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Notation

We use the standard notation: ND f0;1;2; : : :g, ZD ring of integers, RD
field of real numbers, CD field of complex numbers, Fp DZ=pZD field
with p elements.

Given an equivalence relation, Œ�� denotes the equivalence class contain-
ing �. The cardinality of a set S is denoted by jS j (so jS j is the number of
elements in Swhen S is finite). Let I and A be sets. A family of elements of
A indexed by I , denoted by .ai /i2I , is a function i 7! ai WI ! A. Through-
out the notes, p is a prime number: p D 2;3;5;7;11; : : : If � is an element of
a group, h�i denotes the subgroup generated by � .

X � Y X is a subset of Y (not necessarily proper).
X def
D Y indicates that the equality in question is a definition.

X � Y X and Y are isomorphic.
X ' Y X and Y are canonically isomorphic or

there is a given isomorphism.
Following Bourbaki, we require compact spaces to be Hausdorff.

Prerequisites

Undergraduate linear algebra and the ring theory. Group theory, for example,
the first six chapters of my notes GT.

References

monnnn Question nnnn on mathoverflow.net.

sxnnnn Question nnnn on math.stackexchange.com.

PARI An open source computer algebra system that can run in your browser.
It is freely available at http://pari.math.u-bordeaux.fr/.

The following notes (available at https://www.jmilne.org/math/).
GT Group Theory, v4.00, 2021.

ANT Algebraic Number Theory, v3.08, 2020.

CA A Primer of Commutative Algebra, v4.03, 2020.

Acknowledgements

I thank the following for providing corrections and comments for earlier
versions of this work: Mike Albert, Terezakis Alexios, Carlos Alberto

http://pari.math.u-bordeaux.fr/
https://www.jmilne.org/math/


Ajila Loayza, Lior Bary-Soroker, Maren Baumann, Leendert Bleijenga, Jin
Ce, Tommaso Centeleghe, Sergio Chouhy, Demetres Christofides, Antoine
Chambert-Loir, Dustin Clausen, Keith Conrad, Daniel Duparc, Hardy Falk,
Ralf Goertz, Le Minh Ha, Matin Hajian, Jens Hansen, Kenneth Harris, Al-
brecht Hess, Tim Holzschuh, Philip Horowitz, Ivan Ip, Trevor Jarvis, Henry
Kim, Martin Klazar, Jasper Loy Jiabao, Hongjun Lee, Weiyi Liu, Dmitry
Lyubshin, Geir Arne Magnussen, John McKay, Sarah Manski, Georges
E. Melki, Courtney Mewton, C Nebula, Shuichi Otsuka, Dmitri Panov, Artem
Pelenitsyn, Alain Pichereau, David G. Radcliffe, Roberto La Scala, Chad
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CHAPTER 1
Basic Definitions and Results

We require rings to have a 1, which entails that we require homomorphisms
to preserve it.

Rings

A ring is a set R with two binary operationsC and � such that
(a) .R;C/ is a commutative group;

(b) � is associative, and there exists an element 1R such that, for all a 2R,
a �1R D aD 1R �a ;

(c) the distributive law holds: for all a;b;c 2R,

.aCb/ � c D a � cCb � c

a � .bC c/D a �bCa � c.

We usually omit “�” and write 1 for 1R when this causes no confusion. If
1R D 0, then the ring RD f0g.

A subring of a ring R is a subset S that contains 1R and is closed under
addition, passage to the negative, and multiplication. It inherits the structure
of a ring from that on R.

A homomorphism of rings ˛WR!R0 is a map such that

˛.aCb/D ˛.a/C˛.b/; ˛.ab/D ˛.a/˛.b/; ˛.1R/D 1R0

for all a;b 2 R. A ring R is said to be commutative if multiplication is
commutative,

ab D ba for all a;b 2R:

1
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A commutative ring is said to be an integral domain if 1R ¤ 0 and the
cancellation law holds for multiplication,

ab D ac, a¤ 0, implies b D c:

An ideal I in a commutative ring R is a subgroup of .R;C/ that is closed
under multiplication by elements of R,

r 2R, a 2 I , implies ra 2 I:

The ideal generated by elements a1; : : : ;an is denoted by .a1; : : : ;an/. For
example, .a/ is the principal ideal aR.

We assume that the reader has some familiarity with the elementary theory
of rings. For example, with the field of fractions of an integral domain, and
with the quotient R=I of a ring R by an ideal I . This last is an integral
domain if and only if I is prime, i.e., I ¤R and ab 2R implies in a 2R or
b 2 R. Also, in Z (more generally, in any Euclidean domain) an ideal I is
generated by any “smallest” nonzero element of I , and unique factorization
into powers of irreducible elements holds. We write gcd.a;b/ for the greatest
common divisor of a and b, e.g., gcd.a;0/D a. An element of an integral
domain is irreducible if it is neither zero nor a unit and admits only trivial
factorizations, and it is prime if it is nonzero and generates a prime ideal —
in a unique factorization domain, the two notions coincide.

Fields

DEFINITION 1.1 A field is a set F with binary operationsC and � such that
(a) .F;C/ is a commutative group;

(b) .F �; �/, where F � def
D F Xf0g, is a commutative group;

(c) the distributive law holds.

Thus, a field is a nonzero commutative ring such that every nonzero element
has an inverse. In particular, it is an integral domain. A field contains at least
two distinct elements, 0 and 1. The smallest, and one of the most important,
fields is F2 D Z=2ZD f0;1g.

A subfield S of a field F is a subring that is closed under passage to the
inverse. It inherits the structure of a field from that on F .

LEMMA 1.2 A nonzero commutative ring R is a field if and only if it has no
ideals other than .0/ and R.
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PROOF. Suppose that R is a field, and let I be a nonzero ideal in R. If a
is a nonzero element of I , then 1D a�1a 2 I , and so I D R. Conversely,
suppose that R is a commutative ring with no proper nonzero ideals. If a¤ 0,
then .a/DR, and so there exists a b in R such that ab D 1. 2

EXAMPLE 1.3 The following are fields: Q, R, C, Fp (p prime):

A homomorphism of fields is simply a homomorphism of rings. Such
a homomorphism is always injective, because its kernel is a proper ideal (it
does not contain 1), which must therefore be zero.

Let F be a field. An F -algebra (or algebra over F ) is a ring R con-
taining F as a subring. A homomorphism of F -algebras ˛WR! R0 is a
homomorphism of rings such that ˛.c/D c for every c 2 F . An F -algebra
R is finite if it is finite-dimensional as a F -vector space.

The characteristic of a field

One checks easily that the map

Z! F; n 7! n �1F
def
D 1F C1F C�� �C1F .n copies of 1F /;

is a homomorphism of rings. For example,

.1F C�� �C1F„ ƒ‚ …
m

/C .1F C�� �C1F„ ƒ‚ …
n

/D 1F C�� �C1F„ ƒ‚ …
mCn

because of the associativity of addition. Therefore its kernel is an ideal in Z.
CASE 1: The kernel of the map is .0/, so that

n �1F D 0 (in F ) H) nD 0 (in Z).

Nonzero integers map to invertible elements of F under n 7! n �1F WZ! F ,
and so this map extends to a homomorphism

m
n
7! .m �1F /.n �1F /

�1
WQ ,! F:

In this case, F contains a copy of Q, and we say that it has characteristic
zero.

CASE 2: The kernel of the map is ¤ .0/, so that n � 1F D 0 for some
n¤ 0. The smallest positive such n is a prime p, because otherwise F would
contain two nonzero elements whose product is zero, and p generates the
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kernel. Thus, the map n 7! n � 1F WZ! F defines an isomorphism from
Z=pZ onto the subring

fm �1F jm 2 Zg

of F . In this case, F contains a copy of Fp , and we say that it has character-
istic p.

A field isomorphic to one of the fields F2;F3;F5; : : : ;Q is called a prime
field. Every field contains exactly one prime field (as a subfield).

1.4 More generally, a commutative ring R is said to have characteristic p
(resp. 0) if it contains a prime field of characteristic p (resp. 0) as a subring.1

Then the prime field is unique and, by definition, contains 1R. If R has
characteristic p ¤ 0, then 1RC�� �C1R D 0 (p terms).

Let R be a nonzero commutative ring. If R has characteristic p ¤ 0, then

pa def
D aC�� �Ca„ ƒ‚ …

p terms

D .1RC�� �C1R/„ ƒ‚ …
p terms

aD 0aD 0

for all a 2R. Conversely, if paD 0 for all a 2R, then R has characteristic
p.

Let R be a nonzero commutative ring. The usual argument by induction
shows that the binomial theorem holds in R,

.aCb/m D amC

 
m

1

!
am�1bC

 
m

2

!
am�2b2C�� �Cbm:

If p is prime, then it divides 
p

r

!
def
D

pŠ

rŠ.p� r/Š

for all r with 1 � r � p� 1 because it divides the numerator but not the
denominator. Therefore, when R has characteristic p,

.aCb/p D apCbp for all a;b 2R;

and so the map a 7! apWR ! R is a homomorphism of rings (even of
Fp-algebras). It is called the Frobenius endomorphism of R. The map

1A commutative ring has a characteristic if and only if it contains a field as a subring. For
example, neither Z nor F2�F3 has a characteristic.
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a 7! ap
n

WR! R, n � 1, is the composite of n copies of the Frobenius
endomorphism, and so it also is a homomorphism. Therefore,

.a1C�� �Cam/
pn
D a

pn

1 C�� �Ca
pn

m

for all ai 2R.
When F is a field, the Frobenius endomorphism is injective, and hence is

an automorphism if F is finite.

The characteristic exponent of a field F is 1 if F has characteristic 0,
and p if F has characteristic p ¤ 0. Thus, if q is the characteristic exponent
of F and n� 1, then x 7! xq

n

is an isomorphism of F onto a subfield of F
(denoted F q

n

).

Review of polynomial rings

Let F be a field.

1.5 The ring F ŒX� of polynomials in the symbol (or “indeterminate” or
“variable”) X with coefficients in F is an F -vector space with basis 1, X , . . .
, Xn, . . . , and with the multiplication�X

i
aiX

i
��X

j
bjX

j
�
D

X
k

�X
iCjDk

aibj

�
Xk :

The F -algebra F ŒX� has the following universal property: for any F -algebra
R and element r of R, there is a unique homomorphism of F -algebras
˛WF ŒX�!R such that ˛.X/D r .

1.6 Division algorithm: given f .X/, g.X/ 2 F ŒX� with g ¤ 0, there exist
q.X/, r.X/ 2 F ŒX� with r D 0 or deg.r/ < deg.g/ such that

f D gqC r I

moreover, q.X/ and r.X/ are uniquely determined. Thus F ŒX� is a Euclidean
domain with deg as norm, and so it is a unique factorization domain. A
polynomial in F ŒX� is irreducible if it is nonconstant and not the product of
two polynomials of lower degree.

1.7 Let f 2 F ŒX� be nonconstant, and let a 2 F . The division algorithm
shows that

f D .X �a/qC c
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with q 2 F ŒX� and c 2 F . Therefore, if a is a root of f (that is, f .a/D 0),
then X �a divides f . From unique factorization, it now follows that f has
at most deg.f / roots (see also Exercise 1-3).

1.8 Euclid’s algorithm: Let f .X/, g.X/ 2 F ŒX�. Euclid’s algorithm con-
structs polynomials a.X/, b.X/, and d.X/ such that

a.X/ �f .X/Cb.X/ �g.X/D d.X/; deg.a/< deg.g/; deg.b/< deg.f /;

and d.X/D gcd.f;g/.
Recall how it goes. We may assume that deg.f / � deg.g/ since the

argument is the same in the opposite case. Using the division algorithm, we
construct a sequence of quotients and remainders

f D q0gC r0

g D q1r0C r1

r0 D q2r1C r2

� � �

rn�2 D qnrn�1C rn

rn�1 D qnC1rn

with rn the last nonzero remainder. Then, rn divides rn�1, hence rn�2,. . . ,
hence g, and hence f . Moreover,

rn D rn�2�qnrn�1 D rn�2�qn.rn�3�qn�1rn�2/D �� � D af Cbg

and so every common divisor of f and g divides rn: we have shown that
rn D gcd.f;g/.

Let af Cbg D d . If deg.a/ � deg.g/, write aD gqC r with deg.r/ <
deg.g/. Then

rf C .bCqf /g D d;

and bCqf has degree < deg.f / because .bCqf /g D d � rf , which has
degree < deg.g/Cdeg.f /.

PARI knows how to do Euclidean division: typing divrem(13,5) in
PARI returns Œ2;3�, meaning that 13D 2�5C3, and gcd(48,87) returns
the greatest common divisor 3 of 48 and 87.

1.9 Let I be a nonzero ideal in F ŒX�, and let f be a nonzero polynomial of
least degree in I ; then I D .f / (because F ŒX� is a Euclidean domain). When
we choose f to be monic, i.e., to have leading coefficient one, it is uniquely
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determined by I . Thus, there is a one-to-one correspondence between the
nonzero ideals of F ŒX� and the monic polynomials in F ŒX�. The prime
ideals correspond to the irreducible monic polynomials.

1.10 As F ŒX� is an integral domain, we can form its field of fractions
F.X/. Its elements are quotients f=g, with f and g polynomials, g ¤ 0,
and f=g D f 0=g0 if and only if fg0 D f 0g.

Factoring polynomials

The following results help in deciding whether a polynomial is reducible, and
in finding its factors.

PROPOSITION 1.11 Let r 2Q be a root of a polynomial

amX
m
Cam�1X

m�1
C�� �Ca0; ai 2 Z;

and write r D c=d , c;d 2 Z, gcd.c;d/D 1. Then cja0 and d jam:

PROOF. It is clear from the equation

amc
m
Cam�1c

m�1d C�� �Ca0d
m
D 0

that d jamcm, and therefore, d jam: Similarly, cja0. 2

EXAMPLE 1.12 The polynomial f .X/ D X3 � 3X � 1 is irreducible in
QŒX� because its only possible roots are˙1, and f .1/¤ 0¤ f .�1/.

PROPOSITION 1.13 (GAUSS’S LEMMA) Let f .X/ 2 ZŒX�. If f .X/ fac-
tors nontrivially in QŒX�, then it factors nontrivially in ZŒX�.

PROOF. Let f D gh in QŒX� with g;h nonconstant. For suitable integers
m and n, g1

def
D mg and h1

def
D nh have coefficients in Z, and so we have a

factorization
mnf D g1 �h1 in ZŒX�.

If a prime number p divides mn, then, looking modulo p, we obtain an
equation

0D g1 �h1 in FpŒX�.

Since FpŒX� is an integral domain, this implies that p divides all the coeffi-
cients of one of the polynomials g1;h1, say g1, so that g1 D pg2 for some
g2 2 ZŒX�. Thus, we have a factorization

.mn=p/f D g2 �h1 in ZŒX�.
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Continuing in this fashion, we eventually remove all the prime factors of mn,
and so obtain a nontrivial factorization of f in ZŒX�. 2

PROPOSITION 1.14 If f 2 ZŒX� is monic, then every monic factor of f in
QŒX� lies in ZŒX�.

PROOF. Let g be a monic factor of f in QŒX�, so that f D gh with h 2
QŒX� also monic. Let m;n be positive integers, chosen to have the fewest
prime factors, such that mg;nh 2 ZŒX�. As in the proof of Gauss’s Lemma,
if a prime p divides mn, then it divides all the coefficients of one of the
polynomials mg;nh, say mg, in which case it divides m because g is monic.
Now m

p
g 2 ZŒX�, which contradicts the definition of m. 2

ASIDE 1.15 We sketch an alternative proof of Proposition 1.14. A complex number
˛ is said to be an algebraic integer if it is a root of a monic polynomial in ZŒX�.
Proposition 1.11 shows that every algebraic integer in Q lies in Z. The algebraic
integers form a subring of C — see Theorem 6.5 of my notes on Commutative
Algebra. Now let ˛1; : : : ;˛m be the roots of f in C. By definition, they are algebraic
integers, and the coefficients of any monic factor of f are polynomials in (certain of)
the ˛i , and therefore are algebraic integers. If they lie in Q, then they lie in Z.

PROPOSITION 1.16 (EISENSTEIN’S CRITERION) Let

f D amX
m
Cam�1X

m�1
C�� �Ca0; ai 2 ZI

suppose that there is a prime number p such that:
˘ p does not divide am,

˘ p divides am�1; :::;a0,

˘ p2 does not divide a0.
Then f is irreducible in QŒX�.

PROOF. If f .X/ factors nontrivially in QŒX�, then it factors nontrivially in
ZŒX�, say,

amX
m
Cam�1X

m�1
C�� �Ca0 D .brX

r
C�� �Cb0/.csX

s
C�� �C c0/

with bi ; ci 2 Z and r;s < m. Since p, but not p2, divides a0 D b0c0, p must
divide exactly one of b0, c0, say, b0. Now from the equation

a1 D b0c1Cb1c0;

we see that pjb1; and from the equation

a2 D b0c2Cb1c1Cb2c0;
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that pjb2. By continuing in this way, we find that p divides b0;b1; : : : ;br ,
which contradicts the condition that p does not divide am. 2

The last three propositions hold mutatis mutandis with Z replaced by a
unique factorization domain R (replace Q with the field of fractions of R and
p with an irreducible element of R).

REMARK 1.17 There is an algorithm for factoring a polynomial in QŒX�. To
see this, consider f 2QŒX�. Multiply f .X/ by a rational number so that it
is monic, and then replace it by Ddeg.f /f .X

D
/, with D equal to a common

denominator for the coefficients of f , to obtain a monic polynomial with
integer coefficients. Thus we need consider only polynomials

f .X/DXmCa1X
m�1
C�� �Cam; ai 2 Z:

From the fundamental theorem of algebra (see Theorem 5.6 below), we
know that f splits completely in CŒX�,

f .X/D
Ym

iD1
.X �˛i /; ˛i 2 C:

From the equation

0D f .˛i /D ˛
m
i Ca1˛

m�1
i C�� �Cam,

it follows that j˛i j is less than some bound depending only on the degree and
coefficients of f ; in fact,

j˛i j �maxf1;mBg, B Dmax jai j.

Now if g.X/ is a monic factor of f .X/, then its roots in C are certain of
the ˛i , and its coefficients are symmetric polynomials in its roots (see p. 99).
Therefore, the absolute values of the coefficients of g.X/ are bounded in
terms of the degree and coefficients of f . Since they are also integers (by
1.14), we see that there are only finitely many possibilities for g.X/. Thus, to
find the factors of f .X/ we (better PARI) only have to make a finite search.2

We shall not concern ourselves with the problem of factoring polyno-
mials in QŒX� or FpŒX� because PARI knows how to do this. For ex-
ample, typing content(6*X^2+18*X-24) in PARI returns 6, and typing
factor(6*X^2+18*X-24) returns X �1 and XC4, showing that

6X2C18X �24D 6.X �1/.XC4/ in QŒX�:
2Of course, there are much faster methods. For example, the Berlekamp–Zassenhaus

algorithm factors the polynomial over certain suitable finite fields Fp , lifts the factorizations
to rings Z=pmZ for some m, and then searches for factorizations in ZŒX� with the correct
form modulo pm. See the Wikipedia.
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Typing factormod(X^2+3*X+3,7) returns XC4 and XC6, showing that

X2C3XC3D .XC4/.XC6/ in F7ŒX�:

REMARK 1.18 One other observation is useful. Let f 2ZŒX�. If the leading
coefficient of f is not divisible by a prime p, then a nontrivial factorization
f D gh in ZŒX� will give a nontrivial factorization Nf D Ng Nh in FpŒX�. Thus,
if f .X/ is irreducible in FpŒX� for some prime p not dividing its leading
coefficient, then it is irreducible in ZŒX�.

This test is very useful, but it is not always effective: for example, X4�
10X2C 1 is irreducible in ZŒX� but it is reducible modulo every prime p.
We prove this using only that the product of two nonsquares in F�p is a square,
which follows from the fact that F�p is cyclic (see Exercise 1-3). If p is such
that 2 is a square in Fp, then

X4�10X2C1D .X2�2
p
2X �1/.X2C2

p
2X �1/:

If p is such that 3 is a square in Fp, then

X4�10X2C1D .X2�2
p
3XC1/.X2C2

p
3XC1/:

If neither 2 nor 3 is a square in Fp, then 6 is a square in Fp, and

X4�10X2C1D .X2� .5C2
p
6//.X2� .5�2

p
6//:

The general study of such polynomials requires nonelementary methods. See,
for example, the paper Brandl, Amer. Math. Monthly, 93 (1986), pp. 286–288,
which proves that for every composite integer n� 1, there exists a polynomial
in ZŒX� of degree n that is irreducible over Z but reducible modulo all primes.

Extensions

Let F be a field. An extension of F is field containing F as a subfield. In
other words, an extension is an F -algebra whose underlying ring is a field.
An extension E of F is, in particular, an F -vector space, whose dimension is
called the degree ŒEWF � of E over F . An extension is said to be finite (resp.
quadratic, cubic, etc.) if its degree is finite (resp. 2, 3, etc.).

When E and E 0 are extensions of F , an F -homomorphism E ! E 0

is a homomorphism 'WE ! E 0 such that '.c/ D c for all c 2 F . An F -
isomorphism is a bijective F -homomorphism.
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EXAMPLE 1.19 (a) The field of complex numbers C has degree 2 over R
(basis f1; ig/:

(b) The field of real numbers R has infinite degree over Q: the field Q is
countable, and so every finite-dimensional Q-vector space is also countable,
but a famous argument of Cantor shows that R is not countable.

(c) The field of Gaussian numbers

Q.i/ def
D faCbi 2 C j a;b 2Qg

has degree 2 over Q (basis f1; ig).
(d) The field F.X/ has infinite degree over F ; in fact, even its subspace

F ŒX� has infinite dimension over F (basis 1;X;X2; : : :).

PROPOSITION 1.20 (MULTIPLICATIVITY OF DEGREES) Consider fields
L�E � F . Then L=F is of finite degree if and only if L=E and E=F are
both of finite degree, in which case

ŒLWF �D ŒLWE�ŒEWF �:

PROOF. If L is finite over F , then it is certainly finite over E; moreover,
E, being a subspace of a finite-dimensional F -vector space, is also finite-
dimensional.

Thus, assume that L=E and E=F are of finite degree, and let .ei /1�i�m
be a basis for E as an F -vector space and let .lj /1�j�n be a basis for L as an
E-vector space. We’ll complete the proof by showing that .ei lj /1�i�m;1�j�n
is a basis for L over F .

First, .ei lj /i;j spans L. Let 
 2 L. Then, because .lj /j spans L as an
E-vector space,


 D
P
j j̨ lj ; some j̨ 2E;

and because .ei /i spans E as an F -vector space,

j̨ D
P
i aij ei ; some aij 2 F :

On putting these together, we find that


 D
P
i;j aij ei lj :

Second, .ei lj /i;j is linearly independent. A linear relation
P
aij ei lj D 0,

aij 2 F , can be rewritten
P
j .
P
i aij ei /lj D 0. The linear independence of

the lj now shows that
P
i aij ei D 0 for each j , and the linear independence

of the ei shows that each aij D 0. 2
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The subring generated by a subset

An intersection of subrings of a ring is again a ring (this is easy to prove).
Let F be a subfield of a field E and S a subset of E. The intersection of all
the subrings of E containing F and S is obviously the smallest subring of E
containing both F and S . We call it the subring of E generated by F and
S (or the F -algebra generated by S ), and we denote it by F ŒS�. When S D
f˛1; :::;˛ng, we write F Œ˛1; :::;˛n� for F ŒS�. For example, CD RŒ

p
�1�.

LEMMA 1.21 The ring F ŒS� consists of the elements of E that can be ex-
pressed as finite sums of the formX

ai1���in˛
i1
1 � � �˛

in
n ; ai1���in 2 F; ˛i 2 S; ij 2 N: (1)

PROOF. Let R be the set of all such elements. Obviously, R is a subring of
E containing F and S and contained in every other such subring. Therefore
it equals F ŒS�. 2

EXAMPLE 1.22 The ring QŒ��, � D 3:14159:::, consists of the real numbers
that can be expressed as a finite sum

a0Ca1�Ca2�
2
C�� �Can�

n; ai 2Q:

The ring QŒi � consists of the complex numbers of the form aCbi , a;b 2Q.

Note that the expression of an element in the form (1) will not be unique
in general. This is so already in RŒi �.

LEMMA 1.23 Let R be a finite F -algebra. If R is an integral domain, then it
is a field.

PROOF. Let ˛ be a nonzero element of R — we have to show that ˛ has
an inverse in R. The map x 7! ˛xWR! R is an injective linear map of
finite-dimensional F -vector spaces, and is therefore surjective. In particular,
there is an element ˇ 2R such that ˛ˇ D 1. 2

In particular, every subring (containing F ) of a finite extension of F is a
field.



The subfield generated by a subset 13

The subfield generated by a subset

An intersection of subfields of a field is again a field. Let F be a subfield
of a field E and S a subset of E. The intersection of all the subfields of E
containing F and S is obviously the smallest subfield of E containing both
F and S . We call it the subfield of E generated by F and S (or generated
over F by S ), and we denote it by F.S/. It is the field of fractions of F ŒS� in
E because this is a subfield of E containing F and S and contained in every
other such field. When S D f˛1; :::;˛ng, we write F.˛1; :::;˛n/ for F.S/.
Thus, F Œ˛1; : : : ;˛n� consists of all elements of E that can be expressed as
polynomials in the ˛i with coefficients in F , and F.˛1; : : : ;˛n/ consists of all
elements of E that can be expressed as a quotient of two such polynomials.

Lemma 1.23 shows that F ŒS� is already a field if it is finite-dimensional
over F , in which case F.S/D F ŒS�.

EXAMPLE 1.24 (a) The field Q.�/, � D 3:14: : :, consists of the complex
numbers that can be expressed as a quotient

g.�/=h.�/; g.X/;h.X/ 2QŒX�; h.X/¤ 0:

(b) The ring QŒi � is already a field.

An extension E of F is said to be simple if E D F.˛/ some ˛ 2E. For
example, Q.�/ and QŒi � are simple extensions of Q:

Let F and F 0 be subfields of a field E. The intersection of the subfields
of E containing both F and F 0 is obviously the smallest subfield of E
containing both F and F 0. We call it the composite of F and F 0 in E, and
we denote it by F �F 0. It can also be described as the subfield of E generated
over F by F 0, or the subfield generated over F 0 by F :

F.F 0/D F �F 0 D F 0.F /.

Construction of some extensions

Let f .X/ 2 F ŒX� be a monic polynomial of degree m, and let .f / be the
ideal generated by f .X/. Consider the quotient ring F ŒX�=.f /, and write x
for the image of X in F ŒX�=.f /, i.e., x is the coset XC .f .X//.

(a) The map
P.X/ 7! P.x/WF ŒX�! F Œx�

is an F -homomorphism sending f .X/ to 0. Therefore, f .x/D 0.
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(b) The division algorithm shows that every element g of F ŒX�=.f / is
represented by a unique polynomial r of degree <m. Hence each element of
F Œx� can be expressed uniquely as a sum

a0Ca1xC�� �Cam�1x
m�1; ai 2 F: (2)

(c) To add two elements, expressed in the form (2), simply add the
corresponding coefficients.

(d) To multiply two elements expressed in the form (2), multiply in the
usual way, and use the relation f .x/D 0 to express the monomials of degree
�m in x in terms of lower degree monomials.

(e) Now assume that f .X/ is irreducible. Then every nonzero ˛ 2 F Œx�
has an inverse, which can be found as follows. Use (b) to write ˛ D g.x/
with g.X/ a polynomial of degree �m�1, and apply Euclid’s algorithm in
F ŒX� to find polynomials a.X/ and b.X/ such that

a.X/f .X/Cb.X/g.X/D d.X/

with d.X/ the gcd of f and g. In our case, d.X/ is 1 because f .X/ is
irreducible and degg.X/ < degf .X/. When we replace X with x, the
equality becomes

b.x/g.x/D 1:

Hence b.x/ is the inverse of g.x/.
We have proved the following statement.

1.25 For a monic irreducible polynomial f .X/ of degree m in F ŒX�,

F Œx� def
D F ŒX�=.f .X//

is a field of degree m over F . Computations in F Œx� come down to computa-
tions in F .

Note that, because F Œx� is a field, F.x/D F Œx�.3

EXAMPLE 1.26 Let f .X/DX2C1 2 RŒX�. Then RŒx� has
elements: aCbx, a;b 2 RI
addition: .aCbx/C .a0Cb0x/D .aCa0/C .bCb0/xI
multiplication: .aCbx/.a0Cb0x/D .aa0�bb0/C .ab0Ca0b/xI
inverses: in this case, it is possible write down the inverse of aC bx

directly.
We usually write i for x and C for RŒx�:

3Thus, we can denote it by F.x/ or by F Œx�. The former is more common, but I use F Œx�
to emphasize the fact that its elements are polynomials in x.
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EXAMPLE 1.27 Let f .X/D X3�3X �1 2 QŒX�. We observed in (1.12)
that this is irreducible over Q, and so QŒx� is a field. It has basis f1;x;x2g as
a Q-vector space. Let

ˇ D x4C2x3C3 2QŒx�:

Using that x3�3x�1D 0, we find that ˇ D 3x2C7xC5. Because X3�
3X �1 is irreducible,

gcd.X3�3X �1;3X2C7XC5/D 1:

In fact, Euclid’s algorithm gives�
X3�3X�1

��
�7
37
XC 29

111

�
C
�
3X2C7XC5

��
7
111
X2� 26

111
XC 28

111

�
D 1:

Hence �
3x2C7xC5

��
7
111
x2� 26

111
xC 28

111

�
D 1;

and we have found the inverse of ˇ:
We can also do this in PARI: b=Mod(X^4+2*X^3+3,X^3-3*X-1) reveals

that ˇ D 3x2C 7xC 5 in QŒx�, and b^(-1) reveals that ˇ�1 D 7
111
x2 �

26
111
xC 28

111
.

Stem fields

Let f be a monic irreducible polynomial in F ŒX�. A pair .E;˛/ consisting of
an extension E of F and an ˛ 2E is called4 a stem field for f if E D F Œ˛�
and f .˛/ D 0. For example, the pair .E;˛/ with E D F ŒX�=.f / D F Œx�
and ˛ D x is a stem field for f . Let .E;˛/ be a stem field, and consider the
surjective homomorphism of F -algebras

g.X/ 7! g.˛/WF ŒX�!E.

Its kernel is generated by a nonzero monic polynomial, which divides f , and
so must equal f . Therefore the homomorphism defines an F -isomorphism

x 7! ˛WF Œx�!E; where F Œx�D F ŒX�=.f /.

4Following A.A. Albert (Modern Higher Algebra, 1937) who calls the splitting field of a
polynomial its root field.
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In other words, the stem field .E;˛/ of f is F -isomorphic to the standard
stem field .F ŒX�=.f /;x/. It follows that every element of a stem field .E;˛/
for f can be written uniquely in the form

a0Ca1˛C�� �Cam�1˛
m�1; ai 2 F; mD deg.f /,

and that arithmetic in F Œ˛� can be performed using the same rules as in F Œx�.
If .E 0;˛0/ is a second stem field for f , then there is a unique F -isomorphism
E!E 0 sending ˛ to ˛0. We sometimes abbreviate “stem field .F Œ˛�;˛/” to
“stem field F Œ˛�”.

Algebraic and transcendental elements

Let F be a field and E an integral domain containing F as a subring. An
element ˛ of E defines a homomorphism

f .X/ 7! f .˛/WF ŒX�!E:

There are two possibilities.
CASE 1: The kernel of the map is .0/, so that, for f 2 F ŒX�,

f .˛/D 0 H) f D 0 (in F ŒX�).

In this case, we say that ˛ transcendental over F . The homomorphism
X 7! ˛WF ŒX�! F Œ˛� is an isomorphism, and it extends to an isomorphism
F.X/! F.˛/ if E is a field.

CASE 2: The kernel is ¤ .0/, so that g.˛/ D 0 for some nonzero g 2
F ŒX�. In this case, we say that ˛ is algebraic over F . The polynomials g
such that g.˛/D 0 form a nonzero ideal in F ŒX�, which is generated by the
monic polynomial f of least degree such f .˛/D 0. We call f the minimal
(or minimum) polynomial of ˛ over F .5 It is irreducible, because otherwise
there would be two nonzero elements of E whose product is zero.

The minimal polynomial is characterized as an element of F ŒX� by each
of the following conditions,
˘ f is monic, f .˛/D 0, and f divides every other g in F ŒX� such that

g.˛/D 0;

˘ f is the monic polynomial of least degree such that f .˛/D 0I
5When we order the polynomials by degree, f is a minimal element of the set of poly-

nomials having ˛ as a root, and the minimum (i.e., least) element of the the set of monic
polynomials having ˛ as a root.
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˘ f is monic, irreducible, and f .˛/D 0.
Note that g.X/ 7! g.˛/ defines an isomorphism F ŒX�=.f /! F Œ˛�. Since
the first is a field, so also is the second. Thus, F Œ˛� is a stem field for f .

EXAMPLE 1.28 Let ˛ 2C be such that ˛3�3˛�1D 0. Then X3�3X �1
is monic, irreducible, and has ˛ as a root, and so it is the minimal polynomial
of ˛ over Q. The set f1;˛;˛2g is a basis for QŒ˛� over Q. The calculations
in Example 1.27 show that if ˇ is the element ˛4C 2˛3C 3 of QŒ˛�, then
ˇ D 3˛2C7˛C5, and

ˇ�1 D 7
111
˛2� 26

111
˛C 28

111
:

REMARK 1.29 PARI knows how to compute in QŒa�. For example, typing
factor(X^4+4) returns the factorization

X4C4D .X2�2XC2/.X2C2XC2/

in QŒX�. Now type F=nfinit(a^2+2*a+2) to define a number field “F”
generated over Q by a root a of X2C2XC2. Then nffactor(F,x^4+4)

returns the factorization

X4C4D .X �a�2/.X �a/.XCa//.XCaC2/;

in QŒa�.

An extensionE of F is said to be algebraic (andE is said to be algebraic
over F ), if every element of E is algebraic over F ; otherwise it is said to be
transcendental (and E is said to be transcendental over F ). Thus, E=F is
transcendental if at least one element of E is transcendental over F .

PROPOSITION 1.30 Let E � F be fields. If E=F is finite, then E is alge-
braic and finitely generated (as a field) over F ; conversely, if E is generated
over F by a finite set of algebraic elements, then it is of finite degree over F .

PROOF. H): To say that an element ˛ of E is transcendental over F
amounts to saying that its powers 1;˛;˛2; : : : are linearly independent over
F . As E is finite over F , its elements are algebraic over F . It remains to
show that E is finitely generated over F . If E D F , then it is generated by
the empty set. Otherwise, there exists an ˛1 2 E XF . If E ¤ F Œ˛1�, then
there exists an ˛2 2EXF Œ˛1�, and so on. Since

ŒF Œ˛1�WF � < ŒF Œ˛1;˛2�WF � < � � �< ŒEWF �
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this process terminates with E D F Œ˛1;˛2; : : : ;˛n�.
(H: Let E D F.˛1; :::;˛n/ with ˛1;˛2; : : :˛n algebraic over F . The

extension F.˛1/=F is finite because ˛1 is algebraic over F , and the exten-
sion F.˛1;˛2/=F.˛1/ is finite because ˛2 is algebraic over F and hence
over F.˛1/. Thus, by (1.20), F.˛1;˛2/ is finite over F . Now repeat the
argument. 2

COROLLARY 1.31 Consider fields L�E � F . If L is algebraic over E and
E is algebraic over F , then L is algebraic over F:

PROOF. By assumption, every ˛ 2 L is a root of a monic polynomial

XmCam�1X
m�1
C�� �Ca0; ai 2E:

According to the proposition, the ring F Œa0; : : : ;am�1� is finite over F and
F Œa0; : : : ;am�1;˛� is finite over F Œa0; : : : ;am�1�, and so F Œa0; : : : ;am�1;˛�
is finite over F (see 1.20); hence ˛ is algebraic over F . 2

PROPOSITION 1.32 Let F be a field and R an integral domain containing
F as a subring. If R is generated as an F -algebra by elements algebraic over
F , then it is a field algebraic over F .

PROOF. Suppose first that RD F Œ˛1; : : : ;˛n� with each ˛i algebraic over F .
For each i , there exist an mi > 0 and aj 2 F such that

˛
mi
i D a0C�� �Cami�1˛

mi�1
i :

Hence R is spanned as an F -vector space by the elements

˛
i1
1 � � �˛

in
n ; i1 <m1; : : : ; in <mn:

In particular, R is a finite F -algebra, and hence a field algebraic over F (1.23,
1.30). In the general case, each element of R is contained in the F -algebra
generated by a finite set of elements algebraic over F , and so it has an inverse
in R and is algebraic over F . 2

Transcendental numbers

A complex number is said to be algebraic or transcendental according as it
is algebraic or transcendental over Q. First we provide a little history.

1844: Liouville showed that certain numbers, now called Liouville num-
bers, are transcendental.
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1873: Hermite showed that e is transcendental.
1874: Cantor showed that the set of algebraic numbers is countable, but

that R is not countable, and so most real numbers are transcendental.
1882: Lindemann showed that � is transcendental.
1934: Gel’fond and Schneider independently showed that ˛ˇ is transcen-

dental if ˛ and ˇ are algebraic, ˛ ¤ 0;1, and ˇ …Q. (This was the seventh of
Hilbert’s famous problems.)

2022: Euler’s constant


 def
D lim
n!1

�
1C

1

2
C�� �C

1

n
� logn

�
has not yet been proven to be transcendental or even irrational (see La-
garias, Euler’s constant. Bull. Amer. Math. Soc. 50 (2013), 527–628,
arXiv:1303:1856).

2022: The numbers eC� and e�� are surely transcendental, but they
have not even been proved to be irrational!

PROPOSITION 1.33 The set of algebraic numbers is countable.

PROOF. Every algebraic number is a root of a polynomial

a0X
n
Ca1X

n�1
C�� �Can; a0; : : : ;an 2 Z:

For an N 2N, there are only finitely many such polynomials with n�N and
ja0j; : : : ; janj �N , and each polynomial has only finitely many roots. Thus,
the set of algebraic numbers is a countable union of finite sets

S
N�1A.N/,

and any such union is countable — for example, choose a bijection from some
segment Œ0;n.1/� of N onto A.1/, extend it to a bijection from a segment
Œ0;n.2/� onto A.2/, and so on. 2

A typical Liouville number is
P1
nD0

1
10nŠ

— in its decimal expansion
there are increasingly long strings of zeros. Since its decimal expansion is
not periodic, the number is not rational. We prove that the analogue of this
number in base 2 is transcendental.

THEOREM 1.34 (LIOUVILLE) The number ˛ D
P 1

2nŠ
is transcendental.

PROOF. 6Suppose not, and let

f .X/DXd Ca1X
d�1
C�� �Cad ; ai 2Q;

6This proof, which I learnt from David Masser, also works for
P 1

anŠ
, where a is any

integer � 2.

https://doi.org/10.48550/arXiv.1303.1856
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be the minimal polynomial of ˛ over Q. Thus ŒQŒ˛�WQ� D d . Choose a
nonzero integer D such that D �f .X/ 2 ZŒX�.

Let˙N D
PN
nD0

1
2nŠ

, so that˙N ! ˛ asN !1, and let xN D f .˙N /.
As ˛ is not rational, f .X/, being irreducible of degree > 1, has no rational
root. Since ˙N ¤ ˛, it cannot be a root of f .X/, and so xN ¤ 0. Obviously,
xN 2Q; in fact .2NŠ/dDxN 2 Z, and so

j.2NŠ/dDxN j � 1. (3)

From the fundamental theorem of algebra (see 5.6 below), we know that
f splits in CŒX�, say,

f .X/D

dY
iD1

.X �˛i /; ˛i 2 C; ˛1 D ˛;

and so

jxN j D

dY
iD1

j˙N �˛i j � j˙N �˛1j.˙N CM/d�1;

where M Dmaxi¤1f1; j˛i jg. But

j˙N �˛1j D

1X
nDNC1

1

2nŠ
�

1

2.NC1/Š

 
1X
nD0

1

2n

!
D

2

2.NC1/Š
:

Hence
jxN j �

2

2.NC1/Š
� .˙N CM/d�1

and

j.2NŠ/dDxN j � 2 �
2d �NŠD

2.NC1/Š
� .˙N CM/d�1

which tends to 0 as N !1 because 2d �NŠ

2.NC1/Š
D

�
2d

2NC1

�NŠ
! 0. This con-

tradicts (3). 2

Constructions with straight-edge and compass.

The Greeks understood integers and the rational numbers. They were sur-
prised to find that the length of the diagonal of a square of side 1, namely,

p
2,

is not rational. They thus realized that they needed to extend their number
system. They then hoped that the “constructible” numbers would suffice.
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Suppose that we are given a length, which we call 1, a straight-edge, and
a compass (device for drawing circles). A real number (better a length) is
constructible if it can be constructed by forming successive intersections of
˘ lines drawn through two points already constructed, and

˘ circles with centre a point already constructed and radius a constructed
length.

This led them to three famous questions that they were unable to answer:
is it possible to duplicate the cube, trisect an angle, or square the circle by
straight-edge and compass constructions? We’ll see that the answer to all
three is negative.

Let F be a subfield of R. For a positive a 2 F ,
p
a denotes the positive

square root of a in R. The F -plane is F �F �R�R. We make the following
definitions:

An F -line is a line in R�R through two points in the F -plane.
These are the lines given by equations

axCbyC c D 0; a;b;c 2 F:

An F -circle is a circle in R�R with centre an F -point and radius
an element of F . These are the circles given by equations

.x�a/2C .y�b/2 D c2; a;b;c 2 F:

LEMMA 1.35 Let L¤ L0 be F -lines, and let C ¤ C 0 be F -circles.
(a) L\L0 D ; or consists of a single F -point.

(b) L\C D ; or consists of one or two points in the F Œ
p
e�-plane, some

e 2 F , e > 0.

(c) C \C 0 D ; or consists of one or two points in the F Œ
p
e�-plane, some

e 2 F , e > 0.

PROOF. The points in the intersection are found by solving the simultane-
ous equations, and hence by solving (at worst) a quadratic equation with
coefficients in F . 2

LEMMA 1.36 (a) If c and d are constructible, then so also are cCd , �c,
cd , and c

d
.d ¤ 0/.

(b) If c > 0 is constructible, then so also is
p
c.
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SKETCH OF PROOF. First show that it is possible to construct a line perpen-
dicular to a given line through a given point, and then a line parallel to a
given line through a given point. Hence it is possible to construct a triangle
similar to a given one on a side with given length. By an astute choice of the
triangles, one constructs cd and c�1. For (b), draw a circle of radius cC1

2

and centre .cC1
2
;0/, and draw a vertical line through the point AD .1;0/ to

meet the circle at P . The length AP is
p
c. (For more details, see Michael

Artin, Algebra, 1991, Chap. 13, Section 4.) 2

THEOREM 1.37 (a) The set of constructible numbers is a field.

(b) A number ˛ is constructible if and only if it is contained in a subfield
of R of the form

QŒ
p
a1; : : : ;

p
ar �; ai 2QŒ

p
a1; : : : ;

p
ai�1�; ai > 0.

PROOF. (a) This restates (a) of Lemma 1.36.
(b) It follows from Lemma 1.35 that every constructible number is con-

tained in such a field QŒpa1; : : : ;
p
ar �. Conversely, if, for some i < r , the

elements of QŒpa1; : : : ;
p
ai�1� are constructible, then

p
ai is constructible

(by 1.36b), and so the elements of QŒpa1; : : : ;
p
ai � are constructible (by (a)).

Applying this for i D 0;1; : : :, we find that the elements of QŒpa1; : : : ;
p
ar �

are constructible. 2

COROLLARY 1.38 If ˛ is constructible, then ˛ is algebraic over Q, and
ŒQŒ˛�WQ� is a power of 2.

PROOF. According to Proposition 1.20, ŒQŒ˛�WQ� divides

ŒQŒ
p
a1� � � � Œ

p
ar �WQ�

and ŒQŒpa1; : : : ;
p
ar �WQ� is a power of 2. 2

COROLLARY 1.39 It is impossible to duplicate the cube by straight-edge
and compass constructions.

