
Chapter IV

The Brauer Group

The Brauer group of a fieldK may be defined to be the group of similarity classes of central
simple algebras over K or, equivalently, the cohomology group

H 2.Gal.Ksep=K/;K
�
sep/DH

2..SpecK/et;Gm/:

Both of these definitions generalize to schemes, but they may give different groups. The
first group, that of similarity classes of Azumaya algebras over X , is called the Brauer
group Br.X/ ofX , and the second,H 2.Xet;Gm/, is called the cohomological Brauer group
Br0.X/ of X .1 There is always an injection Br.X/ ,! Br0.X/, which is known to be surjec-
tive in many cases. It would be useful to know exactly when this map is surjective, that is,
when every cohomology class in H 2.Xet;Gm/ is represented by an Azumaya algebra, for
much the same reasons as it is useful to know that every cohomology class in H 1.X;Gm/
is represented by an invertible sheaf.2 From a geometric point of view, the Brauer group
classifies the cohomology 2-classes that do not arise from an algebraic divisor, that is, it
classifies the transcendental classes.

1 The Brauer Group of a Local Ring

Throughout this section, R will be a commutative Noetherian local ring with maximal ideal
m and A a not necessarily commutative algebra over R. We assume that A has an identity
element and that the map R! A, r 7! r1, identifies R with a subring of the center of A.
Residue class maps modulo m will be written a 7! Na. Ideal will mean two-sided ideal. We
assume as known the theory of Brauer groups over fields (see, for example, Herstein [1,
Chapter 4] or Blanchard [1]).

Let Ao denote the opposite algebra to A, that is, the algebra with the multiplication
reversed. We say that A is an Azumaya algebra over R if it is free of finite rank as an
R-module and if the map A˝RAo! EndR-mdl.A/ that sends a˝a0 to the endomorphism
.x 7! axa0/ is an isomorphism. (Compare Bourbaki [2, II, 5, Ex. 14].)

This is a revised corrected version of Chapter IV of Étale Cohomology, J.S. Milne, Princeton University
Press, 1980. The numbering is unchanged (at present). Please send comments and corrections to me at jmilne
at umich.edu. Dated November 23, 2015.

1The terminology has changed since the book was written. Because Br.X/ is always torsion for quasi-
compact schemes, the cohomological Brauer group Br0.X/ is more naturally defined to be the torsion subgroup
of H2.X;Gm/.

2Gabber and de Jong have shown that Br.X/D Br0.X/tors if X admits an ample invertible sheaf; see later.
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2 CHAPTER IV. THE BRAUER GROUP

PROPOSITION 1.1 Let A be an Azumaya algebra over R. Then A has center R; moreover,
for any ideal3 J ofA, JD .J\R/A, and for any ideal I ofR, ID .IA/\R. Thus J 7! J\R
is a bijection from the ideals of A to those of R.

PROOF. Let � be an endomorphism of A as an R-module. As � is multiplication by an
element of A˝Ao, it follows that �.ac/ D �.a/c for every c in the center of A and that
�.J/� J for every ideal J of A.

Let a1 D 1;a2; : : : ;an be a basis for A as an R-module, and let �1; : : : ;�n be R-linear
endomorphisms of A such that �i .aj /D ıij (Kronecker delta).

Let c lie in the center of A, and write it as c D
P
riai , ri 2R. Then

c D �1.a1/c D �1.a1c/D �1.
P
riai /D r1 2R:

Let J be an ideal of A. Let a 2 J, and write it as aD
P
riai , ri 2R. Then ri D �i .a/ 2

J, and so a 2 .J\R/A. Thus JD .J\R/A.
Finally, let I be an ideal of R. Let a 2 IA, and write it as a D

P
rjaj , ri 2 I. Now

a 2R if and only if ri D 0 for i > 1, and so IA\RD I. 2

In particular, if R D k is a field, then an Azumaya algebra over k is a central simple
algebra over k. The converse is also true.

PROPOSITION 1.2 (a) IfA is an Azumaya algebra overR andR0 is a commutative localR-
algebra, then A˝RR0 is an Azumaya algebra over R0 (we do not require the map R! R0

to be local).
(b) If A is free of finite rank as an R-module and NA def

D A˝ .R=m/ is an Azumaya
algebra over R=m, then A is an Azumaya algebra over R.

PROOF. For any R-algebra A that is free and of finite rank as an R-module and any (com-
mutative) R-algebra R0, there is a commutative diagram:

.A˝RA
o/˝R0 EndR-mdl.A/˝R

0

.A˝R0/˝ .A˝R0/o EndR0-mdl.A˝R
0/:

�˝R0

' '

�0

Thus, if � is an isomorphism, then �0 is also. On the other hand, if A is free of finite rank
and �˝ .R=m/ is an isomorphism, then � is is surjective by Nakayama’s lemma, and it is
injective by the elementary Lemma 1.11 below. 2

COROLLARY 1.3 (a) If A and A0 are Azumaya algebras over R, then A˝RA0 is an Azu-
maya algebra over R.

(b) The matrix ring Mn.R/ is an Azumaya algebra over R.

PROOF. Both statements follow from (1.2b) and the corresponding statements for fields. 2

We now define the Brauer group Br.R/ of R: Two Azumaya algebras A and A0 over R
are said to be similar if

A˝RMn.R/� A
0
˝RMn.R/

3PUP used a font that doesn’t distinguish fraktur I from fraktur J.
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for some n and n0. Similarity is an equivalence relation, and if A1 is similar to A01 and A2 to
A02, then A1˝RA2 is similar to A01˝RA

0
2 (becauseMn.R/˝Mm.R/�Mnm.R//. Write

ŒA� for the similarity class of A. Then the similarity classes form a group under the law of
composition ŒA�ŒA0� D ŒA˝R A0�. The identity element is ŒR�, and ŒAo� is the inverse of
ŒA�. This group is called the Brauer group of R. Clearly Br.�/ is a functor from local rings
to Ab.

PROPOSITION 1.4 (SKOLEM-NOETHER) . Let A be an Azumaya algebra over R. Every
automorphism of A as an R-algebra is inner, that is, of the form a 7! uau�1 with u a unit
in A.

PROOF. Let �WA! A be an automorphism of A. It is possible to make A into a left
A˝RA

o-module in two different ways, namely,�
.a1˝a

o
2/aD a1aa2

.a1˝a
o
2/aD �.a1/aa2

We denote the resultingA˝RAo-modules byA andA0 respectively. Both NA0DA0˝RR=m
and NA are simple left NA˝ NR NA

o-modules, and as NA˝ NR NA
o is a central simple algebra over

NR, there is an isomorphism N W NA! NA0 of NA˝ NR NA
o-modules.

