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General Introduction

Let X be a smooth projective variety over & . Hodge
conjectured that certain cohomology classes on X are algebraic.
The work of Deligne that is described in the first article of
this volume shows that, when X is an abelian variety, the
classes considered by Hodge have many of the properties of
algebraic classes.

In more detail, let x2"  pe the complex analytic manifold
associated with X , and consider the singular cohomology groups
B (x®%,@) . The variety xan being of Kdhler type (any projective
embedding defines a K&hler structure), its cohomology groups

n

H (Xan’

) = #*x®?,@) ® € have a canonical decomposition

B (x®™,0) = e HP?, wP9I-ndx®0, QP ) .
p+g=n X

The cohomology class cf(2Z) € HZP(Xan,E) of an algebraic
subvariety 2 of codimension p in X 1is rational (it lies
in #?P(x®",0)) and of bidegree (p,p) (it lies in #P'P)
The Hodge conjecture states that, conversely, any element of
Hzp(x,m)n BP'P  is a linear combination over @ of the classes
of algebraic subvarieties. Since the conjecture is unproven,
it is convenient to call these rational (p,p)-classes
Hodge cycles on X .

Now consider a smooth projective variety X over a field
k that is of characteristic zero, algebraically closed, and

small enough to be embeddable in €@ . The algebraic de Rham




cohomology groups HgR(X/k) have the property that, for any
embedding o: k < € , there is a canonical isomorphism

&, N an, _ ,n,.an .
k'cm == HDR(X ) = H (X"7,€) . It is natural to
say that t € Hgg(x/k) is a Hodge cycle on X relative to o

n
HDR(X/k) ®

if its image in HZP(Xan,E) is (271)P times a Hodge cycle

on X ® Deligne's results show that, if X 1is an

k,om N
abelian variety, then an element of Hgg(x/k) that is a
Hodge cycle on X relative to one embedding of k in € is
a Hodge cycle relative to all embeddings; further, for any

2p(Xan,(I!) always

embedding, (211)P  times a Hodge cycle in H
lies in the image of Hgg(x/k) . Thus the notion of a Hodge
cycle on an abelian variety is intrinsic to the variety: it
is a purely algebraic notion. In the case that k = T the
theorem shows that the image of a Hodge cycle under an automorphism
of € 1is again a Hodge cycle:; equivalently, the notion of a
Hodge cycle on an abelian variety X over € does not depend
on the map X + spec € . Of course, all of this would be
obvious if only one knew the Hodge conjecture.

In fact, in the first article a stronger result is proved
in which a Hodge cycle is defined to be an element of
HgR(X) x g Hn(xet'QR) . As the title of the original seminar
suggests, the stronger result has consequences for the algebraicity
of the periods of abelian integrals: briefly, Deligne's result
allows one to prove all arithmetic properties of abelian

periods that would follow from knowing the Hodge conjecture

for abelian varieties.




The second article is mainly expository. Since Tannakian
categories are used in several articles, we thought it useful
to include an account of the essential features of the theory.
The exposition largely follows that of Saavedra [l] except at
three places: 1in §3 we point out an error in Saavedra's results
concerning a non-neutral Tannakian category; in §4 we eliminate
an unnecessary connectedness assumption in the theory of
polarized Tannakian categories; and in §6 we discuss motives
relative to absolute Hodge cycles rather than algebraic cycles.

A neutralized Tannakian category is a k-linear category
C with an operation ®: C x C + C and a functor to finite-
dimensional vector spaces over k satisfying certain conditions
sufficient to ensure that C is equivalent to the category of
finite-dimensional representations of an affine group scheme
G over k . The importance of this notion is that properties
of an abstract category C will be faithfully reflected in
properties of the associated group G .

The category of polarizable @-rational Hodge structures
is Tannakian. The group associated to its Tannakian subcategory
of those Hodge structures of CM-type is called the connected
Serre group s° .

It would follow from Grothendieck's standard conjectures
that the category of motives, arising from the category of
projective smooth varieties over a field Xk , is Tannakian.

If, in the definition of motive, "algebraic cycle" is replaced
by "Hodge cycle"” and the initial category is taken to consist

of abelian varieties over a field k of characteristic zero,




then the resulting category of Hodge motives is Tannakian.

(0f course, for this to make sense, one needs Deligne's Theorem.)
If the initial category is taken to be all abelian varieties
over € of CM-type , then the group associated with the
category of motives is again s® ; if the initial category

is taken to be all abelian varieties over @ that become of
CM-type over € , then the associated group is called the

Serre group S . The identity component of S is s® , and

S is an extension of Gal(@/m) by s® . There is a canonical

~SP —
continuous splitting S(]Af) — Gal(@/Q) over the ring of

finite adeles :mf.

The third article is again largely expository: it
describes Langlands's construction of his Taniyama group.
Langlands's study of the zeta functions of Shimura varieties
led him to make a conjecture concerning the conjugates of a
Shimura variety (Langlands [1, p 417]). 1In the belief that
this conjecture was too imprecise to be proved by the methods
usually applied to Shimura varieties, he then made a second,
stronger conjecture (Langlands [2, p 232-33]). This second
conjecture is stated in terms of the Taniyama group T which,
like the Serre group, is an extension of Gal (@/m) by s°
together with a continuous splitting over IAf . In the
following two articles, this conjecture is proved for most
Shimura varieties, viz. for those of abelian type (see
article V.1 for a definition of this term).

In the first of the two articles, Deligne proves that

the Serre group, together with its structure as an extension




and its adelic splitting, is isomorphic to the Taniyama group.
This is shown by a uniqueness argument: any two extensions of
Gal(@/@) by s® with adalic splittings are isomorphic provided
they possess a certain list of properties. The Taniyama group
has these properties by construction while for the Serre group
they follow from properties of abelian varieties of potential
CM-type (for example, the theorem of Shimura and Taniyama) .
The significance of this result is that, while the Serre group
summarizes a great deal of information about abelian varieties
of potential CM-type , the definition of the Taniyama group
does not mention them. In particular, the result gives a
description (in terms of the Taniyama group) of the action of
Gal (@/0) on an abelian variety of potential CM-type over
and its points of finite order.

In the fifth article it is shown that this last result
(called conjecture CM in the article) is equivalent to
Langlands's conjecture for the Shimura varieties associated
with symplectic groups. Then it is shown that arguments
involving symplectic embeddings and connected Shimura varieties
suffice to prove the conjecture for all Shimura varieties of
abelian type. (We note that when this article was written,
Deligne had shown only that the Serre and Taniyama groups were
isomorphic as extensions, i.e., not necessarily by an isomorphism
preserving the adelic splittings; thus some parts of the article
are now redundant. Also that it appears likely that the methods
Kazhdan and Borovoi use to show the existence of canonical models

can be combined with the methods of the article to give a proof




of Langlands's conjecture for all Shimura varieties.)

The final article returns to guestions suggested by the
first article. An algebraic cycle on a variety X over a
number field K defines a class in the crystalline cohomology
of any smooth reduction of X , and this class is acted on in
a particularly simple way by the Frobenius endomorphism, Does
an absolute Hodge cycle have the same property? If a class
Y € HDR(X/K) behaves as an algebraic cycle when embedded in
the crystalline cohomology of any smooth reduction of X ,
is it necessarily absolutely Hodge? Such questions are discussed
in the fourth section of the sixth article. The remaining
sections are concerned with the following topics: giving a
geometric interpretation of the second spectral sequence of
de Rham hypercohomology in positive characteristics, relating
the filtration on de Rham cohomology in characteristic zero
to the filtrations mod p (almost all p) , and the definition
of a new invariant + 1, the crystalline discriminant, attached
to a variety in characteristic p .

For more detailed descriptionsof the contents of the

articles, we refer the reader to the individual introductions.

Langlands, R.

(11 Some contemporary problems with origins in the Jugendtraum,
Proc. Symp. Pure Math., A.M.S. 28(1976) 401-418.

[2] Automorphic representations, Shimura varieties, and motives.
Ein Midrchen, Proc. Symp. Pure Math., A.M.S., 33(1979) part 2,

205-246.




Saavedra Rivano, N.
[1] Catégories Tannakiennes, Lecture Notes in Math, 265, Springer,

Heidelberg, 1972.



Notations and Conventions.

The ring of finite adéles, (lim Z/mzZ)® o , of @ is
denoted by ]Af , and 1 denotes the full ring of adéles IR. X ]:txf

For E a number field, ]Z-&f.' and JAE denote E ®m]Af and

E ® B. The group of ideles of E is Eg, and the ideéle
class group is Cg = DQ/EX.

The reciprocity isomorphism of class field theory is
normalized so that a uniformizing parameter corresponds to
the reciprocal of the arithmetic Frobenius element.

Complex conjugation is denoted by 1 in articles I, II, III,
and V, and by ¢ in IV (it is, of course, also denoted by
z—z) .

The groups referred to in articles II and IV as the
connected Serre group s® and the Serre group S are referred
to in articles III and V as the Serre group S and the
motive Galois group M respectively.

Item x.y of article V is referred to as (v.x.y) .



I HODGE CYCLES ON ABELIAN VARIETIES

P. Deligne (Notes by J.S. Milne)

Introduction.

l. Review of cohomology.

2. Absolute Hodge cycles; principle B.

3. Mumford-Tate groups; principle A.

4. Construction of some absolute Hodge cycles.

5. Completion of the proof for abelian varieties of CM-type.
6. Completion of the proof; consequences.

7. Algebraicity of values of the TI'-function.
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Using B and the families of abelian varieties para-
metrized by Shimura varieties, one shows that it suffices to
prove the main result for A an abelian variety of CM-type
(see 86). Fix a CM-field E , which we can assume to be
Galois over @ , and let (Aa) be the family of all abelian
varieties, up to E-isogeny, over € with complex multiplica-
tion by E . Principle B is used to construct some absclute
Hodge cycles on varieties of the form g A - the principle
allows us to replace @ Aa by an abelig;lvariety of the form

A E (see §4). Let G C GL(® Hl(Aa,(D)) x GL(D(l)) be the

o %o
subgroup fixing the absolute Hodge cycles just constructed
plus some other (obvious) absolute Hodge cycles. It is shown
that G fixes every Hodge cycle on an A, and Principle A
therefore completes the proof (see §5).

On analyzing which properties of absolute Hodge cycles
are used in the above proof, one arrives at a slightly stronger
result. Call a rational cohomology class ¢ on a projective

smooth variety X accessible if it belongs to the smallest

family of rational cohomology classes such that:

(a) the cohomology class of any algebraic cycle is
accessible;

(b} the pull-back by a map of varieties of an accessible
class is accessible;

(c) if tireeerty € H* (X,0) are accessible, and if a
rational class t 1in some Hzp(x,m) is fixed by the
algebraic subgroup G of Aut(H*(X,D)) (automorphisms
of H*(X,Q) as a graded algebra) fixing the ¢, ,

i
then t is accessible;




1"

(d) Principle B , with "absolute Hodge" replaced by
accessible, holds.
Sections 4, 5, 6 of these notes can be interpreted as proving
that, when X is an abelian variety, any Hodge cycle (i.e.,
rational (p,p)-cycle) in HZP(X,m) is accessible. Sections
2,3 define the notion of an absolute Hodge cycle and show that
the family of absolute Hodge cycles satisfies (a), (b), (e),
and (d) ; therefore an accessible class is absolutely Hodge.
We have the implications:
ab. var.
Hodge =—=——=> accessible = absolute Hodge => Hodge .
Only the first implication is restricted to abelian varieties.
The remaining two sections, §1 and §7 , serve respectively
to review the different cohomology theories and to give some
applications of the main result to the algebraicity of certain

oroducts of special values of the TI-function.

Notations: All algebraic varieties are complete and smooth

over fields of characteristic zero unless stated otherwise. (The
reader will lose little if he takes all varieties to be pro-
jective.) € denotes an algebraic closure of IR and i eC a
square root of -1 ; thus i 1is defined only up to sign. A

choice of i determines an orientation of € as a real manifold --
we take that for which 1]ai > 0 -- and hence an orientation of

any complex manifold. Complex conjugation on € is denoted by

1 or by zp z . Recall that the category of abelian varieties

up to isogeny is obtained from the category of abelian

varieties by taking the same class of objects but replacing
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Hom(A,B) by Hom(A,B) ® @ . We shall always regard an abelian
variety as an object in the category of abelian varieties
up to isogeny: thus Hom(A,B) 1is a vector space over (Q .

If (Va) is a family of rational representations of an
algebraic group G over k and ta,B € V4 then the subgroup
of G fixing the t is the algebraic subgroup H of

a,B
G such that, for all k-algebras R, H(R) = {g € G(R)]| g(t

«,8®) =

ta B@ 1, all a,B} . Linear duals are denoted by a superscript
’

v . If X 1is a variety over a field k and ¢ is an
embedding o: k<> k' , then oX denotes X @k . k'

(= X spec(k')) .

xspec(k)

1. Review of cohomology

Let X be a topological manifold and F a sheaf of

abelian groups on X . We define
H'(X,F) = H' (T (X,F"))

where F » F° 1is any acyclic resolution of F ; thus
Hn(X,F) is uniquely defined, up to a unique isomorphism.

When F 1is the constant sheaf defined by a field K ,
these groups can be identified with singular cohomology groups
as follows. Let S.(X,K) be the complex in which Sn(x,K)
is the vector space over K with basis the singular n-simplices
in X and the boundary map sends a simplex to the (usual)
alternating sum of its faces. Set S°(X,K) = Hom(S.(X,K),K)

with the boundary map for which
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(a,0) —a(o): S°(X,K) ® S.(X,K) =K

is a morphism of complexes, namely that defined by (da) (o) =

deg (o) +1

(-1) a(do) .

Proposition 1.1. There is a canonical isomorphism

B (S* (X,K)) —> H(X,K)

Proof: If U is a unit ball, then HO(S'(U,K)) = K and
H'(s*(U,K)) = 0 for n >0 . Thus K » S"(U,K) is a
resolution of the group K . Let §? be the sheaf on X
associated with the presheaf V'P>Sn(V,K). The last remark
shows that K + 8° 1is a resolution of the sheaf K . As
each s" is fine (Warner [1,5.32]), H'(X,K) = H(T(X,8")) .
But the obvious map S°(X,K) = I'(X,8°) 1is surjective with an

exact complex as kernel (loc. cit.), and so
B (8" (X,K)) —=> ™I (x,87)) = H(X,K) .

Now assume X is a differentiable manifold. On replacing
"singular n-simplex" by "differentiable singular n-simplex" in
the above definitions, one obtains complexes sT(x,K) and
S, (X,K) . The same argument shows there is a canonical iso-
morphism H:(X,K) 2£ Hn(ST(X,K)) 25 5™ (X,K) (loc. cit.).

Let Oxm be the sheaf of C real-valued functions on

X, Q;w the Oxw-module of ¢° differential n-forms on X , and

Qém the complex
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The de Rham cohomology groups of X are defined to be
HOR (X) = Hn(F(X,Q)’(m)) = {closed n-forms} /{exact n-forms} .

If U is the unit ball, Poincare's lemma shows that HgR(U) = R
and HBR(U) =0 for n>0 . Thus R = in is a resolution
of the constant sheaf 1R, and as the sheaves Q;w are fine
(Warner [1,5.28]), we have H' (X,R)= Hp (X) .

For w e T(X,@%,) and o€ S (X,R), define

n(n+l)

2

<w,0 >= (-1) er € R. Stokes's theorem states that

fa dw = fdgw, and so <dw,d >+ (—l)n<m,do>= 0 . The pairing

<, > therefore defines a map of complexes f: P(X,Q'xw) > S (X,R).

Theorem 1.2 (de Rham): The map HSR(X) i H:(X,BU defined by f£

is an isomorphism for all n .

n

Proof: The map is inverse to the map H:(X,IU = H"(X,R) = Hor

(X)
defined in the previous two paragraphs (Warner [1,5.36]). (Our
signs differ from the usual because the standard sign conventions
;dw = Idom Y priw A pryn = g(w f; n etc. violate the
standard sign conventions for complexes.)

A number [ w, 0 € H_(X,@) , is called a period of w .
The map in (1.2) identifies H™(X,Q) with the space of classes
of closed forms whose periods are all rational. Theorem 1.2
can be restated as follows: a closed differential form is exact
if all its periods are zero; there exists a closed differential
form having arbitrarily assigned periods on an independent set

of cycles.
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Remark 1.3 (Singer-Thorpe [1,6.2]). If X 1is compact then it has
a smooth triangulation T . Define S.(X,T,K) and S°(X,T,K)

as before, but using only simplices in T . Then the map
F(X,Qém) + S°(X,T,K), defined by the same formulas as £ above,

induces isomorphisms HER(X) =5 B™(S* (X,T,K)) .

Next assume that X 1is a complex manifold, and write

Q an for the complex
X
O an 4> Qlan <> 92an <> Tt
X X X
in which ﬂnan is the sheaf of holomorphic differential n-forms.
X
(Thus locally a section of Qnan is of the form w =
X
I a, . dz, A...pdz, with o, : a holomorphic function
iye.-i i, i, ij...d)

and the zg local coordinates.) The complex form of Poincaré's

lemma shows that @ Q.an is a resolution of the constant
X

sheaf € , and so there is a canonical isomorphism

N x,c) =» }f](X,Q'an) (hypercohomology) .
X

If X 1is a compact Kdhler manifold, the spectral sequence
P,q9 _ 9P pP+q -
E1 H (Qxan) = W (Qxan)

degenerates, and so provides a canonical splitting 5" (x,¢) =

@ Hq(x,ﬂpan) (the Hodge decomposition); moreover
p+g=n X

uPr4 4f Hq(X,Qpan) is the complex conjugate of HY'P  relative
X

to the real structure HT(X,R)® ¢ => H?(X,C) (Weil [2]).
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The decomposition has the following explicit description:

the complex &' _® @ of sheaves of complex-valued differential
X

forms on the underlying differentiable manifold is an acyclic

resolution of € , and so H“(x,m) = Hn(F(X,Q'mﬁ C)) ; Hodge
X

theory shows that each element of the second group is represented
by a unique harmonic n-form, and the decomposition corresponds
to the decomposition of harmonic n-forms into sums of harmonic
(p,q)-forms, p+ g =n .
Finally, let X be an algebraic variety over a field k .
If k=@ then X defines a compact complex manifold x2n,
and there are therefore groups H“(xa“,m) , depending on the
map X + spec(€) , that we shall write Hg(x) (here B abbreviates

Betti). There exist canonical Hodge decompositions:

apx) = e wP'%x), B”'9 = w¥P . 1f x is projective,
ptg=n .
then the choice of a projective embedding determines a Kdhler

structure on X0 , and hence a Hodge decomposition (which is
independent of the choice of the embedding because it is determined
by the Hodge filtration, and the Hodge filtration depends only
on X ; see l.4). In the general case we refer to Deligne
[1,5.3,5.5] for the existence of the decompositions.

For an arbitrary k and an embedding o: k= T we
write HO(X) for Hp(oX) and HE'T(x) for EP'Y(ox) . As
defines a homeomorphism ox2? + 1gx27 , it induces an isomorphism
B 00— H(X) .

Let Qi/ be the complex in which Qg/ is the sheaf of

k k
algebraic differential n-forms, and define the (algebraic)



n .
de Rham cohomology group H (X/k) to be H (XZar'Qx/k)

(hypercohomology relative to the Zariski topology). For

any map o: k <— k' there is a canonical isomorphism

n v = n ' 1
H R(x/k) ®k,0 k' = HDR(X 8, k /k'). The spectral sequence

b9 = mlx ) = mPTI(x

P .
Zar'ﬂx/k Zar’Qx/k)

defines a filtration (the Hodge filtration) FPHSR(X) on

HSR(X) which is stable under base change.

an

Theorem 1l.4. If k = C the obvious maps X *> XZar’Qxan + QX
_ xan
induce an isomorphism HDR(X) AN HDR(X ny = 2" (x3%,c) under
1 '
which FPHDR(X) corresponds to FPH™(x2",€) df e =uP ‘9
p'>p

Proof: The initial terms of the spectral sequences

P/rqd _ 9 P — ptq

Ej' = HU(X,, . /8y) = Hyp™(X)
+

ePrd = p9(x*,0P ) = B9

Xan

are isomorphic. (See Serre [1] for the projective case, and
Grothendieck [2] for the general case.) The theorem follows

from this because, by definition of the Hodge decomposition,

the filtration of HDR(Xan

sequence is equal to the filtration of Hn(xan,c) defined

) defined by the above spectral

in the statement of the theorem.
It follows from the theorem and the discussion preceding
it that any embedding d: k <> € defines an isomorphism

HnR(X) ® C ¥i>H§(X) ®. € and, in particular, a k-structure on

k,o Q



Hg(x) @CD C . When k =@ , this structure should be distinguished

from the @-structure defined by Hg(x): the two are related
by the periods (see below).
When k is algebraically closed we write Hn(X,me) , or
n n A~ n Sn o v n
Het(X)’ for H (Xet,z) 8,0 , where H (xet,zz) = lim H (xet,zz/mz)

mo

£y af, the

(étale cohomology). If X 1s connected, HO(X,]A
ring of finite adeles for @ , which justifies the first

notation. By definition, H__(X) depends only on X (and

n
et
not on the map X + spec k). The map Hgt(x) d H:t(x ® k')
defined by an inclusion of algebraically closed fields k & k'
is an isomorphism (special case of the proper base change
theorem, Artin et.al.[l, XII]). The comparison theorem

(ibid. XI) shows that, when k = € , there is a canonical

£

isomorphism Hg(x) s mt =S HZ (X) . It follows that

t
Hg(x) ] ]Af is independent of the map X + spec T , and that,
over any (algebraically closed) field, Hgt(x) is a free
Bf-module.

i (x,nf

) can also be described as the restricted
product of the spaces Hn(x,mz) , ¥ prime, with respect to the
subspaces Hn(X,ZZQ’) .

Next we define the notion of a "Tate twist" in each of
our three cohomology theories. For this we shall define objects
@(1) , and set H™(X)(m) = B°(x) & @(1)® . We want @(1)
to be HZ(IPl) (realization of the Tate motive in the

cohomology theory) but to avoid the possibility of intro-

ducing sign ambiguities, we shall define it directly:



. _ m _
Q¢ (1) = B (1) S (lim u (kD) 8@, 4, 00 = {z € k|T" = 1)
m
QDR(l) =k ,
and so
Hp (X) (m) = HL(x) & (211)"0 = ¥"(x*", (2r1)™®)  (x = @)

i

n n £ @m _ . n m
Hoy (X) (m) Ho (X) @ ¢ (R"(1)) 7 = (1im H (Xgprbpe (K)7)) €@

n <
r

(k alg. cl.)

n n
HDR(X)(m) HDR(X)

These definitions extend in an obvious way to negative m ;

‘

for example we set met(-l) = Hom . (F;(l)ﬁmf) and define
n

n - . _1,9m
Het(x)(-m) = Het(X) 8 met( 1)

There are canonical isomorphisms

2, (1) 8 nf = Q. (1) (k alg. cl., kC @)

Ry (1) 8y ¢ > @ (1) 8

o k C (kC @)

and hence canonical isomorphisms (the comparison isomorphisms)

£

HR(X) (m) @ BY > Hg, (X) (m)  (k alg. cl., kC @)

Hp(X)(m) 8¢ > HD () (m) 8 C k c @

k
To define the first, we note that exp defines an isomorphism

211 B/m27i @ 2> um(k) ; after passing to the limit over

m, and tensoring with @ , we obtain the required isomorphism

2wi Eﬁ = mﬁ(l) . The second isomorphism is induced by the
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inclusions 2mwi @ €> @€ <= k . Although the Tate twist

for de Rham cohomology is trivial, it should not be ignored. For

example,
Hg(x) 8 C SN Hg(x)(m) @ € (1w (21i)™; defined up to sign)
= l canon. = l canon.
n = n
HDR(X) —_— HDR(X)(m) (k = )

fails to commute by a factor of (21ri)m .

In each cohomology theory there is a canonical way of
associating a class cl(Z) in HZP(X)(p) with an algebraic
cycle Z on X of pure codimension p . Since our cohomology
groups are without torsion, we can do this using Chern classes
(Grothendieck [1]). Starting with a functorial homomorphism
cl:Pic(X) > HZ(X)(l) , one use the splitting principle to
define the Chern polynomial ct(E) =z cp(E)tp , cp(E) e H2p(x)(p),
of a vector bundle E on X. The map E +— ct(E) is additive,
and therefore factors through the Grothendieck group of the
category of vector bundles on X . But, as X is smooth, this
group is the same as the Grothendieck group of the category of

coherent Ox—modules, and we can therefore define

cl(z) = ﬁ ey (0,)

(loc. cit 4.3).

In defining <y for the Betti and étale theories, we

begin with the maps
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Pic(Xx) — HZ(x2D,21i 7)

Pic(X) — H2(X (X))

et’Hm

arising (as boundary maps) from the sequences

0 — 21iZm — O &XP, o~ — 0
an an
X X
0 — OX _I.“_.) Ox — 0
— -
Hm X X

For the de Rhamtheory, we note that the dlog map , £ +— S&

defines a map of complexes

0o — 0; — 0 — ...
dlog
o Lral 4.2 4,

and hence a map
s 1 % 2 x .
ci: Pic(X) = H'(X,00) = W’ (X,0 » 0f » ...) — H2(x,a})

_ 2 _ 42
* Hpp (X) = Hp (X} (1) .

It can be checked that the three maps c; are compatible

with the comparison isomorphisms and it follows formally

that the maps cl are also compatible. (At least, it does

once one has checked that Gysin maps and multiplicative

structures are compatible with the comparison isomorphisms.)
When k = @ , there is a direct way of defining a class

cl(z) e H (X(C),@ (singular homology; d = dim(X) ,

2d-2p
p = codim(Z)): the choice of an i determines an orientation
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X and of the smooth part of 2Z , and there is therefore a
topologically defined class cl(z) € HZd_zp(X(m),Q) . This class
2d-2p

has the property that for [w] € 12d-2P (® mr) = (T(X,0°))

X
represented by the closed form w ,

<cl(z), [w]> = fzm .

By Poincaré duality, c¢l(2) corresponds to a class

2p . . 2p
cltop(z) e HB (X), whose image in Hy (X) (p) under the map
induced by 1 #+— 2mi: @ — @(1) 1is known to be clB(Z) .
The above formula becomes

IX cltop(Z)U [w] = fzw -

There are trace maps (d = dim X)

Tr_: Hgd(x) (@) = g

B}
2d = £
Tr .t Het(x)(d) — A
2d %
TrDR’ HDR(X)(d) — k
that are determined by the requirement Tr(cl(point)) = 1 ;
they are compatible with the comparison isomorphisms.
When k =@ , TrB and TrDR are equal to the composites
rr: w20 @ 2o 52w — e —c
B B B X
1 — 27i [w] — fxw
2d _ 2d < 24 .
Trpgt Hpp(X)(d) = Hoo(X) —H (r(nxm)) — T
(w] — L fgw
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where we have chosen an i and used it to orientate X . (Note
that the composite maps are obviously independent of the choice

of i.) The formulas in the last paragraph show that

_ 1
(cl.(2) U w] = —=— [0 .

T -
(zﬂi)dlmz Z

Ipr

A definition of Tre can be found in (Milne [1, VI.11l]).

t

We now deduce some consequences concerning periods.

Proposition 1.5. Let X be a variety over an algebraically

closed field k C € and let 2 be an algebraic cycle on X

C
of dimension r . For any C° differential r-form « on
s 2r . . 2r
Xq whose class [w] in HDR(Xm) lies in HDR(X) ,

-

Lo e ()" x .

Proof: We first note that 2 1is algebraically equivalent to
a cycle Zq defined over k . In proving this we can assume
Z to be prime. There exists a smooth (not necessarily complete)

variety T over k , a subvariety Z Cc X x T that is flat

over T , and a point spec € + T such that Z =12 %, spec C
in X *n spec € = Xe - We can therefore take Zy, to be
4 %T spec k CX %T spec k = X for any point spec k » T .
. . _ 2r
From this it follows that chR(Z) = chR(ZO) e HDR(X)(r) and

TrDR(chR(Z) U [w]) € k . But we saw above that &(u =

L\
(27i) Trpp (Clyp(2) U [w]) .

We next derive a classical relation between the periods
of an elliptic curve. For a complete smooth curve X and an

open affine subset U , the map
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1 1 _ 1
HDR(X] — HDR(U) = F(U,Qx)/dr (U,Ox)

_{meromorphic differentials, holomorphic on U}
{exact differentials}

is injective with image the set of classes represented by
forms whose residues are all zero (such forms are said to be
of the second kind). When k = €, Try,([a] U [B]) , where a
and B are differential 1-forms of the second kind, can be
computed as follows. Let I be the finite set of points

‘where o or B has a pole. For 2z a local parameter at

o .
Pe L, a can be written a =1( } aizl)dz, with a_, = 0.
- i

There therefore exists a meromorphic function a defined near
P such that da = o . We write [a for any such function:
it is defined up to a constant. As Resyf = 0, ResP(fﬁ)B is
well-defined, and one proves that
Tr o ([a]U [B]) = } Res,(fa)B .
DR per P

Now let X be the elliptic curve

yzz = 4x3 - gzxz2 - g323
There is a lattice A in € and corresponding Weierstrass
function (z) such that z r— (¥ (2), »'(2z),1) defines an
isomorphism €/A —— X(C) . Let Yy and Yo be generators
of A such that the bases {y;,v,} and {1,i} of € have
the same orientation. We can regard Y, and Y, as elements

of Hl(x,z) , and then Y1-Yy = 1 . The differentials



25

xdx

= & and n = 5 on X pull back to dz and (z)dz

Y
respectively on @€; the first is therefore holomorphic and

w

the second has a single pole at = = (0,1,0) on X with residue

zero (because 0 € T maps to « € X and f$p(z) = j? + a, 2
z

We find that

Trpg (lwl U Inl) = Reso(fdz)?:(z)dz = Res,(z fp(z)dz) =1 .

Let [, dx _ . —Y (i=1,2)
i

Y Yi/_3——_ t
4x —g,%X-9,

xdx

and . i=1,2
J'Yiy n (i=1,2)

= [ —xdx = _
. i
i /i3 _
4x g,%X-94
. 1 2
be the periods of w and n . Under the map HDR(X) + HY(X,T) ,
w maps to lei + szé and n maps to “lYi + nzyé , where

{Yi’Yé} is the basis dual to {Yl ,YZ} . Thus

1= Tryp(lw] U [n]) = Trglluyyy + wyvy) U (nyy] +#n,75))

(wyny —won ) Trg (viU v,)

- (w ) )
2L (W1M2T¥WoMy Y -

Hence Wiy = Wony = 2wi . This is the Legendre relation.

The next proposition shows how the existence of algebraic
cycles can force algebraic relations between the periods of
abelian integrals. Let X be an abelian variety over a subfield
k of @ . Recall that HY(x) = A¥(u'(X) and Hl(xxxx...) =

Hl(X) ® Hl(x) ® ... (any cohomology theory). Let v € mm(m) act

z" +...) .
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on mB(l) as v_l; there is then a natural action of

GL(H%(X)) X Gm on H;(Xn)(m) for any r,n, and m . We define
G to be the subgroup of GL(H%(X)) X Gm fixing all tensors
of the form clB(Z) , % an algebraic cycle on some 7.

(See Notations for a precise description of what this means.)

Consider the canonical isomorphisms

X = 1
¢ = gl Hy(X) e T .

1
HDR(X) ® o

k

The periods pij of X are defined by the equations
a = ) P332y

1 1
where {ai} and {ai} are bases for HDR(X) and HL(X) over
k and (@ respectively. The field k(pij) generated over k

by the pij is independent of the bases chosen.

Proposition 1.6. With the above definitions

tr.degk k(pij) < dim(G) .

Proof: We can replace k by its algebraic closure in C ,

and hence assume that each algebraic cycle on XG is equivalent

to an algebraic cycle on X (see the proof of 1.5). Define P

to be the functor of k-algebras such that an element of P(a)

is an isomorphism p: Hé ®QA = H;R ek A mapping clB(Z) ® 1
to chR(Z) ®@ 1 for all algebraic cycles Z on a power of X .
When A = C , the comparison isomorphism is such a p , and so
P(C) is not empty. It is easily seen that P is represented

by an algebraic variety that becomes a Gk—torsor under the
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the obvious action. The bases {ai} and {ai} can be used to

identify the points of P with matrices. The matrix (p..)

ij
is a point of P with coordinates in € , and so the proposition

is a consequence of the following well-known lemma.

Lemma 1.7. Let ZRN be an affine space over k , and let
z € Dﬂq(m) ; the transcendence degree of k(zl,...,zN) over

k is the dimension of the Zariski closure of {z} .

Remark 1.8. If X is an elliptic curve then dim G is
2 or 4 according as X has complex multiplication or not.
Chudnovsky has shown that tr degk k(pij) = dim (G) when X is
an elliptic curve with complex multiplication. Does equality
hold for all abelian varieties?

One of the main purposes of the seminar was to show
(1.5) and (1.6) make sense, and remain true. if "algebraic cycle"
is replaced by "Hodge cycle" (in the case the X is an

abelian variety).

2. Absolute Hodge cycles; principle B.

Let k be an algebraically closed field of finite
transcendence degree over @ , and let X be a variety over
. n _ h n L oig s
k . Write an(x)(m) = HDR(X)(m) X Het(x)(m) ; it is a free
k x:mf-module. Corresponding to an embedding o: k<— €

there are canonical isomorphisms

* n = n
OpR: HDR(X) (m) @k,c ¢ - HDR(ox) (m)

czt: Hgt(x)(m) - HZt(Gx)(m)
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whose product we write g* . The diagonal embedding

n n n . . .
HG(X)(m) — HDR(cX)(m) X Het(gx)(m) induces an isomorphism

n £ = n
Hy(X)(m) @ (Ex 1 )y — HDR(GX)(m) x Hzt(cx)(m) (product of the

comparison isomorphisms, §1). An element t € H%f(x)(p) is a

Hodge cycle relative to o , if

(a) t is rational relative to o , i.e., o*(t) lies
in the rational subspace ng(x)(p) of
2p 2p .
Hp (0X) (p) X H_! (0X) (p) &

{b) the first component of t lies in Fngg(X)(p) df

FpHgg(X) .
Under the assumption (a), condition (b) is equivalent to
requiring that the image of t in Hgg(x)(p) is of bidegree
(0,0). If t is a Hodge cycle relative to every embedding

g: k &= € then it is called an absolute Hodge cycle.

Example 2.1 (a) For any algebraic cycle Z on X , t =
(chR(Z),clet(Z)) is an absolute Hodge cycle. (The Hodge
conjecture asserts there are no others.) 1Indeed, for any

gt k & € , o¥(t) = c1,(2) , and is therefore rational,

B
and it is well-known that chR(UZ) is of bidegree (p,p)

. 2p
in HDR(OX) .

(b) Let X be a variety of dimension d , and consider

the diagonal A € X x X . Corresponding to the decomposition

a ) )
w28« x)@ = o 8l e wl(x

i=0

(Kinneth formula)
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2d . .
we have cl(A) = . The 7 are absolute Hodge cycles.
i=0

(c) Suppose that X 1is given with a projective embedding,
and let Yy € HgR(X)(l) x Hzt(x)(l) be the class of a hyperplane

section. The hard Lefschetz theorem shows that

d-2p

12P(x) (p) — H2Y P (x) (d-p), x — y3 2P

is an isomorphism. The class x is an absolute Hodge cycle

d-2p,

if and only if ¥ X is an absolute Hodge cycle.

(d) Loosely speaking, any cycle that is constructed from
a set of absolute Hodge cycles by a canonical rational process

will again be an absolute Hodge cycle.

Open Question 2.2, Does there exist a cycle rational relative

to every 0 but which is not absolutely Hodge?

More generally, consider a family (xa)aeA of varieties
over a field k (as above). Choose (m(a)) GIN(A) , (n(a)) e:m(A),
and m € Z, and write
_ (a) n(a) v
Tor = & H' (Xa)eea Hhr (Xu) (m)
DR
- (a) na) Vv
T = 6, Hop  (X,)08 Ho ol (X)) (m)
Tm = Tpr * Tet
v =6 B (xjee B2 (x )V (m 6: k ¢ ¢
lo; a o o o o a ! : °
Then we say that t @ T is rational relative to ¢ if its image

n
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in T]AG £ (EX]Af is in Td,thatitis
kx®A",(0,1)

a Hodge cycle relative to @ if it is rational relative to

o and its first component lies in F° , and that it is an

absolute Hodge cycle if it is a Hodge cycle relative to

every o
Note that, for there to exist Hodge cycles in Tha it is

necessary that £ m(a) - I n(a) = 2m .

m,n

Example 2.3. Cup-product defines a map T (p) x Ta (p') —
m+m' ,n+n' \ ., mVY .
Ta (p+p') , and hence an element of Tp ¢ Tp @ Ty ?

this element is an absolute Hodge cycle.

Open Question 2.4. Let t € Hgg(x)(p) and suppose that

0.,.2p
t €F HDR

(X) (p) and that, for all o: ke @ , GSR(t) e ng(x)(p).
Do these conditions imbly that t is the first component of an

absolute Hodge cycle?

In order to develop the theory of absolute Hodge cycles,
we shall need to use the Gauss-Manin connection (Katz-Oda [1],
Katz [l], Deligne [2]). Let ko be a field of characteristic
zero and S a smooth ko-scheme (or the spectrum of a
finitely generated field over ko). A ko—connection on a
coherent Os—module S is a homomorphism of sheaves of abelian
group

v: &o—*ﬂé/ko ®OS E

such that
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v(fe) = fv(e) + df ® e

for sections f of Os and e of Ey. The kernel of

v ,av, is the sheaf of horizontal sections of (E,V) . Such

a V can be extended to a homomorphism of abelian sheaves,
n n+l
"t fs/kg @osg s/x, %SE

w®e — de®e+ (-1)PwavVie) ,

and V 1is said to be integrable if Vl o V=0 . Moreover

¥V gives rise to an OS-linear map
D +—+ V_: Der(S/ko) — Endko(g)

v ., ol D1
v, = (§ =0 oeosg e oS@OSE =5 .

Note that VD(fe) = D(f)e + fVD(e) . One checks that V is
integrable if and only if D VD is a Lie algebra homomor-
phism.

Now consider a proper smooth morphism w: X > S , and write
g;R(X/S) for ]Rnﬂ*(ﬂi/s) . This is a locally free sheaf of
O.-modules and has a canonical connection V , the Gauss-

S

Manin connection , which is integrable. It therefore defines

a Lie algebra homomorphism Der(S/k,) — End (Hg (X/8))
0 k0 DR

If k., &< k! 1is an inclusion of fields and X'/S' =

0 0
(X/S) @k kb , then the Gauss-Manin connection on HER(X'/S')
0
is ¥V ® 1l . In the case that k0 = € , the relative form of
\ n an _ n an ,.an
Serre's GAGA theorem [l1] shows that §DR(X/S) = EDR(X /S°7)
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and V¥ gives rise to a connection v3"  on ggR(Xan/San).
The relative Poincaré lemma shows that (Rnﬂ* cT) ® oSan N
ggR(xan/San) , and it is known that v@"  is the unique
connection such that
n = n an ,.an, V2"
R 7w, (C) — EDR(X /877) .

Proposition 2.5. Let k0 C € have finite transcendence degree
over @ , let k be a field which is finitely generated over

k0 , let X be a variety over k , and let V be the

Gauss-Manin connection on H,._(X) relative to X + spec k +

n
DR
spec k0 . If te HER(X) is rationzl relative to all

embeddingsof k into € then Vt =0 .

Proof: Choose a regular ko—algebra A of finite type and
a smooth projective map T7: XA + spec A whose generic fibre
is X + spec k and which is such that t extends to an
element of T (spec A, ESR(X/spec A)) . After a base change

relative to ky <= €, we obtain maps

X — S — spec T , S = spec A

S c '

and a global section t' t ®1 of QBR(Xgn/San) . We have

to show that (V ® 1) t' = 0 or equivalently, that t' |is
a global section of gn(xgn,m) af Rnwfn T .

An embedding o: k <—— & gives rise to an injection
A &~ ¢ (i.e. a generic point of spec A in the sense of

Weil) and hence a point s of S . The hypotheses show that, at
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each of these points, t(s) € Hn(x:n'm) C HgR(X:n). Locally

on S , ggR (&:n/san) will be the sheaf of holomorphic sections
of the trivial bundle, S x @ , and g"(xa“,m) the sheaf of
locally constant sections. Thus, locally, t' 1is a function
S+5x " s m— (ty(s),.a. ity (s)) . Each t,(s) is a
holomorphic function which, by hypothesis, takes real " (even

rational) values OnN a dense subset of S . It is therefore con-

stant.

Remark 2.6. In the situation of (2.5), assume that ¢t € HSR(X)
is rational relative to one ¢ and horizontal for V . An
argument similar to the above then shows that t is rational

relative to all embeddings that agree with o on ko .

Corollary 2.7. Let k0 C k be algebraically closed fields
of finite transcendence degree over Q@ , and let X be a

. n . . .
variety over kO' If t e HDR(Xk) is rational relative to
all o: k €«&— ¢ then it is defined over ko , i.e. it

n
DR

(x) — v (x

is in the image of H DR

k) *

Proof: Let k' be a subfield of k which is finitely generated

k') . The hypothesis shows
0 ko

that Vt = 0 , where V 1is the Gauss-Manin connection for

over k and such that t € HBR(X e

xk. + spec k' + spec k Thus, for any D € Der(k'/ko),

0
VD(t) = 0 . But Xk' arises from a variety over kO , and so
. f n R ¢ ' :
the action of Der(k /ko) on HDR(xk,) HDR(X) @ko k is
through k': V. =1 ® D . Thus the corollary follows from the

D

next well-known lemma.
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Lemma 2.8. Let ko C k' be as above, and let V = VO @k k!
0
where V0 is a vector space over kO . If tev is fixed

(i.e. killed) by all derivations of k/kO » then t €V,

Let cgﬁ(x) denote the subset of Hif(x)(p) of absolute

Hodge cycles; it is a finite-dimensional vector space over @ .

Proposition 2.9 (a) Let X be a variety over an algebraically

closed field k let k be an algebraically closed field

0 14
containing ko , and assume that kO and k have finite

transcendence degree over @ . Then the canonical map

HZP(X) (p)  — HIP(X,) (p)

induces an isomorphism
P =, P
CAH(X) CAH(Xk) .

(b) Let k be an algebraically closed field of finite
transcendence degree over @ , and let X, be a variety defined
over a subfield ko of k whose algebraic closure is k; write

- 1%
X = X, @ko k . Then Gal(k/ko) acts on CAH(X) through a

finite quotient.

Proof (a) The map is injective, and a cycle on X is absolutely
Hodge if and only if it is absolutely Hodge on X and so

the only non-obvious step is to show that an absolute Hodge

cycle t on Xk arises from a cycle on X . But (2.8)

shows that tor arises from an element of Hgg(x)(p) , and
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2p 2p . . .
Het(X)(p) -> Het(Xk](p) is an isomorphism .

(b) It is obvious that the action of Gal(k/ko) on
2p 2p cqs P .
HDR(X)(p) x Het(x)(p) stabilizes CAH(X) . We give three

proofs that it factors through a finite quotient.

: P 2p s 3o .
(i) Note that CAH(X) - HDR(X) is injective. Clearly
2p _ 2p s
Hip (X) = U Hop(X, ® k;) , where the k; run through the finite
extensions of k0 contained in k , and hence all elements

. P . . 2p .
of a basis for CAH(X) lie in HDR(X0 ® ki) for some i .

(ii)  Note that B (X) » HZP(Xet,(Dz)(p) is injective for
any £ . The subgroup H of Gal(k/ko) fixing an(x) is
closed. Thus Gal(k/ko)/H is a profinite group, which is
countable since it is a subgroup of GLm(Q) for some m .

It follows that it is finite.

(iii) A polarization on X gives a positive definite
form on CAH(X) , which is stable under Gal(k/ko). This shows

that the action factors through a finite quotient.

Remark 2.10 (a) All of the above is still valid if we work
with a family of varieties (Xa) rather than a single X .
(b) Proposition (2.9) would remain true if we had defined
an absolute Hodge cycle to be an element t of Fngg(x)(p)

such that, for all g¢g: k <— € (t) € HiP(X)-

' OpR
Proposition (2.9) allows us to define the notion of an

absolute Hodge cycle on any (complete smooth) variety X over

a field k (of characteristic zero). If k is algebraically

closed then we choose an algebraically closed subfield ko

that is of finite transcendence degree over @ and such that
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X has a model XO over ko ; then t € H;f(x)(p) is an

absolute Hodge cycle if it lies in the subspace H%f(xo(pn and is

an absolute Hodge cycle there. The proposition shows that this
definition is independent of the choice of k, and X, . (This
definition is forced on us if we want (2.9a) to hold without
restriction on the transcendence degrees of k and k0 JDoOIf

k is not algebraically closed we choose an algebraic closure

k of k and define an absolute Hodge cycle on X to be an

absolute Hodge cycle on X ®  k that is fixed by Gal (k/k) .

One can show that if k 1is algebraically closed and of
cardinality not greater than that of @ , then t € Hgg(x)(p) x

HiE(X)(p) is an absolute Hodge cycle if it is rational

relative to all embeddings o¢: k €= € and R € FOHSE(X)(p).

ta
If k =€ then the first condition has to be checked only
for isomorphisms ¢ . (Provided the axiom of choice is assumed!)

When k = € we define a Hodge cycle to be a cycle that is

Hodge relative to ¢ = id: € & €

Main Theorem 2.11. If X 1is an abelian variety over an
algebraically closed field k , and t 1is a Hodge cycle on
X relative to one embedding o: k ©&— € , then it is an

absolute Hodge cycle.

The proof will occupy most of the rest of these notes.

We begin with a result concerning families of varieties

parametrized by smooth (not necessarily complete) algebraic
varieties over € . Let S be such a parameter variety and

let m: X + S be a smooth proper map. We write gzt(x)(r) for

. n_et 8&r
lim(R Ty Hp ) 8,5, @ .
m
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Theorem 2.12 (Principle B). Let t be a global section of

2p 2p _ .
EDR(X/S)(p) X Eet(X)(P) such that VtDR = 0 and (tDR)S e
2
FouP(x ) (p) for all s €5 . If t_ € H.P(X)(p) is an absolute

Hodge cycle for one s , it is an absolute Hodge cycle for

all s .

Proof: Suppose that ty is an absolute Hodge cycle for

and let s be a second point of S ., We have to show

1’ 2

that tg is rational relative to an isomorphism g: [ IO I
2
On applying o we obtain a map oX + ¢S and a global section

2p 2p
ot of EDR(UX/OS)(p) X Eet(ox)(p) . We know that O(t)o(sl)

is rational and have to show o(t) is rational. Clearly

c(sz)
0 only translates the problem, and so we can omit it.

First consider the component tDR of t . By assumption

tor = 0 , and so thr is a global section of gzP(xaH,m) . Since

it is rational at one point, it must be rational at every point.

v

Next consider t . As gﬁp(x) af RZPninm and EéE(X)

et

are local systems (i.e. are locally constant) , for any point
s of S there are isomorphisms

~ m,(S,s)
rs, 2P x) () — BEP(x) () and

m,(S,s)
2p = 2p 1
rs,H2 () (p)) S+ HIP(x) (p)

Consider,
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r(s, 8220 () < r(s,82Px (0)) © BF = (5,822 (p))
'" 2 T T
HZBP(XS) (p ! e— HBP(XS) (p) temf - Hii’(xs) (» !
2p 2p £ _ 52p
HZP (Xg) (P) S— BT (X)) (p) 8 AT = H_{(XJ)(p) .

We are given tet € P(S,EZE(X)(p)) and are told that its image
. 2p C 2p _

in Het(xs)(p) is in HB (Xs)(p) if s = sy - The next easy
lemma shows that toe lies in F(S,ggp(X)(p)) , and therefore

A 2p
is in Hy (Xs)(p) for all s .

Lemma 2.13. Let V €~ W be an inclusion of vector spaces,
and let 72 be a third vector space. Then V ® Z €— We® Z ,

and (Ve 2Z)YNw=V.

‘Remark 2.14. The assumption in the theorem that

0,,2p . L .
(th)s € F HdR(Xs)(p) for all s is unnecessary; it is
implied by the condition that VtDR = 0 (Deligne [4, 4.1.2,

Théoréme de la partie fixel).

We shall also need a slight generalization of (2.12).

Theorem 2.15. Let w: X + S be as in (2.12) , and let V
be a local subsystem of Rzpn*m(p) such that Ve consists
of (0,0)-cycles for all s and of absolute Hodge cycles

for at least one s . Then Vg consists of absolute Hodge

cycles for all s




39

Proof. If V 1is constant, so that every element of Vg
extends to a global section, then this follows from (2.12).
The following argument reduces the general case to that case.

At each point s € 8 , R2p m, (D(p)S has a Hodge structure.
Moreover R2p 7,2(p) has a polarization, i.e., there is a form
/S R2P T, @®(p) x R2p m, @(p) > @ which at each point s defines
a polarization on the Hodge structure R2p Ty (D(p)s . On
R2p T, A(p) N (Rzp Ty (I.’(p))o'0 the form is symmetric, bilinear,
rational, and positive definite. Since the action of ﬂl(S,so)

preserves the form, the image of nl(s,s in Aut(vs ) is

0

finite. Thus, after passing to a finite covering we can

o)

assume that V 1is constant.

Remark 2.16. Both (2.12) and (2.15) generalize, in an

obvious way, to families Ty: Xg > S .

3. Mumford-Tate groups; principle A.

Let G be a reductive algebraic group over a field k of

characteristic zero, and let (Va) be a faithful family of

a€A
finite~dimensional representations over k of G , so that the

map G &— IIGL(VO‘) is injective. For any m € ]N(A) , n € IN(A)

em (a) yén(a)
a

we can form TV = @ Va ® Vv which is again a

representation of G . For any subgroup H of G we write
H' for the subgroup of G fixing all tensors, occurring in some

m,n

T 'Y, that are fixed by H . Clearly H < H', and we shall need

criteria guaranteeing their equality.
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Proposition 3.1. The notations are as above.

(a) Any finite-dimensional representation of G 1is

. \ . . m,n
contained in a direct sum of representations T ' .

{(b) (Chevalley's theorem). Any subgroup H of G is
the stabilizer of a line D in some finite-dimensional

representation of G .

(c) If H is reductive, or if Xk(G) > Xk(H) is

surjective (or has finite cokernel), then H H' . (Here

Xk(G) denotes Homk(G,Gm)).

Proof. (a) Let W be a representation of G , and let W0
be the trivial representation (meaning gw = w , all g € G,w € W)
with the same underlying vector space as W . Then G x W » W
defines a map W + W, ® kIG] which is G-equivariant

(Waterhouse [1, 3.5]). Since W. 8 k[G] = k[g]dim W ;¢

0
suffices to prove (a) for the regular representation. There
is a finite sum V = @ Vu such G =+ GL(V) 1is injective (because
G 1is Noetherian). The map GL(V) » End(V) x End(vv) identifies
GL (V) (and hence G) with a closed subvariety of End(V) x End(Vy)
(loc. cit.). There is therefore a surjection Sym (End(V)) x
Sym(End(@/)) —» k[G], where Sym denotes a symmetric algebra,
and (a) now follows from the fact that representations of
reductive groups are semisimple (see ITI.2).
(b) Let I be the idea of functions on G which
are zero on H . Then, in the regular representation of
G on k[G] , H is the stabilizer of I . Choose a finite-

dimensional subspace W of k[G] that is G-stable and
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contains a generating set for the ideal I . Then H 1is the
stabilizer of the subspace I A W of W , and of Ad(I A W)
in AdW , where d is the dimension of I N W (Borel [1, 5.1]}.
(c) According to (b), H 1is the stabilizer of a line
D in some representation V of G and it follows from (a)
that V can be taken to be a direct sum of T''% s .
Assume that H is reductive. Then V = V' & D for

v v v
some H-stable V' and V =V' @ D . Thus H 1is the group

fiking a generator of D ® g in vV ® ¥ .

Assume that Xk(G) -+ Xk(H) is surjective, i.e. that any
character of H extends to a character of G . The one-
dimensional representation of H on D can be regarded as

the restriction to H of a representation of G . Now H

v v
is the group fixing a generator of D ® D in V ® D .

Remark 3.2 <(a) It is clearly necessary to have some condition
on H in order to have H' = H . For example, let B be

a Borel subgroup of the reductive group G and let v € V be
fixed by B . Then g r=+ gv defines a map of algebraic
varieties G/B + V which is constant because G/B is
complete. Thus v is fixed by G , and B' = G .