PROOF. The problem is to construct a cube with volume 2. This requires that
we construct the real root of the polynomial X3�2. But this polynomial is
irreducible (by Eisenstein’s criterion 1.16), and so ŒQŒ 3

p
2�WQ�D 3. 2

COROLLARY 1.40 In general, it is impossible to trisect an angle by straight-
edge and compass constructions.
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PROOF. Knowing an angle is equivalent to knowing the cosine of the angle.
Therefore, to trisect 3� , we have to construct a solution to

cos3� D 4cos3 � �3cos�:

For example, take 3� D 60 degrees. As cos60ı D 1
2

, to construct cos� , we
have to find a root of 8x3�6x�1, which is irreducible (apply 1.11), and so
ŒQŒcos��WQ�D 3. 2

COROLLARY 1.41 It is impossible to square the circle by straight-edge and
compass constructions.

PROOF. A square with the same area as a circle of radius r has side
p
�r .

Since � is transcendental7, so also is
p
� . 2

We next consider another problem that goes back to the ancient Greeks:
list the integers n such that the regular n-sided polygon can be constructed
using only straight-edge and compass. Here we consider the question for a
prime p (see 5.12 for the general case). Note that Xp�1 is not irreducible;
in fact

Xp�1D .X �1/.Xp�1CXp�2C�� �C1/:

LEMMA 1.42 If p is prime, thenXp�1C�� �C1 is irreducible; hence QŒe
2�i
p �

has degree p�1 over Q:

PROOF. Let f .X/D .Xp�1/=.X �1/DXp�1C�� �C1; then

f .XC1/D
.XC1/p�1

X
DXp�1C�� �CaiX

i
C�� �Cp;

with ai D
�
p
iC1

�
. We know (1.4) that pjai for i D 1; :::;p� 2, and so the

polynomial f .X C 1/ is irreducible by Eisenstein’s criterion 1.16. This
implies that f .X/ is irreducible. 2

In order to construct a regular p-gon, p an odd prime, we need to construct

cos 2�
p
D
e
2�i
p C e�

2�i
p

2
:

Note that
QŒe

2�i
p ��QŒcos 2�

p
��Q:

7Proofs of this can be found in many books on number theory, for example, in 11.14 of
Hardy and Wright, An Introduction to the Theory of Numbers, Fourth Edition, Oxford, 1960.
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The degree of QŒe
2�i
p � over QŒcos 2�

p
� is 2 because the equation

˛2�2cos 2�
p
�˛C1D 0; ˛ D e

2�i
p ;

shows that it is at most 2, and it is not 1 because e
2�i
p … R. Hence

ŒQŒcos 2�
p
�WQ�D

p�1

2
:

We deduce that, if the regular p-gon is constructible, then .p�1/=2 is a
power of 2. Later (5.12) we shall prove a converse. Thus, the regular p-gon
(p prime) is constructible if and only if p D 2nC1 for some positive integer
n.

A number 2nC1 can be prime only if n is a power of 2, because, other-
wise, nD rs with s odd, and

Y sC1D .Y C1/.Y s�1�Y s�2C�� �C1/

2rsC1D .2rC1/..2r/s�1� .2r/s�2C�� �C1/.

We conclude that the primes p for which the regular p-gon is constructible
are exactly those of the form 22

r

C1 for some r . Such p are called Fermat
primes (because Fermat conjectured that all numbers of the form 22

r

C1 are
prime). For r D 0;1;2;3;4, we have 22

r

C 1 D 3;5;17;257;65537, which
are indeed prime, but Euler showed that 232C1D .641/.6700417/, and we
do not know of any more Fermat primes. It is expected that there are no more,
but this has not been proved. See Wikipedia: Fermat number.

Gauss showed that

cos 2�
17
D�

1
16
C

1
16

p
17C 1

16

p
34�2

p
17C 1

8

q
17C3

p
17�

p
34�2

p
17�2

p
34C2

p
17

when he was 18 years old. This success encouraged him to become a mathe-
matician.

Algebraically closed fields

Let F be a field. A polynomial is said to split in F ŒX� if it is a product of
polynomials of degree at most 1 in F ŒX�.

PROPOSITION 1.43 For a field ˝, the following statements are equivalent:
(a) Every nonconstant polynomial in ˝ŒX� splits in ˝ŒX�.
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(b) Every nonconstant polynomial in ˝ŒX� has at least one root in ˝.

(c) The irreducible polynomials in ˝ŒX� are those of degree 1.

(d) Every field of finite degree over ˝ equals ˝.

PROOF. The implications (a))(b))(c) are obvious.
(c))(a). This follows from the fact that ˝ŒX� is a unique factorization
domain.
(c))(d). Let E be a finite extension of ˝, and let ˛ 2 E. The minimal
polynomial of ˛, being irreducible, has degree 1, and so ˛ 2˝.
(d))(c). Let f be an irreducible polynomial in ˝ŒX�. Then ˝ŒX�=.f / is
an extension of ˝ of degree deg.f / (see 1.30), and so deg.f /D 1. 2

DEFINITION 1.44 (a) A field ˝ is algebraically closed if it satisfies the
equivalent statements of Proposition 1.43.

(b) A field ˝ is an algebraic closure of a subfield F if it is algebraically
closed and algebraic over F .

For example, the fundamental theorem of algebra (see 5.6 below) says
that C is algebraically closed. It is an algebraic closure of R.

PROPOSITION 1.45 If ˝ is algebraic over F and every polynomial f 2
F ŒX� splits in ˝ŒX�, then ˝ is algebraically closed (and hence an algebraic
closure of F ).

PROOF. Let f D anXnC�� �Ca0, ai 2˝, be a nonconstant polynomial in
˝ŒX�. We have to show that f has a root in ˝. We know (see 1.25) that f
has a root ˛ in some finite extension ˝ 0 of ˝. Consider the fields

F � F Œa0; : : : ;an�� F Œa0; : : : ;an;˛�:

Each extension is generated by a finite set of algebraic elements, and hence
is finite (1.30). Therefore ˛ lies in a finite extension of F (see 1.20), and so
is algebraic over F — it is a root of a polynomial g with coefficients in F .
By assumption, g splits in ˝ŒX�, and so the roots of g in ˝ 0 all lie in ˝. In
particular, ˛ 2˝: 2

In fact, it suffices to assume that every f 2 F ŒX� has a root in ˝ (see 6.5
below).

PROPOSITION 1.46 Let F be a field and ˝ an integral domain containing
F as a subring. Then

NF def
D f˛ 2˝ j ˛ algebraic over F g

is a field (called the algebraic closure of F in ˝).
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PROOF. If ˛ and ˇ are algebraic over F , then F Œ˛;ˇ�D F Œ˛�Œˇ� is a field of
finite degree over F (see p. 17). Thus, every element of F Œ˛;ˇ� is algebraic
over F . In particular, ˛˙ˇ, ˛=ˇ, and ˛ˇ are algebraic over F . 2

COROLLARY 1.47 Let ˝ be an algebraically closed field. For any subfield
F of ˝, the algebraic closure E of F in ˝ is an algebraic closure of F:

PROOF. It is algebraic over F by definition. Every polynomial in F ŒX� splits
in ˝ŒX� and has its roots in E, and so splits in EŒX�. Now apply Proposition
1.45. 2

Thus, when we admit the fundamental theorem of algebra (5.6), every
subfield of C has an algebraic closure (in fact, a canonical algebraic closure).
Later (Chapter 6) we’ll prove, using the axiom of choice, that every field has
an algebraic closure.

NOTES Although various classes of field, for example, number fields and function
fields, had been studied earlier, the first systematic account of the theory of abstract
fields was given by Steinitz in 1910 (Algebraische Theorie der Körper, J. Reine
Angew. Math., 137:167–309). Here he introduced the notion of a prime field,
distinguished between separable and inseparable extensions, and showed that every
field can be obtained as an algebraic extension of a purely transcendental extension.
He also proved that every field has an algebraic closure, unique up to isomorphism.
His work influenced later algebraists (Emmy Noether, B. L. van der Waerden, Emil
Artin, . . . ) and his article has been described by Bourbaki as “. . . a fundamental
work that may be considered as having given birth to the current conception8 of
algebra”. See: Roquette, Peter, In memoriam Ernst Steinitz (1871–1928). J. Reine
Angew. Math. 648 (2010), 1–11.

Exercises

1-1 Let E D QŒ˛�, where ˛3 � ˛2C ˛C 2 D 0. Express the elements
.˛2C˛C 1/.˛2�˛/ and .˛� 1/�1 of E in the form a˛2C b˛C c with
a;b;c 2Q.

1-2 Determine ŒQ.
p
2;
p
3/WQ�.

1-3 Let F be a field, and let f .X/ 2 F ŒX�.
(a) For every a 2 F , show that there is a polynomial q.X/ 2 F ŒX� such

that
f .X/D q.X/.X �a/Cf .a/:

8In which objects are to be defined abstractly by axioms.
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(b) Deduce that f .a/D 0 if and only if .X �a/jf .X/.

(c) Deduce that f .X/ can have at most degf roots.

(d) Let G be a finite abelian group. If G has at most m elements of order
dividing m for each divisor m of .GW1/, show that G is cyclic.

(e) Deduce that every finite subgroup of F �, F a field, is cyclic.

1-4 Show that with straight-edge, compass, and angle-trisector, it is possible
to construct a regular 7-gon.

1-5 Let f .X/ be an irreducible polynomial over F of degree n, and let E
be a field extension of F with ŒE W F �Dm. If gcd.m;n/D 1, show that f is
irreducible over E.

1-6 Show that there does not exist a polynomial f .X/ 2 ZŒX� of degree
> 1 that is irreducible modulo p for all primes p.

1-7 Let ˛ D 3
p
2, and let R be the set of complex numbers of the form

aCb˛C c˛2 with a;b;c 2Q. Show that R is a field.

1-8 If you understand the Legendre symbol, use its properties to show
that the polynomial .X2�13/.X2�17/.X2�221/ has roots modulo every
integer (but not in Z).





CHAPTER 2
Splitting Fields; Multiple Roots

Homomorphisms from simple extensions.

LetF be a field, and letE andE 0 be fields containingF . AnF -homomorphism
'WE!E 0 maps a polynomialX

ai1���im˛
i1
1 � � �˛

im
m ; ai1���im 2 F; ˛i 2E;

to X
ai1���im'.˛1/

i1 � � �'.˛m/
im :

An F -homomorphism E ! E 0 of fields is, in particular, an injective
F -linear map of F -vector spaces, and so it is an F -isomorphism if E and E 0

have the same finite degree over F .

PROPOSITION 2.1 Let F.˛/ be a simple extension of F and ˝ a second
extension of F .

(a) Suppose that ˛ is transcendental over F . For every F -homomorphism
'WF.˛/!˝, '.˛/ is transcendental over F , and the map ' 7! '.˛/ defines
a one-to-one correspondence

fF -homomorphisms F.˛/!˝g$felements of ˝ transcendental over F g:

(b) Suppose that ˛ is algebraic over F , and let f .X/ be its minimal
polynomial. For every F -homomorphism 'WF Œ˛�! ˝, '.˛/ is a root of
f .X/ in ˝, and the map ' 7! '.˛/ defines a one-to-one correspondence

fF -homomorphisms 'WF Œ˛�!˝g $ froots of f in ˝g:

29
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In particular, the number of such maps is the number of distinct roots of f in
the field ˝.

PROOF. (a) To say that ˛ is transcendental over F means that F Œ˛� is iso-
morphic to the polynomial ring in the symbol ˛. Therefore, for every 
 2˝,
there is a unique F -homomorphism 'WF Œ˛�!˝ such that '.˛/D 
 (see
1.5). This ' extends (uniquely) to the field of fractions F.˛/ of F Œ˛� if and
only if nonzero elements of F Œ˛� are sent to nonzero elements of ˝, which is
the case if and only if 
 is transcendental over F . Thus we see that there are
one-to-one correspondences between (a) the F -homomorphisms F.˛/!˝,
(b) the F -homomorphisms 'WF Œ˛�!˝ such that '.˛/ is transcendental, (c)
the transcendental elements of ˝.

(b) Let f .X/D
P
aiX

i , and consider an F -homomorphism 'WF Œ˛�!

˝. On applying ' to the equality
P
ai˛

i D 0, we obtain the equalityP
ai'.˛/

i D 0, which shows that '.˛/ is a root of f .X/ in ˝. Conversely,
if 
 2˝ is a root of f .X/, then the map F ŒX�!˝, g.X/ 7! g.
/, factors
through F ŒX�=.f .X//. When composed with the inverse of the canoni-
cal isomorphism F ŒX�=.f .X//! F Œ˛�, this becomes a homomorphism
F Œ˛�!˝ sending ˛ to 
 . 2

EXAMPLE 2.2 Consider a simple algebraic extension QŒ˛� of Q, and let f
be the minimal polynomial of ˛. We shall see later that f has degf distinct
roots in C. Therefore, there are exactly ŒQŒ˛�WQ� distinct Q-homomorphism
QŒ˛�! C, each sending ˛ to a root of f in C.

EXAMPLE 2.3 Let F be a field of characteristic p ¤ 0, and let a 2 F XF p .
Then Xp�a is irreducible, and we let F Œ˛� be a corresponding stem field. If
ˇ is a root of Xp �a in an extension ˝ of F , then Xp �a D .X �ˇ/p in
˝ŒX�, and so there is exactly one F -homomorphism F Œ˛�!˝ (sending ˛
to ˇ/:

We shall need a slight generalization of 2.1.

PROPOSITION 2.4 Let F.˛/ be a simple extension of F and '0WF !˝ a
homomorphism from F into a second field ˝.

(a) If ˛ is transcendental over F , then the map ' 7! '.˛/ defines a one-
to-one correspondence between extensions 'WF.˛/!˝ of '0 and elements
of ˝ transcendental over '0.F /.

(b) If ˛ is algebraic over F , with minimal polynomial f .X/, then the
map ' 7! '.˛/ defines a one-to-one correspondence between extensions
'WF.˛/!˝ of '0 and roots of '0f in ˝. In particular, the number of such
maps is the number of distinct roots of '0f in ˝.
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By '0f we mean the polynomial obtained by applying '0 to the coef-
ficients of f . By an extension of '0 to F.˛/ we mean a homomorphism
'WF.˛/! ˝ whose restriction to F is '0. The proof of the proposition
is essentially the same as that of the preceding proposition (indeed, it is
essentially the same proposition).

Splitting fields

Let f be a polynomial with coefficients in F . A field E containing F is said
to split f if f splits in EŒX�, i.e.,

f .X/D a

mY
iD1

.X �˛i / a 2 F; ˛i 2E:

If E splits f and is generated by the roots of f , then it is called a splitting or
root field for f .

Note that
Q
fi .X/

mi (mi � 1) and
Q
fi .X/ have the same splitting fields.

Note also that f splits in E if it has deg.f /�1 roots in E because the sum of
the roots of f lies in F (if f D aXmCa1Xm�1C�� � , then

P
˛i D�a1=a).

EXAMPLE 2.5 Let f .X/D aX2CbXCc 2QŒX�, and let ˛D
p
b2�4ac.

The subfield QŒ˛� of C is a splitting field for f .

EXAMPLE 2.6 Let f .X/DX3CaX2CbXCc 2QŒX� be irreducible, and
let ˛1;˛2;˛3 be its roots in C. Then QŒ˛1;˛2;˛3�DQŒ˛1;˛2� is a splitting
field for f .X/. Note that ŒQŒ˛1�WQ�D 3 and that ŒQŒ˛1;˛2�WQŒ˛1��D 1 or
2, and so ŒQŒ˛1;˛2�WQ�D 3 or 6. We’ll see later (4.2) that the degree is 3
if and only if the discriminant of f .X/ is a square in Q. For example, the
discriminant of X3C bX C c is �4b3� 27c2, and so the splitting field of
X3C10XC1 (discriminant �4027/ has degree 6 over Q.

PROPOSITION 2.7 Every polynomial f 2 F ŒX� has a splitting field Ef , and

ŒEf WF �� .degf /Š .factorial degf /:

PROOF. Let F1 D F Œ˛1� be a stem field for some monic irreducible factor
of f in F ŒX�. Then f .˛1/ D 0, and we let F2 D F1Œ˛2� be a stem field
for some monic irreducible factor of f .X/=.X �˛1/ in F1ŒX�. Continuing
in this fashion, we arrive at a splitting field Ef . Let n D degf . Then
ŒF1WF �D degg1 � n, ŒF2WF1�� n�1; :::, and so ŒEf WF �� nŠ. 2
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EXAMPLE 2.8 Let f .X/D .Xp�1/=.X �1/ 2QŒX�, p prime. If � is one
root of f , then the remaining roots are �2; �3; : : : ; �p�1, and so the splitting
field of f is QŒ��.

EXAMPLE 2.9 Let F have characteristic p ¤ 0, and let f DXp�X �a 2
F ŒX�. If ˛ is one root of f in some extension of F , then the remaining roots
are ˛C1; :::;˛Cp�1, and so the splitting field of f is F Œ˛�.

EXAMPLE 2.10 If ˛ is one root of Xn � a, then the remaining roots are
all of the form �˛, where �n D 1. Therefore, F Œ˛� is a splitting field for
Xn�a if and only if F contains all the nth roots of 1 (by which we mean
that Xn� 1 splits in F ŒX�). Note that if p is the characteristic of F , then
Xp�1D .X �1/p, and so F automatically contains all the pth roots of 1.

ASIDE 2.11 Let F be a field. For a given integer n, there may or may not exist
polynomials of degree n in F ŒX� whose splitting field has degree nŠ — this depends
on F . For example, there do not exist such polynomials for n > 1 if F DC (see 5.6),
nor for n > 2 if F D R or F D Fp (see 4.22). However, later (4.32) we’ll see how to
write down infinitely many polynomials of degree n in QŒX� with splitting fields of
degree nŠ.

Homomorphisms of algebraic extensions

PROPOSITION 2.12 Let f 2 F ŒX�. Let E be an extension of F generated
by the roots of f in E and ˝ an extension of F splitting f . There exists
an F -homomorphism 'WE!˝; the number of such homomorphisms is at
most ŒEWF �, and equals ŒEWF � if f has distinct roots in ˝.

PROOF. We may suppose that f is monic.
By hypothesis, f D

Q
.X � ˇi / in ˝ŒX�. Let L be a subfield of ˝

containing F , and let g be a monic factor of f in LŒX�. Then g divides f in
˝ŒX�, and so it is a product there of some of the X �ˇi . In particular, we
see that g splits in ˝, and that it has distinct roots in ˝ if f does..

By hypothesis, E D F Œ˛1; :::;˛m� with each ˛i a root of f .X/ in E. The
minimal polynomial of ˛1 is an irreducible polynomial f1 dividing f . From
the initial observation with LD F , we see that f1 splits in ˝, and that its
roots are distinct if the roots of f are distinct. According to Proposition 2.1,
there exists an F -homomorphism '1WF Œ˛1�!˝, and the number of such
homomorphisms is at most ŒF Œ˛1�WF �, with equality holding when f has
distinct roots in ˝.
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The minimal polynomial of ˛2 over F Œ˛1� is an irreducible factor f2 of
f in F Œ˛1�ŒX�. On applying the initial observation with LD '1F Œ˛1� and
g D '1f2, we see that '1f2 splits in ˝, and that its roots are distinct if the
roots of f are distinct. According to Proposition 2.4, each '1 extends to a
homomorphism '2WF Œ˛1;˛2�!˝, and the number of extensions is at most
ŒF Œ˛1;˛2�WF Œ˛1��, with equality holding when f has distinct roots in ˝:

On combining these statements we conclude that there exists an F -
homomorphism 'WF Œ˛1;˛2�! ˝;and that the number of such homomor-
phisms is at most ŒF Œ˛1;˛2�WF �, with equality holding if f has distinct roots
in ˝:

On repeating this argument m times, we obtain the proposition. 2

COROLLARY 2.13 IfE1 andE2 are both splitting fields for f , then every F -
homomorphism E1!E2 is an isomorphism. In particular, any two splitting
fields for f are F -isomorphic.

PROOF. Every F -homomorphism E1 ! E2 is injective, and so, if there
exists such a homomorphism, then ŒE1WF � � ŒE2WF �. If E1 and E2 are
both splitting fields for f , then 2.12 shows that there exist homomorphisms
E1�E2, and so ŒE1WF �D ŒE2WF �. It follows that every F -homomorphism
E1!E2 is an F -isomorphism. 2

COROLLARY 2.14 Let E and L be extension of F , with E finite over F .
The number of F -homomorphisms E! L is at most ŒEWF �.

PROOF. Write E D F Œ˛1; : : : ;˛m�, and let f 2 F ŒX� be the product of the
minimal polynomials of the ˛i ; thus E is generated over F by roots of f .
Let ˝ be a splitting field for f regarded as an element of LŒX�. Proposition
2.12 shows that there exists an F -homomorphism E!˝, and the number
of such homomorphisms is at most ŒEWF �. As an F -homomorphism E! L

can be regarded as an F -homomorphism E!˝, this proves the corollary.2

REMARK 2.15 LetE1;E2; : : : ;Em be finite extensions of F , and letL be an
extension of F . From the corollary we see that there exists a finite extension
L1=L such thatL1 contains an isomorphic image ofE1; then that there exists
a finite extension L2=L1 such that L2 contains an isomorphic image of E2.
On continuing in this fashion, we find that there exists a finite extension ˝/L
such that ˝ contains an isomorphic copy of every Ei .

WARNING 2.16 Let f 2 F ŒX�. If E and E 0 are both splitting fields of f ,
then we know that there exists an F -isomorphism E!E 0, but there will in
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general be no preferred such isomorphism. Error and confusion can result if
the fields are simply identified. Also, it makes no sense to speak of “the field
F Œ˛� generated by a root of f ” unless f is irreducible (the fields generated by
the roots of two different factors are unrelated). Even when f is irreducible,
it makes no sense to speak of “the field F Œ˛;ˇ� generated by two roots ˛;ˇ
of f ” (the extensions of F Œ˛� generated by the roots of two different factors
of f in F Œ˛�ŒX� may be very different).

Multiplicity of roots

Even when polynomials in F ŒX� have no common factor in F ŒX�, one might
expect that they could acquire a common factor in ˝ŒX� for some ˝ � F . In
fact, this does not happen — greatest common divisors do not change when
the field is extended.

PROPOSITION 2.17 Let f and g be polynomials in F ŒX�, and let ˝ be an
extension of F . If r.X/ is the gcd of f and g computed in F ŒX�, then it is
also the gcd of f and g in ˝ŒX�. In particular, distinct monic irreducible
polynomials in F ŒX� do not acquire a common root in any extension of F:

PROOF. Let rF .X/ and r˝.X/ be the greatest common divisors of f and
g in F ŒX� and ˝ŒX� respectively. Certainly rF .X/jr˝.X/ in ˝ŒX�, but
Euclid’s algorithm (1.8) shows that there are polynomials a and b in F ŒX�
such that

a.X/f .X/Cb.X/g.X/D rF .X/;

and so r˝.X/ divides rF .X/ in ˝ŒX�.
For the second statement, note that the hypotheses imply that gcd.f;g/D

1 (in F ŒX�), and so f and g can not acquire a common factor in any extension
field. 2

The proposition allows us to speak of the greatest common divisor of f
and g without reference to a field.

Let f 2 F ŒX�. Then f splits into linear factors

f .X/D a

rY
iD1

.X �˛i /
mi ; a 2 F; ˛i distinct; mi � 1;

rX
iD1

mi D deg.f /;

(4)
in EŒX� for some extension E of F (see 2.7). We say that ˛i is a root of f
of multiplicity mi in E. If mi > 1, then ˛i is said to be a multiple root of f ,
and otherwise it is a simple root.
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The unordered sequence of integers m1; : : : ;mr in (4) is independent of
the extension E chosen to split f . Certainly, it is unchanged when E is
replaced with its subfield F Œ˛1; : : : ;˛r �, and so we may suppose that E is
a splitting field for f . Let E and E 0 be splitting fields for F , and suppose
that f .X/ D a

Qr
iD1.X �˛i /

mi in EŒX� and f .X/ D a
Qr 0

iD1.X �˛
0
i /
m0
i

in E 0ŒX�. Let 'WE! E 0 be an F -isomorphism, which exists by 2.13; and
extend it to an isomorphismEŒX�!E 0ŒX� by sendingX toX . Then ' maps
the factorization of f in EŒX� onto a factorization f .X/ D a

Qr
iD1.X �

'.˛i //
mi in E 0ŒX�. By unique factorization, this coincides with the earlier

factorization in E 0ŒX� up to a renumbering of the ˛i . Therefore r D r 0, and

fm1; : : : ;mrg D fm
0
1; : : : ;m

0
rg

(equality of multisets).
We say that f has a multiple root when at least one of the mi > 1, and

that f has only simple roots when all mi D 1. Thus “f has a multiple root”
means “f has a multiple root in one, hence every, extension of F splitting
f ”.

Separable polynomials

When does a polynomial have a multiple root? If f has a multiple factor
in F ŒX�, say f D g2h, then obviously it will have a multiple root. If is a
product of distinct irreducible polynomials, then Proposition 2.17 shows that
f has a multiple root if and only if at least one of its factors has a multiple
root. Thus, it suffices to determine when an irreducible polynomial has a
multiple root.

EXAMPLE 2.18 Let F be of characteristic p ¤ 0, and assume that F con-
tains an element a that is not a pth-power, for example, a D T in the field
Fp.T /: Then Xp �a is irreducible in F ŒX�, but Xp �a D .X �˛/p in its
splitting field (see 1.4). Thus an irreducible polynomial can have multiple
roots.

The derivative of a polynomial f .X/D
P
aiX

i is defined to be f 0.X/DP
iaiX

i�1. The usual rules for differentiating sums and products still hold,
but note that in characteristic p the derivative of Xp is zero.

LEMMA 2.19 A root of f is multiple if and only if it is also a root of f 0.
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PROOF. Let

f .X/D .X �˛/mg.X/; m� 1; g.˛/¤ 0;

in some extension field. Then

f 0.X/D

�
g.X/C .X �˛/g0.X/ if mD 1;
m.X �˛/m�1g.X/C .X �˛/mg0.X/ if m> 1:

(5)

Thus f 0.˛/D 0 ” m> 1. 2

PROPOSITION 2.20 For a nonconstant irreducible polynomial f in F ŒX�,
the following statements are equivalent:

(a) f has a multiple root;

(b) gcd.f;f 0/¤ 1;

(c) F has nonzero characteristic p and f is a polynomial in Xp;

(d) all the roots of f are multiple.

PROOF. (a)) (b). If ˛ is a multiple root of f , then f and f 0 have X �˛
as a common factor.

(b)) (c). As f is irreducible and deg.f 0/ < deg.f /,

gcd.f;f 0/¤ 1 H) f 0 D 0:

Let f D a0C�� �CadXd , d � 1. Then

f 0 D a1C�� �C iaiX
i�1
C�� �CdadX

d�1;

which is the zero polynomial if only if F has characteristic p ¤ 0 and ai D 0
for all i not divisible by p.

(c) ) (d). By hypothesis, f .X/ D g.Xp/ with g.X/ 2 F ŒX�. Let
g.X/D

Q
i .X �ai /

mi in some extension field. Then each ai becomes a pth
power, say, ai D ˛

p
i , in some possibly larger extension field. Now

f .X/D g.Xp/D
Y

i
.Xp�ai /

mi D

Y
i
.X �˛i /

pmi

which shows that every root of f .X/ has multiplicity at least p.
(d)) (a). Obvious. 2

PROPOSITION 2.21 The following conditions on a nonzero polynomial f 2
F ŒX� are equivalent:

(a) gcd.f;f 0/D 1 in F ŒX�;
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(b) f has no multiple roots.

PROOF. Let ˝ be an extension of F splitting f . We know that a root ˛ of
f in ˝ is multiple if and only if it is also a root of f 0.

If gcd.f;f 0/D 1, then f and f 0 have no common factor in ˝ŒX� (see
2.17). In particular, they have no common root, and so f has no multiple
roots.

If f has no multiple roots, then gcd.f;f 0/ must be the constant polyno-
mial, because otherwise it would have a root in ˝ which would then be a
common root of f and f 0. 2

DEFINITION 2.22 A polynomial is separable if it is nonzero and it has no
multiple roots.1

Constant polynomials are separable, and a nonconstant irreducible polyno-
mial f is separable unless F has characteristic p ¤ 0 and f is a polynomial
in Xp (see 2.20); in particular, f is separable if p does not divide the degree
of f . Let f D

Q
fi with f and the fi monic and the fi irreducible; then f

is separable if and only if the fi are distinct and separable. If f is separable
as a polynomial in F ŒX�, then it is separable as a polynomial in EŒX� for
every extension E of F .

Perfect fields

DEFINITION 2.23 A field F is perfect if it has characteristic zero or it has
characteristic p and every every element of F is a pth power.

Equivalently, a field F of characteristic exponent q is perfect if F D F q .

PROPOSITION 2.24 A field F is perfect if and only if every irreducible
polynomial in F ŒX� is separable.

PROOF. If F has characteristic zero, the statement is obvious, and so we may
suppose F has characteristic p ¤ 0. If F contains an element a that is not a
pth power, then Xp�a is irreducible in F ŒX� but not separable (see 2.18).
Conversely, if every element of F is a pth power, then every polynomial in
Xp with coefficients in F is a pth power in F ŒX�,X

aiX
ip
D

�X
biX

i
�p

if ai D b
p
i ,

1This is Bourbaki’s definition. Often, for example, in the books of Jacobson and in earlier
versions of these notes, a polynomial f is said to be separable if each of its irreducible factors
has only simple roots.
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and so it is not irreducible. 2

EXAMPLE 2.25 (a) A finite field F is perfect, because the Frobenius
endomorphism a 7! apWF ! F is injective and therefore surjective
(by counting).

(b) A field that can be written as a union of perfect fields is perfect. There-
fore, every field algebraic over Fp is perfect.

(c) Every algebraically closed field is perfect.

(d) If F0 has characteristic p ¤ 0, then F D F0.X/ is not perfect, because
X is not a pth power.

ASIDE 2.26 When F is perfect, we shall see (5.1) that every finite extension E=F
is simple, i.e., E D F Œ˛� with ˛ a root of a (separable) polynomial f 2 F ŒX� of
degree ŒEWF �. Thus it follows directly from (2.1b) that, for any extension ˝ of F ,
the number of F -homomorphismsE!˝ is� ŒEWF �, with equality if and only if f
splits in ˝. We cannot use this argument here because it would make the exposition
circular.

Exercises

2-1 Let F be a field of characteristic¤ 2.
(a) Let E be quadratic extension of F ; show that

S.E/D fa 2 F � j a is a square in Eg

is a subgroup of F � containing F �2.

(b) Let E and E 0 be quadratic extensions of F ; show that there exists an
F -isomorphism 'WE!E 0 if and only if S.E/D S.E 0/.

(c) Show that there is an infinite sequence of fields E1;E2; : : : with Ei
a quadratic extension of Q such that Ei is not isomorphic to Ej for
i ¤ j .

(d) Let p be an odd prime. Show that, up to isomorphism, there is exactly
one field with p2 elements.

2-2 (a) Let F be a field of characteristic p. Show that if Xp �X � a is
reducible in F ŒX�, then it splits into distinct factors in F ŒX�.

(b) For every prime p, show that Xp�X �1 is irreducible in QŒX�.

2-3 Construct a splitting field for X5�2 over Q. What is its degree over
Q?
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2-4 Find splitting fields for the polynomials Xp
m

� 1 and Xp
m

�X in
FpŒX�. What are their degrees over Fp?

2-5 Let f 2 F ŒX�, where F is a field of characteristic 0. Let d.X/ D
gcd.f;f 0/. Show that g.X/ def

D f .X/d.X/�1 has the same roots as f .X/,
and these are all simple roots of g.X/.

2-6 Let f .X/ be an irreducible polynomial in F ŒX�, where F has char-
acteristic p. Show that f .X/ can be written f .X/D g.Xp

e

/ where g.X/
is irreducible and separable. Deduce that every root of f .X/ has the same
multiplicity pe in any splitting field.





CHAPTER 3
The Fundamental Theorem of

Galois Theory

In this chapter, we prove the fundamental theorem of Galois theory, which
classifies the subfields of the splitting field of a separable polynomial f in
terms of the Galois group of f .

Groups of automorphisms of fields

Consider fields E � F . An F -isomorphism E ! E is called an F -auto-
morphism of E. The F -automorphisms of E form a group, which we denote
Aut.E=F /.

EXAMPLE 3.1 (a) There are two obvious automorphisms of C, namely, the
identity map and complex conjugation. We’ll see later (9.18) that by using
the Axiom of Choice we can construct uncountably many more.

(b) LetEDC.X/. A C-automorphism ofE sendsX to another generator
of E over C. It follows from Lemma 9.24 below that these are exactly the
elements aXCb

cXCd
, ad � bc ¤ 0. Therefore Aut.E=C/ consists of the maps

f .X/ 7! f
�
aXCb
cXCd

�
, ad �bc ¤ 0, and so

Aut.E=C/' PGL2.C/;

the group of invertible 2�2 matrices with complex coefficients modulo its
centre. Analysts will note that this is the same as the automorphism group of
the Riemann sphere. Here is the explanation. The field E of meromorphic

41
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functions on the Riemann sphere P1C consists of the rational functions in z,
i.e., E D C.z/ ' C.X/, and the natural map Aut.P1C/! Aut.E=C/ is an
isomorphism.

(c) The group Aut.C.X1;X2/=C/ is quite complicated — there is a map

PGL3.C/D Aut.P2C/ ,! Aut.C.X1;X2/=C/;

but this is very far from being surjective. When there are even more variables
X , the group is not known. The group Aut.C.X1; : : : ;Xn/=C/ is the group
of birational automorphisms of projective n-space PnC, and is called the
Cremona group. Its study is part of algebraic geometry (Wikipedia: Cremona
group).

In this section, we’ll be concerned with the groups Aut.E=F / when E is
a finite extension of F .

PROPOSITION 3.2 Let E be a splitting field of a separable polynomial f in
F ŒX�; then Aut.E=F / has order ŒEWF �:

PROOF. As f is separable, it has degf distinct roots in E. Therefore Propo-
sition 2.12 shows that the number of F -homomorphisms E! E is ŒEWF �.
Because E is finite over F , all such homomorphisms are isomorphisms. 2

EXAMPLE 3.3 We give examples to show that, in the statement of the propo-
sition, is necessary that E be a splitting field of a separable polynomial.

Consider a simple extension E D F Œ˛�, and let f be a polynomial in
F ŒX� having ˛ as a root. If ˛ is the only root of f in E, then Aut.E=F /D 1
by (2.1b). For example, if 3

p
2 is the real cube root of 2, then Aut.QŒ 3

p
2�=Q/D

1.
Let F be a field of characteristic p ¤ 0, let a be an element of F that is

not a pth power, and let E D F Œ˛�, where ˛ is a root of f DXp�a. Then
f D .X �˛/p in E, and so E is a splitting field for f , but as f has only one
root in E, Aut.E=F /D 1.

When G is a group of automorphisms of a field E, we set

EG D Inv.G/D f˛ 2E j �˛ D ˛, all � 2Gg:

It is a subfield of E, called the the fixed field of G.

THEOREM 3.4 (ARTIN) Let G be a finite group of automorphisms of a field
E, then

ŒEWEG �� .GW1/:
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PROOF. Let F D EG , and let G D f�1; : : : ;�mg with �1 the identity map.
It suffices to show that every set f˛1; : : : ;˛ng of elements of E with n > m
is linearly dependent over F . For such a set, consider the system of linear
equations

�1.˛1/X1C�� �C�1.˛n/Xn D 0

::: (6)

�m.˛1/X1C�� �C�m.˛n/Xn D 0

with coefficients in E. There are m equations and n > m unknowns, and
hence there are nontrivial solutions in E. We choose one .c1; : : : ; cn/ having
the fewest possible nonzero elements. After renumbering the ˛i , we may
suppose that c1¤ 0, and then, after multiplying by a scalar, that c1 2 F . With
these normalizations, we’ll show that all ci 2 F , and so the first equation

˛1c1C�� �C˛ncn D 0

(recall that �1 is the identity map) is a linear relation on the ˛i .
If not all ci are in F , then �k.ci /¤ ci for some k ¤ 1 and i ¤ 1. On

applying �k to the system of linear equations

�1.˛1/c1C�� �C�1.˛n/cn D 0

:::

�m.˛1/c1C�� �C�m.˛n/cn D 0

and using that f�k�1; : : : ;�k�mg D f�1; : : : ;�mg, i.e., �k merely permutes the
�i , we find that

.c1;�k.c2/; : : : ;�k.ci /; : : :/

is also a solution to the system of equations (6). On subtracting it from the
first solution, we obtain a solution .0; : : : ; ci ��k.ci /; : : :/, which is nonzero
(look at the i th entry), but has more zeros than the first solution (look at the
first entry) — contradiction. 2

COROLLARY 3.5 Let G be a finite group of automorphisms of a field E;
then

G D Aut.E=EG/:

PROOF. As G � Aut.E=EG/, we have inequalities

ŒEWEG �
3.4
� .GW1/� .Aut.E=EG/W1/

2.14a
� ŒEWEG �:

All the inequalities must be equalities, and so G D Aut.E=EG/: 2
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Separable, normal, and Galois extensions

DEFINITION 3.6 An element ˛ algebraic over a field F is separable over
F if its minimal polynomial over F is separable. An algebraic extension
E=F is separable if every element of E is separable over F ; otherwise, it is
inseparable.

Thus, an algebraic extension E=F is separable if every irreducible poly-
nomial in F ŒX� having a root in E is separable, and it is inseparable if
˘ F is nonperfect, and in particular has characteristic p ¤ 0, and

˘ there is an element ˛ of E whose minimal polynomial is of the form
g.Xp/, g 2 F ŒX�.

See 2.22 et seq. For example, the extension Fp.T / of Fp.T p/ is inseparable
because T has minimal polynomial Xp�T p.

DEFINITION 3.7 An algebraic extension E=F is normal if it is algebraic
and the minimal polynomial of every element of E splits in EŒX�.

Thus, an algebraic extension E=F is normal if every irreducible polyno-
mial in F ŒX� having at least one root in E splits in EŒX�.

Let E be an algebraic extension of F , and let f be a monic irreducible
polynomial in F ŒX�. If f has a root inE, so that it is the minimal polynomial
of an element of E, then

E=F normal H) f splits in E
E=F separable H) f has only simple roots

)
H)

f has degf
distinct roots in E:

It follows that E=F is normal and separable if and only if every irreducible
polynomial in F ŒX� having a root in E has deg.f / distinct roots in E.

EXAMPLE 3.8 (a) The polynomial X3� 2 has one real root 3
p
2 and two

nonreal roots in C. Therefore the extension QŒ 3
p
2�=Q (which is separable) is

not normal.
(b) The extension Fp.T /=Fp.T p/ (which is normal) is not separable

because the minimal polynomial of T is not separable.

DEFINITION 3.9 An extension E=F of fields is Galois if it is finite, normal,
and separable. In this case, Aut.E=F / is called the Galois group of E over
F , and denoted by Gal.E=F /.

THEOREM 3.10 For an extension E=F , the following statements are equiv-
alent:
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(a) E is the splitting field of a separable polynomial f 2 F ŒX�;

(b) E is finite over F and F DEAut.E=F /;

(c) F DEG for some finite group G of automorphisms of E;

(d) E is Galois over F .

PROOF. (a)) (b). Certainly, E is finite over F . Let F 0 DEAut.E=F / � F .
We have to show that F 0 D F . Note that E is also the splitting field of f
regarded as a polynomial with coefficients in F 0, and that f is still separable
when it is regarded in this way. Henceˇ̌

Aut.E=F 0/
ˇ̌ 3.2
D ŒEWF 0�� ŒEWF �

3.2
D jAut.E=F /j :

According to Corollary 3.5, Aut.E=F / D Aut.E=F 0/, and so ŒEWF 0� D
ŒEWF � and F 0 D F .

(b)) (c). Let G D Aut.E=F /. We are given that F D EG , and G is
finite because E is finite over F (apply 2.14a).

(c) ) (d). According to Theorem 3.4, ŒEWF � � .GW1/; in particular,
E=F is finite. Let ˛ 2E, and let f be the minimal polynomial of ˛; we have
to show that f splits into distinct factors in EŒX�. Let f˛1 D ˛;˛2; :::;˛mg
be the orbit of ˛ under the action of G on E (so the ˛i are distinct elements
of E), and let

g.X/D
Ym

iD1
.X �˛i /DX

m
Ca1X

m�1
C�� �Cam:

The coefficients aj are symmetric polynomials in the ˛i , and each � 2 G
permutes the ˛i , and so �aj D aj for all j . Thus g.X/ 2 F ŒX�. As it
is monic and g.˛/ D 0, it is divisible by f (see the definition of minimal
polynomial, p. 16). Let ˛i D �˛; on applying � to the equation f .˛/D 0 we
find that f .˛i /D 0. Therefore every ˛i is a root of f , and so g divides f .
Hence f D g, and we conclude that f .X/ splits into distinct factors in E.

(d)) (a). Because E has finite degree over F , it is generated over F
by a finite number of elements, say, E D F Œ˛1; :::;˛m�, ˛i 2E, ˛i algebraic
over F . Let fi be the minimal polynomial of ˛i over F , and let f be the
product of the distinct fi . Because E is normal over F , each fi splits in E,
and so E is the splitting field of f: Because E is separable over F , each fi is
separable, and so f is separable. 2

COROLLARY 3.11 (ARTIN’S THEOREM) Let G be a finite group of auto-
morphisms of a field E, and let F DEG . Then E is a Galois extension of F
with Galois group G, and ŒEWF �D .GW1/.
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PROOF. ThatE is Galois overF follows from the theorem; that Gal.E=F /D
G follows from 3.5; that ŒEWF �D jGal.E=F /j follows from 3.2. 2

COROLLARY 3.12 Every finite separable extension E of F is contained in
a Galois extension.

PROOF. Let E D F Œ˛1; :::;˛m�, and let fi be the minimal polynomial of ˛i
over F . The product of the distinct fi is a separable polynomial in F ŒX�
whose splitting field is a Galois extension of F containing E. 2

COROLLARY 3.13 Let E �M � F ; if E is Galois over F , then it is Galois
over M:

PROOF. We know E is the splitting field of some separable f 2 F ŒX�; it is
also the splitting field of f regarded as an element of MŒX�: 2

REMARK 3.14 Let E be Galois over F with Galois group G, and let ˛ 2E.
The elements ˛1, ˛2; :::;˛m of the orbit of ˛ underG are called the conjugates
of ˛. In the course of proving the theorem we showed that the minimal
polynomial of ˛ is

Q
.X �˛i /, i.e., the conjugates of ˛ are exactly the roots

of its minimal polynomial in E.

REMARK 3.15 Recall that an element ˛ of an algebraic extension of F is
said to be separable over F if its minimal polynomial over F is separable.
The proof of Corollary 3.12 shows that every finite extension generated by
separable elements is separable. Therefore, the elements of an algebraic
extension E of F that are separable over F form a subfield Esep of E that is
separable over F . This is called the separable closure of F in E. When E is
finite over F , we let ŒEWF �sep D ŒEsepWF � and call it the separable degree of
E over F .

An algebraic extension E is purely inseparable over F if the only ele-
ments of E separable over F are the elements of F . If E is a finite extension
of F , then E is purely inseparable over Esep. See Jacobson, Lectures in
Abstract Algebra, 1964, Vol. III, Chap. I, Section 10, for more on this topic.

DEFINITION 3.16 An extension E of F is cyclic (resp. abelian, resp. solv-
able, etc./ if it is Galois with cyclic (resp. abelian, resp. solvable, etc.) Galois
group.
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The fundamental theorem of Galois theory

Let E be an extension of F . A subextension of E=F is an extension M=F
withM �E, i.e., a fieldM with F �M �E. When E is Galois over F , the
subextensions of E=F are in one-to-one correspondence with the subgroups
of Gal.E=F /. More precisely, there is the following statement.

