
Chapter 12

Divisors and Intersection Theory

In this chapter, 𝑘 is an arbitrary field. CA= my Commutative Algebra notes.

a. Normal rings

Theorem 12.1. A noetherian domain 𝐴 is normal if and only if
(a) 𝐴𝔭 is a discrete valuation ring for all prime ideals 𝔭 of height 1, and

(b) 𝐴 =
⋂

ht(𝔭)=1
𝐴𝔭 (intersection in the field of fractions of 𝐴).

We first prove some lemmas.

Lemma 12.2. A noetherian local ring 𝐴 is a discrete valuation ring if its maximal ideal is
principal and dim(𝐴) > 0.

Proof. Let (𝜋) be the maximal ideal of 𝐴. Then 𝜋 is not nilpotent because other-
wise 𝐴 would have dimension zero. According to the Krull intersection theorem (1.8),⋂

𝑛≥1 𝜋
𝑛𝐴 = {0}. For any nonzero 𝑎 ∈ 𝐴, there is a unique 𝑛 ∈ ℕ such that 𝑎 ∈

(𝜋𝑛) ∖ (𝜋𝑛+1), and then 𝑎 = 𝑢𝜋𝑛 with 𝑢 ∈ 𝐴×. It follows that 𝐴 is an integral domain
whose ideals are exactly the principal ideals (𝜋𝑛). In particular, 𝐴 is a principal ideal
domain. Up to associates, 𝜋 is its only prime element, and so 𝐴 is a discrete valuation
ring (p. 88). See also 4.20. 2

Let 𝐴 be an integral domain with field of fractions 𝐹. A fractional ideal of 𝐴 is a
nonzero 𝐴-submodule 𝔞 of 𝐹 such that 𝑑𝔞 ⊂ 𝐴 for some nonzero 𝑑 ∈ 𝐴. A fractional
ideal 𝔞 is invertible if 𝔟𝔞 = 𝐴 for some fractional ideal 𝔟.

Lemma 12.3. Let 𝔞 be a fractional ideal of an integral domain 𝐴. If 𝔞 is invertible, then,
for any prime ideal 𝔭 in 𝐴, the ideal 𝔞𝐴𝔭 is principal.

Proof. If 𝔟𝔞 = 𝐴, then∑𝑏𝑖𝑎𝑖 = 1 for some 𝑎𝑖 ∈ 𝔞 and 𝑏𝑖 ∈ 𝔟. Let 𝔭 be a prime ideal
in 𝐴. For some 𝑖, 𝑏𝑖𝑎𝑖 is a unit in 𝐴𝔭, and then, for 𝑥 ∈ 𝔞,

𝑥𝐴𝔭 = 𝑥𝑏𝑖𝑎𝑖𝐴𝔭 = 𝑎𝑖(𝑏𝑖𝑥𝐴𝔭) ⊂ 𝑎𝑖𝐴𝔭. 2
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2 12. Divisors and Intersection Theory

Lemma 12.4. Let 𝐴 be a noetherian integral domain and 𝔭 a nonzero prime ideal of 𝐴. If
𝔭 is invertible, then 𝐴𝔭 is a discrete valuation ring.

Proof. According to 12.3, 𝔭𝐴𝔭 is principal, and so we can apply 12.2. 2

Let 𝐴 be a noetherian ring. Recall (CA, §19) that a proper ideal 𝔮 in 𝐴 is primary if
every zero-divisor in𝐴∕𝔮 is nilpotent, and that every ideal 𝔞 in𝐴 admits a decomposition

𝔞 = 𝔮1 ∩ … ∩ 𝔮𝑟, 𝔮𝑖 primary.

Choose a minimal primary decomposition of 𝔞, and let 𝔭𝑖 = rad(𝔮𝑖). Then 𝔭𝑖 is prime,
and

{𝔭1, … , 𝔭𝑟} = {rad(𝔞∶ 𝑥) ∣ 𝑥 ∈ 𝐴, rad(𝔞∶ 𝑥) prime}.

The ideals 𝔭1, … , 𝔭𝑟 are called the prime divisors of 𝔞.

Lemma 12.5. In an integrally closed noetherian domain, the prime divisors of any nonzero
principal ideal in 𝐴 have height 1.