However, the above argument shows the following: let H'
be the group fixing all tensors occurring in subquotients of
™ Ps  that are fixed by H ; then H = H' .

(b) In fact, in all our applications of (3.1lc), H will
be the Mumford-Tate group of a polarizable Hodge structure,
and hence will be reductive. However the Mumford-Tate groups

of mixed Hodge structure (even polarizable) need not be
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reductive, but may satisfy the second condition of (3.1c)
(with G = GL) .

(c) The Theorem of Haboush (Demazure [1]) can be used
to show that the second from of (3.lc) holds when k has
characteristic p

Let V be a finite-dimensional vector space over (.

A (0-rational Hodge structure of weight n on V is a

decomposition Vm = @ vP'9  gsuch that vPr9d = y94P
ptg=n
Such a structure determines a map

w: G+ GL(Vy) such that n()vP 9 = \TPyPd (P g Prd

The complex conjugate § of p satisfies E(l)vp'q = % %P, since
y and p commute, their product determines a map of real algebraic
groups h: @ = GL(Vp) . hvP'd = ATPX7 NP9 | conversely, a

homomorphism h: o - GL(V..,) such that ®’RY &» ¢ — GL(VBQ

R
is A+~ A ™.id defines a Hodge structure of weight n on V .
r 1
We write FPv = @ vP 'Y | 5o that ... o FPv o FPTly o ...
p'>p

is a decreasing filtration on V .

Let @(1) denote the vector space @ with the unique
-1,-1

Hodge structure such that Q(l)¢ = @(1) ; it has weight
-2 and h(A)1l = AX1 . For any integer m, m<1>@m af @ (m)
(ll(m)_m’—m has weight -2m . (Strictly speaking, we should

define Q@Q(1) =21i @ ....)

Remark 3.3. The notation h(}) vPrd = A-Pi—qvp'q is the
negative of that used in Deligne [2] and Saavedra [1]. It
is perhaps justified by the following. Let A be an abelian

variety over € . The exact sequences,
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0 — Lie(aV)V — H)(4,0) — Lie(d) — 0
and

0 — FlHl(A,C) —_— Hl(A,(I:) —_— Fl/F2 —_— 0

gl 0 = g0l g0r1 - Hl(Ox)

are canonically dual. Since Hl(A,m) has a natural Hodge
structure of weight 1 with (1,0)-component Ho(gl), Hl(A,w)
has a natural Hodge structure of weight -1 with (-1,0)-component

Lie(A) . Thus h{()) acts as ) on Lie(A) the tangent space

’

to A at zero.

Let V be a vector space over (@ with Hodge structure
em
h of weight n . For .ml,mzelNand m3ezz,'r=v 1@
vem, 8m,
\' ® (1) has a Hodge structure of weight (ml—mz)n - 2m3 .

An element of T is said to be rational of bidegree (p,q)

if it lies in TaTP’? . wWe let v € Gm act on Q@Q(1) as

u-l 7 there is then a canonical action of GL(V) x mm on T .

The Mumford-Tate group G of (v,h) 1is the subgroup of
GL(V) x Gm fixing all rational tensors of bidegree (0,0)
belonging to any T . Thus projection on the first factor
identifies G(@) with the set of g € GL(V) for which there
exists a v(g) € Qx with the property that gt = v(g)pt

Qm vom

1 2

for any t €V ® Vv of bidegree (p,p) .

Proposition 3.4. The group G 1is the smallest algebraic sub-

group of GL(V) x G, defined over @ for which u(Gm) < Gm .
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Proof: Let cl(u) be the intersection of all Q@-rational
algebraic subgroups of GL(V) x & which, over @, contain
H(Gm)' For any t € T, t is of type (0,0) if and only if
it is fixed by u(mm) or, equivalently, it is fixed by cl(u).
Thus G = cl{p)' in the notation of (3.1) and the next lemma

completes the proof.

Lemma 3.5. Any @-rational character of «c¢l(u) extends to

a {-rational character of GL(V) x Gm .

Proof: Let x: cl(u) > GL(W) be a representation of dimension
one defined over @, i.e. a Q-rational character. The restriction
of the representation to G is isomorphic to @(n) for some

n . After tensoring W with @(-n), we can assume that

xeu =1, i.e. u(mm) acts trivially. But then «cl(u) must

act trivially, and the trivial character extends to the trivial

character.
Proposition 3.6. If V 1is polarizable then G is reductive.

Proof: Choose an 1 and write C = h(i) . (C 1is often called
the Weil operator.) For vPrd g yPr4 ’ cvPrd = ;7P vP'? | and so

C2 acts as (—1)n

on V ( n=p+tg 1is the weight of (V,h)).
We choose a polarization ¥ for V . Recall that Y is

a morphism ¢¥: V & V + Q(-n) of Hodge structures such that the

real-valued form y(x,Cy) on V]R is symmetric and positive

definite. Under the canonical isomorphism Hom(V ® V,Q(-n)) =

vV g Vv(—n) , ¢ corresponds to a tensor of bidegree (0,0)

(because it is a morphism of Hodge structures) and therefore
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it is fixed by G: w(glv,glv') = g;¢(V.V') for
(gl,gz) € G € GL(V) x @m and v,v' € V
Recall that if H is a real algebraic group and ¢ is
an involution of Hm , then the real-form of H defined by
¢ 1s a real algebraic group Hc together with an isomorphism
Hm =, (H0)¢ under which complex conjugation on H(T)
corresponds to o o (complex conjugation) on Ho(m) . We are
going to use the following criterion: a connected algebraic
group H over IR 1is reductive if it has a compact real-form
H0 . To prove the criterion it suffices to show that H0 is
reductive. On any finite-dimensional representation of V
of H there is an Hg-invariant positive-definite symmetric
form, namely <u,v>0 = fﬁo<hu,hv> dh where < , > is any
positive-definite symmetric formon Vv . If W is an HO—stable
subspace of V , then its orthogonal complement is also
H -stable. Thus every finite-dimensional representation of
H is semisimple, and this implies H is reductive (see [II.2]).
We shall apply the criterion to the special Mumford-Tate
group of (V,h) , G0 af Ker (G —+ Gm]. Let Gl be the smallest

Q-rational subgroup of GL(V) x Gm such that G%{
z

contains

h(ul) , where Uvl(R)= {z e c*|zZ =1} . Then G cG , and
in fact Gl < Go . Since G1 'h(mx) = G and h(Ul) =

IR R
Ker(h(mx) > Gm) , it follows that G0 = Gl , and therefore

GO is connected.

Since C = h(i) acts as iI =1 on @(l), C € GO(m.

Its square 02 acts as (-1)" on V and therefore lies in the



46

centre of GO(IR). The inner automorphism ad C of Gr

defined by C is therefore an involution. For u,v € VG

and g € GO(E) we have

Y(u,Cv) = Y(gu,gCv) = w(gu,CC—lgCV) = Y (gu,Cg*v)
where g* = C_IEC = (ad C) (g). Thus the positive definite form
¢ (u,v) df P(u,Cv) on V is invariant under the real-form of

R

G0 defined by ad C , and so the real-form is compact.

Example 3.7. (Abelian variety of CM-type). Let F be a finite
product of totally real number fields Fi , and E a product
of fields, each of which is a quadratic imaginary extension of
exactly one of the fields Fi . Let S = Hom(E,€) =

Hom(E,@) = spec Ep - Gal(@/Q@) acts on S and for any

o € S,16 = OIE/F , where 1 is the canonical involution of

E/F
E with fixed algebra F . A CM-type for E is a subset

£ €8 such that S = £ U 1Il(disjoint union) . Correspondingly
we define A to be EE /Z(OE) where Op the ring of integers

in E ,is embedded in mz by u— (ou)cez . Obviously

E acts on A; moreover Hl(A,Q) = E , and
Hl(A)®(r=E&G:—E~*(I!S=¢Z€B(P.IE, with @ the
udl — (Uu)Ues
(-1,0) -component of Hl(A) ® C and EIE the (0,-1)-component.
z
Thus M(A) acts as A on € and 1 on le .
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Let G be the Mumford-Tate group of Hl(A) . The actions
of (@) and E* on Hj(A) 8 T commute. As E* is its
own commutant in GL(Hl(A)) this means that u(mx) c(E® @)

and G = cl(y) < E* . 1In particular G is a torus, and can be

described by its cocharacter group Y(G) af

Clearly Y(G) < Y(E) x Y(G ) = Z° x . Note that

Homm(mm,G) .

u € Y(G) is equal to ] e_ + e, , where {e } < 2%  is the
s€l

basis dual to S = {s} C:X(Ex) and eq is the element 1 of

the last copy of Z . The following are obvious:

(a) (Z'zS x 72) /¥Y(G) 1is torsion-free.
(b) n € Y(G) .
(c) Y(G) is stable under Gal(@/®); thus Y(G) is the

Gal-module generated by u .

(d) Since p + 1p=1 on S, Y(G) « {yezzs x Z |y =
) neeg + ngey,ngtn = cnst} .
This means G(Q) < Ker(NE/F: ES + Fx/mx) x Q.
Theorem 3.8 (Principle A) Let (Xa)a be a family of varieties
over @ and consider spaces T obtained by tensoring spaces
of the form H;“(xa) , H;"‘(xa)" , and Q(1) . Let t, €T, ,

i=1,...,N, (Ti of the above type) be absolute Hodge cycles

n
and let G be the subgroup of aH GL (H a(X )) X @ fixing the
,na B a m

ti . If t belongs to some T and is fixed by G , then it is

an absolute Hodge cycle.

Proof: We remove the identification of the ground field k

with € . Let o0: k =, ¢ be the isomorphism implicit in
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statement of the theorem and let Tt1: k =+ € be a second
isomorphism. We can assume that the ti and t all belong
to the same space T . The canonical inclusions of cohomology

groups

H (X)) & H (X)) el x m~) «—= H_(X )
induce maps

T0L> T@(a:xmf)e—’DTT.

We shall regard these maps as inclusions. Thus {tl,...,tN,t} <
f

T, & T 8(Cx R ) and {tl,...,tN} <T . To show that t

is rational we have to show that t € TT .

Let P be the functor of Q@Q-algebras such that

P(R) = {p: Hc ® R =5 HT ® R|p maps ti(ln Tc) to

ti(in TT), i=1,...,N} .

The existence of the canonical inclusions mentioned above

shows that P(C x nf) s non-empty, and it is easily checked

that P 1is a G-torsor.

Lemma 3.9 Let P be a Q-rational G-torsor of maps H§ e
where (Hg)u and (H?)a are families of @-rational representa-

tions of G . Let T0 and TT be like spaces of tensors

constructed out of H and HT respectively. Then P

defines a map TG > T .
o T




49

Proof: Locally for the étale topology on spec(@), points of
P define maps T0 = TT . The restriction to TS of such a
map is independent of the point. Thus, by étale descent

theory, they define a map of vector spaces TS —_— TT .

On applying the lemma (and its proof) in the above

situation we obtain a map Tg — 'I‘T such that

T

_ T

[

TG — T &(C x ]Af)

“~——a @

commutes. This means that TS < T_r , and therefore t € TT .

It remains to show that the first component tDR of
0

t , lying in T ® C = TDR , is in F TDR' But in general, if
s 1is rational and s € TDR , Where TDR is constructed out of
n n
a a v 0 .
spaces Hyo (Xa) P HDR(xa) , @(1) , then sé€&F Tpr 1S

equivalent to s being fixed by u(mx) . Thus (ti)DR e

F0, i =1,...,N, implies G > u(C*) , which implies t € ro .

4. Construction of some absolute Hodge cycles

Recall that a number field E is a CM-field if, for any
embedding E <— @ , complex conjugation induces a nontrivial
automorphism e +—> e of E that is independent of the embedd-
ing. The fixed field of the automorphism is then a totally real
field F over which E has degree two.

A bi-additive form

¢: V xV — E
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on a vector space V over such a field E is Hermitian

if ¢(ev,w) = ed(v,w) and o¢(v,w) = ¢(w,v) for v,w €V,

e € E. For any embedding t: F <= IR we obtain a

Hermitian form ¢r in the usual sense on the vector space

VT =V ®F,Tni, and we let a. and bT be the dimensions

of maximal subspaces of VT on which ¢T is positive definite
and negative definite respectively. 1If d = dim V then ¢
defines a Hermitian form on AdV that, relative to some basis
vector, is of the form (x,y) ++ fxy . The element £ is

in F , and is independent of the choice of the basis vector up

x
to multiplication by an element of NE/FE . It is called the

discriminant of ¢ . Let {vl,...,vd} be an orthogonal basis

for ¢ and let ¢(vi,vi) = c; i then a, is the number of i
for which TCS > 0, bT the number of i for which TC; < o,
b
- x ; - (-1) T
and f = Hci (mod NE/FE ) . Note that sign(Ttf) = (-1) .

Proposition 4.1. Suppose given integers (aT, bT) for each

X x
1 , and an element f € F /NE/FE , such that a + b_r =d all

b
T and sign(tf) = (-1) 1. Then there exists a non-degenerate

Hermitian form ¢ on a vector space V of dimension d with
invariants (ar’br) and f ; moreover (V,¢). is unique up to

isomorphism.

Proof: This result is due to Landherr [l]. Today one prefers
to regard it as a consequence of the Hasse principle for simply-
connected semisimple algebraic groups and the classification

of Hermitian forms over local fields.
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Corollary 4.2. Assume that the Hermitian space (V,¢) is

non-degenerate and let d = dim(V) . The following are equivalent:

(a) a_=b_ for all T , and disc(f) = (-18/2
(b) there is a totally isotropic subspace of V of

dimension 4/2 .

Proof: Let W be a totally isotropic subspace of V of
dimension d/2. The map v +—+ ¢(-,v): V > w'  induces an anti-
linear isomorphism V/W —=5>W . Thus a basis VirererVao

of W can be extended to a basis {vi} of V such that

¢(Vi'vd/2+i) =1, 1<i<d/2,

¢(Virvj) = 0, J#lid/z .
It is now easily checked that (V,¢) satisfies (a). Conversely
(Edl¢)r where

¢«ai)l (bi)) = z ain/2+l +

a b, ,
1<i%a/2 d/2+i"1i

d/ZZiid
is, up to isomorphism, the only Hermitian space satisfying (a),
and it also satisfies (b).

A Hermitian form satisfying the equivalent conditions
of the corollary will be said to be split (because then
AutE(V,¢) is an E-split algebraic group).

We shall need the following (trivial) lemma.

Lemma 4.3. Let k be a field, let k' be an étale k-algebra (i.e., a
finite product of separable finite field extensions of k), and

let V be a free k'-module of finite rank.
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(a) For any k'~linear map f: V = k' , define

Trk‘/kf to be the k-linear map v +—— Trk./k(f(v)): vV + k ;

then £ +— Trk,/kf: Homk.(V,k ) - Homk(V,k) is an isomorphism.
(b) A"y is, in a natural way, a direct summand of
kl
At v
k
Proof: (a) Since the pairing Trk'/k: k' x k' » k is

non-degenerate, it is obvious that f +— Trk‘/kf is injective,
and the two spaces have the same dimension over k .

v — n

(b) There are obvious maps v

5w

\i
v

—_—

<<

A D
k 1
and A" A
k' k
v v v
where V is the k'-linear dual of V . But (AV) = (AV)

n
and so the second map gives rise to a map Ay — A"y,
. k k ]

which is inverse to the first. (More elegantly, descent

theory shows that it suffices to prove the proposition with

k' =k, s = Homk(k',f). Then V= & V_ and the map in (a)

se€s
sends f = (fs) to Efs , which is obviously an isomorphism.
For (b) , note that
n g
Aty = e (@AVS)DeAnvS=Anv-)
k In_=n ses ses k'

Let A be an abelian variety over T , E a cM-field,
and v: E —End(A) a homomorphism (so, in particular,

v(l) = id). Let & be the dimension of Hl(A,Q) over E ,
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so that d[E:Q] = 2dim(A) . When Hl(A,BU is identified
with the tangent space to A at zero it acquires a complex
structure; we denote by J the R- linear endomorphism "multi-
plication by i" of H (A,R). If h: ¢* » cL(m'(a,R)) =
GL(Hl(A,Hn) is the homomorphism determined by the Hodge
structure on Hl(A,IU then h(i) = J .

Corresponding to the decomposition

e® z r— (...,g(e)z,...): E em ¢ — & «,S=Hm(E,T)
ges

there is a decomposition

1

(E-linear isomorphism)
B,o

Hé(A)@Q =, o H
agés

such that e € E acts on the complex vector space H

as o(e) . Each Hé o has dimension 4 , and (as E
’

respects the Hodge structure on Hé(A)) acquires a

B,o

Hodge structure,

Let a_ = dim Hl’o 0,1
a B,qg el

and bc = dinm HB

: thus a_ +b_ =4 .
o o

Proposition 4.4: The subspace A% HL(A) of ®¥(a,0) is
E
purely of bidegree (Q é) if and only if a_ = d - b
2'2 g 2 o
d d 1
Proof: Note that H (A,@) = A~ H (A,Q) , and so (4.3)
@

a .1

canonically identifies A HB(A) with a subspace of Hg(A) .

E
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As in the last line of the proof of (4.3) we have

(AdHé) 8 C = /\d HIJB‘ QT = © AdHé = 8 Ad(Hé'O [::] Hg'l)
E EGCT oes 'O ges "0 '
a b
=$AGH1]3"0®AOHE’é,
g€s [xe) '

a b

g 1,0 o 0,1 .
and A HB,O and A HB,O are purely of bidegree (aG,O)
and (D,bo) respectively.

Thus, in this case, (Ad Hé(A))(%) consists of Hodge cycles,
E
and we would like to show that it consists of absolute Hodge

cycles. In one special case this is easy.

Lemma 4.5. Let AO be an abelian variety of dimension %

and let A = Ay 8 E . Then 295l (a, @) (%) cuda, @) (%)
E

consists of absolute Hodge cycles.

Proof: There is a commutative diagram

d d d d
HB(AO) (7) ®CD E _— H]A (AO) (5) @m E

oy d a1 a a 4
(o 8g ) (G} — (A iy By @ £)) (5) CHy (A, 8 5) ()

1

d
(AT H
E B

in which the vertical maps are induced by Hl(AO) 8 E =
Hl(AO ® E) . From this, and similar diagrams corresponding to
isomorphisms o: € =+ € , one seesthat H%k(AO)(%) 8 E &
d d . . : d d
e [
HE\(AO ® E)(z) induces an inclusion CAH(AD) ® E CAH(AO ® E).
d _ a d . d d . 3 .
But CAH(AO) = HB(AO)(i) since HB(AO)(E) is a one~dimensional

space generated by the class of any point on AO .
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In order to prove the general result we need to consider
families of abelian varieties (ultimately, we wish to apply
(2.15)), and for this we need to consider polarized abelian
varieties. A polarization & on A is determined by a
Riemann form, i.e. a Q-bilinear alternating form ¢ on
Hl(A,m) such that the form (z,w) +— ¢(z,Jw) on Hl(A,EU
is symmetric and definite; two Riemann forms ¢ and y' on
Hl(A,m) correspond to the same polarizaton if and only if
there is an a € mx such that ¢' = ay . We shall consider only
triples (A,8,v) in which the Rosati involution defined by 8
induces complex conjugation on E. (The Rosati involution
e te;End(A) + End(A) 1is determined by the condition

v(ev,w) = w(v,tew), v,w € Hl(A,(,D).)

Lemma 4.6. Let £ € E° be such that f = -f, and let y
be a Riemann form for A . There exists a unique E-Hermitian

form ¢ on H, (A,®) such that y(x,y) = TrE/Q(f¢(x,y)) .
Proof: We first need:

Sublemma 4.7. Let V and W be finite~dimensional vector
spaces over E , and let § :V x W > I be a D-bilinear form
such that y(ev,w) = y(v,ew) . Then there exists a unique

E-bilinear form ¢ such that y(v,w) = TrE/m¢(v,w) .

Proof: Y defines a @-linear map V @E W+ @ , i.e. an element

of (Vv @E W)v . But Tr identifies the (@-linear dual of

E/Q
V ®; W with the E-linear dual, and ¢ with a ¢ .
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To prove (4.6), we take V to be Hl(A,m) and W to
be Hl(A,Q) with E acting through complex conjugation, and
apply (4.7). This shows that ¥(x,y) = TrE/m¢l(x,y) with

¢, sesquilinear. Let ¢ = gL

¢l , so that V¥(x,y) =
TrE/m(f¢[x,y)). Since ¢ is sesquilinear it remains to show
that ¢(x,y) = ¢(y,x) . As ¥(x,y) = -¥(y,x) for all

x,y € H (A,@, Tr(fé(x,y)) = - Tr(foly,x)) = Tr (E¢ (y,x)) .

On replacing x by ex with e € E , we find that

Tr (fe¢ (x,y)) = Tr(f€¢(y,x)). On the other hand Tr(fe¢(x,y)) =
Tr(fe¢ (x,y)) and, as fe is an arbitrary element of E , the

non-degeneracy of the trace implies ¢(x,y) = ¢(y.x)

The uniqueness of ¢ is obvious from (4.7).

Theorem 4.8. Let A be an abelian variety over € , and let
vi E — End(A) be a homomorphism, where E 1is a CM-field.

Assume there exists a polarization 6 for A such that:

{a) the Rosati involution of 6 induces complex
conjugation on E ;

(b) there exists a split E-Hermitian form ¢ on Hl(A,m)

[

and on f e E° , with £ = - £ , such that (x,y) TrE/Q(f¢(x,y))
is a Riemann form for 6 .
Then the subspace (A%u%(2,0) (%) e, @ (D , where

B

d = dimE Hl(A,m), consists of absolute Hodge cycles.

Proof: In the course of the proof we shall see that (b) implies
that A satisfies the equivalent statements of (4.4). Thus

the theorem will follow from (2.15), (4.4), and (4.5)

once we have show there exists a connected smooth (not necessarily

complete) variety S over € and an abelian scheme Y over S
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together with an action v of E on Y/S such that:

(a) for all s e S ,(Ys,vs) satisfies the equivalent

statements in (4.4):

(b) for some Sy e s , YSO = AO Gm E , with e € E

acting as id @ e ;

(c) for some S, e s , (Ys,vsl) = (A,v) .

We shall first construct an analytic family of abelian varieties
satisfying these conditions, and then pass to the quotient
by a discrete group to obtain an algebraic family.

Let H = Hl(A,m) , regarded as an E-space, and choose
a 6, ¢, £, and ¢y as in the statement of the theorem. We
choose 1 such that y(x,h(i)y) is positive definite.

Consider the set of all quadruples (Al,el,vl,kl) in

which A is an abelian variety over @, vy is an action of

1

E on A ] is a polarization of A , and kl is an

1" 71
E-linear isomorphism Hl(Al,Q) =+ H carrying a Riemann
form for 6y into cyp for some c € @ . From such a
quadruple we obtain a complex structure on H(IR) (corresponding
via kl to the complex structure on Hl(Al,IU = Lie(Al))
such that:
(a) the action of E commutes with the complex structure:;
(b} y is a Riemann form relative to the complex structure.
Conversely, a complex structure on H @ R satisfying (a) and

(b} determines a guadruple (Al,el,vl,kl) with Hl(Al,m) = H
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(as an E-module), Lie(Al) = H ® R (provided with the given
complex structure), 81 the polarization with Riemann form ¢ ,

and k the identity map. Moreover two quadruples (Al,el,vl,kl)

1
and (Az,ez,vz,kz) are isomorphic if and only if they define
the same complex structure on H . Let X be the set of
complex structures on H satisfying (a) and (b). Our first
task will be to turn X into an analytic manifold in such a
way that the family of abelian varieties that it parametrizes
becomes an analytic family.

A point of X is determined by an R- linear map

J: H® R »H® R, J> = -1 , such that
(a') J is E-linear, and
(b') P(x,Jy) is symmetric and definite.

Note that ¥(x,Jy) is symmetric if and only if ¢ (Jx,Jy) =

Y(x,y). Fix an isomorphism

E @Q} R — & C (T =Hom(F,R) , F = real subfield of E)
TeT

such that £ & 1 Hﬂ'(ifT) with fT € R, fT >0 .

Corresponding to this isomorphism there is a decomposition
H@mIR—i-*Q H,
TET
in which each Ho is a complex vector space. Condition (a')

implies J = ® J_ , where J. is a C-linear isomorphism
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H =+ H such that J2 = -1 . Let
T T T

H =H' o
T T T

where H: and H; are the eigenspaces of JT with eigenvalues
+i and -i respectively. The compatibility of ¢y and v
implies

(H,y) 8 R —=— & (H_,y.)
TET Tt

with b, an R -bilinear alternating from on HT such that
b (zx,y) = wr(x,Ey) for z @ € . The condition y(Jx,Jy) =
y(x,y) implies that H: is the orthogonal complement of

H_ relative to ¢_: H_ = H' _L H . We also have
T T T T T

(H,¢) © R —=> @& (H_,¢_)
TET T

and wT(x,y) = Trm/ni(ifT¢T(x,y)) . As y(x,y) =

§ Trc/n{(ifT¢T(xT,yT)) , we find

y(x,Jx) > 0, all x <— Trm/nz(ifr¢r(xr’th)) > 0,

all xT, T,

_ Trm/n{(i¢1(xT,JxT)) > 0 all X To

¢_ is positive definite on H_, and

T

AL A4

¢T is negative definite on H

0,-1

This shows, in particular, that H: = ﬁ;Lo and H; = H

each have dimension d/2 (cf. 4.4). Let X' and X be the
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sets of J € X for which V¥(x,Jy) is positive definite and
negative definite respectively. Then X is a disjoint union
X=X UxXx" . As J is determined by its +i eigenspace

we see that X+ can be identified with

{(VT) a maximal subspace of H such that

T@T'VT

¢T >0 on VT} .

This is an open connected complex submanifold of a product of
Grassman manifolds

xt ©¢ 1 crass

(v.) .
TeT a/2" 't

Moreover, there is an analytic structure on xt x V(R) such

that X+ x V(R) ~+ X+ is analytic and the inverse image of

J e xt is V(R) with the complex structure provided by J .

On dividing V(R) by an OE—stable lattice V(Z) in v,

we obtain the sought analytic family B of abelian varieties.
Note that A is a member of the family. We shall next

show that there is also an abelian variety of the form

A. ® E in the family. To do this we only have to show that

0
there exists a quadruple (Al,el,vl,kl) of the type discussed

above with Al = AO 8@ E . Let Ao be any abelian variety of
dimension d/2 and define Vi E > End(AosE) so that e € E
acts on Hl(AO®E) = Hl(AO) ® E through its action on E .

A Riemann form wo on AO extends in an obvious way to

a Riemann form b, on Ay that is compatible with the action
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of E . We define 61 to be the corresponding polarization,
and let ¢l be the Hermitian form on Hl(AOQE,m)

such that *1 = Tr (f¢l) (see 4.6) . If I ClHl(AO,m)

E/Q 0

is a totally isotropic subspace of Hl(Ao,m) of (maximum)
dimension d/2 then ID ® E is a totally isotropic subspace
of dimensiona d/2 over E, which (by 4.2) shows that the
Hermitian space (Hl(Aer,m),¢l) is split. There is therefore
an E-linear isomorphism ky: (Hl(AOQE,m),¢1) =+ (H,4) ,

which carries wl = TrE/m(f¢1) to ¢y = Tr (£¢) This completes

E/Q
this part of the proof.

Let n be an integer > 3, and let T be the set of

OE—isomorphisms g: V(Z) » V(Z) preserving ¢y and such
that (g-1)V(Z) cnv(Z). Then T acts on X+ by
1

J b goJog and (compatibly) on B . On forming

the quotients, we obtain a map TI'\B - P\X+ which is an
algebraic family of abelian varieties. In fact I‘\x+ is the
moduli variety for gquadruples (Al,el,vl,kl) in which

A,,9 and v are essentially as before, but now k is a level

1
A (€©) = H (A, Z/nZ) - V(Z)/nvV(Z); the

171 1
n structure kl:
map xt - F\X+ can be interpreted as "regard kl modulo n" .
To prove these facts, one can use the theorem of Baily-Borel [1]
to show that I‘\X+ is algebraic and a theorem of Borel [2] to

show that TI'\B is algebraic — see §6 where we discuss a

similar question in greater detail.

Remark 4.9. With the notations of the theorem, let G be the

Q-rational algebraic group such that
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G = {g e GL (M) | Julg) e @* such that y(gx,gy) =
viglyp(x,y), ¥x,y € H} . The homomorphism h: €* 5 GL(H & R)
defined by the Hodge structure on Hl(A,m) factors through
GR’ and X can be identified with the G(IR) —conjugacy
class of homomorphisms e - an containing h . Let K be
the compact open subgroup of G(mf) of g such that
(g—l)V(ﬁ) c nv(Z) . Then l‘\X+ is a connected component of
the Shimura variety ShK(G,x) . The general theory shows that
ShK(G,X) is a fine moduli scheme (see Deligne [3,§4] or

V.2 below) and so, from this point of view, the only part of
the above proof that is not immediate is that the connected

component of ShK(G,x) containing A also contains a variety

AOGE.

Remark 4.10. It is easy to construct algebraic cycles on
A, ® E : any @-linear map A: E + Q0 defines a map AO ® E ~+

Ao Q= AO , and we can take c¢l{\) = image of the class of a
point in Hd(AO) - Hd(A0 ® E) . More generally we have

Sym* (Hom

m—linear(E'm)) + {algebraic cycles on A, ® E} . If

E = QF , this gives the obvious cycles.

Remark 4.11. The argument in the proof of (4.8) is similar

to, and was suggested by, an argument of B. Gross [1].

5. Completion of the proof for abelian varieties of CM-type.

The Mumford-Tate, or Hodge, group of an abelian variety

A over € is defined to be the Mumford-Tate group of the
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rational Hodge structure Hl(A,Q): it is therefore the subgroup
of GL(Hl(A,Q)) x Gm fixing all Hodge cycles (see §3). In
the language of the next article, the category of rational
Hodge structures is Tannakian with an obvious fibre functor,
and the Mumford-Tate group of A 1is the group associated with
the subcategory generated by Hy(A,@) and Q(1).
An abelian variety A is said to be of CM-type if its
Mumford-Tate group is commutative. Since any abelian variety
A 1is a product A = HAu of simple abelian varieties (up
to isogeny) and A 1is of CM-type if and only if each Aa
is of CM-type (the Mumford-Tate group of A is contained in
the product of those of the Au) , in understanding this concept

we can assume A is simple.

Proposition 5.1. A simple abelian variety A over € is of
CM-type if and only if E = End A is a commutative field over
which Hl(A,Q) has dimension 1. Then E is a CM-field,

and the Rosati involution on E = End(A) defined by any

polarization of A 1is complex conjugation.

Proof: Let A be simple and of CM-type, and let

'E Gm -+ GL(Hl(A,E)) be defined by the Hodge structure on
Hl(A,G) (see §3). As A is simple, E = End(A) is a field
(possibly noncommutative) of degree < dim Hl(A,m) over @ .
As for any abelian variety, End(A) is the subalgebra of
End(Hl(A,m)) of elements commuting with the Hodge structure

or, equivalently that commute with u(mm) in GL(Hl(A,E)).
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If G is the Mumford-Tate group of A then Gg is
generated by the groups {au(mm)lo € Aut(T)} (see 3.4).
Therefore E is the commutant of G in End(Hl(A,m)) .

By assumption G 1is a torus, and so Hl(A,m) = @ H
xex(c) X

The commutant of G therefore contains étale commutative
algebras of rank dim Hl(A,Q) over Q@ . It follows that E
is a commutative field of degree dim Hl(A,m) over @ (and
that it is generated, as a Q-algebra, by G(@); in particular,
h(i) € E ® R) .

Let y be a Riemann form corresponding to some polarization
on A . The Rosati involution e r— e* on End(A) = E is
determined by the condition y(x,ey) = yp{e*x,y), x,y € Hl(A,Q).
It follows from ¢ (x,y) = Y(h(i)x,h(i)y) that h(i)* =
h(i)_1(= -h(i)). The Rosati involution therefore is non-trivial
on E , and E has degree 2 over its fixed field F . We
can write E = F[vyal , a € F , Yo* = -/a ; ¢ is uniquely
determined up to multiplication by a square in F . If E
is identified with Hl(A,Q) through the choice of an
appropriate basis vector, then ¢ (x,y) = TrE/m oxy* , x,y € E
(cf. 4.6). The positivity condition on ¢ implies
(ah(i) lxx*) > 0, x # 0, x € E ® R. In particular,

)]
(fxz) >0, x#0, x€F® R, £f=a/h(i) which implies

Treer/R

Treer/R

that F is totally real. Moreover, for every embedding
gt F & R we must have o(a) < 0 , for otherwise
E @F,GI1= R x IR with (rl,rz)* = (rz,rl) , and the positivity

condition is impossible. Thus o¢(a) < 0, and * is complex

conjugation relative to any embedding of E in C .
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For the converse we only have to observe that u(Gm)
commutes with E ® IR in End(Hl(A,nU) , and so if
Hl(A,m) is of dimension 1 over E then u(Gm) < (E ¢ n&f
and G CE" .

Let (Aa) be a finite family of abelian varieties over

C of CM-type. We shall show that every element of a space

om Vén

1 o 1 a
7 oHn (Xa) ) 8 (QQH]A (Xa) ) (m)

that is a Hodge cycle (relative to € d , €) is an
absolute Hodge cycle. According to (3.8) (Principle A) to
do this it suffices to show that the following two subgroups

of GL(HHl(Aa,Q)) x Gm are equal:

GH = group fixing all Hodge cycles;

Pl - group fixing all absolute Hodge cycles.

Obviously el CGAH .

After breaking up each Aa into its simple factors, we
can assume A, itself is simple. Let E, be the CM-field
End(Au) and let E be the smallest Galois extension of

containing all Ea : it is again a CM-field. Let Ba = Aa &, E .
a

It suffices to prove the theorem for the family (Bu) (because
the Tannakian category generated by the Hl(Ba) and Q(1)
contains every Hl(Aa): cf. the next article).

In fact we consider an even larger family. Fix E ,
a CM-field Galois over @ , and consider the family (Aa)

of all abelian varieties with complex multiplication by E
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(so Hl(Aa) has dimension 1 over E) up to E-isogeny. This
family is indexed by P , the set of CM-types for E . Thus,
if 8 = Hom(E,C) then each element of ,3 is a set ¢ € S
such that S = ¢yr® (disjoint union). We often identify

® with the characteristic function of ¢ , i.e. we write

& (s) 1, s¢€9

1]

d(s) 0, s¢god.

With each ¢ we associate the isogeny class of abelian varieties

containing the abelian variety ¢¢ /@(OE) where Op = ring of

. . _ ¢
integers in E and ¢(OE) = {(oe)oe¢ € T|o € OE} .

With this new family we have to show that GH = GAH .

We begin by determining GH (cf. 3.7). The Hodge structure
on each Hl(AQ,Q) is compatible with the action of E . This

implies that

H

G C IM,GL(H,(A.)) x @&
¢eg 1% m
commutes with n _EX . It is therefore contained in
e d
NE" x Gm . In particular GH is a torus, and can be described

as

by its group of cocharacters Y(GH) Hom__ (Gm,GH) or
Q

its group of characters X(GH) . Note that

SXJ

Y(GH) CY( I E x Gm) =Z x Z . There is a canonical
¢e
basis for X(Ex), namely S , and therefore a canonical basis

for X( 1 EX x G ) which we denote ((x Q),x ) . We denote
oe m s, 0
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the dual basis for Y(HEX x Gm) by (ys ¢’y0) . The element
’

H

H
u e Y(G) equals ) é(s)ys'¢ + ¥, (see 3.7) . As G

s,

generated by {ou(mmjo € Aut ¢} , Y(GH) is the Gal(Q/Q)-

is

submodule of Y(IE® x G ) generated by u . (Gal (/D) acts

S x J %

on S by os = s oo™l it acts on Y (IEX x €)=z 7

through its action on S: g 5 =Y these actions factor
I

os,¢:
through Gal(E/@Q)).

To begin the computation of chH » we make a list of
tensors that we know to be absolute Hodge cycles on the Aa .

(a) The endomorphisms E C End(A¢) for each ¢ . (More
precisely we mean the classes C1]A (I‘e) e H]A (Ad>) ® HJA (A¢) .
Te = graph of e , e € E.)

(b) Let (A¢, v:i E ¢ End(AQ)) correspond to ¢ € ,3 .

and let o € Gal(E/Q). Define o¢ = {os|s € ¢} . There is an

isomorphism Ay > Ach induced by
¢ ®
c — € (eeerz(®)rees) 9 (vee,2{(0T)rees)
¥ ¥

] cd
C /¢(OE) — C /U¢(OE)

whose graph is an absolute Hodge cycle. (Alternatively, we

could have used the fact that (A¢,0v: E » End(A¢)), where

ov = v oo_l , is of type o¢¢ to show that AQ and Ao@ are

isomorphic.)

(© Let (8,), be a family of elements of .&

[oN

< i<

and let A =
i

&

Ai where Ai = A . Then E acts on A and
1 i
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a

Hl(A,m) = & H;(A,AQ) has dimension d over E . Under the
i=1

assumption that | @, = constant (so that [ ¢, (s) = d/2,

1 1

all s € S) we shall apply (4.8) to construct absolute Hodge
cycles on A .
For each i, there is an E-linear isomorphism

H,(A,,0) € —— ® H,(A,)
1'7i @ ses 1%1i’s

such that s € E acts on Hl(Ai)s as s(e) . From the

definitions one sees that

_ -1,0
Hy(Ag), = Hi(AL) ' s € ¢,

_ 0,-1

= Hy(A;) s é ¢, .

Thus, with the notations of (4.4),
a =] ¢;(s)
i

b, = g (l—@i(s)) = g ¢i(1s) =a. -

The assumption that E¢i = constant therefore implies ag = bs =
da/2 , all s .

For each i , choose a polarization ei for Ai whose
Rosati involution stablizes E , and let wi be the corresponding
Riemann form. For any totally positive elements fi in F
(the maximal totally real subfield of E) 8 = @ fiei is a
polarization for A . Choose vy # 0, v, € Hl(Ai,Q): then

{Vi} is a basis for Hl(Ai,Q) over E . There exists a

X el —_
z; €E such that Ly = "4y and wi(xvi,yvi) = TrE/m(;ixy)




69

for all x,y € E . Thus ¢i’ where ¢i(xvi,yvi) = (ci/gl)xy ,
is an E-Hermitian form on Hl(Ai,Q) such that yY(v,w) =

TrE/m(Cl¢i(v,w)) - The E-Hermitian form on H, (A,Q)

o Ix;vy Iysvy) = E £03 (x3Vy0¥595)
is such that y(v,w) = TrE/m(cl¢(v,w)) is the Riemann form
of 6 . The discriminant of ¢ is I fi(;i/cl). On the other
i
hand, if s € S restricts to T on F , then sign(tdisc(¢)) =
b
-1) = -1)¥2 | Thus disc ¢ = £(-1)¥?  for some totally

positive element f£ of F . After replacing one fi with
£./£ , we have that disc(f) = (-1)%?, and that ¢ is split.
Hence (4.8) applies.

d
In summary: let A = @& A, be such that Z@i = constant;
= i

then (A% wl@a,0)(a/2) cu%(a,0)(d/2) consists of absolute
E
Hodge cycles.
since G fixes the absolute Hodge cycles of type (a),

X
GAH COHE x Gm . It is therefore a torus, and we have an

@

inclusion

sx J

vc*) c y(me® x ¢) == x

and a surjection,

sx 9

X (IE* x €)=z x m — x(cPy.

Let W be a space of absolute Hodge cycles. Under the
action of the torus nE® x G, WO CT=®o WX where the sum is

over X € X(HEx bS Gm) and the torus acts on WX through .
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Since GAH fixes the elements of W , the ¥ for which
wX # 0 map to zero in X(GAH).

On applying this remark with W equal to the space of
absolute Hodge cycles described in (b) , we find that

X maps to zero in X(GAH) , all o e Gal(E/Q),

s,0 = *us,00
s € 5, and ¢ € 3 . As Gal(E/Q) acts simply transitively on

S , this implies that, for a fixed Sy e s , X(GAH) is

generated by the image of {x d>,x0|<l> e 31 .
0
Let d(¢) > 0 be integers such that I d(¢)® = d/2 (constant
function on S) where d = fd(¢) . Then (c) shows that

®gd (9) a(e)
®

- - = d -—
W= ep H (3@ as) = 2% o agth o) (-az2)

a(o)
CHd((B Aq) ,@) (-4/2) .

consists of absolute Hodge cycles. The remark then shows that

d(e)x - d/2 maps to zero in X(GAH) for all s .
s

;0

Let X = X(IE® x Gm)/z Z (x X ), and regard

os,00 "s,0

{x xJ@ € 81 as a basis for X . We know that
so,ﬂ
X(HEx x Gm) — X(GAH) factors through X , and that therefore

¥ 2v(c®¥) (ov@h!)) where Y is the submodule of Y(IEX x c,)

dual to X .

1
Lemma 5.2. The submodule Y(GH) of X orthogonal to

Y(e")  is equal to {Jd(e)x, . -5 x| ld@e = Sl aw =ar;
OI

it is generated by elements ] a(e)x - (d/2)xy, ] d{e)e = d/2,

0r®
d(e) > 0 all o
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Proof: As Y(GH) is the Gal(E/Q)-submodule of Y generated

. L
by ¥ , we see that x ¥ a(e) X, g " d/2 X, e Y(GH) if
ol

and only if <ou,x> =0 all aq € Gal(E/Q) . But
po=7 o(slyg o + Yq and On = ) #(s)y,g ¢ + %o + and so
<op,x> =) d(¢)¢(o_lso) - d/2 . The first assertion is now
obvious.
+ Byh nan
As ¢ + 196 =1, XSDI¢ xso,1¢ - x0 € Y(G) an as

positive coefficients d(¢) . By adding enough elements of
this form to an arbitrary element x € Y(GH)L we obtain an
element with coefficients d(¢) > 0 , which completes the
proof of the lemma.

H,L AH
The lemma shows that Y(G') C Ker(X — X(G)) =

L
Y(GAH) . Hence Y(GH) C Y(GAH) and it follows that GH =

GAH; the proof is complete.

6. Completion of the proof; consequences.

Let A be an abelian variety over € and let ty, r @ €I,
be Hodge cycles on A (relative to Ad, C€) . To prove the
Main Theorem 2.l11 we have to show the tu are absolute
Hodge cycles. Since we know the result for abelian varieties

of CM-type, (2.15) shows that it remains only to prove the

following proposition.

Proposition 6.1. There exists a connected, smooth (not
necessarily complete) algebraic variety S over € and an

abelian scheme 7: Y » S such that



(a) for some s, € S, Ys = A;

0

€S, Y is of CM-type:
S1

(c) the ta extend to elements that are rational and of

0

(b} for some sy

bidegree (0,0) everywhere in the family.

The last condition means the following. Suppose that

t belongs to the tensor space Ta = Hé(A

)@m((l)
o
om (o)

@ ...7
then there is a section t of Rln*m ®... over the

universal covering S of s (equivalently, over a finite

covering of S) such that for §0 mapping to S £, = ta'
S0
and for all s € S , t, € Hé(Yu)Qm(a) ® ... is a Hodge cycle.
s s

We sketch a proof of (6.1). (See also V.2). The parameter
variety S will be a Shimura variety and (b) will hold for a
dense set of points sy

We can assume that one of the ta is a polarization 6
for A. Let H = Hl(A,m) and let G be the subgroup of
GL (H) x Gm fixing the ta . The Hodge structure on H

x 0

defines a homomorphism h C + G(R). Let G =

0:
Ker (G + Gm): then ad(ho(i)) is a Cartan involution on Gg
because the real form of Gg corresponding to it fixes the
positive definite form y(x,h(i)y) on H ® IR where ¢ 1is a
Riemann form for 6 . 1In particular, G is reductive (see 3.6).

Let X = {h: C" =~ G(R)| h conjugate to h, under G(R)} .
Each h € X defines a Hodge structure on H of type

{(-1,0),(0,-1)} relative to which each t, is of bidegree
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0,-1

(0,0). Let F°(h) = H CH®CTC . Since G(R) /K — X ,
o

where K_  is the centralizer of h0 , there is an obvious real

differentiable structure on X , and the tangent space to

X at hO , tgth (xX) = Lie(Gng /Lie(K) . 1In fact X is a

0

Hermitian symmetric domain. The Grassmanian, Grassy (HOT)

I

{W CH ® C|W of dimension d} , d = dim(A), is a complex analytic
manifold (even an algebraic variety). The map ¢: X -
Grassd(H ® C), h+— Fo(h), is a real differentiable map, and
is injective (because the Hodge filtration determines the Hodge

decomposition). The map on tangent spaces factors into

tgthoix) = Lie(Gp) /Lie(k,) <= End (H8T) /F°End (H8T) = tgtq)(ho) (Grass)
Lie (Gp) /F° (Lie(Gp)),

the maps being induced by G(R) <— G(T) < GL (H®T) . (The
filtrations on Lie(Gm) and End(H®C) are those corresponding
to the Hodge structures defined by hO)' Thus d¢ identifies

tgt, (X) with a complex subspace of tgt (Grass), and
hy ¢ (hy)

so X is an almost-complex submanifold of Grassd(Hem) . It
follows that it is a complex manifold (see Deligne [6,1.1]
for more details). (There is an alternative, more group-
theoretic description of the complex structure; see Knapp [1 ,
2.4, 2.51).

To each point h of X we can associate a complex
torus F°(h)\H®TC/H(Z) , where H(Z) is some fixed lattice

in H . For example, to hg is associated F°(h0)\H®m/H(zn =

tgtO(A)/H(Z) , which is an abelian variety representing A .
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From the definition of the complex structure on X it is
clear that these tori form an analytic family B over X

Let I = {g e G(@)] (g-1)H(Z) c nH(Z)} some fixed
integer n . For a suitably large n > 3, I will act
freely on X , and so TNX will again be a complex manifold.
The theorem of Baily and Borel [1] shows that S = T'\X is
an algebraic variety.

I' acts compatibly on B, and on forming the quotients we
obtain a complex analytic map m: Y = S with Y = T \B.
For s € S, Y is a polarized complex torus (hence an
abelian variety) with level n structure (induced by
Hl(Bh,zz) =+ H(%Z) where h maps to s). The solution M of
the moduli problem for polarized abelian varieties with level

n-structure in the category of algebraic varieties is also a

solution in the category of complex analytic manifolds. There
is therefore an analytic map 9%: S —> Mo such that Y is the
pull-back of the universal family on Moo A theorem of
Borel [2,3.10] shows that 1§ is automatically algebraic, from
which it follows that Y/S 1is an algebraic family.

For some connected component S° of S , 7 1(s®) » g°
will satisfying (a) and (c) of the proposition. To prove (b)
we shall show that, for some h € X <close to h0 P Bh is
of CM-type (cf. Deligne [3,5.2]).

Recall (§5) that an abelian variety is of CM-type if and
only if its Mumford-Tate group is a torus. From this it

follows that B, , h € X , is of CM-type if and only if h

h
factors through a subtorus of G defined over @ .
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Let T be a maximal torus, defined over IR, of the
algebraic group K, - (See Borel-Springer [1] for a proof
that T exists.) Since ho(mx) is contained in the centre
of K_ ., ho(mx) CT(IR) . If T' is any torus in G]R con-
taining T then T' will centralize h0 and so T' CK_
T 1is therefore maximal in an' For a general (regular)
element X of Lie(T), T 1is the centralizer of A . Choose

a A' € Lie(G) that is close to A in Lie(G and let

HQ

T' be the centralizer of A' in G . Then T' is a maximal

torus of G that is defined over @ and T' = ng_l where

g 1is an element of G(IR) that is close to 1 . Thus

h = ad(g)oh0 is close to ho and Bh
This completes the proof of the main theorem. We end

is of CM-type.

this section by giving two immediate consequences.

Let X be a variety over a field k and let
Y € HZP(Xet,mz)(p), % # char(k) ; then Tate's conjecture
asserts that <y 1is algebraic if and only if there exists a
subfield k0 of k finitely generated over the prime field,
a model XO of X over ko , and a Yo € HZP(XOQEO,QR)(p)
mapping to y that is fixed by Gal(EO/kO) . (Only the last

condition is not automatic.)

Corollary 6.2. Let A be an abelian variety over € . If
Tate's conjecture is true for A then so also is the Hodge

conjecture.

Proof: We first remark that, for any variety X over T ,
Tate's conjecture implies that all absolute Hodge cycles on
X are algebraic. For (2.9) shows that there exists a subfield

k0 of € finitely generated over @ and a model X, of
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X over k, such that Gal(EO/kO) acts trivially on

P
alg

subspace of CiH(X0 ® EO) of algebraic cycles, then Tate's

P = = s
CAH(X0 ® ko) . If we let C (x0 ® ko) be the Q-linear

. : p p ;
conjecture shows that the images of CAH and Calg in
HZP(Xet,QQ)(p) generate the same mg—linear subspaces.

p _ AP p - P
Thus Calg ® QZ = CAH ® mz , and Calg CAH .

Now let A be an abelian variety over € and let
t e HZP(A,E) be rational of bidegree (p,p) . If t0 e HZP(A,Q)
maps to t , then the image t' of t0 in H;E(A)(p) is a
Hodge cycle relative to ——ié»m . The main theorem shows

that t' is an absolute Hodge cycle, and the remark shows

that it is algebraic.

Remark 6.3. The above result was first proved independently

by Piatetski-Shapiro [1] and Deligne (unpublished) by an
argument similar to that which concluded the proof of the

main theorem. ((6.2) is easy to prove for varieties of

CM-type; in fact, Pohlmann [1) shows that the two conjectures
are equivalent in that case.) We mention also that Borovoi [1]
shows that, for an abelian variety X over a field k , the Qa'
subspace of Hzp(xet,ml)(p) generated by cycles that are Hodge
relative to an embedding o¢: k© — € is independent of

the embedding.

Corollary 6.4. Let A be an abelian variety over & and
let GH be the Mumford-Tate group of A . Then dim(GH) >

tr.degkk(pij) where the p.. are the periods of A .

1]

Proof: Same as that of (l1.6).
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7. Algebraicity of values of the T-function

The following result generalizes (1.5)

Proposition 7.1. Let k be an algebraically closed subfield

of € , and let V be a variety of dimension n over k .

If o € ng(v) maps to an absolute Hodge cycle Yy under
=T
B (27mi) B oy, .2n-2r _ 2n-2r _
H, (V) =——=——H, (V) (-r)==H (V) (n-r)&— Hp (Vg) (n-x)

then, for any c” differential r-form ® on VE whose

. 2r . . 2r =
class [w] in HDR(V/E) lies in HDR(V/k) ,
[0 € )Tk,

Proof: Proposition 2.9 shows that Yy arises from an absolute

Hodge cycle Y, ©on v/k . Let (YO)DR be the component of
Y in Hgg_zr(v/i) . Then, as in the proof of (1.5),
_ T v ..2n =y N
IU w= (2mi)" Ty ((v)ppv []) e(2ni)” Hop(V/k) = (2mi)" k.

In the most important case of the proposition, k will
be the algebraic closure @ of @ in € , and it will then

be important to know not only that the period

P(o,0) ¥ (2mi)7F [g0

is algebraic, but also which field it lies in. We begin by
describing a general procedure for finding this field and then
illustrate it by an example in which V is a Fermat hyperspace
and the period is a product of values of the TI'-function.

Let V now be a variety over a number field kc C

and let S be a finite abelian group acting on V over k .
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If a: S =+ ¢ is a character of S taking values in x* and
H is a k vector space on which S acts k-linearly , then

we write

Hy, = {veH | sv=oa(s)v, all s g8} .

Assume that all Hodge cycles on VE are absolutely Hodge and

that I—IZI‘Y"(V((E),G:)(1 has dimension 1 and is of bidegree

(r,r) . Then (Cgﬂ(ﬁ) ® k), . where V=yv 81(5 , has dimension

one over k . The actions of S and Gal(@/k) on

Hg;(ﬁ/ﬁ) = Hgg(v/k) 81(5 commute because the latter acts through
its action on @ : they therefore also commute on C;H(ﬁ) 8 k ,
which embeds into H%E(V/E) . It follows that Gal(@/k) stabilizes
(C;H(V) ® k)a and, as this has dimension 1 , there is a character

X: Gal(@/k) — k* such that

_ -1 = r o5
Ty = x(1) "y , T € Gal(Q/k) , Y € (Cxy(V) ® k) .
Proposition 7.2. With the above assumptions, let o € ng(v)

and let o be a ¢® differential 2r-form on V(L) whose
. 2r : : 2r .
class [w] in HDR(V/Q) lies in HDR(V/k)a ; then P(og,wn)

lies in an abelian algebraic extension of k , and

T(P(0,w)) x(t) P(o,0) , all 1 € Gal(@/k) .