THEOREM 3.17 (FUNDAMENTAL THEOREM OF GALOIS THEORY) LetE
be a Galois extension of F with Galois group G. The map H 7! EH is a
bijection from the set of subgroups of G to the set of subextensions of E=F ,

fsubgroups H of Gg
1W1
 ! fsubextensions F �M �Eg;

with inverse M 7! Gal.E=M/. Moreover,
(a) H1�H2 ” EH1 �EH2 (the correspondence is order reversing);

(b) .H1WH2/D ŒEH2 WEH1 �I

(c) �H��1$ �M , i.e.,

E�H�
�1

D �.EH /I

Gal.E=�M/D �Gal.E=M/��1I

(d) H is normal inG ” EH is normal (hence Galois) over F , in which
case

Gal.EH=F /'G=H:

PROOF. For the first statement, we have to show that H 7! EH and M 7!
Gal.E=M/ are inverse maps. Let H be a subgroup of G. Then, Corollary
3.11 shows that Gal.E=EH /DH . Let M=F be a subextension. Then E is
Galois over M by 3.13, which means that EGal.E=M/ DM .

(a) We have the obvious implications,

H1 �H2 H) EH1 �EH2 H) Gal.E=EH1/� Gal.E=EH2/:

As Gal.E=EHi /DHi , this proves (a).
(b) Let H be a subgroup of G. According to 3.11,

.Gal.E=EH /W1/D ŒEWEH �:

This proves (b) in the case H2 D 1, and the general case follows, using that

.H1W1/ D .H1WH2/.H2W1/

ŒEWEH1 �
1.20
D ŒEWEH2 �ŒEH2 WEH1 �:
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(c) For � 2G and ˛ 2E,

�˛ D ˛ ” ����1.�˛/D �˛:

Therefore, � fixes M if and only if ����1 fixes �M , and so Gal.E=�M/D

�Gal.E=M/��1. This shows that �Gal.E=M/��1 corresponds to �M:
(d) Let H be a normal subgroup of G. Because �H��1 D H for all

� 2G, we must have �EH D EH for all � 2G, i.e., the action of G on E
stabilizes EH . We therefore have a homomorphism

� 7! � jEH WG! Aut.EH=F /

whose kernel is H . As .EH /G=H D F , we see that EH is Galois over F (by
Theorem 3.10) and that G=H ' Gal.EH=F / (by 3.11).

Conversely, suppose thatM is normal over F , and let ˛1; : : : ;˛m generate
M over F . For � 2G, �˛i is a root of the minimal polynomial of ˛i over F ,
and so lies in M . Hence �M DM , and this implies that �H��1 DH (by
(c)). 2

REMARK 3.18 Let E=F be a Galois extension, so that there is an order
reversing bijection between the subextensions of E=F and the subgroups of
G. From this, we can read off the following results.

(a) Let M1;M2; : : : ;Mr be subextensions of E=F , and let Hi be the
subgroup corresponding to Mi (i.e., Hi D Gal.E=Mi /). Then (by definition)
M1M2 � � �Mr is the smallest field containing allMi ; hence it must correspond
to the largest subgroup contained in all Hi , which is

T
Hi . We have shown

that
Gal.E=M1 � � �Mr/DH1\ :::\Hr :

(b) Let H be a subgroup of G and let M D EH . The largest normal
subgroup contained in H is N D

T
�2G �H�

�1 (see GT, 4.10), and so EN

is the smallest normal extension of F containing M . Note that, by (a), EN is
the composite of the fields �M . It is called the normal, or Galois, closure of
M in E.

PROPOSITION 3.19 Let E and L be extensions of F contained in some
common field. If E=F is Galois, then EL=L and E=E\L are Galois, and
the map

� 7! � jEWGal.EL=L/! Gal.E=E\L/

is an isomorphism.
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PROOF. Because E is Galois over F , it is the splitting field of a separable
polynomial f 2 F ŒX�. Then EL is the splitting field of f over L, and E is
the splitting field of f over E\L. Hence EL=L and E=E\L are Galois.
Every automorphism � of EL fixing the elements of L
maps roots of f to roots of f , and so �E D E. There is
therefore a homomorphism

� 7! � jEWGal.EL=L/! Gal.E=E\L/.

If � 2Gal.EL=L/ fixes the elements ofE, then it fixes the
elements of EL, and hence is the identity map. Thus, � 7!
� jE is injective. If ˛ 2 E is fixed by all � 2 Gal.EL=L/,
then ˛ 2E\L. By Corollary 3.5, this implies that

EL

E L

E\L

F

D

D

the image of � 7! � jE is Gal.E=E\L/. 2

COROLLARY 3.20 Suppose, in the proposition, that L is finite over F . Then

ŒELWF �D
ŒEWF �ŒLWF �

ŒE\LWF �
.

PROOF. According to Proposition 1.20,

ŒELWF �D ŒELWL�ŒLWF �;

but

ŒELWL�
3:19
D ŒEWE\L�

1:20
D

ŒEWF �

ŒE\LWF �
.

2

PROPOSITION 3.21 Let E1 and E2 be extensions of F contained in some
common field. If E1 and E2 are Galois over F , then E1E2 and E1\E2 are
Galois over F , and the map

� 7! .� jE1;� jE2/WGal.E1E2=F /! Gal.E1=F /�Gal.E2=F /

is an isomorphism of Gal.E1E2=F / onto the subgroup

H D f.�1;�2/ j �1jE1\E2 D �2jE1\E2g

of Gal.E1=F /�Gal.E2=F /.

In other words,

Gal.E1E2=F /' Gal.E1=F / �
Gal.E1\E2=F /

Gal.E2=F /:
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PROOF: Let a 2E1\E2, and let f be its minimal polynomial over F . Then
f has degf distinct roots in E1 and degf distinct
roots in E2. Since f can have at most degf roots in
E1E2, it follows that it has degf distinct roots in E1\
E2. This shows that E1\E2 is normal and separable
over F , and hence Galois (3.10). As E1 and E2 are
Galois over F , they are splitting fields for separable
polynomials f1;f2 2 F ŒX�. Now E1E2 is a splitting
field for lcm.f1;f2/, and hence it also is Galois over
F . The map � 7! .� jE1;� jE2/ is clearly an injective
homomorphism, and its image is contained in H . We’ll
prove that the image is the whole of H by counting.

E1E2

E1 E2

E1\E2

F

From the fundamental theorem,

Gal.E2=F /
Gal.E2=E1\E2/

' Gal.E1\E2=F /,

and so, for each �1 2 Gal.E1=F /, �1jE1\E2 has exactly ŒE2WE1\E2�
extensions to an element of Gal.E2=F /. Therefore,

.H W1/D ŒE1WF �ŒE2WE1\E2�D
ŒE1WF � � ŒE2WF �

ŒE1\E2WF �
;

which equals ŒE1E2WF � by (3.20): �

Examples

EXAMPLE 3.22 We analyse the extension QŒ��=Q, where � is a primitive
7th root of 1, say � D e2�i=7.

Note that QŒ�� is the splitting field of the polynomial X7�1, and that �
has minimal polynomial

X6CX5CX4CX3CX2CXC1

(see 1.42). Therefore, QŒ�� is Galois of degree 6 over Q. For any � 2
Gal.QŒ��=Q/, �� D �i , some i , 1� i � 6, and the map � 7! i defines an iso-
morphism Gal.QŒ��=Q/! .Z=7Z/�. Let � be the element of Gal.QŒ��=Q/
such that �� D �3. Then � generates Gal.QŒ��=Q/ because the class of
3 in .Z=7Z/� generates it (the powers of 3 mod 7 are 3;2;6;4;5;1). We
investigate the subfields of QŒ�� corresponding to the subgroups h�3i and
h�2i.
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Note that �3�D �6D N� (complex conjugate of �/, and so �C N�D 2cos 2�
7

is fixed by �3. Now QŒ�� � QŒ��h�3i � QŒ�C N�� ¤ Q, and so QŒ��h�3i D
QŒ�C N�� (look at degrees). As h�3i is a normal subgroup of h�i, QŒ�C N�� is
Galois over Q, with Galois group h�i=h�3i: The conjugates of ˛1

def
D �C N�

are ˛3 D �3C ��3, ˛2 D �2C ��2. Direct calculation shows that

˛1C˛2C˛3 D
X6

iD1
�i D�1;

˛1˛2C˛1˛3C˛2˛3 D�2;

˛1˛2˛3 D .�C �
6/.�2C �5/.�3C �4/

D .�C �3C �4C �6/.�3C �4/

D .�4C �6C1C �2C �5C1C �C �3/

D 1:

Hence the minimal polynomial1 of �C N� is

g.X/DX3CX2�2X �1:

The minimal polynomial of cos 2�
7
D

˛1
2

is therefore

g.2X/

8
DX3CX2=2�X=2�1=8:

The subfield of QŒ�� corresponding to h�2i is generated by ˇ D �C �2C �4.
Let ˇ0D �ˇ. Then .ˇ�ˇ0/2D�7. Hence the field fixed by h�2i is QŒ

p
�7�.

QŒ��

QŒ�C N�� QŒ
p
�7�

Q

h�3i h�2i

h�i=h�3i h�i=h�2i

1More directly, on setting X D �C N� in

.X3�3X/C .X2�2/CXC1

one obtains 1C �C �2C�� �C �6 D 0.



52 3. THE FUNDAMENTAL THEOREM OF GALOIS THEORY

EXAMPLE 3.23 We compute the Galois group of a splitting field E of X5�
2 2QŒX� (see the diagram on the cover).

Recall from Exercise 2-3 that E DQŒ�;˛� where � is a primitive 5th root
of 1, and ˛ is a root of X5� 2. For example, we could take E to be the
splitting field of X5�2 in C, with � D e2�i=5 and ˛ equal to the real 5th root
of 2. We have the picture at right, and

ŒQŒ�� WQ�D 4; ŒQŒ˛� WQ�D 5:

Because 4 and 5 are relatively prime,

ŒQŒ�;˛� WQ�D 20:

Hence G DGal.QŒ�;˛�=Q/ has order 20, and the subgroups N and H fixing
QŒ�� and QŒ˛� have orders 5 and 4 respectively. Because QŒ�� is normal
over Q (it is the splitting field of X5 � 1), N is normal in G. Because
QŒ�� �QŒ˛�DQŒ�;˛�, we have H \N D 1, and so G DN Ì� H . Moreover,
H ' G=N ' .Z=5Z/�, which is cyclic, being generated by the class of 2.
Let � be the generator of H corresponding to 2 under this isomorphism, and
let � be a generator of N . Thus �.˛/ is another root of X5� 2, which we
can take to be �˛ (after possibly replacing � by a power). Hence:�

�� D �2

�˛ D ˛

�
�� D �

�˛ D �˛:

Note that ����1.˛/D ��˛D �.�˛/D �2˛ and it fixes �; therefore ����1D
�2. Thus G has generators � and � and defining relations

�5 D 1; �4 D 1; ����1 D �2:

The subgroup H has five conjugates, which correspond to the five fields
QŒ�i˛�,

� iH��i $ � iQŒ˛�DQŒ�i˛�; 1� i � 5:

Constructible numbers revisited

Earlier (1.37) we showed that a real number ˛ is constructible if and only if it
is contained in a subfield of R of the form QŒpa1; : : : ;

p
ar � with each ai a

positive element of QŒpa1; : : : ;
p
ai�1�. In particular

˛ constructible H) ŒQŒ˛�WQ�D 2s some s: (7)

Now we can prove a partial converse to this last statement.
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THEOREM 3.24 If ˛ is contained in a subfield of R that is Galois of degree
2r over Q, then it is constructible.

PROOF. Suppose ˛ 2E � R where E is Galois of degree 2r over Q, and let
G D Gal.E=Q/. Because finite p-groups are solvable (GT, 6.7), there exists
a sequence of groups

f1g DG0 �G1 �G2 � �� � �Gr DG

with Gi=Gi�1 of order 2. Correspondingly, there will be a sequence of fields,

E DE0 �E1 �E2 � �� � �Er DQ

with Ei�1 of degree 2 over Ei . The next lemma shows that Ei DEi�1Œ
p
ai �

for some ai 2Ei�1, and ai > 0 because otherwise Ei would not be real. This
proves the theorem. 2

LEMMA 3.25 Let E=F be a quadratic extension of fields of characteristic
¤ 2. Then E D F Œ

p
d� for some d 2 F .

PROOF. Let ˛ 2E, ˛ … F , and let X2CbXC c be the minimal polynomial
of ˛. Then ˛ D �b˙

p
b2�4c
2

, and so E D F Œ
p
b2�4c�. 2

COROLLARY 3.26 If p is a prime of the form 2kC 1, then cos 2�
p

is con-
structible.

PROOF. The field QŒe2�i=p� is Galois over Q with Galois group G canon-
ically isomorphic to .Z=pZ/�, which has order p � 1 D 2k . The field
QŒcos 2�

p
� is contained in QŒe2�i=p�, and therefore is Galois of degree divid-

ing 2k (fundamental theorem 3.17 and 1.20). As QŒcos 2�
p
� is a subfield of R,

we can apply the theorem. 2

Thus a regular p-gon, p prime, is constructible if and only if p is a
Fermat prime, i.e., of the form 22

r

C1. For example, we have proved that the
regular 65537-polygon is constructible, without (happily) having to exhibit
an explicit formula for cos 2�

65537
.

REMARK 3.27 The converse to (7) is false. In fact, there are noncon-
structible algebraic numbers of degree 4 over Q.

For example, the polynomial f .X/DX4�4XC2 2QŒX� is irreducible,
and we show below (4.10) that the Galois group of its splitting field E is S4.
If the four roots of f were constructible, then every element of E would be
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constructible (1.36), but S4 has a subgroup H of order 8, and EH has degree
3 over Q, and so no element of EH XQ is constructible.

Alternatively, if a root ˛ of f .X/ were constructible, then there would
exist a tower of quadratic extensions QŒ˛��M �Q. By Galois theory, the
groups Gal.E=M/ � Gal.E=QŒ˛�/ have orders 12 and 6 respectively. As
Gal.E=Q/D S4, Gal.E=M/ would be A4. But A4 has no subgroup of order
6, a contradiction.

The Galois group of a polynomial

If a polynomial f 2 F ŒX� is separable, then its splitting field Ff is Galois
over F , and we call Gal.Ff =F / the Galois group Gf of f:

Let f .X/ D
Qn
iD1.X �˛i / in a splitting field Ff . We know that the

elements of Gal.Ff =F / map roots of f to roots of f , i.e., they map the set
f˛1;˛2; : : : ;˛ng into itself. Being automorphisms, they act as permutations on
f˛1;˛2; : : : ;˛ng. As the ˛i generate Ff over F , an element of Gal.Ff =F / is
uniquely determined by the permutation it defines. Thus Gf can be identified
with a subset of Sym.f˛1;˛2; : : : ;˛ng/�Sn (symmetric group on n symbols).
In fact, Gf consists exactly of the permutations � of f˛1;˛2; : : : ;˛ng such
that, for P 2 F ŒX1; : : : ;Xn�,

P.˛1; : : : ;˛n/D 0 H) P.�˛1; : : : ;�˛n/D 0: (8)

To see this, note that the kernel of the map

F ŒX1; : : : ;Xn�! Ff ; Xi 7! ˛i ; (9)

consists of the polynomials P.X1; : : : ;Xn/ such that P.˛1; : : : ;˛n/D 0. Let
� be a permutation of the ˛i satisfying the condition (8). Then the map

F ŒX1; : : : ;Xn�! Ff ; Xi 7! �˛i ;

factors through the map (9), and defines an F -isomorphism Ff ! Ff , i.e.,
an element of the Galois group. This shows that every permutation satisfying
the condition (8) extends uniquely to an element of Gf , and it is obvious that
every element of Gf arises in this way.

This gives a description of Gf not mentioning fields or abstract groups,
neither of which were available to Galois. Note that it shows again that
.Gf W1/, hence ŒFf WF �, divides deg.f /Š:
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Solvability of equations

For a polynomial f 2F ŒX�, we say that f .X/D 0 is solvable in radicals if its
solutions can be obtained by the algebraic operations of addition, subtraction,
multiplication, division, and the extraction of mth roots, or, more precisely, if
there exists a tower of fields

F D F0 � F1 � F2 � �� � � Fm

such that
(a) Fi D Fi�1Œ˛i �, ˛

mi
i 2 Fi�1;

(b) Fm contains a splitting field for f:

THEOREM 3.28 (GALOIS, 1832) Let F be a field of characteristic zero,
and let f 2 F ŒX�. The equation f .X/D 0 is solvable in radicals if and only
if the Galois group of f is solvable.

We’ll prove this later (5.34). Also we’ll exhibit polynomials f .X/ 2
QŒX� with Galois group Sn, which are therefore not solvable when n� 5 by
GT, 4.37.

REMARK 3.29 When F has characteristic p, the theorem fails for two rea-
sons,

(a) f need not be separable, and so not have a Galois group;

(b) Xp �X � a D 0 need not be solvable in radicals even though it is
separable with abelian Galois group (cf. Exercise 2-2).

If the definition of solvable is changed to allow extensions defined by polyno-
mials of the type in (b) in the chain, then the theorem holds for fields F of
characteristic p ¤ 0 and separable f 2 F ŒX�.

ASIDE 3.30 Abel (1828) proved the following statement: If three roots of an ar-
bitrary irreducible equation of a prime degree are such that one of them can be
rationally expressed as function of the other two, then the equation can be solved
by radicals. Sylow (1902) claimed that Abel’s statement is incorrect. Deligne (C. R.
Math. Acad. Sci. Paris 359 (2021), 919–921) supplied a complete and elegant proof
for Abel’s statement (including its converse) by using the Galois theory of fields to
convert everything into the language of permutation groups. He proves that if E is a
set with p elements (p a prime number) and G is a transitive group of permutations
of E, then G is a solvable group if and only if, for any three elements of E, there
exists one of them that is fixed by any element g of G such that g fixes the other two
elements.
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NOTES Much of what has been written about Galois is unreliable — see Tony
Rothman, Genius and Biographers: The Fictionalization of Evariste Galois, Amer.
Math. Monthly, 89, 84 (1982). For a careful explanation of Galois’s “Premier
Mémoire”, see Harold Edwards, Galois for 21st-century readers. Notices Amer.
Math. Soc. 59 (2012), no. 7, 912–923.

Exercises

3-1 Let F be a field of characteristic 0. Show thatF.X2/\F.X2�X/DF
(intersection inside F.X/). [Hint: Find automorphisms � and � of F.X/,
each of order 2, fixing F.X2/ and F.X2�X/ respectively, and show that
�� has infinite order.]

3-2 Let p be an odd prime, and let � be a primitive pth root of 1 in C.
Let E D QŒ��, and let G D Gal.E=Q/; thus G D .Z=.p//�. Let H be the
subgroup of index 2 in G. Put ˛ D

P
i2H �

i and ˇ D
P
i2GnH �

i . Show:
(a) ˛ and ˇ are fixed by H ;

(b) if � 2G nH , then �˛ D ˇ, �ˇ D ˛.
Thus ˛ and ˇ are roots of the polynomialX2CXC˛ˇ 2QŒX�. Compute

˛ˇ (or ˛�ˇ) and show that the fixed field of H is QŒpp� when p � 1
mod 4 and QŒp�p� when p � 3 mod 4.2

3-3 Let M D QŒ
p
2;
p
3� and E DMŒ

q
.
p
2C2/.

p
3C3/� (subfields of

R).
(a) Show that M is Galois over Q with Galois group the 4-group C2�C2.

(b) Show that E is Galois over Q with Galois group the quaternion group.

3-4 Let E be a Galois extension of F with Galois group G, and let L be the
fixed field of a subgroup H of G. Show that the automomorphism group of
L=F is N=H where N is the normalizer of H in G.

3-5 Let E be a finite extension of F . Show that the order of Aut.E=F /
divides the degree ŒEWF �:

2This problem shows that every quadratic extension of Q is contained in a cyclotomic
extension of Q. The Kronecker-Weber theorem says that every abelian extension of Q is
contained in a cyclotomic extension.



CHAPTER 4
Computing Galois Groups

In this chapter, we investigate general methods for computing Galois groups.

When is Gf � An?

Let � be a permutation of the set f1;2; : : : ;ng. The pairs .i;j / with i < j
but �.i/ > �.j / are called the inversions of � , and � is said to be even or
odd according as the number of inversions is even or odd. The signature
of � , sign.�/, is C1 or �1 according as � is even or odd. We can define
the signature of a permutation � of any set S of n elements by choosing
a numbering of the set and identifying � with a permutation of f1; : : : ;ng.
The group Sym.S/ of permutations of S is generated by transpositions, and
sign is the unique homomorphism Sym.S/! f˙1g such that sign.�/D�1
for every transposition. In particular, it is independent of the choice of the
numbering. See GT, 4.25.

Now consider a monic polynomial

f .X/DXnCa1X
n�1
C�� �Can

and let f .X/D
Qn
iD1.X �˛i / in some splitting field. Set

�.f /D
Y

1�i<j�n

.˛i � j̨ /; D.f /D�.f /2 D
Y

1�i<j�n

.˛i � j̨ /
2:

The discriminant of f is defined to be D.f /. Note that D.f / is nonzero
if and only if f has only simple roots, i.e., is separable. Let Gf be the
Galois group of f , and identify it with a subgroup of Sym.f˛1; : : : ;˛ng/ (as
on p. 54).

57
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PROPOSITION 4.1 Let f 2 F ŒX� be a separable polynomial, and let � 2Gf .
(a) ��.f /D sign.�/�.f /:

(b) �D.f /DD.f /:

PROOF. Each inversion of � introduces a negative sign into ��.f /, and so
(a) follows from the definition of sign.�/. The equality in (b) is obtained by
squaring that in (a). 2

While �.f / depends on the choice of the numbering of the roots of f ,
D.f / does not.

COROLLARY 4.2 Let f .X/ 2 F ŒX� be separable of degree n. Let Ff be a
splitting field for f and let Gf D Gal.Ff =F /.

(a) The discriminant D.f / 2 F .

(b) Assume that char.F /¤ 2. The subfield of Ff corresponding to An\
Gf is F Œ�.f /�. Hence

Gf � An ” �.f / 2 F ” D.f / is a square in F:

PROOF. (a) The discriminant of f is an element of Ff fixed by Gf
def
D

Gal.Ff =F /, and hence lies in F (by the fundamental theorem).
(b) Because f has simple roots, �.f /¤ 0, and so the formula ��.f /D

sign.�/�.f / shows that an element of Gf fixes �.f / if and only if it lies in
An. Thus, under the Galois correspondence,

Gf \An$ F Œ�.f /�.

Hence,
Gf \An DGf ” F Œ�.f /�D F: 2

The roots of X2CbXC c are �b˙
p
b2�4c
2

and so

�.X2CbXC c/D
p

b2�4c (or �
p

b2�4c),

D.X2CbXC c/D b2�4c:

Similarly,
D.X3CbXC c/D�4b3�27c2:

By completing the cube, one can put any cubic polynomial in this form (in
characteristic¤ 3).
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Although there is a not a universal formula for the roots of f in terms of its
coefficients when the deg.f / > 4, there is for its discriminant. However, the
formulas for the discriminant rapidly become very complicated, for example,
that for X5CaX4CbX3C cX2CdXC e has 59 terms. Fortunately, PARI
knows them. For example, typing poldisc(X^3+a*X^2+b*X+c,X) returns
the discriminant of X3CaX2CbXC c, namely,

�4ca3Cb2a2C18cbaC .�4b3�27c2/:

For an efficient way of calculating discriminants using resultants, see the
appendix to this chapter.

REMARK 4.3 Suppose F � R. Then D.f / will not be a square if it is
negative. It is known that the sign of D.f / is .�1/s where 2s is the number
of nonreal roots of f in C (see ANT 2.40). Thus if s is odd, then Gf
is not contained in An. This can be proved more directly by noting that
signWGf !f˙1g is surjective because complex conjugation acts on the roots
as the product of s disjoint transpositions.

The converse is not true: when s is even, Gf is not necessarily contained
in An.

ASIDE 4.4 When F has characteristic 2, the discriminant is always a square, and so
it is not useful for deciding whether Gf is contained in An. Instead, we must use the
Berlekamp discriminant, which for a separable polynomial f .X/D

Qn
iD1.X �˛i /

is defined to be
D D

X
i<j

˛i j̨

˛2i C˛
2
j

:

The Galois group Gf of f is contained in An if and only if there exists a ı 2 F
such that ı2C ı DD. See Berlekamp, An analog to the discriminant over fields of
characteristic two. J. Algebra 38 (1976), no. 2, 315–317.

When does Gf act transitively on the roots?

PROPOSITION 4.5 Let f .X/2F ŒX� be separable. Then f .X/ is irreducible
if and only if Gf permutes the roots of f transitively.

PROOF. H) W Let Ff be a splitting field for f . If ˛ and ˇ are two roots of
f .X/ in Ff , then they both have f .X/ as their minimal polynomial (because
f is irreducible), and so F Œ˛� and F Œˇ� are both stem fields for f . Hence,
there is an F -isomorphism

F Œ˛�' F Œˇ�; ˛$ ˇ:
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Write Ff D F Œ˛1;˛2; :::� with ˛1D ˛ and ˛2;˛3; : : : the other roots of f .X/.
Then the F -homomorphism ˛ 7! ˇWF Œ˛�! Ff extends (step by step) to an
F -homomorphism Ff ! Ff (use 2.4b), which is an F -isomorphism sending
˛ to ˇ.
(H W Let g.X/ 2 F ŒX� be an irreducible factor of f , and let ˛ be one of

its roots. If ˇ is a second root of f , then (by assumption) ˇ D �˛ for some
� 2Gf . Now, because g has coefficients in F ,

g.�˛/D �g.˛/D 0;

and so ˇ is also a root of g. Therefore, every root of f is also a root of g,
and so f .X/D g.X/: 2

Note that if f .X/ is irreducible of degree n, then n divides .Gf W1/
because n D ŒF Œ˛�WF �, which divides ŒFf WF � D .Gf W1/. Thus Gf is a
transitive subgroup of Sn whose order is divisible by n.

Polynomials of degree at most three

EXAMPLE 4.6 Let f .X/ 2 F ŒX� be a polynomial of degree 2. When F has
odd characteristic and f is not a square,

f is irreducible ” D.f / is not a square ” Gf D S2.

In characteristic 2, a quadratic polynomial may be irreducible but not separa-
ble (e.g., f .X/DX2�a for some a 2 F XF 2) or irreducible and separable
but have discriminant a square (e.g., f .X/DX2�X �a for suitable a).

EXAMPLE 4.7 Let f .X/ 2 F ŒX� be a polynomial of degree 3, and suppose
that char.F / ¤ 3. We may assume f to be irreducible, for otherwise we
are essentially back in the previous case. Then f is separable and Gf is a
transitive subgroup of S3 whose order is divisible by 3. There are only two
possibilities: Gf DA3 or S3 according asD.f / is a square in F or not. Note
that A3 is generated by the cycle .123/.

For example, X3�3XC1 is irreducible in QŒX� (see 1.12). Its discrimi-
nant is �4.�3/3�27D 81D 92, and so its Galois group is A3.

On the other hand, X3C3XC1 2QŒX� is also irreducible (apply 1.11),
but its discriminant is �135, and so its Galois group is S3.
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Quartic polynomials

Let f .X/ be a separable quartic polynomial. In order to determine Gf we’ll
exploit the fact that S4 has

V def
D f1;.12/.34/; .13/.24/; .14/.23/g

as a normal subgroup — it is normal because it contains all elements of
type 2C 2 (GT, 4.29). Let E be a splitting field of f , and let f .X/ D
.X � ˛1/.X � ˛2/.X � ˛3/.X � ˛4/ in E. We identify the Galois group
Gf of f with a subgroup of the symmetric group Sym.f˛1;˛2;˛3;˛4g/.
Consider the partially symmetric elements

˛ D ˛1˛2C˛3˛4

ˇ D ˛1˛3C˛2˛4


 D ˛1˛4C˛2˛3:

They are distinct because the ˛i are distinct; for example,

˛�ˇ D ˛1.˛2�˛3/C˛4.˛3�˛2/D .˛1�˛4/.˛2�˛3/:

The group Sym.f˛1;˛2;˛3;˛4g/ permutes f˛;ˇ;
g transitively. The stabi-
lizer of each of ˛;ˇ;
 must therefore be a subgroup of index 3 in S4, and
hence has order 8. For example, the stabilizer of ˇ is h.1234/; .13/i. Groups
of order 8 in S4 are Sylow 2-subgroups. There are three of them, all isomor-
phic to D4. By the Sylow theorems, V is contained in a Sylow 2-subgroup;
in fact, because the Sylow 2-subgroups are conjugate and V is normal, it is
contained in all three. It follows that V is the intersection of the three Sylow
2-subgroups. Each Sylow 2-subgroup fixes exactly one of ˛;ˇ; or 
 , and
therefore their intersection V is the subgroup of Sym.f˛1;˛2;˛3;˛4g/ fixing
˛, ˇ, and 
 .

LEMMA 4.8 The fixed field of Gf \ V is F Œ˛;ˇ;
�.
Hence F Œ˛;ˇ;
� is Galois over F with Galois group
Gf =Gf \V .

PROOF. The above discussion shows that the subgroup
of Gf of elements fixing F Œ˛;ˇ;
� is Gf \ V , and so
EGf \V D F Œ˛;ˇ;
� by the fundamental theorem of Ga-
lois theory. The remaining statements follow from the
fundamental theorem using that V is normal. 2

E

F Œ˛;ˇ;
�

F

Gf \V

Gf =Gf \V
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LetM D F Œ˛;ˇ;
�, and let g.X/D .X �˛/.X �ˇ/.X �
/ 2MŒX�—
it is called the resolvent cubic of f . Every permutation of the ˛i (a fortiori,
every element of Gf ) permutes ˛;ˇ;
 , and so fixes g.X/. Therefore (by
the fundamental theorem) g.X/ has coefficients in F . More explicitly, the
following is true.

LEMMA 4.9 The resolvent cubic of f DX4CbX3C cX2CdXC e is

g DX3� cX2C .bd �4e/X �b2eC4ce�d2:

The discriminants of f and g are equal.

SKETCH OF PROOF. Expand f D .X � ˛1/.X � ˛2/.X � ˛3/.X � ˛4/ to
express b;c;d;e in terms of ˛1;˛2;˛3;˛4. Expand gD .X�˛/.X�ˇ/.X�

/ to express the coefficients of g in terms of ˛1;˛2;˛3;˛4, and substitute to
express them in terms of b;c;d;e. 2

Now let f be an irreducible separable quartic. Then G DGf is a transi-
tive subgroup of S4 whose order is divisible by 4. There are the following
possibilities for G:

G .G\V W1/ .GWV \G/

S4 4 6

A4 4 3

V 4 1

D4 4 2

C4 2 2

E

M

F

G\V

G=G\V

The groups of type D4 are the Sylow 2-subgroups discussed above, and the
groups of type C4 are those generated by cycles of length 4.

We can compute .GWV \G/ from the resolvent cubic g, because G=V \
G DGal.M=F / andM is the splitting field of g. Once we know .GWV \G/,
we can deduce G except in the case that the index is 2. If ŒM WF �D 2, then
G\V D V or C2. Only the first group acts transitively on the roots of f ,
and so (from 4.5) we see that in this case G DD4 or C4 according as f is
irreducible or not in MŒX�.

EXAMPLE 4.10 Consider f .X/DX4�4XC2 2QŒX�. It is irreducible by
Eisenstein’s criterion (1.16), and its resolvent cubic is g.X/DX3�8X �16,
which is irreducible because it has no roots modulo 5. The discriminant of
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g.X/ is �4864, which is not a square, and so the Galois group of g.X/ is S3.
From the table, we see that the Galois group of f .X/ is S4.

EXAMPLE 4.11 Consider f .X/DX4C4X2C2 2QŒX�. It is irreducible
by Eisenstein’s criterion (1.16), and its resolvent cubic is .X �4/.X2�8/;
thus M DQŒ

p
2�. From the table we see that Gf is of type D4 or C4, but f

factors over M (even as a polynomial in X2), and hence Gf is of type C4.

EXAMPLE 4.12 Consider f .X/DX4�10X2C4 2QŒX�. It is irreducible
in QŒX� because (by inspection) it is irreducible in ZŒX�. Its resolvent cubic
is .XC10/.XC4/.X �4/, and so Gf is of type V .

EXAMPLE 4.13 Consider f .X/DX4�22QŒX�. It is irreducible by Eisen-
stein’s criterion (1.16), and its resolvent cubic is g.X/DX3C8X . Hence
M D QŒi

p
2�. One can check that f is irreducible over M , and Gf is of

type D4.
Alternatively, analyse the equation as in 3.23.

As we explained in 1.29, PARI knows how to factor polynomials with
coefficients in QŒ˛�.

EXAMPLE 4.14 Consider f .X/DX4�2cX3�dX2C2cdX�dc2 2ZŒX�
with a > 0, b > 0, c > 0, a > b and d D a2� b2. Let r D d=c2 and let w
be the unique positive real number such that r D w3=.w2C 4/. Let m be
the number of roots of f .X/ in Z (counted with multiplicities). The Galois
group of f is as follows:
˘ if mD 0 and w not rational, then G is S4;

˘ if mD 1 and w not rational then G is S3;

˘ if w is rational and w2C4 is not a square then G DD4;

˘ if w is rational and w2C4 is a square then G D V D C2�C2:
This covers all possible cases. The hard part is to establish that mD 2 never
happens.

Examples of polynomials with Galois group Sp over Q

The next lemma gives a criterion for a subgroup of Sp to be the whole group.

LEMMA 4.15 For p prime, the symmetric group Sp is generated by any
transposition and any p-cycle.
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PROOF. After renumbering, we may suppose that the transposition is � D
.12/, and we may write the p-cycle � so that 1 occurs in the first position,
� D .1i2 � � � ip/. Now some power of � will map 1 to 2 and will still be a
p-cycle (here is where we use that p is prime). After replacing � with the
power, we have � D .12j3 : : :jp/, and after renumbering again, we have
� D .123: : :p/: Now

.iC1 iC2/D � i .12/��i

(see GT, 4.29) and so it lies in the subgroup generated by � and � . These
transpositions generate Sp. 2

PROPOSITION 4.16 Let f be an irreducible polynomial of prime degree p
in QŒX�. If f splits in C and has exactly two nonreal roots, then Gf D Sp:

PROOF. Let E be the splitting field of f in C, and let ˛ 2E be a root of f .
Because f is irreducible, ŒQŒ˛�WQ�D degf D p, and so pjŒEWQ�D .Gf W1/.
Therefore Gf contains an element of order p (Cauchy’s theorem, GT, 4.13),
but the only elements of order p in Sp are p-cycles (here we again use that p
is prime).

Let � be complex conjugation on C. Then � transposes the two non-
real roots of f .X/ and fixes the rest. Therefore Gf � Sp and contains a
transposition and a p-cycle, and so is the whole of Sp. 2

It remains to construct polynomials satisfying the conditions of the Propo-
sition.

EXAMPLE 4.17 Let p� 5 be a prime number. Choose a positive even integer
m and even integers

n1 < n2 < � � �< np�2;

and let
g.X/D .X2Cm/.X �n1/ � � �.X �np�2/:

The graph of g crosses the x-axis exactly at the points n1; : : : ;np�2, and it
does not have a local maximum or minimum at any of those points (because
the ni are simple roots). Thus e Dming 0.x/D0 jg.x/j> 0, and we can choose
an odd positive integer n such that 2

n
< e.

Consider
f .X/D g.X/�

2

n
.
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As 2
n
< e, the graph of f also crosses the x-axis at exactly p�2 points, and

so f has exactly two nonreal roots. On the other hand, when we write

nf .X/D nXpCa1X
p�1
C�� �Cap;

the ai are all even and ap is not divisible by 22, and so Eisenstein’s criterion
implies that f is irreducible. Over R, f has p� 2 linear factors and one
irreducible quadratic factor, and so it certainly splits over C (high school
algebra). Therefore, the proposition applies to f .1

REMARK 4.18 The reader should not think that, in order to have Galois
group Sp, a polynomial must have exactly two nonreal roots. For example,
the polynomial X5�5X3C4X �1 has Galois group S5 but its roots are all
real.

Finite fields

Let Fp D Z=pZ, the field of p elements. As we noted in �1, every field E
of characteristic p contains a copy of Fp, namely, fm1E jm 2 Zg. No harm
results if we identify Fp with this subfield of E.

Let E be a field of degree n over Fp. Then E has q def
D pn elements, and

so E� is a group of order q� 1. Therefore the nonzero elements of E are
roots of Xq�1� 1 (Lagrange’s theorem, GT 1.27), and all elements of E
including 0 are roots of Xq�X . Hence E is a splitting field for Xq�X , and
so any two fields with q elements are isomorphic.

PROPOSITION 4.19 Every extension of finite fields is simple.

PROOF. Consider E � F . Then E� is a finite subgroup of the multiplicative
group of a field, and hence is cyclic (see Exercise 1-3). If � generates E� as
a multiplicative group, then certainly E D F Œ��. 2

Now let E be a splitting field of f .X/ D Xq �X , q D pn. As the
derivative of f is the constant �1, which is relatively prime to f , we see that
f .X/ has q distinct roots in E (2.21). Let S be the set of its roots. Then S is

1If m is taken sufficiently large, then g.X/�2 will have exactly two nonreal roots, i.e.,
we can take nD 1, but the proof is longer (see Jacobson, Lectures in Abstract Algebra, 1964,
Vol. III, p. 107, who credits the example to Brauer). The shorter argument in the text was
suggested to me by Martin Ward.
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obviously closed under multiplication and the formation of inverses, but it is
also closed under subtraction: if aq D a and bq D b, then

.a�b/q D aq �bq D a�b:

Hence S is a field, and so S DE. In particular, E has q elements.

PROPOSITION 4.20 For each power q D pn of p there exists a field Fq with
q elements. Every such field is a splitting field for Xq �X over Fp, and so
any two are isomorphic. Moreover, Fq is Galois over Fp with cyclic Galois
group generated by the Frobenius automorphism �.a/D ap.

PROOF. Only the final statement remains to be proved. The field Fq is Galois
over Fp because it is the splitting field of a separable polynomial. We noted

in 1.4 that x
�
7! xp is an automorphism of Fq . An element a of Fq is fixed

by � if and only if ap D a, but Fp consists exactly of such elements, and so
the fixed field of h�i is Fp. This proves that Fq is Galois over Fp and that
h�i D Gal.Fq=Fp/ (see 3.11). 2

COROLLARY 4.21 Let E be a field with pn elements. For each positive
divisor m of n, E contains exactly one field with pm elements.

PROOF. We know that E is Galois over Fp and that Gal.E=Fp/ is the cyclic
group of order n generated by � . The group h�i has one subgroup of order
n=m for each m dividing n, namely, h�mi, and so E has exactly one subfield
of degree m over Fp for each m dividing n, namely, Eh�

mi. Because it has
degree m over Fp, Eh�

mi has pm elements. 2

COROLLARY 4.22 Let f 2 FpŒX� be a monic irreducible of degree d . If
d jn, then f occurs exactly once as a factor of Xp

n

�X . The degree of the
splitting field of f is � d .

PROOF. The factors ofXp
n

�X are distinct because it has no common factor
with its derivative.2 As f .X/ is irreducible of degree d , it has a root in a
field of degree d over Fp . But the splitting field of Xp

n

�X contains a copy
of every field of degree d over Fp with d jn. Hence some root of Xp

n

�X

is also a root of f .X/, and therefore f .X/jXp
n

�X . This proves the first
statement. For the second, f divides Xp

d

�X , and therefore it splits in its
splitting field, which has degree d over Fp. 2

2If h.X/D f .X/2g.X/, then h0.X/D 2f 0.X/f .X/g.X/Cf .X/2g.X/.
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PROPOSITION 4.23 Let F be an algebraic closure of Fp. Then F contains
exactly one field Fpn with pn elements for each integer n � 1, and Fpn
consists of the roots of Xp

n

�X . Moreover,

Fpm � Fpn ” mjn;

in which case, Fpn is Galois over Fpm with Galois group generated by
x 7! xp

m

.

PROOF. In fact, the set of roots of Xp
n

�X is a field (see above) with pn

elements, and it is the only such subfield. If Fpm � Fpn , say, ŒFpn WFpm �D d ,
then pn D .pm/d D pmd , and so mjn; the converse follows from the first
statement. If mjn, then Fpm is the fixed field of the group generated by
the automorphism x 7! xp

m

of Fpn , and so the final assertion follows from
Artin’s theorem (3.11). 2

The proposition shows that the partially ordered set of finite subfields of
F is isomorphic to the set of integers n� 1 partially ordered by divisibility.

PROPOSITION 4.24 The field Fp has an algebraic closure F.

PROOF. Choose a sequence of integers 1 D n1 < n2 < n3 < � � � such that
ni jniC1 for all i , and every integer n divides some ni . For example, let
ni D i Š. Define the fields Fpni inductively as follows: Fpn1 D Fp; Fpni is the
splitting field of Xp

ni
�X over Fpni�1 . Then, Fpn1 � Fpn2 � Fpn3 � �� � ,

and we set FD
S

Fpni . As a union of a chain of fields algebraic over Fp,
it is again a field algebraic over Fp. Moreover, every polynomial in FpŒX�
splits in F, and so it is an algebraic closure of F (by 1.45). 2

REMARK 4.25 Since the Fpn are not subsets of a fixed set, forming the union
requires explanation. One can appeal to the Axiom of Union in Zermelo-
Fraenkel set theory for its existence, or, more naively, let S be the disjoint
union of the Fpn . For a;b 2 S , set a � b if aD b in one of the Fpn . Then �
is an equivalence relation, and we let FD S=�.

Any two fields with q elements are isomorphic, but not necessarily canon-
ically isomorphic. However, once we have chosen an algebraic closure F of
Fp, there is a unique subfield of F with q elements.

PARI factors polynomials modulo p very quickly. Recall that the syntax is
factormod(f(X),p). For example, to obtain a list of all monic polynomials
of degree 1;2; or 4 over F5, ask PARI to factor X625�X modulo 5 (note
that 625D 54).
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NOTES In one of the few papers published during his short lifetime, entitled “Sur la
theorie des nombres”, which appeared in the Bulletin des Sciences Mathématiques in
June 1830, Galois—at that time not even nineteen years old—defined finite fields of
arbitrary prime power order and established their basic properties, e.g. the existence
of a primitive element. So it is fully justified when finite fields are called Galois
fields and customarily denoted by GF.q/. (Letter, Notices A.M.S., Feb. 2003, p. 198,
Péter P. Pálfry.)

Computing Galois groups over Q

In this section, I describe a practical method for computing Galois groups
over Q and similar fields. Recall that for a separable polynomial f 2 F ŒX�,
Ff denotes a splitting field for F , and Gf D Gal.Ff =F / denotes the Galois
group of f . Moreover, Gf permutes the roots ˛1; : : : ;˛m, mD degf , of f
in Ff :

G � Symf˛1; : : : ;˛mg.

The first result generalizes Proposition 4.5.

PROPOSITION 4.26 Let f .X/ be a separable polynomial in F ŒX�, and sup-
pose that the orbits of Gf acting on the roots of f have m1; : : : ;mr elements
respectively. Then f factors as f D f1 � � �fr with fi irreducible of degreemi .

PROOF. We may suppose that f is monic. Let ˛1; : : : ;˛m, be the roots
of f .X/ in Ff . The monic factors of f .X/ in Ff ŒX� are in one-to-one
correspondence with the subsets S of f˛1; : : : ;˛mg,

S $ fS D
Y
˛2S

.X �˛/.

Moreover, fS is fixed under the action of Gf (and hence has coefficients in
F ) if and only if S is stable underGf . Therefore the monic irreducible factors
of f in F ŒX� are the polynomials fS corresponding to minimal subsets S
of f˛1; : : : ;˛mg stable under Gf , but these are precisely the orbits of Gf in
f˛1; : : : ;˛mg. 2

REMARK 4.27 The proof shows the following more precise statement: let
f˛1; : : : ;˛mg D

S
Oi be the decomposition of f˛1; : : : ;˛mg into a disjoint

union of orbits for the group Gf ; then f D
Q
fi , where fi D

Q
j̨2Oi

.X �

j̨ /, is the decomposition of f into a product of monic irreducible polynomi-
als in F ŒX�.
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Now suppose that F is finite, with q elements say. Then Gf is a cyclic
group generated by the Frobenius automorphism � Wx 7! xq . When we regard
� as a permutation of the roots of f , then the orbits of � correspond to
the factors in its cycle decomposition (GT, 4.26). Hence, if the degrees of
the distinct irreducible factors of f are m1;m2; : : : ;mr , then � has a cycle
decomposition of type

m1C�� �Cmr D degf:

THEOREM 4.28 (DEDEKIND) Let f .X/ 2 ZŒX� be a monic polynomial of
degree m, and let p be a prime number such that f mod p has simple roots
(equivalently, D.f / is not divisible by p). Suppose that Nf D

Qr
iD1fi with

fi irreducible of degreemi in FpŒX�. ThenGf contains an element �f which,
when viewed as a permutation of the roots of f , has a cycle decomposition
�1 � � ��r with �i of length mi .