Next we show that A is projective as an A˝Ao-module. As A˝Ao ' EndR-mdl.A/,
it suffices to show that A is projective as an End.A/-module. As A is a free R-module,
there exists a homomorphism gWA! R of R-modules such that g.r/ D r for all r 2 R.
The surjection EndR-mdl.A/!A, f 7! f .1/, has an EndR-mdl.A/-module section, namely,
a 7! .a0 7! g.a0/a/, which shows that A is projective.

Now the map A! NA
N 
�! NA0 lifts to a homomorphism of A˝Ao-modules,  WA!A0.

The surjectivity of N implies that  .A/CmA0 D A0, and Nakayama’s lemma applied to
A0 as an R-module shows that  is surjective. Let uD  .1/; then for an a 2 A,  .a/D
 .a1/D �.a/u and  .a/D  .1a/D ua. Hence �.a/uD ua for all a 2A, and it remains
for us to check that u is a unit. But if a0 2 A is such that  .a0/ D 1, then 1 D  .a0/ D
�.a0/u, and �.a0/D u�1. 2

COROLLARY 1.5 The automorphism group of Mn.R/ (as an R-algebra) is PGLn.R/ D
GLn.R/=R�.

PROOF. By definition, GLn.R/ is the group of units ofMn.R/, and the inner automorphism
defined by U 2 GLn.R/ is the identity map if and only if U is in the center R of Mn.R/.2

PROPOSITION 1.6 If R is Henselian, then the canonical map Br.R/! Br. NR/, where NRD
R=m, is injective.

PROOF. Let A be an Azumaya algebra over R such that there exists an isomorphism NA!

Mn. NR/, and let � 2 NA map to the matrix with 1 in the .1;1/-position and 0 elsewhere. Note
that � is idempotent, �2 D �. Choose an a 2 A such that Na D �. Then RŒa� is a finite
commutative R-subalgebra of A, and (I, 4.2) and (I, 4.3) imply that � lifts to an idempotent
e in RŒa�. As AD Ae˚A.1� e/, the R-module Ae is a finitely generated and free, and so
it remains to show that the map �WA! EndR.Ae/ sending a to left multiplication by a, is
an isomorphism. The kernel of � is an ideal in A whose intersection with R is zero (as Ae
is free over R); thus � is injective by (1.1). The same argument shows that N� is injective,
and as NA and End NR. NA�/ have the same dimension, N� is an isomorphism; now Nakayama’s
lemma shows that � is surjective. 2



4 CHAPTER IV. THE BRAUER GROUP

COROLLARY 1.7 The Brauer group of a strictly local ring is zero.

PROOF. The Brauer group of a separably closed field is zero. 2

COROLLARY 1.8 If A is an Azumaya algebra over a Henselian local ring R, then there
exists a finite étale faithfully flat homomorphism R!R0 such that A˝RR0 �Mn.R

0/.

PROOF. This follows from (1.6), (I, 4.4), and the fact that it is true for R a field. 2

REMARK 1.9 We shall prove later (2.13) that the map Br.R/! Br. NR/ is an isomorphism
for local Henselian rings R.

We say that an R-algebra R0 splits an Azumaya R-algebra A if A˝RR0 �Mn.R
0/ for

some n. According to (1.7), every A is split by a faithfully flat R-algebra.

THEOREM 1.10 Let A be an Azumaya R-algebra of rank n2.
(a) Let a 2 A. Let R0 be a faithfully flat R-algebra that splits A, and let �WA˝R0!

Mn.R
0/ be an isomorphism. Then the characteristic polynomial ca.T / of the matrix

�.a˝1/ belongs to RŒT �, is independent of R0, and ca.a/D 0.

(b) There exists a commutative étale subalgebra R0 of A of rank n that is a direct sum-
mand of A as an R-module;.

(c) Every maximal étale subalgebra of A splits it.

PROOF. (a) We first remark that if �1;�2 are isomorphisms A˝R R0 ⇒ Mn.R
0/, then

�1.a˝1/ and �2.a˝1/ have the same characteristic polynomials. Indeed, for a maximal
ideal m ofR0, (1.4) shows that there is a u2GLn.R0m/ such that �2.a˝1/Du�1.a˝1/u�1

in Mn.R
0
m/, and so the characteristic polynomials have the same image in R0mŒT � for all m;

this proves the remark.
Let ca.T / be the characteristic polynomial of �.a˝1/. The remark applied to R0˝R0

shows that the images of ca.T / under the two maps R0ŒT �⇒R0˝RR
0ŒT � agree. As

RŒT �!R0ŒT �⇒R0ŒT �˝RŒT �R
0ŒT �DR0˝RR

0ŒT �

is exact (I, 2.18), ca.T / 2RŒT �.
The independence assertion follows easily from the special case shown in the above

remark. The final statement follows from the fact that ca.�.a˝1//D 0 in Mn.R
0/.

(b) Choose an a 2 A such that NRŒ Na� is a maximal étale subalgebra of NA. Then NRŒ Na� has
rank n over NR. Let R0 D RŒT �=.ca.T //; it is an étale R-algebra of rank n, and there is a
canonical map R0! A, T 7! a. As R0˝R NR

�
�! NRŒ Na� ,! NA is injective, a standard result

(Lemma 1.11) below) shows that R0! A is injective and R0 is a direct summand of A.
(c) Regard A as a right R0-module. The map

a0˝ r
0
7! .a 7! a0ar

0/WA˝R0! EndR0-mdl.A/

is well-known to be an isomorphism modulo m and hence is an isomorphism. 2

The polynomial ca.T / in (a) of the theorem is called the Cayley-Hamilton polynomial
of a. A subalgebra as in (b) of the theorem is called a maximal étale subalgebra.

LEMMA 1.11 Let M and N be finitely generated R-modules with N free. If �WM ! N

is an R-linear map such that N� def
D �˝R NRW NM ! NN is injective, then � has a section; in

particular, it is injective. If N� is an isomorphism, then so also is �.
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PROOF. Let �0WN !M be such that N�0 N�D id NM , and let D�0�. According to Nakayama’s
lemma,  WM ! M is surjective. If M is regarded as an RŒT �-module by means of
 , then Atiyah-Macdonald [1, 2.5] shows that there exists a polynomial f .T / such that
.1� f . / /M D 0, that is, such that f . / D idM . Now f . /�0WN ! M has the
property that .f . /�0/� D idM . The second statement is a consequence of the first and
Nakayama’s lemma. 2

2 The Brauer Group of a Scheme

Let X be a locally Noetherian scheme. An OX -algebra A is called an Azumaya algebra
over X if it is coherent as an OX -module and if, for all closed points x of X , Ax is an
Azumaya algebra over the local ring OX;x . The conditions imply that A is locally free and
of finite rank as an OX -module (I, 2.9), and that, for every point x of X , Ax is an Azumaya
algebra over OX;x (1.2a).