Il

. 2r _ r o .
Proof: Regard [w] € HDR(V/m)a = (CAH(V) ® m)u : then

[w] = zy for some z €T , Y € (CiH(V) ® k), . Moreover

df
P(o,0) = ( %;i)r fco)= zy (o 8 (2wi) Ty € zk , where we are

regarding y as an element of ng(v)(r) ® k = ng(v)(—ry ®k .

Thus P(o,0) le]l € (CL (V) ® k) . As [o]€ HEL(9/®) =Cpy (D) 08 ,
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this shows that P(o,w) € @ . Moreover, T(P(o,m)_l[m]) =

x(r)_l(P(o,w)_l[m]) . On using that t[w] = {w] , we deduce

that t(P(o,w)) = x(1) P(o,0) .
r = - . 2r =
Remark 7.3 (a) Because C,,(V) injects into H™"(V_,.Q,)(r) ,

X can be calculated from the action of Gal(Q/k) on
2r o
HEE (V@) (1) .
(b) The argument in the proof of the proposition shows that

r

o ® (2ri)™F e HS (V) (-r) and P(o,w) l(u] € 2D (9/T)  are

different manifestations of the same absolute Hodge cycle.

The Fermat hypersurface

We shall apply (7.2) to the Fermat hypersurface

+Xl+...+Xn+l=0

. 4 d d
V: X0
of degree d and dimension n , which will be regarded as

2ﬂi/d)

a variety over k £ Q(e As above we write

vV=yv @](@ , and we shall often drop the subscript on V,
It is known that the motive of V is contained in the
category of motives generated by motives of abelian varieties

(see (II 6.26)), and therefore (2.11) shows that every Hodge

cycle on V is absolutely Hodge (cf. (II 6.27)) .

Let Mg be the group of dth roots of 1 in T ,
+1
and let 8§ = ?@ ud/(diagonal) . Then S acts on V/k
i=o
according to the formula:
(Co: ...)(xo: cee) = (Coxo: ves) ., all (xo:...) ev(c) .

The character group of S will be identified with
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n+2 li= (

X(s) = {a € (m=/4d &) a ,ee.,a

o n+1) ¢ T2y =0l

a € X(S) corresponds to the character

a
- ., adfp i
E, - (CO. -.-) E_ II ;i
For a € Z/d% we let <a> denote the representative of a
in #Z with 1 < <a> < d , and for a g X(S} we let
<a> = d-l L <ai> e N.

If H(V) 1is a cohomology group on which there is a

natural action of k , we have a decomposition

H(V) = @ H(V)_ , H(V), = {v]zv = v, z e s}

Let (Z/4 zz)x act on X(S) in the obvious way,
u(ao,...) = (uao,...) , and let [a)l be the orbit of a
The irreducible representations of S over @ (and hence
the idempotents of @[S]) are classified by these orbits,
and so Q[S] = 1@ [(a] where @(a] is a field whose degree
over @ is equal to the order of [a] . The map g+ _c_é: s§~>TrC
induces an embedding Q@[a]“— k . Any cohomology group

decomposes as H(V) = & H(V) la] where H(V) [al] [ =a‘8[a] (H(V) @(I:)a, .

Calculation of the cohomology

Proposition 7.4 The dimension of e®(v,e)_ -is 1 if no a; =o

a
or if all a; = 0 : otherwise H"(v,u:)a =0 .
Proof: The map
. . d, 4, . ht+l n+l
(xo. X3 ves) (xo. X ¢ ves): TP — 1P
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defines a finite surjective map w: V » P"  where Pn(ﬁf]Pn)

is the hyperplane I X, = 0 . There is an action of S on
7,0 which induces a decomposition n*¢¢5®(n*¢)a , and
HI(V,E)33+ Hr(Pn,n*m) , being compatible with tgé actions of

S , gives rise to isomorphisms Hr(V,m)aiE+ Hr(Pn,(w*m)a) .
The sheaf (n*m)a is locally constant ;f dimension 1 _éxcept
over the hyperpl;nes H,: X, =0 corresponding to i for
which a; # o , where it is ramified. Clearly (w*m)o =C ,

and so Hr(Pn,(ﬂ*E)o ﬁﬁﬂr(IPn,m) for all r . It follows that

Hr(Pn,(n*m)a) =o, r#n, a#o=(o,...,0) , and so

hN

-1 dim Hn(Pn,(n*E)a) , a # o, is equal to the Euler-Poincaré

characteristic of (n*G)a .  We have

EP(P", (n,&) )= EP(P" - U H D) .

ai#o

Suppose first that no a; is zero. Then

- - - 3 - - nz n
(xo. TERE R in) +r (xo. R xn). P+ P

induces

n+l n

~ -
pP - U g, & opt_ U goup™l

i=o i i=o i
where Hi denotes the coordinate hyperplane in Pn+1 or
P". as

(P"-Un. vy y ™! _Un,) = 2" -Us. ,
i i i
and an—-UHi , being topologically isomorphic to (CI:X)n ;
has Euler-Poincaré characteristic zero, we have

+ — .
EP (P - nu]' Hy) = -gp (P71 - Ln)Hi) = ... = (-1)PEP(P°) = (-1)" .

X, r

If some, but not all, a; are zero, then PO —kJHi A (C) x ¢?7F
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with r > 1 , and so EP(P" - UH;) = 0" x 1 =0 .

Remark 7.5. The above proof shows also that the primitive

cohomology of V ,

n n
H (V,C)__. = @& H(V,C)_.
' prim afo a

The action of S on Hn(V,CI:) respects the Hodge decomposition,
and so Hn(V,(I:)a is pure of bidegree (p,q) for some p , g

with p+g=n .

Proposition 7.6. If no a; =0, then #" (V,(l‘)a is of bidegree

(p,q) with p = <a> -1

Proof: We apply the method of Griffiths [1,§8]. When V is
n+l

a smooth hypersurface in TP , Griffiths shows that the maps
in
Hn+l(IPn+l, T) o, Hn+1(IPn+l - v,0)— I{3+2(1Pn+1, C)— Hn+2(]Pn+1, )

| -

1 (V) (-1)

induce an isomorphism

n+l n+l

=~ n
H (P - V,C) — H (V) (—l)prim

and that the Hodge filtration on H® (V) (-1) has the following

n+l

explicit interpretation: identify Hn+l(IP - V,T) with

n+l _ n+l n+l

(P v, oy ar (@™ - v,2") and let
Q;4-1(V) = {w e P (P"1-v,2"1)| w has a pole of order <p on V}:
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then the map R: Qg+l (v) » H"(v,C) determined by

fc w , all o e H_ (V,C)

induces an isomorphism

n-p+l

= F B (V) .

Qg+1(v)/d9n &, 7P gyl (y) (-1)

p-1 prim prim

(For example, if p =1, R 1is the residue map Q;_Hl (v)+ FPE (V) =
H® (v,e™).

Let £ be the irreducible polynomial defining V . As

+1 .
ot (n + 2)= 0 has basis
n+l n+l
r hid

A

_ gy 1
wy = L(-1) Xi dxo/\.../\d}(i/\.../\dxn ,

any differential form o = Pmo/fp with P a homogeneous

polynomial of degree p deg(f) - (n + 2) lies in Q;H' (V).

In particular, when V 1is our Fermat hypersurface,

<a > <a > <a > <a >
_ o -1 nt+l -1 _ o n+l i A
w=X_ cee X Wy = X <o X Z(-1) dXOA...AdXi/\...
d d <a> d d <a>
+oaan 2 2
(Xo + Xn+l) (xo+"'+xn+1) X X
: n+l -1
lies in Q<a_> (V) . For ¢ es, X; = ¢;7 X, , and so
Tw = 5_3 w . This shows that Hn(v,tl:)_ac_Fn'<a_>‘*‘l v, o) .

Since <-a> -1 =n + 1 - <a> , we can rewrite this inclusion

n <a>-1
as H'(V,0) cF2 H(V,e) . Thus H“(v,cr)a is of bidegree
(p,q) with p > <a> - 1 . The complex conjugate of Hn(V,a:)a

is Hn(V,G)’a ,» and is of bidegree (g,p) . Hence

n-p=g><-a>-1l=n+1-<a>

and so p < <a>-1.
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Recall that HB(V)[E] = @& H (V)i' : thus (7.4)

B
a'elal
shows that Hg(v)[a] has dimension 1 over @[al when no

. . n n _
a, 1s zero and otherwise HB(V)[g]n HB(V)Prim =0 .

Corcllary 7.7. Assume no a; =o; Hg(v)[a] is purely of

bidegree (g,% if and only if <ua> is independent of u ..

Proof: As <a> + <-a> =n + 2 , <ua> 1is constant if and only
if <ua> =32+ 1 for all u e(m/d®z) , i.e. if and only if
<a'> =n/2 + 1 for all a' € [a] . Thus the corollary follows

from the proposition.

Corollary 7.8. If no a; =o and <ua> 1is constant, then

n g . .
CAH(V)IE] has dimension one over Q[al .

Proof: This follows immediately from (7.7) since, as we have

remarked, all Hodge cycles on V are absolutely Hodge.

The action of Gal({i/k) on the étale cohomology.

Let /f be a prime ideal of k not dividing d , and let

Ty be the residue field of ¥ . Then d|g-1 and reduction
modulo £ defines an isomorphism Wy fE*-]F; whose inverse

n+1) € X(8) with all a;

. X
nonzero, and define a character et Bﬁl > Hg by

we denote t . Fix an a = (ao,...,a

e, (x) = eI /dyai s g,

As Hsi.= 1., 1 ei(xi) is well-defined for x = (xO:...:Xn+l

Pn+l tmq), and we define a Jacobi sum



n n+l
J(egrener€pyy) = (F1) Zn igo g, (xy)
xeP (IFq)

where P" is the hyperplane in = o0 in ]Pn"'1 . (As usual,
we set ei(o) =0 .) Let ¢ be a nontrivial additive
character P: IFq—> G:x and define Gauss sums
gy ag¥) = -1 g5 (x) b(x)
XEF
q
n+l
-<a>
gl ,a) =q = glapra. . ¥) .
? i=o /f 1
. _ <a> -1
Lemma 7.9. The Jacobi sum J(e_,...,e 1) =q = 9(7,3) .
<a> n+l
Proof: q—g(fx a) = T -3 e, (x) $(x))
i=o x€F
q
n n+l
= -1" 3} T e (x)) W(Ix)), X = (X ,..0)
e i
|
n n+l
= 1" ) ¥ (izoei(xxiw(uxi)) .

x" (F_) \EF .
- q q

We can omit the A from 1 ei(kxi) , and so obtain

<a> n n+1l
q ="glp,a) = (-1) I(m egx)) ] Y (AIx,) .
x i=o x o
= AeTr
q
n+l n+l
Since ] 1 e;(x5) = 1 (2 €;(x)) = o , we can replace
x i=o i=o erFq

the sum over A € Iqu by a sum over X\ € ]Fq . From



) w(lﬂxi) = {; if Ix; = o
AETF
q Lo if in # o

we deduce finally that
n+l

-1%q | (1 e (x))
§€Pn(1Fq) i=o

q<‘3>g(y (a)

q J(so,...,en] .

Note that this shows that g(tg,g) is independent of
Yy and lies in k .
Let & be a prime such that ¢ X & , P Y&, anda dle-1.

th

Then mz contains a primitive d root of 1 and so, after

choosing an embedding k &~ mz , We can assume g(:p,g) e Ql

Proposition 7.10. Let F¥ e Gal(m/k)ab be a geometric Frobenius
n.—
element of ~p Yd : for any v € H (Vet’ml)i ,
< -
Fﬁ":qé)lg('f’é)v

Proof: As:yld , V reduces to a smooth variety Vﬁ over mﬁ
and the proper-smooth base change theorem shows that there is

an isomorphism Hn(ﬁ,ml) = Hn(?ﬂ’mz) compatible with the action
of S and carrying the action of Ef on H™(V, ml) into the
action of the Frobenius endomorphism Frob on Hn(ﬁy,mk) .

The comparison theorem shows that Hn(\_},mk)a has dimension 1 ,
and so it remains to compute -

Tr(F¥|Hn(\7,mR’)i) = Tr(Frob[Hn(\_ly,ml)i) .
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Let m: V¥ > P" be as before. Then Hn(\_lix,q)g)é = Hn(Pn,(n*mg)i),

and the Lefschetz trace formula shows that

n

(-1) Tr(FroblHn(pn,(n*Ql)a) = 3 Tr(Frob[((n*QR)a)x) (7.10.1)

n
XEP (T )
xer (¥

where (("*mz)a)x is the stalk of ("*mz)a at x .

. n . =
Fix an X € P tmq) with no Xy zero, and let y € V}(Eq)

map to X ; thus yq = x. all i . Then ﬂ-l(i) = Izylz € s} ,

i i -
d (7,@,) is the vector space QEL (x)
an @y x s e P ) .
If ¢ denotes the arithmetic Frobenius automorphism

(i.e., the generator 2z = 29 of Gal(I_Fq/ ]Fq)) then

g-1 a-1
=3 -, 4 _ d .
Oly;) = yi =% vy = t(x;7 )y, 0<i<n+1
and so
ig
Frob(y) = n y where n = (...: t(xid )i ...) E S .

Thus Frob acts on ("*mk)x as n , and for v e(("*mn)a)x

we have
a a n+l
Frob(v) =n v =n-v , n— = T si(xi) e kc.mz.
i=o
Consequently
n+l
Tr (Frob| ((m,@,)_),) = T e, (x,) .

If some X; =0 then both sides are zero (("*Qz)a is ramified
over the coordinate hyperplanes), and so on summing over x

and applying (7.10.1) and (7.9), we obtain the proposition.
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Corollary 7.11. Assume that no ai is zero and that <ua>

. n,s n
is constant. Then, for any v € H (Vet’mk)g(f) B
Fev =gly.,a)v.

Proof: The hypotheses on a imply that <a> =n/2 + 1 ;

. . _ . n,;
therefore, if we write v = Vs ® 1 with Vo € H (Vet’ml)g ,

then

n/

Ej}e v = F,# Vo @ Fyls= qn/zg(y,g) v, ® qa 2=g(rﬁ,§) v

Calculation of the periods

Recall that the TI'-function is defined by

rs) = [e "8G, s>0,
Q

and satisfies the following equations

1

I'(s) T(1-5s) % (sin ws)

T(l +s) s T(s) .

The last equation shows that, for s e mx , the class of T (s)
“in E/mx depends only on the class of s in @/Z . Thus, for
a € X(S) , we can define

n+1l

T r(a./d) e ©/@ .
i=o 1

T(a) = (2mi)°%

Let Vv° denote the open affine subvariety of V with

equation

Yo, + ... + Yn+l = -1 (so Yi = Xi/XO)

) e ®* e, >0,

Denote by A the n-simplex {(t;,...,t ;2

n+l

T t; = 1} and define 0, A+ vo(@) to be
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d
1/4 1/4 mi/2d _ acy 1/4
’ = = - , t. >0
(tl,...,tm_l))—-* (:-:tl ,...,etn+l) e 1 i
itive integers such
Lemma 7.12, Let ag s oceey a1 be positive g

that I ai =0 . Then

- + .
a1 an+l le dYn 1 B ao n+l al
LIRNEPEIR VO R sulatl - A R I - x
g (&) 1 n i=
o
where £ = ez-'rl/d

Proof: Write W for the integrand. Then

a a dt; dt,
_ _ 1/4,°1 1/4,“n+l .--n—=A.. . A——
= [o¥ta) =[(et]") ~ .. (et i) a Ty £
o _(A) A A
o)
=c | 1, ot di/\.../\ﬁi
A 1 n+l tl tn
a;+...+a n
where b, = ai/d and ¢ = € 1 n'lhl(%) . On multiplying
i b.+...+b
= - -t 71 n+l ..
by T(l-b_) =T(l+by+...+b ) = foe t dt we
obtain
® b +...+b b b_ 4t at
_ -t 1 n+l 1 n+l "1 - n
T(l-b)) fao(A)“’o =c [ [ et £ et LT T A A T Aadt

If, on the inner integral, we make the change of variables

s; = tti , the integral becomes
© b b ds ds
-t 1 n+l 1 n
— N —
c fo IA(t)e Sy e84 5] Aee S Ndt
n
where A(t) = {(sl,...,sm_l)[si >0, Zs;= t} . We now let
t=1= S; v and obtain
L3 © -5 -5 -s 1+b ds
_ 1 2 n+l 1 n+l ds. n+l
T(l-bo) '(0 (A)m—cfo...foe sy - n+l s A
] 1 n+l
= cl"(bl) F(bz) I‘(bn) r(1 +bn+1)
= cbn+ll‘(bl) r(bn+l) .
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The formula recalled above shows that T (1 —bo) = H/(sinrrbo) I‘(bo) '

-a_ sinThb
o

-1 _ ) X
and so ¢ I‘(l—bo) =€ Er— I‘(bo) (mod Q)
—2Ti ,, Tib -rib
= L g7AmRy (e ° - e O)I‘(b )
m - o
2i
-2a
_ 1 _ o
=357 (1 -¢ ) F(bo) .

The lemma is now obvious.

The group algebra @[S] acts on the @-space of

differentiable n-simplices in V(L) . For a € X(S) and
By = (Leaosrenn) (B = e®™/% 40 3™ position) , define
n+l
c=T (1-£)Y0 (8)C vO(a)
. 23 o
i=1
where CIO and A are as above.
Proposition 7.13. Let a € X(S) be such that no a; is zero,
and let ©° be the differential
] 1
o1 Ser o Yy
1 n+l Yl Yn
on V° , where a'i represents -ay s and a'i >>0 . Then
(a) &°® =€20°;
n+l a, -a,
o_ 1 _r 1 i
R SR CO
i=o
. . . . _ -1
Proof: (a) This is obvious since rY,= (g,/T) ~ ¥,
° n+l ° n+l a, w°
(b) [ow= [ py M A-gpe = 0 A-£D) [, w
o i=1 o
1 n+l a; a;
= 75T _H (L-& ™) P(_T)
i=o
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From the Gysin sequence

(c=) B2 (w-v°,0) » B, » 8 (v°,0) » o

we obtain an isomorphism Hn(v,m)prinlﬁb-ﬂn(vo,m) , which
shows that there is an isomorphism
n ~ n o _ O ~n o LN+l
HDR(V/k)prim—-’ HDR(V /kYy = T{v,27)/dr(v",Q ) .
The class [m°] of the differential w®

Correspondingly we get a c’

V(L) such that
(a) the class
and

_ 1
®) fgo =5

Note that, if we

. . n
even lies in HDR

The theorem

Recall that

?’(3) =

and for :; a prime of k not

gty.g) =

differential

n-form

on

. . n o
lies in HDR(V /k)i .

. n . . n
[w] of w in HDR(V/G) lies in HDR(V/k)E '

n+l ai ai
T (1-& ™) F(— 7;) , Where
i=o
regard V as a variety over
(v/@) .
for a € X(8) , we set
n+l
(2ri) "2 1 r(a,/q)
i=o

<a>

q~ - I]-T g(‘? ,ai,w) r g(’¥ :ai,w) =

o)

]

_z t

x€ IF
q

n+l

i=1

, then

(e t/07)

dividing 4 , we set

where g 1is the order of the residue field of ¢ -

Theorem 7.15.

<ua> = <a> (= n/2

Let

a € X(S) have no a;

1

+ 1) for all

u e(Z/azm) .

1-g\a,
k)t

=T (1-g;)°

[w]

1

co(A) .

Y (x)

= o and be such that
X
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(a) Then 'f‘/(g) € @ and generates an abelian extension of

X = (D(ezni/d)

(b) If Fy € Gal (T/%)3® is the geometric Frobenius element

at ,/y, then
Fp F@) =aly.2) Tla) .
(c) For any T € Gal(@/@) , A_(T) 4 /F(g)/'r,f‘/(g) lies in k :
moreover, for any u €(Z/d ZZ)X .
TU(XE(T)) = Aa (M)

where 1 = is the element of Gal (k/Q) defined by u

Proof: Choose ¢ € Hi(v) and ® as in (7.14). Then all
the conditions of (7.2) are fulfilled with « the character a .
Moreover, (7.14) and (7.11l) show respectively that
~ ‘ n+l a;
P(o,w) = E(a) T(-a), where £(a) =i£o(l—€ )

and

X(Eyg ) = g(ga._a_)_l .

As E(a) € k , (7.2) shows that 'l‘“lt-g) generates an abelian
algebraic extension of k and that F.ﬂ’f‘/(—g) = g(ry,g_) _l'IY(—g) .
It is clear from this equation that g(rdq,a_) has absolute
value 1 (in fact, it is a root of 1): thus
9('}12)_1= M = g(ry,—-i) . This proves (a) and (b) for
-a and hence for a .

To prove (c) we have to regard V as a variety over @ .

If S is interpreted as an algebraic group, then its action

on V is rational over @ . This means that
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Tx) = 1(7) T(x) , T € Gal(@/@) ,zes(@ , x€ V(D)
and implies that
T(Ly) = t(g) ty) , T €Gal@/® , tes@, yec,, W

Therefore Gal(@/@) stabilizes CXH(G)[a] and, as this is
a one-dimensional vector space over {[a] , there exists for
- . = X
any vy € CXH(V)[a] a crossed homomorphism A: Gal(@/@) - Qla}
such that t(y) = A(t)y for all 1 . On applying the canonical
n g n 5 . . .
map CAH(V)[E] - (CAH(V) ® k)‘3 to this equality, we obtain

Tty 8 1) = A2 (v @ 1) .

We take Yy to be the image of o ® (2':ri)—n/2

B n
e Hn(V) (—5)
in cp, () (a] - Then (c£. 7.3), (y ® 1) = P(o,0) YTlo] , if

[w] 1is as in (7.14). Hence

A1) 2

]

P(o,w)/t P(o,w) = A__(1) (E(a)/T E(a)) .

On comparing

A (1) = A(1)72 (1 E(-a)/%(-a)) and
Maa ™ = A(t) U2 (1 £ (-ua) /E (-ua)) ,
and using that T(£(-ua)) = T(Tu(E(-g))~= Tu(T £(-a)) , one

obtains (c) of the theorem.

Remark 7.16 (a) The first statement of the theorem, that
?(3) is algebraic, has an elementary proof; see the appendix
by Koblitz and Ogus to Deligne [7].

(b) Part (b) of the theorem has been proved up to sign by

Gross and Koblitz [1, 4.5] using p-adic methods.
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Remark 7.17 Let Ig be the group of ideals of k prime to

d , and consider the character

o
I

r. r.
oL = ]'I?ili——-) glot,a) Hg(}’i'i) l:Id+kx

When a satisfies the conditions in the theorem, then this
is an algebraic Hecke character (Weil [1l], [3]: see also
Deligne [5, §6]). This means that there exists an ideal

m of k (dividing a power of d)} and a homomorphism

X : k= k*  that is algebraic (i.e., defined by a map of

alg
tori) and such that, for all x € k" totally positive and

= 1(mod m) , g((x), a) =x (x) . There is then a unique
= ab X _

character Xé' Gal(@/k)“ " — k such that XE(Fy) = gb},g)

for all 2 prime to d . Part (b) of the theorem can be

stated as
o(F(a)) = x (o) T(a) , all oe Gal(k/k) .

(There is an elegant treatment of algebraic Hecke characters
in Serre [2, II]. Such a character with conductor dividing

a modulus m corresponds to a character ¥ of the torus

. _ s X T oc Xy X
Sm(loc. cit. p II-17). The map Xalg is k — T =8, kK .

One defines from ¥ a character ¥ of the idele class group
as in (loc. cit., II 2.7). Weil's determination of Xalg
shows that x_, 4is of finite order; in particular it is trivial

on the connected component of the idéle class group, and so

gives rise to a character x_: Gal((T)/k)ab )
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Restatement of the theorem

For b e d lm/ @, we write <b> for the representative

of b in a?t

#Z with 1/d < <b> <1 . Let b = L n(b) 5b be
an element of the free abelian group generated by the set
alm/m- {0} , and assume that I n(b) <ub> = ¢ is an

integer independent of u € Z/d Z . Define

T(b) = —=— 1 I'(<b>)

(27i)€ b

n(b)

Let ~ be a prime of k , not dividing d , and let ]Fq be
the residue field at /‘3‘ . For ¢ a non-trivial additive

character of IFq , define

g(rg,b) = ic M g(y,b,P) nB)  here g(p.b, ) =~} Py gk

b er
9 X q

As in (7.17), “b g(~.,b) defines an algebraic Hecke character of
- X

k and a character Xl_:)_: Gal(@/k) = C such that XE(F»,,.) = g(n,b)

for all Apfb.

Theorem 7.18. Assume that b = I n(b) Bb satisfies the condition
above.

b

(a) Then 'F(g) e k@ , and for all o € Gal(G/x)2P ,

o T(b) = x,(0) Tip) .

(b) For T e Gal(@/@ , let A (1) = T(0)/tT(b); then

A (t) € k , and, for any ue (Z/dZ)",

Tu(AE(T)) = XA, (1) .

ub

Proof: Suppose first that n(b) > o for all b . Let
n+2=2LIn(b), and let a be an (n+2)-triple in which

each a € Z/d%Z occurs exactly n(a/d)times. Write
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a= (a Then I a; d(Z n(b)b) = dc (mod 4) = o ,

o""'an+1)

and so a € X(S) . Moreover,

<ua> =f

Z n(b) <ub> =c¢

=

I <ua.>
i

for all u € Z/dZ . Thus <ua> is constant, and c¢ = <a> .
We deduce that ?(g) = ?%9) + gl~g,a)=g(g,b), and x, =X -
Thus in this case, (7.18) follows immediately from (7.I5) a;a
(7.17).

Let b be arbitrary. For some N , b + NEO has positive
coefficients, where QO =1z 5b' Thus (7.18) is true for

b+ Nb, . Since T(b) + b,) = (b)) T(b,) (mod @) and

5)
gly,by +by) = gl~f/b)) glg,by) this completes the proof.
Remark 7.19. (a) Part (b) of the theorem determines T (ub)
(up to multiplication by a rational number) starting from

r(pb) .

(b) Conjecture 8.11 of Deligne [7] is a special case of part
(a) of the above theorem. The more precise form of the
conjecture, Deligne [7, 8.13], can be proved by a modification

of the above methods.

Final Note. The original seminar of Deligne comprised fifteen
lectures, given between 29/10/78 and 15/5/79. The first

six sections of these notes are based on the first eight lectures
of the seminar, and the final section on the last two lectures.
The remaining five lectures (which the writer of these notes

was unable to attend) were on the following topics:
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(6/3/79) review of the proof that Hodge cycles on abelian
varieties are absolutely Hodge: discussion of the expected
action of the Frobenius endomorphism on the image of an
absolute Hodge cycle in crystalline cohomology:

(13/3/79) definition of the category of motives using absolute
Hodge cycles; semisimplicity of the category: existence of

the motivic Galois group G ;

(20/3/79) fibre functors in terms of torsors; the motives of
Fermat hypersurfaces and K 3-surfaces are contained in the
category generated by abelian varieties;

(27/3/79) Artin motives; the exact sequence
1+6°+6 gal(@/@) +~ 1 ;

identification of G° with the Serre group, and description
of the G°-torsor = l(1) ;
(3/4/79) action of Gal(@/@) on G° ; study of G ® 00 7
Hasse principle for Hl(Q,GO) .
Most of the material in these five lectures is contained in
the remaining articles of this volume (especially 1IV).

The writer of these notes is indebted to P. Deligne and
A. Ogus for their criticisms of the first draft of the notes

and to Ogus for his notes on which the final section is largely

based.
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II TANNAKIAN CATEGORIES
by

P. Deligne and J. S. Milne

Introduction

1. Tensor categories

2. Neutral Tannakian categories

3. Fibre functors; the general notion of a Tannakian category
4, Polarizations

5. Graded Tannakian categories

6. Motives for absolute Hodge cycles

Appendix: Terminology from non-abelian cohomology

References.

Introduction:

In the first section it is shown how to introduce on an
abstract category operations of tensor products and duals having
properties similar to the familiar operations on the category
Vec, of finite-dimensional vector spaces over a field k . What
complicates this is the necessity of including enough constraints
so that, whenever an obvious isomorphism (e.g.,

UB (Ve W = (V& U 8W exists in Vec, , a unique isomorphism
is constrained to exist also in the abstract setting.

The next section studies the category ngk(G) of finite-
dimensional representations of an affine group scheme G over k
and demonstrates necessary and sufficient conditions for a category
C with a tensor product to be isomorphic to gggk(G) for G ;:

such a category C is then called a neutral Tannakian category.

104
125
149
16l
186
196
220

227
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A fibre functor on a Tannakian category C with values
in a field k'Dk 1is an exact k-linear functor C » vec, ,
that commutes with tensor products. For example, the forgetful
functor is a fibre functor on Eggk(G] . In the third section it
is shown that fibre functors on Rep, (G) are in one-to-one correspon-
dence with the torsors of G . Also, the notion of a (non-
neutral) Tannakian category as introduced.

The fourth section studies the notion of a polarization
(compatible families of sesquilinear forms having certain
positivity properties) on a Tannakian category, and the fifth
studies the notion of a graded Tannakian category.

In the sixth section, motives are defined using absolute
Hodge cycles, and the related motivic Galois groups discussed.

In an appendix, some terminology from non-abelian cohomology is
reviewed.

We note that the introduction of Saavedra [1] is an excellent
summary of Tannakian categories, except that two changes are
necessary: Théoréme 3 is, unfortunately, only a conjecture; in
Théor&me 4 the requirement that G be abelian or connected can

be dropped.

Notations: Functors between additive categories are assumed to
be additive. In general, rings are commutative with 1 except
in §2. A morphism of functors is also called a functorial or
natural morphism. A strictly full subcategory is a full sub-
category containing with any X , all objects isomorphic to X .

The empty set is denoted by ¢ .
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Our notations agree with those of saavedra [l1] except that
we have made some simplifications: What would be called a
®-widget ACU by Saavedra, here becomes a tensor widget, and

oL becomes Hom8 .

Hom
Vec,: Category of finite-dimensional vector spaces over k ;

Regk(G): Category of finite-dimensional representation of G
over k ;

Modp: Category of finitely generated R-modules;
ProjR: Category of finitely generated projective R-modules;

Set: Category of sets
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§1. Tensor categories

Let C be a category and

® CxC~>C, (X,¥) X8 Y

is a functorial

a functor. An associativity constraint for (C,®)
isomorphism
¢X,Y,Z: X8 (Y® z) — (X0Y) 812

such that, for all objects X,Y,%Z,T, the diagram

X ® (v8(z8T)) -2+ (xey) ® (z8T) -2+ ((x8Y)82) ® T

ll&d) Idn@l (1.0.1)
¢ > (X8(Y8Z)) ® T

X 8 ((Y8Z)8T)

is commutative (this is the pentagon axiom). Here, as in sub-

sequent diagrams, we have omitted the obvious subscripts on the

at top-left is ¢X v 78T ° A
r 4

maps; for example, the ¢
is a functorial isomorphism

commutativity constraint for (C,®)

X®Y —— Y ®X

¥y, vt

X,Yle'X ° wX,Y = 1dX®Y: X®Y+>X®Y.

such that, for all objects
An associativity constraint ¢ and a commutativity constraint
are compatible if, for all objects X,Y,Z, the diagram

P
Y. 76 (x8Y)

x ® (vezj —P+ (xeY) & z

¢ (1.0.2)

19y

b, (xez) @ ¥ ¥8L (z8x) o ¥

X & (z8Y)
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is commutative (hexagon axiom). A pair (U,u) comprising an
object U of C and an isomorphism u: U+ U ® U is an

identity object of (C,8) if X +—= U® X: C > C 1is an

equivalence of categories.

Definition 1.1. A system (C,®,¢,¥y) , in which ¢ and ¢ are
compatible associativity and commutativity constraints, is a

tensor category if it has an identity object.

Example 1.2. The category gggR of finitely generated modules
over a commutative ring R becomes a tensor category with the
usual tensor product and the obvious constraints. (If one
perversely takes ¢ to be the negative of the obvious isomorphism,
then the pentagon (1.0.1) fails to commute by a sign.) A pair
(U,uo) comprising a free R-module U of rank 1 and a basis
element u determines an identity object (U,u) of MQQR —_

0

take U to be the unique isomorphism U + U & U mapping u, to

u, ® u, . Every identity element is of this form.

(For other examples, see the end of this section.)

Proposition 1.3. Let (U,u) be an identity object of the tensor
category (C,8).

(a) There exists a unique functorial isomorphism

Lt X —» U®X
such that EU is u and the diagrams
xey X ue (xey) xey 8L, (uex) ey
|| l¢ 1182 l\pel
xeyv 8L, (uex) e ¥ x @ (uey) -t (xeu) ® Y

are commutative.



106

(b) If (U',u') is a second identity object of (C,8)

then there is a unique isomorphism a: U =4 U making

v 2 +uev

s Jaea

v B,y e Ut

commute

Proof (a) We confine ourselves to defining ZX . (See Saavedra
[1,12.2.5.1,2.4.1] for details.) As X +—= U ® X 1is an
equivalence of categories, it suffices to define

18 Ex: U® X~ U ®(UBX); this we take to be
uel -1
vex -2, (yey) 8 x 2o U e (UBK) .

y ¥ L
(b) The map U —= U'®U — UB®U' —— U' has

the required properties.

I

X by x°tx ? X > X®U has

analogous properties to lx . We shall often use (l,e) to

denote a (the) identity object of (C,®8).

The functorial isomorphism r

Remark 1.4. Our notion of a tensor category is the same as
that of a "®-catégorie AC unifére" in (Saavedra [l]) and,
because of (1.3), is essentially the same as the notion of a
"®-catégorie ACU" defined in (Saavedra [1, I.2.4.1]) (cf.

Saavedra [1,I.2.4.3]).

Extending ®

Let ¢ be an associativity constraint for (C,8). Any

functor g? + C defined by repeated application of ® is called
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an iterate of ® . If F,F': c" =~ C are iterates of ® , then

it is possible to construct an isomorphism of functors

T: F —— F' out of ¢ and ¢_l . The significance of the

pentagon axiom is that it implies that 1 1is unique: any two

iterates of ® to c" are isomorphic by a unique isomorphism

1

of functors constructed out of ¢ and ¢ (MacLane [1],

[2,VII.2]). In other words, there is an essentially unique
n

way of extending ® to a functor & : gﬁ -+ C when n> 1.
i=1

Similarly, if (C,®) is a tensor category, then it is possible

to extend ® in essentially one way to a functor 9 : QI + C

ier
where I 1is any finite set: the tensor product of any finite

family of objects of C is well-defined up to a unique isomor-

phism (MacLane [l]). We can make this more precise.

Proposition 1.5. The tensor structure on a tensor category
(C,®) can be extended as follows. For each finite set I there
is to be a functor
@:(_:I’*gr
ier
and for each map a: I +~ J of finite sets there is to be a
functorial isomorphism
x(@): ® X, —— 8 ( & X;)
ier jeg iwj
satisfying the following conditions:

(a) 1f I consists of a single element, then ® is
ieI
the identity functor X +—— X ; if o is a map between single-

element sets, then X(a) is the identity automorphism of the

identity functor:
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[+

8

(b) the isomorphisms defined by maps I — J — K

give rise to a commutative diagram

8 X. —xl & (& X,)
jer 1t jes  irj
X (Ba) x(B)
® (x(a]Ik))
® ( 3 Xi) -+ ® ( ® ( © Xi))
keK i~k k€K Pk ik 3
-1
where I, = (Ba) “(k) .
Proof: Omitted.

By ( ® ,x) being an extension of the tensor structure on

iel
C we mean that ® X. =X
= . i
ieT
isomorphisms X ® (¥®z) — (X®Y) € Z and X ® Y —

1 ® X

induced by X are equal to ¢ and ¥ respectively.
automatic that (& X ,x(® ~ {1,2})) 1is an identity obj
®

that x({2} ©— {1,2}) is L,: X~> 1@ X . If (8,
. ier
such extension, then

there is a unique system of isomorphisms ® X. > o'
. i .
iel iex

patible with x and x' and such that, when I = {i}

isomorphism is idX .
i

, vhen I = {1,2} and that the

Y ® X
It is
ect and

x') 1is a second

. com-
Xl

, the

When a tensor category (C,8) is given, we shall always

assume that an extension as in (1.5) has been made. (W

e could,

in fact, have defined a tensor category to be a system as in (1.5).)
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Invertible objects

Let (C,®8) be a tensor category. An object L of C is
invertible if X +—> L ® X: C » C is an equivalence of cate-
gories. Thus, if L is invertible, there exists an L' such

that L ® L' = 1; the converse assertion is also true. An

inverse of L is a pair (L_1,6) where 6: 5] X Za1,
ie{+} -
X, =L, X_ = ™! . Note that this definition is symmetric:
R . -1 -
(L,6) 4is an inverse of L . If (Ll,dl) and (L2,62)

are both inverses of L , then there is a unique isomorphism

a: L, —== L, such that & +L®L,~»>1.

1 2 1 1 2

An object L of ModR is invertible if and only if it

= 520 (1®a): L & L

is projective of rank 1 . (Saavedra [1,0.2.2.2]).

Internal Hom

Let (C,®) be a tensor category.

Definition 1.6. If the functor T +—+ Hom(T®X,Y¥): C°+ Set
is representable, then we denote by Hom(X,Y) the representing

object and by e Hom(X,Y) ® X > Y the morphism correspond-

Ve vt
ing to ldHom(X,Y) .
Thus, to a g there corresponds a unique f such that

ev o (£®id) = g:

T T @& X

' g
' f 'f @ id (1.6.1)
+

Hom(X,Y) Hom(X,Y) ©® X & o ¢y

P
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For example, in ModR , Hom(X,Y) = HomR(X,Y) regarded as an
R-module, and ev is f 8 x t+— f(x), whence its name.
Assume that in (C,®), Hom(X,Y) exists for every pair

(X,Y) . Then there is a composition map

Hom(X,Y) ® Hom(Y,Z) - Hom(X,Z) (1.6.2)

(corresponding to Hom(X,Y) ® Hom(Y,Z) @ X £V, yom(Y,2) 8 Y =+ 3)

and an isomorphism

Hom (% ,Hom (X,Y)) —— Hom(%®X,Y) (1.6.3)

(inducing, for any object T,
Hom (T, Hom (%, Hom (X,Y))) — Hom(T®Z,Hom(X,Y)) —= Hom(T®Z®X,Y)

—Z=+ Hom (T ,Hom (28X,Y)))
Note that
Hom(l,Hom(X,Y)) = Hom(1l®X,Y) = Hom (X,Y) (1.6.4)

The dual X' of an object X is defined to be Hom(X,1l) .

There is therefore a map evy: XV ® X » 1 inducing a functorial

isomorphism
Hom(T,Xx') -2~ Hom(T®X,1) (1.6.5)

The map X +— XV can be made into a contravariant functor: to

f: X > Y we associate the unique map tf: YV d XV rendering

commutative
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&
vVVex -£81d , Veyx

idef evy (1.6.6)

ev
YV@Y —Y*

=

For example, in MQQR , XV = HomR(X,R) and °f is determined

by the equation <tf(y),x >,=<y,f(x)>,, v € Yv, X € X , where
q X Y

we have written < , >X and < ,>Y for evx and evY .

If f is an isomorphism, we let fv = (tf)-l: XV - YV ; SO
that

v v
evy ° (£'8f) = eve: X' @ X > 1. (1.6.7)
. Vo, ' ) v

(E.g. in ModR, <fE (x'),E(x) >y = <% ,x>x, x' € X ,xeX.)

Let ix: X - XVV be the map corresponding in (1.6.5) to
evy o yr X ® xV 1 . 1If iX is an isomorphism then X is said to

1 1

be reflexive. If X has an inverse (X —,8: X ~ ® X :iﬂ*l)

then X 1is reflexive and & determines an isomorphism
x 1 Zex’ as in (1.6.1).
For any finite families of objects (Xi)ieI and (Yi)ieI

there is a morphism

® Hom(X ,Y ) - Hom( ® Xl, ] Yi) (1.6.8)
iel iel ier

corresponding in (l.6.1) to

(9 Hom(x ,Y )) & (© Xy ) —— 8 [nom(x Y )®X ) Bev ® Y. .

iel ier ier jer *
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In particular, there are morphisms

® xi — (® xi)v (1.6.9)
ier ier
and
v
x' ® Y — Hom(X,Y) (1.6.10)

obtained respectively by taking Yi =1 all i, and
X=X X =L1=Y. Y

Rigid tensor categories

Definition 1.7. A tensor category (C,®) is rigid if Hom(X,Y)
exists for all objects X and Y , the maps (1.6.8) are
isomorphisms for all finite families of objects, and all
objects of C are reflexive.

In fact, it suffices to require that the maps (1.6.8)

be isomorphisms in the special case that I = {1,2} .
Let (C,®) be a rigid tensor category. The functor

0

L) c- — C

is an equivalence of categories because its composite with
itself is isomorphic to the identity functor. (It is even
an equivalence of tensor categories in the sense defined below.—note

that C° has an obvious tensor structure for which @X; = (@Xi)?)

In particular

€ +— Yf:  Hom(x,¥) — Hom(¥',x") (1.7.1)

is an isomorphism. There is also a canonical isomorphism
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Hom (X,¥) —-*> Hom(y¥,xV) , (1.7.2)

v Vv

_l_::_'ili Y =

namely Hom(X,Y) <

va [ XV —ngLLQ Hom(YV,Xv)

x' 8 Y =X

For any object X of C , there is a morphism

Hom(X,X) —=0:10 Vg yx &, ,

On applying the functor Hom(l,-) to this we obtain (see 1.6.4))

a morphism
TrX: End (X) + End(l) (1.7.3)

called the trace morphism. The rank, rk(X), of X is
defined to be Trx(idx). There are the formulas (Saavedra

[1,I 5.1.4]):

] - 1
Try o x.(f ® f') = Trx(f)Trx,(f )
(1.7.4)
Trl(f)= £
In particular,
rk(X ® X') = rk(X)rk(X'")
(1L.7.5)
rk(l) = idl .
Tensor functors
Let (C,8) and (C',8') be tensor categories.

Definition 1.8. A tensor functor (C,®) + (C',®') is a pair

(F,c}) comprising a functor F: C + C' and a functorial

isomorphism ¢ F(X) ® F(Y) = F(X ® Y) with the

X, Y’

properties:




114

(a) for all X,Y¥,2 € ob(C), the diagram

FX & (Fyerz) 9%S. px o F(¥8z) -S> F(X8(Y8Z))

| o | o

(Fxory) 8 Fz <239, p(xev) & Fz -S> F((x8Y)87)

is commutative:
(b) for all X,Y € ob(C), the diagram

FX ® FY -S> F(X8Y)
v |7 )

FY ® FX ——> F(Y®X)

is commutative;

(c) if (U,u) is an identity object of C then

(F(U),F(u)) is an identity object of C' .

In (Saavedra [1,I4.2.4]) a tensor functor is called a

"®-foncteur ACU".
Let (F,c) be a tensor functor C + C' . The conditions
(a), (b), (c) imply that, for any finite family (xi)ieI of
objects of C , ¢ gives rise to a well-defined isomorphism
c: ® F(X,) —> F(® X.);
ier * jer *

moreover, for any map a&: I -+ J , the diagram
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c
2 F(X,) ~ F(® X;)
iel ielx
] x (@ i I Flx(e))
o (& F(X.)) > & (F( ® X)) — F(® (8 X))
. . . 1 ~ . : . 1 c@J if‘;'
jeJ ir>j jed ik3J J J
is commutative. 1In particular, (F,c) maps inverse objects to

inverse objects. Also, the morphism
F(ev): F(Hom(X,Y)) ® F(X) - F(Y) gives rise to morphisms

F(Hom(X,Y)) + Hom(FX,FY) and Fg: rh) - F(X)v,

F X

X,v*

Proposition 1.9. Let (F,c): C + C' be a tensor functor. If

C and C' are rigid, then FX v: F(Hom(X,Y)) -+ Hom(FX,FY)
2 ~ s zom zonm

is an isomorphism for all X,Y € ob(C) .

Proof: It suffices to show that F preserves duality, but this

is obvious from the following characterization of the dual of X :

it is a pair (Y,Y¥ @ X &% 1) , for which there exists
e:1>X6Y such that X = 1 & x 2195 (xev)ex-xe(vex) 19%eVy yx ,

and the same map with X and Y interchanged, are identity maps.

Definition 1.10. A tensor functor (F,c) : C -+ C' 1is a tensor

equivalence (or an equivalence of tensor categories)if F : C + C'

-

is an equivalence of categories.

The definition is justified by the following proposition.
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Proposition 1.11. Let (F,c): C ~ C' be a tensor equivalence:;

then there is a tensor functor (F',c'): C' > C and

isomorphisms of functors F'oF — idC and Fo F' => idc.

commuting with tensor products (i.e. isomorphisms of tensor functors;

see below).
Proof: Saavedra [1, I4.4].

A tensor functor F: C + C' of rigid tensor categories
induces a morphism F: End(l) - End(l') . The following

formulas hold:

F(£) F(Trx(f))

TrF(X)

rk (F (X))

F(rk (X))

Morphisms of tensor functors

Definition 1.12. Let (F,c) and (G,d) be tensor functors

C +~ C' ; a morphism of tensor functors (F,c) —> (G,d) is

a morphism of functors A: F + G such that, for all finite

families (X,) of objects in C , the diagram

jex
® F(X;) L5 F(e X;)
ie1 ier
1 oL, l)@xl (1.12.1)
1 1
® G(X,) <. G(® x;)
ier jie1

is commutative.

In fact, it suffices to require that the diagram (1.12.1)
be commutative when I 1is {1,2} or the empty set. For the

empty set, (1.12.1) becomes
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1" —— F(l)

l 1 : (1.12.2)

11— e

in which the horizontal maps are the unique isomorphisms
compatible with the structures of 1' , F(l), and G(1l) as
identity objects of C' . In particular, when (1.12.2)
commutes, Al is an isomorphism.

We wri;e Hom®(F,F') for the set of morphisms of tensor

functors (F,c) > (G,d).

Proposition 1.13. Let (F,c) and (G,d) be tensor functors

C+Cc' . If C and C' are rigid, then any morphism of tensor

functors A: F + G 1is an isomorphism.

Proof: The morphism u: G =+ F , making the diagrams

ALV

Ft) —2 5 (b
= . z
l (u,) l
Fix)Y —%5 eV

commutative for all X € ob(C) , is an inverse for A .
For any field k and k-algebra R , there is a canonical
tensor functor ¢R: Veck + ModR , Vi— V @k R . If (F,c)

and (G,d) are tehsor functors C + Vec then we define

k ’
Homa(F,G) to be the functor of k-algebras such that

_Hime (F,G) (R) = Hom®(¢R °oF.pp°G)

(1.13.1)
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Tensor subcategories

Definition 1.14. Let C' be a strictly full subcategory of a

tensor category C . We say C' is a tensor subcategory of c

if it is closed under the formation of finite tensor products
(equivalently, if it contains an identity object of C and if
Xy ] X, € ob(C') whenever Xy /X, € ob(C')) . A tensor subcategory

of rigid tensor category is said to be a rigid tensor subcategory

if it contains XV whenever it contains X .
A tensor subcategory becomes a tensor category under the
induced tensor structure, and similarly for rigid tensor sub-

categories.

When (C,®) is abelian (see below), then we say that a

family of objects of C is a tensor generating family

(X1) jer

for C if every object of C is isomorphic to a subquotient

of P(Xi) . P(ti) € ni[ti] where in P(Xi) multiplication

iel '

is interpreted as ©® and addition as & .

Abelian tensor categories; End (1)

Our convention, that functors between additive categories

are to be additive, forces the following definition,

Defintion 1.15. An additive (resp. abelian) tensor category is a

tensor category (C,8) such that C 1is an additive (resp. abelian)

category and @ is a bi-additive functor.
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1f (C,8) is such a category, then R = End(l) is a
ring which acts, via lx : X+ 108 X, on each object X . The
action of R on X commutes with endomorphisms of X and
so, in particular, R is commutative. The category C is

R-linear and ® is R-bilinear. When C is rigid, the trace

morphism is an R-linear map Tr: End(X) = R .

Proposition 1.16. Let (C,®8) be a rigid tensor category. If

C is abelian then ® is bi-additive and commutes with direct

and inverse limits in each factor; in particular it is exact.

Proof: The functor X P X ® Y has a right adjoint, namely

Z b Hom(Y,Z), and therefore commutes with divect limits and is
additive. By considering the opposite category C° , one deduces
that it also commutes with inverse limits. (In fact, 2 |~ Hom(Y,2Z)

is also a left adjoint for X|— X 8 Y).

Proposition 1.17. Let (C,8) be a rigid abelian tensor category.

L 1
If U is a subobject of 1 , then 1 =U® U where U = ker(l;*Uv).

Consequently 1 is a simple object if End(l) is a field.

Proof: Let V = coker (U + 1) . On tensoring 0 > U+ 1>V >0

with itself, we obtain an exact commulative diagram




ue v > Vv > Ve v
/57
0.~
el
v~ > 1 > v
_ 7
o -
~
teuy €35 UZ—> VauU,

from which it follows that U ® V=0 and that U ® U =0 as
subobject of 168 1 =1,

For any X , the largest subobject Y of X such that
U® Y =0 is also the largest subobject for which the map
Ue Y Y (=(uss 1) ® Y) is zero or, equivalently, such that
<~ Y ® UV is zero; hence Y = ker(X-»X ®-UV) =X ® U'l . On
applying this remark with X = V , and using that U & V = o,
we. find that V & Ul = V ; on applying it with X = U , we find

1
U®U =0. From

1 L 1
0+UBU +10U +VeUu »0

1 . L
we deduce that U 5 V , and that 1 =U0U@& U .

Remark 1.18. The proposition shows that there is a one-to-one
correspondence between subobjects of 1 and idempotents in
End(l) . Such an idempotent e determines a decomposition of
tensor categories C = C' x C" in which ob(C') is the set of

objects of C on which e acts as the identity map.
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Proposition 1.19. Let C and C' be rigid abelian tensor categories
and assume that End(l) is a field and that 1' # 0 , where 1 and
l' are identity objects in C and C' . Then any exact tensor

functor F : C + C' 1is faithful.

Proof: The criterion in C ,
X#0& X0 % + 1 surjective

is respected by F .

A criterion to be a rigid tensor category

Proposition 1.20. Let C be a k-linear abelian category,
where k is a field, and let ®: C x C > C be a k-bilinear
functor. Suppose there are given a faithful exact k-linear
functor F: C + Vec, , a functorial isomorphism

[} X ® (¥Y®2) » (X8Y) ® Zz , and a functorial isomorphism

X,Y,z°

wx y? X8 Y +Y®X with the following properties:
I

(a) Fo® ®oF X F ;

I

(b) F(¢ ) is the usual associativity isomorphism

X,Y,2
in Veck H

(c) F(wle) is the usual commutativity isomorphism in
vee,

(d) thereexistsa U € ob(C) such that k » End(U) is an
isomorphism and F(U) has dimension 1

(e) if F(L) has dimension 1 , then there exists an
object ™1 in C such that L @ 'ty

Then (C,8,¢,y) is a rigid abelian tensor category.
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Proof: It is not difficult to prove this directly — essentially
one only has to show that the object U of (d) is an identity
object and that (e) is sufficient to show that C is rigid —

but we shall indicate a more elegant approach in (2.18) below.

Examples

(1.21) Veg, , for k a field, is rigid abelian tensor
category and End(l) = k . All of the above definitions take
on a familiar meaning when applied to yggk . For example,
Tr: End(X) - k is the usual trace map.

(1.22) gggR is an abelian tensor category and End(l) = R .
In general it will not be rigid because not all R-modules will be
reflexive.

(1.23) The category Projp of projective modules of
finite type over a commutative ring R 1is a rigid additive tensor
category and End(l) = R . The rigidity follows easily from
considering the objects of EEEiR as locally-free modules of
finite rank on spec(R) .

(l.24) Let G be an affine group scheme over a field
k and let BEEk(G) be the category of finite-dimensional
representations of G over k . Thus an object of BEEK(G)
consists of a finite-dimensional vector space V over k and a
homomorphism g t— gy : G~ GL(V) of affine group schemes over
k . Then gggk(G) is a rigid abelian tensor category and
End(l) = k . These categories, and more generally the categories
of representations of affine gerbs (see §3), are the main topic

of study of this article.
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(1.25) (Vector spaces graded by Z/2Z) . Let C be the
category whose objects are pairs (VO,Vl) of finite dimensional
vector spaces over a field k . We give C the tensor structure
whose commutativity constraint is determined by the Koszul rule

of signs, i.e., that defined by the isomorphisms
vowl+ (- wev:view »uw e vt.