PROOF. Let ˛1; : : : ;˛m be the roots of f in some splitting field Ef of f ,
and let AD ZŒ˛1; : : : ;˛m�. Clearly A is finitely generated as a Z-module, and
so p is not invertible in A. Therefore, it is contained in a maximal ideal P of
A,3 and P \ZD pZ. We shall show that Gf contains a unique element �P
such that �P .a/� ap mod P for all a 2 A (in particular, �P .P /D P ).

Write a 7! Na for the quotient map A! A=P , and let Nf D f mod p.
The quotient A=P D FpŒ N̨1; : : : ; N̨m� is a splitting field E Nf of Nf . The group
G Nf

def
D Gal.E Nf =Fp/ is cyclic with generator Na 7! Nap (see 4.20). Let

DP D f� 2Gf j �.P /D P g:

It is a subgroup of Gf . Each � 2DP defines an automorphism N� of E Nf
def
D

A=P . The homomorphism �WDP ! G Nf , � 7! N� , is injective because � is
determined by its action on the ˛i , and hence by its action on the N̨ i . We now
show that it is surjective.

Let a 2 AXP . According to the Chinese remainder theorem (see 8.1
below), there exists a b 2 A such that b � a mod P and b � 0 mod ��1.P /
for all � 2 Gf XDP . Let g.X/ D

Q
�2Gf

.X � �.b//. Then g.X/ lies
in ZŒX� and Ng.X/ D Xs

Q
�2DP

.X � N�. Na//, where s D jG XDP j, lies in
FpŒX�. The minimal polynomial of Na over Fp divides Ng.X/. On choosing a
so that E Nf D FpŒ Na�, we find that DP has order ŒEf WFp�, and so DP 'G Nf .

Let �P be the element of DP such that N�P D . Na 7! Nap/. Then �P is the
unique element of Gf such that �P .a/ � ap mod P for all a 2 A. Since

3Let P be the inverse image of any proper ideal of A=.p/ of highest dimension (as an
Fp-vector space).
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a 7! Na maps the roots of f bijectively onto the roots of Nf , we see that DP
and Gf are isomorphic when viewed as permutation groups. Thus the cycle
decomposition of �f is as described. 2

For an alternative proof of Dedekind’s theorem, see Van der Waerden,
Modern Algebra, I, �61 (or v5.00 of these notes).

ASIDE 4.29 Let E be a finite Galois extension of Q with Galois group G, and
let OE be the ring integers in E, i.e., the set of elements of E satisfying a monic
polynomial in ZŒX�. Let P be a prime ideal of OE such that P \Z D pZ. As
in the above proof, there exists a unique element �P 2G such that �PP D P and
�P .a/� a

p mod P for all a 2 OE . This is called the Frobenius automorphism
at P . If Q is a second prime ideal of OE such that Q\Z D pZ, then Q D �P
for some � 2 G, and �Q D � ı�P ı ��1. The conjugacy class of �P is called the
Frobenius class at p. When G is abelian, it consists of a single element.

EXAMPLE 4.30 Consider X5�X �1. Modulo 2, this factors as

.X2CXC1/.X3CX2C1/;

and modulo 3 it is irreducible. The theorem shows that Gf contains permuta-
tions .ik/.lmn/ and .12345/, and so also ..ik/.lmn//3 D .ik/. Therefore
Gf D S5 by (4.15).

LEMMA 4.31 A transitive subgroup of H � Sn containing a transposition
and an .n�1/-cycle is equal to Sn.

PROOF. After renumbering, we may suppose that the .n� 1/-cycle is the
cycle .123: : :n� 1/. Because of the transitivity, the transposition can be
transformed into .in/, some 1� i � n�1. Conjugating .in/ by .123: : :n�1/
and its powers will transform it into .1n/, .2n/, : : :, .n� 1n/, and these
elements obviously generate Sn: 2

EXAMPLE 4.32 Select separable monic polynomials of degree n, f1;f2;f3
with coefficients in Z with the following factorizations:

(a) f1 is irreducible modulo 2;

(b) f2 D .degree 1/.irreducible of degree n�1/ mod 3;

(c) f3D .irreducible of degree 2)(product of 1 or 2 irreducible polynomials
of odd degree) mod 5.

Take
f D�15f1C10f2C6f3:

Then
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(i) Gf is transitive (it contains an n-cycle because f � f1 mod 2);

(ii) Gf contains a cycle of length n�1 (because f � f2 mod 3);

(iii) Gf contains a transposition (because f � f3 mod 5, and so it contains
the product of a transposition with a commuting element of odd or-
der; on raising this to an appropriate odd power, we are left with the
transposition). Hence Gf is Sn:

The above results give the following strategy for computing the Galois
group of an irreducible polynomial f 2QŒX�. Factor f modulo a sequence
of primes p not dividingD.f / to determine the cycle types of the elements in
Gf — a difficult theorem in number theory, the effective Chebotarev density
theorem, says that if a cycle type occurs in Gf , then this will be seen by
looking modulo a set of prime numbers of positive density, and will occur for
a prime less than some bound. Now look up a table of transitive subgroups of
Sn with order divisible by n and their cycle types. If this does not suffice to
determine the group, then look at its action on the set of subsets of r roots for
some r .

In Butler and McKay, The transitive groups of degree up to eleven, Comm.
Algebra 11 (1983), 863–911, there is a list of all transitive subgroups of Sn,
n� 11, together with the cycle types of their elements and the orbit lengths
of the subgroup acting on the r-sets of roots. With few exceptions, these
invariants are sufficient to determine the subgroup up to isomorphism. See
also, Soicher and McKay, Computing Galois groups over the rationals, J.
Number Theory, 20 (1985) 273–281.

PARI can compute Galois groups for polynomials of degree � 11 over
Q. The syntax is polgalois(f), where f is an irreducible polynomial
of degree � 11, and the output is .n;s;k;name/, where n is the order of
the group, s is C1 or �1 according as the group is a subgroup of the alter-
nating group or not, and “name” is the name of the group. For example,
polgalois(X^5-5*X^3+4*X-1) (see 4.18) returns the symmetric group S5,
which has order 120, polgalois(X^11-5*X^3+4*X-1) returns the symmet-
ric group S11, which has order 39916800, and polgalois(X^12-5*X^3...)
returns an apology. The reader should use PARI to check the examples 4.10–
4.13.

ASIDE 4.33 For a monic polynomial f of degree n with bounded integers as
coefficients, it is expected that the Galois group of f equals Sn with probability 1 as
n!1. See Bary-Soroker, Kozma, and Gady, Duke Math. J. 169 (2020), 579–598,
for precise statements.
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ASIDE 4.34 Of the .2H C1/n monic polynomials f .X/DXnCa1Xn�1C�� �C
an 2ZŒX�with maxfja1j; : : : ; janjg DH , how many have Galois group¤ Sn? There
are clearly�Hn�1 such polynomials, as may be seen by setting an D 0. It was
conjectured by Van der Waerden in 1936, and proved by Bhargava in 2021, that
O.Hn�1/ is in fact be the correct upper bound for the count of such polynomials.

Appendix: Computing discriminants using resultants

Let f;g 2 F ŒX�, and suppose that

f .X/D a
Yn

1
.X �˛i /; g.X/D b

Ym

1
.X � ǰ /; ab ¤ 0;

in some splitting field for fg. The resultant of f and g is defined by

Res.f;g/D ambn
Y

i;j
.˛i � ǰ /:

PROPOSITION 4.35 Let f;g 2 F ŒX� as above. Then,
(a) Res.f;g/D .�1/mnRes.g;f /I

(b) Res.f;g/D am
Qn
iD1g.˛i /;

(c) If g � g1 mod f in F ŒX� with deg.g1/Dm1, then

Res.f;g/D am�m1 Res.f;g1/:

PROOF. Statements (a) and (b) are obvious. If g � g1 mod f , thenYn

iD1
g.˛i /D

Yn

iD1
g1.˛i /;

and so (c) follows from (b) . 2

These formulas make it possible to compute resultants by applying the
division algorithm to reduce the degree of g, then switching the two polyno-
mials, and continuing until one polynomial has degree � 1.

PROPOSITION 4.36 Let f 2 F ŒX� be a monic polynomial of degee n, and
let f 0 be its derivative. Then

D.f /D .�1/
n.n�1/
2 Res.f;f 0/D .�1/

n.n�1/
2 Res.f 0;f /:
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PROOF. If f .X/D
Qn
iD1.X �˛i /, then

D.f / def
D

Y
1�i<j�n

.˛i � j̨ /
2

D .�1/
n.n�1/
2

Y
i¤j

.˛i � j̨ /

D .�1/
n.n�1/
2

nY
iD1

Y
j¤i

.˛i � j̨ /:

On the other hand,

f 0.X/D
Xn

iD1

Y
j¤i

.X � j̨ /;

and so f 0.˛i /D
Q
j¤i .˛i � j̨ / for i D 1; : : : ;n. Now the statement follows

from 4.35(b). 2

EXAMPLE 4.37 Let f DX3CbXC c. Then

D.f /D�Res.3X2Cb;X3CbXC c/

D�32Res.3X2Cb;
2b

3
XC c/

because

X3CbXC c D
X

3
.3X2Cb/C

2b

3
XC c:

Thus

D.f /D�32Res
�2b
3
.XC

3c

2b
/;3X2Cb

�
by 4.35(a)

D�32 �
�2b
3

�2�
3
� 3c
2b

�2
Cb

�
by 4.35(b)

D�4b3�27c2:

EXAMPLE 4.38 Let f DX5CXC1. Then

D.f /D Res.5X4C1;X5CXC1/

D 54Res.5X4C1;
4

5
XC1/

because
X5CXC1D

X

5
.5X4C1/C

4

5
XC1:
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Thus

D.f /D 54Res
�4
5
.XC

5

4
/;5X4C1

�
by 4.35(a)

D 54
�4
5

�4�
5
�5
4

�4
C1

�
by 4.35(b)

D 3381:

EXAMPLE 4.39 Let f DXnCaXCb. Then

D.f /D .�1/
n.n�1/
2 Res.nXn�1Ca;XnCaXCb/

D .�1/
n.n�1/
2 nn�1Res.nXn�1Ca;a

n�1

n
XCb/

because
XnCaXCb D

X

n
.nXn�1Ca/Ca

n�1

n
XCb:

Thus

D.f /D .�1/
n.n�1/
2 .�n/n�1Res

�
a
n�1

n
.XC

nb

.n�1/a
/;nXn�1Ca

�
(4.35a)

D .�1/
n.n�1/
2 .�n/n�1

�
a
n�1

n

�n�1�
n
�
�nb

.n�1/a

�n�1
Ca

�
(4.35b)

D .�1/
n.n�1/
2 .�a.n�1//n�1

�
n
�
�nb

.n�1/a

�n�1
Ca

�
D .�1/

n.n�1/
2 .nnbn�1C .�1/n�1.n�1/n�1an/:

NOTES The appendix is based on a letter of René Schoof.

Exercises

4-1 Find the splitting field of Xm�1 2 FpŒX�.

4-2 Find the Galois group of X4�2X3�8X �3 over Q.

4-3 Find the degree of the splitting field of X8�2 over Q.

4-4 Give an example of a field extension E=F of degree 4 such that there
does not exist a field M with F �M �E, ŒM WF �D 2.

4-5 List all irreducible polynomials of degree 3 over F7 in 10 seconds or
less (there are 112).
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4-6 “It is a thought-provoking question that few graduate students would
know how to approach the question of determining the Galois group of, say,

X6C2X5C3X4C4X3C5X2C6XC7:”

[over Q].
(a) Can you find it?

(b) Can you find it without using the “polgalois” command in PARI?

4-7 Let f .X/ D X5C aX C b, a;b 2 Q. Show that Gf � D5 (dihedral
group) if and only if

(a) f .X/ is irreducible in QŒX�, and

(b) the discriminant D.f /D 44a5C55b4 of f .X/ is a square, and

(c) the equation f .X/D 0 is solvable by radicals.

4-8 Show that a polynomial f of degree nD
Qk
iD1p

ri
i (the pi are distinct

primes) is irreducible over Fp if and only if (a) gcd.f .X/;Xp
n=pi
�X/D 1

for all 1� i � k and (b) f divides Xp
n

�X (Rabin irreducibility test4).

4-9 Let f .X/ be an irreducible polynomial in QŒX� with both real and
nonreal roots. Show that its Galois group is nonabelian. Can the condition
that f is irreducible be dropped?

4-10 Let F be a Galois extension of Q, and let ˛ be an element of F
such that ˛F �2 is not fixed by the action of Gal.F=Q/ on F �=F �2. Let
˛ D ˛1; : : : ;˛n be the orbit of ˛ under Gal.F=Q/. Show:

(a) F Œ
p
˛1; : : : ;

p
˛n�=F is Galois with commutative Galois group con-

tained in .Z=2Z/n.

(b) F Œ
p
˛1; : : : ;

p
˛n�=Q is Galois with noncommutative Galois group

contained in .Z=2Z/nÌGal.F=Q/.

4Rabin, Probabilistic algorithms in finite fields. SIAM J. Comput. 9 (1980), no. 2,
273–280.





CHAPTER 5
Applications of Galois Theory

In this chapter, we apply the fundamental theorem of Galois theory to obtain
other results about polynomials and extensions of fields.

Primitive element theorem.

Recall that a finite extension of fields E=F is simple if E D F Œ˛� for some
element ˛ of E. Such an ˛ is called a primitive element of E. We’ll show
that (at least) all separable extensions have primitive elements.

Consider for example QŒ
p
2;
p
3�=Q. We know (see Exercise 3-3) that

its Galois group over Q is a 4-group h�;�i; where�
�
p
2 D �

p
2

�
p
3 D

p
3
;

�
�
p
2 D

p
2

�
p
3 D �

p
3
:

Note that
�.
p
2C
p
3/ D �

p
2C
p
3;

�.
p
2C
p
3/ D

p
2�
p
3;

.��/.
p
2C
p
3/ D �

p
2�
p
3:

These all differ from
p
2C
p
3, and so only the identity element of the Galois

group fixes all elements of QŒ
p
2C
p
3�. According to the fundamental

theorem, this implies that
p
2C
p
3 is a primitive element:

QŒ
p
2;
p
3�DQŒ

p
2C
p
3�:

It is clear that this argument should work much more generally.

77
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THEOREM 5.1 Let E D F Œ˛1; :::;˛r � be a finite extension of F , and assume
that ˛2; :::;˛r are separable over F (but not necessarily ˛1). Then there exists
a 
 2E such that E D F Œ
�.

PROOF. For finite fields, we proved this in 4.19. Hence we may assume F to
be infinite. It suffices to prove the statement for r D 2, for then

F Œ˛1;˛2; : : : ;˛r �D F Œ˛
0
1;˛3; : : : ;˛r �D F Œ˛

00
1 ;˛4; : : : ;˛r �D �� � :

Thus let E D F Œ˛;ˇ� with ˇ separable over F . Let f and g be the minimal
polynomials of ˛ and ˇ over F , and letL be a splitting field for fg containing
E. Let ˛1 D ˛; : : : ;˛s be the roots of f in L, and let ˇ1 D ˇ, ˇ2; : : : ;ˇt be
the roots of g. For j ¤ 1, ǰ ¤ ˇ, and so the the equation

˛i CX ǰ D ˛CXˇ;

has exactly one solution, namely, X D ˛i�˛
ˇ� ǰ

. If we choose a c 2 F different
from any of these solutions (using that F is infinite), then

˛i C c ǰ ¤ ˛C cˇ unless i D 1D j:

Let 
 D ˛C cˇ. I claim that

F Œ˛;ˇ�D F Œ
�.

The polynomials g.X/ and f .
 � cX/ have coefficients in F Œ
�, and have ˇ
as a root:

g.ˇ/D 0; f .
 � cˇ/D f .˛/D 0:

In fact, ˇ is their only common root, because we chose c so that 
 �c ǰ ¤ ˛i
unless i D 1D j . Therefore

gcd.g.X/;f .
 � cX//DX �ˇ.

Here we computed the gcd in LŒX�, but this is equal to the gcd computed in
F Œ
�ŒX� (Proposition 2.17). Hence ˇ 2F Œ
�, and this implies that ˛D 
�cˇ
also lies in F Œ
�. This proves the claim. 2

REMARK 5.2 When F is infinite, the proof shows that 
 can be chosen to
be of the form


 D ˛1C c2˛2C�� �C cr˛r ; ci 2 F:

If F Œ˛1; : : : ;˛r � is Galois over F , then an element of this form will be a
primitive element provided it is moved by every nontrivial element of the
Galois group. This remark makes it very easy to write down primitive
elements.
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Our hypotheses are minimal: if two of the ˛ are not separable, then the
extension need not be simple. Before giving an example to illustrate this, we
need another result.

PROPOSITION 5.3 LetEDF Œ
� be a simple algebraic extension of F . Then
there are only finitely many intermediate fields M ,

F �M �E:

PROOF. Let M be such a field, and let g.X/ be the minimal polynomial of 

over M . Let M 0 be the subfield of E generated over F by the coefficients of
g.X/. ClearlyM 0�M , but (equally clearly) g.X/ is the minimal polynomial
of 
 over M 0. Hence

ŒEWM 0�D deg.g/D ŒEWM�;

and so M DM 0; we have shown that M is generated by the coefficients of
g.X/.

Let f .X/ be the minimal polynomial of 
 over F . Then g.X/ divides
f .X/ in MŒX�, and hence also in EŒX�. Therefore, there are only finitely
many possible g, and consequently only finitely many possible M . 2

Note that the proof in fact gives a description of all the intermediate fields:
each is generated over F by the coefficients of a factor g.X/ of f .X/ in
EŒX�. The coefficients of such a g.X/ are partially symmetric polynomials
in the roots of f .X/ (that is, fixed by some, but not necessarily all, of the
permutations of the roots).

REMARK 5.4 The proposition has a converse: If E is a finite extension of F
and there are only finitely many intermediate fields M , F �M �E, then E
is a simple extension of F .

In proving this, we may suppose that F is infinite, and use that no finite-
dimensional F -vector space is a finite union of proper subspaces.1 Thus there
is an element 
 in E not contained in any proper subfield, and so E D F Œ
�.
This gives another proof of Theorem 5.1 in the case that E is separable over
F , because Galois theory shows that there are only finitely many intermediate
fields in this case (even the Galois closure of E over F has only finitely many
intermediate fields).

1Let U1; : : : ;Um be proper subspaces of V , and let f1; : : : ;fm be nonzero linear forms on
V such that fi is zero on Ui . If V D

S
Ui , then f def

D f1 : : :fm is zero on V , which implies
that it is zero (5.19) — contradiction.
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EXAMPLE 5.5 The simplest nonsimple algebraic extension is k.X;Y / �
k.Xp;Y p/, where k is an algebraically closed field of characteristic p. Let
F D k.Xp;Y p/. For all c 2 k, we have

k.X;Y /D F ŒX;Y �� F ŒXC cY �� F

with the degree of each extension equal to p. If

F ŒXC cY �D F ŒXC c0Y �; c ¤ c0;

then F ŒXC cY � would contain both X and Y , which is impossible because
Œk.X;Y /WF � D p2. Hence there are infinitely many distinct intermediate
fields.2

Alternatively, note that the degree of k.X;Y / over k.Xp;Y p/ is p2, but
if ˛ 2 k.X;Y /, then ˛p 2 k.Xp;Y p/, and so ˛ generates a field of degree at
most p over k.Xp;Y p/.

Fundamental Theorem of Algebra

We finally prove the fundamental theorem of algebra.3

THEOREM 5.6 The field C of complex numbers is algebraically closed.

PROOF. We’ll need to use the following two facts about R:
˘ positive real numbers have square roots;

˘ every polynomial of odd degree with real coefficients has a real root.
Both are immediate consequences of the Intermediate Value Theorem, which
says that a continuous function on a closed interval takes every value between
its maximum and minimal values (inclusive).

We define C to be the splitting field ofX2C1 over R, and we let i denote
a root of X2C1 in C. Thus CD RŒi �. We have to show (see 1.45) that every
f .X/ 2 RŒX� splits in C. We may suppose that f is monic, irreducible, and
¤X2C1.

2Zariski showed that there is even an intermediate field M that is not isomorphic to
F.X;Y /, and Piotr Blass showed, using the methods of algebraic geometry, that there is an
infinite sequence of intermediate fields, no two of which are isomorphic.

3This is not strictly a theorem in algebra: it is a statement about R whose construction is
part of analysis (or maybe topology). In fact, I prefer the proof based on Liouville’s theorem
in complex analysis to the more algebraic proof given in the text: if f .z/ is a polynomial
without a root in C, then f .z/�1 is bounded and holomorphic on the whole complex plane,
and hence (by Liouville) constant.
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We first show that every element ˛ of C has a square root in C. Write
˛ D aCbi , with a;b 2 R, and let c;d be real numbers such that

c2 D
aC
p
a2Cb2

2
; d2 D

�aC
p
a2Cb2

2
:

Then c2�d2 D a and .2cd/2 D b2. If we choose the signs of c and d so
that cd has the same sign as b, then .cCdi/2 D ˛ and so cCdi is a square
root of ˛.

Let f .X/ 2 RŒX�, and let E be a splitting field for f .X/.X2C1/. Then
E contains C, and we have to show that it equals C. Since R has characteristic
zero, the polynomial is separable, and so E is Galois over R (see 3.10). Let
G be its Galois group, and let H be a Sylow 2-subgroup of G.

Let M DEH . Then M has of degree .GWH/ over R, which is odd, and
so the minimal polynomial over R of any ˛ 2M has odd degree (by the
multiplicativity of degrees, 1.20), and so has a real root. As it is irreducible,
it has degree 1. Hence ˛ 2 R, and so M D R and G DH .

We deduce that Gal.E=C/ is a 2-group. If it is¤ 1, then it has a subgroup
N of index 2 (GT, 4.17). The field EN has degree 2 over C, and so it is
generated by the square root of an element of C (see 3.25), but all square
roots of elements of C lie in C. Hence EN D C, which is a contradiction.
Thus Gal.E=C/D 1 and E D C. 2

COROLLARY 5.7 (a) The field C is the algebraic closure of R.
(b) The set of all algebraic numbers is an algebraic closure of Q:

PROOF. Part (a) is obvious from the definition of “algebraic closure” (1.44),
and (b) follows from Corollary 1.47. 2

NOTES The Fundamental Theorem was quite difficult to prove. Gauss gave a proof
in his doctoral dissertation in 1798 in which he used some geometric arguments
which he did not justify. He gave the first rigorous proof in 1816. The elegant
argument given here is a simplification by Emil Artin of earlier proofs (see Emil
Artin, Algebraische Konstruction reeller Körper, Hamb. Abh., Bd. 5 (1926), 85-90;
translation available in Emil Artin, Exposition by Emil Artin. AMS; LMS 2007).

Cyclotomic extensions

A primitive nth root of 1 in F is an element of order n in F �. Such an
element can exist only if the characteristic of F does not divide n (so either
it is 0 or p not dividing n). We refer the reader to GT 3.5 for the group
.Z=nZ/�.
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PROPOSITION 5.8 Let F be a field of characteristic not dividing n, and let
E be the splitting field of Xn�1.

(a) There exists a primitive nth root of 1 in E.

(b) If � is a primitive nth root of 1 in E, then E D F Œ��.

(c) The field E is Galois over F ; for each � 2 Gal.E=F /, there is an
i 2 .Z=nZ/� such that �� D �i for all � with �n D 1; the map � 7! Œi �

is an injective homomorphism

Gal.E=F /! .Z=nZ/�.

PROOF. (a) The roots of Xn�1 are distinct, because its derivative nXn�1

has only zero as a root (here we use the condition on the characteristic), and so
E contains n distinct nth roots of 1. The nth roots of 1 form a finite subgroup
of E�, and so (see Exercise 3) they form a cyclic group. Every generator has
order n, and hence is a primitive nth root of 1.

(b) The roots of Xn�1 are the powers of �, and F Œ�� contains them all.
(c) The extension E=F is Galois because E is the splitting field of a

separable polynomial. If �0 is one primitive nth root of 1, then the remaining
primitive nth roots of 1 are the elements �i0 with i relatively prime to n. Since,
for any automorphism � of E, ��0 is again a primitive nth root of 1, it equals
�i0 for some i relatively prime to n, and the map � 7! i mod n is injective
because �0 generates E over F . It is obviously a homomorphism. Moreover,
for any other nth root of 1, say, � D �m0 , we have

�� D .��0/
m
D �im0 D �

i ;

and so the homomorphism does not depend on the choice of �0. 2

The map � 7! Œi �WGal.F Œ��=F /! .Z=nZ/� need not be surjective. For
example, if F D C, then its image is f1g, and if F D R, it is either fŒ1�g or
fŒ�1�; Œ1�g. On the other hand, when nD p is prime, we showed in Lemma
1.42 that ŒQŒ��WQ�D p�1, and so the map is surjective. We now prove that
the map is surjective for all n when F DQ.

The polynomial Xn�1 has some obvious factors in QŒX�, namely, the
polynomials Xd � 1 for any d jn. When we remove all factors of Xn� 1
of this form with d < n, the polynomial we are left with is called the nth
cyclotomic polynomial ˚n. Thus

˚n D
Y
.X � �/ (product over the primitive nth roots of 1/:
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It has degree '.n/, the order of .Z=nZ/�. Since every nth root of 1 is a
primitive d th root of 1 for exactly one positive divisor d of n, we see that

Xn�1D
Y
d jn

˚d .X/:

For example, ˚1.X/DX �1, ˚2.X/DXC1, ˚3.X/DX2CXC1, and

˚6.X/D
X6�1

.X �1/.XC1/.X2CXC1/
DX2�XC1:

This gives an easy inductive method of computing the cyclotomic polynomials.
Alternatively type polcyclo(n,X) in PARI.

Because Xn�1 has coefficients in Z and is monic, every monic factor
of it in QŒX� has coefficients in Z (see 1.14). In particular, the cyclotomic
polynomials lie in ZŒX�.

LEMMA 5.9 Let F be a field of characteristic not dividing n, and let � be a
primitive nth root of 1 in some extension of F . The following are equivalent:

(a) the nth cyclotomic polynomial ˚n is irreducible;

(b) the degree ŒF Œ��WF �D '.n/;

(c) the homomorphism

Gal.F Œ��=F /! .Z=nZ/�

is an isomorphism.

PROOF. Because � is a root of ˚n, the minimal polynomial of � divides ˚n.
It equals it if and only if ŒF Œ��WF �D '.n/, which is true if and only if the
injection Gal.F Œ��=F / ,! .Z=nZ/� is onto. 2

THEOREM 5.10 The nth cyclotomic polynomial ˚n is irreducible in QŒX�.

PROOF. Let f .X/ be a monic irreducible factor of ˚n in QŒX�. Its roots will
be primitive nth roots of 1, and we have to show they include all primitive
nth roots of 1. For this it suffices to show that

� a root of f .X/ H) �i a root of f .X/ for all i such that gcd.i;n/D 1:

Such an i is a product of primes not dividing n, and so it suffices to show that

� a root of f .X/ H) �p a root of f .X/ for all primes p not dividing n:
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Write
˚n.X/D f .X/g.X/.

Proposition 1.14 shows that f .X/ and g.X/ lie in ZŒX�. Suppose that � is
a root of f but that, for some prime p not dividing n, �p is not a root of f .
Then �p is a root of g.X/, g.�p/D 0, and so � is a root of g.Xp/. As f .X/
and g.Xp/ have a common root, they have a nontrivial common factor in
QŒX� (2.17), which automatically lies in ZŒX� (1.14).

Write h.X/ 7! Nh.X/ for the quotient map ZŒX�! FpŒX�, and note that,
because f .X/ and g.Xp/ have a common factor of degree � 1 in ZŒX�, so
also do Nf .X/ and Ng.Xp/ in FpŒX�. The mod p binomial theorem shows that

Ng.X/p D Ng.Xp/

(recall that ap D a for all a 2 Fp), and so Nf .X/ and Ng.X/ have a common
factor of degree � 1 in FpŒX�. Hence Xn�1, when regarded as an element
of FpŒX�, has multiple roots, but, as p − n, it is separable — contradiction.

ALTERNATIVE PROOF. We have to show that the homomorphism

�WGal.QŒ��=Q/! .Z=nZ/�

is surjective. Let �p 2 Gal.QŒ��=Q/ be the Frobenius class at a prime p not
dividing n (see 4.29). Then �p.�/D �p because this is the only nth root of
1 congruent to �p modulo a prime ideal lying over p, and so �.�p/D Œp�.
As .Z=nZ/� is generated by the classes of the prime numbers not dividing n,
this shows that � is surjective. 2

ASIDE 5.11 The proof of 5.10 is very old — in essence it goes back to Dedekind
in 1857 — but its general scheme has recently become popular: take a statement in
characteristic zero, reduce modulo p (where the statement may no longer be true),
and exploit the existence of the Frobenius automorphism a 7! ap to obtain a proof
of the original statement. For example, commutative algebraists use this method
to prove results about commutative rings, and there are theorems about complex
manifolds that were first proved by reducing things to characteristic p:

There are some beautiful relations between what happens in characteristic 0 and
in characteristic p. For example, let f .X1; :::;Xn/ 2 ZŒX1; :::;Xn�. We can

(a) look at the solutions of f D 0 in C, and so get a topological space;

(b) reduce mod p, and look at the solutions of Nf D 0 in Fpn .

The Weil conjectures (Weil 1949; proved by Deligne, Grothendieck, . . . ) assert that
the Betti numbers of the space in (a) control the cardinalities of the sets in (b).

THEOREM 5.12 The regular n-gon is constructible if and only if n is of the
form 2kp1 � � �ps , where the pi are distinct Fermat primes.



Dedekind’s theorem on the independence of characters 85

PROOF. The regular n-gon is constructible if and only if cos 2�
n

(equivalently,
� D e2�i=n) is constructible. We know that QŒ�� is Galois over Q, and so
(according to 1.38 and 3.24) � is constructible if and only if ŒQŒ��WQ� is a
power of 2. When we write nD

Q
pn.p/,

'.n/D
Y
pjn

.p�1/pn.p/�1;

(GT, 3.5), and this is a power of 2 if and only if n has the required form. 2

REMARK 5.13 As mentioned earlier, the Fermat primes are those of the
form 22

r

C 1. Because the Fermat primes are not known, the problem of
listing the n for which the regular n-gon is constructible has not yet solved.

NOTES The final section of Gauss’s, Disquisitiones Arithmeticae (1801) is titled
“Equations defining sections of a Circle”. In it Gauss proves that the nth roots
of 1 form a cyclic group, that Xn � 1 is solvable (this was before the theory of
abelian groups had been developed, and before Galois), and that the regular n-gon
is constructible when n is as in the Theorem. He also claimed to have proved the
converse statement. This leads some people to credit him with the above proof of
the irreducibility of ˚n, but in the absence of further evidence, I’m sticking with
Dedekind. For a recent article discussing this, see Anderson, Chahal, and Top, The
last chapter of the Disquisitiones of Gauss. Hardy–Ramanujan J. 44 (2021), 152–159,
arXiv:2110.01355.

Dedekind’s theorem on the independence of characters

THEOREM 5.14 (DEDEKIND) Let F be a field and G a group. Every finite
set f�1; : : : ;�mg of group homomorphisms G! F � is linearly independent
over F , i.e.,

a1�1C�� �Cam�m D 0 (as a function G! F / H) a1 D 0; : : : ;am D 0:

PROOF. We use induction on m. For mD 1, the statement is obvious. As-
sume it for m�1, and suppose that, for some set f�1; : : : ;�mg of homomor-
phisms G! F � and ai 2 F ,

a1�1.x/Ca2�2.x/C�� �Cam�m.x/D 0 for all x 2G:

We have to show that the ai are zero. As �1 and �2 are distinct, they will
take distinct values on some g 2G. On replacing x with gx in the equation,
we find that

a1�1.g/�1.x/Ca2�2.g/�2.x/C�� �Cam�m.g/�m.x/D 0 for all x 2G:

https://doi.org/10.48550/arXiv.2110.01355
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On multiplying the first equation by �1.g/ and subtracting it from the second,
we obtain the equation

a02�2C�� �Ca
0
m�m D 0; a0i D ai .�i .g/��1.g//:

The induction hypothesis shows that a0i D 0 for i D 2;3; : : : ;m. As �2.g/�
�1.g/¤ 0, this implies that a2 D 0, and so

a1�1Ca3�3C�� �Cam�m D 0:

The induction hypothesis now shows that the remaining ai are also zero. 2

COROLLARY 5.15 Let F and E be fields, and let �1; :::;�m be distinct ho-
momorphisms F !E. Then �1; :::;�m are linearly independent over E:

PROOF. Apply the theorem to �i D �i jF �. 2

COROLLARY 5.16 Let E be a finite separable extension of F of degree m.
Let ˛1; : : : ;˛m be a basis for E as an F -vector space, and let �1; : : : ;�m be
distinct F -homomorphisms from E into a field ˝. Then the matrix whose
.i;j /th-entry is �i j̨ is invertible.

PROOF. If not, there exist ci 2˝ such that
Pm
iD1 ci�i . j̨ /D 0 for all j . But

the map
Pm
iD1 ci�i WE!˝ is F -linear, and so this implies thatXm

iD1
ci�i .˛/D 0

for all ˛ 2E, which contradicts Corollary 5.15. 2

The normal basis theorem

DEFINITION 5.17 Let E be a finite Galois extension of F . A basis for E as
an F -vector space is called a normal basis if it consists of the conjugates of
a single element of E.

In other words, a normal basis is one of the form

f�˛ j � 2 Gal.E=F /g

for some ˛ 2E.

THEOREM 5.18 (NORMAL BASIS THEOREM) Every Galois extension has
a normal basis.
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The group algebra FG of a group G is the F -vector space with basis the
elements of G endowed with the multiplication extending that of G. Thus an
element of FG is a sum

P
�2G a�� , a� 2 F , and�P

� a��
��P

� b��
�
D
P
�

�P
�1�2D�

a�1b�2
�
�:

Every F -linear action of G on an F -vector space V extends uniquely to an
action of FG.

Let E=F be a Galois extension with Galois group G. Then E is an
FG-module, and Theorem 5.18 says that there exists an element ˛ 2E such
that the map P

� a�� 7!
P
� a��˛WFG!E

is an isomorphism of FG-modules, i.e., that E is a free FG-module of
rank 1.

We give three proofs of Theorem 5.18. The first assumes that F is infinite
and the second that G is cyclic. Since every Galois extension of a finite field
is cyclic (4.20), this covers all cases. The third proof applies to both finite
and infinite fields, but uses the Krull–Schmidt theorem.

PROOF FOR INFINITE FIELDS

LEMMA 5.19 Let f 2 F ŒX1; : : : ;Xm�, and let S be an infinite subset of F .
If f .a1; : : : ;am/D 0 for all a1; : : : ;am 2 S , then f is the zero polynomial
(i.e., f D 0 in F ŒX1; : : : ;Xm�).

PROOF. We prove this by induction on m. For mD 1, the lemma becomes
the statement that a nonzero polynomial in one symbol has only finitely many
roots (see 1.7). For m> 1, write f as a polynomial in Xm with coefficients
in F ŒX1; : : : ;Xm�1�, say,

f D
X

ci .X1; : : : ;Xm�1/X
i
m:

For any .m�1/-tuple a1; : : : ;am�1 of elements of S ,

f .a1; : : : ;am�1;Xm/

is a polynomial in Xm having every element of S as a root. Therefore, each
of its coefficients is zero: ci .a1; : : : ;am�1/D 0 for all i . Since this holds for
all .a1; : : : ;am�1/, the induction hypothesis shows that ci .X1; : : : ;Xm�1/ is
the zero polynomial. 2
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We now prove 5.18 in the case that F is infinite. Number the elements of
G as �1; : : : ;�m with �1 the identity map.

Suppose that f 2 F ŒX1; : : : ;Xm� has the property,

f .�1˛; : : : ;�m˛/D 0 for all ˛ 2E:

Choose a basis ˛1; : : : ;˛m forE as anF -vector space, and let g.Y1; : : : ;Ym/2
EŒY1; : : : ;Ym� be obtained from f by replacingXj with

Pm
iD1Yi�j˛i . Then,

for all a1; : : : ;am 2 F ,

g.a1; : : : ;am/D f .
Pm
iD1ai�1˛i ; : : : ;

Pm
iD1ai�m˛i /

D f .�1
Pm
iD1ai˛i ; : : : ;�m

Pm
iD1ai˛i /

D 0;

and so g D 0 (here we use that F is infinite). But the matrix .�i j̨ / is
invertible (5.16). Since g is obtained from f by an invertible linear change of
variables, f can be obtained from g by the inverse linear change of variables.
Therefore it also is zero.

Write Xi D X.�i /, and let AD .X.�i�j //, i.e., A is the m�m matrix
having Xk in the .i;j /th place if �i�j D �k . Then det.A/ is a polynomial
in X1; : : : ;Xm, say, det.A/ D h.X1; : : : ;Xm/. Clearly, h.1;0; : : : ;0/ is the
determinant of a matrix having exactly one 1 in each row and each column
and its remaining entries 0. Hence the rows of the matrix are a permutation
of the rows of the identity matrix, and so its determinant is˙1. In particular,
the polynomial h is not identically zero, and so there exists an ˛ 2E� such
that h.�1˛; : : : ;�m˛/ .D det.�i�j˛/) is nonzero. We’ll show that f�j˛g is a
normal basis. For this, it suffices to show that the �j˛ are linearly independent
over F . Suppose that Xm

jD1
aj�j˛ D 0

for some aj 2 F . On applying �1; : : : ;�m successively, we obtain a system
of m-equations X

j
aj�i�j˛ D 0

in the m “unknowns” aj . Because this system of equations is nonsingular,
the aj are zero. This completes the proof.

PROOF WHEN G IS CYCLIC.

Assume that G is generated by an element �0 of order n. Then ŒEWF �D n.
The minimal polynomial of �0 regarded as an endomorphism of the F -
vector space E is the monic polynomial in F ŒX� of least degree such that
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P.�0/D 0 (as an endomorphism of E). It has the property that it divides
every polynomial Q.X/ 2 F ŒX� such that Q.�0/D 0. Since �n0 D 1, P.X/
divides Xn�1. On the other hand, Dedekind’s theorem on the independence
of characters (5.14) implies that 1;�0; : : : ;�n�10 are linearly independent over
F , and so degP.X/ > n�1. We conclude that P.X/DXn�1. Therefore,
as an F ŒX�-module withX acting as �0,E is isomorphic to F ŒX�=.Xn�1/.4

For any generator ˛ of E as an F ŒX�-module, ˛;�0˛; : : : ;�0˛n�1 is an F -
basis for E.

When F is finite, it is possible to replace the use of Dedekind’s theorem
(5.14) with a counting argument.

UNIFORM PROOF

A module over a ring is indecomposable if it is nonzero and cannot be written
as a direct sum of two nonzero submodules. The Krull-Schmidt theorem says
that every nonzero module M of finite length over a ring can be written as a
direct sum of indecomposable modules and that the indecomposable modules
occurring in a decomposition are unique up to order and isomorphism. Thus
M D

L
imiMi where Mi is indecomposable and miMi denotes the direct

sum ofmi copies ofMi ; the set of isomorphism classes of theMi is uniquely
determined and, when we choose the Mi to be pairwise nonisomorphic, each
mi is uniquely determined. From this it follows that two modules M and M 0

of finite length over a ring are isomorphic if mM �mM 0 for some m� 1.
Consider the F -vector spaceE˝F E. We letE act on the first factor, and

G act on the second factor (so a.x˝y/D ax˝y, a 2 E, and �.x˝y/D
x˝�y, � 2G). We’ll prove Theorem 5.18 by showing that

FG˚�� �˚FG„ ƒ‚ …
n

�E˝F E �E˚�� �˚E„ ƒ‚ …
n

as FG-modules (nD ŒEWF �).
For � 2G, let �� WE˝F E!E denote the map x˝y 7! x ��y. Then ��

is obviously E-linear, and �� .�z/D ��� .z/ for all � 2G and z 2E˝F E.
I claim that f�� j � 2Gg is an E-basis for HomE -linear.E˝F E;E/. As this

4This follows from the structure theory of a vector space V equipped with an endomor-
phism ˛. As an F ŒX�-module, V is a direct sum V D V1˚V2˚�� � with Vi isomorphic to
F ŒX�=.Pi .X//, where Pi is a monic polynomial. The minimal polynomial of ˛ is the lcm of
the Pi and its characteristic polynomial is

Q
Pi . In our case, both polynomials are Xn�1,

and so the Pi are relatively prime with product Xn�1. By the Chinese remainder theorem,
V is isomorphic to kŒX�=.Xn�1/.
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space has dimension n, it suffices to show that the set is linearly independent.
But if

P
� c��� D 0, c� 2E, then

0D
X

�
c� .�� .1˝y//D

X
�
c� ��y

for all y 2E, which implies that all c� D 0 by Dedekind’s theorem 5.14.
Consider the map

�WE˝F E!EG; z 7!
X

�
�� .z/ ��

�1:

Then � is E-linear. If �.z/D 0, then �� .z/D 0 for all � 2G, and so z D 0
in E˝F E (because the �� span the dual space). Therefore � is injective,
and as E˝F E and EG both have dimension n over E, it is an isomorphism.
For � 2G,

�.�z/D
X

�
�� .�z/ ��

�1

D

X
�
��� .z/ � �.��/

�1

D ��.z/;

and so � is an isomorphism of EG-modules. Thus

E˝F E 'EG � FG˚�� �˚FG

as an FG-module.
On the other hand, for any basis fe1; : : : ; eng for E as an F -vector space,

E˝F E D .e1˝E/˚�� �˚ .en˝E/'E˚�� �˚E

as FG-modules. This completes the proof.

NOTES The normal basis theorem was stated for finite fields by Eisenstein in 1850,
and proved for finite fields by Hensel in 1888. Dedekind used normal bases in
number fields in his work on the discriminant in 1880, but he had no general proof.
Emmy Noether gave a proof for some infinite fields (1932) and Deuring gave a
uniform proof (also 1932). The above uniform proof simplifies that of Deuring —
see Blessenohl, On the normal basis theorem. Note Mat. 27 (2007), 5–10. According
to the Wikipedia, normal bases are frequently used in cryptographic applications.

Hilbert’s Theorem 90

LetG be a group. AG-module is an abelian groupM together with an action
of G, i.e., a map G�M !M such that
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(a) �.mCm0/D �mC�m0 for all � 2G, m;m0 2M ;

(b) .��/.m/D �.�m/ for all �;� 2G, m 2M ;

(c) 1GmDm for all m 2M .
Thus, to give an action of G on M is the same as giving a homomorphism
G! Aut.M/.

EXAMPLE 5.20 Let E be a Galois extension of F with Galois group G.
Then .E;C/ and .E�; �/ are G-modules.

Let M be a G-module. A crossed homomorphism is a map f WG!M

such that
f .��/D f .�/C�f .�/ for all �;� 2G.

Note that the condition implies that f .1/D f .1 �1/D f .1/Cf .1/, and so
f .1/D 0:

EXAMPLE 5.21 (a) Let f WG!M be a crossed homomorphism. For any
� 2G,

f .�2/D f .�/C�f .�/;

f .�3/D f .� ��2/D f .�/C�f .�/C�2f .�/

� � �

f .�n/D f .�/C�f .�/C�� �C�n�1f .�/:

Thus, if G is a cyclic group of order n generated by � , then a crossed
homomorphism f WG!M is determined by its value, x say, on � , and x
satisfies the equation

xC�xC�� �C�n�1x D 0; (10)

Moreover, if x 2M satisfies (10), then the formulas

f .� i /D xC�xC�� �C� i�1x

define a crossed homomorphism f WG!M . Thus, for a finite cyclic group
G D h�i, there is a one-to-one correspondence

fcrossed homomorphisms f WG!M g
f$f .�/
 ! fx 2M satisfying (10)g:

(b) For every x 2M , we obtain a crossed homomorphism by putting

f .�/D �x�x; all � 2G:
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Such a crossed homomorphism is said to be principal.
(c) If G acts trivially on M , i.e., �m D m for all � 2 G and m 2M ,

then a crossed homomorphism is simply a homomorphism, and there are no
nonzero principal crossed homomorphisms.