PROPOSITION 2.1 Let A be an OX -algebra that is of finite-type as an OX -module. The
following conditions on A are equivalent:

(a) A is an Azumaya algebra over X ;

(b) A is locally free as an OX -module and A.x/ def
DAx˝�.x/ is a central simple algebra

over �.x/ for all x in X ;

(c) A is locally free as an OX -module and the canonical homomorphism A˝OX A
ı!

EndOx -mdl.A/ is an isomorphism;

(d) there is a covering .Ui ! X/ for the étale topology on X such that for each i , there
exists an ri , for which A˝OX OUi �Mri .OUi /;

(e) there is a covering .Ui ! X/ for the flat topology on X such that for each i , there
exists an ri , for which A˝OXOUi �Mri .OUi /.

PROOF. (a),(b). This follows from (1.2b).
(a),(c). AsA is locally free, .A˝Ao/xDAx˝Aox and .EndOX .A//xDEndOX;x .Ax/.

Thus this equivalence follows from the definitions.
(a))(d). Let Nx be a geometric point of X . Corollary 1.7 shows that A˝OX; Nx �

Mr.OX; Nx/, and it follows that there exists an étale morphismU !X whose image contains
x and is such that A˝OX OU �Mr.OU /.

(d))(e). Trivial.
(e))(b). Let U D

`
Ui . As U is faithfully flat over X , A˝OU being flat as an OU -

module implies that A is flat and hence locally free, as an OX -module. Also (e) implies
that A.x/˝�.x/ k0�Mr.k

0/ for some extension field k0 of �.x/, and this implies that A.x/
is a central simple algebra over �.x/. 2

REMARK 2.2 (a) Let X D SpecR be affine. An Azumaya algebra over X corresponds
to an R-algebra A. The conditions in (2.1c) say exactly that A is projective and finitely
generated as an R-module and that the canonical map A˝RAo! EndR-mdl.A/ is an iso-
morphism (note that .A˝RAo/�� QA˝OX QA

o and .EndR.A//��EndOX -mdl.
QA/, because

QA is coherent). Thus the notion of an Azumaya algebra over X corresponds exactly to that
of a central separable algebra over R in the sense of Auslander-Goldman [1].

(b) Condition .2.1d/ holds in a stronger form: there is a Zariski covering .Ui / of X and
finite surjective étale maps U 0i ! Ui such that, for all i , A˝OX OU 0

i
�Mri .OUi /. This

follows from (1.10b,c).
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We now define the Brauer group of X . Two Azumaya algebras A and A0 over X are
said to be similar if there exist locally free OX -modules E and E 0, of finite rank over OX ,
such that

A˝OX EndOX .E/� A
0
˝OX EndOX .E

0/:

Similarity is an equivalence relation, because End.E/˝End.E 0/� End.E˝E 0/. Clearly
the tensor product of two Azumaya algebras is an Azumaya algebra (use (1.3a)), and this
operation is compatible with the similarity relation. The set of similarity classes of Azu-
maya algebras on X becomes a group under the operation ŒA�ŒA0�D ŒA˝A0�: the identity
element is ŒOX � and ŒA��1 D ŒAo�. This is the Brauer group Br.X/ of X . Clearly Br.�/ is
a functor from schemes to abelian groups.

In relating Br.X/ to the cohomology group H 2.Xet;Gm/, we shall need the following
generalization of the Skolem-Noether theorem.

PROPOSITION 2.3 Let A be an Azumaya algebra on X . Every automorphism � of A is
locally, for the Zariski topology on X , an inner automorphism, that is, there is a covering
of X by open sets Ui such that �jUi is of the form a 7! uau�1 for some u 2 � .Ui ;A/�.

PROOF. Let x 2 X . From the Skolem-Noether theorem for local rings (1.4), we see that
there exists a neighborhood U of x and a u 2 � .U;A/� such that �x.a/D u�1x aux for all
a 2 Ax . Now the maps �WAjU ! AjU and .a 7! u�1au/: AjU ! AjU agree on some
neighborhood V � U of x. 2

Let GLn be the functor Sch! Gp such that

GLn.S/D GLn.� .S;OS //DMn.� .S;OS //�

for all schemes S . Then GLn is representable by

Spec
�
ZŒT11; : : : ;Tnn;T �
.T det.Tij /�1/

�
and so defines a sheaf on X for the flat, or any coarser, topology (II, 1.7).

Let PGLn be the functor Sch! Gp such that PGLn.S/ D Aut.Mn.OS // (automor-
phisms ofMn.OS / as a sheaf of OS -algebras). Then PGLn is also representable and so de-
fines a sheaf on X for the flat (or coarser) topology. Indeed, any automorphism ofMn.OS /
as an OS -algebra may also be regarded as an endomorphism ofMn.OS / as an OS -module.
Thus PGLn is a subfunctor of Mn2 . The condition that an OS -linear endomorphism be an
automorphism of algebras is described by polynomials, and hence PGLn is represented by a
closed subscheme ofMn2 D SpecZŒT11; : : : ;Tn2n2 �. In fact, PGLn is represented by SpecS
where S is the subring of elements of degree zero in ZŒT11; : : : ;Tnn;det.Tij /�1�.

The next result is an immediate consequence of the Skolem-Noether theorem.

COROLLARY 2.4 The sequence

1!Gm! GLn! PGLn! 1

is exact as a sequence of sheaves on XZar;Xet, or Xfl.

THEOREM 2.5 There is a canonical injective homomorphism Br.X/!H 2.Xet;Gm/.
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We give one proof based on C̆ech cohomology, which assumes that X satisfies the
hypotheses of (III, 2.17), and sketch a second, based on Giraud’s nonabelian cohomology,
which is general.

STEP 1 The set of isomorphism classes of Azumaya algebras of rank n2 over X is equal to
LH 1.Xet;PGLn/.