Then C is a rigid abelian tensor category and End(l)=k , but it
is not of the form Repk(G) for any G Dbecause rk(V°,V1) =
dim(ve) - dim(vl) may not be positive.

(1.26) The rigid additive tensor category freely generated

by an object T 1is a pair (C,T) comprising a rigid additive
tensor category C and that End(l) = Z [t] and an object T

having the property that

is an equivalence of categories for all rigid additive tensor
categories C' (t will turn out to be the rank of T). We show
how to construct such a pair (C,T) — clearly it is unique up to
a unique equivalence of tensor categories preserving T .

Let V be a free module of finite rank over a commutative

a,b

ring k and let T (V) Dbe the space V®a ] ¥®b of tensors

with covariant degree a and contravariant degree b . A map

£ : 72 Py 5 pCrd

Tb+c,a+d

(V) can be identified with a tensor "f" in

Tb+c,a+d

(V) . When a+d = b+c, (V) contains a special
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element, namely the (a+d)th tensor power of "id" € Tl'l(v) .
and other elements can be obtained by allowing an element of the
symmetric group Sa+d to permute the contravariant components of

this special element. We have therefore a map

c,d

T

e : S a,b'

> Hom({T ) (when a+d = b+c) .

a+d

a,b’Tc,d)

The induced map k[sa+d] + Hom (T is injective provided

rk(V) > a+d . One checks that the composite of two such maps

c,d

e(o) Ta'b(V) + T (V) and e(1) : Tc’d(v) > Te'f(v) is given

by a universal formula

e(t)ee(o) = (rk VY e(p) (1.26.1)

with p and N depending only on a,b,c,d,e,f,o, and T

.

We define C' to be the category having as objects symbols

a,b a,bch,d)

T (a,b, € W) , and for which Hom(T is the free

72 [t]-module with basis Sa+d if a+d = b+c and is zero otherwise.

Composition of morphisms is defined to be % [t]-bilinear and to
agree on basis elements with the universal formula (1.26.1) with
rk V replaced by the inderterminate t . The associativity law
holds for this composition because it does whenever t 1is replaced
by a large enough positive integer (it becomes the associativity

law in a category of modules). Tensor products are defined by

Ta,b c,d _ Ta+d,b+d

8T and by an obvious rule for morphisms.

We define T to be Tl’0

The category C is deduced from C' by formally adjoining
direct sums of objects. 1Its universality follows from the fact

that the formula (1.26.1) holds in any rigid additive category.
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(L.27) (ggt) . Let n be an integer, and use
tb—n : Z [t] » € to extend the scalars in the above example
from Z [t] to € . If V is an n-dimensional complex vector

space, and if a+d <n, then

a,b

Hom (T , o¢/d

) ® T - Hom )(Ta’b(V) , 1% w))

ZZ [t] GL(V

is an isomorphism. For any sum T' of Ta’bs and large enough

integexr n , End(T') @ is therefore a product of matrix

z [£)°
algebras. This implies that End(T') & 7 [t]m(t) is a semisimple
algebra.

After extending the scalars in € to @(t) (i.e., replacing
Hom(T',T") with Hom(T',T") @ zz[t]m(t)) and passing to the
pseudo-abelian (Karoubian) envelope (i.e., formally adjoining
images of idempotents), we obtain a semisimple rigid abelian tensor
category GLy . The rank of T in EEt is t ¢ W and so,

although End(l) = Q(t) is a field, GL, is not of the form

Repk(G) for any group scheme (or gerb) G

§2. Neutral Tannakian categories

Throughout this section, k will be a field.

Affine group schemes

Let G = spec A be an affine group scheme over k . The
maps mult: G x G - G , identity {1} - G , inverse: G + G

induce maps of k-algebras
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Az A > A @k A, e: A -+ k ., S: A+ A

(the comultiplication, coidentity, and coinversemaps) such that

>

(id ® A)A= (A ® id)A: A+ A © A > A®A®A

(coassociativity axiom),

id = (e®id)A: A - A ® A - k ® A = A (coidentity axiom), and

aLsnean (5034 Ay _ 4 -E

> k <> A) (coinverse axiom).

We define a bialgebra over k to be a k-algebra A together
with maps A, €, and S satisfying the three axioms. (This

terminology is not standard).

Proposition 2.1. The functor A > spec A defines an
equivalence between the category of k-bialgebras and the
category of affine group schemes over k .

Proof: Obvious.

If A is finitely generated (as a k—-algebra) we say that

G is algebraic or that it is an algebraic group.

We define a coalgebra over k to be a vector space C over
k together with k-linearmaps A: C » C @k C and g: C > k
satisfying the coassociativity and coidentity axioms.
A comodule over C is a vector space V over k together with a
k-linear map p: V +V ® C such that (id®e)p: V+VBC>+>VOk=V
is the identity map and (id®A)p = (p®id)p ¢ V>V ® C & C .

For example, A defines an C-comodule structure on C .

Proposition 2.2. Let G = spec A be an affine group scheme over
k and let V be a vector space over k . There is a canonical

one-to-one correspondence between the A-comodule structures on V

and the linear representations of G on V .
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Proof. Let G * GL(V) be a representation. The element

id € Mor(G,G) = G(A) maps to an element of GL(V % A) whose

restriction to V =V & k&€ V ® A 1is a comodule structure

on V. Conversely, a comodule structure p on V determines
a representation of G on V such that, for R a k-algebra

and g € G(R), the restriction of 9y* VO R>VE®R to

V=VekCVe®R is
(ideg)p: V> V® A+ VBR.

Proposition 2.3. Let C be a k-coalgebra and (V,p) a comodule
over C. Any finite subset of V 1is contained in a sub-comodule

of V having finite dimension over k .

Proof: Let {ai} be a basis for C over k . If v is in
the finite subset, write p(v) = § v, @ a; (finite sum). The

k-space generated by the v and the vy is a sub-comodule.

Corollary 2.4. Any k-rational representation of an affine group scheme

is a directed union of finite-dimensional subrepresentations Vi .
Proof: Combine (2.2) and (2.3) .

Corollary 2.5. An affine group scheme G is algebraic if and

only if it has a faithful finite-dimensional representation over k .

Proof: The sufficiency is obvious. For the necessity, let V
be the regular representation of G , and write V =UVi with

the Vi as in (2.4). Then Q Rer (G - GL(Vi)) = {1} because
i

V is a faithful representation, and it follows that
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Ker (G + GL(V, )) = {1} for some i, because G is
0
Noetherian as a topological space.
Proposition 2.6. Let A be a k-bialgebra. Any finite subset

of A is contained in a sub-bialgebra that is finitely

generated as an algebra over k .

Proof: According to (2.3), the finite subset is contained in
a finite-dimensional subspace V of A such that A(V)C V@A .

Let {v,} be a basis for V and let A(Vy) = Iv;® ajy - The

subalgebra k[vj,aij,Svj,Saij] of A is a sub-bialgebra.

(See Waterhouse [1,3.3]).

Corollary 2.7. Any affine group scheme G over k is a

directed inverse limit G = lim G; of affine algebraic groups
“

over k in which the transition maps G, * Gj , i <3, are

surjective.

Proof: The functor spec transforms a direct limit A =U A, = lim A,
>

into an inverse limit G = lim Gi . The transition map Gi « Gj
is surjective because Aj is faithfully flat over its subalgebra
Ai (Waterhouse [1, 14.1]).

The converse to (2.7) is also true; in fact the inverse limit

of any family of affine group schemes is again an affine group

scheme.

Determining a group scheme from its representations.

Let G be an affine group scheme over k and let w ,

or mG , be the forgetful functor ReEk(G) -+ Veck . For R a
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2 , cqs
k-algebra, Aut” (w)(R) consists of families (AX), X € ob(Rep](G)),

where Ay is an R-linear automorphism of X ® R such that
AX & X. = AX ® lx , Al is the identity map (on R) , and
1 2 1 2 =
AY ° (a®l) = (a®l) OKX: X®R>Y®R

for all G-equivariant k-linear maps a: X + Y (see 1.12).

Clearly any g € G(R) defines an element of Aute(w)(R) .

Proposition 2.8. The natural map G =+ Aut®(w) is an isomorphism

of functors of k-algebras.

Proof: Let X € Rep, (G) and let C, be the strictly full

X
subcategory of ngk(G) of objects iscomorphic to a subguotient
of P(X,XV) , P e IN[t,s] (cf. the discussion following (1.14).
The map A +—> ), identifies QEE?(mIQX)(R) with a subgroup

of GL(X ® R). Let GX be the image of G in GL(X):; it is

a closed algebraic subgroup of G , and clearly
Gy (R) ©aut®(w|c,) (R) C GL(X 8 R) .

If ve ob(Cy) and t eV is fixed by G , then
a

a r— at: k —— V is G-equivariant, and so Av(t @& 1) =
(@ ® 1)A;(1) = £ ® 1 . Now (I.3.2) shows that G, = aut®(wc,)
If _X' = X ® Y for some representation Y of G ,
then gx C:gx, . and there is a comnutative diagram
Gy SN ég;e(m|gx.)
¥ v

X Q
—_— 5
Gy Aut (w|CX)
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It is clear from (2.5) and (2.7) that G = lim GX' , and so,
on passing to the inverse limit over these diagrams, we obtain
an isomorphism G = éEE?(“) .
A homomgrphism f: G + G' defines a functor
wf: Rep (G') > Rep, (), nmamely (G’ > GL(V)) F> (G =»G' » GL(V)),

L]
such that wG °mf = wG

Corollary 2.9. Let G and G' be affine group schemes over k
and let F: Egpk(G‘)»Reuk(G) be a tensor functor such that

1
w® °F = w® . Then there is a unique homcomorphism f: G -+ G'

such that F = wf .

Proof: For A € ég;®(mG)(R) , R a k-algebra, define

Fr(2) € aut®w®') (R) by the rule F*(h), The

= XF(X') .
proposition allows us to regard F* as a homomorphism G -+ G' ,

and clearly F — F* and £ r— wf are inverse maps.

Remark 2.10. Proposition 2.8 shows that G is determined by
the triple (Regk(G),S,mG) ; it can be shown that the coalgebra
of G is already determined by (ggpk(G),wG) (cf. the proof

of Theorem 2.11).

The main theorem

Theorem 2.11. Let C be a rigid abelian tensor category

such that k = End(l) , and let w: C » Vec be an exact faithful

k

k-linear tensor functor. Then,

(a) the functor Auta(m) of k-algebras is representable

by an affine group scheme G;
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(b) w defines an equivalence of tensor categories
C > Rep, (G) .

Proof: We first construct the coalgebra A of G without
using the tensor structure on C . The tensor structure then
enables us to define an algebra structure on A , and the
rigidity of C implies that spec A 1is a group scheme (rathér
than a monoid scheme). The following easy observation will
allow us to work initially with algebras rather than coalgebras:
for a finite-dimensional (not necessarily commutative) k-algebra

A and its dual coalgebra Av af Hom(A,k), the bijection

Hom(A ® .V, V) <—-— Hom(V,AV 8kV)

k

determines a one-to-one correspondence between the A-module
structures on avector space V and the Av—comodule structure
on V .

We begin with some constructions that are valid in any
k-linear abelian category C . For V a finite-dimensional
vector space over k and X and object of C , we define V @ X

to be the system ((xn)a’¢B a) where o runs through the

isomorphisms " = v , (Xn)a = x" df X ®...8 X (n copies), and

n 1

bg ot (XN > (xn)B is defined by B " oa € GL_(k) . Note that

¢Y:B °¢B.a = ¢Y,G . A morphism V& X+ T or T—+V®ZX,

where T € ob(C) , is a family of morphisms compatible with the
¢B o There is a canonical k-linear map V -+ Hom(X,V®X) under
’
v
which v € V maps to (X 2 (Xn)a) where wu is defined by

u—l(V) e x" . This map induces a functorial isomorphism
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Hom (V¥X,T) ——> Hom(V,Hom(X,T)), T € ob(C). Any k-linear functor
F: C » C' has the property that F(VeX) =V 8 F(X) . When C
is ZESK , V& X can be identified with the usual object.

For V € Ob(YEEk) and X € ob(C) , we define Hom(V,X)
to be Vv R X . If WV and Y € X , then the subobject of

Hom(V,X) mapping W into Y is defined to be
(Y:W) = Ker(Hom(V,X) » Hom(W,X/Y)) .

Lemma 2.12. Let C be a k-linear abelian category and
ws C + Veck a k-linear exact faithful functor. Then, for any

X € ob(C), the following two objects are equal:

(a) the largest subobject P of Hom(w(X),X) whose
image in ggg(w(x)n,xn) (embedded diagonally) is contained in
(¥: w(Y)) for all Y ¢ x" ;

(b) the smallest subobject P' of Hom(w(X),X) such that

the subspace w(P') of Hom(w(X),w(X)) contains id: w(X) » w(X).

Proof: Clearly w(X) = 0 implies End(X) = 0 , which implies
X=0. Thus if X CY and w(X) = w(Y) then X =Y , and it
follows that all objects of C are both Artinian and Noetherian.
The objects P and P' therefore obviously exist.
The functor w maps Hom(V,X) to Hom(V,w(X)) and

(Y:W) to (w(Y):W) for all W CV € ob(Vec,) and Y CX € ob(C).
It therefore maps P S£ A (Hom(w(X),X) 0 (Y:w(¥))) to

N (End (0 (X)) {(wY¥:wY)) . This means wP is the largest subring
of End(w(X)) stabilizing w(¥) for all Y cx™ . Hence

id € w(P) and P DP' .
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Let V be a finite-dimensional vector space over k
there is an obvious map Hom(w(X),X) > Hom(w(V8X),6V@X)
(inducing fr— 1 ® f£f: End(w(X)) » End(Vew(X)) and
w(P) C End(w (X)) stabilizes (Y) for all YCV® X . On
applying this remark to a Q C Hom{(w(X),X) = w(X)V ® X , we
find that w(P) , when acting by left multiplication on
End(w(X)), stablizes w(Q). Therefore, if w(Q) contains 1,

then w(P) c w(Q) , and PC Q ; this shows that P C P' .

Let PX ¢ Hom(w(X) ,X) be the subobject defined in (a)

(or (b)) of the lemma, and let A_ = w(PX); it is the largest

X
subalgebra of End(w(X)) stabilizing w(¥Y) for all Y c x" .

Let <X> be the strictly full subcategory of C such that
ob{(<X>) consists of the objects of C that are isomorphic

to subquotients of X" , n € N. Then w| <X>: <X> =+ Vec,
factors through Mod
Z:L’X

Lemma 2.13. Let w: g-rVeck be as in (2.12). Then w

defines an equivalence of categories <X> - ModA carrying
X

w| < X> into the forgetful functor. Moreover AX = End(w| <X>).

Proof: The right action f += foa of A on Hom({w(X) ,X)

X
stabilizes Py because obviously (Y:w(¥)) (w(Y):w(Y)) < (Y:w(¥)).
If M is an Ax—module we define
_ —
Py eAx M = Coker(Py ® A, @ M __ P, 8 M)

Then r..o(PX @Ax M) =w (Px) @AXM = AX @Ax M =M . Recall that
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P, ® M is a family (Y ) of objects of C with given
X “Ayg o c

compatible isomorphisms Ya -+ YB . If we choose one a ,

then w(Ya) ® M , which shows that & is essentially surjective.
A similar argument shows that <X> =+ ModA is full.
X

Clearly any element of A defines an endomorphism of

X
w| <X> . On the other hand an element A of End(w| <X>) is

determined by € End(y(X)); thus End(y(X)) O End(w|<:X>) 2 A

Ax X"

But Ax stabilizes w(Y) for all Y C x" , and so

End(w]| <X>) C Ay . This completes the proof of the lemma.

Let Bx = Ax . The remark at the start of the proof

allows us to restate (2.13) as follows: w defines an

equivalence
(<X>, wkX>) + ((;omodB ,forget)
X
where ComodE is the category of Bx—comodules of finite

X

dimension over k .
On passing to the inverse limit over X (cf. the proof of

{2.8)), we obtain the following result.

Proposition 2.14. Let (C,w) be as in (2.12) and iet
B = 1ljim End (w| <X >)V . Then w defines an equivalence of

categories C - ComodB carrying w into the forgetful functor.

Example 2.15. Let A be a finite-dimensional k-algebra and

let w be the forgetful functor ModA -+ Veck . For R
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a commutative k-algebra, let ¢R be the functor

R® -: Veck

End(¢R°w] , which we shall show to be an isomorphism by

-+ ModR . There is a canonical map ©: R @k A >

defining an inverse B8 . For A € End(¢R°w) , set B(A) = AA(l)
Clearly fa = id , and so we have to show af = id . For

M€ ob(ModA) , let My = w(M) . The A-module A ®k MO is

a direct sum of copies of A , and the additivity of X shows

that kA@MO = AA ® 1dMO . Themap a ® m > am: A 8k M0 + M

is A-linear, and hence

R®AG® MD —> R®M

b I

R®AG® MD —> RO®M
is commutative. Therefore AM(m) = AA(l)m = (aB(l])M(m) for
meROM.
In particular, A —> End(w) , and it follows that, if in

(2.13) we take C = Modz so that C =<A >, then the equivalence

of categories obtained is the identity functor.
Let B be a coalgebra over k and let w be the

forgetful functor ComodB + Vec The above discussion shows

K -
that B = lim End (w] <x>)" . We deduce, as in (2.9) , that

every functor Comod, -+ Comod., carrying the forgetful functor
D g=J

into the forgetful functor arises from a unique homomorphism

B » B' .
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Again let B be a coalyebra over k . A homomorphism

u: B @k B + B defines a functor

u -
[ I (.omodB X ComodB -+ ComodB

sending (X,¥) to X ®k Y with the B-comodule structure

px®pY 18u
X®Y —— X B®BRY®E — X0 Y®B.

Proposition 2.16. The map u +— ¢u defines a one-to-one
correspondence between the set of homomorphisms B @k B + B

and the set of functors ¢: Comod, X ComodB + Comod, such

that ¢ (X,Y) = X ek Y as k vector spaces. The natural
associativity and commutativity constraints on Vec, induce
similar contraints on (ComodE,¢u) if and only if the
multiplication defined by u on B 1is associative and commuta-
tive; there is an identity object in (ggmgg3,¢u) with
underlying vector space k if and only if B has an identity

element.

Proof: The pair (Comod, x Comody, w8w) , with (W ® w) (X8Y)
w(X) ® w(Y) (as a k vector space), satisfies the conditions of
(2.14), and 1lim End(uw8u| < (X,Y) > )Y = B ® B . Thus the first
statement of the proposition follows from (2.15). The remaining

statements are easy.

Let (C,w) and B be as in (2.14) except now assume that
C 1is a tensor category and w is a tensor functor. The

tensor structure on C induces a similar structure on
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ComodB and hence, because of (2.16) , the structure of an
associative commutative k-algebra with identity element on B .
Thus B lacks only a coinverse map S to be a bialgebra,

and G = spec B is an affine monoid scheme. Using (2.15) we
find that, for any k-algebra R, Emd(w) (R) 2£ End (¢ °w) =

(BX,R) = Hom (B,R) . An element

k-1in
(B,R) corresponds to an element of

lim Homy ;.

A€ Homy 444
End (w) (R) commuting with the tensor structure if and only if

A is a k-algebra homomorphism; thus Ende(w)(R) = Hom (B,R) = G(R).

k-alg
We have shown that if in the statement of (2.11) the rigidity
condition is omitted, then one can conclude that End®(m)

is representable by an affine monoid scheme G = spec B

and w defines an equivalence of tensor categories

c - ComodB = Regk(G). If we now assume that (C,8) is rigid,
then (1.13) shows that Ende(w) = Autg(m) , and the theorem

follows.

Remark 2.17. Let (C,w) be (Repk{G],wG) . On folliowing
through the proof of (2.11) in this case one recovers (2.8):

Aute(wG) is represented by G .

Remark 2.18. Let (C,8,¢,y,F) satisfy the conditions of
(1.20). Then (C,®,¢,¥) is obviously a tensor category,

and the proof of (2.11) shows that F defines an equivalence
of tensor categories C gggk(G) where G 1is an affine group

monoid representing Ende(w) . We can assume that C = Regk(G) .
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Let A €G(R) . If LC Regk(G) has dimension 1 , then

A R®L > R®L is invertible, as follows easily from the

1

L:

existence of a G-isomorphism L & L~ >k . It follows

that lx is invertible for any X € ob(ReEk(G)) because

det(xx) £ Adxx = Xpdy, where d =dim X , is invertible.

Hh

Definition 2.19. A neutral Tannakian category over Kk is a rigid

abelian k-linear tensor category C for which there exists an exact
faithful k-linear tensor functor w: C ~» Vec, . Any such
functor w® 1is said to be a fibre functor for C.

Thus (2.11) shows that any neutral Tannakian category is
equivalent (in possibly many different ways) to the category of

finite-dimensional representations of an affine group scheme.

Properties of G and of Regk(G) .

In view of the last remark, it is natural to ask how

properties of G are refiected in ReEk(G) .

Proposition 2.20. Let G be an affine group scheme over k

(a) G 1is finite if and only if there exists an object X

of Rep, (G) such that every object of Rep, (G) is isomorphic

to a subquotient of x® , some n >0.

(b) G 1is algebraic if and only if there exists an object

X of Rep (G) that is a tensor generator for Rep, (G) .

Proof (a). If G 1is finite then the regular representation

of G has the required properties. Conversely if, with the
notations of the proof of (2.11), Rep, (G) =<X>, then G = spec B

where B is the linear dAual of the finite k-algebra Ax .
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(b) If G 1is algebraic, then it has a finite-dimensional
faithful representation X (2.5), and one shows as in (I.3.la) that
Xex' isa tensor generator for gggk(G) . Conversely, if

X is a tensor generator for ngk(c) then it is a faithful

representation of G .

Proposition 2.21. Let f: G + G' be a homomorphism of

affine group schemes over Xk , and let wf be the correspond-
ing functor Rep, (G') ~ Rep, (G).

(a) f is faithfully flat if and only if wf is fully
faithful and every subobject of mf(x') , for X' e ob(gggk(c')),
is isomorphic to the image of a subobject of X' .

(b) f is a closed immersion if and only if every object

of ggEk(G) is isomorphic to a subguotient of an object of the
form wf(x'), X' € ob(Rep, (G')) .

Proof (a). If G —£>G' is faithfully flat, and theretore

is an epimorphism, then BEEk(G') can be identified with the
subcategory of ggpk(G) of representations G + GL(V) factoring
through G' . It is therefore obvious that mf is fully
faithful etc. Conversely, if mf is fully faithful, it defines
an equivalence of Repk(G') with a full subcategory of

Rep, (G) , and the second condition shows that, for

X' e ob(Repk(G')), <X'> is equivalent to < mf(x‘) > . Let

G = spec B and G' = spec B' ; then (2.15) shows that

B' = lim End ('] <x' >)" = lim End(w| <of (x') >)¥ C1lim End(w| <x>) =B,
> -+ +
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and B' > B being injective implies that G > G' 1is faithfully
flat (Waterhouse [1,14]).

(b) Let C be the strictly full subcategory of gggk(G)

whose objects are isomorphic to subquotients of objects of

the form wf(x') . 'The functors
ngk(s') > C > gggk(G)
correspond (see (2.14,2.15)) to homomorphisms of k-coalgebras
B' - B" + B

where G = spec B and G' = spec B' . An argument as in the
above proof shows that B" + B 1is injective. Moreover,

for X' € ob(Rep, (G')) , End(w| <wf(x)>) » End(w'|<x'>) is
injective, and so B' > B" is surjective. If f is a closed
immersion, then B' > B 1is surjective and it follows that

B" —» B, and C = Rep, (G) . Conversely, if ¢ = Rep, (G),

then B" =B and B' -+ B 1is surjective.

Corollary 2.22 Assume k has characteristic zero; then G is
connected if and only if, for any representation X of G

on which G acts non-trivially, the strictly full subcategory
of BEEk(G) whose objects are isomorphic to subquotients of

xn

» n >0, is not stable under @ .

Proof: G is connected if and only if there is no non-trivial
epimorphism G + G' with G' finite. According to (2.21a),
this is equivalent to gggk(G) having no non-trivial subcategory

of the type described in (2.20a).
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Proposition 2.23. Assume k has characteristic zero and that
G 1is connected; then G 1is pro-reductive if and only if

Rep, (G) is semisimple.

Proof: As every finite-dimensional representation G > GL (V)
of G factors through an algebraic quotient of G , we can

assume that G itself is an algebraic group.

Lemma 2.24. Let X be a representation of G ; a subspace
Y X 1is stable under G if and only if it is stable under
Lie(G).

Proof: Standard.

Lemma 2.25. Let k be the algebraic closure of k ; then
gggk(G) is semisimple if and only if BQE:(GE) is semisimple.
Proof: Let U(G) be the universal enveloping algebra of

Lie(G) , and let X be a finite-dimensional representation of

G . The last lemma shows that X 1is semisimple as a representa-
tion of G if and only if it is semisimple as a representation

of Lie(G) , or of U(G) . But X is a semisimple U(G)-module

if and only if k ® X is a semisimple k ® U(G)-module

(Bourbaki [1,13.4]). Since k ® U(G) = U(G_) , this shows that
k
if Rep (G_) is semisimple then so is Rega(G) . For the
k k

converse, let X be an object of Rep (G_) . There is a

finite extension k' of k and a repteszntation X' of

Gk' over k' giving X by extension of scalars. If we regard

X' as a vector space over k then we obtain a k-representation X
of G . By assumption, X 1is semisimple and, as was observed above,
this implies that k 8, X is semisimple. Since X is a quotient

of k ®, X, X is semisimple.
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Lemma 2.26 (Weyl). Let L be a semisimple Lie algebra over
an algebraically closed field k (of characteristic zero). Any
finite-dimensional representation of L is semisimple.
Proof: For an algebraic proof, see for example (Humphries [1,
6.3]). Weyl's original proof was as follows: we can assume
k=€ ; let L, be a compact real form of L and G0 a connected
simply-connected real Lie group with Lie algebra Ly ; as Gy is
compact, any finite-dimensional representation of it carries a
positive-definite form (see (I3.6)) and therefore is semisimple;
thus any finite-dimensional (real or complex) representation of
Ly is semisimple, and it is then obvious that any (complex)
representation of L 1is semisimple.

For the remainder of the proof, we assume that k is

algebraically closed.

Lemma 2.27. If N is a normal closed subgroup of G and
p: G+ GL(X) is semisimple, then p|N is semisimple.
Proof: We can assume X is a simple G-module. Let Y be
a nonzero simple N-submodule of X . For any g € G(k)

g¥Y is an N-module and is simple because S t+— g—lS maps

’

N-submodules of gY to N-submodules of Y . The sum
L gY , g € G(k) , is G-stable and nonzero, and therefore equals

X . Thus X , being a sum of simple N-submodules, is semisimple.
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We now prove the proposition. If G is reductive, then
G = 2.G' where Z is the centre of G and G' is the
derived subgroup of G . Let p: G + GL(X) be a finite-
dimensional representation of G . As Z is a torus, plz is
diagonalizable: X = & X, as a z-module, where any 2z € 2 acts
on X, asa scalar Xi(Z) . Each Xi is G'-stable and, as
G' 1is semisimple, is a direct sum of simple G'-modules.
It is now clear that X is semisimple as a G-module.
Conversely, assume that gggk(G) is semisimple and choose
a faithful representation X of G . Let N be the unipotent
radical of G . Lemma 2.27 shows that X 1is semisimple as
an N-module: X = & X, where each X, is a simple N-module.
As N is solvable, the Lie-Kolchin theorem shows that each
Xi has dimension one, and as N is unipotent, it has a
fixed vector in each Xi . Therefore N acts trivially on
each Xi , and on X , and, as X is faithful, this shows that

N = {1} .

Remark 2.28. The proposition can be strengthened as follows:
assume that X has characteristic zero; then the identity
component G0 of G is pro-reductive if and only if
Rep, (G) is semisimple.

To prove this one has to show that ngk(G) is semisimple
if and only if gggk(G°) is semisimple. The necessity follows
from (2.27). For the sufficiency, let X be a representation

of G (where G 1is assumed to be algebraic) and let Y be a

G-stable subspace of X . By assumption, there is a G°-equivariant




map p : X » Y such that p|Y = id . Define

Q
~
®
>
+
~
®

=

Q
I

K R I owsy
where n = (G(k): G°(k)) and g runs over a set of coset
representatives for G°(k) in G(k) . One checks easily that
g has the following properties:
(i) it is independent of the choice of the coset representatives:;
(ii) for all o e Gal(k/k), o(g) = q ;
(iii) for all y €k @ Y , q(y) = q :
(iv) for all g € G(k), 949 = q*9y .
Thus g 1is defined over k , restricts to the identity map on

Y , and is G-equivariant.

Remark 2.29., When, as in the above remark, Repk(G) is
semisimple, the second condition in (2.2la) is superfluous:
thus £ : G + G' 1is faithfully flat if and only if wf is fully

faithful.

Examples.

(2.30) (Graded vector spaces) Let C be the category
whose objects are families (Vn)nezz of vector spaces over
k with finite-dimensional sum V = & V! . There is an obvious
rigid tensor structure on C for which End(l) = k and
w s (Vn)i—» ® V' is a fibre functor. Thus, according to (2.11),

there is an equivalence of tensor categories C - Regk(G) for
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some G . This equivalence is easy to describe: Take G = E,

and make (V%) correspond to the representation of €, on

® V® for which Gm acts on V" through the character ib— Am.
(2.31) A real Hodge structure is a finite dimensional

vector space V over IR together with a decomposition

vec= o vP9 such that vP'? ana v¥'P are conjugate
pP.q

complex subspaces of V 8 € . There is an obvious rigid tensor
structure on the category HodIR of real Hodge structures and
w s (V,(Vp’q))k—» V is a fibre functor. The group corresponding

to Hod,, and w is the real algebraic group $ obtained from

& by restriction of scalars from € to IR : & = Res

/R
The real Hodge structure (V,(Vp'q)) corresponds to the

representation of & on V such that an element XA € §(IR) = r*

acts on VP'9 as A"Pi79 . e can write V = & V© where

vVec= e vP'Y? | tThe functor (v, (VP'Y))— (v?) from
p+g=n
Hod]R to the category of real graded vector spaces corresponds

to the homomorphism Gm + & which, on real points, is t}— t_l :
R +~ T .
(2.32) The preceding examples have a common generalization.

Recall that an algebraic group G 1is of multiplicative type if

Gg , where k is the separable algebraic closure of k , 1is
diagonalizable in some faithful representation, and that the
character group X(G) df Hom(Gg,& ) of such a G is a finitely
generated abelian group on which T = Gal(k/k) acts continuously.

Write M = X(G), and let k'C k be a Galois extension of k over
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which all elements of M are defined. For any finite-dimensional
representation V of G , V @k k' = mgm v™  where

V= (vev 8.k'|gv = m(g)v , all g € G(k')} . A finite-
dimensional vector space V over k together with a decomposition

k' 8 v=29 V" arises from a representation of G if and only if

Vo(m) = ch(g£ Vg k') for all me M and o € I' . Thus an
k',o '

object of Repy (G) can be identified with a finite-dimensional
vector space V over k together with an M-grading on V Gkk'
that is compatible with the action of the Galois group.

(2.33) (Tannakian duality) Let K be a topological group.
The category BSEIR(K) of continuous representations of K on
finite-dimensional real vector spaces is, in a natural way, a neutral
Tannakian category with the forgetful functor as fibre functor.

There is therefore a real affine algebraic group K, called the

real algebraic envelope of K , for which there exists an

equivalence BEBIR(K) 5 BSEIR(R) . There is also a map K ~+ R(nn ’
which is an isomorphism when K 1is compact.

In general, a real algebraic group G 1is said to be compact
if G(IR) 1is compact and the natural functor ggBIR(G(IR)) -+
BEBH{(G) is an equivalence. The second condition is equivalent
to each connected component of G(&) containing a real point
(or to G(IR) being Zariski dense in G) . We note for reference
that Deligne [l, 2.5] shows that a subgroup of a compact real
algebraic group is compact.

(2.34) (The true fundamental group). Recall that a vector
bundle E on a curve C 1is semi-stable if for every sub-bundle

E'C E, (deg E')/(rank E') ¢ (deg E)/(rank E). Let X be a
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complete connected reduced k-scheme, where k 1is assumed to
be perfect. A vector bundle E on X will be said to be semi-
stable if for every nonconstant morphism f : C - X with C

a projective smooth connected curve, f*E 1is semi-stable of
degree zero. Such a bundle E is finite if there exist
polynomials g,h € W [t] , g # h , such that g(E) ® h(E) . Let
C be the category of semi-stable vector bundles on X that are
isomorphic to a subquotient of a finite vector bundle. If X
has a k-rational point x then C 1is a neutral Tannakian
category over k with fibre functor w : E~ E, . The group

associated with (C,w) 1is a pro-finite group scheme over k ,

called the true fundamental group nl(x,x) of X , which classifies
all G-coverings of X with G a finite group scheme over k .

The maximal pro-étale quotient of nl(x,x) is the usual étale
fundamental group of X . See Nori [1].

(2.35) Let K be a field of characteristic zero, complete
with respect to a discrete valuation, whose residue field is
algebraically closed of characteristic p # 0 . The Hodge-Tate
modules for K from a neutral Tannakian category over mp (see

Serre [2]).

§3. Fibre Functors; the general notion of a Tannakian category

Throughout this section, k denotes a field

Fibre functors

Let G be an affine group scheme over k and let

U = spec R be an affine k-scheme. A G-torsor over U (for the
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f.p.g.c. topology) is an affine scheme T , faithfully flat over

S , together with a morphism T *y G =+ T such that

(t,g) — (t,tg) : T XU G+ T X T is an isomorphism. Such a scheme
T is determined by its points functor, h, = (R'}— T(R"))

T
A non-vacuous set-valued functor h of R-algebras with
functorial pairing h(R') x G(R') » h(R') arises from a G-torsor
if

(3.1la) For each R-algebra R' such that h(R') is non-
empty, G(R') acts simply transitively on h(R') , and

(3.1b) h is respectable by an affine scheme faithfully flat
over U . Descent theory shows that (3.1lb) can be replaced by
the condition that h be a sheaf for the f.p.g.c. topology on
U (see Waterhouse [1,V]) . There is an obvious notion of a
morphism of G-torsors.

Let C be a k-linear abelian tensor category; a fibre functor
on C with values in a k-algebra R is a k-linear exact
faithful tensor functor n : C + EQQR that takes values in the
subcategory BEQiR of EQQR . Assume now that C is a neutral
Tannakian category over k . There then exists a fibre functor
w with values in k and we proved in the last section that if
we let G = ggge(w),m defines an equivalence C > ngk(G) . For
any fibre functor n with values in R , composition defines a

pairing
Home(m,n) x Aut@(m) -+ Home(m,n)

of functors of R-algebras. Proposition 1.13 shows that
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Homa(w,n) = Isome(m,n) , and therefore that Home(w,n)

satisfies (3.la).

Theorem 3.2. Let C be a neutral Tannakian category over k
(a) For any fibre functor n on C with values in R ,
Egmg(w,n) is representable by an affine scheme faithfully
flat over spec R ; it is therefore a G-torsor.

(b} The functor nl— ggge(w,n) determines an equivalence
between the category of fibre functors on C with values in

R and the category of G-torsors over R .

Proof: Let X € ob(C) , and, with the notations of the proof of

(2.11), define

AyCEnd(w(X)) , Ay =\ (0(¥) : w(¥) , Yex* ,
Y

Py( Hom(w(X),X) , Py =O<Y sw(Y)) , YCx' .

Then m(Px) = A and P, € ob(<X>) . For any R-algebra R' ,

X X
Hom(w|<X>,n|<X>) (R') is the subspace of Hom (w (Py) & R',n(Py) 8 R')
of maps respecting all vy x" ; it therefore equals n(PX) ® R' .

Thus

121

Hom(w| <X>, n|<X>) (R') HomR_lin(n(P;’(),R')

Let Q be the ind-object (P;/()x , and let B = lim Ax . As we saw
>
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in the last section, the tensor structure on C defines an
algebra structure on B ; it also defines a ring structure on
Q (i.e., a map Q ® Q + Q in Ind(C)) making w(Q) 5B into an

isomorphism of k-algebras. We have

Hom{w,n) (R") lim Hom(w|<X>, n|<X>) (R")

+

lim Hom
“

v '
r-1in(N(Pg) . R )

= Hom (n(Q), R)

R-lin

&

where n(Q) lim n(PX) . Under this correspondence,
>

Hom® (w,n) (R') = Hom (n(Q),R") ,

R-alg

and so Homa(w,n) is represented by n(Q) . By definition

n(Px) is a projective R-module, and so n(Q) = lim n(PX) is
>

flat over R . PFor each X there is a surjection Py => 1,

and the exact sequence
0+ 1>Py+Py/L~>0
gives rise to an exact sequence
0 > n(l) » n(By) » n(Bg/1) + 0
As n(1) = R and n(By/l) is flat, this shows that n(By) is

a faithfully flat R-module. Hence n(Q) is faithfully flat

over R , which completes the proof that Home(m,n) is a G-torsor.
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To show that n |— Homa(m,n) is an equivalence, we
construct a quasi-inverse. Let T be a G-torsor over R . For

a fixed X , define R'|l— nT(x)(R') to be the sheaf associated with
R'l— (w(X) 8 R') x T(R')/G(R')

Then X |— nT(X) is a fibre functor on C with values in R .

Remark 3.3

(a) Define

A,C Hom(X,X), Ay =N(¥:¥) , YC X" .

Then A is a ring in C such that m(éx) = Ay (as k-algebras).

X
Let B be the ind-object (éx) . Thén
@ —
End” (w) = spec w(B) = G
Endg(n) = spec n(B)

(b) The proof of (3.2) can be made more concrete by using

(2.11) to replace (C,w) with (Repk(G),wG) .

Remark 3.4. The situation described in the theorem is analogous
to the following. Let X be a connected topological space and
let C be the category of locally constant sheaves of @ vector
spaces on X . For any x € X , there is a fibre functor

: + Ve fines an equivalence of categories
Wy c <o’ and Wy define q c g
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c ~+ Repm(ﬂl(x,x)) . Let Hx,y be the set of homotopy classes
of paths from x to y : then Hx,y = Isom(mx,wy) , and
nx,y is a nl(x,x)—torsor.

Question 3.5. Let C be a rigid abelian tensor category
whose objects are of finite length and which is such that
End(l)=k and ©® 1is exact. (Thus C lacks only a fibre
functor with values in k to be a neutral Tannakian category).

As in (3.3) one can define

= n
Ayc Hom (X,X), Ay =[}(¥Y:Y), YCX

and hence obtain a bialgebra B = "lim" AX in Ind(C) which
>

can be thought of as defining an affine group scheme G in Ind(C).

Is it true that for XCX' , A > Ay is an epimorphism?

XI
. . P .
For any X in C , there is a morphism X + X & B , which

can be regarded as a representation of G . Define XG , the

subobject fixed by G , to be the largest subobject of X such

that x® +x @ By factors through xC
true that Hom(l,X) & 1 ~» XG

® 1C— x 8 By . Is it
is an isomorphism?

If for all X there exists an N such that ANX =0,
is C Tannakian in the sense of Definition 3.7 below? (See note
at the end of the article.)

The general notion of a Tannakian_category

In this subsection, we need to use some terminology from

non-abelian 2-cohomology, for which we refer the reader to the
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Appendix. In particular éffs or éﬁﬁk denotes the category

of affine schemes over S = spec kK and PROJ is the stack over
Affs, such that PROJ; = EEEiR for R = F(U,OU) . For any gerb
G over Aff,  (for the f.p.q.c. topology) we let Rep, (G) denote
the category of cartesian functors G + PROJ. Thus an object

$ of ngk(c) determines (and is determined by) functors

¢R : QR - gggiR , one for each k-algebra R , and functorial
isomorphisms ®R,(g*Q) <jL> ¢R(Q) 8r R' defined whenever

g : R> R' 1is a homomorphism of k-algebras and Q € ob(gR) .
There is an obvious rigid tensor structure on BEEK(G) , and

End(l) =k .

Example 3.6. Let G be an affine group scheme over k , and

let TORS(G) be the gerb over such that TORS(G)U is

Affg
the category of G-torsors over U . Let Gr be G regarded as
a right G-torsor, and let ¢ be an object of Rep, (TORS(G)) .
The isomorphism G ¥ éEE(Gr) defines a representation of G on
the vector space Qk(Gr) , and it is not difficult to show that
bt @k(Gr) extends to an equivalence of categories .

ngk(TORS(G)) 3 BEEk(G)

Let C be a rigid abelian tensor category with End(l) = k
For any k-algebra R , the fibre functors on C with values in
R form a category FIB(_C_)R , and the collection of these categories
forms in a natural way a fibred category FIB(C) over éffk.‘

Descent theory for projective modules shows that FIB(C) 1is a

stack, and (1.13) shows that its fibres are groupoids. There is a
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canonical k-linear tensor functor C + Repk(FIB(C)) associating

to X € ob(C) the family of functors wi— w(X) : FIB(Q)R + ProjR .

Definition 3.7. A Tannakian category over k 1is a rigid abelian

tensor category C with End(l) = k such that FIB(C) 1is an

affine gerb and C -+ Repk(FIB(g)) is an equivalence of categories.

Example 3.8. Let C be a neutral Tannakian category over k .
Theorem 3.2 shows that the choice of a fibre functor w with
values in k determines an equivalence of fibred categories
FIB(C) 3> TORS(G) where G represents ég&e(w) . Thus FIB(C)

is an affine gerb and the commutative diagram of functors

c + Repy (FIB(C))
~4w [ 2d

Rep, (G) ¥ Rep, (TORS(G))

shows that C is a Tannakian category. Thus a Tannakian category
in the sense of (3.7) is a neutral Tannakian category in the sense

of (2.19) if an only if it has a fibre functor with values in k .

Remark 3.9. The condition in (3.7) that FIB(C) 1is a gerb means
that C has a fibre functor w with values in some field k'Dk
and that any two fibre functors are locally isomorphic for the
f.p.g.c. topology. The condition that the gerb FIB(C) be affine
means that QEEQ(m) is representable by an affine group scheme

over k' .
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Remark 3.10. A Tannakian category C over k is said to be
algebraic if FIB(C) is an algebraic gerb. There then exists a
finite field extension k' of k and a fibre functor w®w with
values in k' (App., Proposition), and the algebraicity of C
means that G = Agge(m) is an algebraic group over k' . As in
the neutral case (2.20), a Tannakian category is algebraic if and
only if it has a tensor generator. Consequently, any Tannakian

category is a filtered union of algebraic Tannakian categories.

Tannakian categories neutralized by a finite extension

Let C be a k-linear category, and let A be a commutative
k-algebra. An A-module in C is a pair (X,ax) with X an
object of C and ay a homomorphism A + End(X) . For example,
an A-module in ygsk, , where k' k , is simply an A @kk'—module
that is of finite dimension over k' . With an obvious notion of
morphism, the A-modules in C form an A-linear category E(A) .
If C is abelian so also is E(A) , and if C has a tensor
structure and its objects have finite length then we define

(X, ® (Y,ay) to be the A-module in C with object the largest

%)
quotient of X ® Y to which ax(a) ® id and id ® aY(a) agree
for all a € A .

Now let C be a Tannakian category over k , and let k'
be a finite field extension of k . As the tensor operation on
C commutes with direct limits (1.16), it extends to 1Ind(C) ,
which is therefore an abelian tensor category. The functor

C » Ind(C) defines an equivalence between C and the strictly

full subcategory ge of Ind(C) of essentially constant ind-
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e

objects. 1In [of it is possible 'to define external tensor

products with objects of Veck (cf. the proof of (2.11)) and

hence a functor
Xb> (X)) = (k' 8 X, a' > a' 8 id) : c®(
This functor is left adjoint to
(X,0) b= 3(X,0) = x = cfp,) > C®
and has the property that k' ®k Hom(X,Y) 3 Hom(i(X), i(Y))
Let w be a fibre functor on ge (or C) with values in k'

For any (X,0) e ob(g?k,)) r (w(X), w(a)) is a k'-module in

YEEk' , i.e., it is a k' ®k k'-module. If we define
w'(X,a) = k' 8 g1 @ (X) (3.10.1)
Then
£ — S

wl
W
Veck.

commutes up to a canonical isomorphism.

e
(
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Proposition 3.11. Let C be a Tannakian category over k and
let w be a fibre functor on C with values in a finite field
extension k' of k ; extend w' to g(k') using the formula
(3.10.1) ; then w' defines an equivalence of tensor categories
Cikr) 5 Rep, . (G) where G = éggé(w) . In particular, ' |is

exact.
Proof: One has simply to compose the following functors:

arising from the equivalence

10
+

Repy (G) (G = FIB(C)) in the

definition (3.7);
Repk(g) (k') ; REPk, (El/k')

~ where G/k' denotes the restriction of G to Affk. (the functor

sends (¢,a) € ob(Repk(gj(k,)) to ¢' where, for any k'-algebra
R and Q € Gp , ¢§(Q) = R ®k.@R¢R(Q)) H
Rep, , (G/k") 5 Rep, , (TORS(G))

arising from TORS(G) ;'g/k' :

Rep, ; (TORS(G)) > Repy . (G) (see 3.6).
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Remark 3.12. Let C = Repk(G) and let k' be a finite extension
of k . Then E(k') = Repk.(G) and i : C ~ E(k') is Xp— k' @kx.
Let w be the fibre functor Xt k' 8 X : Repk(G) > Vec,., .

2] . ~ .
Then Gk' = Aut (w) and the equivalence g(k') > Repk.(Gk.) defined

in the proposition is
X — k' ek,Qk.x : Repk,(G) - Repk.(Gk,) .

Descent of Tannakian categories

Let k'/k be a finite Galois extension with Galois group T ,
and let C' be a Tannakian category over k' . A descent datum
on C' relative to k'/k is

(3.13a) a family (BY)YEF of equivalences of tensor

categories B : C' - C' , BY being semi-linear relative to vy ,

”
together with

(3.13b) a family (uY. Y) of isomorphisms of tensor functors
My y BY'Y * BY'°BY such that
How oy (XD
Y (Y'Y >
BYHY.Y(X) > BY"(SY.Y(X))
uY"Y',Y(X) SY"(UY.Y(X))
Uona (B, (X))
YUY Y ~
BY"Y.(BY(X)) > BYH(By.(BY(X)))

commutes for all X € ob(C)

A Tannakian category C over k gives rise to a Tannakian

category C' = E(k') over k ' together with a descent datum
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for which BY(X,ax) = (X,axoy_l) . Conversely, a Tannakian
category C' over k' together with a descent datum relative
to k'/k gives rise to a Tannakian category C over k whose
objects are pairs (X,(ay)) , where X € ob(C'}) and

(aY : X + BY(X))YGT is such that (uY.’Y)X°aY.Y = Yo

and whose morphisms are morphisms in C' commuting with the ay -

These two operations are quasi-inverse, so that to give a Tannakian

BY.(aY)oa

category over Xk (up to a tensor equivalence, unique up to a

unique isomorphism) is the same as to give a Tannakian category over
k' together with a descent datum relative to k'/k (Saavedra

[, IT@ 1.2]). On combining this statement with (3.11) we see that
to give a Tannakian category over k together with a fibre functor
with values in k' is the same as to give an affine group scheme

G over k' together with a descent datum on the Tannakian category

Repk.(G) .
Questions

(3.14) Let G be an affine gerb over k . There is a
morphism of gerbs

G » FIB(Rep, (G)) (3.14.1)

which, to an object Q of G over S = spec R , associates the
fibre functor F }—= F(Q) with values in R . 1Is (3.14.1) an
equivalence of gerbs? If G is algebraic, or if the band of G

is defined by an affine group scheme over k , then it is (Saavedra
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{1, Ir 3.2.5]) but the general question is open. A positive
answer would provide the following classification of Tannakian
categories: The maps C |— FIB(C) and G |— Repy (G) determine

a one-to-one correspondence between the set of tensor equivalence
classes of Tannakian categories over k and the set of equivalence
classes of affine gerbs over k ; the affine gerbs bound by a given
band B are classified by HZ(S,B) , and HZ(S,B) is a pseudo-
torsor over HZ(S,Z) where 2Z 1is the centre of B .

(3.15) In [1, ID 3.2.1] Saavedra defines a Tannakian category
over k to be a k-linear rigid abelian tensor category C for
which there exists a fibre functor with values in a field k'Dk .
He then claims to prove (ibid. 3.2.3.1) that C satisfies the
conditions we have used to define a Tannakian category. This is
false. For example, Vec,, for k' a field containing k 1is a

Tannakian category over k according to his definition but the

£

fibre functors V = oV =V k' for o € Aut(k'/k) are not

8k',o
locally isomorphic for the f.p.q.c. topology on spec k' . There
is an error in the proof (ibid. p. 197, %.7) where it is asserted
that "par définition" the objects of Gg are locally isomorphic.
The question remains of whether Saavedra's conditions plus
the condition that End(l) = k imply our conditions. As we noted
in (3.8), when there is a fibre functor with values in k they
do, but the general question is open. The essential point is
the following: Let C be a rigid abelian tensor category with

End(l) = k and let w be a fibre functor with values in a finite

field extension k' of k ; is the functor w' ,
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Xl k'@ g w(X) : Ckry ~ Ve o
exact? (See Saavedra [l1, p. 195]; the proof there that w' |is
faithful is valid.) The answer is yes if C = Repk(G) , G an
affine group scheme over k , but we know of no proof simpler
than to say that ' 1is defined by a G-torsor on k' , and
9(k') = Repk,(G) . (See note at end.)

§4, Polarizations

Throughout this section C will be an algebraic Tannakian

category over IR and C' will be its extension to T : C' = g(m) .
Tannakian categories over IR

According to (3.13) and the paragraph following it, to
give C is the same as to give the following data:

(4.1a) A Tannakian category C' over € ;

(4.1b) A semi-linear tensor functor X|—= X : C' + C' ;

(4.1c) A functorial tensor isomorphism u, : X 3 X such

X
that ug = ﬁx .

An object of C «can be identified with an object X of C' together
with a descent datum (an isomorphism a : X 3 X such that

aeca = My) . Note that C' is automatically neutral (3.10).

Example 4.2, Let G be an affine group scheme over € and let
0:G + G be a semi-linear isomorphism (meaning £ |— gof :

F(G,OG) +> F(G,OG) is a semi-linear isomorphism). Assume there is
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given c¢ € G(C) such that

o = ad(c) , a(c) = ¢ (4.2.1).

From (G,0,c) we can construct data as in (4.1):

(a) define C' to be 5§E¢(G) :

(b) for any vector space V over & there is an (essentially)
unique vector space V and semi-linear isomorphism vf— v : Vv 3 ¥;
if V is a G-representation, we define a representation of G on
¥V by the rule gv = o(g)V ;

(c) define to be the map cvj— v : v 3

<

Yy
Let m € G(T) . Then o' = gead(m) and c' = o(m)cm again
satisfy (4.2.1). The element m defines an isomorphism of the
functor V}— V (rel. to (o,c)) with the functor V}— V (rel. to
(g',c'")) by mvl— v : V (rel. to (0,c)) + V (rel. to {(o',c')) .
This isomorphism carries uy (rel. to (o,c)) to uy (rel. to
(¢',c')) , and hence defines an equivalence C (rel. to (g,c))

with C (rel. to (o',c')).

Proposition 4.3. Let C be an algebraic Tannakian category over

IR , and let C' = Choose a fibre functor w on C' with

S -
values in € and let G = éBE?(m)

(a) There exists a pair (o,c) satisfying (4.2.1) and such
that under the equivalence C' 5 BSEE(G) defined by w , X X
corresponds to V= V and w(uy) = Hy(x) *

(b) The pair (o,c) in (a) 1is uniquely determined up
to replacement by a pair (o',c') with ¢' = gead(m) and

c' = o(m)cm , some m € G(T) .
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Proof: (a) Let w be the fibre functor X|— :Rga and let
T = Egme(w,a) . According to (3.2), T is a G-torsor, and
the Nullstellensatz shows that it is trivial. The choice of
a trivialization provides us with a functorial isomorphism
w(X) ¥ @(X) and therefore with a semi-linear functorial
isomorphism A, : w(X) 3 w(X) . Define o by the condition
that o(g)g = Ayegyery  for all g € G(E) , and let c be
such that cy = w(ux)_loliakx .

(b) The choice of a different trivialization of T replaces

A with X

X x°My for some m € G(C) , and o with ooad(m) and

¢ with o(m)cm .