The sum and difference of two crossed homomorphisms is again a crossed
homomorphism, and the sum and difference of two principal crossed homo-
morphisms is again principal. Thus we can define

H 1.G;M/D
fcrossed homomorphismsg

fprincipal crossed homomorphismsg

(quotient abelian group). There are also cohomology groups Hn.G;M/

for n > 1, but we shall not be concerned with them. An exact sequence of
G-modules

0!M 0!M !M 00! 0

gives rise to an exact sequence

0!M 0G!MG
!M 00G

d
!H 1.G;M 0/!H 1.G;M/!H 1.G;M 00/:

Letm00 2M 00G , and letm 2M map tom00. For all � 2G, �m�m lies in the
submodule M 0 of M , and � 7! �m�mWG!M 0 is a crossed homomorph-
ism, whose class we define to be d.m00/. We leave it as an exercise for the
reader to check the exactness.

EXAMPLE 5.22 Let � W QX!X be the universal covering space of a topologi-
cal space X , and let � be the group of covering transformations. Under some
fairly general hypotheses, a � -module M will define a sheaf M on X , and
H 1.X;M/'H 1.�;M/. For example, when M D Z with the trivial action
of � , this becomes the isomorphism H 1.X;Z/'H 1.�;Z/D Hom.�;Z/.

THEOREM 5.23 Let E be a Galois extension of F with group G; then
H 1.G;E�/D 0, i.e., every crossed homomorphism G!E� is principal.

PROOF. Let f be a crossed homomorphism G ! E�. In multiplicative
notation, this means that

f .��/D f .�/ ��.f .�//; �;� 2G;

and we have to find a 
 2 E� such that f .�/D �




for all � 2G. Because
the f .�/ are nonzero, Corollary 5.15 implies thatX

�2G
f .�/� WE!E
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is not the zero map, i.e., there exists an ˛ 2E such that

ˇ def
D

X
�2G

f .�/�˛ ¤ 0:

But then, for � 2G,

�ˇ D
X

�2G
�.f .�// ���.˛/

D

X
�2G

f .�/�1 f .��/ ���.˛/

D f .�/�1
X

�2G
f .��/��.˛/;

which equals f .�/�1ˇ because, as � runs overG, so also does �� . Therefore,

f .�/D
ˇ

�.ˇ/
D
�.ˇ�1/

ˇ�1
:

2

Let E be a Galois extension of F with Galois group G. We define the
norm of an element ˛ 2E to be

Nm˛ D
Y

�2G
�˛:

For � 2G,
�.Nm˛/D

Y
�2G

��˛ D Nm˛;

and so Nm˛ 2 F . The map

˛ 7! Nm˛WE�! F �

is a obviously a homomorphism.

EXAMPLE 5.24 The norm map C�! R� is ˛ 7! j˛j2 and the norm map
QŒ
p
d��!Q� is aCb

p
d 7! a2�db2.

We are interested in determining the kernel of the norm map. Clearly an
element of the form ˇ

�ˇ
has norm 1, and our next result shows that, for cyclic

extensions, all elements with norm 1 are of this form.

COROLLARY 5.25 (HILBERT’S THEOREM 90) Let E be a finite cyclic ex-
tension of F , and let � generate Gal.E=F /. Let ˛ 2 E�; if NmE=F ˛ D 1,
then ˛ D ˇ=�ˇ for some ˇ 2E.

PROOF. Let m D ŒEWF �. The condition on ˛ is that ˛ ��˛ � � ��m�1˛ D 1,
and so (see 5.21a) there is a crossed homomorphism f W h�i ! E� with
f .�/D ˛. Theorem 5.23 now shows that f is principal, which means that
there is a ˇ with f .�/D ˇ=�ˇ: 2
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ASIDE 5.26 With the obvious notion of morphism, the G-modules form a category.
This is essentially the same as the category of ZG-modules, where ZG is the group
ring of G (Wikipedia: group ring). The category has enough injectives, and the H 1

is the first right derived functor of M  MG .

NOTES The corollary is Satz 90 in Hilbert, Theorie der Algebraischen Zahlkörper,
1897. The theorem was discovered by Kummer in the special case of QŒ�p�=Q, and
generalized to Theorem 5.23 by Emmy Noether. Theorem 5.23, as well as various
vast generalizations of it, are also referred to as Hilbert’s Theorem 90.

Cyclic extensions

Let F be a field containing a primitive nth root of 1, some n� 2. Then the
group �n of nth roots of 1 in F is a cyclic subgroup of F � of order n, and
we let � denote a generator of �n. In this section, we classify the cyclic
extensions of F of degree n.

Consider a field E D F Œ˛� generated by an element ˛ whose nth power,
but no smaller power, lies in F . Then ˛ is a root of Xn�a, where aD ˛n,
and the remaining roots are the elements �i˛, 1� i � n�1. Since these all
lie in E, it is Galois over F , with Galois group G say. For every � 2G, �˛ is
also a root of Xn�a, and so �˛ D �i˛ for some i . Hence �˛=˛ 2 �n. The
map

� 7! �˛=˛WG! �n

is unchanged when ˛ is replaced by a conjugate ˇ D �i˛ (because � 2 F ),
and it follows that it is a homomorphism:

��˛

˛
D
�.�˛/

�˛

�˛

˛
:

If � lies in the kernel of the map G ! �n, then �˛ D ˛, and so � is the
identity map. Thus the homomorphism G ! �n is injective. If it is not
surjective, then G maps into a subgroup �d of �n, some d jn, d < n. In
this case, .�˛=˛/d D 1, i.e., �˛d D ˛d , for all � 2 G, and so ˛d 2 F ,
contradicting the hypothesis on ˛. Thus the map is surjective. We have
proved the first part of the following statement.

PROPOSITION 5.27 Let F be a field containing a primitive nth root of 1.
Let E D F Œ˛�, where ˛n 2 F and no smaller power of ˛ is in F . Then E
is a Galois extension of F with cyclic Galois group of order n. Conversely,
if E is a cyclic extension of F of degree n, then E D F Œ˛� for some ˛ with
˛n 2 F .
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PROOF. It remains to prove the last statement. Let � generate G and let �
generate �n. It suffices to find an element ˛ 2 E� such that �˛ D ��1˛,
for then ˛n is the smallest power of ˛ lying in F . As 1;�; : : : ;�n�1 are
distinct homomorphisms F �! F �, Dedekind’s Theorem 5.14 shows thatPn�1
iD0 �

i� i is not the zero function, and so there exists a 
 such that ˛ def
DP

�i� i
 ¤ 0. Now �˛ D ��1˛. 2

Let F be a field containing a primitive nth root of 1, and let ˝ be a field
containing F . Let E D F Œ˛�, where ˛ is an element of ˝ such that ˛n 2 F .
Then E (as a subfield of ˝/ depends only on a def

D ˛n, and so we denote it by
F Œa

1
n �.

PROPOSITION 5.28 Let F be a field containing a primitive nth root of 1, and
let ˝ be a field containing F . Two cyclic extensions F Œa

1
n � and F Œb

1
n � of F

in ˝ of degree n are equal if and only if aD brcn for some r 2 Z relatively
prime to n and some c 2 F �, i.e., if and only if a and b generate the same
subgroup of F �=F �n.

PROOF. Only the “only if” part requires proof. We are given that F Œ˛�D
F Œˇ� with ˛n D a and ˇn D b. Let � be the generator of the Galois group.
Then �˛ D �˛ and �ˇ D �iˇ for some primitive nth root of 1; �, and integer
i prime to n. We can write

ˇ D

n�1X
jD0

cj˛
j ; cj 2 F;

and then

�ˇ D

n�1X
jD0

cj �
j˛j :

On comparing this with �ˇ D �iˇ, we find that �icj D �j cj for all j . Hence
cj D 0 for j ¤ i , and therefore ˇ D ci˛i . 2

Let ˝ be an algebraically closed field containing F . The propositions
show that the cyclic extensions of F in ˝ of degree n are classified by the
cyclic subgroups of F �=F �n of order n.

ASIDE 5.29 (a) It is not difficult to show that the polynomial Xn�a is irreducible
in F ŒX� if a is not a pth power for any prime p dividing n. When we drop the
hypothesis that F contains a primitive nth root of 1, this is still true except that, if
4jn, we need to add the condition that a …�4F 4. See Lang, Algebra, Springer, 2002,
VI, �9, Theorem 9.1, p. 297.
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(b) If F has characteristic p (hence has no pth roots of 1 other than 1), then
Xp�X �a is irreducible in F ŒX� unless aD bp�b for some b 2 F , and when it
is irreducible, its Galois group is cyclic of order p (generated by ˛ 7! ˛C1 where ˛
is a root). Moreover, every cyclic extension of F of degree p is the splitting field of
such a polynomial.

Kummer theory

Throughout this section, F is a field and � is a primitive nth root of 1 in F .
In this section, we classify the extensions of F whose Galois group is abelian
of exponent n.

Recall that the exponent of a finite group G is the smallest integer n� 1
such that �n D 1 for all � 2 G. A finite abelian group of exponent n is
isomorphic to a subgroup of .Z=nZ/r for some r .

Let E=F be a finite Galois extension with Galois group G. From the
exact sequence

1 �n E� E�n 1
x 7!xn

we obtain a cohomology sequence

1 �n F � F �\E�n H 1.G;�n/ 1:
x 7!xn

The sequence ends with 1 because of Hilbert’s Theorem 90. Thus we obtain
an isomorphism

F �\E�n=F �n! Hom.G;�n/:

This map can be described as follows: let a be an element of F � that becomes
an nth power in E, say aD ˛n; then a maps to the homomorphism � 7! �˛

˛
.

If G is abelian of exponent n, then

jHom.G;�n/j D .GW1/:

THEOREM 5.30 The map

E 7! F �\E�n

defines a one-to-one correspondence between the sets of
(a) finite abelian extensions of F of exponent n contained in some fixed

algebraic closure ˝ of F; and
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(b) subgroups B of F � containing F �n as a subgroup of finite index.

The extension corresponding to B is F ŒB
1
n �, the smallest subfield of ˝

containing F and an nth root of every element ofB . IfE$B , then ŒEWF �D
.BWF �n/.

PROOF. For any finite Galois extension E of F , define B.E/D F �\E�n.
Then E � F ŒB.E/

1
n �, and for any group B containing F �n as a subgroup of

finite index, B.F ŒB
1
n �/� B . Therefore,

ŒEWF �� ŒF ŒB.E/
1
n �WF �D .B.F ŒB.E/

1
n �/WF �n/� .B.E/WF �n/:

If E=F is abelian of exponent n, then ŒEWF �D .B.E/WF �n/, and so equali-
ties hold throughout: E D F ŒB.E/

1
n �.

Next consider a group B containing F �n as a subgroup of finite index,
and let E D F ŒB

1
n �. Then E is a composite of the extensions F Œa

1
n � for a

running through a set of generators for B=F �n, and so it is a finite abelian
extension of exponent n. Therefore

a 7!

�
� 7!

�a1=n

a1=n

�
WB.E/=F �n! Hom.G;�n/; G D Gal.E=F /;

is an isomorphism. This map sendsB=F �n isomorphically onto the subgroup
Hom.G=H;�n/ of Hom.G;�n/ where H consists of the � 2 G such that
�a1=n=a1=n D 1 for all a 2 B . But such a � fixes all a1=n for a 2 B , and
therefore is the identity automorphism on E D F ŒB

1
n �. This shows that

B.E/D B , and hence E 7! B.E/ and B 7! F ŒB
1
n � are inverse bijections.2

EXAMPLE 5.31 (a) The theorem says that the abelian extensions of R of ex-
ponent 2 are indexed by the subgroups of R�=R�2 D f˙1g. This is certainly
true.

(b) The theorem says that the finite abelian extensions of Q of exponent
2 are indexed by the finite subgroups of Q�=Q�2. Modulo squares, every
nonzero rational number has a unique representative of the form˙p1 � � �pr
with the pi prime numbers. Therefore Q�=Q�2 is a direct sum of cyclic
groups of order 2 indexed by the prime numbers plus 1. The extension
corresponding to the subgroup generated by the primes p1; : : : ;pr (and �1)
is obtained by adjoining the square roots of p1; : : : ;pr (and �1) to Q.

REMARK 5.32 Let E be an abelian extension of F of exponent n, and let

B.E/D fa 2 F � j a becomes an nth power in Eg:
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There is a perfect pairing

.a;�/ 7!
�a1=n

a1=n
W
B.E/

F �n
�Gal.E=F /! �n:

Cf. Exercise 2-1 for the case nD 2.

Proof of Galois’s solvability theorem

LEMMA 5.33 Let f 2 F ŒX� be separable, and let F 0 be a field containing
F . Then the Galois group of f as an element of F 0ŒX� is a subgroup of the
Galois group of f as an element of F ŒX�:

PROOF. Let E 0 be a splitting field for f over F 0, and let ˛1; : : : ;˛m be the
roots of f .X/ in E 0. Then E D F Œ˛1; :::;˛m� is a splitting field of f over
F . Every element of Gal.E 0=F 0/ permutes the ˛i and so maps E into itself.
The map � 7! � jE is an injection Gal.E 0=F 0/! Gal.E=F /: 2

THEOREM 5.34 Let F be a field of characteristic 0. A polynomial in F ŒX�
is solvable in radicals if and only if its Galois group is solvable.

PROOF. (H: Let f 2 F ŒX� have solvable Galois group Gf . Let F 0 D F Œ��
where � is a primitive nth root of 1 for some large n — for example, nD
.degf /Š will do. The lemma shows that the Galois group G of f as an
element of F 0ŒX� is a subgroup of Gf , and hence is also solvable (GT, 6.6a).
This means that there is a sequence of subgroups

G DG0 �G1 � �� � �Gm D f1g

such that each Gi is normal in Gi�1 and Gi�1=Gi is cyclic. Let E be a
splitting field of f .X/ over F 0, and let Fi D EGi . We have a sequence of
fields

F � F Œ��D F 0 D F0 � F1 � �� � � Fm DE

with Fi cyclic over Fi�1. Theorem 5.27 shows that Fi D Fi�1Œ˛i � with
˛
ŒFi WFi�1�
i 2 Fi�1, each i , and this shows that f D 0 is solvable in radicals.
H): It suffices to show that Gf is a quotient of a solvable group (GT,

6.6a). Hence it suffices to find a solvable extension QE of F such that f .X/
splits in QEŒX�.

We are given that there exists a tower of fields

F D F0 � F1 � �� � � Fm

such that
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(a) Fi D Fi�1Œ˛i �, ˛
ri
i 2 Fi�1;

(b) Fm contains a splitting field for f:
Let n D r1 � � �rm, and let ˝ be a field Galois over F and containing

(a copy of) Fm and a primitive nth root � of 1: For example, choose a
primitive element 
 for Fm over F (see 5.1), and take ˝ to be a splitting
field of g.X/.Xn�1/ where g.X/ is the minimal polynomial of 
 over F .
Alternatively, apply 2.15.

Let G be the Galois group of ˝=F , and let QE be the Galois closure of
FmŒ�� in ˝. According to (3.18a), QE is the composite of the fields �FmŒ��,
� 2G, and so it is generated over F by the elements

�;˛1;˛2; : : : ;˛m;�˛1; : : : ;�˛m;�
0˛1; : : : :

We adjoin these elements to F one by one to get a sequence of fields

F � F Œ��� F Œ�;˛1�� �� � � F
0
� F 00 � �� � � QE

in which each field F 00 is obtained from its predecessor F 0 by adjoining an
r th root of an element of F 0 (r D r1; : : : ; rm; or n). According to (5.8) and
(5.27), each of these extensions is abelian (and even cyclic after the first), and
so QE=F is a solvable extension. 2

ASIDE 5.35 One of Galois’s major achievements was to show that an irreducible
polynomial of prime degree in QŒX� is solvable by radicals if and only if its splitting
field is generated by any two roots of the polynomial.5 This theorem of Galois
answered a question on mathoverflow in 2010 (mo24081). For a partial generalization
of Galois’s theorem, see mo110727.

Symmetric polynomials

Let R be a commutative ring (with 1). A polynomial P 2 RŒX1; : : : ;Xn� is
said to be symmetric if it is unchanged when the Xi are permuted, i.e., if

P.X�.1/; : : : ;X�.n//D P.X1; : : : ;Xn/ for all � 2 Sn:

5Pour qu’une équation de degré premier soit résoluble par radicaux, il faut et il suffit
que deux quelconques de ces racines étant connues, les autres s’en déduisent rationnellement
(Évariste Galois, Bulletin de M. Férussac, XIII (avril 1830), p. 271).

https://mathoverflow.net/questions/24081
https://mathoverflow.net/questions/110727
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For example

p1D
P
i Xi DX1CX2C�� �CXn;

p2D
P
i<j XiXj DX1X2CX1X3C�� �CX1XnCX2X3C�� � ;

p3D
P
i<j<kXiXjXk DX1X2X3C�� �

� � �

prD
P
i1<���<ir

Xi1 :::Xir

� � �

pnDX1X2 � � �Xn

are all symmetric because pr is the sum of all monomials of degree r that
are products of distinct Xi . These particular polynomials are called the
elementary symmetric polynomials.

THEOREM 5.36 (SYMMETRIC POLYNOMIALS THEOREM) Every symmet-
ric polynomial P in RŒX1; :::;Xn� is a polynomial in the elementary symmet-
ric polynomials with coefficients in R, i.e., P 2RŒp1; :::;pn�:

PROOF. We define an ordering on the monomials in the Xi by requiring that

X
i1
1 X

i2
2 � � �X

in
n >X

j1
1 X

j2
2 � � �X

jn
n

if either
i1C i2C�� �C in > j1Cj2C�� �Cjn

or equality holds and, for some s,

.i1; : : : ; is/D .j1; : : : ;js/ but isC1 > jsC1:

For example,
X1X2X

3
3 >X1X

2
2X3 >X1X2X

2
3 :

Let P.X1; : : : ;Xn/ be a symmetric polynomial, and let X i11 � � �X
in
n be the

highest monomial occurring in P with a nonzero coefficient, so

P D cX
i1
1 � � �X

in
n C lower terms, c ¤ 0:

Because P is symmetric, it contains all monomials obtained from X
i1
1 � � �X

in
n

by permuting the X . Hence i1 � i2 � � � � � in.
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The highest monomial in pi is X1 � � �Xi , and it follows that the highest
monomial in pd11 � � �p

dn
n is

X
d1Cd2C���Cdn
1 X

d2C���Cdn
2 � � �Xdnn : (11)

Therefore the highest monomial of

P.X1; : : : ;Xn/� cp
i1�i2
1 p

i2�i3
2 � � �pinn (12)

is strictly less than the highest monomial in P.X1; : : : ;Xn/. We can repeat
this argument with the polynomial (12), and after a finite number of steps, we
will arrive at a representation of P as a polynomial in p1; : : : ;pn. 2

REMARK 5.37 (a) The proof is algorithmic. Consider, for example,

P.X1;X2/D .X1C7X1X2CX2/
2

DX21 C2X1X2C14X
2
1X2CX

2
2 C14X1X

2
2 C49X

2
1X

2
2 :

The highest monomial is 49X21X
2
2 , and so we subtract 49p22 , to get

P �49p22 DX
2
1 C2X1X2C14X

2
1X2CX

2
2 C14X1X

2
2 :

Continuing, we get

P �49p22 �14p1p2 DX
2
1 C2X1X2CX

2
2

and finally,
P �49p22 �14p1p2�p

2
1 D 0.

(Wikipedia: elementary symmetric polynomials).
(b) The expression of P as a polynomial in the pi in 5.36 is unique. Oth-

erwise, by subtracting, we would get a nontrivial polynomial Q.p1; : : : ;pn/
in the pi which is zero when expressed as a polynomial in the Xi . But the
highest monomials (11) in the polynomials pd11 � � �p

dn
n are distinct (the map

.d1; : : : ;dn/ 7! .d1C�� �Cdn; : : : ;dn/ is injective), and so they cannot cancel.

Let
f .X/DXnCa1X

n�1
C�� �Can 2RŒX�;

and suppose that f splits over some ring S containing R:

f .X/D
Qn
iD1.X �˛i /; ˛i 2 S .
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Then

a1D�p1.˛1; : : : ;˛n/; a2Dp2.˛1; : : : ;˛n/; : : : ; anD .�1/
npn.˛1; : : : ;˛n/:

Thus the elementary symmetric polynomials in the roots of f .X/ lie in R,
and so the theorem shows that every symmetric polynomial in the roots of
f .X/ lies in R. For example, the discriminant

D.f / def
D

Y
i<j

.˛i � j̨ /
2

of f lies in R.

THEOREM 5.38 (SYMMETRIC FUNCTIONS THEOREM) Let F be a field. If
Sn acts on F.X1; :::;Xn/ by permuting the Xi , the field of invariants is
F.p1; :::;pn/:

PROOF. Let f 2 F.X1; : : : ;Xn/ be symmetric (i.e., fixed by Sn/. Set f D
g=h, g;h 2 F ŒX1; : : : ;Xn�. The polynomials H D

Q
�2Sn

�h and Hf are
symmetric, and therefore lie in F Œp1; : : : ;pn� by Theorem 5.36. Hence their
quotient f DHf=H lies in F.p1; : : : ;pn/. 2

COROLLARY 5.39 The field F.X1; :::;Xn/ is Galois overF.p1; :::;pn/with
Galois group Sn (acting by permuting the Xi ).

PROOF. We have shown that F.p1; : : : ;pn/D F.X1; : : : ;Xn/Sn , and so this
follows from (3.10). 2

The field F.X1; : : : ;Xn/ is the splitting field over F.p1; : : : ;pn/ of

g.T /D .T �X1/ � � �.T �Xn/DX
n
�p1X

n�1
C�� �C .�1/npn:

Therefore, the Galois group of g.T / 2 F.p1; : : : ;pn/ŒT � is Sn.

NOTES Symmetric polynomials played an important role in the work of Galois. In
his Mémoire sur les conditions de résolubilité des équations par radicaux, he prove
the following proposition:

Let f be a polynomial with coefficients �1; : : : ;�n. Let x1; : : : ;xn be its
roots, and let U;V; : : : be certain numbers that are rational functions in
the xi . Then there exists a group G of permutations of the xi such that
the rational functions in the xi that are fixed under all permutations in
G are exactly those that are rationally expressible in terms of �1; : : : ;�n
and U;V; : : :

When we take U;V; : : : to be the elements of a field E intermediate between the field
of coefficients of f and the splitting field of f , this says that the exists a group G
of permutations of the xi whose fixed field (when G acts on the splitting field) is
exactly E.
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The general polynomial of degree n

When we say that the roots of

aX2CbXC c

are
�b˙

p
b2�4ac

2a

we are thinking of a;b;c as symbols: for any particular values of a;b;c, the
formula gives the roots of the particular equation. We’ll prove in this section
that there is no similar formula for the roots of the “general polynomial” of
degree � 5.

We define the general polynomial of degree n to be

f .X/DXn� t1X
n�1
C�� �C .�1/ntn 2 F Œt1; :::; tn�ŒX�

where the ti are symbols. We’ll show that, when we regard f as a polynomial
in X with coefficients in the field F.t1; : : : ; tn/, its Galois group is Sn. Then
Theorem 5.34 proves the above remark (at least in characteristic zero).

THEOREM 5.40 The Galois group of the general polynomial of degree n is
Sn.

PROOF. Let f .X/ be the general polynomial of degree n,

f .X/DXn� t1X
n�1
C�� �C .�1/ntn 2 F Œt1; :::; tn�ŒX�:

If we can show that the homomorphism

ti 7! pi WF Œt1; : : : ; tn�! F Œp1; : : : ;pn�

is injective, then it will extend to an isomorphism

F.t1; : : : ; tn/! F.p1; : : : ;pn/

sending f .X/ to

g.X/DXn�p1X
n�1
C�� �C .�1/npn 2 F.p1; : : : ;pn/ŒX�:

Then the statement will follow from Corollary 5.39.
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We now prove that the homomorphism is injective.6 Suppose on the
contrary that there exists a P.t1; : : : ; tn/ such that P.p1; : : : ;pn/D 0. Equa-
tion (11), p. 101, shows that if m1.t1; : : : ; tn/ and m2.t1; : : : ; tn/ are distinct
monomials, then m1.p1; : : : ;pn/ and m2.p1; : : : ;pn/ have distinct highest
monomials. Therefore, cancellation cannot occur, and so P.t1; : : : ; tn/ must
be the zero polynomial. 2

ASIDE 5.41 Since Sn occurs as a Galois group over Q, and every finite group occurs
as a subgroup of some Sn, it follows that every finite group occurs as a Galois group
over some finite extension of Q, but does every finite group occur as a Galois group
over Q itself? In other words, does every finite group occur as the Galois group of
some f 2QŒX�? This is known as the inverse Galois problem, which is still open.

The Hilbert-Noether program for proving this was the following. Hilbert proved
that if G occurs as the Galois group of an extension E �Q.t1; :::; tn/ (the ti are sym-
bols), then it occurs infinitely often as a Galois group over Q. For the proof, realize
E as the splitting field of a polynomial f .X/ 2 kŒt1; : : : ; tn�ŒX� and prove that for
infinitely many values of the ti , the polynomial you obtain in QŒX� has Galois group
G. Emmy Noether conjectured the following: Let G � Sn act on F.X1; :::;Xn/ by
permuting the Xi ; then F.X1; : : : ;Xn/G � F.t1; :::; tn/ (for symbols ti ). However,
Swan proved in 1969 that the conjecture is false for G the cyclic group of order 47.
Hence this approach cannot lead to a proof that all finite groups occur as Galois
groups over Q, but it does not exclude other approaches. For more information on
the problem, see Serre, Lectures on the Mordell-Weil Theorem, 1989, Chapters 9, 10;
Serre, Topics in Galois Theory, 1992; and Wikipedia: inverse Galois problem.

ASIDE 5.42 Take F D C, and consider the subset of CnC1 defined by the equation

Xn�T1X
n�1
C�� �C .�1/nTn D 0:

It is a beautiful complex manifold S of dimension n. Consider the projection

� WS ! Cn; .x; t1; : : : ; tn/ 7! .t1; : : : ; tn/:

Its fibre over a point .a1; : : : ;an/ is the set of roots of the polynomial

Xn�a1X
n�1
C�� �C .�1/nan:

The discriminant D.f / of f .X/DXn�T1Xn�1C�� �C .�1/nTn is a polynomial
in CŒT1; : : : ;Tn�. Let � be the zero set of D.f / in Cn. Then over each point of
CnX�, there are exactly n points of S , and S X��1.�/ is a covering space over
CnX�.

6To say that the homomorphism is injective means that the pi are algebraically inde-
pendent over F (see p. 147). This can be proved by noting that, because F.X1; : : : ;Xn/ is
algebraic over F.p1; : : : ;pn/, the latter must have transcendence degree n (see �8).
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NOTES As far back as 1500 BCE, the Babylonians (at least) knew a general formula
for the roots of a quadratic polynomial. Cardan (about 1515 CE) found a general
formula for the roots of a cubic polynomial. Ferrari (about 1545) found a general
formula for the roots of a quartic polynomial (he introduced the resolvent cubic, and
used Cardan’s result). Over the next 275 years there were many fruitless attempts to
obtain similar formulas for higher degree polynomials until (about 1820) Ruffini and
Abel proved that there are none.

Norms and traces

Recall that, for an n�n matrix AD .aij /

Tr.A/D
P
i ai i trace of A

det.A/D
P
�2Sn

sign.�/a1�.1/ � � �an�.n/; determinant of A

cA.X/D det.XIn�A/ characteristic polynomial of A:

Moreover,

cA.X/DX
n
�Tr.A/Xn�1C�� �C .�1/n det.A/.

None of these is changed when A is replaced by its conjugate UAU�1 by
an invertible matrix U . Therefore, for any endomorphism ˛ of a finite-
dimensional vector space V , we can define

Tr.˛/D Tr.A/; det.˛/D det.A/; c˛.X/D cA.X/;

where A is the matrix of ˛ with respect to a basis of V . If ˇ is a second
endomorphism of V ,

Tr.˛Cˇ/D Tr.˛/CTr.ˇ/I

det.˛ˇ/D det.˛/det.ˇ/:

The coefficients of the characteristic polynomial, c˛.X/DXnC c1Xn�1C
�� �C cn, of ˛ have the following description: ci D .�1/i Tr.˛j

Vi
V / (Bour-

baki, Algèbre, Chap. III, �8.11).
Now let E be a finite field extension of F of degree n: An element ˛ of

E defines an F -linear map

˛LWE!E; x 7! ˛x;
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and we define

TrE=F .˛/D Tr.˛L/ (trace of ˛)

NmE=F .˛/D det.˛L/ (norm of ˛)

c˛;E=F .X/D c˛L.X/ (characteristic polynomial of ˛):

Thus, TrE=F is a homomorphism .E;C/! .F;C/, and NmE=F is a homo-
morphism .E�; �/! .F �; �/.

EXAMPLE 5.43 (a) Consider the field extension C�R. For ˛D aCbi , the
matrix of ˛L with respect to the basis f1; ig is

�
a �b
b a

�
, and so

TrC=R.˛/D 2aD 2<.˛/,

NmC=R.˛/D a
2
Cb2 D j˛j2:

(b) For a 2 F , aL is multiplication by the scalar a. Therefore

TrE=F .a/D na NmE=F .a/D a
n ca;E=F .X/D .X �a/

n

where nD ŒEWF �:

Let E DQŒ˛; i � be the splitting field of X8�2 (see Exercise 4-3). Then
E has degree 16 over Q, and so to compute the trace and norm an element
of E, the definition requires us to compute the trace and norm of a 16�16
matrix. The next proposition gives us a quicker method.

PROPOSITION 5.44 Let E=F be a finite extension of fields, and let f .X/
be the minimal polynomial of ˛ 2E. Then

c˛;E=F .X/D f .X/
ŒE WF Œ˛��:

PROOF. Suppose first that E D F Œ˛�. In this case, we have to show that
c˛.X/D f .X/. Note that ˛ 7! ˛L is an injective homomorphism from E

into the ring of endomorphisms of E as a vector space over F . The Cayley-
Hamilton theorem shows that c˛.˛L/D 0, and therefore c˛.˛/D 0. Hence
f jc˛, but they are monic of the same degree, and so they are equal.

For the general case, let ˇ1; :::;ˇn be a basis for F Œ˛� over F , and let

1; :::;
m be a basis for E over F Œ˛�. As we saw in the proof of (1.20),
fˇi
kg is a basis for E over F . Write ˛ˇi D

P
aj i ǰ . Then, according to

the first case proved, A def
D .aij / has characteristic polynomial f .X/. But

˛ˇi
k D
P
aj i ǰ 
k , and so the matrix of ˛L with respect to fˇi
kg breaks

up into n�n blocks with copies of A down the diagonal and zero matrices
elsewhere, from which it follows that c˛L.X/D cA.X/

m D f .X/m: 2



Norms and traces 107

COROLLARY 5.45 Suppose that the roots of the minimal polynomial of ˛
are ˛1; : : : ;˛n (in some splitting field containing E), and that ŒEWF Œ˛��Dm.
Then

Tr.˛/Dm
Pn
iD1˛i ; NmE=F ˛ D

�Qn
iD1˛i

�m
:

PROOF. Write the minimal polynomial of ˛ as

f .X/DXnCa1X
n�1
C�� �Can D

Q
.X �˛i /;

so that

a1 D�
P
˛i , and

an D .�1/
nQ˛i .

Then
c˛.X/D .f .X//

m
DXmnCma1X

mn�1
C�� �Camn ;

so that

TrE=F .˛/D�ma1 Dm
P
˛i , and

NmE=F .˛/D .�1/
mnamn D .

Q
˛i /

m. 2

EXAMPLE 5.46 (a) Consider the extension C� R. If ˛ 2 CXR, then

c˛.X/D f .X/DX
2
�2<.˛/XCj˛j2:

If ˛ 2 R, then c˛.X/D .X �a/2.
(b) Let E be the splitting field of X8�2. Then E has degree 16 over Q

and is generated by ˛ D 8
p
2 and i D

p
�1 (see Exercise 4-3). The minimal

polynomial of ˛ is X8�2, and so

c˛;QŒ˛�=Q.X/DX
8�2; c˛;E=Q.X/D .X

8�2/2

TrQŒ˛�=Q˛ D 0; TrE=Q˛ D 0

NmQŒ˛�=Q˛ D�2; NmE=Q˛ D 4

REMARK 5.47 LetE be a finite extension ofF , let˝ be an algebraic closure
of F , and let ˙ be the set of F -homomorphisms of E into ˝.

When E=F is separable,

TrE=F ˛ D
P
�2˙ �˛

NmE=F ˛ D
Q
�2˙ �˛:
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WhenE DF Œ˛�, this follows from 5.45 and the observation (cf. 2.1b) that the
�˛ are the roots of the minimal polynomial f .X/ of ˛ over F . In the general
case, the �˛ are still roots of f .X/ in ˝, but now each root of f .X/ occurs
ŒEWF Œ˛�� times (because each F -homomorphism F Œ˛�!˝ has ŒEWF Œ˛��
extensions to E). For example, if E is Galois over F with Galois group G,
then

TrE=F ˛ D
P
�2G �˛

NmE=F ˛ D
Q
�2G �˛

(in agreement with the previous definition for Galois extensions, p. 93).
In the general case,

TrE=F ˛ D pe �
P
�2˙ �˛

NmE=F ˛ D
�Q

�2˙ �˛
�pe

;

where p is the characteristic exponent of F and pe is the degree of E over
the separable closure (3.15)(p. 116) of F in E (Bourbaki, Algèbre, Chap. V,
�8).

PROPOSITION 5.48 For finite extensions E �M � F , we have

TrM=F ıTrE=M D TrE=F ;

NmM=F ıNmE=M D NmE=F :

PROOF. When E is separable over F , this follows easily from the descrip-
tions in the above remark. We leave the general case as an exercise. 2

PROPOSITION 5.49 Let f .X/ be a monic irreducible polynomial with coef-
ficients in F , and let ˛ be a root of f in some splitting field of f . Then

discf .X/D .�1/m.m�1/=2NmF Œ˛�=F f
0.˛/

where f 0 is the formal derivative df
dX

of f .

PROOF. Let f .X/D
Qm
iD1.X �˛i / be the factorization of f in the given

splitting field, and number the roots so that ˛ D ˛1. Compute that

discf .X/ def
D

Y
i<j

.˛i � j̨ /
2
D .�1/m.m�1/=2 �

Y
i

.
Y
j¤i

.˛i � j̨ //

D .�1/m.m�1/=2 �
Y
i

f 0.˛i /

D .�1/m.m�1/=2NmF Œ˛�=F .f
0.˛// (5.47):2
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EXAMPLE 5.50 We compute the discriminant of

f .X/DXnCaXCb; a;b 2 F;

assumed to be irreducible and separable, by computing the norm of


 def
D f 0.˛/D n˛n�1Ca; f .˛/D 0.

On multiplying the equation

˛nCa˛Cb D 0

by n˛�1 and rearranging, we obtain the equation

n˛n�1 D�na�nb˛�1:

Hence

 D n˛n�1CaD�.n�1/a�nb˛�1:

Solving for ˛ gives

˛ D
�nb


C .n�1/a
:

From the last two equations, it is clear that F Œ˛�D F Œ
�, and so the minimal
polynomial of 
 over F has degree n also. If we write

f

�
�nb

XC .n�1/a

�
D
P.X/

Q.X/
;

where

P.X/D .XC .n�1/a/n�na.XC .n�1/a/n�1C .�1/nnnbn�1

Q.X/D .XC .n�1/a/n=b;

then
P.
/D f .˛/ �Q.
/D 0:

As

Q.
/D
.
C .n�1/a/n

b
D
.�nb/n

˛nb
¤ 0

and P.X/ is monic of degree n, it must be the minimal polynomial of 
 .
Therefore Nm
 is .�1/n times the constant term of P.X/, namely,

Nm
 D nnbn�1C .�1/n�1.n�1/n�1an:
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Therefore,

disc.XnCaXCb/D .�1/n.n�1/=2.nnbn�1C .�1/n�1.n�1/n�1an/;

in agreement with 4.39. For example,

disc.X5CaXCb/D 55b4C44a5:

This is something PARI does not know how to do (because it does not
understand symbols as exponents).

Exercises

5-1 For a 2Q, let Ga be the Galois group of X4CX3CX2CXCa. Find
integers a1;a2;a3;a4 such that i ¤ j H) Gai is not isomorphic to Gaj .

5-2 Prove that the rational solutions a;b 2 Q of Pythagoras’s equation
a2Cb2 D 1 are of the form

aD
s2� t2

s2C t2
; b D

2st

s2C t2
; s; t 2Q;

and deduce that every right triangle with integer sides has sides of length

d.m2�n2;2mn;m2Cn2/

for some integers d , m, and n (Hint: Apply Hilbert’s Theorem 90 to the
extension QŒi �=Q.)

5-3 Prove that a finite extension of Q can contain only finitely many roots
of 1.

5-4 Let E be the splitting field of an irreducible separable polynomial
f 2 F ŒX�. If no root of f generates E, show that Gal.E=F / contains a
nonnormal subgroup. (Weintraub, Amer. Math. Monthly 128 (2021), no. 8,
753–754.)



CHAPTER 6
Algebraic Closures

In this chapter, we use Zorn’s lemma to show that every field F has an
algebraic closure ˝. Recall that if F is a subfield C, then the algebraic
closure of F in C is an algebraic closure of F (1.47). If F is countable, then
the existence of ˝ can be proved as in the finite field case (4.24), namely, the
set of monic irreducible polynomials in F ŒX� is countable, and so we can list
them f1;f2; : : :; define Ei inductively by, E0 D F , Ei D a splitting field of
fi over Ei�1; then ˝ D

S
Ei is an algebraic closure of F .

The difficulty in showing the existence of an algebraic closure of an
arbitrary field F is in the set theory. Roughly speaking, we would like to
take a union of a family of splitting fields indexed by the monic irreducible
polynomials in F ŒX�, but we need to find a way of doing this that is allowed
by the axioms of set theory. After reviewing the statement of Zorn’s lemma,
we sketch three solutions to the problem.1

Zorn’s lemma

DEFINITION 6.1 (a) A relation � on a set S is a partial order if it reflexive,
transitive, and anti-symmetric (a � b and b � a H) aD b).

(b) A partial order is a total order if, for all s; t 2 T , either s � t or t � s.
(c) An upper bound for a subset T of a partially ordered set .S;�/ is an

element s 2 S such that t � s for all t 2 T .
(d) A maximal element of a partially ordered set S is an element s such

that s � s0 H) s D s0.

1There do exist naturally occurring uncountable fields not contained in C. For example,
the field of formal Laurent series F..T // over a field F is uncountable even when F is finite.

111
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A partially ordered set need not have any maximal elements, for example,
the set of finite subsets of an infinite set is partially ordered by inclusion, but
it has no maximal element.

ZORN’S LEMMA Let .S;�/ be a nonempty partially ordered set for which
every totally ordered subset has an upper bound in S . Then S has a maximal
element.

Zorn’s lemma is equivalent to the Axiom of Choice, and hence is inde-
pendent of the axioms of Zermelo-Fraenkel set theory.

The next proposition is a typical application of Zorn’s lemma.

PROPOSITION 6.3 Every nonzero commutative ring A has a maximal ideal
(meaning, maximal among proper ideals).

PROOF. Let S be the set of all proper ideals in A, partially ordered by
inclusion. If T is a totally ordered set of ideals, then J D

S
I2T I is again

an ideal because every finite set of elements of it is contained in a common
I 2 T . It is proper because if 1 2 J then 1 2 I for some I in T , and I would
not be proper. Thus J is an upper bound for T . Now Zorn’s lemma implies
that S has a maximal element, which is a maximal ideal in A. 2

REMARK 6.4 Zorn’s lemma is, in fact, equivalent to the existence of max-
imal ideals in commutative rings. A weaker axiom, namely, the ultrafilter
principle (every filter is contained in a maximal filter) is equivalent to the
existence of prime ideals in commutative rings2 and to the compactness of
products of compact spaces,3 and it implies the axiom of choice for finite sets.
This is all we shall need in this chapter.

A condition to be an algebraic closure

PROPOSITION 6.5 Let˝=F be an extension of fields. If˝ is algebraic over
F and every nonconstant polynomial in F ŒX� has a root in ˝, then ˝ is
algebraically closed (hence an algebraic closure of F ).

PROOF. It suffices to show that every monic irreducible polynomial f in
F ŒX� splits in ˝ŒX� (see 1.45). Suppose first that f is separable, and let E
be a splitting field for f . According to Theorem 5.1, E D F Œ
� for some

 2 E. Let g.X/ be the minimal polynomial of 
 over F . Then g.X/ has

2Rav, Math. Nachr. 79 (1977), 145–165, Cor. 4.4.
3Wikipedia: Tychonoff’s theorem. Recall that we require compact spaces to be Hausdorff.
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coefficients in F , and so it has a root ˇ in ˝. Both of F Œ
� and F Œˇ� are
stem fields for g, and so there is an F -isomorphism F Œ
�! F Œˇ��˝. As
f splits over F Œ
�, it splits over ˝.

This completes the proof when F is perfect. Otherwise, F has charac-
teristic p ¤ 0, and we let F 0 denote the set of elements x of ˝ such that
xp

m

2 F for some m � 1. It is easy to check that F 0 is a field, and we’ll
complete the proof of the proposition by showing (a) that F 0 is perfect, and
(b) that every polynomial in F 0ŒX� has a root in ˝.

PROOF OF (a). Let a 2 F 0, so that b def
D ap

m

2 F for some m. The
polynomial Xp

mC1

� b has coefficients in F , and so it has a root ˛ 2 ˝,
which automatically lies in F 0. Now ˛p

mC1

D ap
m

, which implies that
˛p D a, because the pth power map is injective on fields of characteristic p.
We have shown that F 0 is perfect.

PROOF OF (b). We first show that˝ is perfect. Suppose that a 2˝ is not

a pth power, and form ˝Œ˛�, where ˛p D a. Consider F 0Œ˛�
p
� F 0Œa�� F 0.

If g.X/ is the minimal polynomial of a over F 0, then g.Xp/ is the minimal
polynomial of ˛ over F 0 (it is monic of least degree having ˛ as a zero).
In particular it is irreducible, but it is not separable, which contradicts the
perfectness of F 0.

Let f .X/ 2 F 0ŒX�, say, f .X/ D
P
i aiX

i , ai 2 F 0. For some m, the
polynomial

P
i a
pm

i X i has coefficients in F , and therefore has a root ˛ 2˝.
As ˝ is perfect, we can write ˛ D ˇp

m

with ˇ 2˝. Now

.f .ˇ//p
m

D

�X
i
aiˇ

i
�pm
D

X
i
a
pm

i ˛i D 0;

and so ˇ is a root of f . 2

First proof of the existence of algebraic closures

(Bourbaki, Algèbre, Chap. V, �4.) Let .Ai /i2I be a family of commutative
algebras over a field F . Define

N
F Ai to be the quotient of the F -vector

space with basis
Q
i2I Ai by the subspace generated by elements of the form:

.xi /C .yi /� .zi / with xj Cyj D zj for one j 2 I and xi D yi D zi for
all i ¤ j ;

.xi /�a.yi / with xj D ayj for one j 2 I and xi D yi for all i ¤ j ,
(ibid., Chap. II, 3.9). It can be made into a commutative F -algebra in an
obvious fashion, and there are canonical homomorphisms Ai !

N
F Ai of

F -algebras.
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For each monic irreducible polynomial f 2 F ŒX�, let Ef be the stem
field F Œxf �D F ŒXf �=.f /, and let ˝ D .

N
F Ef /=P , where P is a prime

ideal in
N
F Ef (whose existence is ensured by the ultrafilter principle). Then

˝ is an integral domain generated as an F -algebra by elements algebraic
over F , and so it is a field algebraic over F (1.32). The composite of the
F -homomorphisms Ef !

N
F Ef !˝, being a homomorphism of fields,

is injective. As f has a root inEf , it has a root in˝. Hence˝ is an algebraic
closure of F by Proposition 6.5.