PROOF. Since, by definition, an Azumaya algebra is a twisted-form of Mn.OX / for the
étale topology and Aut.Mn.OX // D PGLn, this is a special case of the theory discussed
at the end of (III, 4). The only problem is in seeing that every 1-cocycle does arise from
an Azumaya algebra. A section of PGLn may be regarded as an automorphism of Mn as
an OX -module. Thus a 1-cocycle for PGLn defines a 1-cocycle for GLn2 , which we know
(III, 4) arises from a locally free OX -module of rank n2. The fact that the 1-cocycle came
from a 1-cocycle for PGLn means that this locally free OX -module automatically has the
structure of an Azumaya algebra. 2

STEP 2 The set of isomorphism classes of locally free modules of rank n overX is equal to
LH 1.Xet;GLn/; the map LH 1.Xet;GLn/! LH 1.Xet;PGLn/ defined by the surjection GLn!

PGLn sends an OX -module E to EndOX .E/.

PROOF. For the first statement see (III, 4). For the second, let E be an OX -module and
U D .Ui / a Zariski covering of X for which there exist isomorphisms �i WOnU ! EjUi .
Then E corresponds to the 1-cocycle .��1i �j /. Let AD End.E/. There are isomorphisms

 i WMn.OU�/! AjUi ;  i .a/D �ia�
�1
i :

Thus A corresponds to the 1-cocycle . �1i  j / D .˛ij /, where ˛ij .a/ D ��1i �ja�
�1
j �i

for a 2 � .Uij ;Mn/. This is the image of .��1i �j / because GLn! PGLn maps u to the
automorphism .a 7! uau�1/ of Mn. 2

STEP 3 Assume that X satisfies the hypotheses of (III, 2.17). There is an exact sequence
of pointed sets,

! LH 1.Xet;Gm/! LH 1.Xet;GLn/! LH 1.Xet;PGLn/
d
�! LH 2.Xet;Gm/;

moreover, the maps d are compatible for varying n, and d.c.A˝A0// D dc.A/ � dc.A0/
where c.A/ denotes the class in LH 1.X;PGLn/ of an Azumaya algebra A.

PROOF. The map d is defined as follows: let 
 2 LH 1.Xet;PGLn/ be represented by a
cocycle .cij / for the covering .Ui /; after refining .Ui /, we may assume (III, 2.19) that each
cij is the image of an element c0ij 2 � .Uij ;GLn/; then d.
/ is the class of the 2-cocycle
.aijk/ where

aijk D c
0
jk.c

0
ik/
�1c0ij 2 � .Uijk;Gm/:

The verification of the exactness and the other statements is routine and hence is omitted.
(Compare Giraud [2, IV.3.5].) 2

STEP 4 Definition of Br.X/ ,! LH 2.X;Gm/.



8 CHAPTER IV. THE BRAUER GROUP

PROOF. Let A be an Azumaya algebra over X . If X is connected, then A has constant rank
on X and so defines an element c.A/ 2 LH 1.Xet;PGLn/ for some n. The element dc.A/ 2
LH 2.Xet;Gm/ depends, according to Step 3, only on the similarity class of A. Thus we have

an injection Br.X/! LH 2.Xet;Gm/, which, according to Step 3 again, is a homomorphism.
If X is not connected, then as it is quasi-compact, both Br.X/ and LH 2.X;Gm/ break up
into products following the splitting of X into a disjoint sum of its connected components.
Thus it suffices to define the map on each component. This completes the first proof. 2

We next sketch the general proof. Let �WF! C be a functor; for any object U of C
write F.U / for the category whose objects are those u in F such that �.u/D U and whose
morphism are those f such that �.f / D idU . Let f Wv! u be a morphism in F, and let
�.f Wv! u/D .gWV !U/; we say that f is Cartesian or that v is the inverse image g�.u/
of u with respect to g, if for every v0 in F.V /, the map

f 0 7! ff 0WHomF.V /.v
0;v/! Homg.v0;u/

def
D fh 2 Hom.v0;u/ j �.h/D gg

is an isomorphism:
v0

v u

V U:

f 0 h

f

g

We say �WF!C is a fibered category if inverse images always exist and if the composite of
two Cartesian morphisms is Cartesian. Then g� can be made into a functor F.U /! F.V /,
and .g1g2/� is canonically isomorphic to g�2g

�
1 .

Now consider a fibered category �WF! C=X where .C=X/E is a site. Let .Ui
gi
�! U/

be a covering in .C=X/E . Every u 2 F.U / gives rise to a family .ui /, ui D g�i u 2 F.Ui /,
and the inverse images of ui and uj on Uij D Ui �X Uj are isomorphic; moreover, the
isomorphisms satisfy the cocycle condition on Uijk , that is, there is a descent datum on the
family .ui /. If conversely, every family .ui /, ui 2 F.Ui /, with a descent datum arises from
a u 2 F.U / and if, moreover, for any u1;u2 2 F.U /, the functor

.V
g
�! U/ HomF.V /.g

�u1;g
�u2/

is a sheaf on .C=U /E , then � is a stack (champ in French), (Giraud [2, II, 1.2.1]). A stack
is a gerbe if:

(a) each F.U / is a groupoid; that is, all morphisms in F.U / are isomorphisms;

(b) there exists a covering .Ui / of X such that each F.Ui / is nonempty;

(c) for every U in C=X , any two objects of F.U / are locally isomorphic, that is, their
inverse images on some covering of U are isomorphic.

A gerbe is said to be trivial if F.X/ is nonempty. A gerbe F is bound by a sheaf of groups
G on .C=X/E if for any U in C=X and any u in F.U / there are functorial isomorphisms
G.U /

'
�! AutF.U /.u/. Giraud defines H 2.XE ;G/ to be the set of gerbes bound by G,

modulo G-equivalence (Giraud [2, IV.3.1.1]). To avoid confusion when G is abelian, we
shall denote this set by H 2

g .XE ;G/. To prove the theorem we must show:
(i) there is a canonical isomorphism H 2

g .XE ;G/!H 2.XE ;G/ when G is abelian;
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(ii) there is a canonical injective homomorphism Br.X/!H 2
g .Xet;Gm/.

It is easy to describe the map in (ii). Associate with an Azumaya algebra A on X
the category FA over Xet such that an object of FA.U / is a pair .E;˛/ where E is a
locally free OU -module of finite rank and ˛ is an isomorphism End.E/! A˝OU ; a
morphism .E;˛/! .E 0;˛0/ is an isomorphism E ! E 0 such that the obvious diagram
commutes. Descent theory shows that FA is a stack, and (2.1d) shows that it is a gerbe. The
map Gm.U /! AutU .E;˛/ that sends an element of � .U;O�U / to multiplication on E by
that element is an isomorphism. Thus FA is bound by Gm and so defines an element of
H 2
g .Xet;Gm/. Clearly the element is trivial if and only if ŒA�D 0 in Br.X/.