Proof. Let 𝑎 be a nonzero element of 𝐴, and let 𝔭 be a prime divisor of (𝑎). If 𝔭 is
minimal, it has height 1 by the principal ideal theorem (??; CA, 21.3). In the general
case, there exists a 𝑏 ∈ 𝐴 such that 𝔭 = (𝑎𝐴∶ 𝑏). Let𝔪 = 𝔭𝐴𝔭. Then

𝔪 = (𝑎𝐴𝔭∶ 𝑏) = (𝐴𝔭∶ 𝑏𝑎−1),

so 𝑏𝑎−1 ∉ 𝐴𝔭 but 𝑏𝑎−1𝔪 ⊂ 𝐴𝔭. If 𝑏𝑎−1𝔪 ⊂ 𝔪, then 𝑏𝑎−1 is integral over𝐴𝔭 (??), hence
in 𝐴𝔭, which is a contradiction, and so 𝑏𝑎−1𝔪 = 𝐴𝔭. Thus,𝔪 is invertible, and so 𝐴𝔭 is
a discrete valuation ring (12.4). In particular, ht(𝔭) = 1. 2

Proof (of Theorem 12.1). ⇒: (a) Let 𝔭 be a prime ideal of height 1 in 𝐴. Then 𝐴𝔭 is
noetherian, integrally closed (1.47), and has exactly one nonzero prime ideal (1.14). It is
therefore a discrete valuation ring (CA, 20.2).

(b) Let 𝑏
𝑎
∈ ⋂

ht(𝔭)=1𝐴𝔭 (𝑎, 𝑏 ∈ 𝐴), so that 𝑏 ∈ 𝑎𝐴𝔭 for all 𝔭 of height 1. Let
(𝑎) = 𝔮1 ∩ … ∩ 𝔮𝑟 be a minimal primary decomposition of (𝑎), and let 𝔭𝑖 be the radical
of 𝔮𝑖. Then 𝔭𝑖 has height 1 by Lemma 12.5, and so 𝑏 ∈ 𝑎𝐴𝔭𝑖 . But 𝑎𝐴𝔭𝑖 ∩ 𝐴 = 𝔮𝑖, and so
𝑏 ∈ 𝔮1 ∩ … ∩ 𝔮𝑟 = 𝑎𝐴, as required.

⇐: Let 𝑎 ∈ 𝐹(𝐴) be integral over 𝐴. Then 𝑎 is integral over 𝐴𝔭 for all prime ideals 𝔭
of height 1, and so 𝑎 ∈ ⋂𝐴𝔭 = 𝐴. 2

Proposition 12.6. A noetherian integral domain is a unique factorization domain if and
only if every prime ideal of height 1 is principal.

Proof. For the sufficiency, see 1.25. For the necessity, it suffices by Proposition 1.26 to
show that every irreducible element 𝑎 is prime. Let 𝔭 be a minimal among the prime
ideals containing (𝑎). According to the principal ideal theorem (3.52; CA, 21.3), 𝔭 has
height 1, and so is principal, say, 𝔭 = (𝑏). Now 𝑎 = 𝑏𝑐, and, because 𝑎 is irreducible, 𝑐 is
a unit. Therefore (𝑎) = (𝑏) = 𝔭, and so 𝑎 is prime. 2

Let𝐴 be a integrally closed integral domain, and let𝐹 be its field of fractions. For each
prime ideal 𝔭, 𝐴𝔭 is a discrete valuation ring, and we let ord𝔭 denote the corresponding
additive valuation ord𝔭∶ 𝐹 ↠ ℤ ⊔ {∞}.
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Corollary 12.7. With the above notation, there is an exact sequence

0 𝐴× 𝐾×
⨁

ht(𝔭)=1
ℤ

𝑎 (ord𝔭(𝑎))

←→ ←→ ←→

↤→

The map at right is surjective if and only if 𝐴 is a unique factorization domain.

Proof. For any nonzero element 𝑎 of 𝐴, the prime ideals 𝔭 such that ord𝔭(𝑎) ≠ 0 are
the prime divisors of (𝑎). Hence, the maps ord𝔭 do send 𝐹× into the direct sum. The
first part of the statement follows from 12.1(b) and the second part from 12.6. 2

b. Divisors

Recall that a normal ring is an integral domain that is integrally closed in its field of
fractions, and that a variety 𝑉 is normal if 𝒪𝑣 is a normal ring for all 𝑣 ∈ 𝑉. Equivalent
condition: for every open connected affine subset 𝑈 of 𝑉, 𝛤(𝑈,𝒪𝑉) is a normal ring.

