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PREFACE

In the late fifties and early sixties, Tate (and Poitou) found
some important duality theorems concerning the Galois cohomology of
finite modules and abelian varieties over local and global fields.

About 1964, Artin and Verdier extended some of the results to
étale cohomology groups over rings of integers in local and global
fields.

Since then many people (Artin, Bester, Bégueri, Mazur, McCallum,
the author, Roberts, Shatz, Vvedens’kii) have generalized these
results to flat cohomology groups.

Much of the best of this work has not been fully published. My
initial purpose in preparing these notes was simply to write down a
complete set of proofs before they were forgotten, but I have also
tried to give an organized account of the whole subject. Only a few
of the theorems in these notes are new, but many results have been
sharpened, and a significant proportion of the proofs have not been
published before.

The first chapter proves the theorems on Galois cohomology
announced by Tate in his talk at the International Congress at
Stockholm in 1962, and describes later work in the same area. The
second chapter proves the theorem of Artin and Verdier on étale
cohomology and also various generalizations of it. In the final
chapter improvements using flat cohomology are described.

As far as possible, theorems are proved in the context in which
they are stated: thus theorems on Galois cohomology are proved using
only Galois cohomology, and theorems on étale cohomology are proved
using only étale cohomology.

Each chapter begins with a summary of its contents; each section
ends with a list of its sources.

It is a pleasure to thank all those with whom I have discussed
these questions over the years, but especially M. Artin, P. Berthe-
lot, L. Breen, S. Bloch, K. Kato, S. Lichtenbaum, W. McCallum, B.
Mazur, W. Messing, L. Roberts, and J. Tate.

Parts of the author’s research contained in this volume has been
supported by N.S.F.

Finally I mention that, thanks to the computer, it has been
possible to produce this volume without recourse to typist, copy
editor, or type-setter.
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NOTATIONS AND OONVENTIONS

We list our usual notations and conventions. When they are not
followed in a particular section, this is noted at the start of the
section.

A global field is a finite extension of Q or is finitely gene-
rated and of transcendence degree one over a finite field. A local
field is R, C, or a field that is locally compact relative to a dis-
crete valuation. Thus it is a finite extension of Qp, Fp((T)), or R.
If v is a prime of a global field, then | Iv denotes the valuation at
v normalized in the usual way so that the product formula holds, and
Ov ={a €K | |a|v ¢ 1}. The completions of K and UV relative to
| |V are denoted by KV and 8V.

For a field K, Ka and KS denote the algebraic and separable
algebraic closures of K, and Kab denotes the maximal abelian
extension of K. For a local field K, Kun is the maximal unramified
extension of K. We sometimes write G, for the absolute Galois group

K

Gal(Ks/K) of K and G for Gal(F/K). By char(K) we mean the char-

F/K

acteristic exponent of K, that is, char(K) is p if K has character-

istic p # O and is 1 otherwise. For a Hausdorff topological group G,

ab . . :
G is the quotient of G by the closure of its commutator subgroup.

Thus Cab is the maximal abelian Hausdorff quotient group of G, and

ab
GK = Gal(Kab/K).

If M is an abelian group (or, more generally, an object in an
abelian category) and m is an integer, then Mm and M(m) are the ker-

nel and cokernel of multiplication by m on M. Moreover M(m) is the
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m-primary component Un an and Mm is the m-divisible subgroup

-div
ﬂn Im(mni M — M). The divisible subgroup Mdiv of M is ﬂm Mm—div'

We write TmM for lim an, and ﬁ for the completion of M with respect
to the topology defined by the subgroups of finite index (sometimes
the subgroups are restricted to those of finite index a power of a
fixed integer m, and sometimes to those that are open with respect to
some topology on M). If M is finite [M] denotes its order. A group
is of cofinite-type if it is torsion and Mm is finite for all
integers m.

As befits a work with the title of this one, we shall need to
consider a many different types of duals. In general, M* will denote
Homcts(M,Q/l), the group of continuous characters of finite order of
M. Thus if M is a discrete torsion abelian group, then M* is its
compact Pontryagin dual, and if M is an profinite abelian group, then
M* is its discrete torsion Pontryagin dual. If M is a module over GK
for some field K, then MD denotes the dual Hom(M,K:); when M is a
finite group scheme, MD denotes the Cartier dual ﬁom(M,Gm). The dual
(Picard variety) of an abelian variety is denoted by At For a
vector space M, MY denotes the linear dual of M.

All algebraic groups and group schemes will be commutative

(unless stated otherwise). If T is a torus over a field k, then

X*(T) is the group Homk (Tk .Gm) of characters of T and X*(T) is the
s s
group Homk (Gm,Tk ) of cocharacters (also called multiplicative one—
s s

parameter subgroups).

There seems to be no general agreement on what signs should be
used in homological algebra. Fortunately, the signs of the maps in
these notes will not be important, but the reader should be aware

that when a diagram is said to commute, it may only anticommute. I
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have generally followed the sign conventions in [Berthelot, Breen,
and Messing (1982), Chapter 0O].

We sometimes use = to denote a canonical isomorphism, and the
symbol X ng means that X is defined to be Y, or that X equals Y by
definition.

In Chapters II and III, we shall need to consider several dif-
ferent topologies on a scheme X (always assumed to be locally
Noetherian or the perfection of a locally Noetherian scheme). These
are denoted as follows:

Xet (small étale site) is the category of schemes étale over X
endowed with the étale topology;

XEt (big étale site) is the category of schemes locally of finite-
type over X endowed with the étale topology:

XSm (smooth site) is the category of schemes smooth over X endowed
with the smooth topology (covering families are surjective families
of smooth maps);

qu (small fpgf site) is the category of schemes flat and quasi-
finite over X endowed with the flat topology;

Xfl (big flat site) is the category of schemes locally of finite-
type over X endowed with the flat topology;

pr (perfect site) see (I11.0).

The category of sheaves of abelian groups on a site X* is denoted

by S(X).



CHAPTER I

GALOIS OOHOMOLOGY

In 81 we prove a very general duality theorem that applies when-
ever one has a class formation. The theorem is used in §2 to prove a
duality theorem for modules over the Galois group of a local field.
This section also contains an expression for the Fuler-Poincaré char-
acteristic of such a module. In 83, these results are used to prove
Tate’s duality theorem for abelian varieties over a local field.

The next four sections concern global fields. Tate’'s duality
theorem on modules over the Galois group of a global field is ob-—
tained in 84 by applying the general result in &1 to the class form—
ation of the global field and combining the resulting theorem with
the local results in §82. Section 5 derives a formula’ for the Euler-—
Poincaré characteristic of such a module. Tate's duality theorems
for abelian varieties over global fields are proved in 6, and in the
following section it is shown that the validity of the conjecture of
Birch and Swinnerton-Dyer for an abelian variety over a number field
depends only on the isogeny class of the variety.

The final three sections treat rather diverse topics. In §8 a
duality theorem is proved for tori that implies the abelian case of
Langlands’s conjectures for a nonabelian class field theory. The
next section briefly describes some of the applications that have
been made of the duality theorems: to the Hasse principle for finite
modules and algebraic groups, to the existence of forms of algebraic

groups, to Tamagawa numbers of algebraic tori over global fields, and
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to the central embedding problem for Galois groups. In the appendix,
a class field theory is developed for Henselian local fields whose
residue fields are quasi-finite and for function fields in one vari-
able over quasi-finite fields.

In this chapter, the reader is assumed to be familiar with basic
Galois cohomology (the first two chapters of [Serre (1964)] or the
first four chapters of [Shatz (1972)]), class field theory ([Serre
(1967a)] and [Tate (1967a)]). and, in a few sections, abelian var-—
ieties ([Milne (1986b)]).

Throughout the chapter, when G is a profinite group, "G-module”
will mean "discrete G-module”, and the cohomology group Hr(G,M) will
be defined using continuous cochains. The category of discrete

G-modules is denoted by Modc.

80 Prelimiparies

Throughout this section, G will be a profinite group. By a
torsion-free G-module, we mean a G-module that is torsion-free as an

abelian group.

Tate (modified) cohomology groups
([Serre (1962), VII], [Weiss (1969)].)
When G is finite, there are Tate cohomology groups H;(G,M),

r € Z, M a G-module, such that

H;:(G,M) = H(G.M), r > O,

H.?(C,M) MG/NGM, where N, = 3 0.
o€G
-1
H. (G.M) Ker(NG)/IGM. where I, = {> n o | > n_ = 0}.

" (G.M)

H_,(G.M), -r < -1.
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A short exact sequence of G-modules gives rise to a long exact se-
quence of Tate cohomology groups (infinite in both directions).

A complete resolution for G is an exact sequence

d d d d
L_=___-——>L2-—2—>L NS —O—u; =L — ...

1 0 1 -2
of finitely generated free Z[G]-modules, together with an element

e € L? that generates the image of d

1 For any complete resolution

o
of G, H;(G.M) is the rth cohomology group of the complex HomG(L.,M).

The map d. factors as

0

L,z -5

0 1

with e(x)e = do(x) and ¢(m) = me. If we let

+ d2 dl

L. = ... —>L2—>L1 —)LO

— d_l
L.:L_1—>L_2—)L_3—>.‘..

then H' (G.M) = H‘"(HomG(LT.M)), r 20, and H_(G,M) =
H“‘"”l(nomG(LT,M)), r>o0.

By the standard resolution Lf for G we mean the complex with L:
= Z[Gr] and the usual boundary map, so that Hom(Lf,M) is the complex
of nonhomogeneous cochains of M (see [Serre (1962), VII.3]). By the
standard complete resolution for G, we mean the complete resolution
obtained by splicing together LT with its dual (see [Weiss (1969},
I-4-17).

Except for Tate cohomology groups, we always set Hr(G,M) = 0 for
r < 0.

For any bilinear G-equivariant pairing of G-modules

MxN—>P

there is a family of cup-product pairings

e
(x.y) » xvy: HL(G.M) x H}(G,N) — H"°(G.)
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with the following properties:

(0.1.1) dxvy = d(xvy);

(0.1.2)  xvdy = (-1)%8a(xuy);
(0.1.3) xu(yvz) = (xvy)vz;
(0.1.4)  xuvy = (~-1)des(x)des(y)y ..
(0.1.5) Res(xuy) = Res(x)uRes(y):
(0.1.6) Inf(xvy) = Inf(x)vInf(y);

(d = boundary map, Res = restriction map; Inf = inflation map).

Theorem 0.2. (Tate-Nakayama) Let G be a finite group, C a G-module,
and u an element of H2(G,C). Suppose that for all subgroups H of G

(a) HY(H.C) = 0, and

(b) H2(H,C) has order equal to that of H and is generated by
Res(u).
Then, for any G-module M such that Tor?(M,C) = 0, cup-product with u
defines an isomorphism

x » sous HY(G.M) — I (G, Mec)

for all integers r.

Proof: [Serre (1962), I1X.8].

Extensions of G-modules

For G-modules M and N, define EXté(M,N) to be the set of homo-
topy classes of morphisms M° — N° of degree r, where M is any
resolution of M by G-modules and N' is any resolution of N by injec-
tive G-modules. One sees readily that different resolutions of M and
N give rise to canonically isomorphic groups Exté(M,N). On taking M~
to be M itself, we see that Exté(M,N) = Hr(HomG(M.N’)), and so
Exté(M,—) is the rth right derived functor of

N » Hom (M.N): Mod, — Ab. In particular, Ext(r;(z,N) = H'(G,N).
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There is a canonical product
(f.g) » f.gi Ext((N.P) x Extg(M.N) — Extl"S(M,P)

such that f.g is obtained from f: N - P° and g: M » N° by composi-
tion (here N' and P’ are injective resolutions of N and P). For

r = s = 0, the product can be identified with composition
(f.g) » feg: HomG(N,P) X HomG(M,N) — HomG(M,P).

When we take M = Z, and replace N and P with M and N, the pairing
becomes

r+s

Exté(M,N) x H®(G.M) — H""5(G,N).

An r-fold extension of M by N defines in a natural way a class
in Exté(M,N) (see [Bourbaki Alg. X.7.3] for one correct choice of
signs). Two such extensions define the same class if and only if
they are equivalent in the usual sense, and for r > 1, every element
of Extg(M,N) arises from such an extension (ibid. X.7.5). Therefore
Exté(M.N) can be identified with the set of equivalence classes of
r-fold extensions of M by N. With this identification, products are

obtained by splicing extensions (ibid. X.7.6). Let f € Extg(N,P);

r+
G

map defined by any r-fold extension of N by P representing f.

then the map g » f.g: Exté(M,N) — Ext s(M,P) is the r-fold boundary

A spectral sequence for Exts

Let M and N be G-modules, and write Hom(M,N) for the set of
homomorphisms from M to N as abelian groups. For f € Hom(M,N) and
o € G, define of to be m » U(f(a_lm)). Then Hom(M,N) is a G-module,
but it is not in general a discrete G-module. For a closed normal

subgroup H of G, set

ﬂomH(M,N) =U Hom(M,N)U (union over the open subgroups U, HC U C G)
U
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= {f € Hom(M,N)|of = f for all o in some U}.
Then ﬂomH(M,N) is a discrete G/H-module, and we define SxL;(M,N) to

be the rth right derived functor of the left exact functor

N » ﬂomH(M,N): ModG — HodG/H.

In the case that H = {1}, we drop it from the notation; in particu-
lar, #om(M,N) = U Hom(M,N)U with U running over all the open sub-
groups of G. If M is finitely generated, then ﬁomH(M,N) = HomH(M,N),
and so chﬁ(M,N) = Ext;(M,N); in particular, #Hom(M,N) = Hom(M,N)

{(homomorphisms as abelian groups).

Theorem 0.3. Let H be a closed normal subgroup of G, and let N and P
be G-modules. Then, for any G/H-module M such that Tor?(M.N) =0,
there is a spectral sequence

r+s
Ext(r;/H(M,ngZ(N,P)) = Extg (M8 N.P).

Proof: This will be shown to be the spectral sequence of a composite

of functors, but first we need some lemmas.

Lemma 0.4. For any G-modules N and P and G/H-module M, there is a

canonical isomorphism
Hom¢, .. (M, dom (N, P)) - Hom (M8, N, P).
Proof: There is a standard isomorphism
Hom(M,Hom(N,P)) =5 Hom(M®, N, P).

Take G-invariants. On the left we get Homc(M,Hom(N,P)), which equals
HomG(M.HomH(N.P)) because M is a G/H-module, and equals
HomG(M,ﬂamH(N,P)) because M is a discrete G/H-module. On the right

we get HomG(M®ZN,P).
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Lemma 0.5. If I is an injective G-module and N is a torsion-free
G-module, then ﬁomH(N,I) is an injective G/H-module.

Proof: We have to check that

HomG/H(—.ﬂamH(N.I))I ModG/H — Ab

is an exact functor, but (0.4) expresses it as the composite of the

two exact functors _®ZN and HomG(—,I).

Lemma 0.6. Let N and I be G-modules with I injective, and let M be a

G/H-module. Then there is a canonical isomorphism
Exty, (M, %o, (N, 1)) —> Hom_(TorZ(M,N), 1)
G/HY HY' G rr Tl

Proof: We use a resolution of N
0 — N1 - N0 — N -—0
by torsion-free G-modules to compute TorZ(M,N). Thus Tor?(M,N) and

Torg(M.N) = M®ZN fit into an exact sequence

z z
0 — Torl(M,N) - M®ZN1 — M®ZNO — TorO(M.N) — 0,

and TorZ(M,N) =0 for r > 2. For each open subgroup U of G contain-
ing H, there is a short exact sequence
0 - HomG(Z[G/U]®ZN,I) - HomG(Z[G/U]®ZNO’I) - HomG(Z[G/U]®ZN1.I) - 0.

I 1 I
HomU(N,I) HomU(NO.I) HomU(Nl.I)

The direct limit of these sequences is an injective resolution
0 — %omH(N,I) — ﬁomH(NO,I) — ﬁomH(Nl,I) — 0

. r
of ﬂomH(N.I). which we use to compute ExtG/H(M,%omH(N.I)). In the

diagram

a
HomG/H(M,%omH(NO.I)) —_— HomG/H(M,WomH(Nl,I))
lx lx
B
HomG(M®ZNO,I) —_— HomG(M®ZN1.I),
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we have

Ker(a) = Homc/H(M,ﬁomH(N,I)), Coker(a) = E (M,ﬂomH(N,I)).

1
Xtom

Ker(B) HomG(Torg(M.N).I). Coker(B) = HomG(Torf(M,N),I).

Thus the required isomorphisms are induced by the vertical maps in

the diagram.

We now prove the theorem. Lemma 0.4 shows that HomC(M®ZN,—) is
the composite of the functors ﬂomH(N.—) and HomG/H(M,—), and Lemma
0.6 shows that the first of these maps injective objects I to objects
that are acyclic for the second functor. Thus the spectral sequence
arises in the standard way from a composite of functors [Hilton and

Stammbach (1970)].

Example 0.7. Let M = N = Z, and replace P with M. The spectral
sequence then becomes the Hochschild-Serre spectral sequence

T+s

H(G/H. B3(H, M) = H3(G.M).

Example 0.8. Let M = Z and H = {1}, and replace N and P with M and
N. The spectral sequence then becomes

HT (G, extS(M,N)) = ExtE+S(M,N).
When M is finitely generated, this is simply a long exact sequence

1
0 = H!(G,Hom(M,N)) = Ext (M.N) ~ HO(G.Ext  (.N)) » H>(G.Hom(M.N)) -.

In particular, when we also have that N is divisible by all primes

occurring as the order of an element of M, then Extl(M,N) = 0, and so

H (G.Hom(M,N)) = Extg(M,N).

Example 0.9. 1In the case that N = Z, the spectral sequence becomes
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T

+
G S(M,P).

S
Exté/H(M,H (H,P)) = Ext

The map Exté/H(M.PH) — Exté(M,P) is obviously an isomorphism for r =
0; the spectral sequence shows that it is an isomorphism for r = 1 if
HI(H,P) = 0, and that it is an isomorphism for all r if HF(H,P) =0

for all r > O.

Remark 0.10. Assume that M is finitely generated. It follows from
the long exact sequence in (0.8) that Exté(M.N) is torsion for r > 1.
Moreover, if G and N are written compatibly as G = lzm Gi and N =
lim N, (Ni is a Gi—module) and the action of G on M factors through
each Gi’ then

r . r
ExtG(M,N) = lim Extci(M,Ni).

Remark 0.11. Let H be an closed subgroup of G, and let M be an
H-module. The corresponding induced G-module M* is the set of conti-
nuous maps a: G — M such that a(hx) = h.a(x) all h € H, x € G. The
group G acts on M_ by the rule: (ga)(x) = a(xg). The functor

M» M*l ModH — l(odG is right adjoint to the functor ModG — ModH

"regard a G-module as an H-module”: in other words,
HomG(N,M*) =, HomH(N.M), N a G-module, M an H-module.

Both functors are exact, and therefore M » M* preserves injectives
and the isomorphism extends to isomorphisms Exté(N,M*) - Ext;(N.M)
all r. In particular, there are canonical isomorphisms

H'(G.M,) —> H'(H.M) for all r. (Cf. [Serre (1964), 1.2.5].)

Augmented cup-products

Certain pairs of pairings give rise to cup-products with a

dimension shift.
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Proposition 0.12. Let
0O—M —-M—>M —0
0-—-N -—-N-—>DN'"—>0
be exact sequences of G-modules. Then a pair of pairings
M'"xN —P
M xN' —P
coinciding on M' x N' defines a canonical family of (augmented cup-—
product) pairings
HT(G M) x HS(G.N") — BTSN (c,p).

Proof: See [Lang (1966), Chapter V].

Remark 0.13. (a) The augmented cup-products have properties similar
to those listed in (0.1) for the usual cup-product.
(b) Augmented cup-products have a very natural definition in

terms of hypercohomology. The tensor product of two complexes

d d
o Moy e ® Enh

is defined to be the complex

0 1
Worn® 4 mlen® o mlen! 95 mlen!

with
0
d7(x®y) = dM(x)®y + x@dN(y),
dl(x®y + x'Qy') = x@dN(y) - dM(x‘)®y'.
With the notations in the proposition, let M" = (M' — M) and

N° = (N' — N). Also write P[-1] for the complex with P in the deg-
ree one and zero elsewhere. Then the hypercohomology groups
H'(G.M"), H'(G.N'), and H'(C.P[~1]) equal H' 1(G.M"), H'"1(G.N"). and

r-1
H (G.P) respectively, and to give a pair of pairings as in the
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proposition is the same as to give a map of complexes

M ® N° — P[-1]. Such a pair therefore defines a cup-product pair-
ing

r+s

H(G,M) x H¥(G,N') — W "5, P[-1]),

and this is the augmented cup-product.

Compatibility of pairings
We shall need to know how the Ext and cup-product pairings

compare.

Proposition 0.14. (a) Let M x N — P be a pairing of G-modules, and

consider the maps M — #om(N,P) and
r r r
H'(G.M) — H(G.#on(N,P)) — Ext (N.P)

induced by the pairing and the spectral sequence in {0.3). Then the
diagram

T+s

H'(G.M) x H5(G,N) — H'"5(G.P)  (cup-product)

1 I I

r+s

Exté(N,P) x H(G,N) — H"%(G,P)  (Ext pairing )

commutes (up to sign).

(b) Consider a pair of exact sequences

0 —>M —- M- M —0
0 —>N —N-—>SN'"—O0
and a pair of pairings
M'"xN —P
M xN' —P
coinciding on M' x N'. This data gives rise to canonical maps

H'(G.M") — Extl"'(N".P), and the diagram
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gr(c.n)  x 1%(G.N") — Hr+s+l(G,P) (augmented cup-product)

1 1 il

r+l r+s+1

Exty (N".P) x H3(G,N") — H (G.P)  (Ext pairing)

commutes (up to sign).
Proof: (a) This is standard, at least in the sense that everyone
assumes it to be true. There is a proof in a slightly more general
context in [Milne (1980), V.1.20], and [Gamst and Hoechsmann, (1970)]
contains a very full discussion of such things. (See also the dis-
cussion of pairings in the derived category in I11.0.)

(b) The statement in (a) holds also if M, N, and P are complexes.
If we regard the pair of pairings in (b) as a pairing of complexes
M x N° — P[~1] (notations as (0.13b)) and replace M, N, and P in

(a) with M, N, and P[-1], then the diagram in (a) becomes that in

r+1

b). (Explicity, the map H (G, M") — Ext
G

(N",P) is obtained as
follows: the pair of pairings defines a map of complexes

M' —> ¥om(N',P[-1]). and hence a map H' (G,M') — H' (G, Hom(N" , P[-1]):
but mr(G,M') = Hr_l(G,M), and there is an edge morphism

H° (G, %om(N" ,P[~1]) — ExtE(N' JP[-1]) = Exté(N".P).)

Conjugation of cohomology groups

Consider two profinite groups G and G', a G-module M, and a
G'-module M'. A homomorphism f: G' — G and an additive map
h: M — M' are said to be compatible if h(f(g').m) = g'.h(m) for

g' € G' and m € M. Such a pair induces homomorphisms

(£.h)L: H'(G.M) — H'(G'.M') for all r.

Proposition 0.15. Let M be a G-module, and let o € G. The maps

1

-1 - _
ad(o) = (gpogo }): G—Gand o =(mmo 1m): M — M are comp-
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atible, and (ad(a),o_l); : Hr(G,M) — HF(G,M) is the identity map for

all r.
Proof: The first assertion is obvious, and the second needs only to
be checked for r = O, where it is also obvious (see [Serre (1962),

VII.5]).

The proposition is useful in the following situation. Let K be
a global field and v a prime of K. The choice of an embedding
Ks — Kv s over K amounts to choosing an extension w of v to KS. and

the embedding identifies GK with the decomposition group Dw of w in
v

GK' A second embedding is the composite of the first with ad(o) for
some o € G (because GK acts transitively on the extensions of v to
Ks)' Let M be a GK—module. An embedding KS — Kv s defines a map

Hr(CK,M) — HF(GK ,M), and the proposition shows that the map is
v

independent of the choice of the embedding.

Extensions of algebraic groups

Let k be a field, and let G = Gal(ks/k). The category of alge-
braic group schemes over k is an abelian category Cpk {recall that
all group schemes are assumed to be commutative), and therefore it is
possible to define Exti(A,B) for objects A and B of Cpk to be the set
of equivalence classes of r-fold extensions of A by B (see [Mitchell
(1965), VII]). Alternatively, one can chose a projective resolution
A’ of A in the pro-category Pro~ka, and define Extﬂ(A.B) to be the
set of homotopy classes of maps A° — B of degree r (see [Oort
(1966)] or [Demazure and Gabriel (1970), V.2]). For any object A of
ka, A(ks) is discrete G-module, and we often write Hr(k,A) for

Hr(G,A(kS)).
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Proposition 0.16. Assume that k is perfect.
(a) The functor A » A(ks)i Cpk — ModG is exact.
(b) For all objects A and B in ka, there exists a canonical
pairing
Extf (A,B) x H°(k.A) H "% (k,B).
Proof: (a) This is obvious since ks is algebraically closed.
(b) The functor in {a) sends an r-fold exact sequence in ka to an

r-fold exact sequence in ModG, and it therefore defines a canonical

map Exti(A,B) — ExtE(A(ks),B(ks)). We define the pairing to be that

making
Extg,(A.B) x HS(k,A)  — HS(k.A)
1 I i
Extg(A(k,).B(ky)) x  H(G.A(k)) — H™S(6.B(k,))
commute.

Proposition 0.17. Assume that k is perfect, and let A and B be alge-
braic group schemes over k. Then there is a spectral sequence

H'(G.Ext; (A.B)) = ExtL+S(A,B).
S

Proof: See [Milne (1970a)].

Corollary 0.18. If k is perfect and N is a finite group scheme over
k of order prime to char(k), then Exti(N,Gm) = Fxtg(N(ks),k:) all r.

Proof: Clearly Homks(N,Gm) = HomG(N(ks),k:), and the table
[Oort (1966). p I1I.14-2] shows that Exti (N,Gm) =0 for s > O.
s

Therefore the proposition implies that ExtE(N.Gm) =

T X .
H'(G.Hom (N(k_).k ). which equals Exté(N(kS),k:) by (0.8).
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Topological abelian groups
Let M be an abelian group. In the next proposition we write M"

for the m-adic completion lzp M/m''M of M, and we let Zm =] Zé =7
2m

and @ :g][]mq;e =7 8,0.

Proposition 0.19. (a) For any abelian group M, M~ = (M/Mm_diV)A; if
M is finite, then M® = M(m), and if M is finitely generated, then M =

M®Zlm.

n

(b) For any abelian group M, lim M(m ) = (M®Z®/Z)(m), which is
zero if M is torsion and is isomorphic to ((Dm/lm)r if M is finitely
generated of rank r.

(c) For any abelian group, TmM = Hom(@m/lm,M) = Tm(Mm—div); it is
torsion-free.

. € . . P

(d) Write M = Homcts(M’Qm/lm)’ then for any finitely generated
abelian group M, M = (MA)* and X = M-,

(e) Let M be a discrete torsion abelian group and N a totally

disconnected compact abelian group, and let
MxN-—QZ

be a continuous pairing that identifies each group with the Pontry-

agin dual of the other. Then the exact annihilator of N

is M. ,
tors div

and so there is a nondegenerate pairing

M/Mdiv X Ntors — Wz

Proof: Easy.

Note that the proposition continues to hold if we take
m = "ﬂ p". that is, we take M" be the profinite completion of M,

Mm—div to be Mdiv' M(m) to be Mtor’ and so on.
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We shall be concerned with the exactness of completions and
duals of exact sequences. Note that the completion of the exact

sequence
0—>72Z—>Q—>QZ—0
for the profinite topology is
~N
0—Z—>0—D0—00,

which is far from being exact. To be able to state a good result, we
need the notion of a strict morphism. Recall [Bourbaki Tpgy,
I11.2.8] that a continuous homomorphism f: G — H of topological
groups is said to be a strict morphism if the induced map

G/Ker(f) — f(G) is an isomorphism of topological groups. Equi-
valently, f is strict if the image of every open subset of G is open
in f(G). Every continuous homomorphism of a compact group to a Haus-
dorff group is strict, and obviously every continuous homomorphism
from a topological group to a discrete group is strict. The Baire
category theorem implies that a continuous homomorphism from a
locally compact o-compact group ;045 locally compact Hausdoff group
is a strict morphism [Hewitt and Ross (1963), 5.29]. (A space is
o-compact if it is a countable union of compact subspaces.)

Recall also that it is possible to define the completion a of a
topological group when the group has a basis of neighbourhoods (Gi)
for the identity element consisting of normal subgroups: in fact,
~

G = 1im G/Ci' In the next proposition, we write G* for the full

Pontryagin dual of a topological group G.

Proposition 0.20. Let

JeT R SN -G
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be an exact sequence of abelian topological groups and strict morph-
isms.

(a) Assume that the topologies on G', G, and G" are defined by
neighbourhood bases consisting of subgroups; then the sequence of

completions

A ~ A
G' -G —>G"

is also exact.
(b) Assume that the groups are locally compact and Hausdorff and

that the image of G is closed in G"; then the dual sequence
¢ - -

is also exact.

Proof: By assumption, we have a diagram

G/Im(f) = Im(g)

1 Y
G’ e & e
la 1

G'/Ker(f) —> Im(f).

When we complete, the map a remains surjective, the middle column
remains a short exact sequence, and b remains injective because in
each case a subgroup has the subspace topology and a quotient group
the quotient topology (see [Atiyah and MacDonald (1969), 10.3]).
Since the isomorphisms obviously remain isomorphisms, (a) is now
clear.

The proof of (b) is similar, except that it makes use of the
fact that for any closed subgroup K of a locally compact abelian

group G, the exact sequence

0—K-—>G—>G/K —>0
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gives rise to an exact dual sequence

0— (/K - ¢ —K —o0.

Note that in (b) of the theorem, the image of G in G" will be

closed if it is the kernel of a homomorphism from G" into a Hausdorff

group.

The right derived functors of lim

The category of abelian groups satisfies the condition Ab5: the
direct limit of an exact sequence of abelian groups is again exact.
Unfortunately, the corresponding statement for inverse limits is
false, although the formation of inverse limits is always a left
exact operation (and the product of a family of exact sequences is

exact).

Proposition 0.21. Let A be an abelian category satisfying the condi-
tion Ab5 and having enough injectives, and let I be a filtered order-
ed set. Then for any object B of A and any direct system (Ai) of

objects of A indexed by I, there is a spectral sequence
. (r) s SR o -
1im ExtA(Ai.B) = ExtA (1im Ai'B)'

where lim(r) denotes the rth right derived functor of 1im.

Proof: [Roos (1961)].

Proposition 0.22. [Let (Ai) be an inverse system of abelian groups
indexed by N with its natural order.

(a) Forr > 2, lim(r)Ai = 0.

(b) If each Ai is finitely generated, then l(i__m(l)Ai is divisible,

and it is uncountable when nonzero.
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(c) If each A, is finite, then 1im(1)A. = 0.
i & i
Proof: (a) See [Roos (1961)].
(b) See [Jensen (1972), 2.5]. Y.

(c) See [Jensen (1972), 2.3].

Corollary 0.23. Let A be an abelian category satisfying Ab5 and
having enough injectives, and let (Ai) be a direct system of objects
of A indexed by N. If B is such that Eth(Ai,B) is finite for all s

and i, then

. s S,y
1im ExtA(Ai,B) = ExtA(le Ai,B).

The kernel-cokernel exact sequence of a pair of maps
The following simple result will find great application in these

notes.

Proposition 0.24. For any pair of maps A —£ﬂ B -&5¢ of abelian

groups, there is an exact sequence

0 — Ker(f) — Ker(gef) — Ker(g) —
Coker(f) — Coker(gef) — Coker(g) — O.

Proof: An easy exercise.

Notes: The subsection "A spectral sequence for Exts" is based on

[Tate (1966)]. The rest of the material is fairly standard.

81 Duality relative to a class formation

Class formations

Consider a profinite group G, a G-module C, and a family of
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isomorphisms
. L2 x
invy: H™(U.C) > a/z

indexed by the open subgroups U of G. Such a system is said to be a
class formation if
(1.1a) for all open subgroups U C G, HI(U.C) = 0, and

(1.1b) for all pairs of open subgroups V C U C G, the diagram

Res
#w.c) %Y 2.0

1 ian ! invV

vz B qz

commutes with n = (U:V). The map ian is called the invariant map
relative to U.

When V is a normal subgroup of U of index n, the conditions
imply that there is an exact commutative diagram

€s.

T
0 - wun.d) »2w.e %V w2v.c) — o
x invy v ox invy ~ inv,
0— lzz - oz Wz —o0
in which ian/v is defined to be the restriction of ian. In part-

icular, for a normal open subgroup U of G of index n, there is an
isomorphism

. 2 U = 1
inve ¢ H™(Gru,C”) = EZ/Z’

and we write Yoy for the element of H2(C/U,CU) mapping to 1/n. Thus
. . 2 u .

Yo,y 18 the unique element of H°(G/U,C ) such that 1nvG(Inf(uG/U)) =

1/n.

Lemma 1.2. Let M be a G-module such that Tor?(M,C) = 0. Then the

map
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oo r+2 U
U HT(G/U.M) — HT (G/U,M@ZC )

a » avu
is an isomorphism for all open normal subgroups U of G and

integers r.

Proof: Apply (0.2) to G/U, CU, and u .

G/U

Theorem 1.3. Let (G,C)(is/ﬁ class formation; then there is a canon-— |z
ical map recy: CG —_ Gab whose image in Gab is dense and whose Rernel
. U .
is the group nNG/UC of universal norms.
Proof: Take M = Z and r = -2 in the lemma. As H,;2(G/U.Z) = ((;/U)ab
and 0(G/U CU) = CG/N CU the lemma gives an isomorphism

HT ’ G/Uu”
(G/U)ab - CG/NG/UCU. On passing to the projective limit over the

inverses of these maps, we obtain an injective map CG/ﬂNG/UU — Gab.

The map rec, is the composite of this with the projection of Cs onto
CG/ﬂNG/UU. It has dense image because, for all open normal subgroups

U of G, its composite with Gab — (G/U)ab is surjective.
The map rec. is called the reciprocity map.

Question 1.4. Is there a derivation of (1.3), no more difficult than

the above one, that avoids the use of homology groups?

Remark 1.5. (a) The following description of rec, will be useful.

The cup-product pairing
H(¢.C) x HX(G.Z) — H2(G.C)
can be identified with a pairing
< > CG x Hom (G.WwzZ) — wzZ
’ cts' ' ’

and the reciprocity map is uniquely determined by the equation
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ab

{c.x> = x(recG(c)), all c € CG, X € Hom _ (G™7,Q/z).

Ccts
See [Serre (1962), XI.3, Pptn 27.

(b) The definition of a class formation that we have adopted is
slightly stronger than the usual definition (see [Artin and Tate
(1961), XIV]) in that we require ian to be an isomorphism rather
than an injection inducing isomorphisms H2(U/V,CV) =, (U:V)_IZ/Z for
all open subgroups V C U with V normal in U. It is equivalent to the
usual definition plus the condition that the order of G (as a pro-

finite group) is divisible by all integers n.

Example 1.6. (a) Let G be a profinite group isomorphic to 2 (com-
pletion of Z for the topology of subgroups of finite index), and let
C =7 with G acting trivially. Choose a topological generator o of
G. For each m, G has a unique open subgroup U of index m, and o

generates U. The boundary map in the cohomology sequence of
0—=Z -0z — ¢}

is an isomorphism HI(U,Q/Z) — HQ(U,Z), and we define ian to be the
composite of the inverse of this isomorphism with
w'(.oz) - Hom . (U.0/Z) — o/z

£ bof(o™
Note that ian depends on the choice of o. Clearly (G.Z) with these

maps is a class formation. The reciprocity map is injective but not
surjective.

(b) Let G be the Galois group Cal(Ks/K) of a nonarchimedean local
field K, and let C = Kx If I = Gal(K /K ) then the inflation map
B2 (G/1, K ) - H (G.K* ) is an isomorphism, and we define 1nvG to be
the composite of jts inverse with the isomorphisms

inv
H (/LK ) 28 1261 7)) G/T o
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where invG/I is the map in defined in (a) (with the choice of the
Frobenius automorphism for o). Define ian analogously. Then (G,K:)
is a class formation (see [Serre (1967a), §1] or the appendix to this
chapter). The reciprocity map is injective but not surjective.

(c) Let G be the Galois group Gal(KS/K) of a global field K, and
let C = 1Lm CL where L runs through the finite extensions of K in KS
and CL is the idéle class group of L. For each prime v of K, choose
an embedding of KS into KV s over K. Then there is a unique iso-

s

morphism invGZ H2(G,C) — Q/Z making the diagram

inv
G

: HX(C.C) — vz
1 Il
inv_: HX(G K ) — oz
v v'iv,s

commute for all v (including the real primes) with invv the map defi-
ned in (b) unless v is real, in which case it is the unique injec-
tion. Define ian analogously. Then (G,C) is a class formaion (see
[Tate (1967a), §11]). In the number field case. the reciprocity map
is surjective with divisible kernel, and in the function field case
it is injective but not surjective.

(d) Let K be a field complete with respect to a discrete valuation
having an algebraically closed residue field k, and let G =
Gal(KS/K). For a finite separable extension L of K, let RL be the
ring of integers in L. There is a pro-algebraic group UL over k such
that UL(k) = RE. Let ﬂl(UL) be the pro-algebraic étale fundamental
group of U , and let WI(U) = lgm WI(UL), KCLC KS, [L:K] < ©. Then
nl(U) is a discrete G-module and (G,WI(U)) is a class formation. In
this case the reciprocity map is an isomorphism. See [Serre (1961),

2.5 Pptn 11, 4.1 Thm 1].

(e) Let K be an algebraic function field in one variable over an
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algebraically closed field k of characteristic zero. For each finite
extension L of K, let CL = Hom(Pic(XL)wu(k)). where XL is the smooth
complete algebraic curve over k with function field L and p(k) is the
group of roots on unity in k. Then the duals of the norm maps
Pic(XL,) — Pic(XL), L' D L, make the family (CL) into a direct sys—
tem, and we let C be the limit of the system. The pair (G.C) is a
class formation for which the reciprocity map is surjective but not
injective. See [Kawada and Tate (1955)] and [Kawada (1960)].

(f) For numerous other examples of class formations, see [Kawada

(1971)7.

The main theorem
For each G-module M, the pairings of %0
Extf(M.C) x K2T (G, M) — H2(C.C) % oz
induce maps

o (G.M): ExtS(M.C) — 2T e,
In particular, for r =0 and M = Z, we obtain a map

L(c.z): € — HG.7)* = Hom_, (C.O/D)" = Sl

Lemma 1.7. In the case that M = Z, the maps ar(G,M) have the fol-
lowing description:

aO(G,Z)Z CG — Gab is equal to recq;

al(G.Z): 0 — 0;

«2(G.7): HX(G.C) = QI is equal to invg.
In the case that M = Z/mZ, the maps ar(G,M) have the following des-—
cription:

aO(G,Z/mZ)! (CG)m — (Gab)m is induced by recs:

al(G,Z/mZ)I (CQ)(m) — (Gab)(m) is induced by rec.:
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a2(G,Z/mZ): H2(G,C)m - iZ/Z is the isomorphism induced by invG.
Proof: Only the assertion about aO(G,Z) requires proof. As we ob-
served in (1.5a), rec.: HO(G.C) - HZ(G,Z)* is the map induced by the

cup-product pairing
10(c.0) x H(¢.7) — 13(c.C) ~ a/z.

and we know (0.14) that this agrees with the Ext pairing.

Theorem 1.8. Let (G.C) be a class formation, and let M be a finitely
generated G-module.

(a) The map ar(G.M) is bijective for all t > 2, and al(G,M) is
bijective for all torsion—free M. In particular, EXté(M.C) =0 for
r 2 3.

(b) The map al(G.M) is bijective for all M if al(U,Z/mZ) is bijec-
tive for all open subgroups U of G and all m.

(c) The map aO(G,M) is surjective (respectively bijective) for all
finite M if in addition aO(U,Z/mZ) is surjective (respectively bijec—

tive) for all U and m.

Proof: The first step is to show that the domain and target of

ar(G,M) are both zero for large r.

Lemma 1.9. For r ) 4, Exté(M,C) = 0; when M is torsion-free,
Extg(M,C) is also zero.

Proof: Every finitely generated G-module M can be resolved
0 — M1 — MO — M -0

by finitely generated torsion-free G-modules Mi' It therefore suf-
fices to prove that for any torsion-free module M, Eth(M,C) =0 for

r>3. Let N = Hom(M,Z). Then N®ZC X Hom(M,C) as G-modules, and so
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(0.8) provides an isomorphism Extg(M‘C) % H(G,N8,C). Note that this
A

7 ) where the limit is over the

last group is equal to lgp Hr(G/U.N®
open normal subgroups of G for which NU - N. The theorem of Tate and

Nakayama (0.2) shows that

-2 r u
a » avug B "(G/U,N) — H (G/U.N®,C)

is an isomorphism for all r > 3. The diagram

2cu.N) 2 #cu.ne
7
1 (U:V)Inf | Inf

W2V 2o i eV .Ne,C))

commutes because Inf(uG/U) = (UZV)\JG/v and Inf(avb) = Inf (2)vInf(b).

As Hr—g(G/U,N) is torsion for r — 2 > 1, and the order of U is divis-—
ible by all integers n, the limit 1Lp Hr_z(G/U.N) (taken relative to

the maps (U:V)Inf) is zero for r -2 > 1, and this shows that

H'(G.N®,C) = O for r 2 3.

Lemma 1.9 shows that the statements of the theorem are true for
r > 4, and (1.7) shows that they are true for r £ 2 whenever the
action of G on M is trivial. Moreover, (1.9) shows that Extg(Z,C) =
0, and it follows that EXtZ(Z/mZ,C) = 0 because Extg(Z.C) is divis-—
ible. Thus the theorem is true whenever the action of G on M is

trivial. We embed a general M into an exact sequence
0—M—>M —M —0
* 1
with U an open normal subgroup of G such that MU =Mand M =
Hom(Z[G/UT.M) = Z[G/UJM. As H'(G.M) = H'(U.M) and Exté(M*,C) =

ExtG(M,C) (apply (0.3) to Z[G/U], M, and C), there is an exact com—

mutative diagram
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. r r r+l
— Exté(MI,C) — Exty(M.C) — Extg(M,C) — Exe(’" (M,C) — ...

La"emy)  lo'umy Lo lo™lenm)  (1e.1

- H2”r(c,M1)*—> 2T UM 12T (6 Hl‘r(c.Ml)* — ...

The maps aB(U.M), a4(G,M1), and a4(U,M) are all isomorphisms, and so
the five-lemma shows that aB(C.M) is surjective. Since this holds

for all M, a3(G,M1) is also surjective, and now the five-lemma shows
that aS(G,M) is an isomorphism. The same argument shows that a2(G.M)

is an isomorphism. If M is torsion-free, so also are M* and M., and

1
so the same argument shows that al(G.M) is an isomorphism when M is

torsion-free. The rest of the proof proceeds similarly.

Example 1.10. Let (G,Z) be the class formation defined by a group

G = i and a generator o of G. The reciprocity map is the inclusion
ne o't Z—>G. As i/l is uniquely divisible, we see that both
ao(U,Z/mZ) and al(U.Z/mZ) are isomorphisms for all m, and so the
theorem implies that ar(G.M) is an isomorphism for all finitely gene-
rated M, r > 1, and aO(G,M) is an isomorphism for all finite M.

In fact, aO(G.M) defines an isomorphism HomG(M.Z)A - H2(G.M)>(r
for all finitely generated M. To see this, note that HomG(M,Z) is
finitely generated and Extl(M,Z) is finite (because Hl(G,M) is) for
all finitely generated M. Therefore, on tensoring the first four
terms of the long exact sequence of Exts with i. we obtain an exact
sequence
0 — Hom (M)~ — Hom;(M.Z)" — Hom (M.Z)~ — Exti(M,.Z) — ...
When we replace the top row of (1.9.1) with this sequence, the argu—
ment proving the theorem descends all the way tor = O.

When M is finite, Extr(M.Z) =0 for r ¥ 1 and Extl(M,Z) =

Hom(M,Q/Z) = M*. Therefore Extg(M,Z) = B 16,0 (by (0.3)). and so
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we have a non-degenerate cup-product pairing
1 (c.M) x BT (6. %) — i (C.v2) & o/
When M is torsion-free, Ext'(M,Z) = O for r # O and Hom(M.Z) is
the linear dual MY of M. Therefore Extr(M,Z) = Hr(G,MV). and so the
map Hr(C,MV) — Hz_r(G.M)* defined by cup-product is bijective for r

> 1, and induces a bijection HO(G,MV)A — H2(G,M)* in the case r = 0.

Example 1.11. Let K be a field for which there exists a class forma-—
tion (G.C) with G = Gal(KS/K), and let T be a torus over K. The
character group X*(T) of T is a finitely generated torsion—free
G-module with Z-linear dual the cocharacter group X*(T), and so the
pairing

Exel(x¥(1).€) x HT(6.X (1)) — 12(G.C) * WZ

defines an isomorphism Exté(X*(T),C) — Hz—r(G,X*(T))* forr 2 1.

According to (0.8), ExtE(X*(T).C) = HF(G.Hom(X*(T).C)), and

Hom(X*(T),C) = X*(T)®C. Therefore the cup-product pairing
r 2-r E] 2 ~
H (G.X, (T)8C) x H (G.X (T)) —» H7(G,C) =~ WZ

induced by the natural pairing between X*(T) and X*(T) defines an

isomorphism Hr(G,X*(T)®C) — H2—P(C.X*(T))* forr 2 1.

Remark 1.12. Let (G,C) be a class formation. In [Brumer (1966)]
there is a very useful criterion for G to have strict cohomological
dimension 2. Let V C U C G be open subgroups with V normal in U. Ve

get an exact sequence
rec
0 — Ker(recv) — CV —, Vab — Coker(recv) — 0,

of U/V-modules which induces a double connecting homomorphism

a: ILI;._2(U/V,Coker(recV)) — HL(U/V Ker (recy)).-
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The theorem states that scdp(G) = 2 if and only if, for all such
pairs V C U, d induces an isomorphism on the p-primary components for
all r. In each of the examples (1.6a,b,d) and in the function field
case of (c), the kernel of recy is zero and the cokernel is uniquely
divisible and hence has trivial cohomology. In the number field case
of (c) the cohomology groups of the kernel are elementary 2-groups,
which are zero if and only if the field is totally imaginary [Artin
and Tate (1961), IX.2]. Consequently scdp(G) = 2 in examples
(1.6a,b,c,d) except when p = 2 and K is a number field having a real
prime.

On the other hand, let K be a number field and let GS be the
Galois group over K of the maximal extension of K unramified outside
a set of primes S. The statement in [Tate (1962), p2927] that
scdp(Gs) = 2 for all primes p that are units at all v in S (except
for p = 2 when K is not totally complex) is still unproven in gen-—
eral. As was pointed out by A. Brumer, it is equivalent to the non-

vanishing of certain p-adic regulators.

A generalization

We shall need a generalization of Theorem 1.8. For any set P of
rational prime numbers, we define a P-class formation to be a system
(C,C,(ian)U) as at the start of this section except that, instead of
requiring the maps ian to be isomorphisms, we require them to be
injections satisfying the following two conditions:

(a) for all open subgroups V and U of G with V a normal subgroup
of U, the map ian/V: H2(U/V,CV) — (UIV)_IZ/Z is an isomorphism, and
(b) for all open subgroups U of G and all primes € in P, the map
on ¢-primary components H2(U,C)(£) — (Q/Z)(£) induced by ian is an

isomorphism.
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Thus when P contains all prime numbers, a P-class formation is a
class formation in the sense of the first paragraph of this section,
and when P is the empty set, a P-class formation is a class formation
in the sense of [Artin and Tate (1961)]. Note that, in the presence
of the other conditions, (b) is equivalent to the order of G being
divisible by o” for all € in P. If (G,C) is a class formation and H
is a normal closed subgroup of G, then (C/H.CH) is a P-class form-
ation with P equal to the set primes & such that 2” divides (G:H).
If (G,C) is a P-class formation, then everything said above
continues to hold provided that, at certain points, one restricts
attention to the &-primary components for & in P. (Recall (0.10)
that Exté(M.N) is torsion for r » 1.) In particular, the following

theorem holds.

Theorem 1.13. Let (G.C) be a P-class formation, let & be a prime in
P, and let M be a finitely generated G-module.

(a) The map a (G,M)(8): Exté(M,C)(é’) — B2T(e.M)*(2) is bijective
for all r » 2, and al(G.M)(2) is bijective for all torsion-free M.

(b) The map al(G,M)(e) is bijective for all M if al(U,Z/ZmZ) is
bijective for all open subgroups U of G and all m.

(c) The map aO(G.M) is surjective (respectively bijective) for all
finite &-primary M if in addition aO(U,Z/BmZ) is surjective (respect-

ively bijective) for all U and m.

Exercise 1.14. Let K = Q(d%) where d is chosen so that the 2-class
field tower of K is infinite. Let Kun be the maximal unramified
extension of K, and let H = Gal(KS/Kun). Then (GK/H,CH) is a P-class
formation with P = {2}. Investigate the maps ar(GK/H,M) in this

case.
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Notes: Theorem 1.8 and its proof are taken from [Tate (1966)]

82 Local fields

Unless stated otherwise, K will be a nonarchimedean local field,
complete with respect to the discrete valuation ord: KX ~» Z, and
with finite residue field k. Let R be the ring of integers in K, and
let Kurl be the maximal unramified extension of K. Write G =
Gal(KS/K) and I = Gal(Ks/Kun)' As we noted in (1.6b), (G.K:) has a
natural structure of a class formation. The reciprocity map
recGI K¢ — Gab is known to be injective with dense image. More
precisely, there is an exact commutative diagram

0 -R —k 2z L0

1z i 1

AN
01 L L2 o

in which all the vertical arrows are injective and Iab is the inertia
subgroup of Gab. The norm groups in K* are the open subgroups of
finite index. See [Serre (1962), XIII.4, X1v.6].

In this section N* will denote the completion of a group N rela-
tive to the topology defined by the subgroups of N of finite index
unless N has a topology induced in a natural way from that on K, in
which case we allow only subgroups of finite index that are open
relative to the topology. With this definition, (RX)A = Rx, and the

ab

reciprocity map defines an isomorphism (Kx)A - GK . When M is a

discrete G-module, the group HomC(M.K:) inherits a topology from that
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on KS, and in the next theorem HomG(M,K:)A denotes its completion for
the topology defined by the open subgroups of finite indexl.

As i/l is uniquely divisible, aO(G.Z/mZ) and al(G,Z/mZ) are
isomorphisms for all m. Thus most of the following theorem is an

immediate consequence of Theorem 1.8.

Theorem 2.1. Let M be a finitely generated G-module, and consider
o (G.M): Exth(M.KS) — 27T G,

Then ar(G.M) is an isomorphism for all r 2 1, and aO(G,M) defines an
isomorphism (of profinite groups)

Hom,(M.K)~ — w2 (.M.
The ~ can be omitted if M is finite. The groups Exté(M,K:) and
Hr(G.M) are finite for all r if M is of finite order prime to
char(K). and the groups Exté(M.K:) and HI(G.M) are finite for all
finitely generated M whose torsion subgroup is of order prime to
char (K).
Proof: We begin with the finiteness statements. For n prime to

char(K). the cohomology sequence of the Kummer sequence

0 —un (K) —->K’s‘—“—»1<’s‘—>o

lIf n is prime to the characteristic of K, then K™ is an open
subgroup of finite index in K*. It follows that every subgroup of K
(hence of HomG(M,K:)) of finite index prime to char(K) is open. In
contrast, when the characteristic of K is p # O, there are many
subgroups of finite index in K that are not closed. In fact (see
[Weil (1967), II.3, Pptn 10]). 1 + m= r[lp (product of countably
many copies of Zp), and a proper subgroup of r]Zp containing @ Zp can

not be closed.
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shows that the cohomology groups H un(KS) are pn(K), Kx/Kxn, %Z/Z. 0
respectively for r = 0, 1, 2, > 3. In particular, they are all
finite.

Let M be a finite G-module of order prime to char(K), and choose
a finite Galois extension L of K containing all mth roots of 1 for m
dividing the order of M and such that Gal(Ks/L) acts trivially on M.
Then M is isomorphic as a Gal(KS/L)—module to a direct sum of copies
of modules of the form Moy and so the groups Hs(Gal(Ks/L),M) are
finite for all s, and zero for s > 3. The Hochschild-Serre spectral

sequence
H' (Gal(L/K).H%(Gal(K_/L).M)) => H'"°(G.M)

now shows that the groups Hr(G.M) are all finite because the cohomol-
ogy groups of a finite group with values in a finite (even finitely
generated for r > 1) module are finite. This proves that HF(G,M) is
finite for all r and all M of finite order prime to char(K), and
Theorem 1.8 shows that all the ar(G.M) are isomorphisms for finite M,
and so the groups ExtE(M,K:) are also finite.

Let M be a finitely generated G-module whose torsion subgroup
has order prime to char(K). In proving that Hl(G,M) is finite, we
may assume that M is torsion-free. Let L be a finite Galois exten-—
sion of K such that Gal(Ks/L) acts trivially on M. The exact

sequence
0 — H!(Gal(L/K).M) — H' (Gal(K_/K) M) — H' (Gal(K /L) M)

shows that Hl(G,M) is finite because the last group in the sequence
is zero and the first is finite. Theorem 1.8 implies that ar(G,M) is
an isomorphism for r > 1 and all finitely generated M, and so
Exté(M,K:) is also finite.

It remains to prove the assertion about ao(G,M). Note that
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aO(G,Z) defines an isomorphism (KX)A — Gab, and so the statement is
true if G acts trivially on M. Let L be a finite Galois extension of
K such Gal(Ks/L) acts trivially on M. Then HomG(M,K:) = HomG(M,Lx),
and HomG(M,Lx) contains an open compact group HomG(M,O:), where Ow is
the ring of integers in L. Using this, it is easy to prove that the

maps
X X X
0 — HomG(Ml,KS) - HomG(M*,KS) — HomG(M,KS) -
in the top row of (1.9.1) are strict morphisms. Therefore the se-

quence remains exact when we complete the first three terms (see

(0.20)), and so the same argument as in (1.8) completes the proof.

Corollary 2.2. If Mis a countable G-module whose torsion is prime
to char(K), then

ol (6.M): Extf(MKS) — ! (G,
is an isomorphism.

Proof: Write M as a countable union of finitely generated G-modules

1 X . 1 x
Mi and note that ExtG(M,KS) = ljm ExtG(Mi.KS) by (0.23).

For any finitely generated G-module M, write MD = Hom(M,K:). It
is again a discrete G-module, and it acquires a topology from that

X
on K.
S

Corollary 2.3. Let M be a finitely generated G-module whose torsion
subgroup has order prime to char(K)}. Then cup-product defines an

isomorphism
w0y — BTG M

for all r > 1, and an isomorphism (of compact groups)
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.0~ — 12 m™.
The groups HI(G,M) and Hl(G,MD) are finite.
Proof: As K: is divisible by all primes other than char(K),
Ext’ (M.K) = O for all r > 0, and so Ext (M.K) = H'(C.M) for all r

(see (0.8)).

Corollary 2.4. Let T be a commutative algebraic group over K whose
identity component T° is a torus. Assume that the order of T/T® is
not divisible by the characteristic of K, and let X*(T) be the group
of characters of T. Then cup-product defines a dualities between:

the compact group HO(K,T)A (completion relative to the topology of
open subgroups of finite index) and the discrete group H2(G,X*(T));

the finite groups HI(K,T) and Hl(G,X*(T));

the discrete group H2(K,T) and the compact group HO(G.X*(T))“
(completion relative to the topology of subgroups of finite index).
In particular, H2(K,T) =0 if and only if X*(T)G =0 (when T is con-
nected, this last condition is equivalent to T(K) being compact).
Proof: The G-module X*(T) is finitely generated without
char(K)-torsion, and X*(T)D = T(KS), and so this follows from the
preceding corollary (except for the parenthetical statement, which we

leave as an exercise — cf. [Serre (1964), pII-26]).

Remark 2.5. (a) If the characteristic of K is p # O and M has ele—
ments of order p, the Exté(M.K:) and HI(C.M) are usually infinite.
For example Exté(l/pZ,K:) = K*/KP and H!(C.2/p2) = K/gK. p(x) =

P

- x, which are both infinite.
(b) If n is prime to the characteristic of K and K contains a

th R
primitive n root of unity, then Z/nZ = Hy noncanonically and
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(Z/nZ)D X TS, canonically. The pairing
1 1 2 ~

H (K,Z/nZ) x H (K.un) — H (K.un) X I/nZ
in (2.3) gives rise to a canonical pairing

Hl(Ku)XHl(Ku)—’H2(Ku®u)xu

" ""n m " n’
The group HI(K.pn) = Kx/Kxn, and the pairing can be identified with
(f.g) » (_1)v(f)v(g)fv(g)/gv(f): KK x KK — -

(see [Serre (1962), XIV.3]).

If K has characteristic p # O, then the pairing
1 x 1 2 X\ .
ExtG(Z/pZ,KS) x H (G, Z/pZ) — H (G,KS) x~WZ
can be identified with
(f.g) » P_lTrk/F (Res(fgg)): K/KP x K/pK — Q/Z
p g

(see [Serre (1962), XIV.5] or (III.6) below).

Unramified cohomology

A G-module M is said to be unramified if MI = M. For a finitely
generated G-module, we write Md for the submodule Hom(M,Rzn) of
MD = Hom(M,K:). Note that if M is unramified, then Hl(C/I.M) makes

sense and is a subgroup of Hl(G.M). Moreover, when M is finite,

H'(G/1.M) is dual to Ext, (M.Z) (see (1.10)).

Theorem 2.6. If M is a finitely generated unramified G-module whose
torsion is prime to char(k), then the groups Hl(G/I,M) and Hl(G/I,Md)

are the exact annihilators of each other in the cup-product pairing
G x 1 (e?) - HG.K) = oz

Proof: From the spectral sequence (0.3)
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r s X T+s x
ExtG/I(M.ExtI(Z,KS)) = ExtG (M,KS)
c s 1 X 1 X .
and the vanishing of ExtI(Z,Ks) = H (I,KS), we find that
Extl, (MK ) =5 Extl(M.KY)
G/1Y " un G' st

From the split-exact sequence of G-modules

0 — R »K' —zZ— 0,
un un

we obtain an exact sequence
0 — Extl  (M.RX ) — Extl (M.K* ) — Extl, (M.Z) — O
/1Y ®un c/1V Bun /1 '

1 X 1 . 1 X
and so the kernel of ExtG(M,KS) e ExtG/I(M,Z) is ExtG/I(M,Run). It
is easy to see from the various definitions (especially the defini-

tion of inve in (1.6b)) that

ol (6.M): Exei (LK) o H' (G0

| ! Inf™

1

o/ 1M2) =5 e/

ol (G/1.M): Ext

commutes. Therefore the kernel of Exté(M,K:) — Hl(G/I.M)* is
EXté/I(M'Rzn)' Example (0.8) allows us to identify Exté(M.K:) with
Hl(G,MD) and Exté/I(M.Rzn) with HI(G/I,Md), and so the last statement
says that the kernel of H (G,M”) — H(c/1.M)* is H'(G/I.MY). (When
M is finite, this result can also be proved by a counting argument;

see [Serre (1964), 1I1.5.5].)

Remark 2.7. A finite G-module M is unramified if and only if it
extends to a finite étale group scheme over spec(R). In Chapter III
below, we shall see that flat cohomology allows us to prove a similar
result to (2.6) under the much weaker hypothesis that M extends to a

finite flat group scheme over Spec(R) (see III.1 and III.7).
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Fuler-Poincaré characteristics
If M is a finite G-module, then the groups Hr(G,M) are finite
for all r and zero for r > 2. We define

0
.y = & (G.¥)] [H2(G.M)]
[H(G.M)]

Theorem 2.8. Let M be a finite G-module of order m relatively prime
to char(K). Then x(G,M) = (R:mR)_l.

Proof: We first dispose of a simple case.

Lemma 2.9. If the order of M is prime to char(k), then x(G,M) = 1.

Proof: Let p = char(k). The Sylow p-subgroup Ip of I is normal in
e

1, and the quotient I/Ip is isomorphic to Z/Zp (see [Serre (1962),

1v.2, Ex 2]). As Hr(Ip,M) = 0 for r > 0, the Hochschild-Serre spect—

I
ral sequence for I D Ip shows that Hr(I,M) = Hr(I/Ip,M p). and this
is finite for all r and zero for r > 1 (cf. [Serre (1962), XIII.1]).
The Hochschild-Serre sequence for G D I now shows that HO(G,M) =

HO(G/I.MI), that HI(G.M) fits into an exact sequence
0 — a1ty — ul(e.my — HOG/1,u (1.0)) — 0.
2 1 1 A
and that H°(G,M) = H (G/I,H (I.M)). But G/I =Z, and the exact se-
quence
A _ A
0 -»H@Z.N - N3N -ulEN —o

A
(with o a generator of Z; see [Serre (1962), XIII1.1]) shows that
O/\ 1/\ A
[H(Z,N)] = [H (Z.N)] for any finite Z-module. Therefore

0ccr1, )7 Hoce/1.ul (1.m))]
=1

x(G.M) =
! o1y 7 al(es1,ut (1.M))]

Since both sides of equation in (2.8) are additive in M, the
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lemma allows us to assume that M is killed by p = char(k) and that K

is of characteristic zero. We shall prove the theorem for all

G
G-modules M such that M = M L, where L is some fixed finite Galois

extension of K contained in KS. Let G = Gal(L/K). Our modules can

be regarded as Fp[é]—modules, and we let RE (G). or simply R(G). be

the Grothendieck group of the category of such modules. Then the
left and right hand sides of the equation in (2.8) define homomor-
phisms Xpe X, R(é) - Q)O' As Q)O is a torsion-free group, it suf-
fices to show that Xp and X, agree on a set of generators for

RIF (é)@ZQ. The next lemma describes one such set.
p

Lemma 2.10. Let G be a finite group and, for any subgroup H of G,

let Indg be the homomorphism RIF (H)eQ — RF (G)®Q taking the class of
P P
an H-module to the class of the corresponding induced G-module. Then

RF (G)®@ is generated by the images of the Indg as H runs over the
p

set of cyclic subgroups of G of order prime to p.

Proof: Write RF(G) for the Grothendieck group of finitely generated
F[G]-modules, F any field. Then [Serre (1967b), 12.5, Thm 26] shows
that, in the case that F has characteristic zero, RF(G)®Q is gene-
rated by the images of the maps Indg with H cyclic. It follow from
[Serre (1967b), 16.1, Thm 33] that the same statement is then true
for any field F. Finally [Serre (1967b), 8.3, Pptn 26] shows that,

in the case that F has characteristic p # 0, the cyclic groups of

p-power order make no contribution.