For (i) it suffices to check:
(i0) for every exact sequence of abelian sheaves

0!G0
u
�!G

v
�!G00! 0

there is an exact sequence of abelian groups

� � � !H 1.X;G00/!H 1.X;G0/!H 2
g .X;G

0/!H 2
g .X;G/!H 2

g .X;G
0/I

(i00) if G is an injective abelian sheaf, then H 2
g .X;G/D 0.

Let uWG0!G be a homomorphism of abelian sheaves, and let F0 and F be gerbes bound
by G0 and G respectively. Then HOMu.F0;F/ is defined to be the fibered category over
C=X whose fiber over U is all functors F0jU ! FjU that preserve the fiberings, preserve
Cartesian arrows, and that commute with the actions of G0 on F0 and G on F (Giraud [2,
IV.2.3.2]). It is in fact a gerbe. The map H 2

g .u/WH
2
g .X;G

0/! H 2
g .X;G/ sends F0 to

HOMu.F0;F0/ where F0 is the trivial gerbe, that is, F0.U /Dset of torsors for GjU .
The group structure on H 2

g .X;G/ (G abelian) is defined by the maps

H 2
g .X;G/�H

2
g .X;G/!H 2

g .X;G�G/!H 2
g .X;G/

induced by G⇒G�G
C
�!G.

The map H 1.X;G00/!H 2.X;G/ is defined as follows: let P be a G00-torsor, and let
F be the gerbe such that F.U / consists of all pairs .Q;˛/ with Q a G-torsor on U and ˛
an isomorphism of G -torsors v�.Q/! P . As F is bound by G0 we may define its class in
H 2
g .X;G

0/ to be the image of P . By definition, F is trivial if and only if P arises from a
G-torsor.

The proof of (i0) now only involves straightforward, but tedious, checking (Giraud [2,
IV.3.4]).

For (i00), let F be a gerbe for the injective sheaf G. There is a covering .Ui / of X such
that FjUi is trivial for all i . ConsiderG! ���

�G where � W
`
Ui !X . As F maps to zero

in H 2
g .X;���

�G/ and as there is a section G � ���
�G, F is zero in H 2

g .X;G/ (Giraud
[2, IV, 3.4.3]).

COROLLARY 2.6 Let X be a regular integral scheme and let K D R.X/. The canonical
map Br.X/! Br.K/ is injective.

PROOF. This follows from the theorem, using the fact that the mapH 2.X;Gm/!H 2.K;Gm/
is injective (III, 2.22). 2

PROPOSITION 2.7 The image of LH 1.X;PGLn/ in H 2.X;Gm/ is killed by n. Thus, if X
has only finitely many connected components, Br.X/ is torsion.
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PROOF. We use the flat topology (and, by implication, Giraud [2, IV, 3.4.5]). Consider the
diagram,

1 1

1 �n Gm Gm 1

1 SLn GLn Gm 1

PGLn PGLn

1 1

n

det

where SLn is defined to be the kernel of the determinant mapping. The top row is exact (II,
2.18), which implies that det is surjective, and the middle row is exact. A diagram chase
now shows that the first column is exact.

On comparing the flat cohomology sequences of the first two columns, one finds that
the map H 1.X;PGLn/! H 2.X;Gm/ factors through H 2.X;�n/, which is killed by n.
(A much more complicated proof, but which avoids referring to Giraud [2], can be found in
Knus and Ojanguren [1, IV.6.1].) 2

REMARK 2.8 By making use of an example of Mumford, Grothendieck [4, II, 1.11b] has
shown that there exists a normal (but singular) surface X over the complex numbers such
that H 2.Xet;Gm/ is not torsion (and Br.X/! Br.K/ is not injective). Thus, the map
Br.X/! H 2.X;Gm/ cannot be surjective in this case. However, it is natural to ask the
following question.

QUESTION 2.9 Is Br.X/!H 2.X;Gm/tors surjective for quasi-compact X?

When X is a topological space and OX is the sheaf of continuous functions into C,
it is possible to mimic the above definitions and so define the Brauer group of X . In the
case that X is a finite CW-complex it is known that the map Br.X/! H 2.X;O�X /tors is
surjective (see Grothendieck [4, I, 1]). We shall prove below that the same is true for certain
classes of schemes. Apparently there is no example known where the map is not surjective.
Positive answers to (2.9) are valuable because they enable cohomological techniques to be
applied to the Brauer group and, from the point of view of the cohomology, they allow a
cohomology class to be explicitly represented by an Azumaya algebra.

We write Br0.X/ for H 2.X;Gm/ and call it the cohomological Brauer group.4 In view
of (2.6) and the fact that the Brauer group of a field is torsion, one may also ask:

QUESTION 2.90 If X is a regular scheme with only finitely many connected components,
then is Br.X/! Br0.X/ surjective?

REMARK 2.10 For any schemeX , let Br (respectively, Br0) be the sheaf onXZar associated
with the presheaf U  Br.U / (respectively, U  Br0.U //. If f WXet!XZar is the obvious

4As noted earlier, the cohomological Brauer group Br0.X/ is now defined to be the torsion subgroup of
H2.X;Gm/.
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morphism, thenR2f�GmDBr0. SinceR1f�GmD 0 (III, 4.9), the Leray spectral sequence
gives the first row of the following diagram:

0 H 2.XZar;O�X / Br0.X/ � .X;Br0/ H 3.XZar;O
�
X /

0 Br.XZar/ Br.X/ � .X;Br/:
�

Here Br.XZar/ is the subgroup of Br.X/ generated by Azumaya algebras that are split by
a Zariski covering of X . The first vertical map is induced by the other two. We leave it as
an exercise to the reader to give an explicit description of � in terms of Azumaya algebras.
The question (2.9) can now be broken into three questions.

(a) (Local question) Is Br.X/! Br0.X/ an isomorphism? Equivalently, is Br.OX;x/!
Br0.OX;x/ an isomorphism for all x 2X ?

(b) (Global question). Does every element of � .X;Br/ that maps to zero inH 3.XZar;O�X /
arise from an element in Br.X/?

(c) (Singular question). Is Br.XZar/!H 2.XZar;O�X / an isomorphism? (If X is regular,
H 2.XZar;O�X /D 0D Br.XZar/ and U  Br0.U / is a sheaf.)