Remark 12.8. Let 𝑉 be a projective variety, say, defined by a homogeneous ring 𝑅.
When 𝑅 is normal, 𝑉 is said to be projectively normal. If 𝑉 is projectively normal, then
it is normal, but the converse statement is false.

Assume now that 𝑉 is normal and irreducible.
A prime divisor on 𝑉 is an irreducible subvariety of 𝑉 of codimension 1. A divisor

on 𝑉 is an element of the free abelian group Div(𝑉) generated by the prime divisors.
Thus a divisor 𝐷 can be written uniquely as a finite (formal) sum

𝐷 =
∑

𝑛𝑖𝑍𝑖, 𝑛𝑖 ∈ ℤ, 𝑍𝑖 a prime divisor on 𝑉.

The support |𝐷| of𝐷 is the union of the 𝑍𝑖 corresponding to nonzero 𝑛𝑖. A divisor is said
to be effective (or positive) if 𝑛𝑖 ≥ 0 for all 𝑖. We get a partial ordering on the divisors by
defining 𝐷 ≥ 𝐷′ to mean 𝐷 − 𝐷′ ≥ 0.

Because 𝑉 is normal, there is associated with every prime divisor 𝑍 on 𝑉 a discrete
valuation ring 𝒪𝑍 . This can be defined, for example, by choosing an open affine subvari-
ety𝑈 of𝑉 such that𝑈∩𝑍 ≠ ∅; then𝑈∩𝑍 is a maximal proper closed subset of𝑈, and so
the ideal 𝔭 corresponding to it is minimal among the nonzero ideals of 𝑅 = 𝛤(𝑈,𝒪); so
𝑅𝔭 is a normal ring with exactly one nonzero prime ideal 𝔭𝑅— it is therefore a discrete
valuation ring (CA 20.2), which is defined to be 𝒪𝑍 . More intrinsically we can define
𝒪𝑍 to be the set of rational functions on 𝑉 that are defined an open subset 𝑈 of 𝑉 with
𝑈 ∩ 𝑍 ≠ ∅.

Let ord𝑍 be the valuation of 𝑘(𝑉)× ↠ ℤ with valuation ring 𝒪𝑍 . The divisor of a
nonzero element 𝑓 of 𝑘(𝑉) is defined to be

div(𝑓) =
∑

ord𝑍(𝑓) ⋅ 𝑍.

The sum is over all the prime divisors of 𝑉, but in fact ord𝑍(𝑓) = 0 for all but finitely
many 𝑍’s. In proving this, we can assume that 𝑉 is affine (because it is a finite union of
affines), say 𝑉 = Spm(𝑅). Then 𝑘(𝑉) is the field of fractions of 𝑅, and so we can write
𝑓 = 𝑔∕ℎ with 𝑔, ℎ ∈ 𝑅, and div(𝑓) = div(𝑔) − div(ℎ). Therefore, we can assume 𝑓 ∈ 𝑅.
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The zero set of 𝑓, 𝑉(𝑓) either is empty or is a finite union of prime divisors, 𝑉 = ⋃𝑍𝑖
(3.43) and ord𝑍(𝑓) = 0 unless 𝑍 is one of the 𝑍𝑖.

The map
𝑓 ↦ div(𝑓)∶ 𝑘(𝑉)× → Div(𝑉)

is a homomorphism. A divisor of the form div(𝑓) is said to be principal, and two divisors
are said to be linearly equivalent, denoted 𝐷 ∼ 𝐷′, if they differ by a principal divisor.

When 𝑉 is nonsingular, the Picard group Pic(𝑉) of 𝑉 is defined to be the group of
divisors on 𝑉 modulo principal divisors. (Later, we shall define Pic(𝑉) for an arbitrary
variety; when 𝑉 is singular it will differ from the group of divisors modulo principal
divisors, even when 𝑉 is normal.)