Second proof of the existence of algebraic closures

(Jacobson, Lectures in Abstract Algebra, 1964, Vol. III, p. 144.) After 4.24 we
may assume F to be infinite. This implies that the cardinality of every field
algebraic over F is the same as that of F (cf. the proof of 1.33). Choose an
uncountable set � of cardinality greater than that of F , and identify F with a
subset of� . Let S be the set of triples .E;C; �/ with E �� and .C; �/ a field
structure on E such that .E;C; �/ contains F as a subfield and is algebraic
over it. Write .E;C; �/ � .E 0;C0; �0/ if the first is a subfield of the second.
Apply Zorn’s lemma to show that S has maximal elements, and then show
that a maximal element is algebraically closed.

Third proof of the existence of algebraic closures

(Emil Artin.) Consider the polynomial ring F Œ: : : ;Xf ; : : :� in a family of
symbols Xf indexed by the monic irreducible polynomials f 2 F ŒX�. Let I
be the ideal of F Œ: : : ;Xf ; : : :� generated by the polynomials f .Xf /. If 1 2 I ,
then

g1f1.Xf1/C�� �Cgnfn.Xfn/D 1 .in F Œ: : : ;Xf ; : : :�/

for some gi 2 F Œ: : : ;Xf ; : : :� and some monic irreducible fi 2 F ŒX�. Let
E be an extension of F such that each fi has a root ˛i in E. Under the
F -algebra homomorphism F Œ: : : ;Xf ; : : :�!E sending�

Xfi 7! ˛i ; i D 1; : : : ;n;

Xf 7! 0; f … ff1; : : : ;fng

the above relation becomes 0D 1. From this contradiction, we deduce that
1 … I . Let ˝ D F Œ: : : ;Xf ; : : :�=P , where P is a prime ideal containing I
(whose existence is ensured by the ultrafilter principle). Then˝ is an integral
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domain generated as an F -algebra by elements algebraic over F , and so it is
a field algebraic over F (1.32). Every monic irreducible f 2 F ŒX� has a root
in ˝, and so ˝ is an algebraic closure of F by Proposition 6.5.

Any two algebraic closures are isomorphic

THEOREM 6.6 Let ˝ be an algebraic closure of F and E an algebraic
extension of F . There exists an F -homomorphism E!˝, and, if E is also
an algebraic closure of F , then every such homomorphism is an isomorphism.

PROOF. Suppose first that E is countably generated over F , i.e.,

E D F Œ˛1; :::;˛n; : : :�:

Then we can extend the inclusion map F !˝ to F Œ˛1� (map ˛1 to any root
of its minimal polynomial in ˝/, then to F Œ˛1;˛2�; and so on (see 2.4).

In the uncountable case, we use Zorn’s lemma. Let S be the set of
pairs .M;'M / with M a field F �M � E and 'M an F -homomorphism
M ! ˝. Write .M;'M / � .N;'N / if M � N and 'N jM D 'M . This
makes S into a partially ordered set. Let T be a totally ordered subset of S .
ThenM 0D

S
M2T M is a subfield ofE, and we can define a homomorphism

'0WM 0!˝ by requiring that '0.x/D 'M .x/ if x 2M . The pair .M 0;'0/ is
an upper bound for T in S . Hence Zorn’s lemma provides us with a maximal
element .M;'/ in S . Suppose that M ¤ E. Then there exists an element
˛ 2E, ˛ …M . Since ˛ is algebraic over M , we can apply (2.4) to extend '
to MŒ˛�, contradicting the maximality of M . Hence M DE, and the proof
of the first statement is complete.

If E is algebraically closed, then every polynomial f 2 F ŒX� splits in
EŒX� and hence in '.E/ŒX�. Let ˛ 2 ˝, and let f .X/ be the minimal
polynomial of ˛. Then X �˛ is a factor of f .X/ in ˝ŒX�, but, as we just
observed, f .X/ splits in '.E/ŒX�. Because of unique factorization, this
implies that ˛ 2 '.E/. 2

The above proof is a typical application of Zorn’s lemma: once we know
how to do something in a finite (or countable) situation, Zorn’s lemma allows
us to do it in general.

REMARK 6.7 The above proof used Zorn’s lemma. Here is a proof using
only the ultrafilter principle. Let ˝ and ˝ 0 be algebraic closures of F .
For each monic f 2 F ŒX�, let Hf be the set of F -isomorphisms from the
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splitting field of f in ˝ to the splitting field of f in ˝ 0. Then Hf is finite
and nonempty, and if f jg, then the restriction map Hg !Hf is surjective.

Let H D
Q
Hf , and, for each pair .g;h/ with gjh, let Hg;h D f.hf / 2

H j hh restricts to hgg. When we give H the product topology (discrete
topology on each Hf ), it is compact and nonempty (ultrafilter principle).
Each subset Hg;h is closed because it is the subset of H on which the two
obvious maps H ! Hg agree (one map is the projection to Hg and the
other passes through the projection to Hh). The sets Hg;h have the finite
intersection property, and so

T
Hg;h is nonempty, but any element of

T
Hg;h

defines an isomorphism ˝!˝ 0.

WARNING 6.8 Even for a finite field F , there will exist uncountably many
isomorphisms from one algebraic closure to a second, none of which is to
be preferred over any other. Thus it is (uncountably) sloppy to say that the
algebraic closure of F is unique. All one can say is that, given two algebraic
closures ˝, ˝ 0 of F , then, assuming the ultrafilter principle, there exists an
F -isomorphism ˝!˝ 0.

Separable closures

Let ˝ be a field containing F , and let E be a set of intermediate fields
F �E �˝ with the following property:

(*) for all E1;E2 2 E , there exists an E 2 E such that E1;E2 �
E.

Then E.E/D
S
E2EE is a subfield of ˝ (and we call

S
E2EE a directed

union), because (*) implies that every finite set of elements of E.E/ is
contained in a common E 2 E , and therefore their product, sum, etc., also lie
in E.E/.

We apply this remark to the set of subfields E of ˝ that are finite and
separable over F . As the composite of any two such subfields is again finite
and separable over F (3.15), we see that the union L of all such E is a
subfield of ˝. Then L is separable over F and every element of ˝ separable
over F lies in L. Moreover, because a separable extension of a separable
extension is separable, ˝ is purely inseparable over L.

DEFINITION 6.9 (a) A field ˝ is separably closed if every nonconstant
separable polynomial in ˝ŒX� splits in ˝.

(b) A field ˝ is a separable closure of a subfield F if it is separable and
algebraic over F and it is separably closed.
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THEOREM 6.10 (a) Every field has a separable closure.
(b) LetE be a separable algebraic extension of F , and let˝ be a separable

algebraic closure of F . There exists an F -homomorphism E!˝, and, if
E is also a separable closure of F , then every such homomorphism is an
isomorphism.

PROOF. Replace “polynomial” with “separable polynomial” in the proofs of
the corresponding theorems for algebraic closures. Alternatively, define ˝ to
be the separable closure of F in an algebraic closure, and apply the preceding
theorems. 2





CHAPTER 7
Infinite Galois Extensions

An algebraic extension ˝, possibly infinite, of a field F is said to be Galois
if it is normal and separable. For each finite Galois subextension M=F
of ˝, we have a restriction map Aut.˝=F /! Gal.M=F /, and hence a
homomorphism Aut.˝=F /!

Q
M Gal.M=F /, where the product is over all

such subextensions. Clearly every element of ˝ lies in some M , and so this
homomorphism is injective. When we endow each group Gal.M=F / with
the discrete topology, the product acquires a topology for which it is compact.
The image of the homomorphism is closed, and so Aut.˝=F / also acquires
a compact topology — we write Gal.˝=F / for Aut.˝=F / endowed with
this topology. Now, all of the Galois theory of finite extensions holds for
infinite extensions1 provided “subgroup” is replaced everywhere with “closed
subgroup”. The reader prepared to accept this, can skip to the examples and
exercises.

In this chapter, we make free use of the axiom of choice.2 We also assume
the reader is familiar with infinite topological products, including Tychonoff’s
theorem.

1An exception: it need no longer be true that the cardinality of Gal.˝=F / equals the
degree Œ˝WF �. Certainly, Gal.˝=F / is infinite if and only if Œ˝WF � is infinite, but Gal.˝=F /
is always uncountable when infinite whereas Œ˝WF � need not be.

2It is necessary to assume some choice axiom in order to have a sensible Galois theory of
infinite extensions. For example, it is consistent with Zermelo-Fraenkel set theory that there
exist an algebraic closure of Q with no nontrivial automorphisms. See: Hodges, Läuchli’s
algebraic closure of Q. Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 2, 289–297.
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Topological groups

DEFINITION 7.1 A set G together with a group structure and a topology is a
topological group if the maps

.g;h/ 7! ghWG�G!G;

g 7! g�1WG!G

are both continuous.

Let a be an element of a topological group G. Then aLWG
g 7!ag
����!G is

continuous because it is the composite of

G
g 7!.a;g/
������!G�G

.g;h/7!gh
�������!G:

In fact, it is a homeomorphism with inverse .a�1/L. Similarly aRWg 7! ga

and g 7! g�1 are both homeomorphisms. In particular, for any subgroup H
of G, the coset aH of H is open or closed according as H is open or closed.
Because the complement of H in G is a union of such cosets, this shows that
H is closed if it is open, and it is open if it is closed and of finite index.

Recall that a neighbourhood base for a point x of a topological space X
is a set of neighbourhoods N such that every open subset U of X containing
x contains an N from N .

PROPOSITION 7.2 Let G be a topological group, and let N be a neighbour-
hood base for the identity element e of G. Then3

(a) for allN1;N2 2N , there exists anN 0 2N such that e 2N 0�N1\N2;

(b) for all N 2N , there exists an N 0 2N such that N 0N 0 �N ;

(c) for all N 2N , there exists an N 0 2N such that N 0 �N�1;

(d) for all N 2N and all g 2 G, there exists an N 0 2N such that N 0 �
gNg�1I

(e) for all g 2G, fgN jN 2N g is a neighbourhood base for g.
Conversely, ifG is a group and N is a nonempty set of subsets ofG satisfying
(a,b,c,d), then there is a (unique) topology on G for which (e) holds.

PROOF. If N is a neighbourhood base at e in a topological group G, then (b),
(c), and (d) are consequences of the continuity of .g;h/ 7! gh, g 7! g�1, and

3For subsets S and S 0 ofG, we let SS 0 D fss0 j s 2 S , s0 2 S 0g and S�1 D fs�1 j s 2 Sg.
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h 7! ghg�1 respectively. Moreover, (a) is a consequence of the definitions
and (e) of the fact that gL is a homeomorphism.

Conversely, let N be a nonempty collection of subsets of a group G
satisfying the conditions (a)–(d). Note that (a) implies that e lies in all the N
in N . Define U to be the collection of subsets U of G such that, for every
g 2U , there exists anN 2N with gN �U . Clearly, the empty set andG are
in U , and unions of sets in U are in U . Let U1;U2 2 U , and let g 2 U1\U2;
by definition there existN1;N2 2N with gN1;gN2 �U ; on applying (a) we
obtain an N 0 2N such that gN 0 � U1\U2, which shows that U1\U2 2 U .
It follows that the elements of U are the open sets of a topology on G. In fact,
it is the unique topology for which (e) holds.

We next use (b) and (d) to show that .g;g0/ 7! gg0 is continuous. Note
that the sets g1N1�g2N2 form a neighbourhood base for .g1;g2/ in G�G.
Therefore, given an open U �G and a pair .g1;g2/ such that g1g2 2 U , we
have to find N1;N2 2 N such that g1N1g2N2 � U . As U is open, there
exists an N 2N such that g1g2N � U . Apply (b) to obtain an N 0 such that
N 0N 0 � N ; then g1g2N 0N 0 � U . But g1g2N 0N 0 D g1.g2N 0g�12 /g2N

0,
and it remains to apply (d) to obtain an N1 2N such that N1 � g2N 0g�12 .

Finally, we use (c) and (d) to show that g 7! g�1 is continuous. Given an
open U �G and a g 2G such that g�1 2 U , we have to find an N 2N such
that gN � U�1. By definition, there exists an N 2N such that g�1N � U .
Now N�1g � U�1, and we use (c) to obtain an N 0 2N such that N 0g �
U�1, and (d) to obtain an N 00 2N such that gN 00 � g.g�1N 0g/� U�1. 2

The Krull topology on the Galois group

Recall (3.9) that a finite extension ˝ of F is Galois over F if it is normal and
separable, i.e., if every irreducible polynomial f 2 F ŒX� having a root in ˝
has degf distinct roots in ˝. Similarly, we define an algebraic extension ˝
of F to be Galois over F if it is normal and separable. For example, F sep

is a Galois extension of F . Clearly, ˝ is Galois over F if and only if it is a
directed union of finite Galois extensions.

PROPOSITION 7.3 If ˝ is Galois over F , then it is Galois over every inter-
mediate field M .

PROOF. Let f .X/ be an irreducible polynomial in MŒX� having a root a in
˝. The minimal polynomial g.X/ of a over F splits into distinct factors of
degree one in˝ŒX�. As f divides g (inMŒX�), it also must split into distinct
factors of degree one in ˝ŒX�. 2
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PROPOSITION 7.4 Let ˝ be a Galois extension of F and let E be a subfield
of ˝ containing F . Then every F -homomorphism E ! ˝ extends to an
F -isomorphism ˝!˝.

PROOF. The same Zorn’s lemma argument as in the proof of Theorem 6.6
shows that every F -homomorphism E!˝ extends to an F -homomorphism
˛W˝!˝. Let a 2˝, and let f be its minimal polynomial over F . Then
˝ contains exactly deg.f / roots of f , and so therefore does ˛.˝/. Hence
a 2 ˛.˝/, which shows that ˛ is surjective. 2

COROLLARY 7.5 Let ˝ � E � F be as in the proposition. If E is stable
under Aut.˝=F /, then E is Galois over F .

PROOF. Let f .X/ be an irreducible polynomial in F ŒX� having a root a
in E. Because ˝ is Galois over F , f .X/ has n D deg.f / distinct roots
a1; : : : ;an in ˝. There is an F -isomorphism F Œa�! F Œai ��˝ sending a
to ai (they are both stem fields for f ), which extends to an F -isomorphism
˝!˝. As E is stable under Aut.˝=F /, this shows that ai 2E. 2

Let˝ be a Galois extension of F , and let G DAut.˝=F /. For any finite
subset S of ˝, let

G.S/D f� 2G j �s D s for all s 2 Sg:

PROPOSITION 7.6 There is a unique structure of a topological group on G
for which the sets G.S/ form an open neighbourhood base of 1. For this
topology, the sets G.S/ with S G-stable form a neighbourhood base of 1
consisting of open normal subgroups.

PROOF. We show that the collection of sets G.S/ satisfies (a,b,c,d) of (7.2).
It satisfies (a) because G.S1/\G.S2/ D G.S1 [S2/. It satisfies (b) and
(c) because each set G.S/ is a group. Let S be a finite subset of ˝. Then
F.S/ is a finite extension of F , and so there are only finitely many F -
homomorphisms F.S/! ˝. Since �S D �S if � jF.S/ D � jF.S/, this
shows that NS D

S
�2G �S is finite. Now � NS D NS for all � 2 G, and it

follows that G. NS/ is normal in G. Therefore, �G. NS/��1 D G. NS/� G.S/,
which proves (d). It also proves the second statement. 2

The topology on Aut.˝=F / defined in the proposition is called the Krull
topology. We write Gal.˝=F / for Aut.˝=F / endowed with the Krull topol-
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ogy, and call it the Galois group of ˝=F . The Galois group of F sep over F
is called the absolute Galois group4 of F .

If S is a finite set stable under G, then F.S/ is a finite extension of F
stable under G, and hence Galois over F (7.5). Therefore,

fGal.˝=E/ jE finite and Galois over F g

is a neighbourhood base of 1 consisting of open normal subgroups.

PROPOSITION 7.7 Let ˝ be Galois over F . For every intermediate field E
finite and Galois over F , the map

� 7! � jEWGal.˝=F /! Gal.E=F /

is a continuous surjection (discrete topology on Gal.E=F /).

PROOF. Let � 2 Gal.E=F /, and regard it as an F -homomorphism E!˝.
Then � extends to an F -isomorphism ˝!˝ (see 7.4), which shows that
the map is surjective. For every finite set S of generators of E over F ,
Gal.˝=E/DG.S/, which shows that the inverse image of 1Gal.E=F / is open
in G. By homogeneity, the same is true for every element of Gal.E=F /. 2

PROPOSITION 7.8 The Galois group G of a Galois extension ˝=F is com-
pact and totally disconnected.5

PROOF. We first show that G is Hausdorff. If � ¤ � , then ��1� ¤ 1G ,
and so it moves some element of ˝, i.e., there exists an a 2 ˝ such that
�.a/¤ �.a/. For any S containing a, �G.S/ and �G.S/ are disjoint because
their elements act differently on a. Hence they are disjoint open subsets of G
containing � and � respectively.

We next show that G is compact. As we noted above, if S is a finite set
stable under G, then G.S/ is a normal subgroup of G, and it has finite index
because it is the kernel of

G! Sym.S/:

4But note that the absolute Galois group of F is only defined up to an inner automorphism:
let F 0 be a second separable algebraic closure of F ; the choice of an isomorphism F 0! F sep

determines an isomorphism Gal.F 0=F /! Gal.F sep=F /; a second isomorphism F 0! F sep

will differ from the first by an element � of Gal.F sep=F /, and the isomorphism Gal.F 0=F /!
Gal.F sep=F / it defines differs from the first by inn.�/.

5A topological space is totally disconnected if its connected components are the one-point
sets.
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Since every finite set is contained in a stable finite set,6 the argument in the
last paragraph shows that the map

G!
Y

S finite stable underG

G=G.S/

is injective. When we endow
Q
S G=G.S/ with the product topology, the

induced topology on G is that for which the G.S/ form an open neigh-
bourhood base of e, i.e., it is the Krull topology. According to the Ty-
chonoff theorem,

Q
S G=G.S/ is compact, and so it remains to show that G

is closed in the product. For each S1 � S2, there are two continuous mapsQ
S G=G.S/!G=G.S1/, namely, the projection ontoG=G.S1/ and the pro-

jection onto G=G.S2/ followed by the quotient map G=G.S2/!G=G.S1/.
Let E.S1;S2/ be the closed subset of

Q
G=G.S/ on which the two maps

agree. Then
T
S1�S2

E.S1;S2/ is closed, and equals the image of G.
Finally, for each finite set S stable under G, G.S/ is a subgroup that is

open and hence closed. Since
T
G.S/D f1Gg, this shows that the connected

component of G containing 1G is just f1Gg. By homogeneity, a similar
statement is true for every element of G. 2

PROPOSITION 7.9 For every Galois extension ˝=F , ˝Gal.˝=F / D F .

PROOF. Every element of ˝XF lies in a finite Galois extension of F , and
so this follows from the surjectivity in Proposition 7.7. 2

The next result is an infinite version of Emil Artin’s fundamental result
3.11.

PROPOSITION 7.10 Let G be a group of automorphisms of a field E, and
let F DEG . If G is compact and the stabilizer of each element of E is open
in G, then E is a Galois extension of F with Galois group G.

PROOF. Let x1; : : : ;xn be a finite set of elements of E, and let Hi be the
open subgroup of G fixing xi . Because G is compact, the orbit Gxi of xi is
finite, and the subgroups of G fixing its elements are the conjugates of H .
Let N be the intersection of all the conjugates of the Hi . It is an open normal
subgroup of G, and its fixed field M is that generated over F by the elements
of the orbits of the xi . Thus, G=N is a (finite) group of automorphisms of
M with fixed field F . According to 3.11, M is a finite Galois extension of F
with Galois group G=N .

6Each element of ˝ is algebraic over F , and its orbit is the set of its conjugates (roots of
its minimal polynomial over F ), which is finite.
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As E is a directed union of such fields M , it is a Galois extension of F .
Thus, Gal.E=F / is defined and, by assumption, G maps continuously and
injectively into it. As G is compact, its image is closed, and it is also dense
because it maps onto all the group Gal.M=F /. Thus, G! Gal.E=F / is an
isomorphism. 2

ASIDE 7.11 Not all compact totally disconnected group arise as the absolute Galois
group of a field. In fact, absolute Galois groups of fields of characteristic zero, if
finite, must have order 1 or 2. More precisely, there is the following theorem of Artin
and Schreier (1927): let F be a field, not algebraically closed, but of finite index in
its algebraic closure; then F is real-closed and E D F Œ

p
�1� (Jacobson, Lectures in

Abstract Algebra, 1964, Vol. III, Chap. VI, Theorem 17).

The fundamental theorem of infinite Galois theory

PROPOSITION 7.12 Let ˝ be Galois over F , with Galois group G.
(a) Let M be a subfield of ˝ containing F . Then ˝ is Galois over M , the

Galois group Gal.˝=M/ is closed in G, and ˝Gal.˝=M/ DM .

(b) For every subgroup H of G, Gal.˝=˝H / is the closure of H .

PROOF. (a) The first assertion was proved in (7.3). For each finite subset S �
M ,G.S/ is an open subgroup ofG, and hence it is closed. But Gal.˝=M/DT
S�M G.S/, and so it also is closed. The final statement now follows from

(7.9).
(b) Since Gal.˝=˝H / contains H and is closed, it certainly contains the

closure NH of H . On the other hand, let � 2GX NH ; we have to show that �
moves some element of ˝H . Because � is not in the closure of H ,

�Gal.˝=E/\H D ;

for some finite Galois extension E of F in ˝ (because the sets Gal.˝=E/
form a neighbourhood base of 1; see above). Let � denote the surjective map
Gal.˝=F /! Gal.E=F /. Then � jE … �H , and so � moves some element
of E�H �˝H (apply 3.11). 2

THEOREM 7.13 Let ˝ be a Galois extension of F with Galois group G.
The maps

H 7!˝H ; M 7! Gal.˝=M/

are inverse bijections between the set of closed subgroups of G and the set of
intermediate fields between ˝ and F :

fclosed subgroups of Gg
1W1
 ! fintermediate fields F �M �˝g:
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Moreover,
(a) H1 �H2 ” ˝H1 �˝H2 (the correspondence is order revers-

ing);

(b) a closed subgroup H of G is open if and only if ˝H has finite degree
over F , in which case .GWH/D Œ˝H WF �;

(c) �H��1$ �M , i.e.,

˝�H�
�1

D �.˝H /I

Gal.˝=�M/D �Gal.˝=M/��1I

(d) a closed subgroup H of G is normal if and only if ˝H is Galois over
F , in which case

Gal.˝H=F /'G=H:

PROOF. For the first statement, we have to show that H 7!˝H and M 7!
Gal.˝=M/ are inverse maps.

Let H be a closed subgroup of G. Then ˝ is Galois over ˝H and
Gal.˝=˝H /DH (see 7.12).

Let M be an intermediate field. Then Gal.˝=M/ is a closed subgroup
of G and ˝Gal.˝=M/ DM (see 7.12).

(a) We have the obvious implications:

H1 �H2 H) ˝H1 �˝H2 H) Gal.˝=˝H1/� Gal.˝=˝H2/:

But Gal.˝=˝Hi /DHi (see 7.12).
(b) As we noted earlier, a closed subgroup of finite index in a topological

group is always open. BecauseG is compact, conversely an open subgroup of
G is always of finite index. Let H be such a subgroup. The map � 7! � j˝H

defines a bijection
G=H ! HomF .˝H ;˝/

(apply 7.4) from which the statement follows.
(c) For � 2 G and ˛ 2˝, �˛ D ˛ ” ����1.�˛/D �˛. Therefore,

Gal.˝=�M/D �Gal.˝=M/��1 , and so �Gal.˝=M/��1$ �M:

(d) Let H $M . It follows from (c) that H is normal if and only if M
is stable under the action of G. But M is stable under the action of G if and
only it is a union of finite extensions of F stable under G, i.e., of finite Galois
extensions of G. We have already observed that an extension is Galois if and
only if it is a union of finite Galois extensions. 2
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REMARK 7.14 As in the finite case (3.18), we can deduce the following
statements.

(a) Let .Mi /i2I be a (possibly infinite) family of intermediate fields,
and let Hi $Mi . Let M be the smallest field containing all the Mi (the
composite of the Mi ); then because

T
i2I Hi is the largest (closed) subgroup

contained in all the Hi ,

Gal.˝=M/D
\
i2I

Hi :

(b) Let M $H . The largest (closed) normal subgroup contained in H is
N D

T
� �H�

�1 (cf. GT, 4.10), and so ˝N , which is the composite of the
fields �M , is the smallest normal extension of F containing M .

PROPOSITION 7.15 Let E and L be field extensions of F
contained in some common field. If E=F is Galois, then
EL=L and E=E\L are Galois, and the map

� 7! � jEWGal.EL=L/! Gal.E=E\L/

is an isomorphism of topological groups.

EL

E L

E\L

F

D

D

PROOF. We first prove that the map is continuous. Let G1 D Gal.EL=L/
and let G2 D Gal.E=E \L/. For any finite set S of elements of E, the
inverse image of G2.S/ in G1 is G1.S/.

We next show that the map is an isomorphism of groups (neglecting the
topology). As in the finite case, it is an injective homomorphism (3.19). Let
H be the image of the map. Then the fixed field of H is E \L, which
implies that H is dense in Gal.E=E \L/. But H is closed because it
is the continuous image of a compact space in a Hausdorff space, and so
H D Gal.E=E\L/.

Finally, we prove that it is open. An open subgroup of Gal.EL=L/ is
closed (hence compact) of finite index; therefore its image in Gal.E=E\L/
is compact (hence closed) of finite index, and hence open. 2

COROLLARY 7.16 Let ˝ be an algebraically closed field containing F ,
and let E and L be as in the proposition. If �WE ! ˝ and � WL! ˝ are
F -homomorphisms such that �jE \LD � jE \L, then there exists an F -
homomorphism � WEL!˝ such that � jE D � and � jLD � .
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PROOF. According to (7.4), � extends to an F -homomorphism sWEL!˝.
As sjE\LD �jE\L, we can write sjE D �ı" for some "2Gal.E=E\L/.
According to the proposition, there exists a unique e 2 Gal.EL=L/ such that
ejE D ". Define � D s ı e�1. 2

EXAMPLE 7.17 Let ˝ be an algebraic closure of the finite field Fp. Then
G D Gal.˝=Fp/ contains a canonical Frobenius element, � D .a 7! ap/,
and it is generated by it as a topological group, i.e., G is the closure of h�i.
We now determine the structure of G.

Endow Z with the topology for which the groups nZ, n � 1, form a
fundamental system of neighbourhoods of 0. Thus two integers are close if
their difference is divisible by a large integer.

As for any topological group, we can complete Z for this topology. A
Cauchy sequence in Z is a sequence .ai /i�1, ai 2 Z, satisfying the following
condition: for all n � 1, there exists an N such that ai � aj mod n for
i;j > N . Call a Cauchy sequence in Z trivial if ai ! 0 as i !1, i.e.,
if for all n � 1, there exists an N such that ai � 0 mod n for all i > N .
The Cauchy sequences form a commutative group, and the trivial Cauchy
sequences form a subgroup. We define OZ to be the quotient of the first group
by the second. It has a ring structure, and the map sending m 2 Z to the
constant sequence m;m;m; : : : identifies Z with a subgroup of OZ.

Let ˛ 2 OZ be represented by the Cauchy sequence .ai /. The restriction of
the Frobenius element � to Fpn has order n. Therefore .� jFpn/ai is indepen-
dent of i provided it is sufficiently large, and we can define �˛ 2 Gal.˝=Fp/
to be such that, for each n, �˛jFpn D .� jFpn/ai for all i sufficiently large
(depending on n). The map ˛ 7! �˛W OZ! Gal.˝=Fp/ is an isomorphism.

The group OZ is uncountable. To most analysts, it is a little weird—its
connected components are one-point sets. To number theorists it will seem
quite natural — the Chinese remainder theorem implies that it is isomorphic
to
Q
p primeZp where Zp is the ring of p-adic integers.

EXAMPLE 7.18 Let Qal be the algebraic closure of Q in C. Then Gal.Qal=Q/
is one of the most basic, and intractable, objects in mathematics. It is expected
that every finite group occurs as a quotient of it. This is known, for example,
for Sn and for every sporadic simple group except possibly M23. See (5.41)
and mo80359.

On the other hand, we do understand Gal.F ab=F /, where F �Qal is a
finite extension of Q and F ab is the union of all finite abelian extensions of
F contained in Qal. For example, Gal.Qab=Q/' OZ�. This is abelian class
field theory — see my notes Class Field Theory.

https://mathoverflow.net/questions/80359
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ASIDE 7.19 A simple Galois correspondence is a system consisting of two partially
ordered sets P and Q and order reversing maps f WP !Q and gWQ! P such that
gf .p/ � p for all p 2 P and fg.q/ � q for all q 2Q. Then fgf D f , because
fg.fp/ � fp and gf .p/ � p implies f .gfp/ � f .p/ for all p 2 P . Similarly,
gfg D g, and it follows that f and g define a one-to-one correspondence between
the sets g.Q/ and f .P /.

From a Galois extension ˝ of F we get a simple Galois correspondence by
taking P to be the set of subgroups of Gal.˝=F / and Q to be the set of subsets
of ˝, and by setting f .H/ D ˝H and g.S/ D G.S/. Thus, to prove the one-to-
one correspondence in the fundamental theorem, it suffices to identify the closed
subgroups as exactly those in the image of g and the intermediate fields as exactly
those in the image of f . This is accomplished by (7.12).

Galois groups as inverse limits

DEFINITION 7.20 A partial order� on a set I is directed, and the pair .I;�/
is a directed set, if for all i;j 2 I there exists a k 2 I such that i;j � k.

DEFINITION 7.21 Let .I;�/ be a directed set, and let C be a category (for
example, the category of groups and homomorphisms, or the category of
topological groups and continuous homomorphisms).

(a) An inverse system in C indexed by .I;�/ is a family .Ai /i2I of objects
of C together with a family .pji WAj ! Ai /i�j of morphisms such that
pii D idAi and pji ıp

k
j D p

k
i all i � j � k.

(b) An objectA of C together with a family .pj WA!Aj /j2I of morphisms
satisfying pji ıpj D pi all i � j is an inverse limit of the system in (a)
if it has the following universal property: for any other object B and
family .qj WB! Aj / of morphisms such pji ıqj D qi all i � j , there
exists a unique morphism r WB! A such that pj ı r D qj for j ,

B A

Aj

Ai

q
j

qi pi

pj

p
j

i

r
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Clearly, the inverse limit (if it exists), is uniquely determined by this condition
up to a unique isomorphism. We denote it by lim

 �
.Ai ;p

j
i /, or just lim

 �
Ai .

EXAMPLE 7.22 Let .Gi ;p
j
i WGj !Gi / be an inverse system of groups. Let

G D f.gi / 2
Y
Gi j p

j
i .gj /D gi all i � j g;

and let pi WG ! Gi be the projection map. Then pji ıpj D pi is just the
equation pji .gj /D gi . Let .H;qi / be a second family such that pji ıqj D qi .
The image of the homomorphism

h 7! .qi .h//WH !
Y
Gi

is contained in G, and this is the unique homomorphism H !G carrying qi
to pi . Hence .G;pi /D lim

 �
.Gi ;p

j
i /.

EXAMPLE 7.23 Let .Gi ;p
j
i WGj !Gi / be an inverse system of topological

groups and continuous homomorphisms. When endowed with the product
topology,

Q
Gi becomes a topological group, and G becomes a topological

subgroup with the subspace topology,

G D f.gi / 2
Y
Gi j p

j
i .gj /D gi all i � j g:

The projection maps pi are continuous. Let H be .H;qi / be a second family
such that pji ıqj D qi . The homomorphism

h 7! .qi .h//WH !
Y
Gi

is continuous because its composites with projection maps are continuous
(universal property of the product). Therefore H !G is continuous, and this
shows that .G;pi /D lim

 �
.Gi ;p

j
i /.

An inverse system of finite groups can be regarded as an inverse system
of topological groups by giving each finite group the discrete topology.

DEFINITION 7.24 A profinite group is topological group that is an inverse
limit of finite groups (each equipped with the discrete topology).

Inverse limits are also called projective limits. Thus “profinite group” is
short for “projective limit of finite groups”.
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PROPOSITION 7.25 A topological group is profinite if and only if it is com-
pact and totally disconnected.

PROOF. Let .Gi ;p
j
i WGj ! Gi / be an inverse system of finite groups, and

let G D lim
 �

Gi . Thus,

G D f.gi / 2
Y
Gi j p

j
i .gj /D gi all i � j g:

If .xi / …G, say pj0i0 .xj0/¤ xi0 , then

G\f.gj / j gj0 D xj0 ; gi0 D xi0g D ;.

As the second set is an open neighbourhood of .xi /, this shows that G is
closed in

Q
Gi . By Tychonoff’s theorem,

Q
Gi is compact, and so G is

also compact. The map pi WG! Gi is continuous, and its kernel Ui is an
open subgroup of finite index in G (hence also closed). As

T
Ui D feg, the

connected component of G containing e is just feg. By homogeneity, the
same is true for every point of G: the connected components of G are the
one-point sets — G is totally disconnected.

Conversely, let G be compact and totally disconnected. In a locally
compact group, the connected component containing the identity is the in-
tersection of the open subgroups (Bourbaki, Topologie Générale, Chap. III,
�4.6). Therefore,

T
U D feg in G (intersection over the open subgroups).

As G is compact, each U has finite index; therefore its conjugates are finite
in number, and their intersection is a normal open subgroup of G. HenceT
V D f1g in G (intersection over the open normal subgroups). The canoni-

cal map G! lim
 �

G=V is injective, continuous, with dense image. As G is
compact, it is an isomorphism. 2

EXAMPLE 7.26 Let ˝ be a Galois extension of F . The composite of two
finite Galois extensions of in ˝ is again a finite Galois extension (3.21),
and so the finite Galois subextensions of ˝ form a directed set I . For each
E in I we have a finite group Gal.E=F /, and for each E � E 0 we have a
restriction homomorphism pE

0

E WGal.E 0=F /! Gal.E=F /. In this way, we
get an inverse system of finite groups .Gal.E=F /;pE

0

E / indexed by I .
For each E, there is a restriction homomorphism pE WGal.˝=F /!

Gal.E=F / and, because of the universal property of inverse limits, these
maps define a homomorphism

Gal.˝=F /! lim
 �

Gal.E=F /.

This map is an isomorphism of topological groups. This is a restatement of
what we showed in the proof of (7.8).
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PROPOSITION 7.27 (TATE) Every profinite group G is the Galois group of
some Galois extension of fields.

PROOF. Let S be the disjoint union of the setsG=H forH an open subgroup
of G. Then G acts faithfully on S and the stabilizer of each element of S
is open in G. Let k be a field, let kŒS� be the polynomial ring over k in the
elements of S , and let E D k.S/ be the field of fractions of kŒS�. Then G
acts faithfully on E through its action on S and the stabilizer of each element
of E is open in G. According to Proposition 7.10, E is Galois over F def

DEG

with Galois group G. 2

Nonopen subgroups of finite index

We apply Zorn’s lemma to construct a nonopen subgroup of finite index in
Gal.Qal=Q/.

LEMMA 7.28 Let V be an infinite-dimensional vector space. For all n� 1,
there exists a subspace Vn of V such that V=Vn has dimension n.

PROOF. A Zorn’s lemma argument shows that V contains maximal linearly
independent subsets, and then the usual argument shows that such a subset
spans V , i.e., is a basis. Choose a basis, and take Vn to be the subspace
spanned by the set obtained by omitting n elements from the basis. 2

PROPOSITION 7.29 The group Gal.Qal=Q/ has nonopen normal subgroups
of index 2n for all n > 1.

PROOF. Let E be the subfield of C generated over C by
p
�1 and the square

roots of the prime numbers — it is Galois over Q. For each p,

Gal.QŒ
p
�1;
p
2; : : : ;

p
p�=Q/

is a product of copies of Z=2Z indexed by the set fprimes� pg[f1g (see
5.31b). As

Gal.E=Q/D lim
 �

Gal.QŒ
p
�1;
p
2; : : : ;

p
p�=Q/;

it is a direct product of copies of Z=2Z indexed by the primes l of Q (including
l D1) endowed with the product topology. Let G D Gal.E=Q/, and let

H D f.al/ 2G j al D 0 for all but finitely many lg:
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This is a subgroup of G (in fact, it is a direct sum of copies of Z=2Z indexed
by the primes of Q), and it is dense in G: let .al/ 2G; then the sequence

.a1;0;0;0; : : :/, .a1;a2;0;0; : : :/, .a1;a2;a3;0; : : :/; : : :

in H converges to .al/. We can regard G=H as vector space over F2 and
apply the lemma to obtain subgroups Gn of index 2n in G containing H . If
Gn is open in G, then it is closed, which contradicts the fact that H is dense.
Therefore, Gn is not open, and its inverse image in Gal.Qal=Q/ is the desired
subgroup (if it were open, it would be closed of finite index, and so would its
image Gn). 2

REMARK 7.30 Let G D Gal.Qal=Q/. We showed in the above proof that
there is a closed normal subgroup N D Gal.Qal=E/ of G such that G=N
is an uncountable vector space over F2. Let .G=N/_ be the dual of this
vector space (also uncountable). Every nonzero f 2 .G=N/_ defines a
surjective map G! F2 whose kernel is a subgroup of index 2 in G. These
subgroups are distinct, and so G has uncountably many subgroups of index 2.
Only countably many of them are open because Q has only countably many
quadratic extensions in a fixed algebraic closure.

ASIDE 7.31 Zorn’s lemma is needed for 7.29 — it is consistent with ZF+DC (de-
pendent choice) that every homomorphism from a second countable profinite group
to a finite group be continuous (see mo106216).

ASIDE 7.32 Let G be a profinite group that is finitely generated as a topological
group. It is a difficult theorem, only proved this century, that every subgroup of finite
index in G is open (Nikolov, Segal, On finitely generated profinite groups. I., Ann.
of Math. (2) 165 (2007), no. 1, 171–238.)

Exercises

7-1 Let p be a prime number, and let ˝ be the subfield of C generated over
Q by all pmth roots of 1 for m 2 N. Show that ˝ is Galois over Q with
Galois group Z�p D lim

 �
.Z=pmZ/�. Hint: Use that ˝ is the union of a tower

of subfields

Q�QŒ�p�� �� � �QŒ�pm ��QŒ�pmC1 �� �� � :

For p odd, show that Gal.Q.�p1/=Q.�p// ' Zp. Hint: Let a 2 Zp corre-
spond to

�pk 7! �
.1Cp/a mod pk�1

pk
:

https://mathoverflow.net/questions/106216
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7-2 Let F be an algebraic closure of Fp, and let Fpm be the subfield of F
with pm elements. Show that

lim
 �
m�1

Gal.Fpm=Fp/' lim
 �
m�1

Z=mZ

and deduce that Gal.F=Fp/' OZ:

7-3 For a profinite group G, define Gab to be the quotient of G by the
closure of its commutator subgroup. Is Gab D lim

 �
Gab
i where the Gi range

over the finite quotients of G.



CHAPTER 8
The Galois theory of étale

algebras

For Grothendieck, the classification of field extensions by Galois groups, and
the classification of covering spaces by fundamental groups, are two aspects
of the same theory. In this chapter, we re-interprete classical Galois theory
from Grothendieck’s point of view. We assume the reader is familiar with
the language of category theory (Wikipedia: category theory; equivalence of
categories).

Throughout, F is a field, all rings and F -algebras are commutative, and
unadorned tensor products are over F . Recall that an F -algebra A is finite if
it is finite-dimensional as an F -vector space — the dimension is called the
degree ŒAWF � of A.

Review of commutative algebra

We’ll need some results from commutative algebra. The first is a special case
of the Chinese Remainder Theorem.

THEOREM 8.1 Let M1; : : :Mn be maximal ideals in a ring A. Then the map

a 7! .: : : ;aCMj ; : : :/WA! A=M1� � � ��A=Mn (13)

is surjective with kernel
T
iMi .

PROOF. Fix a j and, for i ¤ j , let aij 2 Mi XMj . After scaling, we
may suppose that aij � 1 mod Mj . Let bj D

Q
i¤j aij . Then bj maps

135
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to .0; : : : ;0;1;0; : : : ;0/ in
Q
i A=Mi , and so every element of

Q
i A=Mi is the

image of an element
P
j aj bj of A. We have shown that the map is surjective,

and its kernel is obviously
T
iMi . 2

The radical of an ideal I in a ring A is the set of f 2A such that f n 2 I
for some n 2 N. It is again an ideal, and it is equal to its own radical. The
nilradical N of A is the radical of the ideal .0/. It consists of the nilpotents
in A. If N D 0, then A is said to be reduced.

THEOREM 8.2 Let A be a finitely generated F -algebra, and let I be an ideal
in A. The radical of I is equal to the intersection of the maximal ideals
containing it,

rad.I /D
\
fM jM � I , M maximalg:

In particular, A is reduced if and only if
T
fM jM maximalg D 0.

We prove this for finite F -algebras, which is the only case we’ll need.
Let ˝ be an algebraic closure of F . For an ideal I of kŒX1; : : : ;Xn�, we let
Z.I / denote the zero set,

Z.I /D f.a1; : : : ;an/ 2˝
n
j f .a1; : : : ;an/D 0 for all f 2 I g:

LEMMA 8.3 Let I be a proper ideal of F ŒX1; : : : ;Xn� such that the quotient
F ŒX1; : : : ;Xn�=I is a finite F -algebra. Then Z.I /¤ ;.

PROOF. Let M be a maximal ideal containing I (any proper ideal of largest
dimension will do). Then F ŒX1; : : : ;Xn�=M is field, finite over F , and so it
admits a homomorphism into ˝. Let ai denote the image of Xi in ˝. Then
.a1; : : : ;an/ 2Z.I /. 2

LEMMA 8.4 Let I be a proper ideal of F ŒX1; : : : ;Xn� such that the quotient
F ŒX1; : : : ;Xn�=I is a finite F -algebra. If h 2 F ŒX1; : : : ;Xn� is zero on Z.I /,
then some power of h lies in I .

PROOF. We may suppose h¤ 0. Then 8.4 can be deduced from 8.3 by using
Rabinowitsch’s trick (CA 13.10). 2

We now prove Theorem 8.2 in the case that A is a finite F -algebra.
Because of the correspondence between ideals in a ring and in a quotient of
the ring, we may suppose that I is an ideal in F ŒX1; : : : ;Xn�. The inclusion

rad.I /�
\
fM jM � I;M maximalg
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holds in any ring because maximal ideals are radical and rad.I / is the smallest
radical ideal containing I . For the reverse inclusion, let h lie in all maximal
ideals containing I , and let .a1; : : : ;an/ 2Z.I /. The image of the evaluation
map

f 7! f .a1; : : : ;an/WF ŒX1; : : : ;Xn�!˝

is a subring of ˝, finite over F , and so a field (1.23). Therefore, the kernel of
the map is a maximal ideal, which contains I , and hence also h. This shows
that h.a1; : : : ;an/D 0, and we conclude from 8.4 that h 2 rad.I /.

Étale algebras over a field

Let F n D F � � � ��F (n-copies) regarded as an F -algebra by the diagonal
map.

DEFINITION 8.5 An F -algebra A is diagonalizable if it is isomorphic to
F n for some n, and it is étale if L˝A is diagonalizable for some field L
containing F .1

Let A be a finite F -algebra. For any finite set S of maximal ideals in A,
the Chinese remainder theorem (8.1) shows that the map A!

Q
M2S A=M

is surjective with kernel
T
M2SM . In particular, jS j � ŒAWF �, and so A has

only finitely many maximal ideals. If S is the set of all maximal ideals in A,
then

T
M2SM is the nilradical N of A (8.2), and so A=N is a finite product

of fields.

PROPOSITION 8.6 The following conditions on a finite F -algebra A are
equivalent:

(a) A is étale;

(b) L˝A is reduced for all fields L containing F I

(c) A is a product of separable field extensions of F .

PROOF. (a))(b). Let L be a field containing F . By hypothesis, there exists
a field L0 containing F such that L0˝A is diagonalizable. Let L00 be a field
containing (copies of) both L and L0 (e.g., take L00 to be a quotient of L˝L0

by a maximal ideal). Then L00˝AD L00˝L0 L0˝A is diagonalizable, and
the map L˝A! L00˝A defined by the inclusion L! L00 is injective, and
so L˝A is reduced.

1This is Bourbaki’s definition
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(b))(c). In particular, ADA˝F is reduced, and so it is a finite product
of fields (see the above discussion). Suppose that one of the factor fields F 0

of A is not separable over F . Then F has characteristic p ¤ 0 and there
exists an element u of F 0 whose minimal polynomial is of the form g.Xp/

with g 2 F ŒX� (see 3.6 et seq.). Let L be a field containing F . Then

L˝F Œu�' L˝ .F ŒX�=.g.Xp//' LŒX�=.g.Xp//.