PROPOSITION 2.11 Let X D SpecR, where R is a local ring, and let 
 2 Br0.X/. The
following are equivalent:

(a) 
 2 Br.X/;

(b) there exists a finite étale surjective map Y !X such that 
 maps to zero in Br0.Y /;

(c) there exists a finite flat surjective map Y !X such that 
 maps to zero in Br0.Y /;

PROOF. Proof. (a))(b). This follows from (1.10).
(b))(c). This is trivial.
(c))(a). Let Y D SpecS . The spectral sequence (III, 2.7) for the covering Y ! X

gives an exact sequence,

LH 0.Y=X;Pic/! LH 2.Y=X;Gm/! Br0.Y=X/! LH 1.Y=X;Pic/! LH 3.Y=X;Gm/

where we have written Br0.Y=X/ for ker.Br0.X/!Br0.Y /). As S and S˝S are semilocal
rings, their Picard groups are zero, and the above sequence reduces to an isomorphism
LH 2.Y=X;Gm/� Br0.Y=X/. Let u 2 .S ˝S ˝S/� represent the class in LH 2.Y=X;Gm/

corresponding to 
 in Br0.Y=X/, and let E be S regarded as a free R-module of rank n.
Multiplication by u defines an S˝S -linear automorphism �WS˝S˝E! S˝S˝E that
may be regarded as an element of GLn.S˝S/. Writing �i for � tensored with id in the i th

place, we find that

�1�
�1
2 �3 W S˝S˝S˝E! S˝S˝S˝E

is �4 Dmultiplication by u˝1 (because �1��12 �3�
�1
4 is the coboundary of the 2-cocycle

u). As
u˝1 2 .S˝S˝S/� D center .AutS˝S˝S .S˝S˝S˝E//;

the image of � in PGLn.S˝S/ is a 1-cocycle and so defines an element 
 0 2 LH 1.X;PGLn/.
The image of 
 0 under the boundary map LH 1.X;PGLn/! LH 2.X;Gm/ is obviously 
 .
Thus any Azumaya algebra with class 
 0 will represent 
 . 2
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COROLLARY 2.12 If X is the spectrum of a Henselian local ring, then Br.X/D Br0.X/.

PROOF. Every 
 2 Br0.X/ satisfies (2.11b), according to (III, 2.11) and (I, 4.2). 2

COROLLARY 2.13 If R is a Henselian local ring, then Br.R/' Br.R=m/.

PROOF. This follows from (2.12) and (III, 3.lla). 2

REMARK 2.14 (a) A direct proof of (b),(a) of the proposition may be given as follows:
the map Y !X may be assumed to be Galois, with Galois group G; the Hochschild-Serre
spectral sequence for Y=X shows that 
 corresponds to an element of H 2.G;� .Y;OY /�/;
such an element defines a crossed product algebra over X in the same way as for Galois
extensions of fields.

(b) The algebra representing 
 in (2.11c) can be described by descent theory. Regard
E D S˝S as a free S-module by letting S act on the first factor and define an S˝S -linear
isomorphism �WS˝E!E˝S by setting

�.x˝y˝z/D
X

aix˝ ciz˝biy

where
uD

X
ai ˝bi ˝ ci :

One checks easily that ��12 �3�1 is multiplication by u1u�12 u3 D u4, and so

g 7! ��1g�WEndS˝S .E˝S/! EndS˝S .S˝E/

is a descent datum on EndS .E/. The corresponding Azumaya algebra A over R, such that
A˝R S � EndS .E/, represents 
 .

(c) LetX be an arbitrary quasi-compact scheme, and let Y !X be a finite faithfully flat
map. The proof of (c))(a) above can be extended to show that in this case also an element
of Br0.X/ that maps to zero in Br0.Y / arises from an element of Br.X/. See Hoobler [1,
Pptn 3.1] or prove it in the affine case by comparing the sequence of Chase-Rosenberg [1,
Thm 7.6] with the exact sequence in the proof of (2.11).

PROPOSITION 2.15 If X is a smooth variety over a field k, then Br.X/D Br0.X/, that is,
every element 
 of Br0.X/ arises locally from an Azumaya algebra.

PROOF. Let 
 2 Br0.U /, where U is a Zariski open subset of X . For any point x of U
we must show that there exists a Zariski open neighborhood V of x in U and a finite flat
surjective map V 0! V such that 
 becomes zero in Br0.V 0/. Clearly we may suppose that
k is algebraically closed. If n
 D 0, then the Kummer sequence shows that 
 arises from an
element 
 0 2H 2.U;�n/. If the characteristic p of k does not divide n, then �n � Z=nZ,
and the existence of Artin neighborhoods implies the existence of a V 0 on which 
 0 becomes
zero (III, 3.16). Now suppose p D n. Then (compare III, 4.14) there is an exact sequence

H 0.U;˝1cl/
C�1
�! H 0.U;˝1/!H 2.U;�p/!H 1.U;˝1cl/:

SinceH 1.U;˝1cl/may be computed using the Zariski topology (˝1cl is a coherent sheaf over
OX.p/), the image of 
 0 in H 1.U;˝1cl/ becomes zero on some Zariski neighborhood of x.
Thus we may assume that 
 0 arises from some element 
 00 of H 0.U;˝1/. But then (see
the proof of (III, 4.14)) there is a Zariski neighborhood V of x and a finite Artin-Schreier

covering V 0! V such that 
 00jV 0 is in the image of H 0.V 0;˝1cl/
C�1
�! H 0.V 0;˝1/. 2
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THEOREM 2.16 Let X be a quasi-compact scheme, and let 
 2 Br0.X/. There exists an
open subset U of X with codim.X �U/ > 1 such that 
 jU is represented by an Azumaya
algebra on U . Moreover, if X is regular, then U may be chosen so that codim.X �U/ > 2,
and if X is a smooth affine variety, then U may be taken to be X .

We first (partially) answer the local question.

LEMMA 2.17 Let R be a local ring of dimension � 1. Then Br.R/
'
�! Br0.R/:

PROOF. If R is of dimension 0, then it is a local Artin ring and hence Henselian. Thus
the result follows from (2.12). Now suppose that R has dimension 1. There is an exact
sequence of sheaves on SpecRet (compare II, 3.9):

0!Gm! g�Gm;K ! Div! 0

where K is the total ring of fractions of R and Div is the sheaf of Cartier divisors. Since
Div has support on the closed point Speck of R, there is an exact sequence,

H 1.k;Div/! Br0.R/! Br.K/:

Every element of Br.K/ or H 1.k;Div/ is killed by a finite flat extension of K or k, and
such extensions are induced by a finite flat extension of R. (For example, if L has basis
x1 D 1;x2; : : : ;xn over K, and

xixj D
X

cijkxk

with cijk 2 K;dcijk 2 R, then LD S ˝RK where S � L has basis 1, dx2; : : : ;dxn over
R:) Thus the lemma follows from (2.11). 2

Now letX be as in the theorem and let x1; : : : ;xr be the generic points of the irreducible
components of X . Since the local rings at the xi have dimension 0, the lemma shows that
there exist open neighborhoods U1; : : : , Ur (which we may take to be disjoint) of x1; : : : ;xr
and an Azumaya algebra Ai on each Ui that represents 
 jUi . Now U D U1[� � �[Ur is an
open dense subset of X , and we have an Azumaya algebra A on it representing 
 jU .