It suffices therefore to prove the theorem for a module M of the

form Indg N. Let K' = LH, let R' be the ring of integers in K', and
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let n be the order of N. Then x(G.,M) = x(Gal(KS/K'),N) and (R:mR) =
(R:nR)[K':K:| = (R':nR'), and so it suffices to prove the theorem for
N. This means that we can assume that G is a cyclic group of order
prime to p. Therefore Hr(é,M) =0 for r > 0, and so HF(G,M) =
H' (Gal (K /L) ,M)(_;.

Let x' be the homomorphism R(G) — R(G) sending M to
> (—l)i[Hi(Gal(KS/L).M)], where [*] now denotes the class of * in

R(G).

Lemma 2.11. The following formula holds:

x'(M) = —dim(M)-[KZQp]-[Fp[éll-

Before proving the lemma, we show that it implies the theorem.

Let 6: RIF (G) — Q)O be the homomorphism sending the class of a mod-
P

ule N to the order of NG. Then 6x' = x and 9([Ep[é]]) = p, and so

~[K:Q_].dim(M)

(2.11) shows that x(M) = 6x'(M) =p = 1/(R:mR).

It therefore remains to prove (2.11). On tensoring M with a
resolution of Z/pZ by injective Z/pZ[G]-modules, we find that cup-

product defines isomorphisms of G-modules
' (Gal(K_/L).2/pL)8M — H' (Gal(K_/L).M).
and so
x'(M) = x'(z/pZ).[M].

Let MO be the G-module with the same underlying abelian group as M
but with the trivial G-action. The map o®m » o®om extends to an

isomorphism Fp[é]@Mo =, Ep[é]@M, and so

dim(M)[Fp[é]] = [Fp[éll-[M]-
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The two displayed equalities show that the general case of (2.11) is
a consequence of the special case M = Z/pZ.

Note that

H0(Gal(K_/L).Z/pZ) = 2/pL.

H' (Gal(K_/L).2/pZ)

Hl(cax(KS/L).up(Ks))* = (L/LPY%,
(e (L))

where N denotes Hom(N,Fp) (still regarded as a G-module; as

H(Gal (K /L) .2/p2)

Hom(—,Fp) is exact, it is defined for objects in R(G)). Therefore
X @) = [wpz] - [P+ [ (L]
Let U be the group of units RE in RL' From the exact sequence
0 - uUP — /P — z/pz — 0,
we find that
[z/pz] - [L/0°P] = [u(P)y.
and so
x@rn) = - [P 4 1.

_ rylp)
(U] + [Up]-

We need one last lemma.

Lemma 2.12. Let W and W' be finitely generated Zp[H]—modules for
some finite group H. If W®Qp M W'@Qp as Qp[H]—modules, then
™1y = P - g
p
in [F_[H].
ey
Proof: One reduces the question easily to the case that W D W' 2 pv,
and for such a module the lemma follow immediately from the exact
sequence
0= W — W — Wi — we® ) Lm0

given by the snake lemma.
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The exponential map sends an open subgroup of U onto an open

subgroup of the ring of integers RL of L, and so (2.12) shows that

)
w®7 - 1 = /P71 - [Rp 1= /P

LN -
The normal basis theorem shows that L % QP[G] Qp (as G-modules),

and so (2.12) implies that

®)q _ rk: =
(R 7] = [K~Qp]-[ﬂ’p[G]]‘

As [wp[é]]* = [F,[C]]. this completes the proof of (2.11).

Archimedean local fields
Corollaries 2.3, 2.4 and Theorem 2.8 all have analogues for R

and C.

Theorem 2.13. (a) Let G = Gal(C/R). For any finite generated
G-module M with dual MD = Hom(M,Cx), cup—product defines a non-
degenerate pairing
H;(G,MD) x H_,%“r(c,rq) — n2e.Cy S vz

of finite groups for all r.

(b) Let G = Gal(C/R). For any commutative algebraic group T over
R whose identity component is a torus, cup-product defines dualities
between HL(G.X(T)) and 2T (G.T(E)) for all r.

{(c) Let K=Ror €, and let G = Gal(C/K). For any finite

G-module M

0. 10 M)

m|
(.1 v

Proof: (a) Suppose first that M is finite. As G has order 2, the
2-primary components for &€ odd do not contribute to the cohomology

groups. We can therefore assume that M is 2-primary, and furthermore
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that it is simple. Then M = Z/2Z with the trivial action of G, and
the theorem can be proved in this case by direct calculation.

When M = Z the result can again be proved by direct calculation,
and when M = Z[G] all groups are zero. Since every torsion-free
G-module contains a submodule of finite index that is a direct sum of
copies of Z or Z[G], this proves the result for such modules, and the
general case follows by combining the two cases.

(b) Take M = X'(T) in (a).
(c) The complex case is obvious because HO(G.M) = M and HO(G,MD)
=0 both have order m, HI(G.M) = 0, and ImIv = m2. In the real

case, let o generate G, and note that for m € M and f € MD

((1 - 0)f)(m) = £(m)/o(f(om)) -1

f(m).(f(om)) (because T =( ')

£((1 + o)m).

Therefore 1 - o: MD e MD is adjoint to 1 + 0: M — M, and so, in the

pairing MD xM— Cx, (MD)G and NC/RM are exact annihilators. Conse-

quently

M1 = [)SI0NG 1 = [0 100 (e 1/ (6. 1.,

and the periodicity of the cohomology of cyclic groups shows that

[Hg(G,M)] = [HI(G.M)]. As [M] =m = lmlv, this proves the formula.

Henselian local fields

Let K be the field of fractions of an excellent Henselian dis-
crete valuation ring R with finite residue field k. (See Appendix A
for definitions.) It is shown in the Appendix that the pair (GK,K:)
is a class formation, and that the norm groups are precisely the open
subgroups of finite index. The following theorem generalizes some of

the preceding results.
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Theorem 2.14. Let M be a finitely generated G-module whose torsion
subgroup is prime to char(K).

(a) The map ar(G,M)l Exté(M,K:) — H2_r(G.M)* is an isomorphism

for all v 2 1, and aO(G.M) defines an isomorphism (of compact groups)
HomG(M,K:)A — H2(G.M)*. The ~ can be omitted if M is finite. The
groups Exté(M,K:) and H'(G.M) are finite for all r if M is finite,
and the groups Exté(M,K:) and HI(G,M) are finite for all finitely
generated M.

(b) If K is countable, then for any algebraic group A over K,
a}(G.A(K )¢ Extl(A(K_).KY) — (G AK )N
' s G s’'’s ’ s

is an isomorphism, except possibly on the p-primary component when
char(K) = p # 1.

(c) Cup-product defines isomorphisms Hr(G,MD) — HF(C,M)* for all
r > 1, and an isomorphism HO(G,MD)A —_ H2(G.M)* of compact groups.
The groups Hl(G.MD) and HI(G.M) are both finite.
Proof: (a) Let ﬁ be the completion of R. There is a commutative
diagram

0 —» R -k - 7 — 0

1 lrec |
Ax ~
0 - RN -G — Z — 0.
All the vertical maps are injective, and the two outside vertical
maps have cokernels that are uniquely divisible by all primes € #
char(K). Therefore the reciprocity map K — G is injective and has
a cokernel that is uniquely divisible prime to char(K). The first
two assertions now follow easily from (1.8). The finiteness state-
ments follow from the fact that Gal(Ks/K) = Gal(ﬁs/ﬁ).
(b) The group A(Ks) is countable, and therefore it is a countable

union of finitely generated submodules. The statement can therefore
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be proved the same way as (2.2).

(c) The proof is the same as that of (2.3).

Remark 2.15. (a) Part (a) of the theorem also holds for modules M
with p-torsion, except that it is necessary to complete Exté(M,K:).

For example, when M = Z/pZ, the map
K*/K'P — Hom(G,,.2/p2) -

Because K is excellent, the map K /KPP — QX/QXP is injective and
induces an isomorphism (KX/pr)‘ =, ﬁx/ﬁxp_ We know Gal(KS/K) =
Gal(ﬁs/ﬁ), and so in this case the assertion follows from the corres-
ponding statement for ﬁ.

(b) As was pointed out to the author by M. Hochster, it is easy to
construct nonexcellent Henselian discrete valuation rings. Let k be
a field of characteristic p, and choose an element u € k[[t]] that is
transcendental over k(t). Let R be the discrete valuation ring
k(t,up)ﬂk[[t]], and consider the Henselization Rh of R. Then the

elements of Rh are separable over R (Rh is a union of étale

R-subalgebras), and so u ¢ Rh, but u € (Rh)A = k[[t]].
Complete fields with quasi-finite residue fields

Exercise 2.16. Let K be complete with respect to a discrete valua-
tion, but assume that its residue field is quasi-finite rather than
finite. (See Appendix A for definitions.) Investigate to what extent
the results of this section continue to hold for K. References:
[Serre (1962), XIII] and Appendix A for the basic class field theory
of such fields; [Serre (1964), pII-24, pII-29] for statements of what

is true; [Vvedens’kii and Krupjak (1976)] and [Litvak (1980)] for a
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proof of (2.3) for a finite module in the case the field has

characteristic zero.)

d-local fields
A O-local field is a finite field. and a d-local field for d 2 1
is a field that is complete with respect to a discrete valuation and
has a (d-1)-local field as residue field. If K is d-local, we shall
write Ki' 0 < i <d, for the i-local field in the inductive defini-
o

tion of K. We write p _ for the G,module { { € K | ¢ =1},
o0 K s

- ®r : dr . .
uew(r) for llp uen, and Ze(r) for 1lm uen. If M is an é-primary

GK—module, we set M(r) = M@Ze(r) and M*(r) = Hom(M,n (1))
e

Theorem 2.17. Let K be a d-local field with d > 1, and let & be a
prime # char(Kl).
(a) There is a canonical trace map
a1 .pem(d)) = 0,2,
(b) For all GK—modules M of finite order a power of &, the cup-
product pairing

r * d+1-r d+1
H (GK.M (d)) xH (GK,M) — H (GK’QB/Ze(d)) = Qelle

is a nondegenerate pairing of finite groups for all r.
Proof: For d = 1, this is a special case of (2.3). For d > 1, it

follows by an easy induction argument from the next lemma.

Lemma 2.18. Let K be any field complete with respect to a discrete
valuation, and let k be the residue field of K. For any finite

GK—module of order prime to char(k), there is a long exact sequence
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. — H (G M) — H(G.M) — Hr‘l(ck,M(—l)I) - Hr+1(Gk,MI) — ...

where I is the inertia group of GK'

Proof: Let char(k) = p, and let Ip be a p-Sylow subgroup of I (so Ip

=1if p=1). Then I' df I/Ip is canonically isomorphic to [] Ze(l)

2#p
(see [Serre (1962), IV.2]). The same argument that shows that

A
Hr(G.M) = MG, M.. Oforr =0,1, >2 when G =7 and M is torsion

o
[Serre (1962), XIII.1], shows in our case that

MI forr =0

H(I.M) = H'(1'.M) = {M(—I)I for r = 1

0 for r > 1.

The lemma therefore follows immediately from the Hochschild-Serre

spectral sequence for G 3 I.
. th . .
Write KrR for the r " Quillen K-group of a ring R.

Corollary 2.19. Let K be a 2-local field, and let m be an integer
prime to char(Kl) and such that K contains the mth roots of 1. Then
there is a canonical injective homomorphism K2K(m) e Gal(Kab/K)(m)
with dense image.

Proof: On taking M = Z/mZ in the theorem, we obtain an isomorphism
H2(G.u 8 ) — H'(G.Z/n2)". But H'(G.Z/nZ) = Hom_, (G.2Z/nZ). and so
this gives us with an injection H2(G,um®um) — (Gab)(m) with dense
image. Now the theorem of [Merkur’ev and Suslin (1982)] provides us

with an isomorphism (K2K)(m) N H2(G,um®um).

Theorem 2.17 is a satisfactory generalization of Theorem 2.3 in
the case that the characteristic drops from p to zero at the first

step. The general case is not yet understood.
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Some exercises
Exercise 2.20. (a) Let G be a profinite group, and let M be a finit-

ely generated G-module. Write T = Hom(M,Cx), and regard it as an

algebraic torus over C. Let G act on T through its action on M.

1}

0 o 1 G
Show that Exty(M.Z) = X (T)". Ext (M.Z) = m (T"). and Ext(r;(M,Z)

Hr_l(G,T) for r > 2. If M is torsion-free, show that ExtE(M,Z)
H'(G.X,(T)).

(b) Let K be a local field (archimedean or nonarchimedean), and
let T be a torus over K. Let TY be the torus such that X*(TV) =
X, (T). Show that the finite group Hl(K,T) is dual to WO(TVG) and
that HI(K.TV) is canonically isomorphic to the group T(K)* of conti-
nuous characters of finite order of T(K). (In 88 we shall obtain a
similar description of the group of generalized characters of T(K).)
[Hint: To prove the first part of (a), use the spectral sequence
(0.8)

T+s

¢ e

H"(G.Ext®(M.C7)) = Ext

and the exponential sequence 0 —m Z — C — ¢ — o. 1

Reference: [Kottwitz (1984)].

Exercise 2.21. Let K be a 2-local field of characteristic zero such
that K1 has characteristic p # 0. Assume
(a) K has p-cohomological dimension < 3 and there is a canonical

isomorphism H3(G,p n@u n) — Z/pnl [Kato (1979), 85, Thm 1];
P p

(b) if K contains a primitive pth root of 1, then the cup-product
pairing
1 2
H (Gup ) x H2(Gup ) — HO(Cup 8y ) = 2/pZ
(G (G.ny) (G Bin) P

is a nondegenerate pairing of finite groups [ibid. 86].
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Prove then that (2.17) holds for K with & = p.

Exercise 2.22. Let K = k((tl....,td)) with k a finite field, and let
. _ r C-1 r .
p = char(k). Define v(r) = Ker(nK/k,d:O — QK/k)‘ where C is the

Cartier operator (see [Milne (1976)]). Show that there is a canon-
ical trace map Hl(GK,v(d)) =, Z/pZ, and show that the cup-product
pairings

H'(C,.o(r)) x (G, . v(d-r)) — H(G,.v(d)) = Z/pZ

are nondegenerate in the sense that their left and right kernels are

zero. Let d = 2, and assume that there is an exact sequence
0—->K2K—&)K2K—->v(2)-—-90

with the second map being dlog.dlog: K2K — v(2). (In fact such a
sequence exists: the exactness at the first term is due to [Suslin
(1983)]; the exactness at the middle term is a theorem of Bloch
[Bloch and Kato (1986)]: and the exactness at the last term has been
proved by several people.) Deduce that there is a canonical
injective homomorphism (K2K)(p) - (sz)(p)_ (These results can be
extended to groups killed by powers of p rather that p itself by

using the sheaves un(r) of [Milne (1986a)].)

Notes: The main theorems concerning local fields in the classical
sense are due to Tate. The proofs are those of Tate except for that
of (2.8), which is due to Serre (see [Serre (1964), II.5]). Theorem

2.17 is taken from [Deninger-Wingberg (19S6)]

83 Abelian varieties over local fields

We continue with the notations at the start of the last section.
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In particular, K is a local field, complete with respect to a dis-—
crete valuation ord, and with finite residue field k. When G and H
are algebraic groups over a field f, we write Ext;(G.H) for the group
of formed in the category GpF (see §0).

Let A be an abelian variety over K. The Weil-Barsotti formula

[Serre (1959), VII, 83] states that AC(KS) = Exté (A,Gm) where At is
s

the dual abelian variety.

Lemma 3.1. For any abelian variety A over a perfect field F, there

is a canonical isomorphism

T t r+l
H(F.A") — ExtF (A,Gm).
all r 2 O.

Proof: The group Ext; (A,Gm) is shown to be zero for r > 2 in [Oort
s

(1966), Pptn 12.3], and HomF (A,Gm) = 0 because all maps from a proj-
s

ective variety to an affine variety are constant. This together with
the Weil-Barsotti formula show that the spectral sequence (0.17)

T S rt+s
H (Gal(Fs/F).ExtFS(A.Cm)) = Ext[ “(A.€)

r+l1

degenerates to a family of isomorphisms Hr(F.At) = ExtF (A,Gm).

In particular Exté(A,Gm) = At(K) when K has characteristic zero,
and the Ext group therefore acquires a topology from that on K.

Recall that there is a canonical pairing (0.16)
ExtT(A.G_) x HZ T(K.,A) — HX(K.C_)
KV ™m ' : m’’

and an isomorphism invG: H2(K,Gm) = Q/Z (1.6b). Therefore there is

a canonical map

o (K.A): Extp(A.€ ) — BT (K. A)™.
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Theorem 3.2. If K has characteristic zero, then al(K,A) is an iso-

morphism of compact groups
1 ~ .1 %
Ext, (A6 ) — H (K.A)
and a2(K,A) is an isomorphism of torsion groups of cofinite type
Ext2(A.C_) —— A(K)™
e2(A.€,) 5 A

For r # 1,2, Ext;(A.Gm) and H2_r(K.A) are both zero.

Proof: We first need a lemma.

Lemma 3.3. In the situation of the theorem, A(K) contains an open

subgroup of finite index isomorphic to Rdim(A); therefore A(K) =
A(K)" (completion for the profinite topology), and

[AG) ™M1/1A®K)_T = R:r)dmA),

Proof: The existence of the subgroup follows from the theory of the
logarithm (see [Mattuck (1955)] or [Tate (1967b), pl68-169]), and the

remaining statements are obvious.

Proof (of 3.2): From
0—A —A-—A—0

we get the rows of the following diagram

r (n) r r+l
0 — ExtK(A,Gm) - ExtK(An.Gm) - ExtK (A.Gm)n — 0

L a"k,a) (™) La'(c.A) o™ (k.4)_
0 — KA - ETEKA) — ok, 4) (WX 0.
. : . ~ X
As is explained in (0.18), ExtE(An,Gm) — Exté(An(KS).KS) for all r,
and if we take ar(G,An) to be the map ar(G,An(KS)) of 82, then it is

clear that the diagram commutes. As ar(G,An) is an isomorphism of

finite groups for all r, we see that
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a" (. A) ™ Bxegag )™ — 7))

is an injective map of finite groups for all r, and, in the limit,

*

1m o (k.A) ™ 1gm ExcE (A )P — @A) )

tors
is injective. As Exté(A,Gm) = At(K). the lemma shows that
1 s 1 (n) 1

ExtK(A,Cm) = lim ExtK(A.Gm) . Thus we have shown that a (K,A) is
injective.

We next show that Hr(K,A) =0 forr >2. For r > 2, this fol-
lows from the fact that G has cohomological dimension 2 (see 2.1).
On taking r = O in the above diagram, we get an exact commutative
diagram

1
0 — 0 e HomK(An.Gm) — ExtK(A,Gm)
1 Iz 1
0 — (H(K.A )" —  H(K.A) - (K4

As the right hand vertical arrow is injective, the snake lemma shows
that H2(K,A)_ = O, and therefore that H-(K,A) = 0. Because H'(G,A")
i~ Ext;+l(A.Gm), this also shows that Ext;(A,Gm) =0 for r # 1,2.

We now prove that al(K.A) is an isomorphism. We have already
seen that it is an injective map At(K) - Hl(K,A)*. and it remains to

t, . (n) 1 * . .

show that the maps A (K) — (H (K'A)n) are surjective for all
integers n. As these maps are injective, this can be accomplished by
showing that the groups have the same order. Let M = An(KS) and MD =

AS(K)). Then (2.8) shows that
x(G.M) = (RinR) 29 = x(C. M),
where d is the dimension of A, and (3.3) shows that
() ™Ay 1 = @nr)? = (a0 ™At 1.

From the cohomology sequence of



§3 ABELIAN VARIETIES OVER LOCAL FIELDS 53

0 —M-— AKK ) A(K) — 0
we find that

[AGK) ] [H(C.M)]

x(G,M) =
[ac) ™7 ' k.a) ]
or
1 1 o))
®:nR)>d  (Rinr)d [H'(K.4) ]

As HO(G,MD) I~ At(K)n, this can be rewritten as
[t k.a) 1 = Renm)Oat ()3 = [ASa0 (™7,
which completes the proof that al(K,A) is an isomorphism.

It remains to show that a2(K,A) is an isomorphism. The diagram
at the start of the proof shows that a2(K,A) is surjective, and we
know that it can be identified with a map Hl(K.At) - A(K)*. The
above calculation with A and A® interchanged shows that [HI(K,At)n] =
[A(K)(n)] for all n, which implies that a2(K.A) is an isomorphism.

Corollary 3.4. If K has characteristic zero, then there is a canon-

ical pairing

H'(k.AY) x BT (K,A) — @z,
wvhich induces an isomorphism of compact groups At(K) N HI(K,A)*
(case r = 0) and an isomorphism of discrete groups of cofinite-type
HI(K,At) =, A(K)* (case r = 1). For r # 0,1, the groups Hr(K.A) and
Hr(K,At) are zero.

Proof: Lemma (3.1) allows us to replace Ext;(A,Cm) in the statement

of the theorem with Hr_l(K,At).

Remark 3.5. There is an alternative approach to defining the pair-
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ings
HT(K.AY) x H T (K,A) — H2(K,Gm)

of (3.4). For any abelian variety A over K, write Z(A) for the group

of zero cycles on AK of degree zero {that is, the set of formal sums
s

S niPi with Pi € A(Ks) and n; = 0). There is a surjective map
S: Z(A) —> A(KS) sending a formal sum to the corresponding actual sum

on A, and we write Y(A) for its kernel. There are exact sequences

0 — Y(AY) -z — At(KS) — 0.

0 — Y(A) > Z(A) — A(KS) — 0,

Let D be a divisor on A x A, and let a and b be elements of Y(At)
and Z(A) such that the support of D does not meet the support of axb.
The projection D(a) of D.(axb) onto A is then defined and, because a
is in Y(A), it is principal, say D(a) = div(f). It is now possible
to define

D(a.v) = £(6) 3 [T £(b) e k5.

b€supp(b)

Now let D be a Poincaré divisor on A x A, and let D' be its trans-
pose. A reciprocity law [Lang (1959), VI.4, Thm 10] shows that the

pairings

(a.b) » D(a,b): Y(AY) x Z(A) — K

(b,a) » D*(b,a): Y(A) x Z(A%) — K
satisfy the equality D(a,b) = Dt(b.u) if a € Y(At) and b € Y(A).
They therefore give rise to augmented cup-product pairings (0.12)
H(K,AY) x BT (K.A) — H2(K,Gm).
It is possible to show that these pairings agree with those in

(3.4) (up to sign) by checking that each is compatible with the pair-



83 ABELIAN VARIETIES OVER LOCAL FIELDS 55

ings
r t 2-r 2
H (K,An) x H (K,An) — H (K,Gm)

defined by the en—pairing A; X An — @m. Alternatively, one can show

r+l
G

pair of pairings (see 0.14b) equal those defined by the Weil-Barsotti

directly that the maps H' (K,A) — Ext (At(Ks),K:) defined by this
formula. (In fact the best way of handling these pairings is to make
use of biextensions and derived categories, see Chapter III, espec-

ially Appendix C.)

Remark 3.6. When K has characteristic p # 0, (3.4) can still be
proved by similarly elementary methods provided one omits the p-parts
of the groups. More precisely, write A(K)(non-p) for ljim A(K)(n)
where n runs over all integers not divisible by p, and let

Hr(K,A)(non—p) = @ Hr(K.A)(B) for r > 0. Then the pair of pairings
e#p

in (3.5) defines augmented cup-products
HY(K.AY) x BT (K.A) — @z,
which induce an isomorphism of compact groups
t I 1 »*
A" (K)(non-p) — H (K,A)(non-p) (case r = 0)
and an isomorphism of discrete groups of cofinite type
1 t x 2
H (K,A")(non-p) — A(K)(non-p) (case r = 1).
For r # 0,1, the groups Hr(K.At)(non—p) and Hr(K,A)(non—p) are zero.
Probably this can be proved by the same method as above, but I

have not checked this. Instead I give a direct proof.

There is a commutative diagram
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0— Atw™ SH' A S (KA —0
l l l

o s kA —HEA — Ay (M* 0

for all n prime to p. As the middle vertical arrow is an isomorphism

(2.3). we see on passing to the limit that
1 t 2
H (K,A")(non-p) — A(K)(non-p)

is surjective. To show that it is injective, it suffices to show
that for any n prime to p, Hl(K,At)n e A(K)(n)* is injective, and
this we can do by showing that the two groups have the same order.
There is a subgroup of finite index in A(K) that is uniquely divis-
ible by all integers prime to p (namely, the kernel of the specializ-
ation map 4(R) — do(k), where o is the Néron model of o; it follows
from Hensel's lemma shows that this is uniquely divisible prime to
the characteristic of k). Consequently [A(K)n] = [A(K)(n)]. Now the
same argument as in the proof of (3.2) shows that the groups in ques-
tion have the same order. The rest of the proof is exactly as in
(3.2).

In §7 of Chapter III, we shall use flat cohomology to prove that

(3.4) is valid even for the p-components of the groups.

Remark 3.7. The duality in (3.4) extends in a rather trivial fashion
to archimedean local fields. Let G = Gal(C/R) and let A be an abel-
ian variety over R. Then the pair of pairing in (3.5) defines a

pairing of finite groups
HL(G.AY(T)) HY T (G.A(T)) — H2(C.C) & Wz

for all integers r. The pairing can be seen to be nondegenerate from

the following diagram
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Yeah) — H(cA) — HE(G.AY) — 0.

| 1 !

0 — HITH(G. ) = HT(G.A)* — HITT(G.A) — .

0 — H;_

Part (a) of (2.13) shows that the middle arrow is an isomorphism, and
the two ends of the diagram show respectively that
r t 1-r * . - .
HT(G,A ) — HT (G.A)  is injective for all r and surjective for
all r.
The group A(R)® is a connected, commutative, compact real Lie
group of dimension dim(A), and therefore it is isomorphic to

(/) dim(A)

The norm map A(C) — A(R) is continuous and A(C) is
compact and connected, and so its image is a closed connected sub-
group of A(R). Since it contains the subgroup 2A(R) of A(R), which
has finite index in A(R), it must also be open, and therefore it
equals A(R)°. Consequently Hg(G,A) = WO(A(R)). The exact sequence

0 — A°(IR)2 — A(R), — mo(A) — 0
shows that [WO(A)].2dim(A) = [A(m)zj. and so HI(R,At) # 0 if and only

dxm(A)_ For example, when A is an elliptic curve,

if [A(R)z] > 2
Hl(m,A) # 0 if and only if (in the standard form) the graph of A in

R x R intersects the x-axis in three points.

When A is an algebraic group over a field k, we now write WO(A)
for the set of connected components (for the Zariski topology) of A

over kS; that is, WO(A) = Ak /Aﬁ regarded as a G-module.
s s

Proposition 3.8. Let A be an abelian variety over K, and let o be
its Néron model over R. Then
1 1
H (G/I,A(Kun)) =H (G/I.no(ﬁo))

where do is the closed fibre of «/R. In particular, if A has good
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reduction, then H (G/T.A(K_)) = 0.
Proof: Let #° be the open subgroup scheme of o whosé generic fibre
is A and whose special fibre is the identity component of do. Be-
cause o is smooth over R, Hensel's lemma implies that the reduction
map d(Run) - do(ks) is surjective (see for example [Milne (1980),

1.4.13]). and it follows that there is an exact sequence
0
0 — o (Run) — m(Run) — wo(do) — 0.

Moreover d(Run) = A(Kun) (because «® is the Néron model of

RRun
A®KKun), and so it remains to show that Hr(G/I.w°(Run)) =0 for
r =1,2.

An element a of Hl(G/I,Mo(Run)) can be represented by an
#A°~torsor P. As MS is a connected algebraic group over a finite
field, Lang’s lemma [Serre (1959), VI.4] shows that the ﬂg—torsor
P®Rk is trivial, and so P(k) is nonempty. Hensel'’s lemma now implies
that P(R) is nonempty, and so a = O.

Finally, for each n, H2(G/I.d°(Run/mn)) = O because G/I has
cohomological dimension 1, and this implies that H2(G/I,$°(Run)) =0

[Serre (1967a), 1.2, Lemma 3].

Remark 3.9. The perceptive reader will already have observed that
the proof of the proposition becomes much simpler if one assumes that

A has good reduction.

Remark 3.10. (a) Let R be an excellent Henselian discrete valuation
ring with finite residue field, and let K be the field of fractions

of R. For any abelian variety A over K, let A(K)" be the completion
of A(K) for the topology defined by K. Let ﬁ be the completion of K.

Then
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A
(i) the map A(K)" -— A(K) is an isomorphism;
A
(ii) the map HI(K.A) — Hl(K.A) is an isomorphism.

Therefore the augmented cup-product pairings
H (kA% x BT (K.A) — B(K.C )

induce isomorphisms At(K)“ — HI(K,A)* and HI(K_At) — A(K)*.

To prove (i) we have to show that every element of A(ﬁ) can be
approximated arbitrarily closely by an element of A(K), but Green-
berg’'s approximation theorem [Greenberg (1966)] says that every ele-
ment of d(ﬁ) can be approximated arbitrarily closely by an element of

~ A
4(R), and #(R) = dA(K).

The injectivity of Hl(K,A) - HI(Q.A) also follows from Green-—
berg’'s theorem, because an element of Hl(K,A) is represented by a
torsor P over K, which extends to a flat projective scheme % over R;
if P(Q) is nonempty, then Q(R/mi) is nonempty for all i, which (by
Greenberg’s theorem) implies that #(R) is nonempty. For the surject-
ivity, one endows Hl(ﬁ,A) with its natural topology, and observes
that Hl(K,A) is dense in it (because, for any finite Galois extension
L of K, Zl(L/K.A) has a a natural structure as an algebraic group
[Milne (1980), p115], and so Greenberg’s theorem can be applied
again). Proposition 3.8 then shows that the topology on Hl(ﬁ,A) is

discrete.

Exercise 3.11. Investigate to what extent the results of this section
continue to hold when K is replaced by a complete local field with

quasi-finite residue field.

Notes: The duality between Hl(K,At) and Hl(K,A) in (3.4) was the

first major theorem of the subject (see [Tate (1957/58)]; it was
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proved before (2.3)), and so can be regarded as the forerunner of the
rest of the results in this chapter. The proof of Theorem 3.2 is

modelled on a proof of Tate's of (3.4) (cf. [Milne (1970/72), p276]).
The description of the pairing in (3.4) given in (3.5) that of Tate’s
original paper. Proposition 3.8 can be found in [Tate (1962)] in the

case of good reduction; the stronger form given here is wellknown.

§4 Global fields

Throughout this section, K will be a global field, and S will be
a nonempty set of primes of K, containing the archimedean primes in
the case the K is a number field. If F 3 K, then the set of primes
of F lying over primes in S will also be denoted by S (or, occa-
sionally, by SF)' We write K, for the maximal subfield of KS that is

S
ramified over K only at primes in S, and GS for Gal(KS/K). Also

RK,S :VQSOV = {a € K| ordv(a) > 0 for all v ¢ S}

denotes the ring of S—integers in K. For each prime v we choose an
embedding (over K) of Ks into Kv,s' and consequently an extension w
of v to K_ and an identification of G, df Gal(K, /K ) with the
decomposition group of w in GK’

Let P denote the set of prime numbers & such that ¢” divides the
degree of KS over K. If K is a function field, then P contains all
prime numbers because KS contains Kks where kS is the separable clos—
ure of the field of constants of K. If K is a number field, then P
contains at least all the primes £ such that ERK.S = RK,S (that is,
such that S contains all primes dividing £) because for such primes,

KS contains the £7th roots of 1 for all m. (It seems not to be known

how large P is in the number field case; for example, if K = Q and S
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= {€,»}. is P the set of all prime numbers?)
For a finite extension F of K contained in KS, we use the fol-
lowing notations:

JF = the group of idéles of F;

~ 1 X :
{(aw) € Jp | a, =1 forwes)x il F,  (restricted

J
F.8 wES

A
topological product relative to the subgroups 0:);

RF,S =N 0w = ring of SF—lntegers (= integral closure of R

wéS K.S

x .
EF,S = RF,S = group of SF—unlts;

CF,S = JF,S/EF,S = group of SF—idéle classes;

X :
UF.S = {(aw) € Jp | a €0 forwes, a, = 1 otherwise}
X
~ ] 0.
wés
Define

JS = lim JF,S’ RS = lip RF,S' ES = lip EF.S'
CS = l_i'l'l’l CF.S' US = 1l)m UF.S'

where the limit in each case is over all finite extensions F of K
contained in KS.
When S contains all primes of K, we usually drop it from the
notation. In this case KS = KS. Gs = GK. and P contains all prime
x .
F.S = JF, RF,S =F, EF,S =F", and CF,S = CF is

the idéle class group of F. Since everything becomes much simpler in

numbers. Moreover J

this case, the reader is invited to assume S contains all primes on a

first reading.

A duality theorem for the P-class formation (GS,CS)

Let CS(F) = CF/UF,S; we shall show that (GS.CS) is a P-class

Gal(Ks/F)
formation with QS = CS(F). Note that when S contains all

primes, (GS,CS) is the class formation (G,C) considered in (1.6c),
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and CS(F) = CF

Lemma 4.1. There is an exact sequence

0 — CF.S — CF/UF,S — IdF,S — 0,

where IdF s is the ideal class group of RF s In particular, if S
omits only finitely many primes, then IdF s = 1 and CF s - CF/UF s
Proof: Note that P nUF,S = {1} and JF.Sn(F 'UF,S) = EF,S (intersec—

tions inside JF). Therefore UF g can be regarded as a subgroup of CF

and the injection JF.S ] JF induces an injection CF,S e CF/UF,S'
. . X ., X

The cokernel of this last map is JF/JF,S'UF,S'F X (V$S Z)/Im(F7),

which can be identified with the ideal class group of RF s If S

omits only finitely many primes, then RK S is a Dedekind domain with

only finitely many prime jdeals, and any such ring is principal.

G,
Proposition 4.2. The pair (GS.CS) is a P-class formation and CSS =

CK/UK.S'

Proof: As we observed in (1.6c). (G.C) is a class formation. There-

H,
fore (GS.C S), where HS = Gal(Ks/KS), is a P-class formation (see the

discussion preceding 1.13). The next two lemmas show that there is a

H ~
canonical isomorphism Hr(GS,C S) ) Hr(GS,CS) for all r 2 1, and
since the same is true for any open subgroup of GS' it follows that

(GS,CS) is also a P-class formation.

Lemma 4.3. There is a canonical exact sequence

HS
0 — US —C  — CS — 0.

Proof: When S is finite, on passing to the direct limit over the

~ ~ H
isomorphisms CF s - CF/UF g ve obtain an isomorphism CS = C S/US.
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which gives the exact sequence. In the general case, we have to show
that lip IdF,S = 0. Let L be the maximal unramified extension of F
(in Ks) in which all primes of S split, and let F' be the maximal
abelian subextension of L/F. Thus F' is the maximal abelian unram-
ified extension of F in which all primes of S split (that is, such

that all primes in S are mapped to 1 by the reciprocity map). Class

field theory [Tate (1967a), 11.3] gives us a commutative diagram

Id, o — Gal(L/F) = Gal(F'/F)
] lv
M ,yab
Idp, ¢ =5 Gal(L/F')

with V the transfer (that is, Verlagerung) map. The principal ideal
theorem [Artin and Tate (1961), XIII.4] shows that V is zero. Since
similar remarks hold for all finite extensions F of K contained in
KS' we see that lim IdF,S = 0 (direct limit over such F), and this

completes the proof.

Lemma 4.4. With the above notations, Hr(GS,US) =0 forr 2 1.

Therefore the cohomology sequence of the sequence in (4.3) gives

~ G H ~
isomorphisms Cg(K) —— css, and H‘"(cs,c Sy =, Hr(GS.CS). r 1.

Proof: By definition,
T . T . r X
H (Gg.Ug) = lim H (Gal(F/K).Up o) = lim H (Gal(F/K), I 0,)-

F F weSE

The cohomology of finite groups commutes with products, and so

H'(Gal(F/K), [18%) =[] (Gal(F/K). ] 0.

w€SF VQSK wiv
A

= [TH"(Gal(F./K ).0%).
ves, woveow

where in the last product w denotes the chosen prime w lying over v.

A
Now Hr(Gal(Fw/KV),O;) =0 for r > 1 because v is unramified in F (cf.
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[Serre (1967a), Pptn 1]). and this completes the proof because

H, G
€3y S = ¢ [Tate (1967a). 8.11.

We write DS(F) and Dp for the identity components of CS(F) and
CF' When K is a function field, the idele groups are totally discon-
nected, and so their identity components reduce to the identity

element.

Lemma 4.5. Assume that K is a number field. Then DS(K) =
DKUK,S/UK,S' It is divisible, and there is an exact sequence

rec ab
0 — DS(K) — CS(K) — Gy — 0.

Proof: When S contains all primes of K, this is a standard part of
class field theory; in fact DK is the group of divisible elements in
CK [Artin and Tate (1961), VII, IX]. The identity component of CS(K)
is the closure of the image of the identity component of CK' As UK,S
is compact, CK — CS(K) is a proper map, and so the image of the id-
entity component is already closed. This proves the first statement,
and DS(K) is divisible because it is a quotient of a divisible group.
The image of UK,S in Gab is the subgroup fixing KSnKab' which is also
the kernel of Gab — ng, and the existence of the exact sequence
follows from applying the snake lemma to the diagram

Uk g = Cal(Ky/KKp) — 0

! !

0 — DK — CK — Gal(Kab/K) — 0.

Theorem 4.6. Let M be a finitely generated Gs—module, and let & € P.

(a) The map
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o7 (Gg. M) (8): Ext(r;s(m,cs)(e) —>H2_r(GS,M)*(8)

is an isomorphism for all r ) 1.

(b) Let K be a number field, and choose a finite totally imaginary
Galois extension L of K contained in Ks and such that Gal(Ks/L) fixes
M; if P contains all primes numbers or if M is a finite module such
that [M]Rs = RS’ then there is an exact sequence

NL/K ao 2 *
Hom(M,D. (L)) — Hom, (M.C.) — H(G..M) — 0.
S Gs S S

(c) Let K be a function field; for any finitely generated

GS—module, there is an isomorphism
2 2
Hom. (M,C.)~ — H7(G,M)

G, S S

S
where ~ denotes the completion relative to the topology of open sub—
groups of finite index.
Proof: Assume first that K is a number field. Lemma 4.5 shows that,
for all ¢ € P and all m, al(GS.Z/BmZ) is bijective and aO(GS.Z/EmZ)
is surjective. Thus it follows from (1.13) that part (a) of the
theorem is true for number fields and that aO(GS,M)(e) is surjective
for finite M.

For (b), note first that when M = Z and L = K, the sequence

becomes that in the lemma. It follows easily that the sequence is
exact whenever GS acts trivially on M and L = K. Let M and L be as

in (b). and consider the diagram (1.9.1) in the proof of (1.8):

HomGS(Ml'CS) — HomU(M.CS) — HomGS(M,CS) — . > ...
1 1 ! Iz
H(Gg. M) — Hum S H(Cg )™ — . — ...
Here U = Gal(KS/L). All vertical maps in the diagram are surjective,

and so we get an exact sequence of kernels:

Ker (a%(Gg.M,)) — Ker(c2(U,M)) — Ker (a®(Gg.4)) — 0.
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We have already observed that the kernel of aO(U.M) is Hom(M,DS(L)),
and therefore the kernel of aO(GS.M) is the image NL/K(Hom(M.DS(L))
of this in HomG(M,CS).

When K is a function field, recGI CK e Gab is injective with

dense image. More precisely, there is an exact sequence
~
0—c -6 -2z -0
and the first arrow induces a topological isomorphism of

{a € CKI lal = 1} onto the open subgroup Cal(Ks/Kks) of G?P [Artin

and Tate {(1961), 8.3]. From this we again get an exact sequence

G, ~
o-»css—acgb——»m—»o.

~
As Z/Z is uniquely divisible, part (a) of the theorem follows in this
case directly from (1.8). Part (c) can be proved by a similar argu-—

ment to that which completes the proof of (2.1).

We next reinterprete (4.6) as a statement about the cohomology

of an algebraic torus T over K. Let AF = H‘F be the ring of
S wes ¥

S-adéles of F, and let AL = lim A . where the limit is again over
S - 'F.S

finite extensions of K contained in KS. As for any algebraic group

over K, it is possible to define the set T(#\F S) of points of T with

values in AF,S' and we let T(AS) = lim T(AF,S)' If T is split by KS,

then T(As) = X*(T)®ZJS’ This suggests the definition T(RS) =

X*(T)®ZES' A cocharacter x € X*(T) defines compatible maps
T(Rg) — Eg. T(A) — Jg.
and hence a map T(AS)/T(RS) — JS/E; = CS' We have therefore a pair-
ing
%
X(T) x T(AS)/T(RS) - CS’

which induces cup-product pairings
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H' (6. X¥(T)) x H2"r(cS,T(AS)/T(RS)) - H2(GS,CS) — o/z.

Corollary 4.7. Let T be a torus over K split by KS' and let & € P.
Then the cup-product pairings defined above induce dualities between:

the compact group HO(GS.X*(T))“ (¢-adic completion) and the dis-
crete group H2(GS.T(AS)/T(RS))(B);

the finite groups H'(Gg.X(T))(e) and HI(GS,T(AS)/T(RS))(E);
and, when P contains all prime numbers,

the discrete group HZ(GS,X*(T)) and the compact group
HO(GS,T(AS)/T(RS))A (completion for the topology of open subgroups of
finite index).

Proof: As we saw in (1.11), Ext} (X'(T),Cq) = H'(Go.X_(T)®C.). On
Gg S S % S
tensoring the exact sequence

0-—>ES—>JS—->CS—>O

with X _(T), we find that X*(T)®CS = T(AS)/T(RS). Therefore
Exth (X*(T),C ) = Hr(G .T(AL)/T(R.)). and part (a) of the theorem
GS S S S S

; . . r X 2-r ] %*
gives us an isomorphism H (CS,T(AS)/T(RS))(B) — H (GS,X (T)) (&)
forr > 1. As HS(GS,X*(T)) is obviously finite for s = 1 and is
finitely generated for s = O, this proves the first two assertions.
In the function field case, we also have an isomorphism
HO(GS,T(AS)/T(RS))“ — H(Gg. X(T)). In the number field case,

completing the exact sequence
0} 2 s %
Hom(X*(T),DS(L)) — H (GS,T(AS)/T(RS)) — H (GS’X (T)) —o0

given by (4.6b) yields the required isomorphism because the first

group is divisible.
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Statement of the main theorem

The rest of this section is devoted to stating and proving
Tate’s theorem [Tate (1962), Thm 3.1], which combines the dualities
so far obtained for local and global fields. From now on, M is a
finitely generated Cs—module the order of whose torsion subgroup is a
unit in RS'

For v a prime of K, let Gv = Gal(Kv s/Kv). In the nonarchime-
dean case, we write k(v) for the residue field at v, and g, =
Gal(k(v) _/k(v)) = G /I_. The choice of the embedding K <K

s v v s v.s
determines maps Gv — CK —» GS' and using these maps we obtain local-
ization maps Hr(GS.M) — Hr(Gv.M) for each GS—module M. We write
Hr(Kv.M) = Hr(Cv.M) except in the case that v is archimedean, in

. T r (0]
which case we set H (KV.M) = HT(GV'M)’ Thus H'(R,M) =
Mcal(C/m)/Nm/mM and HO(C.M) = 0. When v is nonarchimedean and M is
unramified at v, we write Hin(Kv.M) for the image of Hr(gv,M) in
TG .M). Thus HO (K .M) = HO(K M), H! (kM) ~ H'(g .M). and

v un* v’ v’/ Tunt Ve vt ’

unless M has elements of infinite order, Hin(Kv,M) = 0. A finitely
generated Gs—module M is unramified for all but finitely many v in S,
and we define P;(K,M) to be the restricted topological product of the
Hr(Kv,M) relative to the subgroups H;n(KV.M). Thus

Pg(K,M) =1l HO(KV,M) with the product topology (it is compact if M

vE€S

is finite);

P;(K.M) = ﬂ'Hl(Kv,M) with the restricted product topology (it is
vES

always locally compact because each Hl(Kv,M) is finite by (2.1)) .
If M is finite, then

Pg(K.M) = @ Hr(K ,M) (discrete topology) for r # O0,1.
vE€S v

Lemma 4.8. For any finitely generated Gs—module M, the image of
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Hr(C M) —T] Hr(K M) is contained in Pr(K,M).
S v€S v S

Proof: Let v € Hr(GS,M). Then v arises from an element ~' of
Hr(Gal(L/K),M) for some finite Galois extension L of K contained in
KS. and for all v that are unramified in L, the image of ~ in

r . P
H (KV,M) lies in Hun(KV,M).

The lemma provides us with maps B : Hr(GS,M) - Pg(K.M) for

all r. When necessary,.we write B;(K,M) for p’.

Lemma 4.9. Assume that M is finite. Then the inverse image of any
compact subset of Pé(K.M) under the map Bé(K.M) is finite (in other

words, the map is proper when Hl(GS,M) is given the discrete topo-

logy).
Proof: After replacing K with a finite extension contained in KS, we
can assume that G, acts trivially on M. Let T be a subset of S omit—

S

ting only finitely many elements, and let

1 1
P(T) = H (K ,M H (K ,M).
) VGLLT ¢ v ) XVLQ un( v )

Then P(T) is compact by Tikhonov's theorem, and every compact neigh—
bourhood of 1 in Pé(K,M) is contained in such a set. It suffices
therefore to show that the inverse image of P(T) is finite. An
element of this set is a homomorphism f: GS — M such that ngr(f) is
unramified at all primes v in T. Therefore ngr(f) is an extension
of K of degree dividing the fixed integer [M] and unramified outside
the finite set S - T. It is a wellknown consequence of Hermite's
theorem (see for example [Serre (1964), pII-48]) that there are only

finitely many such extension fields, and therefore there are only

finitely many maps f.
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Define
mg(K,M) = Ker(B": H' (Gg.M) — pg(K.M)).

For a finite Gs—module M, we write MD = Hom(M,Kg) = Hom(M,ES). It is
again a finite Gs—module, and if the order of M is a unit in RK,S'
then MD = Hom(M,K:) and MDD is canonically isomorphic to M.

The results (2.3). (2.6), and (2.13) combine to show that for
all r € Z, Pg(K,M) is the algebraic and topological dual of

Pg r(K.MD). Therefore there are continuous maps
A = M) PL(K. M) — 1T (G )

with ~F the dual of B2—r.

Theorem 4.10. Let M be a finite Gs—module whose order is a unit in
RK,S'
(a) The groups m;(K.M) and mg(K,MD) are finite and there is a
canonical nondegenerate pairing
(K.M)% mg(K.MD) — /7.
(b) The map Bg(K.M) is injective and vg(K.MD) is surjective; for r
- 0.1.2. In(B4(K.M)) = Ker(wg(K,MD)).

(c) For r » 3. ¥ is a bijection p': H' (Gg.M) K.
v real

Consequently, there is an exact sequence of locally compact groups

and continuous homomorphisms

0 0
0 — H(Gg.M) LB, .y (G M)
!
1 D A1 gl 1
! (6 MY - py(k) 1 (G M)
1
2 g2 2 ~2 0, D%
w(cgm) L 2wy 5 H(Gg )" — 0.

The groups in this sequence have the following topological proper-—
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ties:

finite compact compact
compact locally compact discrete

discrete discrete finite.

The finiteness of mé(K.M) is contained in (4.9); that of
mg(K.MD) will follow from the existence of the nondegenerate pairing
in (a). The vertical arrows in the above diagram will be defined
below: alternatively they can be deduced from the nondegenerate pair-
. . 0 1 2 D, >
ings in (a) because the cokernels of v+  and v are mS(K,M ) and

m;(K,MD)* respectively.

Example 4.11. (i) For any integer m > 1 and any set of primes S of
density greater than 1/2, Mé(K,Z/mZ) = 0: consequently, mg(K.um) =0
under the same condition provided m is a unit in RK,S’
(ii) If S omits only finitely many primes of K and m is a unit in

RK,S' then mé(K.um) = 0 or Z/2Z; consequently, MS(K.Z/mZ) =0 or /27
under the same conditions.

To see (i), note that H'(Gg.Z/nZ) = Hom(Gg.Z/nZ) and Hl(Kv,Z/mZ)
= Hom(Gv,Z/mZ). Therefore an element of mé(K.Z/mZ) corresponds to a
cyclic extension of K in which all primes of S split. The Chebotarev
density theorem shows that such an extension must be trivial when S
has density greater that 1/2.

To see (ii), note that mé(K,um) is the kernel of

K /K™ 1] K:/K:m, that is, it is the set of elements of K" that
vES

are local mth powers modulo those that are global mth powers. This

set is described in [Artin and Tate (1961), X.1], where the "special

case" in which mé(K,pm) # 0 is also determined.
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Proof of the main theorem
The proof of the theorem will consist of identifying the exact
sequence in the statement of the theorem with the

Ext (MD,—)—sequence of
Cs

0—+ES——>JS—»CS—>0.

except that, in the number field case, Hom (MD,J ) and Hom (MD.C )
GS S CS S

Hom(MD, M L:) and

must be replaced by their quotients by N
L/K
v arch

NL/Kﬂom(MD’DL,S) for any field L as in (4.6b).

In fact we shall consider more generally a finitely generated
GS—module M. In this case we write Md for the dual of M loosely
regarded as a group scheme over Spec(RK'S). More precisely, when M
is being regarded as a Gs—module, we let Md = Hom(M.ES). For v ¢ S,
M is a gv—module, and we write Md = Hom(M,B:’un): for ve€S, Misa

Gv—module, and we write Md = Hom(M,Kz s). It will always be clear

from the context, which of these three we mean.

Lemma 4.12. Let M be a finitely generated GS—module such that the

order of Mtors is a unit in RK.S'

(a) The group Extg (M,ES) = Hr(GS,Md), all r 2 O.
S
(b) For v € S, Hr(gv,Md) = Ext] (.0 ): for r 2 2, both groups
y .

are O.
Proof: (a) As ES is divisible by all integers that are units in
RK,S' this is a special case of (0.8).

(b) As 8:,un is divisible by all integers dividing the order of
Mtors' this is again a special case of (0.8). The gv—module Bz,un is
cohomologically trivial [Serre (1967a}, 1.2], and so an easy general-

ization to profinite groups of [Serre (1962), IX.6, Thm 117] shows

that there exists a short exact sequence
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O—»Bx —-)IO—»Il——)O
v,un

of gv—modules with I0 and I] injective. It is obvious from this that

A
OX

r
Extg (M, v.un

v

) =0 forr > 2.

Lemma 4.13. In addition to the hypotheses of (4.12), assume either

that M is finite or that S omits only finitely many primes. Then
0] d (0] d, . . . :
HomG (M.Js) =[] H(G . M%) (= PS(K.M ) if K is a function field)
S ves M

and

d
ExtéS(M.JS) = P;(K,M Y, r > 1.

Proof: We consider finite subsets T of S satisfying the same hypo-
theses as S relative to M, namely, T contains all archimedean primes
plus those nonarchimedean primes at which M is ramified, and the

A
order of M is a unit in R . Let J =[] X x M 0x.
tors K,T F,SOT weT ¥ wes—T ¥
Then JS = llp JF.SDT (limit over F and T with F C KT and splitting
F.T
M), and so (0.10) shows that

r 3 r
ExtGS(M,JS) = lim EXtCal(F/K)(M'JF.SDT)'

F.T

Since Exts commute with products in the second place (to see this,
compute them by taking a projective resolution of the term in the
first place). on applying (0.11) we find that

X X

M. Fy x ([ Exté (M. 0% ).
F /K v€S-T °F /K W

w Vv v Vv

Extl, (M,J ) = (] Exth
Gppg CF.SOT T LG

A
x
As 0v un 1S cohomologically trivial, (0.9) shows that for v € S - T,

r X r X
ExtGF (M.OF ) = Extg (M’Ov,un)’
W K w v

and we have already seen that

et
Ext’ (M,Ux
g v,un

d
: ) = H(g,. 1),
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On combining these statements, we find that

(MJS)-lxm(ﬂExt (MF)x( ﬂH(g M))
ve€T F /K ve€S-T
F.T WV

For r < 1, (0.9) shows that we can replace Exté (M.F:) with

F /K
wov

r X . T d
Xth(M’Kv,s)’ which equals H (GV.M ) by (0.8). Hence

Bxig _0n.Jg) = Lin (A7 ) < TTH (g,.00).
L ver Y ves-T

which equals [] H (G M ) in the case that r = 0, and equals
v€S

ﬂH (G, M) S(K,M) for m = 1.
vE€S

For r 2 2, Hr(gv.Md) = 0 by (4.12), and so

T - r X o
ExtGS(M,JS) = 1lim ( ® ExtC (M,Fw)) (limit over all F C K, F D K)

F v€S Fw/Kv

. r X
=0 (le ExtG (M,Fw)).
vES
F WV
In the case that S contains almost all primes, ILW Fw = Kv s and so
F

lim Exté (M. Fr ) Ext (M K S). In the case that M is finite, we
F

F /K
know that if & divides the order of M, then S contains all primes
. . 2 X .
lying over £. Therefore lim H (Gal(Kv,s/Fw)'Kv.s)(e) = 1lim Br(Fw)(E)

= 0, and the spectral sequence (0.9)
r s
ExtGal(Fw/Kv)(M.H (Gal(Kv,S/Fw),K D= Extg, (M K )

shows that again lim Exth, (M, F ) Ext (M,Kx ). From (0.8) we
> G G v,s
F F /K v

know that Extg (M.K; ) = H (Gv,Md) (= H'(K,.4%). and so this comp-
V

letes the proof of the lemma.

Remark 4.14. Without the additional hypotheses, (4.13) is false.

For example, let K = = {»}, and M = Z. Then GS = {1}, and so
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xeg (Z.Jg) = 0 for r > 0, but PA(K.MY) = H2(Gal(C/R).CY) = W2/Z.
S

Now assume that M is finite. On using (4.12), (4.13), and (4.6)

to replace terms in the sequence
.—»ExtG (M ES)——)Ext (M JS)—>Ext (M C)—»...,

we obtain an exact sequence

0 — 1o(cg. M) — [T #0(cq. 1) — Hom, (1”.Cy)
s

vES
— H'(6g. M) — PL(K. M) — H' (Gg.M°)*
— H(Gg. M) — P2(K.M) — HO(Gg M) — H(Gg.M) — 0 1 (G, .M) >0

v real
and isomorphisms

Hr(G M) 2o 0 H(K M), r > 4.
v real

This is the required exact sequence except for the first three terms
in the number field case and the surjectivity of

P2(K.M0) — H2(Gg.M)*.  But this last map is dual to

HO(GS,M) - Pg(K,M), which is injective. (Note that if M # O in the
number field case, then S must contain at least one nonarchimedean
prime.) For the first three terms of the sequence in the number

field case, consider the exact commutative diagram:

Hom(”, TTLY) ~ Hom(u".C (L))

v arch’
LN LN e
0 — H(Gg.M) — TTH(G,. M) — Hom, (4.C) — Ker(p!) — 0.
veS S
i
0 2 *
PR — H(Gg. M)
!

[¢] 0.
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The map the map Hom(MD. M L:) — qu(MD,DS(L)) is always an iso-
v arch

morphism on torsion, and therefore it is an isomorphism in our case.

The snake lemma now gives us an exact sequence
0 — H(Gg. M) — PO(K.M) — (G M) — Ker(B') — ...

which completes the proof of the theorem. (An alternative approach
is to note that the first half of the sequence can be obtained as the

algebraic and topological dual of the second half.)

Consequences

Corollary 4.15. If S is finite and M is a finite Cs—module whose
order is a unit in RK,S‘ then the groups Hr(GS,M) are finite for
all r.

Proof: In this case the groups P;(K.M) are finite, and so the fin-
iteness of HO(Gg.M) is obvious and that of H'(Gg.M) and H%(Gg M)

follows from the finiteness of mé(K,M) and mé(K,M).

Corollary 4.16. Let M be a finite Gs—module whose order is a unit in
RK s Then, for any finite subset T of S omitting at least one fin-
ite prime of S, the map
H2(Gg. M) — © H(G,.M)
v
veT
is surjective. In particular, in the number field case the map

H2(K,M) — @ H2(KV,M) is surjective.
v real

Proof: Let Vo be a finite prime of K not in T. In order to prove
the corollary, it suffices to show that for any element a = (av) of

Pz(K,M), it is possible to modify a, so as to get an element in the
0

image of Bz. Theorem 4.10 shows that, in the duality between
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Pg(K,MD) and Pg(K,M), the image of 32 is the orthogonal complement of
the image of BO. Let x be the character of Pg(K,MD) defined by a,

and let x' be its restriction to HO(GS,MD). The map
10(Gg. M) — HO(x_ M)
v
0
is injective, and every character of HO(GS,MD) extends to one of

HO(Kv ,MD). Choose such an extension of X' and let a& be the ele-
0 0

ment of H2(Kv .M) corresponding to it by duality. When the component
0

a_of a is replaced by a_ - a' , then a becomes orthogonal to Im BO
Vo Yo v

and is therefore in the image of B2.

Corollary 4.17. For any number field K,

HO(GK,Z) = z.

H2(G,.Z) = Hom(C, /Dy, ./Z).

Hzr(GKZ) = (2/22)t for 2r 2> 4, where t is the number of real
primes of K, and

Hr(GK,Z) =0 for r odd.
Proof: The assertions for r { 2 are obvious. According to (1.12),
G ngK contains an open subgroup U of index 2 having strict cohomo-
logical dimension 2. Therefore Hr(G,Z[G/U]) = Hr(U,Z) =0 for r > 3.
Let 0 generate G/U. The exact sequence

0 —z 3 71617 13 21001 24 2 — 0

r+2

gives rise to isomorphisms Hr(G,Z) - H “(G,Z) for r > 3. Forr ) 4,

. ) . (4.10) )
H'(6.2) = B (C.0/z) = Lip Yelvmy S 1m HHI Y, Lz
V rea

= ] HT(KV,Z). (We applied (4.10) with S the set of all primes of
V real

K.) If r is odd, H'(R,Z) = 0, and if r is even, H'(R.Z) % Z/2Z, and

so this completes the proof.
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Corollary 4.18. For any prime & that is a unit in RS’

r r X
W (CgEg) (@) — @ HI(G K] )(®)

is an isomorphism, all r > 3. In particular, when v 2 3,
H'(Gg.Eg) (&) = 0 if & or r is odd.
Proof: From the sequence

>4

S — @& Z —0

0 — ES — K
v¢sS

(here S denotes the set of primes of KS lying over a prime of S), we

get an exact sequence

H(Gg.Eg) — Br(K) — 0 Br(K)

vé
(cf. A.7). Therefore, the map H2(GS.ES) — 0 Br(Kv) is surjec-—
v real
tive. The Kummer sequence
o
0O—pu n ES — ES — 0

1

gives us the first row of the next diagram

— 0

2 3
H>(Gg.Eg) — HB(GK,uen) - W)

1 surj Iz !

® Br(K) —® H(C.u )— © H(G.K ) —o0.
v v'¥ n v''v,s’ n
v real v real 2 v real I

and the five-lemma proves our assertion for r = 3. One now proceeds

by induction, using the continuation of the diagram.

Remark 4.19. Let F be a finite extension of K contained in KS’ and
let HS = Gal(KS/F). Then the following diagram is commutative:
0 — H(Gg. M) — PO(K. M) — 2 (Gg M) — H (GG M) — -
1 Res 1 Res ! Cor* ! Res
0 — (g M) — PO(F.M) — 2 (1g M) — i (Hg M) — ...

This follows from the commutativity of the following diagrams:
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r r ..T
.- ExtG (M,Es) - ExtG (M,JS) - Extc (M,CS) - ...
S S S
! i !

r T T
.= ExtHS(M,ES) - ExtHs(M,JS) — ExtHs(M.CS) - ...,

and
Extl (M.C.) — H2_r(G ,MD)*
Gs S S
1 1 Cor*

r 2-r D, *
ExtHS(M,CS) — H (HS.M ) .

An explicit description of the pairing between ml and m2

Finally we shall give an explicit description of the pairing
W (K. M) x (kM) — @/z.

Represent a € mé(K,M) and a' € mg(K,MD) by cocycles a € ZI(CS,M) and
a' € 22(GS.MD). Write a, and a; for the restrictions of a and a' to
Cv. Then for each v € S, we have a O-cochain Bv and l-cochain ﬁ&
o _ e 73

such that dBv =a, and dﬁv =a. The cup-product ava' € Z (GS.ES).
and as HB(GS,ES) bas no nonzero elements of order dividing the [M],
there is a 2-cochain e (for GS) with coefficients in ES such that
ava' = de. Then d(Bvuav) = dev = d(avvﬁv) and d(Bvuﬁv) = aquv -

' ' - ' _
vaav. and so for each v, (aquV) €, and (avuﬁv) e, are cocycles

representing the same class, say c , in H2(G ,Kx ). Set
v v'iv,s
{a,a'> = z invv(cv). It is easy to see that this element is indepen—

dent of the choices made, and one can show that it is equal to the

image of (a.a') under the pairing constructed in the proof of the

theorem.

Generalization to finitely generated modules

We note that in the course of the proof of (4.10) we have shown

the following result.
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Theorem 4.20. Assume that S omits only finitely many primes of K,
and let M be a finitely generated module over Gs such that the order
of Mtors is a unit in RK,S‘
(a) The group mg(K,Md) is finite and is dual to mé(K,M).
(b) There is an exact sequence of continuous homomorphisms
H' (G M) — T Hl(Kv,Md) — n'(cg.H%)
l

2 (cg HY) — @ H2(Gv.Md) — HO(GS.Md)* o,

N

and for r > 3 there are isomorphisms
B (G n?) 1T K (K .
v
v real
(c) In the function field case, the sequence in (b) can be ex-—
tended by
0 — Hocg .M~ — ] (G, M)~ — H2 (6. M) — ..
where ~ denotes completion with respect to the topology of open sub-
groups of finite index.

Proof: To obtain (b) and (c). write down the Ext(M,-)-sequence of

O—*ES-—)JS-—>CS—>0

and use (4.6), (4.12), and (4.13) to replace various of the terms.
Part (a) is a restatement of the fact that the sequence in (b) is

exact at H2(GS,Md).

Corollary 4.21. Let T be a torus over K. If S omits only finitely

many primes, then there are isomorphisms Hr(GS,T) = & Hr(Kv,T)
v real

for all T > 3. In particular H' (G .G =0 for all odd r > 3.
S’ m

Proof: Take M = X*(T) in the theorem.
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I do not know to what extent Theorem 4.20 holds with M and Md

interchanged, but R. Kottwitz has shown that for any torus T over a
number field K, and r = 1, 2, there is a canonical nondegenerate

pairing of finite groups
I7(K.T) x I° T (K.X(T)) — Q/Z.
For r # 1,2, I"(K.T) and I"(K,X(T)) are zero. Here I'(K.T) is de-

fined to be the kernel of Hr(K.T) — 7] Hr(Kv,T). See also (II.4)
all v

below.

