷 itself is principal, then ℒ(𝐷) is trivial.

Next we note that the canonical map

ℒ(𝐷) ⊗ ℒ(𝐷′) → ℒ(𝐷 + 𝐷′), 𝑓 ⊗ 𝑔 ↦ 𝑓𝑔

is an isomorphism on any open set where 𝐷 and 𝐷′are principal, and hence it is an
isomorphism globally. Therefore, we have a homomorphism

Div(𝑉) → Pic(𝑉), 𝐷 ↦ [ℒ(𝐷)],

which is zero on the principal divisors.

Example 13.10. Let𝑉 be an elliptic curve, and let 𝑃 be the point at infinity. Let𝐷 be the
divisor 𝐷 = 𝑃. Then 𝛤(𝑉,ℒ(𝐷)) = 𝑘, the ring of constant functions, but 𝛤(𝑉,ℒ(2𝐷))
contains a nonconstant function 𝑥. Therefore,

𝛤(𝑉,ℒ(2𝐷)) ≠ 𝛤(𝑉,ℒ(𝐷)) ⊗ 𝛤(𝑉,ℒ(𝐷)),

— in other words, 𝛤(𝑉,ℒ(𝐷) ⊗ ℒ(𝐷)) ≠ 𝛤(𝑉,ℒ(𝐷)) ⊗ 𝛤(𝑉,ℒ(𝐷)).

Proposition 13.11. For an irreducible nonsingular variety, the map 𝐷 ↦ [ℒ(𝐷)] defines
an isomorphism

Div(𝑉)∕PrinDiv(𝑉) → Pic(𝑉).

Proof. (Injectivity). If 𝑠 is an isomorphism 𝒪𝑉 → ℒ(𝐷), then 𝑔 = 𝑠(1) is an element of
𝑘(𝑉)× such that
(a) div(𝑔) + 𝐷 ≥ 0 (on the whole of 𝑉);
(b) if div(𝑓) + 𝐷 ≥ 0 on 𝑈, that is, if 𝑓 ∈ 𝛤(𝑈,ℒ(𝐷)), then 𝑓 = ℎ(𝑔|𝑈) for some

ℎ ∈ 𝛤(𝑈,𝒪𝑉).
Statement (a) says that 𝐷 ≥ div(−𝑔) (on the whole of 𝑉). Suppose 𝑈 is such that

𝐷|𝑈 admits a local equation 𝑓 = 0. When we apply (b) to −𝑓 , then we see that
div(−𝑓) ≤ div(𝑔) on 𝑈, so that 𝐷|𝑈 + div(𝑔) ≥ 0. Since the 𝑈’s cover 𝑉, together with
(a) this implies that 𝐷 = div(−𝑔).

(Surjectivity). Define

𝛤(𝑈,𝒦) = { 𝑘(𝑉)
× if 𝑈 is open and nonempty

0 if 𝑈 is empty.



6 13. Coherent Sheaves and Vector Bundles

Because 𝑉 is irreducible,𝒦 becomes a sheaf with the obvious restriction maps. On any
open subset 𝑈 where ℒ|𝑈 ≈ 𝒪𝑈 , we have ℒ|𝑈 ⊗𝒦 ≈ 𝒦. Since these open sets form a
covering of 𝑉, 𝑉 is irreducible, and the restriction maps are all the identity map, this
implies that ℒ⊗𝒦 ≈ 𝒦 on the whole of 𝑉. Choose such an isomorphism, and identify
ℒ with a subsheaf of 𝒦. On any 𝑈 where ℒ ≈ 𝒪𝑈 , ℒ|𝑈 = 𝑔𝒪𝑈 as a subsheaf of 𝒦,
where 𝑔 is the image of 1 ∈ 𝛤(𝑈,𝒪𝑉). Define 𝐷 to be the divisor such that, on a 𝑈, 𝑔−1
is a local equation for 𝐷. 2

Example 13.12. Suppose 𝑉 is affine, say 𝑉 = Spm𝐴. We know that coherent 𝒪𝑉-
modules correspond to finitely generated𝐴-modules, but what do the locally free sheaves
of rank 𝑛 correspond to? They correspond to finitely generated projective 𝐴-modules
(CA, 12.6). The invertible sheaves correspond to finitely generated projective 𝐴-modules
of rank 1. Suppose for example that 𝑉 is a curve, so that 𝐴 is a Dedekind domain. This
gives a new interpretation of the ideal class group: it is the group of isomorphism classes
of finitely generated projective 𝐴-modules of rank one (i.e., such that𝑀⊗𝐴 𝐾 is a vector
space of dimension one).