If L is chosen so that the coefficients of g.X/ become pth powers in it, then
g.Xp/ is a pth power in LŒX� (see the proof of 2.24), and so L˝F Œu� is
not reduced. But L˝F Œu�� L˝A, and so this contradicts the hypothesis.

(c))(a). We may suppose that A itself is a separable field extension of
F . From the primitive element theorem (5.1), we know that AD F Œu� for
some u. Because F Œu� is separable over F , the minimal polynomial f .X/ of
u is separable, which means that, in any splitting field L for f ,

f .X/D
Y
.X �ui /; ui ¤ uj for i ¤ j:

Now
L˝A' L˝F ŒX�=.f /' LŒX�=.f /,

and, according to the Chinese remainder theorem (8.1),

LŒX�=.f /'
Y

i
LŒX�=.X �ui /' L� � � ��L.

2

COROLLARY 8.7 An F -algebra A is étale if and only if F sep˝A is diago-
nalizable.

PROOF. The proof that (c) implies (a) in (8.6) shows that L˝A is diagonal-
izable if certain separable polynomials split in L. By definition, all separable
polynomials split in F sep. 2

COROLLARY 8.8 Let f 2F ŒX�. ThenADF ŒX�=.f / is an étale F -algebra
if and only if f is separable.

PROOF. Let f D
Q
f
mi
i with the fi irreducible and distinct. According to

the Chinese remainder theorem (CA 2.13)

A'
Y

i
F ŒX�=.f

mi
i /:

The F -algebra F ŒX�=.f mii / is a field if and only if mi D 1, in which case it
is a separable extension of F if and only if fi is separable. This completes
the proof. 2
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Not all étale F -algebras are of the form F ŒX�=.f /; for example, the
F -algebra F ŒX�=.f /�F ŒX�=.f / is not.

PROPOSITION 8.9 Finite products, tensor products, and quotients of diago-
nalizable (resp. étale) F -algebras are diagonalizable (resp. étale).

PROOF. This is obvious for diagonalizable algebras, and it follows for étale
algebras. 2

COROLLARY 8.10 The composite of any finite set of étale F -subalgebras of
an F -algebra is étale.

PROOF. Let A be an F -algebra, and, for i D 1; : : : ;n, let Ai be an étale
subalgebra of A. The composite A1 � � �An of the Ai (i.e., the smallest F -
subalgebra containing the Ai ) is the image of the map

a1˝�� �˝an 7! a1 � � �anWA1˝�� �˝An! A;

which is a quotient of A1˝�� �˝An. 2

PROPOSITION 8.11 If A is an étale F -algebra, then F 0˝A is an étale F 0-
algebra for any extension F 0 of F .

PROOF. Let L be an extension of F such that L˝A� Lm, and let L0 be a
field containing (copies of) both L and F 0. Then

L0˝F 0
�
F 0˝A

�
' L0˝A' L0˝L .L˝A/� L

0
˝LL

m
'
�
L0
�m . 2

REMARK 8.12 Let A be an étale algebra over F , and write A as a product of
fields, AD

Q
i Ai . A generator ˛ for A as an F -algebra is a tuple .˛i / with

each ˛i a generator for Ai as an F -algebra. Because each Ai is separable
over F , such an ˛ exists (primitive element theorem 5.1). Choose an ˛, and
let f D

Q
i fi be the product of the minimal polynomials of the ˛i . Then f

is a monic polynomial whose irreducible factors are separable.
Conversely, let f be a monic polynomial whose irreducible factors .fi /i

are separable. Then A def
D
Q
i F ŒX�=.fi / is an étale algebra over F with a

canonical generator.
In this way, we get a one-to-one correspondence between the set of

isomorphism classes of pairs .A;˛/ consisting of an étale F -algebra and a
generator and the set of monic polynomials whose irreducible factors are
separable.
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8.13 In preparation for the next section, we review a little linear algebra.
Let ˝ be a Galois extension of F (possibly infinite) with Galois group G.
Let V be a vector space over F , and let V˝ D˝˝F V . Then G acts on V˝
through its action on ˝, and the map

v 7! 1˝vWV ! .V˝/
G def
D fv 2 V˝ j �v D v for all � 2Gg

is an isomorphism. To see this, choose an F -basis fe1; : : : ; eng for V . Then
fe1; : : : ; eng is also an ˝-basis for V˝ , and

�.a1e1C�� �Canen/D .�a1/e1C�� �C .�an/en; ai 2˝:

Therefore a1e1C�� �Canen is fixed by all � 2G if and only if a1; : : : ;an 2F .
Similarly, ifW is a second vector space over F , then G acts on the vector

space Hom˝-linear.V˝ ;W˝/ by �˛ D � ı˛ ı��1, and

HomF -linear.V;W /' Hom˝-linear.V˝ ;W˝/
G :

Again, this can be proved by choosing bases.

Classification of étale algebras over a field

We fix a separable closure ˝ of F , and let G D Gal.˝=F /. Recall (Chapter
7) that for every subfieldE of˝ finite and Galois over F , the homomorphism

� 7! � jEWG! Gal.E=F /

is surjective, and its kernel is an open normal subgroup of G. Every open
normal subgroup of G is of this form, and G D lim

 �
Gal.E=F /.

By a G-set we mean a set S equipped with an action of G such that the
map

G�S ! S

is continuous with respect to the Krull topology on G and the discrete topol-
ogy on S . This is equivalent to saying that the stabilizer of every point of S
is an open subgroup of G. When S is finite, it is equivalent to saying that the
action factors through G! Gal.E=F / for some subfield E of ˝ finite and
Galois over F .
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THE FUNCTOR F

For an étale F -algebra A, let F.A/ denote the set of F -algebra homomor-
phisms f WA!˝. We let G act on F.A/ through its action on ˝,

.�f /.a/D �.f .a//; � 2G, f 2 F.A/, a 2 A;

For some finite Galois extension E of F in ˝, the images of all homomorph-
ism A! ˝ are contained in E,2 and so the action of G on F.A/ factors
through Gal.E=F /. Therefore F.A/ is a G-set.

8.14 Let AD F ŒX�=.f / where f is a separable polynomial in F ŒX�, and
let F ŒX�=.f /D F Œx�. For every homomorphism 'WA!˝ of F -algebras,
'.x/ is a root of f .X/ in ˝, and the map ' 7! '.x/ defines a one-to-one
correspondence

F.A/ 1W1
 ! froots of f .X/ in ˝g

commuting with the actions of G. This is obvious from 2.1.

8.15 Let AD A1� � � ��An with each Ai an étale F -algebra. Because ˝ is
an integral domain, every homomorphism f WA!˝ is zero on all but oneAi ,
and so, to give a homomorphism A!˝ amounts to giving a homomorphism
Ai !˝ for some i . In other words,

F.
Q
i Ai /'

F
i F.Ai / (disjoint sum).

In particular, for an étale F -algebra AD
Q
i Fi ; Fi a field,

F.A/'
G

i
HomF .Fi ;˝/.

From Proposition 2.12, we deduce that F.A/ is finite of order ŒAWF �.

Thus, F is a functor from étale F -algebras to finite G-sets.

THE FUNCTOR A

For a G-set S , we let G act on the F -algebra Hom.S;˝/ of maps S !˝

through its actions on S and ˝;

.�f /.s/D �.f .��1s//; � 2G; f 2 Hom.S;˝/; s 2 S:

We define A.S/ to be the set of elements of Hom.S;˝/ fixed by G. Thus
A.S/ is the F -subalgebra of Hom.S;˝/ consisting of the maps f WS !˝

such that f .�s/D �f .s/ for all � 2G, s 2 S .
2Write A D F1 � � � � �Fn with each Fi a field; embed each Fi in ˝, take its Galois

closure, and then take the composite of the fields obtained.
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8.16 Suppose thatG acts transitively on S . Choose an s 2 S , and letH �G
be its stabilizer. Then H is an open subgroup of G, and so E D ˝H is a
finite extension of F (7.13). An element f of A.S/ is determined by its
value on s, which can be any element of ˝ fixed by H . It follows that the
map

f 7! f .s/WA.S/!E

is an isomorphism of F -algebras.
Every element of S is of the form �s with � 2 G, and �s D � 0s if and

only if �H D � 0H . Similarly, every element of F.E/ is of the form � jE

with � 2 G, and � jE D � jE 0 if and only if �H D � 0H . It follows that the
map

�s 7! � jEWS ! F.E/

is an isomorphism of G-sets.
Let E be a finite separable extension E of F . Let S D F.E/ and choose

an s 2 S , i.e., an embedding sWE ,!˝. The above calculation shows that
A.S/D sE. In particular, s defines an isomorphism E!A.F.E//.

PROPOSITION 8.17 Let S be a finite G-set, and let S D S1t : : :tSn be the
decomposition of S into its G-orbits. For each i , choose an si 2 Si , and let
Fi be the subfield of ˝ fixed by the stabilizer of si .

(a) Each Fi is a finite separable extension of F .

(b) The map

f 7! .f .s1/; : : : ;f .sn//WA.S/! F1� � � ��Fn

is an isomorphism of F -algebras.

(c) The map sending �si 2 Si � S to � jFi 2F.Fi /�F.F1�� � ��Fn/ is
an isomorphism of G-sets

S ! F .F1� � � ��Fn/ .

PROOF. This follows directly from the special case considered in 8.16. 2

PROPOSITION 8.18 For every finite G-set S , the F -algebra A.S/ is étale
with degree equal to jS j. Moreover, every étale F -algebra A is of the form
A.S/ for some G-set S . More precisely,

A'A.F.A//:
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PROOF. The first statement follows from (8.6) and (8.17). We prove the third
statement. There is a canonical isomorphism of ˝-algebras

a˝ c 7! .�a � c/�2F.A/W˝˝A!
Y

�2F.A/

˝:

When we let G act on ˝˝A through ˝, and pass to the fixed elements, we
obtain an isomorphism

A
8.13
D .˝˝A/G 'A.F.A//:

This implies the second statement of the proposition (which can also be
deduced from 8.17). 2

PROPOSITION 8.19 Let S be a finite G-set. An element s 2 S defines a
homomorphism of F -algebras f 7! f .s/WA.S/! ˝, and every homo-
morphism of F -algebras A.S/! ˝ is of this form for a unique s. Thus
S ' F.A.S//.

PROOF. We leave this as an exercise. 2

PROPOSITION 8.20 For all étale F -algebras A and B , the map

HomF -algebras.A;B/! HomG-sets.F.B/;F.A//

defined by F is bijective.

PROOF. Let A and B be étale F -algebras. Under the isomorphism

HomF -linear.A;B/
8.13
' Hom˝-linear.A˝ ;B˝/

G ;

F -algebra homomorphisms correspond to ˝-algebra homomorphisms, and
so

HomF -algebra.A;B/' Hom˝-algebra.A˝ ;B˝/
G .

From Corollary 8.7, we know that A˝ (resp. B˝) is a product of copies of
˝ indexed by the elements of F.A/ (resp. F.B/). Let t be a map of sets
F.B/! F.A/. Then

.ai /i2F.A/ 7! .bj /j2F.B/; bj D at.j /;

is a homomorphism of ˝-algebras A˝ ! B˝ , and every homomorphism of
˝-algebras A˝ ! B˝ is of this form for a unique t . Thus

Hom˝-algebra.A˝ ;B˝/' HomSets.F.B/;F.A//:
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This isomorphism is compatible with the actions of G, and so

Hom˝-algebra.A˝ ;B˝/
G
' HomSets.F.B/;F.A//G :

In other words,

HomF -algebra.A;B/' HomG-sets.F.B/;F.A//: 2

THEOREM 8.21 The functor A F.A/ is a contravariant equivalence from
the category of étale F -algebras to the category of finite G-sets with quasi-
inverse A.

PROOF. This summarizes the results in the last three propositions. 2

It is possible to prove Theorem 8.21 directly, without using Galois theory,
and then deduce Galois theory from it.

GENERALIZATION OF THEOREM 8.21

Let ˝ be a Galois extension of F (finite or infinite), and let G D Gal.˝=F /.
An étale F -algebra A is split by ˝ if ˝˝A is isomorphic to a product of
copies of ˝. For such an F -algebra, we let F.A/D Homk-algebra.A;˝/.

THEOREM 8.22 The functor A F.A/ is a contravariant equivalence from
the category of étale F -algebras split by ˝ to the category of finite G-sets.

When ˝ is a finite extension of F , the continuity condition for G-sets
can be omitted.

The proof of Theorem 8.22 is the same as that of Theorem 8.21. Alterna-
tively, deduce it from 8.21 by noting that the categories in question are the
full subcategories of the categories in 8.21 whose objects are those on which
Gal.F sep=˝ acts trivially.

GEOMETRIC RE-STATEMENT OF THEOREM 8.21

In this subsection, we assume that the reader is familiar with the notion of an
algebraic variety over a field F (geometrically reduced separated scheme of
finite type over F ). The functor A Spec.A/ is a contravariant equivalence
from the category of étale algebras over F to the category of zero-dimensional
algebraic varieties over F . In particular, all zero-dimensional algebraic
varieties are affine. If V D Spec.A/, then

HomF -algebra.A;˝/' HomSpec.F /.Spec.˝/;V / def
D V.˝/

(set of points of V with coordinates in ˝).
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THEOREM 8.23 The functor V  V.˝/ is an equivalence from the cate-
gory of zero-dimensional algebraic varieties over F to the category of finite
continuous G-sets. Under this equivalence, connected varieties correspond to
sets with a transitive action.

PROOF. Combine Theorem 8.21 with the equivalence A Spec.A/. 2

Comparison with the theory of covering spaces.

The reader should compare (8.21) and (8.23) with the following statement:
Let X be a connected and locally simply connected topological
space. Let x 2 X , and let �1.X;x/ be the fundament group
(homotopy classes of loops based at x). Let Y !X be a covering
space, and let F.Y / denote the preimage of x in Y . There is a
natural action of �1.X;x/ on F.Y /: let 
 be a (small) loop based
at x regarded as a function 
 W Œ0;1�!X , and let y 2F.Y /; then

 it lifts to a function 
y W Œ0;1�! Y such that 
y.0/D y, and we
define 
 �y D 
y.1/. The functor E F.E/ is an equivalence
from the category of covering spaces of F to the category of
finite �1.X;x/-sets.

For more on this, see the section on the étale fundamental group in my notes
Lectures on Étale Cohomology or Szamuely, Galois groups and fundamental
groups, CUP, 2009.

ASIDE 8.24 (FOR THE EXPERTS) It is possible to define the “absolute Galois group”
of a field F canonically and without assuming the axiom of choice. Let S denote
the category of sheaves of Q-vector spaces on Spec.F /et having the property that
S.A/ is a finite-dimensional vector space for all A and the dimension of S.K/, K a
field, is bounded. This is a tannakian category, and we define the absolute Galois
group � of F to be the fundamental group of this category. This is an affine group
scheme in the category S. For any choice of a separable closure F sep of F , we get
a fibre functor ! on S, and !.�/D Gal.F sep=F /. See Julian Rosen, A choice-free
absolute Galois group and Artin motives, arXiv:1706.06573.

https://doi.org/10.48550/arXiv.1706.06573




CHAPTER 9
Transcendental Extensions

In this chapter we consider fields ˝ � F with ˝ much bigger than F . For
example, we could have C�Q:

Algebraic independence

Elements ˛1; :::;˛n of ˝ give rise to an F -homomorphism

f 7! f .˛1; :::;˛n/WF ŒX1; : : : ;Xn�!˝.

If the kernel of this homomorphism is zero, then the ˛i are said to be
algebraically independent over F , and otherwise, they are algebraically
dependent over F . Thus, the ˛i are algebraically dependent over F if
there exists a nonzero polynomial f .X1; :::;Xn/ 2 F ŒX1; :::;Xn� such that
f .˛1; :::;˛n/D 0, and they are algebraically independent if

ai1;:::;in 2 F;
X

ai1;:::;in˛
i1
1 :::˛

in
n D 0 H) ai1;:::;in D 0 all i1; :::; in:

Note the similarity with linear independence. In fact, if f is required to
be homogeneous of degree 1, then the definition becomes that of linear
independence.

EXAMPLE 9.1 (a) A single element ˛ is algebraically independent over F if
and only if it is transcendental over F:

(b) The complex numbers � and e are certainly expected to be alge-
braically independent over Q, but this has not been proved.

147
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An infinite setA is algebraically independent over F if every finite subset
of A is algebraically independent; otherwise, it is algebraically dependent
over F .

REMARK 9.2 If ˛1; :::;˛n are algebraically independent over F , then the
map

f .X1; :::;Xn/ 7! f .˛1; :::;˛n/WF ŒX1; :::;Xn�! F Œ˛1; :::;˛n�

is injective, and hence an isomorphism. This isomorphism then extends to
the fields of fractions,

Xi 7! ˛i WF.X1; :::;Xn/! F.˛1; :::;˛n/

In this case, F.˛1; :::;˛n/ is called a pure transcendental extension of F .
The polynomial

f .X/DXn�˛1X
n�1
C�� �C .�1/n˛n

has Galois group Sn over F.˛1; :::;˛n/ (see 5.40).

LEMMA 9.3 Let 
 2˝ and let A�˝. The following conditions are equiv-
alent:

(a) 
 is algebraic over F.A/;

(b) there exist ˇ1; : : : ;ˇn 2 F.A/ such that 
nCˇ1
n�1C�� �Cˇn D 0;

(c) there exist ˇ0;ˇ1; : : : ;ˇn 2F ŒA�, not all 0, such that ˇ0
nCˇ1
n�1C
�� �Cˇn D 0;

(d) there exists an f .X1; : : : ;Xm;Y / 2 F ŒX1 : : : ;Xm;Y � and ˛1; : : : ;˛m 2
A such that f .˛1; : : : ;˛m;Y /¤ 0 but f .˛1; : : : ;˛m;
/D 0.

PROOF. (a)H) (b)H) (c)H) (a) are obvious.
(d) H) (c). Write f .X1; : : : ;Xm;Y / as a polynomial in Y with coeffi-

cients in the ring F ŒX1; : : : ;Xm�,

f .X1; : : : ;Xm;Y /D
X

fi .X1; : : : ;Xm/Y
n�i .

Then (c) holds with ˇi D fi .˛1; : : : ;˛m/.
(c) H) (d). The ˇi in (c) can be expressed as polynomials in a finite

number of elements ˛1; : : : ;˛m of A, say, ˇi D fi .˛1; : : : ;˛m/ with fi 2
F ŒX1; : : : ;Xm�. Then (d) holds with f D

P
fi .X1; : : : ;Xm/Y

n�i . 2
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DEFINITION 9.4 When 
 satisfies the equivalent conditions of Lemma 9.3, it
is said to be algebraically dependent on A (over F /. A set B is algebraically
dependent on A if every element of B is algebraically dependent on A.

The theory in the remainder of this chapter is logically very similar to a
part of linear algebra. It is useful to keep the following correspondences in
mind:

Linear algebra Transcendence
linearly independent algebraically independent
A� span.B/ A algebraically dependent on B
basis transcendence basis
dimension transcendence degree

Transcendence bases

THEOREM 9.5 (FUNDAMENTAL RESULT) Let A D f˛1; :::;˛mg and B D
fˇ1; :::;ˇng be two subsets of ˝. Assume

(a) A is algebraically independent (over F );

(b) A is algebraically dependent on B (over F ).
Then m� n.

We first prove two lemmas.

LEMMA 9.6 (THE EXCHANGE PROPERTY) Let f˛1; :::;˛mg be a subset of
˝; if ˇ is algebraically dependent on f˛1; :::;˛mg but not on f˛1; :::;˛m�1g,
then ˛m is algebraically dependent on f˛1; :::;˛m�1;ˇg:

PROOF. Because ˇ is algebraically dependent on f˛1; : : : ;˛mg, there exists
a polynomial f .X1; :::;Xm;Y / with coefficients in F such that

f .˛1; :::;˛m;Y /¤ 0; f .˛1; :::;˛m;ˇ/D 0:

Write f as a polynomial in Xm,

f .X1; :::;Xm;Y /D
X
i

ai .X1; :::;Xm�1;Y /X
n�i
m ;

and observe that, because f .˛1; : : : ;˛m;Y /¤ 0, at least one of the polyno-
mials

ai .˛1; :::;˛m�1;Y /;
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say ai0 , is not the zero polynomial. Because ˇ is not algebraically dependent
on

f˛1; :::;˛m�1g;

ai0.˛1; :::;˛m�1;ˇ/ ¤ 0. Therefore, f .˛1; :::;˛m�1;Xm;ˇ/ ¤ 0. Because
f .˛1; :::;˛m;ˇ/D 0, this shows that ˛m is algebraically dependent on the set
f˛1; :::;˛m�1;ˇg. 2

LEMMA 9.7 (TRANSITIVITY OF ALGEBRAIC DEPENDENCE) If C is alge-
braically dependent on B , and B is algebraically dependent on A, then C is
algebraically dependent on A.

PROOF. The argument in the proof of Proposition 1.45 shows that if 
 is
algebraic over a field E which is algebraic over a field F , then 
 is algebraic
over F (if a1; : : : ;an are the coefficients of the minimal polynomial of 
 over
E, then the field F Œa1; : : : ;an;
� has finite degree over F ). Apply this with
E D F.A[B/ and F D F.A/. 2

PROOF (OF THEOREM 9.5) Let k be the number of elements that A and B
have in common. If k D m, then A � B , and certainly m � n. Suppose
that k < m, and write B D f˛1; :::;˛k;ˇkC1; :::;ˇng. Since ˛kC1 is alge-
braically dependent on f˛1; :::;˛k;ˇkC1; :::;ˇng but not on f˛1; :::;˛kg, there
will be a ǰ , kC 1 � j � n, such that ˛kC1 is algebraically dependent on
f˛1; :::;˛k;ˇkC1; :::; ǰ g but not

f˛1; :::;˛k;ˇkC1; :::; ǰ�1g:

The exchange lemma then shows that ǰ is algebraically dependent on

B1
def
D B [f˛kC1gXf ǰ g:

Therefore B is algebraically dependent on B1, and so A is algebraically
dependent on B1 (by 9.7). If kC1 < m, repeat the argument with A and B1.
Eventually we’ll achieve k Dm, and m� n: 2

DEFINITION 9.8 A transcendence basis for ˝ over F is an algebraically
independent set A such that ˝ is algebraic over F.A/:

LEMMA 9.9 If ˝ is algebraic over F.A/, and A is minimal among subsets
of ˝ with this property, then it is a transcendence basis for ˝ over F .

PROOF. If A is not algebraically independent, then there is an ˛ 2 A that is
algebraically dependent on AXf˛g. It follows from Lemma 9.7 that ˝ is
algebraic over F.AXf˛g/: 2
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THEOREM 9.10 If there is a finite subset A �˝ such that ˝ is algebraic
over F.A/, then ˝ has a finite transcendence basis over F . Moreover, every
transcendence basis is finite, and they all have the same number of elements.

PROOF. In fact, every minimal subset A0 of A such that ˝ is algebraic over
F.A0/ will be a transcendence basis. The second statement follows from
Theorem 9.5. 2

LEMMA 9.11 Suppose that A is algebraically independent, but that A[fˇg
is algebraically dependent. Then ˇ is algebraic over F.A/:

PROOF. The hypothesis is that there exists a nonzero polynomial

f .X1; :::;Xn;Y / 2 F ŒX1; :::;Xn;Y �

such that f .˛1; :::;˛n;ˇ/ D 0, some distinct ˛1; :::;˛n 2 A. Because A is
algebraically independent, Y does occur in f . Therefore

f D g0Y
m
Cg1Y

m�1
C�� �Cgm; gi 2F ŒX1; :::;Xn�; g0¤ 0; m� 1:

As g0 ¤ 0 and the ˛i are algebraically independent, g0.˛1; :::;˛n/¤ 0. Be-
cause ˇ is a root of

f D g0.˛1; :::;˛n/X
m
Cg1.˛1; :::;˛n/X

m�1
C�� �Cgm.˛1; :::;˛n/;

it is algebraic over F.˛1; :::;˛n/� F.A/: 2

PROPOSITION 9.12 Every maximal algebraically independent subset of ˝
is a transcendence basis for ˝ over F .

PROOF. We have to prove that ˝ is algebraic over F.A/ if A is maximal
among algebraically independent subsets. But the maximality implies that,
for every ˇ 2˝XA, A[fˇg is algebraically dependent, and so the lemma
shows that ˇ is algebraic over F.A/. 2

We now need to assume Zorn’s lemma.

THEOREM 9.13 Every algebraically independent subset S of˝ is contained
in a transcendence basis for ˝ over F ; in particular, transcendence bases
exist.
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PROOF. Let S be the set of algebraically independent subsets of˝ containing
S , partially ordered by inclusion. Let T be a totally ordered subset of S,
and let B D

S
fA j A 2 T g. I claim that B 2 S, i.e., that B is algebraically

independent. If not, there exists a finite subsetB 0 ofB that is not algebraically
independent. But such a subset will be contained in one of the sets in T , which
is a contradiction. Now Zorn’s lemma shows that there exists a maximal
algebraically independent set containing S , which Proposition 9.12 shows to
be a transcendence basis for ˝ over F . 2

It is possible to show that any two (possibly infinite) transcendence bases
for ˝ over F have the same cardinality. The cardinality of a transcendence
basis for ˝ over F is called the transcendence degree of ˝ over F . For
example, the pure transcendental extension F.X1; : : : ;Xn/ has transcendence
degree n over F .

EXAMPLE 9.14 Let p1; : : : ;pn be the elementary symmetric polynomials in
X1; : : : ;Xn. The field F.X1; : : : ;Xn/ is algebraic over F.p1; : : : ;pn/, and so
fp1;p2; : : : ;png contains a transcendence basis for F.X1; : : : ;Xn/. Because
F.X1; : : : ;Xn/ has transcendence degree n, the pi ’s must themselves be a
transcendence basis.

EXAMPLE 9.15 Let ˝ be the field of meromorphic functions on a compact
complex manifold M .

(a) The only meromorphic functions on the Riemann sphere are the
rational functions in z. Hence, in this case, ˝ is a pure transcendental
extension of C of transcendence degree 1.

(b) If M is a Riemann surface, then the transcendence degree of ˝ over
C is 1, and ˝ is a pure transcendental extension of C ” M is isomorphic
to the Riemann sphere

(c) If M has complex dimension n, then the transcendence degree is � n,
with equality holding if M is embeddable in some projective space.

PROPOSITION 9.16 Any two algebraically closed fields with the same tran-
scendence degree over F are F -isomorphic.

PROOF. Choose transcendence bases A and A0 for the two fields. By as-
sumption, there exists a bijection A! A0, which defines an F -isomorphism
F ŒA� ! F ŒA0�, and hence an F -isomorphism of the fields of fractions
F.A/! F.A0/. Use this isomorphism to identify F.A/ with F.A0/. Then
the two fields in question are algebraic closures of the same field, and hence
are isomorphic (Theorem 6.6). 2
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REMARK 9.17 Any two algebraically closed fields with the same uncount-
able cardinality and the same characteristic are isomorphic. The idea of the
proof is as follows. Let F and F 0 be the prime subfields of˝ and˝ 0; we can
identify F with F 0. Then show that when ˝ is uncountable, the cardinality
of ˝ is the same as the cardinality of a transcendence basis over F . Finally,
apply the proposition.

REMARK 9.18 What are the automorphisms of C? There are only two
continuous automorphisms (cf. Exercise A-8 and solution). When we assume
Zorn’s lemma, it is easy to construct many: choose a transcendence basisA for
C over Q, and choose a permutation ˛ of A; then ˛ defines an isomorphism
Q.A/!Q.A/, which can be extended to an automorphism of C. Without
Zorn’s lemma, there are only two, because the noncontinuous automorphisms
are nonmeasurable,1 and it is known that the Zorn’s lemma is required to
construct nonmeasurable functions.2

Lüroth’s theorem

THEOREM 9.19 (LÜROTH) Let LD F.X/ with X transcendental over F .
Every subfield E of L properly containing F is of the form E D F.u/ for
some u 2 L transcendental over F .

We first sketch a geometric proof of Lüroth’s theorem. The inclusion of
E into L corresponds to a map from the projective line P1 onto a complete
regular curve C . The Riemann-Hurwitz formula shows that C has genus 0.
Since it has an F -rational point (the image of any F -rational point of P1),
it is isomorphic to P1. Therefore E D F.u/ for some u 2 L transcendental
over F .

Before giving the elementary proof, we review Gauss’s lemma and its
consequences.

GAUSS’S LEMMA

Let R be a unique factorization domain, and let Q be its field of fractions,
for example, RD F ŒX� and QD F.X/. A polynomial f .T /D

P
aiT

i in

1A fairly elementary theorem of G. Mackey says that every measurable homomorphism
from a locally compact group to a topological group is continuous if both groups are second
countable. See Theorem B.3, p. 198 of Zimmer, Ergodic theory and semisimple groups, 1984.

2Solovay, A model of set-theory in which every set of reals is Lebesgue measurable. Ann.
of Math. (2) 92 (1970), 1–56.
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RŒT � is said to be primitive if its coefficients ai have no common factor other
than units. Every polynomial f in QŒX� can be written f D c.f / �f1 with
c.f / 2Q and f1 primitive (write f D af=a with a a common denominator
for the coefficients of f , and then write f D .b=a/f1 with b the greatest
common divisor of the coefficients of af ). The element c.f / is uniquely
determined up to a unit, and f 2RŒX� if and only if c.f / 2R.

9.20 If f;g 2RŒT � are primitive, so also is fg.

Let f D
P
aiT

i and g D
P
biT

i , and let p be a prime element of R.
Because f is primitive, there exists a coefficient ai not divisible by p — let
ai1 be the first such coefficient. Similarly, let bi2 be the first coefficient of g
not divisible by p. Then the coefficient of T i1Ci2 in fg is not divisible by p.
This shows that fg is primitive.

9.21 For any f;g 2RŒT �, c.fg/D c.f /c.g/ and .fg/1 D f1g1.

Let f D c.f /f1 and g D c.g/g1 with f1 and g1 primitive. Then fg D
c.f /c.g/f1g1 with f1g1 primitive, and so c.fg/D c.f /c.g/ and .fg/1 D
f1g1.

9.22 Let f be a polynomial in RŒT �. If f factors into the product of two
nonconstant polynomials in QŒT �, then it factors into the product of two
nonconstant polynomials in RŒT �.

Suppose that f D gh in QŒT �. Then f1 D g1h1 in RŒT �, and f D c.f / �
f1 D .c.f / �g1/h1 is a factorization of f in RŒT �.

9.23 Let f;g 2 RŒT �. If f divides g in QŒT � and f is primitive, then it
divides g in RŒT �.

Let f q D g with q 2QŒT �. Then c.q/D c.g/ 2R, and so q 2RŒT �.

PROOF OF LÜROTH’S THEOREM

We define the degree deg.u/ of an element u of F.X/ to be the larger of the
degrees of the numerator and denominator of u when it is expressed in its
simplest form.

LEMMA 9.24 Let u 2 F.X/XF . Then u is transcendental over F , X is
algebraic over F.u/, and ŒF .X/WF.u/�D deg.u/:
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PROOF. Let u.X/D a.X/=b.X/ with a.X/ and b.X/ relatively prime poly-
nomials. Then a.T /�b.T /u is a polynomial in F.u/ŒT � having X as a root,
and so X is algebraic over F.u/. It follows that u is transcendental over F
(else X would be algebraic over F ; 1.31).

The polynomial a.T /�b.T /Z 2 F ŒZ;T � is clearly irreducible. As u is
transcendental over F ,

F ŒZ;T �' F Œu;T �; Z$ u; T $ T;

and so a.T /�b.T /u is irreducible in F Œu;T �, and hence also in F.u/ŒT � by
Gauss’s lemma (9.22). It has X as a root, and so, up to a constant, it is the
minimal polynomial of X over F.u/, and its degree is deg.u/, which proves
the lemma. 2

EXAMPLE 9.25 We have F.X/D F.u/ if and only if

uD
aXCb

cXCd

with ad �bc ¤ 0:

We now prove Theorem 9.19. For any u 2EXF ,

ŒF .X/WE�� ŒF .X/WF.u/�D deg.u/;

and so X is algebraic over E. Let

f .T /D T nCa1T
n�1
C�� �Can; ai 2E; nD ŒF .X/WE�;

be its minimal polynomial. As X is transcendental over F , some aj … F , and
we’ll show that E D F.aj / for such an aj .

Let d.X/ 2F ŒX� be a polynomial of least degree such that d.X/ai .X/ 2
F ŒX� for all i , and let

f1.X;T /D df .T /D dT
n
Cda1T

n�1
C�� �Cdan 2 F ŒX;T �:

Then f1 is primitive as a polynomial in T , i.e., gcd.d;da1; : : : ;dan/D 1 in
F ŒX�. The degreem of f1 inX is the largest degree of one of the polynomials
da1; da2; : : :, say,

mD deg.dai /:

Write ai D b=c with b;c relatively prime polynomials in F ŒX�. Now b.T /�

c.T /ai .X/ is a polynomial in EŒT � having X as a root, and so it is divisible
by f , say

f .T / �q.T /D b.T /� c.T / �ai .X/; q.T / 2EŒT �.
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On multiplying through by c.X/, we find that

c.X/ �f .T / �q.T /D c.X/ �b.T /� c.T / �b.X/:

As f1 differs from f by a nonzero element of F.X/, the equation shows
that f1 divides c.X/ �b.T /� c.T / �b.X/ in F.X/ŒT �, but f1 is primitive in
F ŒX�ŒT �, and so it divides the polynomial in F ŒX�ŒT �D F ŒX;T � (by 9.23),
i.e., there exists a polynomial h 2 F ŒX;T � such that

f1.X;T / �h.X;T /D c.X/ �b.T /� c.T / �b.X/. (14)

In (14), the polynomial c.X/ � b.T /� c.T / � b.X/ has degree at most
m in X , and m is the degree of f1.X;T / in X . Therefore, c.X/ � b.T /�
c.T / �b.X/ has degree exactly m in X , and h.X;T / has degree 0 in X , i.e.,
h 2 F ŒT �. It now follows from (14) that c.X/ � b.T /� c.T / � b.X/ is not
divisible by a nonconstant polynomial in F ŒX�.

The polynomial c.X/ � b.T /� c.T / � b.X/ is symmetric in X and T ,
i.e., it is unchanged when they are swapped. Therefore, it has degree m
in T and it is not divisible by a nonconstant polynomial in F ŒT �. It now
follows from (14) that h is not divisible by a nonconstant polynomial in F ŒT �,
and so it lies in F �. We conclude that f1.X;T / is a constant multiple of
c.X/ �b.T /� c.T / �b.X/.

On comparing degrees in T in (14), we see that nDm. Thus

ŒF .X/WF.ai /�
9.24
D deg.ai /� deg.dai /DmDnD ŒF .X/WE�� ŒF .X/WF.ai /�:

Hence, equality holds throughout, and so E D F Œai �.
Finally, if aj … F , then

ŒF .X/WE�� ŒF .X/WF.aj /�
9.24
D deg.aj /� deg.daj /� deg.dai /D ŒF .X/WE�;

and so E D F.aj / as claimed.

REMARK 9.26 Lüroth’s theorem fails when there is more than one variable
— see Zariski’s example (footnote to 5.5) and Swan’s example (Remark 5.41).
However, the following is true: if ŒF .X;Y /WE� <1 and F is algebraically
closed of characteristic zero, then E is a pure transcendental extension of F
(Theorem of Zariski, 1958).

NOTES Lüroth proved his theorem over C in 1876. For general fields, it was proved
by Steinitz in 1910 by the above argument.
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Separating transcendence bases

Let E � F be fields with E finitely generated over F . A subset fx1; : : : ;xd g
of E is a separating transcendence basis for E=F if it is algebraically
independent over F and E is a finite separable extension of F.x1; : : : ;xd /.

THEOREM 9.27 If F is perfect, then every finitely generated extension E of
F admits a separating transcendence basis over F .

PROOF. If F has characteristic zero, then every transcendence basis is sepa-
rating, and so the statement becomes that of Theorem 9.10. Thus, we may
assume F has characteristic p ¤ 0. Because F is perfect, every polynomial
in Xp1 ; : : : ;X

p
n with coefficients in F is a pth power in F ŒX1; : : : ;Xn�:X
ai1���inX

i1p
1 : : :X inpn D

�X
a
1
p

i1���in
X
i1
1 : : :X

in
n

�p
:

Let E D F.x1; : : : ;xn/, and assume that n > d C1, where d is the tran-
scendence degree of E over F . After renumbering, we may suppose that
x1; : : : ;xd are algebraically independent (9.9). Then f .x1; : : : ;xdC1/ D 0
for some nonzero irreducible polynomial f .X1; : : : ;XdC1/ with coefficients
in F . Not all @f=@Xi are zero, for otherwise f would be a polynomial
in Xp1 ; : : : ;X

p

dC1
, which implies that it is a pth power. After renumber-

ing x1; : : : ;xdC1, we may suppose that @f=@XdC1 ¤ 0. Then xdC1 is
separably algebraic over F.x1; : : : ;xd / and F.x1; : : : ;xdC1;xdC2/ is al-
gebraic over F.x1; : : : ;xdC1/, hence over F.x1; : : : ;xd / (1.31), and so,
by the primitive element theorem (5.1), there is an element y such that
F.x1; : : : ;xdC2/D F.x1; : : : ;xd ;y/. Thus E is generated by n�1 elements
(as a field containing F /. After repeating the process, possibly several times,
we will haveE DF.z1; : : : ; zdC1/ with zdC1 separable over F.z1; : : : ; zd /.2
ASIDE 9.28 In fact, we showed that E admits a separating transcendence basis
with d C1 elements where d is the transcendence degree. This has the following
geometric interpretation: every irreducible algebraic variety of dimension d over a
perfect field F is birationally equivalent with a hypersurface H in AdC1 for which
the projection .a1; : : : ;adC1/ 7! .a1; : : : ;ad / realizes F.H/ as a finite separable
extension of F.Ad / (see my notes Algebraic Geometry).

Transcendental Galois theory

THEOREM 9.29 Let˝ be an algebraically closed field and let F be a perfect
subfield of ˝. If ˛ 2˝ is fixed by all F -automorphisms of ˝, then ˛ 2 F ,
i.e., ˝Aut.˝=F / D F .
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PROOF. Let ˛ 2 ˝ X F . If ˛ is algebraic over F , then there is an F -
homomorphism F Œ˛�! ˝ sending ˛ to a conjugate of ˛ in ˝ different
from ˛. This homomorphism extends to an isomorphism F al! F al �˝,
where F al is the algebraic closure of F in ˝ (by 6.6). Now choose a tran-
scendence basis A for ˝ over F al. We can extend our isomorphism to an
isomorphism F al.A/! F al.A/�˝ by mapping each element of A to itself.
Finally, we can extend this isomorphism to an isomorphism from the algebraic
closure ˝ of F al.A/ to ˝.

If ˛ is transcendental over F , then it is part of a transcendence basis A
for ˝ over F (see 9.13). If A¤ f˛g, then there exists an automorphism �

of A such that �.˛/¤ ˛. Now � defines an F -homomorphism F.A/!˝,
which extends to an isomorphism ˝!˝ as before. If AD f˛g, then we let
F.˛/!˝ be the F -homomorphism sending ˛ to ˛C1. Again, this extends
to an isomorphism ˝!˝. 2

Let ˝ � F be fields and let G D Aut.˝=F /. For any finite subset S of
˝, let

G.S/D f� 2G j �s D s for all s 2 Sg.

Then, as in �7, the subgroups G.S/ of G form a neighbourhood base at
the identity for a topology on the group G, which we again call the Krull
topology. The same argument as in �7 shows that this topology is Hausdorff
(but it is not necessarily compact).

THEOREM 9.31 Let ˝ � F be fields such that ˝Aut.˝=F / D F , and let
G D Aut.˝=F /.

(a) For every finite extension E of F in ˝, ˝Aut.˝=E/ DE.
(b) The maps

H 7!˝H ; M 7! Aut.˝=M/ (15)

are inverse bijections between the set of compact subgroups of G and the set
of intermediate fields over which ˝ is Galois (possibly infinite):

fcompact subgroups of Gg $ ffields M such that F �M
Galois
� ˝g:

(c) If there exists an intermediate field M finitely generated over F such
that ˝ is Galois over M , then G is locally compact, and under (15), the open
compact subgroups of G correspond to such M .

(d) Let H be a subgroup of G, and let M D ˝H . Then the algebraic
closure M1 of M is Galois over M . If moreover H D Aut.˝=M/, then
Aut.˝=M1/ is a normal subgroup ofH , and � 7! � jM1 mapsH=Aut.˝=M1/

isomorphically onto a dense subgroup of Aut.M1=M/.
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PROOF. See 6.3 of Shimura, Introduction to the arithmetic theory of auto-
morphic functions. Princeton, 1971. 2

Exercises

9-1 Find the centralizer of complex conjugation in Aut.C=Q/.





APPENDIX A
Review Exercises

A-1 Let p be a prime number, and let m and n be positive integers.
(a) Give necessary and sufficient conditions on m and n for Fpn to have a

subfield isomorphic with Fpm . Prove your answer.

(b) If there is such a subfield, how many subfields isomorphic with Fpm
are there, and why?

A-2 Show that the Galois group of the splitting field F of X3�7 over Q
is isomorphic to S3, and exhibit the fields between Q and F . Which of the
fields between Q and F are normal over Q?

A-3 Prove that the two fields QŒ
p
7� and QŒ

p
11� are not isomorphic.

A-4 (a) Prove that the multiplicative group of all nonzero elements in a
finite field is cyclic.

(b) Construct explicitly a field of order 9, and exhibit a generator for its
multiplicative group.

A-5 LetX be transcendental over a field F , and letE be a subfield of F.X/
properly containing F . Prove that X is algebraic over E.

A-6 Prove as directly as you can that if � is a primitive pth root of 1, p
prime, then the Galois group of QŒ�� over Q is cyclic of order p�1.

A-7 Let G be the Galois group of the polynomial X5�2 over Q.
(a) Determine the order of G.

(b) Determine whether G is abelian.
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(c) Determine whether G is solvable.

A-8 (a) Show that every field homomorphism from R to R is bijective.

(b) Prove that C is isomorphic to infinitely many different subfields of
itself.

A-9 Let F be a field with 16 elements. How many roots in F does each of
the following polynomials have? X3�1; X4�1; X15�1; X17�1.

A-10 Find the degree of a splitting field of the polynomial .X3�5/.X3�7/
over Q.

A-11 Find the Galois group of the polynomialX6�5 over each of the fields
Q and R.

A-12 The coefficients of a polynomial f .X/ are algebraic over a field F .
Show that f .X/ divides some nonzero polynomial g.X/ with coefficients in
F .

A-13 Let f .X/ be a polynomial in F ŒX� of degree n, and let E be a
splitting field of f . Show that ŒEWF � divides nŠ.

A-14 Find a primitive element for the field QŒ
p
3;
p
7� over Q, i.e., an

element such that QŒ
p
3;
p
7�DQŒ˛�.

A-15 Let G be the Galois group of .X4�2/.X3�5/ over Q.
(a) Give a set of generators for G, as well as a set of defining relations.

(b) What is the structure of G as an abstract group (is it cyclic, dihedral,
alternating, symmetric, etc.)?

A-16 Let F be a finite field of characteristic¤ 2. Prove that X2 D�1 has
a solution in F if and only if jF j � 1 mod 4.

A-17 LetE be the splitting field over Q of .X2�2/.X2�5/.X2�7/. Find
an element ˛ in E such that E DQŒ˛�. (You must prove that E DQŒ˛�.)

A-18 Let E be a Galois extension of F with Galois group Sn, n > 1 not
prime. Let H1 be the subgroup of Sn of elements fixing 1, and let H2 be the
subgroup generated by the cycle .123: : :n/. Let Ei D EHi , i D 1;2. Find
the degrees of E1, E2, E1\E2, and E1E2 over F . Show that there exists
a field M such that F �M �E2, M ¤ F , M ¤E2, but that no such field
exists for E1.
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A-19 Let � be a primitive 12th root of 1 over Q. How many fields are there
strictly between QŒ�3� and QŒ��.