Example 12.9. Let𝐶 be a nonsingular affine curve corresponding to the affine 𝑘-algebra
𝑅. Because 𝐶 is nonsingular, 𝑅 is a Dedekind domain. A prime divisor on 𝐶 can be
identified with a nonzero prime divisor in 𝑅, a divisor on 𝐶 with a fractional ideal, and
𝑃𝑖𝑐(𝐶) with the ideal class group of 𝑅.

Let𝑈 be an open subset of 𝑉, and let 𝑍 be a prime divisor of 𝑉. Then 𝑍 ∩𝑈 is either
empty or is a prime divisor of𝑈. We define the restriction of a divisor 𝐷 = ∑𝑛𝑍𝑍 on 𝑉
to 𝑈 to be

𝐷|𝑈 =
∑

𝑍∩𝑈≠∅
𝑛𝑍 ⋅ 𝑍 ∩ 𝑈.

When 𝑉 is nonsingular, every divisor 𝐷 is locally principal, i.e., every point 𝑃 has
an open neighbourhood 𝑈 such that the restriction of 𝐷 to 𝑈 is principal. It suffices to
prove this for a prime divisor 𝑍. If 𝑃 is not in the support of 𝐷, we can take 𝑓 = 1. The
prime divisors passing through 𝑃 are in one-to-one correspondence with the prime ideals
𝔭 of height 1 in 𝒪𝑃, i.e., the minimal nonzero prime ideals. Our assumption implies
that 𝒪𝑃 is a regular local ring. It is a (fairly hard) theorem in commutative algebra that
a regular local ring is a unique factorization domain. It is a (fairly easy) theorem that
a noetherian integral domain is a unique factorization domain if every prime ideal of
height 1 is principal (CA 21.4). Thus 𝔭 is principal in 𝒪𝔭, and this implies that it is
principal in 𝛤(𝑈,𝒪𝑉) for some open affine set 𝑈 containing 𝑃.

If 𝐷|𝑈 = div(𝑓), then we call 𝑓 a local equation for 𝐷 on 𝑈.

c. Intersection theory.

Fix a nonsingular variety 𝑉 of dimension 𝑛 over a field 𝑘, assumed to be perfect. Let
𝑊1 and𝑊2 be irreducible closed subsets of 𝑉, and let 𝑍 be an irreducible component of
𝑊1 ∩𝑊2. Then intersection theory attaches a multiplicity to 𝑍. We shall only do this in
an easy case.

Divisors.

Let 𝑉 be a nonsingular variety of dimension 𝑛, and let 𝐷1, … , 𝐷𝑛 be effective divisors on
𝑉. We say that 𝐷1, … , 𝐷𝑛 intersect properly at 𝑃 ∈ |𝐷1| ∩ … ∩ |𝐷𝑛| if 𝑃 is an isolated
point of the intersection. In this case, we define

(𝐷1 ⋅ … ⋅ 𝐷𝑛)𝑃 = dim𝑘 𝒪𝑃∕(𝑓1, … , 𝑓𝑛)

where 𝑓𝑖 is a local equation for 𝐷𝑖 near 𝑃. The hypothesis on 𝑃 implies that this is finite.
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Example 12.10. In all the examples, the ambient variety is a surface.
(a) Let 𝑍1 be the affine plane curve 𝑌2 − 𝑋3, let 𝑍2 be the curve 𝑌 = 𝑋2, and let

𝑃 = (0, 0). Then

(𝑍1 ⋅ 𝑍2)𝑃 = dim𝑘[𝑋, 𝑌](𝑋,𝑌)∕(𝑌 − 𝑋2, 𝑌2 − 𝑋3) = dim𝑘[𝑋](𝑋)∕(𝑋4 − 𝑋3) = 3.

To see this, note that 𝑋 − 1 is invertible in 𝑘[𝑋](𝑋), and so

𝑘[𝑋](𝑋)∕(𝑋4 − 𝑋3) = 𝑘[𝑋](𝑋)∕(𝑋3) = 𝑘[𝑋]∕(𝑋3) = 3.

(b) If 𝑍1 and 𝑍2 are prime divisors, then (𝑍1 ⋅ 𝑍2)𝑃 = 1 if and only if 𝑓1, 𝑓2 are local
uniformizing parameters at 𝑃. Equivalently, (𝑍1 ⋅ 𝑍2)𝑃 = 1 if and only if 𝑍1 and 𝑍2 are
transversal at 𝑃, that is, 𝑇𝑍1(𝑃) ∩ 𝑇𝑍2(𝑃) = {0}.