Sesquilinear forms

Let 1 (with e : 1861 3 1) be an identity object for
C' . Then i (with e) 1is again an identity object, and the
unique isomorphism of identity objects a : 1 » I is a descent
datum. It will be used to identify 1 and I .

A sesquilinear form on an object X of C' is a morphism

>

On applying - , we obtain a morphism ® X > i , which can be

identified with a morphism
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There are associated with ¢ two morphisms 7,79 : X » X'

determined by

o7 (x) (y) o(x 8 y)

(4.3.1)

To(x) (y) = %y © x)

The form ¢ is said to be non-degenerate if ¢~ (equivalently

“¢) is an isomorphism. The parity of a non-degenerate

sesquilinear form ¢ is the unique morphism ¢ X > X such

¢
that

¢~ = ~¢°€¢ 7 ¢(X,Y) = ¢'(y,€¢x) . (4.3.2)
Note that
¢o(e¢@E¢) = ¢, ¢(e¢x,E¢y) = ¢(x,y). (4.3.3)

The transpose u¢ of u € End(X) relative to ¢ 1is determined

by
¢o (uBidg) = ¢o(id8u®) , ¢(ux,y) = o(x,uly) . (4.3.4)
There are the formulas

() ? = v®® , (1@)? = i, W"? = e ue !l

$__-1
$1€s .(€¢) € (4.3.5)

¢
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and u b= u¢ is a semi-linear bijection End(X) -+ End(X) .
I1f ¢ is a non-degenerate sequilinear form on X , then
any other non-degenerate sequilinear form can be written

b, = 6o (a®id) , ¢ (x,¥) = d(ax,y) = o(x,aby)y  (4.3.9)

for a uniquely determined automorphism o of X . There are
the formulas

wte = (auahH?® ey = (@7 ege . (4.3.7)
a

When € is in the centre of End(X) , ¢a has the same parity as

¢
¢ 1if and only if a¢ = a .

Remark 4.4. There is also the notion of a bilinear form on an
object X of a tensor category: It is a morphism X & X = 1 .
Most of the notions associated with bilinear forms on vector
spaces make sense in the context of Tannakian categories; see

Saavedra [1, V 2.1].

Weil forms

A non-degenerate sesquilinear form ¢ on X is a Weil
form if its parity € is in the centre of End(X) and if for

all nonzero u € End(X) , Trx(uu¢)>0 .
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Proposition 4.5. Let ¢ be a Weil form on X .
(a) The map up~ uq> is an involution on End(X) inducing

complex conjugation on € = C.id and (u,v) }— Tr(uv¢) is

x I
a positive definite Hermitian form on End(X) .

(b) End(X) is a semisimple (€-algebra.

(c) Any commutative sub-IR-algebra A of End(X) composed

of symmetric elements (i.e., such that u¢=u) is a product of

copies of IR.

Proof. (a) 1is obvious.

(b) Let I be a nilpotent ideal in End(X) : we have to
show that I = 0 . Suppose on the contrary that there is a
u#0 in I . Then v af u u¢ € I and is nonzero because
Tr(v)>0 . As v = v¢ , we have Tr(v2)>0 , Tr(v4)>0,...,
contradicting the nilpotence of I .

(c) The argument used in (b) shows that A is semisimple
and is therefore a product of fields. If € occurs as a factor
of A , then Trx|m is a multiple of the identity map, and
Tr(uz) = Tr(uu¢)>0 is impossible.

Two Weil forms, ¢ on X and ¢y on Y , are said to be
compatible if the sesquilinear form ¢®y on X®Y is a Weil

form. Note that if Hom(X,Y)=0=Hom(Y,X) , then ¢ and ¢ are

automatically compatible.

Proposition 4.6. Let ¢ be a Weil form on X ; then

o b= oy, af $poa®l induces a bijection between
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{a € Aut(x)|ozq> = a, o is a square in IR [a]C End(X)}

and the set of Weil forms on X that have the same parity as

¢ and are compatible with ¢ .

Proof: We saw in (4.3.6) that any non-degenerate sesquilinear
form on X 1is of the form bq for a unique automorphism o

of X . Moreover, ¢u has the same parity as ¢ if and only

if o= of. Assume a=a?® then u®e = ou® a™! and so ¢, is a Weil

form if and only if Tr(uou®o )50 for all u # 9 . Let

_ 00 . 06, _ 0 uda T _
v = (u 0) € End(X @& X) ; then v a = (0 0 ) and TrXQX(V Oy) =
Tr(u¢uu) . Therefore if ¢a is compatible with ¢ , then
Trx(u¢au)>0 for all u # 0 . One checks easily that the converse

statement also holds.

2 with

Now assume « to be symmetric and equal to B8
R € R[a] . Then rr (uaula™l) = Tr((ug)guat) = Tr(8u¢a_l(u8))=
tr((g tug)®8™luB) > 0 for u # 0, and Tr(ubow) = Tr((sw ¥su)>0
for u # 0 . Hence ¢a is a Weil form and is compatible with
¢ . Conversely, if bq has the same parity as ¢ and is
compatible with it, then o is symmetric and TrX(u2G)>O for

all u#0 in IR [a) ; this last statement implies that o is

a square in IR [a] .

Corollary 4.7. Let ¢ and ¢' be compatible Weil forms on X
with the same parity, and let ¢ be a Weil formon Y . If

¢ is compatible with ¢ , then so also is ¢' . In particular,
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compatibility is an equivalence relation for Weil forms on X

having a given parity.

Proof: This follows easily from writing ¢' = by -
Example 4.8. Let X be a simple object in C' , so that

End(X) = € , and let € € End(X) . If X is isomorphic to

X , then (4.3.6) shows that the sesquilinear forms on X form
a complex line; (4.3.7) shows that if there is a nonzero such
form with parity e , then the set of sesquilinear forms on X
with parity € 1is a real line; (4.6) shows that if there is

a Weil form with parity € , then the set of such forms falls

into two compatibility classes, each parametrized by R,

Remark 4.9, Let X be an object in C ‘and let ¢, be a non-
degenerate bilinear form by @ X5 @ X5 * L The parity of g
is defined by the equation ¢o(x,y) = ¢O(y,ex) . The form 6o
is said to be a Weil form on X, 1if € is in the centre of
End(X,) and if for all nonzero u € End(X,) , Tr(uu®)>0 . Two
Weil forms ¢ and ¢, are said to be compatible if 6,0V, is
also a Weil form.

Let Xg correspond to the pair (X,a) with X € ob(C') .
Then g defines a bilinear form ¢ on X , and
¥ f xe x lea~l X 8 X ? 1) 1is a non-degenerate sesquilinear
formon X . If ¢ is a Weil form, then ¢y is a Weil form on

X which is compatible with its conjugate Yy , and every such

yp arises from a ¢o; moreover e(y) = E(¢0) .




Polarizations.

Let 7% be the centre of the band associated with C
(see the appendix). Thus 2 is a commutative algebraic group
over IR such that 2(C) is the centre of Auta(w) for any
fibre functor on C' with values in T . Moreover, Z represents
Aut®(id ) .
- €
Let € € Z(IR) and, for each X € ob(C') , let w(X) be
an equivalence class (for the relation of compatibility) of Weil
forms on X with parity € ;: we say that 7w is a (homogeneous)
polarization on C if
(4.10a) for all X , $ € m(X) whenever ¢ € w(X) , and
(4.10b) for all X and Y, ¢ ® ¢y € (X & ¥Y) and
¢ ® Yy € T(XBY) whenever ¢ € 7(X) and Y € w(Y) .
We call € the parity of © and say that ¢ 1is positive
for m if ¢ € w(X) . Thus the conditions require that ¢, ¢ @& ¢ ,

and ¢ ® ¢ be positive for m whenever ¢ and ¢ are.

Proposition 4.11, Let 7 be a polarization on C
(a) The categories C and C' are semisimple.
L
(b) If ¢ € m(X) and YC X then X =Y @Y and the

restriction by of ¢ to Y is in w(Y) .

Proof. (a) Let X be an object of C' ; let Y be a nonzero
simple subobject of X and let u : Y& X denote the inclusion
map. Choose ¢ € w(Y) and ¢ € w(X) . Consider v = (g 3) :

X®Y+>X®Y and let u' : X + Y be such that vw®¢ = (3,8) .
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Then TrY(u‘u) = TrY$x(v¢e¢v)>O and so u'u is an auto-
morphism w of Y . The map p = w_lou' projects X onto
Y , which shows that Y is a direct summand of X , and X
is semisimple.

The same argument, using the bilinear forms (4.9) shows
that C is semisimple.

(b) Let Y' = Yr‘\Yl , where YL is the largest subobject
of X such that ¢ is zeroon Y ® ?1 , and let p : X + X
project X onto Y' (by which we mean that p(X)C Y' and
p|Y' = id). As ¢ is zeroon Y' 8 ¥' , 0 = ¢o(p®p) = ¢°(id®;$;),
and so p¢p = 0 . Therefore Tr(p¢p) =0 and so p , and
Y', are zero. Thus X =Y & Y' ana o= 06,8 ¢Y1 . Let ¢; € m(Y)
and ¢2 e n(Yl) . Then ¢1 ® ¢2 is compatible with ¢ , and this
implies that N is compatible with by -
Remark 4.12. Suppose C 1is defined by a triple (G,o0,c) , as in
(4.1), so that C' = Repp(G) . A sesquilinear form ¢:X @ X+ 1

defines a sesquilinear form ¢' on X in the usual, vector space,

sense by the formula

¢'(x,y) = ¢(x®y) , x,y € X (4.12.1).

The conditions that ¢ be a G-morphism and have a parity

€ € Z(IR) become respectively

¢'(qx,0'l(g)y) , g e G(o , (4.12.2)

' (x,y)
¢ (y,x)

o' (x, ec ty) (4.12.3).
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When G acts trivially on X , then (4.12.3) becomes
o' (y.x) = ¢'(x,y) ,

and so ¢' 1is a Hermitian form in the usual sense on X . If

X is one-dimensional and ¢ € w(X) , then ¢' is positive-
definite (for otherwise ¢ ® ¢ € 7(X)) . Now (4.11lb) shows that
the same is true for any X , and (4.6) shows that

{¢'|¢ € m(X)} 1is the complete set of positive-definite Hermitian
forms on X (when G acts trivially on X) . 1In particular,

Vec,, has a unique polarization.

Remark 4.13. A polarization 7 on C with parity ¢ defines,
for each simple object X of C' , an orientation of the real
line of sesquilinear forms on X with parity e (see 4.8), and

T is obviously determined by this family of orientations. Choose
a fibre functor w for C' , and choose for each simple object

X. a ¢i e n(Xi) . Then

1

(X)) = {r ¢;]r € R, }

0

If X 1is isotypic of type X; » so that w(X) = W 8 m(Xi) where

Aute(m) acts trivially on W , then

{w(d)'|[¢ e (X))} = {y ® w(¢;)'|¥ Hermitian y>0} .

If X =06 X(l) where the X(l) are the isotypic components of X

12
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then

T(X) =@ w(x(i))
Remark 4.14. Let e € Z(IR) and, for each X € ob(C) , let
n(xo) be an equivalence class of bilinear Weil forms on Xo
with parity € (see (4.9)) . One says that w 1is a homogeneous
polarization on C if b, @ U, € T(X ® Y) and ¢, @ wo e T(X8Y)
whenever ¢, € m(X) and Y, € m(Y) . As {x| (X,a) e ob(C)}
generates C' , the relation between bilinear and sesquilinear
forms noted in (4.9) establishes a one-to-one correspondence
between polarizations in this bilinear sense and in the sesquilinear
sense of (4.10).

In the situation of (4.12), a bilinear form ¢o on X, defines
a sesquilinear form ¢' on X =T ® xo (in the usual vector

space sense) by the formula

wKzlvl,zzvz) =212, ¢0(v1,v2), Vi{i1Vqy e Xo' 2042y et .

Description of polarizations

Let C be defined by a triple (G,qg,c) satisfying (4.2.1),
and let K be a méximal compact subgroup of G(C) . As all
maximal compact subgroups of G(T) are conjugate (Hochschild
{1, XV. 3.11), there exists m € G(L) such that oLk =mrm?! .

Therefore, after replacing ¢ by oecad(m) , we can assume that
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o(K) = K . Subject to this constraint, (o,c) is determined
up to modification by an element m in the normalizer of K .
Assume that C 1is polarizable. Then (4.1lla) and (2.28)

show that G° is reductive, and it follows that K is a compact

real form G , i.e., K has the structure of a compact real
algebraic group in the sense of (2.33) and Km = G (see Springer
[1, 5.6]). Let Ok be the semi-linear automorphism of G such

that, for g € G(T), og(g) is the conjugate of g relative to

the real structure on G defined by K ; note that o determines

K
K . The normalizer of XK is K.Z(fL), and so c € K.Z(C) .

Fix a polarization © on C with parity € . If X is an
irreducible representation of G and ¢ 1is a positive-definite

K-invariant Hermitian form on X , then for any ¢ € 7(X) ,

(bx © ¥y Eyor (x,y) = vix,By)

for some B € Aut(X). Equations (4.12.2) and (4.12.3) can be

re-written as

Bgy = g(g)y B , g € K(IR) (4.14.1)
B* = B ey cx (4.14.2)
where B8* is the adjoint of B8 relative to % : Y(Bx,y) = ¢(x,8*y).

As K(IR) is Zariski dense in K(T) , X is also irreducible as a
representation of K(IR) , and so the set c(X,m) of such B's

is parametrized by IR An arbitrary finite-dimensional

>0

representation X of G can be written
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X = Qi Wi ] Xi

where the sum is over the non-isomorphic irreducible represen-
tations X, of G, and G acts trivially on each w, ot let

¥; and ¢i respectively be K-invariant positive-definite
Hermitian forms on X and Wi , and let ¢ =@ wi ® ¢; ; then for
any ¢ € m(X) , ¢'(x,y) = ¥(x,By) where B = & B} ® B; with

Bi e c(Xi,ﬂ) and B} is positive-definite and Hermitian relative
to wi . We let c¢c(X,m) denote the set of B as ¢ runs through
m(X) . The condition (4.10b) that n(Xl) e n(xz)c:ﬂ(xl ® X2)
becomes c(Xl,n) ] c(XZ,ﬂ)(:c(Xl & Xz,ﬂ) .

Lemma 4.15. There exists a b € K with the following properties:
(a) by € c(X,m) for all irreducible X ;

(b) ¢ = °K°§§ b , where Ok denotes complex conjugation on

G relative to K ;

(c) e lc = ob.b = b% .

Proof: Let a = ec’ L € G(T) . When X is irreducible, (4.14.1)
applied twice shows that Bzgx = 02(9)82x = Cgc_lszx for B € c(X,m,

g€e€K, and x € X ; therefore (c_lﬁz)gx = g(c—lsz)x , and so

2 acts as a scalar on X . Hence a82 = € c_lsz also acts
as a scalar. Moreover, 82a = BR* (by 4.14.2) and so

c g

2, _ 2 . 2
Trx(aB ) = TrX(B a)>0 ; we conclude that aXB e IR>0 . It

follows that there is a unique B € c(X,m) such that ay = 8_2 .
Bgy = o(g)yB (g € K), and B* = B_l (so B is unitary).
For an arbitrary X we write X = @ wi [} X; as before, and

set B =8 id 6 Bi , where Si is the canonical element of
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c(x;,m just defined. We still have ay = 8_2, Bgy = 0(g)yB (g € X),

and B8 € c(X,7m). Moreover, these conditions characterize g : if
B' € c(X,m has the same properties, then B8' = I y; ® B4 (this
expresses that B'g, = o(g) B', g € K) with Y? =1 (as 8'2 = a-l)

X X i X
and Yi positive-definite and Hermitian; hence Yy = 1.

The conditions are compatible with tensor products, and so the

canonical B are compatible with tensor products: they therefore define

an element b € G(C) . As b is unitary on all irreducible represen-
tations, it lies in K . The equations 82 = a;l show that
p? = al = ¢1le . Finally, Bgy = 0(g),® implies that a(g) = ad b(g)

for all g € K : therefore gead b—1 fixes K and, as it has order
2, it must equal og -
Theorem 4.16. Let C be an algebraic Tannakian category over IR
and let G = égge(w) where w is a fibre functor on C with values
in € ; let 7 be a polarization on C with parity ¢ . For any
compact real-form K of G , the pair (GK,e) satisfies (4.2.1),
and the equivalence g'liggEE(G) defined by w carries the descent
datum on C' defined by C into that on BEEm(G) defined by

(OK,E) : w(X) = w(X), m(ux) = Mux) - For any simple X in C' ,
{w($)'l¢ € m(X)} is the set of K-invariant positive-definite
Hermitian forms on w(X).

Proof: Let (C,w) correspond to a triple (G,ol,cl) (see (4.3a)),
and let b € K be the element constructed in the lemma. Then

o, = UKOEQ b and c¢ = e.ob.b = ogb.e.b . Therefore (GK,e) has the
same property as (cl,cl) (see (4.3b)), which proves the first
assertion. The second assertion follows from the fact that

b € c(w(X),m) for any simple X .
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Classification of polarized Tannakian categories

Theorem 4.17 (a) The category C 1is polarizable if and only if
its band is defined by a compact real algebraic group K .

(b) Let K be a compact real algebraic group, and let
e € Z(IR) where 2 is the centre of K ; there exists a Tannakian
category C over IR whose gerb is bound by the band B(K) of K
and a polarization 7 on C with parity e .

(c) Let (gl,nl) and (gz,ﬂz) be polarized algebraic Tannakian
be the identific-

categories over IR, and let B 3 B and B 3 B

1 2
ations of the bands of <, and c, with a given band B . If

e(wl) = e(m,) in 2z (B)(R) then there is a tensor equivalence

< e C, respecting the polarizations and the actions of B (i.e.,
such that FIB(QZ) 5 FIB(Cy) is a B-equivalence), and this equi-
valence is unique up to isomorphism.

Proof: We have already seen that if C is polarizable, then ('

is semisimple, and so, for any fibre functor « with values in T ,
(the identity component of) G = égge(w) is reductive, and hence has
a compact real form K . This proves half of (a). Part (b) is proved
in the first lemma below, and the sufficiency in (a) follows from

(b) and the second lemma below. Part (c) is essentially proved by

(4.16) .

Lemma 4.18. Let K be a compact real algebraic group and let

G =K let o(g) o'(g) where ¢' 1is a Cartan involution for K ,

T ;
and let € € Z(R) where Z is the centre of K . Then (o,¢g)
satisfies (4.2.1) and the Tannakian category ¢ defined by (G,o,¢€)

has a polarization with parity e
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Proof: Since 02 = id and o0 fixes all elements of K , (4.2.1)
is obvious. There exists a polarization w on C such that,

for all simple X , {¢'|d € 7(X)} 1is the set of positive-definite
K-invariant Hermitian forms on X . (In the notation of (4.15),

b=1.) This polarization has parity e .

Let C correspond to (C', X k* X,u); for any 2z € Z(R) , where
Z 1is the centre of the band B of cC ., (C', X} X, uwoz) defines

a new Tannakian category zg over R .

Lemma 4.19. Every Tannakian category over R whose gerb is bound

by B is of the form Zg for some =z € Z(R) ; there is a tensor

zl

Zg > C respecting the action of B if and only if

equivalence

leam? .

z'z
Proof: Let w be a fibre functor on C . and let (C,w) correspond
to (G,o,c) ; we can assume that a second category 91 corresponds

to (G,0y,cy) . Let y and y; be the functors V |= ¥ defined

by (o,c) and (ol,cl) respectively. Then Yil o y defines a

tensor automorphism of w , and so corresponds to an element

me G(C) . We have g = clogg(m) ;, and so we can modify (Gl,cl)
in order to get gy =0 . Let u and By be the functorial
isomorphisms V - V defined by (o,c) and (o,cl) respectively.
Then u11°u defines a tensor automorphism of idc , and so

u_io u= z-l, z € Z(R) . We have 4y = pez . B

The second part of the lemma is obvious.
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Remark 4.20. Some of the above results can be given a more
cohomological interpretation. Let B be the band defined by a
compact real group K , and let 2 be the centre of B ; let
C be a Tannakian category, whose gerb is B .

(a) As 2z is a subgroup of a compact real algebraic group,

it is also compact (see (2.33) ). It is easy to compute its

cohomology; one finds that

IE:

ul (R, 2)

2Z(]R) ker(2:Z(R) + Z(R))

u2(R,2) = Z(R)/Z(R)>

]

(b) The general theory shows that there is an isomorphism
HlﬂR,Z) > AutB(g) , which can be described explicitly as the map

associating to z € Z(R)2 the automorphism w,

(X, ay) = (X, ag zy)

il S

(¢} The Tannakian categories bound by B , up to B-equivalence,
are classified by HzaR,B) , and HZGR,B) if nonempty is an
HzﬂR,Z)—torsor; the action of Hz(R,Z) = ZGR)/ZGR)2 on the categories
is made explicit in (4.19).

(d) Let Pol(C) denote the set of polarizations on C . For

m € Pol(C) and z € Z(R) we define zm to be the polarization such

that
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d(x,y) € zm(X) = ¢(x,zy) € m(X) :
it has parity e(zw) = 22 e(m) . The pairing
(z,m) I zw : Z(R) x Pol(C) +Pol(C)
makes Pol(C) into a Z (R) -torsor.

(e) Let m € Pol(C) and let e=¢g(m) ; then C has a
polarization with parity €' € Z(M®R) if and only if ' = 522 for
some z € Z(R) .

Remark 4.21. 1In Saavedra [1, V. 1] there is a table of Tannakian
categories whose bands are simple, from which it is possible to

read off those that are polarizable (loc. cit. V. 2.8.3).

Neutral polarized categories

The above results can be made more explicit when C has a fibre
functor with values in R .

Let G be an algebraic group over R , and let C € GR) . A
G-invariant sesquilinear form ¢ : V xV » C on V € ob(gggm(G)) is

said to be a C-polarization if

at

o€ (%, y) Y(x,Cy)
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is a positive-definite Hermitian form on V . If every object

of Repm(G) has a C-polarization then C is called a Hodge

element.

Proposition 4.22. Assume that G(R) contains a Hodge element C .

There is then a polarization on ReEE(G) for which the

C
positive forms are exactly the C-polarizations; the parity of

m is C2 : for any g € G(@R) and z € Z(R) , where 2 1is the

C

centre of G , C' = ngg_l is also a Hodge element and

Tor = 2T ;1 every polarization on RegE(G) is of the form

for some Hodge element C' .

c!

Proof: Let ¢ be a C-polarization on V € ob(Rep,(G)) ; then
—_— ==Pg

vix,y) = ¥(Cx,Cy) because § 1is G-invariant, and

Y(Cx,Cy) = wC(Cx,y) = wc(y,Cx) = w(y,sz) . This shows that ¢

has parity c® . For any V , w(y,sz) = Y(x,y) = ¥(gx,qy) =

w(gy,czgx) = w(y,g_lczgx), g€ G®R), x, y €V ; this shows that
C

C2 € Z(R). For any u € End(V) , u¥ = ul!J , and so Tr(uuw) >0

if u # 0 . This shows that Yy is a Weil form with parity 02 .

The first assertion of the proposition is now easy to check. The
third assertion is straightforward to prove, and the fourth follows

from it and (4.19).

Proposition 4.23. The following conditions on G are equivalent:
{(a) there is a Hodge element in G(R) ;
(b) the category ReEE(G) is polarizable;

(c) G is an inner form of a compact real algebraic group K
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Proof: (a) = (b). This follows from (4.22).

(b) = (c) . To say that G is an inner form of K is the same
as to say that G and K define the same band: this implication
therefore follows from (4.17a).

(¢) => (a) . Let 2 be the centre of K (and therefore also

of G) and let Kad = K/Z . The assumption says that the
isomorphism class of G is in the image of

it @, k2% > ¢ ®, Aut(x))

According to Serre [l1, IH, Thm 6], the canonical map
,®4m) = vlmxdm) » at®, k29
is an isomorphism. From the cohomology sequence

kK®) » k4m > wl®, 2 » 1l ®,K

I I
LZRS JK®R)

we see that K®R) —> KadaR) , and so G 1is the inner form of
K defined by an element C' € K(R) whose square is in Z(R)

Let Yy be an isomorphism Km -+ Gm such that yeadC' = Y , and

1 1

let C = y(C') ; then C = ¥(C') =vy(C') =C and ¥ oad(C) =y ~ .
This shows that C € G(R) and that K is the form of G defined

by C ; the next lemma completes the proof.
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Lemma 4.24. An element C € G(R) such that C° € zZ(R) is a

Hodge element if and only if the real-form K of G defined by
C is a compact real group.

Proof: Identify K with G; and let g and g* respectively
be the complex conjugates of g € G(C) relative to the real
structures defined by G and K . Then g* = gg(c'l)(a) = Cl§C .
Let V¥ be a sesquilinear form on V € Ob(BEEE(G)) . Then V¥

is a G-invariant if and only if

vlgx,gy) = ¥(x,y) , g € G(T)

On the other hand, wC is K-invariant if and only if

WCiax,a*y) = 1Cx,y) , g € (D) .

These conditions are equivalent: V has a C-polarization if

and only if V has a K-invariant positive-definite Hermitian
form. Thus C 1is a Hodge element if and only if, for every
complex representation V of K , the image of K in Aut(V)

is contained in the unitary group of a positive-definite Hermitian
form; this last condition is implied by K being compact and
implies that K 1is contained in a compact real group and so is

compact (see (2.33)).

Remark 4.25. (a) The centralizer of a Hodge element C of G
is a maximal compact subgroup G , and is the only maximal compact

subgroup of G containing C ; in particular, if G is compact, then
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C 1is a Hodge element if and only if it is in the centre of G
(Saavedra [1, 2.7.3.5]).

(b) If C and C' are Hodge elements of G then there

exists a g € G(R) and a unique z € Z(R) such that C' = ngg"l

(Saavedra [1, 2.7.4]). As Tor = 2T o this shows that Moy = T

if and only if C and C' are conjugate in GR) .

C

Remark 4.26. It would perhaps have been more natural to express
the above results in terms of bilinear forms (see (4.4), (4.9),
(4.14)): a G-invariant bilinear form ¢ : Vv, *V, >R on

v, € ob(RegF(G)) is a C-polarization if ¢C(x,y) af ¢(x,Cy) 1is

a positive-definite symmetric form on Vo i C is a Hodge element
if every object of ReEB(G) has a C-polarization; the positive
forms for the (bilinear) polarization defined by C are precisely

the C-polarizations.

Symmetric polarizations

A polarization is said to be symmetric if its parity is 1 .
Let K be a compact real algebraic group. As 1 is a Hodge
element (4.24), BEER(K) has a symmetric polarization 1w for
which w(XO) r X, € Ob(BEER(K)) , consists of the K-invariant
positive-definite symmetric bilinear forms on X5 (and w(X) .,
X € ob(gggm(K)) , consists of the K-invariant positive-definite

Hermitian forms on X).
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Theorem 4.27. Let C be an algebraic Tannakian category over

R, and let 7 'be a symmetric polarization on C . Then C

has a unique (up to isomorphism) fibre functor w with values

in R transforming positive bilinear forms for m into positive-
definite symmetric bilinear forms; w defines a tensor equivalence
c 3 BSER(K) , where K = ggge(m) is a compact real group.

Proof: Let wy be a fibre functor with values in € , and let

G = égge(ml) . Since C 1is polarizable, G has a compact real
form K . According to (4.16), wi : C' ¥ BSEE(G) carries the
descent datum on €' defined by C into that on BSEm(G) defined
by (OK,l) . It therefore defines a tensor equivalence w : C =+ BEER(K)
transforming 1w 1into the polarization on BEER(K) defined by

the Hodge element 1 . The rest of the proof is now obvious.

Remark 4.28. Let 7 be a polarization on C . It follows from
(4.204) that C has a symmetric polarization if and only if

e(m) € Z(ZR)2 .

Polarizations with parity € of order 2

For u = +1 , define a real u-space to be a complex vector space

V together with a semi-linear automorphism o such that 02 =u .
A bilinear form ¢ on a real u-space is u-symmetric if
¢(x,y) = up(y,x) : such a form is positive-definite if ¢(x,0x) > O

for all x # 0 . Thus a l-symmetric form is symmetric, and a (-1)-
symmetric form is skew-symmetric.

Let V¥V, be the category whose objects are pairs (V,0) where

1

v=vlev is a Z/27ZZ - graded vector space over T and




g : V3V is a semi-linear automorphism such that 02x=(—1)deg(X)x.

With the obvious tensor structure, V_  Dbecomes a Tannakian category

over R with €-valued fibre functor (V,o)p— V . There is a
polarization m =m__ .~ on Y5 such that, if V 1is homogeneous,
deg(v)

then n(V,0) comprises the (-1) -symmetric positive-definite

forms on V .

Theorem 4.29. Let C be an algebraic Tannakian category over IR,
and let 7w be a polarization on C with parity € where sz=l ,
€ #1 . There exists a unique (up to isomorphism) exact faithful

functor w : C » Zo such that

(a) w carries the grading on C defined by € into the grading
)m

on V i.e., w(e) acts as (-1 on w(V)m :

-0’

(b) w carries 7w 1into w i.e., ¢ € m(X) if and only if

can’
w(e) € m . (w(X) .

Proof: Note that v, is defined by the triple (uz,oo,eo) where
Oq is the unique semi-linear automorphism of u, and €5 is the
unigque element of uzﬂR) of order 2. We can assume (by (4.3))
that C corresponds to a triple (G,0,e) . Let G0 be the

subgroup of G generated by € :; then (Go,cho,e) = (uz,do,eo)

~

and so the inclusion (GO,0|GO,€)C;* (G,0,e) induces a functor
c+ Vv, having the required properties.

Let w,0': C = Yo be two functors satisfying (a) and (b).

yu
€

It is clear from (3.2a) that there exists an isomorphism A : w
1 . 1
from w to w regarded as functors to Vecm . As AX : w(X) + w'(X)
commutes with the action of ¢ , it preserves the gradings; as 2
commutes with w(¢) , any ¢ € w(X) , it also commutes with o ;

it follows that A 1s an isomorphism of w and w' as functors to Yo‘




186

§5,. Graded Tannakian categories

Throughout this section, k will be a field of characteristic

Zero.

Gradings

Let M be set. An M-grading on an object X of an additive

category is a decomposition X = @& ™ ; an M-grading on an
meEM

additive functor u : C + C' is an M-grading on each u(X),
X € ob(C) , that depends functorially on X .

Suppose now that M 1is an abelian group, and let D be the
algebraic group of multiplicative type over k whose character
group is M (with trivial Galois action; see (2.32)). In the cases
of most interest to us, namely M = 2Z or M= Z /2%, D equals
G, or u, (=22/27Z) . BAn M-grading on a Tannakian category C
over k can be variously described as follows:

(5.1la) An M-grading, X = @& X, on each object X of C
that depends functorially on X and is compatible with tensor
= e xf e ¥° ;

r+s=m

products in the sense that (X 8 Y

(5.1b) An M-grading on the identity functor idc of C
that is compatible with tensor products; -

(5.1c) A homomorphism D - éu_t@(idc)

(5.1d) A central homomorphism D +—G , G = égga(m) , for
one (or every) fibre functor w .
Definitions (a) and (b) are obviously equivalent. By a central

homomorphism in (d), we mean a homomorphism from D into the

centre of G defined over k ; although G need not be defined
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over k , its centre is, and equals Aut@(idc) , whence follows
the equivalence of (c) and (4) . Finally, a homomorphism
w : D~ Aute(idc) corresponds to the family of gradings X = & X

for which w(d) acts on X"CX as m(d) € k .

Tate triples

A Tate triple T over k is a triple (C,w,T) comprising
a Tannakian category C over k , a % -grading W:Gm hd Autg(idc)

on C (called the weight grading), and an invertible object T

(called the Tate object) of weight -2. For any X € ob(C) and
n € Z, we write X(n) = X @ ™ A fibre functor on T with
values in R is a fibre functor w : C > Mod, together with an
isomorphism w(T) > m(Taz), i.,e., the structure of an identity
object on w(T) . If T has a fibre functor with values in k ,
then T is said to be neutral. A morphism of Tate triples
(gl,wl,Tl) > (gz,wz,Tz) is a tensor functor n : C, + Gy

preserving the gradings together with an isomorphism n(Tl) 3 T, -

Example 5.2 (a). The triple (gggR,W,R(l)) in which Ho is
the category of real Hodge structures (see (2.31)), w 1is the
weight grading on EEER , and R(l) is the unique real Hodge structure
with weight -2 and underlying vector space 27iTR, is a neutral
Tate triple.
(b) The category of Z-graded vector spaces over (@,
together with the object T = mB(l) {(see I.1), forms a Tate triple

EB ; the category of % -graded vector spaces over Wz , together
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with the object T = ml(l)' forms a Tate triple Ty ¢ the
category of %~ graded vector spaces over k , together with the
object T = mDR(l) , forms a Tate triple EDR .
Example 5.3. Let V be the category of % -graded complex

vector spaces V with a semi-linear automorphism a such that

azv = (-1 if v e V" . with the obvious tensor structure,

V becomes a Tannakian category over R, and w : (V,a) = Vv is

a fibre functor with values in € . Clearly G, = éggg(w) ’

and V corresponds (as in (4.3a)) to the pair (g|— g ,-1).

Let w : G~ B be the identity map, and let T = (V,a) where

V is € regarded as a homogeneous vector space of weight -2

and a is z F* z . Then (V,w,T) is a (non-neutral) Tate triple

over R .

Example 5.4. Let G be an affine group scheme over k and let
W B > G be a central homomorphism and t : G > E 2 homo-
morphism such that tow = -2 (&£ s s%) . Let T be the
representation of G on k such that g acts as multiplication
by t(g) . Then (ngk(G),w,T) is a neutral Tate triple over k .

The following proposition is obvious.

Proposition 5.5. Let T = (C,w,T) be a Tate triple over k , and
let w be a fibre functor on T with values in k . Let
G = Aute(w) , so that w 1is a homomorphism Gm + Z(G)C G . There

is a homomorphism t : G > B, such that g acts on T as
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multiplication by t(g) , and tow = -2 . The equivalence
c e ngk(G) carries w and T into the weight grading and
Tate object defined by t and w .

More generally, a Tate triple T defines a band B , a
homomorphism w : G, 2z into the centre 2 of B , and a
homomorphism t : B + mm such that tow = -2 . We say that
T is bound by (B,w,t).

Let G, w, and t be as in (5.4). Let G, = Ker(t : G -~ Gm) ,

and let € : Ky ™ G

o Dbe the restriction of w to m, ; we often

identify e with e(~-1) = w(-1) € Z(GO)(k) . Note that e defines
a Z/2Z-grading on _C_O=Repk(G°) . The inclusion GOC—>G

defines a tensor functor Q : C with the following properties:

=
(5.6a) if X is homogeneous of weight n , then Q(X) is
homogeneous of weight n (mod 2},
(5.6b) Q(T) =1 ;
(5.6c) if X and Y are homogeneous of the same weight, then

X

Hom(X,Y) + Hom(Q(X), Q(Y)) :

(5.6d) if X and Y are homogeneous with weights m and n
respectively and Q(X) ® Q(Y), then m-n is an even integer 2k
and XxX(k) ® Y :

(5.6e) Q 1is essentially surjective.

The first four of these statements are obvious. For the last, note
that G = Gm x G/p2 . and so we only have to show that any
representation of Hy extends to a representation of G_ , but

m
this is obvious.
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Remark 5.7 (a) The identity component of Go is reductive
if and only if the identity component of G 1is reductive:; if
Go is connected, so also is G , but the converse statement is
false (e.g., G, = py, G = G ) .

(b) It is possible to reconstruct (C,w,T) from (go,e) e
the following diagram makes it clear how to reconstruct (G,w,t)

from (Go,e) :

1 >Hy —> B _2, G >1
el
- t
1— 56, —> G B —>1
Proposition 5.8. Let T = (C,w,T) be a Tate triple over k with

Cc algebraic. There exists a Tannakian category go over k , an

element € in Aute(idc ) with 52 =1, and a functor Q : C ~» 90
=0

having the properties (5.6).
Proof: For any fibre functor w on C with values in an algebra

R , Isom(R,w(T)) regarded as a sheaf on spec R is a torsor for

& - This association gives rise to a morphism of gerbs

h

G = FIB(g) % TORS(Gm) , and we define 90 to be the kernel of

t ; thus G, is the gerb of pairs (Q,&) where Q € ob(G) and

$u

£ 1is an isomorphism t(Q) G , i.e., Gy is the gerb of fibre

m,X

functors on T . Let [ be the category Regk(Go) which

(see (3.14)) is Tannakian. If 2 = Aute(idc) and z = Aute(idc Y,
(o)

then the homomorphism 2 + Aut(T) =G, a}— ap , determined by

m’

t has kernel 2 and the composite tew = -2; we let e=w(—l)ezo .

o’
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There is an obvious (restriction) functor Q : C - C, -
In showing that @Q had the properties (5.6), we can make a
finite field extension X -+ k' . We can therefore assume that

T is neutral, but this case is covered by (5.5) and (5.6).

Example 5.9. Let (V,w,T) be the Tate triple defined in (5.3);
then (Yo,e) is the pair defined in the paragraph preceding

(4.29),

Example 5.10. Let T = (C,w,T) be a Tate triple over IR ,
and let w be a fibre functor on T with values in € . On
combining (4.3) with (5.5) we find that (T,w) corresponds to a
quintuple (G,o0,c,w,t) in which

(a) G 1is an affine group scheme over T ;

(b) (o,c) satisfies (4.2.1);

(c) w: &+ G is a central homomorphism; that the grading

is defined over R means that w is defined over R, i.e.,

o(w(g)) = w(g) .
(d) t : G ~» G is such that tew = -2; that T is defined
over R means that t(o(g)) = t(g) and there exists a € mm(m)

such that +t(c) =oc(a)a .
Let G, = Ker(t) , and let m € G(E) be such that t(m) = al
After replacing (o,c) with (ceadm, o(m)cm) we find that the

new c¢ is in G, . The pair (C_,w|C)) corresponds to

(Gyr0|G ,c) -«

Remark 5.11. As in the neutral case, T «can be reconstructed from
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(go,e) . This can be proved by substituting bands for group
schemes in the argument used in the neutral case (Saavedra
[1, V. 3.14.1]), or by using descent theory to deduce it from
the neutral case.

There is a stronger result: T |- (go,e) defines an
equivalence between the 2-category of Tate triples and that of

% /27 -graded Tannakian categories.

Graded polarizations

For the remainder of this section, T = (C,w,T) will be
a Tate triple over R with C algebraic. We use the notations

of §4; in particular (' = C Let U be an invertible

=) -
object of C' that is defined over R, i.e., U is provided
with an identification U 3 U; then in the definitions and results
in §4 concerning sesquilinear forms and Weil forms, it is possible
to replace 1 with U .

For each X € ob(C') that is homogeneous of degree n , let
m(X) be an equivalence class of Weil forms X & X 1(-n) of
parity (-1 ; we say that 1w 1is a {(graded) polarization on T
if

(5.12a) for all X , ¢ € w(X) whenever ¢ € m(X) ;:

(5.12b) for all X and Y that are homogeneous of the same
degree, ¢ ® Y € M(X & ¥Y) whenever ¢ € w(X) and ¢ € m(Y) ;

(5.12c) for all homogeneous X and Y , ¢ 8 ¢ € (X 8 Y)

whenever ¢ € w(X) and Y € w(Y) :
2

(5.12d) the map T ® T » T 1(2), defined by T ¥ T , is

in w(T)
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Proposition 5.13. Let (go,s) be the pair associated with T

by (5.8). There is a canonical bijection
Q : Pol(T) - POle(go)

from the set of polarizations on T to the set of polarizations
on Eo with parity ¢ .

Proof: For any X € ob(C') that is homogeneous degree n ,
(5.6b) and (5.6c) give an isomorphism

Q : Hom (X ® X, 1(-n)) > Hom(Q(X) & Q(X), 1) .

We define Qn to be the polarization such that, for any homogeneous
X, om(ox) = {Q¢|¢ e (X))} . It is clear that =f Qw is a

bijection.

Corollary 5.14, The Tate triple T is polarizable if and only

if C, has a polarization w with parity e(m)ze (mod ZO(R)Z) .
Proof: See (4.20e).

Corollary 5.15. The map (z,m)|+ zm : 2ZO(]R) x Pol(T) = Pol(T)
(where ¢(x,y) € zm(X)<=>¢(x,2y) € 7(X)) makes Pol(T) into
a pseudo-torsor for 2ZOCR)

Proof: See (4.204).

Theorem 5.16. Let m be a polarization on T , and let w be a
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fibre functor on C' with values in € . Let (G,w,t) correspond
to (Im'”) . For any real form K of G such that K, = Ker (t)
is compact, the pair (cK,e) where e = w(-1) satisfies (4.2.1),
and w defines an equivalence between T and the Tate triple
defined by (G,UK,e,w,t) . For any simple X in C(C'

{w($)'|¢ € n(X)} is the set of Ko—invariant positive-definite
Hermitian forms on w(X) .

Proof: See (4.16).

Remark 5.17. From (4.17) one can deduce the following: A triple
(B,w,t), where B 1is an affine algebraic band over R and
tow = -2, bounds a polarizable Tate triple if and only if
B, = Ker(t:B —+ Gm) is the band defined by a compact real algebraic
group; when this condition holds, the polarizable Tate triple bound
by (B,w,t) is unique up to a tensor equivalence preserving the
action of B and the polarization, and the equivalence is unique
up isomorphism. The Tate triple is neutral if and only if
e =wi-1) e 3 (R Z .

Let (G,w,t) be a triple as in (5.4) defined over R , and
let Go = Ker(t) and e = w(-1l) . A Hodge element C € GOGR) is
said to be a Hodge element for (G,w,t) if 02 =g . A G-invariant
sesquilinear form Y :V X V + 1(-n) on a homogeneous complex

representation V of G of degree n is said to be a C-

polarization if
wc(x,y) df y(x,Cy)

is a positive~-definite Hermitian form on V . When C 1is a Hodge
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element for (G,w,t) there is a polarization To on the Tate

triple defined by (G,w,t) for which the positive forms are

exactly the C-polarizations.

Proposition 5.18. Every polarization on the Tate triple defined

by (G,w,t) 1is of the form w for some Hodge element C .

C
Proof: See (4.22) and (4.23) .

Proposition 5.19. Assume that w(-1)=1 . Then there is a unique

(up to isomorphism) fibre functor w on T with values in R
transforming positive bilinear forms for = into positive-definite
symmetric bilinear forms.

Proof: See (4.27).

Proposition 5.20. Let (V,w,T) be the Tate triple defined in

(5.3), and let Tan be the polarization on V such that, if

(V,a} € ob(V) is homogeneous, then n(V,a) comprises the (—l)deg(V)—

symmetric positive-definite forms on Vv . If w(-1) # 1 for T
and 7 is a polarization on T , then there exists a unique (up to
isomorphism) exact faithful functor w : C » V preserving the
Tate-triple structures and carrying 7m into .

can
Proof: Combine (4.29) and (5.9).

Example 5.21. Let T be the Tate triple (gggn,wyB(l)) defined
in (5.2). A polarization on a real Hodge structure V of weight

n is a bilinear form ¢ : V x V - R(-n} such that the real-valued
form (x,y)— (27i)™¢(x,Cy) , where C denotes the element
iesm = T , 1s positive-definite and symmetric. These

polarizations are the positive (bilinear) forms for a polarization
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T on the Tate triple T . The functor w : EQER > Vv
provided by the last proposition is V= (V& €, v c¥) .

(Note that (gggm,wgm(l)) is not quite the Tate triple associated,
as in (5.4), with (8,w,t) because we have chosen a different

Tate objects:; this differencg explains the occurrence of (ZWif)

in the above formula; m is essentially the polarization defined

by the canonical Hodge element C . )

Filtered Tannakian Categories

For this topic we refer the reader to Saavedra [1, IV.2].

§6. Motives for absolute Hodge cycles

Throughout this section, k will denote a field of characteristic
zero with algebraic closure k and Galois group T = Gal(k/k) .
All varieties will be projective and smooth, and, for X a variety
{or motive) over k , X denotes X 8 k . We shall freely use

the notations and results of Article I; for example, if %k = C

then HB(X) denotes the graded vector space & Hg(x) .

Complements on absolute Hodge cycles

For X a variety over k , CgH(x) denotes the rational
vector space of absolute Hodge cycles on X (see I.2). When X

has pure dimension n , we write
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P - ontP
MorAH(X,Y) CAH (X x Yy) .

Then Mozb (x, NC 2P (x x ¥) (p+n) = ®  H(X) 8 K (Y) (p+n)
r+s=2n+2p
= ® BT (x)¥ 8 H°(Y) (p)
s=r+2p
= ® Hom (HY (X) ,HEF 2P (v) (p))
r

The next proposition is obvious from this and the definition of an

absolute Hodge cycle.

Proposition 6.1l. An element £ of MoriH(X,Y) gives rise to

(a) for each prime £ , a homomorphism £, : Hl(i) + HQ(Y)(p] of

graded vector spaces (meaning that f2 is a family of homomorphisms

r , ,r,3 r+2p,g .

fg @ Hp(X) » Hy (Y)Y (p)) =

(b) a homomorphism fDR : HDR(X) > HDR(Y)(p) of graded vector
spaces;

(c) for each o : k& € , a homomorphism £, ¢ Hc(x) > HU(Y)(p)
of graded vector spaces.

These maps satisfy the following conditions:

(d) for all y € T and primes ¢, Y(fl) = fl :

(e) £ is compatible with the Hodge filtrations on each

DR

homogeneous factor;

(f) for each o : k& € , the maps f £ and f correspond

g’ "L’ DR

under the comparison isomorphisms (I.1l).

Conversely, assume that k is embeddable in €; then any family of maps

0 fDR as in (a), (b) arises from f € MorgH(X,Y) provided (fl) and

£ satisfy (d) and (e) respectively and for every o¢ : k& €
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there exists an fc such that (fz), f and fo satisfy

DR’
condition (f) ; moreover, £ is unique.

Similarly, a ¢ € Cig_r (X x X) gives rise to pairings

S

v HS(X) % H2r—s

(x) > @(-xr) .

Proposition 6.2. On any variety X (of dimension n) there exists

a ye Cia_r(x x X) such that, for every ¢ : k& T,

vy Hg(X,R) % HD (X,R) > R(-x)

is a polarization of real Hodge structures (in the sense of (5.21)).
Proof: Choose a projective embedding of X , and let L be a
hyperplane section of X . Let & be the class of L in HZ(X)(l),
and write & also for the map H(X) » H(X)(l) sending a class

to its cup-product with & . Assume X is connected and define

the primitive cohomology of X by

2n-r+2

HY(X) + H (X) (n-r+1)) .

The hard Lefschetz theorem states that

gPT L T (x) » 52PTT(X) (n-1)

is an isomorphism for r<n ; it implies that
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s Hr-ZS(x)(_s) ]

r —
O (X) = ® % prim .

s>r-n, SzO

Thus any x € HY(X) can be written uniquely, x = £2%(x_), with
s

r-2s .
Xg e H (X)(—s)prim, define

)(r—ZS)(r~2s+l)/2 ﬁn—r+s < € H2n—r

s (X) (n-r) .

*y = § (-1

Then x + *x : HY(X) » H2PF

(X) (n-r) 1is a well-defined map

for each of the three cohomology theories, 2-adic, de Rham, and
Betti. Proposition 6.1 shows that it is defined by an absolute
Hodge cycle (rather, the map H(X) + H(X)(n-r) that is xpk *x

on H' and zero otherwise is so defined). We take wr to be

ide* 2n-r Tr

Y (x) ®HT (X) HE (X) OH (X) (n-r) + H®(X) (n-r) 5 Q(-r) .
Clearly it is defined by an absolute Hodge cycle, and the Hodge-
Riemann bilinear relations (see Wells [1, 5.3)) show that it

defines a polarization on the real Hodge structure Hﬁ(x,m) for

each o : k= C .

Proposition 6.3. For any u € MorZH(Y,X) there exists a unigue

u' e MorZH(X,Y) such that
by luy, %) = by(y,u'x) , x € H'(X), y € H'(¥)

where ¢ and ¢ are the forms defined in (6.2); moreover,
X Y
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Tr(uu') = Tr(u'u) € @

Tr(uu') > o 1if u # o

Proof: The first part is obvious; the last assertion follows
from the fact that the wx and wY are positive forms for a
polarization in Eggm .

Note that the proposition shows that MorXH(X,X) is a

semisimple @-algebra (see 4.5).

Construction of the category of motives

Let Yk be the category of (smooth projective, not
necessarily connected) varieties over k . The category Cvy
is defined to have as objects symbols h(X) , one for each
X € ob(yk) , and as morphisms Hom(h(X),h(Y)) = MoriH(X,Y) .
There is a map Hom(Y,X) - Hom(h(X),h(Y)) sending a homomorphism
to the cohomology class of its graph which makes h into con-
travariant functor Vi > &Y .

Clearly g!k

h(X) ® h(Y) . There is a @-linear tensor structure on gyk

is a (@-linear category, and h(Xx J| Y¥) =

for which h(X) ® h(Y) = h(X x ¥) , the associativity constraint is
induced by (X x ¥) x Z » X x(¥YxZ) , the commutativity constraint
is induced by Y x X » X x Y , and the identity object is h{(point).

The false category of effective (or positive) motives

o

M; is defined to be the pseudo-abelian (Karoubian) envelope of

vy - Thus an object of &; is a pair (M,p) with M € Eyk and

p an idempotent in End(M) , and
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Hom( (M,p), (N,q)) = {f : M > N|fop = gof}/~ (6.3.1)
where f~0 if fop = 0 = gof . The rule

(M,p) & (N,q) = (M8N, p®qg)

. . +
defines a {-linear tensor structure on Mk , and

M > (M,id) : CVy > @; is a fully faithful functor which we use

to identify CVy with a subcategory of M; . With this

identification, (M,p) becomes the image of p : M + M . The

category Mt is pseudo-abelian: any decomposition of id into
M

a sum of pairwise orthogonal idempotents

.

. . + . .
with eiIMi = ldMi . The functor CV, - Mk is universal for

functors from CV, into pseudo-abelian categories.

For any X € ob(yk) , the projection maps pr : H(X) + BHE(X)
define an element of MorgH(X,x) = End(h(X)) . Corresponding to
the decomposition

s _ .0 1 2 .
ldh(X) =p +p +p +
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there is a decomposition (in &;)
- ho 2 2
h(X) = h°(X) + h“(X) + h"(X) + *** .

This grading of objects of v, extends in an obvious way to
objects of é; , and the Kiinneth formulas show that these gradings
are compatible with tensor products (and therefore satisfy (5.1la)).
Let L be the Lefschetz motive hz(Pl) . With the notations
of (I.1), H(L) = @(-1), whence it follows that Hom(M,N)
Hom(MSL,N8L) for any effective motives M and N . This means
that VI> V®L is a fully faithful functor and allows us to
invert L . The false category &k of motives 1is defined as
follows:
(6.4a) an object of &k is a pair (M,m) with
Meob(b._d;) and me Z;

N-m w8 Ny N > m,n

(6.4b) Hom((M,m), (N,n)) = Hom(M ® L
(for different N, these groups are canonically isomorphic) ;
(6.4c) composition of morphisms is induced by that in &; .

This category of motives is {@-linear and pseudo-abelian and

has a tensor structure
(M,m) & (N,n) = (M8N, m+n)

and grading
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We identify M; with a subcategory of &k by means of M ¢# (M,0).
The Tate motive T is L1 = (1,1) . We abbreviate MeT®"= (M, m)
by M({m) .

We shall see shortly that &k is a rigid abelian tensor
category, and End(l) = @ . It is not however a Tannakian category
because, for X € ob(yk) , rk(h(X)) is the Euler-Poincaré
characteristic, J (-1)F dim H*(X) , of X , which is not

necessarily positive. To remedy this we modify the commutativity

constraint as follows: let

P : MeNINOM bp=8y ", P : M

by the commutativity constraint on &k ; define a new commutativity

constraint by
P:MONINGOM, y=20ypS y = (-1)FSyTrs (6.4.1)

Then My with § replaced by ¥ , is the true category M, of

Proposition 6.5. The category My is a semisimple Tannakian
category over @ .

Proof: We first need a lemma.

Lemma 6.6. Let C be a (@-linear pseudo-abelian cateogry, and
let w : C~» YEEQ be a faithful @-linear functor. If every
indecomposable object ov C is simple, then C is a semisimple
abelian category and w is exact.