Let z 62 U with dim.OX;z/D 1. According to (2.17), there exists an Azumaya algebra
Az over OX:z representing 
 jSpec.OX;z/. Let K be the total ring of fractions of OX;z .
Then Az˝K is similar to A˝OU K, and so after replacing them by matrix algebras over
them if necessary, we may assume they are equal. Thus A extends over z. After a finite
number of such extensions, we have codim.X �U/ > 1.

Before considering a regular scheme X , we recall some definitions and facts about
orders (Reiner [1]).

Let R be an integral domain with field of fractions K, and let AK be a finite K-algebra
(not necessarily commutative). An R-order in AK is a sub-R-algebra of AK that contains
a basis for AK as aK-vector space and that is finitely generated as an R-module. If A is an
R-order, then Am is an Rm-order for all maximal ideals of R and conversely. Thus, given
an integral scheme X such that R.X/ D K, we may define an OX -order in AK to be a
coherent OX -algebra A that, locally for the Zariski topology on X , is an order.

If R is integrally closed and AK is an Azumaya algebra over K, then every subalgebra
of AK that contains a basis for AK and is integral over R is an order. To show this, we
only have to show that A is finitely generated as an R-module, but the reduced trace on
AK defines a nondegenerate bilinear form AK �AK ! K, and so the usual proof in the
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commutative case (Atiyah-Macdonald [1, 5.17]) carries over. It follows that any sequence
of ordersA1�A2� �� � terminates becauseAD

[
Ai is finitely generated. Thus there exist

maximal orders. Clearly this result extends to orders over quasi-compact normal schemes.
Let X be a connected quasi-compact regular scheme, let 
 2 Br0.X/, and let AK be

the Azumaya algebra over K D R.X/ that represents the image of 
 in Br0.K/. Choose a
maximal OX -orderA inAK . Clearly the set U of points x 2X such thatAx is an Azumaya
algebra over OX;x is open and dense in X , and the injectivity of

Br.U / ,! Br0.U / ,! Br0.K/

implies thatAjU represents 
 jU . It remains to show that codim .X�U/> 2 (after possibly
replacing5 A by a matrix algebra over it).

(It should be noted thatA being a maximal order inAK implies thatMn.A/ is a maximal
order in Mn.AK/. In proving this, we may assume that X is affine, X D SpecR. Let B be
an order such that Mn.A/ � B �Mn.AK/, and let B0 be the set of elements of AK that
occur as an entry in some matrix in B . From the matrix identity

e1k.bij /el1 D

�
bkl 0

0 0

�
;

it follows that B0 is a ring. Since it is generated as an R-module by the entries in any finite
set of generators for B and it contains A, it is an order. Thus B0 D A and Mn.A/D B:/

Suppose that there is a point x in XrU such that RDOX;x has dimension one. Then
Ax is a maximalR-order inAK , and, from the lemma, we know that there exists anotherR-
order A0 in AK that is an Azumaya algebra representing 
 jSpecR (after possibly replacing
A by a matrix algebra over it). The set ID fa 2AK j aAx �A0g is a left ideal in A0. Since
left ideals in Azumaya algebras over fields are principal (Herstein [1, 1.4.2]), Nakayama’s
lemma shows that I is principal, I D A0u. One sees easily that I\K ¤ 0, which shows
that u is a unit in AK . Since I is a right Ax-module, uAx � IDA0u, and so Ax � u�1A0u.
The maximality of Ax implies that Ax D u�1A0u, and so Ax is an Azumaya algebra. Thus
we may assume that x 2 U .

Write A_ D HomOX .A;OX / � A
_
K D HomK.AK ;K/. We may identify AK with

A__K , and the maximality ofA shows that the natural injectionA ,!A__ is an isomorphism.
Let x be a point of X such that RDOX;x has dimension two, and consider a sequence

0!M ! F0! A_x ! 0

with F0 a free and finitely generated R-module. On applying HomR.�;R/ to this, we get
an exact sequence,

0! Ax! F _0 !N ! 0

with N a submodule of M_. As R is an integral domain, M_ and N are torsion free, and
so N ,! N ˝RK. Thus N may be embedded in a free, finitely generated, R-submodule
F1 of N ˝RK. As R has homological dimension two, the existence of a sequence

0! Ax! F _0 ! F1! F1=N ! 0

5From Tate 12/4/92: “It was not at all clear to me, especially for schemes as opposed to rings, that a max-
imal order is locally maximal. And I think the comment on line -7 (after possibly replacing...) is misleading,
since (I hope) if Mn.A/ is Azumaya, then A is also, and so is maximal.”
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shows that Ax is free.
The canonical map Ax˝Aox! EndR.Ax/ is injective because it is a submap of AK˝

AoK ! EndK.AK/; let M be its cokernel. As Ax˝Aox and EndR.Ax/ are both free, M
has homological dimension � 1. Thus the maximal ideal of R is not an associated prime
of M (see Serre [9, p. IV-36]). But M ˝Rp D 0 for every prime p of height � 1 since we
know that for such p;A˝Rp is an Azumaya algebra. Thus no prime is associated with M ,
M D 0, Ax is an Azumaya algebra, and x 2 U .

Finally we come to the case that X is a smooth affine variety, say X D SpecR. Let I be
the set of f 2R such that 
 jSpecRf is represented by an Azumaya algebra. If we can show
that I is an ideal, then (2.15) will show that it equals R, and the theorem will be proved.
Obviously fg 2 I if f 2 I, g 2R. Let f and g 2 =; it remains to show that f Cg 2 I. By
definition, there are Azumaya algebras A and B over Rf and Rg respectively representing

 jSpecRf and 
 jSpecRg . As Ag and Bf are similar on SpecRfg there exist finitely
generated, locally free, Rfg -modules E and F such that Ag ˝End.E/� Bf ˝End.F /.
The maps on the Grothendieck groups

K0.Rf /!K0.Rfg/; K0.Rg/!K0.Rfg/

are surjective; this is obvious for K0 (finitely generated modules) but as R is regular, this
group agrees withK0 (finitely generated projective modules) according to Bass [1, IX, 2.1].
Thus the classes of E and F in K0.Rfg/ extend to Rf and Rg . Since we may choose E
and F to have arbitrarily high rank, the stability theorems (Bass [1, IX, 4.1]) show that
E and F themselves extend to locally free, finitely generated, Rf and Rg -modules E 0

and F 0. After replacing A and B by A˝End.E 0/ and B˝End.F 0/ respectively, we find
that Ag � Bf , that is, A and B patch and 
 is represented by an Azumaya algebra on
SpecRf [SpecRg . As this contains SpecRfCg , the proof is complete.