Notes: Theorem 4.10 is due to Tate (see [Tate (1962)] for an an-
nouncement with a brief indication of proof). Parts of the theorem
were found independently by Poitou ([Poitou (1966), (1967)]). The
above proof of (4.10) generalizes that in [Tate (1966)], which treats
only the case that S contains all primes of K. There is also a proof
in [Haberland (1978)] similarly generalizing [Poitou (1967)]. Corol-
laries 4.16 and 4.17 are also due to Tate (cf. [Borel and Harder
(1978), 1.6] and [Serre (1977). 6.4]).

Proofs of parts of the results in this section can also be found
in [Takahashi (1969)], [Uchida (1969)], [Bashmakov (1972)]. and
[Langlands (1983), VII.2].

85 Global Euler-Poincaré characteristics

Let K be a global field, and let S be a finite nonempty set of
primes including all archimedean primes. As in §4, we write KS for
the maximal subfield of Ks that is ramified over K only at primes in

S, GS for Gal(KS/K), and RK,S for the ring of S-integers VQSDV. Let
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M be a finite Gs—module whose order is a unit in RS. We know from
(4.15) that the groups Hr(GS.M) are finite for all r, and we would
like to define x(GS,M) to be the alternating product of their orders.
However, when K is a real number field, the cohomology groups will in
general be nonzero for an infinite number of values of v (see 4.10c),
and so this is not possible. Instead, we abuse notation, and set

[H0(6g. M) T[H> (G 1)

x(CS,M) =
[ (Gg.1)]

Theorem 5.1. With the above definition,

(]
[H (GV.M)]
x(GS,M) = -

v arch |[M]]
v
Remark 5.2. (a) In the function field case, the theorem says simply
that x(GS.M) = 1. In the number field case, (2.13c) shows that
0 1 (] D
(e, 1) 1/1M 1, = [ (6, .M I/IH (G, )],

and (2.13a) shows that [H'(G_.M)] = [HI(GV,MD)], which equals
[Hg(GV,MD)] because the Herbrand quotient of a finite module is 1.

Therefore the formula can also be written as

0 D
[HA(G,.M")]
x(Gg.M) = M ———HT v .
v arch [HO(GV.MD)]

(b) Because S is finite, all groups in the complex in Theorem 4.10

are finite, and so the exactness of the complex implies that
D
x(Gg M) x(6g. M) = [ x(K,.M) (5.2.1)
VES

where x(K_.M) = [HO(KV,M)][HI(KV,M)]"[H2(KV,M)] (notations as in
§4). According to (2.8), x(Kv,M) = I[M]]v if v is nonarchimedean,
and obviously x(Kv,M) = [HO(KV,M)] = [Hg(Cv,M)] if v is archimedean.

By assumption |[M]|v =1 if v € S, and so the product formula shows
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that

0
K M) = [H (K _.M)]71mM]1. .
VLLX( v v LLch v W v

Now (2.13c) allows us to rewrite this as

[HD(c, .M IEH(G, H°)]

v arch [HO(GV,M)][HO(GV.MD)] ’

Therefore (5.2.1) is also implied by (5.1), and conversely, in the
case that M % MD. (5.2.1) implies the theorem.
(c) The theorem can sometimes be useful in computing the order of

Hl(GS,M). It says that

(' (6g.M)7 = [H2(Ge. mIE (G T T 1]l /[H0(c, .01,
v arch

and we know by (4.10) that H2(GS,M) fits into an exact sequence

0 — M2(K.M) — H>(Gg.M) — & HA(K M) — HO(Ge. M) — 0.
ves v S

By duality, [WS(K.M)] = [DG(K.M")] and [H(K,.M)] = (K. M°)]. and

so the theorem is equivalent to the statement

[10(cg. 1)1 [N

[ (Gg.1)] = [Ug(k.H")] I 60k, M1 ]

o} D,, v€S v arch - 0
[H (GS,M )] [H (GV,M)]
Proof (of 5.1): The method of proof is similar to that of (2.8).
Let ¢(M) be the quotient of x(GS.M) by the right hand side of the
equation. We have to show that ¢(M) = 1. The argument in (5.2b)
shows that (4.10) implies that w(M)¢(MD) = 1, and so in order to

prove the theorem for a module M, it suffices to show that

o(M) = (i)

Lemma 5.3. The map ¢ from the category of finite Gs—modules to Q)O

is additive.
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Proof: Let

0O0—M —M—>DM" —0

be a short exact sequence, and consider the truncated cohomology

sequence
0 — KOG M) — ... — ¥ (eg 1) — Ho(Gg.M')' — O,

where HS(GS.M')' is the kernel of the boundary map
H5(GS_M‘) —_ H5(GS,M). According to (4.10), for r 2 3, we can

replace H' (Gg.~) with P5(K,-) = @ H'(G,.-). Now [P2(K.M)] =
v S
v arch

[Pg(K,M)] because the Herbrand quotient of a finite module is one,

and so the sequence leads to the equality
. " 5 vy
X(M')x(M") = x(M).[Pg(K.M") "],

5 Yy 5 , 5
where PS(K.M )' denotes the kernel of the map PS(K,M ) — PS(K,M).
Because of the periodicity of the cohomology of a finite cyclic

5
group, [PS(K.M')'] = [C]. where

C=Ker( @ H'(G.M')— © nl(c_ .M)).
v real v real v

From the exact sequence

0— o @ . u) — o H@© M) - & H(@G M) —C— o,
v v v
v arch v arch v arch

we see that

o o
H (G . M')] [H (G .M"
I [H7(G,.M")] [H(G, )]'

v arch [HO(GV.M)]

As [M']J[M"] = [M]. it is now clear that oM )e(M") = ¢(M).

The lemma shows that it suffices to prove the theorem for a
module M killed by some prime p, and the assumptions on M require
that p be a unit in Rg. Choose a finite Galois extension L of K,

LC KS' that splits M and contains a primitive pth root of 1
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(primitive 4th root in the case that p = 2). Let G be Gal{L/K). We
need only consider modules M split by L. Note that ¢ defines a

homomorphism from the Grothendieck group RIF (G) to Q>0. An argument
P

as in the proof of Theorem 2.8 (using 2.10) allows us to replace K by
a larger field, and consequently assume that G is a cyclic group of
order prime to p. Note that L is totally imaginary, and so
Hr(Gal(KS/L),M) =0 for r 2 3 (by 4.10). It follows that there is a

well-defined homomorphism x': RF G) — RIF (G) sending the class [M]
P P
of M in Rp (G) to
P
[HO(Cal (Kg/L.M)] - [H' (Gal(Ky/L).M)] + [H%(Gal (Kg/L) . M)].

As Hom(—.Fp) is exact, it also defines a functor *: Ry (G) — RF G).
P P

Lemma 5.4. For a finite Fp[é]—module M, there are the following

formulas:
() x () = [MI"x" ()

() [ (F,[61] = dimg (). [F,[C1].

Proof: (a) On tensoring a resolution of up by Hom(M,Fp), we see that
the cup-product pairing arising from

(T S FT Hom(M.F ) — M°

N\ .
defines 3n isomorphisms
r r e
H (Gal(KS/L),up) ® Hom(M,Fp) — H (Gal(KS/L). )

for all r (recall that Gal(KS/L) acts trivially on M and up). This
gives the formula.
(b) Let MO denote M regarded as a G-module with the trivial

action. As we observed in §2, o®m » o®om extends to an isomorphism
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Fp[a]@MO — Fp[é]@M, and this gives (b).

On applying both parts of the lemma, we see that
X (). [, [E17" = D[ [G1T7x" () = aim(). [F,IC1T"x ().
Similarly x'(M).[lrp[c‘;]]* = dim(M).[le[(_}]]*.)(‘(up). Let 6 be the

homomorphism RIF (6) o Q)O sending the class of a module N to the

order of NG. Then B¢x' = X, and so on applying 8 to the above equal~
ities, we find that x(M) = x(MD).

Let v be a real prime of K. If Lw # Kv' then p must be odd, and
G D Gv
so [M v] = [MG ]. which equals [(M") "]. This shows that the factors
v

of ¢(M) and w(MD) corresponding to v are equal. It is now clear that
o(M) = ¢(MD), and we have already noted that this is implies that

p(M) = 1.

Remark 5.5. In the function field case there is a completely dif-
ferent approach to the theorem. Let K= Kks (composite inside KS),
and let H = Gal(KS/K). Let g(K) be the genus of K, and let s be the
order of the set of primes of K lying over primes in S. Then H is an
extension of a group H' having 2g(K) + s generators and a single
well-known relation (the tame fundamental group of the curve over ks
obtained by omitting the points of S) by a pro-p group, p = char(K).
Using this, or a little étale cohomology, it is possible to show that
Hr(H,M) is finite for all finite H-modules M of order prime to p (cf.
[Milne (1980)., V.2]). Also, it follows from (4.10) that Hr(H.M) =0
for r > 2. The Hochschild-Serre spectral sequence for H C G reduces

to short exact sequences

0 — HlH. M) — H'(G..M) — H (H.M) — 0,
)g S
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in which g = G/H = Gal(ks/k) = <o> and the two end groups are defined
by the exactness of

o—>Ng—>N%N——>Ng——>o.

It follows from the first set of exact sequences that
0 1 2
[H™ ()P I[H (H.M)_JCH(H.M)%]

)((GS'M) = 4
0 1 g 2
CH(H. M) JCH (H M) JH7(H. M) ]

and from the second that this product is equal to 1.

An extension to infinite S

As we observed above, in the case that S is finite, all groups
in the complex in (4.10) are finite, and therefore the alternating
product of their orders is one. It is shown in [Oesterlé (1982/83)]
that, when S is infinite, it is possible to define natural Haar meas-
ures on the groups in the complex, and prove that (in an appropriate
sense) the alternating product of the measures is again one. For
example, the measure to take on Pé(K,M) is the Haar measure for which

I
the compact subgroup ﬂ Hl(gv,M v) (product over all nonarchimedean v)

I
in has measure 1 (note that Hl(gv,M V) = Hin(Kv'M) if M is unramified

at v). The main result of [Oesterlé (1982/83)] can be stated as

follows.

Theorem 5.6. Let K be a global field, let S be a (possibly infinite)
set of primes of K, and let M be a finite Gs—module. Assume that S

contains all archimedean primes and all primes for which [M] is not a
unit. Relative to the Haar measure on Pé(K,M) defined above, a fund-
amental domain for Pé(K.M) modulo the action of the discrete subgroup

Hl(GS,M)/mé(K,M) has finite measure
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1 0 D
[Wg(K,M)] [H(Gg.M)]

M e,.m3.
UNCHTON ORI e

Proof: Suppose first that S is finite. Then the groups are all

finite, and the measure of the fundamental domain in question is

Mt x,.0] [LK.M)]

Mt (g, MH] [ (6. 1)

From (5.2c) we know that this is equal to

[g(K.0)] [H(GgM")] . [ (K, )] i, M1
i I cgm1 Y (g, 1 0, a0 v e Dl

As [Hl(gv,MI)] = [HO(gV,MI)] = [HO(GV,M)] for v nonarchimedean (we

set it to zero for v archimedean) and [HO(KV.MD)] = [H2(KV.M)], we

see that the middle term is

Mx,.0 % [T G, .m1.

vES v arch

In (5.2b) we showed that [[x(K .4)"' = [ |[M1I /[HO(G .M)]. This
veS v v arch

verifies the theorem in this case. For an infinite set S, one
chooses a suitably large finite subset S' of S and shows that the
theorem for S is equivalent to the theorem for S' (see [Oesterlé

(1982/83), §71).

Notes: Theorem 5.1 is due to Tate (see [Tate (1965/66), 2.27] for the
statement together with hints for a proof). Detailed proofs are
given in [Kazarnovskii (1972)] and [Haberland (1978), 83]. The above
proof differs from previous proofs in that it avoids any calculation
of the cohomology of B

In his original approach to Theorem 4.10, Tate proved it first

in the case that S is finite by making use of a counting argument
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involving (presumably) the formula (5.2.1) for x(GS.M)x(GS.MD) in
order to show that mé(K,M) and mg(K.MD) have the same order. He

deduced it for an infinite S by passing to the limit. (See [Tate
(1962), p192].)

Theorem 5.6 is taken from [Oesterlé (1982/83)].

§6 Abelian varieties over global fields

Throughout this section K will be a global field, and A will be
an abelian variety over K. The letter S will always denote a non-
empty set of primes of K containing all archimedean primes and all
primes at which A has bad reduction. We continue to write KS for the
maximal subfield of Ks containing K that is ramified only at primes

in 8, Gy for GaI(KS/K), and RK,S for the subring VQSOV of K. The

letter m is reserved for an integer that is a unit in R

.S} thus Im]v

=1 for all v € S. For example, it is always permitted to take S to
be the set of all primes of K, and in that case m can be any integer
prime to char(K). As usual, we fix an embedding of KS into Kv,s for
each prime v of K.

For an abelian group M, M" denotes the m-adic completion
lim MW/m™M. If X is an algebraic group over K, then we often write
H'(Cg.X) for H'(Gg.X(Kg)) (equal to H'(K.X) £ H'(G . X(K_)) n the
case that S contains all primes of K). When X is an algebraic group
over Kv' we set Hr(Kv,X) = Hr(Gv'A(Kv,s)) except when v is archi-
medean, in which case we set it equal to H;(GV,X(K )). By

v,s
Hr(—.X(m)) we mean lim Hr(—,an) and by Hr(—,TmX) we mean
n
lim H (-,X n)
E .mn-
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The weak Mordell-Weil theorem

The Mordell-Weil theorem says that A(K) is finitely generated.
The first step in its proof is the weak Mordell-Weil theorem: for
some integer n > 1, A(K)/nA(K) is finite. We prove a stronger result

in (6.2) below.

Lemma 6.1. Let A and B be abelian varieties over K having good re—
duction outside S, and let f: A — B be an isogeny whose degree is a
unit in RK.S' Write Af for Ker(f). Then all points in Af(Ks) have

their coordinates in KS, and there is an exact sequence

f

0 — Af(Ks) —_— A(KS) — B(KS) — 0.
In particular, there is an exact sequence
m

0— Am(KS) —_— A(KS) e A(KS) — 0.

Proof: Let P € B(K): its inverse image f_l(P) in A is a finite sub-
scheme of A. We shall show that this finite subscheme splits over
Kg» which implies that P lies in the image of A(KS) — B(Ks). When P
is taken to be zero, f_l(P) is Af, and so this shows that Af is split
over KS. i.e., that Af(KS) = Af(Ks)'

By assumption, A and B extend to abelian schemes o and % over
Spec(RK.s). The map f extends to a finite flat map f: & — % which,
because its degree is prime to the residue characteristics of RK,S’
is also étale. Our point P extends to a section # of % over Spec RS'
and f_l(?) is a finite étale subscheme of o over Spec(RS). Any such
scheme splits over RS’ which implies that f_l(P) splits, and proves
the lemma. (For more details on such things, see [Milne (1986b},

§20].)

The lemma yields exact sequences
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. — H(Gg.A)) — H'(Gg.A) = HT(Gg.B) — ...

. — Hr(CS,Am) — H’"(GS,A) 4, Hr(GS,A) — ...

Proposition 6.2. (Weak Mordell-Weil theorem) For any integer n
prime to char(K), A(K)/nA(K) is a finite group.

Proof: Given n, we can choose a finite set S of primes of K satisfy-
ing the conditions in the first paragraph and such that n is a unit

in RK s Then (6.1) provides us with an exact sequence
n
0 — An(KS) — A(KS) — A(KS) — 0.

The cohomology sequence of this gives an injection
A(KS)(n) — Hl(Cs.An). and we have seen in (4.15) that this last

group is finite.

To deduce the full Mordell-Weil theorem from (6.2), one uses

heights (see [Lang (1983), V]).

The Selmer and Tate-Shafarevich groups

The Tate-Shafarevich group A classifies the forms of A for which
the Hasse principle fails. The Selmer group gives a computable upper
bound for the rank of A(K). The difference between the upper bound

and the actual rank is measured by Tate-Shafarevich group.

Lemma 6.3. Let a be an element of Hl(K.A). Then for all but
finitely many primes v of K, the image of a in HI(KV,A) is zero.
Proof: As Hl(K,A) is torsion, na = O for some n, and as

Hl(K,An) — HI(K.A)n is surjective, there is a b € HI(K.An) mapping
to a. For almost all v, An(Ks) is an unramified G,-module and b maps

: 1 . 1
into Hun(Kv’An) (see 4.8). Therefore a maps into H (gv’A(Kv,un)) for
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almost all v, but (3.8) shows that this last group is zero unless v

is one of the finitely many primes at which A has bad reduction.

The Tate-Shafarevich group mS(K.A) is defined to be the kernel

of

Wl (Cg.A) — @ H'(K .A).
v
vES

The Selmer groups SS(K,A)m and SS(K,A.m) are defined by the exact

sequences

1 1
0 — Sg(K.,A) — H (Gg.A ) — vst (K,.A)

0 — Sg(K.A.m) — H' (Gg.A(m) — @ HY(K_.A).
S v
veES
The second sequence can be obtained by replacing m with m" in the
first sequence and passing to the direct limit. Therefore
SS(K,A,m) = lém SS(K,A)mn.

When S contains all primes of K, we drop it from the notation. Thus,

W(K.A) = Ker(H'(K.A) — [T H'(K .4))

all v

1

S(K.A.m) = Ker(H!(K.A(m)) — T[] HI(KV,A)).
all v

Proposition 6.4. There is an exact sequence
0 — AK)(™ = s_(K.A) — W (K.A) — O
SV m SY m :

Proof: Apply the snake lemma to the diagram
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! 1
Sg(K.A), = Ug(K.A)_
l 1
0 — a)™ H'(Gg.A ) — H'(Gg.A), — 0
1 1 1
0 o Hl(KV.A) =0 H'(K,.A) — o.

Proposition 6.5. There are exact sequences

0 — H'(Gg.A(m) — HI(K.A(m) — @ H(K,.A).
v€S

0 — H! (G, A)(m) — HM(K.A)(m) — @ H(K ,A).
S v
v¢€sS
Proof: For v € S, there is a commutative diagram

B! (Gg.A(m) — Bl (g, AKK, 1))
1 !
HU(K.A(m) — B (G, A, )
According to (3.8), Hl(gv‘A(Kv.un)) = 0, and so the diagram shows
that the image of HI(GS.A(m)) in HI(K,A(m)) is contained in the

kernel of H!(K.A(m)) — & HI(K .A).
V€S v

Conversely, let a lie in this kernel. We may assume that a is
the image of an element b of Hl(K,Am) (after possibly replacing m by
a power). To prove that the first sequence is exact, it suffices to
show that b (hence a) is split by a finite extension of K unramified
outside S. After replacing K by such an extension, we can assume
that Am(K) = Am(KS) (because of 6.1). Then b corresponds to a homo-
morphism f: Gal(KS/K) — Am(K), and it remains to show that the sub-
field Kf of Ks fixed by the kernel of f is unramified outside S.
This can be checked locally. If v € S, then, by assumption, the

image of b in Hl(KV,Am) maps to zero in HI(KV.A). It therefore
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arises from an element c. of A(K ). The closure of K. in K is
v v f V.S

Kv(m_lcv), which is unramified by (6.1).
The exactness of the second exact sequence can be derived from

the first. In the diagram

1im AG) ™ = 14 A ™
1 1
0 — H!(Gg.A(m)) — B (K.A(m)) — @ H(K_.A)
l l vé€S l v
0 — Hl(Gg.A)(m) — H (K.A)(m) — @ H'(K,.A)
1 1 v¢sS
0 [¢]

the exactness of the bottom row follows from the exactness of the

rest of the rest of the diagram (use the snake lemma, for example).

Corollary 6.6. For all S and m (as in the first paragraph),
mS(K,A)(m) = W(X,A)(m)
SS(K,A,m) = S(K.A,m).
Proof: The kernel-cokernel sequence (see 0.24) of the pair of maps

A m 2 e u'(k .A)(m) Ee H' (K, .A) (m)
all v vés

is
0 — O(K.A)(m) — H'(Gg.A)(m) — @ HY(K,.A)(m) — ...
vES
because (6.5) allows us to replace Ker(preB) with HI(GS,A)(m). This
sequence identifies M(K,A)(m) with mS(K.A)(m). The second equality

is proved by replacing HI(K,A)(m) in the proof with Hl(K,A(m)).

Remark 6.7. Recall (4.15) that HI(GS,Am(Ks)) is finite when S is
finite. Therefore its subgroup SS(K,A)m is finite when S is finite,
and (6.4) then shows that mS(K.A)m is finite. It follows now from

(6.6) that m(K.A)m is finite, and (6.4) in turn shows that S(K,A)m is
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finite. Consequently, S(K,A){(m) and I(K,A)(m) are extensions of
finite groups by divisible groups isomorphic to direct sums of copies
of Qe/Ze, 2 dividing m. It is widely conjectured that M(K,A) is in

fact finite.

Definition of the pairings

The main results in this section will concern the continuous

homomorphisms
0. ~ 0 ~
B: AK)> —[] H (KV,A) (compact groups)
v€S
BT Hr(Gs,A)(m) — 6 Hr(KV,A)(m), r # 0, (discrete groups).
v

€S
Write IE(K.A.m) = Ker(p"). Thus mé(K.A,m) = l;(K.A)(m). which we

have shown to be independent of S. We also write

Lg(K.A(m)) = lim mg(K,Amn) = Ker(H' (Gg.A(m)) — T[] Hr(Kv.A(m)))
n v€S

T . r .
(KT _A) = 1:(;"1 MG(K.A n) = 1%m Ker(H"(Gg.A n) — VI;ISHr(KV.Amn))-

Lemma 6.8. For any r > 2, there is a canonical isomorphism
g (K.A.m) =, Wg(K,A(m)).

Proof: For each r > 2 there is an exact commutative diagram:

Hr—l

0 —

(Gg.A)8Q /Z  — Hr(CS,A(m)) - Hr(GS.A)(m) -0
L g a6t L B (A(m)) L BT (A) (m)

-1 r r
0— & H (K .,A)eQ /7Z — & H (K_,A(m)) — & H' (K ,A)(m) — O.
VveS v A ves Y ves ¥

As r-1 > 1, the groups Hr_l(GS,A) and Hrnl(Kv,A) are both torsion,
and so their tensor products with Qm/Zm are both zero. The diagram

therefore becomes
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H (Gg.A(m) =5 H' (Gg.A)(m)
LB (Am) LT (A)(m)

® H' (K ,A(m)) —= & H (K _,A)(m).
8K, Am) 8 (K, A ()

from which the result is obvious.

Proposition 6.9. For r = 0, 1, 2, there are canonical pairings
r 2-r t
<, 0 ms(K.A.m) x g~ (K.A ,m) — Q/Z.
Proof: There is a unique pairing making the diagram

[Hg(K,A.m) x lﬂg(K,At.m) - Wz
| 1= ]

1
(K. T A) x WZ(K.A%(m)) — @z

commute. Here the bottom pairing is induced by the em—pairing and
the pairings in 84, the first vertical arrow is induced by the map
Hr(GS,A) — lim Hr+1(Gs,Am), and the second vertical map is the iso-
morphism in (6.8). This defines the pairing in the case r = 0, and
the case r = 2 can be treated similarly.

The definition of the pairing in the case r = 1 is more dif-

ficult. We will in fact define a pairing
. t
<L Hg(KA) L x Wg(K.AT) — Q/Z.

Since the Tate-Shafarevich groups are independent of S, we take S to
be the set of all primes of K. If % is a global cohomology class,
cocycle, or cochain, we write *v for the corresponding local object.
Let a € m(K,A)m and a' € m(K,At)m. Choose elements b and b' of
HI(GK,Am) and HI(GK,A;) mapping to a and a' respectively. For each

v, a maps to zero in HI(KV.A). and so it is obvious from the diagram
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1 1
A(Kv) — H (KV,Am) — H (KV,A)
I
AK ) — H'(K_.A 2)
v v''m

that we can lift b_ to an element b € Hl(G ,A 2) that is in the

v v,1 v''m
image of A(Kv).

Suppose first that a is divisible by m in Hl(GK,A), say a = ma,,

and choose an element b1 € Hl(GK,Amz) mapping to a- Then

1 oyl fe s
b maps to zero under H (Kv,Amz) — H (Kv'Am)' and so it is

v.l bl.v

the image of an element <, in Hl(Kv,Am). We aefine
<a,a'> = > 1nvv(cvubv) € Wz
where the cup-product is induced by the em—pairing Am X A; - Gm' and
inv_ is the canonical map H2(Kv_Gm) - W/Z.
In the general case, let B be a cocycle representing b, and lift
. . 1 1
it to a cochain Bl €C (GK,Amz). Choose a cocycle ﬁv,l €7 (Gv,Amz)

representing bv and a cocycle B' € Zl(GK.;E) representing b'. The

.10
coboundary dBl of ﬁl takes values in Am’ and dﬁluB' represents an
element of HB(CK,K:). But this last group is zero (by 4.18 or 4.21),

and so dﬁluﬁ' = de for some 2-cochain e. Now (Bv 1° Bl v)VB; - e,

is a 2-cocycle, and we can define
a,a'> = > inv ((B, | = By VB, - €,) € WZ.

It is notAdifficult to check that the pairing is independent of

the choices made.

Remark 6.10. (a) If B is a second abelian variety over K having good

reduction outside S and f: A — B is an isogeny, then
<f(a).b> = @.f'(b)>, a € I§(K.Am), b € B2 T(K.B%\m).

This follows from the fact that the local pairings are functorial.
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(b) Let D be a divisor on A rational over K, and let #p' A— At

be the corresponding homomorphism sending a € A(KS) to the class of
Da - D, where Da is the translate D + a of D. Then (c,wD(c)) = 0 for
all ¢ € mé(K,A,m). See [Tate (1962), Thm 3.3]. This can be proved
by identifying the pairing defined in (6.9) with that defined in

(6.11) below, which we check has this property. See also (1I.5).

Remark 6.11. There is a more geometric description of a pairing on
the Tate-Shafarevich groups, which in the case of elliptic curves
reduces to the original definition of [Cassels (1962), §3]. An ele-
ment a of M(K,A) can be represented by a locally trivial principal
homogeneous space X over K. Let KS(X) be the function field of

X@KKS. Then the exact sequence
X x
O—)KS——>KS(X) —Q—0

leads to a commutative diagram
p

Br(K) —  H(G.K (X)) —  H(G.Q) —0
! o !

0— ®Br(K)— ®BYc.K (0% — oHG .Q).
all v all v v V% all v "

The zero at top right comes from the fact that HB(GK,K:) = 0 (see
4.21). The zero at lower left is a consequence of the local trivial-
ity of X. Indeed, consider an arbitary smooth variety Y over a field
k. The map Br(Y) — Br(k(Y)) is injective [Milne (1980), II.2.6].
The structure map Y — Spec(k) induces a map Br(k) — Br(Y), and any
element of Y(k) defines a section to this map, which is then inject-

ive. In our situation, we have a diagram
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0 — Br(Kv) - Br(XK ) — Br(XK )
v Vv,S
] ! inj ! inj

Br(K,) — Br(K (X)) — Br(K, (X))

from which the claimed injectivity is obvious.

The exact sequence
. 0 Y
0 — Q — Div (X®KS) — Pic (X®Ks) — 0
yields a cohomology sequence
1 (c,.pivO(xeK )) — H(C,.PicO(X8K })) — HZ(G,.Q) —
K’ ] K’ s K’ T

A trivialization A®KS =, X®Ks determines an isomorphism
PicO(X®KS) =, PicO(A®KS). Because the trivialization is uniquely
determined up to translation by an element of A(Ks) and translations
by elements in A(KS) act trivially on PicO(A®Ks) [Milne (1986b),
9.27, the isomorphism is independent of the choice of the trivializa-
tion. A similar argument shows that it is a GK—isomorphism. There—
fore the sequence gives a map HI(GK,At) — H2(GK,Q). Let
a' € I(K,A%), and let b’ be its image in H(G,.Q). Then b' lifts to
an element of HI(GK.KS(X)X), and the image of this in
® Hl(Kv,Kv’S(X)x)) lifts to an element (cv) €0 Br(Kv). Define
<a,a'> = » invv(cv) € Q/Z. Note that the cokernel of
Br(K) — o Br(Kv) is Q/Z, and so <a.,a')> can also be described as the
image of b' under the map defined be the snake lemma. As the prin-
cipal homogeneous space X is uniquely determined up to isomorphism by
a, this shows that <a,a')> is well-defined.

It is easy to prove that this pairing is alternating. Let
P e X(KS): then oP = P + a(o) where (a(o)) is a cocycle representing

a. The map ¥p sends Q € A(Ks) to the class of D, -~ D in PicO(A), and

Q
so a' is represented by the cocycle (a'(0)) € Zl(GK,At). where a'(0o)



~

-

100 I GALOIS COHOMOLOGY

is represented by the divisor Ea = Da(a) ~ D. Now use the trivializ-
ation Q » P + Q: ABK_ —>» X8K_ to identify PicO(A) with PicO(X).
Then one sees immediately that (a&), regarded as a crossed homomorph-

ism into PicO(XK ). lifts to a crossed homomorphism into DivO(XK }-
s s

Therefore the image of a' in HQ(GK,Q) is zero, and so <a,a'> = O.
We leave it to the reader to check that this pairing agrees with

that defined in (6.9).

Remark 6.12. When A is the Jacobian of a curve X over K, there is
yet another description of a pairing on the Tate-Shafarevich groups.
Write S for the canonical map DivO(X8K ) — A(K ).
Let a € M(K,A) be represented by a € Zl(GK.A(KS)). and let a, =
dp, with B € go(cv,A(Kv_S)). Write
- @ = S(a). a € C'(G,.DivO(XeK )

0 )
B, = S(b,). b, € C'(G,.Div (X8K,

&)
o1 .0
Then a = db_ + (£ ) in C (G,.Div (X®K ). where and
1 X 2 X ,
fv €C (Gv'Kv,s(X) ). Moreover da = (f), f € Z (GK,KS(X) ). Let a

be a second element of M(K,A) and define a', b;. f;. and f' as for a.

Set L s
v By e

a,a'> = > 1nvv(cv), c, = class of g,va - bvvf
where v denotes the cup-product pairing induced by (h,c) » h(¢). One
shows without serious difficulty that f, a, g, and bv can be chosen

so that f(bv) and gv(n) are defined. Moreover, <a,a> = O.

The main theorem
We shall need to consider the duals of the maps Br. Recall
(3.4, 3.6, and 3.7) that H'(K_.A) is dual to Hl_r(Kv,At), except

possibly for the p-components in characteristic p. Therefore there
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exist maps,

v ] HI(K A)(m) — At(K)*(m) (discrete groups)
v€S v
+0: N HO(K A — Hl(G ,At)(m)*, (compact groups)
v S
veS
such that AT(A) = L T(A%)™.

Theorem 6.13. (a) The left and right kernels of the canonical
pairing
o' (K.A)(m) x 0 (K.A%)(m) — @z
are the divisible subgroups of ml(K,A)(m)) and ml(K.At)(m).
(b) The following statements are equivalent:
(1) B (K.A)(m) is finite;
(ii) Im(BO) = Ker(wo) and the pairing between mg(K,A.m) and
mg(K,At_m) is nondegenerate.
(c) The map B2 is surjective with Rernel the divisible subgroup of
HZ(GS.A)(m), and for r > 2, B* is an isomorphism
H' (Gg.A)(m) = @ H' (K .A)(m).

v real

Remark 6.14. (a) Much of the above theorem is summarized by the fol-
lowing statement: if M(K,A){m) and m(K,At)(m) are finite, then there

is an exact sequence with continuous maps

o K(K A (m)™ < H(Gg. A") (m) H(Gg. A)"

VvV real
1 g0
0
H'(Gg.A)(m) — H'(6g AT ) (m)* & ] HO(K, . A)
1 vES
lp
1 2

® H' (K .A)(m) > HO(Gg A — (G A (m) 2> 0 H2(K, . A) (m).
V€S v real

The unnamed arrows exist because of the nondegeneracy of the pairings
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defined in (6.9).
(b) We shall see in (6.23) and (6.24) below that if S contains
almost all primes of K, then BO and 52 are both injective. In this

case, the above sequence can be shortened to a four—-term sequence:
1 1 0 %
0 — M(K,A)(m) — H (GS,A)(m) — ® H (KV,A)(m) — H (CS,A )y~ —o.

In particular, when S contains all primes of K and the Tate-

Shafarevich groups are finite, then the dual of the exact sequence

0 — M(K.A) — H(K.A) — © Hl(Kv.A) —F5 —0
all v

is an exact sequence

0 — m(K.AY — 1 (KA — THOK AT — A K" o,
all v

except possibly for the p-components in characteristic p # 0. Here b
is defined to be the cokernel of the preceding map. In the second
sequence, HO(KV,At) = At(Kv) unless v is archimedean, in which case
it equals the quotient of A(Kv) by its identity component (see 3.7).
The term At(K)“ is the profinite completion of At(K), which is equal
to its closure in [] HO(KV,A) (see 6.23b).

(c) If I{K,A) is finite, then so also is m(K.At)‘ To see this
note that there is an integer m and maps f: A — At and g: At — A
such that feg = m = gef. Therefore there are maps
m(f): m(K,A) — m(K.At) and 0(g): m(K,At) — [I(K,A) whose composites
are both multiplication by m. It follows thgt the kernel of l(g) is
contained in m(K,At)m. When m is prime to the characteristic, we
observed in (6.7) that m(K,At)m is finite, and an elementary proéf of
the same statement for m a power of char(K) can be found in [Milne
(1970b)] (see also Chapter I111). Hence the kernel of Mi(g) is finite,

and this shows that m(At) is finite.
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We begin the proof of (6.13) with part (c). As we saw in the

proof of (6.8), when r 2> 2, there is a commutative diagram

H(Gg.A(m)) ==  H'(Gg.A)(m)
L BT (A(m)) L gT(A)(m)

® H (K .A(m)) = & H'(K_,A)(m)
ves Y ves ¥

As Hr(Kv,A) is zero when r 2> 2 and v is nonarchimedean (see 3.2), the
sum at lower right needs to be taken only over the real primes. When
r> 2, ﬁr(A(m)) is an isomorphism (see 4.10c), and so Br(A) is an
isomorphism. When r = 2, (4.10) shows that the cokernel of B2(A(m))
is

lim A;n(K)* = (1jm A;n(K))* = (T AYK)™.

which is zero because At(K) is finitely generated (by the Mordell-

Weil theorem). Consider the diagram

H(GgA) —  H(CgA)(m) 5 HA(GeA)(m) —  H(Gg.A)
LA Lp%(a) LA L)

® H2(K .A ) — © HX(K .A)(m) — & H(K .A)(m) — ® HO(K .A ).
v m v v v m
v real v real v real v real

The first vertical arrow is surjective by (4.16). We have just shown
that ﬁ2(A) is surjective, and we know that Bg(Am) is an isomorphism
by (4.10c). Therefore we have a surjective map of complexes, and so
the sequence of kernels is exact, from which it follows that
Ker(ﬁ2(A)) is divisible by m. On repeating this argument with m
replaced by m™ we find that Ker(Bz(A)) is divisible by all powers of
m. Since it obviously contains H2(GS’A)(m)div' this shows that it
equals H2(CS‘A)(m)div' This completes the proof of part (c).

We next prove part (b). Let v € S, and consider the diagram
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1 1
o— a)™ = Hlga) — H(GeA), —0O
l ! 1

0 (m) 1 1
0— H (KV,A) — H (Kv,Am) — H (KV,A)m — 0.

On replacing m with m" and passing to the inverse limit, and then
replacing the bottom row by the restricted product over all v in S,

we obtain an exact commutative diagram

- 1 1
0 — A(K) —  H(Gg.T A) — T H (Gg.A) —0
160 ! 1 gt

0 1 1
0 > JIH(K ,A) — []' H(K_.T A) —[]' T H (K _,A) — O.
veS v V€S A'2 m veS m '

The snake lemma now gives an exact sequence
0 ~
MH(K .A)

0
Im(B7)
Here we have used (4.10) to identify the cokernel of the middle vert-

(0] 1 1 t %*
0 - IIIS(K.A) - lIlS(K.TmA) —-—»Tmlll(K,A) — = (H (GS,A (m)) .

t (% s 1 t »*
,Amn) = (ll)m H (GS.Amn)) =

ical map with a subgroup of lim Hl(GS
' (6g. A" (m))™.
Consider the maps

O 1]
MHK,.A) = (' (6g.A ) (m)) = 1 (g A% (m))™,
ves Y

the second of which is the dual of Hl(GS.At(m)) —» HI(GS,At)(m) and
is therefore injective; consequently, Ker(e'°70) = Ker(ﬁo). The
composite e'-vo is the composite of the projection

T HO(KV.A)‘

1 HO(KV,A)“ - with e. Since Im(BO) is goes to zero

ve€S Im(BO)

under e'ev , we see that it must also be mapped to zero by 70. that
is, 70°ﬁo = 0 (without any assumptions). We also see that Ker(wo) =
Im(ﬁo) if and only if e is injective, which is equivalent to
mé(K.TmA) e Tmm(K.A) being surjective.

Consider on the other hand the first part
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0 1
0 — mS(K.A) — mS(K,TmA) — Tmm(K,A)
of the above exact sequence and the isomorphism
2 X 2
WE(K.A) (m) < WE(K.A(m))

in (6.8). Clearly the duality between HG(K.T A) and W2(K,A(m)) aris-
ing from (4.10) induces a duality between mO(K.A) and mz(K.A)(m) if
and only if the map mé(K,TmA) - Tmm(K.A) is zero.
On combining the conclusions of the last two paragraphs, we find
that the following two statements are equivalent:
(%) WO(K.A) and B2(K.A%) are dual and Im(5°) = Ker(+*)
(3e¢) mé(K.TmA) e Tmm(K,A) is both surjective and zero.
Clearly (3¢¢) is equivalent to Tmm(K,A) being zero, but Tmm(K.A) =0
if and only if the m-divisible subgroup of W(K,A){(m) is zero, in
which case the group is finite. This proves the equivalence of
statements (i) and (ii) in (b).
In preparing for the proof of (a), we shall need a series of
lemmas. Since the statement of (a) does not involve S, we can choose
it to be any set we wish provided it satisfies the conditions in the

first paragraph. We always take it to be finite.

Lemma 6.15. Let a € @ HI(KV.Am), and consider the pairing
veS

. 1 1 t . . .
><, >, TTH (K LA ) x ® H (K .A') — @/Z, <a.a> = inv (aval).

Then <a,a'> = O for all a' in the image of So(K.,A') — @ H (K .Al)
S m VES v''m

if and only if a can be written a = a; +a, with a; and a, in the
. 0 1 1 1

images of [| H (K,.A) — TTH (K,.A,) and H'(Gg.A ) — M (K,-A)
respectively.

Proof: The dual of the diagram
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1 t
® H (Kv,Am)
Bl
! N
1 t 1 t t
® H (Kv'A ) &< H (GS.Am) — SS(K,A )m «— 0
is
Mu (K .A )
vim 1
1 N
(o} 1 t%* t *
MHK,.A) — B (Gg.AD™ = (Sg(K.AD )" — 0.
1 . t, 1
Let a € [|H (Kv’Am)' If a maps to zero in (SS(K,A )m) , then ~ (a)
is the image of an element b in I HO(KV,A). Let a; denote the image
of b in ﬂ Hl(Kv,Am); then a - a; is in the kernel of 11. But accord-

ing to (4.10), the kernel of 11 is the image of HI(GS,Am), and so

1
a-a =a, for some a, € H (CS.Am)-

Lemma 6.16. Let M'(A) be the subgroup of W(K,A) of elements that

become divisible by m in Hl(GS,A). Then there is an exact sequence

0 — I (K.A) — I(K.A) — US(K.A ).
Proof: Consider

mK.A) T OK.A) —  UI(K.A)

! ! !
i (Gg.A) H' (Gg.A) — H?(Gg.A )
l 1 !

o H (K ,A) ™ 0 HI(K .A) — © HX(K_.A ).
ves ¥ ves VY ves v T

An element a in [(K,A) maps to zero in mz(K,A) if and only if it maps
to zero in H2(GS,Am), and this occurs if and only if its image in

Hl(GS,A) is divisible by m.

Lemma 6.17. Let a € I'(K,A). Then a € nlll(K,A) if and only if <a,a'>



§6 ABELIAN VARIETIES OVER GLOBAL FIELDS 107

=0 for all a' € I(K.A")_.

Proof: If a = ma, with aj € M(K.,A), then

a,a'> = (mao,a > = (ao.ma >=0

for all a' € m(K,At)m. Conversely, assume that a satisfies the sec-

ond condition, and let a, € Hl(GS.A) be such that ma. = a; we have to

1 1

show that a; can be modified to lie in lI(K,A). Choose a finite set S

satisfying the conditions at the start of this section and containing

all v for which a; , # 0. If a; is replaced by its sum with an ele-

ment of HP(CS,A), then it is still zero outside S (see the proof of

6.5). Define bl’ bv,l' and c, as in (6.9); thus b1

1 1
maps to a,, bv.l € H (Kv,Amz) and maps to bv, and c, €H (Kv,Am) and

1
€ H (GS,Amz) and

maps to bv 1 - b1 v We shall show that there is an element

1
bo € H (GS.Am) such that

il

= . (m)
bO.v =c, bl.v mod A(Kv)

1 + as. with

in Hl(GS,A), lies in W(K,A) and is such that

for all v. This will complete the proof, because then a

a. the image of b

(0} (0]

m(al - ao) =ma, = a.

1

According to (6.14), an element b0 will exist if and only if
> <cv.b¢> = 0 for all b' in SS(K,A)m. But, by definition of the
pairing on the Tate-Shafarevich groups (6.9), > <cv,b;) = <a,a'>

v : . t : :
where a' is the image of b' in I(XK,A )m' and our assumption on a is

that this last term is zero.

We now complete the proof of part (a) of the theorem. Note that
because the groups are torsion, the pairing must kill the divisible

subgroups. Consider the diagram
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0 — M'(K,A)/ml(K,A)) — M(K,A)/mll(K,A) — mg(x,Am)
l 1 1
E.3

0 — (m(K.A"Y) /Im I' (K, A5 = @E.AH ) — Hlé(K.A:]) )

R

The top row comes from (6.16) and the bottom row is the dual of an

obvious sequence
DA (K.AY) — m(K.AY) — Coker — 0
S m : m :

The first vertical map is the injection given by Lemma 6.17, and the
third vertical arrow is the isomorphism of (4.10). A diagram chase
now shows that the middle vertical arrow is also injective. On pass-
ing to the limit over powers of m, we obtain an injection

m(K.A)~ <> D(K.A%)(m)™. But M(K,A)~ = W(K.A)/W(K.A)__,. . and so the

left kernel in the pairing
I(K.,A)(m) x O(K.A%)(m) — @/Z
is m(K,A)m_div. Therefore

[M(K.,A)/m(K,A) 1 < [m(K.AY)/WK.AY)

m-div m—div]'

Since this holds for all A, we also have

7 < (oK. A"y mK.A"")

t t
[W(K.A)/M(K.AT) oo m-div]

(l(K,.A)]/U(K,.A)

m—div]'

It follows that all these orders are equal, and therefore that the
right kernel is m(K‘At)m—div'
Remark 6.18. If A has dimension one and m is prime, then mz(K.Am) =
O (see 9.6), and so m’(K.A)m = IH(K,A)m (see 6.17). Therefore in this
case it is significantly easier both to define the pairing on the

Tate-Shafarevich groups and to prove its nondegeneracy.
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Complements in the case that S contains almost all primes
We shall now show how a theorem of [Serre (1964/71)] can be used
to improve some of these results when S omits only finitely many

primes.

Proposition 6.19. Let m be an integer prime to char(K), and let G be
the image of Gal(KS/K) in TmA. Then the group Hl(a,TmA) is finite.
Proof: When m is prime, this is proved in [Serre (1964/71), II.2],

and the result for a composite m follows immediately.

We give a second proof of (6.19) based on a theorem of Bogomolov
and a lemma of Sah. Note that (6.1) shows that the action of GK on

TmA factors through G Also that, because TmA is a Zm—module, Zm is

S
a subring of End(TmA) and Z; is a subgroup of Aut(TmA).

Lemma 6.20. For any prime € # char(K), the image of GS in Aut(TeA)

contains an open subgroup of Zz.

Proof: Theorem 3 of [Bogomolov (1981)] shows that (at least when K

is a number field), for any prime &, the Lie algebra of the image of

GK in Aut(TeA) contains the scalars. This implies that the image of
. . X

CK is open in Ze.

Lemma 6.21. Let G be a profinite group and M a G-module. For any

element o of the centre of G, Hr(G,M) is annthilated by x » ox - X.

Proof: We first allow o to be any element of G, not necessarily a

central element. The pair of maps
-1, -1 .
gprogo " G—>G, mp o m M-—NM

are compatible, and so define automorphisms o Hr(G,M) — Hr(G,M).
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According to (0.15) o' is the identity map. In the case that o cent-
ral, one sees by looking on cochains that o' is the map induced by
the G-homomorphism 0—12 M — M. Consequently, o acts as the identity

map on Hr(G,M), as claimed by the lemma.

We now (re-)prove 6.19. It follows from (6.20) that there is an
integer i and an element o € G such that ox = (Ei—l)x, all x € TeA.
Now (6.21) shows that eiHl(é,TeA) = 0. Corollary 4.15 implies that
Hl(é,Aen) is finite for all n, and so the inverse limit of the exact

sequences
i
n'@a ) -Su@a ) —u(@GA )
o ol ot

is an exact sequence

H'(E.T,A) —5 0 (G.T,A) > H'(E.A ).

14 o1
and so Hl(é,TeA) is a subgroup of the finite group Hl(a,A i).
2
Proposition 6.22. If S omits only finitely many primes of K, then
the map
H'(C..T A) — [THY(K .T A)
S''m v''m
vES
is injective.
Proof: Write Mé(K.TmA) for the kernel of the map in the statement of
the proposition. Then there is an exact commutative diagram
0 — HYG.TA) — H(C..TA) — HY(G.TA)
"Tm S’ 'm m
! 1 i

0 — @ H'(G,.T A) — 0 H'(G,.T A) — © H'(G!.T A)
ves vV T ves vV U V€S

in which G and év are the images of G and Cv in Aut(TmA) and G' and
C; are the kernels of G — G and Gv —» Cv. The two right hand groups

consist of continuous homomorphisms, and so the Chebotarev density
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theorem shows that the right hand vertical map is injective. It
follows that the subgroup m;(K,TmA) of Hl(GS.TmA) is contained in
Hl(é,TmA). and is therefore torsion. Since TmHl(GS.A) is torsion-

free, the sequence
~ 1 1
0 — A(K)” — H (GS,TmA) -_ TmH (GS.A)

now shows that any element c of mé(K.TmA) is in A(K)”~. But for any
nonarchimedean prime v, the map A(K)" — A(Kv)“ is injective on tor-

sion points, and so ¢ = O.

Corollary 6.23. Assume S omits only finitely many primes.
(a) There is an injection

) o T HOGK A /ACK)~
m v
vE€ES

(b) There is a sequence of injective maps

~ ; 0 ~
A(K)~ — 1im S((K.A)  — ITH (K,.A)".
v€S

In particular, mg(K,A) = 0. The kernel of A(K) — A(K)" is the sub-
group of elements with finite order prime to m.

Proof: Consider the diagram

0> AK)Y — H(GuTA) 2 TH(CeA) >0
1 le lb

0 — MTHK,.A)» — 1 (k.7 A) -5 [T (K .4) — o.
ves Y ves YV V€S v

The vertical arrow marked ¢ is injective, and that marked b has
kernel Tmm(K,A). Therefore part (a) follows from the snake lemma.
The first map in part (b) is the inclusion Ker{a) < Ker(bca). The

second is the injection Ker(dec) <> Ker(d).

Corollary 6.24. Let S be as in the proposition. The map

H2(GS,A) — 0 H2(KV,A) is an isomorphism; in particular, mé(K,A) = 0.
v real
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Proof: We have a commutative diagram

0 — H!(Gg.A)6Q /Z — H(Gg.A(m) — H(Gg.A)(m) — O
1 1 !

0—o Hl(Kv.A)QM)m/Zm —8 H2(KV,A(m)) — @ (K .A)(m) — 0.

Because HI(KV,A) is torsion, its tensor product with Qm/Zm is zero.
Therefore a nonzero element of mg(K,A)(m) would give rise to a non-
zero element of mg(K.A(m)). but this group is dual to mé(K,TmAt).
which the proposition shows to be zero. Therefore the map is inject-

ive, and it was shown to be surjective in (6.13c).

Remark 6.25. Note that (6.23b) solves the congruence subgroup prob-
lem for subgroups of A(K) of index prime to the characteristic of K:
any such subgroup contains a subgroup defined by congruence condi-

tions. (In fact, that was Serre’s purpose in proving (6.19).)

On combining the above results with Theorem 6.13, we obtain the

following theorem.

Theorem 6.26. Assume that S omits only finitely many primes of K.

(a) The left and right kernels of the canonical pairing
W(K.A)(m) x W(K.A")(m) — @/Z
are the divisible subgroups of W(K,A)(m) and m(K,At)(m).
(b) The Tate-Shafarevich group U(K,A)(m) is finite if and only if
Im(ﬁo) = Ker(vo); in this case there is an exact sequence

0 — M(K,A)(m) — Hl(cs.A)(m) - @ HI(KV,A)(m) — At )~ - o.
vES

(c) The groups mg(K,A,m) are zero for r # 1, and for r 2 2, Br is

an isomorphism
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H' (Gg.A) (m) =5 0 H' (K. A) (m).
v real

Remark 6.27. The Tate-Shafarevich group is not known to be finite
for a single abelian variety over a number field. However there are
numerous examples where it has been shown that some component
O(K.A)(m) is finite. The first examples of abelian varieties over
global fields known to have finite Tate-Shafarevich groups are to be
found in [Milne (1967)] and [Milne (1968)]. There it is shown that,
for constant abelian varieties over a function field K, the Tate-
Shafarevich group is finite and has the order predicted by the con—
jecture of Birch and Swinnerton-Dyer (see the next section for a
statement of the conjecture; an abelian variety over a function field
K is constant if it is obtained by base change from an abelian var-—
iety over the field of constants of K). See also [Milne (1975)],
where (among other things) it is shown that the same conjecture is

true for the elliptic curve
2
Y =X(X-1)(X-T)

over k(T), k finite.

Notes: Theorem 6.13 was proved by Cassels in the case of elliptic
curves [Cassels (1962), (1964)] and by Tate in the general case (an-
nouncement [Tate (1962)]). So far as I know, no complete proof of it
has been published before. The survey article [Bashmakov (1972)]
contains proofs of parts of it, and [Wake (1986)] shows how to deduce
(6.22), (6.23). and (6.24) from (6.19); both works have been helpful
in the writing of this section in the absence of Tate’s original

Proofs.
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§7 An application to the conjecture of Birch and Swinnerton-Dyer

The results of the preceding two sections will be applied to
show that the conjecture of Birch and Swinnerton-Dyer, as generalized
to abelian varieties by Tate, is compatible with isogenies (except
possibly for isogenies whose degree is divisible by the character-
istic of K). We begin by reviewing the statement of the conjecture
in [Tate (1965/66), 81]. Throughout, A and B will be abelian variet-

ies of dimension d over a global field K, and G = Gal(KS/K).

L-series. Let v be a nonarchimedean prime of K, and let k(v) be the
corresponding residue field. If A has good reduction at v, then it
gives rise to an abelian variety A(v) over k(v). The characteristic
polynomial of the Frobenius endomorphism of A(v) is a polynomial
PV(T) of degree 2d with coefficients in Z such that, when we factor
it as PV(T) =@ - aiT). then [] (1 - aT) is the number of points on
A(v) with coordinates in the finite field of degree m over k(v) (see
[Milne (1986b), §19]). It can be described also in terms of V,A &F
QB® TBA' Let Dv p) Iv be the decomposition and inertia groups at v,

and let Frv be the Frobenius element of DV/IV. Then (6.1) shows that

Iv acts trivially on TeA. and it is known (ibid.) that
P (A.T) = det(l - (Frv)TI V,A). & # char k.

For any finite set S of primes of K including the archimedean primes
and those where A has bad reduction, we define the L-series LS(S,A)

by the formula

Ly(s.A) = v]g PV(A,Nv‘S)‘1

where Nv = [k(v)]. Because the inverse roots a; of PV(T) have ab-
solute value q1/2, the product is dominated by (K(s—1/2)2d, and it

therefore converges for Re(s) > 3/72. It is widely conjectured that
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Ls(s.A) can be analytically continued to a meromorphic function on
the whole complex plane. This is known in the function field case,
but in the number field case it has been verified only for modular
elliptic curves, abelian varieties with potential complex multiplica-
tion, and some other abelian varieties.

Let w be a nonzero global differential d-form on A. As F(A,Qi)
has dimension 1, w is uniquely determined up to multiplication by an
element of K*. For each nonarchimedean prime v of K, let M, be the
Haar measure on Kv for which Ov has measure 1, and for each archime-
dean prime, take u, to be the usual Lebesgue measure on Kv' With
these choices, we have uv(cU) = |c|vpv(U) for any ¢ € K* and compact
UcC Kv' Just as a differential on a manifold and a measure on R
define a measure on the manifold, w and B, define a measure on A(Kv),

and we set pv(A,w) = J;(K )lmlvpg (see [Weil, (1961)]). Let p be the

measure rIu on the adéle ring AK of K, and set |u| = J . For
v
AK/K
any finite set S of primes of K including all archimedean primes and

those nonarchimedean primes for which A has bad reduction or such

that w does not reduce to a nonzero differential d-form on A(v), we

define
d
L3(s.A) = Lg(s.4) N 71
M u,(A.0)
vES
This function is independent of the choice of w; if w' = cw is a

second differential d-~form on A having good reduction outside S, then
¢ must be a unit at all primes outside S, and so the product formula

shows that [|p (A,0') = [[n (A,0). The function L*(s,A) depends on
v v S
vES vES

the choice of S, but its asymptotic behaviour as s approaches 1 does

not, because if v is a prime at which A and v have good reduction at
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v. then it is known that p (A.0) = [A(k(v))1/(W)? (ibid.. 2.2.5).

and it is easy to see that this equals Pv(A.Nv_l).

Heights. The logarithmic height of a point x = (xO:...:Xm) in Pm(K)
is defined by

h(x) = log [] max {Ix; 1.}
all v 0<i<m

The product formula shows that this is independent of the representa-
tion of x. Let D be a very ample divisor on A. After replacing D
with D + (—1)*D, we may assume that D is linearly equivalent to
(—1)*D. Let f: A <> P" be the embedding defined by D, and for

a € A(K), let wD(a) be the point in At(K) represented by the divisor

(D + a) - D. Then there is a unique bi-additve pairing
<> AYK) x A(K) > R

such that <¢D(a),a> + 2h(f(a)) is bounded on A(K). The discriminant
of the pairing is known to be nonzero. The pairing is functorial in

the sense that if f: A — B is an isogeny, then the diagram

AYK) x A(K) — R
1t ls 1
BY(K) x B(K) — R

commutes. (See [Lang (1983), Chapter V].)

Statement. In order to state the conjecture of Birch and Swinnerton-
Dyer we need to assume that the following two conjectures hold for A:

(a) the function Ls(s,A) has an analytic continuation to a neigh-
bourhood of 1;

(b) the Tate-Shafarevich group l(K,A) of A is finite.
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The conjecture then asserts:

Lg(s.A) [I(K,A)]|det<a’,a >
(B-S/D) lim = -

-1 (s - 1)F (At(K)iz Za}) (A(K):S Za,)

where r is the common rank of A(K) and At(K), and (ai d

Jicicr 2™
a, . are families of elements of At K) and A(K) that are
i’1<i<lr

linearly independent over Z.

Lemma 7.1. Let A and B be isogenous abelian varieties over a global
field K, and let S be a finite set of primes including all archime-
dean primes and all primes at which A or B has bad reduction.

(a) The functions LS(s.A) and Ls(s.B) are equal. In particular,
if one function can be continued to a neighbourhood of s = 1, then so
also can the other.

(b) Assume that the isogeny has degree prime to the char(K). If
one of M(A) of M(B) is finite, then so also is the other.

Proof: (a) An isogeny A — B defines an isomorphism VBA -5V, B, and

14
so the polynomials PV(T) are the same for A and for B.
(b} Let f: A — B be the isogeny, and let Af be the kernel of f.

Enlarge S so that deg(f) is a unit in R Then (6.1) gives us an

K,S’

exact sequence

- > Hl(6g.A) — H(Gg.A) T H'(Gg.B) — ...
According to (4.15), HI(GS,Af) is finite, and so the kernels of
£: u'(Gg.A) — H'(Gg.B) and a fortiort W(f): M(K.A) — I(K.B) are
finite. Therefore if W(K,B) is finite, so also is W(K,A), and the

reverse implication follows by the same argument from the fact there

exists an isogeny g: B — A such that g¢f = deg(f).

Before stating the main theorem of this section, it is conven-
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ient to make another definition. If f: X — Y is a homomorphism of

abelian groups with finite kernel and cokernel, we define
[Ker(f)]
z(f) = — .
[Coker(f)]

Lemma 7.2. (a) If X and Y are finite, then z(f) = [X]/[Y].

(b) Consider maps of abelian groups X —54 Yy 557, if any two of
z(f), z(g)., and z(gf) are defined, then so also is the third, and
z(gf) = z(g)z(f).

() IfF X =0 —>X2 = ... 5x" 5 0) is a complex of finite

groups, then
r T
Mo = ooyt
(d) If £': X° — Y is a map of exact sequences of finite length,

and z(f") is defined for all r, then [] z(fr)(_l)r = 1.

Proof: Part (b) is obvious from the kernel-cokernel sequence of the
two maps. Part (d) is obvious from the snake lemma when X' and Y~
are short exact sequences, and the general case reduces to that case.

The remaining statements are even easier.

Theorem 7.3. Assume that the abelian varieties A and B are isogenous
by an isogeny of degree prime to the char(K). If the conjecture of
Birch and Swinnerton-Dyer is true for one of A or B, then it is true
for both.

Proof: We assume that the conjecture is true for B and prove that it
is then true for A. Let f: A — B be an isogeny of degree prime to
the characteristic of K, and let £t Bt — At be the dual isogeny.
Choose an element w, € T(B,Qg/K), and let N be its inverse image

B

f*mB on A. Fix a finite set S of primes of K including all archime-

dean primes, all primes at which A or B has bad redution, all primes
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whose residue characteristic divides the degree of f, and all primes
at which wp O ©, does not reduce to a nonzero global differential
form. Finally choose linearly independent families of elements
(ai)ISisr of A(K) and (bi')lgisr of Bt(K), where r is the common rank
of the groups of K-rational points on the four abelian varieties, and
let bi = f(ai) and ai = ft(bi). Then (ai)lgigr and (bi)1$i§r are
linearly independent families of elements of At(K) and B(K). The
proof will proceed by comparing the corresponding terms in the conj-
ectured formulas for A and for B.

The functoriality of the height pairings shows that
(ft(bj),ai> = (b&,f(ai)), and this can be rewritten as <a&,ai> =

<b3'bi>' Therefore

det <a'!,a.> = det <b',b.>
J 1 J 1

From the diagram

05 Za; — A(K) — A(K)/> Za; — 0,
1=z 1 1K) 1

00— Zb, — B(K) — B(K)/2 Zb, — 0

and its analogue for ft, we see that

(A(K):3 7a,) . (B°(K):3 1))
2(£(K)) = ———— z(f'(K)) = ————
(B(K):2 2b,) (A"(K):2 Za})

We have seen in (7.1) and (6.14c) that the finiteness of (B)
implies that of W(A). W(A"), and (B%), and so (6.13a) shows that the

two pairings in the following diagram are nondegenerate,
mA) x WA — oz
1) T e I

mB) x DBY — oz
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Therefore [Coker M(f)] = [Ker m(ft)], and so we have the equalities

[mgA!| - z(m(f)) _ |Ker mgf2| )
[1(B)] [Ker W(f")]

Finally consider the map f(Kv)ﬁ A(Kv) - B(Kv). By definition

f*w

W B and so pv(U,wA) = uv(fU.wB) for any subset U of A(Kv) that

A:
is mapped injectively into B(Kv). Therefore
u,(AK ) w,) = [Ker £(K )] p (£(A(K)).0p)-
. -1
Since uv(f(A(Kv)),wB) = [Coker f(Kv)] uV(B(Kv),mB), we see that

z(f(Kv)) = uv(A,mA)/uv(B,mB). and so

L*(s.A) ~ I ”v(B'wB)

=T z(e )"
L*(S.B) rluv(A'wA) ves Y

On combining all the boxed formulas, we find that to prove the

theorem it suffices to show that

M 2(5(k,)) = LKer WG] 2(6(K)) (7.3.1).
ves v [Ker I(f) ] z(£°(K))

Consider the commutative diagram

0o —#cgM) = 8 KK .M

vES
1
H2(Gg. M)
!
0— Coker(f(K)) — H'(GgM) = H'(Gg.A); —0O
lo* lo lom

0 — ® Coker(£(K)) — @ H (K M) — @ H'(K,.A); — O
V€S ves V¥ V€S

Ly by by

0—  H'(GBY, — H'(Ge.M") > (Coker £5(K)) 0
£

in which the rows are extracted from the cohomology sequences of
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0 — ¥ —> A(K) A, B(Kg) — O,

0 —>M—AK ) -SBEK )—o,
v,S vV,S
and

t
0o - — BS(kg) -5 A%k — o0

respectively, and the middle column is part of the exact sequence in
Theorem 4.10. The rows are exact. The duality between B(KV) and

HI(KV,Bt) induces a duality between B(Kv)/fA(Kv) and HI(KV.Bt) ¢ and
f
the map y' is the dual of the composite

1 t 1 t
H (GS.B ) e ™ ® H (KV.B )
veS

=5 @ (B(K )/fA(K ))*.
f ¢ 2 8 (BK,)/TAK,)

f
The map y" is the dual of the composite

At /EBYK) — @ ANk )/eBYK) 2 e l(k .4).)%

v v v f
veS vES

The two outside columns need not be exact, but it is clear from the
diagram that they are complexes.

The serpent lemma and a small diagram chase give us an exact

sequence
0 — Ker(¢') — Ker(¢p) — Ker(¢") — Ker(y')/Im(¢') — 0.

As Ker(¢") = Ker I(f), we obtain the formula
[Ker ¢'] _[Ker o(f) -1
[Ker ¢ ] [Ker ¢'/Im ¢']
From the first column, we get (using (7.2c) and that Coker(y') =
(Ker m(£%))™)
[Coker f‘Kgl [HI(GS.Bt) t] - Ker ¢'] [Ker m(ft)].
[T [Coker £(K )] f [Ker v'/Im ¢']
V€S

From the third row, we get
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[H'(cg.B%) ]
1= R S [Coker ft(K)].
(! (Gg. M1

From the middle column we get (using that HO(GS,M) = Ker f(K),...)