This can be proved directly. First show that every (fractional) ideal is a projective
𝐴-module — it is obviously finitely generated of rank one; then show that two ideals are
isomorphic as 𝐴-modules if and only if they differ by a principal divisor; finally, show
that every finitely generated projective 𝐴-module of rank 1 is isomorphic to a fractional
ideal (by assumption𝑀 ⊗𝐴 𝐾 ≈ 𝐾; when we choose an identification𝑀 ⊗𝐴 𝐾 = 𝐾,
then 𝑀 ⊂ 𝑀 ⊗𝐴 𝐾 becomes identified with a fractional ideal). [Exercise: Prove the
statements in this last paragraph.]

Remark 13.13. Quite a lot is known about Pic(𝑉), the group of divisors modulo linear
equivalence, or of invertible sheaves up to isomorphism. For example, for any complete
nonsingular variety 𝑉, there is an abelian variety 𝑃 canonically attached to 𝑉, called the
Picard variety of 𝑉, and an exact sequence

0 → 𝑃(𝑘) → Pic(𝑉) → NS(𝑉) → 0

where NS(𝑉) is a finitely generated group called the Néron-Severi group.
Much less is known about algebraic cycles of codimension > 1, and about locally

free sheaves of rank > 1 (and the two do not correspond exactly, although the Chern
classes of locally free sheaves are algebraic cycles).

d. Direct images and inverse images of coherent sheaves.

Consider a homomorphism 𝐴 → 𝐵 of rings. From an 𝐴-module𝑀, we get a 𝐵-module
𝐵⊗𝐴𝑀, which is finitely generated if𝑀 is finitely generated. Conversely, a 𝐵-module𝑀
can also be considered an 𝐴-module, but it usually won’t be finitely generated (unless 𝐵
is finitely generated as an 𝐴-module). Both these operations extend to maps of varieties.

Consider a regular map 𝛼∶ 𝑊 → 𝑉, and let ℱ be a coherent sheaf of 𝒪𝑉-modules.
There is a unique coherent sheaf of 𝒪𝑊-modules 𝛼∗ℱ with the following property: for
any open affine subsets𝑈′ and𝑈 of𝑊 and 𝑉 respectively such that 𝛼(𝑈′) ⊂ 𝑈, 𝛼∗ℱ|𝑈′

is the sheaf corresponding to the 𝛤(𝑈′, 𝒪𝑊)-module 𝛤(𝑈′, 𝒪𝑊) ⊗𝛤(𝑈,𝒪𝑉) 𝛤(𝑈,ℱ).
Letℱ be a sheaf of𝒪𝑉-modules. For any open subset𝑈 of𝑉, we define 𝛤(𝑈, 𝛼∗ℱ) =

𝛤(𝛼−1𝑈,ℱ), regarded as a 𝛤(𝑈,𝒪𝑉)-module via the map 𝛤(𝑈,𝒪𝑉) → 𝛤(𝛼−1𝑈,𝒪𝑊).
Then 𝑈 ↦ 𝛤(𝑈, 𝛼∗ℱ) is a sheaf of 𝒪𝑉-modules. In general, 𝛼∗ℱ will not be coherent,
even when ℱ is.
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Lemma 13.14. (a) For any regular maps𝑈
𝛼
→ 𝑉

𝛽
→𝑊 and coherent𝒪𝑊-moduleℱ on

𝑊, there is a canonical isomorphism

(𝛽𝛼)∗ℱ
≈
→ 𝛼∗(𝛽∗ℱ).