Proof: The existence of w shows that each object of C has
finite length and hence is a finite direct sum of simple objects.
For any map f : X - Y , Ker(f) is the largest subobject of X

on which f is zero, and Coker(f) is the largest guotient of
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Y such that the composite X + Y + Coker(f) is zero. The

rest of the proof is easy.

Proof of (6.5): We can replace M with the tensor subcategory
generated by a finite number of objects, and consequently we

can assume that there exists an embedding o : k& € . The
functor Hy ¢ M > YEEQ is faithful and @-linear. Let M be

an indecomposable motive, and let i : NG M be a nonzero simple
subobject of M . Clearly M is homogeneous, and after tensoring

it with a power of T we can assume that N and M are effective,

and therefore

M@ M =h'(X) with X eV, and

NeN' =hT(Y) with Y€V .
Let u : hf(Y) - h¥(X) be the morphism (3 g) and let u' = (z g)
be its transpose (see 6.3), As Tr(u'u) > 0 , and Tr(u'u) = Tr(ai) ,

we see that ai # 0 . It is therefore an automorphism of N,

and (ai)_1 a: M+ N projects M on N . As M is indecomposable,
this shows that M = N , and M is simple. The lemma can therefore
be applied, and shows that My is a semisimple {@-linear abelian

tensor category. It remains to show that it is rigid. Let X and Y

be varieties of pure dimension m and n respectively. Then

Hom(h(Y),h(X) (m-n))

_ m _ m
Hom(h (X) ,h(Y)) = CAH(XXY) = CAH(YXX)

i

Hom(h(¥) (n) ,h(X) (m})
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The functor h(X) = h(X)’ € h(x)(m) extends to a fully faith-
ful contravariant functor Mw Mv P M- gk , and we set
Hom(M,N) = M & N . It is straightforward now to check that M
is Tannakian (especially if one applies (1.20)).

The following theorem summarizes what we have (essentially)

shown about Ek .

Theorem 6.7. (a) Let w be the grading on M then (gk,w,T)
is a Tate triple over Q .

(b) There is a contravariant functor h : Vi > M every effective
motive is the image (h(X),p) of an idempotent p € End{h(X)) for
some X € ob(yk) ; every motive is of the form M(n) for some
effective M and some n € ZZ.

(c¢) For all varieties X,Y with X of pure dimension m ,
cggs‘r(x x¥) = Hom(h(X) (r),h(¥)(s)) ; in particular, Cp.(X x ¥) =
Hom(h(X) ,h(Y)) ; morphisms of motives can be expressed in terms of
absolute Hodge cycles on varieties by means of (6.3.1) and (6.4b).
(d) The constraints on ﬂk have an obvious definition, except
that the obvious commutativity constraint has to be modified by

(6.4.1).

(e) For varieties X and Y ,

h(X J| ¥) = h(X) & h(Y)
h(X x ¥ ) = h(X) 8 h(Y)
h(x)¥ = h(X)(m), if X is of pure dimension m.
(f) The functors H H and Hc define fibre functors on M, . :

2’ DR’ k

these fibre functors define morphisms of Tate triples, M > zﬂ'TDR’TB
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(see (5.2b)); in particular H(T) = @(1) .
(g) When k is embeddable in T , Hom(M,N) is the vector

space of families of maps

£, ¢ Hz(ﬁ) > Hz(ﬁ)

£ : Hpp(M) > Hpyp (N)

DR DR
such that fDR preserves the Hodge filtration, Y(fg) = fz for all
Yy €T, and for any o : k< T there exists a map
f0 : HO(M) > HU(N) agreeing with f2 and fDR under the comparison
isomorphisms.

(h) The category M is semisimple.
(i) There exists a polarization on M for which w(hT(X)) consists

of the forms defined in (6.2).

Some calculations

According to (6.7g), to define a map M + N of motives it
suffices to give a procedure for defining a map of cohomology groups
H(M) » H(N) that works (compatibly) for all three theories: Betti,
deRham, and %-adic. The map will be an isomorphism if its
realization in one theory is an isomorphism.

Let G be a finite group acting on a variety. The group

algebra Q@QI[G] acts on h(X) , and we define h(X)G to be the

1

motive (h(X),p) where p is the idempotent (ord G) ~Ig .

Note that H(h(X)G) = H(X)G .
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Proposition 6.8. Assume that the finite group G acts freely
on X , so that X/G is also smooth; then h(X/G) = h(X)G .
Proof: Since cohomology is functorial, there exists a map
H(X/G) + H(X) whose image lies in H(x)G = H(h(X)G) . The

r+s

Hochschild-Serre spectral sequence HY(G,H%(X)) == H (X/G)
shows that the map H(X/G) + H(X)G is an isomorphism for, say
the f2-adic cohomology, because Hr(G,V) =0, r>0 , if Vv is

a vector space over a field of characteristic zero.

Remark 6.9. More cgenerally, if £ : Y + X 1is a map of finite
(generic) degree n between connected varieties of the same
dimension, then the composite H(X) E: H(Y) £5 H(X) is multi-
plication by n ; there therefore exist maps h(X) - h(Y) + h(X)

with composite n , and h(X) is a direct summand of h(Y) .

Proposition 6.10. Let E be a vector bundle of rank m+l over a
variety X and let p : P(E) - X be the associated projective
bundle; then h(P(E)) = h(X) & h(X)(~1) &+++0h(X) (-m) .

Proof: Let vy be the class in HZ(P(E))(l) of the canonical line
bundle on P(E) , and let p* : H(X) + H(P(E)) be the map induced

by p . The map
(Corennrcy) b 1 p*(c)) Yo @ -+ 8 HI(X) (-m) > HP(E))

has the requisite properties.

Proposition 6.11. Let Y be a smooth closed subvariety of codimension

¢ in the variety X , and let X' be the variety obtained from X
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by blowing up Y ; then there is an exact sequence
0 +~ h(Y) (-c) =~ h(X) @ h(¥Y')(-1) ~ h(X") ~ 0

where Y' is the inverse image of Y .

Proof: From the Gysin sequences

cee > B2 (y) (=) » HE(K) > BE(X-Y) o+ eeo
' ‘ I
cee > BET2(Y0) (1) > BE(XO) > HO(X'SY) e

we obtain a long exact sequence
oo > WET2C(y) (mo) » HE(X) @ BETA(Y') (<1) + HT(X') » oeer .

But Y' is a projective bundle over Y , and so Hr_zc(Y)(—c) >

Hr_z(Y')(—l) is injective. Therefore there are exact sequences
0 » E2%(y) (<c) » HE(X) ® BT 2(¥') (-1) » HT(X') > 0,
which can be rewritten as
0 + H(Y)(-c) + H(X) & H(Y')(-1) > H(X'} ~ 0 .

We have constructed a sequence of motives, which is exact because

the cohomology functors are faithful and exact.
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Corollary 6.12. With the notations of the proposition,

c-1
h(X') = h{X) & @& h(Y)(-r) .
r=1
c-1
Proof: (6.10) shows that h(Y') = @& h(Y)(r) .
r=0
Proposition 6.13. If X 4is an abelian variety, then h(X) = A(hl(x)).

Proof: Cup-product defines a map A(Hl(x)) + H(X) which, for
the Betti cohomology say, is known to be an isomorphism. (See

Mumford [1,I.1}].)

Proposition 6.14. If X 1is a curve with Jacobian J , then
h(x) =1ehl(3) oL .

Proof: The map X + J (well-defined up to translation) defines

an isomorphism Hl(J) + Hl(x] .

Proposition 6.15. Let X be a unirational variety of dimension

d<3 over an algebraically closed field; then

(d=1) h(x) =1 8L ;
(d=2) h(X) =1 & rL ® L%, some r € N ;
(d=3) h(X) =1 ® rL ® h'(a)(-1) 8 rt.? 8 1.3 , some r e N ,

where A is an abelian variety.
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Proof: We prove the proposition only for d=3 . According to

the resolution theorem of Abhyankar [1], there exist maps

with v surjective of finite degree and u a composite of

2 3

blowing-ups. We know hﬂP3) =16L6&L"®L (special case of

(6.10)). When a point is blown up, a motive L & L2 is added,
and when a curve Y is blown up, a motive L & hl(Y)(—l) ] L2 is
added. Therefore

h(X') =1 @ sL ® M(-1) @ sL?® L3

where M is a sum of motives of the form hl(Y) , Y a curve.

A direct summand of such an M is of the form hl(A) for A an

abelian variety (see (6.21) below). As h(X) is a direct summand

of h(X') (see (6.9)) and Poincaré duality shows that the multiples
2

of L and L3 occurring in h(X) are the same as those of L

and 1 respectively the proof is complete.

Proposition 6.16. Let Xg denote the Fermat hypersurface of

dimension n and degree d

d d =
TSt Tl + e 4+ T =0 .

Then

n-1
d

R (x3) @ a h@™ = Rl x x)W e (a-1)n™72(x272) (-1
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where ug o the group of dth roots of 1 , acts on Xg_l X Xé
according to
pltgser=: n;so:sl:sz) = (tO:---:tn_l:ctn;so:slzzsz)

Proof: See Shioda-Katsura [l1, 2.5].

Artin Motives

Let yi be the category of zero-dimensional varieties over

k , and let CYE be the image of yﬁ in M. The Tannakian
subcategory g; of gk generated by the objects of Cy; is
called the category of (E.) Artin motives.

For any X 1in ob(yg) , X(k) 4is a finite set on which T

X (k)

acts continuously. Thus Q is a finite-dimensional continuous

representation of T . If we regard T , in the obvious way, as

XK ¢ Repy (T) -

a (constant, pro-finite) affine group scheme over k ,

For X, Y € ob(Vp) ,

mx(i)xy(i) r k

Hom(h(x) ,h(¥)) & g (x x ¥) = )T = mom (@™, "1

Thus h(X) QX(k) : g!; + Regm(P) is fully faithful, and Grothendieck's
formulation of Galois theory shows that it is essentially surjective.
Therefore gyi is abelian and g§ = gy; . We have shown:

Proposition 6.17. The category of Artin motives g? = gy? ; the

T X K
x(K)

functor h(X)H Q@ defines an equivalence of tensor categories

§§ 3 Regm(F) .

Remark 6.18. Let M be an Artin motive, and regard M as an
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object of Repm(F). Then

HG(M) = M (underlying vector space) for any o : k& T ;
H[_(F{) = M 8;D,, as a T -module;

=T

HDR(M) = (M® k)Y .

]
Note that, if M = h(X) where X = spec A , then

= XK g =T _
Hpp{M) = (@ emk) = (A Qk) =A.
Remark 6.19. The proposition shows that gﬁ is equivalent to

the category of sheaves of finite-dimensional @ vector spaces

on the étale site spec(k)et .

Effective motives of degree 1

A (@Q-rational Hodge structure is a finite-dimensional vector

space V over @ together with a real Hodge structure on V @ R
whose weight filtration is defined over @ . Let gggm be the
category of Q@-rational Hodge structures. A polarization on an
object V of Eggm is bilinear pairing ¢ :V x V » @(-n) such
that ¢ @ R is a polarization on the real Hodge structure V @ R .
Let Egggk be the category of abelian varieties up to isogeny
over k . The following theorem summarizes part of the analytic

theory of abelian varieties.

. R .
Theorem 6.20. (Riemann) The functox HB : Isabm - Hodm is fully

faithful; the essential image consists of polarizable Hodge structures

of weight 1.
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Let E;l be the pseudo-abelian subcategory of gk
generated by motives of the form hl(x) for X a geometrically
connected curve; according to (6.14), M;l can also be described
as the category generated by motives of the form hl(J) for J

a Jacobian.

Proposition 6.21. (a) The functor hl : Isabk -+ Ek factors

through le and defines an equivalence of categories,

~ .+
Isabk + Mk .
1 +1

(b) The functor H™ : My Hodm is fully faithful; its
essential image consists of polarizable Hodge structures of weight
1.

Proof: Every object of Isabk is a direct summand of a Jacobian,

which shows that hl factors through !;1 . Assume, for simplicity,

that k 1is algebraically closed. Then,for any A,B. € ob(Isabk) P
Hom(B,A)  Hom(h' (a), n'(B))c Hom(n_(a) ,H_(B)) ,

and (6.20) shows that Hom(B,A) = Hom(Ho(A),HU(B)) . Thus hl

is fully faithful and (as Isabk is abelian) essentially surjective.

This proves (a), and (b) follows from (a) and (6.20).

The motivic Galois group

Let k be a field that is embeddable in € . For any
g : k= € , we define G(o) = Aute(HB) . Thus G(o) is an affine
group scheme over @ , and Hy defines an equivalence of tensor
categories M > Repm(G(o)) . Because G(og) plays the same role
for M, as T = Gal(k/k) plays for gﬁ , it is called the

motivic Galois group.
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Proposition 6.22. (a) If k is algebraically closed, then

G(o) is a connected pro-reductive affine group scheme over ¢ .
(b) Let kck' be algebraically closed fields, let o' : k'~ 1T ,
and let ¢ = o'|k . The homomorphism G(¢') + G(o) induced by

Mk > !k' is faithfully flat: if k has infinite transcendence
degree over @ , then G(¢') + G(g) 1is an isomorphism.

Proof: (a) Let X € ob(gk) , and let gx be the abelian tensor

subcategory of gk generated by X, XY, T, and T . According

to (I 3.4), GX df QEE@(H0|QX) is the smallest subgroup of
Aut(Hc(X)) X Gm such that (GX)E contains the image of the
homomorphism p : mmm > Aut(Ho(X,m)) X mmm defined by the Hodge
structure on HG(X) . As Im(u) 1is connected, so also is Gy -

As Cy is semisimple (see (6.5)) , Gy is a reductive group (2.23).
Therefore G = lim Gx is connected and pro-reductive.

<

(b) According to (I 2.9), Mo~ M, is fully faithful, and so
(2.29) shows that G(o') + G(o) . When k has infinite
transcendence degree over (@ , gk - gk' is essentially surjective,

and so G(c') ¥ G(o) .

Now let k be arbitrary, and fix an embedding o : k& C .
The inclusion gﬁ > M defines a homomorphism = : G(g) - I' because
. ® o _ .
I' = Aut (H0|gk) (see (6.17)), and the functor M - Mp defines

a homomorphism i : c°(o) + G(o) where G°(0) af Aut®(Ho]gi) .

Proposition 6.23. (a) The sequence

1> ) % oy Ir+1

is exact.
(b) The identity component of G(o) is c°(a) .
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(¢) For any 1 €T , 710 =§gE®(HU,HTU), regarding H; and

H , as functors on Mg .

(d) For any prime & , there is a canonical continuous homo-
morphism spy r - G(c)(ml) such that mesp, = ia .

Proof: (a) As gﬁ > M is fully faithful, 7 1is surjective
(2.29). To show that i is injective, it suffices to show that

every motive h(X) , X € Vi , is a subguotient of a motive h(x")

k
for some X' € V) ; but X has a model X, over a finite extension
k' of k , and we can take X' = Resk'/kxo . The exactness of

G(o) 1is a special case of (c) .

(b) This is an immediate consequence of (6.22a) and (a).

() Let M, N € ob(M) . Then Hom(M,N) € ob(Repy () , and so

we can regard it as an Artin motive over k. There is a canonical

map of motives Hom(M,N)<— Hom(M,N) giving rise to
H, (Hom (M,§)) = Hom(M,§) 225 Hom(u (M), H (M) = H_(Hom(M,N)) .

Let T €T ; then HO(M) = HU(M) = HTO(M) = HTU(M) and, for
f € Hom(M,N), Hc(f) = HTO(Tf) .
Let g € G(R) ; for any f : M+ N in Mo there is a

commutative diagram

Iy
H_(M,R) —> H_(M,R)
H, (£) Hy (£)

Iy
HG(N,R) _— HO(N,R)

Let T = m(g), so that g acts on Hom(M,N)c Hom(M,N) as T .

Then for any £ : M » N in Mg




216

_ 9y _ _
Hg(M,R) e 4 HU(M,R) = HTG(M'R)
H_(f) H (17l H__(f)
o] ag T0
S g _ ) _
HO(N,R) N Hg(N,R) HTG(N'R)

commutes . The diagram shows that dy 3 Ho(ﬁ,R) - HTG(ﬁ,R)

depends only on M as an object of gi . We observed in the
proof of (a) above that Mﬁ is generated by motives of the

form M, M e M, . Thus g defines an element of EQEQ(HU'HTGJ(R)'
where Hg and H , are to be regarded as functors on ﬂi . We
have defined a map ﬂ_l(T) d EEEG(HG'HTU) , and it is easy to see
that it is surjective.

(d) After (c), we have to find a canonical element of

Home(Hz(cM), HQ(TGM)) depending functorially on M € Mg . Extend
T to an automorphism T of € . For any variety X over k .

there is a T Y-linear isomorphism oX « ToX which induces an

isomorphism T : Hz(cx) 3 HQ(TOX) .

The "espoir" (Deligne [2, 0.10) that every Hodge cycle is
absolutely Hodge has a particularly elegant formulation in terms

of motives.

Conjecture 6.24. For any algebraically closed field k and
embedding o : k& T , the functor H, : Ek + Hodm is fully
faithful.

The functor is obviously faithful. There is no description,

not even conjectural, for the essential image of H,
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Motives of abelian varieties

v
k

motives of abelian varieties and Artin motives. The main theorem

Let Ma be the Tannakian subcategory of gk generated by

of I has the following restatement.

Theorem 6.25. For any algebraically closed field k and

. av .
embedding o : k<& € , the functor Ho : gk -+ Hodm is fully
faithful.

Proposition 6.26. The motive h(X) € ob(M}") if

(a) X is a curve;
(b) X 1is a unirational variety of dimension <3 ;
(c) X 1is a Fermat hypersurface:;

(d) X

is a K3-surface

Before proving this, we note the following consequence.

Corollary 6.27. Every Hodge cycle on a variety that is a
product of abelian varieties, zero-dimensional varieties, and

varieties of type (a), (b), (c) and (d), is absolutely Hodge.

Proof of 6.26. Cases (a) and (b) follow immediately from (6.14)
and (6.15), and (c) follows by induction (on n) from (6.16). 1In
fact one does not need the full strength of (6.16). There is

a rational map

+
m—ey xEY¥S

s
n
[N

(Rpzorixpyg)y (Yoreeiyg ) — (K ¥y 7 tX Y ) TEX 1Y 3 m s uEX 1Y)

where € 1is a primitive 2mth root of 1 . The map is not defined

on the subvariety Y : x =0 . On blowing up Xg x Xz

r+l = Ys+1
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along the nonsingular centre Y , one obtains maps

By induction, we can assume that the motives or Xg, Xg, and

Y(:Xé-l x Xg-l) are in g;v . Corollary (6.12) now shows that

r+s

h(ZgrS) € ob(giv) and (6.9) that h(X3 ") € ob(Miv) .

For (d), we first note that the proposition is obvious if
X is a Kummer surface, for then x = i/<0> where A 1is an
abelian variety A with its 16 points of order <2 blown up and
o induces at+> -aon A .

Next consider an arbitrary K3-surface X , and fix a projective

embedding of X . Then

_ 2 2
h(X) = h(®") @ h (X)prim

av

and so it suffices to show that hz(X) is in M . We can

prim
assume k = € . It is known (Kuga-Shimura [l1], Deligne [1, 6.51])
that there is a smooth connected variety S over € and families
£f:Y¥Y+S, a:A>S of polarized K3-surfaces and abelian varieties
respectively parametrized by S having the following properties:

£ -1

(a) for some o€ S, ¥ =f

° (0) 1is X together with its

given polarization;
(b) for some 1 € S , Yl is a polarized Kummer surface;

(c) there is an inclusion u : sz*m(l) — End(Rla*Q)

prim
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ccmpatible with the Hodge filtrations.

The map u Hé(x)(l) < End(Hl(Ao,Q)) is therefore defined

(o} prim
by a Hodge cycle, and it remains to show that it is defined by

an absolutely Hodge cycle. But the initial remark shows that ug .
being a Hodge cycle on a product of Kummer and abelian surfaces,

is absolutely Hodge, and principle B (I2.12) completes the proof.

Motives of abelian varieties of potential CM-type

An abelian variety A over k 1is said to be of potential
CM-type if it becomes of CM-type over an extension of k . Let
A be such an abelian variety defined over @ , and let MT(A) be

the Mumford-Tate group of Ap (see I.5). Since Am is of CM-

type, MT(A) is a torus, and we let LcC be a finite Galois
extension of (@ splitting MT(A) . Let EQ,L be the Tannakian

subcategory of EQ generated by A , the Tate motive, and the Artin
b

motives split by 12 , and let A bpe affine group scheme associated

with this Tannakian category and the fibre functor Hp

Proposition 6.28. There is an exact sequence of affine group schemes

1> nr(a) 3¢ ¥ Galt®/p > 1 .

. 5 . :
Proof: Let gg be the image of gg in Em ; then MT(A) is

the affine group scheme associated with gé , and so the above

sequence is a subsequence of the sequence in (6.23a).

Remark 6.29. If we identify MT(A) with the subgroup of

-1

Aut(Hé(A)) , then (as in 6.23c) 7 ~ (1) becomes identified

with the MT(A)-torsor whose R-points, for any @-algebra R , are the
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R-linear isomorphisms a : Hl(Am,R) -+ Hl(TAm,R) such that

a(s) = trs for all (absolute) Hodge cycles on A@ . We can also
identify MT(A) with a subgroup of Aut(H?(A)) and then it
1

becomes more natural to identify = ~ (1) with the torsor of
R-linear isomorphisms a’ : Hl(AQ,R) > Hl(TAm,R) preserving
Hodge cycles.

On passing to the inverse limit over all A and L , we

obtain an exact sequence
1+s°+ s+ cal(l/@ » 1

with s° and s respectively the connected Serre group and the
Serre group. This sequence plays an important role in the next

three articles.

Appendix: Terminology from non-abelian cohomology

We review some definitions from Giraud [1l].

Fibred categories

Let & : F > A be a functor. For any object U of A we

write F, for the category whose objects are those F in F

U
such that o(F) = U and whose morphisms are those £ such that
a(f) = idU . For any morphism a : a(Fl) + a(F,) , we write

Homa(Fl,Fz) for the set of £ : Fl + F

A morphism f : Fl > F2 in F 1is said to be cartesian, and Fl

2 such that of(f) = a .

is said to be the inverse image a(f)*F2 of F2 relative to

o(f) , if, for any F' € Ea(Fl) and h € Homu(f)(F +Fy) , there
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is a unique g € Homid(F',Fl) such that fg=h:

We say that o : F > A 1is a fibered category if

(a) for any morphism a : U, > U in A and F, € ob(F_. ) ,
1 2 = 2 -U2

the inverse image a*(Fz) of F, exists:

(b) the composite of two cartesian morphisms is cartesian.
(Existence and transitivity of inverse images.) Then a* can be
made into a functor EUZ + EUl , and (ab)* is canonically
isomorphic to b*a¥

Let o : F+> A and a' : F' + A be fibred categories over
A, and let 8 : F > F' be a functor such that a'<f = o: one says
B 1is cartesian if it maps cartesian morphisms to cartesian

morphisms.

Stacks (Champs)

Let a : F ~» AffS be a fibred category where Affs is
the category of affine schemes over S = spec R . We endow AffS

with the f.p.q.c. topology. Let a : T' - T be a faithfully

flat map of affine S-schemes and let F € ob(Fqe) 5

datum on F relative to a 1is an isomorphism ¢ : pI(F) + p3(F)

a descent

such that p§1(¢) = p§2(¢) p51(¢) where Py and p, are the
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-

projections T" = T' x_ T' 5 T' and the pij are the

T

projections T'" = T' Xp T' xg T ER Xn T' . With an
obvious notion of morphism, the pairs (F,¢) form a category
Des(T'/T) . There is a functor Fp » Des(T'/T) under which
F € ob(F;) maps to (a* (") ,¢) where ¢ is the canonical
morphism pia*(F) =z (pla)*F = (pza)*F ® p%a*F . The fibred
category o : F -+ §££S is a stack if, for all faithfully flat
maps a : T' + T , Fqp > Des(T'/T) is an equivalence of categories.

For example, let a« : MOD ~» éfis be the fibred category such

that MOD is the category of finitely presented F(T,OT)—modules;

T
descent theory shows that this is a stack (Waterhouse [1,17.2],
Bourbaki [2,I.3.6]). Similarly, there is a stack PROJ =+ Affs

for which PROJ, is the category of finitely generated projective
P(T,OT)—modules (ibid.) and a stack AFF - AffS for which

AFFT = AffT .

Gerbs (Gerbes)

A stack G -~ §££S is a gerb if

(a) each fibre Gp is a groupoid (i.e., all morphisms in
Gy are isomorphisms);

(b) there is a faithfully flat map T + S such that e
is nonempty;

(¢) any two objects of a fibre Gp are locally isomorphic
(i.e., their inverse images relative to some faithfully flat map
T' + T are isomorphic).

By a morphism of gerbs over Aff, we mean a cartesian functor.

A gerb G ~» AffS is said to be neutral (or trivial) if Gg is

nonempty.
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Let F be a sheaf of groups on S for the f.p.q.c.
topology. The fibred category TORS(F) -+ éggs for which
TORS(F)T is the category 29£§T(F) of right F-torsors on
T is a neutral gerb. Conversely, let G be a neutral gerb
and let Q € Ob(E5)7 then F = Aut(Q) 1is a sheaf of groups
on éﬁﬁs and G -~ TORS(F) , P& EEEET (a*Q,P) (for a : T = S)

is an equivalence of gerbs.
Bands (Liens)

Let F and G be sheaves of groups for the f.p.g.c.

ad

topology on S , and let G be the quotient sheaf G/Z where

2 is the centre of G . The action of G2 on G by conjugation

ad

induces an action of G on the sheaf 1Isom(F,G) and we set

Isex(F,G) = F(S,Gad\Isom(F,G)) . as G2 acts faithfully on

Isom(F,G) ,

Isex(F,G) = lim Ker(Gad(T)\Isom(FlT,GlT) s ¢ X T)\Isom(F|T X T,G|T X T))
>

where the limit is over all T + S faithfully flat and affine.
A band B on S 1is defined by a triple (S',G,¢) where
S' is an affine S-scheme, faithfully flat over S , G is a sheaf
of groups on S' , and ¢ € Isex(pr, ng) is such that
P3; (9) = p%,(9)p%,(¢) . (As before, the p; and pjj are the
various projection maps S" # S' and Ss'™ F s"). If T is also
a faithfully flat affine S-scheme, and a : T + S' is an S-morphism,
then we do not distinguish between the bands defined by (S',G,¢)
and (T,a*(G),(a x a)*(¢)) . Let B, and B, be the bands defined

by (S‘,G1,¢l) and (S',G2,¢2): an isomorphism By 3 B, is an
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element ¢ € Isex(G;,G,) such that p§(¢)“¢l= ¢2°p;(w) .

If G 1is a sheaf of groups on S , we write B(G) for the
band defined by (S,G,id). One shows that Isom(B(Gl),B(GZ)) =
Isex(Gl,Gz) . Thus B(Gl) and B(Gz) are isomorphic if and
only if Gy is an inner form of Gy i.e. G, becomes isomorphic
to Gl on some faithfully flat S-scheme T , and the class of
G, in Hl(S,égE(Gl)) comes from Hl(S,Gid) . When G is

2
Isom(Gl,Gz).

commutative, then Isom(B(Gl),B(Gz)) = Isex(Gl,Gz)
and we usually do not distinguish B(Gz) from G, -

The centre Z(B) of the band B defined by (S',G,?%) 1is
defined by (S',Z,¢|piz) where 2 is the centre of G . The
above remark shows that ¢|pfz lifts to an element
¢, € Isom(piz, pﬁZ) , and one checks immediately that pgl(¢1)
P3,(%) P3,(¢;) . Thus (s’,Z,¢|piZ) arises from a sheaf of
groups on S , which we identify with Z(B)

Let G be a gerb on éﬁES . By definition, there exists
an object Q € gs. for some S' + S faithfully flat and affine.
Let G = Aut(Q); it is a sheaf of groups on S' . Again by
definition, p§Q and p3Q are locally isomorphic on §"“, and
the locally-defined isomorphisms determine an element
¢ € Isex(p{(G),pﬁ(G)) . The triple (S',G,¢) defines a band

B which is uniquely determined up to a unique jisomorphism.

This band B is called the band associated with the gerb G ,

and G 1is said to be bound by B . For example, the gerb

TORS (G) is bound by B(G)
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A band B 1is said to be affine (or algebraic) if it can
be defined by a triple (S',G,¢) with G an affine (or algebraic)

group scheme over g'. A gerb is said to be affine (or algebraic)

if it is bound by an affine (or algebraic) band.

Cohomology

Let B be a band. Two gerbs gl and EZ bound by B are
said to be B-equivalent if there is an isomorphism m : 91 + G,
with the following property: for some triple (S',G,¢) defining
B there is an object Q € Els'
G * Aut(Q) 3 Aut(m(Q)) ¥ G defined by m is equal to id in

such that the automorphism

Isex(G,G) . The cohomology set H2(S,B) is defined to be the set
of B-equivalence classes of gerbs bound by B . If 2 is the
centre of B , then HZ(S,Z) is equal to the cohomology group of
Z in the usual sense of the f.p.qg.c. topology on S , and
either H2(S,B) is empty or HZ(S,Z) acts simply transitively

on it (Giraud [1, IV. 3.3.3]).

Proposition: Let S = spec k,k a field, and let G be an
affine algebraic gerb on S ; then there is a finite field extension

k' of k such that G , S' = spec k' , is nonempty.

SI
Proof: By assumption, the band B of G is defined by a triple
(s',G,¢) with G of finite type over S' . Let §S' = spec R';
R' «can be replaced by a finitely generated subalgebra, and then

by a quotient modulo a maximal ideal, and so we may suppose S' =

speck' where k' 1is a finite field extension of k . We shall
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show that the gerbs G and TORS (G) become B-equivalent

over some finite field extension of k' . The statement
preceding the proposition shows we have to prove that an element
of HZ(S',Z) , 72 the centre of B , is killed by a finite

field extension of k' . But this assertion is obvious for
elements of Hl(S‘,Z) and is easy to prove for elements of

v v
the Cech groups HY(s',Z) , and so the exact sequence
v v
0 - n2(s',z) - H2(s',2) » HL(S',HN(2))

completes the proof. (See Saavedra [1, III 3.1] for more details.)

Note: (Added July, 1981): It seems likely that the final
question in (3.5) can be shown to have a positive answer when

k has characteristic zero. 1In particular this would show that
any rigid abelian tensor category C with End(l) = k having

a fibre functor with values in some extension of k is Tannakian,

provided k 1is a field of characteristic zero.
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Introduction: 1In this article we give a detailed description

of Langlands's construction of his Taniyama group. The first
section reviews the definition and properties of the Serre

group, and the following section discusses extensions of Galois
groups by the Serre group. The construction itself is carried
out in the third section, which alsc contains additional material
required for V .

We mention that in [1] Langlands is using the opposite sign
convention for the reciprocity law in class field theory from us
and hence the opposite notion of the Weil group (although his
statement at the bottom of p. 224 is misleading on this point).
Thus, there are many sign differences between his article and
ours.

Notation: Vector spaces are finite-dimensional, number fields
are of finite degree over (@ (and usually contained in € ),
and @ is the algebraic closure of @ in € . For L a number

b(: @ denotes its abelian closure. For the Weil

field, 1?
group, we follow the notations of Tate [2]. 1In particular,
for a topological group T ., I denotes the closure of the

commutator subgroup of T and Fab = I‘/I‘c .
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§1. The Serre group.

Let L CCT be a finite extension of @, let T be the

set of embeddings of L into €@ , and write L for ResL/mGm .
Any p € Gal(Q/Q) defines an element [p] of T , which may
be regarded as a character of L . Then T 1is a basis for

X* (L) . An element o of Gal(Q/@) acts on X* (L) by
U(Xbp[o]) = pr[op] = Zbc_l [p] . The quotient of X by the

Zariski closure of any sufficiently small arithmetic subgroup

has character group X*(L*) n (¥° ® ¥ ) where

YO

{x € X* (L") @ Qlox = x . all ¢ € Gal(@B/@)}

L

Y

{x e X* (L) ® @lcx -x, all ¢ of the form ¢ = oro

(Serre [1, II-31, Cor.l]l). Thus this quotient is independent of
L

the arithmetic subgroup; it is called the Serre group S of
L (or, sometimes, the connected Serre group). One checks easily

that X*(SL) is the subgroup of X*(Lx) of x satisfying

(1.1) (0-1) (1+1) x= 0 = (1+1l)(c-1)x , all o € Gal(@ /@) .

There is a canonical homomorphism h = hL: $ =+ %ﬁ and hence
. L

corresponding homemorphisms Wy Gm > S;{ and W = uL: Gm - SE

They determine the following maps on the character groups:

X*(n) = (zb[p] k¥ (by,b): X*(S") —> x*(8) =z @ Z)
X*(wy) = (Zb [p] +> - by - b))

X*(p) = (pr[p] — by)
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Note that Wy is defined over @ . The pair (SL,uL)

universal: for any (@-rational torus T that is split over

is

L and cocharacter u of T satisfying (1l.1) there is a

L

p
unique Q-rational homomorphism S —*5 7 such that pu oy =

In particular there are no nontrivial automorphisms of (57 ,u")

For CTDOL'D LD Q@ and L' of finite degree over

L)
@ , the norm map induces a homomorphism SL > SL sending
i
hL to hL . The (connected) Serre group S 1is defined to be

the pro-algebraic group 1lim s . There is a canonical
“

and corresponding

IR

homomorphism h = h = lim h': s+ s
can pa

cocharacter u = Vean® Gm - SE . For any L , SL is the

largest quotient of S that splits over L

We review the properties of S that we shall need to use.

(1.2). The topology induced on s® (@) by the embedding
st(g) < SL(me) is the discrete topology:; thus st is

closed in sV(mf) . rThis is a consequence of Chevalley's

theorem, which says that any arithmetic subgroup of the Q-rational

points of a torus is open relative to the adelic topology, because

the subgroup {1} of st(p) is arithmetic.

(1.3). Make Gal(ﬁ/@) act on the group A of locally constant

functions Gal(Q/Q) -+ % by transport of structure: thus

1

{(oA) (p) = A{¢ "p) . The map x*(SL) + A that sends x = pr[p]

to the function P > bp identifies X*(SL) with the subset
AL of A comprising those functions that are constant on

left cosets of Gal(@/L) in Gal(RQ/@®) and satisfy (1.1). On
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passing to the limit over L , we find that X*(S) becomes

identified with the subgroup of A of functions satisfying (1.1).

(1.4). Let @™ be the union of all subfields of @ of CM-type;
it is the largest subfield on which 1 and o commute for all
0 € Gal(R/®) . The condition (1.1) is equivalent to the following

conditions:

(L.1") A is fixed by Gal(@/@°™) and A(10) + (o)
is independent of ¢

L

In particular, for a given L , A AF where F =1 QO is

the maximal CM-subfield of L (or is @) . Since obviously

AE AT , they must be equal: s % gF |

(1.5). (Deligne) Let F be a CM-field with maximal real
subfield Fo - There is an exact commutative diagram (of algebraic

groups)

; —= 5 s /hw (@)

1 —> Ker —> F
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To prove this it suffices to show that the square at bottom-right
commutes, and the top horizontal arrow is injective, but both
of these are easily seen on the character groups. Thus there

is an exact sequence

1 — Fy — FxQ — sF — 1

We can deduce that, for any field k o> @ , there is an injection
Hl(k,SF) —> Br(F0 ® k) where Br denotes the Brauer group.
It follows that, when k is a number field, the Hasse principle
1 F

(k_.,S57) 1is

holds for Hl(k,SF): the map Hl(k,SF)e- ® H v

injective. The remark (1.4) shows that this is also true with-

out assuming F to be a CM-field.

(1.6) Let A € X*¥(S) and let TA be the @Q-rational torus
such that X*(T,) is the Gal (/@) -submodule of X*(S) generated
by A . Thus TA is a quotient of S and hcan defines a

homomorphism h: § * TA . For any Q-rational representation of

TA’ Tk <> GL(V), (V,h) 1is a Q-rational Hodge structure with
weight n = -(A(1) +A (1)) and Mumford-Tate group MT(V,h) = TA
(See II). The condition (1l.1') shows that 1 acts as -1

on Rer(A' > A'(L)+xa'{1): X*(T,) > Z); thus (T /vy (8)) (R)
is compact, and (V,h) 1is polarizable (Deligne [1l,2.8]). It
follows easily that S = lim MT(V,h) where the limit is over
the Q@-rational polarizable Hodge structures (V,h) of CM-type.
In other words, 8 1is the group associated with the Tannakian

category of Hodge structures of this type.
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(1.7) (Serre). It is an easy combinatorial exercise to show
that X*(S) 1is generated by functions A such that (o)

is 0 or 1 and Afc) + A{(wo) =1 . If A 1is of this type
S GL(V) of T

then, for any representation T (V,h)

A A
is a Q-rational polarizable Hodge structure of CM-type and
weight -1; it therefore corresponds to an abelian variety. Thus

S = lim MT (A) where the limit is over abelian varieties (over Q)
of CM-type. 1In other words, the Tannakian category of Q-rational
polarizable Hodge structures of CM-type is generated by those

arising from abelian varieties.

(1.8) If L is Galois over @ , then Gal(L/@) acts on
L = ReSL/me and this action induces an action on the quotient
s . Thus there is an action of Gal(@/@) on the @-rational

pro-algebraic group S . It is important to distinguish carefully
between the two natural actions of Gal(Q/@) on S(@) , the

first of which arises from the (algebraic) action of Gal (©/Q0)

on S and the second from the (Galois) action of Gal (Q/R)

on @ . See Langlands [1l, p.220].
2. Extensions of Gal(a/m) by S

By an extension of Gal(Q@/@) by S we shall mean a

projective system

1 —> s¥ —— ' — i —— 1
J,NL'/L j/ l can (L L)
L L ab
1 — 8 —— — cal®/m —— 1

P
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of extensions of Q-rational pro-algebraic groups; the indexing
set is all finite Galois extensions of @ contained in Q@ .
The group Gal(Lab/Q) is to be regarded as a pro-system of
finite constant algebraic groups in the obvious way, and the
action of Gal(Lab/Q) on SL determined by the extension is
to be the algebraic action described in (1.8). On passing

to the limit we obtain an extension
1 — s — 1 — Gal/®) —> 1

We shall always assume there to be a splitting of the extension
over mf , i.e., a compatible family of continuous homomorphic
sections SpL: Gal(Lab/m) +—Ef% mf). In the limit this defines
a continuous homomorphism sp: Gal(D/@) - Ejihf)

Fix an L . The general theory of affine group schemes
(Demazure-Gabriel [1,V.2]) shows that, for some finite quotient

%' of 9 = Gal(Lab/Q) P 3} will be the pull-back of an extension

of g by sk

|
l

J
i

B s
=g <R

Since st splits over L , Hilbert's theorem 90 shows that

1
H (L,SL) = 0 , and so E}(L)—a'%' is surjective. Thus we can
choose a section a': %'-9 E&J, vhich will automatically be a

morphism of algebraic varieties. On pulling back to ¥ , we
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get a section a = al: Gal(Lab/m) +'Ei which is a morphism

of pro-algebraic varieties. The choice of such an a gives

us the following data.

(2.1). A 2-cocycle (&, _ ) for Gal (1L?/p) with values
172

. , L . B -1
in the algebraic group S; ., defined by dT T, = a(Tl)a(Tz)a(rsz) .

1'
(2.2). A family of l-cocycles c(1) € zl(L/Q,SL(L)) , one
for each 1 € Gal(Lab/Q), defined by CO(T)a(T) = ga(t) .

(Gal(L/@) acts on sP(L) through its action on the field L.)

IW m{) defined by

(2.3). A continuous map b: Gal(Lab/Q) + S
b(T)SpL(T) = af{t) .

These satisfy the following relations:

(2.4). d,tl’T2 -co(tl) ‘Tl(co(tz)) = OdTl'TZ 'co(rltz) ,
_ . . -1

(2.5). drl,rz = b(rl) rlb(rz) b(Tsz) :

(2.6). CU(T) = b(T)-l *o(b(t))

for TyrTyeT € Gal(Lab/Q) and o € Gal(L/@) . (We have used the
convention that T € Gal(Lab/Q) acts on SL(L) through its
action on S” , and o € Gal(L/@) acts on st (1) through its
action on the field L.) 1In fact, the first relation is a
consequence of the other two.

Note that b determines (dT . ) and the (cg4(T))

12

and that the image B(1) of b(t) in st(mh/stw) is
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uniquely determined by the extension and spL (independently

of the choice of a)

Proposition 2.7. A mapping b: Gal(Lab/m)-—?SL(:mi)/SL(L)
arises (as above) from an extension of SL by Gal(Lab/Q)

and a splitting if and only if it satisfies the following conditions:

(a) o®(1t)) = Blr), all 1 e cal(t®®/q), o € cal (L/D);

(b) Blrjry) = Blry) ~1,blty) , all 1, 1, € Gal@?®/p) :

£
L

§£ b(rl)-rlb(rz)'b(Tsz)_l is

(c) b 1lifts to a continuous map b: Gal(Lab/Q) > SL(ZB ) such

that the map (1,,7,)— dTl,‘t2
locally constant. Moreover, the extension (together with the

splitting) is determined by b up to isomorphism.

Proof. We shall only show how to construct the extension
from b , the rest being easy. Choose a lifting b of b

as in (€) . The family d; is a 2-cocycle which takes

T

1’72
values in the algebraic group Si . It therefore defines
an extension
1 — s — ' — cae®/m — 1

of pro-algebraic groups over L together with a section

L

a: Gal(Lab/Q) . 3L that is a morphism of pro-varieties.

Define 2} to be the pro-algebraic group scheme over & such

that Eﬁ(ﬁ) =‘$E(ﬁ) with Gal(@/m) acting by the formula:
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o(s+a(t)) = cy (1) + os - a(1), o € Gal(@/@) , s € st @

1 L

t e al@®/m) , c (1) £ b(1)7! - ob(t) € 8 (L) . There is an

exact sequence

1—» s —s 1t — Gal (L3P/Q) —> 1 .

i e SL(]AIf_I)Gal(L/l]l}) - si(mf ,

For each 1 € Gal(L?®/@ , b(1)~
and T} sp(T) 4f b('r)_la(r) is a homomorphism. As b is

continuous, so also is sp .

Corollary 2.8. To define an extension of Gal(®/@) by S
(together with a splitting over ]Af) it suffices to give maps
BY: ca1a®/m » s®(mf)/stw) satisfying the conditions of

(2.7) and such that, whenever L CL' ,

. _L‘ 1 1
Gal(L'2P/m) b 5 sb (]Af.. L

Ys™ (L")

can NL 'L

L
Ga1(1?P/q) —B sL(lAf)/sL(L)c—» sL(mf,)/sL(L')

commutes.

Remark 2.9. Let ,I be an extension of Gal(@/@) by S .
For any T € Gal(@/@) , multiplication in X makes ﬂ_l(T) into
a torsor for S , and sp(t) 1is a point of the torsor with values

in ]Af (i.e. a trivialization of the torsor over E\.f) . 1In

the above we have implictly regarded 'rr—l('r) as a left torsor,

because that is the convention of Langlands [1]. It is however
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both more convenient and more conventional to regard ﬂ_l(T)

as a right S-torsor. With this point of view it is natural to
associate with 2, cocycles (yo(T)) and a map B8 defined as
follows: let L be a finite Galois extension of @ and choose
a section T — aflr) to E} -+ Gal(Lab/Q) that is a morphism

of pro-algebraic varieties; then

ca(t) = aliy,(t), for o € Gal(L/@), T € Gal(x?/@) , and

sp(t)B(t) = a(tr) for T € Gal(Lab/Q)

The following relations hold:

1

Yo (1) = B(T) ~ -0 (B(T)) «

—_ _ _l_ . "
B(TlTZ) =T, B(Tl) B(Tz).
The new objects are related to the old as follows:

-1
Yo (1) = T le (1),

B(t) = 1 b(1)

Define c'(t) and b'(t) by the formulas (2.2) and (2.3) but

with a(t) replaced by the section ThH> a'(t) = a('t_l)_l .
Then
_ i --1i-1
Yo (1) = cp(t ) ,
B(t) = b' (1 HL .
In particular, we see that Y(t) and c(T_l)-l are cohomologous
1,-1

and B (1) = b(t T)
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Example 2.10. In the preceding discussion there is no need
to take the base field to be @ . We shall use this method to

construct for any number field L<Q , a canonical extension

L L, ab
1 > S > (Ew)

5 Ga1(t?®/m) — 1

of pro-algebraic groups over @ , together with a splitting
over :mf . According to (2.7), such an extension corresponds to
a map b: Gal(Lab/L) -> SL(Zmi)/SL(L) satisfying conditions
similar to (a), (b), and (c) of that proposition. In fact
we shall define a map b: Gal(t®®/1) » st(mf/sP@ <
SL( n{)/SL(L) and so (a) will be obvious (and the cocycles
c(T) trivial). Note that Gal(L?P/L) acts trivially on s”
and so (b) requires that b be a homomorphism.

The canonical element uL € X*(SL) is defined over L ,
and so gives rise to a homomorphism of algebraic groups,

L
y ResL/Q(u ) NL/m

L L
. A SN
NR L ReSL/(D SL —=x 5 3

Consider

NR(B): B, —> sT(m)
§] U
x L
NR (L) : L —> ST (D)

The reciprocity morphism (Deligne [2,2.2.3])
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r, = o %0 ca1@®/m) —» stmfy /st

is defined to be the reciprocal of the composite of the

following maps: the reciprocity law isomorphism

Gal(t®/1) > T (RI/LX) . the map T (B/L) + o (sT(m)/sT @)
defined by NR , and the projection ﬂD(SL( m)/sL(m)) + SL(ZRf)/SL(W))-

We define b(1) = rL(r)'l . Tt satisfies (a) and (b) of (2.7).

L

According to (1.2), S7(@) 1is a discrete subgroup of

SL(me), and hence of SL(IR). Thus there is an open subgroup
U of B such that NR: Br > S"(B) is 1 on U AL .

X
If F DL corresvonds to UC EL , then there is a commutative

diagram

1 —> ca1(t®®/F) — ca1@?P/n) —> Gal(F/L) — 1

b/ g —
b , b
v
¥
stinf)y T —5 stenhsm

in which b ': Gal(@®®/F) » s¥(m) is induced by

NR: U/U n L - SL(BU . It is easy to extend b to a
continuous map Gal(Lab/L) + SL(Rf) lifting b: choose a set
s’ of representatives for Gal(F/L) in Gal(Lab/L), choose an
element b(s) € SL(Imf) mapping to b(s) for each s € s,

and define b(sg) = b(s)b(g) for s €S , g e Gal(t?®/F). This
map b satisfies (¢) of (2.7) because, when restricted to

Gal(Lab/F), it is a homomorphism.
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Remark 2.11. The extension constructed in (2.10) is, up to sign,
that defined by Serre [1]. For a sufficiently large modulus -
the group T, = T/E*L of (ib.,p II-8) is the Serre group

L ab

§° , and C = Gal(pm/L) for some I&»C: L . Thus the sequence

(ib.,p II-9) can be written
L
1l —> s _> Sw E— Gal(Lm/L) — 1
On passing to the limit over increasing 44 , this becomes

1 —> s* —> @ —» care?t/my —>1 .

The splitting (over mz) is defined in (ib., 2.3).

§3., The Taniyama group.

We denote the Weil group of a local or global field L
by WL' Let v denote the prime induced on @, or a subfield

L of ®, by the fixed inclusion @ c¢— €, and let L, denote

the closure of L in Ev = €. According to Tate [2] there is
a homomorphism iV: Wm -+ wCD such that the diagrams
v
r ab ¢v =
LV Y WL W@ —_ Gal(Qv/mv)
= v v
lcan liib liv [
r —
C, —=— wib Wa —2 . ca (@/@)

commute for all number fields L contained in Q. The

constructions that follow will be independent of the choice of
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iv' but we shall ignore this question by fixing an iv. If

L@ is a finite Galois extension of @ then iv induces

if c af lo) R
a map from va/mv = wmv/wLv to WL/(D = WQ/WL which makes

X
1 — LV——> WLV/QV —_— Gal(Lv/(Dv) —> 1

l l iV l (3.1)

l —> CLQ W — Gal(L/@ — 1

L/Q
commute.

We note that there is a commutative diagram

l — CL _— WL/Q E— Gal(L/Q) — 1
l | I (3.2)

1 Gal(Lab/L)—> Gal(Lab/(D) — Gal(L/Q) — 1

in which the vertical arrows are surjective.

Let T be a torus over @ ; by analogy with T(L) =
X, (T) 8 L, T(]Af)=x*(T) o mf etc., we shall write T(CL)
for X,(T) @ CL - If pueX,(T) and a belongs to a
u

Q-algebra R (or CL) then we write a for y ® a € T(R).

Fix such a torus T and an element y € X, (T), and let
L@ be a number field splitting T. For each 1 € Gal(Lab/(D)

that satisfies
_1 _
(1 + (T -1y =20 (3.3)

and lifting ¥ of 11 to wL/CD (using the map in (3.2)) we shall

define an element bo(%,p) e T(CL)/T(L:), where L =1L QCD R .

Choose a section © b——)wc to W —— Gal (L/@) such that:

L/Q
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(2.4a) w, = 1;

(3.4b) W EW c W ;
1 L,/Q, L/@

(3.4c¢) for some choice of H containing 1 and such that

Gal(L/®@) = HVH:1 (disjoint union), = W w1 for all g € H.

\%
gl g
Of course, the last two conditions are trivial if L CIR.

Corresponding to w there is a 2-cocycle (a0 T), defined by

’

_ ab .
LA ad,T L Let 1 € Gal(L" /@) satisfy (3.3) and let
T € WL/Q map to it. Choose c0 . € CL to satisfy wor =

’

c . W , and define
o,T oT
bolE,u) = T c % eTc)/TL).
c€Gal (L/Q) g1
Lemma 3.5. The element bo(?,u) is independent of the choice

of the section w; it is fixed by Gal(L/Q).

Proof. (Langlands {l. p. 221; p. 223].) Suppose ¢ & wy =

e w e
go ' o

defined using this section. It is easy to see that

-1
] ~ i
c g, T = e,r g Co,? for all o € Gal(L/@) .
Therefore
x v - gy, -1 _ou ~
b (T,u)" = (T (eOT ) L } b (T,m) .

c € Gal(L/@ )

We have to show that the product in { } 1is congruent to 1

X
modulo L _ . Consider g € Gal(LV/mv) . Because of (3.4b),

€ CL , is another section. We use ' to denote objects
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we have ey € L: and hence p(eo) e Li for all p € Gal(L/@)

As
a' =e ple) e la
p,0 p" e’ Tpo Tpsog ]
X
and both ap,o and ap’0 belong to L_ , we have ep = epo
XX
(mod L) . Thus
l \ ouy=1 _ou _TT; oty ou
(eor) e, = (e0 ) e
o € Gal(L/D) g
TTe o(1-t hHu
o o
en0(1—r'1)u
no

" neH o€ Gal(Lv/mv)

is congruent modulo L: to

1

T —ﬂ- eT]G(l—T— RN
o y n
neH o€ Gal(lL,/q, .
which is 1 , because in view of (3.3) ,
c(l—T_l)u =0 .

c € Gal(LV/mv)

Next we show that bo(f,u) is fixed by Gal(L/@Q) . We
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have

) = a al ¢ . for all p,o € Gal(L/Q) .

plcy, g p,o 2p,0t Spo, ¥

and hence
~ _ ” -1 poU -~
p(b (T, 1)) = {o (ap,c ap,UT) P b (Fom)

We can write the product in { } as

-1 -1
TT pouy -1 pot Wy _TT po(l-t Tu
s o6 1&g )=§ 3.0
-1
pno(l-1 T)u
_TIT 3, o
n€H o€ Gal(L,/q,)
. X

I . H

n view of (3.4c) we have ap,nc ap:ﬂ {mod L_) for all
n€H and o € Gal(Lv/mv) . Hence the above product is

x
congruent modulo L to

T 17 . eno(-t hu
neH o€ cal(L,/a,) °" '

which is 1 because of (3.3) .
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On tensoring

1 — L5 —s ]Afo — mfx/Lx —s 1
-1 l l l: (3.6a)
1— 1. —> c,k — CL/L: — 1

with X,(T) we obtain an exact commutative diagram

L — mn — ;) — T(mf) /T(L) —> 1

-1 | I (3.6b)
1 — T(,) — T(C)) —> T(C; )/ T(L,) — 1

(The -1 reminds us that the map is the reciprocal of the obvious
inclusion.) We define ©b(T,u) to be the element of T(R{)/T(L)
corresponding to bo(?,u). Lemma 3.5 shows that it lies in
(T(]AE)/T(L))Gal(L/m) and hence gives rise to an element

c(T,u) € Hl(L/Q, T(L)) through the boundary map in the exact

sequence

1> 1@ — m) — (@ /rw) WY gl o).