1 [Ker f(K)] (K, 1)] [H2(Gg. 1)1

- [T [Ker f(KV)] v arch [Hg(KV,M)] [Ker ¢]

Finally, we have the obvious equality
[Ker £5(k)] = [HO(Gg.M™)].
On multiplying these five equalities together, we find that

(0]
M a(rk y) = LKer (] 2(EK) o WPy ] [H(K, M)
ves Y [Ker 0(f)] z(£5(K)  ° v arch [HM(K,.M)]

Theorem 5.1 (in the form (5.2a)) shows that the product of the last
two terms on the right of the equation is 1, and so this completes

the proof of the theorem.

Remark 7.4. Since in the number field case the conjecture of Birch
and Swinnerton-Dyer is not known for a single abelian variety. it is
worth pointing out that the above arguments apply to the m-primary
components of the groups involved: if I{K,A)(m) is finite and has the
order predicted by the conjecture, then the same is true of any abel-

jan variety isogenous to A.

Remark 7.5. We mention two results of a similar (but simpler) nature
to (7.3).

Let A be an abelian variety over a finite separable extension F
of the global field K. Then A gives rise to an abelian variety A*
over K by restriction of scalars. The conjecture of Birch and
Swinnertorn-Dyer holds for A over F if and only if it holds for A*

over K (see [Milne (1972), Thm 17]).
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Let A be an abelian variety over a number field K, and assume
that it acquires complex multiplication over F, and that F is the
smallest extension of K for which this is true. Under certain hypo-
theses on A, it is known that the conjecture of Birch and Swinnerton-
Dyer holds for A over K if and only if it holds for AF over F (ibid.

Corollary to Thm 3).

Notes: For elliptic curves, Theorem 7.3 was proved by Cassels [Cas-
sels (1965)]. The general case was proved by Tate (announcement
[Tate (1965/66), Theorem 2.1]). The above proof was explained to me

by Tate in 1967
/

88 Abelian class field theory, in the sense of Langlands

Abelian class field theory for a global field K defines a reci-
procity map recy: CK — Cal(KS/K)ab that classifies the finite abel-
ian extensions of K. Dually, one can regard it as associating a
character Xerecy of CK with each (abelian) character x of Gal(KS/K)
of finite order; the correspondence is such that the L-series of X
and X°recy, are equal. It is this second interpretation that general-
izes to the nonabelian situation. For any reductive group G over a
local or global field K, Langlands has conjectured that it is pos—
sible to associate an automorphic representation of G with each "ad-
missable” homomorphism of the Weil group WK of K (Weil-Deligne group
in the case of a local field) into a certain complex group LG; the
L-series of the automorphic representation is to equal that of the
Weil-group representation. In the case that G = Gm. the correspond—
ence is simply that noted above. For a general reductive group, the

conjecture is difficult even to state since it requires a knowledge
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of representation theory over adéle groups (see [Borel (1979)]). For
a torus however the statement of the conjecture is simple, and we
shall prove it in this case. First we prove a duality theorem (8.6),
and then we explain the relation of the theorem to Langlands’s conj-—
ectural class field theory.

In contrast to the rest of these notes, in this section we shall
consider cohomology groups Hr(G.M) in which G is not a profinite
group. The symbol Hr(G,M) will denote the group constructed without
regard for topologies, and HZtS(G,M) will denote the group defined
using continuous cochains. As usual, when G is finite, H;(G,M).

r € Z. denotes the Tate group. For a topological group M

M-)(

Homcts(M,Q/Z) = group of characters of M of finite order;

M = HomctS(M,R/Z) = group of characters of M (the Pontryagin

dual of M);

L — X — 3 —
M' = Homcts(M.C/Z) HomctS(M,C ) = group of generalized char

acters of M;

M' = Hom(M.C")

"

group of generalized (not necessarily contin-
uous) characters of M. When M is discrete, M' = MT.

As usual, when K is a global field, we write CK for the idele
class group of K. In order to be able to give uniform statements, we

sometimes write CK for K* when K is a local field.

VWeil groups
First we need to define the Weil group of a local or global
field K. This is a triple (WK,¢.(rF)) comprising a topological group

WK, a continuous homomorphism ¢: WK - Gal(KS/K) with dense image,

and a family of isomorphisms rp CF N W?b. one for each finite

extension F C K_ of K, where Wp = ¢_1(GF). (Here, as always, W;b is

the quotient of WK by the closure W§ of its commutator subgroup.)
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= W, /WS, then, if F

For any finite extension F of K, define wF/K V¢

is Galois over K, there is an exact sequence

0 — CF o wF/K —_ CF/K — 0

whose class in H2(GF/K'CF) is the canonical class (that is, the ele-

ment denoted by Ue in the second paragraph of §1). The topology
F/K

on wF/K is such that CF receives its usual topology and is an open
subgroup of WF/K' The full Weil group WK is equal to the inverse

limit lim wF/K (as a topological group).

Examples 8.1. (a) Let K be a nonarchimedean local field. The Weil
group WK is the dense subgroup of GK consisting of elements that act
as an integral multiple of the Frobenius automorphism on the residue
field. It therefore contains the inertia subgroup IK of GK‘ and the
quotient WK/IK is Z. The topology on WK is that for which IK re-
ceives the profinite topology and is an open subgroup of WK. The map
¢ is the inclusion map, and e is the unique isomorphism F— W?b
such that Te followed by ¢ is the reciprocity map.

(b) Let K be an archimedean local field. If K = C, then WK is €%,
¢ is the trivial map - Gal(C/C), and Ty is the identity map. If
K is real, then WK = K: v jK: (disjoint union) with the rules j2 = -1

and jzj—l = z (complex conjugate). The map ¢ sends K: to 1 and j to

the nontrivial element of GK' The map Ty is the identity map, and
s
Ty is characterized by
re(-1) = jug
rK(x) = x1/2W; for x € K, x > 0.

(c) Let K be a function field in one variable over a finite field.

The Weil group WK is the dense subgroup of Gal(KS/K) of elements that
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act as an integral multiple of the Frobenius automorphism on the
algebraic closure of the field of constants. It therefore contains

the geometric Galois group CKk = Cal(Ks/Kks) C GK‘ and the quotient
s

of W by GKks is Z. The topology on WK is that for which GKks re—

ceives the profinite topology and is an open subgroup of WK. The map
¢ is the inclusion map, and ro is the unique isomorphism CF — W?b
such that rp followed by ¢ is the reciprocity map.

(d) Let K be an algebraic number field. Only in this case, which
of course is the most important, is there no explicit description of

the Weil group. It is constructed as the inverse limit of the exten-—

sions corresponding to the canonical classes e (see [Artin and
F/K

Tate (1961), XV], where the Weil group is constructed for any class

formation, or [Tate (1979)]).

Let K be a global field. For each prime v of K, it is possible

to construct a commutative diagram

(see [Tate (1979), 1.6.1]). We shall assume in the following that

one such diagram has been selected for each v.

Some cohomology

We regard the cohomology and homology groups as being construct—
ed using the standard complexes. For example, Hr(G,M) = Hr(C'(G,M))
where C (G,M) consists of maps [gl.....gr] P a(gl,....gr): G& — M.

When G is finite, the groups H;I(G,M) and Hg(G,M) are determined by
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the exact sequence

-1 NG G 0
0 — HT (G.M) — MG — M — HT(G,M) — 0.

Lemma 8.2. Let G be a finite group, and let Q be an abelian group
regarded as a G-module with the trivial action. If Q is divisible,

then for all G-modules M, the cup-product pairing
r-1 -r -1
HT (G.Hom(M.Q)) x HT (G.M) — HT (G.Q) cq
induces an isomorphism
r-1 -r
HT (G.Hom(M,Q)) — Hom(HT (G.M).Q),

all r.

Proof: This is proved in [Cartan and Eilenberg (1956), XII.6.4].

Let (G,C) be a class formation, and let G be the quotient of G

by an open normal subgroup H. The pairing
(f.c) » £(c®-): (e’ x H — o'
. 2.3 CH -
and the canonical class u € H“(G,C") define maps

a p» avu: H;(é,(CH®M)T) — H;+2(6.MT).

Lemma 8.3. For all finitely generated torsion-free G-modules M and
all r, the map -vu: H;(a,(CH®M)T) — H¥+2(6.MT) is an isomorphism.
Proof: The diagram
HE(E. (o)) x (@ Howy — ! (E.09) c ¢
1 —uu 1 uu- I
r+2

@My xET3EM - rl@E.c9 o
Hy Hp oy

commutes because of the associativity of cup~products:
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(avu)vb = av(uvb), a € I—L;(C—}.(CHQDM)'T). b e B @E.M).

The two pairings are nondegenerate by (8.2), and the second vertical
map is an isomorphism by virtue of the Tate-Nakayama theorem (0.2).

It follows that the first vertical map is an isomorphism.

Note that,
emyT & pom(Fom. ) = Hom(C Hom(4,€*)) = Hom(c M),
Therefore the isomorphism in the above lemma can also be written
—ou: Hll:((—;,Hom(CH,MT)) =, Hrz((_:.MT).

Let

0 L 58—>1

be the exact sequence of groups corresponding to the canonical class
u € Hz(é.CH). For any W-module M, the Hochschild-Serre spectral
sequence gives an exact sequence

0 — (@0 |5 wl iy Bes wl(® I w2@ ).

The map T (the transgression) has the following explicit description:

let a € HI(CH.M)G, and choose a l-cocycle a representing it; extend a
to a l-cochain 8 on W: then dB is a 2-cocycle on G. and the class it

represents is T(a).

Lemma 8.4. If CH acts trivially on M, then the transgression
T Ho(é.Hom(CH,M)) — H2(§,M)
is the negative of the map -vu induced by the pairing
Hom(CH,M) X CH — M.

Proof: Write W = U Cng (disjoint union of right cosets), and let
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WoWgr = 1(g,g')wgg,. Then (v(g.g')) is a 2-cocycle representing u.
Let a € Homa(CH,M), and define 8 by ﬁ(cwg) = afc), ¢ € CH' Then

dB(g.g') o aP(ugmg) = 880w, ) = Blwgw ) + Bw,)

]

0  -oafv(g.g')) +0

-a(r(g.g')).

which equals -(avv)(g.g'). Therefore T(a) = -avu.

The duality theorem

Let K be a local or global field (we could in fact work ab—
stractly with any class formation), and let F be a finite Galois
extension of K. Let M be a finitely generated torsion-free

, df Xy Xy oyl

GF/K—module. Then M' = HomctS(M.C ) = Hom(M,C") = M are again
GF/K—modules. We shall use the notation M' when we wish to emphasize
that M' has a topology. We frequently regard these groups as
WF/K—modules.

Write WF/K =U wgCF (disjoint union of left cosets). For any

homomorphism a: CF — M, the map Cor(a): wF/K - MT such that

(Cor(a))(w) =g§cwga(W;1wwg.), . = mod G,

is a cocycle, and so we have a map

Cor: Hl(cp.M") — H (W 00,
called the corestriction map. It is independent of the choice of
coset representatives (see [Serre (1962), VII.7] or [Weiss (1969),
p81]). It is clearly continuous, and so maps continuous homomorph~

isms to continuous cocycles.

Lemma 8.5. The corestriction map Cor: Hl(CF,MT) - HI(WF/K,MT) fact-

ors through Hl(CF,MT)G, G = GF/K'
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Proof: Let a € Hom(Cp.M') and h € G. Then (ha)(w) = wha(wl_llwwh)

. _ -1 -1
(this is the definition), and so Cor{(ha)(w) = g wgwha(wh L wwg.wh)

where g' is such that wwg, = wg mod CF' The family (wgwh)geG is also
a set of coset representatives for CF in WF/K' and w(wg,wh) = (wgwh)
mod CF' Therefore the class of Cor(ha) is the same as that of

Cor(a), and so Cor((h-1)a) = 0 in Hl(WF/K,MT).

Theorem 8.6. For any finitely generated torsion-free GF/K—module M,

the corestriction map defines an isomorphism

' = 1
Homcts(CF'M )G — H

(w
E/K cts

Fc i)

Proof: Throughout the proof, we write G for GF/K' We shall first
prove that the corestriction map defines an isomorphism

Hom(CF,MT)G =, Hl(W MT) and then show (in Lemma 8.9) that it

F/K’
makes continuous homomorphisms correspond to continuous cocycles.

Consider the diagram

0 - H,‘rl(c.ﬂom(cF,MT)) > Hom(Cp.M') g Hom(Cp ')® - H,?(G,Hom(cF.M)T)
1=z 1 Cor 1 id lx (8.6.1)
0 - uic.Mh > W M) — i (c. M) - n2G.u"y.
The top row is the sequence defining the Tate cohomology groups of
Hom(CF,MT). The bottom row can be deduced from the Hochschild-Serre
spectral sequence or else can be constructed in an elementary
fashion. The two isomorphisms are those in Lemma 8.3. The third
square (anti-) commutes because of (8.4). We shall prove in the next
two lemmas that the first two squares in the diagram commute. The
five-lemma will then show that Cor: Hom(CF,MT)C -— Hl(WF/K,MT) is an

isomorphism. Finally Lemma 8.9 will complete the proof.
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Lemma 8.7. The first square in (8.6.1) commutes.
Proof: We first show that Cor maps an element of H;l(G,Hom(CF,MT))
into the subgroup Hl(G.MT) of HI(WF/K,MT). Let a be a homomorphism

CF -— MT, and let c € CF and w € W. Then

(Cor a)(cw) = > w a(wélcwgwélwwg.)

2 (wa)(e) + (Cor a)(w)
g & g &

(Na)(c) + (Cor a)(w).

Therefore, if Na = O (that is, a € H;I(G,Hom(CF,MT))), then
(Cor a)(w) depends only on the class of w in G, and so Cor(a) arises
by inflation from an element of HI(G,MT).

It remains to show that the restriction of Cor to
H;I(G,Hom(CF,MT) is —vu. Note that

(Cor a)(h) = gg(a(w;whwh_lg)) -2 <ga)(whwh-1g‘”;1)

-1
=2 (ga)(u(h.h 'g)).
g
To obtain the middle equality, we have used that
1 =¢c= ww _, = Wgc = (gc)wg = W W w = gc

and that g(a(c)) = (ga)(gc).
It is difficult to give explicit descriptions of cup-products
when both negative and positive indices are involved. We shall use

the exact sequence
O—»IG—>Z[G]—>Z——)O

to shift the problem. It remains exact when tensored with MT and
Hom(CF,MT), and the boundary maps in the resulting cohomology se-

quences give the horizontal maps in the following diagram:

-1
-1 ., dt o t
Hp (G Hom(C M) S HD(G, Hom(Cy m")o1,)
l —ou I —vud1
1
alc,n"y a, H2(G.MT®IG)
(:r“,. alya

P, .. e
[pres Cerw? L

y
i Ot

"
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Both boundary maps are isomorphisms, and -vu is the unique map making
the diagram commute. If we can show that the diagram still commutes
when this map is replaced with Cor, we will have proved the lemma.
This we do by an ugly cocycle calculation.

Note first that d._1 and d1 have the following descriptions:

a1(a) = N(aBl) = N(a®1) - (Na)®1 = Sga®(g-1), a € Hom(Cp.M'). Na = 0
g

1 1,1
d (B)(g;.8) = 8,B(gy) ®(g)-1). B €Z(GM). g.8 €C.
If a € Hom(CF,MT) has Na = O. then

(a'-cor a)(g;.85) = gcgl-(ga)(U(gz.g;g))Mgl—l)
g

(@ 2av (u81)) (g,.85) = T (82) (ulg;.85))8(e1)
g

An element of MT®IG can be written uniquely in the form > mg@(g—l).
Therefore a general element of CI(G.MT®IG) is of the form Fg@(g—l)
with Fg a map G — MT. and a coboundary in B2(G,MT®IG) can be written

d(z Fg®(g_l)) (gl ’gz)
g

= 2 (glF -1 (gz) - Fg(g1g2) + Fg(gl))‘&(g—l) - z glpg(g2)®(g1~l)
g gl g g

In obtaining the second expression, we have used that
£, (2 F(g9)8(e-1)) = 2 &) -Fy(gy)0(e,278))
= 28, Flg5)8(z,8-1) - 2 gy -Fy(gy)8(e;~1)

= z gl-F -1 (g2)®(g_1) - E gng(g2)®(g1-l)
gl g

Put F(g) = (22)(u(gyEy 8): then
(d S F8(e1) - (@ la)v(uen) + (da'Cor a)(g,.85) =
Sge) (800825 2] ) (e, p 25 57 0) T ule) 8 ) ule; 6p))BLe-)-
When we put h = gz_lgl_lg, this becomes
S (80 (g,u(85h) -u(E, By h) " uls) goh) uley 2p) " E(e-1).

and each term in the sum is zero because u is a 2-cocycle. Therefore
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d 3(F 8(g-1)) = (dYa)u(ue1) - (al-cor a),

which completes the proof of the lemma.

Lemma 8.8. The composite

t, Res

i) S5 wlgu ) Be2, ylic Ty

is equal to the norm NG' Hence the second square in (8.6.1) com-

mutes.

Proof: For a € Zl(CF,MT) and w € wF/K‘ Cor(a)(w) = g:wga(wélwwg.).

When w € CF' this becomes Cor(a)(w) = > ga(galwg) = (NGa)(w).
g€G

Lemma 8.9. Let a € Hom ,M'); then a € Hom C.,M') if and only if
cts' F

1

Cor(a) € ths

(WF/K'

Proof: Clearly a € ZI(WF/K.M‘) is continuous if and only if its

M').

restriction to CF is continuous. Therefore (8.8) shows that it suf-
fices to prove that a homomorphism f: CF — M' is continuous if and
only if NGf is continuous. Since NG is continuous, there is a com—

mutative diagram

Homcts(CF.M') X, HomctS(CF,M')G SN Hg(G'Homcts(CF'Ml)) —0
l 1 1

' N N G O 1
Hom(CF,M ) — Hom(CF,M ) —_ HT(G,Hom(CF,M )) — 0,
from which it follows that it suffices to show that
0. Hom___(C..M")) — HO(G.Hom(C,.. "))
HT ' cts CF' HT ’ F’

is injective. In fact, following [Labesse (1984)], we shall prove

much more.
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Lemma 8.10. For all r, the map

}L;(c.HomctS(cF,M')) — X-LXI:(G,Hom(CF.M'))
is an isomorphism.
Proof: We consider the cases separately.
(a) K local archimedean. The only nontrivial case has K = R and F

= C. Here CK = Cx, and we shall use the exponential sequence
0—Z—>C— ¢ — 0.
From it we get exact sequences
0 —> Hom(C*.M') — Hom(C,M') — Hom(Z,M') — O
(because M' is divisible) and
0 — Hom_, _(C.M') — Hom_  (C.M') — Hom (Z.M') — 0

(because M' is a connected commutative Lie group). The groups
Hom(C,M') and HomctS(C,M') are uniquely divisible, and so are cohomo-
logically trivial. Therefore, we can replace CF in the statement of
the lemma with Z, but then it becomes obvious because Z is discrete.
(b) K local nonarchimedean. Here CF = F*. From [Serre (1967a),
1.4], we know that F* contains a cohomologically trivial open sub-
group V; moreover V contains a fundamental system (Vn) of neighbour-
hoods of zero with each Vn an open subgroup, such that V/Vn is co-
homologically trivial. (For example, when F is unramified over K, it
is possible to take V = UQ.) Now, because M' is divisible, [Serre
(1962), IX.6, Thm 9] chows that Hom(V,M') and Hom(V/Vn.M‘) are also
cohomlogically trivial. As Homcts(V,M) = 1lim Hom(V/Vn.M'), we see
that it also is cohomologically trivial. A similar argument to the

above, using the sequence

0 >V —oF—>F/ —o0,
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shows that it suffices to prove the lemma with C. replaced with FX/V.

F
but this group is discrete.

(c) K global. Here CF is the ideéle class group. Define V C CK to
be [] Vv where Vv = B: for v a nonarchimedean prime that is unramified
in F and Vv is a subgroup as considered in (b) for the remaining
nonarchimedean primes. This group has similar properties to the
group V in (b). It therefore suffices to prove the lemma with CF
replaced with CF/V' In the function field case this is discrete, and
in the number field case it is an extension of a finite group by R*
(with trivial action). In the first case the lemma is obvious, and

x
in the second the exponential again shows that R” is the quotient of

a uniquely divisible group by a discrete group.
This completes the proof of the theorem.

Corollary 8.11. Let K be a global or local field, and let M be a

finitely generated torsion-free GK-module. There is a canonical

isomorphism

G ~
((omm) )t Eo ] (M)

where C = U CF'

Proof: Let F be a finite Galois extension of K splitting M. Any

continuous crossed homomorphism f: W, — M' restricts to a continuous

K
homomorphism on WF. Because M is commutative, f must be trivial on
c c df . ;
WF and so factors through WK/WF = WF/K' Consequently, the inflation

1 . 1 oy s . ;
map Hcts(wF/K‘M ) — Hcts(wK’M ) is bijective.

Next note that Hom(CF.M') = (CF®M)'. I claim that the canonical
map (CF®M)é — ((CF®M)G)' is an isomorphism. Note that this is ob-

viously so when ' is replaced with t, because (CF®M)G is the maximal
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subgroup of CF®M on which G acts trivially. and so ((CF®M)G)T is the
maximal quotient group on which G acts trivially, that is, it is
((CF®M)T)G. The diagram
0 — H (G (cem)) — (oM, — ((CF®M)')G
lx ! 1 inj.
o —H (e (cem’) — (cem — ((CF®M)T)G
shows that the middle vertical arrow is injective. Now the diagram
(M) — ((Cem°)”
1 inj I x
(e — ((cem)’
shows that (CF®M)é - ((CF®M)G)' is injective, which proves the claim
since the mapAis obviously surjective. To complete the proof of the

corollary, note that

G G,
Hom(CpM')g = (GG = ((Gam) F/Kye = ((oam) Ky,

and so the corollary simply restates the theorem.

Remark 8.12. (a) After making the obvious changes, the above argu-
ments show that there is a canonical isomorphism

GK u 1 u
((ceM) ) _)Hcts(wK'M ).

(b) Replace M in (8.11) with its linear dual. Then H. _(Wc.M')
G

becomes Hl (W, ,M8C/Z) and ((O8M) K)' becomes Hom, (M,C)'. On the
cts' K GK
other hand, (4.10) gives us an isomorphism H (G, .M) 2, Hom (M,C)*.
cts' K GK
2 1 1
and Hcts(GK’M) = Hcts(CK,MQQ/Z) = HctS(WK,M®Q/Z). These results and
their relations can be summarized as follows: for any finitely

generated torsion-free G-module M, there is a commutative diagram
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1
(W MOQ/Z) H s (W MBR/Z) <> H_ (W, M6C/Z)
l= lx l =

CtS

Homy (M.C) Homy (M.C)" &  Hom, (M.C)'
K K K

in which the horizontal maps are defined by the inclusions

Z > R/Z <> C/L.

Application to tori

Let T be a torus over a field K. The dual torus TV to T is the
torus such that X _(T) is the linear dual X*(T) of X (T). When K is
a global field, we say that an element of H (W .M') is locally

trivial if it restricts to zero in Hcts(wK ,M') for all primes v.
v

Theorem 8.13. Let K be a local or global field, and let T be a torus
over K.

(a) When K is local, H ts( ,TY(C)) is canonically isomorphic to
the group of continuous generalized characters of T(K).

(b) When K is a global, there is a canonical homomorphism from
HitS(WK,TV(G)) onto the group of continuous generalized characters of
T(AK)/T(K). The kernel is finite and consists of the locally trivial
classes.

Proof: Take M = X*(T) in the statement of (8.11). Then Hom(M.Rx) =
TY(R) for any ring R containing a splitting field for T. In parti-

cular, M' = TY(C), and so H (W MY = 1

(W T7(C))
When K is local, ((X*(T)®CF) )'= (T(F) )' = T(K)', which proves

(2). In the global case, on tensoring the exact sequence
0= F —J. —>C —0

F

with X _(T). we obtain an exact sequence
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0 — T(F) — T(AF) - X*(T)®CF — 0,
and hence an exact sequence
G 1
0 — T(K) — T(A) — (X, (T)8C)" — H (G.T(F)).

The last group in this sequence is finite, and so we have a surjec-
tion with finite kernel ((X*(T)®CF)G)' —» (T(AK)/T(K))'. This, com-—
. . . 1 - X Gy,
posed with the isomorphism Hcts(wF/K'T c))y — ((X*(T)®CF) )' of the

theorem, gives the map.

There is a commutative diagram:

HD (W T(€) — (T(A)/T(K))"
! !

1 v/ L}
ity O T7(€) = TTT(K)

We have just seen that the lower horizontal map is an isomorphism,
and the second vertical map is injective because it is the dual of a
surjective map. Therefore the kernels of the two remaining arrows

are equal, as claimed by the theorem.

Re-interpretation as class field theory
Let T be a torus over K, let M = X (T), and let T be the torus

such that X*(TV) =M. Let G, act on TY(C) = Hom(M,Cx) through its

K
action on M, and define LT to be the semi-direct product TV(C) x GK'
It is complex Lie group with identity component LT° = TV(C). A con-
tinuous homomorphism ¢: WK — LT is said to be admissdble if it is
compatible with the projections onto GK. Two such homomorphisms ¢
and ¢' are said to be equivalent if there exists a t € LT0 such that
@'(w) = tw(w)t_l for all w. Write ¢K(T) for the set of equivalence

classes of admissable homomorphisms, and define HK(T) to be T(K)'

when K is local and (T(AK)/T(K))' when K is global.
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Theorem 8.14. There is a canonical map @K(T) — HK(T); when K is
local, the map is an isomorphism, and when K is global, it is surj-
ective with finite kernel.

Proof: Any continuous homomorphism ¢: WK — LT can be written ¢ = fxo
with f and o maps from WK into LTD and CK respectively. One checks
immediately that ¢ is an admissable homomorphism if and only if f is
a l-cocycle and ¢ is the map WK - GK given as part of the structure
of WK. Moreover, every l-cocycle arises in this way, and two ¢'s are

equivalent if and only if the corresponding l-cocycles are cohomolog-

ous. Thus the theorem follows immediately from (8.13).

L-series

Let K be a nonarchimedean local field. For any representation p
of WK on a finite-dimensional complex vector space V, the L-series
I.-1

L(s.p) = (det(1 - p(Fr)N(m) °|V")

where Fr is an element of WK mapping to 1 under the canonical map
WK — Z, w is a local uniformizing parameter, and I is the inertia
group. For a global field K and representation p of LT, the Artin-
Hecke L-series L(s,p) is defined to be the product of the local
L-series at the nonarchimedean primes. (It is possible also to de—
fine factors corresponding to the archimedean factors, but we shall
ignore them.) For S a finite set of primes, we let Ls(s,p) be the
product of the local factors over all primes not in S.

Assume now that T splits over an unramified Galois extension F

of K. On tensoring
0—0p >F —7Z—>0

with X*(T), we obtain an exact sequence
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0 — T(OF) — T(F) — X (T) — 0.

with T(OF) a maximal compact subgroup of T(F). The usual argument
[Serre (1967). 1.2] shows that Hl(GF/K.T(OF)) = 0, and so there is an

exact sequence

G
0 — T(0,) — T(K) — X, (T) F/K 0.

Let x be a generalized character of T(K), and assume that it is triv-
ial on T(OK) (we then say that x is unramified). Such a x gives rise
G

to a generalized character of X (T) F/K, which we can extend to a

~ %
generalized character x of X (T). Because Hom(X*(T),CX) =X (T)®Cx =
™(C) = LT°. we can view ; as an element of this last group. Let r
be a representation of LT (as a pro-algebraic group) on a finite-

dimensional complex vector space V. We define the L-series
L(s.x.r) = det{1l - r(;,o)N(w)_SIV)

where o is an element of Gal(Ks/K) restricting to the Frobenius auto-
morphism on F.

Now let K be a global field, and let x be a generalized char-
acter of T(AK)/T(K). By restriction, we get generalized characters
X, of K: for each v. Let F be a finite Galois extension of K split—
ting T, and choose a finite set of primes S of K includin all archi-
medean primes, all primes that ramify in F, and all primes v for

which X, is ramified. Define the automorphic L-series

Lo(s.x,t) = [[ L(s.x .7 )
S ves v''v

where r, is the restriction of r to the local L-group.

Theorem 8.15. (a) Let K be a local field, and let T be a torus over
K splitting over an unramified extension of K. For all ¢ € ¢(T) and

all representations r of LT,
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L(s.r°¢) = L(s,x,r1),
where x is the character of T(K) corresponding to ¢ in (8.14).
(b) Let K be a global field, and let T be a torus over K. Let

¢ € (T), and let x be the corresponding element of II(T). Choose a
set S of primes of K containing all archimedean primes, all primes
that ramify in a splitting field for T, and all primes v such that X,
is ramified. Then, for all representations r of LT,

Ly(s.re9) = Ly(s.x.1).
Proof: Only (a) has to be proved, and we leave this as an exercise

to the reader.

The general conjecture

Let K be a global field, and let G be a reductive group over K.
Then G is determined by certain linear data (a root datum), and the
group LG° is defined by the dual data. The full L-group LG is de-
fined to be a semi-direct product LG° x GK' The set ¢(G) of equiv-
alence classes of admissable homomorphisms WK o LG is defined anal-
ogously to the case of a torus, but the analogue of a generalized
character of T(AK)/T(K) is more difficult to define. Since G(AK) is
neither commutative or compact, its interesting representations are
infinite dimensional. The correct notion is that of an irreducible
automorphic representation of G. Langlands conjectures that it is
possible to associate with each ¢ € #(G) a (nonempty) set of irreduc-
ible automorphic representations of G.  If 7 is associated with P,
then the L-series of ¢ and 7 are related as in (8.15b): let r be a
complex representation of LG: corresponding to almost all primes v of
K, it is possible to define a local L-series for m and r; for each of

these primes v, the local L-series for 7 and r is equal to the cor-
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responding factor of the Artin-Hecke L-series of re¢. See [Borel

(1979)1.

Notes: The results in this section were proved in [Langlands (1968)]
and again in [Labesse (1984)]. While the above proof of (8.6) bor-
rows from the proofs in both papers, it is somewhat simpler than
each. For applications of the theorems, see [Kottwitz (1984)],

[Labesse (1984)]. and [Shelstad (1986)]

89 Other applications

We explain a few of the other applications that have been made

of the duality theorems in 82 and §4.

The Hasse principle for finite modules
Let K be a global field, and let M be a finite module over GK.
We say that the Hasse principle holds for M if the map

BU(K.M): H(K.M) — []HNK .M)
all v v

is injective.

Example 9.1. (a) Let F/K be a finite Galois extension of degree n
such that the greatest common divisor r of local degrees [FW:KV] is
strictly less than n. (For example, let K = @ and F = Q(V13, VIT7);
then n = 4 and the local degrees are all 1 or 2.) Consider the exact

sequence
0 — M —> (Z/nZ)[GC] > Z/nZ — 0

in which G = Gal(F/K) and e is the augmentation map now E:na.

From its cohomology sequence, we obtain an isomorphism
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/7 2 HI(G,M). Let c generate HI(G,M); then rc is a nonzero elem-—
ent of HI(K,M) mapping to zero in all the local cohomology groups.
Therefore ml(K.M) # 0, and the Hasse principle does not hold for M.

(b) From the duality theorem (4.10), we see that, for M as in (a),
m2(K.M) # 0. For a more explicit example (based on the failure of
the original form of the Grunwald theorem) see [Serre (1964),

I1I.4.7].

In view of these examples, the theorem below is of some inter—
est. For a module M, we write K(M) for the subfield of KS fixed by
Ker(GK — Aut(M)). Thus K(M) is the smallest splitting field of M.
A finite group G is said to be &-solvable if it has a composition
series whose factors of order divisible by € are cyclic.

Theorem 9.2. Let M be a finite simple G_,~-module such that €M = O for

K
some prime €, and assume that Gal(K(M)/K) is an &-solvable group.
(a) If S is a set of primes of K with Dirichlet density one, then

the mapping

Bé(K,M): . — [l Hl(Kv.M)
vE€S

is injective.
(b) If & # char(K), then the mapping

BQ(K.M): HZ(K.M) — rIHz(Kv,M)
all v

is injective.

Note that Bg is not quite the same as the map in $4. However
the next lemma shows that Ker B;(K,M) = mé(K,M). For any profinite

group G and G-module M, define Hi(K,M) to be the kernel of

.M — [Tulz.m).
z
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where the product is over all closed cyclic subgroups Z of G. When G

= Gy. we also write Hi(K,M) for Hi(G,M). The next result explains

the significance of this notion for the theorem. As always, for each
prime v of K, we choose an extension w of v to Ks.

Lemma 9.3. Let M be a finite G, ,-module, and let F C KS be a finite

K

Galois extension of K containing K{(M). Let S be a set of primes of K

with Dirichlet density one, and let

ﬁé(F/K,M): Hl(GF/K,M) — ule
vES

F sk M
w v

be the map induced by the restriction maps. Then there is a commuta—

tive diagram

Kcr(ﬁé(F/K,M)) =, Ker(Bé(K.M))
n n
HL(Gal(F/K).M) —5>  HL(G,.M).
The inclusions become equalities when all the decomposition groups
Gal(Fw/Kv) are cyclic.

Proof: There is an exact commutative diagram

0 — Hicarrx).y BE wlwwy - wlE.m
1 1 1
! Bg(F/K. M) i Bg(K.M) 1 B (F.M)
1 Inf 1 1
0~ ||H (Gal(F /K ),M) —/— H (K ,M) — H(F ,M
VES (a(w v) ) VIQ-IS (V ) VI;IS (w )

The Chebotarev density theorem shows that ﬁé(F,M) is injective. The
inflation map therefore defines an isomorphism of the kernels of the
first two vertical maps, which gives us the isomorphism on the top
row. The isomorphism on the bottom row can be proved by a similar
argument. The Chebotarev density theorem shows that all cyclic sub-
groups of Gal(F/K) are of the form Gal(Fw/Kv) for some primes wlv

with v € S, and so clearly Hl(Gal(F/K).M) C Ker(BI(F/K.M)). The
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reverse inclusion holds if all the decomposition groups are cyclic.

We say that the Hasse principle holds for a finite group G (and
the prime &) if Hi(G,M) = 0 for all finite simple G-modules M (with
éM = 0). Note that the Hasse principle obviously holds for G if all

of its Sylow subgroups are cyclic.

Lemma 9.4. Let

1 —>G —G—>DG" —>1

be an exact sequence of finite groups. If the Hasse principle holds
for G' and G" relative to the prime &, then it holds for G and &;
conversely, if the Hasse principal holds for G and to £, then it
holds for G" and £.

Proof: Let M be a simple G-module such that M = 0. As G' is normal
in G, MGI is stable under G, and so either MG' =0 or ¢’ =M. In

the first case, there is a commutative diagram

oy Bes, oyl

! i

Mulzay Besy Mul(zac.m

in which the upper restriction map has kernel HI(G”,MGI) = 0. When
regarded as a G'-module, M is semisimple because, for any nonzero
simple G'—submodule N of M, M is a sum of the simple modules gN,

g € G. Therefore if the Hasse principle holds for G' and £, then the
right hand vertical arrow is an injection. Consequently the first
vertical arrow is also an injection, and this shows that the Hasse
principle holds for G and 2.

L}
In the case that G = M, we consider the diagram
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0— wui@.my — #len — ui@e.n
! .l 1

0 - Tulze s M) — [TuN(Z.M) — [[H(Znc' . 1).
The right hand vertical arrow is an injection because G' acts triv-
ially on M and the groups ZaG' generate G'. The left hand vertical
arrow has kernel Hi(G",M) because the groups ZG'/G' run through all
cyclic subgroups of G", and so we see that if the Hasse principle
holds for G" and £ then it holds also for G and £.

We use the same diagram to prove the converse part of the lemma.

A simple G"-module M can be regarded as a simple G-module such that
MGl = M. Therefore the diagram shows that Hi(G",M) =0 if

1
H (G.M) = 0.

Proposition 9.5. (a) The Hasse principle holds for a finite group
(and the prime &) when it holds for all the composition factors of
the group (and &).

(b) If G is &-solvable, then the Hasse principle holds for G
and £.

(c) A solvable group satisfies the Hasse principle.
Proof: Part (a) follows by induction from the lemma. Part (c) fol-
lows from (a) and the obvious fact that the Hasse principle holds for
a cyclic group. Part (b) follows from (a) and (c) and the additional
fact that the higher cohomology groups of a module killed by &

relative to a group of order prime to & are all zero.

We now prove Theorem 9.2. Lemma 9.3 shows that

Ker By(K.M) = Ker Bg(K(M)/K.M) C HA(G M),

K(M)/K’

and (9.5b) shows that this last group is zero, which proves part (a)
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of the theorem. From (4.10) we know that Ker(ﬁ2(K,M)) is dual to
Ker(Bl(K,MD)). Clearly MD is simple if M is, and the extension K(MD)
is &-solvable if K(M) is because it is contained in K(M)(ue). There-

fore part (b) of the theorem follows from part (a).

Corollary 9.6. If M X Z/8Z x Z/8Z (as an abelian group) for some
prime € not equal to the characteristic of K, then m2(K.M) = 0.
Proof: If M is.simple (or semisimple) as a GK—module, this follows
directly from the theorem. The remaining case can be proved

directly.

Notes: The groups H;(G,M) were introduced by Tate (see [Serre
(1964/71)]). Theorem 9.2 and its proof are taken from [Jannsen

(1982)]. For an elementary proof of (9.6), see [Cassels (1962), §5].

The Hasse principle for algebraic groups
In this subsection, G will be a connected (not necessarily com—
mutative) linear algebraic group over a number field K. We say that

G satisfies the Hasse principle if

H'(K.c) — T[] Hl(Kv,G)
all v

is injective. It is known ([Kneser (1966), (1969)] and [Harder
(1965/66)]) that if G is semisimple and simply-connected without
factors of type ES' then HI(KV,G) = 0 for all nonarchimedean v, and

nlk.c) = T H(K,.C).
v real

Theorem 9.7. Let G be a simply connected semisimple group, and let
¢: G — G' be a separable isogeny. Let M be the kernel of

w(KS): G(KS) — C'(KS), and assume that m2(K,M) = 0. If the Hasse
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principle holds for G, then it also holds for G'.

Lemma 9.8. Let M be a finite module GK whose order is not divisible

by char(K), and assume S omits only finitely many primes of K.

(a) The cokernel of Hl(K,M) — 1] Hl(Kv,M) is canonically
v€S

isomorphic to the dual of (Ker ﬁé(K,MD))/(Ker BI(K.MD)).
(b) If each v € S has a cyclic decomposition group in K(M), then

Hl(G M) — 8 Hl(K ,M) is surjective. In particular
K ves Y

Hl(K,M) — 6 Hl(Kv,M) is surjective.
v real

Proof: (a) From (4.10) we know there is an exact sequence

1 1
) s Loy « Ttk ) s il ko,
vé¢s

Therefore the kernel-cokernel sequence (0.24) of the pair of maps
k) — pLk.?) x [THLk .MP) — pLk.MD)
S ves Y S

is an exact sequence

0 — Ker B (K.M”) — Ker L(x.M7) — T] it (k%) s k™
vé¢€S

The exactness at the third term says that Ker(Bé)/Ker(ﬁl) = Ker(~),
but this last group is the dual of the cokernel of

kM) — [JrK .M.
vésS v

(b) Let F be a finite Galois extension of K containing K(MD).
According to the Chebotarev density theorem, for each prime v € S
having a cyclic decomposition group in Gal(F/K), there is a prime
v' € S having the same decomposition group. Therefore if an element

c of Hl(GF/K,MD) maps to zero in Hl(C ,MD) for all v in S, then

F /K

WV
it maps to zero for all v. Hence Ker Bé(F/K.M) = Ker BI(F/K.M). and
Lemma 9.3 shows that this implies that Ker Bé(K,M) = Ker Bl(K,M).

Now (a) implies (b).
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We now prove the theorem. Consider the diagram of pointed sets:

kM —  alxe —  H(K.G) —  HAKM) —
! 1 inj ! ! inj

el — o'k — Melk,.c) — [THE M) — .
allv Y allv ¥ all v all v

(See [Serre (1961), VII, Annexe].) If c € HI(K.G') maps to zero in
Hl(Kv,G') for all v, then it lifts to an element b € Hl(K.G). As we
observed above, Hl(KV,G) = 0 for all nonarchimedean v. For each
archimedean prime v, the image bv of b in Hl(KV,G) lifts to an ele-
ment a_ of Hl(Kv,M). According to (9.8), there is an element

a € Hl(K,M) mapping to a, for all archimedean v. Now b - a', where
a' is the image of a in Hl(K,G), maps to ¢ in Hl(K.G') and to O in
Hl(KV.G) for all v. The last condition shows that b — a' (hence c)
is zero. This shows that the kernel of HI(K,G') — ] Hl(Kv,G) is
zero, and a standard twisting argument (cf. [Kneser (1969), I1.1.4])

now allows one to show that the map is injective.

Corollary 9.9. Let G be a semisimple algebraic group over K without
factors of type E8. Then the Hasse principle holds for G under each
of the following the hypotheses:

(a) G has trivial centre;

(b) G is almost absolutely simple;

(c) G is split by a finite Galois extension F of K such that all
Sylow subgroups of Gal(F/K) are cyclic;

(d) G is an inner form of a group satisfying (a), (b), or (c).
Proof: A&/group with trivial centre is a product of groups of the
form RF/KG with G an absolutely simple group over F, and so (a) fol-
lows from (b). An absolutely almost simple group is an inner form of

a quasi-split almost simple group, and such a group is split by a
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extension whose Galois group is a subgroup of the group of automorph-
isms of its Dynkin diagram. But this automorphism group is either
trivial or is Z/2Z or S3. Therefore (b) follows from (c) and (d).
Let G be split by an extension F as in (c), and let M be the kernel
of E(KS) — G(KS) where G is the universal covering group of G. Then
M is a sum of Gal(FS/F) modules of the form Mo and so Cal(FS/F) acts

trivially on MD. Therefore
o' (kM) = Ker B (F/K.M) C Bl (cal(F/K). M) = o,

and so m2(K.M) = 0. Finally (d) is obvious from the fact that the

Gal(KS/K)—module M is unchanged when G is replaced by an inner form.

Notes: Theorem 9.7 is proved in [Harder (1967/68), Theorem 4.3.2]
and in [Kneser (1969), p 77-78]. Part (a) of Corollary 9.9 is proved
in [Langlands (1983), VII.6]. All of the results in this subsection

are contained in [Sansuc (1981)].

L
¥~ Forms of an algebraic group

The next result shows that (under certain conditions) a family

of local forms of an algebraic group arises from a global form.

Theorem 9.10. Let K be an algebraic number field, S a finite set of
primes of K, and G an absolutely almost simple algebraic group over K
that is either simply connected or has trivial centre. Then the

canonical map

H (K. Aut(G)) — T] H' (K, . Aut(G))
vES

is surjective.
Proof: (Sketch) Let G be the universal covering group of G, and let

M= Ker(a(KS) - G(KS)). Consider the diagram
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.- Bxd — wlke — HKMN — ...
1 1 1

- e H(K .§) o (K.C) > 8 HEK .M) — ...
vES v vES v v€S v

Corollary 4.16 shows that the final vertical map is surjective. We
have already noted that the first vertical map is surjective when G
has no factors of type ES‘ but in fact this condition is unnecessary.
Next one shows that the map HI(K,G) — H2(K.M) is surjective, and a

diagram chase then shows that Hl(K.G) — @ Hl(KV.G) is surjective.
ve€S

One shows that it suffices to prove the theorem for a split G, in
which case Aut(G) is the semi-direct product G x Aut(D) of G with the
automorphism group of the Dynkin diagram of G. The proof of the
theorem then is completed by showing that
HI(K,Aut(D)) — 0 Hl(Kv.Aut(D)) is surjective.

For the details, see [Borel and Harder (1978)], where the
theorem is used to prove the existence of discrete cocompact sub-
groups in the groups of rational points of reductive groups over

nonarchimedean local fields of characteristic zero.

The Tamagawa numbers of tori
We refer the reader to [Weil (1961)] for the definition of the
Tamagawa number T(G) of a linear algebraic group G over a global

field.

Theorem 9.11. For any torus T over a global field K

[ 1{ )]
(L™ (K.T)]
where W (K.T) is the kernel of H'(K.T) — [] H'(K ,T) and T is the
allv ¥
dual torus defined by the relation X*(T) = X*(TV).
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1
Proof: Let ¢(T) = 7(T) LQTLKLIlJ—u The proof has three main steps:
[(H (X, TV)]

(i) ¢ is an additive function on the category of tori over K;

(11) o(€ ) = 1:

(iii) for any finite separable extension F of K, w(ResF/KT) =
#(T).
Once these fact have been established the proof is completed as fol-
lows. The functor T » X (T) defines an equivalence between the cat-
egory of tori over K and the category RepZ(GK) of continuous rep-
resentations of GK on free Z-modules of finite rank, and so we can
regard ¢ as being defined on the latter category. Then (i) says that
¢ induces a homomorphism KO(RCPZ(GK)) — Q)O' A theorem [Swan
(1960)] shows that [X] - [X'] is a torsion element of KO(RCPZ(CK)) if
X®Q = X'®Q, and, as Q>0 is torsion-free, ¢ is zero on torsion ele-
ments of KO(RePZ(GK))' Therefore ¢ takes the equal values on isog-
enous tori. Artin’s theorem on characters [Serre (1967b), 9.2 im-
plies that for any torus T, there exists and integer m and finite

: . m ;
separable extensions Fi and Ej of K such that T x [] ResFi/KCm is

isogenous to rIResE,/KGm' Now (ii) and (iii) show that ¢(T)m =1,
J
and therefore ¢(T) = 1.

Statements (ii) and (iii) are easily proved (they follow almost
directly from the definitions), and so the main point of the proof is
(i). This is proved by an argument, not dissimilar to that used to
prove Theorem 7.3, involving the duality theorems. See [Ono (1961),
(1963)], and also [Oesterlé (1984)], which corrects errors in Ono’s

treatment of the function field case.

The central embedding problem

Let S be a finite set of primes of a global field K, and let GS
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be the Galois group over K of the maximal extension of K unramified

outside S. Let
1—-M—DE-—G—o1

be an extension of finite groups with M in the centre of E, and let
P Gs —» G be a surjective homorphism. The embedding problem for E
and ¢ is the problem of finding a surjective homomorphism ¢: GS —» E
lifting ¢. Concretely this means the following: the homomorphism ¢
realizes G as the Galois group of an extension F of K that is unram-
ified outside S, and the embedding problem asks for a field F' that
is Galois over K with Galois group E, is also unramified outside S,
contains F, and is such that the map E — G induced by the inclusion
of F into F' is that in the sequence. For each v in S, let Gv be the
image of Gal(Kv’S/K) in G, and let EV be the inverse image of Gv in
E. Then the (local) embedding problem asks for a homomorphism
Cal(Kv,s/Kv) —» EV lifting Gal(Kv,S/KV) —» Gv'

Let A be the class of the extension in H2(G.M). If the embed-
ding problem has a solution, then A clearly is sent to zero by the
map H2(G.M) — H2(GS,M) defined by ¢. The converse is also true if A
# 0 and M is a simple G-module. Thus Theorem 9.2 has the following

consequence.

Proposition 9.12. Let
1—>M—>E—>5G—1

be a nonsplit central extension of finite groups, and let ¢: GK - G
be a surjective homomorphism. If M is a simple G-module and G is
solvable, then the embedding problem for E and ¢ has a solution if

and only if the corresponding local problem has a solution for all v.
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Proof: The necessity of the condition is obvious. For the suffic-
iency, note that when the local problem has a solution, the image of
A in H2(KV,M) is zero for all v. According to (9.2), this implies

that A is zero.

Unfortunately, the proposition does not lead to a proof of Shaf-
arevich’s theorem [Shafarevich (1954)]: for any number field K and
finite solvable group G, there exists an extension F of K with Galois
group G.

For other applications of the duality theorems to the embedding
problem, see for example [Haberland (1978)], [Neumann (1977)], and

[Klingen (1983)].

Abelian varieties defined over their fields of moduli

Let A be a polarized abelian variety defined over ﬁ. The ob-
struction to A having a model over its field of moduli is a class A
in H2(G,Aut(A)). In the case that Aut(A) is abelian, the duality

theorems can sometimes be helpful in studying this element.

Abelian varieties and Zp—extensions

The duality theorems (and their generalizations to flat cohomol-
ogy) have been used in the study of the behaviour of the points on an
abelian variety as one progresses up a Zp—tower of number fields.
See for example [Mazur (1972)], [Manin (1971)], [Harris (1979)], and

[Rubin (1985)]

Appendix A: Class field theory for function fields.

Most of the accounts of class field theory either omit the case
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of a function field or make it appear harder than the number field
case. In fact it is easier (at least for those knowing a little
algebraic geometry). In this appendix we derive the main results of
class field theory except for the existence theorem for a function
field over a finite field. As a preliminary, we derive class field
theory for a Henselian local field with quasi-finite residue field.
We also investigate to what extent the global results hold for a

function field over a quasi-finite field.

Local class field theory

A field k is quasi-finite if it is perfect and if the Galois
group G(ks/k) is isomorphic to the profinite completion 2 of Z. The
main examples of quasi-finite fields are the finite fields and the
power series fields ko((t)) with ko an algebraically closed field of
characteristic zero, but there are others. For example, any alge—-
braic extension k' of a quasi-finite field k whose degree [k':k] is
divisible by only a finite power of each prime number is quasi-
finite. Also, given an algebraically closed field K, one can always
find a quasi-finite field k having K as its algebraic closure [Serre
(1962), XIII.2, Ex 3].

Whenever a quasi-finite field k is given, we shall always assume
that there is also given as part of its structure a generator oy of
Gal(ks/k). or equivalently, a fixed isomorphism P E(Gk) — Q/Z
where E(Gk) is the character group Homcts(Gk,Q/Z) of G . The rela-

k

tion between o and Py is that ¢k(x) = x{o) for all x € E(G A

k)'
finite extension € of a quasi-finite field k is again quasi-finite
with generator o, = a[e'k]. When k is finite, we always take o to

be the Frobenius automorphism a » a9, q = [k].

Note that the Brauer group of a quasi-finite field is zero.
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because Gk has cohomological dimension one and k: is divisible.

Let R be a discrete valuation ring with residue field k = R/m.
Write f for the reduction of an element of R or R[X] modulo m. We
say that R is Henselian if it satisfies the conclusion of Hensel's
lemma: whenever f is a monic polynomial with coefficients in R such
that T factors as f = goho with 2q and ho monic and relatively prime,
then f itself factors as f = gh with g and h monic and such that g =
=08 and h = ho. Hensel's lemma says that complete discrete valuation
rings are Henselian, but not all Henselian rings are complete. For
example, let v be a prime in a global field K, and let 0v be the ring
of elements of K that are integral at v. Choose an extension w of v
to KS, let Kdec be the decomposition field of w in Ks. and let 03 be
the ring elements of Kdec that are integral with respect to w. Al-
ternatively, choose an embedding of Ks into Kv,s' and let 03 = Ksﬂav.
Then 03 is a Henselian local ring, called the Henselization of OV.
See [Milne (1980), I.4].

Now let R be a Henselian discrete valuation ring with quasi-
finite residue field k, and write K for its field of fractions. Many
results usually stated only for complete discrete valuation rings
hold in fact for Henselian discrete valution rings (often the proof
uses only that the ring satisfies Hensel's lemma). For example, the
valuation v on K has a unique extension to a valuation (which we
shall also write v) on Ks. As usual we write Kun for the maximal

unramified subextension of KS over K, and Run for the integral clos-—

ure of R in K .
un

Proposition A.1. There is a canonical isomorphism

inv
K

Proof: We first show that Br(Kun) = 0. Let D be a skew field of

: Br(K) — Q/Z.
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degree n2 over Kun’ Because Run is also a Henselian discrete valua-
tion ring, the valuation on Kun has a unique extension to each com-
mutative subfield of D, and therefore it has a unique extension to D.
The usual argument in the commutative case shows that, for this ex-
tension, n2 = ef. Let a in D have value 1/e; then Kun[a], being a
commutative subfield of D, has degree at most n, and so e { n. On
the other hand f = 1 because the residue field of R is algbraically

closed, and it follows that n = 1.

The exact sequence
2 X
0 —H (Gal(Kun/K),Kun) — Br(K) — Br(Kun)

2 X
shows that Br(K) = H (Gal(Kun/K).Kun).

Lemma A.2. The map H2(Gal(K_/K).K* ) 29, v2(Gal(K /K).Z) is an
un un un
isomorphism.
Proof: As
0 - R k< 2, X
un un un

is split as a sequence of Gal(Kun/K)—modules, the map in question is
surjective. Let c lie in its kernel, and let ~ be a cocycle repre-
senting c. Associated with ¢ there is a central simple algebra B
over K [Herstein (1968), 4.4], and if v is chosen to take values in
Rx, then the same construction that gives B gives an Azumaya algebra
BO over R that is an order in B. The reduction BO®Rk of BO is a
central simple algebra over k, and therefore is isomorphic to a ma-
trix algebra. An elementary argument [Milne (1980), IV.1.6] shows
then that BO is also isomorphic to a matrix algebra, and this implies

that ¢ = 0.
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We define ian to be the unique map making

9 ian

H(Gal(K  /K).Z) =Br(K) — @/Z
x1d =1 ey

H' (Gal (K, /K).®/2) = E(6,)

commute. It is an isomorphism. If F is a finite separable extension
of K, then the integral closure RF of R in F is again a Henselian
discrete valuation ring with quasi-finite residue field, and one
checks easily from the definitions that invF(Rcs(a)) = [F:K] ian(a)
for all a € Br(K). Therefore (CK'K:) is a class formation in the
sense of 81.

We identify the cup-product pairing
] X 2 2 X
H (GK.KS) x H (GK.Z) — H (GK.KS)
with a pairing

<, > K x E(GK) — Br(K).

Theorem A.3. (Local reciprocity law). There is a continuous homo—
morphism (-.,K): K — Gal(Kab/K) such that
(2) for each finite abelian extension F C KS of K, (-.K) induces

an isomorphism

X
/KF — Gal(L/K);

(- F/K): KN
(b) for any x € E(G) and a € K*, x(a,K) = inv,<a,x>.
K

Proof: As is explained in §1, this theorem is a formal consequence

of the fact that (GK,K:) is a class formation.

Corollary A.4. Let F1 and F2 be extensions of K such that FlﬂF2 = K,

and let F = F,F.. If all three fields are finite abelian extensions

12
of K. then NF* = NF;(ﬂNF; and (NF})(NFy) = K*.
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Proof: According the theorem, a € NF* if and only if (a.K) acts
trivially on F; this is equivalent to (a,K) acting trivially on Fl
and F2, or to it lying in NF:ﬂNF;. The second equality can be proved

similarly.

Remark A.5. When F/K is unramified, o lifts to a unique (Frobenius)
element o in Gal(F/K), and (-.,K): K — Gal(F/K) sends an element a

of K* to 5°T4(2)

In particular, (a,F/K) =1 if a € R*. When F/K is
ramified, the description of (a,F/K) is much more difficult (see

[Serre (1967a), 3.4]).

We say that a subgroup N of K* is a norm group if there exists a

finite abelian extension F of K such that N = NF/KFX' (The name is
justified by the following result: if F/K is any finite separable

. X X . . .
extension of K, then NF/KF = NL/KL where L is the maximal abelian

subextension of F; see [Serre (1962), XI.4]).

Remark A.6. The reciprocity map defines an isomorphism

lim K/N — Gab (inverse limit over the norm groups in Kx). and so to
fully understand Gab it is necessary to determine the norm groups.
This is what the existence theorem does.

Case 1: K is complete and k is finite. This is the classical case.
Here the norm groups of KX are precisely the open subgroups of finite
index. Every subgroup of finite index prime to char(K) is open. The
image of the reciprocity map is the subgroup of Gab of elements that
act as an integral power of the Frobenius automorphism on ks. The
reciprocity map is injective, and it defines an isomorphism of the
topological group R® onto the inertia subgroup of Cab. See [Serre

(1962), XIV.6].
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Case 2: K is Henselian with finite residue field. We assume that R
is excellent. This is equivalent to the completion E of K being
separable over K. From the description of it given above, it is
clear that the Henselization of the local ring at a prime in a global
field is excellent. Under this assumption:

(i) every finite separable extension of ﬁ is of the form ? for a

A AN
finite separable extension F of K with [F:K] = [F:K]:

(ii) K is algebraically closed in Q, and hence ﬁ is linearly

disjoint from Ka over K.

A A
To prove (i), write F = K[a], and let F = K[B] with B a root of a
polynomial in K[X] that is close to the minimal polynomial of a over
K (cf. [Lang (1970), II.2]). To prove {ii), note that if K is not
algebraically closed in Q. then there is an element a of ﬁ that is
integral over R but which does not lie in R. Let f(X) be the minimal
polynomial of a over K. As a is integral over ﬁ, it lies in ﬁ. and
so f has a root in ﬁ. An approximation theorem [Greenberg (1966)]
now says that f has a root in R, but f was chosen to be irreducible
over K. Thus K is algebraically closed in ﬁ, and combined with the
separability of ﬁ over K, this implies that § is linearly disjoint
from Ka [Lang (1958), III.1, Thm 2].

On combining these two assertions, we find that F » ? defines a
degree-preserving bijection from the set of finite separable exten—
sions F of K to the set of similar extensions of Q. Moreover,

NFX = N?anx for each F because NF* is dense in Ngx and Greenberg's
theorem implies that NF® is open in K*. It follows that the norm
groups of Kx, are again precisely the open subgroups of finite index.
Case 3: K is complete with quasi-finite residue field. In this case
every subgroup of K of finite index prime to char(k) is a norm group,

but not every open subgroup of index a power of the characteristic of
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k is. In [Whaples (1952-54)], various characterizations of the norm
; . X

groups are given using the proalgebraic structure on K.

Case 4: K is Henselian with quasi-finite residue field. We leave

this case to the reader to investigate.

Global class field theory

Let X be a complete smooth curve over a quasi-finite field
(k,o), and let K = k(X). The set of closed points of X will be de-
noted by XO (thus XO omits only the generic point of X). To each
point v of XO, there corresponds a valuation (also written v) of K,
and we write Kv for the completion of K with respect to v and Rv for

the ring of integers in Kv. The residue field k(v) is a quasi-finite

deg(v)

field of degree deg(v) over k with o as the chosen generator of

Gal(k(v)s/k(v)). Write a, for the image of an element a of Br(K) in

Br(KV), and define ianl Br(K) > Q/Z to beam > invv(av) where
inv_ is inv, . Let X gf X® k be X regarded as curve over k , and
v Kv ks s

let K = kS(X) be its function field. We write Jac, be the Jacobian

X

variety of X.

Theorem A.7. There is an exact sequence

inv,
0 — H'(C,.Jacy(k_) —> Br(K) — & . Br(K ) —&5 @/Z — 0.
k X' s VEXO v

Proof: We use the exact sequence of Ck—modules

0 — k. — K — Div(X) — Pic(X) — 0,

where Div(X) = @ 0 Z is the group of (Weil) divisors on X. From the
veX

cohomology sequence of its truncation

0 — k: —-K—=qQq—0

we obtain an isomorphism H2(Gk.kx) =, H2(Gk,Q). Note that
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Hz(Gk,Kx) = Ker{Br(K) — Br(K)). and recall that Tsen's theorem
[Shatz (1972). Theorem 24] states that Br(K) = O, and so H%(G,.Q) =
H2(G, .K*) = Br(K).

The cohomology sequence of the remaining segment of the sequence
0 — Q — Div(X) — Pic(X) — 0,
is
H' (G, .Div(R)) — H' (G, .Pic(X)) — H(G,.Q)

— H%(G,.Div(X)) — H2(G,.Pic(X)) - O.

But H'(G_.Div(X)) = ® , H'(G..D ). where D, 3 @ Z is the G -module
veX whv

induced by the trivial G -module Z, and so Hr(Gk.Div(R))

k(v)
® 0 Hr(Gal(k /k(v)).Z). In particular, Hl(Gk.Div(X)) = 0 and
vexX s
2 s (T -
H (Gk.Dlv(X)) = & 0 Z(G
vex

I

k(v))*

Almost by definition of JacX, there is an exact sequence
0 — Jacy (k) — Pic(X) - Z — O.

As Jacx(ks) is divisible [Milne (1986b), 8.2] and k has cohomological
: : 2 2 s vy - ul _
dimension one, H (Gk,JacX(ks)) =0, and so H (Ck,Plc(X)) =H (Gk,Z) =
E(Gk). These results allow us to identify the next sequence with the
required one:
1 . T 2 2 PE] 2 s (T
. =»H (Gk,Plc(X)) — H (Gk,Q) — H (Gk,Dlv(X)) — H (Gk.Plc(X)) -0

Il Il Il Il Il
)

0> H'(G . Jac,) — Br(k) —e HGyy) —  EQ) —o.

® Br(K ) — QZ.

)

The map 2 can be identified with ian:

We define the group of ideles JK of K to be the subgroup of

il K> comprising those elements a = (a_) such that a_ € R® for all
v€XO v v v

but finitely many v. The quotient of JK by K* (embedded diagonally)
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is the idele class group of CK of K. We set J = lip JF and C =

lip CF (limit over all finite extension F of K, F C Ks).

Corollary A.8. If Hl(Gk..JacX(kS)) = 0 for all finite extensions k'
of k, then it is possible to define on (GK‘C) a natural structure of
a class formation.

Proof: An argument similar to that in (4.13) shows that Hr(GK,J) =

e H(G ,Kx , r 21, where for each v in XO a choice w of an ex-
vexo v'iv,s

tension of v to Ks has been made in order to identify K with a sub-

field of Kv s and Gv gf GK with a decomposition group in G. Con-
' v
sider the diagram
ian
0 —Br(k) — o 0 Br(Kv) — WZ — 0

veX
1l Il

0o —H'(c..C) - H2(C,.K) = @ ., HXC. .KS) — H2(G,.C) — O,
K K'''s v€XO v'v K

whose top row is the sequence in (A.7) and whose bottom row is the

cohomology sequence of
0 — K: —J—C—>0.

The zero at lower left comes from Hilbert's theorem 90, and the zero
at lower right comes from the fact that GK has cohomological dimen-
sion < cd(k) + 1 = 2. This diagram shows that HI(GK,C) = 0 and that

2 X .
K H (GK.C) — Q/Z making

there is a unique isomorphism inv
inv,: HX(G,.C) —— Q/Z
K K’
1 i
inv_: H(G..K* ) —— @/Z
v’ v’ v,s)

commute for all v. The same assertions are true for any finite sep-

arable extension F of K, and it obvious that the maps invF satisfy
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the conditions (1.1).

Corollary A.9. If k is algebraic over a finite field, then (GK,C) is
a class formation.

Proof: Lang’s lemma shows that Hl(Gk,A) = 0 for any connected alge-
braic group A if k is finite. If k is algebraic over a finite field,
then any element of Hl(Gk.A) is represented by a principal homogen—
eous space, which is defined over a finite field and is consequently

trivial by what we have just observed.

In (A.14) below, we shall see examples of fields K/k for which
the conditions of (A.8) fail. We now investigate how much of class
field theory continues to hold in such cases.