(c) Let 𝐷1 be the 𝑥-axis, and let 𝐷2 be the cuspidal cubic 𝑌2 − 𝑋3. For 𝑃 = (0, 0),
(𝐷1 ⋅ 𝐷2)𝑃 = 3.

(d) In general, (𝑍1 ⋅ 𝑍2)𝑃 is the “order of contact” of the curves 𝑍1 and 𝑍2.

We say that 𝐷1, … , 𝐷𝑛 intersect properly if they do so at every point of intersection
of their supports; equivalently, if |𝐷1| ∩ … ∩ |𝐷𝑛| is a finite set. We then define the
intersection number

(𝐷1 ⋅ … ⋅ 𝐷𝑛) =
∑

𝑃∈|𝐷1|∩…∩|𝐷𝑛|
(𝐷1 ⋅ … ⋅ 𝐷𝑛)𝑃.

Example 12.11. Let 𝐶 be a curve. If 𝐷 = ∑𝑛𝑖𝑃𝑖, then the intersection number

(𝐷) =
∑

𝑛𝑖[𝑘(𝑃𝑖) ∶ 𝑘].

By definition, this is the degree of 𝐷.

Consider a regular map 𝛼∶ 𝑊 → 𝑉 of connected nonsingular varieties, and let 𝐷 be
a divisor on 𝑉 whose support does not contain the image of𝑊. There is then a unique
divisor 𝛼∗𝐷 on𝑊 with the following property: if 𝐷 has local equation 𝑓 on the open
subset 𝑈 of 𝑉, then 𝛼∗𝐷 has local equation 𝑓◦𝛼 on 𝛼−1𝑈. (Use AG, ??, to see that this
does define a divisor on𝑊; if the image of 𝛼 is disjoint from |𝐷|, then 𝛼∗𝐷 = 0.)

Example 12.12. Let 𝐶 be a curve on a surface 𝑉, and let 𝛼∶ 𝐶′ → 𝐶 be the normaliza-
tion of 𝐶. For any divisor 𝐷 on 𝑉,

(𝐶 ⋅ 𝐷) = deg 𝛼∗𝐷.

Lemma 12.13 (Additivity). Let 𝐷1, … , 𝐷𝑛, 𝐷 be divisors on 𝑉. If (𝐷1 ⋅ … ⋅ 𝐷𝑛)𝑃 and
(𝐷1 ⋅ … ⋅ 𝐷)𝑃 are both defined, then so also is (𝐷1 ⋅ … ⋅ 𝐷𝑛 + 𝐷)𝑃, and

(𝐷1 ⋅ … ⋅ 𝐷𝑛 + 𝐷)𝑃 = (𝐷1 ⋅ … ⋅ 𝐷𝑛)𝑃 + (𝐷1 ⋅ … ⋅ 𝐷)𝑃.

Proof. One writes some exact sequences. See Shafarevich 1994, IV.1.2. 2

Note that in intersection theory, unlike every other branch of mathematics, we add
first, and then multiply.

Since every divisor is the difference of two effective divisors, Lemma 12.8 allows
us to extend the definition of (𝐷1 ⋅ … ⋅ 𝐷𝑛) to all divisors intersecting properly (not just
effective divisors).
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Lemma 12.14 (Invariance under linear equivalence). Assume 𝑉 is complete. If
𝐷𝑛 ∼ 𝐷′

𝑛, then
(𝐷1 ⋅ … ⋅ 𝐷𝑛) = (𝐷1 ⋅ … ⋅ 𝐷′

𝑛).

Proof. By additivity, it suffices to show that (𝐷1 ⋅ … ⋅ 𝐷𝑛) = 0 if 𝐷𝑛 is a principal divisor.
For 𝑛 = 1, this is just the statement that a function has as many poles as zeros (counted
with multiplicities). Suppose 𝑛 = 2. By additivity, we may assume that 𝐷1 is a curve,
and then the assertion follows from Example 12.12 because

𝐷 principal ⇒ 𝛼∗𝐷 principal.