(b) For any regular map 𝛼∶ 𝑉 → 𝑊, 𝛼∗ maps locally free sheaves of rank 𝑛 to locally
free sheaves of rank 𝑛 (hence also invertible sheaves to invertible sheaves). It preserves
tensor products, and, for an invertible sheaf ℒ, 𝛼∗(ℒ−1) ≃ (𝛼∗ℒ)−1.

Proof. (a) This follows from the fact that, given homomorphisms of rings 𝐴 → 𝐵 → 𝑇,
𝑇 ⊗𝐵 (𝐵 ⊗𝐴 𝑀) = 𝑇 ⊗𝐴 𝑀.

(b) This again follows from well-known facts about tensor products of rings. 2

e. Vector bundles

Let 𝑉 be an algebraic variety over 𝑘. The trivial vector bundle of rank 𝑛 over 𝑉 is
the variety 𝑉 × 𝔸𝑛 equipped with the projection map 𝑉 × 𝔸𝑛 → 𝑉. A pair (𝐸, 𝜋)
comprising an algebraic variety 𝐸 and a (projection) morphism 𝜋∶ 𝐸 → 𝑉 is a vector
bundle of rank 𝑛 over 𝑉 if it is locally isomorphic to the trivial vector bundle. More
precisely, we require that, for some open covering 𝑉 =

⋃
𝑈𝑖, there exist isomorphisms

𝜑𝑖 ∶ 𝜋−1(𝑈𝑖) → 𝑈𝑖 × 𝔸𝑛 such that
(a) for each 𝑖, the diagram

𝜋−1(𝑈𝑖) 𝑈𝑖 × 𝔸𝑛

𝑈𝑖

← →𝜑𝑖

←

→𝜋
←→ 𝑝

commutes;
(b) for each 𝑖, 𝑗, the isomorphism

𝜑𝑗◦𝜑−1𝑖 ∶
(
𝑈𝑖 ∩ 𝑈𝑗

)
× 𝔸𝑛 →

(
𝑈𝑖 ∩ 𝑈𝑗

)
× 𝔸𝑛

is linear on the fibres, i.e., the map (𝑢, (𝑎1, … , 𝑎𝑛)) ↦ (𝑢, (𝑏1, … , 𝑏𝑛)) is 𝑘-linear in
the second variable.

Amorphism of vector bundles (𝐸, 𝑝) → (𝐸′, 𝑝′) is a commutative diagram

𝐸 𝐸′

𝑉

← →𝜑

←

→𝑝
←→

𝑝′

such that 𝜑 is linear on the fibres. A vector bundle of rank 1 is called a line bundle.
Let 𝑉 be an algebraic variety over 𝑘. A vector sheaf on 𝑉 is a locally free sheaf 𝒱

of 𝒪𝑉-modules of finite rank. In order for a vector sheaf𝒲 to be a vector subsheaf of
a vector sheaf 𝒱 , we require that the maps𝒲𝑠 → 𝒱𝑠 be injective. The vector sheaves
of rank 𝑛 on 𝑉 are exactly the sheaves of sections of vector bundles of rank 𝑛, and the
vector subsheaves are exactly the sheaves of sections of the vector subbundles.
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Examples

13.15 (The tautological line bundle). Let𝑉 be a closed subvariety ofℙ𝑛. A point
𝑃 in 𝑉, when regarded as a point in ℙ𝑛, is a line 𝑙𝑃 in 𝔸𝑛+1. For the tautological line
bundle, the fibre over 𝑃 is the line 𝑙𝑃. As a set,

𝐵 def= {(𝑎, 𝑃) ∈ 𝔸𝑛+1 × 𝑉 ∣ 𝑎 ∈ 𝑙𝑃}.

A global section of 𝐵 is a regular map 𝑃 ↦ (𝑃, 𝑠(𝑃)) with 𝑠(𝑃) ∈ 𝔸𝑛+1. As there are no
nonconstant maps 𝑉 → 𝔸𝑛+1 (10.142), such a section must be zero.

To be continued.
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