Fix an extension of each v to KS, and hence embeddings

i, Gv — GK. Define (-.K): JK - Gal(Kab/K) by

(a,K) ZVE&O iv(av,Kv). a = (av).

For any finite abelian extension F of K, this induces a mapping
(=.F/K): J/Np pJp — Gal(F/K) such that (a,F/K) = M i(a,.F /K )
where Fw denotes the completion of F at the chosen prime lying over
v. It follows from (A.5) above, and the fact that only finitely many

primes of K ramify in F, that this last product is finite (and that

the previous product converges).

Lemma A.10. For all a in K*, (a.K) = 0.

Proof: Consider the diagram:
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inVK
g x EG) — eBr(K) — oz
I I 1
H(G.J) H(G.7) — (G J)
T I 1

6K x B (G —  HA(G K.
The two lower pairings are defined by cup-product, and the top pair-
ing sends (a.x) to ian(z ((av.lev))) = x((a.K)). a = (av) (here
<. > 1is as in A.3). It is obvious from the various definitions that
the maps are compatible with the pairings. If a € Kx, then the dia-
gram shows that x(a,K) lies in the image of Br(K) in Q/Z, but Br(K)
is the kernel of inv,, and so x(a,K) = O for all x. This implies

K
that (a.K) = 0.

The lemma shows that there exist maps
(-.K): CK — Cal(Kab/K)

(-.F/K): CK/NCF — Gal(F/K), F/K finite abelian.

We shall say that the reciprocity law holds for K/k if, for all
finite abelian extensions F/K, this last map is an isomorphism.
Unfortunately the reciprocity law does not always hold because
there can exist abelian extensions F/K in which all primes of K
split, that is, such that Fw = Kv for all primes v. This suggests
the following definition: let F be a finite abelian extension of K,
and let K' be the maximal subfield of F containing K and such that
all primes of K split in K'; the reduced Galois group G of F over

F/K
K is the subgroup Gal(F/K') of Gal(F/K).
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Proposition A.11. For any finite abelian extension F of K, the map
(-,F/K) induces an isomorphism CK/NCF —_— CF/K‘

Proof: For each prime v, the image of Gal(Fw/Kv) is contained in

GF/K‘ and so the image of J in Gal(F/K) is also contained in CF/K'

It clearly suffices to prove the surjectivity of ( .F/K) in the

case that F/K' is cyclic of prime order. Then there exists a prime v

CF/K is surjective local

144

such that F_ # K_, and KX — Gal(F_ /K_)
w v v w Vv
class field theory.

To prove the injectivity, we count. If Fl and F, are finite

2
abelian extensions of F such that FlﬂF2 = K and F1F2 = F, then it
follows from (A.4) that NCF ﬂNCF = NCF and (NCF )(NCF ) = NCF' As
1 2 1 2
éFl/Knan/K =1 and CFI/K’EF2/K = GF/K' it suffices to prove that

CK/NCF and EF/K have the same order for F/K cyclic of prime power
order.
Let F/K be cyclic of prime power, and consider the diagram

inv

K
Br(F/K) — ©& 0 Br(Fw/Kv) — WZ
ve€X
T= TR
X X
K'/NF© — JK/NJF — CK/NCF — 0.

The top row is part of the sequence in (A.7), and the bottom row is

part of the Tate cohomology sequence of

0—>F — Jp —C —0.
The first two vertical arrows are the isomorphisms given by the per-—
jodicity of the cohomology of cyclic groups. The order of the image
of invy, is the maximum of the orders of the Br(FW/KV). and the order

of Br(Fw/KV) is [FW:KV]. Thus the order of the image equals the

order of C(L/K). From the diagram, we see that it is also the order

of CK/NCF'
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For any curve Y over a quasi-finite field, we define the Brauer

group Br(Y) of Y to be the kernel of Br(F) — &

Br(Fv). where F is
vey

0
the function field of Y. This definition will be justified in A.15

below. Note that Theorem A.7 shows that Br(Y) = H'(G,.Jacy(k_)).

Proposition A.12. The following statements are equivalent:
(a) the reciprocity law holds for K/k;

(b) for all finite cyclic extensions F/K, the sequence

Br(F/K) — © o Br(F /K ) — [F:K] 'Z/Z — 0
veX vV

is exact;

(c) for all finite cyclic extensions F/K, Hl(Cal(F/K).Br(Y)) =0,
where Br(Y) is the Brauer group of the projective smooth curve with
function field F.

Proof: It follows from (A.11) that the reciprocity law holds for K/k
if and only if EF/K = GF/K for all finite abelian extensions F/K, and
it suffices to check this for cyclic extensions. But, as we saw in
the above proof, for such an extension the order of E(F/K) is the
order of the cokernel of Br(F/K) — & Br(Fw/Kv). The equivalence of
(a) and (b) is now clear.

Consider the exact commutative diagram

Br(X) — Br(K) — & Br(Kw) — Q/Z — 0
l la 1 In
-Gal(F /K
0 — (Br(F)/Br(Y))*21(F/K)_, )

(® Br(F,)) — oz

where n = [F:K]. From the Hochschild-Serre spectral sequences, we
get exact sequences

Gal(F/K)

0 — Br(F/K) — Br(K) — Br(F) — Ho(Cal(F/K).F)

0 — Br(F,/K,) — Br(k) — Br(F ) /%) — w(car(r x ).F.
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and from the periodicity of the cohomology of cyclic groups, we see

that

H>(Cal (F/K).F*) = H'(Gal(F/K).F*) = O,

H(Gal(F /K ).F}) = H'(Gal(F, /K ).Fx) = 0.

Thus the preceding diagram gives an exact sequence of kernels and

cokernels,

Br(F/K) — @ Br(Fw/Kv) — n—IZ/Z — coker(a) — 0.

Gal (F/K)

But, as Br(K) — Br(F) is surjective,

Gal (F/K) Gal(F/K))

Coker({a) = Coker(Br(F) — (Br(F)/Br(Y))

which equals Hl(Gal(F/K).Br(Y)) because Hl(Gal(F/K),Br(F)) = 0 (look
at the Hochschild-Serre spectral sequence). Thus (b) is equivalent

to (c).

We say that the Hasse principle holds for K/k if the map
KN — @ Ki/NF: is injective for all finite cyclic field exten-

sions F of K.

Proposition A.13. The following are equivalent:

(a) the Hasse principle holds for K;

(b) H' (G, Jacy(k ) = O;

(c) Br(X) = 0.
In particular, the Hasse principle holds for K/k if k is algebraic
over a finite field.
Proof: As K'/NF* z Br(F/K) for F/K finite and cyclic, we see that
that the Hasse principle holds for K/k if and only if
Br(F/K) — & Br(Fw/Kv) is injective for all F/K finite and cyclic.

As Br(K) = O, Br(K) = U Br(F/K) where the union runs over all finite
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cyclic extensions. Thus the Hasse principle holds for K if and only
if Br(K) — @ Br(Kv) is injective, but the kernel of this map is

Br(X) = Hl(Ck,JacX(ks)).

Remark A.14. Let kO be an algebraically closed field of character-
istic zero, and let k be the quasi-finite field ko((t)). In this
case there exist elliptic curves E over k with Hl(k.E) # 0, and there
exist function fields K over k with finite extensions F linearly
disjoint from ks such that every prime of K splits completely in F
(see [Rim and Whaples (1966)]). In lectures in 1966, Rim asked
(rather pessimistically) whether the following conditions on a quasi-
finite field k are equivalent:

(a) k is algebraic over a finite field;

(b) Hl(Gk.A) = 0 for all connected commutative algebraic group
varieties over k;

(c) the reciprocity law holds for all K/k;

(d) the Hasse principle holds for all K/k.
We have seen that (a) = (b) = (c). (d). but (b) does not imply (a).
In fact Jérdan has shown [l;rdan (1972), (1974)] that if k is
finitely generated over Q, then for almost all o € Gal(ks/k), the
fixed field k(o) of o is quasi-finite and has the property that every
absolutely irreducible variety over it has a rational point; thus (b)

holds for k(o).

Remark A.15. We use étale cohomology to show that the group
Ker(Br(K) — & Br(KV)) is indeed the Brauer group of X. Let
w: X — Spec(k) be the structure morphism, and consider the exact

sequence of sheaves
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O—*Gm—eg*(;m—>DivX—)O

on Xet (see [Milne (1980), II1.3.9]): here g is the inclusion of the

generic point into X and DivX is the sheaf of Weil divisors). On

applying the right derived functors of T, We get a long exact se-—

quence of sheaves on Spec(k)et which we can regard as Gk—modules.

The sequence is
0 — k. — K — Div(X) — Pic(X) — 0,

which is exactly the sequence considered in the proof of Theorem A.7.

Here it tells us that 7.6 = k., le G = Pic(X), and R'w. G = O for
»* m s ¥ 'm »* m

r > 2. Therefore the Leray spectral sequence for 7 reduces to a long

exact sequence
r X r r-1 . T
. —H (Gk,ks) — H (Xet,Cm) — H (Ck.P1c(X)) —_ ...

From this we can read off that H2(Xet’cm) = Hl(Gk.Pic(i)), which
proves what we want because H2(Xet,Gm) is equal to the Brauer group

of X.

Exercise A.16. Investigate to what extent the results in the second
section remain true when the fields Kv are replaced by the Henseliza-

tions of K at its primes.

Notes: Class field theory for complete fields with quasi-local res-
idue fields was first developed in [Whaples (1952/54)] (see also
[Serre (1962)]). The same theory for function fields over quasi-

finite fields was investigated in [Rim and Whaples (1966)].



CHAPTER II

ETALE OOHOMOLOGY

In 81 we prove a duality theorem for Z-constructible sheaves on
the spectrum of a Henselian discrete valuation ring with finite res—
idue field. The result is obtained by combining the duality theorems
for modules over the Galois groups of the finite residue field and
the field of fractions. After making some preliminary calculations
in 82, we prove in §3 a generalization of the duality theorem of
Artin and Verdier to Z-constructible sheaves on the spectrum of the
ring of integers in a number field or on curves over finite fields.
In the following section, the theorems are extended to certain
nonconstructible sheaves and to tori; also the relation between the
duality theorems in this and the preceding chapter is examined.
Section 5 treats duality theorems for abelian schemes, §6 considers
singular schemes, and in §7 the duality theorems are extended to
schemes of dimension greater than one.

In this chapter, the reader is assumed to be familiar with the
more elementary parts of étale cohomology, for example, with Chapters
II and IIT of [Milne (1980)]. All schemes are endowed with the étale

topology.

80 Preliminaries

We begin by reviewing parts of [Milne (1980)].
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Cohomology with support on a closed subscheme
([Milne (1980), p73-78, p91-95])
Consider a diagram
z-Hxdu
in which i and j are closed and open immersions respectively, and X

is the disjoint union of i(Z) and j{(U). There are the following fun-

ctors between the categories of sheaves:

x i,
1 M
— —
i, %
5(Z,) —— st —lo s
i I
— —

Each functor is left adjoint to the one listed below it; for

example, Homz(i*F,F') x HomX(F,i*F'). The functors i*. i,

* ! . A
Jj are exact, and i’ and j, are left exact. The functors i, 1", j_.

Jy., and

»*
and j map injective sheaves to injective sheaves. For any sheaf F

on X, there is a canonical exact sequence

0—j,iF—F—iiF—o0.

Proposition 0.1. (a) For any sheaves F on U and F' on X, there is a
canonical isomorphism Ext;(j!F,F') =, ExtB(F,j*F’), all r > 0; in
particular, Exty(j,Z.F') = (U, F'|U).

(b) For any sheaves F on X and F' on U, there is a spectral se-

'y ] + L}

quence EXt;(F,RSJ*F ) = Exta S(F|U,F').

(c) For any sheaves F on X and F' on Z, there is a canonical iso-
morphism Exty(F.1,F') —> Exty(i"F,F'), all r 3 0.

(d) For any sheaf F on X, there is a canonical isomorphism
H;(X,F) = Ext;(i*Z,F). all r > O; consequently, for any sheaf F on

Z. Hy(X.1,F) = H'(Z,F), all r 2 0.
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(e) For any sheaves F on Z and F' on X, there is a spectral

sequence
r s. ., T+s, . ,
Eth(F,R i'F') = Extx (i, F.F").
(f) For any sheaf F on X, there is a long exact sequence
r r r
.= HZ(X,F) — H (X,F) — H (U,F) — ...

Proof: (a) As j* is exact and preserves injectives, on forming the
derived functors of HomX(j!F,—) = HomU(F,j*(—)). we obtain canonical
isomorphisms Ext;(j!F,—) X EXtG(F-j*(‘))-

(b) As Js is left exact and preserves injectives, and
HomX(F,—)°j* = HomU(j!F.—). this is the spectral sequence of a comp-
osite of functors.

(c) As i is exact and preserves injectives, on forming the de-
rived functors of HomX(F.i*(—)) = Homz(i*F,—), we obtain canonical
isomorphisms Ext;(F,i*(—)) x Extg(i*F,—).

(d) From the exact sequence
0 — HomX(i*Z,F) - HomX(Z,F) — Homx(j'Z,F)

we see that Homx(i*Z.F) = Ker(I'(X,F) — I'(U,F)). By definition, this
kernel is FZ(X,F). Hence HomX(i*Z,—) = FZ(X,—). and on passing to
the derived functors we obtain the required canonical isomorphism.
The second statement can be obtained by combining the first with (c).
(e) As i! is left exact and preserves injectives, and
HomZ(F.-)=i! = HomU(i*F,—), this is the spectral sequence of a com—
posite of functors.
(f) This can most simply be constructed as the Extx(—,F)—sequence
arising from

0> jZ—>2Z— i*Z — 0.
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The exact sequence in (0.1f) is referred to as the cohomology

sequence of the pair X 3 U.

Extensions of sheaves

We generalize Theorem 0.3 of Chapter I to the étale topology.
Recall that if Y is a Galois covering of a scheme X with Galois group
G, then for any G-module M, there is a unique locally constant sheaf
FM on X such that T(Y.FM) = M (as a G-module). In the next theorem

we use the same letter for M and FM'

Theorem 0.2. Let Y be a finite Galois covering of X with Galois
group G, and let N and P be sheaves on Xet' Then, for any G-module M
such that ﬂomZ(M,N) =0 for r > O, there is a spectral sequence

Extg(M,Exty(N.P)) = Exty S (MO,N.P).

In particular, there is a spectral sequence

H'(G.Extg(N.P)) = Exty S(N.P).

Proof: The second spectral sequence is obtained from the first by
taking M = Z. After a few preliminaries, the first will be shown to

be the spectral sequence of a composite of functors.

Lemma 0.3. For any sheaves N and P on X and G-module M, there is a
canonical isomorphism Hom.(M,Hom,(N,P)) — Hom, (M®,N.P).

Proof: Almost by definition of tensor products, there is a canonical
isomorphism HomY(M,ﬂomY(N,P)) - HomY(M®ZN,P). Because M becomes
the constant sheaf on Y, HomY(M.ﬂomY(N,P)) = Hom(M,HomY(N,P)) (homo-
morphisms of abelian groups). On taking G-invariants, we get the

required isomorphism.
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Lemma 0.4. If I is an injective sheaf on X and F is a flat sheaf on
X, then HomY(F,I) is an injective G-module.

Proof: We have to check that HomG(—,HomY(F.I))t S(Xet) — Ab is
exact, but (0.3) expresses it as the composite of two exact functors
_®ZF and HomX(—,I).

Lemma 0.5. Let N and I be sheaves on X with I injective, and let M
be a G-module. If go%Z(M,N) =0 for r > 0, then Exté(M,HomY(N,I)) =
O for r > 0.

Proof: Let F° — N be a flat resolution of N. The assumption on M
implies that MBF" — MBN is a resolution of MON, and it follows from
the injectivity of I that HomX(M®N,I) - HomX(M®F',I) is then a
resolution of HomX(M®N,I).

Regard Z[G] as a sheaf on X. Then
Hom, (Z[G]®,N.1) — Hom, (Z[G]®,F.1)
is a resolution of HomX(Z[G]®ZN,I). But
HomX(Z[G]®ZF.I) = HomG(Z[G].HomY(F,I)) = HomY(F.I)

for any sheaf F, and so the resolution can be regarded as an inject—
ive resolution HomY(N,I) — HomY(F’,I) of the G-module HomY(N,I). We
use this to compute Exté(M,HomY(N,I)). From (0.3) we know that
HomG(M,HomY(F',I)) = HomX(M®F'.I), and we saw in the above paragraph

that this last complex is exact except at the first step. Con-

r
sequently ExtG(M,HomY(N.I)) =0 for r > O.

We now prove the theorem. Lemma 0.3 shows that HomX(M®ZN,—) is
the composite of the functors HomY(N.~) and HomG(M,—), and Lemma 0.5
shows that the first of these sends injective objects I to objects

that are acyclic for the second functor. The spectral sequence
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therefore arises in a standard way from a composite of functors.

Corollary 0.6. If Y is a finite Galois covering of X and M and N are
sheaves on X, then Ext;(M,N) = EXt;(W*W*M,N).

Proof: On applying the theorem with M = Z[G], we find that
HomG(Z[G].Excf{(M.N)) = Ext;(Z[G]QDM,N).

but the first group is Ext;(M,N), and, in the second, Z[G]8M = W*W*M.

Pairings
For any sheaves M, N, and P on X, there are canonical pairings

T+

X S(M,P).

Ext;(N,P) x Ext)s((M,N) — Ext

which can be defined in the same way as the pairings in (I.0). Also,
if X is quasi-projective over an affine scheme (as all our schemes
will be), then we can identify the cohomology groups with the Eech
groups and use the standard formulas (see [Milne (1980), V.1.19]) to
define cup-product pairings

r+s

HO(X,M) x B3(X.N) — H 'S(X,M8N).

Recall also [Milne (1980), III.1.22] that there is a spectral se-

quence
H' (X, 8ot (M.N)) = Ext)r(“S(M.N)

whose edge morphisms are maps Hr(X_ﬂomX(M.N)) — Ext§(M,N). As we
have already noted (see the proof of (0.3)), a pairing M x N — P

corresponds to a map M — ﬂomX(N,P).

Proposition 0.7. Let M x N — P be a pairing of sheaves on X, and
consider the composed map

H (X.M) — Hr(X,JfomX(N,P)) — Exc)‘;(M.N).
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Then the diagram

r+s

Hr(X,M) x HS(X.N) — H “(X.P) (cup-product pairing)

1 1 l

r+s(X.P) (Ext pairing)

Exty(N.P) x H°(X,N) —H
commutes.

Proof: [Milne (1980), V.1.20].

The Eech complex

Let F be a sheaf on Xet' For any U étale over X, let C'(V/U,F)
be the Eech complex corresponding to a covering (V — U), and define
€ (F)(U) to be Lim C'(V/U,F) (direct limit over the étale coverings
(V—U)). Then € (F) is a complex of presheaves on X, and we let
C (U,F) = I'(U,¢ (F)) be the complex of its sections over U. In the

next proposition, we write ﬂr(F) for the presheaf U » Hr(U,F).

Proposition 0.8. Assume that X is gquasi-projective over an affine
scheme .
(a) For any sheaf F on X, H' (€ (F)) = # (F) and H' (C (X,F)) =
H (X.F).
(b) For any morphism f: Y — X, there is a canonical map
f*ﬂ'(F) — @'(f*F), which is a quasi-isomorphism if f is étale.
(c) For any pair of sheaves F and F', there is a canonical pairing
€ (F) x € (F') — € (FOF') inducing the cup-product on cohomology.
(d) Let X be the spectrum of a field K, and let F be the sheaf on
X corresponding to the GK—module M. Then C (X.,F) is the standard

resolution of M (defined using inhomogeneous cochains).

Proof: (a) By definition, H'(C'(V/U,F)) = H (V/U.F), and therefore

H' (€ (F)(U)) = lim H'(C'(V/U.F)) = lim H (V/U.F) = H'(U.F).
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Under our assumptions, the Eech groups agree with derived-functor
groups, and so this says that H'(I(U,€"(F))) = H'(U.F) 3f ru,#"(r)).
which proves both the equalities.

(b) For any étale map V — X, there is a canonical map
r'(V.F) — F(V(Y),f*(F)). In particular, when U is étale over X and
(V — U) is an étale covering of U, then there is a canonical map

r(V'.F) — r(vEY).f*(F)) (here V' denotes Vx ..}, all r. On

UVXU'
passing to the limit over V, we obtain a map

T(U.€7(F)) — T'(U,y,.€ (£7F))

(Y)
for all r, and these maps give a map of complexes € (F) — f*%'(f*F).
By adjointness, we get a map f*ﬂ'(F) — @’(f*F). The last part of

the statement is obvious because, when f is étale,
H' (£7°¢'(F)) = #"(F)|U = #"(F|U) = H' (¢ (£°F)).

(c) For each U — X, the standard formulas define a pairing of

complexes
r(u,e (F)) x I'(U,¢ (F')) — I'(U,¢ (FOF')),
and these pairings are compatible with the restriction maps.
(d) If U is a finite Galois covering of X with Galois group G,
then it is shown in [Milne (1980), III.2.6] that C (U/X.F) is the

standard complex for the G-module F(U). The result follows by pass-

ing to the limit.

Constructible sheaves

Let X be a scheme of Krull dimension one. A sheaf F on such a
scheme is constructible if there is a dense open subset U of X such

that

(a) for some finite étale covering U' — U, the restriction of F
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to U' is the constant sheaf defined by a finite group;
(b) for all x ¢ U, the stalk F; of F is finite.

It is said to be Z-constructible if its restriction to some such U’
is the constant sheaf defined by a finitely generated group and the
stalks F; are finitely generated. Note that a constructible sheaf is
Z-constructible and a Z-constructible sheaf is constructible if and
only if it is torsion.

The constructible sheaves form an abelian subcategory of S(Xet)

and if
O0—F —F-—>F"—0

is exact, then F is constructible if and only if F' and F" are con-
structible. When m is a morphism that is locally of finite type. b
carries constructible sheaves to constructible sheaves, and when 7 is
finite, T has the same property. Similar statements hold for

Z-constructible sheaves.

Proposition 0.9. If X is quasi-compact, then every sheaf on X is a
filtered direct limit of Z-constructible sheaves. Therefore, every
torsion sheaf is a filtered direct limit of constructible sheaves.
Proof: Let F be a sheaf on X, and consider all pairs (g: U — X,s)
with g étale, U affine, and s a section of F over U. For each such
pair, we have a map Z — F|U sending 1 to s. This induces a map

g*Z — F and g*l is Z-constructible. Therefore the image of g*l in F
is Z-constructible, and it is clear that the union of all subsheaves
of this form is F. When F is torsion, then each of the subsheaves,

being torsion and Z-constructible, is constructible.
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Mapping cones

For a complex A", A"'[1] denotes the complex with (A'[l])r = Ar+1

and the differential d° = —d;+1. Let u: A° — B" be a map of com-

plexes. The mapping cone C’(u) corresponding to u is the complex

r+l r+1 T

A'[1] ® B* with the differential d' = -d, " +u' = + dg. Thus C'(u)
= Ar+1 ® B', and the differential is (a.b) » (-da,ua + db). There is

an obvious injection i: B° — C"(u) and an obvious projection
p: C (u)[-1] — A", and the distinguished triangle corresponding to u
is

c(u-11 Ba 5B o).
By definition, every distinguished triangle is isomorphic to one of
this form.

A short exact sequence
0—A 5B -5HCc —o0
gives rise to a distinguished triangle
c-11 5Ha L Y
in which w is defined as follows: let q: C'(u) — C" be v on B" and

zero on A'[1]; then q is a quasi-isomorphism, and so we can define w

to be (—p)°q—l[—1]. A distinguished triangle of complexes of sheaves

on Xet‘
cr-1]1 B a S5 e,
gives rise to a long exact sequence of hypercohomology groups

.= H(XA) > H(X.B) > H(X.C) »H I (XA) = ...

Proposition 0.10. (a) A morphism of exact sequences of complexes



§1 LOCAL RESULTS 181

0—A"—>B —C —0
la lb le
0—D —E —F —0
defines a distinguished triangle
C'{c)[-1] = C'(a) — C'(b) — C'(c).
(b) Assume that the rows of the diagram
C[-1] A" - B —C
! !
F'[-1] D —E —F
are distinguished triangles and that the diagram commutes; then the
diagram can be completed to a morphism of distinguished triangles.
(c) For any maps u: A° — B", v: B" — C" of complexes, there is a

distinguished triangle
C (v)[-1] = C (u) — C'(veu) — C"(v).

Proof: The statements are all easy to verify. (Note that (b) and
(c) are special cases of the axioms (TR2) and (TR3) [Hartshorne
(1966), I.1] for a triangulated category; also that the distinguished
triangle in (c¢) is the analogue for complexes of the kernel-cokernel

sequence of a pair of maps.)

81 Local results

Except when stated otherwise, X will be the spectrum of an ex-
cellent Henselian discrete valuation ring R with field of fractions K
and residue field k. For example, R could be a complete discrete
valuation ring or the Henselization of the local ring at a prime in a

global field. We shall use the following notations:
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K
S
| I = Gal(K_/K_)
k — R — K G = Gal(K_/K)
S un un S
| [ | g = Gal(k/k) = G/I
k — R — K

Preliminary calculations

We compute the cohomology groups of Z and Cm.

Proposition 1.1. (a) Let F be a sheaf on u; then Hr(X,j!F) =0 for
all r 2 O, and consequently there is a canonical isomorphism
H (. F) <5 HUYH (X, 5,F) For all r 2 o.

(b) For any sheaf F on X, the map Hr(X.F) — Hr(x,i*F) is an iso-
morphism all r > O.

Proof: (a) The cohomology sequence of the pair X D u
r . r . r .
- —H (X.j,F) = H (X,jF) > H (u.j,Flu) —> ...

shows that the first part of the statement implies the second.
Let M be the stalk Fﬁ of F at u regarded as a G-module. The
functor F » i*j*F can be identified with

M» MIZ Mod., — Mod .
G g

The equality Homg(N,MI) = HomG(N,M) for N a g-module shows that i*j*
has an exact left adjoint, namely, "regard the g-module as a
G-module”, and so i*j* preserves injectives. Consider the exact se—

quence (see 80)
*
0— jF— i F — id j*F — 0.

If F is injective, this is an injective resolution of J,F because Jse
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. S 0 . O, o %, .
and i, preserve injectives. As H (X5, F) = H(X.i 1 JuF) is the

isomorphism MG - (MI)g, the cohomology sequence of the sequence

*

v
o

shows that HO(X.j!F) = 0 for all F and that Hr(X,F) = 0 for all r
if F is injective. In particular, we see that if F is injective,
then j!F is acyclic for I'(X,-).

Let F — I° be an injective resolution of F. Then j!F — j!I'
is an acyclic resolution of j!F, and so Hr(X,j!F) = Hr(F(X,j!I')).
But H'(I(X.§,1")) = (R'f)(F) where f is the functor F s Ir(X.j,F) = o,
and so Hr(X,j!F) = 0 for all r.

(b) The cohomology sequence of
0= §,i’F —F—iiF -0

yields the required isomorphisms.

Corollary 1.2. For all r, Hr(X,Z) = Hr(g,Z); in particular, when k
is finite, HO(X.2) = 2. H'(X.2) = 0, H2(X.Z) = QZ. and B (X.Z) = 0
for r > 3.

Proof: This follows immediately from part (b) of the proposition.

Lemma 1.3. If k is algebraically closed, then Hr(K,Gm) =0 for all
r>1.

Proof: The assumption that R is excellent means that ﬁ is separable
over K, and we have seen in (I.A.8) that K is algebraically closed in
ﬁ. Therefore ﬁ is a regular extension of K, and so we can apply
[Shatz (1972), Theorem 27, pl16] to obtain that K is a C1 field. It

follows that K has cohomological dimension at most 1, and so Hr(K,Gm)

=0 for r 2> 2 [Serre (1964), II.3].

Lemma 1.4. If k is perfect, then Rrj*Gm =0 for all r > O; therefore

EXt;(F,j*Cm) = Ext:(Flu,Cm) for all sheaves F on X and all r.
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Proof: The stalks of Rrj*ﬁm are (see [Milne (1980), III.1.15])

(RT5,8 ) = H'(K .G ) =0, 1>0 (by 1.3)

O, r>O0.

n

T. T
(R'3,6, )5 = H (K,.6)

This proves the first assertion, and the second follows from (0.1b).

Proposition 1.5. Assume that k is finite.
(a) For all r > 0, H'(X,G ) = 0.

0 B 1 B 2 _

(b) The groups HO(X.€ ) = 0. HL(X.€) = Z. H.(X.G,) = O, H(X.C )
= O/Z. and H (X,6 ) = O for r > 3.

Proof: (a) As Rrj*Gm =0 forr >0, H(X,j,8 ) = H'(K.G ) all r.
Clearly Hr(X,i*Z) = H'(x.Z) for all r, and so the exact sequence

o-»cm—»j*cmﬂai*z—m

gives rise to an exact sequence

0 —»1x.6) >k 24z »u'(xg) —0—0

— (X6 ) — (K6 ) -5 K (k.2) — 0 — H(X.6) =0 — ...

which yields the result.

(b) Consider the cohomology sequence of the pair X D u

0 — K. ) — KX, ) — HU(K.6 ) — H(X.6) — B (X.6 ) — ...
I 1l 1l
R —_— K 0.
From the part we have displayed, it is clear that HS(X.Gm) = 0 and
Hi(X.Gm) = Z. The remainder of the sequence gives isomorphisms

Hr(K.Gm) &, gl

. r
. (X,Gm) for r > 1, from which the values of HX(X,Gm),

r 2> 2, can be read off.

Corollary 1.6. Assume that k is finite. If n is prime to char(k),

then H;(X.un) =Z/nZ for r = 1,2, and H;(X.pn) = O otherwise.
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Proof: As n is prime to char(k), the sequence
0—>pu —¢ 5¢ —o
n m m

is exact, and the result follows immediately from (1.5).

Remark 1.7. (a) Part (a) of (1.5) can also be obtained as a con-
sequence of the following more general result [Milne (1980),
III.3.11]: if G is a smooth commutative group scheme over the spec-
trum of a Henselian local ring, then Hr(X,G) = Hr(x.GO) forr > 1,
where x is the closed point of X. and GO is the closed fibre of G/X.

Alternatively, (1.1b) shows that Hr(X.Gm) = Hr(x,i*Gm). Ob-
viously i*Gm corresponds to the g-module Rin' and it is not difficult
show that Hr(g,Rzn) =0 for r > 0 (see A.2).

(b) There is an alternative way of computing the groups H;(X.Gm).
Whenever k is perfect, (1.4) shows that Hr(X,j*Cm) — Hr(u,Gm) is an
isomorphism, and it follows immediately that H;(X,j*Gm) = 0 for all
r. Therefore the exact sequence

0—>¢ — 46 ord , iZ—0

leads to isomorphisms H;(X,i*l) =, H;+1(X.Gm). and we have seen in
(0.1d) that H (X,1,7) = H'(x,Z). Therefore H;(x,cm) = 1 1(x.2) for
all r > 1.

This argument works whenever k is perfect. In particular, when

k is algebraically closed, it shows that
r
HX(X,Gm) =0,Z, 0, ... forr=0, 1, 2,
from which it follows that, if n is prime to char(k), then
H;(X,un) =0,0, Z/nZ, 0, ... forr =0, 1, 2,

These values of Hr(x,un) are those predicted by the purity conjecture

[Artin, Grothendieck, and Verdier (1972/73), XIX].
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Since Rri!Gm is the sheaf on z asssociated with the presheaf
z'» H;.(X',Gm) (here X' — X is the étale covering of X correspond-—
ing to z' — z), we see that if k is any perfect field, then
Rli!Gm = Z and Rri!Gm =0 for r # 1, and consequently that if
(n,char(k)) = 1, then R2i!un = Z/nZ and Rri!un =0 for r # 2. For
this last statement concerning My it is not even necesssary to assume

that k is perfect.

The duality theorem
We now assume that the residue field k is finite. There are two
natural candidates for a trace map Hi(X.Gm) = Q/Z. The first is
that in (1.5), namely, the composite of the inverse of
H2(u.6, ) =5 HA(X.€,) with H2(u.6,) = H2(G.KY) X @/z. The second
is that in (1.7b), namely, the composite of the inverse of H2(x.Z) =
inv.

HA(X.Z) =5 H3(X.G_) with H2(x.2) = H2(G,.Z) —> @/Z. From the def-

inition of invy (see 1.1.6) it is clear that the two methods lead to
the same map.
Recall (0.1d) that for any sheaf F on X, H;(X,F) = Ext;(i*Z,F).
and so there is a canonical pairing
r -r
ExtR(F.6 ) x Ko (X.F) — H(X.G, ).
On combining the pairing with the trace map, we obtain a map
r . T el *
o (X.F): Exty(F.€, ) — X
Before we can state the theorem, we need to endow HomX(F,Gm)
with a topology. We shall see below that the restriction map
X
HomX(F,Gm) — Homu(FIu,Cm) = HomG(FG,KS)

is injective. The last group inherits a topology from that on K:.

and we give Homx(F,Gm) the subspace topology. When F is Z-construct—
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ible, all subgroups of HomX(F,Cm) of finite index prime to char(K)

are open.

Theorem 1.8. (a) Let F be a Z-constructible sheaf on X without
p-torsion if K has characteristic Pp#0. Forr »2, the groups
Ext§(F,Gm) are torsion of cofinite-type, and ar(X.F) is an isomorph-
ism. Forr {1, ar(X,F) defines an isomorphism

Exty(F.€ )~ — o7 (X,F)%,

m

where ~ denotes the completion for the topology of subgroups of
finite index when r = 1 and the completion for the topology of open
subgroups of finite index when r = 0. The group Exti(F,Gm) is fin-
itely generated.

(b) Let F be a constructible sheaf on X, and assume that K is

complete or that pF = F for P = char K. Then the pairing
r 3-r
Extg(F.C.) x H)"(X.F) — Hi(x,cm) = /.

is nondegenerate; if PF = F, then all the groups are finite.
Proof: We first consider a sheaf of the form i*F, Fa

Z-constructible sheaf on x. Recall (0.1d), that for such a sheaf

H;(X,i*F) = H'(x,F), all r.

Lemma 1.9. For any sheaf F on x, there is a canonical isomorphism
r-1 M r,.
Extx (F.z) = ExtX(l*F,Gm), all r > 1.

Proof: From the exact sequence
0 — Gm - J*Gm — 1*2 — 0
we obtain an exact sequence

r.. r,. . . ]
.= ExtX(l*F,Gm) — EXCX(I*F,J*Gm) — Ext;(l*F,l*Z) — ...
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r,. . r, . . -
But Extx(le.J*Gm) = Extu(l*F|u,Gm) in view of (1.4) and (0.1b), and
the second group is zero because i*Flu = 0. Also Ext;(i*F,i*Z) =
Ext;(F,Z) by (0.1c), and so the sequence gives the required isomorph-—

isms.

It is obvious from the various definitions that the diagram

. 31, |

Exth(i,F.6 ) x Ko "(X.1,F) — H(X.G) = W/Z
1= 1] 1=

Extt |(F.Z) x B (x.F) — H(x.Z) =WZ

commutes. The lower pairing can be identified with the pairing in
(I.1.10). We deduce: Extl(i*F,Cm) is finitely generated and
al(X.i*F) defines an isomorphism Extl(i*F.ﬁm)A — Hi(x,i*F)* (comple-
tion for the profinite topology): az(X.i*F) is an isomorphism of
finite groups; aS(X,i*F) is an isomorphism of torsion groups of
cofinite-type; for all other values of r, the groups are zero. When
F is constructible, it corresponds to a finite g-module, and so all
the groups are finite (and discrete). This completes the proof of
the theorem for a sheaf of the form i*F.

We next consider a sheaf of the form j,F, with F a

Z-constructible sheaf on u without p-torsion. Consider the diagram

) 31, .
Exty(3,F.6,) x H, T(X.3,F) — Hi(x,q;m) -z

l= = 1=

r 2-r 2
Extu(F.Gm) x H® "(u,F) —H (u,Gm) Wz

in which the first isomorphism is restriction from X to u (see 0.1a),
and the two remaining isomorphisms are boundary maps in the cohomo-—
logy sequence of the pair X D u (see (1.1) and (1.5)). It is again
clear from the various definitions that the diagram commutes. The

lower pairing can be identified with that in (I.2.1). We deduce:
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HomX(j!F,Gm) is finitely generated and aO(X,j!F) defines an isomorph-
ism Homx(j!F.Gm)A — Hi(X,j!F)* (completion for the topology of open
subgroups of finite index); al(X,j!F) is an isomorphism of finite
groups; a2(X,i*F) is an isomorphism of torsion groups of cofinite-
type; for all other values of r, the groups are zero. When F is
constructible, it corresponds to a finite G-module, and all the
groups are finite (and discrete).

This completes the proof of the theorem when F % i*i*F or

%
F X j,iFand F is without p—torsion. For a general Z-constructible

sheaf F without p-torsion, we use the exact sequence
0> j,(FIU) > F — i i"F —o0.
and apply the five-lemma to the diagram
r,. .% T F r,. Fl G
.- Extx(x*l F,Cm) - Extx( ,Gm) - EXCX(J!( U). m) - .
1=~ 1= 1 lx l=x
Bl M C Rt S I N (X3, (FIU)) = .
X %* X X !
This leads immediately to a proof of (a) of the theorem for r > 2.
For r < 2, one only has to replace the first four terms in the top
row of the diagram with their completions:
-~ . ~ 1. .% ~
0 — Hom(F,Gm) — Hom(J!(FIU).Gm) — Ext’(i_i F.6 ) — ...
i) l=x lx
* ; * 2y . M X
0 — H(X.F) ——)Hi(X,J!(F]U)) — (X o
Note that the top row is exact by virtue of (I.0.20a).

The remaining case, where K is complete and F is constructible

with p torsion, can be treated similarly.

Corollary 1.10. Let P = char k.

(a) Let F be a locally constant constructible sheaf on X such that
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pF = F, and let FD = ﬁom(F,Gm). Then there is a canonical non-
degenerate pairing of finite groups

B (X,F) x 5T (X.F) — H(X.6 ) = WZ.

X X m
(b) Let F be a constructible sheaf on u such that pF = F, and let

FD = ﬂomu(F,Gm). The pairing FD x F— Gm extends to a pairing
j*FD x j,F— Cm, and the resulting pairing

T . -T . 3

HO (X, 5, F0) x Ho T(X.5,F) — HA(X.6)) = @/Z

is nondegenerate.

Proof: (a) We shall use the spectral sequence [Milne (1980).
I1I1.1.22]
r s T+s
H (X,chX(F,Gm)) = ExtX (F,Cm)

to show that the term Ext;(F,Gm) in the theorem can be replaced with
Hr(X,FD). According to [Milne (1980), III.1.31], the stalk of

s - . s x . X
ExCX(F,Gm) at x is Ext (F;,Run) (Ext as abelian groups). This group
is zero for s > O because Rzn is divisible by all primes dividing the
order of F-. The stalk of &xt3(F.€ ) at u is Ext®(Fz,K.). which is

X X m x''s
zero for s > O by the same argument. Therefore 8xt;(F.Gm) is zero
for s > 0, and the spectral sequence collapses to give isomorphisms
r ~ T

H'(X.F)) % Exty(F.€).

(b) On applying j, to the isomorphism FD = ﬂomu(F,Gm), we obtain

an isomorphism j*FD =, j*ﬂomu(F,Gm). But
jyom (F.C ) = 3, dom( 55, F.6 ) = domy (5, F.3,8,)
(see [Milne (1980), II.3.21]), and from the Ext sequence of
0 — Gm - j*Gm — i*Z — 0
and the vanishing of Homx(j*F,i*Z) = Homx(i*j*F.Z) we find that

Homy (3,F.3,8,) = #omy (5, F.6 ). Thus jF° = domy(J,F.G) and the
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existence of the pairing j*FD X j*F — Gm is obvious.

Next we shall show that 8xt§(j*F,Gm) =0 forr>0. LetM=F:.
If MI = M, then j*F is locally constant, and we showed in the proof
of part (a) of the corollary that the higher &xt’'s vanish for such

I . : r.o. ; r
sheaves. If M" = 0, then i F = J,F, and Ech(J!F,Gm) = J*éxcu(F,Gm).

The stalk of j*gxci(F,Gm) at x is Hr(Kun.MD). Because M has order
prime to p, Hr(I.MD) = Hr(I/Ip,MD). where Ip is the p-Sylow subgroup
of I. But Hr(I/Ip.MD) is zero for r > 1, and Hl(I/Ip,MD) is dual to
HO(I/Ip.M), which equals MI (cf. the proof of 1.2.18). By assump-
tion, this is zero. Because I is normal in GK' every GK—module has a
composition series whose quotients Q are such that either QI = Q or
QI = 0. Our arguments therefore show that ch;(j*F,Gm) = 0 for

r > 0.

The spectral sequence

r S, . rts .
H (X,&xtX(J*F,Gm)) = Extx (J*F'Gm)

therefore reduces to a family of isomorphisms

Hr(X.j*FD) =, Ext;(j*F,Cm), and the corollary follows from the

theorem.

Remark 1.11. (a) Part (a) of the theorem is true without the cond-
ition that F has no p torsion, p = char K, provided one endows
Ext§(F,Gm) with a topology deduced from that on K and defines
Exti(F.Cm)‘ to be the completion with respect to the topology of open
subgroups of finite index. Note that al(X,i*Z) is the natural in-
clusion Z < 2, and that al(X,j!Z/pZ) for p = char K is an isomorph-
ism of infinite compact groups K*/KP N (K/pK)* when K is complete.
The first example shows that it is necessary to complete Ext;(F,Gm)

in order to obtain an isomorphism, and the second shows that it is
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necessary to endow EXti(F'Gm) with a topology coming from K because
not all subgroups of finite index in K /K*P are open.

(b) By using derived categories, it is possible to restate (1.8)
in the form of (1.10) for any constructible sheaf F such that pF = F.
Simply set FD = Rﬂom(F,Gm) (an object in the derived category of the
category of constructible sheaves on X), and note that mr(X,FD) =
ExtQ(F,Cm). (The point of the proof of (1.10) is to show that

Hr(Rﬁom(F.Gm)) =0 for r > O when F is locally constant.)

Singular schemes
We now let X = Spec R with R the Henselization of an excellent
integral local ring of dimension 1 with finite residue field k. Then
R is again excellent, but it need not be reduced. Let u =
{ul,...,um} be the set of points of X of dimension 0. Then OX,u. is
i
a field Ki’ and the normalization R of R is a product of excellent

Henselian discrete valuation rings Ri such that Ri has field of frac-

tions Ki (see [Raynaud (1970), IX]). We have a diagram

x — X
with X = Spec R and x and X4 the closed points of X and Spec Ri resp-
ectively. For h in the total ring of fractions of R, define ord(h) =
> [k(xi):k(x)] ordi(h) where ordi is the valuation on Ki' On can
define a similar map for any U étals over X, and so obtain a homomor-
phism ord: j*Gm — i*Z. Define G to be the complex of sheaves

j*Gm — i*l on X.

T, i r . _
Lemma 1.12. (a) For all r > O, R J*Gm = 0; therefore ExtX(F.J*Cm) =
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ExtE(F|u,€m) for all sheaves F on X and all r.
(b) For all r, there is a canonical isomorphism
H(x,z) — HE(X.€).

Proof: (a) The map 7 is finite, and therefore T, is exact. As Jye =

W*}*, this shows that Rrj*Gm = ﬂ*Rrg*Gm, which is zero by (1.4).
(b) From (a) and (0.1) we see that
H;(X.j*ﬂm) = Ext;(i*l,j*(;m) = Ext:;(i*Zlu.Cm) =0,
all r. The exact sequence
> H;(X.G) — H;(X,j*Gm) — H;(X,i*l) N

now leads immediately to the isomorphism.

We define the trace map Hi(X.G) =, Q/Z to be the composite of

the inverse of H2(X.Z) =, Hi(X,G) and inv, : Hz(g,l) =, wz.

Theorem 1.13. For any constructible sheaf F on X,
Ext}(F.€) x K> T(X.F) — H2(X.C) = WZ.
X X
is a nondegenerate pairing of finite groups.

Proof: As in the case that X is regular, it suffices to prove this

for sheaves of the form i*F and jF.
Lemma 1.14. For all r, Ext;(i*F,j*Gm) = 0; therefore the boundary
maps Ext;_l(F,Z) - Ext§(i*F.G) are isomorphisms.

Proof: The proof is the same as that of (1.9).

The theorem for i*F now follows from the diagram:
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Exth(i,F.€) x Hi_r(X.i*F) — H(X.6) = 0/Z
T = I T =
Ext) 1(F.Z) x 07 (x.F) — H(x.2) = WZ.

We next consider a sheaf of the form j,F.

Lemma 1.15. For all r, Hr(X.j|F) = 0; therefore the maps
-1 .
B (uF) — H(X.§,F)

are isomorphisms.

Proof: Consider the diagram

~

Tyedse

F

[¢] —)w*j!F—>

0 — J!F—) J*F—'?l*l J*F—>O.

~ ~ »*
Because (w*j!F); = 0, the map of W*j!F into i i j F is zero, and
therefore the image of W*E'F is contained in j,F. The resulting map
W*E'F — j,F induces isomorphisms on the stalks and therefore is it-

self an isomorphism. The first assertion now follows from (1.1), and

the second is an immediate consequence of the first.

The theorem for j,F now follows from the diagram:

Exty(j,F.6) x H‘z—r(X,j!F) — Hf’((x.n:) = Wz
Lz T 1 T2
® Ext’ (F.C ) x ® H> T(u..F.) — ® H>(u..C ) = (@/Z)"
i uy "“m i iti i i'm

Higher dimensional schemes
We obtain a partial generalization of (1.8) to d-local fields.

Recall from (I.2) that a O-local field is a finite field, and that a
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d-local field is a field that is complete with repect to a discrete
valuation and has a (d-1)-local field as residue field. If p is
either 1 or a prime and M is a torsion group or sheaf, we write
M(non-p) for lim Mm where the limit is over all integers prime to p.

We also write K (r) for the sheaf lim ugr on Xet (limit over all

m

integers m).

Theorem 1.16. Let K be a d-local field with d > 2, and let p =
char(Kl) where K1 is the 1-local field in the inductive definition of
K. Let X be Spec R with R the discrete valuation ring in K, and let
x and u be the closed and open points Spec k and Spec K of X.

(a) There is a canonical isomorphism
+2 ™M
(X.11,(d)) (non-p) —%> @/Z(non-p).

(b) For any constructible sheaf F on X such that pF =

d+2-r

Exty(F.1,(d)) x HT(X.F) —>H 2(x, 1 (d)) — oz

is a nondegenerate pairing of finite groups, all r.
Proof: (a) Let i and j be the inclusions of x and u respectively

!
into X. As we observed in (1.7), Rri'u = Z/mZ for r = 2 and is zero

1
otherwise. On tensoring both sides with Mo ®d- 1, we find that Rri'uid
= pﬁd_l for r = 2 and is zero otherwise. Next, on passing to the

!
direct limit, we find that Rri‘pw(d)(non—p) = pn,(d-1)(non-p) for r =

2 and is zero otherwise. Now the spectral sequence
T s, ! r+s
H (. R%E g () = 75 (Xup, ()

shows that H (X N (d))(non—p) Hd(x.uw(d—l))(non—p), vhich equals
(@/Z)(non-p) by (I.2.17).
We give a second derivation of this trace map. Note that (1.1)

implies that H (u B,(d)) = H (X.j'um(d)). Moreover
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(X 3 e (d)) — H (X 1,(d)) is an isomorphism because k has co-
homological dimension d (this is implied by (I.2.17) applied to k).

Therefore we have a trace map

*2(x. H(d)) (non-p) % 1 u, H,,(d)) (non-p) % (Q/Z)(non-p).

The inductive approach we adopted to define the trace map in (I.2.17)
shows that the two definitions give the same trace map are equal.
(b) As in the previous cases, it suffices to prove this for

sheaves of the form i F and jF.

Lemma 1.17. For all r, there are canonical isomorphisms
r-2 T, .
Extx (F.p,(d-1)) — Extx(l*F,um(d)).

1 |
Proof: Because Rri'uw(d) =0 for r # 2 and R2i'pw(d) = p,(d-1).
spectral sequence,

T+s

Ext;(F,Rsi!um(d)) = Ext} S (1,F.1,(d)).

collapses to give the required isomorphisms.

The theorem for i*F now follows from the diagram,

Exty(i,F.a(d))  x KE2TT (X, 1,F) — H 2 (X, (4) — @z
Tt = I T =
2R (a-1)) x BT (x,F)  — H(xup(d-1)) — @z,

and (I1.2.17) applied to k.

Let F be a sheaf on u. The theorem for j,F follows from the

diagram,

d+2- . d+2
Exty (3, Fupg(d)) x H ST (X §,F) — H ' (X.p,(d) =

= T T

d+1-r

Ext:;(F,um(d)) x H (w.F) — ¥ Nuap (d) = 0z
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and (I.2.17) applied to K. This completes the proof of Theorem 1.16.
For any ring A we write KrA for the rth Quillen K-group of A,

and for any scheme X, we write mr for the sheaf on Xet associated

with the presheaf U » Krr(U'OU)’

Theorem 1.18. Let K and p be as in (1.16).

(a2) There is a canonical isomorphism

d+2 x
H_ (X,ﬂ2d_1)(non—p) — (Q/Z)(non-p).
(b) For any constructible sheaf F on X such that pF = F,
r d+2-r d+2
ExtX(F.ﬂ2d_1) X Hx (X.F) — Hx (X,mzd_l) — Q/Z

is nondegenerate pairing of finite groups.
Proof: The main part of the proof is contained in the next lemma.
Recall [Browder (1977)] that for any ring A, there are K-groups with

coefficients Kr(A,Z/mZ) fitting into exact sequences
(m)
0 — Kr(A) - Kr(A,Z/mZ) — Kr—l(A)m — 0.

Also that for any ring A and integer m that is invertible in A, there
is a canonical map w,o— K2(A.Z/mZ). Using the product structure on
the groups Kr(A,Z/mZ). we obtain a canonical map

pm(r) — K2r(A,Z/mZ) — K2r—1(A)'

Lemma 1.19. Let X be any scheme. If m is invertible on X, then
there is an exact sequence

m
2d-1 ~ > %94-1 — O

0 — pm(d) — A
of sheaves on Xet'

Proof: This is fairly direct consequence of the following two

theorems.
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(i) Let k be an algebraically closed field; then Kzrk is uniquely

divisible for all r, and K2 k is divisible with torsion subgroup

r-1
equal to p (r) [Suslin (1983b), (1984)].

(ii) If R is a Henselian local ring with residue field k and m is
invertible in R, then Kr(R.Z/mZ) =, Kr(k,Z/mZ) for all r ([Gabber
(1983)]: see also [Suslin (1984)]).

For any field extension L/k of degree pn, there are maps
%
£ Kr(k) - Kr(L)' f: Kr(L) — Kr(k)

such that f*ﬂf* =p" = f*ﬂf*. Therefore Kr(k)(non—p) — Kr(L)(non—p)
is an isomorphism. This remark, together with (i) and a direct limit
argument, implies that for a separably closed field k with char(k) =
P, (Kzrk)(non—p) is uniquely divisible for all r and (K2r_1k)(non—p)
is divisible with torsion subgroup equal to p (r){non-p). In terms
of K-groups with coefficients, this says that K2r(k,Z/mZ) = K2r—1(k)m
= um(r) and K2r—1(k'Z/mZ) = 0 for all m prime to p.

Let R be a strictly Henselian local ring. From the diagram

(m)
0 — K, (R) ™ K, (R.2Z/vZ) — K, _ (R) — 0
1 Iz 1

0 — K2r(k)(m) — K, (. 2/mZ) Do Ky (k) — 0,

we see that K2r—1(R)m - K2r—1(k)m' and therefore that the map
pm(r) — K2r—1(R)m is an isomorphism. As K2r_1(R.Z/mZ) =
Ky (k. Z/mZ) = O, we know that K2r_1(R)(m) = 0, and therefore that

the sequence
m
0 — um(r) —_— K2r—1(R) — K2r—1(R) — 0.

is exact. This implies the lemma because the exactness of a sequence

of sheaves can be checked on the stalks.
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Lemma 1.20. Let X be the spectrum of a Henselian discrete valuation
ring with closed point x; then for any sheaf F on X, H;(X,F) is tor-
sion for r ) 2.

Proof: Let u be the open point of X, and consider the exact sequence
1 2 2
. = H (u,F) — HX(X,F) — H7(X,F) —

From (1.1) we know that Hr(X,F) =, Hr(x.i*F) (excellence is not used
in the proof of (1.1)), and Hr(x.i*F) and Hr(u,FIu) are both torsion
for r > O because they are Galois cohomology groups. The lemma fol-

lows.

We now complete the proof of (1.18). The exact sequence in the
lemma leads to an exact sequence (ignoring p-torsion)

d+1

0 — H (X.dyy 1)®Q/Z——)H (Xp(d))——)Hd2(X ) — o0,

2d 1
which shows that H (X H,)(non-p) — H (X od— 1)(non«p) because
the first term in the sequence is zero. Similarly,

r = r : :
ExtX(F.um) -_— ExtX(F,m2d_1) for all r, and so the (1.16) implies

(1.18).

Remark 1.21. The corollary is a satisfactory generalization of (1.8)
in the case that K1 has characteristic zero. The general case, where
the characteristic Jumps from p to zero at some later stage, is not
yet understood. For a discussion of what the best result should be,

see 87 below.

Notes: Part (b) of Theorem 1.8 is usually referred to as the local
form of the duality theorem of Artin and Verdier, although [Artin and
Verdier (1964)] only discusses global results. In [Deninger (1986¢)]

it is pointed out that the result extends to singular schemes when Gm
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is replaced by G. The extension to higher dimensional schemes in
(Theorems 1.16 and 1.18) is taken from [Deninger and Wingberg,
(1986)]. The key lemma 1.19 has probably been proved by several

people.

§2 Global results: preliminary calculations

Throughout this section, K will be a global field. W¥hen K is a
number field, X denotes the spectrum of the ring of integers in K,
and when K is a function field, k denotes the field of constants of K
and X denotes the unique connected smooth complete curve over k hav-
ing K as its function field. The inclusion of the generic point into
X is denoted by g: Spec K <> X, and we sometimes write m for Spec K.
For any open subset U of X, Uo is the set of closed points of U,
often regarded as the set of primes of K corresponding to points of
U. The residue field at a nonarchi-medean prime v is denoted by
k(v). The field Kv is the completion of K at v if v is archimedean,
and it is the field of fractions of the Henselization 0: of OV other-
wise. For a sheaf F on X or an open sub-set of X, we sometimes write
FV for the sheaf on Spec Kv obtained by pulling back relative to the

obvious map
f : Spec K — Spec K — X.
v v
Note that when v is nonarchimedean, there is a commutative diagram

Spec KV — Spec K
{ !
Spec 05 - X
For an archimedean prime v of K and a sheaf F on Spec(Kv). we set

Hr(Kv,F) = H;(GV,M) {(notation as in I.0) where M is the Gv—module
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corresponding to F and GV = Gal(Kv s/Kv)' Therefore Hr(K.F) is zero
for all integers r when v is complex, and Hr(Kv,F) is isomorphic to
Hg(Gv,M) or HI(GV.M) according as r is even or odd when v is real.

We let g, = Gal(k(v)s/k(v)).

The cohomology of Cm

Proposition 2.1. Let U be an open subset of X, and let S denote the
set of all primes of K (including the archimedean primes) not cor-—

responding to a point of U. Then

HO(U,Gm) r(u,0,)*

Hl(U,Gm) Pic(U),

there is an exact sequence

> inv,
0 = HX(U.G) — o Br(K,) — Q/Z — K(U.¢,) — 0,
veS

Hr(U,Gm) ® H' (K,.€ ). r >4
v real

Proof: Let g: m <> U be the inclusion of the generic point of U.

There is an exact sequence [Milne (1980), I1.3.9]

O—»C ﬁgxcmn—)DivU—)O

with Div,, = @ i 7 the sheaf of Weil divisors on U. The same arg-
4] O v
veu
ument as in (1.4) shows that ng*ﬂm =0 for s > 0, and so the Leray

spectral sequence for g reduces to a family of isomorphisms
i (U, g* ) 5 HF (X.G ) 2 0.
Clearly,
r . r . r
H (U.DIVU) =6® H (v.1*Z) =& H (k(v),Z),

and we know from (I.A.2) that Hr(k(v).Z) can be identified with Z, O,

Br(Kv). O...forr=0,1,2, 3 ... . The cohomology sequence of
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the above short exact sequence therefore gives exact sequences
o] x 1
0 —-H (U)K —& Z—H(UG)—0
m v€UO m

0 — HA(U.G ) — Br(K) — 2U0Br(KV) — H(U,6 ) — H(K.6 ) — 0
\'A

r ~ r
H(U.G ) — H (K.G ). r 2 4.

The first sequence shows that HO(U,Cm) and HI(U,Gm) have the values
claimed in the statement of the proposition. Global class field

theory ([Tate (1967a)] and (I.A.7)) provides an exact sequence

0 —Br(K) — 6 Br(K) —-QZ — 0.
allv ¥

From this and the second of the above sequences, we see that the

kernel-cokernel sequence of the pair of maps

Br(K) — ® Br(K ) — & , Br(K )
all v v v€UO v

is the required exact sequence
2 3 H3
0 —-H(U,G) —» & Br(K) —Q@QZ —H (U,G ) —H(K.G) — 0.
m v m m
vES
To complete the proof in the number field case we apply (I.4.18) (or

(I.4.21)), which tells us that the map H' (K.G ) — & H (K .G ) is
m v real v.m

an isomorphism for r 2 3, and note that Hr(R,Gm) =0 forr=3. In
the function field case, we know that K has cohomological dimension

< 2, which implies that H‘"(K,cm) =0 for r > 3.

Remark 2.2. (a) If S contains at least one nonarchimedean prime,

then the map invv: ® Br(Kv) — Q/Z is surjective, and so in this
veS
case we get an exact sequence
0 - HX(U,6) — ® Br(K) — Q/Z — 0
m veS v

and isomorphisms

H(U.6 ) => ® H(K .6 ). r >3, Ka number field,
m v m
v real
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Hr(U,Gm) =0, r 23, K a function field.

b) If K has no real primes, then H2 X,G ) =0, H3 X,.6) = WwZ
m m

and Hr(X,Gm) =0 forr » 4.

Cohomology with compact support

We shall define cohomology groups with compact support HZ(U,F).
r € Z, that take into account the real primes. They will fit into
an exact sequence

r+1

T T T
- D H(UF) S H(UF) - @ H(K.F)—H

all v

(U.F) — ...

In particular, HZ(U.F) = e Hr_l(KV.FV) for r < 0. Except in the
v real

case that K is a real number field, HZ(U,F) = Hr(X,j!F). and in that
case HZ(U.F) differs from Hr(X,j!F) by a group killed by 2. There~
fore the reader who is prepared to ignore the prime 2 can skip this
subsection.

Let F be a sheaf on U, and write € (F) for the canonical Eech
complex of F defined in 80. Thus I'(U,¢ (F)) = C (U.,F), and
Hr(C'(U,F)) = Hr(U,F). For each prime v, there is a canonical map
f:@'(F) - @'(Fv) and therefore also a map C (U,F) — C'(KV,FV). As
we noted in (0.8), C'(KV.FV) can be identified with the standard (in-
homogeneous) resolution C‘(MV) of the Gv—module Mv associated with
Fv. When v is real, we write S'(MV) (or S'(KV,FV)) for a standard
complete resolution of MV, and otherwise we set S'(Mv) = C'(Mv). In

either case there is a canonical map C'(MV) - S'(Mv). On combining

this with the previous maps, we obtain a canonical morphism of com-—

prlexes

u: C(U,F) — &S (M)
veu ¥

4
(sum over all primes of K not in U). We define HC(X,F) to be the
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translate C (u)[-1] of the mapping cone of u, and we define

H;(X,F) = Hr(HC(X,F)).

Proposition 2.3. (a) For any sheaf F on an open subscheme U C X,

there is an exact sequence
r T r
. —H(U,F) >H (UF) — @H (K ,F)—...
c veu vV

(The sum is over all primes of K, including the archimedean primes,
not in U.)

(b) For any short exact sequence
0—F -—»F—DF" —0
of sheaves on U, there is an exact sequence of cohomology groups
r , r r o
. — HC(U,F )y — HC(U,F) — HC(U.F Yy — ...

(¢) If i: Z <> U is a closed immersion and F is a sheaf on Z, then

"

HL(U,1,F) H (Z.F).

(d) If j: V<> U is an open immersion and F is a sheaf on V, then

HZ(U,j'F) HZ(V,F). Therefore, for any sheaf F on U, there is an
exact sequence

. — H(V.F|[V) = H'(U.F) —» @& H'(v,i.F) — ...
C C v
veu-v

(e) For any finite map w: U' — U and sheaf F on U', there is a
canonical isomorphism HZ(U,W*F) =, HZ(U',F).
Proof: (a) This is obvious from the definition of HE(U,F) and the
properties of mapping cones (see 80).

(b) From the morphism
00— C(U,F')y —-» C(UF) — C(UF) —0
L lu L

0—8 S (K,F) =885 (K,.F)— S (K.F)—0.
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of short exact sequences of complexes, we obtain a distinguished

triangle
HC(U.F")[—IJ — HC(U,F') — HC(U,F) — Hc(U.F").

(see 0.10a). This yields the required exact sequence.

(c) Since the stalk of i F at the generic point is zero,
Hr(Kv,(i*F)v) = 0 for all v. Therefore H (U,1,F) — H'(U,i F). and
the second group is isomorphic to Hr(Z.F).

(d) We first need a lemma.

Lemma 2.4. Under the hypotheses of (d). there is a long exact

sequence

. —H(U,jF) > H(V,F) > & H(K.F)— ...
) veUu-v v

Proof: The cohomology sequence of the pair U D V is
H.  (U,j F 1Y (U, Ty
- = Hy_y(U.3\F) = H (U,j,F) - H (V.F) — ...

s . r - T .
By excision [Milne (1980), III.1.28], HU_V(U,J!F) =0 HV(UV'J!F)
h . r . r-1
where Uv = Spec 0v, and according to (1.1), HV(UV,J!F) =H (KV,F).

The lemma is now obvious.

On carrying out the proof of the lemma on the level of com-
plexes, we find that the mapping cone of C(U.j,F) — C'(V,j,FIV) =

C'(V,F) is quasi-isomorphic to ® C'(K ,F. ). The cokernel of
veu-yv VY

6 S'(KV,FV) — 0 S'(KV.F ) is also & C'(K .F), and the mapping
veu vev M veu-v -V

cone of Hc(U,j'F) — HC(V,F) is therefore quasi-isomorphic to the

mapping cone of amap & C' (K ,F) — @& C (K ,F). The map is the
veu-v Y veu-v Y

identity, and therefore Hc(U'j'F) — HC(V,F) is a quasi-isomorphism.
This completes the proof of the first part of (d). and to deduce the

second part one only has to replace HZ(U,j,F) with HZ(V.F) in the
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cohomology sequence of

% e
0— j,jF—>F—>1i i*F — 0.
Finally, (e) of the proposition follows easily from the exist-
ence of isomorphisms Hr(U,w*F) -~ §'(U',F) and

T x T,
H (KV,W*F) — H (KV,F).