The general case may be reduced to this last case (with some difficulty). See Shafare-
vich 1994, IV.1.3. 2

Lemma 12.15. For any 𝑛 divisors 𝐷1, … , 𝐷𝑛 on an 𝑛-dimensional variety, there exists 𝑛
divisors 𝐷′

1, … , 𝐷
′
𝑛 intersect properly.

Proof. See Shafarevich 1994, IV.1.4. 2

We can use the last two lemmas to define (𝐷1 ⋅ … ⋅ 𝐷𝑛) for any divisors on a complete
nonsingular variety 𝑉: choose 𝐷′

1, … , 𝐷
′
𝑛 as in the lemma, and set

(𝐷1 ⋅ … ⋅ 𝐷𝑛) = (𝐷′
1 ⋅ … ⋅ 𝐷′

𝑛).

Example 12.16. Let 𝐶 be a smooth complete curve over ℂ, and let 𝛼∶ 𝐶 → 𝐶 be a
regular map. Then the Lefschetz trace formula states that

(∆ ⋅ 𝛤𝛼) = Tr(𝛼|𝐻0(𝐶,ℚ)−Tr(𝛼|𝐻1(𝐶,ℚ)+Tr(𝛼|𝐻2(𝐶,ℚ).

In particular, we see that (∆ ⋅ ∆) = 2 − 2𝑔, which may be negative, even though ∆ is an
effective divisor.

Let𝛼∶ 𝑊 → 𝑉 be a finitemap of irreducible varieties. Then𝑘(𝑊) is a finite extension
of 𝑘(𝑉), and the degree of this extension is called the degree of 𝛼. If 𝑘(𝑊) is separable
over 𝑘(𝑉) and 𝑘 is algebraically closed, then there is an open subset 𝑈 of 𝑉 such that
𝛼−1(𝑢) consists exactly 𝑑 = deg 𝛼 points for all 𝑢 ∈ 𝑈. In fact, 𝛼−1(𝑢) always consists of
exactly deg 𝛼 points if one counts multiplicities. Number theorists will recognize this as
the formula

∑𝑒𝑖𝑓𝑖 = 𝑑. Here the 𝑓𝑖 are 1 (if we take 𝑘 to be algebraically closed), and 𝑒𝑖
is the multiplicity of the 𝑖th point lying over the given point.

A finite map 𝛼∶ 𝑊 → 𝑉 is flat if every point 𝑃 of 𝑉 has an open neighbourhood 𝑈
such that 𝛤(𝛼−1𝑈,𝒪𝑊) is a free 𝛤(𝑈,𝒪𝑉)-module — it is then free of rank deg 𝛼.

Theorem 12.17. Let 𝛼∶ 𝑊 → 𝑉 be a finite map between nonsingular varieties. For any
divisors 𝐷1, … , 𝐷𝑛 on 𝑉 intersecting properly at a point 𝑃 of 𝑉,

∑

𝛼(𝑄)=𝑃
(𝛼∗𝐷1 ⋅ … ⋅ 𝛼∗𝐷𝑛) = deg 𝛼 ⋅ (𝐷1 ⋅ … ⋅ 𝐷𝑛)𝑃.

Proof. After replacing 𝑉 by a sufficiently small open affine neighbourhood of 𝑃, we
may assume that 𝛼 corresponds to a map of rings 𝐴 → 𝐵 and that 𝐵 is free of rank
𝑑 = deg 𝛼 as an 𝐴-module. Moreover, we may assume that 𝐷1, … , 𝐷𝑛 are principal with
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equations 𝑓1, … , 𝑓𝑛 on 𝑉, and that 𝑃 is the only point in |𝐷1| ∩ … ∩ |𝐷𝑛|. Then𝔪𝑃 is
the only ideal of 𝐴 containing 𝔞 = (𝑓1, … , 𝑓𝑛). Set 𝑆 = 𝐴 ∖𝔪𝑃; then

𝑆−1𝐴∕𝑆−1𝔞 = 𝑆−1(𝐴∕𝔞) = 𝐴∕𝔞

because 𝐴∕𝔞 is already local. Hence

(𝐷1 ⋅ … ⋅ 𝐷𝑛)𝑃 = dim𝐴∕(𝑓1, … , 𝑓𝑛).