REMARK 2.18 (a) If X is an affine regular scheme, then arguments similar to the above
show that Br.X/

�
�!H 2.Xetf;Gm/ where (etf) is the class of all composites of finite étale

morphisms and open immersions.
(b) The proof of the second case of (2.17) is essentially that used by Auslander and

Goldman to prove that for any regular connected scheme X of dimension 2, Br.X/ is the
subgroup

T
x2X1

Br.OX:x/ of Br.R.X//. Hoobler, to whom the proof of the third case of
(2.17) is due, shows that (2.17) implies the same result for X a smooth affine variety. The
result may be regarded as a noncommutative analogue of the purity of branch locus (I, 3.7):
if the class of an Azumaya algebra in the Brauer group ramifies then it does so on a set of
pure codimension one.6

(c) The proof of the third case of (2.17) shows that Br.X/D Br0.X/ if X is a smooth
variety with a covering X D X1[X2 where X1, X2 and X1\X2 are open affine. This
holds, for example, if X is a smooth projective curve over a smooth affine variety, a fact
that has been exploited by Artin to generalize his result (Grothendieck [4, III, 3.1]).

(d) Ofer Gabber and R. Hoobler have announced proofs that Br.X/D Br0.X/ for every
affine scheme X .7

6The orginal states this for Azumaya algebras instead of their classes in the Brauer group. But there exists
a vector bundle V on A3r f.0;0;0/g that doesn’t extend, and then End.V / is an Azumaya algebra on the same
variety that doesn’t extend (Tate email).

7See
Gabber, Ofer, Some theorems on Azumaya algebras, Ph.D. Thesis, Harvard Univ., Cambridge, Mass., 1978
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Finally, we mention a question that, because of its relation to Tate’s conjecture, is the
most interesting concerning the Brauer group.

QUESTION 2.19 (ARTIN) If X is proper over SpecZ, is Br.X/ finite?

For X of dimension 1, class field theory shows that the answer is yes, but already the
case of a surface over a finite field presents serious problems.8

EXERCISE 2.20 (a) Show that Br.R/D 0 for any ring R in which every element r satisfies
an equation rnD r , where n is an integer� 2 depending on r . (Hint: show thatR is a union
of finite rings.)

(b) Show that for every perfect field k, Br.k/ � Br.kŒT �/. (Hint: use (III, 2.21) for
ksepŒT �=kŒT �, and note that Br.ksepŒT �/� Br.ksep.T //D 0.)

(c) Show that if R is a Henselian discrete valuation ring, then Br.K/D Br. OK/, where
K and OK are the fields of fractions of R and its completion, except possibly for the p-
components when char.K/D p ¤ 0. (Hint: K and OK have the same Galois groups (Serre
[7, II]), so one only needs to examine L� ,! OL� for L a finite extension of K; the quotient
OL�=L� is uniquely divisible by every integer prime to p:)

(d) Show that for any field k, there is an exact sequence

0! Br.kŒT �/! Br. QK/!X.G.ks=k//! 0

where QK is the field of fractions of .kŒT �.T //h and the first map is induced by T 7! T �1.
(Hint: note that QK is the Henselization of k.P1/ at the point at infinity; use (III, 2.23b),
(III, 1.25), and (III, 1.28) to prove it in the case that k D ksep ; use (III, 2.21) to prove it in
general.) (Compare Yuan [1].)

(e) Let R be the ring of integers in a quadratic number field QŒ
p
d�; use elementary

number theory (in particular, no class field theory) to show that Br.R=Z/D 0. (Hint: note
that

Br.R=Z/D ker.Br.QŒ
p
d�=Q/!

Y
p

Br.QpŒ
p
d�=Qp/

where Qp Dp-adic numbers; by the periodicity of the cohomology ofGDGal.QŒ
p
d�=Q/

the exercise is equivalent to showing that a 2Q is a norm from QŒ
p
d� if it is a norm from

QpŒ
p
d�, all p; now use the proof of case nD 3 of Serre [10, IV. Thm. 8]. This proof is

due to Legendre.)
(f) Let X be a smooth variety over a field of characteristic p. Show that every p-torsion

element in Br0.X/ becomes zero in Br0.Y / for some finite flat morphism Y ! X . Deduce
that such an element is in Br.X/ (2.14c). (Hint: use the Frobenius map.)
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(Wilrijk, 1981), pp. 231–244, Lecture Notes in Math., 917, Springer, Berlin-New York, 1982.
In the above papers, it is shown that Br.X/DBr0.X/tors ifX is a union of two affine schemes whose intersection
is also affine. More recently, Gabber and de Jong have shown that Br.X/ D Br0.X/tors for every scheme X
admitting an ample invertible sheaf. See:

A.J. de Jong, A result of Gabber (n.d.). Available on the author’s website.
8Indeed, there has been little progress on this question since the book was written. The author showed that

Br.X/ is finite if some l-primary component is finite, and this last assertion has been proved recently for all
K3 surfaces.
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(g) Let A be an Azumaya algebra over a scheme X . Show that there exists a scheme
YA over X such that, for any X -scheme U , AjU is trivial if and only if YA has a point in U.
(Hint: use (III, 4.24).) (Compare Roquette [1].)

Comments on the Literature

Azumaya algebras were first studied over local rings by Azumaya [1], over arbitrary rings
by Auslander and Goldman [1], and over schemes by Grothendieck [4]. Grothendieck was
the first to give a satisfactory cohomological description of the Brauer group. We have
largely followed these three sources. There is now a large literature on the Brauer group
(see DeMeyer and Ingraham [1], Orzech and Small [1], Knus-Ojanguren, [1], and their
bibliographies) much of which, unfortunately ignores the powerful methods introduced by
Grothendieck. Yu. Manin has used the Brauer group to study the arithmetic and the geom-
etry of cubic surfaces [1].9

9Since this was written, there has been much work done on the “Brauer-Manin” obstruction to the Hasse
principle.
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