Proposition 2.5. (a) For any sheaves F and F' on U C X, there is a
canonical pairing

r+s

TS

<L Exc{l(F,F') x Hz(U.F) —H

(b) For any pairing F x F' — F" of sheaves on U C X, there is a
natural cup-product pairing

r+s

r S '
H'(U,F) x HJ(U.F') — H_

(U.F").
(c) The following diagram commutes:

H" (U.%on(F.F')) x H3(U,F) — HZ*S(U,F') (Ext pairing)
1 Il ]

r+s

r . s
ExtU(F,F ) x HC(U.F) — H_

(U,F') (cup-product).

Proof: (a) For example, represent an element of ExtE(F,F') by an

r-fold extension, and take HZ(U,F) — HF+S(U,F') to be the corres-

[+3

ponding r-fold boundary map.
(b) The cup-product pairing on the Cech complexes [Milne (1980),

V.1.19]
C (U,F) x C'(U,F') — C (U,F")

combined with the cup-product pairing on the standard complexes [Car-

tan and Eilenberg (1956), XII]
$'(K,.F) x S (K,.F)) — S (K, .Fy)

give a natural pairing
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H (U.F) x H_(U,F') — H_(U.F").

(c) Combine (I1.0.14) with (0.7).

The cohomology of Gm with compact support

Proposition 2.6. Let U be an open subscheme of X. Then
2 3 T
HC(U,Gm) =0, Hc(U,Gm) = Q/Z, and HC(U,Cm) =0, r > 3.

Proof: Part (a) of (2.3) gives an exact sequence:

0 — HX(U,¢ ) — HX(U.C ) — & Br(K )
Cc m m vES v

SHU.C) > HU.C) — 6 H(K.C) — ...
[+ m m v m
v real

In the case that U # X, this and (2.2a) immediately give the proposi-
tion. Part (d) of (2.3) and the next lemma show that Hz(U'Gm) =

H (X.C ) for r > 2.
C m

Lemma 2.7. For any closed immersion i: Z <> U with i(Z) # U,

H'(2,176) = 0 all r 2 1.

Proof: It suffices to prove this with Z equal to a single point v of

U. Then i*G corresponds to the g -module o~ , and so Hr(Z.i*G ) =
m v v,un m

r x
H (gv’av,un)' The sequence

00 -k 2,7 50
v,un v,un

. : r X . -
is split as a sequence of gy modules, and so H (gv’av,un) is a direct

summand of Hr(gv,K: un)' Therefore Hilbert's theorem 90 shows that

1 X 2 X
H (gv’ov,un) = 0, and we know from (I.A.2) that H (gv'Ov,un) = 0. As

g, has strict cohomological dimension 2, this completes the proof.

Remark 2.8. (a) Let K be a number field, and let R be the ring of

integers in K. Then there is an exact sequence
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0 X X %2 1 .
0 — HC(X,Gm) — R — . ?eafvlkv — HC(X,Gm) — Pic(R) — O,

where Pic(R) is the ideal class group of R. In particular,

0 x .
HC(X,Cm) {a € R| sign(a;) > 0 all real v}
= group of totally positive units in K.

The cohomology sequence with compact support of

O——»Gm-—>g*¢[}m—>6) *Z—>O

i
V€XO v
is

0 1 1
HC(X,g*Cm) e o Z — HC(X,Gm) — HC(X,g*Gm).
v nonarch .

The exact sequence given by (2.3a)
0 X X X2
0 — HC(X,g*Gm) — K — @ KV/KV

1
— HC(X,g*Gm) — 0
v real

shows that HS(X,g*Gm) is the group of totally positive elements of K*

and Hl(X,g*Cm) = 0. Let Id(R) be the group of ideals in R. Then

HL(X.€ ) = Td(R)/{(a)la € K, sign(a ) > 0 all real v}
= group of ideal classes of K in the narrow sense
(see [Narkiewicz (1974), III, &2, 83]).

(b) Unfortunately Hé(X.Cm) is not equal to the group of isometry
classes of Hermitian invertible sheaves on X (the "compactified Pic-
ard group of R" in the sense of Arakelov theory; see [Szpiro (1985),
81]). I have no idea if there is a reasonable definition of the
étale cohomology groups of an Arakelov variety. Our definition of

the cohomology groups with compact support has been chosen so as to

lead to good duality theorems.

Cohomology of locally constant sheaves
Let U be an affine open subset of X, and let S be the set of

primes of K not corresponding to a point of U. Since to be affine in
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the function field case simply means that U # X, S will satisfy the
conditions in the first paragraph of I.4. With the notations of
(I1.4). Gy = wl(U.ﬁ), and the functor F » Fﬁ defines an equivalence
between the category of locally constant Z-constructible sheaves on U

and the category of finitely generated Gs—modules. We write U for

the normalization of U in Ks; thus U = Spec RS where, as in (I.4), R

is the integral closure of RK.S in Ks.

S

Proposition 2.9. Let F be a locally constant Z-constructible sheaf

on an open affine subscheme U of X, and let M

1]

Fy. Then H(U,F) is

a torsion group for all r > 1, and H'(U,F)(2) Hr(GS.M)(E) if @ is
invertible on U or € = char(K).
Proof: The Hochschild-Serre spectral sequence for /v is

H' (G 15 (U.FIT)) = Hr+s(ﬁ;F).

As Ho(ﬁ,F) = M, we have to show that H°(U,F|U) is torsion for s > O
and that Hs(ﬁ,F]ﬁ)(B) = 0 if ¢ is invertible on U or equals char(K).
By assumption Flﬁ is constant, and so there are three cases to con-—
sider: F|U = 2/£Z with ¢ invertible on U, F|U = Z/pZ with p =
char(K), and F|U = Z.

The first cohomology group can be disposed off immediately,

because
H'(¥,F) = Hom(r (0.7) . F(D)).

and wl(ﬁ.ﬁ) is zero.

Now let F|U = Z/8Z with ¢ a prime that is invertible in Rg.
Then Z/8Z = K, on #f, and the remark just made shows that the cohomol-
ogy sequence of

0o, —>¢c He¢ —o
4 m m

is
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0 — Pic(l) -5 Pic(l) — B2 (U.zvez) — Br(¥), — 0.

The Picard group of U is the direct limit of the Picard groups of the
finite étale coverings U' of U and so is torsion. The sequence shows
that Pic(ﬁ)(@) = 0, and so Hz(ﬁ,Z/BZ) injects into Br(U). Let L C KS
be a finite extension of K containing the e‘h roots of 1, and con-

sider the exact sequence (see 2.2a)

0 — Br(RL,S) — 0 Br(Lw) — Q/Z — 0.
wES,

L

Let L' be a finite extension of L; it is clear from the sequence and
local class field theory that an element a of Br(RL,S)B maps to zero
in Br(RL',S) if & divides the local degree of L'/L at all w in SL'
Let H be the Hilbert class field of .. Then the prime ideal cor-
responding to w becomes principal in H with generator c, say. The
field L' generated over H by the elements cile. w € SL' splits a. As
L' is contained in KS' this argument shows that ILW Br(L)e = 0, and
therefore that Br(U)(2) = 0. Hence H2(ﬁ,Z/22) = 0. Finally, (2.2)

shows that Hr(UL.Gm) = 0 for r > 2, where UL = Spec R because L

L.S’
has no real primes, and so Hr(ﬁ,Cm)(E) =0 for all r > 2.
In the case F = Z/pZ, p = char(K), we replace the Kummer se-

quence with the Artin-Schreier sequence:

®
0 —>Z/pL—0, — 0 —0, e(a) = aP - a.
U U

As Hr(ﬁet,ﬂ) = Hr(ﬁzar,O), and the latter group is zero for r 2> 1, we
see immediately that H'(U,z/pz) = 0 for r > 2.
Finally consider Z. The next lemma shows that Hr(ﬁ,l) is tor-—

sion for r > O, and so from the cohomology sequence of
07257 —wez—0

and the results in the preceding three paragraphs, we can deduce that

H'(U,2)(2) = 0 for r > O if & = char(K) or & is invertible on U.
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Lemma 2.10. For any normal Noetherian scheme Y and constant sheaf F
on Y, the cohomology groups Hr(Y.F) are torsion for all r > 0. In
particular, Hr(Y,F) =0 for r > 0 if F is constant and uniquely di-
visible.

Proof: We may assume that Y is connected. Let g: n <> Y be its
generic point. Then g*g*F = F and the stalks of Rrg*(g*F), being
Galois cohomology groups, are torsion (see [Milne (1980), I1I.3.7,
I1I1.1.15]). Therefore if F is uniquely divisible, then Rrg*(g*F) =0
for r > 0, and Hr(Y,F) = Hr(n,g*F) =0 for r > O, which proves the
lemma in this case. Next note that it suffices to prove the lemma
for a torsion-free constant F. For such a sheaf, the cohomology

sequence of
0 —F — FéQ — (F®Q)/F — 0

shows that Hr_l(Y,(F®Q)/F) maps onto Hr(Y,F) for r 2 1 because F@Q is

uniquely divisible. This completes the proof as (F®Q)/F is torsion.

Corollary 2.11. Let U be an open subscheme of X, and let S denote
the set of primes of K not corresponding to a point of U.

(a) For all r <0, HL(U.Z) ~ ® Hr—l(KV.Z); in particular,
v real

HZ(U,Z) =0 if r is even and < O.

(b) There is an exact sequence

0 - HU.z) »2 — o 10K .2) —H (X.Z) — 0.
¢ ves Y c

If S contains at least one nonarchimedean prime, then HS(U,Z) = 0.

(c) There is an exact sequence

0 - H(U.2) - H(U.2) > 6 H(K,.Z) — H(U.Z) — H2(U.2Z) — o.
vES

For all primes & that are invertible on U or equal the characteristic

of K, there is an exact sequence
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0 — H2(U.Z)(8) — H2(G..Z)(2) — © H(K_.Z)(2)
¢ S vE€S v

— H(U,Z)(2) — H(Gg.Z)(2) — O.
(d) For all r > 4 , H (U,Z) = 0.

Proof: All the statements follow from the exact sequence
r r r
. —H (U,Z) - H(U,Z) - & H (K .Z) — ...
c v
vES
For r <O, Hr(U,Z) = 0, and so the sequence gives isomorphisms

o i (k .z) > HI(U.2).
vES v

For r #0,1,2, ®H'(K.Z) = © Hr(Kv,Z). Since H'(R.Z) = O for
vES v real

odd r, these calculations prove (a).
As #0(U.Z) = Z and H'(U.Z) = Hom_,_(7,(U.n).Z) = O. we have an

exact sequence

0 —»1wW,z) -z — o K .z) — H(U.7) — 0.

When S contains a nonarchimedean prime, the middle map is injective,
and so this proves (b).

The first part of (c) is obvious from the fact that Hl(Kv.Z) =0
= HB(KV,Z) for all v, and the proposition allows us to replace
H'(U,Z)(#) with H' (Gg.Z)(#) for the particular &.

For (d), we begin by showing that HZ(U,Z)(B) =0 for r 2 4 when

2 is a prime that is invertible on U. Consider the diagram

¥ lc.az) —» o Hr‘l(Kv,Q/Z)
v real
l

H'(Gg.Z) — ® H (K .Z).
v
v real
The vertical arrows (boundary maps) are isomorphisms for r 2 2 be-
cause Q is uniquely divisible, and Theorem I.4.10c shows that the top
arrow is an isomorphism on the £-primary components for r 2 4 if 2 is

invertible on U. Therefore the maps
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Hr(GS.Z)(E) — o H (XK .Z)(®)
v real v

are isomorphisms for r > 4 and all 2 that are invertible on U. As
HB(R.Z) = 0, this proves that HZ(U,Z)(E) =0 for r > 4 and such &.
Since HZ(U,F) = HZ(U[I/Z].F) for any r 2 4, this completes the proof
except for the p-primary component in characteristic p. We may as—

sume that U is affine. The cohomology sequence of

®
0—>Z/pl——>0U—>0U——)O

shows that H'(U,Z/pZ) = O for r » 2. Therefore H' (U,Z)(p) = O for

r > 3, and this implies that HZ(U.Z)(p) =0 for r > 4.

Remark 2.12. It has been conjectured that SCde(GS) = 2 for all

primes £ that are invertible in R This would imply that the map

K.,S’

® H2 K .Z)(&) — H3 U,Z)(2) in (2.11c) is surjective on the
V€S v ¢

¢-primary components for such £.

Euler-Poincaré characteristics
Let F be a constructible sheaf on U such that mF = O for some m
that is invertible on U. We shall see that the groups Hr(U.F) and

HE(U.F) are all finite, and so it makes sense to define

(0. )10 (U. F) ] [HO(U. F)I[H2(U. F) ]

x(U.F) = : X, (U.F)

[H' (U.F)J[H>(U.F)] [H.(U.F) J[H2(U.F)]

Theorem 2.13. Let F be a constructible sheaf on U such that mF = O
for some m that is invertible on U.

(a) The groups Hr(U,F) are finite, and
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[F(K)]

x(U.F) = Tl :
vareh 0k MR,

(b) The groups HZ(U,F) are finite, and xC(U,F) =[] [F(Kv)].
v arch

Proof: (a) Choose an open affine subscheme V of U such that F|V is
locally constant. Theorem 2.9 shows that H'(V,F) = Hr(CS.M) for all
r, where S is the set of primes of K not in V and M is the Gs module
corresponding to F|V. Therefore Theorem (1.5.1) shows that

(VL FINIBEVFINT = xCgm = T e, my/Iiml,.

v arch
As B3V FIV) =5 [THO(K,.M) (by 4.10¢), and the groups H(K,.M) for a
fixed nonarchimedean prime v all have the same order (recall that
they are Tate cohomology groups), this proves the result for F|V, and

it remains to show that x(U.F) = x(V.FlV). The sequence

— e H("F) - H(UF) - H(V.F) — ...
veu-v v v

shows that x(U,F) = x(V.F|V) x M Xv(Os’F)' and the sequence
— WO, F) — HT (0P, F) — H (K .F) —
. (0, . v ..

shows that XV(OE.F) = x(D&,F)x(Kv.F)—l. But F(Kv S) has order prime

to the residue characteristic of K, and so (I.2.8) shows that x(Kv.F)

= 1. Moreover (see 1.1) H'(".F) Hr(gV.F(OS)) and F(00) is finite,
and so it is obvious that x(Dg,F) = 1 (see [Serre (1962), XIII.1]).

(b) The sequence (2.3d)

S H(V.FIV) > H(UF) — & H(v.i'F) — ...
[¢] [o3
veu-v

shows that XC(U-F) = xc(V.FlV) for any open subscheme V of U, and so
we can assume that U # X and that F is locally constant. There is an

exact sequence
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0— T B x,.F) - 12U F) — U F) - [THEK.F) — ...
v Cc v
v arch veéu

LS HUF) S BUR) > [ B(K,.F) -0
v arch

because (see I.4.10c) H3(U,F) - N H3(KV,F) is surjective (in
v arch

fact, an isomorphism). As the groups Hr(Kv.F) for v archimedean all

have the same order,

X(U.F) = x(UF) x [ x(K,F)7x 1 iK1
vexX-U v arch

According to (I.2.8), x(K,.F) = l[F(Ks)]lv’ and so

xR = T IRK)T T IFR)II!

But |[F(K_)]l. =1 for v € U, and so [TIF(K.)]l. =1 in virtue of
s’y veu s’y

the product formula, and so we obtain the formula.

Remark 2.14. (a) Let F be a locally constant sheaf on U with mF = O
for some m that is invertible on U. In the next section, we shall
show that Hr(U,F) is dual to Hi—r(U,FD) for all r. This implies that
x(U,F)xc(U.FD) = 1. If we let M be the Gs—module module correspond-
ing to F, then (2.13) shows that

1%cc,.m1 1o, .13

X(U.F)x, (U.F)) = . .
v arch I[M]lV [H (K,.M)]

which (I.2.13c) shows to be one. Thus our results are consistent.
(b) Assume that U # X and that F is locally constant. Then
HO(U.F) —T] HO(KV,F) and, of course, H_l(U.F) = 0. Therefore

N H_l(KV,F) = Hg(U,F), and so (2.13b) becomes in this case

[K2(U.F)] n o )]

[H(URIHU.F]T Y 2 10k F)]
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Notes: So far as I know, K. Kato was the first to suggest defining
cohomology groups "with compact support” fitting into an exact
sequence

. > H(X.F) > H(X,F) » & H (K .F)— ...
[&] v Vv
v real

(letter to Tate, about 1973). Our definition differs from, but is

equivalent to, his.

§3 Global results: the main theorem

We continue with the notations of the last section. From (2.6)

(and its proof) we know that there are trace maps Hg(U.Gm) - Wz

such that
(a) for any VCU, (b) for any v ¢ U,
Hf:’(V-Gm) - Wz Br(K,) oz
1 ] ! ]
H(U.6, ) -5 oz H(U.6 ) - oz
commutes; commutes.

On combining the pairings
r 3-r
Extf(F.6 ) x K> "(UF) — H(U.6,)
with this trace map, we obtain maps

o (U.F): Ext[(F.C_) — H> "(U.F)".

Theorem 3.1. Let F be a Z-constructible sheaf on an open subscheme U
of X.

(a) For r # 0,1, ExtG(F,Gm) is a torsion group of cofinite-type,
and ar(U,F) is an isomorphism. For r = 0.1, ExtG(F.Gm) is finitely

generated and ar(U,F) defines isomorphisms
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Ext{(F.6 )~ — Ho "(U.F)”
where ~ denotes the completion for the topology of subgroups of
finite index.
(b) If F is constructible, then ar(U,F) is an isomorphism of

finite groups for all r € Z.

Note that (b) implies that Hr(U.F) is finite if F is a con-
structible sheaf on U without char(K)-torsion, because (2.3a) and
(I.2.1) show that then Hr(U,F) differs from HZ(U.F) by a finite

group.

Corollary 3.2. For any constructible sheaf F on an open subscheme
J: U —> X of X and prime number &, there is a nondegenerate pairing

of finite groups
Extf(F.6,)(2) x B2 7(X,5,F)(8) — H(X.3,6,)(2) = (WZ)(2)

except when € = 2 and K is number field with a real prime.

Proof: As H;(U.F) = HZ(X,j!F) (see 2.3d), it is clear from (2.3a)
that HE(U,F) differs from Hr(X.j!F) by at most a 2-torsion subgroup,
and that it differs not at all unless K is a number field having at

least one real prime.

Corollary 3.3. Let F be a constructible sheaf on U such that mF = O
for some m that is invertible on U, and let FD = Rﬂom(F,Gm) (an ob-
ject of the derived category of S(Uet))‘

(a) If F is locally constant, then Hr(FD) =0 for r > 0; thus in
this case FD can be identified with the sheaf ﬂom(F,Gm).

(b) There is a canonical nondegenerate pairing of finite groups

B (U.F)) x B3 (U.F) — H(U.C) = vz
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Proof: Part (a) can be proved by the same argument as in (1.10a).

Part (b) is obvious, because Hr(U,FD) = ExtG(F,Gm).
Define D' (U,F) = Im(HZ(U,F) — H'(U.F)).

Corollary 3.4. Let F be a locally constant constructible sheaf on U
such that mF = F for some m invertible on U. Then there is a non-

degenerate pairing of finite groups
D' (U.F) x D° F(U.FY) - a/z

for all r € Z.

Proof: After (3.3), the dual of the sequence

0 — D'(U.F) -» H'(U.F) — o H'(K_,F)
ves Y

is a sequence

® H2"(KV,FD) N Hi—r(U,FD) — DT (U.F)* — 0.
vé¢€s

But this second sequence identifies Dr(U,F)* with DB_F(U.FD).

The proof of the theorem is rather long and intricate. In (3.5
- 3.8) we show that it suffices to prove the theorem with U replaced
by an open subset. Proposition 3.9 and Corollary 3.10 relate the
theorem on U to the theorem on U' for some finite covering of U. In
Lemma 3.12 it is shown that the groups vanish for large r when K has
no real primes, and hence proves the theorem for such K and r. Lemma
3.13 allows us to assume that K has no real primes. In (3.14 - 3.17)
the theorem is proved by an induction argument for constructible
sheaves, and we then deduce it for all Z-constructible sheaves.

Throughout the proof, U will be an open subscheme of the scheme

~r r 3-r * .
X. VWe set a (U.F) equal to the map ExtU(F,Gm)“ — H~ "(U,F) induced
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by ar(U,F) when r = 0,1, and equal to ar(U,F) otherwise.

Lemma 3.5. Theorem 3.1 is true if F has support on a proper closed
subset of U.

Proof: We can assume that our sheaf is of the form i*F where i is
the inclusion of a single closed point v into U. According to

(2.3c), HZ(U.i*F) = Hr(v,F). From the exact sequence

0 — Gm — g*Gm — 0

Z — 0
u€u *

Oiu
we obtain an exact sequence
r,. r,. r,. .

.- EXtU(l*F’Gm) — ExtU(l*F,g*ﬂm) — 8 EXtU(l*F,lu*Z) - ...
As we observed in the proof of (2.1), ng*Gm =0 for s > 1, and so

r,. r,. . .
ExtU(l*F.g*Gm) = Extn(l*FIn.Cm), which is zero for all r because
: r,. .
i Fln = 0. Moreover (0.1c) shows that EXtU(l*F,lu*Z) =
Extz(i:iv*F,Z). which equals O unless u = v, in which case it equals
Ext:(F,Z). Therefore the sequence gives isomorphisms

r-1 = T,.
Extv (F.z) = EXtU(l*F'Gm) for all r. Let M be the g, module cor

responding to F. Then we have a commutative diagram

r,. 3-r .
Exty(1,F.€,) x B F(U.1,F) — H(U,6 )
T = I T

-1 - 2
Ext;v M.Z) x B (g, M) — H(g,.1),

and so the theorem follows in this case from (1.1.10).

[There is an alternative approach. One can show (as in 1.7b)
that Rri!Gm =Z for r = 1 and is zero otherwise. The spectral se-
quence (0O.1le)

]
Ext, (F.R°1°G ) = Ext5+s(i*F,Gm)

now yields isomorphisms Ext:"I(F,Z) =, Ext;(i*F.Gm).]
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Lemma 3.6. For any Z-constructible sheaf on U, the groups Exta(F.Cm)
are finitely generated for r = 0,1, torsion of cofinite-type for

r = 2,3, and finite for all other values of r. Consequently, if F is
constructible, all the groups are finite.

Proof: We first show that ExtE(F.Gm) is torsion for r 2 2. Clearly
it suffices to show that ExtG(F.g*Gm) and Exta_l(F,ivxZ) are torsion
for r > 2, but the first is isomorphic to Ext;(g*F.Gm) and the second
to Exti_l(i:F.Z). and (I.0.10) shows that both groups are torsion for
r > 2.

Note that Exta(Z,Cm) = H'(U.6 ). and so for F = Z the lemma can
be read off from (2.1). It follows that the lemma is true for all
constant Z-constructible sheaves F. Next suppose that F is locally
constant and so becomes constant on some finite Galois covering
7: V — U with Galois group G, say. Then (0.2) gives a spectral se—

quence

T S r+s
H (G.ExtV(F.Gm)) = Exty (F.Gm),

which shows that Excl‘}(F,«;m) differs from HO(G.Ext{;(F.Gm)) by a finite
group. Therefore the lemma holds for locally constant sheaves. Fin-
ally, let F be an arbitrary Z-constructible sheaf, and let V be an
open subset of U on which F is locally constant. Write j and i for

the inclusions of V and its complement into U. The Ext sequence of
N
0— j,i'F > F > i iF—0
can be identified with

r-1, % b T
.= ExtU_V(l F.Z) — ExtU(F.Gm) — ExtV(F.Gm) — ...

from which the result follows.

Lemma 3.7. Let

0 —>F —F—DF" —0
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be an exact sequence of Z-constructible sheaves on U. If (3.1) holds
for two out of the three sheaves F', F, and F", then it also holds
for the third.
Proof: Because Exté(F',Gm) is finitely generated, its image in the
torsion group Ext%(F",Gm) is finite. Therefore the sequence

P Extr(F".Gm) — Extr(F.Gm) — Extr(F'.Gm) — ...
remains exact after the first six terms have been replaced by their
completions. The lemma can now be proved by an easy five-lemma arg-

ument.

Lemma 3.8. Let V be a nonempty open subscheme of U, and let F be a
Z~-constructible sheaf on U; the theorem is true for F on U if and
only if it is true for the restriction of F to V.

Proof: Write j for the open immersion V <> U and i for the com-
plementary closed immersion U - V <> U. Then Exta(j!F|V,Gm) =
Ext;(Flv,cm), and HZ(U,j!FIV) = HZ(V,FIV) by (2.3d), and so
Qr(U,j!FIV) can be identified with @' (V.F|V). Therefore the theorem
is true for j!(F|V) on U if and only if it is true for F|V on V. Now

(3.7) and the exact sequence
0> j, i F > F > i iF—0

show that the theorem is true for F on U if and only if it is true

for j,(F|V) on U.

Proposition 3.9. Let w: U' — U be the normalization of U in a
finite Galois extension K' of K.
m, U’ - Gm,U'

(b) For every Z-constructible sheaf F on U', the composite

(a) There is a canonical norm map Nm: LY

. r r Nm T
N: ExtU.(F.Gm) — ExtU(w*F,w*Gm) — ExtU(ﬂ*F,Gm)
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is an isomorphism.

Proof: (a) Let V — U be étale. Then V is an open subset of the
normalization of U in some finite separable K-algebra L. By defini-
tion W*Gm(V) = F(V',U;,) where V' df VXUU'. As V' is étale over U',
it is normal, and as it is finite over V, it must be the integral
closure of V in the finite Galois L-algebra K'@KL. Consequently, the
norm map K'@KL — L induces a map F(V,F*Gm) - T(V,Cm), and for vary-—
ing V these maps define a canonical map of sheaves Nm:

W*Gm.U' - Gm,U‘

(b) When U' — U is étale, the norm map agrees with that defined
in [Milne (1980), V.1.12], and in this case the result is proved
(ibid., V.1.13). For a sheaf of the form iv*F_ v € U, the result
again follows from [Milne (1980), V.1.13] because the sequence of
maps can be identified with

Ext;:}(v)(F.Z) — Bt (P z) D mxe T (R
For the general case, choose an open subscheme j: V ¢ U such that
v_l(V) is étale over V, and note that we have shown that the map N is

an isomorphism for j,(F|V) (cf. 0.la) and the quotient of F be

j'(F|V). The result now follows by a five—-lemma argument.

Corollary 3.10. Let w: U' — U be as in the proposition. For any
Z-constructible sheaf F' on U', ar(U'.F)A is an isomorphism if and
only if ar(U.v*F)“ is an isomorphism.
Proof: It is not difficult to check from the definition of N that
r 3-r,.., 3,0
ExtU,(F,Gm) X HC (U',F) — HC(U ,Gm)
LN 1= 1 Nm
Extf (7. F.C ) x Ho T(U,7m_F) — Ho(U.C_)
Ut *"m c T ct 'm

commutes. If w is étale, then Nm: Hz(U'.Gm) - Hi(U,Gm) is easily
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seen to be an isomorphism. This implies that it is always an iso-
morphism because the groups are unchanged when U is replaced by an

open subscheme. The corollary is now obvious.

Remark 3.11. In the proposition, the extension of K was assumed to

be Galois (rather than separable) only to simplify the proof.

Lemma 3.12. (a) The group Hz(U,F) =0 forr > 4when F is
Z-constructible, and for r > 3 when F is constructible.

(b) If K has no real primes, then EXtS(F'Cm) =0 forr > 4 and all
constructible sheaves F.
Proof: (a) We first prove the statement for constructible sheaves.
After replacing U by an open subscheme (see 2.3d), we can assume that
F is locally constant and, in the number field case, that mF = O for
some integer m that is invertible on U. We have to show (see 2.3a)

that Hr(U,F) e ® Hr(KV.F) is an isomorphism for r > 3. But
v real

(2.9) allows us to identify this with a map

Hr(GS,M) — @ Hr(KV,M), and (I.4.10) shows that the map is an
v real

isomorphism for r > 3 except possibly when K is a function field and
the order of M is divisible by p. In the last case we can assume
that F is killed by some power of p and have to show that Hr(U.F) =0

for r > 3. From the cohomology sequence of

o
0 — Z/pZ — OU —_— OU — 0

we see that Hr(U,Z/pZ) =0 for r > 2. In general there will be a
finite étale covering m: U' —s U of degree d prime to p such that
F|U' has a composition series whose quotients are isomorphic to Z/pZ.

Then Hr(U',FIU') =0 for r > 2, and as the composite
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H'(U.F) — H (U Flu") ¥ 07 (u.F)

is multiplication by d (see [Milne (1980), V.1.12]), this proves that
H'(U,F) =0 for r > 2.
Now let F be Z-constructible. Then Ftors is constructible, and

so it suffices to prove the result for F/Ftors: we can assume that F
is torsion-free. Clearly, it suffices to show that HZ(U,F) is tor-
sion for r > 4. The same arguments as above show that it suffices to
prove that Hr(U,F) is torsion when F is locally constant, but in this
case the result is proved in (2.9).

(b) Because K has no real primes, Hr(U,F) = HZ(U,F) =0 for r > 3.
If F has support on a closed subscheme Z, the lemma is obvious from
the isomorphism Extg_l(F,Gm) =, Extr(i*F,Cm) of (3.5). As usual,
this allows us to assume that F is locally constant. Then 8mCE(F,Gm)
=0 forr > 1, and for r = 0,1, it is torsion, and is therefore a
direct limit of constructible sheaves {0.9). Hence Hr(U,éch(F,Gm))

=0 for r > 3, and so Extr(F,Gm) =0 for r > 4.

Lemma 3.13. Assume that ar(X,Z) is an isomorphism for all r whenever
K has no real primes. Then Theorem 3.1 is true.

Proof: The assumption and (3.8) imply that the theorem is true for
constant sheaves on any open U C X whenever K has no real primes. We
shall use induction on r to prove the theorem for all pairs (U,F)
where U is such that some prime is invertible on it and F is a local-
ly constant sheaf on U. Assume that ;r(U,F) is an isomorphism for
all such pairs when r < ro. Lemma 3.12 shows that the assumption is
fulfilled if ro = -1. Then there will exist a finite étale covering
m: U' — U such that U' is the normalization of U in field K' with no

. %
real primes and F becomes constant on U'. Let F* = m,m F; then the
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trace map [Milne (1980), V.1.12] F, — F is surjective (on stalks it
is just summation, Fg —Zﬁ F;), and we write F' for its kernel. From
the commutative diagram
ro-1 ro-1 r To
ExtU° (Fy-G) — ExtU° (F'.¢ ) — ExtU°(F,Gm) — Ext°(F,.6 )
1= 1= ! Iz

H“"’O(U,F*)* — o Fry* - BT, R — Hs_r°(U.F*)*

we see that gr°(U.F): Extr°(F,Cm) — H3—r°(U,F)* is injective. (For
r = 0,1, it is necessary to replace the groups on the top row with
their completions; see the proof of (3.7).) Since F' is also locally
constant, 2r°(U,F') is also injective, and the five-lemma implies
that grD(U.F) is an isomorphism.

Finally, (3.8) shows that if the theorem is true for all locally

constant Z-constructible sheaves, then it is true for all

Z-constructible sheaves.

For a constructible sheaf F, we define

B"(U.F): HL(U.F) — Ext; "(F.¢ )™ to be the dual of a™(U.F).

Lemma 3.14. For any Z-constructible sheaf F on U, there is a finite

2: U2 — U with finite

image, constant Z-constructible sheaves Fi on Ui' and an injective

1 U1 — U, a finite map

surjective map w
map F — $i Wi*Fi'

Proof: Let V be an open subset of U such that F|V is locally con-
stant. Then there is a finite extension K' of K such that the norm-
alization w: V' — V of V in K' is étale over V and F|V' is constant.
Let Lok U1 — U be the normalization of U in K', and let F1 be the

constant sheaf on U1 corresponding to the group I'(V',F|V'). Then the

canonical map F|V — W*FIV' extends to a map a! F — 7 sF1 whose ker—

e 1
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nel has support on U - V. Now take U2 to be an étale covering of

U - V on which the inverse image of F on V - U becomes a constant

sheaf, and take F2 to be the direct image of this constant sheaf.

Note that Lemma 3.13 shows that it suffices to prove Theorem 3.1
under the assumption that K has no real primes. From now until the

end of the proof of the theorem we shall make this assumption.

Lemma 3.15. (a) Let ro be an integer > 1. If for all K, all con-
structible sheaves F on X, and all r < rg, ﬁr(X,F) is an isomorphism,
then BTQ(X,F) is injective.

(b) Assume that for all K, all constructible sheaves F on X, and
all r < rq, Br(X,F) is an isomorphism; further assume that (@
BT°(X.Z/mZ) is an isomorphism whenever pm(K) = pm(KS). Then *FO(X,F)
is an isomorphism for all X and all constructible sheaves F.

Proof: (a) Let F be a constructible sheaf on some X, and let

c € Hro(X.F). There exists an embedding F <> I of F into a torsion
flabby sheaf I on X. According to (0.9), I is a direct limit of con-
structible sheaves. As HTO(X,I) = 0, and cohomology commutes with
direct limits, this implies that there is a constructible sheaf F* on
X and an embedding F < F,, such that c maps to zero in Hro(X,F*).

Let Q be the cokernel of F — F*. Then Q is constructible, and a

chase in the diagram
el r) —HTl(x.Q) —  HOX.F) —  HO(X.F,)
I Ix l !
4-ro * 4-r * 3-r * 3-r *
Extx (F*.Gm) — Extx 0(Q,Cm) — ExtX o(F,Cm) — Exty °(F*,Gm)
shows that Bro(c) # 0. Since the argument works for all c, this

shows that Br°(X,F) is injective.
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(b) Let F be a constructible sheaf on X. For a suitably small
open subset U of X, there will exist a finite Galois extension K' of
K such that the normalization U' of U in K' is étale over U, F|U' is
constant, and um(K) = um(KS) for some m with mF = 0. In the con-
struction of the preceding lemma, we can take U1 to be the normaliza-
tion of X in K'. Let F = Tix F ¢ w2*F2. then (3.10) and (3.5) show
respectively that Br°(X,w1*F) and Bro(X.w2*F) are isomorphisms. The
map F — F* is injective, and we can construct a diagram similar to
the above, except that now we know that ﬁr°(X,F*) is an isomorphism.
Therefore Bro(X.F) is injective, and as Q is constructible we have
also that Br°(X,Q) is injective. The five-lemma now shows that

BT°(U.F) is an isomorphism.

Lemma 3.16. Theorem 3.1 is true for all constructible sheaves F
on X.

Proof: We prove Br(X,F) is an isomorphism by induction on r. For
r < 0 it is an isomorphism by (3.12).

To compute the group Ext;(l/mZ.Gm), we use the exact sequence
— Exty(Z/nZ,6_) — H (X.6_ ) = H'(X.C_) —
: X ‘T m "m Tm T

By definition HO(X,Z/mZ) =Z/nZ, and it follows from (2.2b) that
ExtB(Z/mZ.Cm) = m_llll. The pairing is the obvious one, and so
BO(X,Z/mZ) is an isomorphism. Now (3.15b) implies that ﬁO(X.F) is an
isomorphism for all F.

Lemma 3.15a shows that ﬁl(X.F) is always injective. The order
of Hl(X,Z/mZ) is equal to the degree of the maximal unramified abel-
ian extension of K of exponent m. By class field theory, this is
also the order of Pic(X)(m) = [Exti(l/mz,cm)], and so Bl(X,Z/mZ) is

an isomorphism for all X. It follows that BI(X.F) is an isomorphism



228 II ETALE COHOMOLOGY

for all X and F.
Lemma 3.15a again shows that ﬁz(X.F) is always injective, but to

proceed further, we need (yet) another lemma.

Lemma 3.17. For any sheaf F on X and element c € Exti(F,Gm). there
exists a surjective map F' — F such that c maps to zero in
Exti(F'.Gm). The sheaf F' can be chosen to be constructible (and
killed by a power of &) if F is constructible (and killed by a power
of &).

Proof: To c there corresponds an extension
0 — Gm — F' —F —0,

and c obviously maps to zero in Exti(F',Gm). If F is constructible
(and killed by a power of £), then Ext;(F.Gm) is torsion, and so c
arises from an element c' of Extl(F.un) for some n (which is a power
of 2). In this case we can take F' — F to be the map in the exten-

sion of F by B corresponding to c'.

Now c be nonzero element of Exti(F,Gm), choose a map F' — F as
in the lemma, and let Q be its kernel. There is a diagram
Extg(F'.G ) — Extg(Q,G ) — Ext)l((F.G ) — Ext)l((F'.G )
m m m m
AR Lz ¥ !
B ¥ SPre* —BPERS —ExE)
A diagram chase shows that c does not map to zero under
ol (X.F): ExtL(F.6 ) — H*(X,F)". Since this holds for all c. it fol-
lows that al(X.F) is injective, and therefore that its dual ﬁ2(X,F)
is surjective. This proves that 52(X,F) is an isomorphism.
Next, for r 2 3, Hr(X,Z/mZ) i~ Hr(X,um) if (m.,char(K)) =1 and m

contains the mth roots of 1 because Z/mZ then differs from Mo by a
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sheaf with support on the closed subset of primes dividing m. Hence
HB(X,Z/mZ) has order m and HF(X,Z/mZ) =0 for r > 3 (by (2.2b)
again). As ExtO(Z/mZ.Gm) =1 which also has order m, this com-
pletes the proof for sheaves killed by some integer m prime to the
characteristic. For the remaining sheaves it follows from the fact

that Ext’(2/p™,€ ) = O for all n.

A
We now complete the proof of Theorem 3.1 by proving that ar(X,Z)
is an isomorphism for all r (recall that we are assuming K has no

real primes). We are concerned with the maps
r T {B—r *
a (X,Z): H (X.Gm) — 1 X.z) . r £0.,1,
A —_
o (X.2): H'(X.6 )" = BT (X.2)*, r = 0.1.

Consider the diagram

0 — H (X.6 )" — lim Ext™ }(z/mz.¢ ) — 1Lim B (X,6 ) —o0
l I 1
H3—r 2 2-r 2 2-r »*
x.2)% — Tz — 170

For 2-r > 1 (that is, for r < 1), HZ 7(X.Q) = 0 = K " (X.Q) (see
2.10), and so Hz—r(X,Q/Z) — H3_r(X.Z) is an isomorphism. For r < 1,
Hr+1(X,Gm) is finitely generated, and so lim Hr+l(X,Gm)n = 0 (see
1.0.19). Therefore it is obvious from the diagram that ;r(X,Z) is an
isomorphism for r < 1. For r = 3, the map is the obvious isomorphism

Wz — Z*, and for all other values of r, both groups are zero.

Remark 3.18. For a locally Noetherian scheme Y, let Ysm denote the
category of smooth schemes over Y endowed with the étale topology.
Let f: Ysm — Yet be the morphism of sites defined by the identity

map. Then f  is exact and preserves injectives ([Milne (1980),
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I11.3.1]). and it follows that Ext\r( (£°F.F') = Ext; (F.f,F) for all
sm et

sheaves F on Y all sheaves F' on Y , and all r. Therefore U
e sm et

e
can be replaced by Usm in the above results provided one defines a
Z-constructible sheaf on YSm to be the inverse image by f of a Z-con-
structible sheaf on Yet'

Notes: Corollary 3.2 in the number field case is the original
theorem of Artin and Verdier (announcement in [Artin and Verdier
(1964)]). As far as I know, no complete proof of the theorem has
been published before, but [Mazur (1973)] contains most of the
ingredients. It and the notes of a 1964 seminar by Mazur were
sources for this section. The proof of the theorem for a construct-
ible sheaf F over X in lemmas 3.14 through 3.17 follows the original
proof. We note that Theorem 3.1 improves the original theorem in
three respects: by taking into account the archimedean primes, it is
able to handle the 2-torsion; it includes the function field case;
and it allows the sheaves to be Z-constructible instead of construct-—
jble. To my knowledge, several people have extended the original
theorem to the function field case, but the only published account is
in [Deninger (1984)]. The extension to Z-constructible sheaves was
carried out in [Deninger (1986)]. In [Zink (1978)] there is an
alternative method of obviating the problem with 2-primary components

in the original theorem.

§4 Global results: complements

This section is concerned with various improvements of Theorem

3.1. We also discuss its relation to the theorems in Chapter I. The
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notations are the same as in the preceding two sections.

Sheaves without sections with finite support
Let F be a sheaf on an open subscheme U of X. For any V étale
over U, a section s € I'(V,F) is said to have finite support if s; = (o]

for all but finitely many v € V.

Proposition 4.1. Let F be a Z-constructible sheaf on an open affine
subscheme U of X. If F has no sections with finite support, then
Exté(F,Gm) and Hi(U,F) are finite, and al(U,F) is an isomorphism.
Proof: Note that HomU(Z,Gm) = 03, which is finitely generated, and
that Exté(Z,Gm) = Pic(U), which is finite (because, in the function
field case, it is a quotient of PicO(X)). It follows immediately
that Exté(F,Cm) is finite if F is constant. As we observed in
(3.14), there is a finite surjective map m: U' — U, a constant
Z-constructible sheaf F' on U', and a morphism F —» W*F' whose kernel
has support on a proper closed subset of U. As F has no sections
with finite support, we see that the map must be injective. Let F"

be its cokernel. In the exact sequence
Exty(mF'.€ ) — Ext!(F.6 ) — Exc2(F".c )
Ut "Pn U " "m Tm’”
Exté(n*F',Gm) = Exté,(F',Gm) (see 3.9) and so is finite, and
Ext2(F",Gm) is torsion, and so Exté(F.Gm) (being finitely generated)
has finite image in it. This proves that Exté(F.Cm) is finite, and
Theorem 3.1 implies that al(X,F) is an isomorphism. It follows that

Hi(U.F) is also finite.

Nonconstructible sheaves

We say that a sheaf F on U C X is countable if F(V) is countable
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for all V étale over U. For example, any sheaf defined by a group
scheme of finite type over U is countable. Fix a separable closure
KS of K. If F is countable, then there are only countably many pairs
(s,V) with V an open subset of the normalization of U in a finite
subextension of KS and s € F(V). Therefore the construction in (0.9)
expresses F as a countable union of Z-constructible sheaves (of con-

structible sheaves if F is torsion}).

Proposition 4.2. Let F be a countable sheaf on an open subscheme U
of X, and consider the map ar(U.F)I ExtG(F,Cm) — Ha_r(p,F)*.

(2) For r £ 2, the kernel of ar(U.F) is divisible, and it is un-
countable when nonzero; for r = O or v > 4, ar(U,F) is injective.

(b) For r 2 2, ar(U,F) is surjective.

(c) If F is torsion, then ar(U.F) is an isomorphism for all r.

(d) If U is affine and F has no sections with finite support, then
a2(U,F) is an isomorphism and al(U,F) is surjective.
Proof: Write F as a countable union of Z-constructible subsheaves, F

=U Fi‘ Then (see 1.0.21 and I.0.22) there is an exact sequence
0 — 1inMExe" I(F, .6 ) — Ext{(F.€_) — 1im Ext'(F.,G ) — 0
& U i’ m Ut ' m « Ui’ m *

and lim(l)ExtG_l(Fi,Cm) is divisible (and uncountable when nonzero)
if each group Extr_l(Fi,Cm) is finitely generated, and it is zero if
each group Extr_l(Fi,Cm) is finite. Theorem 3.1 provides us with a
map Extr(Fi,Gm) - Hr(U.Fi)x which is injective for all r and is sur-
jective for r > 2; it is an isomorphism for any r for which the
groups Extr(Fi.Gm) are finite. On passing to the inverse limit, we
obtain a map 1lim ExtB(Fi,Cm) — Hi_r(U,F)* with the similar prop-

erties. The proposition is now obvious from (3.1) and (4.1).
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Corollary 4.3. Let G be a separated group scheme of finite type over
an open affine subscheme U of X. Then

a2(U,G): ExtS(G.Gm) — Hi(U.G)* is an isomorphism. If G defines a
torsion sheaf, then ar(U,C) is an isomorphism for all r.

Proof: If a section s of G over V agrees with the zero section on an
open subset of V, then it agrees on the whole of V (because G is sep—
arated over V). Thus G (when regarded as a sheaf) has no sections
with support on a finite subscheme, and the corollary results immed-

iately from part (d) of the proposition.

Example 4.4. In particular,
Ext%(A.Gm) = Hi(U.A)*. A a semi-abelian scheme over U,
2 ~ 1 *
ExtU(Gm,Gm) — HC(U,Gm) , and
r ~ H3—r »* . .
ExtU(Ga,Gm) —_ (U,Ga) for all r when K has characteristic
p # 0. (In fact the groups Exta(G,Gm), computed for the small étale
site, seem to be rather pathological. For example, if k is a finite

field, then Hom (€ .G ) 3 Gal(k_/k) = Z.)

Exercise 4.5. (a) Show that there are only countably many Z-con-—
structible sheaves on U. (Hint: Use Hermite's theorem.)

(b) Show that there are uncountably many countable sheaves on
Spec Z. (Hint: Consider sheaves of the form ? ip*Fp')

p prime
Tori
We investigate the duality theorem when F is replaced by a

torus. By a torus over a scheme Y, we mean a group scheme that be-
comes isomorphic to a product of copies of Gm on a finite étale
covering of Y. The sheaf of characters X*(T) of T is the sheaf

Ve HomV(T,Gm) (homomorphisms as group schemes). It is a locally
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constant Z-constructible sheaf. In the next theorem, ~ denotes comp-—

letion relative to the topology of subgroups of finite index.

Theorem 4.6. Let T be a torus on an open subscheme U of X.

(a) The cup-product pairing
H(UT)xH (UX(T))—+H(UG)~ID/Z

induces isomorphisms

o (u.T)” —)H T, (1) for r

1l
o
b

N
N

1 (U, T) —>Hi WX for r 2
If U is affine, then HI(U,T) is finite.
{(b) Assume that K is a number field. The cup-product pairing
H" (U, x* (T)) x H (U T) — H (U G ) X WL

induces isomorphisms

" (u. X" (T))s — H (U T) for r

]
o
-

H (u.X¥(T)) "’“2 (U.T)* fFor r 2

v
N

Proof: (a) The sheaf X*(T) is locally isomorphic to Zdim(T), and so

ExCG(X*(T).Gm) is locally isomorphic to the sheaf associated with the

d1m(T). It is therefore zero for r > 0. As

presheaf V » Hr(V,Gm)
0, % )
ngU(X (T),Gm) = #omU(X (T),Gm) = T, the spectral sequence

T+s

HT (U, el (X(T).6 ) = Exe["S(X(T).6,)

gives isomorphisms Hr(U,T) =, ExtG(X*(T),Gm) for all r. Thus (a)
follows from (3.1) and (4.1).

(b) Consider the diagram

;5 1(K X(T))—>H(UX(T))—’II (U.X(T)) — HH(K X))

veu . . . veu
M7k, SE7Un* BT wn* — 7K.
veu veu

Replace the groups HO and Hi(U.X*(T)) with their completions. Then
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(I.2.4) shows that the maps [T H™(K .X"(T)) — ] ﬁ?"hr(xv.r)* are iso-
morphisms (complete HO(KV.X*(T))), and (a) shows that the maps
HZ(U.X*(T)) — H3—r(U,T)* are isomorphisms (complete HZ(U,X*(T)) for
r =0,1). Now the five-lemma shows that H'(U,X(T)) — H‘Z'_r(U.T)*

{(complete HO(U.X*(T))) is an isomorphism for all r.

Corollary 4.7. Assume K is a number field. There are canonical iso-

morphisms
D' (U.X*(1)) = p> T (U, T)*

where

D" (U.X*(T)) In(HL(U.X(T)) — H'(U.X(T)). r # O,

p°(u.X*(1))

In(H2(U.X*(1))~ — HOU.X(1))"). r = o,
D'(U.T) = Im(Hz(U,T) — H(U.T)). r #£0.1,

D' (U,T)

i}

Im(HZ(U,T)" — H (U.T)*), r = 0.1.
Proof: Part (a) of the theorem and (I.2.4) show that the dual of the

sequence
0 — D" (U.X¥(T)) — H'(U.X(T)) — ® H(K,.X(T))
(complete the groups for r = 0) is an exact sequence
2-r 3-r T 3 »*
® H (KV,T) — HC (U.T) - D (U,X (T)) — 0,

(complete the groups for 3-r = 0,1) which identifies Dr(U,X*(T))*

with D>T(U,T).

Duality for Exts of tori

We wish to interprete (4.6b) in terms of Exts, but for this we
shall need to use the big étale site XEt on X and the flat site Xfl'
Recall that for any locally Noetherian scheme Y, YEt is the category

of schemes locally of finite type over Y endowed with the étale top—
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ology. and Yfl is the same category of schemes endowed with the flat
topology. Also f denotes the morphism Yfl -— YEt which is the ident-
ity map on the underlying categories. For the rest of this section,

Sxt§ (F,F') denotes the sheaf on YEt associated with the presheaf
fl

Ve Ext; (F,F'). Note that V » HomV (F,F') is already a sheaf, and
fl fl

so I'(V,#om, (F.F')) = Homy (F,F').
fl fl

Proposition 4.8. For any sheaf F on YEt and smooth group scheme G of
finite type over Y, there is a spectral sequence

Hr(YEt,sxcjfl(f*F,c)) = Ext;;S(F,c).
t

Proof: If F' is an injective sheaf on Yfl‘ then f*F' is also inject-
ive [Milne (1980), III.1.20], and so ﬂomY (F.f*F') is flabby (ibid.
Et

I11.1.23). Hence H' (Y. .#om, (F.f_F')) =0 for r > 0. But for any
Et YEt *
V locally of finite type over Y,

r'(V,%om.
YEt

.
(F.£.F')) = Hom, (F.fF') = Hom, (fF.F')
* VEe ¥ ™y

I(V,¥om, (£ F.F')).
£1

Therefore Hr(YEt,JfomY (f*F,F')) = 0 for r > O, which means that
fl

:JfomY (f*F,F') is acyclic for I‘(YE ,—). Next note that
£1 ¢

* + % Ll 1
I‘(YEt,:J[omY (fF.F')) = HomY (fF,F') = HomY (F.f*F ).
fl fl Et
and so there is a spectral sequence

(Y

poodsty (7R = ()

where a = HomY (F,—)°f*. There is an obvious spectral sequence
Et
Ext; (F,Rsf*F') = Rr+sa(F'). On replacing F' with G in this spect-
t

E
ral sequence and using that Rsf*G =0 for s > O (ibid. III.3.9), we



§4 GLOBAL RESULTS: COMPLEMENTS 237

find that R"*5¢(G) = Exty °(F.G). The result follows.
Et

Corollary 4.9. For any sheaf F on Yet and smooth group scheme G on
Y, there is a spectral sequence

H' (Y, 8oty (£7F.G)) = Exty"*(F.G)
1

f et

where f now denotes the obvious morphism Y

S 3
P B Yet and chY 1(f F.G)

f

denotes the sheaf on Yet associated with V » Exts (f*F,F').
fl

Proof: Let f': YEt d Yet be the obvious morphism. For any sheaves

' |*u_ [} R [
F on Yet and F' on YEt‘ HomYEt(f F,F'} = HomYet(F,f*F ). As f, is

exact and preserves injectives, this shows that Ext; (f‘*F,F') =
Et
Extl (F.f F') for all r. Moreover the sheaf &xtl (f*F,G ) of the
Yet * Yfl m

corollary is the restriction to Yet of the corresponding sheaf in
(4.8). and so the result follows from (4.8) because YEt and Yet yield

the same cohomology groups (see [Milne (1980), III.3.1]).

Proposition 4.10. Let Y be a regular scheme., and let p be a prime

Y

such that p! is invertible on Y. Then &ctl (T,Cm) =0 for
fl

0 <r < 2p-1.
Proof: Since this is a local question, we can assume that T = G .

From [Breen (1969), §7], we know that 8xt6 (Gm,Gm) is torsion for
fl

r 2 1. Let & be prime, and consider the sequence

r-1 r £ r
. — 8thfl(ue,Cm) e ExtYfl(Gm,Gm) —_— 8chfl(Gm.Gm) - ...

If Y is connected, then this sequence starts as

0—z2-57—2z-2 el ¢ .c)-5 ..
Yfl m’ m
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Therefore, Ext% (Gm,Gm) = 0. We shall complete the proof by showing
fl

that €ctt (u,.G ) = O for all & if 0 < r < 2p - 2.
Yfl 2’ m

If & is invertible on Y, then By is locally isomorphic to Z/¢Z,

and so &xtl (i2,.6 ) is locally isomorphic to extl (2/8Z,G6 ). There
Yfl 2’ m Yfl m

is an exact sequence

T

Y

r
.- SxCY 1(Z/BZ,Gm) — &zt .

(2.6.) — &zt (Z.G ) — ...
£ p " Ye o ' m

But 8xb; (Z,Gm) is the sheaf (for the étale topology) associated
fl

with the presheaf V » Hr(Vet,Cm); it is therefore zero for r > O and
equal to Gm for r = O. The sequence therefore shows that

gxc§f1(1/ez,cm) =0 forr >O0.

Next assume that € is not invertible on Y. Our assumption im-—
plies that for all primes q < p, au, = Hy- Therefore the main

theorem of [Breen (1975)] shows that gxty, (n,.C ) = O for
Yfl 2’ 'm

1<r <2p -2, and for r = 1 the sheaf is well-known to be zero (see

[Milne (1980), III.4.17]).

Theorem 4.11. Assume that K is a number field. Let T be a torus on
an open subscheme U of X, and assume that 6 is invertible on U.

(a) The group ExtB (T.Gm) is finitely generated for r = 0, finite
Et

for r = 1, and torsion of cofinite type for r = 2, 3.

.T) is an isomorph-

r . r 3-r
(b) The map a (U,F): Ext; t(T,Gm) — HC (Uet

E
ism for 0 < r < 4, and aO(U,T) defines an isomorphism

HomU(T.Gm)‘ - Hz(U.T)* (as usual, * denotes completion for the
topology of finite subgroups).
Proof: The lemma shows that the spectral sequence in (4.9) gives

isomorphisms Ext; (T,Gm) =, Hr(U,X*(T)) for r { 4. Therefore the
Et
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theorem follows from (4.6).

Remark 4.12. (a) The only reason we did not allow K to be a function
field in (4.6b) and (4.11) is that this case involves additional com-
plications with the topologies.

(b) It is likely that (4.11) holds with X. replaced by the smooth

Et
site Xsm' If one knew that the direct image functor f . where f is
the obvious morphism : XEt — Xsm' preserved injectives, then this
would be obvious.

(c) It is not clear to the author whether or not pathologies of

the type noted in [Breen (1969b)] should prevent Ext; (T,Gm) being
Et

dual to Hz_r(U,T) for all r > O (and without restriction on the res-—

idue characteristics).

Relations to the theorems in Galois cohomology
In this subsection, U is an open affine subscheme of X and S is

the set of primes of K not corresponding to a point of U. We also

make use of the notations in I.4; for example, GS

sheaf F on U, we write FD = ﬂom(F,Cm). When M is a Gs—module such

ﬂl(U,ﬁ). For a

that mM = O for some integer m that is invertible on U,

W = Hom(M.KY).

Proposition 4.13. Let F be a locally constant constructible sheaf on
U such that mF = O for some m that is invertible on U, and let M = Fﬁ
and N = MD be the Gs—modules corresponding to F and FD.

(a) The group Dr(U,F) = mg(K,M) and Dr(U.FD) = m;(U,Md): conse-

quently, the pairing

D'(U,F) x D° T(U.F) — a/z
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of (3.4) can be identified with a pairing

WS(K.M) x W37 (KM) — /2.

r T r r-1
(b) The group ExtU(F.Gm) =H (GS,N) and HC(U,F) = ExtGS (N,CS);
consequently the pairing
r 3-r

Ext(F.6 ) x H] ' (U.F) — O/Z.

of (3.1) can be identified with a pairing

r 2-r
H (GS,N) x ExtGS (N.CS) — Q/Z.

(c) The long exact sequence

. —>H(U,F) > H(U,F) > @ H' (K .F) — ...
¢ ves VY

can be identified with a long exact sequence

o ETT(GL N — HI (G M) — @ HT(K M) — ...
S S ves \'

Proof: (a) Compare the sequences

0 —»IH;(K.M) —»H"(GS.M) — 8 H(K .M),
v
vES
1 1=z l=z

0 —» D"(U.F) — H'(U,F) — & H'(K ,F)
VvES v

the second of which arises from the sequence in (2.3a) and the defini-
tion of D'(U,F).

(b) As &xtl(F.€ ) = O for r > 0. Ext(F.G) = H'(U,FY), and (2.9)
shows that Hr(U,FD) = Hr(GS.N). The second isomorphism can be read
off from the long exact Extr(F.—)—sequence corresponding to the se-—

quence of sheaves defined by the exact sequence of Gs—modules

X k3
0-—->Rs—>® Kv—>CS——>O.

(c) It follows from (2.9) that H'(U,F) = H (G..M). and it is ob-
S

vious that Hr(Kv,F) = H (K .M). According to (3.3). H(U.F) =
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BT, F)%, and (2.9) again shows that Ho T(U.F°) = Ko T(U.N).

For a Gs—module M, write Md = Hom(M.R;).
Proposition 4.14. Let T be a torus on U, and let X*(T) be its sheaf
of characters. If M = X*(T)ﬁ is the GS—module corresponding to
X*(T), then Md = Tﬁ' For all & that are invertible on U and all
r > 1, D'(U,T)(2) = lllg(K.M)(e) and DT(U.X(T))(2) = lllg(U.Md)(e); con—

sequently, the pairing
DT(U,T)(2) x D° T (U.X*(T)) (&) — (Q/Z)(2)

of (4.8) can be identified for r 2 1 with a pairing

gk M) (2) x 1T (K.M)(8) — (WZ)(2).

Proof: In the course of proving (2.9), we showed that Hr(ﬁ,Gm)(e) =

0 for all r > 0. Therefore H (U.T)(&) = H' (Gg.T)(&).

Remark 4.15. Presumably, the maps are the same as those in Chapter
I. Once this has been checked, some of the results of each chapter
can be deduced from the other. It is not surprising that there is an
overlap between the two chapters: to give a constructible sheaf on X
is the same as to give a G_-module M for some finite set of nonarchi-

S

medean primes S together with GaI(KV'S/KV)—modules Mv for each v € S
and equivariant maps M — Mv (see [Milne (1980), II.3.16]).

Galois cohomology has the advantage of being more elementary
than étale cohomology, and one is not led to impose unnecessary
restrictions (for example, that S is finite) as is sometimes required
for the étale topology. Etale cohomology has the advantage that more

machinery is available and the results are closer to those that alge-

braic topology would suggest.
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Notes: Propositions 4.1 and 4.2 are taken from [Deninger (1986)].

§5 Global results: abelian schemes

The notations are the same as those listed at the start of §2.
In particular, U is always an open subscheme or X. As in (I.6), we
fix an integer m that is invertible on U and write M" gf lim M/m"M
for the m—adic completion of M.

Let o be an abelian scheme over U, and let A be its generic
fibre. As o is proper over U, the valuative criterion of properness
[Hartshorne (1977), II.4.7] shows that every morphism Spec(K) — A
extends to a morphism U — o, that is, A(K) = 4(U). A similar state-
ment holds for any V étale over U, which shows that o represents g*A
on U .. In fact (see [Artin (1986), 1.4]) o represents g A on U -
Proposition 5.1. (a) The group HO(U.M) is finitely generated; for
r >0, Hr(U,ﬁ) is torsion and HF(U,ﬂ)(m) is of cofinite-type; the map

Hr(U,d)(m) — Il Hr(KV.A)(m) is surjective for r = 2 and an iso-
v arch

morphism for r > 2.

(b) For r < O, il Hr_l(Kv.A) — HZ(U.d) is an isomorphism;
v arch

HS(U,A) is finitely generated; Hi(U,d) is an extension of a torsion
group by a subgroup which has a natural compactification; Hi(U,d) is
torsion, and Hi(U,m)(m) is of cofinite-type; for r 2 3,

HL(U.sf) (m) = O.

Proof: (a) The group HO(U,d) = 4(U) = A(K), which the Mordell-Weil
theorem states is finitely generated. As Galois cohomology groups
are torsion in degree > 1, the Leray spectral sequence

r+s

Hr(U,RSg*A) = H (K.A) shows that the groups Hr(U,g*A) are torsion
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for r > O because ng*A is torsion for s > O and Hr(K,A) is torsion
for r > 0. Finally, the finiteness of Hr(U,&ﬂ)m follows from the co-

homology sequence of
0 — dm —d g 50

because Hr(U,ﬂm) is finite for all r (by 2.13). On replacing m with
m” in this cohomology sequence and passing to the direct limit over

n, we obtain an exact sequence
0 — Hr_l(U,d)®Qm/Zm —_ Hr(U,d(m)) - Hr(U,d)(m) — 0 (6-1.1).

The first term in this sequence is zero for r > 1 because then

Hr—l(U,d) is torsion. Hence Hr(U.ﬂ(m)) = Hr(U.d)(m) forr 2 2. As
. r r

ﬂmn is locally constant, H (U,dmn) =H (GS,an(KS)) (by 2.9). There-

fore Hr(U,ﬁmn) - il Hr(Kv.Amn) is surjective for r = 2 (by
v arch

1.4.16) and an isomorphism for r > 3 (by I.4.10c), and it follows

that Hr(U,M)(m) — ® Hr(K ,A)(m) has the same properties.
v arch v

(b) All statements follow immediately from (a) and the exact se—

quence
r r r
.—H (U,g) > H (U.d) —- & H (K ,A) — ...
¢ veu v

The dual abelian scheme o' to d is characterised by the fact
that it represents the functor V » Exté(ﬁ,Gm) on USm (generalized
Barsotti-Weil formula [Oort (1966), III.18]). As ﬂom(d.@m) = 0, the
local~global spectral sequence for Exts gives rise to a map
Hr(U,dt) — Ext;+l(d.cm) all r. On combining this with the pairing

Ext(o,€ ) x B " (U.ol) — H(U.6 ) % 0/Z
m c c m
we get a pairing

r t 2-r N 3 ~
H'(U.o") x H "(U.of) — H(U.G ) ~ Q/Z.
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(For a symmetric definition of this pairing in terms of biextensions,

see Chapter III.) We define

Dl (U.) = Im(HL(U.of) — H'(U.)) = Ker(H!(U.4) — TTH'(K .A)).
veu

It is a torsion group, and Dl(U,d)(m) is of cofinite~type.

Theorem 5.2. (a) The group HO(U,mt)(m) is finite; the pairing
HOU.a®) (m) x H2(U.4) — W/Z

is nondegenerate on the left and its right kRernel is the m—-divisible
subgroup of Hz(U,d).