A-20 For the polynomial X3� 3, find explicitly its splitting field over Q
and elements that generate its Galois group.

A-21 Let E DQŒ��, �5 D 1, � ¤ 1. Show that i …E, and that if LDEŒi�,
then �1 is a norm from L to E. Here i D

p
�1.

A-22 Let E be an extension of F , and let ˝ be an algebraic closure of E.
Let �1; : : : ;�n be distinct F -isomorphisms E!˝.

(a) Show that �1; : : : ;�n are linearly dependent over ˝.

(b) Show that ŒEWF ��m.

(c) Let F have characteristic p > 0, and letL be a subfield of˝ containing
E and such that ap 2E for all a 2 L. Show that each �i has a unique
extension to a homomorphism � 0i WL!˝.

A-23 Identify the Galois group of the splitting field F of X4� 3 over Q.
Determine the number of quadratic subfields.

A-24 Let F be a subfield of a finite field E. Prove that the trace map
T D TrE=F and the norm map N D NmE=F of E over F both map E onto
F . (You may quote basic properties of finite fields and the trace and norm.)

A-25 Prove or disprove by counterexample.
(a) If L=F is an extension of fields of degree 2, then there is an automor-

phism � of L such that F is the fixed field of � .

(b) The same as (a) except that L is also given to be finite.

A-26 A finite Galois extension L of a field K has degree 8100. Show that
there is a field F with K � F � L such that ŒF WK�D 100.

A-27 An algebraic extension L of a field K of characteristic 0 is generated
by an element � that is a root of both of the polynomials X3�1 and X4C
X2C1. Given that L¤K, find the minimal polynomial of � .

A-28 Let F=Q be a Galois extension of degree 3n, n� 1. Prove that there
is a chain of fields

QD F0 � F1 � �� �Fn D F

such that for every i , 0� i � n�1, ŒFiC1WFi �D 3.
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A-29 Let L be the splitting field over Q of an equation of degree 5 with
distinct roots. Suppose that L has an automorphism that fixes three of these
roots while interchanging the other two and also an automorphism ˛ ¤ 1 of
order 5.

(a) Prove that the group of automorphisms of L is the symmetric group on
5 elements.

(b) How many proper subfields of L are normal extensions of Q? For each
such field F , what is ŒF WQ�?

A-30 If L=K is a separable algebraic field extension of finite degree d ,
show that the number of fields between K and L is at most 2dŠ. [This is far
from best possible. See math.stackexchange.com, question 522976.]

A-31 Let K be the splitting field over Q of X5� 1. Describe the Galois
group Gal.K=Q/ of K over Q, and show that K has exactly one subfield of
degree 2 over Q, namely, QŒ�C�4�, � ¤ 1 a root ofX5�1. Find the minimal
polynomial of �C �4 over Q. Find Gal.L=Q/ when L is the splitting field
over Q of

(a) .X2�5/.X5�1/;

(b) .X2C3/.X5�1/.

A-32 Let ˝1 and ˝2 be algebraically closed fields of transcendence degree
5 over Q, and let ˛W˝1!˝2 be a homomorphism (in particular, ˛.1/D 1).
Show that ˛ is a bijection. (State carefully all theorems you use.)

A-33 Find the group of Q-automorphisms of the field k DQŒ
p
�3;
p
�2�.

A-34 Prove that the polynomial f .X/DX3�5 is irreducible over the field
QŒ
p
7�. If L is the splitting field of f .X/ over QŒ

p
7�, prove that the Galois

group of L=QŒ
p
7� is isomorphic to S3. Prove that there must exist a subfield

K of L such that the Galois group of L=K is cyclic of order 3.

A-35 Identify the Galois groupG of the polynomial f .X/DX5�6X4C3
over F , when (a) F D Q and when (b) F D F2. In each case, if E is the
splitting field of f .X/ over F , determine how many fields K there are such
that E �K � F with ŒKWF �D 2.

A-36 Let K be a field of characteristic p, say with pn elements, and let �
be the automorphism of K that maps every element to its pth power. Show
that there exists an automorphism ˛ of K such that �˛2 D 1 if and only if n
is odd.
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A-37 Describe the splitting field and Galois group, over Q, of the polyno-
mial X5�9.

A-38 Suppose that E is a Galois field extension of a field F such that
ŒEWF � D 53 � .43/2. Prove that there exist fields K1 and K2 lying strictly
between F and E with the following properties: (i) each Ki is a Galois
extension of F ; (ii) K1\K2 D F ; and (iii) K1K2 DE.

A-39 Let F DFp for some prime p. Letm be a positive integer not divisible
by p, and let K be the splitting field of Xm�1. Find ŒKWF � and prove that
your answer is correct.

A-40 Let F be a field of 81 elements. For each of the following polynomials
g.X/, determine the number of roots of g.X/ that lie in F : X80�1,X81�1,
X88�1.

A-41 Describe the Galois group of the polynomial X6�7 over Q.

A-42 LetK be a field of characteristic p > 0 and let F DK.u;v/ be a field
extension of degree p2 such that up 2K and vp 2K. Prove that K is not
finite, that F is not a simple extension of K, and that there exist infinitely
many intermediate fields F � L�K.

A-43 Find the splitting field and Galois group of the polynomial X3� 5
over the field QŒ

p
2�.

A-44 For every prime p, find the Galois group over Q of the polynomial
X5�5p4XCp.

A-45 Factorize X4C1 over each of the finite fields (a) F5; (b) F25; and (c)
F125. Find its splitting field in each case.

A-46 Let QŒ˛� be a field of finite degree over Q. Assume that there is a
q 2 Q, q ¤ 0, such that j�.˛/j D q for all homomorphisms �WQŒ˛�! C.
Show that the set of roots of the minimal polynomial of ˛ is the same as that
of q2=˛. Deduce that there exists an automorphism � of QŒ˛� such that

(a) �2 D 1 and

(b) �.�
/D �.
/ for all 
 2QŒ˛� and �WQŒ˛�! C.

A-47 Let F be a field of characteristic zero, and let p be a prime number.
Suppose that F has the property that all irreducible polynomials f .X/ 2
F ŒX� have degree a power of p .1 D p0 is allowed). Show that every
equation g.X/D 0, g 2 F ŒX�, is solvable by extracting radicals.
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A-48 Let K D QŒ
p
5;
p
�7� and let L be the splitting field over Q of

f .X/DX3�10.
(a) Determine the Galois groups of K and L over Q.

(b) Decide whether K contains a root of f .

(c) Determine the degree of the field K\L over Q.
[Assume all fields are subfields of C.]

A-49 Find the splitting field (over Fp) ofXp
r

�X 2FpŒX�, and deduce that
Xp

r

�X has an irreducible factor f 2 FpŒX� of degree r . Let g.X/ 2 ZŒX�
be a monic polynomial that becomes equal to f .X/ when its coefficients are
read modulo p. Show that g.X/ is irreducible in QŒX�.

A-50 Let E be the splitting field of X3�51 over Q. List all the subfields
of E, and find an element 
 of E such that E DQŒ
�.

A-51 Let k D F1024 be the field with 1024 elements, and let K be an
extension of k of degree 2. Prove that there is a unique automorphism � of
K of order 2 which leaves k elementwise fixed and determine the number of
elements of K� such that �.x/D x�1.

A-52 Let F and E be finite fields of the same characteristic. Prove or
disprove these statements:

(a) There is a ring homomorphism of F intoE if and only if jEj is a power
of jF j.

(b) There is an injective group homomorphism of the multiplicative group
of F into the multiplicative group of E if and only if jEj is a power of
jF j.

A-53 Let L=K be an algebraic extension of fields. Prove that L is alge-
braically closed if every polynomial over K factors completely over L.

A-54 Let K be a field, and let M DK.X/, X an indeterminate. Let L be
an intermediate field different from K. Prove that M is finite-dimensional
over L.

A-55 Let �1;�2;�3 be the roots of the polynomial f .X/ D X3CX2 �
9XC1.

(a) Show that the �i are real, nonrational, and distinct.

(b) Explain why the Galois group of f .X/ over Q must be either A3 or
S3. Without carrying it out, give a brief description of a method for
deciding which it is.
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(c) Show that the rows of the matrix0BB@
3 9 9 9

3 �1 �2 �3
3 �2 �3 �1
3 �3 �1 �2

1CCA
are pairwise orthogonal; compute their lengths, and compute the deter-
minant of the matrix.

A-56 Let E=K be a Galois extension of degree p2q where p and q are
primes, q < p and q not dividing p2�1. Prove that:

(a) there exist intermediate fields L and M such that ŒLWK� D p2 and
ŒM WK�D q;

(b) such fields L and M must be Galois over K; and

(c) the Galois group of E=K must be abelian.

A-57 Let � be a primitive 7th root of 1 (in C).
(a) Prove that 1CXCX2CX3CX4CX5CX6 is the minimal polyno-

mial of � over Q.

(b) Find the minimal polynomial of �C 1
�

over Q.

A-58 Find the degree over Q of the Galois closure K of QŒ2 14 � and deter-
mine the isomorphism class of Gal.K=Q/.

A-59 Let p;q be distinct positive prime numbers, and consider the extension
K DQŒpp;pq��Q.

(a) Prove that the Galois group is isomorphic to C2�C2.

(b) Prove that every subfield ofK of degree 2 over Q is of the form QŒ
p
m�

where m 2 fp;q;pqg.

(c) Show that there is an element 
 2K such that K DQŒ
�.





APPENDIX B
Two-hour Examination

1. (a) Let � be an automorphism of a field E. If �4 D 1 and

�.˛/C�3.˛/D ˛C�2.˛/ all ˛ 2E;

show that �2 D 1.
(b) Let p be a prime number and let a;b be rational numbers such that
a2Cpb2 D 1. Show that there exist rational numbers c;d such that a D
c2�pd2

c2Cpd2
and b D 2cd

c2Cpd2
.

2. Let f .X/ be an irreducible polynomial of degree 4 in QŒX�, and let g.X/
be the resolvent cubic of f . What is the relation between the Galois group of
f and that of g? Find the Galois group of f if

(a) g.X/DX3�3XC1;

(b) g.X/DX3C3XC1.

3. (a) How many monic irreducible factors does X255�1 2 F2ŒX� have, and
what are their degrees.
(b) How many monic irreducible factors does X255� 1 2 QŒX� have, and
what are their degrees?

4. Let E be the splitting field of .X5 � 3/.X5 � 7/ 2 QŒX�. What is the
degree of E over Q? How many proper subfields of E are there that are not
contained in the splitting fields of both X5�3 and X5�7?
[You may assume that 7 is not a 5th power in the splitting field of X5�3.]

5. Consider an extension˝ �F of fields. Define a 2˝ to be F -constructible
if it is contained in a field of the form

F Œ
p
a1; : : : ;

p
an�; ai 2 F Œ

p
a1; : : : ;

p
ai�1�:
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Assume ˝ is a finite Galois extension of F and construct a field E, F �
E �˝, such that every a 2˝ is E-constructible and E is minimal with this
property.

6. Let˝ be an extension field of a fieldF . Show that everyF -homomorphism
˝!˝ is an isomorphism provided:

(a) ˝ is algebraically closed, and

(b) ˝ has finite transcendence degree over F .
Can either of the conditions (i) or (ii) be dropped? (Either prove, or give

a counterexample.)

You should prove all answers. You may use results proved in class or in the
notes, but you should indicate clearly what you are using.

Possibly useful facts: The discriminant of X3CaXCb is �4a3�27b2 and
28�1D 255D 3�5�17.



APPENDIX C
Solutions to the Exercises

These solutions fall somewhere between hints and complete solutions. Stu-
dents were expected to write out complete solutions.
1-1. Similar to Example 1.28.

1-2. Verify that 3 is not a square in QŒ
p
2�, and so ŒQŒ

p
2;
p
3�WQ�D 4.

1-3. (a) Apply the division algorithm, to get f .X/D q.X/.X �a/C r.X/
with r.X/ constant, and put X D a to find r D f .a/.
(c) Use that factorization in F ŒX� is unique, or use induction on the degree
of f .
(d) If G had two cyclic factors C and C 0 whose orders were divisible by a
prime p, then G would have (at least) p2 elements of order dividing p. This
does not happen, and it follows that G is cyclic.
(e) The elements of order m in F � are the roots of the polynomial Xm�1,
and so there are at most m of them. Hence every finite subgroup G of F �

satisfies the condition in (d).

1-4. Note that it suffices to construct ˛D cos 2�
7

, and that ŒQŒ˛�WQ�D 7�1
2
D

3, and so its minimal polynomial has degree 3 (see Example 3.22). There is a
standard method (once taught in high schools) for solving cubics using the
equation

cos3� D 4cos3 � �3cos�:

By “completing the cube”, reduce the cubic to the form X3�pX �q. Then
construct a square root a of 4p

3
, so that a2 D 4p

3
. Let 3� be the angle such

that cos3� D 4q

a3
, and use the angle trisector to construct cos� . From the

displayed equation, we find that ˛ D acos� is a root of X3�pX �q. For a
geometric construction, see sx93476.
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1-5. Let f1 be an irreducible factor of f inEŒX�, and let .L;˛/ be a stem field
for f1 over E. Then mjŒLWF � because L�E (1.20). But f .˛/D 0, and so
.F Œ˛�;˛/ is a stem field for f over F , which implies that ŒF Œ˛�WF �D n. Now
njŒLWF � because L � F Œ˛�. We deduce that ŒLWF �D mn and ŒLWE�D n.
But ŒLWE�D deg.f1/, and so f1 D f .

1-6. The polynomials f .X/�1 and f .X/C1 have only finitely many roots,
and so there exists an n 2 Z such that f .n/¤˙1. Let p be a prime dividing
f .n/. Then f .n/D 0 modulo p, and so f has a root in Fp. Thus it is not
irreducible in FpŒX�.

1-7. It is easy to see that R is ring, and so it remains to show that every
nonzero element aCb˛C c˛2 has an inverse in R. Let f .X/DX3�2 and
g.X/D cX2CbXCa. As f is irreducible and deg.g/ < deg.f /, f and g
are relatively prime. Therefore Euclid’s algorithm gives polynomials u.X/
and v.X/ with degv < 3 such that u.X/f .X/Cv.X/g.X/D 1. On putting
X D ˛ in this equation, we find that v.˛/g.˛/D 1, i.e., v.˛/ is inverse to
g.˛/D aCb˛Cc˛2. Alternatively, R is an integral domain (being a subring
of C), and so (1.23) shows that R is a field.

1-8. This is Problem 4, p. 3, in Borevich and Shafarevich. Number theory.
Academic Press, 1966.

2-1. (a) is obvious, as is the “only if” in (b). For the “if” note that for any
a 2 S.E/, a … F 2, E � F ŒX�=.X2�a/.

(c) Take Ei DQŒppi � with pi the i th prime. Check that pi is the only
prime that becomes a square in Ei . For this use that .aCb

p
p/2 2Q H)

2ab D 0.
(d) Every field of characteristic p contains (an isomorphic copy of) Fp,

and so we are looking at the quadratic extensions of Fp . The homomorphism
a 7! a2WF�p ! F�p has kernel f˙1g, and so its image has index 2 in F�p . Thus
the only possibility for S.E/ is F�p , and so there is at most one E (up to
Fp-isomorphism). To get one, take E D F ŒX�=.X2�a/, a … F2p.

2-2. (a) If ˛ is a root of f .X/DXp�X�a (in some splitting field), then the
remaining roots are ˛C1; : : : ;˛Cp�1, which obviously lie in whichever
field contains ˛. Moreover, they are distinct. Suppose that, in F ŒX�,

f .X/D .XrCa1X
r�1
C�� �Car/.X

p�r
C�� �/; 0 < r < p:

Then �a1 is a sum of r of the roots of f , �a1 D r˛Cd some d 2 Z �1F ,
and it follows that ˛ 2 F .
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(b) As 0 and 1 are not roots of Xp�X �1 in Fp it cannot have p distinct
roots in Fp, and so (a) implies that Xp �X �1 is irreducible in FpŒX� and
hence also in ZŒX� and QŒX� (see 1.18, 1.13).

2-3. Let ˛ be the real 5th root of 2. Eisenstein’s criterion shows that X5�2
is irreducible in QŒX�, and so QŒ 5

p
2� has degree 5 over Q. The remaining

roots of X5� 2 are �˛;�2˛;�3˛;�4˛, where � is a primitive 5th root of 1.
It follows that the subfield of C generated by the roots of X5�2 is QŒ�;˛�.
The degree of QŒ�;˛� is 20, since it must be divisible by ŒQŒ��WQ�D 4 and
ŒQŒ˛�WQ�D 5.

2-4. The splitting field of the first polynomial is Fp because Xp
m

� 1 D

.X �1/p
m

. For the second, see Proposition 4.20.

2-5. If f .X/D
Q
.X �˛i /

mi , ˛i ¤ j̨ , then

f 0.X/D
X

mi
f .X/

X �˛i

and so d.X/D
Q
mi>1

.X �˛i /
mi�1. Therefore g.X/D

Q
.X �˛i /.

2-6. From (2.20) we know that either f is separable or f .X/D f1.Xp/ for
some polynomial f1. Clearly f1 is also irreducible. If f1 is not separable, it
can be written f1.X/D f2.Xp/. Continue in the way until you arrive at a
separable polynomial. For the final statement, note that g.X/D

Q
.X �ai /,

ai ¤ aj , and so f .X/D g.Xp
e

/D
Q
.X �˛i /

pe with ˛p
e

i D ai .

3-1. Let � and � be automorphisms of F.X/ given by �.X/ D �X and
�.X/D 1�X . Then � and � fix X2 and X2�X respectively, and so ��
fixes E def

D F.X/\F.X2 �X/. But ˛�X D 1CX , and so .��/m.X/ D
mCX . Thus Aut.F.X/=E/ is infinite, which implies that ŒF .X/WE� is
infinite (otherwise F.X/D EŒ˛1; : : : ;˛n�; an E-automorphism of F.X/ is
determined by its values on the ˛i , and its value on ˛i is a root of the minimal
polynomial of ˛i ). If E contains a polynomial f .X/ of degree m> 0, then
ŒF .X/WE�� ŒF .X/WF.f .X//�Dm — contradiction.

3-2. Since 1C�C�� �C�p�1D 0, we have ˛CˇD�1. If i 2H , then iH D
H and i.GXH/D GXH , and so ˛ and ˇ are fixed by H . If j 2 GXH ,
then jH DGXH and j.GXH/DH , and so j˛ D ˇ and jˇ D ˛. Hence
˛ˇ 2Q, and ˛ and ˇ are the roots of X2CXC˛ˇ.

Note that
˛ˇ D

X
i;j

�iCj ; i 2H; j 2GXH:
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How many times do we have iCj D 0? If iCj D 0, then�1D i�1j , which
is a nonsquare; conversely, if �1 is a nonsquare, take i D 1 and j D�1 to
get iCj D 0. Hence

iCj D 0 some i 2H; j 2GXH ” �1 is a square mod p

” p ��1 mod 4:

If we do have a solution to iCj D 0, we get all solutions by multiplying it
through by the p�1

2
squares. So in the sum for ˛ˇ we see 1 a total of p�1

2

times when p � 3 mod 4 and not at all if p � 1 mod 4. In either case, the
remaining terms add to a rational number, which implies that each power of �
occurs the same number of times.

Thus for p� 1 mod 4, ˛ˇD�.p�1
2
/2=.p�1/D�p�1

4
; the polynomial

satisfied by ˛ and ˇ isX2CX� p�1
4

, whose roots are .�1˙
p
1Cp�1/=2;

the fixed field of H is QŒpp�.
For p ��1 mod 4,

˛ˇD
p�1

2
C.�1/

��p�1
2

�2
�
p�1

2

�
=.p�1/D

p�1

2
�
p�3

4
D
pC1

4
I

the polynomial is X2CXC pC1
4

, with roots .�1˙
p
1�p�1/=2; the fixed

field of H is QŒp�p�. See also sx984457.

3-3. (a) It is easy to see that M is Galois over Q with Galois group h�;�i:�
�
p
2D�

p
2

�
p
3D
p
3

�
�
p
2D
p
2

�
p
3D�

p
3
:

(b) We have

�˛2

˛2
D
2�
p
2

2C
p
2
D
.2�
p
2/2

4�2
D

 
2�
p
2

p
2

!2
D .
p
2�1/2;

i.e., �˛2 D ..
p
2�1/˛/2. Thus, if ˛ 2M , then �˛ D˙.

p
2�1/˛, and

�2˛ D .�
p
2�1/.

p
2�1/˛ D�˛I

as �2˛ D ˛ ¤ 0, this is impossible. Hence ˛ …M , and so ŒEWQ�D 8.
Extend � to an automorphism (also denoted �) of E. Again �˛ D˙.

p
2�

1/˛ and �2˛ D �˛, and so �2 ¤ 1. Now �4˛ D ˛, �4jM D 1, and so we
can conclude that � has order 4. After possibly replacing � with its inverse,
we may suppose that �˛ D .

p
2�1/˛.

https://math.stackexchange.com/questions/984457/
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Repeat the above argument with � : �˛
2

˛2
D

3�
p
3

3C
p
3
D

�
3�
p
3

p
6

�2
, and so we can

extend � to an automorphism of L (also denoted �) with �˛ D 3�
p
3

p
6
˛. The

order of � is 4.
Finally compute that

��˛ D
3�
p
3

�
p
6
.
p
2�1/˛I ��˛ D .

p
2�1/

3�
p
3

p
6
˛:

Hence �� ¤ �� , and Gal.E=Q/ has two noncommuting elements of order 4.
Since it has order 8, it must be the quaternion group.

See also sx983458.

3-5. Let G D Aut.E=F /. Then E is Galois over EG with Galois group G,
and so jGj D ŒEWEG �. Now ŒEWF �D ŒEWEG �ŒEG WF �D jGjŒEG WF �.

4-1. The splitting field is the smallest field containing all mth roots of 1.
Hence it is Fpn where n is the smallest positive integer such that m0jpn�1,
mDm0p

r , where p is prime and does not divide m0.

4-2. We have X4 � 2X3 � 8X � 3 D .X3CX2C 3X C 1/.X � 3/, and
g.X/ D X3CX2C 3X C 1 is irreducible over Q (use 1.11), and so its
Galois group is either A3 or S3. Either check that its discriminant is not a
square or, more simply, show by examining its graph that g.X/ has only one
real root, and hence its Galois group contains a transposition (cf. the proof of
4.16).

4-3. Eisenstein’s criterion shows that X8� 2 is irreducible over Q, and so
ŒQŒ˛�WQ�D 8 where ˛ is a positive 8th root of 2. As usual for polynomials
of this type, the splitting field is QŒ˛;�� where � is any primitive 8th root of 1.
For example, � can be taken to be 1Cip

2
, which lies in QŒ˛; i �. It follows that

the splitting field is QŒ˛; i �. Clearly QŒ˛; i �¤QŒ˛�, because QŒ˛�, unlike i , is
contained in R, and so ŒQŒ˛; i �WQŒ˛��D 2. Therefore the degree is 2�8D 16.

4-4. Find an extension L=F with Galois group S4, and letE be the fixed field
of S3 � S4. There is no subgroup strictly between Sn and Sn�1, because
such a subgroup would be transitive and contain an .n�1/-cycle and a trans-
position, and so would equal Sn. We can take E D LS3 . More specifically,
we can take L to be the splitting field of X4�XC2 over Q and E to be the
subfield generated by a root of the polynomial (see 3.27).

4-5. Type: “Factor.X343�X/ mod 7;” and discard the 7 factors of degree 1.

https://math.stackexchange.com/questions/983458/
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4-6. Type “galois.X6C 2X5C 3X4C 4X3C 5X2C 6X C 7/;”. It is the
group PGL2.F5/ (group of invertible 2�2 matrices over F5 modulo scalar
matrices) which has order 120. Alternatively, note that there are the following
factorizations: mod 3, irreducible; mod 5 (deg 3)(deg 3); mod 13 (deg 1)(deg
5); mod 19, (deg 1/2(deg 4); mod 61 (deg 1/2(deg 2/2; mod 79, (deg 2/3.
Thus the Galois group has elements of type:

6; 3C3; 1C5; 1C1C4; 1C1C2C2; 2C2C2:

No element of type 2, 3, 3C2, or 4C2 turns up by factoring modulo any of
the first 400 primes (or, so I have been told). This suggests it is the group
T14 in the tables in Butler and McKay, which is indeed PGL2.F5/.

4-7. (H : Condition (a) implies that Gf contains a 5-cycle, condition (b)
implies that Gf � A5, and condition (c) excludes A5. That leaves D5 and
C5 as the only possibilities (see, for example, Jacobson, Basic Algebra I, p.
305, Ex 6). The derivative of f is 5X4Ca, which has at most 2 real zeros,
and so (from its graph) we see that f can have at most 3 real zeros. Thus
complex conjugation acts as an element of order 2 on the splitting field of f ,
and this shows that we must have Gf DD5.
H) : Regard D5 as a subgroup of S5 by letting it act on the vertices of

a regular pentagon—all subgroups of S5 isomorphic to D5 look like this
one. If Gf DD5, then (a) holds because D5 is transitive, (b) holds because
D5 � A5, and (c) holds because D5 is solvable.

4-8. Suppose that f is irreducible of degree n. Then f has no root in a field
Fpm with m< n, which implies (a). However, every root ˛ of f lies in Fpn ,
and so ˛p

n

�˛ D 0. Hence .X �˛/j.Xp
n

�X/, which implies (b) because
f has no multiple roots.

Conversely, suppose that (a) and (b) hold. It follows from (b) that all roots
of f lie in Fpn . Suppose that f had an irreducible factor g of degree m< n.
Then every root of g generates Fpm , and so Fpm � Fpn . Consequently, m
divides n, and so m divides n=pi for some i . But then g divides both f and
Xp

n=pi
�X , contradicting (a). Thus f is irreducible.

4-9. Let a1;a2 be conjugate nonreal roots, and let a3 be a real root. Complex
conjugation defines an element � of the Galois group of f switching a1 and
a2 and fixing a3. On the other hand, because f is irreducible, its Galois
group acts transitively on its roots, and so there is a � such that �.a3/D a1.
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Now

a3
�
7! a1

�
7! a2

a3
�
7! a3

�
7! a1.

This statement is false for reducible polynomials — consider for example
f .X/D .X2C1/.X �1/.

4-10. See mo113794.

5-1. For aD 1, this is the polynomial ˚5.X/, whose Galois group is cyclic
of order 4.
For a D 0, f .X/ D X.X3CX2CX C 1/ D X.X C 1/.X2C 1/, whose
Galois group is cyclic of order 2.
For aD 12, f .X/D .X2�2XC3/.X2C3XC4/, whose Galois group is
V4 (the one not sitting inside A4).
For aD�4, f .X/D .X�1/.X3C2X2C3XC4/. The cubic does not have
˙1;˙2; or ˙4 as roots, and so it is irreducible in QŒX�. Hence its Galois
group is S3 or A3. Modulo 13, f .X/D .X �1/.X �2/.X2C4X �2/, and
so the Galois group contains a 2-cycle by Dedekind’s theorem. Therefore, it
is S3. Alternatively, use that the discriminant of the cubic is �200, which is
not a square. Note that, because 2 divides the discriminant, we cannot use
Dedekind’s theorem with p D 2.
For a general a, the resolvent cubic is

g.X/DX3�X2C .1�4a/XC3a�1:

For aD�1, f DX4CX3CX2CX �1 is irreducible modulo 2, and so it
is irreducible over Q. The resolvant cubic is g DX3�X2C5X �4, which
is irreducible. Moreover

g0.x/D 3x2�2xC5D 3.x� 1
3
/2C42

3
> 0, all x;

and so g has exactly one real root. Hence the Galois group of g is S3, and it
follows that the Galois group of f is S4.

Thus we have found the following Galois groups (in S4): C2, C4, V4
(ª A4/, S3, S4. This seems to be all. The discriminant of f is 256a3�
203a2C 88a� 16. If a is odd, this is odd, and we can apply Dedekind’s
theorem with p D 2 to show that the Galois group contains a 2-cycle or
a 4-cycle, and so 1;A3;A4;V4 are not possible. In the general case, the
discriminant is not a square, and so the Galois group is not contained in A4.

https://mathoverflow.net/questions/113794
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Showing that the discriminant is not a square is equivalent to solving for
integral points on the elliptic curve Y 2 D 256X3�203X2C88X �16. The
substitution X 7!X=216, Y 7! Y=220 turns this into the equation

Y 2 DX3�51968X2C1476395008X �17592186044416.

According to PARI this has no nonzero rational points, and so the discriminant
cannot be a square. (I thank Ivan Ip for his help with this solution.)

5-2. We have Nm.aC ib/ D a2C b2. Hence a2C b2 D 1 if and only
aC ib D sCit

s�it
for some s; t 2Q (Hilbert’s Theorem 90). The rest is easy.

5-3. The degree ŒQŒ�n�WQ�D '.n/, �n a primitive nth root of 1, and '.n/!
1 as n!1.

5-4. Let ˛1; : : : ;˛n be the roots of f in E, and let Hi be the subgroup
of Gal.E=F / fixing F Œ˛i �. As E ¤ F Œ˛i �, Hi ¤ 1. As f is irreducible,
Gal.E=F / acts transitively on f˛1; : : : ;˛ng, and hence on fF Œ˛1�; : : : ;F Œ˛n�g,
which is a set with more than one element. The Hi are all conjugate, and so
none is normal.

9-1. If some element centralizes complex conjugation, then it must preserve
the real numbers as a set. Now, since any automorphism of the real numbers
preserves the set of squares, it must preserve the order; and hence be continu-
ous. Since Q is fixed, this implies that the real numbers are fixed pointwise.
It follows that any element that centralizes complex conjugation must be the
identity or the complex conjugation itself. See mo121083, Andreas Thom.

A-1. (a) Need that mjn, because

nD ŒFpn WFp�D ŒFpn WFpm � � ŒFpm WFp�D ŒFpn WFpm � �m:

Use Galois theory to show there exists one, for example. (b) Only one; it
consists of all the solutions of Xp

m

�X D 0.

A-2. The polynomial is irreducible by Eisenstein’s criterion. The polynomial
has only one real root, and therefore complex conjugation is a transposition
in Gf . This proves that Gf � S3. The discriminant is �1323 D �3372.
Only the subfield QŒ

p
�3� is normal over Q. The subfields QŒ 3

p
7�, QŒ� 3

p
7�

QŒ�2 3
p
7� are not normal over Q. [The discriminant of X3�a is �27a2 D

�3.3a/2.]

A-3. The prime 7 becomes a square in the first field, but 11 does not: .aC
b
p
7/2 D a2C 7b2C 2ab

p
7, which lies in Q only if ab D 0. Hence the

https://mathoverflow.net/questions/121083
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rational numbers that become squares in QŒ
p
7� are those that are already

squares or lie in 7Q�2.

A-4. (a) See Exercise 3.
(b) Let F D F3ŒX�=.X2C1/. Modulo 3

X8�1D .X �1/.XC1/.X2C1/.X2CXC2/.X2C2XC2/:

Take ˛ to be a root of X2CXC2.

A-5. Since E ¤ F , E contains an element f
g

with the degree of f or g > 0.
Now

f .T /�
f .X/

g.X/
g.T /

is a nonzero polynomial having X as a root.

A-6. Use Eisenstein to show that Xp�1C�� �C1 is irreducible, etc. Done in
class.

A-7. The splitting field is QŒ�;˛� where �5 D 1 and ˛5 D 2. It is generated
by � D .12345/ and � D .2354/, where �˛ D �˛ and �� D �2. The group
has order 20. It is not abelian (because QŒ˛� is not Galois over Q), but it is
solvable (its order is < 60).

A-8. (a) A homomorphism ˛WR! R acts as the identity map on Z, hence on
Q, and it maps positive real numbers to positive real numbers, and therefore
preserves the order. Hence, for each real number a,

fr 2Q j a < rg D fr 2Q j ˛.a/ < rg;

which implies that ˛.a/D a.
(b) Choose a transcendence basis A for C over Q. Because it is infinite,

there is a bijection ˛WA! A0 from A onto a proper subset. Extend ˛ to an
isomorphism Q.A/!Q.A0/, and then extend it to an isomorphism C! C0
where C0 is the algebraic closure of Q.A0/ in C.

A-9. The group F � is cyclic of order 15. It has 3 elements of order dividing
3, 1 element of order dividing 4, 15 elements of order dividing 15, and 1
element of order dividing 17.

A-10. If E1 and E2 are Galois extensions of F , then E1E2 and E1\E2 are
Galois over F , and Gal.E1E2=F / is the fibred product of Gal.E1=F / and
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Gal.E2=F / over Gal.E1\E2=F /:

Gal.E1E2=F / Gal.E1=F /

Gal.E2=F / Gal.E1\E2=F /:

In this case, E1\E2DQŒ�� where � is a primitive cube root of 1. The degree
is 18.

A-11. Over Q, the splitting field is QŒ˛;�� where ˛6D 5 and �3D 1 (because
�� is then a primitive 6th root of 1). The degree is 12, and the Galois group
is D6 (generators .26/.35/ and .123456/).

Over R, the Galois group is C2.

A-12. Let the coefficients of f be a1; : : : ;an — they lie in the algebraic
closure ˝ of F . Let g.X/ be the product of the minimal polynomials over F
of the roots of f in ˝.

Alternatively, the coefficients will lie in some finite extension E of F ,
and we can take the norm of f .X/ from EŒX� to F ŒX�.

A-13. If f is separable, ŒEWF �D .Gf W1/, which is a subgroup of Sn. Etc..

A-14.
p
3C
p
7 will do.

A-15. The splitting field of X4� 2 is E1 D QŒi;˛� where ˛4 D 2; it has
degree 8, and Galois group D4. The splitting field of X3�5 is E2 DQŒ�;ˇ�;
it has degree 6, and Galois group D3. The Galois group is the product (they
could only intersect in QŒ

p
3�, but

p
3 does not become a square in E1).

A-16. The multiplicative group of F is cyclic of order q�1. Hence it contains
an element of order 4 if and only if 4jq�1.

A-17. Take ˛ D
p
2C
p
5C
p
7.

A-18. We have E1 DEH1 , which has degree n over F , and E2 DE<1���n>,
which has degree .n� 1/Š over F , etc.. This is really a problem in group
theory posing as a problem in field theory.

A-19. We have QŒ�� D QŒi; �0� where �0 is a primitive cube root of 1 and
˙i D �3 etc..

A-20. The splitting field is QŒ�; 3
p
3�, and the Galois group is S3.

A-21. Use that
.�C �4/.1C �2/D �C �4C �3C �
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A-22. (a) is Dedekind’s theorem. (b) is Artin’s theorem 3.4. (c) is O.K.
because Xp�ap has a unique root in ˝.

A-23. The splitting field is QŒi;˛� where ˛4 D 3, and the Galois group is D4
with generators .1234/ and .13/ etc..

A-24. From Hilbert’s theorem 90, we know that the kernel of the map
N WE� ! F � consists of elements of the form �˛

˛
. The map E� ! E�,

˛ 7! �˛
˛

, has kernel F �. Therefore the kernel of N has order q
m�1
q�1

, and
hence its image has order q�1. There is a similar proof for the trace — I do
not know how the examiners expected you to prove it.

A-25. (a) is false—could be inseparable. (b) is true—could not be inseparable.

A-26. Apply the Sylow theorem to see that the Galois group has a subgroup
of order 81. Now the Fundamental Theorem of Galois theory shows that F
exists.

A-27. The greatest common divisor of the two polynomials over Q is X2C
XC1, which must therefore be the minimal polynomial for � .

A-28. Theorem on p-groups plus the Fundamental Theorem of Galois Theory.

A-29. It was proved in class that Sp is generated by an element of order p
and a transposition (4.15). There is only one F , and it is quadratic over Q.

A-30. Let LDKŒ˛�. The splitting field of the minimal polynomial of ˛ has
degree at most dŠ, and a set with dŠ elements has at most 2dŠ subsets. [Of
course, this bound is much too high: the subgroups are very special subsets.
For example, they all contain 1 and they are invariant under a 7! a�1.]

A-31. The Galois group is .Z=5Z/�, which cyclic of order 4, generated by 2.

.�C �4/C .�2C �3/D�1; .�C �4/.�2C �3/D�1:

(a) Omit.
(b) Certainly, the Galois group is a product C2�C4.

A-32. Let a1; : : : ;a5 be a transcendence basis for ˝1=Q. Their images
are algebraically independent, therefore they are a maximal algebraically
independent subset of ˝2, and therefore they form a transcendence basis,
etc..

A-33. C2�C2.

A-34. If f .X/ were reducible over QŒ
p
7�, it would have a root in it, but it is

irreducible over Q by Eisenstein’s criterion. The discriminant is �675, which
is not a square in R, much less QŒ

p
7�.
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A-35. (a) Should be X5�6X4C3. The Galois group is S5, with generators
.12/ and .12345/— it is irreducible (Eisenstein) and (presumably) has exactly
2 nonreal roots. (b) It factors as .XC1/.X4CX3CX2CXC1/. Hence
the splitting field has degree 4 over F2, and the Galois group is cyclic.

A-36. This is really a theorem in group theory, since the Galois group is a
cyclic group of order n generated by � . If n is odd, say nD 2mC 1, then
˛ D �m does.

A-37. It has order 20, generators .12345/ and .2354/.

A-38. Take K1 and K2 to be the fields corresponding to the Sylow 5 and
Sylow 43 subgroups. Note that of the possible numbers 1;6;11;16;21; ::: of
Sylow 5-subgroups, only 1 divides 43. There are 1, 44, 87, ... subgroups of
....

A-39. See Exercise 14.

A-40. The group F � is cyclic of order 80; hence 80, 1, 8.

A-41. It’s D6, with generators .26/.35/ and .123456/. The polynomial is
irreducible by Eisenstein’s criterion, and its splitting field is QŒ˛;�� where
� ¤ 1 is a cube root of 1.

A-42. Example 5.5.

A-43. Omit.

A-44. It’s irreducible by Eisenstein. Its derivative is 5X4�5p4, which has
the roots X D ˙p. These are the max and mins, X D p gives negative;
X D�p gives positive. Hence the graph crosses the x-axis 3 times and so
there are 2 imaginary roots. Hence the Galois group is S5.

A-45. Its roots are primitive 8th roots of 1. It splits completely in F25. (a)
.X2C2/.X2C3/.

A-46. �.˛/�.˛/ D q2, and �.˛/�.q
2

˛
/ D q2. Hence �.q

2

˛
/ is the complex

conjugate of �.˛/. Hence the automorphism induced by complex conjugation
is independent of the embedding of QŒ˛� into C.

A-47. The argument that proves the Fundamental Theorem of Algebra, shows
that its Galois group is a p-group. Let E be the splitting field of g.X/, and
let H be the Sylow p-subgroup. Then EH D F , and so the Galois group is a
p-group.

A-48. (a) C2�C2 and S3. (b) No. (c). 1
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A-49. Omit.

A-50. Omit.

A-51. 1024D 210. Want �x �x D 1, i.e., Nx D 1. They are the elements of
the form �x

x
; have

1 ����! k� ����!K�
x 7!�x

x
����!K�:

Hence the number is 211=210 D 2.

A-52. Pretty standard. False; true.

A-53. Omit.

A-54. Similar to a previous problem.

A-55. Omit.

A-56. This is really a group theory problem disguised as a field theory
problem.

A-57. (a) Prove it’s irreducible by apply Eisenstein to f .X C 1/. (b) See
example worked out in class.

A-58. It’s D4, with generators .1234/ and .12/.

A-59. Omit.

SOLUTIONS FOR THE EXAM.

1. (a) Let � be an automorphism of a field E. If �4 D 1 and

�.˛/C�3.˛/D ˛C�2.˛/ all ˛ 2E;

show that �2 D 1.
If �2 ¤ 1, then 1;�;�2;�3 are distinct automorphisms of E, and hence

are linearly independent (Dedekind 5.14) — contradiction. [If �2 D 1, then
the condition becomes 2� D 2, so either � D 1 or the characteristic is 2 (or
both).]
(b) Let p be a prime number and let a;b be rational numbers such that
a2Cpb2 D 1. Show that there exist rational numbers c;d such that a D
c2�pd2

c2Cpd2
and b D 2cd

c2Cpd2
.

Apply Hilbert’s Theorem 90 to QŒp�p�.
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2. Let f .X/ be an irreducible polynomial of degree 4 in QŒX�, and let g.X/
be the resolvent cubic of f . What is the relation between the Galois group of
f and that of g? Find the Galois group of f if

(a) g.X/DX3�3XC1;

(b) g.X/DX3C3XC1.
We haveGg DGf =Gf \V , where V D f1;.12/.34/; : : :g. The two cubic

polynomials are irreducible, because their only possible roots are˙1. From
their discriminants, one finds that the first has Galois group A3 and the second
S3. Because f .X/ is irreducible, 4j.Gf W1/ and it follows that Gf D A4 and
S4 in the two cases.

3. (a) How many monic irreducible factors does X255�1 2 F2ŒX� have, and
what are their degrees?

Its roots are the nonzero elements of F28 , which has the following sub-
fields F24� F22� F2. There are 256� 16 elements not in F16, and their
minimal polynomials all have degree 8. Hence there are 30 factors of degree
8, 3 of degree 4, and 1 each of degrees 2 and 1.
(b) How many monic irreducible factors does X255� 1 2 QŒX� have, and
what are their degrees?

Obviously,X255�1D
Q
d j255˚d D˚1˚3˚5˚15 � � �˚255, and we showed

in class that the˚d are irreducible. They have degrees 1;2;4;8;16;32;64;128.

4. Let E be the splitting field of .X5 � 3/.X5 � 7/ 2 QŒX�. What is the
degree of E over Q? How many proper subfields of E are there that are not
contained in the splitting fields of both X5�3 and X5�7?

The splitting field of X5�3 is QŒ�;˛�, which has degree 5 over QŒ�� and
20 over Q. The Galois group of X5� 7 over QŒ�;˛� is (by ...) a subgroup
of a cyclic group of order 5, and hence has order 1 or 5. Since 7 is not a 5th
power in QŒ�;˛�, it must be 5. Thus ŒEWQ�D 100, and

G D Gal.E=Q/D .C5�C5/ÌC4:

We want the nontrivial subgroups ofG not containingC5�C5. The subgroups
of order 5 of C5�C5 are lines in .F5/2, and hence C5�C5 has 6C 1D 7
proper subgroups. All are normal in G. Each subgroup of C5�C5 is of the
form H \ .C5�C5/ for exactly 3 subgroups H of G corresponding to the
three possible images in G=.C5�C5/D C4. Hence we have 21 subgroups
of G not containing C5�C5, and 20 nontrivial ones. Typical fields: QŒ˛�,
QŒ˛;cos 2�

5
�, QŒ˛;��.

[You may assume that 7 is not a 5th power in the splitting field of X5�3.]



185

5. Consider an extension˝ �F of fields. Define ˛ 2˝ to beF -constructible
if it is contained in a field of the form

F Œ
p
a1; : : : ;

p
an�; ai 2 F Œ

p
a1; : : : ;

p
ai�1�:

Assume ˝ is a finite Galois extension of F and construct a field E, F �
E �˝, such that every a 2˝ is E-constructible and E is minimal with this
property.

SupposeE has the required property. From the primitive element theorem,
we know ˝ D EŒa� for some a. Now a E-constructible H) Œ˝WE� is a
power of 2. Take E D˝H , where H is the Sylow 2-subgroup of Gal.˝=F /.

6. Let˝ be an extension field of a fieldF . Show that everyF -homomorphism
˝!˝ is an isomorphism provided:

(a) ˝ is algebraically closed, and

(b) ˝ has finite transcendence degree over F .
Can either of the conditions (i) or (ii) be dropped? (Either prove, or give

a counterexample.)
Let A be a transcendence basis for˝=F . Because � W˝!˝ is injective,

�.A/ is algebraically independent over F , and hence (because it has the
right number of elements) is a transcendence basis for ˝=F . Now F Œ�A��

�˝ �˝. Because˝ is algebraic over F Œ�A� and �˝ is algebraically closed,
the two are equal. Neither condition can be dropped. E.g., C.X/! C.X/,
X 7!X2. E.g.,˝ D the algebraic closure of C.X1;X2;X3; : : :/, and consider
an extension of the map X1 7!X2, X2 7!X3, : : :.
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F q , 5
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Galois extension, 121
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split, 24, 31
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elementary, 100
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Galois’s, 55
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primitive element, 77
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transcendence degree, 152
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