Similarly,
(𝛼∗𝐷1 ⋅ … ⋅ 𝛼∗𝐷𝑛)𝑃 = dim𝐵∕(𝑓1◦𝛼,… , 𝑓𝑛◦𝛼).

But 𝐵 is a free 𝐴-module of rank 𝑑, and

𝐴∕(𝑓1, … , 𝑓𝑛) ⊗𝐴 𝐵 = 𝐵∕(𝑓1◦𝛼,… , 𝑓𝑛◦𝛼).

Therefore, as 𝐴-modules, and hence as 𝑘-vector spaces,

𝐵∕(𝑓1◦𝛼,… , 𝑓𝑛◦𝛼) ≈ (𝐴∕(𝑓1, … , 𝑓𝑛))𝑑

which proves the formula. 2

Example 12.18. Assume 𝑘 is algebraically closed of characteristic 𝑝 ≠ 0. Let 𝛼∶ 𝔸1 →
𝔸1 be the Frobenius map 𝑐 ↦ 𝑐𝑝. It corresponds to the map 𝑘[𝑋] → 𝑘[𝑋], 𝑋 ↦ 𝑋𝑝, on
rings. Let 𝐷 be the divisor 𝑐. It has equation 𝑋 − 𝑐 on 𝔸1, and 𝛼∗𝐷 has the equation
𝑋𝑝 − 𝑐 = (𝑋 − 𝛾)𝑝. Thus 𝛼∗𝐷 = 𝑝(𝛾), and so

deg(𝛼∗𝐷) = 𝑝 = 𝑝 ⋅ deg(𝐷).

The general case.

Let 𝑉 be a nonsingular connected variety. A cycle of codimension 𝑟 on 𝑉 is an element
of the free abelian group 𝐶𝑟(𝑉) generated by the prime cycles of codimension 𝑟.

Let 𝑍1 and 𝑍2 be prime cycles on any nonsingular variety 𝑉, and let𝑊 be an irre-
ducible component of 𝑍1 ∩ 𝑍2. Then

dim 𝑍1 + dim 𝑍2 ≤ dim 𝑉 + dim 𝑊,

and we say 𝑍1 and 𝑍2 intersect properly at𝑊 if equality holds.
Define 𝒪𝑉,𝑊 to be the set of rational functions on 𝑉 that are defined on some open

subset 𝑈 of 𝑉 with 𝑈 ∩ 𝑊 ≠ ∅— it is a local ring. Assume that 𝑍1 and 𝑍2 intersect
properly at𝑊, and let 𝔭1 and 𝔭2 be the ideals in 𝒪𝑉,𝑊 corresponding to 𝑍1 and 𝑍2 (so
𝔭𝑖 = (𝑓1, 𝑓2, ..., 𝑓𝑟) if the 𝑓𝑗 define𝑍𝑖 in some open subset of𝑉meeting𝑊). The example
of divisors on a surface suggests that we should set

(𝑍1 ⋅ 𝑍2)𝑊 = dim𝑘 𝒪𝑉,𝑊∕(𝔭1, 𝔭2),

but examples show this is not a good definition. Note that

𝒪𝑉,𝑊∕(𝔭1, 𝔭2) = 𝒪𝑉,𝑊∕𝔭1 ⊗𝒪𝑉,𝑊 𝒪𝑉,𝑊∕𝔭2.

It turns out that we also need to consider the higher Tor terms. Set

𝜒𝒪(𝒪∕𝔭1, 𝒪∕𝔭2) =
dim𝑉∑

𝑖=0
(−1)𝑖 dim𝑘(Tor𝒪𝑖 (𝒪∕𝔭1, 𝒪∕𝔭2))
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where 𝒪 = 𝒪𝑉,𝑊 . It is an integer ≥ 0, and = 0 if 𝑍1 and 𝑍2 do not intersect properly at
𝑊. When they do intersect properly, we define

(𝑍1 ⋅ 𝑍2)𝑊 = 𝑚𝑊, 𝑚 = 𝜒𝒪(𝒪∕𝔭1, 𝒪∕𝔭2).
When 𝑍1 and 𝑍2 are divisors on a surface, the higher Tor’s vanish, and so this definition
agrees with the previous one.