(b) The groups Hl(U,dt)(m) and Hi(U.M)(m) are of cofinite-type,
and the pairing

1 t 1
H (U,d4" ){(m) x HC(U,w)(m) — WZ

annihilates exactly the divisible subgroups.

(c) If Dl(U.ﬂt)(m) is finite, then the compact group HO(U.dt)A is
dual to the discrete torsion group Hz(U,d)/,wy

Proof: Because HZ(U.dmn) is finite for all n and r, passage to the

inverse limit in the sequences
— n
0 - Yua)™) S H (U n) > H(Ud) n — 0
[+ C m C m
yields an exact sequence
0 — H H(Uu.d)~ — H(U.T «) — T H (U,d) — 0 (5.2.1)
c ' ct ' 'm mct ' : e

where we have written Hr(U,T o) for lim Hr(U.d n). Note that

c m & e m
TmHZ(U,d) is torsion-free and is nonzero only if the divisible sub-
group of HZ(U,M)(m) is nonzero. Corollary 3.3 provides us with non-
degenerate pairings of finite groups

H (U.on) x HO "(U,d n) — @2,

and hence a nondegenerate pairing (of a discrete torsion group with a
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compact group)
HE (U, % (m)) x Hi'“‘"(U,Tmsa) — .

For r = 0, this shows that the finite group HO(U.dt)(m) =
W, 4% (m)) = A(K)(m) is dual to HJ(U.T ), and (5.2.1) shows that
. 2 2 2
this last group equals HC(U,ﬂ) = HC(U,sd)/HC(U.sd)m_div because
Hi(U,d) = 0. This completes the proof of (a).

From (5.1.1) we obtain an isomorphism
1 t 1 t x 1 t 1 t
H (U,o " (m))/H (U,o (m))div — H (U,4")(m)/H" (U, o )(m)div‘

and the left hand group is dual to Hz(U.Tmad)tor (see 1.0.20e). The
: . . 1 -~ X2
sequence (5.2.1) gives an isomorphism HC(U,sﬂ)tor —_— HC(U,Tmﬁ)tor,
1 . 1 i
and lIc(U,sﬂ)tor = HC(U,Q)(m)/Hc(U,d)(m)div. This completes the proof
of (b).
For (c). consider the diagram
0 = Hu.d) —u(u.T 4 — T ! (U.4") —0
! I = i)
2 »* »* 1 »*
0 — HC(U,Q)(m) — Hi(U,ﬂ(m)) — (HC(U,M)®Qm/Zm) — 0.
0} tya 2 * . L :
It shows that the map H'(U,o )" — HC(U,A)(m) is injective, and that
ie s - - . . 1 t 1 *
it is an isomorphism if and only if TmH (U.g7) — (HC(U,M)®Qm/Zm) is
injective. On applying Hom(Qm/Zm,—) to the exact sequence

0 — p'(U.a%) — H(U,a) — Mu'(x A%,
veu

we obtain the top row of the following diagram:
1 t 1 t 1 t
0 =>TD(U.«)— TH(Ud) — ] T H (K, .A")
i lx
1 * (4] *
(H (U.s)8Q /7 )" — T H (X,.A)8Q /Z ).
Our assumption on Dl(U,ﬂt) implies that Tle(U,dt) = 0, and so the

diagram shows that TmHl(U.dt) — (Hi(U.d)@Qm/Zm)* is injective. This
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completes the proof of (c).

Corollary 5.3. The group Dl(U,d) is torsion, and Dl(U,dt)(m) is of

cofinite—-type; there is a canonical pairing
pl(u.«%) x D' (U.¢) — @z

whose left and right kernels are the divisible subgroups of the two
groups.
Proof: The first statement follows directly from the definition of

Dl(U,d). For the second statement, we use the commutative diagram

0 — D' (U.dS)(m) — B (U (m) — ] H (K .A)
. veu | s

0 — D} (U.at) (m)* — H. (V) (m)* — HO(K,.A).
veu

It demonstrates that there is a map Dl(U,ﬂt)(m) — Dl(U,d)(m)* whose
kernel obviously contains the divisible subgroup of Dl(U.dt)(m). The
kernel of the second vertical map is zero, and that of the first is
divisible. A diagram chase now shows that the kernel

DI(U.ﬁt)(m) - Dl(U.d)* is divisible. Because of the symmetry of the
situation, this implies that the right kernel of the pairing is also

divisible.

Exercise 5.4. Let e’ 4 — dt be the map defined by a divisor on A.

Show that for all a € Dl(U,d), <¢D(a),a> = 0.
We now show how the above results can be applied to the Tate-
Shafarevich group. Write S for the set of primes of K not cor-

responding to a point of U.

Lemma 5.5. The map Hl(U,d) — HI(K,A) induces isomorphisms
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H (U,d) =5 H'(Gg.A) and D!(U.a) =5 ml(k.A).
Proof: Because o = g*A, and the Leray spectral sequence for g gives

an exact sequence
1 1 1
0 — H (U.d) — H (K,A) — I'(U,R"g A).

This sequence identifies Hl(U,d) with the set of principal homogen-
eous spaces for A over K that are split by the inverse image of some
étale cover of U, or equivalently, that have a point in Kv,un for
each v (recall that Kv is the field of fractions of 02). From the
Hochschild-Serre spectral sequence for Kv,un over KV and (I.3.8), we

see that the restriction map Hl(Kv,A) - HI(KV .A) is injective.

un

Therefore we have an exact sequence

0 - ul(U.4) - H' (K.A) — ® H'(K,.A) (5.5.1).
veu

A
We have seen (I.3.10) that the maps Hl(Kv.A) - Hl(KV.A) are inject-
ive, and so on comparing this sequence with that in (I.6.5), we see
immediately that HI(U.d)(m) = HI(GS,A)(m). On combining (5.5.1) with

the exact sequence

0 - plu.¢) — H' (U.A) > ® Hl(KV.A),
véu

we obtain an exact sequence

0 —plu.a) s ul(K.A) — 8 H(K .A),
all v v

and this shows that D'(U,A) = W' (K.A).

Theorem 5.6. Let A be an abelian variety over K.

(a) There is a canonical pairing
1 t 1
I (K,A") x " (K,A) — @/Z

whose kernels are the divisible subgroups of each group.

(b) Assume ml(K.A)(m) is finite. Then the dual of the exact se—
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quence

0 - I} (K.A)(m) — K (K.A)(m) — & H(K.A)(m) —B—0
1

all v

is an exact sequence

0 — (K. A% (m) — HL(K.A) ()™ — AS(K,) — AK)~ —o.
all v

Proof: (a) Fix a prime & and choose U so that & is invertible on U
and A has good reduction at all primes of U. Then A and At extend to

abelian schemes on U, and the lemma shows that the pairing
1 t 1
D (U,47)(8) x D (U.4)(8) > Q/Z
of (5.2) can be identified with a pairing
1 t 1
b (K, )(&) x I (K.«4)(8) — Q/Z.
(b) Choose U so small that m is invertible on it and A has good

reduction at all primes of U. The assumption implies that ml(K,At)

is also finite. Therefore, (5.2) shows that the dual of the sequence

0 — m(K.A)(m) — H' (V) (m) — © H'(K .A)(m) — H(U.s)(m) — ...
veu

is an exact sequence

0 — (K, o) (m) — H(U,st)(m)™ — DU At(Kv)" — AYK)S — ...
v

Now pass to the direct limit in the first sequence and to the inverse
limit in the second over smaller and smaller open sets U. According

to (1.6.25), the map A'(K)* —  [[A*(K )" is injective, and so the
all v

result if obvious.

Remark 5.7. (a) We now have defined three pairings
' (k,A%) x I (K.A) — Q/Z.
For the sake of definiteness, we shall refer to the pairing in (5.6)

as the Cassels-Tate pairing.
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(b) For any abelian scheme o on a regular scheme Y, Breen’s
theorems [Breen (1969a), (1975)] imply that Exc;(d,Gm) =0 forr =0
or 1 < r < 2p-1, where p is a prime such that p! is invertible on Y.

Since &xty (A.€ ) = ', we see that Ext’ (d.C ) = KL (U, 4% for r
Yfl m UEt m

< 4, provided 6 is invertible on U. In particular Extg (Q,Cm) =
Et

Hl(U.dt), which is countable. By way of contrast, (4.4) implies that

Ext% (d,Gm) is countable if and only if the divisible subgroup of

et

HL(U.) s zero. Thus if Exty (4.6 ) = Ext2 (#,6_) then the divis-
t et

E

ible subgroup of ml(K,A) is zero (and there is an effective procedure

for finding the rank of A(K)!).

Finally we show that, by using étale cohomology, it is possible
to simplify the last part of the proof of the compatibility of the
conjecture of Birch and Swinnerton-Dyer with isogenies.

Let f: A — B be an isogeny of degree prihe to char K. The
initial easy calculations in (I.7) showed that to prove the

equivalence of the conjecture for A and B, one must show that

2(£(K)) = T] 2(£(K)).2(£ (K)).2(u' (£)).
veu

In this formula, for a nonarchimedean prime v, KV denotes the comple-
tion of K rather than the Henselization, but it is easy to see that
this does not change the value of z(f(Kv)).

Let m be the degree of f, and choose an open scheme U € X on
which m is invertible and which is such that f extends to an isogeny

f:  — % of abelian schemes over U. The exact commutative diagram



250 II ETALE COHOMOLOGY

0 — () — [H(K,.4) — HL(U.of) — W (k,A) — 0

veu
! 1 ! !
0 1 1
0 — #(U) — [[H (X,.B) — H_(U.2) — 1 (K.B) — 0.
veu

shows that z(£(K)).z(H.(£)) = [I 2(HO(K,.£)).2(W' (£)). To prove the

veu

compatibility, it therefore remains to show that

]

2006285 ) = T 200K, 0) 2(F KT

v arch

Let F be the kernel of f: o — %. The exact sequence
0 1 1 1 2
0 — Coker(HC(f)) —_ HC(U.F) — HC(U.M) — HC(U,%) — HC(U.F)
— B (U.a) — H2(U.9) — H(U.F) — 0
shows that
0 -1 0 -1 1 -1 2
x (U.F) [HO(U.F)1™" = [Coker(HO(£))17 2(H,(£)) ™ . 2(HL(£)).

But

x (U.F) [O(U.F)T = T RG] 0k, ;)17

by 2.14b,

2(H2(£)) = z(£5 ()
by duality, and

Coker Hg(f) = | Coker H_l(Kv,f)
v arch

because []H ' (K .A) — HO(U.o) and [TH ' (K .B) <5 HO(U.%).

Therefore

212(0).2(£°®) = T [F(K,)1 [1O(K, .F)I[Coker (1™ (K,.£))].
v arch

and it remains to show that for all archimedean primes v
-1 o] -1 o] -1
[F(Kv)] .z(f(Kv)) =[H (KV.F)] .z(H (Kv,f)).[Coker(H (Kv.f))].

From the exact sequence
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0 — Coker H_I(Kv,f) — HO(KV,F) — Ker HO(Kv,f) — 0,
we see that this comes down to the obvious fact that

Coker f(Kv) — Coker Ho(Kv,f) is an isomorphism (cf. I.3.7).

Notes: This section interpretes Tate’s theorems on the Galois coho-
mology of abelian varietes over number fields [Tate (1962)] in terms

of étale cohomology.

86 Global results: singular schemes

We now let X be an integral scheme whose normalization is the
spectrum of the ring of integers in K {(number field case) or the
unique complete smooth curve with K as its function field (function
field case). The definition in §2 of cohomology groups with compact
support also applies to singular X: for any sheaf F on an open sub-

scheme U of K, there is an exact sequence

. = H (U,F) > H"(U.F) — o H(K ,F) — ...
© vES v

where S is the set of primes of K not corresponding to point of the
normalization of U. Using (1.12) - (1.15), it is possible to prove
an analogue of (2.3).

Let u € U, and let h € K*. Then h can be written h = £/g with

f.g € 0u' and we define
ordu(h) = length(Ou/(f)) - Iength(Ou/(g)).

This determines a homomorphism KX — 7 (see [Fulton (1984), 1.2]).
Alternatively, we could define ordu(h) =5 [k(v):k(u)]ordv(h) where
the sum is over the points of the normalization of U lying over u
(ibid. 1.2.3). One can define similar maps for each closed point

lying over u on scheme V étale over U and so obtain a homomorphism
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ordui g*Gm — iu*Z. Define G to be the complex of sheaves

z ordu
g — & i 7
xm u€UO ux
on Uet' Note that if U is smooth, then we can identify G with Gm.

We shall frequently make use of the fact that ng*Gm =0 for s > O.
This follows from the similar statement for the normalization U of U,

and the fact that i = U is finite.

Lemma 6.1. For all open subschemes U of X, there is a canonical
trace map Tr: Hi(U.G) =, Q/Z such that

(a) whenever U is smooth, Tr is the map defined at the start of
83;

(b) whenever V C U, the diagram

Bev.e) I ez

1 ]

Hi(u.c) Ir, oz

commutes.

Proof: The proof is similar to the smooth case. Let S be the set of
primes of K not corresponding to a point in the normalization of U,
and assume first that U # X. From the definition of G, we obtain a

cohomology sequence
2 2 3
0 — H°(U,6) - H(K.¢ ) — & . /Z —- H (U,6 ) — 0.
m 0 m
uel
The middle map sends an element a of Br(K) to > invu(a) where
invu(a) =2 [k(v):k(u)]invv(a). The kernel-cokernel exact sequence
veu

of the pair of maps

Br(K) — @& Br(K ) — &
all v v u€u

o'z

provides us with the top row of the following diagram:
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H2(U.G) — B - WZ — 0
It ! 1

0 — H2(U,6) — @ Br(K ) — H3(U.¢) — o.
VvES v ¢

Here B = Ker( ® Br(K ) — 0 Q/Z). Write B = B'e( ® Br(KV).
all v v veu veS

Then B' maps to zero in Q/Z, and as it is the kernel of the middle
vertical map, this shows that the map O/Z — Hi(U.G) is an
isomorphism.

For U = X, one can remove a smooth point and prove as in (2.6)

that HY(X.C) = Hz(X—{x},Gm).

As in 83, the trace map allows us to define maps
r . r 3-r 2
a (U,F): ExtU(F,Cm) - HC (U.F)

for any sheaf F on U.

Theorem 6.2. Let F be a Z-constructible sheaf on an open subset U of
X. Forr )2, the groups ExtE(F,C) are torsion of cofinite—type, and
ar(U.F) is an isomorphism. For r = 0,1, the groups ExtG(F.G) are of

finite-type, and aP(U,F) defines isomorphisms
Ext((F.6)" — " (U,F)™

where *~ denotes completion relative to the topology of subgroups of
finite index. If F is constructible, then ar(U,F) is an isomorphism
of finite groups for all r € Z.

Proof: We begin by proving the theorem when F has support on a

finite subset.

Lemma 6.3. Theorem 6.2 is true if F has support on a proper closed

subset of U.
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Proof: We can assume that our sheaf is i F where i is the inclusion
of a single closed point v into U. From the analogue of (2.3) for
singular schemes, we see that HZ(U.i*F) = Hr(v,F). As in (1.14),
Exta(i*F.g*G) = 0, and so Ext;_l(F,Z) — Exta(F,C) is an isomorphism.

We have a commutative diagram

Ext](F.6) x H (U F) — H(U,¢) .

1= lx lx
Extt lM.z) x ©°F
gx

(g,.1) — H(g,.2)

and so the theorem follows in this case from (I.1.10).

Now let F be a sheaf on U, and let j: V <> U be a smooth open
subscheme of U. For F|V, the theorem becomes (3.1). Since
Ext;(j!Flv,G) = Ext;(F,c) and HZ(U,j!FIV) = HZ(V.F). this implies
that theorem is true for j!FIV. The lemma shows that the theorem is
true for i*i*F, and the two cases can be combined as in (3.7) to

prove the general case.

Notes: Theorem 6.2 is proved in [Deninger (1986)] in the case that U

= X and F is constructible.

§7 Global results: higher dimensions

The notations are the same as those in 82. Throughout,
7: Y — U will be a morphism of finite-type, and we define HZ(Y.F) =

T
H (U.Rr F).

Proposition 7.1. If F is constructible and mF = O for some integer m

that is invertible on U, then the groups Hr(Y.F) are finite.
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Proof: For any constructible sheaf F on Y, the sheaves Rrv*F are
constructible (see [Deligne (1977), 1.1]). Therefore it suffices to
prove the proposition for U itself, but we have already noted that

(3.1) implies the proposition in this case.

Remark 7.2. 1In particular, the proposition shows that Hl(Y,Z/mZ) is
finite for all m that are invertible on Y, and this implies that

ab .\ (m) . . L

L) (Y) is finite. Under some additional hypotheses, most notably
that m is smooth, one knows [Katz and Lang (1981)] that the full
group 1rl(Y)ab is finite except for the part provided by constant

field extensions in the function field case.

Let v be an archimedean prime of K. In the next proposition, we
write Yv for YxUSpec Kv and Y; for YXUSpec Kv,s
Proposition 7.3. Let 7: Y — U be proper and smooth, and let F be a
locally constant constructible sheaf on Y such that mF = O for some m

that is invertible on U. Then

G
)((Y‘—,,FIY;) v

x(Y.F) = [] .
v arch [x(Y;.FIY;)[V

Cy ar r S (1T
vhere x(Y\—,,FlY‘—,) = D[H (Y;,FIY‘—,) ] .
Proof: The proper-smooth base change theorem [Milne (1980), VI.4.2]
shows that the sheaves RSW*F are locally constant and constructible

for all r, and moreover that (RSW*F); = HS(Y;,FIY;) for all archime-

dean primes v. Therefore (2.13) shows that

G
[HS(Y;.FIY;) "

(Go..R%1_F) = .
X0 R M) v LLch I[HS(YQ.FIY;)]IV
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On taking the alternating product of these equalities, we obtain the

result.

Remark 7.4. (a) A similar result is true for xc(Y,F).
(b) The last result can be regarded as a formula expressing the
trace of the identity map on Y in terms of the schemes Y;, v archime-

dean. For a similar result for other maps, see [Deninger (1986b)].

Before stating a duality theorem for sheaves on such a Y, we
note a slight improvement of (3.1). Just as in the case of a single
sheaf, there is a canonical pairing of (hyper-) Ext and (hyper-) co-

homology groups
T . 3-r . 3
ExtU(F ,Gm) x HC (UF') — HC(U_Gm)_

for any complex of sheaves F' on U. Consequently, there are also

maps of (U.F"): Ext[(F'.€ ) — o "(U.F)".

Lemma 7.5. Let F' be a complex of sheaves on U that is bounded below

and such that Hr(F') is constructible for all r and zero for r >> O.
r . | P 3-r N . . .

Then a (U,F"): ExtU(F .Gm) - Hc (U.,F') 1is an isomorphism of finite

groups.

Proof: If F consists of a single sheaf, this is (3.1b). The general

case follows from this case by a standard argument (see for example

[Milne (1980), p280]).

We write Ext; m(F,F') for the Ext group computed in the category
of sheaves of Z/mZ-modules on Yet' Let F be a sheaf killed by m; if
F' is an m-divisible and F' — I° is an injective resolution of F',

then F$ — I& is an injective resolution of F&. and so
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r vy 4f o1 “yy _ T .yy df r '
m(F,Fm) = H (HomY(F,Im)) =H (HomY(F.I )) = ExtY(F.F )-
In particular, if F is killed by m and m is invertible on Y, then
r r
XtY,m(F'”m) = ExtY(F,Gm).
Let m: Y — U be smooth and separated with fibres pure of dimen-

sion d, and let m be an integer that is invertible on U. Then there

is a canonical trace map R2dn,p§d =5 Z/mZ [Milne (1980), p285]. oOn

U, p_ is locally isomorphic to Z/mZ, and so when the trace map is
m

~
~

tensored with B it becomes an isomorphism R2dv|und+l — . As

m
Rrw*u§d+1 = 0 for r > 2d, there is a canonical trace map

sz+3(Y, ®d+l) = H3(Y Mo ) = Z/nZ, and hence a pairing

®d+1
m

2d+3-r

) x Hc (Y.F) - H ®d+1

(You

r

ExtY ) ® Z/mZ.

2d+3
(F.u -

,m

Theorem 7.6. Let Y — U be a smooth separated morphism with fibres
pure of dimension d, and let F be a constructible sheaf on Y such
that mF = O for some m that is invertible on U. Then

®d+1
m

2d+3-r

) x Hc (Y.F) > H 8d+1

r
(Yon

ExtY

(F.u 3‘“3 ) & Z/mZ.

,m
is a nondegenerate pairing of finite groups.

Proof: The duality theorem in [Artin, Grothendieck, and Verdier
(1972/73), XVIII] shows that there is a canonical isomorphism

®d+1

Rw!(RﬂomY'm(F [2d])) -=> Rifom m(Rn!F,pm).

(See also [Milne (1980), p285].) On applying RI'(U,-) to the left

hand side, we get a complex of abelian groups whose rth cohomology

r+2d, . ®d+1
Y.om (For

group is Ext ). On applying the same functor to the right
hand side, we get a complex of abelian groups whose rth cohomology

. r L r
group is EXtU,m(RN!F'“m)' This is equal to ExtU(RW!F.Cm), and Lemma

7.5 shows that
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~ 3-
ExtG(RTr!F,Gm) —> Hom(H_ r(U.Rw!F)J/mZ).

By definition, H3 (U.Rr F) = H T(Y.F), and so this proves the

theorem.

For any sheaf F on Y such that mF = O, write F(i) = F®p:1 and

FD(i) = ﬂom(F,pgl). Note that FD in the old terminology is equal to

FD(l) in the new.

Corollary 7.7. Let w2 Y — U be a smooth separated morphism with
fibres pure of dimension d, and let F be a locally constant construct-—
ible sheaf on Y such that mF = O for some m that is invertible on U.
Then cup-product defines a nondegenerate pairing of finite groups

2d+3-r 2d+3 ®d+1

H(Y.FO(d+1)) x B (V.F) — 230y 18y -z,

for all r.

. . r ®d+1
Proof: In this case EXtY,m(F‘um

) = H'(Y.FP(d+1)).

As usual, we let ﬂi be the sheaf on Y defined by the ith Quillen

K-functor.

Corollary 7.8. Let F be a constructible sheaf on Y such that &F =0

for some prime & invertible on U. Assume that H2d+2(Y,ﬂ2d+1) is tor-—

. 2d+3 X
sion. Then there is a trace map H_ (Y,ﬂ2d+l)(8) — Qe/Ze, and the

canonical pairing

2d+3-r 2d+3

T
Exty(F.oyy, ) x HS (Y.F) — H 72 (Y.

2d+ 2a+1) (8} ® Q/Z,
is a duality of finite groups.
Proof: Recall (1.19), that for any m that is invertible on U, there

is an exact sequence of sheaves
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®i+l m
O=my " =y %y 20O
Therefore Extl n(F u®g+l) = Extr(F A, ). Also, there is an exact
Y.e e - YbV rrt2d+1/” '
sequence
2d+2 2d+3 ®@d+1 2d+3
0 > H (Y g, 1)00,/Z, — KT (Y0 — HEP (v, ) (2) > o.

2d+2
C

Since we have assumed H (Y.ﬂ2d+1) to be torsion, the first term of

this sequence is zero, and so we obtain isomorphisms

2d+3 ~ 1 2d+3 ®d+1,
Hc (Y,12d+1)(£) ™ Hc (Y,uew ) = Qe/le. The corollary now fol-

lows directly from (7.6).

Remark 7.9. For any regular scheme Y of finite type over a field, it
is known [Milne (1986), 7.1] that Hr(Y.ﬂi) is torsion for r > i.
(The condition that Y be of finite type over a field is only required

so that Gersten’s conjecture can be assumed. )

Aside 7.10. One would like to weaken the condition that Y is smooth
over U in the above results to the condition that Y is regular. The
purity conjecture in étale cohomology will be relevant for this. It
states the following: Let i: Z — Y be a closed immersion of regular
local Noetherian schemes such that for each z in Z, the codimension
of Z in Y at z is ¢, and let n be prime to the residue characterist—
ics; then (R™i')Z/nZ = 0 for r # 2¢, and ®*°1HYz/mz = u:_c [Artin,
Grothendieck, and Verdier (1972/73), XIX].

The author is uncertain as to the exact conditions under which
the proof of the conjecture is complete. See (ibid., XIX.2.1) and
[Thomason (1984)].

The strategy for passing from the smooth case to the regular

case is as follows: replace U by its normalization in Y, and note
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that the theorem will hold on an open subset V of Y; now examine the
map Y - V— U. (Compare the proof of the Poincaré duality theorem

VI.11.1 in [Milne (1980)]. especially Step 3.)

In the case that Y = U, Corollary 7.8 is much weaker than
Theorem 3.1 because it requires that F be killed by an integer that
is invertible on U. We investigate some conjectures that lead to
results that are true generalizations of (3.1). We first consider
the problem of duality for p-torsion sheaves in characteristic p.

For a smooth variety Y over a field of characteristic p # 0, we
let an;/k be the sheaf of Witt differential i-forms of length n on Y
[Illusie (1979)]. Define vn(i) to be the subsheaf of an;/k of loc-
ally logarithmic differentials (see [Milne (1986a), 81]). The
pairing
i+j

(w,0') P ow': W ol x W Qj — W0
n n n

induces a pairing vn(i) x vn(j) — vn(i+j).

Theorem 7.11. Let Y be a smooth complete variety of dimension d over
a finite field k. Then there is a canonical trace map

+ ~
Hd 1(Y.un(d)) e Z/pnl. and the cup-product pairing

' (Y.o_(3)) x KT (v o0 (a-1)) — 1 (Y w_(4)) = 2572

is a duality of finite groups.
Proof: When dim Y ¢ 2 or n = 1, this is proved in [Milne (1976)].

The extension to the general case can be found in [Milne (1986a)].

Corollary 7.12. The canonical pairing

d+1-r

Ext;'pn(Z/PnZ,vn(d)) x H (Y.Z/pnl) N Hd+1(Y.vn(d)) o Z/an
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is a duality of finite groups.
Proof: One sees easily that Ext¥ pn(Z/an,vn(d)) = Hr(Y,vn(d)), and

so this follows immediately from the proposition.

Corollary 7.13. Let Y be a smooth complete variety of dimension

d { 2 over a finite field k. Then there is a canonical trace map
Hd+2(Y,ﬂd)(p) N QP/ZP, and for any n there are a nondegenerate

pairings of finite groups

d+2-r

Exty(2/p"Z.4,)) x H (Y.25"2) — 12 (v,,) (p) » 0/Z.

Proof: The key point is that there is an exact sequence
n
0 — —P—»mi — v (i) — 0.

for 1 < 2. When i = 0,1, the exactness of the sequence is obvious:
when i = 2, its exactness at the first and second terms follows from
theorems of Suslin [Suslin (1983a)] and Bloch [Bloch and Kato (1986)]
respectively. Now the corollary can be derived in the same manner as
(7.8): in particular the trace map is obtained from the maps

1y, (d)) 25 Hd+2(Y.f1{d)(p) and K1 (Y,0_(d)) 25 (@/Z)(p). where

v (1) = lim un(i).

Remark 7.14. It should be possible to extend the last three results
to noncomplete varieties Y by using (in the proof of 7.11) cohomology
with compact support for quasicoherent sheaves (see [Deligne (1966)]
or [Hartshorne (1972)]). However, one problem in extending them to
all constructible sheaves is that the purity theorem for the sheaves
un(i) is weaker than its analogue for the sheaves un(i) (see [Milne
(1986), 82]). Nevertheless, I conjecture that for any constructible
sheaf F of Z/an—modules on a smooth variety Y of dimension d over a

finite field,
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d+1-r

d+1 ~
Ext,;‘pn(F,vn(d)) x O TT(YLF) = HY (Yoo (d) = 7/p"z

is a nondegenerate pairing of finite groups.
I do not conjecture that the (7.13) holds for varieties of all

dimensions.

Let Y be a smooth complete surface over a finite field. Then we

have dualities:

4- 4
Ext§(wp“z,m2) x HOT(Y,2/p"2) — H (Y. 4,) (p) ® Q/Z . p = char k.

Extl(2/€"Z.4y) BT (Y.2/8°2) — HO(Y.,9,)(€) % @y/Z,. £ # char k.

These are similar, but the numbers do not agree! It appears that in
order to obtain a uniform statement, the sheaves mi will have to be
replaced by the objects Z(i) conjectured in [Lichtenbaum (1984)] to
exist in the derived category of S(Yet) for any regular scheme Y.
(Beilinson has independently conjectured the existence of similar
objects in S(YZar)') These are to have the following properties:
(a) Z(0) = Z, Z(1) = Gm[—lj.
(be) For £ # p, there is a distinguished triangle
. n .
WOl — 2(5) S5 21) —®h
n n
I e
(This implies that there is an exact sequence

T . " T . r ®i
... H (Y, Z(i)) — H (Y.Z(i)) — H (Y.pen) — ... )

(c) There are canonical pairings Z(i) x Z(j) — Z(i+]j).

(d) Hzrﬁj(l(i)) = Cr:ﬂj up to small torsion, and Hr(Z(i)) =0
forr > i orr <0 (also HO(Z(i)) = 0 except when i = 0).

(e) If Y is a smooth complete variety over a finite field, then
HT(Y,Z(i)) is torsion for all r # 2i, and HQF(Y.Z(r)) is finitely

generated.
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In the present context, it is natural to ask that the complex
have the following additional properties when Y is a variety over a
field of characteristic p:

(bp) There is a distinguished triangle
n
v (1)[-i-1] — Z(i) B> z(i) — v (1)[-i].
(This implies that there is an exact sequence

n .
.= H(Y,Z(i)) B— H"(v.2(1)) — Hr_l(Y,vn(i)) — ... )

(f) (Purity) If i: Z <> Y is the inclusion of a smooth closed
subscheme of codimension ¢ into a smooth scheme and j > ¢, then

Ri'Z(j) = Z(j-c)[-2¢].

Theorem 7.15. Let w: Y — U be smooth and proper with fibres pure of
dimension d. Let & be a prime, and assume that either e is

tnvertible on U or & = char K and Y is complete. Assume that there

2d+3

ST z(ae1)) s

exist complexes Z(i) satisfying (be) and that H
torsion. Then there is a canonical isomorphism

H2d+4

ST rzar)) () S (@) (0),

and the cup-product pairing
H'(Y.2(1))(e) x B2 (v, 7(a+1-1)) (2) — H2M 4y, z(a+1)) (0) ® @/z(2)

annihilates only the divisible subgroups.
Proof: Assume first that € # char(K). The same argument as in the
proof of (7.8) shows the existence of an isomorphism

2d+3
[o]

H

8y S 2y 2(aey).

(You~g
2
This proves that a trace map exists. Now the exact sequence

0 — HN(Y.2(1))e(@/z)(2) — K (¥.u®Y) - (Y. z(1)) () — 0
12
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shows that Hr_l(Y.u®;) modulo its divisible subgroup is isomorphic to
e

HY(Y.Z(i))(£) modulo its divisible subgroup. Similarly

r+1

. (Y.Z(i)) — O

IEEON . T ®1i
0— HE(Y,Z(l)) — lim Hc(Y,uem) — T,H

shows that HZ(Y.Z(i))(E) modulo its divisible subgroup is isomorphic

to the torsion subgroup of ljim HZ(Y,M®;). Now the theorem follows
2

from (7.7) using (I1.0.20e).

The proof when & = p is similar.

Consider the following statement:
() for any smooth variety Y of dimension d over a finite field
and any constructible sheaf F on Y, there is a duality of finite
groups

Ext}(F.Z(d)) x 24 2(r,F) — 242 (r,2(0)) = @z
When F is killed by some m prime to the characteristic of k and we

2d+1

assume (b) and that Hc (Y,Z(d)) is torsion, this can be derived

from (7.6) in the same way as (7.8). When F is a p-primary sheaf, it

is necessary to assume the conjectured statement in (7.14).

Theorem 7.16. Let w: Y — U be a smooth proper morphism with fibres
of dimension d. Assume there exist complexes Z(i) satisfying the

conditions (a), (b), and (f): also assume (%) above, and that

H§d+3(Y.Z(d+l)) is torsion, so that there exists a canonical trace

map Hid+4(Y,Z(d+1)) =, Q/Z. Then for any locally constant
constructible sheaf F on Y, there is a nondegenerate pairing of

finite groups . 1.
2d+4-1 H2d+4
c

Exc;(F.Z(d)) x HS (Y.F) — (Y.Z2(d)) ® WZ.

Proof: First assume F has support on YZ for some closed subscheme Z
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of U, and write i for the closed immersion YZ <~ Y. The spectral

!
sequence RHomY (F.Ri'Z(d+1)) = RHomY(i*F,Z(d+l)) shows that
z
Ext;_z(F,Z(d—l)) = Ext?(i*F,Z(i)). Thus this case of the theorem
Z

follows from the induction assumption.

Next suppose that mF = O for some m that is invertible on U. In
this case then the theorem can be deduced from (7.6) in the same way
as (7.8).

Next suppose that pnF = 0, where p = char K. 1In this case the
statement reduces to ().

The last two paragraphs show that the theorem holds for the res—
triction of F to YV for some open subscheme V of U, and this can be
combined with the statement proved in the first paragraph to obtain

the full theorem.

In (4.11), we have shown that there is a nondegenerate pairing
r 4-r 4
ExtU(F®Z(l),Z(1)) X Hc (U.FeZ(1)) — HC(Z(I)) Y/

for any torsion-free Z-constructible sheaf F.on U. For a finite

field k, we also know that there is a nondegenerate pairing
Ext, (F8Z(0).Z(0)) x H>(k,F8Z(0)) — H(k.Z(0)) % Q/Z.

This suggests the following conjecture.

Conjecture 7.16. For any regular scheme Y of finite-type over Spec Z

and of (absolute) dimension d, there is a canonical trace map

H2d+2

. T(Y.z{d)) =, Q/Z. For any locally constant Z-constructible

sheaf F on Y, the canonical pairing
Ext)(F8'Z(1).2(d)) HM2 7T (v relz(1)) — H42(v,2(a)) = 0z

induces isomorphisms
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Ex (F8-2(1).2(d)) > sz+2_r(Y,F®LZ(i))*. r # 2(d-i)

Exe24 2 (ro'z(1) . 2(a))~ H2" 2 (v, Fel2 (1))

The conjecture has obvious implications for higher class field
theory.

Finally, we mention that [Lichtenbaum (1986)] has suggested a
candidate for Z(2) and [Bloch (1986)] has suggested candidates for
Z(r), all r. Also [Kato (1985/6)] has generalized (5.11) to a
relative theorem, and in the case of a surface [Etesse (1986a,b)] has

generalized it to other sheaves.

Notes: This section owes much to conversations with Lichtenbaum and

to his criticisms of an earlier version.



CHAPTER IIIX
FLAT COHOMOLOGY

This chapter is concerned with duality theorems for the flat
cohomology groups of finite flat group schemes or Néron models of
abelian varieties. In §1 — 84, the base scheme is the spectrum of
the ring of integers in a number field or a local field of character-
istic zero (with perfect residue field of nonzero characteristic).
In the remaining sections, the base scheme is the spectrum of the
rings of integers in a local field of nonzero characteristic or a
curve over a finite field (or, more generally, a perfect field of
nonzero characteristic). The appendices discuss various aspects of
the theory of finite group schemes and Néron models.

The prerequisites for this chapter are the same as for the last:
a basic knowledge of the theory of sites, as may be obtained from
reading Chapters II and III of [Milne (1980)]. All schemes are en-
dowed with the flat topology.

The results of the chapter are more tentative than those in the
first two chapters. One problem is that we do not yet know what is
the correct analogue for the flat site of the notion of a construct-—
ible sheaf. The examples of [Shatz (1966)] show that for any non—
perfect field K, there exist torsion sheaves F over K such that
Hr(Kfl,F) is nonzero for arbitrarily high values of r. In particu-
lar, no duality theorem can hold for all finite sheaves over such a
field. We are thus forced to restrict our attention to sheaves that

are represented by finite flat group schemes or are slight generaliz-
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ations of such sheaves. Another problem is that for a finite flat
group scheme N over an algebraically closed field k, the groups
Exti(N,Gm) computed in the category of flat sheaves over k need not
vanish for r > O (see [Breen (1969b)]); they therefore do not agree
with the same groups computed in the category of commutative alge-

braic groups over k, which vanish for r > O.

80 Preliminaries

We begin by showing that some of the familiar constructions for

the étale site can also be made for the flat site.

Cohomology with support on a closed subscheme

Consider the diagram
z-Lxd-u
in which i and j are closed and open immersions respectively, and X

is the disjoint union of i(Z) and j(U).

Lemma O.1. The functor j*i S(Xfl) — S(Ufl) has an exact left
ad joint j,.
Proof: For any presheaf P on U, we can define a presheaf j,P on X as

follows: for any morphism V — X of finite type, set
F(V.j!P) =0 P(Vf)

where the sum is over all maps f € HomX(V,U) and Vf denotes V re-
garded as a scheme over U by means of f. One checks easily that j,
is left adjoint to the restriction functor iP: P(Xfl) — P(Ufl) and
that it is exact. Let a be the functor sending a presheaf on Xfl to

its associated sheaf. Then the functor
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S(U, ) <> B(U, ) =L p 2, (X
(Ugy) Ug)) — PXg) = S(Xg)).
is easily seen to be left adjoint to j*. It is therefore right
exact. But it is also a composite of left exact functors, which

shows that it is exact.

Lemma 0.2. There is a canonical exact sequence
0> 3,iZ—>2—1i7—o0.

Proof: The maps are the adjunction maps. We explicitly compute the
two end terms. Let ¢: V — X be a scheme of finite type over U.
When V is connected, ¢ factors through U in at most one way. There-
fore, in this case, the presheaf j!Z takes the value Z on V if

¢(V) € j(U) and takes the value O otherwise. It follows that j!l is

the sheaf
Ve I(V,jzZ) = Hom(wé(V).Z)

where wé(V) is the subset of WO(V) of connected components of V whose
structure morphisms factor through U. Since I'(V,Z) = Hom(WO(V),Z),
it is obvious that j!j*l — Z is injective.

For any V, I'(V.1, Z) = Hom(wo(w_IZ),Z). which is zero if and only
if ¢(V)NZ = @. It clear from this that the sequence is exact at its
middle term, and that an element of r(v.i z) lifts to F(Vi,Z) for
each Vi in an appropriate Zariski open covering of V. This completes

the proof.

The map F » Ker(I'(X,F) — I'(U,F)) defines a left exact functor
S(Xfl) — Ab, and we write H;(X.—) for its rth right derived

functor.



270 III FLAT COHOMOLOGY

Proposition 0.3. Let F be a sheaf on Xfl'
Tr,.

(a) For all r, H;(X,F) = Exty(i,Z.F).

(b) For all r, Exty(j,Z.F) = Ext{](z,j*F).

(c) There is a long exact sequence
r r r
L= HZ(X.F) — H (X,F) — H (U,F) — ...

Proof: (a) On applying Hom(-.F) to the exact sequence in (0.2), we

get an exact sequence

%
0 — HomX(i*Z,F) - HomX(Z,F) - HomU(Z.J F)
or,

0 — Hom,(1,Z,F) — I'(X.F) — I'(U.F).

Therefore HomX(i*Z.F) =, Hg(X.F). and on taking the right derived
functors we obtain the result.

(b) Note that, because it has an exact left adjoint, j* preserves
injectives. It is also exact [Milne (1980), p68]. Therefore we may
derive the equality HomX(j!Z.F) = HomU(Z,j*F) and obtain an isomorph-
ism Exty(§,2,F) % Ext((Z.§°F).

(c) The Extx(—.F)—sequence arising from the exact sequence in

(0.2) is the required sequence.

Cohomology with compact support

Let X be the spectrum of the ring of integers in a number field
or else a complete smooth curve over a perfect field, and let K be
the field of rational functions on X. For any open subscheme U of X
and sheaf F on Ufl' we shall define cohomology groups with compact
support HZ(Xfl,F) having properties similar to their namesakes for
the étale topology. In particular, they will be related to the usual

cohomology groups by an exact sequence
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. > H(U,F) »H(U,F) - & H(K.F) — ...
¢ vex-u VY

where Kv is the field of fractions of the Henselization 03 of OV.

Let Z be the complement of U in X, and let Z' = U Spec K
v
vex-U
(disjoint union). Then Z' = lim VxXU, where the limit is over the

étale neighbourhoods V of Z in X:

Let i' be the canonical map i': Z' — U, and let F — I'(F) be an
injective resolution of F on Ufl' Then i'™ is exact and preserves
injectives, and so F|Z' — I'(F)|Z' is an injective resolution of
F|Z'. There is an obvious restriction map

u: T(U,I°(F)) — I'(z'.1'(F)|z').

and we define HC(U.F) to be the translate C (u)[-1] of its mapping

cone. Finally, we set HZ(U,F) = H'(H_(U.F)).

Proposition 0.4. (a) For any sheaf F on an open subscheme U C X,
there is an exact sequence

r r r

.—H (UF) -H (UF)— & H(K.,F)— ...
c vV
veX-U
(b) For any short exact sequence
O0O—F' —F—>DF" —>0

of sheaves on U, there is a long exact sequence of cohomology groups

. HZ(U,F') - H;(U,F) — H_(UF") — ...

(c) For any sheaf F on U and open subscheme V of U, there is an

exact sequence
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S HT(V.FIV) > H(U.F) — @ H(OBF) — ...
C [+ v
veu-v

(d) If F is the inverse image of a sheaf Fg on Uet' or if F is
represented by a smooth algebraic space, then HZ(Ufl,F) =
r .
H (Xet'J!F)'
(e) For any sheaves F and G on U, there are canonical pairings

r+s

e .6).

T S
ExtU(F,G) x HC(U,F) — H

Proof: (a) Directly from the definition of‘HC(U,F), we see that

there is a distinguished triangle
HC(U,F) — I(U,I'(F)) - (2.1 (F)lz') — HC(U,F)[I].

As H'(I'(U,1°(F))) = H'(U,F) and H'(I'(Z',1°(F)|Z')) = H'(2'.FIZ') =

& Hr(Kv.F), we see that the required sequence is simply the co-
veX-U

homology sequence of this triangle.
(b) From the morphism
0 — T(U,I(F')) — TI(U,I'(F)) — I'(U,I'(F")) — 0
L lu lun
0 —TI(zZ',1(F)|z2') - r@Z'.1(Fliz') — rz'.1 (r')|z'y — o
of short exact sequences of complexes, we may deduce (II.0.10a) the

existence of a distinguished triangle
HC(U,F )y[-1] — HC(U.F ) — HC(U.F) — HC(U.F").

This yields the required exact sequence.
(c) Let F — I'(F) be an injective resolution of F on U, and con-

sider the maps

r(v.1°(F)) = o I(X,.1"(F)) NI I(K,.I'(F)) @ FV(OS,I'(F))[l].
vev veU veUu-v

The map b is such that Hr(b) is the sum of the identity maps

Hr(KV,F) — Hr(Kv,F) (v €X-1)
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and the maps in the complex

H(00.F) — K (K .F) — B!

h
TP O)F) (veu-V).

From these maps, we get a distinguished triangle (II.0.10c)
C(b)[-1] — C (a) — C (bra) — C'(b).

Clearly C (a) = HC(V.F)[I]. We shall show that there exist isomorph-

isms C'(bea) ® HC(U.F)[IJ and C'(b) ¥ © T(O&.I'(F))[l] {(in the de-
veU-v

rived category). Thus the cohomology sequence of this triangle is
the required sequence.

From

. bea . h _.
r'(V,1'(F)) —/— @& I'(K ,I'(F e I (0 ,1I'(F 1
(V.1(7)) s @ MK, T (F) 8 I (0,1 (M)1]

<, g I‘v(Os,I'(F))[lj

veu-v
we get a distinguished triangle

C'(c)[-1] — C'(bea) — C'(cebcra) — C'(c).

But C (cebea) % I'(U,I"'(F))[1] and C' (c) * @& F(KV,I'(F))[IJ, which
veU

shows that C'(beca) % HC(U.F)[IJ.
Finally, the statement about C'(b) is obvious from the dis-

tinguished triangles (for v € U - V)
(@} 1°(F)) — (K. (F)) — I (6}, 1"(F)[1] — Il 1 (F)[1].

(d) Since H'(U_,.F) =5 H'(U;.F) and

fl°
r s by
H" ((Spec Kv)et'F) — H ((Spec Kv)fl’F)
[Milne (1980), III.3], this follows from a comparison of the sequence
in (0.4a) and with the corresponding sequence for the étale topology.

(e) Let c' € HZ(U.F), and regard it as a homotopy class of maps of

degree r

c't Z — Hé(U,F)[r]‘



274 IIT FLAT COHOMOLOGY

Let c € Exta(F,F'), and regard it as a homotopy class of maps of

degree s,
c: I'(F) — I'(F')[s].
On restricting, we get a similar class of maps
clz': T(F)|Z2' — (I"(F*)[Z")[s].

The last two maps combine to give a morphism HC(U,F) - HC(U,F’)[S],

and we define <c,c'> to be the composite of this map with c.

Remark 0.5. (a) Let i: Z <> Y be a closed immersion, and let F be a
sheaf on Z. The proof in [Milne (1980), II.3.6] of the exactness of
i, for the étale topology (hence the equality Hr(Uet,i*F) =
Hr(Zet,F)), fails for the flat topology.

(b) Note that the sequence in (c) has the same form as (II.2.3d)
except that in the latter sequence it has been possible to replace
Hr(Os,F) with Hr(v,i*F). In the case of the flat topology, this is
also possible if F is represented by a smooth algebraic space [Milne

(1980), III.3.11].

Remark 0.6. (a) In the case that X is the spectrum of the ring of
integers in a number field, it is natural to replace HC(U,F) with the

mapping cone of % S'(K ,F) —H(U,F). Then the cohomology
v arch vy ¢

groups with compact support fit into an exact sequence

. D H(UF) > H'(UF) >0 B (K.F) — ...

where the sum is now over all primes of K, including the archimedean

primes, not in U, and for archimedean v,

Hr(Kv,F) = H;(Cal(Kv‘s/Kv),F(Kv's)).

(b) In the definition of HZ(U,F) it is possible to replace K_with
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its completion. Then the sequence in (0.4a) will be exact with Kv
the completion of K at v, and the sequence in (0.4c) will be exact
with 02 replaced with BV. This approach has the disadvantage that
the groups no longer agree with the étale groups (that is, (0.4d)

will no longer hold in general).

The definition given here of cohomology groups with compact sup-
port is simple and leads quickly to the results we want. I do not
know whether there is a more natural definition nor in what general-

ity it is possible to define such groups.

Topological duality for vector spaces
Let k be a finite field with k elements, and let V be a locally
compact topological vector space over k. Write V¥ for the topo-

logical linear dual of V, V¥ = Homk'cts(v,k).

Proposition 0.7. The pairing
VW xV—c (f.v) » exp(gzi-Tr f(v))
’ : p k/IFp

identifies V¥ with the Pontryagin dual of V.

Proof: Let V* be the Pontryagin dual of V. The pairing identifies
V¥ with a subspace of V*. Clearly the elements of VY separate points
in V, and so VY is dense in V*. But VY is locally compact, and so it
is an open subset of its closure in V*; hence it is open in V*. As
it is a subgroup, this implies that it is also closed in V* and so

equals V*.

Let R be a complete discrete valuation ring of characteristic p

# 0 having a finite residue field k, and let K be the field of frac-—
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tions of R. The choice of a uniformizing parameter t for R deter-
mines an isomorphism K — k((t)) carrying R onto k[[t]]. Define a

residue map res: K — k by setting res(D> aitl) =a_;.

Corollary 0.8. Let V be a free R-module of finite rank, and let VY

be its R-linear dual. Then the pairing
x 2ri
VW x (WQK)/V—>C, (f,v) » exp(—E— Trk/IF (res(f(v)))
P

identifies V¥ with the Pontryagin dual of (VE@K)/V.

Proof: Consider first the case that V = R. Then R is isomorphic (as
a topological k-vector space) to the direct product of countably many
copies of k, and K/R is isomorphic to the direct sum of countably
many copies of k. The pairing (a,b) » res(ab): R x K/R — k iden-
tifies R with the k-linear topological dual of K/R, and so (0.7)

shows that R =, (K/R)*. In the general case, the pairing
VW x (V@K)/V — k, (f,v) » res(f(v))

similarly identifies V¥ with k-linear topological dual of (V®K)/V,

and so again the result follows from the proposition.

The Frobenius morphism
For any scheme S of characteristic p # O, the absolute Frobenius
map Fabs: S — S is defined to be the identity map on the underlying
P

topological space and a » a” on OS. It is functorial in the sense

that for any morphism w: X — S, the diagram

F b
X <205 x
I lx
abs

S «— S
commutes, but it does not commute with base change. The relative

Frobenius map FX/S is defined by the diagram
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F

abs
Fy/s df
X — x(PY XSy ) d Xxg p S
(») *“abs
lr Pl
g «2bs g
For any morphism T — S, Fx/sxTid = FX/T'
A scheme S is said to be perfect if F : S — S is an isomorph-

abs
ism. For example, an affine scheme Spec R is perfect if the pth

power map a b aP: R — R is an isomorphism. In the case that S is

perfect, it is possible to identify ﬂ(p): X(p) — S with
-1

Fabsov: X—S and;FX/S with Fabs'

A finite group scheme N over a scheme S is said to have height h

(o™ h-1
if FE/S: N—N is zero but FN/S is not zero. For any flat group
scheme N, there is a canonical morphism V = VN! N(p) — N, called the

Verschiebung (see [Demazure and Gabriel (1970), IV, 3, 4]).

The Oort-Tate classification of group schemes of order p
Let A = Z[f.(p(p—l))_l]ﬂlp. where { is a primitive pth root of

1, and the intersection is taken inside Qp. We consider only schemes
X such that the unique morphism X — Spec Z factors through Spec A.
For example, X can be any scheme of characteristic p because A has Fp
as a residue field. The following statements classify the finite
flat group schemes of order p over X (see [Oort and Tate, (1970)], or
[Shatz (1986), §4]).

(0.9a) It is possible to associate a finite flat group scheme N:,b

of order p over X with each triple (¥,a,b) comprising an invertible

sheaf ¥ over X, an element a € I‘(X,§£®p_1

b e r(x,<®

). and an element
l—p) such that a®b = wp for a certain universal element wp.

(0.9b) Every finite flat group scheme of order p over X is of the



278 III FLAT COHOMOLOGY

form Ni for some triple (¢.,a,b).

.b
(0.9c) There is an isomorphism Nz b - Ni. b’ if and only if
there is an isomorphism ¥ —> ¢' carrying a to a' and b to b'.

(0.9d) For all X-schemes Y,

N L) = {y e r(r.aoy) | y*P = asy ).

. £ L
(0.9¢) The Cartier dual of Na,b is Nb,a'
(0.9f) When X has characteristic p, W, = 0. If a =0 in this
case, then N has height one, and the p-Lie algebra of Ni b is ¢ with

the p-power map f » f(p) = be®f.

Duality for unipotent perfect group schemes

When the ground field is finite, our duality theorems will be
for the cohomology groups endowed with the structure of a topological
group. When the ground field is not finite, it will be necessary to
endow the cohomology groups with a stronger structure, namely the
structure of a perfect pro-algebraic group, and replace Pontryagin
duality with Breen-Serre duality. We now describe this last duality.

Let S be a perfect scheme of characteristic p # 0. The perfec-
tion pr of an S-scheme X is the projective limit of the system

Py ) F F g™ F
Xred é__-xred A e——-xred e

It is a perfect scheme, and has the universal property that
xPf

HomS(X,Y) = Hom, ,Y) for any perfect S-scheme Y.

o (
Let S be the spectrum a perfect field k. A perfect S-scheme X
is said to be algebraic if it is the perfection of a scheme of finite
type over S. From the corresponding fact for the algebraic group
schemes over S, one sees easily that the perfect algebraic group

schemes over X form an abelian category. Define the perfect site spf

to be that whose underlying category consists of all algebraic per-
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fect S-schemes and whose covering families are the surjective fami-
lies of étale morphisms. For any algebraic group scheme G ove S, the
sheaf on Spf defined by G is represented by pr. One checks easily,
that any sheaf on Spf that is an extension of perfect algebraic group
schemes is itself represented by a perfect algebraic group scheme.

We write S(pn) for the category of sheaves on Spf killed by pn.

Theorem 0.10. For all r > 0, Extl, (6P 6Pf) = o.
S(p)‘a '"a
Proof: See [Breen (1981)]. where the result is proved with the base

scheme the spectrum of any perfect ring of characteristic p # O.

Lemma 0.11. lLet f: Sfl - Spf be the morphism of sites defined by
the identity map. For any affine commutative algebraic group scheme
G on S, f*G is represented by pr and er*G =0 forr >O0.

Proof: We have already observed that f*G is represented by pr. If
G is smooth, then er*G = 0 for r > O because of the coincidence of
flat and étale cohomology groups of smooth group schemes [Milne
(1980), III.3.9]. We calculate er*G for G = ap and up by using the

exact sequences
F
O—>p —G¢ —5¢ —0
P m m
0—a —¢ —Eﬁ G — 0.
P a a
. . . pf pf r
Since F is an automorphism of Gm and Ga , we have R f*up =0 =
er*ap for all r. The general case follows from these case because,

locally for the étale topology, any G has a composition series whose

uoti é .
quotients are Gm' Ga’ ”p‘ ap, or an étale group scheme

By a p-primary group scheme, we mean a group scheme killed by a

power of p.
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Lemma 0.12. Let G be a perfect p-primary affine algebraic group
scheme on S; let U be its identity component, and let D = G/U. Then
D is étale and U has a composition series whose quotients are all
isomorphic to Ggf.

Proof: This is an immediate consequence of the exactness of f* and
the structure theorem for affine commutative algebraic group schemes

on S.

Let G(pn) be the category of perfect affine algebraic group
schemes on S killed by pn, and let G(pm) =U G(pn). Note that (0.12)
shows that G(pm) can also be described as the category of perfect

unipotent group schemes on S.

Lemma 0.13. Let G be a perfect unipotent group scheme on S; let U be
its identity component, and let D = G/U.
(a) If G is killed by pn, then there exists a canonical isomorph-
ism
Rfon G.Z/p"Z) =5 Riton(G.Q_/Z ).
SeR N ong(C- G/ Tp)
(b) Homg(C.Q/Z ) — Hong(D.Q /Z ). which equals D*. the Pont-
ryagin dual of D.
1 X 1 . .
(c) 8mCS(G,Qp/Zp) — €xCS(U,®p/Zp), which is represented by a
connected unipotent perfect group scheme; if U has the structure of a

Wn(k)—module, then there is a canonical isomorphism of Wn(k)—modules
1 x
Exts(G,Qp/Zp) - ﬂomwn(k)(U.Wn(Os)).
T
(d) 8xCS(G,Qp/Zp) =0 for r > 1.
Proof: (a) Choose an injective resolution I° of Qp/Zp. The usual

argument in the case of abelian groups shows that an injective sheaf

is divisible. Therefore the kernel Ién of pn! I° — I is a resolu-
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tion of Z/an, and it is obvious that it is an injective resolution

in S(pn). Consequently
Ryfoms(pn)(c.Z/p“Z) = omg 0y (G. 1 n) = Homg(C.1) = Riong(G.Q /7 ).
(b.c.d) When D = Z/pZ, the sequence
0 = Homg(Z/pZ.0/Z) ~ Hong(2,0/7) s dong(2.0/2) - 8xté(l/pZ,Q/Z) -0
shows that
Ritong(D,Q/Z) = Hong(D,Q/Z) = D*.

A general étale group D is locally (for the étale topology) an exten-
sion of copies of Z/pZ, and so the same equalities holds for it.
If U = Ggf, then (0.10) shows that the exact sequence

1-F

)(Ggf.cgf) — Hom !

0 -
= dom S(p)

(PF Py o gat @@z > ...

S(p S(p)

yields an isomorphism
Ritom, (&P 2/p2) =~ ¢[-1]
S(p)*a

where G is the cokernel of 1 - F. It is well-known (see for example

[Serre (1960)]) that G = Ggf. Therefore 8xté(Ggf.Z/pZ) =

8xtl (pr Q/Z) is connected, and £x£r(pr Q/Z) =0 forr #1. A
S(p)ta ’ St7a ’

general connected unipotent group U is an extension of copies of Ggf,

and so 8@6§(U,Q/Z) is connected for r = 1 and zero for r # 1.

Suppose that U has the structure of a Wn(OS)—module. The Artin-

Schreier sequence
0 =2/ —w_(0.) Tl w (o)) — 0
n'’'S n'’S

gives a morphism Wn(OS) — (Z/an)[lj in the derived category of

S(pn). and hence a canonical homomorphism

Jfomwn(Os)(U,wn(OS)) — Rfl[oms(pn)(U,Z/an) ,

which is Wn(OS)—linear for the given structure on U. One checks
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easily that Excl (U,W_(0.)) = 0: as U has a filtration by sub-
Wn(OS) n''S

Wn(OS)-modules such that the quotients are linearly isomorphic to
sz, it suffices to show that this homomorphism is an isomorphism for
U= sz, which is assured by (0.10). It follows that the homomorph-
ism is an isomorphism.

The assertions (b), (c). and (d) now result in the general case

from making use of the exact sequence

0—»U—G—D—>0.

For any perfect connected unipotent group U, we write U for
8mcé(U.Qp/Zp). Let Db(G(pw)) be the full subcategory of the derived
category of S(Spf) consisting of those bounded complexes whose coho-

R . b G .t
mology lies in G(p ). For any G' in D' (G(p )), define G'~ =

Rifong(G™.Q /Z ).

.. b © .t . b ®
Theorem 0.14. For any G* in D (G(p )). G*~ also lies D (G(p )). and

there is a canonical isomorphism G’ =, G'tt. There exist canonical
exact sequences

0 - Ul )y »H TG Y - D (e)" — o,
where Ur(G‘) is the identity component of Hr(C') and Dr(G') =
H (¢ )/ (G).
Proof: The cohomlogy sheaves of Rﬁoms(G',Qp/Zp) are the abutment of
the spectral sequence

r,s _ T, =S, - r+s ..

E2 = ach(H (G ),Qp/lp) = gmcs (G .Qp/lp).

After (0.13), E;‘S =0 for r # 0,1, so that the spectral sequence

reduces to a family of short exact sequences
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0 > goeg(H!

(c‘).mp/zp) N gxc;r(c',mp/zp) - %omS(Hr(G').Qp/Zp) -0,
which are the required exact sequences. They imply moreover that G't
is in Db(G(pm)) because G(pw) is stable under extension. Finally one
shows that the homomorphism of biduality G° — G'tt is an isomorphism

by reducing the question to the cases of 2/pZ and Ga' which both fol-

low directly from (0.13).

Remark 0.15. Denote by ExtE(G,H) the Ext group computed in the cat-
egory of affine perfect group schemes over k. Each such Ext group
can be given a canonical structure as a perfect group scheme, and
(0.10) implies that, when G and H are unipotent, ExtE(G,H) agrees

with gxcg(c,n).

Pairings in the derived category

We review some of the basic definitions concerning pairings in
the derived category. For more details, see [Gamst and Hoechsmann
(1970)] or [Hartshorne (1966)].

Fix a scheme X, endow it with a Grothendieck topology, and write
S(X) for the resulting category of sheaves. Write C(X) for the cat-
egory of complexes in S(X), and K(X) for category with the same ob~
Jects but whose morphisms are homotopy classes of maps in C(X). The
derived category D(X) is obtained from K(X) by formally inverting
quasi-isomorphisms. Thus, for example, a map A° — B and a quasi-
isomorphism B° «~— C* define a morphism A° — C’ in D(X). As usual,
C+(X), C (X). and Cb(X) denote respectively the categories of com-
plexes bounded below, bounded above, and bounded in both directions.
We use similar notations for the homotopy and derived categories.

Since S(X) has enough injectives, for every A° in C+(X). there is a
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quasi-isomorphism A’ —5 I(A") with I(A’) a complex of injectives,
and there is a canonical equivalence of categories I+(X) —_ D+(X),
where I+(X) is the full subcategory of K+(X) whose objects are com—
plexes of injective objects.

Recall that a sheaf P is flat if -®P: S(X) — S(X) is exact.
For any bounded-above complex A’, there is a quasi-isomorphism
P(A7) —5 A" with P(A") a complex of flat sheaves. If B' is a second
bounded-above complex, then P(A")®B’ is a well-defined object of
D(X). which is denoted by A'@LB'. Despite appearances, there is a
canonical isomorphism A'@LB' = B'®LA'.

Let M and N be flat sheaves on X, and let A" and B" be objects

of Cb(X). There is a canonical pairing

Extf(M.A°) x ExtS(N.B') — Exty (8N,A'8'B)

that can be defined as follows: represent elements f € Ext;(M,A') and
g € Exti(N,B') as homotopy classes of maps f: M — I(A")[r] and

g: N — I(B )[s]: then f@g is represented by
MON — I(A")[r]®I(B )[s] «— P(I(A'))®I(B")[r+s].

The pairing is natural, bi-additive., associative, and symmetric (up
to the usual signs). It also behaves well with respect to boundary
maps [Gamst and Hoechsmann, ibid.]}. A similar discussion applies
when N is not flat — replace it with a flat resolution.
Consider a map A'@LB' —> G'. The above discussion gives a pair-
ing
HT(X.A") x Extg(M.B") — Exty ~(M.G').

There is also the usual (obvious) pairing

Exty(B",G') x Exty(M.B") — Ext)r("s(M,c').

The map A'@LB' — G define a map A" — Hom(B',C") and hence edge
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morphisms H' (X,A") — Exty(B".G").

Theorem 0.16. The following diagram commutes:

H (X.A") x Extg(M.B') — Exty S(M.G")
1 I !

o s ; + .
Ext;(B :G') x Exty(M,B") —>Ext)r( SMM,G').

Proof: See [Gamst and Hoechsmann (1970)].

Notes: The definition of cohomology groups with compact support for
the flat topology is new, and will play an important role in this
chapter.

The duality for unipotent perfect group schemes has its origins
in a remark of Serre [Serre (1960), p55] that Ext’s in the category
of unipotent perfect group schemes over an algebraically closed field
can be used to define an autoduality of the category. For a detailed
exposition in this context, see [Bégueri (1980), §1]; Serre in fact
worked with the equivalent category of quasi-algebraic groups. The
replacement of Ext’s in the category of perfect group schemes with
Ext's in the category of sheaves, which is essential for the applica-
tions we have in mind, is easy once one has Breen's vanishing theorem
(0.10). Our exposition of the autoduality is based on [Berthelot
(1981), II] (which, in turn, is based on [Milne (1976)]).

Most of the rest of the material is standard.

81 Local results: mixed characteristic, finite group schemes

Throughout this section, R will be a Henselian discrete valua—

tion ring with finite residue field k and field of fractions K of
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characteristic zero. In particular, R is excellent. We use the same
notations as in (II.1): for example, X = Spec R and i and j are the
inclusions of the closed point x and the open point u of X into X.
The characteristic of k will be denoted by p and the maximal ideal of

R by m.

Lemma 1.1. Let N be a finite flat group scheme over R.