Lemma 3.7. The cohomology class c(%,u) depends only on the

image of ¥ in Gal(L/Q).
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Proof. Suppose ' and T have the same image in Gal(L/Q):
the ' = uT i , ~, = ~ -
n T ut with u e CL and Co,'r' cx(u)co’T Thus
bo("f,u) is multiplied by no(w) " = NR(w) , where NR 1is the
N
map of algebraic groups L Re—s(u)_) ResL/@ TL —L/—CD> T. Choose

an element U € ]Af' such that W and u represent the same
element in CL/L: . Then NR(U) € T(]Af) has the same image as
NR(u) in T(C)/T(L)), and we see that b(i',u) = NR(W) B(%,u)
where NR(ll) denotes the image of NR(U) in T(]Af)/T((D) c

T(nf)/T(L). Hence c(%,1) = c(¥',u).

Thus we can write c¢(t,u) for c(T,u) where 1 € Gal(Lab/m)

(or even Gal(L/Q)).

Lemma 3.8. Up to multiplication by an element of the closure

(M~ of T(@) in T(]Af), b(%,u) depends only on 1 (and

not T).
Proof. From (3.2) we see that 7T can be multiplied only by
an element u of the identity component of C.. An argument as

L
in the proof of (3.7) shows that multiplying T by u corre-

sponds to multiplying b(%,p) by NR(3), where U is a lifting
of u to ]AIfJ. But U 1is in the closure of A C_(]Alf')x, and

so NR(U) is in the closure of T(Q).

Thus, for any T € Gal(Lab/Q) satisfying (3.3), there

is a well-defined element b(t,u) € T(]Af')/ T(L) T(@) "
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Example 3.9. For any T and § , b(1,u) is defined; we

show that it is 1. We can take 1 = W If o € H (see 3.4),

1 = = . = 1; o i =
then wgl wcwl W and co’l moreover Wcll
X
= = L = . learl
W W W, wca1,1 o(alll]wc and cm'I o(alll] €L C y
b,(t,m) = 1.
Proposition 3.10. Let h : § » TR be a homomorphism and

=y, be the corresponding cocharacter. Assume that u is
defined over E< L . Then b(t,n) is defined for all T €
Gal(Lab/E) and there is a commutative diagram

Gal (L3P p) RL.n) T(]Afl)/T(L] T(D)"
r_(T,h)

1rest 1 J
E

Gal(®/E) 2 5 o@bH /rn

in which rE(T,h) is the reciprocity morphism (Deligne [2,2.2.3]).

In particular, c{(t,u) is trivial.

Proof. Let 1 € Gal(Lab/E). Then 1 fixes uy, and so (3.3)
is satisfied and Db(t,p) is defined. We may choose the section

w to WL/CD + Gal(L/@) in such a way that wo = T maps to T

in Gal(ra2b/p). Then < =

~ a Let R be a set of repre-
o,T 0,1

sentatives for Gal(L/Q)/Gal(L/E). We have

b, (%,u) T T aP¥
0 pE€R o€ Gal(L/E) PO'T

1]

(since ou = p)

T (TTtea - a catl e

pER g T P,OT pP.0

TT  (pa)P¥ , where a =TT a .
be R g Ot
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To evaluate a, we use the commutative diagram (Tatel[2, W3])

r
E ab
Cg > Wg
Lk
c ——L—> wab
L L

where t 1is the transfer map arising from the inclusion

= - = ~1aC
WLC—> Wg o« Clearly rL(a) = "rL(ao,T) = t(TW_). Thus a

E
ab

is an element of CE that maps to T|E in Gal(Eab/E). Let

a e ]Af represent the same element in CE/E: as a. Then

E
b(t,u) is the image of a under ]Aéx NR, T(lAf)/T(CD)", and

this equals r_(T,h) ('tIEab)_l .

We now apply the above theory to construct the Taniyama

group of a finite Galois extension L of @, L C@. To do so,

we take the torus T to be SL and pu to be the canonical co-

character of SL (see §1). Since SL((D) is closed in SL(JAf)

the above constructions give a map Gal(Lab/(D) —_—

Gal (L/Q)

(SLGAf‘)/SL(L)) which we denote by bD(or Bly.

Proposition 3.11. The map b satisfies the conditions of (2.7)

and so defines an extension

1 — sL — ’VT:" e Gal(Lab/(D) —> 1

together with a continuous splitting over I\f .
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Proof. We have already observed (Lemma 3.5) that b(t) is
fixed by Gal(L/@) for all Tt . To show b satisfies (2.7b),

let T = 147, and lift T, and T, to elements %l and ?2

of wL/m . We take 1112 to be the 1lift of 1 = 1Ty -
Then we have

S.% = %,%, Sor.,% for all o € Gal(L/Q) .

1 1"°2
Hence
bo(r,u) T o (cc,fl) ]]-(corl,?z)
The first factor is bo(fl u) , and the second one is
-1 ’

TT 6T, ~u L. ~ .
o (cc'% 11 , which is Tl(bo(Tz,uD (recall that the action

2
of t; on sV is the ‘algebraic' one, see §1.8). Thus
E(Tlrz) = b(t,) TﬂE(TZ)) . To prove (2.7c), consider the

diagram

ca1(t??/q) —— st@ml) st

{ f

cal(r®P/L) —2 5 sl(mf)

where b is the map defined in (2.10). The diagram commutes
because of (3.10). It is easy to extend b to a continuous
map Gal(Lab/m) > SL(]Af) lifting b (see the proof of 2.10).
Then b satisfies (2.7c) because its restriction to Gal(Lab/F)
is a homomorphism, where F 1is the finite extension of L

defined in the proof of (2.10).



252

The extension, together with the splitting, is the Taniyama
group of I . The next lemma implies that the Taniyama groups
for varying L form a projective system: we have an extension

of Gal(@/@®) by S in the sense of §2.

Lemma 3.12. If L'D> L then

o

Gal (L' 22/ q) > SL'(]Af‘.) /st @wn)
rest. N

=L
Gal(1?P/g) —2 sL(JAf) /s L) C— sL(JAIf") /st L)

commutes.

Proof. We discuss the case Gal(L'/L)/ Gal(LQ/mv) = {1} first.

Let R be a set of representatives for the coset space
Gal(L'/L)\Gal(L'/@)/Gal(L;/Q,)

We choose R such that 1 € R . For elements £ in

Gal(L'/L) U R U Gal(L!/®,) , choose w‘g e wL,/m lifting £ ;

we choose wi =1 and for op € Gal(L&/QV) , choose wb to

be in W, /@, - Write an element o of Gal(L'/@) uniquely
v

as o = Cnp with ¢ € Gal(L'/L) , n € R and p € Gal(L;/mv) ,

and put



253

Then ¢ B w' is a section of W,, + Gal(L'/Q) satisfyin
/0 ying

¢} L
(3.4). We choose a section o b w, of WL/Q + Gal(L/@) as
follows: for o € Gal(L/Q) , ¢ extends to a unique np in

Gal(L'/@) with n € R and p € Gal(Lé/mV) ; we take w, to

be the i £ 'o= 'wt i .
image o wno wpowy inowp o

Let T be an element of Gal(L'3P/Q) . we 1lift T|L’
to T' in WL'/Q , and let T be the image of T' in

w Suppose ¢ € Gal(L/@) 1lifts to np € Gal(L'/Q) and

L/Q °
oT € Gal(L/@) 1lifts to n'p' € Gal(L'/®@) . Then

with d4d' e w

L'/L<: WL'/Q . This shows that under the homomorphism
3 ' _ ab
WL'/m - WL/m , the image d of 4 belongs to WL/L = W and
is the image of cc(%) under the isomorphism 1r; : CL + Wib .

On the other hand, for ¢ € Gal(L'/L), there is a unique

t' € Gal(L'/L) such that zZnpt = g'n'p' . By definition

w! w!' w' ' = ¢ p(?') w

w', w! .
T n p zn ' p!

z' 'n p

It follows that

p(T') w

L
z ®zn z (3.13)
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R . . . ab -~ ab
This is an eguation in wL'/L . Let t W= (WL‘/L)
Wg? (WL,/L,)ab be the transfer homomorphism arising from
wL‘/L"* WL'/L . We have an exact sequence

l——)cL' — W —_— Gal(L'/L) —— 1

!

WLI/Ll

L'/L

and [ » wc

shows that t(d) =r

is a section of wL'/L + Gal(L'/L) ; thus (3.13)

! (7')) . si
L ( C—le_—];;al(L'/L) ene" ) nee

rr

L ab
Cpw ——————> WL
Tt
I ab

L W

S
CL L

commutes (Tate [2, §1, W3]) and rL(ca(f)) =4 , co(f) regarded

as an element of CL' is ]—T cc (') . Now under
r € Gal(L'/L) ne

NL'/L : X*(SL ) - X*(SL) , Znps maps to ou for all

¢z € Gal(L'/L) . Therefore

b (T',u) = T_T ch

N 1
o (TP ec v o X, (V)
z,n,p

p

maps to
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TT dTe,. G N™ec,, © x,(sH
ne ¢ °MP L
np>o

But

=iy OH _TT =y OH _ ~ L
IE (Ucmp(r ot o= ’U| (c ()" = b (T, u) € C & X, (s7)
np+o

Hence the diagram in the Lemma commutes.

Now suppose Gal(L'/L) N Gal(L'v/mv) # {1} . This happens
only if L, = R . Thus in this case X*(SL) = Z and the
Galois group acts on it trivially. Let o ~ W be an arbitrary

section of W + Gal(L/@) , not necessarily satisfying (3.4).

L/Q
Define c¢_€ C by wi=c_w . Then ]_chu =-TTcu ec
a g o o o

L g o 0T L

is independent of the choice of the section o » L for

. . M . . .
in replacing L by ey Wi € e CL ' IJ. c, 1is multiplied

by the factor AII_(eOeOT_l)u, which is 1. 1In particular,

b (T,u) =]J'CGOH . Similarly, let p b w's be an arbitrary

section of WL'/Q + Gal(L'/@Q) , and define cé [ CL , by
L= ' L] . 3 f 1y PH 3 L C 3
wp T C,h Wit Then the image o pl(cp) in S is

independent of the choice of p » wé ; in particular, it is

o)

the image of bo(?,u) . For our purpose, we choose o & W

and p ~ wp as follows. Let R be a set of representatives
for the coset space Gal(L'/L)\Gal(L’/m) . Fix wé [ WL'/Q
projecting to & for each & in Gal(L'/L) J R . For
p € Gal(L'/Q) , write p = igfn with ¢ € Gal(L'/L) and

n € R , then put wé = wé wa. For o € Gal(L/@) , let n be
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the unique element of R extending ¢ , and let W be the

As before, we have c¢_ =

image of wa in WL/CD . g
]_r c!
‘ zn
r € Gal(L'/L) if n € R maps to ¢ in Gal(L/@) . It

follows that the image of bo(?',u) is bo(T.u) .

Proposition 3.14. Let T be a torus over @ , let u € X,(T) ,

and let t be an automorphism of € . Assume (3.3) holds,
so that c(t,u) € Hl(L/Q , T(L)) is defined for L a suffi-
ciently larger number field. The image of c(t,u) in
Hl(Lv/mv,T(Lv)) is represented by u(-l)/r_lu(—l) €

Ker(l + v : T(T) -+ T(T)) .

Proof. The image of c(t,u) in Hl(m/nz , T(C)) is the cup-
product of the local fundamental class in Hz(m/nz , ©) with

the element of H'l(c/na ;, X,(T)) represented by (1 - r_l

PATI
(See Langlands [1, p. 225]). Thus the proposition is a conse-

quence of the following easy lemma.

Lemma 3.15. For any torus T over IR , the map H_l(m/ﬂl,x*(T))
- Hl(E/Kl,T) induced by cupping with the fundamental class in
HZ(E/HI,EX) sends the class represented by x € X,(T) to the

class represented by x(-1) .

Remark 3.16. Thus c(t,u) has the following property: For
any finite prime p of @ and extension of p to L , c(T,p)

has image 1 in Hl(L%/mp , T(Lg)) , and the image of c(1,u)
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in Hl(m/nz, T(C)) is represented by (1-<"t

When T = SL , (2.5) shows that this property determines

) w(-1)

c(t,u) uniquely. On the other hand, it is not difficult to
construct directly a cohomology class having the property.

Consider the exact commutative diagram

1 1 1
H™ (L/@,T(L)) —> 99 H (Lg/mp,T(L%)) — H7(L/Q,T(C))

%/Q Xy (T)) — H (L/Q,X*(T))

in which the vertical maps are the Tate-Nakayama isomorphisms

(Tate [1]). For a finite group G and G-module M, H_l(G,M) =

(Ker N : M > M)/Z(o-1)M . Thus (3.3) shows that (-t Yy

defines an element a_ € H_l(m/na, X, (T)) , and we let

p
a _  the element just defined. Note that the image of o in

-1 .
a = (ap) e @p H (Lq/mp,x*(T)) with o =0 for p # < and

Hl(G/Bl,T(w)) is represented by (1—T_l)u(—l) . The image of
a in H_l(L/Q,X*(T)) is represented by (1—1—1)u , and is
therefore zero. It follows that the image of a in e H (L, f
T(Lq)) arises from an element of Hl(L/m,T(L)), and thlS is the
class sought.

The next property of the Taniyama group will be needed in
showing that the zeta function of an abelian variety of potential

CM- type is the L-series of a representation of the Weil group.

’
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Proposition 3.17. For any finite Galois extension L of @

that is not totally real, there is a homomorphism ¢:WL/Q > E}(m)
making
"L/0
kﬁ////// l
1—st@ - Mo —— Gal (L3P /) ——— 1
commute. If ¢' is a second such homomorphism then $' = ¢°a
with o a l-cocycle for WL/m with values in SL(E) .
Proof. We have to show that the 2-cocycle (dT ) defining

172
the extension (see 2.1) becomes trivial when inflated to
2 L .
H (WL/Q’ §7(€)) . Choose a section ¢ r w, to WL/Q >
Gal(L/@) as in (3.4) and a map b : Gal(L?/m)> s"(mf)

lifting the map b defined above and satisfying (2.7¢). For

. b
ew a i
w L/Q mapping to T e Gal(L /@) define co,w e CL by
the condition w w = cC w and set
o7 o,w OT
L
b_(w) = || ¥ e sv(c) .
° o € Gal(L/@) ¥ L

A calculation as in the proof of (3.11) shows that bo(wlwz) =
bo(wl) . Tl(bo(wzv , where 71, as the image of Wy in

Gal(Lab/Q) . Choose a mapping b : W

L c
L/0 + S (]AL) making
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b &t (]A.L) and Wy o — 5 ga1 (13%/@)

\ i;:)————)%S(JJ/A)

s(c)

-1 . .

commute. Then b(wl) . le(wz) . b(wlwz) lies in

SL(L) < SL(]AL) , and projects onto d in SL(]Af) .

T1rTy L
It is therefore equal to dT o " Let v be an infinite
17°2

prime of L such that L =€, and let bv(w) € SL(LV) =
SL(E) be the component of bi(w) at v . Then ww bv(w)

is a l-cochain whose coboundary is (d )
TyrT2

Remark 3.18. In V we shall need to use the following
notations. For any @-rational torus T , split by L , and
cocharacter u satisfying (3.3) relative to 1t € Gal(Lab/Q)

we have defined an element b(r,u) € TCmi)/T(L) (@~ . It

-1 -1

o) and y(t,u)

is natural also to define B(t,u) = b(r
-1 -1

(c.f. 2.9). If u satisfies the stronger

cl{t ~,u)

condition (1.1) then there is a unique homomorphism

L s’ » T such that P, ° uL =y , and we have B(t,u) =

pu(B(r)) and vy(t,u) = pu(Y(T))
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IV. MOTIFS ET GROUPES DE TANIYAMA

*
par P. Deligne

... j'ai fait quelques progrés quant 3 la relation de ton groupe de Taniyama
T avec les motifs. Je m'intéresseral aux structures suivantes dont on dispose sur

T.

(1) Un morphisme surjectif T » Gal(Q/Q) (ot @ désigne la cldture algébrique

de @ dans C). On notera T° son noyau.

(2) Un morphisme yp , défini sur € , de @& o dans T° . Le systéme (T°,n)

n'a pas d'automorphisme mon trivial. C'est le groupe de Serre connexe (cévol,,III,§1)
(3) Une section continue TOAf) <~ Gal(§,qQ) .

Prendre garde que 7 n'est pas défini par un morphisme de schémas en groupes
(cf. C) : les homomorphismes continus LP Gal(g/n) - T(Qi) déduits de T ont une
image Zariski-dense. Le systéme (T,7) n'a pas d'automorphisme non trivial.

Je ne considérerai des motifs que sur des corps de caractéristique O . Il ne
s'agira pas des motifs de Grothendieck, tels qu'il les définissait en termes de cycles

algébriques, mais des motifs de Hodge absolus, définis de méme en termes de cycles

de Hodge absolus. La catégorie des motifs sur un corps k est semi-simple et tanna-
kienne. De méme pour toute sous - catégorie, stable par produits tensoriels, dualité,

sommes et facteurs directs.

Pour F un corps de caractérisque O , je noterai (CM)F la catégorie tanna-
kienne de motifs sur F engendrée par les motifs d'Artin,i.e. par les H® de varié-
tés algébriques finies (la terminologie est celle de [1] §6)et par les variétés
ab&liennessur F , potentiellement de type CM (i.e., qui deviennent de type CM
sur une extension de F). La catégorie de motifs qui m'intéresse est (CM)tQ .

Cette catégorie, munie du foncteur fibre Hy (cohomologie rationnelle, sur T)
donne lieu 3 un groupe M , muni de structures (1')(2')(3') paralléles a
(1)(2)(3) . Le morphisme (1') : M + Gal(Q/®) provient de ce que la restriction de

HB 4 la catégorie des motifs d'Artin identifie cette dernidre 3 celle des représen-

tations rationnelles de Gal(a/w)

Pour chaque représentation V de M , correspondant 3 un motif Vl , on a

*) Cet article reprend et compléte une lettre 3 Langlands datée du 10 avril 1979,
oli était obtenu un résultat partiel.
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vV = HB(VI) , et V(a L est muni d'une bigraduation de Hodge, et en particulier de
l'action p de Gm donnée  zxvl'% = 7P P pour v ge type (p,q) . Cette
action, &tant compatible au produit tensoriel, provient d'un morphisme wu , défini sur
E', de Gm dans M . C'est la structure (2') . De méme, V&) Af est la Aﬁ—cohomologie
de VI , et, en tant que tel, est muni d'une action de Gal(Q/Q) . Ces actions fournis-

sent (3').

Théoréme. T , muni de (1)(2)(3) , est isomorphe @ M , muni de (1')(2')(3")

Remarque 1. T , muni des structures (1)(2)(3) , n'a pas d'automorphisme autre que
1'identité. L'isomorphisme dont 1'existence est garantie par le théoréme est donc

unique.

Remarque 2. Il résulte du théoréme que la fonction L d'une variété ab&lienne sur

@ potentiellement de type CM est une fonction L de Weil, définie par une repré-
sentation complexe du groupe de Weil. H. Yoshida a récemment donné de ce théoréme

une démonstration directe, dont le point essentiel est 1'observation suivante :
supposons qu'une 52 - représentation V de Gal(®/Q) , restreinte a un sous-groupe
d'indice'fini Gal (Q/F) , soit somme de représentations de dimension 1 définies par

des caractdres de Hecke algébriques. Alors, V est la somme directe de représentations

IngS2l @D

. . Q. ev. . 5 ébri . t .
induites Gal(m/Fi)(xfgvl) avec x; caractére de Hecke algébrique de F1 e V1

représentation d'un quotient fini de Gal(ﬁ/Fi) .
Ma démonstration donne 1'information additionnelle que la représentation complexe
du groupe de Weil requise se d&duit par le procédé de (IIT §3.17) d'une représentation

définie sur @ du groupe de Taniyama.

Remarque 3. Soient K et E des corps de nombres. Un motif potentiellement de type

CM sur K, & coefficients dans E est un objet H de (CM)K , muni de E - End(H) .

Choisissons une cl3ture algébrique K de K . Pour chaque place A de E , H défi-
nit une représentation A-adique de Gal(K/K) . Il résulte du théor&me que ces repré-
sentations forment un systé&me strictement compatibles (au sens de [3] 1.13). Je vois

ce résultat comme un premier pas dans 1'é&tude des représentations f£-adiques mystérieuses
introduites par G.Shimura ([4]§11), qui sont des représentations f-adiques attachées

d des motifs dans la ®-catégorie engendrée par toutes les variétés abélienmes.

Prenons pour simplifier K< @ et K = @ . Choisissons un plongement complexe
o de E ; de H se déduit alors une fonction L . C'est une fonction L de Weil
attachée 3 une représentation linéaire dé&finie sur E du groupe de Taniyama T

image inverse de Gal(Q/K) dans T .
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Remarque 4. Implicite dans le théor@me est une régle disant comment Aut(L) agit
sur 1'ensemble des classes d'isomorphie de variétés abéliennes de type CM sur U
munies de polarisations et de structures de niveau. En particulier, pour K un corps
CM , d'anneau d'entiers (0 , et I un isomorphisme K ® R = 8 , on dispose de la

variété abélienne €8/r(0) , & multiplication par 0 , et munie d'une structure de

niveau ®© a : T — 0 ; il faut déterminer ses conjugués. Essentiellement, pour
0 € Aut(€) , il faut déterminer la classe d'isomorphie du O-module inversible
L0 i= Hl(a(mg/Z(O))) , muni de la structure, déduite de celle de niveau,

g :L; —+ 0". J.Tate a su rendre plus explicite la régle donnant (Lo’uo)

Remarque 5. Je montrerai que la classe d'isomorphie de M , muni de (1') (2") (3") ,
est uniquement déterminéepar les propriétés de M exprimées par les lemmes 1 & 5

qui suivent. Le théor2me résulte de ce que le groupe T a ces mémes propriétés.

Pour K une extension finie de @ , RK/Q(Gm) est le groupe multiplicatif de
la (@Q-algébre K , vu comme groupe algébrique sur @ . Pour F une extension algébri-

quement close de @ , le groupe RK/Q(E )®F qui s'en déduit par extension des

scalaires 3 F s'identifie a gHOM(KF

m
F-algébre K @h F — FHom(K,F) , vu comme groupe algébrique sur F , Pour K muni

: c'est le groupe multiplicatif de la

d'un plongement 1 dans F , on dispose donc, aprés extension des scalaires & F ,
: € €' as . . . .
de mor ] e — HE R 'indice .
morphisme Gm RK/Q(Gm ) Gm l'injection et la projection d'indice 1
Ces morphismes proviennent par extension des scalaires de K a8 F de morphismes

définis sur K

Je dirai "K est CM" pour "K est une extension quadratique totalement
imaginaire d'un corps totalement réel" . Pour indiquer que ce corps totalement réel

s'appelle L , je dirai "(K,L) est CM" . Pour (K,L) CM , posons

Ko - . N
S = RK/Q(GID)/KEI(NL/Q . RL/Q(Gm) Em) .

= . . . K
Pour Kc @ , on définit un morphisme y , défini sur € , de Gm dans S
comme étant le composé
s—l K
WE By~ R () — s
- . . . K
Le groupe de Serre connexe S est la limite projective des S , pour (K,L) CM,
avec K c @ , les morphismes de transitions &tant déduits par passage au quotient des
hi jecti : — . i : B
morphismes surjectifs NK'/K RK‘/m(mm) RK/Q(Gm) Il est muni de p Em + S,

défini sur € , limite projective des morphismes p construits plus haut.

soit M° 1e noyau de (1')M + Gal(Q/Q) . Le morphisme (2'), défini sur
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C:yp: mm + M se factorise par M® .
Lemme 1. (Mo,u) est isomorphe a (S,u)

Le groupe de Serre connexe, muni de p , n'a pas d'automorphisme non trivial. Le
lemme 1 détermine donc (Mo,p) 4 isomorphisme unique prés. Il est démontré dans la
section A . Puisque M est abglien, 1'action par automorphismes intérieurs de M
sur M0 se factorise par (1') : M~ Gal(Q/Q) : le groupe de Galois Gal (Q/D) agit

~ o
sur le schéma en groupes M

Lemme 2. L'action de Gal(Q/Q) sur M = S (lemme 1) est celle décrite dans la

section B .

Pour K< Q , CM , et galoisien sur @ , il résulte des lemmes | et 2 que le
. K — R
noyau de la projection de M® =5 sur S est stable sous Gal(Q/Q) . Ceci permet

. P k .
de passer au quotient et de définir M comme le quotient de M obtenu en remplagant
° %
M par S

Définissons W: Em > M comme étant l'inverse du produit de y et de son
complexe conjugué ;.. Définissons h : T* » M(R) par h(z) = p(z),u(z) . Pour toute

représentation linéaire (V,p) de M , correspondant 3 un motif V] , pow et poh
s'expriment en terme de la décomposition de Hodge de VQ®UT = HB(V]) ®C , et la déeter~

. . . . . +
minent : sur un vecteur de type (p,q) , w(z) agit par multiplication par 2P
et h(z) par multiplication par EREE

.

Lemme 3. Quel que soit K < @ galoisien sur Q et CM, int(b(i)) est une involution

.. __ K
de Cartan du groupe (pro-)algébrique réel [ M/w(t[:m)]]R .

Rappelons qu'une involution e d'un groupe algébrique réel H définit une
nouvelle forme réelle de H , tordue de H par ¢, de conjugaison complexe le produit
de 1'ancienne par € . Elle est dite de Cartan si cette tordue €H est compacte, i.e.

. € . P
si "H(R) est compact et que chaque composante connexe complexe admet un point réel.

Le lemme 3 est prouvé dans la section C . Pour o € Gal(Q/Q) , soit Po 1'image
inverse de ¢ dans M . C'est un torseur sous S , pour l'action de S par transla-
. . K K . U . .
tions & gauche. Soit Pc le S-torseur qui s'en déduit; c'est l'image inverse de

o dans M . Je prouverai dans la section C que les lemmes | 3@ 3 suffisent 3 déter-

miner sa classe d'isomorphie.

Pour K< @) , on désignera par un indice K 3 gauche une image inverse de

Gal(Q/K) < Gal(Q/Q) . Par exemple : KM est 1'image inverse de Gal(Q/K) dans M .
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Ce schéma est une extension de Gal (E/K) par S. La structure (3') induit une section
continue 7 : Gal(Q/K) -~ KM(/Af), de composantes LI Gal(Q/K) - KM(QSL) . Notons encore
HB le foncteur fibre de (CM)K : cohomologie rationnelle, aprés extension des scalaires
da €, par le plongement donné de K dans & . Le schéma en groupes KM est le schéma
en groupes des automorphismes de ce foncteur fibre. On a un diagramme commutatif

extension des scalaires
(cM)

Q ) uﬂ\‘
a vectoriels sur @
B "”’,,f—”ﬁﬁbli

(représentations de KM)

(c)

HBlz
restriction & M
(représentations de M)

Le morphisme défini sur T, u, de !Em dans M, et la section continue = , provien-—

K

nent respectivement de ce cue pour V1 dans (CM)K , HB(vl) ® € est muni d'une

structure de Hodge, et HB(Vl) %) /Af d'une action de Gal(Q/K) -

Soit E wune extension finie de ( .Les variétés abé&liennes A sur K, a isogénie
prés, munies de E - End(A) , telles que HB(A) soit de dimension 1 sur E (type CM),
correspondant, par le foncteur HB , 3@ la donnée de (a) un espace vectoriel H de dimen-

sion 1 sur E et (b) une représentation E-linéaire de _M sur H, telle que la struc-

ture de Hodge qui s'en déduit sur H@QE soit de type ((KO,I),(l,O)} . Ceci s'exprime en
terme de p (cf. le laius qui précédde le lemme 3). Se donner une représentation liné-
aire de KM sur H revient 3 se donner un morphisme défini sur E de KM dans Gm, soit
encore un morphisme p :KM - RE/Q(Qm). Nous dirons que p est de type {(0,1),(1,0)}

si la structure de Hodge de H@mm 1l'est.

Pour K non-nécessairement de type CM, on peut encore définir KS comme le quotient
de RK/Q(Em) par l'adhérence de Zariski des sous-groupes d'indice fini assez petits du
.y . P P - K

groupe des unités de K* . Ce quotient est déterminé dans [3). Pour Kc@, les 'S for-
ment encore un systéme projectif de limite S: si K contient un corps CM, et que K'
est 1 ' ot indui i -

s e plus grand d em’:re eux, la norme NK/K' RK/Q(IEm) -> RK'/UJ(Gm) induit un isomor

. K K
phisme de S avec S .

I1 résulte du lemme 2 que KS est le plus grand quotient de S sur lequel Gal{/K)
agisse trivialement. Puisque RE/Q(mm) est ab&lien, la restriction 3 S d'un morphisme
3 3 K J 3 a
p: KM -> RE/m(Em) se factorise par S . Nous noterons pl le morphisme composé
. K, _p
Py ¢ RK/Q(Em) S RE/Q(Gm) .

Lemma 4 . Quels que soient K c Q et E , extensions finies de Q , et

P :KM -+ R (Gm) de type {(0,1),(1,0)}, il existe un caractére de Hecke algébrique

E/Q

x de X , & valeurs dans E , de partie algébrique

ey o tel que, notant ¢ 1l'en-
semble fini des places ol x est ramifié, pour tout nombre premier & et tout

P, - *
déal i ° =

idéal premier p ¢ ¢ de K , premier 3 2, op NQ(FP) € RE/Q(Em)(QL) (E ®QE)

soit dans E* ,_et égal 3 y(p)

Je suis ici la terminologie de [2] Sommes trig. §5 : un caractére de Hecke
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X est regardé comme une fonction d'idéaux, sa partie algébrique : K¥>E*  est

X
alg
caractérisée par une identité x((a)) = xalg(a) pour a=l(m) , et FB est un

Frobenius géométrique.

Pour notre M , la validité du lemme est conséquence de la théorie de Shimura
et Taniyama, qui implique que la représentation g-adique attachée 3 une variété
abélienne A sur K , de type CM , a multiplication par E , est décrite par un
caractére de Hecke algébrique de K a valeurs dans E , de partie algébrique déterminée
par la classe d'isomorphie du K-E-bimodule Lie(a).

A posteriori, le lemme vaudra pour tout morphisme o : KM + R (Em) , quel que

soit son type de Hodge. Un cas particulier intéressant est celui og/mK =E=0Q , et
o p correspond au motif de Tate Z(l) , de type de Hodge (-1,-1) ; l'action de
Galols sur HB(Z(I)XB Ql est son action sur Qz(l) . Le caractére de Hecke est

(p) --->p_l , car Fp (géométrique) agit par p_] . Sa partie algébrique est

-1 ; . .
u~—u : Q* -+ Q* ., Cet exemple est un test qu'on a pris les bons signes.

Soit K< @ CM . Dans les sections D et E , je montrerai que le lemme 4
détermine uniquement 1'extension ?M de Gal(Q/K) par KS , munie de w . Elle
se déduit par inflation de Gal(ﬁ]K)ab i Gal(Q/K) de l'extension E de Cal(ﬁ'/K)a

par Xs | limite projective des S, introduits par J.-P. Serre [3]

b

Lemme 5. Soit ¢ € Gal(Q/Q) la conjugaison complexe. Alors, w(ec) € M(Af) est dans
M(Q).

1

provient d'une action de c¢ sur HB(VI) . A savoir, si Vl est le H' d'une vari&té

algébrique X , l'automorphisme de Hl(X(E),Q) induit par la conjugaison complexe
X(T) -+ X(C) .

En effet, quel que soit V,£ dans (CM)Q , 1l'action de ¢ sur HB(VI) (9] fA

(A) Preuve du lemme 1.

Disons qu'une (Q-structure de Hodge est de type CM si elle est polarisable et
que son groupe de Mumford-Tate est ab&lien. Si H est polarisable, pour que H soit
de type CM , il faut et il suffit que le commutant de End(H) dans End(HQ) soit
commutatif. Soit (Hodge CM) la catégorie tannakienne des @-structures de Hodge de type

CM .

Proposition A.L Le foncteur Hp ¢ (CM)E-* (Hodge CM) est une équivalence de catégories

Il est pleinement fid&le par la théorie des cycles de Hodge absolu.
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Le foncteur fibre '"@Q-espace vectoriel sous-jacent'' de la cat&gorie (Hodge CM)
a pour groupe d'automorphismes le groupe de Serre connexe déja introduit, dont on don-
nera ci-dessous trois descriptions équivalentes. La premiére paraphrase la définition
de (Hodge CM) , et les autres s'en dédu%sent. La seconde est celle déja donnée. Les
variétés abéliennes sur € , prises 3 isogénie prés, s'identifiant aux structures de
Hodge polarisables de type {(0,1),(1,0)} , la troisiéme description de § raméne
au lemme élémentaire A.2 la preuve de ce que les variétés ab&liennes de type CM
sur @ (ou sur & , cela revient au méme) fournissent un systéme fidéle de represen-—
tations du groupe de Serre connexe. Cette fidélité implique la surjectivité essentielle

du foncteur HB

(a) Soit I 1la catégorie filtrante des paires (T,y ) ol T est un tore
(sur @) et wu : Gm —— T un morphisme défini sur € , tel que w := (lﬁ)_l
soit défini sur @ et que [T/w((I:m)]]R soit compact. Pour (T,u) dans I et V
une représentation de T , on définit une bigraduation de Hodge sur V® &€ par 1la

P»q _ ,"P77q,P:4

régle  p(z)xn(z)xv = . Elle est dans (Hodge CM) , i.e. les composantes

isobares @VvPYsont définies sur Q et définissent des structures de Hodge de type CM.On a
p+g=n

S = lim proj T (limite projective sur I ) .

I1 est loisible de ne considérer que les tores T tels que u ne se factorise par
aucun sous—tore défini sur @ . La catégorie filtrante I se réduit alors 3 un ensem-

ble ordonné filtrant.

(b) Voici un systéme cofinal de tores comme en (a), indexé par les sous-corps

(M de @ . Soit (K,L) CM, avec Kcq . On prend le tore

K

S := RK/Q(Em)/Ker(N (Em)———* Em) ,

L/o'R/g

pe . . . -1
et on définit p comme se factorisant par le morphisme ¢ de Gm dans (RK/Q(GJ)E'

Le morphisme  a &té& défini avant le lemme 1 .

On a

S = lim proj KS (limite projective sur K);

les morphismes de transitions sont induits par les morphismes norme NKI Le dia-

/K

gramme

: —_— —_ — K —_—
0 — Ker(N ;R /0 (E) T ) Re /g € s 0
inj, ”
(in,N, o) «
0 —— Ry piRy /0 (E) Ry /g ®) 6y > S — 0

fournit une suite exacte
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(a.1.1) 00— 1% K*xg* — Ks(@y— o

. s K .
Pour K galoisien, Homm(mm, S) est un Gal(K/@)-module. C'est le quotient
du  ZI[Gal (K/Q)]-module libre engendr& par u par les relations exprimant que cp+p

(c €Gal(K/Q) est le conjugaison complexe) est fixé par Gal(X/Q) .

(c) Le groupe HomE(S,Em) des caractdres de S s'en déduit par passage d la
limite : 1'application x+—— < x,ou > 1'identifie au groupe des fonctions n(g)
sur Gal(Q/Q) & valeurs dans Z , se factorisant par un Gal(XK/Q) , avec K< @
galoisiens sur § et CM , et telles que la fonction o —— n(co)+n(co) soit cons-
tante.

. = . - P K
Soient K< galoisiens et CM , et ¥ un caractére, défini sur € , de S .

Il est déja défini sur un corps de nombre ECQ , qu'on peut prendre CM (et méme égal

da K) . Il fournit. X, : KS — R (Em) , {(avec, sur T, yx = e'oxl) . Soit H un

17 E/Q

E-espace vectoriel de rang 1 . Le morphisme Xq fournit une représentation de S sur
H . Pour que H®C soit de type de Hodge {(0,1),(1,0)} , il faut et il suffit que
la fonction n(0) qui définit X ne prenne que les valeurs 0 et 1 , et vérifie

n(o)+n(co)=1 . Comme déji expliqué, ceci raméne A.l au

Lemme A,2. Le groupe des fonctions n{o) sur Gal(K/Q@) , telles gue la fonction

n(0)+n(c0) soit constante, est engendré par 1'ensemble de celles qui ne prennent que

les valeurs O et 1 et vérifient n(0)+n(co)=1 .

Pour déduire le lemme 1 de la proposition A.l, on observe que le noyau M°
de (1') : M—> Gal()/0) est le schéma en groupe des automorphismes du foncteur fibre

HB de (CM)ﬁ» (cf. les explications précédant le lemme 4).

(B) cCalcul de l'action de Gal(Q/@) sur »°

Soit F une cldture algébrique de @ . Chaque plongement complexe ¢ de F
définit un foncteur fibre H, de (CM)F , et éEE(Hg) , muni de My défini par Hodge,
vient d'@tre calcul&. C'est un groupe algébrique commutatif. D'aprés la théorie géné-
rale de Saavedra, il est donc indépendant du foncteur fibre (& isomorphisme unique
prés) : c'est un groupe algébrique sur @0 , ne dépendant que de F . Notoms le MFF]

Pour tout foncteur fibre : (CM —£L°0@ctoriels sur k), on a M% ., ® Kk = Aut, (w) .
[F] “a =k

On vérifie que 1l'action cherchée de Gal(§/@) sur M° est simplement 1'action
par transport de structure de Aut(F) sur M?F] , pour F =1 . Ceci a un sens, puis-

que Mif] ne dépend que de F .

Nous allons utiliser le foncteur fibre HDR (cohomologie de De Rham) :

(CM)F——a(Vectoriels sur F). Ce foncteur fibre est filtré, par la filtration de Hodge.
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Proposition B.1. Le foncteur fibre HDR de (CM)F admet une unique bigraduation,
] 1
_ Pq <2 . s 2 P q
HDR(V) O] HDR(V) , telle que la filtration de Hodge soit donnée par ;:zp HDR W) ,

et que pour V de poids n on ait Hgg =0 pour p+gq#n .

Pour V dans (CM)F de poids n , montrons que la filtration de Hodge de
HDR(V) admet un unique scindage stable sous End(H) . Il suffit de le vérifier pour
HDR(H)GBF'GE pour 0 un plongement de F dans L . Existence : les 1P convien-
nent. Unicité : puisque 1y , donnant la p-graduation, est dans le commutant de
End(H) , donc dans le centre de End(H)®T puisque H est de type CM , les
End(H) @C-modules HPY sont disjoints. Ce scindage fournit la bigraduation cherchée.

Sa construction montre que :

Proposition B.2. Aprds extension des scalaires 3 € , relativement 3 n'importe quel

plongement complexe de F , la bigraduation ci-dessus devient celle par les yPd

La proposition B.l fournit
Hpr ¢ Gm———}MOIF] sur F canonique,

donc fixé pat Aut(F) , tel que pour chaque plongement complexe ¢ de F , le u

- 2 g
correspondant soit (DDR) .

0 o
: —_— .
o HomF(Cm,M[F]) Homm(mm,M[F])
On aurait pu aussi invoquer la th&orie générale de Saavedra des foncteurs fibres

filtrés pour construire Peu importe.

VDR -
Pour o un automorphisme de F , om a u(uc) = uoa—l , et pour ¢ € Gal(Q/Q)

m

: o o P

agissant sur Hom_(& ,M M t déf : = = B
(ag _( [F]) car Mg, es ini sur Q) alu ) = aolupp) =u
Ceci fournit le ca?cul du titre. Voici une bonne fagon de l'écrire.

Le groupe Homm(M?F],Gm) des caractéres de M; s'identifie canoniquement

(par xt—— < oMy > ) au groupe des fonctions entiéres sur l'ensemble des plonge-

ments complexes de F dans €

(a) factopisables par un Hom(K,Q) , pour K< F un corps CM , et

(b) telles que n(c)+n(cc:)=C':e y pour ¢ la conjugaison complexe.

Dans cette description, 1l'action de Aut(F) est bien sfir par transport de struc-

ture ; celle, galoisienne, de Gal(Q/@) aussi.

Ceci ach@ve la preuve des lemmes 1 et 2 ; les troncations mentionnées 3 la suite

du lemme 2 ont maintenant un sens.

(C) Calcul de torseurs.

(a) Explicitons ce qu'est (3') . Le groupe M est limite projective de ses
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quotients de type fini. Un tel quotient, M' est extension d'un quotient fini de

Gal(Q/Q) , Gal(E/Q) , par un quotient de type fini M'® de S

1O

M M' Gal(E/Q) .

Pour M' de plus en plus grand, on a lim E =0 et 1lim M'®=5 . C'est en ce sens que
P—_y —
M est extension de Gal(Q/®) par S . La structure (3') fournit des diagrammes com-

mutatifs

womh — wab Gal (E/Q)

Gal(a/m) B

avec m continu pour les topologies de Krull et adéliques. C'est en ce sens que

7 : Gal(Q/Q) —— M(Af) est continu.

(b) La trivialité g-adique (a) a pour analogue réel l'existence sur (CM)CD
d'une polarisation : pour tout motif M , de poids n , il existe V¥ : M@M— Q(-n)
qui, apr&s extension du corps de base 3 € , fournisse une polarisation de la struc-

ture de Hodge HB(M) .

Traduisons et spécialisons au poids O . Pour chaque représentation linéaire

V de M, de poids O , il existe une forme bilinéaire symétrique invariante

)

¢t VRV ——10 , telle que
$(x,h(i)x) > 0 pour x # 0 dans VOR .

D'aprés mon article ''La conjecture de Weil pour les surfaces K3" , Inv. Math. 15

p. 206-226, 1972, § 2, le lemme 3 en résulte.

Soit K< @ galoisien sur @ et CM . Le lemme 3 assure que la forme tordue
de [KM/v.q(tE:m)]]R définie par 1'involution 1int(h(i)) a un point réel dans chaque
composante connexe réelle. D'aprés Hilbert 90, la méme assertion vaut pour la forme
tordue de [KM]]R définie par l'involution int h(i) . Noter que int(h(i)) est bien

une involution, car h(-1) = w(-1) est central.

Montrons que les lemmes 1 4 3 suffisent 3 déterminer la classe d'isomorphie
des KS—l:cn:seurs KP(J définis dans le laius qui suit le lemme 3 . Soit o € Gal(Q/Q),
et fixons une cldture algébrique F de @ . La classe & déterminer vit dans

Hl(Gal(F/Q),SO(F)) . Sur Q@ , elle devient triviale, par (a) ci-dessus. Sur R, on

2
la calcule : par (b), il existe u € Po(m) tel que int(h(i)@) =u , i.e.

1

h(D)Th () "h = h()Th(-1)T 1T = h(@h(-1)%T = u

ut = h(i)h(-1)° .
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Il ne reste qu'd invoquer la

Proposition C.1. Si (K,L) est CM , le groupe algébrique KS vérifie le principe

de Hasse,
Preuve : La suite exacte de groupes algébriques sur

K.o
0r— RL/(D(Gm)'_—) RK/Q(Gm) xmm——» § ——o0

fournit une suite exacte

1
0 —— H (Cal(F/D),%s°(F)) — Br(L) > Br(K) xBr(Q) ,
et de méme localement, et Br(L) vérifie le principe de Hasse.
(D) Calcul de M é?mz.

Soient K une extension finie de @ , K une cléture algébrique de K , et V

un espace vectoriel sur une extension finie EA de Ql . Une représentation

A-adique p : Gal(K/K) —— GL(V) est dite de type CM si elle se factorise par

Gal(ﬁ]K)ab et qu'il existe un conducteur m , et un morphisme, défini sur EA +Palg’

de RK/Q(mm) dans GL(V) tels que la représentation p soit non ramifiée en dehors

n: .
de m et des places divisant & et que pour tout idéal a = I Bil de K , premier
da m , et engendré par un &lément a =1{(m) , on ait 1 p(FE.yi = palg(a) . Ce mor-
= = Ei
phisme palg est unique. Il est trivial sur les unités u=1l (m) . Il se factorise

donc par Ks  (défini avant le lemme 4) . Ces représentations sont celles que J.P.Serre

[3] appelle localement algébriques. On dit que est la partie algébrique de p .

palg
Les F sont ici les Frobenius géométriques.
i

o

La représentation p est dite potentiellement de type CM si elle devient de

type CM sur une extension finie de K . On vérifie qu'une représentation potentiel-

lement de type CM qui se factorise par Gal(i/l()ab est de type CM .

Une représentation linéaire p de M sur V est un morphisme du groupe al-

gébrique M GEEA , déduit de M par extension des scalaires de Q 2 EX , dans

GL(V) . Une telle représentation définit une représentation A -adique

pom, 1 Gal(Q/Q) —— M(R,) < M(E

— GL(V) .

3
Nous allons déduire du lemme 4 que :

Proposition D.1. Le foncteur pi——po™ est une équivalence de la catégorie des

L
représentations linéaires de M @% E)t avec celle des représentations A-adiques po-

tentiellement de type CM de Gal(Q/Q)

Proposition D.2. Soient V un espace vectoriel sur EA , p une représentation li-

néaire de M sur V et K cqQ tel que poT, soit de type CM sur K . Alors,
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ols et (poﬂl)alg se factorisent par le méme morphisme de KS dans GL(V)

Montrons que, quel quesoiéent K cqQ et V, espace vectoriel sur une extension
finie EA de mk , une représentation linéaire p de M sur V définit une repré-
sentation A-adique potentiellement de type CM de Gal(®/K) . Deux réductions : (a)
pour le vérifier pour p , il suffit de le vérifier aprés avoir remplacé K par une
extension XK' ,

M par M, E par une extension E'X et V par V G%AE‘A .

K K' A
(b) il suffit de le vérifier pour une famille de représentations les engendrant toutes.
Combinant ces réductions, on voit qu'il suffit de vérifier 1'assertion pour une famille

de représentations des M , fidéle sur S . Que celles considérées dans le lemme 4

K
(plutdt, celle qui s'en déduisent par extension des scalaires de E & ses compl&tés

ER) suffisent 3 la tdche résulté du lemmeA.2Z, et des explications qui précé&dent.

Elles vérifient par hypothé&seD.l et D.2 et ceci prouve déja D.2.

Soient (2-CM) la Ql—catégorie tannakienne des représentations f-adiques
potentiellement de type CM de Gal(Q/Q) , et A le schéma en groupe des automor-
phismes du foncteur fibre '"espace vectoriel sous-jacent'". Il s'envoie dans le groupe
profini (vu comme groupe pro-algébrique) Gal(Q/Q) , correspondant & la sous-catégorie

des représentations qui se factorisent par un quotient fini de Gal(Q/Q) .

Pour (V,p) dans (2-CM) , la construction 'partie algébrique de la restric-—
tion de p i Gal(Q/K) , pour K assez grand' fournit une action de § sur V . Cette
construction est compatible au produit tensoriel, et fournit donc, sur QQ , un
morphisme de § dans A . Si la partie algébrique de p | Gal(Q/K) est triviale, p se

factorise par un quotient fini de Gal(Q/@) . De 14 résulte que A est une extension

s®u, A Gal(Q/Q) .

Au foncteur qui 3 une représentation linéaire p de M C)Qz associe la repré-
sentation £-adique PoTy de Gal(®/Q) correspond un morphisme de A dans M® QE'

D'aprés D.2, le diagramme

s®Q, - A Gal (Q/Q)

I Il

5Q® Q— _M@Ql-——> Gal(Q/n)

est commutatif. Le morphisme A — MG;QE est donc un isomorphisme. Ceci prouve

D.1.

" Le fait que chaque représentation linZaire de A soit une représentation &-
adique de Gal(Q/Q) fournit une section (d'image de Zariski-dense)
LI Gal(p/Q) — A(mg) . Le diagramme

Ty

A(my) —6al (Q/Q)
I 7 I
nOq, + ! cal (/@)
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est commutatif.

(E) Calcul de iu )

. . P ab P . "
Soient K une extension finie de @ , et K la réunion des extensions abé-

liennes de K contenues dans une cldture algébrique K . Le groupe Gal(Kab/K) =
Gal(E/K)ab ne dépend que de K , a4 isomorphisme unique prés. Dans [3],J.-P.Serre a in-
troduit le schéma en groupes de type multiplicatif SK . dont les caractéres définis
sur un corps E s'identifient aux caracté@res de Hecke algébriques de K 3 valeurs
dans E , Plus exactement, il a introduit des groupes Sy » dont SK est la limite

projective. Le groupe SK est une extension

Kg S¢ Gal (®2P/x)

et on dispose d'une section continue T Ga](Kab/K)-————+ Sl(Af) , de composantes

le' .

Les morphismes KS _— SK s SK —_— Gal(Kab/K) , et 7 sont caractérisés
comme suit. Soit y un caractére de Hecke algébrique de K , 3 valeurs dans E , non
ramifié en dehors d'un ensemble fini ¢ de places de K et x, le caractére défini

sur E correspondant de S, .

K
a) la partie algébrique y de x est le composé (défini sur E)
K alg
) kg _al's g
RK/Q m m *
b) Si Xalg est trivial, i.e. si x est d'ordre fini, X, est le composé de la pro-
jection de S sur Gal(Kab/K) , et du caractére yx' de Gal(Kab/K) , non ramifié en

K
dehors de ¢ , tel que X'(FE) = x(p) pour p ¢ ¢

c) Xpe Ty Gal(Kab/K)-——* (E XQQ)* est non ramifié en dehors de ¢ et des places
divisant 3 , et X1°"1(F ) = X(E) pour p ¢ ¢, ZJ 2 -

i

Supposons que K c @ et faisons K =@ . Soit KA 1'image inverse de
Gal(Q/K) dans le groupe A défini en (D) . Ses représentations linéaires s'identi-
fient aux représentations 2-adiques potentiellement de type CM de Gal(Q/K) . Chaque
représentation linéaire de SK sur Ql fournit, par composition avec m, » une
représentation de type CM de Gal(Q/K) . De 1i un morphisme de KA dans SK @)Qi
donnant lieu 3 des diagrammes commutatifs :

m

$@Q, —— A —— Gal@K)  ,  LA@,) b —car@/
|
i
, ! .
“s@q,— 5,80, — Gal(k?P/k) 5@, —t Ga1x%Prx).

. . K . .
Le noyau de la projection de S dans S est un sous-groupe invariant de

M . Notons LM le quotient correspondant de M ; c'est une extension de Gal(Q/K)

K K K
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par KS . Remplagant KA par le groupe isomorphe KMC@(}),l , puis par son quotient

§M63Q£ , on obtient des diagrammes commutatifs

Ks® ml__.» ﬁm@m Gal(qQ/K) KM(Q ) Gal(Q/K)

o ,

J
Ksnx)azk——» 5, ®Q, —— cal (K*° /) S (@) -t Gal (k*°/K)

Soit gk le schéma en groupe sur § produit fibré sur Gal(Kab/K) de S

et Gal(E/K) . C'est 1'inflation & Gal(Q/K) de 1'extension SK de Gal(Kab/K) Kpar
KS . On dispose cette fois de T Gal (Q/K) > §k<ml) , et d'isomorphismes
%s@q,— M@, cal (@/K) @) «ﬂ“—cal(ﬁ/x)
T T
K . - ~ Te =
S®%—" SK®Q2—* Gal(Q/K) SK(QE) «— >~  Gal(Q/K) .

Nous allons déduire du lemme 4 la

L
Q) , i.e. provient par extension des scalaires d'un isomorphisme de schémas en groupes

Proposition E.1. L'isomorphisme f 6 : EM() Qi————+ §kGDQ2 ci-dessus est défini sur

~

sur @ : f : iM — SK .

Lemme E.2 . Il existe des quotients de type fini abéliens KM' de iM et ﬁi de ?K,

. K . - . . .
fidéles sur S , tels que f2 induise par passage au quotient un isomorphisme

v, ] Nv
fo 0 M ®m2——» Sx®mz .

Soit M1 un quotient de type fini de EM , fidéle sur KS : c'est une exten-—

sion

S M -+ Gal(EllK) .

Soit EZ une extension de El galoisienne sur K et M2 le quotient de EM déduit
de Ml par inflation de Gal(El/K) a Gal(EZ/K) . Pour E2 assez grand, le sous-
schéma en groupe des commutateurs de M2 ne rencontre pas KS : c'est clair apreés
extension des scalaires i Ql , vu la structure connue de iM@:QE , et donc vrai sur

@ . Passant au quotient, on obtient un quotient de type fini abélien M3 de EM s

fidéle sur KS :

Kg m ud Gal(E3/K)
. 1 . o s s as K
Soit SK un quotient de type fini de SK , fidéle sur S :
Kg st > Gal(Fl/K) .
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. . . P 3 1
Soit enfin E une extension abélienne de K , contenant E et F , et M' et

S' déduits de M3 et Sé par inflation 4 Gal(E/K) . Pour E assez grand, M' et
S' répondent aux exigences E.2.