Now assume that 𝑉 is projective. It is possible to define a notion of rational equiv-
alence for cycles of codimension 𝑟: let𝑊 be an irreducible subvariety of codimension
𝑟 − 1, and let 𝑓 ∈ 𝑘(𝑊)×; then div(𝑓) is a cycle of codimension 𝑟 on 𝑉 (since𝑊 may not
be normal, the definition of div(𝑓) requires care), and we let 𝐶𝑟(𝑉)′ be the subgroup of
𝐶𝑟(𝑉) generated by such cycles as𝑊 ranges over all irreducible subvarieties of codimen-
sion 𝑟 − 1 and 𝑓 ranges over all elements of 𝑘(𝑊)×. Two cycles are said to be rationally
equivalent if they differ by an element of 𝐶𝑟(𝑉)′, and the quotient of 𝐶𝑟(𝑉) by 𝐶𝑟(𝑉)′
is called the Chow group 𝐶𝐻𝑟(𝑉). A discussion similar to that in the case of a surface
leads to well-defined pairings

𝐶𝐻𝑟(𝑉) × 𝐶𝐻𝑠(𝑉) → 𝐶𝐻𝑟+𝑠(𝑉).
In general, we know very little about the Chow groups of varieties — for example,

there has been little success at finding algebraic cycles on varieties other than the obvious
ones (divisors, intersections of divisors,...). However, there are many deep conjectures
concerning them, due to Beilinson, Bloch, Murre, and others.

We can restate our definition of the degree of a variety in ℙ𝑛 as follows: a closed
subvariety 𝑉 of ℙ𝑛 of dimension 𝑑 has degree (𝑉 ⋅ 𝐻) for any linear subspace of ℙ𝑛 of
codimension 𝑑. (All linear subspaces of ℙ𝑛of codimension 𝑟 are rationally equivalent,
and so (𝑉 ⋅ 𝐻) is independent of the choice of𝐻.)

Remark 12.19. (Bezout’s theorem). A divisor 𝐷 on ℙ𝑛 is linearly equivalent of 𝛿𝐻,
where 𝛿 is the degree of 𝐷 and𝐻 is any hyperplane. Therefore

(𝐷1 ⋅ ⋯ ⋅ 𝐷𝑛) = 𝛿1⋯𝛿𝑛
where 𝛿𝑗 is the degree of 𝐷𝑗. For example, if 𝐶1 and 𝐶2 are curves in ℙ2 defined by
irreducible polynomials 𝐹1 and 𝐹2 of degrees 𝛿1 and 𝛿2 respectively, then 𝐶1 and 𝐶2
intersect in 𝛿1𝛿2 points (counting multiplicities).

d. Exercises

You may assume the characteristic is zero if you wish.

12-1. Let 𝑉 = 𝑉(𝐹) ⊂ ℙ𝑛, where 𝐹 is a homogeneous polynomial of degree 𝛿 without
multiple factors. Show that 𝑉 has degree 𝛿 according to the definition in the notes.

12-2. Let 𝐶 be a curve in 𝔸2 defined by an irreducible polynomial 𝐹(𝑋, 𝑌), and assume
𝐶 passes through the origin. Then𝐹 = 𝐹𝑚+𝐹𝑚+1+⋯,𝑚 ≥ 1, with𝐹𝑚 the homogeneous
part of 𝐹 of degree𝑚. Let 𝜎∶ 𝑊 → 𝔸2 be the blow-up of 𝔸2 at (0, 0), and let 𝐶′ be the
closure of 𝜎−1(𝐶 ∖ (0, 0)). Let 𝑍 = 𝜎−1(0, 0). Write 𝐹𝑚 = ∏𝑠

𝑖=1(𝑎𝑖𝑋 + 𝑏𝑖𝑌)𝑟𝑖 , with the
(𝑎𝑖 ∶ 𝑏𝑖) being distinct points of ℙ1, and show that 𝐶′ ∩ 𝑍 consists of exactly 𝑠 distinct
points.

12-3. Find the intersection number of 𝐷1∶ 𝑌2 = 𝑋𝑟 and 𝐷2∶ 𝑌2 = 𝑋𝑠, 𝑟 > 𝑠 > 2, at
the origin.

12-4. Find Pic(𝑉) when 𝑉 is the curve 𝑌2 = 𝑋3.
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