(a) The map N(R) — N(K) is a bijective, and H'(X.N) — H'(K,N)
is injective; for r » 2, H'(X,N) = O.

(c) The boundary map Hr(K.N) - H;+1(X,N) defines isomorphisms
i (kN RN) 5 I(X.N) and H2(K.N) =5 HO(X.N): for © # 2.3,
H;(X,N) = 0.
Proof: (a) As N is finite, it is the spectrum of a finite R-algebra
A. The image of any R-homomorphism A — K is finite over R and is
therefore contained in R. This shows that N(R) = N(K). An element c
of Hl(X.N) is represented by a principal homogeneous space P over X
[Milne (1980), III.4.3]. and ¢ = O if and only if P(R) is nonempty.
Again P is the spectrum of a finite R-algebra, and so if P has a
point in K then it already has a point in R.

From Appendix A, we know that there is an exact sequence
0—>N-—>2GC—>G —0

in which G and G' are smooth group schemes of finite type over X.
According to [Milne (1980), III.3.11], H'(X.G) = H'(k.Go) and
Hr(X,G') = H'(k.G¢) for r > O, where G, and Gé are the closed fibres
of G and G' over X. The five lemma therefore shows that

H (X.N) = H'(k.No) for r > 1. We now use that there is an exact

sequence

0 — Ng — C1 —_ Gi — 0
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with Gl and Gi smooth connected group schemes over k (for example,
abelian varieties). By Lang’s lemma, Hr(k,Gl) =0 = Hr(k,Gi) for
r >0, and it follows that H'(k,Ng) = O for r > 1.

(b) This follows from the first statement because of the exact

sequence
T T r
.- Hx(X,N) — H (X,N) — H (K.N) — ...

and the fact that Hr(K,N) =0 for r > 2 (K has cohomological dimen-—

sion 2).

Remark 1.2. The proof of the lemma does not use that K has char-
acteristic zero. The same argument as in the proof of (a) shows that
Hr(X.N) =0 for r 2 2 if N is a finite flat group scheme over any

Noetherian Henselian local ring with finite residue field.

Let F be a sheaf on X. The pairing
r S, . r+s .
ExtX(F,Gm) x Extx(l*Z,F) — ExtX (1*Z,Gm)
can be identified with a pairing
T s r+s
Extx(F,Gm) x HX(X,F) — Hx (X.Cm),
see (0.3a). Since Gm is a smooth group scheme, the natural map

H;(Xet‘cm) - H;(Xfl.Gm) is an isomorphism for all r, and so (see

II1.1) there is a canonical trace map Hi(X Gm) =, Q/Z. Let N be a

fl’
finite group scheme over X. The sheaf defined by the Cartier dual ND

of N can be identified with ﬂom(N.Gm), and the pairing ND x N — Cm
defines a pairing H'(X.N') x K> T(X,N) — H(X.C ) = @Z.

This can also be defined using the edge morphisms

HS(X,N?) — ExtS(N.G ) and the Ext-pairing (O.16).
X m
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Theorem 1.3. For any finite flat group scheme N on X,
H(X.N?) x Hz_r(X,N) N Hi(x,cm) -z

is a nondegenerate pairing of finite groups, all r.

Proof: We shall give two proofs, but first we list some corollaries.

Corollary 1.4. For any finite flat group scheme N over X, HI(X.ND)

is the exact annihilator of HI(X.N) in the pairing
m (x.N?) x H(K.N) — H2(K,o:m) -z

of (1.2.3).

Proof: The diagram

Ll
o

1 (x.8?) x H'(x.N) — H2(X,Gm)
l ! 1
LKD) x B (KN — HE(KLC ) = @z
shows that Hl(X,ND) and HI(X.N) annihilate each other in the pairing.
For r =1, (1.1) allows us to identify the pairing in the theorem
with

HOGND) < H RN (RGN — (K6 ).

Thus we see that the nondegeneracy of the pairing in this case is

equivalent to the statement of the corollary.

Corollary 1.5. Let N be a finite flat group scheme on X. For all
r < 2p-2,
r -T 3
Exty(N.€ ) x Hf’( (X.N) = H(X.G ) = 0/Z

is a nondegenerate pairing of finite groups.
Proof: Let N(p) be the p-primary component of N. According to

[Breen (1975)], gxc)‘;(N(p).a;m) =0 for 1 < r < 2p-2, and as we ex-
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plained in the proof of (II1.4.10), this implies that ExCQ(N,Gm) =0
for 1 < r < 2p-2 (8xti(N,Gm) = 0 by [Milne (1980), III.4.17], and
Exc;(N(e),Gm) =0 for r > 1 and £ # p because N(2) is locally con-
stant for the étale topology). Hence Hr(X,ND) = Extr(N,Gm) for

r < 2p-2.

Write f: Xfl - Xet for the morphism defined by the identity

map.

Corollary 1.6. Let N be a quasi-finite flat group scheme over X
whose p-primary component N(p) is finite over X. Let ND be the com—

plex of sheaves such that

#om, (N(£).C ) ¢
N(e) = { y X1 m ‘
£ Rﬂomxet(N(e),Gm) e #p

1}
il

Then

/z

D —
H(X.N°) x H) T(X.N) — Hi(X,Gm)

is a nondegenerate pairing of finite groups.
Proof: For each & # p, Hz(X,N(B)) = Hi(Xet,N(e)) and HT(X.N’(2)) =
r r
H (Xet,RJlomX (N(B).Gm)) = Extx (N(e).Gm). Therefore, for the
et et
prime-to~p components of the groups, the corollary follows from

(I1.1.8). For the p component it follows immediately from the

theorem.

Question 1.7. Does there exist a single statement that fully gener-

alizes both (1.3) and (I1.1.8b)?

The first proof of Theorem 1.3

The first proof is very short, but makes use of (A.6). We begin
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by proving a duality result for abelian schemes.

Proposition 1.8. Let o be an abelian scheme over X, and let o* be

its dual. Then the pairing

t 2-
H'(X.d') x B2 T (X.d) — H(X.C ) = @/Z

LM - Gm (see Appendix C)

defined by the canonical biextension dtﬁ
induces an isomorphism HO(X,sAt)A - Hi(X,d)* (~ denotes the comple-
tion for the profinite topology): for r # O, both groups are zero.
Proof: Let A and 4, be the open and closed fibres respectively of
d/X. Then H' (X.4) = H (x.4o) for r > O (see [Milne (1980), I.3.117]).
and Hr(X,do) =0 for r > O by Lang’s lemma. Moreover, A(X) = A(K)
because o is proper over X. Therefore H;(X,d) is zero for r { 1 and
equals H'T'(K.A) for r > 1. Hence HX(X.4) = H'(K.A). and I (X.d) = 0
for all other values of r. Consequently, when r = O, the pairing

becomes
HOK.AY) x K(K.A) — B(K.6 ) = ¥Z,

and both groups are zero for all other values of r. The proposition

now follows from (I.3.4).

We now prove (1.3). Note that the Lemma 1.1 implies that
HO(X,N) and HI(X,N) are finite (NK is a finite étale group scheme).
According to (A.6) and (A.7), N can be embedded into an exact se-

quence
O0O—>N—d—>3—>0

with f and # abelian schemes over X. This leads to an exact coho-

mology sequence

2 2 2
0 — HX(X.N) — H2(X.o) — H(X.5) — H(X.N) — 0,
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which we regard as a sequence of discrete groups.
There is a dual exact sequence

0—-NW sat Sut 5o

(see Appendix C), which leads to a cohomology sequence
0 — HxN) - BOx.28%) — Hox.4%) — H (x.\°) — o.

The two middle terms of the sequence have natural topologies, and the
two end terms inherit the discrete topology. Therefore the sequence
remains exact after the middle two terms have been completed. The
theorem now follows from the diagram
0 — HxN) - .85 - KO« — 1l x.F) - o
1 lx Iz !

0 = XN - HK) — B xa) — H2(X.N")*— 0.

The second proof of Theorem 1.3

The second proof will use p-divisible groups, for whose basic
theory we refer the reader to [Tate (1967b)] or [Shatz (1986)]. In
order to simplify the argument, we shall assume throughout that R is
complete.

Let H = (Hu.iv w31 be a p-divisible group over X. Let L be a
finite extension of K, and let RL be the integral closure of R in L.
Then the group of points H(RL) of H with values in RL is defined to
be l‘i_m H(R, /m ). where H(R /mi) &F Lip H (R /m). Let M, = U H(R, )
where L runs over the finite extensions of K contained in KS. Then

MH becomes a discrete module under the obvious action of Gal(KS/K).

Lemma 1.9. (a) The group H(R) is compact if and only if its torsion

subgroup is finite.
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(b) The group of elements of MH fixed by GK is H(R).

(c) The sequence of Gal(KS/K)—modules
2
0 —H (K ) — My My — 0

is exact.

Proof: (a) Let H® be the identity component of H. Then H°(R) is an
open subgroup of H(R), and H(R)/H°(R) is torsion. Since H°(R) is
compact and its torsion subgroup is finite (H(R) is isomorphic to

Rdlm(R)), the assertion is obvious.

(b) It suffices to show that H(RL)G = H(R) for L a finite Galois
extension of K with Galois group G. When we write H = Spf A, H(RL)
is the set of continuous homomorphisms A — RL' and so the assertion
is obvious.

(c) The sequences

. - U] :
i i i
0 —H (R /mR ) — H(R /m'R)) 2, H(R /m'R) )
are exact, and so on passing to the inverse limit, we obtain an exact

sequence
v
0 —H (R ) — H(R)) 2N H(R} ).

The term HD(RL) has its usual meaning, and we have observed in (1.1)
that HU(RL) = HD(L). Therefore on passing to the direct limit we
obtain an exact sequence
2
0 — HD(KS) — MH MH.
It remains to show that p: M, — M, is surjective. If H is

H H
étale, then MH = H(ks), which is obviously divisible by p. If H is
connected, say H = Spf A, then the map p: H — H turns A into a free
A-module of finite rank, and so the divisibity is again obvious. The

general case now follows from the fact that
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et
0 — HO(RL) — H(RL) — H (RL) — 0

is exact for all L (see [Tate (1967b), pl168]).

Let H* be the p-divisible group dual to H (ibid. 2.3), so that

Proposition 1.10. Assume that the torsion subgroups of H(R) and

Ht(R) are both finite. Then there is a canonical pairing
H'(K.M ) x HR) — @/Z
H
which identifies the discrete group Hl(K,M t) with the dual of the
H

compact group H(R).
Proof: From the cohomology sequence of the sequence in (1.9c), we

get an exact sequence
0 »uR)P) SulH ) - RKM)  — o0
o 'MH pv :

I claim that the first map in the sequence factors through
HI(X,HD) e Hl(K,Hv). Note first that it is possible to define H(R')
for any finite flat R-algebra R'. Let P € H(R); then the inverse
image P under pD: H — H (regarded as map of functors of finite flat
R-algebras) is a principal homomgeneous space for HD over X whose
generic fibre represents the image of P in HI(K,HD). This proves the
claim.

As we observed in the proof of (1.4), the images of HI(X,HE) and

Hl(X.Hu) annihilate each other in the nondegenerate pairing

Hl(K,HB) x HU(K.H ) — H2(K,Gm) = WI.

v v
Therefore, the images of Ht(R)(p ) and H(R)(p ) annihilate each other

under the same pairing, and so the diagram
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o— H®m®) H(K.H)
I~

D
0 — (Hl(K,MHt) O =l — utr) (P>
p

v
shows that the pairing induces an injection H(R)(p ), (HI(K,M t) D)%
H" p

In the limit this becomes an injection

Lim HRy® ) o (ip (' kM ) )" = wlan )%
H H

p
(")
and because of our assumption on H(R), 1im H(R) P2 H(R).
We therefore have a injection H(R) — HI(K,M t)*. and to prove
H
that it is surjective, it suffices to show that [H(R)(p)] =
[Hl(K,M t)p]. This we do using an argument similar to that in the
H
proof of (I.3.2). From (I.2.8)., we know that
. ~h t
x(K.Hj) = (R:pR) = = x(K.H))

where h is the common height of H and Ht. The logarithm map [Tate
(1967b), 2.3] and our assumptions on H(R) and Ht(R) show that H(R)
and Ht(R) contain subgroups of finite index isomorphic to Rd and Rd
repectively where d and d' are the dimensions of H and Ht. Therefore
d t t d'

e PYmE) ] = ®ed P ymtw = @en?

From the cohomology sequence of
t
0—>H1(Ks)—>Mt—p—>Mt—-aO

H H
we see that

ity - [H°R),]  [H(K.H))]
H) = :

tooy(P) 1
[H(R)*/] [H (K-MHt)p]
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1 1 [HO(K,HI)]

" ®pR)" @) [ (KM ) ]
H p

But d + d' = h [Tate (1967b), Pptn 3], and so this shows that

B H )1 = ®eeny® D)1 = pnewy (P,

as required.

Remark 1.11. The proposition is false without the condition that the
torsion subgroups of H(R) and Ht(R) are finite. For example, if

H= (2/6"2),, . then H(R) (= Q/2_) and HI(K,MHt) are both infinite

and discrete, and so can not be dual. If H = (1 v)u>1’ then
pl b2

HR) = {a €R | a =1 mod m)

and HI(K,M ) = Hom(Gal(K /K),Qp/Z ). which are not (quite) dual.
Ht s p

We now complete the second proof of (1.3). For r = 0, the pair-
ing can be identified with the pairing
x.N) x B2(K.N) — H2(K,Gm) -z
of (1.2.3), and for r # 0,1 both groups are zero. This leaves the
case r = 1, and we saw in the proof of (1.4) that this case is equiv-
alent to the statement that Hl(X,ND) and HI(X,N) are exact annihilat-

ors in the duality between Hl(K,ND) and HI(K.N). We know that the

groups in question do annihilate each other, and so
1 1 1 D
[H(K.N)] > [H°(X,M)][H (X.N")].

and to show that they are exact annihilators it suffices to prove
that equality holds.

According to (A.4) and (A.7), there is an exact sequence
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0—N—DH-H —0

with H and H' p-divisible groups. Moreover from the construction of
the sequence, it is clear that H, H', and their duals satisfy the
hypotheses of (1.10). Write H' (X,H) for lim Hr(X,HU), and let

1 (R)(?) = Coker(e: H(R) — H'(R)) and

Ker(¢: H'(X.H) — H'(X.H")).

1
H" (X.H
(X.H),
The cohomology sequence of the above sequence and its dual
D t 9" ot
0—-N —H"HH S0

show that

' = o Pt oom 12 @7 and

t t
1 D t 1 ,t t
il x.)] = @ e 12 e ).
¢
On combining the three inequalities, we find that

w2 teem a1 > e )97 )7,

t
It follows from (1.10) that H'“(R) - H(R) is dual to

t
1 ] 1 t (¢7) 1
H™ (K, — H (K,M,,), and H"(R = [H (K, . But
(K.M,) (K.My.). and so [H°R) P )] = (i (kM) 1. Bu
[Hl(K,N)] = [H'(R)(w)][Hl(K,MH)¢], from which it follows that all of
the above inequalities are equalities. This completes the second

proof of (1.3).

Remark 1.12. The above argument shows that for any isogeny
¢: H — H' of p-divisible groups over X, H'(R)(w) - Hl(X,Ker(¢))
and Hl(X,H)W = 0, provided the torsion subgroups of H(R) and Ht(R)

are finite.

A duality theorem for p—divisible groups

If A is an abelian variety over K, then (I.3.4) shows that there
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is an exact sequence
0 — A(K)8Q/Z, — H' (K.A(P)) — A'(K)*(») — O.

Our next result is the analogue of this for p-divisible groups. Re-

call that H'(K.H) & 1im H'(K.H ).

Proposition 1.13. Assume that R is complete, and let H be a
p-divisible group over X such that the torsion subgroups of H(R) and

Ht(R) are finite. Then Hl(X,H) = 0, and there is an exact sequence
1 [P,
0 — H(R)®/Z — H (K.H) — H (R) — O.
Proof: On applying Remark 1.12 to the isogeny pv: H — H, we find
") = .1 1 1
that H(R)\'P / = ¢ (X.H)) and H (X,H) _ =0. As H (X.H) is
p

p-primary, the equality shows that it is zero. From (1.4) we know

there is an exact sequence
1 1 1 t*
0 —H (X'Hv) — H (K,HU) — H (X'Hv) — 0.
On using the isomorphism to replace the first and third terms in this
sequence, we obtain an exact sequence
v v
0 —»HR)P) S ulKH) —H'®P* o

Now one has only to pass to the direct limit to obtain the result.

Euler-Poincaré characteristics

If N is a finite flat group scheme over X, then the groups
Hr(X,N) are finite for all r and zero for r > 1. We define x(X,N) =
[HO(X,N)]/[HI(X.N)]. Let N = Spec B. Recall that the order of N is
defined to be the rank of B over R, and the discriminant ideal of N

is the discriminant ideal of B over R.
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Theorem 1.14. Let N be a finite flat group scheme over X, and let n
be its order and d its discriminant ideal. Then (R:d) is an nth

power and
x(X.N) = (Rid) 7™

Proof: When N is étale, H (X,N) = H (g.N(R"™)). and so both sides of
the equation are 1. This allows us to assume that N is local. We
can also assume that R is complete because passing to the completion
does not change either side. Consider an exact sequence

0—>N—H-%5H -0

with H and H' connected p-divisible groups. As Hl(X,H) =0,
df
x(X.N) = z(#(R)} = [Ker ¢(R)]/[Coker ¢(R)].

Write H = Spf A and H' = Spf A'. Then A and A' are power series
rings in d variables over R, where d is the common dimension of H and
H'. The map ¢ corresponds to a homomorphism gpat A' — A making A
into a free A'-module of rank n. It also defines a map

a 1 1

de : QA'/R ——-)QA/R.

Lemma 1.15. Choose bases for Qi'/R and Q,i/R’ and let 6' and 6 be the
corresponding basis elements for AdQA./R and AdQA/R over A' and A
respectively. If Addwa: AdQ - AdQ maps 6' to aB, a € A, then

A'/R A/R

NA/A‘a generates the discriminant ideal of A over A'.

Proof: This follows from the existence of a trace map

d d
Tr: A QA/R — A QA'/R: see [Tate (1967b), pl65].

Let ©AR and 2R be the R-modules of invariant differentials

. . . : 1 . .
on H and H' respectively. The inclusion V) B QA/R induces iso

. A1 X L1 .
morphisms ("A/RQRA —_— QA/R and Vs S QA/RG’AR' Let 6 and 6' be
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basis elements for Ade/R and AdmA./R. On taking 6 and 6' to be 681
and 6'81 in the lemma, we find that d¢®(0') = a8, a € R, and that the
discriminant ideal of A over A' is generated by a”. Since A@A.R = B,
where B = F(N,ON), this shows that the discriminant ideal b of N is
generated by a. It remains to show that x(X.N) = (R:aR).

Let T(H) and T(H') be the tangent spaces to H and H' at zero.
They are dual to AR and @pRe and so aR is equal to the deter-
minant ideal of the map of R-modules de¢: T(H) — T(H'). Recall [Tate
(1967b), 2.4] that there exists a logarithm map log: H(R) — T(H)@RK.
and that if we choose an isomorphism A X R[[Xl""'xd]]' then for any

c with cp-1 < |pl. log gives an isomorphism between
H(R)C = {x € H(R)| ]xil < call i}
and
T(H), = {r € T [7(X;)| < c all i} = p°T(H).
From the commutative diagram

¢
H(R), = H'(R),
xllog xllog

T(H), Eff?ii»'r(n-)c
we see that (R:det(dp)) = (Ridet(dy)_) = [Coker(¢_)]. But
[Coker(9,)] = () (H(R) SH(R) ) (' (R) K" (R) )"
and (H(R):H(R)_) = p?(°71) - (H'(R):H'(R)_). Therefore

(R:aR) = (R:det(de)) = z(¢) = x(X.N).

For a finite flat group scheme N over X, define
. [IC(X.N) ]
X, (X.N) —/—I-T—- H;
{ [HXSX,N)]
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Corollary 1.16. Let N be a finite flat group scheme over X, and let

n be its order and ® its discriminant ideal. Then
-1/
X (X.N) = (RenR) (R:2) 77

Proof: From the cohomology sequence of X D u, we find that

-1/n

X (X.N) = x(XMx(K.N) = (R:oR) T P(RenR)

(see (1.14) and (I.2.8).)

As Hr(X,N) is dual to Hi_r(X,ND), x(X,N)xx(X.ND) = 1. Therefore
(1.14) and (1.16) imply that b(N)b(ND) = (nn). This formula can also

be directly deduced from the formulas

Normy, D(N) = b(N),  S(M)D(N’) = (n).
where D(N) and S(ND) are the differents of N and ND and B = F(N,ON)
(see [Raynaud (1974), Pptn 9] and [Mazur and Roberts (1970), A.2]).
Let N be a quasi-finite, flat, separated group scheme over X.
Because X is Henselian, there is a finite flat group scheme Nf CN
having the same closed fibre as N; moreover, N/Nf is étale and it is
the extension by zero of generic fibre (cf. [Milne (1980), I.4.2c]).
In this case we write nf and bf for the order of Nf and its discrim-

inant ideal.

Corollary 1.17. Let N be as above.

f
(a) x(X.N) = (R:o])71/™.

f —1/nf
(b) X (X.N) = (RinR)(R:d") /™.
Proof: (a) From the cohomology sequence of

0 — Nf -~ N — N/Nf — 0

we find that x(X,N) = x(X.Nf)x(X.N/Nf). Therefore it suffices to
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prove the formula in the cases that N = Nf or Nf = 0. In the first

case, it becomes the formula in (1.14), and in the second N = j,NK,

and so both sides are 1.

(b) Again, it suffices to prove the formula in the cases N = Nf or

Nf = 0. In the first case the formula becomes that in (1.16). In

the second, H'(K.N,) =5 H-*1(U.N), and so X (X.N) = X(K,NK)‘1 -

(R:nR) by (I.2.8).

Corollary 1.18. Let H = (Hv)v)l be a p-divisible group over X; the
x(X,HD) = (R:pdvR), where d is the dimension of H.
Proof: According to [Tate (1967b), Pptn 2], the discriminant ideal

hv

dvp hv

hy -
of HD is generated by p Therefore x(X.Hu) = ((R:pdDR)p )p

= R:p%R).

Extensions of morphisms

For each finite group scheme N over X, define h(N) =
(NK,Hl(X,N)). A morphism h(N) — h(N') is a K-morphism vt N — Nk
such that H'(p,): HU(K.NY) — H'(K.Ny) maps H'(X.N) into HI(X.N').

Theorem 1.19. The functor N » h(N) of finite group schemes over X is
fully faithful; that is, a homomorphism Py NK — Nk extends to a
homomorphism ¢: N — N' if and only if H1(¢K) maps HI(X,N) into
Hl(X,N'), and the extension is unique when it exists.

Proof: This is the main theorem of [Mazur (1970b)].

Examples

Assume that K contains the pth roots of 1. For each a,b € R
with ab = p, there is a well-defined finite flat group scheme Na,b
over R given by the classification of Oort and Tate (cf. 0.9). It is
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a finite group scheme of order p and discriminant aP. Therefore

X(X.N_ ) = (R:aR).
: th df . :

Because K contains a p root of 1, m = ord(p)/(p-1) is an in-
teger. We say that Na b splits generically if its generic fibre is
isomorphic to Z/pZ. This is equivalent to a being a nonzero
(p - 1)St power in R. Choose a uniformizing parameter w in R. Then
the generically split group schemes of order p over R correspond to
the pairs (a,b) with a = ﬂ(p—l)l. 0<i¢m and b = p/a. For ex-

ample, if a = 1, then N = Z/pZ, and if a = #PD™ _ (Gnit)p, then N

=n,. Let U R and U1 = {a € U| ord(1-a) > i}.
Proposition 1.20. Let N be a finite flat generically split group
scheme of order p over X. Then there is a nonzero map ¢: N — up,
and for any choice of ¢, the map H(¢): Hl(X,N) - HI(X,up) identifies
HY(X,N) with the subgroup U(HIUP/UP of Hl(x,up) = UUP, where
i = pm - ord(disc N)/(p-1).

. (p-1)i
Proof: Let N =N and suppose a = T . Then, for any

a,b’

X-scheme Y, N(Y) = {y € F(Y,OY)I yp ay}, and so y » yw(m_i) defines

a morphism of functors N(Y) — up(Y) and hence a nonzero map N — My
For the proof of the proposition, one first shows that the image of
HI(X,N) is contained in U(i)Up/Up and then uses (1.14) to show that

it equals this group. See [Roberts (1973)].

More explicitly, if N = Na b with a = w(p—l)i, then Hl(X.N) =
U(j)Up/Up, where j = p.ord(p)/(p-1) - pi. For example, if a =1 so
that N = Z/pZ, then Hl(X,N) = U(pm)up/Up, and if N = w(p—l)m so that

N=p. then wx.n = v(OvPP.

Remark 1.21. In the examples in (1.20), the map Hl(X.N) — Hl(Xi.N)



§2 LOCAL: MIXED CHARACTERISTIC, ABELIAN VARIETIES 303

is an isomorphism for i >> 0. This is true for any finite group
scheme N, as can be easily deduced from the exact sequence
H(R) — H'(R) — HY(X,N) >0

arising from a resolution of N by p-divisible groups.

Notes: Theorems 1.3 and 1.14 are due to Mazur and Roberts ([Mazur
and Roberts (1970)] and [Mazur (1970a)]). The second proof of (1.3)
and the proof of (1.14) are taken from [Milne (1973)]. The first

proof of (1.3) is new. Theorem 1.19 is due to Mazur [Mazur (1970b)].

82 Local results: mixed characteristic, abelian varieties

The notations are the same as in §1. Except in the last two
results, X will be endowed with its smooth topology.

Let A be an abelian variety over K, and let of be its Néron model
over X. As in Appendix C, we write #° for the open subgroup scheme
of o whose closed fibre d; is connected. There is an exact sequence

of sheaves on X
sm

0o > — 1,9 — 0.

We often regard ¢ as a Gal(ks/k)—module. Recall that for any sub-
module I' of @, Qr denotes the inverse image of I' in ¢. There is an

exact sequence

O—->a¢°—>s§r—->i*l‘—>0 (2.0.1).

Proposition 2.1. The map mr(X) — I'(x) arising from (2.0.1) is sur-
jective, and Hr(X,ﬂr) -— Hr(x,F) is an isomorphism for r > 1; there-
fore, Hr(X.MT) =0 forr > 2.

Proof: According to [Milne (1980), III.3.11], H'(X.d) = Hr(x.di)



304 ITI FLAT COHOMOLOGY

for r > 0, and Lang’s lemma implies that Hr(x,d;) =0 for r > O.
Therefore the cohomology sequence of (2.0.1) leads immediately to the

result.

Lemma 2.2. For any I', there is an exact sequence
#(x) — (8/T)(x) — H (.o ) — H(K.A),

in which the last map is the restriction map; in particular, if
Gal(ks/k) acts trivially on ¢, then Hl(X.ﬂr) — Hl(K,A) is injective.
Proof: We first consider the case that I' = ¢. Then dr =4, and as
4 = j*A, the Leray spectral sequence for j shows immediately that the
map HI(X,Q) — Hl(K.A) is injective. In the general case, the lemma

can be deduced from the diagram
w(x.d) — 0 (X.o)
L=z lx

B(x) — (S/T)(x) — H (x.T) — H(x.9).

Lemma 2.3. We have
0 for r # 1,2
H;(x,sdr) = {
(®/T)(x) for r =1,

and there is an exact sequence

0 » I'(x) — #(x) — (#/T)(x) — H (X.d') = #' (K.A) > H(X.4) > 0.
Proof: Consider the exact sequence

0 — Hx. o) — Hx.d) — KA X ) - H ) > .

Obviously QT(X) — A(K) is injective, which shows that Hg(X,dr) = 0.
As Hr(X,mr) and HT(K,QF) are both zero for r > 1, the sequence shows
that H (X.4) = O for r > 2.

Take I' = ¢, so that dr = o; then A(X) — A(K) is an isomorphism
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and (2.2) shows that Hl(X,M) — Hl(K.A) is injective. Therefore the
sequence shows that Hi(X,d) = 0. In the general case the exact

sequence
0 — HO(X./T) — H.(X.o ) — HL(X.)

gives an isomorphism (¢/T)(x) =, Hi(X.MF). The existence of the

required exact sequence follows from

Hd ) — o (X ) > B (K.4) - X)) -8 X4) —0
l=x I 1l

P(x) — (¥/T)(x) — Hl(x,sﬂr) — HI(K‘A).

We now consider an abelian variety A over K, its dual abelian
variety B, and a Poincaré biextension W of (B,A) by Gm. Recall
(C.12) that W extends to a biextension of (%r‘,dr) by Gm if and only
if T' and I' annihilate each other in the canonical pairing

' x ¢ > Q/Z.

Lemma 2.4. If I'' and T are subgroups of ¢' and ¢ that annihilate

each other, then the following diagrams commute:

H'(K.B) x HO(K.A) — H(K.6):  H'(K.B)  x HO(K.A) — H(K.G_)
1 1 lx 1 1 lx

Hlxa) < i) — H(X.6):  HoX.4 ) x Ko ) — H (X, ).

Proof: In the first diagram, the first vertical arrow is the res-
triction map, and the second and third arrows are boundary maps

r r+l1 . P . .
H (u,-) — Hx (X,-). Since the top pairing is defined by the res-
triction to u of the biextension defining the bottom pairing, the
commutativity is obvious. The proof that the second diagram commutes

is similar.
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Theorem 2.5. The canonical pairing ¢' x $ — Q/Z is nondegenerate;
that is, Conjecture C.13 holds in this case.
Proof: The groups and the pairing are unchanged when we replace K
with its completion. After making an unramified extension of R, we
can assume that Gal(kslk) acts trivially on ¢ and ¢'. By symmetry,
it suffices to show that the pairing ¢' x ¢ — Cm is left non-
degenerate, and for this, it suffices to show that the pairing
Hl(x,tb') x Ho(x,fb) — Hl(x,Q/Z) X Q/Z is left nondegenerate.
The canonical pairing of ¢' with ¢ is so defined that
% — gxtl(d,j € )
XY % m
i 1
i, — Jfomx(i*¢.i*Q/Z)
commutes (see C.11). Alternatively, we can regard it as being the
unique homomorphism ¢' — 8:55)1((@.2) making
% — Exti(d,j.6 )
XY Y% m
! i
s g 1. R
1*<1> - €xcx(1*¢.1*l)
commute. From this we get a commutative diagram
H(X.%) — Ext2(d, ;.6 )
s x{d: 3,8
i i)
H (X.1,0') — Ext2(i 6,1.7)
' T X\ T e )
These maps are used to define the two lower pairings in the following

diagram
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B k.B)  x1(k.A) — H(K.C) % 0Z
T inj T= T=

H(x.9) x X4 — H2(X,j*Gm)
= lsurj lx

H(X.1,0) x 0X.9) — H(X.1,2).

and so the the diagram commutes (the upper arrows are all restriction
maps). The top pairing is nondegenerate (I1.3.4), and so the lower

two pairings are left nondegenerate. This proves the theorem.

Corollary 2.6. Suppose that I'' and T are exact annihilators under
the canonical pairing of ¢' and . Then the map
I‘I

1
8 — ety (o .G)
sm

defined by the extension of W is an isomorphism (of sheaves on Xsm)'

Proof: See (C.14).

Theorem 2.7. Assume that I'' and T are exact annihilators. Then the
pairing
H (8 ) x B2 (X ) — (X6 ) * @z

defined by the canonical biextension of (@r',mr) by Cm induces an
isomorphism Hi(X.dr) =, %r'(X)* of discrete groups for r = 0 and an
isomorphism of finite groups HI(X.%r|) =, MF(X)* for r = 1. For
r # 0,1, both groups are zero.
Proof: Consider the diagram

o'(x) — (@) — B ) »u'kB) —Exd ) —o0

I =z Iz la L Ib

H (x.9) - 0 — Bl — k. — Hx.4)* —o.

The top row is the exact sequence in (2.3), and the bottom row is the
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dual of the cohomology sequence of the pair X D u. That the last two
squares commute is proved in (2.4). The first two vertical maps are
the isomorphisms induced by the canonical pairing between ¢' and ¢.
Thus the first square obviously commutes, and second was essentially
shown to commute in the course of the proof of (2.5). It follows
from the diagram that a is injective and b is surjective. But the
two groups Hl(X,%r|) and Hi(X,Mr) have the same order (see (2.1) and
(2.3)), and so a is an isomorphism. This in turn shows that b is an

isomorphism.

Remark 2.8. (a) Once (2.7) is acquired, it is easy to return and
prove (2.5): the map Hl(x.¢') — HO(X,¢)* can be identified with the
isomorphism Hl(X,%') - Hi(X,dD)* given by the (2.6).

(b) Let § = Spec ﬁ. Then it follows from (I1.3.10) that the maps
H;(X,mr) — H;(%,dr) are isomorphisms for all r, and that
Hr(X,MF) — Hr(ﬁ.dr) is an isomorphism for all r > O. The map
A(X) — A(Q) is injective and maps onto the torsion subgroup of A(g);
A(Q) is the completion of A(X) for the topology of subgroups of
finite index.

(c) When R is complete, %rl(X) is compact. Therefore in this case
the pairing induces dualities between:

the compact group %rl(X) and the discrete group Hi(X,dr);

the finite group Hl(X,%r ) and the finite group dr(X).

Write ${n} for the complex % =, %n¢' and #{n} for the complex
4" D, 0. The pairings 98'd® — ¢ [1] and "% 6'u"" — ¢ [1]
defined by a Poincaré biextension induce a pairing %{n}@LM{n} — Cm
in the derived category of sheaves on Xsm (see [Grothendieck (1972),

VIII.2]).
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Theorem 2.9. The map %{n}@Ld{n} — Gm defines nondegenerate pairings
H'(X.8(n}) x H) "(X.d(n}) — H(x.6,) © @2

of finite groups for all r.

Proof: From the exact sequences of complexes

0 — %n¢‘[—1] — #{n} -3 >0

0 — d°[-1] — d{n} — 4" — 0

we get the rows of the diagram

r-1

- T Ay S TR B))  — HT(X.%) — ...
l= l l =

S T — T () — H T (X.l0) —

Since the diagram obviously commutes, the theorem follows from (2.7).

Corollary 2.10. Assume that n is prime to the characteristic of k or
that A has semistable reduction. Then for all r, there is a canon-

ical nondegenerate pairing of finite groups

r ~r ~
H(Xp) 8) x B (Xgp-sty) _’Hi(xfl'cm) ~ WZ.
Proof: The hypothesis implies that % — %n® and d¢n L 4° are
surjective when regarded as a maps of sheaves for the flat topology
~ ~ r ~

(see C.9). Hence %n X #{n} and d % d{n}, and so H (Xfl,%n) X

r ~ 1q7 r ~ b ~
H (Xfl,%{n}) X~ H (Xsm,%{n}) and Hx(Xfl.ﬁn) X Hx(Xfl.d{n}) P~

H;(Xsm.sd{n}) .

Curves over X
By exploiting the autoduality of the Jacobian, it is possible to

use (2.9) to prove a duality theorem for a curve over X.
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Theorem 2.11. Let w: Y — X be a proper flat map whose fibres are
pure of dimension one. Assume that the generic fibre YK is smooth
and connected, that the special fibre Yx is connected, and that there
is a section to w. Assume further that Pic;/X = %, where ¥ is the

Néron model of the Jacobian of YK. Then there is a canonical duality

of finite groups

- 3

Proof: We use the Leray spectral sequence of w. Under the hypo-
0 ~ 1 ~ n 2 ~
theses R LS T T R MR Ker($ — #). and R T, ¥ Z/nZ; for
r>2, Rrﬂ*pn = 0. Moreover ¢ = $°. On taking f = $ = % in the
. r 1 . ~T 1
(2.9), we find that H (X.R w*un) is dual to Hi (X.R vxyn) for all r.
The result can be obtained by combining this duality with the duality

r 0 -r 2
of H'(X.Roms ) and BT (X.R2mp ).

For conditions on Y/X ensuring that the hypotheses of the
theorem hold, see the last few parapraphs of Appendix C. Our hypo-
theses are surely too stringent. Because of this, we make the fol-
lowing definition. Let X be the spectrum of an excellent Henselian
discrete valuation ring (not necessarily of characteristic zero) with
finite residue field, and let w: Y — X be a proper flat morphism
whose generic fibre is a smooth curve. If there is a canonical
pairing

Rw*un X Rw*un — Gm[2].
extending that on the generic fibre and such that the resulting pair-
ing
H'(Y.p ) x H?;r(Y,;.Ln) — (X6 ) ¥ WZ

is nondegenerate, then we shall say that the local duality theorem
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holds for Y/X and n.

Notes: This section is based on [McCallum (1986)].

83 Global results: number field case

Throughout this section, X will be the spectrum of the ring of
integers UK in a number field K. For an open subscheme U of X,
U[1/n] denotes Spec T(U,OX)[I/n], and HE(U.—) denotes the flat co-
homology group with compact support as defined in (0.6a) (thus, it

takes account of the infinite primes).

Finite sheaves
Let U be an open subscheme of X. As G is smooth, Hr(U .G ) =
m ct fl’’m

1

,G ), and so (see I1.3) there is a canonical trace map
ct et m

Hi(U.Gm) =, Q/Z. Therefore, for any sheaf F on U, there is a canon—

ical pairing
Ext[(F,6 ) x Ho T(U.F) — H(U.C ) % @/Z
U'Y ""m c * ct ' m

(see 0.4e).

Let f: Ufl — Uet be the morphism of sites defined by the ident-
ity map. Recall [Milne (1980), V.1] that the constructible sheaves
on Uet are precisely those sheaves that are representable by étale
algebraic spaces of finite-type over U; moreover, if F represents F

. 3
on Uet' then it represents f F on Ufl'

Theorem 3.1. Let U be an open subscheme of X, and let F be a sheaf
on Ufl such that nF = O for some integer n. Assume

i) the restriction of F to U[1/n is represented by an étale
fl
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algebraic space of finite-type over U[1/n];

(ii) for each v € U - U[1/n], the restriction of F to (Spec OV)fl
is represented by a finite flat group scheme.
Let FD be the sheaf on U such that

FP|U[1/n] = f*RmomU[l/n]et(F,Gm)

FD|V = ﬂomv (F,Gm) for any open subscheme V of U where F|V is
fl

represented by a finite flat group scheme.
Then there are canonical maps FD — RﬁomU(F,Gm). hence

H" U.FD — Ext'(F.G ). and the resulting pairing
U m
H'(UFD) < 2T (UF) — H(U.6 ) * 0z

is a nondegenerate pairing of finite groups.
Proof: We first note that on V[1/n] = V(W[1/n]. F is represented by
a finite flat étale group scheme whose order is prime to the residue

characteristics. Therefore

Ritom (F,Cm) = Yom

V[1/n]_, vi/m], (o Cn)-

and so the requirements on FD coincide on V[1/n], which shows that FD
exists.
For all r, H'(U[1/n]__.F) = H (U[1/n],,.F). and H (U[1/n],,.F")
e et’ T ¢ f1°7 7 f1’
= Hr(U[l/n]et,FD). Therefore, for the restriction of F to U[1/n],
the theorem becomes (II.3.3). To pass from U[1/n] to the whole of U,

one uses the diagram

- H‘”(U,FD) —_ H‘”(U[l/n],FD) — ® H”l(Oh,FD) — ...
veu-u[i/m] Y Y
i lx lz

S ETUR S BT[] R — e TR ) — L,
c c veU-U[ 1/n] v

and (1.3).
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Corollary 3.2. Let N be a finite flat group scheme over U, and let

ND be its Cartier dual. Then
H'(U.N) x 12T (U.N) — H(U.C ) & Wz

is a nondegenerate pairing of finite groups for all r.
Proof: When the sheaf F in (3.1) is taken to be that defined by N,

then FD is the sheaf defined by ND.

Corollary 3.3. Let N be a quasi-finite flat separated group scheme
over U, and let nN = 0. Assume that there exists an open subscheme V
of U such that

(i) V contains all points v of U whose residue characteristic
divides n;

(ii) N|V is finite;

(iii) if j denotes the inclusion of V[1/n] into U[1/n]. then the
canonical map NIU[l/n]et — j*j*(NlV[l/n]et) is an isomorphism.

Let ND = ﬂomU (N,G ). Then the canonical pairing
i1 "

HO(UN) x T (U.N) — H(U.G ) ~ oz

is a nondegenerate pairing of finite groups.
Proof: Because N|V is finite, NDIV is the Cartier dual of N|V.
Therefore the theorem shows that Hr(V,ND) is finite and dual to

Hi—r(V.N). The corollary therefore follows from

L= HUP) > VD) — e BN Py o
VeU_v v \"2
! ! lx

L= ETUR S BTV - e iR —
C C v
veU-v

and (II.1.10b).

Let A be an abelian variety over K, and let o and % be the Néron
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minimal models over U of A and its dual B. Let n be an integer such
that o has semistable reduction at all v dividing n. There are exact
sequences

0 — %n —a—a® 5o

0—d — £ g0 0.

The Poincaré biextension of (B.A) by Gm extends uniquely to biexten-
sions of (#.¢°) by €_and of (@ .4") by ¢ . Therefore (cf. 51),

we get a canonical pairing

B xd —G .
n n m

Corollary 3.4. Let %n and dn be as above. Then
r -r 3 ~
H'(U.8 ) x B "(U.sf ) — Ho(U.G ) ® 0/Z

is a nondegenerate pairing of finite groups for all r.

Proof: Over the open subset V where A has good reduction, dn is a
finite flat group scheme with Cartier dual %n. and so over V, the
corollary is a special case of (3.2). To pass from V to U, use

(2.10).

Fuler-Poincaré characteristics
We extend (II.2.13) to the flat site. Let N be a quasi-finite
flat separated group scheme over U. For each closed point v € U, let
f

n, be the order of the maximal finite subgroup scheme N£ of

NxUSpec(Oh), and bf be the discriminant of Nf over Oh. Also, we set
v v v v

[HO(U.N) I (U.N) ] [HO(U. M) I[H(U.N) ]
x(U.N) = . xC(U,N = .

CRCROBERCROY [HL (U.N) I[H (U.N)]
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Theorem 3.5. Let N be quasi-finite, flat, and separated over U.
Then
/nf [N(K,)]
n v

—1
x(UN) = [T I[INK)II, ﬂ @il TV x e —
vex-U v arch [H°(K .N)]

X (UN) = T[] (R:sf) G [N(K,)].

veUu v arch
Proof: Let V be an open subset of U such that N|V is finite and has
order prime to the residue characteristics of V, so that, in partic-

ular, N|V is étale. The exact sequence

.= [l H(U.N) — H(U,N) — H'(V,N) —
veu-v Vv

shows that x(U,N) = x(V,N) x ] «x (OS,N). and (II.2.13) and (1.17b)
veu-v
show respectively that

x(V.N) = T [INK) IO, TN )],

v arch

h -1, f ‘1/“5
and x_ (0 .N) = I[N(Ks)]lv (R:d_) . The formula in (a) follows

immediately.
The exact sequence

. — HZ(V.N) — HZ(U.N) o HF (o 2N) —
veUu-v

shows that x_(U.N) = x (V.N) x M xv(Ov,N) and (II.2.13) and (1.17a)

show respectively that xc(V.N) = ] [NK )] and x(0h,N) =
v arch v v

. f.-1/n
(R:2})

Néron models

Let A be an abelian variety over K, and let o be its Néron

o df

model. Then /s ¢ =01 ¢ (finite sum) where ¢ = i*(d /4°).
vk v v vy Ty
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Proposition 3.6. Let I' be a subgroup of ¢, and let dr be the cor-
responding subscheme of .
(a) The group HO(U,ﬂr) is finitely generated; for r > O, Hr(U,dr)

is torsion and of cofinite-type; the map Hr(U.dr) — ® Hr(Kv,A)
v arch

is surjective for r = 2 and an isomorphism for r > 2.

(b) For r <0, ] Hr(Kv,dr) — HZ(U,MF) is an isomorphism;
v arch

Hg(U.ﬁr) is finitely generated; Hi(U,ﬁr) is an extension of a torsion
group by a subgroup which has a natural compactification; Hi(U.ﬁr) is
torsion and of cofinite-type; for r 2 3, Hg(U,dr) = 0.

Proof: Fix an integer m, and let V be an open subscheme of U such
that m is invertible on U and o is an abelian scheme over V. Then
all statements are proved in (II.5.1) for #|V and m. The general

case follows by writing down the usual exact sequences.

Let B be the dual abelian variety to A, and let 3 be its Néron
0 df 41 _ o ¢ o s
model. Let #/3° = ¢' =@ lv*¢v' For any subgroups I' = & lv*rv and

I =o iv*F; of & and ¢', the Poincaré biextension over K extends to
a biextension over U if and only if each Fv annihilates each T; in

the canonical pairing. In this case we get a map

8 oW — ¢ [1].

Theorem 3.7. Suppose that FV and FQ are exact annihilators at each
closed point v.

(a) The group HO(U,EBr ) is finite; the pairing

tors

g ) x Hi(U,gdr) -z

is nondegenerate on the left and its right kernel is the divisible

subgroup of Hi(U,dr).
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(b) The groups HI(U,%F ) and Hi(U.Mr)tors are of cofinite-type,

and the pairing

g’ ) x Hi(u.gar)tors — oz

annihilates exactly the divisible groups.

(c) If the divisible subgroup of MI(K.A) is zero, then the compact
group HO(U,%rI)* (completion for the topology of subgroups of finite
index) is dual to the discrete torsion group Hi(U,dr).

Proof: Fix an integer m, and choose an open subscheme V of U on
which m is invertible and A and B have good reduction. Theorem
I1.5.2 proves the result over V for the m-components of the groups.
To pass from there to the m—components of the groups over U, use

(2.7). As m is arbitrary, this completes the proof .

Curves over U

For a proper map 7: Y — U and sheaf F on Y we define H;(Y.F)

1’
r
to be HC(U,RH*F).

Theorem 3.8. Let w: Y — U be a proper flat map whose fibres are

pure of dimension one and whose generic fibre is a smooth geometrical-
ly connected curve. Assume that for all v € U, YxUSpec 03 — Spec 03
satisfies the local duality theorem for n (see 82). Then there is a

canonical nondegenerate pairing of finite groups
r 5-r 3 ~
H (Y,pn) X Hc (Y,pn) — HC(U,Gm) X Q/Z.

Proof: Choose an open subscheme V of U such that n is invertible on
V and wlv_l(V) is smooth. For ﬂlﬂ_l(V) the statement becomes that
proved in Theorem 11.7.7. Let Z =Y - YV' To pass from V to U, use

the exact sequences
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L H(Yop ) — H (Yo ) — Hr(Yv,un) — ...

r T T h
- = H Yy ) — H (Yop)) — VgU—VH (YxySpec(0,).p ) — ..

r r h
and note that HZ(Y_pn) = veg—VHV(YxUSpcc(Ov),un).

Notes: Theorem 3.1 was proved by the author in 1978. Earlier Artin
and Mazur had announced the proof of a flat duality theorem over X
(neither the statement of the theorem or its proof have been pub-
lished, but two corollaries are stated in [Mazur (1972), 7.2, 7.3]; I
believe that the original theorem is the special case of (3.3) in

which U = X and n is odd).

§4 Local results: mixed characteristic, perfect residue field

In this section we summarize the results of [Bégeuri (1980)].
Throughout, X will be the spectrum of a complete discrete valuation
ring R whose field of fractions K is of characteristic zero, and
whose residue field k is perfect of characteristic p # 0. (Essen-
tially the same results should hold if R is only Henselian.) We let

m be the maximal ideal of R, and we let Xi = Spec R/ml+1.

Some cohomological properties of K

Proposition 4.1. If k is algebraically closed, then for any torus T
over K, H'(K,T) = O all r > O.

Proof: Let L be a finite Galois extension of K with Galois group G.
Then H'(G.L*) = O by Hilbert's theorem 90, and H2(G.L*) = O because

the Brauer group of K is trivial (K is quasi-algebraically closed
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[Shatz (1972), pl16]). These two facts show that L* is a cohomolo-
gically trivial G-module [Serre (1962), IX.5, Thm 8]. Choose L to
split T. Then Hom(X*(T),Lx) = T(L)., and (ibid. Thm 9) shows that
Hom(X*(T).Lx) is also cohomologically trivial because Extl(X*(T),Lx)

= 0.

Corollary 4.2. Assume that k is algebraically closed, and let N be a
finite group scheme over K.

(a) For all r » 2, H (K.N) = O.

(b) Let K' be a finite Galois extension of K, and let G =
Gal(K'/K). Then H;(G,HI(K',N)) is finite for all r € Z, and is
isomorphic to H;+2(G,N(K')). The canonical homomorphism
HO(G,HI(K‘,N)) — Hl(K.N) deduced from the corestriction map is an

isomorphism.

Proof: (a) Resolve N by tori,

O—>N—>T, >T, —0,

0 1
and apply the proposition.

(b) From the above resolution, we get an exact sequence
0 - N(K') — Ty(K') — T (K') — H'(K'.N) — O.

Since the middle two G-modules are cohomologically trivial, the
iterated coboundary map is an isomorphism

T 1,.,. r+2 , . o e
HT(G,H (K'.N)) — HT (G.N(K')). The last statement is proved simi-

larly (see [Bégeuri (1980), p34]).

The algebraic structure on Hr(X.N)
For any k-algebra A, let Wi(A) be the ring of Witt vectors over
A of length i, and let W(A) be the full Witt ring. For any scheme Y

over W(k) and any i, the Greenberg realization of level i, Greeni(Y),
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of Y is the scheme over over k such that
Greeni(Y)(A) = Y(Wi(A))

for all k-algebras A (see [Greenberg (1961)]). Note that R has a
canonical structure as a W(k)-algebra, and so for any scheme Y over
X, we can define %i(Y) to be the Greenberg realization of level i of

the restriction of scalars of Y, Res Then @i(Y) is

X/Spec(W(k))T"

characterized by the following condition: for any k-algebra A,
@i(Y)(A) = Y(R®W(k)wi(A))'

In particular, ¢ (Y)(k) = Y(R/p'R) = Y(X,_|). Note that ¢ (Y) = Yo k

= Yk. For varying i, the @i(Y) form a projective system $(Y) =

(%i(Y)). The perfect group scheme associated with @i(Y) will be de-

noted by Gi(Y)' Thus

G ()(A) = Y(R8y | W, (4))

for any perfect k-algebra A and Ci(Y)(k) = Y(R/piR). We let G(Y) be
the perfect pro-group scheme (Gi(Y))'

When G is a smooth group scheme over X, we let V(mc) be the vec-—
tor group associated with the R-module O of invariant differentials

on G.

Proposition 4.3. Let G be a smooth group scheme over R. For all
i>1, %i(G) is a smooth group scheme over k, and for all i' > i,

there is an exact sequence of R-groups
0 — %, (V(og)) — ¢, ;. (G) — ¢, .(G) — 0.

In particular, @i+1(G) - %i(G) is surjective with kernel wG®Rk, and
@i(G) is an extension of Gk by a smooth connected unipotent group.
The group scheme @i(G) is connected if and only if its special fibre

is connected. The dimension of @i(G) is ei.dim(Ck) where e is the
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absolute ramification index of R.
Proof: We may assume that k is algebraically closed and apply

[Bégueri (1980), 4.1.1].

Lemma 4.4. Let
0—>N-—cy G, —0

be an exact sequence of R-groups with Go and G1 smooth and connected
and N finite. For all i > 1, the k-group Coker(@i(w)) is smooth, and

when k is algebraically closed its group of k-points is Hl(X.

i-1'M)-

Proof: The first statement follows from the fact that %i(w) is a
homomorphism of smooth group schemes over k. For the second, note

that H‘"(x],l

_1°6) = Hr(k.Gk) =0 for r > 0, and so we have a diagram
%,(Gp) (k) — (G ) (k) — Coker(%, (#)(k)) — 0
[ I I =

1

Go(Xi ) = & (X, ) — H (X, ,.N) — 0.

of i-1'
Define ﬁl(xi'N) to be the sheaf on Spec(k)qf associated with the
presheaf A » Hl(xi®W(k)w(A)‘N)' Then the lemma realizes ﬁl(Xi,N) as

an algebraic group, and the next lemma shows that this realization is

essentially independent of the choice of the resolution.

Lemma 4.5. Let

0—N—0¢ 25¢ —0

0 1
be a second resolution of N by smooth algebraic groups. Then there
is a canonical isomorphism Coker(@i(w)) =, Coker(@i(w')).

Proof: It is easy to construct a diagram
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0 — Gé — Gl — 0

(0]
1 i 1
e
O—>N——>GO€BGO-—>G — 0
Il 1 1

0—>N— G, i»c1—>o

with G a smooth algebraic group. When we apply %i. the resulting

diagram gives an isomorphism
Coker (%, (¢")) - Coker(%i(w)).
and a similar construction gives an isomorphism

Coker (%, (#")) —> Coker (%, (v")).

We now regard ﬁl(Xi,N) as an algebraic group, and we write
ﬁl(X.N) for the pro-algebraic group (ﬁl(Xi,N))i>O.

For the definition of the absolute different D of a finite group
N scheme over R, we refer the reader to [Raynaud (1974). Appendice].

It is an ideal in R.

Theorem 4.6. Let N be a finite flat group scheme of order a power of
p over X. For all i > O, the smooth algebraic k-group ﬁl(Xi,N) is
affine, connected, and unipotent. There exists an integer i, such
that ﬁl(X,N) — ﬁl(Xi.N) is an isomorphism for all i > ig. The group
scheme ﬁl(X,N) has dimension ord(®) where D is the different of N.
Proof: We may assume that the residue field is algebraically closed

and apply [Bégeuri (1980), 4.2.2].

Proposition 4.7. A short exact sequence

O—N —N-—>N'"—O0
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of finite flat p-primary group schemes gives rise to an exact

sequence of algebraic groups
0 > G(N') — ¢(N) — ¢(N") — Hlx.N) — i xN) — BN - o.

Proof: We may assume that the residue field is algebraically closed

and apply [Bégeuri (1980), 4.2.3].

We write Hl(Xi.N) and Hl(X.N) for the perfect algebraic groups
associated with ﬁl(Xi,N) and ﬁl(X,N). Suppose that k is algebraic-

ally closed. If

0O —N— GO — G1 — 0

is a smooth resolution of N and i is so large that N(R)ﬂplco(R) =0,

then the kernel and cokernel of the map

i i
a6 R P — e )

are N(R) and Hl(X,N)(k) respectively (ibid. p44-45).

The algebraic structure on HI(K.N)

Let T be a torus over K. According to [Raynaud (1966)], T ad-
mits a Néron model over X: this is a smooth group scheme 7 over X
(not necessarily of finite type) such that J(Y) = T(YK) for all
smooth X-schemes Y. Write G(T) for G(7). It is a perfect
pro-algebraic group over k whose set of connected components ﬂo(G(T))
is a finitely generated abelian group, equal to the set of connected

components of the special fibre of 7.

Lemma 4.8. Let N be a finite group scheme over K, and let

o—>N——>TO—“’—>T1——>o

be a resolution of N by tori. The cokernel of G(e): G(TO) — G(Tl)
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is a pro-algebraic perfect group scheme, and when k is algebraically
closed it has Hl(X,N) as its group of k-points.

Proof: [Bégeuri (1980), 4.3.1].

The lemma allows us to define on Hl(K,N) the structure of a per-
fect pro-algebraic group scheme. We write Hl(K.N) for this group
scheme. An argument as in the proof of (4.5) shows that HI(K.N) is
independent of the resolution. The identity component of HI(K.N) is

unipotent.

Proposition 4.9. Let N be a finite flat p-primary group scheme ouver

X. Then the standard resolution defines a closed immersion
1 1
H (X.N) — H (K.N).

Proof: We may assume that the residue field is algebraically closed

and apply [Bégeuri (1980), 4.4.4].

Theorem 4.10. For any finite K-group N, the perfect group scheme

Hl(K.N) is affine and algebraic. Its dimension is ord([N]). where
[N] is the order of N.

Proof: The basic strategy of the proof is the same as that of the

proof of (I.2.8); see [Bégeuri (1980), 4.3.3].

The reciprocity isomorphism
Assume first that k is algebraically closed. For any finite
extension K'/K, let UK‘ = @(Gm R.) where R' is the ring of integers

Res G — G induces a sur-

in K'. Then the norm map NR'/R: R'/R%n. R 'm. R

jective map U,, — UK of affine k-groups. Let VK' be the kernel of

this map, and let Vﬁ, be the identity component of VK" Then we have
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an exact sequence

0 — wO(VK. UK'/V — UK — 0.
Assume that K' is Galois over K, and let t' be a uniformizing para-

meter in K'. The homomorphism
' ab ~2 ' o
Gal(K'/K)™" = H “(Gal(K'/K),Z) — U /V (k).

sending o € Gal(K'/K) to the class of o(t')/t' in UKI allows us to

identify the preceding exact sequence with an exact sequence

0 — H2(Cal(K'/K),Z) — U Vg 1 U, — o.
On passing to the inverse limit over the fields K', we get an exact

sequence

0 — Gal(K_, /K) — lim U V2
ab «

, —= U, — 0.

K K

As UK is connected, this sequence defines a continuous homomorphism
recy: vl(UK) — Cal(Kab/K)

and the main result of [Serre (1961)] is that this map is an iso-
morphism.

It is also possible to show that wl(U) df lim vl(UK,) is a class
formation, and so define recy as in (I.1).

Recall [Serre (1960), 5.4] that for any perfect algebraic group

G and finite perfect group N, there is an exact sequence
1 1
0 — Extk(vo(G),N) — Extk(G.N) - Homk(wl(G),N) — 0.

In particular, when G is connected Exti(G,N) - Hom(m (G}.N). (We
are still assuming that k is algebraically closed.) Therefore, recy
gives rise to an isomorphism

Hom(Gal(K_, /K).2/p"2) = H'(K,2/p"2)

5 Hom(r, (U,).2/p°2) = Exty (U, .Z/p"Z).
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If we assume that K contains the pnth roots of 1, and we replace

Z/pnl with upn(K). then the isomorphism becomes

. x o1
o: H (Kaun) — Exty(Ug.iun)-

Both groups have canonical structures of perfect algebraic groups.

Proposition 4.11. The map @n is a morphism of perfect algebraic

groups.

Proof:

[Bégeuri (1980). 5.3.2].

When we drop the assumption that k is algebraically closed, we

obtain an isomorphism

rec,: n(UK) — Gal(Kab/K)

where n(UK) is the maximal constant quotient of wl(UK). See

[Hazewinkel (1969)].

Duality for finite group schemes over K

Theorem 4.12. Let N be a finite group scheme over K; then there is a

canonical isomorphism of connected perfect unipotent groups

utx.Ny° — @)

Proof:

We can assume that k is algebraically closed and apply

[Bégeuri (1980). 6.1.6].

This result can be improved by making use of derived categories

(ibid. 6.2). Assume that k is algebraically closed, and let

M
n

%

0

]

category of finite group schemes over K killed by pn,
category of perfect pro-algebraic groups over k killed by pn,

the category of sheaves on (Spec k)pf killed by pn
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Let C: Db(Hn) — Db(Mn), s: D°(Q ) — p°(Q ). and B: Db(Sn) - Db(Sn)
be the functors defined respectively by Cartier duality, Serre dual-
ity, and Breen-Serre duality (see §0: here Db(*) denotes the derived
category obtained from the category Kb(*) of bounded complexes and
homotopy classes of maps). Then Hli Mn — Qn admits a left derived

functor, and we have a commutative diagram (up to an isomorphism of

functors):
1
b LH b can
D°(M) — D°(n) — p(u )
lc 1 ls !B (4.12.1)
LH can

D°(M ) — D°(M ) —s ()

moreover, (can°LH1)(N) =, RHO(N)[lj. See [Bégeuri (1980), 6.2.4].
Duality for finite group schemes over R

Theorem 4.13. For any finite flat p-primary group scheme N over X,
there is a canonical isomorphism of k-groups

' (x.N) 2o k. 8Pyosml (x,8P)) ¢

Proof: 1Ibid. 6.3.2..

Duality for tori

Let T be a torus over K, and let T be its Néron model over X.

Theorem 4.14. The pairing HO(K,X*(T)) x T(K) — Z defines isomorph-

isms

K. x%(1)) =5 Hom(m, (7, ) .Z)

n (k. xX*(T)) = Extli('rro(i’/'k)l) (finite groups).
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H2(K.X(T)) =5 Hom_, (7, (T(K)).Q/Z).

Proof: 1Ibid. 7.2..

Duality for abelian varieties
Let A be an abelian variety over K, and let o be its Néron model

over X. We write G(A) for G(«) and ni(A) for Wi(C(A)).

Theorem 4.15. Let A be an abelian variety over K.
P t . . .
(a) The pairing wo(dk) x Wo(dk) — Q/Z defined in (C.11) is non-
degenerate.

(b) There is a canonical isomorphism
1 ty, % 1
H (K.A") — Extk(G(A).Q/Z).

Proof: (a) We can assume that k is algebraically closed, and in this
case the result is proved in [Bégeuri (1980), 8.3.3].

(b) From (ibid. 8.3.6) we know that the result holds if k is
algebraically closed; to deduce the result in the general case, apply
the Hochschild-Serre spectral sequence to the left hand side and the

spectral sequence (I1.0.17) to the right hand side.

Corollary 4.16. Assume that mk is connected. Then there is a non-
degenerate pairing of Cal(Kun/K)—modules

1
H (Knn

A" x T (A) — /2.

Proof: Again we can assume that k is algebraically closed. As we
noted above, for any connected perfect group scheme G over k and
finite perfect group scheme N, Exti(G.N) = Homk(nl(G),N). This shows
that Exti(G(A),Q/Z) = Homk(rl(G(A),Q/Z), and so the result follows

from the theorem.
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Notes: This results in this section are due to [Bégeuri (1980)].
Partial results in the same direction were obtained earlier by

Vvedens’kii (see [Vvedens'kii (1973), (1976)] and earlier papers).

85 Two exact sequences

We write down two canonical short resolutions that are of great
value in the proof of duality theorems in characteristic p. Through-

out, X will be a scheme of characteristic p # O.

The first exact sequence
The first sequence generalizes the sequences

0 — Z/pZ — G l:E G —0
a a

0 — ap —_ Ga —Eﬁ Ga — 0

to any group scheme ND that is the Cartier dual of a finite group
scheme of height one. Note that in each sequence, Ga is the
cotangent space to N.

Let N be a finite flat group scheme over X of height 1, and let
e: X — N be the zero section. Let # C ON be the ideal defining the
closed immersion e (so that (ON/?)Ie(X) = 0y). and let 9n£§(N) df
ybec(Olez) be the first order infinitesimal neighbourhood of the
zero section. Then 9/92 is the cotangent space w, of N over X.

N

Locally on X, there is an isomorphism of pointed schemes

N % $pec(O[T).....T 1/(T5,....T0)),
and therefore
2 . 2 2
$/9° % (Tl""’Tm)/(Tl""’Tm)
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