Tout caractére, défini sur [ , de KS , se prolonge 3 M' et est défini sur

un corps de nombre E . Pour E assez grand, le lemme A.2 et les explications qui
précédent, assurent donc l'existence d'une famille fid&le de caractéres

Xt M ——>R (Em) , du type considérés dans le lemme 4 . Les représentations g-

adiques xonlElgont non ramifies en dehors d'un ensemble fini ¢ de places de K ,

et le lemme 4 assure qu'elles sont données par des caractéres de Hecke algdbriques.

En particulier, pour p non dans S , xowE(Fp) € (EGDQZ)* est dans E* . La famille
(x) étant fidéle, il en résulte que nl(Fp) € M'(ml) est dans M'(Q) . Pour S'
aussi, les nk(Fp) € S'(mz) sont dans S'(®) . Les nl(Fp) étant Zariski-dense,

fi envoie donc une partie Zariski-dense de M'(Q) dans S'(Q) - et est défini sur
Q@ . Le morphisme f; , qui s'en déduit par inflation, 1'est aussi, et ceci prouveE.l

(F) Unicité de M .

Nous nous proposons de vérifier que deux schémas en groupes M' et M" , munis

de structures (1) & (3) , et vérifiant les lemmes 1 3 5 , sont isomorphes.

(F.) ol on utilise les lemmes 1 et 2.

Soit 5, 1la différence des extensions M' et M' de Gal(Q/Q) par S .

Pour obtenir Al , on prend 1l'image inverse dans M' x M' de 1'image diagonale de
Gal(Q/Q) dans Gal(Q/Q) x Gal(Q/Q) , et on divise par 1'image diagonale de S dans
S X S . Cette image est un sous-groupe invariant, car l'action de Gal(Q/Q) sur S
est la méme pour M' et M" . L'extension obtenue de Gal(Q/Q) par § est munie,

par différence, d'une section 7 : Gal(Q/Q)——+ Al(Af)

Pour K< @ galoisien sur @ et CM, on notera KA le quotient de a; ex-

1
tension de Gal(Q/Q) par le quotient Ks de s . clest la différence de KM' et
M"
K
Que M' et M" , munis de (1)(2)(3), soient isomorphes équivaut 3 ce que 1
provienne d'un scindage Gal(Q/Q)—+ &, de 1'extension A faisant de A, un pro-

duit semi-direct. Il revient au méme de demander que pour chaque K comme ci-dessus
et chaque nombre premier £, 1'application continue déduite de 7 ,
my t Gal(Q/Q) —— KAl(Qg) , provienned'un scindage Gal(Q/Q)— KAl de l(Al , et

que celui-ci soit indépendant de £ .

(F.2 ol on utilise les lemmes 3 et 4 .

Pour K comme plus haut, on a vu E.1) que EM' et §M“ sont isomorphes. En

d'autres termes, 1'image inverse KA de Gal(Q/K) dans K est un produit semi-

K71 1
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direct de Gal(Q/K) par KS , méme un produit, car Gal(Q/K) agit trivialement sur

KS et les m,: Gal(a/]() —_— EAI(Q 2) proviennent tous d'un méme scindage

K . o 1 . . _ . . K

K"Q : Gal(Q/K) — KAI . L'image de KﬂQ est un sous—groupe invariant de 1 Elle
est méme invariante dans A : il suffit de le vérifier aprés extension des scalaires
a qQ, , et, 13, d'observer qu'elle est normalisée par nL(Gal(EIQ)) , puisque LA

prolonge K"Q . Passons au quotient. On obtient un groupe algébrique KA2 , extension
de Gal(K/Q) par KS :
K K

S > h,, Gal(K/Q) ,

muni de sections L Gal (K/Q) — AZ(QQ) , domnt (KAl,n) se déduit par inflation
de Gal(K/Q) a Gal(Q/Q) . Pour que M' et M' , munis de (1)(2)(3) , soient iso-
morphes, il faut et il suffit que ces sections T soient rationnelles et indépen-
dantes de £ .

Le lemme 3 implique (C) que pour chaque o € Gal(K/qQ) , le KS—torseur image

inverse de O a un point rationnel : KAz(tlg) est extension de Gal(K/Q) par l<S((11) .

Pour K' 2 K , on dispose de diagrammes commutatifs

K'S(tlz)-———-——-* K'Az(m) Gal(K'/@Q)

™~ i ™~ e/”"’__'—"_“‘*‘~\Q§§\§

K l Gal(K'/Q)

‘s Ko@) |, Gal®/®)

I N R

s(@y)—— “8,(q,) Gal (K/@)

's(m,z)-]~-* “a, @y

(F.2.1)

(F.3) ofi on utilise le lemme 5

Soient K comme plus haut, et ¢ € Gal(K/@Q) 1la conjugaison complexe. Puisque
K est CM , ¢ est central dans Gal(K/Q) . Le lemme 5 assure que “l(c) € KAZ(QQ)
est dans KAz((])) et indépendant de 2 . On écrira n(c) pour Trl(C) .

Lemme F.4 . Le centralisateur KA3 de w(e) dans KAz(m) s'envoie sur Gal(K/Q)

Notons Z/2 le groupe {l,c} . Il agit sur KS((l)) . Quel que soit ¢ dans
Gal(K/@) , 1'image inverse Pa de ¢ dans KAZ(U)) est un torseur sous KS((l)) R
agissant par translations 3 gauche. Elle est stable par n(c)-conjugaison, et l'action
de T7(c) en fait un KS((IJ)—I:orseur Z/2? -équivariant. Il nous faut montrer que 1'ac-—
tion par automorphismes intérieursde 7(c) sur Po a un point fixe, i.e. que la
classe de ce tdrseur dans H1(2/2,KS(Q)) est triviale. Quel que soit & , 1'image
inverse de 0 dans KAz(Ql) est le KS(Q!')—torseur Z/2 -équivariant P

, deduit
de P K

g ©n poussant par KS(G))'—* S(QZ) . Sa classe est triviale, car "2(0) commute
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a2 m(c) . Le lemme F.4 résulte donc du

Lemme F.5, Hl(ZIZ,KS(Q) ) s'injecte dans le produit des Hl(E/Z,KS(QQ) .

. * . . P

Ecrivons H (G) pour la cohomologie de Z/2 3 valeurs dams un groupe abélien

G muni d'une action de Z/2 . Soit L le corps totalement réel dont K est extension
quadratique totalement imaginaire. La suite exacte (A.l1.1) est Z/2-8quivariante.

Elle fournit une suite exacte longue

L — ¥ xQ*—-—-—+ 1°&s @) —

0

— e =t '@ — 1 Ss@) —— w2

* * *
On a HI(L ) = Hom(Z/2,L) = uz(L ), HI(Q ) = uz(Q) N Hl(K*) = 0 par Hilbert 30
et HZ(L*) = L*/L*2 . Ceci raméne la suite exacte 3

N

* K *, %2
(F.5.1) o— 0 — B (s (@) — 1, ) —0 s @ — 1 s @y - L7
Pour Ks(Qn) , on trouve de méme, notant Ll le complété g-adique L69Q£
de L , une suite exacte
2
* oK . . 1K * %
(F.5.2) 0- — g, = KOs @)+ wy(L) - — uy @) —— B (5@ ~ LT,

et des diagrammes commutatifs

0 — coker (uy (1), @) —— B (‘s (@) — 17 /*

!

0 — coker (uy (L,)u, (@,)) — 0 (“s(g))—— 1j/L7 .

Le quotient L*/L*2 s'injecte dans le produit des L:/L:2 , car un Elément de
¥ qui n'a pas de racine carrée n'en a pas localement, en la moitié des places de L.
Le conoyau coker(uz(L)'—+ uz(m)) est nul pour L de degré impair et, réduit a 1
pour L de degré pair. Si L est de degré pair, il existe £ tels que les complétés

Ly de L (A|2) soient de degrés pairs sur Q, , et pour un tel 2 le morphisme
coker(uz(L)—> uz(ﬂz))-*' coker (u, (Ly )— uZ(Q))

est un isomorphisme. En particulier, coker(uz(L)-* uz(m)) s'injecte dans le produit
des coker(pz(Ll)‘ g UZ(QQ)) , et Hl(KS(m)) s'injecte donc dans le produit des

K
B Cs@y) .

Notons par c-1 en exposant un lieu fixe par ¢ . Si 4 . est le centrali-
sateur de nz(c) dans KAZ(QQ) , on a un diagramme
Kme? KA3 Gal(K/Q)
(F.5.3) | }
- K, e
KS(QQ)C L A Cal(x/®) .

3,0
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.. K, _K K
Soient A4 = A3/{1,n(c)} et A4,£

(F.5.3) se déduit par inflation de Gal(L/K)

= KA3 gl{l,nz(c)} . Le diagramme
Gal(K/Q)/{1,c} a Gal(K/Q) de

(F.5.4) Ksayet s, Gal(L/0Q)
! |
5! %, T e/ .

T1 s'agit encore de montrer que L tombe dans KA4 et est indépendant de L .

Pour K' > K, on a encore dea diagrammes commutatifs de type (F.2.1) .
(F.6) ol on conclut -

Fixons un corps quadratique imaginaire Ko , par exemple Q(i) . Il suffit de

vérifier que 7 tombe dans KA4 , et est indépendant de £ , pour Ko K : ces

L
corps K sont arbitrairement grands.
Pour K = Ko ,ona L=0Q et le diagramme (F.5.4) est trivial. Pour Ko Ko
quelcongque, on a donc L) (Gal(L/@)) < Ker(KA4 1-—» K°A4 2) . Posons KAS =
K K, i K X 2 :
Ker( 04——+ Ah) (resp. ‘15 . Ker ( A4 l———* AA,Q . C'est une extension de

cal@w/ par ker(s@ o Fos@el) (resp. Rer(*s@) '—— *ows@) ).

La suite (F.5.1) fournit un diagramme commutatif

* K c-1
0—— Q@ — 8@ — Ker(NL/sz(L)—* Uy (@))—— 0

R | )

KO el . =
0—— @ — °3(Q) — Ker(NWQ.uZ(L) — @) = 0 ,
d'oli un isomorphisme

TG () R —— “og Ly = Ker(N ,t o, (L) — i, (
er Q 0 = Ker L/g © M2 ) ¥y Q) -

Q

Localement, on trouve de méme

K c-1 1(o c-1
Ker( S(Qn) —_— S(‘DL) ) = Ker(NL/m) : ”Z(Lz)_’ uz(%))

et (F.5.4) se raméne au sous diagramme

(F.6.1) Ker(uz(L) uz(m)) fs Gal(L/Q)
K. o~ 1

Ker(uz(Lz)——e pz(ug’L))—> AS’Q - Gal(L/Q) .

Pour L' wune extension totalement réelle de L , et K' = L’®KODK = L@Ko N

on dispose d'un diagramme commutatif
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1!
2‘—-» Gal(L'/®)

o

g —
2

Ker(uz(L'l )y—— nz(ﬂll)) —_—

Ker(uZ(LL)-———’ uy (@) — == Gal(L/R) -

’

Choisissons L' tel que pour chaque place X' de L' divisant 2 , se projetant

sur une place A de L , le degré [LR. :LX] soit pair. Le morphisme de

N
uZ(L}.) dans UZ(LI) est alors 0 , et a fortiori le morphisme de

Ker(uz(Li)———*lh(Ql)) dans Ker(uz(Ll)-———*xb(Ql)) . Pour o € Gal(L/Q) , image de

o' € Gal(L'/Q) , ﬂl(o) est donc 1'image de n'importe quel &l&ment de K A5 L aus
5
dessus de o' . En particulier, ﬂﬁ(o) est 1'image de n'importe quel &lément de
]
K Ag au-dessus de ¢' : il est dans KA5 et , prenant L' convenant pour deux

nombres premiers a la fois, on voit qu'il est indépendant de £ . Ceci termine la

démonstration.
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Introduction: 1In the first three sections we review the definition
of a Shimura variety of abelian type, describe how certain Shimura
varieties are moduli varieties for abelian varieties with Hodge
cycles and level structure, and prove a result concerning

reductive groups that will frequently enable us to replace one such
group by a second whose derived group is simply connected.

To be able to discuss the results in the remaining sections

both concisely and precisely, we shall assume throughout the rest
of the introduction that a pair (G,X) defining a Shimura variety

Sh(G,X) satisfies the following additional
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conditions (Deligne [2, 2.1.1.4, 2.1.1.5]):

(0.1) for any h € X , the weight w, : &, > Gp is defined
over Q@ :

(0.2) ad h(i) 1is a Cartan involution on (G/w((l;m))]R .
These conditions imply that for any special h € X , the associated
cocharacter u = o factors through the Serre group: u = %Joucan’
pu : S>> G . Thus to any such h and any representation of G
there is associated a representation of S , and hence an object
in the category of motives generated by abelian varieties of CM-
type over G

Consider the Taniyama group

1+s+33Ga1(@/m)+1

Sp _
(nf)y ¥ Gal(@/@ , mesp =1 .
m

b ]

For any T € Gal(@/@) ., Ts 95 n_l(T) is an S-torsor with a
distinguished ]Af—point sp(t) . If h € X 1is special, we can
use o, W = Wy o to transform the adjoint action of G on itself
into an action of S on G . We can then use 'S to twist G ,

and so define ''Mg = Ts x SG . Thus ‘''YG is a @-rational

algebraic group such that "'MG(@ = {s.g | s € 's(@ , g € (@ }/~

1 —
where $$7.9 ~ s'pu(sl)gpu(sl) , all S € S(@) . Let TCG
be a @-rational torus through which h factors. Then

T/ Mg af T S

S x °"r =7 , and so T is also a subgroup of TrHg

Define 'h to be the homomorphism & =+ T/HG  with associated

cocharacter Tu : G, > T < T'Hg ,  and let T ¥y be the ''HMe(m) -
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conjugacy class containing Th . The point sp(t) provides us

T'“gd——f— sp(t).qg 3 G(]Af)->

with a canonical isomorphism g &
T’uG(IAf) . The pair ("Va, T:¥y) Qdefines a Shimura variety,

and the first part of the Langlands's conjecture states the

following.

Conjecture ¢ . (a) For any special h € X , with up = u .,
there is an isomorphism b, wt T Sh(G,X) = sh('"Yg, TrHx)  such
that

T
¢, ,(tih,1]) = ['h,1]

b, ot N@ = I ¥qes. g e cmh, Yo =

T,u
Hecke operator.

In order to compare the isomorphisms ¢ corresponding to
two different special points, it is necessary to construct some
isomorphisms. For this the following two lemmas are useful.
Lemma 0.3. Let G be a reductive group over @ such that Gder
is simply connected. Two elements of Hl(Q,G) are equal if

der)

their images in Hl(Q,G/G and Hl(B!,G) are equal.

Lemma 0.4. Let (Gl'xl) and (GZ’XZ) define Shimura varieties,

and suppose there are given:
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fl : Gl — G, mapping X into X, i
£, : o (mh) = 6, @b ;
2 ° 7 2 !

8 € G, (AF) such that fjoad g™l = ¢

1 2

[l

Then ¢ Sh(f))e J(B) : Sh(Gy,X;) — Sh(G,,X,) has the

following properties:

1

¢[h,877] = [£,0h,1], all h € X ;

se g = Jig,(9))08 , all g € gy (),

Moreover, if fl is replaced with f;0ad q, q € Gl(m) , and
B with Bg, then ¢ is unchanged.

Let h and h' be special points of X with cocharacters
u and uy' . A direct calculation shows that pu*(Ts) and

pu.*(TS) have the same image in Hl(BR,G), and they become

equal in Hl(m,G/Gder) because o and oy define the same

map to G/Gder . There is therefore a {-rational isomorphism
. , af

f : Du*(TS) > pu.*(TS) which, because TrHg & Tg x SG =

T G G

S x SGx G==pu*(TS) x G , can be transferred into an iso-

morphism f1 : Mg+ TWG yhich is uniquely determined up to

composition with adg , g € 'Y (@ ; it maps Tr¥y  into

1] 1
Ty | Let f2 : T’“G(ZIAf) > ToH G(mﬁ) be sp(t).g » spl(t).g.

Then there is a B € TG (mf) satisfying £, o ad g™l - ¢

1

whose definition depends on the choice of fl : if fl is

changed to floeg g then B is changed to Bq . There is

2
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therefore a well-defined map ¢(T;u',u) : Sh(T’“G,T'”x) +
T )
sh(T'¥'c, T'"'xy such that o(tip',we 2(T7Hg) = (T H g0

d(T:u', W) .

Conjecture C. (b) For special h,h' € X , the maps ¢T "
’

and ¢, satisfy ¢(Tiu',u)ed, T M

If 1t fixes the reflex field E(G,X) of Sh(G,X) , then
Shimura's conjecture asserting the existence of a canonical model
for Sh(G,X) over E(G,X) shows that 7T Sh(G,X) * Sh(G,X)
canonically. This suggests that, for =t fixing E(G,X), there
should exist a canonical isomorphism ¢{T;u) : Sh(G,X) ~+
Sh(T'uG, T’“X) . Again (0.3) and the result in §3 enable one
to show that, in this case, pu*(TS) ] Hl(Q,G) is trivial. This
allows us to define an isomorphism fl : (G,X) Zs (T¥g, TrHx)

such that the conditions of (0.4) are satisfied for £ f

1 F2 7
(g » sp(t).9) , and a certain B € G(IAf) . Thus the canonical

isomorphism ¢ (T;u) exists.

Theorem 0.5. Let T € Aut(€) fix E(G,X)

(a) Let h € X be special and let u = Choose elements

Uh .
a(t) € 's (@) and c(1) € pu*(TS)(m) , and let v € G(@) and

o € G(Eﬁ) be such that pu(a(r)) = c(t)v and %J(sp(T)) = c(h)a .
Then the element [gg(v)oTh,a] of Sh(G,X) 1is independent of the
choice of a(t) and cfT) .

(b) Assume that Sh(G,X) has a canonical model; then

conjecture C is true for 1t and Sh(G,X) if and only if
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tlh,1] = [adve'h, a]

for all special h € X .
(c) 1If conjecture C is true for Sh(G,X) and all 1

fixing E(G,X) then Sh(G,X) has a canonical model

£ 1

(M(G,X) ,M(G,X); —=3 Sh(G,X)) ; moreover, fo(tf) L =0¢(t,u) top

T,H
for every 1u corresponding to a special h

Let A be an abelian variety over ¢ with complex multi-

plication by a CM-field F (so that Vd=£ Hl(A, @) is of
dimension 1 over F) . Write T for ResF/m Gm , and let
h:8g8->T7T be the homomorphism defined by the Hodge structure

R

on V . The main theorem of complex multiplication describes
the action of Gal(Q/E(G,X)) on 5h(T, {h}) arising from its
identification with a moduli variety. From conjecture C for
sh(csp(V), Si) one can deduce a description of the action of

the whole of Gal(@/@) on "\ J sh(t,{"h}) € sh(csp(V),sT) .
T € Hom(F,D)

This suggests a conjecture (conjecture CM) stated purely in terms

of abelian varieties of CM-type.

Proposition 0.6. Conjecture CM is true if and only if conjecture
C is true for all Shimura varieties of the form Sh(CSp(V),Si)

It is possible to restate conjecture C for connected
Shimura varieties. For this it is first necessary to show that,
for a connected Shimura variety Sh°(G,G',X+) , special h, h' e x*

and T € Aut () , there are maps
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g b T’”g: st (rel ') » TrHg(pt (rel1 Tr¥gr)
¢°(T7u"u) . shO(TIpG' TI]JGnl X+) -+ Sho(Tlu G, T,U G',X+)
compatible with those defined for nonconnected Shimura varieties.

Conjecture C°
(a) For any special h € x* , with u = Uy, » there is an
isomorphism

T+

T Sh°(G,G',x%) » sne(TrHg, TrkMgr, Tyxh

S

T,d

]
such that ¢ (t[h]) = [Th]
+H
#r oTr) = Tyie° vy e c(@T (rel ') .
T T,
(b) For h' a second special element and up' = Hpr

¢)°(T;u',u)o¢T,u = ¢T u

Proposition 0.7. Conjecture C is true for Sh(G,X) if and

only if conjecture C° is true for Sh°(Gad, Gder’ x™)

Using 0.7) we prove the following.
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Theorem 0.8. If conjecture C 1is true for all Shimura
varieties of the form Sh(CSp(V),Si) then it is true for all
Shimura varieties of abelian type.

All of the above continues to make sense if the Taniyama
group is replaced by the motivic Galois group (II.6) except
that the maps ¢(t; u',u) and ¢(1;n) are (possibly) different
and the conjectures have a (possibly) different meaning. We
shall use a tilde to distinguish the objects associated with
the motive Galois group from those associated with the Taniyama
group. A new fact is that, almost by construction of the
motivic Galois group, conjecture CM is true. Thus (d?%) and
(6T§) show that conjecture C 1is true for all Shimura varieties

of CM-type. This has the following consequence.

Theorem 0.9. Let Sh(G,X) be a Shimura variety of abelian type
and let M(G,X) be its canonical model. For any | associated
with a special h ,there is an isomorphism g » g' : G(]Af)+
T’“G(]Af) such that, if g' € T’“G(]Af) is made to act on

T M(G,X) as 1( j(g)) , then T M(G,X) together with this action
is a canonical model for sh('’Mg, Tr¥x)

(0.9) is the original form Langlands's conjecture on Shimura
varieties. (''MG is the same for the motivic Galois group and
the Taniyama group.) Such a result was first proved for Shimura
curves by Doi and Naganuma [1] and for Shimura varieties of
primitive type A and C by Shih [2]. A theorem of Kazhdan [1]

can be interpreted as saying that the conjugate 7t Sh(G,X) of
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a compact Shimura variety is again a Shimura variety but
unfortunately his method gives little information on the
pair (G',X') to which the conjugate corresponds.

We would like to thank P. Deligne and R. Langlands for
making available to us pre-prints of their work and D. Shelstad
for a letter on which we have based Proposition 4.2 and preceding
discussion. One of us was fortunate to be able to spend seven
months during 1978-79 at I.H.E.S. and have numerous discussions

with P. Deligne, which have profoundly influenced this paper.

Notations and conventions.

For Shimura varieties and algebraic groups we generally
follow the notations of Deligne [2]. Thus a reductive algebraic

group G 1is always connected, with derived group Gder , adjoint

group Gad , and centre Z = Z(G) . (We assume also that gad
has no factors of type ES)' A central extension is an

epimorphism G + G' whose kernel is contained in 2(G), and a
covering is a central extension such that G 1is connected and

the kernel is finite. If G 1is reductive, then p : G+ Gder

is the universal covering of Gder .

A superscript + refers to a topological connected component;
for example G(IR)+ is the identity connected component of G(IR)
relative to the real topology, and G((D)+ = G(@m AN G(IR)+ . For
G reductive, G(R)_, is the inverse image of Gad(:[R)+ in
G(R) and G@), = G@ N G(]R)+ . In contrast to Deligne [2],

we use the superscript ~ to denote both completions and

closures since we wish to reserve the superscript - for certain
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negative components.

We write Sh(G,X) for the Shimura variety defined by a
pair (G,X) and Sﬁ(G, G', X+) for the connected Shimura
variety defined by a triple (G, G', X+) . The canonical
model of Sh(G,X) is denoted by MI(G,X) .

Vector spaces are finite-dimensional, number fields are
of finite degree over @ (and usually contained in €) ,
and @ 4is the algebraic closure of @ in € . If V is
a vector space over @ and R 1is the {Q-algebra, we often
write V(R) for V 8 R .

If x € X and g € G(ka) then [x, g] denotes the
element of Sh(G,X) = ¢(@MN\X x a(BY) /2(@®~ containing (x,q) .
The Hecke operator [x,g] b [x,gg'] is denoted by J(g') .

The symbol A af B means A 1is defined to be B or that A
equals B by definition.

For Galois cohomology and torsors (= principal homogeneaus
spaces) we follow the notations of Serre [1].

For the Taniyama group, we use the same notations as in

ITI; we refer the reader particularly to III. 2.9.

If A is an abelian variety, then

Vf(A) af (lim ker(n: A > A)) ®

depends functorially on the isogeny class of A . Throughout
the article, an abelian variety will be regarded as an object

in the category of abelian varieties up to isogeny.
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1. Shimura varieties of abelian type.

A Shimura variety Sh(G,X) is defined by a pair (G,X) ,

comprising a reductive group G over @ and a G(IR) -conjugacy
class X of homomorphisms & -+ GIR . that satisfies the
following axioms:

(1.1la) the Hodge structure defined on Lie(GnQ by any
h e x is of type {(-1, 1), (0,0), (1, -1)1};

(1.1b) for any h € X, 23 h(i) is a Cartan involution

ad

on an H

(l.1c) the group Gad

has no factor defined over @ whose
real points form a compact group. Then Sh(G,X) has complex
points G(D) \ X x G(]Af) /2{(®)" , where 2 is the centre of

G and Z(@) " the closure of Z(@) 1in Z(IAE) .

A connected Shimura variety ShO(G,G',X+) is defined by

a triple (G,G',X+) comprising an adjoint group G over @ ,

a covering G' of G, and a G(mJ+—conjugacy class of homo-
morphisms § -+ G]R such that G and the G(IR) -conjugacy class
of X containing xt satisfy (l1.1). The topology T(G') on
G(@) is that for which the images of the congruence subgroups of

G' (@) form a fundamental system of neighbourhoods of the identity

and ShO(G,G',X+) has complex points 1lim F\X+ where T runs
“

over the arithmetic subgroups of G(CD)+ that are open relative to
the topology T(G') (Deligne [2, 2.1.81]).

The relation between the two notions of Shimura variety is
as follows: let (G,X) be as in the first paragraph and let

x* be some connected component of X; then xt  can be regarded
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as a Gad(ﬂui-—conjugacy class of maps § + G;s and
Sho(Gad, Gder'»x+) can be identified with the connected com-
ponent of Sh(G,X) that corntains the image of xt x {1} .

We recall that the reflex field E(G,X) of (G,X) 1is the
subfield of @ that is the field of definition of the G(C) -
conjugacy class of M, . any h € X, (uh = restriction of h(E
to G X 1 Clmm) and that E(G,X+) is defined to equal E(G,X)
if x¥ is a connected component of X (Deligne [2, 2.2.1]1).

The following easy lemma will be needed in comparing the

Shimura varieties defined by (G,X) and (Gad, Gder' X+) .

Lemma 1.2. Let G1 + G be a central extension of reductive
groups over & ; let M be a G(C)-conjugacy class of homomor-
phisms G, + G and let My be a Gl(m)—conjugacy class lifting

M . Then M+ M is bijective.

Proof. The map is clearly surjective and so it suffices to show
that, for up €My lifting p € M , the centralizer of My is

the inverse image of the centralizer of u . Since the centralizer
of ¥y contains the center of Gl , we only have to show the

map on centralizers is surjective. We can construct a diagram

C x G2 + Gy *+ G
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in which the first map, and the composite 62 + G are coverings.
After replacing u; and u by multiples, we can assume 1Y
lifts to a homomorphism (p',u"): €, > C X Gy . Then the
centralizer of (u',p") maps into the centralizer of ¥y o,

and onto the centralizer of y

Let (G,X) be as in (1.1) with G adjoint and Q-simple;

if every IR-simple factor of G]R is of one of the types A,B,
C, DH{, Dn{, or E (in the sense of Deligne [2, 2.3.8]) then
G will be said to be of that type. When G' is a covering of

G , we say that (G,G') (or (G,G',X)) 1is of primitive abelian

type if G 1is of type A, B, C, or pR and G' is the

universal covering of G , or if G is of type p®  ana e
is the double covering described in Deligne [2, 2.3.8] (see
Milne-Shih [l1, Appendix]).

If (G,X) satisfies (1.1) and G 1is adjoint and Q-
simple, then there is a totally real number field Fo and

an absolutely simple group G° over Fy such that G =

Res G® . For any embedding v : FOC—aHR » let G, = G ®

F /8

Fo,vnz’ and write Ic and Inc for the sets of embeddings

for which GV(HU is compact and noncompact. Let F be a
quadratic totally imaginary extension of Fg and let

L= (o) be a set of embeddings Oy : F& ¢ such that

0]
v V€IC

GVIFO = v; we define hz to be the Hodge structure on F
(regarded as a vector space over @) such that (F® E)—l’o .

1 0,0

Q

(F® G)O'- and (F8, @) are the direct summands of
@ ]

FR. T = mHom(F,c)

o corresponding to I , 1I , and
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{o:F>e| o|F e I .} .

Proposition 1.3. Let G be a {-simple adjoint group and assume

that (G,G',X) is of primitive abelian type. For any pair (F,I)

as above there exists a diagram

(G,X) ——— (G ,%)) C— (csp (V) , 5%

ad _ der _ ., _ x
such that Gl = G, G = G', and E(Gl,xl) = E(G,X) E(F ,hz) .

Proof. This is Deligne [2, 2.3.10].

Let (G,X) satisfy (1.1) with G adjoint, and let G'
be a covering of G . We say that (G,G') or (G,G',X) 1is of
abelian type if there exist pairs (Gi’Gi)i of primitive
abelian type such that G = HGi and G' is a quotient of the
covering HGi of IIGi . If (G,X) satisfies (1l.1), we say that
G or (G,X) is of abelian type if (Gad,Gder) is of this type.
Finally, we say that a Shimura variety ShO(G,G',X+) or Sh(G,X)

is of abelian type if (G,G') or G is.
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2. Shimura varieties as moduli varieties.

We shall want to make use of the notion of an absolute
Hodge cycle on a variety (Deligne [3,0.7]) and the important
result (see I.2.11) that any Hodge cycle on an abelian variety
is an absolute Hodge cycle. Let A be an abelian variety
over an algebraically closed field k< €; we shall always
identify a Hodge cycle on A with its Betti realization. By
this we mean the following. Let V = Hl(AE’ @) (usual Betti

homology) and note that V has a natural Hodge structure and

1
dR

cohomology of A over k then there is a canonical isomor-

that its dual G = Hl(A,Q). If H._(A) denotes the de Rham

phism HéR(A) ®k c = 6(@). There is also a canonical iso-

‘morphism Vf(A) i>V(]Z&.f). A Hodge cycle s on A is to be
v

an element of some space V®m ® Vgn(p) such that:

(2.1la) s 1is of type (0,0) for the Hodge structure defined by

that on Vi

v , ®m 1 ®n

. 1 _
(2.1b) there is an s e (HdR(A) ) 2] HdR(A) that corre

dRrR
sponds to s under the isomorphism induced by HéR(A) @k T~ v(T)

and € =z 2wiC;

. £ m £ v, 8n . ®p
(2.1lc) there is an Set e v (a) ® (v (A7) ® (lim “n(k))
that corresponds to s under the isomorphism induced by
N
vimf) = via) ana 2ni 7 2B Limw (D).

Let T be an automorphism of €; then 1A 1is an abelian variety
over Tk &€ @ and the above-mentioned result of Deligne shows that

ts 1is a well-defined Hodge cycle on TtA: it has (-rs)dR = R ® 1

Sa
€ HdR(TA) = HdR(A) 2] . k and (Ts)et = 18

k. et’
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Certain Shimura varieties can be described as parameter
spaces for families of abelian varieties. Let (G,X) satisfy
(1.1), and assume there is an embedding (G,X) C—» (CSp(V), s*)
where V 1is a vector space over @, CSp(V) is the group of
symplectic similitudes corresponding to some non-degenerate skew-
symmetric form ¢ on V, and St is the Siegel double space
(in the sense of Deligne [2, 1.3.1]). There will be some family

. Qm ¥yon
of tensors (Sa) in spaces of the form V eV (p) such

a€d
that G = Aut(V, (Sa)) < GL{V) x Em (see I, Prop. 3.1). We shall
always take ¢ to be one of the sa: then the projection

G~ B is defined by the action of G on y.

Consider triples (A, (ta) k) with A an abelian

a€d '
variety over €, (ta) a family of Hodge cycles on A, and k
is an isomorphism k: Vf(A) = ﬂlﬂmf)) under which ta

corresponds to sa for each o 8 J. We define ¢4(G,X,V) to
be the set of isomorphism classes of triples of this form that

satisfy the following conditions:

(2.2a) there exists an isomorphism Hl(A, D) —=— V under which
Sa corresponds to ta for each o € J;

(2.2b) the map & i) GL(H (A, R)) defined by the Hodge
structure on Hl(A,ZR), when composed with the map

GL(Hl (A, R)) + GL(V(IR) ) induced by an isomorphism as in (a),
lies in X.

We let g € ¢(mf) act on a class Ia, (s): kI € 4(G,X,V) as

follows: [A, (ta)’ klg = [A, (ta)’ g_lk]-
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Proposition 2.3. There is a bijection 5h(G,X) =5 AG,X,V)

f
commuting with the actions of G(IB ) .

Proof: Corresponding to [h,gl € Sh(G,X}) = G(@MI\ X * c(mf)

we choose A to be the abelian variety associated with the Hodge

structure (V,h) . Thus H (A, @) V and the s can be regarded

as Hodge cycles on A . As Vf(A) V(Bﬁ% we can define k to
-1
ve via) = vimf) 95 vmf) . 1t is easily checked that the
class [a, (ta)' k] € JQ(G,X,V) depends only on the class
[h,g] € Sh(G,X) . Conversely, let (A, (ta) , k) represent a
class in A(G,X,V) . We choose an isomorphism f:Hl(A, Q) ~ Vv
as in (2.2a) and define h to be f£ hAf_l (cf. 2.2b) and g
£, kY f £01 £
tobe V(BR") —— V- (A) —— Vv(Bn") . If f 1is replaced by

qf , then (h,g) is replaced by (ag(q) o h, gg), and q € G(Q)

Remark 2.4. The above proposition can be strengthened to show

that ©Sh(G,X) is the solution of a moduli problem over &. Since
the moduli problem is defined over E(G,X), Sh(G,X) therefore

had model over E(G,X) which, because of the main theorem of
complex multiplication, is canonical. This is the proof of Deligne
[2, 2.3.1] hinted at in the last paragraph of the introduction to
that paper. Let K and Ky be compact open subgroups of

G(mf) and CSp(V)(mﬁ) with K small and K such that

1
Sh(G,X)K > Sh(CSp(V),Si)Kl is injective (see Deligne [1,1.15]).
The pullback of the universal family of abelian varieties on

K

families of abelian varieties carrying Hodge cycles (ta) and

Sh(CSp(V),Si) constructed by Mumford, is universal for

a level structure (mod K).
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3. A result on reductive groups:; applications.

The following proposition will usually be applied to
replace a given reduction group by one whose derived group

is simply connected.

Proposition 3.1. (cf. Langlands [3, p 228-29]). Let G be

a reductive group over a field k of characteristic zero

and let L be a finite Galois extension of k that is sufficiently

large to split some maximal torus in G . Let G' ~» Gder

be a covering of the derived group of G . Then there

exists a central extension defined over k
l 5 N — Gl - G — 1

such that G is a reductive group, N 1is a torus whose group

1
of characters X*(N) is a free module over the group ring

der der

zZlGal(L/k)] , and (65%F — &%) = (c* — g%

Proof: The construction of Gl will use the following result

about modules.

Lemma 3.2. Let ¢ be a finite group and M a finitely
generated ¢-module. Then there exists an exact sequence of

@#-modules 0 — P, = P, — M — 0 in which P,

is free and finitely generated as a Z-module and Py is

a free Z[%—module.

Proof: Write MO for M regarded as an abelian group, and

choose an exact sequence
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0 — F — F — M

1 0 — 0

0

of abelian groups with FO (and hence Fl) finitely generated
and free. On tensoring this sequence with Z[¢] we obtain

an exact sequence of Qrmodules
0 — z(3l e F;, — zZ[yH & F, — zly 8N, — O
whose pull-back relative to the injection
(m > Zg@g_lm): M C— Z[H 8 M,

has the required properties.

We now prove (3.1). Let T be a maximal torus in
G that splits over L and let T' be the inverse image of
T under G' GderC: G: it is a maximal torus in G' . An
application of (3.2) to the &%= Gal(L/k)-module M = X, (T)/X,(T')
provides us with the bottom row of the following diagram, and
we define Q +to be the fibred product of Py and X, (T)

over M :

0 0
1) b
X (T') = X, (T)
J
0 — Py —> » X, {(T) — 0

v

0o — Pl Y P

)
Q
I ! 1"
0
)
0
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Since the terms of the middle row of the diagram are torsion-
free, the Z-linear dual of the sequence is also exact, and

hence corresponds, via the functor X* , to an exact sequence

1 -5 N — T - T — 1

1
of tori. The map X, (T') — Q= X*(Tl) corresponds to a
map T' — T, lifting T' — T . Since the kernel of
T = T1 is finite, the torsion-freeness of P0 =

coker (X, (T') — X*(Tl)) thus implies that T' — T1
is injective. On forming the pull-back of the above sequence
of tori relative to 2 &< T , where 2 = Z(G) , we obtain

an exact sequence

1 > N — 24 — z — 1 .

As T' contains 2' = 2(G') , T' &> T induces an inclusion

1
z' < Z, - The group G <can be written as a fibred sum,
é = G* e % , where G is the universal covering group of
c9®T and 7 = z(8) (Deligne [2,2.0.11). We can identify G
with a quotient of G . Define Gy = G* 7 z, . It is easy
to check that Z, —> Z induces a surjection Gl — G
with kernel N C Z, = Z(Gl) and that G —> G, induces
an isomorphism G' = Gier . Finally, we note that

X, (N) is a free Z[%i-module and X*(N) is the Z-linear

dual of X, (N)

Remark 3.3 (a) The torus N in (3.1) is a product of copies of

1
6 . Thus H (k',N

RESL/k 'm

k.) = 0 for any field k'> k , and
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the sequence 1 + N(k') -+ Gl(k') + G(k') + 1 is exact.

(b) Let T be the inverse image of T (or T') in é .

Then the maps T+ T T, and 2z, ] T, induce an
isomorphism T g 2y —ia T, . Thus T, can be identified with

a subgroup of Gl , and the diagram

1 — N — T.L — T —> 1

| ) [

1 — N —/] Gl — G — 1

commutes. Obviously Tl is a maximal torus in Gl

Application 3.4. Let (G,X) satisfy (1.1) , let h € X be

special, and let T be a maximal torus such that h factors

der

through T Let G' + G be some covering. Take k to

r *
be ® and L to split T , and construct Tl C Gl > G
as above. Choose some My e X*(Tl) mapping to N e X, (T).

Then obviously commutes with 1uy and so defines a

M1
homomorphism hl: g - TEEC: GB%' We let X be the
G(IR)- conjugacy class of maps containing hl . The pair
(Gl,Xl) satisfies (1.1) because, modulo centres, (Gl’xl) and
(G,X) are equal.

It is possible to choose u; so that E(Gl,xl) = E(G,X).
To prove this we first show that the image Eh of My in
M is fixed by Aut(CT/E(G,X)) , where M = X,(T)/X,(T'}) is as

in the proof of (3.1).
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We have to show tu, -y, 1lifts to an element of X, (T')

for any 1 € Aut(C/E(G,X)) . Since THy ~ Wy € X*(Tder) ,
where 19T = 7 N gaer , and X*(Tder) > X*(Tad) is injective,
where Tad is the image of T in Gad , it suffices to show
that the image of THy — Wy in X*(Tad) lifts to X4 (T') or,
equivalently, to X,.(G') . Let N = {uﬁd | h € X} , where

ad Hh

M is the composite Gm — G —» Gad . Then N 1is a
G(C)-conjugacy class of homomorphisms defined over E = E(G,X) .
For any u € N , the identity component of the pull-back of
G' + G by u 1is a covering w:mﬁ > By that is independent of
u; it is therefore defined over E , and N lifts to a conjugacy
class of N' of maps G > G' defined over E . Any two
elements of N' restrict to the same element on Ker(w) .
Thus if pu' € N' lifts pw € N , then 1 p' - p' factors through
G, by a map that lifts TH ; u

We now use the fact that Xe (N) is a free Gal(LE/E)-
module to deduce the existence of a uy e X*(Tl) mapping to
v € X, (T) and whose image El in Py is fixed by Aut(C/E).
The map G, > G induces an isomorphism W(Gl,Tl) fié W(G,T)
of Weyl groups. Let T € Aut (C/E) and suppose Tp = @ ° u
with u € W(G,T) . If Wy € W(Gl,Tl) maps to w , then
wy o My Mmaps to Tp  in X, (T) and El = Til in Py
thus wy ° up = THY - It follows that 1 fixes E(Gl,xl),

and so E(G,X) D E(Gl’xl)' The reverse inclusion is automatic.
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We can apply this to a triple (G,G',X+) defining a connected

Shimura variety. Thus there exists a pair (Gl,Xl) satisfying
(1.1) and such that (Gid,G?er

E(G,X+) , and X*(Z(Gl)) is a free Gal(L/@)-module for some

+ X L] + —_
,Xl) (G,G",X), E(Gllxl) =
finite Galois extension L of @ (cf. Deligne [2, 2.7.16]).
The last condition implies Gl(k) - Gid(k) = G(k) 1s surjective

for any field kD Q .

Application 3.5. Let G be a reductive group over a field
k of characteristic zero, and let p: G - Gder C G be the uni-
versal covering of Gder . When k is a local or global field

and k' is a finite extension of k , there is a canonical
norm map N, n: G(k')/pG(k') + G(k)/pG(k) (Deligne [2,2.4.8]).
We shall use (3.1) to give a more elementary construction of
this map.
If G is commutative, Nk'/k is just the usual norm
map G(k') > G(k) .
der

Next assume G is simply connected and let

T = G/Gder . If in the diagram

1 —> GK)/G(K') —> T(k') —> H (k'8

l Ny /x

1 — /B0 —> T —3 H (k8

the map G(k')/G(k') + H'(k,&) is a zero, we can define

NL'/k for G to be the restriction of Nk'/k for T
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When k is local and nonarchimedean then Hl(k,a) =0,
and so the map is zero. When k is local and archimedean we

can suppose k = IR and k' =€ ; then N T(TC) » T(IR) maps

¢/R°
into T(R)' , and any element of T(R)T 1lifts to an element
of G(RR) (even to an element of 2Z(G)(IR)) . When k 1is global,

we can apply the Hasse principle.

In the general case we choose an exact sequence

i -5 N — Gl — G — 1

der

as in (3.1) with G1

simply connected. From the diagram

N(k') — G (k')/G(k') —> G(k')/oG(k') — 1

J,Nk'/k lNk'/k

NG — 6, (/&K —  6k)/pGk) — 1

we can deduce a norm map for G .
Let k be a number field. If we take the restricted
product of the norm maps for the completions of k , and form

the quotient by the norm map for k , we obtain the map

N ﬂ(Gk.) —> ﬂ(Gk)

k'/k}
of Deligne [2,2.4.0.1], where 7(G,) = G( mk)/(s(k).pé(mk)) .

Application 3.6. Let G and G' be reductive groups over (

with adjoint groups having no factors over Q@ whose real points
are compact. Assume G' is an inner twist of G , so that for
some Galois extension L of {§ there is an isomorphism

£ : GL ——3—9 Gi such that, for all o € Gal(L/Q) .,
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-1 _ .
(of) o f = @i“g with o € G

ad(L) . %We shall show that

f induces a canonical isomorphism non(f): non(G) + oM (G)
with 7w(-) defined as in Deligne [2,2.0.15] (not Deligne
[1,2.3]1).
If f 4is defined over @ , for example if G 1is commutative,

then ﬂoﬂ(f) exists because T is a functor.

Next assume that G3®F is simply connected, and let f
be the isomorphism from T = G/Gder to T' = G’/G'der induced
by f . A theorem of Deligne [1,2.4] showsthat the vertical arrows

in the following diagram are isomorphisms

l ﬂon(f) _l

ﬂon(T) _ non(T’) .

We define now(f) to make the diagram commute.

In the general case we choose an exact seguence

1> N — G1 - 6 — 1

?er simply connected. Note that G?d = Gad

so that we can use the same cocycle to define an inner twist

as in (3.1) with G

f G The first case considered above allows us to

18 G117 i -
assume fl lifts f . Remark (3.3a) shows that Woﬂ(Gl) > WOH(G)

is surjective, and we define 7y7(f) to make the following

diagram commute:
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() ————— non(Gl) 11 (6 ———— 1

non(le)

ﬂon(f) :ﬂoﬂ(f)

4

TET") —————— noﬁ(Gi) 1y (G') ————— L,

Note that, if £ :

G, + G! and f'; Gi - Gﬂ define G'

L L

and G" as inner twists of G and G', then ﬂon(f')onoﬂ(f) =

ToT(f'ef) . Also that if f is of the form adq : GL - GL

with q € ¢2d(L) , then

non(f) = id . In the case that Gder

is simply connected this is obvious because adq induces id

on T , and the general case follows. On combining these two

remarks we find that =

can only be replaced by

0

n(f) is independent of f , because f

d

. a
fo adqg with g e ¢ (1) , ang

Tam(£) o ﬂoﬂ(ag q) = now(f)
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§4, The conjectures of Langlands.

Let (G,X) satisfy (l1.1) . Before discussing the conjectures
of Langlands concerning Sh(G,X) we review some of the properties
of (G,X) over R .

Let h e X be special (in the sense of Deligne [2,2.2.4]),
and let T be a @-rational maximal torus such that h factors

through ?R . Let u = be the cocharacter corresponding to

Yh
h . According to (1.1b) ag h(i) 4is a Cartan involution on
ad der der

%R , and hence on %R . Thus g = E ® p where
%% = 1ie(@®T) = Lie(q) " and Ad h(i) acts as 1 on k

and -1 on p . According to (l.la) there is a decomposition

-_— + -
g =S ® kg ®r ®p
. . o+ -
where g = Lle(qm) ;¢ = Lie(2(G)lp) » pp =P ®p and Ad u(z)
acts as z on p+ and 1z on p~ . (Thus go,o =cp * Em , g_l'l = E+
and ql'_l =p .) As Tm is a maximal torus in Gm , we also have

a decomposition

Je " ot oodr Lo

v

(o4
A root o is said to be compact or noncompact according as

where t = Lie(gR) and RC t is the set of roots of (G,T) .

S ck °or 9, ¢ Eg

Remark 4.1. If Y e g  then Ad(u(-1))Y = a(u(-1)Y¥ = (-1)<® M7y

Since Adu(-1) acts on k, as *1 andon pp, as -1, this

od

shows that a is compact or noncompact according as <ao,u> is

r
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even or odd.

der

der df . f\Gder is anisotropic because t T~k .

Note that T
Let N be the normalizer of T in G and let W = N(T)/T(C) be
the Weyl group. As 1 acts as -1 on RCZEger
with the action of any reflection Sy - Hence 1 acts trivially

, it commutes
on W and there is an exact cohomology sequence
8

1 + T(R) » N(R) m—,\ W = Hl(IR,T)

where, for w € W 1lifting to w € N(€) , 8§(w) is represented

by wl.iwe Ker(l + 1: T(C) » T(T)) .

Proposition 4.2. The class 6(w) 1is represented by

win-nmene @ .

Proof: Note that &(wjw,) = w;’ 6(w)).8(w,y) while
-1 _ -1 -1 _ -1, _ -
(wywy) “u(=1)/u(-1) = wy,™ (w7 ul-1)/u(=1)) . {wy"u(-1) /u(-1))
and so it suffices to prove the proposition for a generator Sy of W,
We make the identifications T(T) = X,(T) & o, e = X (T) 8 C ,

and E& = X*(T) @ C . If & is a coroot and Ha is the element

of Em corresponding to a , then expniHa = J(—l) . Let .

X, €9, and X_ € g_, be such that X,/ X_,J =H, . As lo = -0,
we have that WH, = -Hj and that X = cX_  and X_ = ax,

with c¢,de € . The conditions [xa,x_a] = Hy and 12 =1 imply
that ed =1 and 1c.d =1, and so ¢ 1is real and 4 = c_l .

If we replace Xa by ax, then we must replace X—a by lx

and ¢ by a2c . Thus, for a given o , there are two possibilities:
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either Xa can be chosen so that 1xa = —X_u or Xu can be

chosen so that 1 X =X__ . In the first case a is compact

and in the second it is noncompact.

Assume that o 1is compact: then the map su, * g such that

(% _g) s Ha , (8 g‘) > xa ’ (_g 8) . X—a lifts to a homomorphism
SU, > G (defined over R) . The image w of (_g é) in GR)
represents s . Thus 6(50‘) =1 in this case. On the other
hand, sa(].l)—u = —<a,p>a¥Y , and so Sau (-1)/u(-1) = a¥ (_1)—<u,u> =
(by 4.1)

If o 1is ﬁoncompact, then the map SJLZ + ¢ such that
((j)_ —é) IS Ha , —]é—(_ji i) - Xoc , %(i _i) - X_a lifts to a
homomorphism SLZ——-\G.R . The image W of ((i) _?_) in G(Q)

-1

-1 0)

s , T w
represents S hen 0 -1

. W is the image of ( , which

is exp miH = a¥(-1) . On the other hand

s u(-1)/u(-1) = a¥(-1) "% H oY (1) (by 4.1).

Corollary 4.3. If the reflex field E(G,X) of (G,X) is real

then there exists an n e N@®R) such that ‘39(“)0“ =1y

Proof: Since 1 fixes E(G,X) there is an element w in G (@) ,
which we can choose to lie in N(€) , such that 1y = adb)eu .
The proposition shows that the image of adw in Hl (C/R,T(T))
is represented by (1-1)p(-1) , and therefore is zero. Thus there
is an n e N@R) representing adwv .

When the reflex field E(G,X) is real and 5h(G,X) has a
canonical model over E(G,X) then 1 defines an antiholomorphic
involution of Sh(G,X) . One of the conjectures of Langlands gives

an explicit description of this involution.
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Let h , as before, be special and let 'h be the element of

X corresponding to 1p . If n is as in the corollary, then
ad(n)oh = 'h . Since K, 1is the centralizer of h(i) , and of
'h(i) , we see that n normalizes K, - Thus g~ gn : G(R) ~» G(R)

induces a map on the quotient G(R) /K, ., which we can transfer to

X by means of the isomorphism g & adgeh : G(TR) /K > X . Thus

we obtain an antiholomorphic isomorphism n = (adgoh & ad{(gn)eh : X-+X)

Conjecture B. (Langlands [1, p. 418], [2, p. 2.7, Conjecture B],
[3, p. 234]). The involution of Sh(G,X) defined by 1 1is

[x,9]1 » [n(x),q] .

Remark 4.4. The conjecture is true for all special h if it is true for
one, and it follows from Deligne [1, 5.2] that to prove the con-
jecture it suffices to show 1[h, 1] = [n(h), 11 (=[‘h, 1]) for
a single special h. Conjecture B 1is easy to prove if sh(G,X)
is a moduli variety for abelian varieties over E(G,X) . - (More
generally, if it is a "moduli variety for motives", see (10. 7).
It is proved for all Shimura varieties of abelian type in Milne-
Shih [1].

The conjecture of Langlands concerning conjugates of Shimura

varieties is expressed in terms of the Taniyama group: thus let

1+s>7T T eai@o » 1
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be the extension, and sp : Gal (G/@) —-):‘I‘A(Af) the splitting,

defined in (III. 3. For any t e Gal(@/@) , "sif 77 l(1) is a

right S-torsor, and sp(t) e 'S (mf) defines a trivialization

of TS over af . (For any finite Galois extension L of Q
and T e Gal (Lab/CD) we can also define an SL—torsor Tk :
L

it corresponds to the cohomology class ¥(1) e ml (L/@, s7) ;

(see III. 2.9).)

Let G,X,h,y,T be as at the start of this section. As

ad ad df
K =

R

u P
and so factors into Gm —can g —-E)TadC Gad . Thus S acts

is anisotropic, @ L1 =129 satisfies (III. 1.1)

on G, and we can use 'S to twist G : we define 'G (or '‘¥g)

T S

tobe 'S x "G . (If LOQ@ splits T then there is an

a

isomorphism £ : G -":)TGL such that of = feo ag 80 (,1% )

L

Note that the action of § on T is trivial, and so

T=TSx51CT . Define 'h to be the homomorphism 5 ",

associated with (Em-T—E)TQ: C TGm ., and X (or T'¥"X) to be the

"™h . The

G R)~conjugacy class of maps S-%TGR containing
element sp(t) e 'S (Af) provides a cano